
Visual Basic 2005: In a Nutshell, 3rd Edition

By Paul Lomax, Tim Patrick, Ron Petrusha,

Steven Roman, Ph.D.

...

Publisher: O'Reilly

Pub Date: January 2006

Print ISBN-10: 0-596-10152-X

Print ISBN-13: 978-0-59-610152-7

Pages: 766

Table of Contents | Index

When Microsoft made Visual Basic into an object-oriented programming language, millions of VB
developers resisted the change to the .NET platform. Now, after integrating feedback from their
customers and creating Visual Basic 2005, Microsoft finally has the right carrot. Visual Basic 2005
offers the power of the .NET platform, yet restores the speed and convenience of Visual Basic.
Accordingly, we've revised the classic in a Nutshell guide to the Visual Basic language to cover the
Visual Basic 2005 version and all of its new features.

Unlike other books on the subject, Visual Basic 2005 in a Nutshell, 3rd Edition doesn't assume
you're a novice. It's a detailed, professional reference to the Visual Basic language-a reference that
you can use to jog your memory about a particular language element or parameter. It'll also come
in handy when you want to make sure that there isn't some "gotcha" you've overlooked with a
particular language feature.

The book is divided into three major parts: Part I introduces the main features and concepts behind
Visual Basic programming; Part II thoroughly details all the functions, statements, directives,
objects, and object members that make up the Visual Basic language; and Part III contains a series
of helpful appendices. Some of the new features covered include Generics, a convenient new library
called My Namespace, and the operators used to manipulate data in Visual Basic.

No matter how much experience you have programming with Visual Basic, you want Visual Basic
2005 in a Nutshell, 3rd Edition close by, both as a standard reference guide and as a tool for
troubleshooting and identifying programming problems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic 2005: In a Nutshell, 3rd Edition

By Paul Lomax, Tim Patrick, Ron Petrusha,

Steven Roman, Ph.D.

...

Publisher: O'Reilly

Pub Date: January 2006

Print ISBN-10: 0-596-10152-X

Print ISBN-13: 978-0-59-610152-7

Pages: 766

Table of Contents | Index

 Copyright

 Preface

 Why Another Visual Basic Book?

 Who This Book Is For

 How This Book Is Structured

 About the Third Edition

 Using Code Examples

 Conventions Used in This Book

 Safari® Enabled

 How to Contact Us

 Acknowledgments

 Part I: The Basics

 Chapter 1. Introduction

 Section 1.1. Why Visual Basic .NET?

 Section 1.2. What Is Visual Basic .NET?

 Section 1.3. What Can You Do with Visual Basic .NET?

 Section 1.4. Versions of Visual Basic for .NET

 Chapter 2. The .NET Framework: General Concepts

 Section 2.1. Common Language Runtime

 Section 2.2. Managed Code

 Section 2.3. Namespaces

 Section 2.4. Types and Objects

 Section 2.5. Assemblies

 Section 2.6. The Framework Class Library

 Section 2.7. Application Deployment

 Section 2.8. The .NET Framework and Visual Basic

 Chapter 3. Introduction to Object-Oriented Programming

 Section 3.1. Principles of Object-Oriented Programming

 Section 3.2. OOP Development in Visual Basic

 Chapter 4. Variables and Data Types

 Section 4.1. Data Types

 Section 4.2. Variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 4.3. Constants

 Section 4.4. Enumerations

 Section 4.5. Arrays

 Section 4.6. Collections

 Section 4.7. Parameters and Arguments

 Chapter 5. Operators

 Section 5.1. Arithmetic Operators

 Section 5.2. Concatenation Operators

 Section 5.3. Logical and Bitwise Operators

 Section 5.4. Assignment Operators

 Section 5.5. Comparison Operators

 Section 5.6. Object Operators

 Section 5.7. Operator Overloading

 Section 5.8. Operator Precedence

 Chapter 6. Program Structure

 Section 6.1. Visual Studio Application Types

 Section 6.2. Referencing Components and Classes

 Section 6.3. Application Entry Points

 Section 6.4. Code File Contents

 Section 6.5. The Structure of a Visual Basic Program

 Chapter 7. The .NET Framework Class Library

 Section 7.1. The System Namespace

 Section 7.2. The System.Collections Namespace

 Section 7.3. The System.Data Namespace

 Section 7.4. The System.IO Namespace

 Section 7.5. The System.Text.RegularExpressions Namespace

 Section 7.6. The System.Windows.Forms Namespace

 Section 7.7. Other Namespaces

 Chapter 8. Delegates and Events

 Section 8.1. Delegates

 Section 8.2. Events and Event Binding

 Chapter 9. Attributes

 Section 9.1. Syntax and Use

 Section 9.2. Defining a Custom Attribute

 Section 9.3. Using a Custom Attribute

 Chapter 10. Generics

 Section 10.1. What Are Generics?

 Section 10.2. Type Parameters

 Section 10.3. Multiple Type Parameters

 Section 10.4. Constraints

 Section 10.5. Multiple Constraints

 Section 10.6. Accessing Type Parameter Members

 Section 10.7. Generic Methods

 Section 10.8. Nested Generic Types

 Section 10.9. Overloaded Types and Members

 Chapter 11. Error Handling in Visual Basic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 11.1. Error Detection and Error Handling

 Section 11.2. Runtime Error Handling

 Section 11.3. Dealing with Logic Errors

 Section 11.4. Error Constants

 Part II: Reference

 Chapter 12. The Language Reference

 #Const Directive

 #If...Then...#Else Directive

 #Region...#End Region Directive

 Abs Function

 Acos Function

 AddHandler Statement

 AddressOf Operator

 AppActivate Procedure

 Application Class

 Application.CompanyName Property

 Application.DoEvents Method

 Application.ExecutablePath Property

 Application.ProductName Property

 Application.ProductVersion Property

 Application.Run Method

 Array Class

 Array.BinarySearch Method

 Array.Copy Method

 Array.IndexOf Method

 Array.LastIndexOf Method

 Array.Reverse Method

 Array.Sort Method

 Asc, AscW Functions

 AssemblyVersion Attribute

 Asin Function

 Atan Function

 Atan2 Function

 AttributeUsage Attribute

 Beep Procedure

 Call Statement

 CallByName Function

 CBool Function

 CByte Function

 CChar Function

 CDate Function

 CDbl Function

 CDec Function

 Ceiling Function

 ChDir Procedure

 ChDrive Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Choose Function

 Chr, ChrW Functions

 CInt Function

 Class...End Class Statement

 Clipboard Class

 CLng Function

 CLSCompliant Attribute

 CObj Function

 Collection Class

 Collection.Add Method

 Collection.Count Property

 Collection.Item Property

 Collection.Remove Method

 ColorDialog Class

 COMClass Attribute

 Command Function

 Const Statement

 Continue Statement

 Cos Function

 Cosh Function

 CreateObject Function

 CSByte Function

 CShort Function

 CSng Function

 CStr Function

 CType Function

 CUInt Function

 CULng Function

 CUShort Function

 CurDir Function

 Custom Event Statement

 DateAdd Function

 DateDiff Function

 DatePart Function

 DateSerial Function

 DateString Property

 DateValue Function

 Day Function

 DDB Function

 Debug Class

 Debug.Assert Method

 Debug.Listeners Property

 Debug.Write Method

 Debug.WriteIf Method

 Debug.WriteLine Method

 Debug.WriteLineIf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Declare Statement

 DefaultMember Attribute

 Delegate Statement

 DeleteSetting Procedure

 Dim Statement

 Dir Function

 DirectCast Function

 Directory Class

 Directory.CreateDirectory Method

 Directory.Delete Method

 Directory.Exists Method

 Directory.GetCreationTime Method

 Directory.GetDirectories Method

 Directory.GetDirectoryRoot Method

 Directory.GetFiles Method

 Directory.GetFileSystemEntries Method

 Directory.GetLogicalDrives Method

 Directory.GetParent Method

 Directory.Move Method

 Do...Loop Statement

 E Field

 End Statement

 Enum Statement

 Environ Function

 EOF Function

 Erase Statement

 Erl Property

 Err Object

 Err.Clear Method

 Err.Description Property

 Err.GetException Method

 Err.HelpContext Property

 Err.HelpFile Property

 Err.LastDLLError Property

 Err.Number Property

 Err.Raise Method

 Err.Source Property

 Error Statement

 ErrorToString Function

 Event Statement

 Exception Class

 Exit Statement

 Exp Function

 File Class

 File.Exists Method

 FileAttr Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FileClose Procedure

 FileCopy Procedure

 FileDateTime Function

 FileGet, FileGetObject Procedures

 FileLen Function

 FileOpen Procedure

 FilePut, FilePutObject Procedures

 FileWidth Procedure

 Filter Function

 Fix Function

 Flags Attribute

 Floor Function

 FontDialog Class

 For...Next Statement

 For Each...Next Statement

 Format Function

 FormatCurrency, FormatNumber, FormatPercent Functions

 FormatDateTime Function

 FreeFile Function

 Friend Keyword

 Function Statement

 FV Function

 GetAllSettings Function

 GetAttr Function

 GetChar Function

 GetObject Function

 GetSetting Function

 GetType Operator

 Global Keyword

 GoTo Statement

 Guid Attribute

 Handles Keyword

 Hashtable Class

 Hashtable.Add Method

 Hashtable.ContainsKey Method

 Hashtable.ContainsValue Method

 Hashtable.CopyTo Method

 Hashtable.Item Property

 Hashtable.Keys Property

 Hashtable.Remove Method

 Hashtable.Values Property

 Hex Function

 Hour Function

 IEEERemainder Function

 If...Then...Else Statement

 IIf Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Implements Keyword

 Implements Statement

 Imports Statement

 Inherits Statement

 Input Procedure

 InputBox Function

 InputString Function

 InStr Function

 InStrRev Function

 Int Function

 Interface...End Interface Statement

 IPmt Function

 IRR Function

 Is Operator

 IsArray Function

 IsDate Function

 IsDBNull Function

 IsError Function

 IsNot Operator

 IsNothing Function

 IsNumeric Function

 IsReference Function

 Join Function

 Kill Procedure

 LBound Function

 LCase Function

 Left Function

 Len Function

 Like Operator

 LineInput Function

 Loc Function

 Lock Procedure

 LOF Function

 Log Function

 Log10 Function

 LSet Function

 LTrim Function

 MarshalAs Attribute

 Max Function

 Me Keyword

 Mid Function

 Mid Statement

 Min Function

 Minute Function

 MIRR Function

 MkDir Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Mod Operator

 Module...End Module Statement

 Month Function

 MonthName Function

 MsgBox Function

 MTAThread Attribute

 MyBase Keyword

 MyClass Keyword

 Namespace Statement

 New Keyword

 Nothing Keyword

 Now Property

 NPer Function

 NPV Function

 Obsolete Attribute

 Oct Function

 Of Keyword

 On Error Statement

 OpenFileDialog Class

 Operator Statement

 Option Compare Statement

 Option Explicit Statement

 Option Strict Statement

 Out Attribute

 ParamArray Attribute

 Partial Keyword

 Partition Function

 PI Field

 Pmt Function

 Pow Function

 PPmt Function

 Print, PrintLine Procedures

 Private Keyword

 Property Statement

 Protected Keyword

 Public Keyword

 PV Function

 QBColor Function

 Queue Class

 Queue.Contains Method

 Queue.CopyTo Method

 Queue.Dequeue Method

 Queue.Enqueue Method

 Queue.Peek Method

 Queue.ToArray Method

 RaiseEvent Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Randomize Procedure

 Rate Function

 ReDim Statement

 Rem Statement

 RemoveHandler Statement

 Rename Procedure

 Replace Function

 Reset Procedure

 Resume Statement

 Return Statement

 RGB Function

 Right Function

 RmDir Procedure

 Rnd Function

 Round Function

 RSet Function

 RTrim Function

 SaveFileDialog Class

 SaveSetting Procedure

 ScriptEngine Property

 ScriptEngineBuildVersion Property

 ScriptEngineMajorVersion Property

 ScriptEngineMinorVersion Property

 Second Function

 Seek Function

 Seek Procedure

 Select Case Statement

 Send, SendWait Methods

 SetAttr Procedure

 Shadows Keyword

 Shared Keyword

 Shell Function

 Sign Function

 Sin Function

 Sinh Function

 SLN Function

 Space Function

 SPC Function

 Split Function

 Sqrt Function

 Stack Class

 Stack.Contains Method

 Stack.CopyTo Method

 Stack.Peek Method

 Stack.Pop Method

 Stack.Push Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Stack.ToArray Method

 STAThread Attribute

 Static Statement

 Stop Statement

 Str Function

 StrComp Function

 StrConv Function

 StrDup Function

 StrReverse Function

 Structure...End Structure Statement

 Sub Statement

 Switch Function

 SYD Function

 SyncLock Statement

 SystemTypeName Function

 TAB Function

 Tan Function

 Tanh Function

 ThreadStatic Attribute

 Throw Statement

 TimeOfDay Property

 Timer Property

 TimeSerial Function

 TimeString Property

 TimeValue Function

 Today Property

 Trim Function

 Try...Catch...Finally Statement

 TryCast Function

 TypeName Function

 TypeOf Operator

 UBound Function

 UCase Function

 Unlock Procedure

 Using...End Using Statement

 Val Function

 VarType Function

 VBFixedArray Attribute

 VBFixedString Attribute

 VbTypeName Function

 WebMethod Attribute

 WebService Attribute

 Weekday Function

 WeekdayName Function

 While...End While Statement

 With...End With Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WithEvents Keyword

 Write, WriteLine Procedures

 Year Function

 Chapter 13. The 'My' Reference

 AllUsersApplicationData Property

 AltKeyDown Property

 Application Object

 ApplicationContext Property

 AssemblyName Property

 Audio Object

 AvailablePhysicalMemory Property

 AvailableVirtualMemory Property

 ButtonsSwapped Property

 CapsLock Property

 ChangeCulture Method

 ChangeUICulture Method

 ClassesRoot Property

 Clear Method

 Clipboard Object

 Clock Object

 Close Method

 CombinePath Method

 CommandLineArgs Property

 CommentTokens Property

 CompanyName Property

 Computer Object

 ContainsAudio Method

 ContainsData Method

 ContainsFileDropList Method

 ContainsImage Method

 ContainsText Method

 CopyDirectory Method

 CopyFile Method

 Copyright Property

 CreateDirectory Method

 CtrlKeyDown Property

 Culture Property

 CurrentConfig Property

 CurrentDirectory Property

 CurrentPrincipal Property

 CurrentUser Property

 CurrentUserApplicationData Property

 DefaultFileLogWriter Property

 DeleteDirectory Method

 DeleteFile Method

 Delimiters Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Deployment Property

 Description Property

 Desktop Property

 DirectoryExists Method

 DirectoryPath Property

 DoEvents Method

 DownloadFile Method

 Drives Property

 DynData Property

 EndOfData Property

 ErrorLine Property

 ErrorLineNumber Property

 FieldWidths Property

 FileExists Method

 FileSystem Object

 FindInFiles Method

 Forms Object

 GetAudioStream Method

 GetData Method

 GetDataObject Method

 GetDirectories Method

 GetDirectoryInfo Method

 GetDriveInfo Method

 GetEnvironmentVariable Method

 GetFileDropList Method

 GetFileInfo Method

 GetFiles Method

 GetImage Method

 GetName Method

 GetParentPath Method

 GetTempFileName Method

 GetText Method

 GetValue Method

 GmtTime Property

 HasFieldsEnclosedInQuotes Property

 Info Object (My.Application)

 Info Object (My.Computer)

 InitializeWithWindowsUser Method

 InstalledUICulture Property

 IsAuthenticated Property

 IsAvailable Property

 IsInRole Method

 IsNetworkDeployed Property

 Keyboard Object

 LineNumber Property

 LoadedAssemblies Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LocalMachine Property

 LocalTime Property

 Log Object (My)

 Log Object (My.Application)

 MinimumSplashScreenDisplayTime Property

 Mouse Object

 MoveDirectory Method

 MoveFile Method

 My Namespace

 MyDocuments Property

 MyMusic Property

 MyPictures Property

 Name Property (My.Computer)

 Name Property (My.User)

 Network Object

 NetworkAvailabilityChanged Event (My.Application)

 NetworkAvailabilityChanged Event (My.Computer.Network)

 NumLock Property

 OpenForms Property

 OpenSerialPort Method

 OpenTextFieldParser Method

 OpenTextFileReader Method

 OpenTextFileWriter Method

 OSFullName Property

 OSPlatform Property

 OSVersion Property

 PeekChars Method

 PerformanceData Property

 Ping Method

 Play Method

 PlaySystemSound Method

 Ports Object

 ProductName Property

 ProgramFiles Property

 Programs Property

 ReadAllBytes Method

 ReadAllText Method

 ReadFields Method

 ReadLine Method

 ReadToEnd Method

 Registry Object

 RenameDirectory Method

 RenameFile Method

 Request Object

 Resources Object

 Response Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Run Method

 SaveMySettingsOnExit Property

 Screen Property

 ScrollLock Property

 SendKeys Method

 SerialPortNames Property

 SetAudio Method

 SetData Method

 SetDataObject Method

 SetDelimiters Method

 SetFieldWidths Method

 SetFileDropList Method

 SetImage Method

 SetText Method

 Settings Object

 SetValue Method

 ShiftKeyDown Property

 Shutdown Event

 SpecialDirectories Object

 SplashScreen Property

 StackTrace Property

 Startup Event

 StartupNextInstance Event

 Stop Method

 Temp Property

 TextFieldParser Object

 TextFieldType Property

 TickCount Property

 Title Property

 TotalPhysicalMemory Property

 TotalVirtualMemory Property

 TraceSource Property

 Trademark Property

 TrimWhiteSpace Property

 UICulture Property

 UnhandledException Event

 UploadFile Method

 User Object

 Users Property

 Version Property

 WebServices Object

 WheelExists Property

 WheelScrollLines Property

 WorkingSet Property

 WriteAllBytes Method

 WriteAllText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WriteEntry Method

 WriteException Method

 Part III: Appendixes

 Appendix A. Language Elements by Category

 Section A.1. Array Handling

 Section A.2. Clipboard

 Section A.3. Collection Objects

 Section A.4. Common Dialogs

 Section A.5. Conditional Compilation

 Section A.6. Conversion

 Section A.7. Date and Time

 Section A.8. Debugging

 Section A.9. Declaration

 Section A.10. Error Handling

 Section A.11. File System

 Section A.12. Financial

 Section A.13. Information

 Section A.14. Input/Output

 Section A.15. Integrated Development Environment

 Section A.16. Interaction

 Section A.17. Mathematics

 Section A.18. Program Structure and Flow

 Section A.19. Programming

 Section A.20. Registry

 Section A.21. String Manipulation

 Appendix B. Namespace Hierarchy

 Section B.1. 'My' Namespace Hierarchy

 Section B.2. System Namespace Hierarchy

 Appendix C. Constants and Enumerations

 Section C.1. Visual Basic Intrinsic Constants

 Section C.2. ControlChars Class

 Section C.3. Visual Basic Enumerations

 Appendix D. What's New and Different in Visual Basic .NET 2002

 Section D.1. Language Changes in VB.NET 2002

 Section D.2. Changes to Programming Elements

 Section D.3. Obsolete Programming Elements

 Section D.4. Structured Exception Handling

 Section D.5. Changes in Object Orientation

 Appendix E. What's New and Different in Visual Basic .NET 2003

 Section E.1. Language Changes in VB.NET 2003

 Appendix F. What's New and Different in Visual Basic 2005

 Section F.1. Enhancements of Existing Functionality

 Section F.2. The 'My' Namespace

 Section F.3. Other New Features

 Appendix G. VB 6 Language Elements No Longer Supported

 Appendix H. The Visual Basic Command-Line Compiler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section H.1. Compiler Basics

 Section H.2. Command-Line Switches

 Section H.3. Using a Response File

 Section H.4. Conditional Compilation Constants

 About the Authors

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic 2005 in a Nutshell

by Tim Patrick, Steven Roman, Ron Petrusha, and Paul Lomax

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jeff Pepper

Production Editor: Darren Kelly

Copyeditor: Chris Downey

Proofreader: Genevieve Rajewski

Indexer: Johnna VanHoose Dinse

Cover Designer: Pam Spremulli

Interior Designer: David Futato

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:

August 2001: First Edition.

April 2002: Second Edition.

January 2006: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The In a Nutshell series designations, Visual Basic 2005 in a Nutshell, Third
Edition, the image of a catfish, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ISBN: 0-596-10152-X

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
Microsoft Visual Basic began its life back in 1991 as a kind of amalgamation of Microsoft's QBasic
programming language and a graphical interface design program developed in part by Alan Cooper.
Since then, it has become one of the most popular programming languages in the world.

The 10th anniversary of Visual Basic coincided with the announcement of Microsoft's new .NET
platform, and with it a totally revised and revamped version of Visual Basic named "Visual Basic
.NET." With the initial release in 2002, the language was streamlined and modernized, and many old
"compatibility" elements were dropped from the language. Since that first release, VB.NET has been
enhanced and improved through two more general releases (in 2003 and 2005).

Pre-.NET versions of VB included a "good try" implementation of standard object-oriented features,
but they often came up short. Teamed with .NET, Visual Basic is now a fully object-oriented
programming (OOP) language, with the inclusion of the long sought-after class inheritance feature,
as well as other OOP elements. The 2005 release adds operator overloading to the language,
something that was absent in the initial .NET version.

Before .NET, Microsoft's Component Object Model (COM) technology played a significant role in
application development, especially when it became part of the foundation of Visual Basic 4.0. With
the advent of .NET, COM begins to take its exit from the Windows programming stage, as .NET
includes a new namespace-based component integration system. This is somewhat unfortunate, since
Visual Basic developers have a lot of time and source code invested in COM components. As great as
COM was, it was also complex, and there were numerous compatibility issues when sharing
components between Visual Basic, Visual C++, and other languages that either produced or
consumed these "ActiveX" libraries. All core compatibility issues are banished with .NET, and although
you can still take advantage of your substantial investment in COM components through .NET's
"interop" features, the enhancements available through .NET will certainly draw all developers
eventually to abandon the COM system.

For developers who have made the switch from .NET, the best news of all is that Visual Basic is now
an "equal player" with other languages, in terms of programming power and accessibility of Windows
features and services. In the past, Visual Basic served as a "wrapper" that simplified and hid much of
the complexity of Windows and its Application Programming Interface (API). Now, Visual Basic
programmers have full and easy access to all features of the .NET and Windows platforms, just as
Visual C++ and C# programmers do.

The extensive changes to the language and the introduction of the .NET platform make a reference
guide to the Visual Basic language more essential than ever. At the same time, they make it easy to
delineate this book's subject matter. This is a book that focuses on the language elements of .NET-
powered Visual Basicon its statements, functions, procedures, directives, and objects.

This book provides essential information on the Visual Basic language for the .NET platform, but there
are some things this book is not:

It is not a reference guide to Visual Basic for Applications (VBA), the programming language

http://lib.ommolketab.ir
http://lib.ommolketab.ir

used in all of the major applications in the Microsoft Office suite, as well as in dozens of other
third-party applications. VBA served as the core programming language in earlier versions of
Visual Basic. However, VBA is not the programming language for the .NET versions of Visual
Basic. Microsoft Office Version 12 (not named as of this writing) will include Visual Studio Tools
for Applications (VSTA), a new .NET replacement for VBA.

It is not a reference guide to the .NET Framework Class Library. The Framework Class Library is
discussed in these pages, and a number of its classes and their members are documented in
this book's reference section. But that documentation just scratches the surface; the
Framework Class Library consists of about 200 namespaces (one of which, incidentally, is
Microsoft.VisualBasic, the namespace that defines many features of the Visual Basic language),
several thousand types (including classes, interfaces, delegates, and enumerations), and an
enormous number of members. In selecting the .NET Framework classes to document in this
book, we've tried to focus on .NET elements that replace commonly used features in pre-.NET
versions of Visual Basic, as well as on .NET elements that expand and enhance the productivity
of Visual Basic developers.

It is not a reference guide to the attributes that you can apply to program elements. Chapter 9
introduces attribute-based programming, and there are entries for important language-based
attributes in the reference section. But with hundreds of attributes available in the .NET
Framework Class Library, only language-related attributes and the general-purpose attributes
VB developers are most likely to use are documented in this book.

It is not a guide to developing full applications or components using Visual Basic or .NET. The
text includes simple code fragments that illustrate relevant syntax and code usage, to
demonstrate how a language element works. But it doesn't show you the big-picture activities,
such as how to use the Windows Forms package to build a Windows application, how to develop
a web application using ASP.NET, or how to implement a web service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Why Another Visual Basic Book?

Each major release of Visual Basic leaves shelves full of tutorial and training books in its wake. The
2005 release of Visual Basic is no exception, especially since Microsoft expects adoption of Visual
Basic on the .NET platform to dramatically increase with this edition. The majority of VB books
assume that you're a complete novice and slowly introduce you to basic concepts such as variables,
arrays, and looping structures.

This is a different kind of book. It is a detailed, professional reference to the Visual Basic languagea
reference that you can use to jog your memory about a particular language element or a particular
parameter. It will come in handy when you need to review the rules for a particular language
element, or when you want to check that there isn't some "gotcha" you've overlooked with a
particular language feature.

In addition, this book serves as a valuable reference for VB 6 programmers who are upgrading to
.NET and for existing .NET programmers who need to know about specific differences found in each
subsequent release of the Visual Basic language. To this end, we have devoted considerable space to
the extensive language differences between VB 6 and VB.NET 2002, and the versions beyond. For
each relevant language entry in the large reference chapter (Chapter 12), we have included a
"Version Differences" section that details the usage changes for the language element between VB 6
and the 2002, 2003, and 2005 releases of Visual Basic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Who This Book Is For

Just like any reference, this book will be useful to many types of readers:

Developers who have used previous versions of Visual Basic

Developers who are new to Visual Basic, but who have been developing applications in other
programming languages, such as C++

Those who are learning VB as their first language and would like to have a definitive language
reference on their shelf

Readers New to Visual Basic

If you are new to the Visual Basic language, then you will want to pay particular attention to the first
part of the book, which discusses many important areas of programming in .NET with Visual Basic,
including variables, data types, the basic principles of object-oriented programming, and error-
handling techniques.

VB and VBScript Developers New to .NET

Some critics have argued that with .NET, Microsoft has introduced an entirely new VB language,
separate and distinct from VB 6. While we wouldn't go quite that far, we do recognize that beyond
the syntax changes, the new .NET platform brings a paradigm shift that affects the way we think
about application development. As a VB 6 or VBScript developer new to .NET, you may find yourself
in a position similar to that of a developer who is new to all flavors of Visual Basic.

This book will ease your transition to .NET from earlier versions of Visual Basic. In particular, the first
11 chapters of the book offer a rapid introduction to VB and .NET and to their new features. Appendix
D discusses many of the major language changes between VB 6 and VB.NET 2002, while Appendix G
lists VB 6 language elements that are no longer supported in .NET editions. The "Version Differences"
entries in Chapter 12 also provide support for your migration to .NET.

Existing .NET Developers

Early adopters of Visual Basic for the .NET platform have been vindicated, as the Windows
development world has followed their lead in droves. And while programmers coming fresh into the
language with the 2005 release will experience a completely new level of software development, the
update introduces changes that keep VB a moving target even for experienced .NET programmers.
That's why Visual Basic 2005 in a Nutshell includes Appendix E and Appendix F, which document the
major changes introduced into the language since the initial 2002 release. You will also find some use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for the "Version Differences" entries in Chapter 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How This Book Is Structured

Visual Basic 2005 in a Nutshell is divided into three parts. Part I, The Basics, is an introduction to the
main features and concepts of Visual Basic programming. If you are new to Visual Basic or .NET, this
part of the book is essential reading. It is divided into the following chapters:

Chapter 1, Introduction

In this chapter, you will read how Visual Basic has been transformed into its .NET variation and
get some sense of how and why the .NET version is different from previous editions of Visual
Basic.

Chapter 2, The .NET Framework: General Concepts

This chapter surveys some of the features of the .NET Framework that most impact the VB
developer. These include namespaces, the Common Language Runtime (CLR), and assemblies.

Chapter 3, Introduction to Object-Oriented Programming

This chapter discusses the basic concepts of object-oriented programming and shows how to
implement VB's object-oriented features in your code.

Chapter 4, Variables and Data Types

This chapter looks at the standard Visual Basic data types and how to use them. Behind the
scenes, VB takes advantage of the .NET Framework's Common Type System, so the chapter
also examines the .NET data types and the way in which VB wraps these data types.

Chapter 5, Operators

This chapter surveys the operators you use to manipulate data in VB. It also introduces
operator overloading, a new feature with the 2005 release.

Chapter 6, Program Structure

This chapter discusses the entry points that allow the .NET runtime to execute your code and
shows how to structure the code in a Visual Basic program.

Chapter 7, The .NET Framework Class Library

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The .NET Framework Class Library (FCL) replaces portions of the Win32 API, as well as many of
the individual object models familiar to pre-.NET VB programmers. This chapter offers a fast-
paced overview of the Framework Class Library and some of its features.

Chapter 8, Delegates and Events

While handling events was more or less automatic in previous versions of VB, events in .NET
are "wired" through the source code itself. This chapter shows how events work and what they
mean to you as a programmer.

Chapter 9, Attributes

The .NET Framework supports attributes, an extensible mechanism that lets you "decorate"
program elements (such as classes and class members) with tags that describe or alter the use
of those elements. Attributes are stored in the assembly's "metadata" and can be used to
influence the compiler, the design time environment, or the runtime environment. This chapter
explains attributes and shows you how to use and define them.

Chapter 10, Generics

Visual Basic 2005 includes a new feature called "generics" that lets you better control the
objects managed by other general-use classes. This chapter describes the feature and provides
examples for its use.

Chapter 11, Error Handling in Visual Basic

Visual Basic now offers two techniques for error handling. The first, which uses the OnError
statement, is termed unstructured error handling and is a traditional part of VB. The second,
which uses the try...Catch...Finally construct, is termed structured exception handling and is
new to the .NET implementation. In this chapter, we'll show you how to use both.

Part II of the book thoroughly details all the functions, statements, directives, objects, and object
members that make up the Visual Basic language.

Chapter 12, The Language Reference

This chapter provides syntax and usage information for all major VB language features, plus
information on some of the more useful .NET Framework features that are not officially part of
the VB language.

Chapter 13, The 'My' Reference

This chapter fully documents the My Namespace feature, a convenient new library introduced
with Visual Basic 2005.

The third and final section, Part III, consists of the following appendixes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A, Language Elements by Category

A listing of all VB functions, statements, and major keywords, grouped by category.

Appendix B, Namespace Hierarchy

A hierarchical listing of the .NET namespaces from System on down, plus the hierarchy of the
Visual Basic My Namespace feature.

Appendix C, Constants and Enumerations

A list of VB intrinsic constants, as well as VB enumerations and their members.

Appendix D, What's New and Different in Visual Basic .NET 2002

A discussion of language changes from VB 6 to Visual Basic .NET 2002.

Appendix E, What's New and Different in Visual Basic .NET 2003

A discussion of language changes introduced with Visual Basic .NET 2003 and the .NET
Framework, Version 1.1.

Appendix F, What's New and Different in Visual Basic 2005

A discussion of language changes introduced with Visual Basic 2005 and the .NET Framework,
Version 2.0.

Appendix G, VB 6 Language Elements No Longer Supported

A list of the language elements that have dropped out of the Visual Basic language as a result
of its transition to the .NET Framework.

Appendix H, The Visual Basic Command-Line Compiler

Visual Basic includes a command-line compileryou can actually use Notepad as your primary
"development environment" for Visual Basic and use the compiler to compile your code. This
Appendix documents the operation of the Visual Basic command-line compiler and its options.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Third Edition

The first two editions of Visual Basic 2005 in a Nutshell (which were both named VB.NET Language in
a Nutshell) focused solely on the initial release of Visual Basic .NET (the 2002 release) and related
.NET features (the .NET Framework, Version 1.0). This third edition incorporates all new and
significant features added in both the 2003 and 2005 releases of Visual Basic. Part I, The Basics, has
been reorganized to better support the learning process for programmers new to Visual Basic and
.NET concepts in general. The largest change is the addition of two new chapters: Generics (Chapter
10) and The 'My' Reference (Chapter 13). Chapter 5, Operators, is also a new chapter, although it
existed in the second edition as an appendix. While the third edition focuses on Visual Basic 2005, it
is still useful with earlier releases of VB.NET; all feature differences between the various releases of
Visual Basic for .NET are clearly marked throughout the book.

When the first release of Visual Basic for .NET appeared in 2002, the official name of the product was
"Visual Basic .NET," a naming convention that was retained in the 2003 release. However, beginning
with the 2005 release, the language name has officially reverted back to plain "Visual Basic." As this
book focuses on the 2005 release of Visual Basic, this name change is reflected throughout the text.
In most cases, the meaning of "Visual Basic" or "VB" will be clear through context, but in situations
where confusion may exist, the text will specify the version discussed. Because Appendixes D and E
specifically discuss the 2002 and 2003 releases of Visual Basic, they still include references to "Visual
Basic .NET" and "VB.NET." There are also a few other places in the text where such usage is
warranted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact O'Reilly for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Visual Basic 2005 in a Nutshell, by Tim Patrick, Steven Roman,
Ron Petrusha, and Paul Lomax. Copyright 2006 O'Reilly Media, Inc., 0-596-10152-X."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact the publisher at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

Throughout this book, we've used the following typographic conventions:

Constant Width

Constant width in body text indicates a language construct, such as a VB keyword (like For or
Do While), or a named element from an adjacent block of sample source code. Members of the
Microsoft.VisualBasic namespace usually appear in constant-width text as well. Code fragments
and code examples appear exclusively in constant-width text. In syntax statements and
prototypes, text set in constant width indicates such language elements as the function or
procedure name and any invariable elements required by the syntax.

Constant Width Italic

In syntax statements and code prototypes, constant width italic indicates replaceable
parameters.

Italic

Italicized words in the text indicate intrinsic or user-defined namespaces, classes, functions,
procedures, and other member names (except for those in the Microsoft.VisualBasic
namespace). Many system elements, such as paths and filenames, are also italicized. In
addition, URLs and email addresses are italicized. Finally, italics are employed the first time a
term is used or defined.

Code prototypes use a simplified Backus-Naur notation, presenting all optional elements of the syntax
in square brackets ([and]). Curly braces ({ and }) surround a set of choices from which one must
be chosen. The individual choices, whether required or optional, are delimited by a vertical bar (|).

This icon indicates a note, which is an important aside to its nearby text.

This icon indicates a warning.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, it
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Contact Us

We have tested and verified all the information in this book to the best of our ability, but you may
find that features have changed (or even that we have made mistakes). Please let us know about
any errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

It's our hope that, as the Visual Basic language continues to grow and evolve, so too will Visual Basic
2005 in a Nutshell and that the book will come to be seen by VB developers as the "official unofficial"
documentation on the Visual Basic language. To do that, we need your help. If you see errors here,
we'd like to hear about them. If you're looking for information on some VB language feature and
can't find it in this book, we'd like to hear about that, too. And finally, if you would like to contribute
your favorite programming tip or "gotcha," we'll do our best to include it in the next edition of this
book. You can request these fixes, additions, and amendments to the book at our web site,
http://www.oreilly.com/catalog/vb2005ian3.

Steven Roman maintains a web site at www.romanpress.com that includes information on his other
books published by O'Reilly (and others), articles on VB/VBA and VB.NET, and a variety of software.

Tim Patrick's web site, www.timaki.com, includes information on his software development books and
links to his technical articles written for Visual Basic and .NET programmers.

http://www.oreilly.com/catalog/vb2005ian3
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

Writing a book always requires a substantial commitment of time and effort, and for that we are
grateful to our spouses and families for their support in helping to bring this project through to
completion. Steve would like to thank Donna; Ron would like to thank Vanessa, Sean, and Ami; Paul
would like to thank Deb, Russel, and Victoria; Tim would like to thank Maki and Spencer.

In expectation of the 15th anniversary of Visual Basic, we would also like to acknowledge the
contributions of the designers and developers who transformed Visual Basic from an idea into a
reality. Truly, it has been a monumental accomplishment that has changed the way in which
applications are created.

We'd also like to thank the book's original technical reviewers, Daniel Creeron, Budi Kurniawan, and
Matt Childs, for their thoughtful, careful reviews of our work. We'd also like to thank Alan Carter,
Chris Dias, Amanda Silver, Sam Spencer, Jay Roxe, and Joe Binder at Microsoft for their help in
answering our annoying questions and for reviewing portions of the manuscript. Scott Isaacs, William
Murray, and Gerry O'Brien provided great technical reviews for the third edition.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part I: The Basics
This section serves as a general introduction to Visual Basic for the .NET platform. Taken
together, the chapters in this section form an extremely fast-paced introduction to the most
critical VB and .NET programming topics. If you're an experienced programmer who is learning
VB as a second (or additional) programming language, the material should familiarize you with
VB in as short an amount of time as possible.

In addition to its role as a tutorial, Chapter 4 is an essential reference to the data types
supported by VB. Chapter 5 also plays the part of a half-tutorial, half-reference chapter.

Part I consists of the following chapters:

Chapter 1, Introduction
Chapter 2, The .NET Framework: General Concepts
Chapter 3, Introduction to Object-Oriented Programming
Chapter 4, Variables and Data Types
Chapter 5, Operators
Chapter 6, Program Structure
Chapter 7, The .NET Framework Class Library
Chapter 8, Delegates and Events
Chapter 9, Attributes
Chapter 10, Generics
Chapter 11, Error Handling in Visual Basic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction
Since its introduction in 1991, Microsoft Visual Basic has enjoyed unprecedented success. In fact, in
slightly more than a decade, it has become one of the world's most widely used programming
languages, with millions of productive developers using various flavors of the language.

The reason for this success is twofold. First, Visual Basic has excelled as a rapid application
development (RAD) environment for corporate and commercial applications. Second, Visual Basic
offers a programming language and development environment noted for its simplicity and ease of
use, making it an extremely attractive choice for those new to programming.

With the introduction of the .NET platform, Microsoft also released a new version of the Visual Basic
language, Visual Basic .NET. VB.NET is a from-the-ground-up rewrite of Visual Basic that not only
adds a number of new features but also differs significantly from previous versions of Visual Basic.
From a high-level view, two of these differences are especially noteworthy:

Until the release of .NET, Microsoft focused on creating a unified version of Visual Basic for
Applications (VBA), the language engine used in Visual Basic, which could serve as a "universal
batch language" for Windows and Windows applications. With Version 6 of Visual Basic, this goal
was largely successful: VB 6.0 featured VBA 6.0, the same language engine that provided
macro language functionality to the Microsoft Office suite, Microsoft Project, Microsoft
FrontPage, Microsoft Visio, and a host of popular third-party applications such as AutoDesk's
AutoCAD and Corel's WordPerfect Office suite. With the release of .NET, this emphasis on a
unified programming language has, for the moment at least, faded into the background; .NET
did not become the macro language platform for Microsoft Office or other applications. (That
may change over time; SQL Server 2005, for instance, provides significant support for stored
procedure scripting using .NET languages.)

Since Version 4, Visual Basic had increasingly been used with COM and ActiveX. The
development of ActiveX components was generally straightforward in VB, and the language
could also take advantage of an increasing number of Microsoft-supplied and third-party ActiveX
components, including ActiveX Data Objects (ADO), Collaborative Data Objects (CDO), and the
Outlook object model. Although .NET supports COM for reasons of backward compatibility, it is
designed primarily to work with .NET Framework-generated components rather than with COM.

You may be wondering why Microsoft would totally redesign a programming language and
development environment that is so wildly successful. As you shall see, there is some method to this
madness.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. Why Visual Basic .NET?

When Visual Basic was introduced in 1991, Windows 3.0 was a fairly new operating system in need of
application and utility software. Although Windows 3.0 itself had proven successful, the graphical
applications that offered native support for Windowsand upon the release of which the ultimate
success or failure of Windows would dependwere slow in coming. The major problem was that C and
C++ programmers, who had produced the majority of applications for the MS-DOS operating system,
were faced with a substantial learning curve in writing Windows applications and adapting to
Windows' event-driven programming model.

The introduction of Visual Basic immediately addressed this problem by offering a programming
model that was thoroughly consistent with Windows' graphical nature. Although Windows marked a
radical change in the way programs were written, C and C++ programmers continued to produce
code as they always had: a text editor was used to write source code, the source code was compiled
into an executable, and the executable was finally run under Windows. Visual Basic programmers, on
the other hand, worked in a programming environment that its critics derisively labeled a "drawing
program." Visual Basic automatically created a form (or window) whenever the developer began a
new project. The developer would then "draw" the user interface by dragging and dropping controls
from a toolbox onto the form. Finally, the developer would write code snippets that responded to
particular events, such as the window being resized or a button control being clicked. Visual Basic's
initial success was due to its ease of use, especially the simplicity of its graphical programming
environment that was entirely consistent with the graphical character of Windows itself.

To get some sense of the revolutionary character of Visual Basic, it is instructive to compare a simple
"Hello World" program for Windows 3.0 written in C (see Example 1-1) with one written in pre-.NET
Visual Basic (see Example 1-2). While the former program is over two pages long, its Visual Basic
counterpart takes only three lines of codeand two of them are provided automatically by the Visual
Basic environment.

Example 1-1. "Hello World" in C

// "Hello World" example
//
// The user clicks a command button, and a "Hello World"
// message box appears.
#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 static char szAppName[] = "SayHello" ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASSEX wndclass ;

 wndclass.cbSize = sizeof (wndclass) ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor(NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;
 wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION) ;

 RegisterClassEx(&wndclass) ;

 hwnd = CreateWindow(szAppName, "Hello World",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow(hwnd, iCmdShow) ;
 UpdateWindow(hwnd) ;

 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg) ;
 DispatchMessage(&msg) ;
 }

 return msg.wParam ;
 }

LRESULT CALLBACK WndProc(HWND hwnd, UINT iMsg, WPARAM wParam,
 LPARAM lParam)
 {
 int wNotifyCode ;
 HWND hwndCtl ;
 static HWND hwndButton ;
 static RECT rect ;
 static int cxChar, cyChar ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 TEXTMETRIC tm ;

 switch (iMsg)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case WM_CREATE :
 hdc = GetDC(hwnd) ;
 SelectObject(hdc, GetStockObject(SYSTEM_FIXED_FONT)) ;
 GetTextMetrics(hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;
 ReleaseDC(hwnd, hdc) ;
 GetClientRect(hwnd, &rect) ;

 hwndButton = CreateWindow("BUTTON", "&Say Hello",
 WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
 (rect.right-rect.left)/20*9,
 (rect.bottom-rect.top)/10*4,
 14 * cxChar, 3 * cyChar,
 (HWND) hwnd, 1,
 ((LPCREATESTRUCT) lParam) -> hInstance, NULL) ;

 return 0 ;

 case WM_SIZE :
 rect.left = 24 * cxChar ;
 rect.top = 2 * cyChar ;
 rect.right = LOWORD(lParam) ;
 rect.bottom = HIWORD(lParam) ;
 return 0 ;

 case WM_PAINT :
 InvalidateRect(hwnd, &rect, TRUE) ;

 hdc = BeginPaint(hwnd, &ps) ;
 EndPaint(hwnd, &ps) ;
 return 0 ;

 case WM_DRAWITEM :
 case WM_COMMAND :
 wNotifyCode = HIWORD(wParam) ;
 hwndCtl = (HWND) lParam ;

 if ((hwndCtl == hwndButton) && (wNotifyCode == BN_CLICKED))
 MessageBox(hwnd, "Hello, World!", "Greetings", MB_OK) ;

 ValidateRect(hwnd, &rect) ;
 break ;
 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;

 }

 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

Example 1-2. "Hello World" in Visual Basic

Private Sub Command1_Click()
 MsgBox "Hello, World!", vbOKOnly Or vbExclamation, "Greetings"
End Sub

While Version 1.0 of Visual Basic was relatively underpowered, Microsoft displayed a firm
commitment to Visual Basic and worked very hard to increase its power and flexibility with each new
release. By the time Version 3.0 was released, Visual Basic offered a programming paradigm that
was completely intuitive, making it easy for novice programmers to get started and produce simple
applications very quickly. At the same time, particularly through its ability to access the Windows
Application Programming Interface (API) and through its support for add-on controls, Visual Basic
had become a programming tool capable of creating applications of considerable sophistication and
complexity. Professional developers now had an additional language selection beyond the usual
choices of C and C++.

Visual Basic Version 4.0, which was released in 1995 to support Microsoft's 32-bit family of operating
systems, was a complete rewrite of Visual Basic. It featured limited support for object-oriented
programming in the form of class modules (CLS files) and the ability to generate not only Windows
executables but ActiveX DLLs (also known as COM components) as well.

At about this same time, the character of programming in general changed dramatically. The rise of
the Internet as an application platform meant that programmers needed to do more than write
single-user, locally installed, standalone Windows applications. The increased prominence of
distributed applications that assumed the presence of the Internet marked a huge change in
programming focus. Visual Basic continued to be a great tool for implementing Windows desktop
applications, and it was a reasonable choice for developing middle-tier components, but those
strengths didn't translate easily into situations that required more direct interaction with the Web.

This disparity between Visual Basic's strengths and the new distributed and disconnected
programming paradigm created something of a contradiction. On the one hand, Visual Basic excelled
at graphically depicting the Windows interface. On the other hand, developers were creating more
and more applications that ignored the Windows interface completely. When it came to the Internet,
programmers were now using Visual Basic to write source code that would eventually be compiled
into middle-tier components. Ironically, a programming environment whose real strength was its
graphical character was now being used as a text editor, in very much the same way that the first
generation of Windows programmers used text editors to create C source code for graphical Windows
applications.

Moreover, as the popularity of the Internet grew, it became clearer that Visual Basic was not a
particularly good platform for developing Internet applications. With VB 6, Microsoft introduced Web
Classes as the preferred technology for Internet application development in VB. The metaphor
presented by Web Classes (which focused on separating a web application's presentation from its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programmatic functionality) was confusing to developers, and, as a result, Web Classes never
became popular. While VB remained critically important for developing middle-tier components for
distributed applications, both it and the Visual Basic community that grew up around it remained
strangely isolated from the Internet as an application platform.

Numerous detractors have labeled the .NET-era Visual Basic offering as an entirely new language
with little relationship to previous versions of Visual Basica dubious innovation foisted on the Visual
Basic community by Microsoft in an attempt to sell a new version of its development products.
However, that argument ignores one of the main reasons why Visual Basic, or any language, exists:
to develop software applications in the most effective and efficient manner possible. The introduction
of Visual Basic .NET was a logical and even necessary step forward in the development of Visual Basic
as a premier programming language. .NET addresses the limitations of Visual Basic as a development
language and brings it into the Internet age so that it can remain a major platform for developing
applications of all kinds. Just as Visual Basic 1.0 offered a graphical interface that was suitable for
Windows applications, the .NET flavors of Visual Basic and Visual Studio provide a graphical interface
that is suitable for developing both desktop and web-based applications. No longer a glorified text
editor, Visual Basic (built on the object-oriented foundation of .NET) can now take full advantage of
the Internet as an application-development target and will continue to be a tool of choice for
developing Windows applications and components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. What Is Visual Basic .NET?

Visual Basic .NET is a programming language designed to create applications that work with
Microsoft's .NET Framework. The .NET platform, in turn, addresses many of the limitations of
"classic" COM, Microsoft's Component Object Model, which provided one approach toward application
and component interoperability. These limitations included type incompatibilities when calling COM
components, versioning difficulties when developing and installing new versions of COM components
(known as "DLL hell"), and the need for developers to write a certain amount of code (mostly in
C++) to handle the COM "plumbing." In contrast to pre-.NET VB, with its reliance on COM, Visual
Basic as a .NET language offers a number of new features and advantages. Let's take a look at some
of these.

1.2.1. Object Orientation

With the release of Version 4, Visual Basic added support for classes and class modules and, in the
process, became an object-oriented programming (OOP) language. Yet the debate persists about
whether pre-.NET Visual Basic was a "true" object-oriented language, or whether it only supported
limited features of object orientation. Detractors point out that Visual Basic did not support
inheritance of a base class's functionality, only of its interface or signature. While Visual Basic still had
a solid base of object-oriented features, purists emphasized the very real limitations in VB's OOP
implementation.

While the object-oriented character of previous versions of VB may be in doubt, there is no question
that .NET is an object-oriented programming platform. In fact, even if Visual Basic .NET is used to
write what appears to be procedural code, it is object-oriented "under the hood." As an example,
consider the clearly procedural, non-object-oriented program shown in Example 1-3.

Example 1-3. A procedural program in .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Module Module1
 Public Sub Main()
 Dim x As Integer
 x = 10
 MsgBox(Increment(x))
 End Sub

 Private Function Increment(ByVal baseValue As Integer) As Integer
 Return baseValue + 1
 End Function
End Module

If you use ILDASM (.NET's equivalent of a disassembler) to look at the IL ("Intermediate Language,"
somewhat similar to assembly language in the non-.NET world) generated for this source code (see
Figure 1-1), you see that internally, Module1 is in fact defined as a class that has two methods,
Increment and Main.

Figure 1-1. A program viewed through ILDASM

1.2.2. A Common Type System

Traditionally, one of the problems of calling routines written in other languages from Visual Basic, or
of calling Visual Basic routines from other languages, is that such inter-language calls presuppose a
common type system . This is the case when calling Win32 API functions from Visual Basic, but it also
applies to attempts to call methods in a VB COM component from other languages, or to call methods
in a non-VB COM component from VB.

For instance, until the addition of the AddressOf operator, which obtained the memory address of a
procedure, there was no way to indicate a "callback" function, a requirement of many Win32 API
enumeration functions. As another example, it is expected that members of structures passed to
Win32 API functions be aligned or padded in specific ways, something that VB programmers had

http://lib.ommolketab.ir
http://lib.ommolketab.ir

great difficulty accomplishing.

Problems of type compatibility tended to occur most often when scripted applications were used to
call and pass arguments to COM components. An excellent example is the attempt to pass an array
from a script written in JScript to a COM component. COM sees JScript arrays as a string of comma-
delimited values rather than as a COM-compatible array (called a SafeArray). This, and similar
problems, caused no end of type-related headaches.

The .NET platform removes these difficulties by providing a Common Type System (CTS). Ultimately,
all data types are either classes or structures defined by or inherited from the .NET Base Class
Library. Having this Common Type System means that .NET components are truly language-
independent, and that a .NET component written in one language will be seamlessly interoperable
with .NET components written in any other .NET language. The problem of incompatible types simply
disappears.

On the surface, VB appears to have retained its old type system. VB still supports the Long data type,
for instance, although it is now a 64-bit data type instead of the 32-bit data type of VB 4 through VB
6. Most of the following .NET code is strikingly similar to VB 6 in its use of data types.

 Public Module GeneralCode
 Public Sub Main()
 Dim infoText As String = "This is a string."
 Dim bigNumber As Long = 12344
 Dim tinyNumber As Integer = 10
 End Sub
 End Module

However, if you use ILDASM to examine the IL generated from this Visual Basic code, you see that
VB data types are merely wrappers for data types provided by the .NET Framework. Where you
expect to see Integer and Long, you instead see int32 and int64, two of the core .NET data types.

 .method public static void Main() cil managed
 {
 .entrypoint
 .custom instance void
 [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
 // Code size 17 (0x11)
 .maxstack 1
 .locals init ([0] int64 bigNumber,
 [1] string infoText,
 [2] int32 tinyNumber)
 IL_0000: ldstr "This is a string."
 IL_0005: stloc.1
 IL_0006: ldc.i4 0x3038
 IL_000b: conv.i8
 IL_000c: stloc.0
 IL_000d: ldc.i4.s 10
 IL_000f: stloc.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IL_0010: ret
 } // end of method GeneralCode::Main

1.2.3. Access to System Services: The Framework Class Library

Ever since VB added support for calls to the Windows and Win32 APIs, many Visual Basic
programmers have come to regard API programming as a kind of black art. Not only was there a
confusing and seemingly limitless array of functions that might be called, but the craft of passing
parameters to routines and receiving their return values was equally mysterious. Moreover, with the
growing emphasis on object-oriented programming, the Win32 API, with its procedural approach to
programming, seemed more and more archaic.

The Declare statement still appears in the .NET Visual Basic language, and programmers can
continue to use the Win32 API and routines from other external Windows DLLs. However, many of
the common system services provided by the Win32 API and other COM components are now
available through the .NET Framework Class Library. The Framework Class Library is a collection of
classes, class members, and other OOP-enabled elements, arranged in a convenient hierarchy of
logical "namespaces" (read more about these in Chapter 2).

To get some sense of the difference in programming style between the Win32 API and the .NET
Framework Class Library, as well as to appreciate the simplicity and ease with which the Framework
Class Library can be accessed, compare Examples Example 1-4 and Example 1-5. Example Example
1-4 is a VB 6 routine that adds an entry in the registry that will load a particular program on Windows
startup. As is clear in the code, all API constants must be defined, as must the API functions
themselves. The API functions must be called correctly, using the ByVal keyword, to avoid passing a
BSTR rather than a C null-terminated string to the RegSetValueEx function. Neglect this important
rule if you like to see applications crash frequently for no apparent reason.

Example 1-4. Writing to the registry using the Win32 API

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Const ERROR_SUCCESS = 0&

Private Const HKEY_CLASSES_ROOT = &H80000000
Private Const HKEY_CURRENT_CONFIG = &H80000005
Private Const HKEY_CURRENT_USER = &H80000001
Private Const HKEY_DYN_DATA = &H80000006
Private Const HKEY_LOCAL_MACHINE = &H80000002
Private Const HKEY_PERFORMANCE_DATA = &H80000004
Private Const HKEY_USERS = &H80000003

Private Const REG_SZ = 1

Private Const KEY_SET_VALUE = &H2

Private Declare Function RegCloseKey Lib "advapi32.dll" _
 (ByVal hKey As Long) As Long
Private Declare Function RegOpenKeyEx Lib "advapi32.dll" _
 Alias "RegOpenKeyExA" _
 (ByVal hKey As Long, ByVal lpSubKey As String, _
 ByVal ulOptions As Long, ByVal samDesired As Long, _
 phkResult As Long) As Long
Private Declare Function RegSetValueEx Lib "advapi32.dll" _
 Alias "RegSetValueExA" _
 (ByVal hKey As Long, ByVal lpValueName As String, _
 ByVal Reserved As Long, ByVal dwType As Long, lpData As Any, _
 ByVal cbData As Long) As Long

Private Sub LoadByRegistry()
 Dim hKey As Long
 Dim nResult As Long
 Const cPGM As String = "C:\Test\TestStartup.exe"

 nResult = RegOpenKeyEx(HKEY_CURRENT_USER, _
 "Software\Microsoft\Windows\CurrentVersion\Run", 0, _
 KEY_SET_VALUE, hKey)

 If (nResult = ERROR_SUCCESS) Then
 RegSetValueEx hKey, "MyVBApp", 0, REG_SZ, ByVal cPGM, Len(cPGM)
 RegCloseKey hKey
 End If
End Sub

In contrast, Example 1-5 shows the comparable .NET code that uses the RegistryKey class in the
Framework Class Library's Microsoft.Win32 namespace. The code is short and simple and, therefore,
far less error-prone.

Example 1-5. Writing to the registry using the Framework Class Library

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' ----- "Imports Microsoft.Win32" included at top of file.

Private Const TargetFile As String = "C:\Test\TestStartup.exe"

Private Shared Sub LoadByRegistry()
 Dim hive As RegistryKey = Registry.CurrentUser
 Dim targetKey as RegistryKey = hive.OpenSubKey(_
 "Software\Microsoft\Windows\CurrentVersion\Run", True)
 targetKey.SetValue("MyVBApp", TargetFile)
 targetKey.Close()
End Sub

No worries about putting ByVal in the right place. No messy declarations muddying up the code. Just
nice, clean, obvious logic. This code could be simplified even more by using the registry management
features available in the new Visual Basic My Namespace feature. See the Registry Object entry in
Chapter 13 for additional information.

The .NET Framework Class Libraries (FCL) is a gigantic set of classes, built upon the smaller Base
Class Libraries (BCL). FCL adds a lot of the convenience features, such as the Windows Forms
namespaces (for Windows desktop development). When you are using the .NET libraries, there is no
clear division between BCL and FCL; there are no BCL or FCL prefixes on class names. Somewhere at
Microsoft there is probably a document that clearly lists the differences, but for most programmers, it
really doesn't matter. Whatever you call it, it's still a big heap of functionality. Many resources use
the terms interchangeably, and this book continues that practice.

1.2.4. A Common Runtime Environment

Although VB had traditionally shielded the developer from many of the intricacies of Windows as an
operating system, or of COM as a method for interoperability, some knowledge of how the system
worked was still essential to maintain problem-free applications. Programs and components written
with one tool did not always work well with code from other tools. Working with the Win32 API often
required a more advanced introduction to Windows development concepts than the typical novice
Visual Basic programmer was ready to handle. Not all COM components were created equal either. It
was quite easy to generate a COM component in C++ that could not be used in VB, and vice versa.
Such incompatibilities kept many a programmer from developing and deploying components in their
language of choice.

Under .NET, many problems like these are eliminated because of the .NET platform's Common
Language Runtime (CLR). The CLR, as its name clearly implies, provides a variety of common
services to applications and processes running under the .NET platform, regardless of the language in
which they were originally written. These services include memory management and garbage
collection. They also include a unified system of exception handling and the ability to use the same
set of debugging tools on all code, regardless of the original .NET language used. A common set of
data types ensures that data and classes interact easily between the various .NET languages. Many
of these features are described later in Part I of this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2.5. Naming Conventions

Although naming conventions are not strictly part of a programming language, most Visual Basic
developers had adopted some form of the prefix-based "Hungarian" naming system developed many
years ago by Charles Simonyi. With the release of .NET, Microsoft now recommends a new naming
system. This system dispenses with the endless lists of type-specific prefixes and instead assigns
names to elements (classes, functions, local variables, global constants, etc.) based solely on what
they are. So a variable that holds a customer name is no longer sCustName (with "s" for "string) or
even lpszCustName (don't ask); you now simply use customerName.

The new conventions include two types of naming: "Pascal Casing" and "Camel Casing." All names
are mixed case, with a capital letter appearing at the start of each new word within the name. Pascal
Casing also capitalizes the first letter, and it is used for all public class members and global elements.
Camel Casing includes a lowercase initial letter, and it is used for private members, procedure
arguments, and local variables. There are some additional details to the rules, and some people differ
on when to use Pascal Casing and when to use Camel Casing. The online help included with Visual
Studio includes an entry that discusses these conventions in more detail.

In keeping with the spirit of .NET programming, all .NET examples in this book employ the new
naming conventions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. What Can You Do with Visual Basic .NET?

With its language enhancements and its tight integration into the .NET Framework, Visual Basic is a
thoroughly modernized language that has become one of the premier development tools for creating
a wide range of .NET applications. In the past, Visual Basic was often seen as a "lightweight"
language that could be used for particular kinds of tasks but was wholly unsuited for others. (It was
often argued, sometimes incorrectly, that you couldn't create such things as Windows dynamic link
libraries or shell extensions using Visual Basic.) In the .NET Framework, Visual Basic emerges as an
equal player; Microsoft's claim of language independencethat programming language should be a
lifestyle choice, rather than something forced on the developer by the character of a projectis
realized in the .NET platform.

This means that Visual Basic can be used to create a wide range of applications and components,
including the following:

Standard Windows applications

Windows console mode applications

Windows services

Windows controls and Windows control libraries

Web (ASP.NET) applications

XML Web services

Web controls and web control libraries

.NET classes and namespaces

Applications that interact with legacy COM components

Most importantly, with the release of .NET, Visual Basic becomes an all-purpose development
environment for building Internet applications, an area in which it has traditionally been weak. Each
successive release of Visual Basic should further enhance its position as the tool of choice for
developing state-of-the-art software, both now and long into the future.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. Versions of Visual Basic for .NET

.NET brought about a major progression in the Visual Basic language, but it wasn't a once-and-for-all
change. Since VB's initial .NET release in 2002, it and the underlying .NET Framework have been
updated several times to include new functionality. As of this writing, there have been three major
releases of Visual Basic.

Visual Basic .NET 2002. This was the original release of Visual Basic .NET and was packaged
with Version 1.0 of the .NET Framework. Internally, this release is known as Visual Basic 7.0.
For a list of changes between Visual Basic 6.0 and the 2002 release of VB.NET, see Appendix D.

Visual Basic .NET 2003. The second release of Visual Basic was a "minor" release, with limited
functionality changes. It shipped with Version 1.1 of the .NET Framework and was identified
internally as Visual Basic 7.1. For a list of changes between the 2002 and 2003 releases of
VB.NET, see Appendix E.

Visual Basic 2005. The third and most recent release of Visual Basic is a "major" update to the
language. Internally, it is known as Visual Basic 8.0, and it comes with a parallel update to the
.NET Framework, Version 2.0. For a list of changes between the 2003 and 2005 releases of VB,
see Appendix F.

When .NET first appeared, it significantly raised the learning curve for first-time developers looking to
try out Visual Basic. It was designed as a professional tool for professional programmers. The 2005
release of Visual Basic attempts to bring new programmers back into the Visual Basic world by
expanding the usability range of the product line. Visual Studio 2005 includes several distinct
audience-targeted packages.

Visual Studio 2005 Express Edition. This is the entry-level product, and it is available as a more
specific Visual Basic 2005 Express Edition. (Actually, each .NET language is a separate product
in the Express Edition line.) This package includes a simplified development environment
interface, some restrictions on functionality (at least through the development environment),
and features that help first-time developers become more productive in Visual Basic. A
companion product (though included in Visual Studio 2005 Express Edition) is Visual Web
Developer 2005 Express Edition, a simpler and more lightweight web application development
tool. Express Edition users who want to develop web applications must install Visual Web
Developer.

Visual Studio 2005 Standard Edition. The standard edition of Visual Basic 2005 uses the same
simplified development environment as the Express Edition but adds some extra functionality. It
includes the full MSDN documentation set (instead of just Getting Started guides), a class
designer, full support for building Windows Forms applications, richer XML features, support for
source-code-control integration, application-deployment support through the new "ClickOnce"
deployment feature, and access to SQL Server's reporting services. You can also target mobile
devices with this package.

Visual Studio 2005 Professional Edition. Visual Basic 2005 Professional Edition part of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

professional Visual Studio release, includes all the features of the Standard Edition but adds
more enhanced features for the full-time developer. The simplified user interface is replaced
with the full Integrated Development Environment (IDE). The package also includes Crystal
Reports, support for remote debugging, the ability to generate 64-bit applications, full access to
system services and databases (including SQL Server), and full deployment support through
both ClickOnce and Windows Installer projects. A copy of SQL Server 2005 Developer Edition
also appears at this level.

Visual Studio 2005 Tools for the Microsoft Office System. This product is similar to the
Professional Edition but includes additional tools that make development with Microsoft Office
easier. The package adds tools for specifically working with Microsoft Access databases.
However, some Professional Edition-level features are removed. This edition includes no support
for mobile devices, and you cannot generate 64-bit applications. Visual J# and Visual C++ are
absent as well.

Visual Studio 2005 Team System. This product is actually three distinct packages targeted at
(1) software architects, (2) software developers, and (3) software testers. A fourth "suite"
package combines all the features of the other three. All of the packages are designed for
projects with multiple developers and include tools for testing and profiling .NET applications.
Source code control and project management tools also appear. A separate package, Visual
Studio 2005 Team Foundation Server, is a server-side product that provides additional
collaborative and support features for all team members.

SQL Server 2005. Although not officially a Visual Studio development language, Microsoft
released the 2005 edition of its premier database platform at the same time that it released
Visual Studio 2005. (Some Visual Studio editions include a developer's version of SQL Server
2005.) SQL Server 2005 includes support for .NET application development, especially through
its use of stored procedures written in any .NET language.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. The .NET Framework: General
Concepts
This chapter provides a high-level overview of the most important .NET Framework concepts. There
are many concepts that are new and different from Visual Basic's pre-.NET days, but some of them
are quite technical or esoteric and are beyond the scope of this book. The discussion here is limited to
those essential features that you must know to program effectively using .NET. For a more thorough
coverage of .NET concepts, see Thuan Thai and Hoang Q. Lam's book, .NET Framework Essentials
(O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. Common Language Runtime

The Common Language Runtime (CLR) is an environment that manages code execution and provides
application-development services. It provides all of the common features required by all .NET-
enabled languages. Visual Basic and other .NET languages are simply wrappers that expose the CLR's
functionality. Because the CLR provides all of the core functionality for all .NET languages,
components written in different .NET languages can interact with each other immediately, with no
language-specific conflicts. Even data types are shared among .NET languages through the CLR's
Common Type System (CTS). While data types may have different names in Visual Basic than they
do in C#, they will all be based on underlying CLR data types.

The Common Language Specification (CLS) defines the minimal set of .NET features that must be
implemented by a .NET-compliant compiler. Components developed to be CLS-compliant may be
limited in their ability to interact with applications and components that use a wider range of .NET
features.

The output of a .NET compiler includes metadata, which is information that describes the objects that
are part of the generated application or library. The metadata describes the following:

Data types and their dependencies

Objects and their members

References to required components

Information (including versioning information) about components and resources that were used
to build the application or library

Metadata is used by the CLR to support functionality such as:

Manage memory allocations

Locate and load class instances

Manage object references and perform garbage collection

Resolve method invocations

Generate native code

Make sure that the application has the correct versions of necessary components and resources

Enforce security

By including metadata in a compiled software component, that component becomes "self-describing."
This tells the CLR everything it needs to prepare and execute a .NET application, and to allow it to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interact with other .NET components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Managed Code

Code created within the CLR environment is called managed code . Applications and libraries created
using non-.NET tools, such as VB 6 applications, and COM and ActiveX components, are not managed
code. You can still use unmanaged components in your .NET applications, but they must be
referenced through special "interop" conduits to prevent the unmanaged code from having any
detrimental impact on the managed side of the application.

Having a central manager of all things .NET like the CLR makes possible some nice centralized
functionality. One such feature in .NET is the garbage collection system, which automatically disposes
of all variables and data objects when an application is finished with them, reclaiming every byte and
releasing all references to the related memory.

Managed execution is the process of running your .NET applications in the context of the CLR,
although this process officially starts when writing your first line of .NET source code. There are three
simple steps to managed execution .

Write code using one or more .NET compilers. Some compilers (like the C++ compiler for .NET)
can generate code that is unmanaged or that falls outside the official CLS. Such code cannot
easily interact with components from other .NET languages, so avoid it in mixed-language
applications.

1.

Compile the code. The compiler translates source code to Intermediate Language code (IL), also
called Microsoft Intermediate Language (MSIL) or Common Intermediate Language (CIL), and
generates the necessary metadata for the application.

2.

Run the code. When .NET code is executed, the IL is compiled into CPU-specific native code by a
Just In Time (JIT) compiler. The resulting application is run within the context of the CLR.

3.

One benefit of running applications within the CLR-managed environment is that data within the
application is kept safe. The CLR keeps errant code and malformed data from interfering with the rest
of memory, either in your application or elsewhere in the system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Namespaces

The notion of a namespace plays a fundamental role in the .NET Framework. In general, a
namespace is a logical grouping of types (classes and similar constructs) for the purposes of
identification and navigation. There are so many classes and features in .NET that there are bound to
be name conflicts. And since third-party libraries can be integrated into the class space just like the
Microsoft-supplied libraries, namespaces keep everything neat and orderly.

Imagine that, in a certain business, there is an executive named John Smith, a secretary named John
Smith, and a custodian named John Smith. In this case, the name John Smith is ambiguous. When
the paymaster stands on a table and calls out the names of people to receive their paychecks, the
executive John Smith won't be happy if he rushes to the table when custodian John Smith's paycheck
is in the paymaster's hand.

To resolve the naming ambiguity, the business can define three namespaces: Executive, Secretarial,
and Custodial. Now the three individuals can be unambiguously referred to by their fully qualified
names:

Executive.John Smith

Secretarial.John Smith

Custodial.John Smith

Namespaces in .NET look a lot like these references to John Smith. They are simply names used to
group and organize all of the .NET classes into a hierarchy. Namespaces can be nested. Consider the
following three possible namespaces.

America Namespace

America.Washington Namespace

America.Washington.Seattle Namespace

Each of these namespaces can include classes (and other types) and additional namespaces. And the
same class name can appear in multiple namespaces, even in nested namespaces.

America.Demographics Class

America.Washington.Demographics Class

America.Washington.Seattle.Demographics Class

America.Montana.Demographics Class

The .NET Framework Class Library (FCL) consists of several thousand classes and other types (such

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as interfaces, structures, and enumerations) that are divided into about 200 namespaces. All classes
considered to be the "core" language-neutral classes of .NET appear in the System namespace, or in
one of the nested namespaces within System. The namespaces supplied with .NET provide basic
system services, such as:

Basic and advanced data types and exception handling (the System namespace)

Data access (the System.Data namespace)

User-interface elements for standard Windows applications (the System.Windows.Forms
namespace)

User-interface elements for web applications (the System.Web.UI namespace)

Many Visual Basic language features are implemented within the classes of the Microsoft.VisualBasic
namespace. (The C# and J# languages have corresponding namespaces.)

All classes (and other types) exist in a namespace, even the classes of your application. By default,
your project's namespace is at the top of the hierarchy (next to System) and is named after your
project's name. You can alter this by using the Namespace statement at the beginning of a code file,
or by defining a different project namespace through the Project Properties.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Types and Objects

Pretty much everything in a .NET application is contained in a type. Types include:

Classes, which are basically collections of data values, and the related code that manages that
data. Usually a class has both data and code, but a particular class might just have either data
or code. In Visual Basic, a Module is a variation of a class.

Interfaces, which are class "skeletons." Interfaces define the basic structure of a class but
without the actual implementation. They are useful for defining a common layout of features to
be shared by many related classes.

Delegates, which .NET uses to implement its event-driven infrastructure.

Enumerations, which are collections of named numeric elements.

Value types and reference types. Normally, when you create an object (an in-memory instance
of a class), that object sits in memory somewhere, and your object variable contains the
memory location of the object block. (It's like a pointer, for those familiar with the C language
parlance.) These are reference types. The .NET type system also supports value types. A value
type variable stores the actual data value instead of a memory address to the true location of
the data.

Other similar things. You can subdivide the type system forever, but everything is eventually
called a type.

From the Visual Basic point of view, all types are really classes. Of course, all data objects are
instances of classes, but even your source codeeven your Sub Main routineis part of a class, and it
must be part of a class to be part of a .NET application.

Classes define a chunk of related data and functionality. When you design a class, you are saying,
"I'm planning on creating an object that has these features and that stores this type of data and
information." Objects are the actual in-memory instances of a class. For a much richer description of
objects and other object-oriented concepts, see Chapter 3.

The root of the type hierarchy is the System.Object class. All new classes you design eventually tie
back to the System.Object class. This class provides some basic functionality required of all classes
and provides a convenient way to generically identify any object in your application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Assemblies

An assembly is a single .NET executable (EXE file) or library (DLL file). Since these file types existed
before .NET was invented, why bother to give them a special name? Well, it's not just the type of file;
it's what is in the file that counts. (By the way, a .NET purist will insist that a single assembly can be
split into multiple files. While this is true, it rarely happens, especially since it can't be done from
within the Visual Studio development environment.)

An assembly is a unit of deployment; that is, it's a file that can be deployed on a user's system. .NET
applications are made up of one or more assemblies , all working together for a common goal. Inside
of an assembly, you find the following:

The executable code of your application. Generally you will have a single primary EXE assembly,
plus optional DLL assemblies.

Embedded data, such as resources (graphics, strings, etc.).

.NET-specific security permissions required for the assembly.

The types (classes and so on) used in the assembly, including public classes that can be
accessed by other assemblies (applications).

Listings of the external types and references needed by the assembly, including references to
other assemblies. These references also indicate the specific or minimum version number
expected for those external components.

Version information for the assembly. Assemblies include a four-part version number (major,
minor, revision, and build, as in "2.1.0.25"), and this version number determines how the
assembly interacts with other assemblies and components. .NET allows you to install different
versions of an assembly on a single machine and have specific versions accessed by other
applications. For instance, you may have Versions 1.0 and 2.0 of a spellchecking component
installed on a workstation, one for an old word processor (that requires Version 1.0) and one for
a newer email system (that uses Version 2.0). Both versions can reside on the same system
without conflict. In fact, both versions can be actively running at the same time, a feature
known as side-by-side execution.

Much of this information is stored in the assembly's metadata, which was discussed earlier. As a unit,
this metadata is known as the assembly's manifest. Although this is somewhat repetitive, the
manifest contains at least the following information.

The name of the assembly

Version information for the assembly

Security information for the assembly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A list of all files that are part of the assembly

Type reference information for the types specified in the assembly

A list of other assemblies that are referenced by the assembly

Custom information, such as a user-friendly assembly title, description, company name,
copyright information, and product information

If your application is split up into multiple assemblies, each assembly is only loaded into memory as it
is needed. One interesting side effect of this as-needed access is that you can update an assembly
file while the application that uses the file is still running. If you replace a DLL, the application will
start using the new DLL the next time it has fully discontinued use of the old DLL. Of course, this
generally happens when you exit and restart the application, but in some complex applications, you
could perform a live update of an assembly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. The Framework Class Library

Although .NET itself is very powerful and very cool, it doesn't provide much in the way of specific
functionality. The .NET Framework provides a generic system for application development, but it's
really all plumbing. It's not that different from the old-style C++ or Pascal compilers. If you want to
sort a list of strings in reverse order by length, draw a line on the screen, interact with a database, or
send a data packet across the Internet, you still have to write all of that functionality yourself. Or do
you?

Fortunately, you don't have to do it all by yourself. The .NET Framework includes a library of
prewritten features that provide a lot of the functionality you really wanted, but that you didn't want
to write yourself. This library uses a layered approach. At the bottom of the library is the Base Class
Library (BCL), which defines the central and common features that every .NET language will use,
such as:

Implementation of all core data types

Data structures, such as stacks, queues, and collections

Diagnostic and tracking features

Basic input and output with various sources, such as files and serial ports

On top of this foundation you find the FCL, which is pretty much everything else that Microsoft
thought programmers (including programmers designing the .NET system) would find useful. Among
the many library classes are:

XML manipulation tools

ADO.NET, a collection of generic and platform-specific database interaction components

GDI+, the core drawing system for on-screen and printed output

Windows Forms, a package for creating desktop applications

ASP.NET, a web-based programming system

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7. Application Deployment

Once you write your VB application, you still have to install it on each user's system. .NET provides
two deployment methods. The first method, Windows Installer deployment, was actually around for a
while before the first release of the .NET Framework. Windows Installer deployments are basic Setup
packages that the user installs from a single ".msi" file. All releases of .NET-centric Visual Basic
(except for some of the more entry-level 2005 editions) allow you to create a deployment project,
the output of which is an ".msi" file packed with all the files needed to install your application. Since
the basic installer project features in Visual Studio include limited support for custom installation
scenarios, several third-party vendors provide enhanced products for generating more advanced
Windows Installer files.

New in 2005. The .NET Framework, Version 2.0, part of the 2005 release of Visual Studio, includes a
new deployment method called ClickOnce. Because Windows Installer deployments often update
important system files or registry entries, the user installing the package usually needs to be a local
administrator on the workstation to complete the installation. ClickOnce deployments get around this
by installing the application in its own protected environment (that is, the rest of the workstation is
protected from it!). ClickOnce-installed applications are convenient for users; they are designed for
easy single-click installation from a web site, and they can be configured to automatically check for
and install updated versions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.8. The .NET Framework and Visual Basic

Visual Basic, as a .NET language, uses all of the core features of the Common Language Runtime, the
Common Type System, namespaces, assemblies, types, and all other .NET elements, packaging them
up in a nice, neat programming system.

To write a Visual Basic application, you create classes that implement your desired functionality and
data manipulation features. All application data is stored in memory using the Common Type System
data types that Visual Basic uses for its own basic data types. The application manipulates this data
using many of the prewritten classes in the Framework Class Library. All of this code gets organized
into namespaces of your choosing and is compiled into one or more assemblies. Your application is
now ready to deploy and run.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Introduction to Object-Oriented
Programming
Before you can write quality Visual Basic applications on the .NET platform, you must have a good
understanding of objected-oriented programming (OOP) concepts. This chapter presents a brief
introduction to these concepts.

Visual Basic has included at least some object-oriented programming features since Version 4. But
these features were limited, and some workarounds were required to simulate the missing features, if
they could be simulated at all. The advent of .NET infused Visual Basic with a more complete set of
OOP features.

You may be saying to yourself: "I prefer not to use object-oriented techniques in my programming."
Unfortunately, this is not an option in the .NET flavor of Visual Basic. Every line of code, apart from a
few statements that appear in the declarations section of each code file, appears within a classone of
the core building blocks of object-oriented software development. Also, all features contained within
the Framework Class Library are built on object-oriented principles.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. Principles of Object-Oriented Programming

Object-oriented programming is a software development architecture that uses the objecta "black
box" of data and related functionalityas its focus. These objects are built on four main facets of OOP
design: abstraction, encapsulation, inheritance, and polymorphism. This section introduces each of
these concepts and also the notion of an interface as the means of interaction with the contents of an
object's black box.

3.1.1. Objects and Classes

An object is a software-based collection of data elements and related procedures that act on those
data elements. Obviously, objects are the central theme of "object-oriented" programming. In Visual
Basic and other similar OOP languages, a class is the source code design of an object. An object is an
in-memory instance of a class in a running program. Multiple object instances based on a single class
can exist in memory at the same time.

Although the terms "class" and "object" have distinct meanings, the terms are used somewhat
interchangeably in this chapter, at least in those cases where the distinction is not necessarily
important.

3.1.2. Abstraction

An abstraction is a view of an entity that includes only those aspects that are relevant for a particular
situation. It takes something from the real worldan employee, a book, a chart of accounts, a galaxy,
a grain of sandand breaks it down into individual elements that can be managed with software.
Consider a software component that provides services for tracking an employee's information. The
first step in designing such a component is to identify the items or features that would be managed
by the component. Some of these items may be:

Employee full name

Employee home address

Company ID for the employee

Current salary

Length of employment

Features to adjust the salary based on a rule

This list includes not only basic data values, or properties , but also common actions to be taken on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the data, or methods . Properties of the class, such as the employee's full name, are sometimes
called fields, and they may have limits on the type or range of data allowed. Methods may require
additional information (such as a table of salary adjustment rules for the salary adjustment feature)
to work properly. These actions are sometimes referred to as operations or behaviors. Together, the
properties and methods are known as members of the abstraction.

The properties and methods of a class are relevant to that class. Although the Employee class could
have included properties for IQ or the number of hairs on the employee's head, these data values
have no relevance to the purpose of the class. Even though they are part of each employee, they
provide no value to the class and are therefore excluded.

In short, the true employee has been abstractedthe class includes only those properties and methods
of employees that are relevant to the needs of the class. Once the abstraction is complete, the
properties and methods can be built into a software component.

3.1.3. Encapsulation

Encapsulation is the process of converting an abstraction into a usable software componentthe black
boxand exposing to the public only those portions of the abstraction that are absolutely necessary.
The complete logic needed to manage each public property or method is fully contained
("encapsulated") inside the black box.

Encapsulation serves three useful purposes:

It permits the protection of these properties and methods from any outside tampering.

It allows the inclusion of validation code to help catch errors in the use of the public interface.
For instance, the encapsulation can be programmed to prevent a negative number from being
used for an employee's salary.

It frees the user from having to know (or worry about) the details of how the properties and
methods are implemented.

High-level programming languages already perform some encapsulation to simplify the work required
by the programmer. For instance, the SByte data type, introduced in Visual Basic 2005, is an 8-bit
integer data type that supports a range of numbers from -128 to 127. But how exactly does it record
those 128 negative numbers? If you are familiar with binary representation, you know that each bit
of the integer number represents a power of 2: the right-most bit (bit 0) represents 20, the bit just to
the left of that (bit 1) represents 21, and so on up to the left-most bit (bit 7), which represents 27.
Setting each of these bits results in a different number. For instance, the binary number 00100110
sets bits 1, 2, and 5, and the sum of 21, 22, and 25 is 38 (decimal). In unsigned data, the binary
number 11111111 equals 255 decimal. But that's all the bits. How do you get a negative number?

Visual Basic uses a system named two's-complement representation to handle negative numbers.
Basically, any time the leftmost bit is set to 1, the number is negative. Then there are various rules
used to interpret the remaining bits, depending on whether the leftmost bit is set or not.

Do you want to know those rules? Do you really need to know those rule, or how negative values are
managed at all? The great answer is: no! In most programming, you don't have to worry about how
Visual Basic stores negative numbers at the binary level. Who cares? You only need access to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

negative numbers, not to the complex rules about how they are processed in the computer. Visual
Basic wraps up all of this functionality for you automatically in the SByte data type. This is the
essence of encapsulation: just the right amount of visible functionality, all of the messy details hidden
from view.

Moreover, encapsulation protects programmers from making errors. For instance, if every
programmer had to do the negating by setting each bit manually and following all of the various and
sundry rules, some important step would be forgotten. The encapsulated data type takes care of this
automatically.

Encapsulation has yet another important feature. Any code written using the exposed interface of the
SByte data type remains valid, even if the internal workings of the SByte data type are changed for
some reason. If Microsoft decided to have the SByte data type use one's complement representation
(another method for managing negative numbers), it wouldn't matter to programs that used SByte,
as long as the interface to the data type did not change.

3.1.4. Inheritance

Inheritance makes it possible for OOP code to build classes that extend or restrict features in other
existing classes, without the need to fully rewrite the original class. For instance, a class of Pet may
have generic data fields such as Name, Age, and Color. This single class could be extended into
other, more specific classes through inheritance . A class named Dog that is derived from Pet would
automatically include the Name, Age, and Color members, but it may add additional canine-specific
members such as Breed and a ShedsHair flag. In this situation, the Dog class inherits from the Pet
class.

Inheritance used in this manner certainly reduces duplication of code, since the derived class does
not have to rewrite the code for the existing base class's members. But inheritance also makes
interactions between these objects easier, since an object of type Dog is also a true object of type
Pet. Objects of a derived class are also objects of the base class, and they can be used in code as if
they were actually members of the base class. (The reverse is not true; objects of type Pet are not
necessarily objects of type Dog).

Some languages allow a class to inherit from multiple base classes at the same time. Visual Basic
does not support this feature.

3.1.5. Interfaces

The public members of an object are known as its interface (or public interface). Usually, an object
has a single public interface, since its class was designed with a single purpose in mind. But
sometimes it is useful for a class to have multiple interfaces . For instance, along with the Pet class,
consider another class called House. These two classes have some common aspects and tasks that
apply to both, one of which is a cleaning strategy. While you could add distinct CleanNow,
CleanserName, and CleaningTimeRequired members to each class, it would be more convenient to
have a separate interface, called the Cleaning interface, that could then be applied to both Pet and
House. Then your code could call the cleaning-related members on any object that implemented the
Cleaning interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interfaces are simply templates of desired functionality. To make these templates a functional reality,
they must be implemented through a class. Implementing is a little different from inheriting. With
inheritance, the new class receives the existing functionality of the base class; the new class doesn't
have to reinvent this functionality. When implementing an interface, the new class is responsible for
providing all of the functionality of the interface.

While Visual Basic classes cannot inherit from multiple base classes, a single class can implement
multiple interfaces at the same time.

3.1.6. Polymorphism

The term polymorphism means having or passing through many different forms. The Dog class,
derived from the Pet class, automatically receives the prewritten members of the Pet class. However,
if one or more of these members needs to be extended in a special way to meet the needs of the new
derived class (Dog), special Dog-specific versions of those members can be added to the Dog class.
Any Dog object that calls these methods will use the Dog-specific versions; any general Pet object
will use the default Pet-specific versions. If your code is currently treating a Dog object as a more
generic Pet object, it will still use the Dog-specific versions, since the object is still a Dog.

Sound confusing? Welcome to polymorphism. Fortunately, the Visual Basic compiler figures out all of
these relationships for you; you just need to write your code to enable the class-specific actions you
require.

3.1.7. Overloading

Sometimes it is useful to have more than one way of performing the same action in a single class.
For instance, if your Dog class has a TakeForWalk action, you might require several ways of taking
this action to mimic real-world actions. For instance, you might want to call TakeForWalk with a time
duration ("30 minutes") for a generic time-based walk, or call it with instructions for a specific path-
based exercise plan. You would need one version of this action that takes a number (time-based) and
one that takes a path plan (path-based), perhaps sent as a string.

When a class includes multiple versions of the same member that differ by their argument signatures
(that is, by the parameters and return values of those members), that is overloading . This allows the
member to take an action, but with different types of input data. Overloading most often occurs with
actions taken on the object's data. The ability to provide differing sets of supporting data to an action
can greatly expand the functionality of a class.

New in 2005. The original .NET release of Visual Basic did not include operator overloading . This
form of overloading allows you to provide custom meanings to the standard language operator
symbols, such as the + (addition) and <> (not equal to) operators. The 2005 release of Visual Basic
adds this form of overloading to the language. See the Chapter 5" section of Chapter 5 for
information on this enhancement, including examples.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. OOP Development in Visual Basic

The .NET Framework is an OOP-rich development environment. Within that environment, Visual Basic
provides access to most OOP features.

The primary OOP entity in Visual Basic is the class, but the language also supports two additional
variations of this standard entity: (1) the structure, a value-type variation (always derived from
System.ValueType) of the normally reference-type class, and (2) modules, a class in which all
members are shared and public by default. These three primary development entities, along with a
few other entities, such as enumerations, fall under the broad name of type in .NET parlance. Unless
otherwise noted, all discussions of class features apply also to structures and modules.

3.2.1. Classes in Visual Basic

Most Visual Basic development establishes a one-to-one relationship between a class and a source
code file. However, a single file may include multiple classes . Beginning in 2005, the code for a single
class may also be split among multiple source code files by using the new Partial keyword. See the
entry for that keyword in Chapter 12 for additional information on its usage.

The basic source code needed to define a class is pretty simple.

Public Class className

End Class

Once a class is defined, it can be used by creating an instance of the class, which is what is really
known as the object. (Some class members can be used without creating an instance; these "shared
members" are discussed below.) Instantiating an object requires (1) a variable to hold the object and
(2) the creation of the object using the New keyword. These two steps are often performed in two
separate VB statements.

Dim myInstance As SimpleClass ' Defines the variable
myInstance = New SimpleClass ' Creates the object

These two steps can be combined into a single statement:

Dim myInstance As SimpleClass = New SimpleClass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A shortcut syntax makes the instantiation even simpler:

Dim myInstance As New SimpleClass

3.2.2. Class Members

Visual Basic classes contain the following types of members:

Field Members

This includes member variables and constants. Enumerated data types defined within a class
fall into this category.

Event Members

Events are procedures that are called automatically by the Common Language Runtime in
response to some action that occurs, such as an object being created, a button being clicked, a
piece of data being changed, or an object going out of scope. Events can also be manually fired
through code.

Method Members

This refers to both functions and subroutines. A special method subroutine called a constructor
is used to help create new instances of the class.

Property Members

Properties combine aspects of both function methods and fields. They are often used to provide
access to a hidden class field through a pair of property procedures, one for updating the data
and one for retrieving the current data value.

Type Members

Classes may be nested, with one class contained completely within another.

The following Person class sample illustrates all of the various member types except class nesting.

Public Class Person
 ' ----- Field Members -----
 Private fullName As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private currentAge As Short
 Public Const MaxAge As Short = 120

 ' ----- Event Member -----
 Public Event Testing()

 ' ----- Constructor Method Members -----
 Public Sub New()
 ' ----- Default constructor.
 fullName = "<unnamed>"
 End Sub

 Public Sub New(ByVal newName As String)
 ' ----- Simple constructor to set an initial field.
 fullName = newName
 End Sub

 ' ----- Method Members -----
 Public Sub Test()
 ' ----- Test the class-defined event.
 RaiseEvent Testing()
 End Sub

 Public Overrides Function ToString() As String
 ' ----- Returns a friendly string related to the instance.
 ' NOTE: The 'Overrides' keyword will be discussed
 ' later in the chapter.
 Return fullName & ", Age " & currentAge
 End Function

 ' ----- Property Members -----
 Public Property Age() As Short
 ' ----- This property performs simple error checking.
 Get
 Return currentAge
 End Get
 Set(ByVal value As Short)
 If (value < 0) Or (value > MaxAge) Then
 Throw New System.ArgumentException(_
 "Age ranges from 0 to " & MAX_AGE & ".", "Age")
 Else
 currentAge = value
 End If
 End Set
 End Property

 Public Property Name() As String
 ' ----- This property adds no special logic; it could
 ' have been a public field instead.
 Get
 Return fullName
 End Get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Set(ByVal value As String)
 fullName = value
 End Set
 End Property
End Class

3.2.3. Class Member Accessibility

Generally, the members of a class constitute that class's public interface. But some members may
exist only for the internal use of the class instance itself. Each member of a class includes an access
modifier. These special keywords indicate just how visible a particular member is to code outside of
the class. Table 3-1 shows the five available access modifiers.

Table 3-1. Access Modifiers

Access
modifier

Description

Public

Public members are accessible to any code that accesses an instance of the class or
structure, or that has access to the module containing the member. If a class has a
public member, and an instance of that class is accessed from a separate project,
application, or component, the public member is fully accessible to that external code.

Protected

Protected members are accessible within the confines of a class and can be used in any
code derived from that class, but they cannot be accessed outside of the class.
Protected members only apply to classes; they are not available to structures or
modules.

Friend

Friend members are accessible anywhere within the assembly, but no further.
Instances of a class with a friend member consumed outside of the assembly hide the
member from that external code. Friend members can be used in classes, structures,
and modules.

Protected
Friend

Using Protected and Friend together grants a member all the benefits of both; such
members are accessible within the class and all derived classes, and within the
assembly, but not outside of it. Protected Friend members can be used in classes, but
not in structures or modules.

Private
Private members are accessible anywhere within a class, structure, or module, but not
outside. They are also hidden from the custom members of derived classes.

A class itself also has an access modifier, one of Public, Friend, or Private. Public classes can be
accessed by another assembly that uses your class' assembly; Friend classes are accessible
throughout your assembly, but not outside of it; and Private classes are only accessible within their
"declaration context." Generally, Private is similar to Friend, but nested classes can be limited to use
only within their parent class by using the Private keyword.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.4. Field Members

Variables, constants, and enumerations declared inside of a class, but outside of any class member
procedure, are field members. (Enumerations can also be declared outside of classes altogether.)
They are simple to declare and use, as done in the Person class earlier.

Private fullName As String
Private currentAge As Short
Public Const MaxAge As Short = 120

Private field members are often used in tandem with member property procedures to provide logic-
controlled access to a data field in the class.

Public field members are available through instances of your class.

Dim onePerson As New Person
MsgBox("Maximum allowed age is " & onePerson.MaxAge & ".")

3.2.5. Event Members

Events members provide a way to tap into the event-controlled interfaces of the .NET Framework.
The declaration and use of events is fully described in Chapter 8. The 2005 release of Visual Basic
adds a new feature called custom events that provides more control over the lifetime of an event.
This feature is also discussed in Chapter 8.

3.2.6. Method Members and Constructors

The function and sub procedures contained within your classes will generally make up the bulk of
your Visual Basic application. (Procedures that intercept events are also considered method
members.) Methods contain two main parts: (1) the declaration and (2) the body.

 ' ---- This is the declaration...
 Public Function AgeInDogYears(sourceAge As Decimal) As Decimal
 ' ----- ...and this is the body.
 Return sourceAge * 7@
 End Function

The declaration of a method is often referred to as its signature. The signature includes the specific

http://lib.ommolketab.ir
http://lib.ommolketab.ir

argument list and the return value; the method name is not part of the signature.

Private methods can only be called within the class itself. Public members can be used within your
class or by external users of the class.

 ' ----- This code resides outside of the class that defines
 ' the AgeInDogYears function.
 Dim meAsFido As Decimal
 meAsFido = theDog.AgeInDogYears(38@)

When an object of a particular class is created, the compiler calls a special procedure within the class
called a constructor or instance constructor. Constructors initialize an object when necessary.
(Constructors take the place of the Class_Initialize event in pre-.NET versions of VB.)

Constructor procedures always have a name of New; more than one New procedure may appear in
your class, provided each one has a different argument signature. (Normally when two procedures
with the same name appear in a class, the Overloads keyworddescribed later in this chaptermust be
added to each declaration. However the New procedure is a special case; it does not require the
Overloads keyword.)

For classes that require no special initialization of their public or private members , the constructor
can be omitted from the class; Visual Basic will provide a default constructor when no defined
constructor exists in a class. But many classes require some basic initialization, and the constructor is
the place to do it. The Person class defined earlier includes two constructors.

 Public Sub New()
 ' ----- Default constructor.
 fullName = "<unnamed>"
 End Sub

 Public Sub New(ByVal newName As String)
 ' ----- Simple constructor to set an initial field.
 fullName = newName
 End Sub

The first constructor is the default constructor; since it includes no arguments in its declaration
signature, it is used by default when an instance is created that lacks any initialization arguments.
The second constructor is a custom constructor; it is called when an instance is created that passes a
single string argument.

 ' ----- Uses the default constructor.
 Dim byDefault As Person = New Person

 ' ----- Uses the custom constructor.
 Dim byCustom As Person = New Person("John Q. Public")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The arguments included in the instance declaration must match one of the constructor signatures as
declared in the class.

If a class lacks any constructors, a default constructor is added automatically that does nothing
beyond instantiating an object. If you want to force the class to be created with a custom constructor
only, add at least one custom constructor to the class.

3.2.7. Property Members

Consider the following simple class.

 Public Class AnotherPerson
 Public Name As String
 Public Age As Short
 End Class

This class includes some of the functionality of the Person class defined earlier. However, the Age
property has some problems. Because it is a simple public field, any instance of the class can have its
Age field set to any Short value, whether 25, 87, 3349, or -23. Some of these ages are certainly
invalid. How do you keep the user from setting the Age field to an invalid value?

While you could add specialized function members to set and retrieve the age, .NET includes
properties that provide a more elegant solution. Within the class, properties look just like specialized
functions; to the user of a class, they look like fields. (When a Visual Basic application is compiled,
properties actually become method members.) The Person class defined earlier includes a more
protected Age property.

 Private currentAge As Short

 ...and later...

 Public Property Age() As Short
 Get
 Return currentAge
 End Get
 Set(ByVal value As Short)
 If (value < 0) Or (value > MaxAge) Then
 Throw New System.ArgumentException(_
 "Age ranges from 0 to " & MAX_AGE & ".", "Age")
 Else
 currentAge = value
 End If
 End Set
End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The property procedure includes two distinct property accessors, one for setting the hidden tandem
value (the Set procedure) and one for retrieving the current value (the Get procedure). You can
create a read-only property by supplying only the Get component and adding the ReadOnly keyword
to the property definition.

 Public ReadOnly Property Age() As Short
 Get
 Return currentAge
 End Get
 End Property

The WriteOnly keyword allows you to similarly define a property with only a Set component.

New in 2005. The 2005 release of Visual Basic allows you to specify different access levels (such as
Public and Friend) to the Get and Set accessors.

3.2.8. Type Members

Classes may include nested classes as needed.

 Public Class Level1Class
 Private Class Level2Class
 ' ----- Add level 2 class code here.
 End Class

 ' ----- Add other level 1 class code here.
 End Class

If the nested class is private, it will only be accessible within the outer class.

3.2.9. Instance Members Versus Shared Members

Members of a class can either be instance members or shared members. Instance members are only
useful in a specific instance of the class, that is, from an object. Until an instance of the object exists,
these members cannot be used or referenced in any way. Instance members belong to specific
instances of the class instead of to the class as a whole. The members added to the sample Person
class above are all instance members.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Class SimpleClass
 ' ----- This is an instance member.
 Public Comment As String
 End Class
 ...
 ' ----- In some other code.
 Dim myInstnace = New SimpleClass
 myInstance.Comment = "I am not shared!"

Shared members (sometimes called static members) can be accessed without the presence of any
particular instance of the class. They belong to the whole class, but they are also "shared" among all
instances of the class. Shared members are accessed by qualifying the name of the member with the
name of the class.

 Public Class SimpleClass
 ' ----- This is an instance member.
 Public Shared Comment As String
 End Class
 ...
 ' ----- In some other code.
 SimpleClass.Comment = "I am shared!"

All members of a Module are automatically shared, even though the Shared keyword is not used on
each member of the module.

Consider a class that keeps track of how many instances of itself have been created.

 Public Class Tracker
 ' ----- Shared variables can be private.
 Private Shared totalInstances As Integer

 Public Sub New()
 ' ----- Each constructor call increments the total.
 totalInstances += 1
 End Sub

 Public Shared Function GetInstanceCount() As Integer
 ' ----- Provide read-only access to the count.
 Return totalInstances
 End Function

 Protected Overrides Sub Finalize()
 ' ----- Decrement the count in the destructor.
 totalInstances -= 1
 MyBase.Finalize
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Class

Code such as the following accesses the shared member:

 Dim firstUse As New Tracker
 MsgBox(Tracker.GetInstanceCount()) ' --> Displays "1"

 Dim secondUse As New Tracker
 MsgBox(Tracker.GetInstanceCount()) ' --> Displays "2"

This sample code does have a few issues. Although the Finalize destructor (called when an instance is
destroyed, and described more fully later in this chapter) will eventually be called, there is no
guarantee that it will be called in a timely manner. Even if a TRacker object goes out of scope or is
specifically destroyed by setting the object variable to Nothing, the Finalize method may not be called
for quite some time, and the instance count may appear to be inaccurate.

Another problem appears because Visual Basic is a multithreaded programming language. If separate
threads of your application each create an instance of TRacker at the same time, their respective calls
to the New constructor may overlap and produce invalid results. The .NET Framework includes classes
that guard against such overlapping code. Mutexes, semaphores, and monitors can be used to
manage conflicts between threads in your application. Visual Basic includes a SyncLock statement
that also supports some conflict resolution between threads. This statement is described in the
SyncLock Statement entry in Chapter 12.

3.2.10. Finalize, Dispose, and Garbage Collection

An instance of an object can be specifically destroyed by setting the variable that refers to the
instance to Nothing.

 Dim usefulObject As New SimpleClass
 ...
 usefulObject = Nothing

An object is also automatically destroyed when all variable references to that object go out of scope
or otherwise cease to exist. When an object is destroyed using any of these methods, the garbage
collection process begins.

The .NET Framework includes a garbage collection system that exists to accurately reclaim memory
used by objects within .NET applications. When the garbage collector determines that an object is no
longer needed, it automatically runs a special destructor method of the class called Finalize. However,
there is no way to determine exactly when the garbage collector will call the Finalize method. It will
be called at some time in the future, but it may not happen immediately. The .NET Framework uses a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

system called reference-tracing garbage collection, which periodically releases unused resources
according to its schedule, not your program's schedule.

Finalize is a Protected method. It can be called from a class and its derived classes, but not from
outside the class. (Since the Finalize destructor is automatically called by the garbage collector, a
class should never call its own Finalize method directly.) If a class has a Finalize method, that
method should in turn explicitly call its base class's Finalize method as well. The general syntax and
format of the Finalize method is:

 Protected Overrides Sub Finalize()
 ' ----- Cleanup code goes here, and then...
 MyBase.Finalize()
 End Sub

(The MyBase and Overrides keywords are discussed later in this chapter.) Garbage collection is
automatic, and it ensures that unused resources are always released without any specific interaction
on the part of the programmer. In most cases, the programmer has no control over the garbage
collection schedule; a garbage collection event may occur many minutes after you release an object.
This may cause some resources to remain in use longer than necessary.

Since some classes may acquire resources that must be released immediately upon completed use of
an object instance, .NET supports a "second destructor" called Dispose. Its general syntax and usage
is:

 Class className
 Implements IDisposable

 Public Sub Dispose() Implements IDisposable.Dispose
 ' ----- Immediate cleanup code goes here.
 End Sub

 ' ----- Other class code.

 End Class

(The Implements keyword is discussed later in this chapter.) The Dispose method is not called
automatically by the .NET Framework. Any code that uses a class with a Dispose method must
specifically call that method to initiate the first-level cleanup code. Still, a programmer may forget to
call the Dispose method, and resources may be retained until they are fully cleaned up through the
Finalize method.

3.2.11. Structures and Modules Versus Classes

In addition to classes, Visual Basic also supports "structures " and "modules ." (These are somewhat

http://lib.ommolketab.ir
http://lib.ommolketab.ir

analogous to the VB 6 "Type" and "code module" features.) These two types are really just classes
with syntax rules and default behaviors that differ somewhat from standard classes.

Structures implement instances of a value type and always derive from System.ValueType. They can
never derive from any other base class, nor can a structure be used to derive other structures or
classes. The members of a structure cannot specify Protected as an access modifier. Since they are
value types, structures are destroyed immediately on disuse; they do not support the Finalize
destructor. However, they are lightweight and simple to use for basic data constructs. Structures,
when they are not too large, experience some performance increase over equivalent classes.

 Public Structure SimpleStructure
 Public Comment As String
 Public TotalCost As Decimal

 Public Overrides Function ToString() As String
 Return Comment & ", " & Format(TotalCost, "$#,##0.00")
 End Function
 End Structure

Modules are similar to classes that have the Public and Shared keyword added to every member by
default (although members can be made Private as well). Since all members of a module are shared,
there is no need to create an instance of the module to access the members. In fact, modules cannot
be instantiated. They cannot be used to derive other modules or classes, either. Modules can contain
nested classes and structures, but modules themselves cannot be nested in any other type. Modules
are commonly used for common procedures and global variables that need to be accessed
throughout your application.

 Friend Module GenericCode
 Public Function CToF(celsius As Decimal) As Decimal
 ' ----- Convert Celsius to Fahrenheit.
 Return (celsius * 1.8@) + 32@
 End Function
 End Module

3.2.12. Interfaces

Visual Basic implements the object-oriented concept of interfaces through the Interface keyword.
Interfaces define the members of a class but not the implementation. They look a lot like classes, but
without the member bodies or End constructs (such as End Sub). An interface equivalent to the Person
class defined earlier in this chapter might look like the following:

 Interface IPerson
 Event Testing()
 Sub Test()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Property Age() As Short
 Property Name() As String
 End Interface

(By convention, interfaces always begin with the uppercase letter "I.") Interfaces define the public
properties, methods, and events of an abstract class. Since interfaces do not support variables,
constants, or constructors, some elements of the Person class are missing from this interface
definition. Also, since all members of an interface are public by definition, the Public keyword is not
needed on each member.

Classes implement one or more interfaces through the Implements keyword. This keyword is used in
two contexts within the class: (1) at the beginning of the class to declare which interface(s) will be
used in the class, and (2) attached to each member that implements a specific member of an
interface. Consider the following code.

 Interface IDog
 Sub Bark()
 Sub ScratchFleas()
 End Interface

 Interface ICat
 Sub Meow()
 Sub DestroyFurniture()
 End Interface

 Class MixedUpAnimal
 Implements IDog
 Implements ICat

 Public Sub ScratchFleas() Implements IDog.ScratchFleas
 ' ----- Add code here.
 End Sub

 Public Sub MakeNoise() Implements IDog.Bark, ICat.Meow
 ' ----- Add code here.
 End Sub

 Public Sub Redecorate() Implements ICat.DestroyFurniture
 ' ----- Add code here.
 End Sub
 Public Sub ShowOff()
 ' ----- Add code here.
 End Sub
 End Class

This code displays various aspects of interface usage.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A class declares its intention to use an interface immediately, through distinct Implements
statementsone for each interface to be used.

A class may implement multiple interfaces at once.

When a class implements an interface, it must implement all members of the interface, not just
some.

Specific members of an interface are implemented through standard class members, each
decorated with a separate Implements keyword followed by the name of the interface and
member, as in Implements IDog.ScratchFleas. The implementation's signature must match the
interface member's signature.

A single class member may implement multiple interface members, as long as those members
share the same signature with the class member. Each interface member is added to the
Implements keyword, separated by commas, as in Implements IDog.Bark, ICat.Meow.

The class member implementing an instance member may use the same name as the interface
member, but it does not have to. The association between a class member and an interface
member occurs through the Implements keyword, not through the class member name.

A class may implement its own members, fully unrelated to any interface members
implemented in the class, as is done with the ShowOff procedure in the sample.

While the MixedUpAnimal class implements two distinct interfaces, the term interface also describes
the complete set of all public members exposed by this class. This dual use of "interface" is generally
not a problem, since when discussing the implementation of a specific interface, the name of that
interface is usually included in the discussion.

3.2.13. Inheritance

Visual Basic implements OOP inheritance through the Inherits keyword. When a class inherits from a
base class, it takes on all public and protected members of that base class; in a way, the derived
class is a real implementation of the base class.

As an example of inheritance, consider a simple Employee class.

 Public Class Employee
 Public FullName As String
 Private currentSalary As Decimal

 Public Property Salary() As Decimal
 ' ----- Salary can be set directly.
 Get
 Return currentSalary
 End Get
 Set(value As Decimal)
 currentSalary = value
 End Set
 End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Overridable Sub IncSalary(ByVal raisePercent As Decimal)
 ' ----- Raises given based on a supplied percentage.
 ' The percent should appear as a decimal percentage,
 ' as in 0.03 for a 3% raise.
 currentSalary *= 1@ + raisePercent
 End Sub
 End Class

This class can be used immediately to manage employee names and salaries. But there may be
special salary-related circumstances that apply to specific categories of employees. In this example,
all salary increases given to executives include an additional 5 percent increase for a car allowance;
secretaries receive an additional 2 percent for an overtime allowance. While distinct classes could be
used, inheritance allows all of the classes to still be instances of the Employee class, despite their
derived differences.

The IncSalary member in the Employee class includes the Overridable keyword. This keyword allows
a derived class to modify the implementation of the base class' member. Here are the definitions for
the derived Executive and Secretary classes, each of which overrides the base IncSalary member.

 Public Class Executive
 Inherits Employee

 Public Overrides Sub IncSalary(ByVal raisePercent As Decimal)
 ' ----- Extra 5% for car allowance.
 Me.Salary *= 1.05@ + raisePercent
 End Sub
 End Class

 Public Class Secretary
 Inherits Employee
 Public Overrides Sub IncSalary(ByVal raisePercent As Decimal)
 ' ----- Extra 2% for overtime allowance.
 Me.Salary *= 1.02@ + raisePercent
 End Sub
 End Class

The Me keyword will be discussed in more detail below, but in the code it means, "I'm trying to access
members of the current class"in this case, either the Executive or the Secretary class. Since the
currentSalary member is private to the Employee class, it can't be accessed directly by the derived
classes; all access is made through the public Salary property.

Both derived classes include the statement Inherits Employee, which sets up the inheritance
relationship from Employee (the base class) to either Executive or Secretary (the derived classes).

Each derived instance of the IncSalary class includes the Overrides keyword, which states that this
member is specifically overriding an overridable member of the base class. A derived class is not
required to override an Overridable member, but it may.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each of these classes can now be used in code, and Visual Basic will call the appropriate class
member.

 Dim worker As New Employee
 Dim typist As New Secretary
 Dim ceo As New Executive

 ' ----- Set the initial salaries.
 worker.Salary = 30000
 typist.Salary = 40000
 ceo.Salary = 50000

 ' ----- Give everyone a 5% raise.
 worker.IncSalary(0.05@)
 typist.IncSalary(0.05@)
 ceo.IncSalary(0.05@)

 ' ----- Display the new salaries.
 MsgBox(worker.Salary) ' --> Displays 31500, a 5% increase
 MsgBox(typist.Salary) ' --> Displays 42800, a 7% increase
 MsgBox(ceo.Salary) ' --> Displays 55000, a 10% increase

The derived classes each have access to all public members of the base class.

 ceo.FullName = "Bill Fences"

Suppose that, in a more complete employee model, there is a derived class for every type of
employee. If each of these derived classes implements its own version of IncSalary, then there is no
need for any logic to exist in the IncSalary method of the base Employee class. The code could simply
leave the Employee.IncSalary method empty. Visual Basic also allows you to define an abstract
member, a member that has no implementation, only a definition (sort of a single-member
interface). Each derived class must implement this member to be valid, so VB includes a
MustOverride keyword for this purpose.

 Public MustInherit Class Employee
 ' ---- Define other members, then...
 Public MustOverride Sub IncSalary(ByVal raisePercent As Decimal)
 End Class

Members added with the MustOverride keyword do not include a body or an end marker (End Sub, in
this case). Visual Basic does not allow a class instance to exist with any abstract members; this
semiabstract Employee class can no longer be used to create instances directly. The class can only be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

used to derive other classes. To state this clearly, the class itself is decorated with the MustInherit
keyword.

Any class that contains at least one abstract member is termed an abstract class. There may be
situations where all members of a class need to be abstract. Such a class (called a pure abstract
class) defines an interface, although it is not a true Visual Basic Interface.

Consider a Shape class that is designed to model the general properties and actions of geometric
shapes (ellipses, rectangles, trapezoids, etc.). All shapes need a Draw method, but the
implementation varies, depending on the type of shape. Similarly, methods such as Rotate,
translate, and Reflect would each likely require their own shape-specific logic. This Shape class can
be implemented as a pure abstract class, from which distinct Ellipse, Rectangle, and other shape-
specific classes derive.

 Public MustInherit Class Shape
 Public MustOverride Sub Draw()
 Public MustOverride Sub Rotate(ByVal degrees As Single)
 Public MustOverride Sub Translate(ByVal x As Single, _
 ByVal y As Single)
 Public MustOverride Sub Reflect(ByVal slope As Single, _
 ByVal intercept As Single)
 End Class

Classes can also be defined so that they cannot be used to create new derived classes. The
NotInheritable keyword enables this restriction.

 Public NotInheritable Class UseThisOne
 ...
 End Class

Non-inheritable classes may not include any abstract members. Visual Basic also includes a
NotOverridable keyword that can be used to decorate individual members in a base class.

Classes can be derived at any depth. Class A can be derived into Class B, and Class B can further be
derived into Class C.

Certain rules apply to the inheritance of classes:

Private members are never inherited.

Public members are inherited by all derived classes.

Protected members are inherited by all derived classes, as are Protected Friend members.

Friend members are inherited by all derived classes in the same project as the base class, but
not by derived classes in another assembly or application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.14. MyBase, MyClass, and Me

When working with derived classes, there are times when references to a member may be somewhat
ambiguous; a member name may exist in both the derived class and the base class. Visual Basic
provides special keywords to help alleviate this ambiguity.

The MyBase keyword provides a reference to the base class from within a derived class. If you want to
call a member of the base class from within a derived class, you can use the syntax:

 MyBase.MemberName

This will resolve any ambiguity if the derived class also has a member of the same name. The MyBase
keyword can also be used to create an instance of the base class through its constructor:

 MyBase.New(...)

The MyBase keyword cannot be used to access Private members of the base class, as they are
inaccessible from derived classes.

If a class is derived from a chain of base and derived classes, MyBase looks first to the closet "parent"
class in the chain for a matching member (including a matching signature). If a match is not found,
VB continues up the chain until the root class, which is always System.Object.

The keywords Me and MyClass both provide a reference to the local class (the class in which the
current code resides), but they exhibit slight differences. Consider a class named BaseClass and
another derived from it, named DerivedClass.

 Public Class BaseClass
 Public Overridable Function WhereAmI() As String
 Return "Base"
 End Function

 Public Sub ShowLocation()
 MsgBox(Me.WhereAmI())
 MsgBox(MyClass.WhereAmI())
 End Sub
 End Class

 Public Class DerivedClass
 Inherits BaseClass
 Public Overrides Function WhereAmI() As String
 Return "Derived"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Function
 End Class

Now consider the following code that uses these classes:

 Dim firstTry As New BaseClass
 Dim secondTry As New DerivedClass
 Dim useAsBase As BaseClass

 useAsBase = firstTry
 useAsBase.ShowLocation() ' --> Shows "Base", "Base"

 useAsBase = secondTry
 useAsBase.ShowLocation() ' --> Shows "Derived", "Base"

The first call to ShowLocation is made using a variable of type BaseClass that refers to an object of
type BaseClass. In this case, both of the calls:

 Me.WhereAmI()
 MyClass.WhereAmI()

return the same value, because they both call WhereAmI in BaseClass.

However, in the second case, the variable of type BaseClass holds a reference to an object of
DerivedClass. In this case, Me refers to an object of type DerivedClass (the secondTry reference),
whereas MyClass still refers to the base class BaseClass (the useAsBase reference). When using the Me
keyword, the actual object as originally instantiated is used; when using MyClass, the class of the
variable that is used to make the method call becomes the controlling class.

3.2.15. Shadowing and Overloading Members

Visual Basic provides a few additional features that let you provide even more control over which
members are used in your base and derived classes.

3.2.15.1. Shadowing

Shadowing is similar to overriding, but with some very important differences. Consider two classes,
BaseClass and DerivedClass:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Class BaseClass
 Public simpleField As Integer = 1

 Public Overridable Sub TestOverride()
 MsgBox("BaseClass:TestOverride")
 End Sub

 Public Sub TestShadow()
 MsgBox("BaseClass:TestShadow")
 End Sub

 End Class

 Public Class DerivedClass
 Inherits BaseClass

 Public Shadows simpleField As Integer = 2

 Public Overrides Sub TestOverride()
 MsgBox("DerivedClass:TestOverride")
 End Sub

 Public Shadows Sub TestShadow()
 MsgBox("DerivedClass:TestShadow")
 End Sub
 End Class

BaseClass has two methods, TestOverride (with the Overridable keyword) and TestShadow.
DerivedClass also defines methods with the same names; in this case, TestOverride includes the
Overrides keyword, and TestShadow uses the Shadows keyword. Both fields also have a related public
Integer field.

The following code tests the derived class:

 Dim inUse As DerivedClass = New DerivedClass
 inUse.TestOverride()
 inUse.TestShadow()
 MsgBox("Field = " & inUse.simpleField)

Because the object reference inUse is to an object of DerivedClass, the calls to the TestOverride and
TestShadow methods, as well as to the public variable simpleField, all refer to code in DerivedClass;
the output messages are as expected:

 DerivedClass:TestOverride
 DerivedClass:TestShadow
 Field = 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The test of the classes working together, though, is a little more interesting:

 Dim inUse As BaseClass = New DerivedClass
 inUse.TestOverride()
 inUse.TestShadow()
 MsgBox("Field = " & inUse.simpleField)

In this case, a variable of type BaseClass refers to an object of type DerivedClass. The output this
time is:

 DerivedClass:TestOverride
 BaseClass:TestShadow
 Field = 1

When interacting with base and shadowed members, the type of variable used to reference the
members is the deciding factor. In the sample, even though the actual object was of type
DerivedClass, the fact that the variable was of type BaseClass caused VB to use the BaseClass
version of shadowed features.

Class fields, such as simpleField, can only be shadowed; they cannot be overridden.

One other difference between shadowing and overriding is that a shadow element need not be the
same type of element as its base class partner. For instance, the following code is valid.

 Public Class BaseClass
 Public TheShadowKnows As Integer
 End Class

 Public Class DerivedClass
 Inherits BaseClass

 Public Shadows Sub TheShadowKnows()
 MsgBox("This code lacks clarity!")
 End Sub
 End Class

Shadowing only considers the name of the member, not its type or signature. While allowing
members of different types to shadow each other seems like a hazardous practice, it actually has its
use. In Visual Basic, your code can include a global variable and a local variable of the same name,
but of different data types. This ability is possible because the local variable is shadowing its global
namesake. In such a case, references to the variable name in the local procedure always refer to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

local variable, not the global variable of the same name. This process is known as shadowing by
scope.

3.2.15.2. Overloading

Overloading refers to an item being used in more than one way. Generally, overloading occurs when
a class includes multiple methods with the same name but with different signatures. For instance, the
Abs function in the System.Math class includes several versions, but each uses different source and
return data types.

 Overloads Public Shared Function Abs(Decimal) As Decimal
 Overloads Public Shared Function Abs(Double) As Double
 Overloads Public Shared Function Abs(Int16) As Int16
 Overloads Public Shared Function Abs(Int32) As Int32
 Overloads Public Shared Function Abs(Int64) As Int64
 Overloads Public Shared Function Abs(SByte) As SByte
 Overloads Public Shared Function Abs(Single) As Single

Each entry includes the Overloads keyword, which tells VB that this function is overloaded. You can
create your own overloaded methods. Consider a function that retrieves a current account balance.
The account could be identified either by the customer's account number or driver's license number.
The method that retrieves the balance might be defined with two different signatures.

 Overloads Function GetBalance(accountNumber As Long) As Decimal
 Overloads Function GetBalance(licenseNumber As String) As Decimal

When calling GetBalance, VB decides which version to use based on whether the method is passed a
string or a long integer value.

New in 2005. The 2005 release of Visual Basic introduced operator overloading to the language. This
feature allows a class to define functionality for the standard VB operators, such as the addition
operator (+). Operator overloading is discussed in full in Chapter 5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Variables and Data Types
Data manipulation is the heart of any software application. You could choose to process the data the
way that your computer's CPU does: bit by bit. But that quickly becomes tedious, so languages like
Visual Basic include a variety of data types , implementations of data management tools each based
on a subset of possible data values. This chapter discusses data types, the data managed by those
types, and how they are processed in Visual Basic and .NET.

The term "data types" differs from the more general term "types" used throughout this and other
.NET documentation. .NET is built on the concept of the type, the basic data construct of .NET, which
includes classes, structures, delegates, and other high-level elements used to build applications and
pass data around programs. The data types available in .NET are built from these more generalized
types, as are your own custom classes. Data types provide a small but essential set of data
manipulation tools, grouped by the subset of possible data values managed by each data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. Data Types

The .NET Common Language Runtime (CLR) includes the Common Type System (CTS), which
defines the data types that are supported by the CLR. Each .NET-enabled language implements a
subset of the CLR data types, although some languages implement all of them (Visual Basic does,
starting in 2005).

In .NET, data types are special classes and structures whose instances manipulate a data value that
must fall within the limited range of the data type. For instance, the Byte data type can support and
manage any 8-bit unsigned integer value, from 0 to 255. It allows no other data values outside of
this defined subset, but it handles this subset extremely well. .NET provides data types for those
subsets of data that programmers have found essential in software development. These data types
make it possible to manipulate virtually any variation of data. For those instances where a predefined
.NET data type will not meet your needs, you can use the predefined data types as building blocks to
develop your own custom data management class.

The .NET Framework implements nearly 20 of these essential core data types, most designed to
manipulate integer or floating point numbers. The native VB data types are wrappers for the core
data types. For instance, the VB Integer data type is a wrapper for the System.Int32 structure. One
of the members of the Int32 structure is MaxValue, which returns the maximum numeric value
allowed for this data type. Thus, even though MaxValue is not officially part of VB, the Integer data
type's full dependence on the Int32 data type allows the following usage:

 Dim usesInt32 As Integer
 MsgBox(usesInt32.MaxValue) ' Displays 2147483647

Before the 2005 release of .NET, only some of the core .NET data types were implemented in Visual
Basic. Yet even without specific VB wrappers, the earlier releases of VB.NET still provided access to
the unwrapped data types. Since the core data types are simply classes and structures, they can be
instantiated just like any other class or structure.

4.1.1. Value and Reference Types

Data types in Visual Basic fall into two broad categories: (1) value types and (2) reference types .
Value types and reference types differ primarily in how they are stored in memory. The memory
allocated to a value type variable contains the actual value. In a statement such as:

 Dim simpleValue As Integer = 5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a memory location is set aside to hold the value of 5. In contrast, the memory storage allocated to a
reference type variable stores another memory address location where the real data can be found.
It's like a forwarding address at the post office. In a reference type declaration such as:

 Dim somewhereElse As New MyCustomClass

the VB compiler creates an instance of the MyCustomClass class in memory and then sets the value of
somewhereElse to the true memory address of that instance. If you are familiar with pointers in
languages such as C++, this is Visual Basic's closest equivalent.

In short, value type variables contain the data, and reference type variables point to the data.

The distinction between value types and reference types has several consequences, one of which is in
the way assignments work. Consider the following class, which has a single field:

 Public Class SimpleClass
 Public Age As Short
 End Class

and an equivalent structure:

 Structure SimpleStruct
 Public Age As Short
 End Structure

Classes are reference types, but structures are value types. The following code illustrates the
difference in usage between the two similar yet different types.

 ' ----- Declare two of each type.
 Dim refType1 As SimpleClass
 Dim refType2 As SimpleClass
 Dim valType1 As SimpleStruct
 Dim valType2 As SimpleStruct

 ' ----- First, a demonstration of reference types. Setting
 ' refType2 = refType1 causes refType2 to *reference*
 ' the same memory location. Further changes made to
 ' members of refType1 will impact refType2, and vice
 ' versa. They share the same object instance.
 refType1 = New SimpleClass
 refType1.Age = 20
 refType2 = refType1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 refType2.Age = 30
 Debug.WriteLine(refType1.Age) ' --> Shows 30
 Debug.WriteLine(refType2.Age) ' --> Shows 30

 ' ----- Now for value types. Setting valType2 = valType1
 ' makes a *copy* of the members of valType1. Any
 ' further changes to the members of one variable
 ' will have *no* impact on the other.
 valType1 = New SimpleStruct
 valType1.Age = 20
 valType2 = valType1
 valType2.Age = 30
 Debug.Writeline(valType1.Age) ' --> Shows 20
 Debug.Writeline(valType2.Age) ' --> Shows 30

In a way, both assignments of one variable to the other did the same thing: they copied the value of
the right-hand variable to the left-hand. But since the reference type, refType1, had a value of a
memory address, that memory address was copied into refType2. Since both variables pointed to the
same location in memory where the members were stored, both shared a common set of members.

The assignment of the value type valType1 to valType2 also copied the value of the right-hand
variable to the left hand. But the value of valType1 contained its actual members. A distinct copy of
those members (only the Age member, in this case) was made for the separate use of valType2.

To clear a reference type, set it to Nothing. Value types always have a value, even if it is zero; they
cannot be set to Nothing.

All of the core Visual Basic data types that manage numeric values (such as Integer and Double) are
value types. The String data type is a reference type, but it acts like a value type. When you assign
a string from one variable to another, you do not get a reference to the first string, as you would
expect. That's because the implementation of the String data type always creates a completely new
instance of the original string each time an assignment or change is made.

4.1.2. Visual Basic Data Types: A Reference

Visual Basic implements all of the core .NET data types as of the 2005 edition of the language. These
basic data types provide a broad range of features for managing all categories of data. The data
types can be arranged into five groups by the type of data managed.

Boolean Data

This single data type provides a single bit of data, either True or False.

Character Data

Visual Basic includes data types that manage either single characters or long strings of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

characters.

Date and Time Data

A single data type manages both date and time values.

Floating Point Data

The various floating point data types each manage a subset of rational numbers. Some of these
data types provide more mathematical accuracy than others.

Integer Data

The integer data types, and there are many, store integer values between a data type-defined
minimum and maximum value. Some of these data types support negative numbers.

The remainder of this section includes definitions and commentary on each core data type supplied
with the Visual Basic language.

4.1.2.1. Boolean data type

Quick Facts

Core .NET Type: System.Boolean

Implementation: Value Type (Structure)

Storage Size: 2 bytes

Value Range: true or False

The Boolean data type supports only two possible values: TRue or False. The VB keywords true and
False are used to assign these values to a Boolean variable. You can also assign the result of any
logical operation to a Boolean variable.

When a numeric value is converted to Boolean, any nonzero value is converted to true, and zero is
converted to False. In the other direction, False is converted to zero, and true is converted to -1.
(This differs from other .NET languages, which convert TRue to 1. Visual Basic uses -1 for reasons of
backward compatibility. When sharing Boolean data between components built in different .NET
languages, the .NET Framework automatically makes the correct adjustments according to the
language in use.)

4.1.2.2. Byte data type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Quick Facts

Core .NET Type: System.Byte

Implementation: Value Type (Structure)

Storage Size: 1 byte

Value Range: 0 to 255 (unsigned)

The Byte data type is the smallest unsigned integer data type supported by Visual Basic. While its
range is small, it is especially useful when working with raw binary data.

4.1.2.3. Char data type

Quick Facts

Core .NET Type: System.Char

Implementation: Value Type (Structure)

Storage Size: 2 bytes

Value Range: A character code from 0 to 65,535 (unsigned)

The Char data type stores a single 16-bit Unicode character. All characters in .NET are 16 bits in
length, which is sufficient to support double-byte character set (DBCS) languages, such as Japanese.
There was no equivalent to the Char data type in pre-.NET versions of Visual Basic.

When using a literal Char value, append the single letter "c" to the value.

 Dim singleLetter As Char = "A"c

A String variable containing a single character is not the same as a Char variable holding that same
single character. They are distinct data types, and an explicit conversion is required to move data
between the two types (when Option Strict is enabled).

4.1.2.4. Date data type

Quick Facts

Core .NET Type: System.DateTime

Implementation: Value Type (Structure)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Storage Size: 8 bytes

Value Range: January 1, 1 AD to December 31, 9999 AD (Gregorian)

Date values are stored as IEEE 64-bit long integers that can represent dates in the range January 1,
1 to December 31, 9999, and times from 0:00:00 to 23:59:59. The actual value is stored internally
as the number of "ticks" since midnight on January 1, 1 AD. Each tick represents 100 nanoseconds.

Literal dates must be enclosed in number signs (#).

 Dim independenceDay As Date = #7/4/1776#

4.1.2.5. Decimal data type

Quick Facts

Core .NET Type: System.Decimal

Implementation: Value Type (Structure)

Storage Size: 12 bytes

Value Range: +/-79,228,162,514,264,337,593,543,950,335 with no decimal portion; +/-
7.9228162514264337593543950335 with 28 decimal places; the smallest nonzero number is
+/-0.0000000000000000000000000001

Values of the Decimal data type are stored as 96-bit signed integers, along with an internal scale
factor ranging from 0 to 28, which is applied automatically. This provides a high level of mathematical
accuracy for numbers in the valid range, especially currency values.

Literal instances of Decimal data append the letter "D" or the character "@" to the end of the numeric
value.

 Dim startingValue As Decimal = 123.45D
 Dim endingValue As Decimal = 543.21@

You can also use the "@" character to indicate that a declared variable is of type Decimal.

 Dim startingValue@ = 123.45D

The MaxValue and MinValue members of the Decimal data type provide the range limits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In pre-.NET implementations of Visual Basic, the Decimal data type was not a true data type; it
existed as a subtype to the Variant data type. The .NET version of the Decimal data type is a true
data type implementation.

4.1.2.6. Double data type

Quick Facts

Core .NET Type: System.Double

Implementation: Value Type (Structure)

Storage Size: 8 bytes

Value Range: -1.79769313486231E+308 to -4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E+308 for positive values

Values of type Double are IEEE 64-bit (8-byte) double-precision signed floating point numbers. They
include a large range but also experience some accuracy loss in certain calculations.

Literal instances of Double data append the letter "R" or the character "#" to the end of the numeric
value.

 Dim startingValue As Double = 123.45R
 Dim endingValue As Double = 543.21#

You can also use the "#" character to indicate that a declared variable is of type Double.

 Dim startingValue# = 123.45R

4.1.2.7. Integer data type

Quick Facts

Core .NET Type: System.Int32

Implementation: Value Type (Structure)

Storage Size: 4 bytes

Value Range: -2,147,483,648 to 2,147,483,647

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Integer data type is a 32-bit signed integer data type. This is the native word size in 32-bit
processors, so its use can provide some performance enhancements over other integral data types
on those processors.

In pre-.NET versions of Visual Basic, the Integer data type was only 16 bits in size and had a smaller
range. The .NET version of Visual Basic includes Short as its 16-bit signed data type.

Literal instances of Integer data optionally append the letter "I" or the character "%" to the end of the
numeric value.

 Dim startingValue As Integer = 123I
 Dim endingValue As Integer = 543%

You can also use the "%" character to indicate that a declared variable is of type Integer.

 Dim startingValue% = 123I

4.1.2.8. Long data type

Quick Facts

Core .NET Type: System.Int64

Implementation: Value Type (Structure)

Storage Size: 8 bytes

Value Range: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

The Long data type is a 64-bit signed integer data type. In pre-.NET versions of Visual Basic, the Long
data type was only 32 bits in size and had a smaller range. The .NET version of Visual Basic uses
Integer as its 32-bit signed data type.

Literal instances of Long data append the letter "L" or the character "&" to the end of the numeric
value.

 Dim startingValue As Long = 123L
 Dim endingValue As Long = 543&

You can also use the "&" character to indicate that a declared variable is of type Long.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim startingValue& = 123L

When using the "&" character to identify a Long literal, do not leave a space between the number and
the "&" character, as the "&" character alone acts as the string concatenation operator.

4.1.2.9. Object data type

Quick Facts

Core .NET Type: System.Object

Implementation: Reference Type (Class)

Storage Size: 4 bytes

Value Range: Any type can be stored in an Object variable

The Object data type is the universal data type; an Object variable can refer to (point to) data of any
other data type. For instance, an Object can refer to Long values, String values, or any other class
instance.

 Dim amazingVariable As Object
 amazingVariable = 123L
 amazingVariable = "Isn't it great?"
 amazingVariable = New MyCustomClass

There is a performance penalty when using Object variables. Visual Basic cannot associate the true
data's members with the Object variable at compile time; this linking has to be done at runtime,
which increases the amount of code required to process object-related methods. This is referred to as
late binding. Declaring objects as their true type results in early binding, where all member links are
managed by the compiler. Code such as:

 Dim lateBound As Object
 . . .
 lateBound = New MyCustomClass
 lateBound.SomeMethod()

requires the application to match up the lateBound variable with MyCustomClass's SomeMethod member
at runtime. This is much less efficient than:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim earlyBound As MyCustomClass
 . . .
 earlyBound = New MyCustomClass
 earlyBound.SomeMethod()

In pre-.NET versions of Visual Basic, the VarType function identified the specific subtype of a Variant
value. The VarType function still exists in .NET-enabled Visual Basic; it identifies the true type of the
variable or value. The System.Object class (and by derivation, all classes in .NET) also includes a
GetType method that returns information about the true type of the object. Although these tools
work with any data type, they are especially useful with objects of type Object.

4.1.2.10. SByte data type

Quick Facts

Core .NET Type: System.SByte

Implementation: Value Type (Structure)

Storage Size: 1 byte

Value Range: -128 to 127

New in 2005. The SByte data type is the smallest signed integer data type supported by Visual Basic.
It acts as the signed counterpart to the unsigned Byte data type.

The SByte data type is one of four Visual Basic data types, added in the 2005 release of the language,
that are not compliant with the minimal Common Language Specification. Components and
applications using that standard may not be compatible with applications that use the SByte data
type.

4.1.2.11. Short data type

Quick Facts

Core .NET Type: System.Int16

Implementation: Value Type (Structure)

Storage Size: 2 bytes

Value Range: -32,768 to 32,767

The Short data type is a 16-bit signed integer data type. In pre-.NET versions of Visual Basic, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Integer data type was a 16-bit signed data type; the Short data type did not exist in Visual Basic
before .NET.

Literal instances of Short data append the letter "S" to the end of the numeric value.

 Dim startingValue As Short = 123S

4.1.2.12. Single data type

Quick Facts

Core .NET Type: System.Single

Implementation: Value Type (Structure)

Storage Size: 4 bytes

Value Range: -3.402823E+38 to -1.401298E-45 for negative values, and 1.401298E-45 to
3.402823E+38 for positive values

Values of type Single are IEEE 32-bit (4-byte) single-precision signed floating point numbers. They
include a moderate range but also experience some accuracy loss in certain calculations.

Literal instances of Single data append the letter "F" or the character "!" to the end of the numeric
value.

 Dim startingValue As Single = 123.45F
 Dim endingValue As Single = 543.21!

You can also use the "!" character to indicate that a declared variable is of type Single.

 Dim startingValue! = 123.45F

4.1.2.13. String data type

Quick Facts

Core .NET Type: System.String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implementation: Reference Type (Class)

Storage Size: 10 + (2 * string_length) bytes

Value Range: 0 to approximately 2 billion Unicode characters

The String data type holds variable-length Unicode character strings of up to approximately 2 billion
characters in length.

All strings in .NET are immutable. Once a value is assigned to a string, it cannot be changed. When
you modify the contents of a string, the String data type returns a new instance of a string with the
modifications.

A String variable containing a single character is not the same as a Char variable holding that same
single character. They are distinct data types, and an explicit conversion is required to move data
between the two types (when Option Strict is enabled).

4.1.2.14. UInteger data type

Quick Facts

Core .NET Type: System.UInt32

Implementation: Value Type (Structure)

Storage Size: 4 bytes

Value Range: 0 to 4,294,967,295 (unsigned)

New in 2005. The UInteger data type is a 32-bit unsigned integer data type. It acts as the unsigned
counterpart to the signed Integer data type.

The UInteger data type is one of four Visual Basic data types, added in the 2005 release of the
language, that are not compliant with the minimal Common Language Specification. Components and
applications using that standard may not be compatible with applications that use the UInteger data
type.

4.1.2.15. ULong data type

Quick Facts

Core .NET Type: System.UInt64

Implementation: Value Type (Structure)

Storage Size: 8 bytes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Range: 0 to 18,446,744,073,709,551,615 (unsigned)

New in 2005. The ULong data type is a 64-bit unsigned integer data type. It acts as the unsigned
counterpart to the signed Long data type.

The ULong data type is one of four Visual Basic data types, added in the 2005 release of the language,
that are not compliant with the minimal Common Language Specification. Components and
applications using that standard may not be compatible with applications that use the ULong data
type.

4.1.2.16. UShort data type

Quick Facts

Core .NET Type: System.UInt16

Implementation: Value Type (Structure)

Storage Size: 2 bytes

Value Range: 0 to 65,535 (unsigned)

New in 2005. The UShort data type is a 16-bit unsigned integer data type. It acts as the unsigned
counterpart to the signed Short data type.

The UShort data type is one of four Visual Basic data types, added in the 2005 release of the
language, that are not compliant with the minimal Common Language Specification. Components and
applications using that standard may not be compatible with applications that use the UShort data
type.

4.1.3. User-Defined Data Types

While individual variables can potentially meet all of your programming needs, it is often more
productive to combine multiple basic data values into logical groups. These user-defined data types
extend the basic data types with new types of your own choosing.

Pre-.NET versions of Visual Basic supported user-defined data type creation through the Type
statement. These structured types were simply groupings of variables with no functionality beyond
the ability to set and retrieve the value of each type member. Visual Basic under the .NET Framework
greatly expands this feature by allowing code into each structure, as well as other basic .NET
elements. Visual Basic 6 types are replaced by the .NET concept of a Structure.

Classes are the basic code and data containers in .NET. Structures are similar to classes, although
they have certain limitations that don't apply to classes. One significant difference is that structures
implement value types (inherited directly from System.ValueType), while classes implement
reference types.

To declare a structure, use the Structure statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [Public|Private|Friend] Structure structureName

 member declarations
 End Structure

The members of a structure can be fields, properties, methods, shared events, enumerations, or
other nested structures. Each member must be declared with an access modifier: Public, Private, or
Friend.

The simplest and most common use of structures is to encapsulate related variables, or fields. For
instance, a simple structure can be used to define demographic information for a person:

 Structure Person
 Public Name As String
 Public Address As String
 Public City As String
 Public State As String
 Public Zip As String
 Public Age As Short
 End Structure

A standard declaration defines a variable of type Person:

 Dim onePerson As Person

Members of the structure are accessed using the standard "dot" syntax that applies also to classes:

 onePerson.Name = "Beethoven"

More complex structures may include members and properties:

 Public Structure NameAndState
 ' ----- Public and private fields.
 Public Name As String
 Private theState As String

 Public Function ShowAll() As String
 ' ----- A public method. Show all stored values.
 If (theState = "") And (Name = "") Then
 Return "<No Name> from <Nowhere>"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ElseIf (theState = "") Then
 Return Name & " from <Nowhere>"
 ElseIf (Name = "") Then
 Return "<No Name> from " & theState
 Else
 Return Name & " from " & theState
 End If
 End Function

 Public Property State() As String
 ' ----- A public property. Limit state values.
 Get
 Return theState
 End Get
 Set(ByVal value As String)
 If (Len(value) = 2) Then
 theState = UCase(value)
 Else
 Throw New System.ArgumentException(_
 "State limited to 2 characters.", "State")
 End If
 End Set
 End Property
 End Structure

Instances of the structure can now be created and used just like classes:

 Dim onePerson As New NameAndState
 onePerson.Name = "Donna"
 onePerson.State = "CA"
 MsgBox(onePerson.ShowAll())

Structures can be passed as arguments to functions or used as the return type of a function.
Although structures are similar to classes, they do not support the following class features:

Structures cannot explicitly inherit, nor can they be inherited.

All constructors for a structure must be parameterized.

Structures cannot define destructors; Finalize is never called.

Member declarations cannot include initializers, nor can they use the As New syntax or specify
an initial array size.

For a reference to the object-oriented terminology, see Chapter 3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1.4. Data Type Conversion

The process of converting a value of one data type to another is called conversion or casting. A
conversion can be applied to a literal value, variable, or expression of a given type. Visual Basic
includes several conversion functions that cast data between the basic data types .

 Dim miniSize As Byte = 6
 Dim superSize As Long
 superSize = CLng(miniSize) ' Convert Byte variable to Long
 superSize = CLng("12") ' Convert String literal to Long

Casts and conversions can be widening or narrowing. A widening cast is one in which the conversion
is to a target data type that can accommodate all possible values in the source data type, such as
casting from Short to Integer or from Integer to Double. Data is never lost in widening casts. A
narrowing cast is one in which the target data type cannot accommodate all possible values of the
source data type. In this case, data may be lost, and the cast may not succeed.

Visual Basic conversions are made in two ways: implicitly and explicitly. An implicit conversion is
done by the compiler when circumstances warrant it (and it is legal). For instance, in the statements:

 Dim smallerData As Integer = 3948
 Dim largerData As Long
 largerData = smallerData

the smallerData value is automatically converted to the larger Long data type used by the largerData
variable. The type of implicit conversion that the compiler will do depends in part on the setting of the
OptionStrict statement. This statement appears at the top of a source code file, before any class-
specific code.

 Option Strict {On | Off}

If Option Strict is On, only widening casts can be implicit; narrowing casts such as:

 Dim smallerData As Integer
 Dim largerData As Long = 3948
 smallerData = largerData

generate a compile-time error due to the narrowing conversion, even though the sample data could
easily fit in the destination variable. Explicit conversion is required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 smallerData = CInt(largerData)

Setting Option Strict to Off permits the implicit conversion, even though the conversion may fail.

In addition to the Option Strict statement, Visual Basic also includes an Option Explicit statement
that appears at the start of a source code file.

 Option Explicit {On | Off}

When Option Explicit is On, all variables must be declared (using Dim or a similar declaring keyword)
before use. When Option Explicit is Off, VB will automatically add a declaration at compile time for
any variable name it encounters that does not already have a declaration. (It won't add new Dim
statements to your source code; it will add the declarations silently during the compile process.)
Turning this option Off can lead to esoteric bugs that are hard to locate. See the "Option Explicit
Statement" entry in Chapter 12 for additional information. The default values for both Option Strict
and Option Explicit can be set in the project's properties.

Visual Basic includes conversion functions for the basic data types.

CBool Function

Converts any valid string or numeric expression to Boolean. When a numeric value is converted
to Boolean, any nonzero value is converted to true, and zero is converted to False.

CByte Function

Converts any numeric expression in the range of a Byte to Byte, rounding any fractional part.

CChar Function

Converts the first character of a string to the Char data type.

CDate Function

Converts any valid representation of a date or time to Date.

CDbl Function

Converts any numeric expression in the range of a Double to Double.

CDec Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Converts any numeric expression in the range of a Decimal to Decimal.

CInt Function

Converts any numeric expression in the range of an Integer to Integer, rounding any fractional
part.

CLng Function

Converts any numeric expression in the range of a Long to Long, rounding any fractional part.

CObj Function

Converts any expression to an Object. This is useful when you need to treat a value type as a
reference type.

CSByte Function

New in 2005. Converts any numeric expression in the range of an SByte to SByte, rounding any
fractional part.

CShort Function

Converts any numeric expression in the range of a Short to Short, rounding any fractional part.

CSng Function

Converts any numeric expression in the range of a Single to Single.

CStr Function

Converts an expression to its string representation. Boolean values are converted to either
"True" or "False." Dates are converted based on the date format defined by the regional
settings of the host computer.

CType Function

Provides generalized casting, allowing an object or expression of any type to be converted to
another type. It works with all classes, structures, and interfaces. This applies to both the basic
data types and custom classes. The function has the following syntax:

 CType(expression, typename)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For instance, the statement:

 Dim targetNumber As Integer = CType("12", Integer)

is equivalent to:

 Dim targetNumber As Integer = CInt("12")

New in 2005. The 2005 release of Visual Basic adds operator overloading features, described in
Chapter 5. One component of operator overloading is the ability to define CType conversion rules for
your own custom classes.

CUInteger Function

New in 2005. Converts any numeric expression in the range of a UInteger to UInteger,
rounding any fractional part.

CULong Function

New in 2005. Converts any numeric expression in the range of a ULong to ULong, rounding any
fractional part.

CUShort Function

New in 2005. Converts any numeric expression in the range of a UShort to UShort, rounding
any fractional part.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Variables

A variable can be defined as an entity that has the following six properties:

Name

A variable's name is used to identify it in code. In VB, a variable name starts with a Unicode
alphabetic character or an underscore and is then followed by additional underscore characters
or various Unicode characters, such as alphabetic, numeric, formatting, or combined
characters. With the introduction of .NET, Microsoft recommends a new set of naming
standards for use with variables and other named objects. These naming standards are
discussed briefly in the "Naming Conventions" section of Chapter 1.

Address

Every variable has an associated memory address, the location where the variable's value is
stored. Variables are not guaranteed to maintain a permanent memory address in .NET, so the
address of a variable should not be recorded or used.

Data Type

The data type of a variable determines the possible values that the variable can assume.

Value

The value of a variable is the data content it contains at its memory address. This is also
sometimes referred to as the r-value of the variable, since it is what appears on the right side
of a variable assignment statement. For instance, in the code:

 Dim targetValue As Integer = 5

the statement can be read as "store the value of 5 in memory at the address of targetValue."
Because it appears on the left side of an assignment operator, the variable (or its memory location)
is sometimes called an l-value.

Scope

The scope of a variable determines where in a program that variable is visible to the code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variable scope is discussed in more detail later in this chapter.

Lifetime

A variable's lifetime determines when and for how long a particular variable exists. It may or
may not be visible (that is, be in scope) for that entire period. Variable lifetime is described in
more detail later in this chapter.

4.2.1. Variable Declaration

A variable declaration is an association of a variable name with a data type. For non-object variables
(value types), declaration is firmly tied to variable instance creation. A declaration such as:

 Dim createMeNow As Integer

creates an Integer variable named createMeNow. This is equivalent to:

 Dim createMeNow As Integer = New Integer

or even:

 Dim createMeNow As New Integer

which emphasizes the creation of a new instance of the variable object.

Multiple variables can be declared within a single statement. Although each variable generally has its
own type declaration, this is not a requirement. If a variable lacks an explicit type declaration, then
its type is that of the next variable with an explicit type declaration. Thus, in the line:

 Dim first As Long, second, third As Integer, fourth As String

the variables second and third have type Integer. (In VB 6, second would have been Variant.)

Visual Basic permits the initialization of variables in the same line as their declaration. (The assigned
value is called an initializer.) The statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim alwaysInitialized As Integer = 5

declares and creates an Integer, and assigns it an initial value of 5. Multiple assignments in a single
statement also work.

 Dim first As Integer = 6, second As Integer = 9

When using initializers, each variable must include an explicit data type.

Object variables (reference types) are declared just like their core data type counterparts:

 Dim newHire As Employee

However, this declaration does not create an object variable; the variable's value is equal to Nothing.
Object creation requires an explicit call to the object's constructor, as in:

 Dim newHire As New Employee

or:

 Dim newHire As Employee = New Employee

or even:

 Dim newHire As Employee
 newHire = New Employee

4.2.2. Variable Scope, Lifetime, and Access Level

Variables have a scope, which indicates where in the program the variable is recognized or visible to
the code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2.2.1. Local variables: block-level scope and procedure-level

All variables declared within a function, sub procedure, or property are local variables. These
variables may be used only within that routine; when the routine is complete, they cease to exist (if
they haven't been passed to another variable with a larger scope).

Local variables generally have procedure-level scope; they are accessible by every line of code in the
procedure. These local variables often appear immediately upon entering the code of the procedure.

 Public Sub DoTheWork()
 Dim localInt As Integer
 Dim localEmp As New Employee

Code blocks are sets of statements contained within an If statement, a For loop, a With statement,
or any other similar block of code that has separate starting and ending statements. All statements
that appear between the opening statement (If, ElseIf, For, With, and so on) and the closing
statement (End If, Next, End With, and so on) are part of that code block. Any variable defined
within a code block has block-level scope; it is only visible within that block of code. Since code blocks
can be nested, block-level variables can appear at any depth within the nesting.

 Public Sub DoTheWork(ByVal fromWhen As Date, ByVal howMuch As Decimal)
 If (fromWhen < Today) Then
 ' ----- This variable is available within the outer-most
 ' If block, which also includes the inner-most block.
 ' It is not available outside the outer-most If block.
 Dim simpleCalculation As Integer

 If (howMuch > 0@) Then
 ' ----- This variable is only available within the
 ' inner-most If block.
 Dim complexCalculation As Integer
 End If
 End If
 End Sub

Block-level variables cannot be accessed at all outside of their defined block. Consider the following
code:

 If (origValue <> 0) Then
 Dim inverseValue As Decimal
 inverseValue = 1 / origValue
 End If
 ' ----- The next statement will not compile.
 MsgBox(CStr(inverseValue))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this code, the variable inverseValue is not recognized outside of the block in which it is defined, so
the final line produces a compile-time error.

All local variables, whether procedure-level or block-level in scope, have a lifetime of the entire
procedure. This means that block-level variables retain their value during the entire procedure's
lifetime, even when code outside the block is being executed. In the code:

 Dim counter As Integer
 For counter = 1 To 5
 If (ProcessData(counter) = True) Then
 Dim soFar1 As Integer
 Dim soFar2 As Integer = 0
 soFar1 += 1
 soFar2 += 1
 MsgBox("Status so far: " & soFar1 & ", " & soFar2)
 End If
 Next counter

the variable soFar1 retains its value from the previous time through the If block. It displays "1" in its
first MsgBox use, "2" the second time, and so on. Because the soFar2 variable includes an initializer, it
is reset to that value (0, in this case) each time through the block. It always displays "1" in the
MsgBox statement.

A procedure can have variables passed to it through its argument list. These variables are always
procedure-level in scope.

Local variables can extend their lifetime beyond the execution timeline of the procedure in which they
reside. Static variables, though local in scope, live for the entire lifetime of the class or module in
which they are contained. They are declared with the Static keyword instead of the Dim keyword:

 Static longLasting As Integer = 0

The initializer of a static variable is applied when the class or module is instantiated, not each time
the statement is encountered. When you enter a procedure with a static variable, the variable will
contain the same value it had the last time the procedure was used. Static variables are not allowed
in the procedures of a Structure.

4.2.2.2. Module-level scope and access levels

All variables declared within a class (or structure or module), but outside of any procedure within that
class, have type-level scope; they are available to all procedures within the class. However, the scope

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of these variables can go beyond the type level through the use of an access modifier.

Each type-level variable is defined using an access modifier keyword. (You can use Dim as well, but as
Dim's access level varies between the different module types, this makes the code unclear.) The
access modifier grants access in a specific order, with Public granting the most generous level of
access (see Table 4-1).

Table 4-1. Access modifiers

Access
modifier

Description

Public Public variables are accessible to any code that accesses an instance of the class or
structure, or that has access to the type containing the variable. If a class has a public
variable, and an instance of that class is accessed from a separate project, application,
or component, the public variable is fully accessible to that code.

Protected Protected variables are accessible within the confines of a class and can be used in any
code derived from that class, but cannot be accessed outside of the class. Protected
variables only apply to classes; they are not available to structures or modules.

Friend Friend variables are accessible anywhere within the assembly, but no further.
Instances of a class with a friend variable consumed outside of the assembly hide the
variable from that external code. Friend variables can be used in classes, structures,
and modules.

Protected
Friend

Using Protected and Friend together grants that variable all the benefits of both; such
variables are accessible within the class and all derived classes, and within the
assembly, but not outside of it. Protected Friend variables can only be used in classes,
not in structures or modules.

Private Private variables are accessible anywhere within a class, structure, or module, but not
outside. They are also hidden from the custom members of derived classes.

Type-level variables have a lifetime that spans the entire lifetime of the class instance, structure
instance, or module that contains it. Variables can be marked as Shared; they exist without a specific
instance of the class, structure, or module being created. These variables have a lifetime that lasts
for the entire application's lifetime. All members of a Module are shared by default.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Constants

Constants are essentially read-only variables. Once their value is set in code (at compile time), they
cannot change. Constants are defined at the local or module level using the Const keyword:

 accessModifier Const name As type = value

where accessModifier is one of the access modifiers defined earlier. (Access modifiers are not used

for constants declared in procedures.) When Option Strict is On, all constant declarations must have
a declared type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Enumerations

An enumeration appears as a group of related integer constants. All members of an enumeration
share the same data type, and it must be an integral data type (Byte, Integer, Long, or Short, and
alsoin 2005 or beyondSByte, UInteger, ULong, or UShort). The enumeration members are shared and
read-only for the lifetime of the application.

 Public Enum VehicleType As Integer
 bicycle = 2
 tricycle = 3
 passengerCar = 4
 eighteenWheeler = 18
 End Enum

They are used in code just like constants or variables.

 Dim whatIDrive As VehicleType
 whatIDrive = VehicleType.passengerCar

Enumerations are declared at the namespace or module level only; you cannot define an
enumeration within a procedure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. Arrays

The array is a fundamental data structure in many programming languages, including Visual Basic.
Arrays store a collection of similar data types or objects. Each element has a numbered position,
ranging from 0 (the lower bound) to the defined upper bound of the array.

The following examples show various ways to declare a one-dimensional array:

 ' Implicit constructor: No initial size and no initialization
 Dim days() As Integer

 ' Explicit constructor: No initial size and no initialization
 Dim days() As Integer = New Integer() {}

 ' Implicit constructor: Initial size but no initialization
 Dim days(6) As Integer

 ' Explicit constructor: Initial size but no initialization
 Dim days() As Integer = New Integer(6) {}

 ' Implicit constructor: Initial size implied by initialization
 Dim days() As Integer = {1, 2, 3, 4, 5, 6, 7}

 ' Explicit constructor, Initial size and initialization
 Dim days() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

Array declarations can:

Call the array's constructor implicitly or explicitly

Specify an initial size for each dimension or leave the initial size unspecified

Initialize the elements of the array or not

In VB 6, the programmer could specify both the lower and upper bounds of any array dimension.
With .NET, all Visual Basic arrays have a lower bound of zero. The statement:

 Dim myArray(5) As Integer

declares an array with six elements, numbered zero through five.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Arrays can include multiple dimensions. The following example declares and initializes a two-
dimensional array:

 Dim rectArray(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

The following code displays the contents of this array:

 Debug.Write(rectArray(0, 0))
 Debug.Write(rectArray(0, 1))
 Debug.WriteLine(rectArray(0, 2))
 Debug.Write(rectArray(1, 0))
 Debug.Write(rectArray(1, 1))
 Debug.WriteLine(rectArray(1, 2))

 ' ----- The output is:
 123
 456

The upper bound of any array dimension can be modified using the ReDim statement.

 ReDim [Preserve] arrayName(newUpperBound)

The Preserve qualifier retains any existing values in the array; all array elements are cleared in the
absence of this qualifier. When using Preserve, only the last dimension of an array can have its upper
bound modified. The number of dimensions in an array cannot be changed.

You can determine the lower and upper bounds of an array dimension using the LBound and UBound
functions respectively.

 Dim smallArray(5) As Integer
 MsgBox(UBound(smallArray)) ' Displays "5"

Since all array dimensions have a lower bound of zero, the LBound function always returns zero.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6. Collections

Visual Basic defines an associative array object called a collection. Although similar to an array in that
elements appear in a specific order, a collection stores its elements as key-value pairs. Once in a
collection, each element can be retrieved by position, by key, or by iterating through the collection
one element at a time.

Five of the Collection class's members are especially useful.

Add Method

Adds an item to the collection. Along with the data itself, you can specify an optional key by
which the member can be referenced.

Clear Method

Removes all elements from the collection.

Count Property

Returns the number of elements in the collection.

Item Property

Retrieves an element from the collection either by its index (or ordinal position in the
collection) or by its key (if provided when the element was added).

Remove Method

Deletes an element from the collection using the element's index or key.

The following code defines a collection of state names, using the state abbreviation as the key.

 Dim states As New Collection
 states.Add("New York", "NY")
 states.Add("Michigan", "MI")

The elements of this collection can then be iterated using the For Each...Next construct.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim oneState As String
 For Each oneState In states
 MsgBox(oneState)
 Next oneState

Like arrays, collection members are accessible by their index value. The lower bound of a collection is
always one (1).

New in 2005. The 2005 release of Visual Basic includes a new generics feature that allows collection
(and other class) instances to be tied to a specific data type. See Chapter 10 for details on using this
new feature.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7. Parameters and Arguments

Although procedures are self-contained blocks of code, they often need to interact with data from
outside of the procedure. External data can be passed into the procedure through its parameter list.
This list appears immediately on the declaration line of the procedure itself.

 Public Function RepeatString(ByVal origText As String, _
 ByVal howManyTimes As Integer) As String
 ' ----- Return a string concatenated to itself many times.
 Dim counter As Integer
 RepeatString = ""
 For counter = 1 To howManyTimes
 RepeatString &= origText
 Next counter
 End Function

The RepeatString function includes two parameters, origText and howManyTimes. Each parameter
includes a data type and a passing method. The passing method is either ByVal ("by value") or ByRef
("by reference"). In .NET, the default parameter passing method is ByVal.

When calling a procedure that has parameters, the values you send from the initiating code are called
arguments. The following statement includes two arguments in the call to the RepeatString function:
a string ("abc") and an integer (5).

 targetString = RepeatString("abc", 5)

Because classes in .NET support overloaded methods, the arguments you send to a procedure must
match the parameter signature of one of the overloaded methods. See Chapter 3 for a broader
discussion of overloading.

4.7.1. Passing Arguments

All arguments are passed by value or by reference, depending on whether the ByVal or ByRef
keyword is used with a parameter. When data is passed by value, a copy of the source expression or
variable is sent to the target procedure. While in that procedure, the parameter acts just like a local
variable; it can be examined and modified within the procedure, and it disappears when the
procedure is finished. Any changes made to a ByVal parameter in the procedure are not reflected in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the source variable. This is clearest when working with value types. Consider the following code.

 Public Sub ParentRoutine()
 Dim sourceValue As Integer = 5
 ChildRoutine(sourceValue)
 MsgBox(sourceValue) ' --> Displays "5"
 End Sub

 Public Sub ChildRoutine(ByVal incoming As Integer)
 incoming = 10
 End Sub

Even though sourceValue was passed to ChildRoutine, and its associated parameter incoming was
modified, that change did not propagate back to ParentRoutine, since incoming contained only a copy
of sourceValue's value.

Objects (reference types) passed into routines ByVal, however, can be modified by the target
procedure. More correctly, the members of an object can be modified, not the object itself. Objects
passed by value pass the memory location of the object, so changes made within that memory area
in the target procedure are reflected in the original object. However, you cannot fully replace the
object with a new object instance when using ByVal.

 Public Class DataClass
 Public DataMember As Integer
 End Class

 Public Class CodeClass
 Public Sub ParentRoutine()
 Dim sourceValue As New DataClass
 sourceValue.DataMember = 5
 ChildRoutine(sourceValue)
 MsgBox(sourceValue.DataMember) ' --> Displays "10"
 End Sub

 Public Sub ChildRoutine(ByVal incoming As DataClass)
 ' ----- This line changes the "real" member.
 incoming.DataMember = 10

 ' ----- But these lines have no impact on sourceValue.
 incoming = New DataClass
 incoming.DataMember = 15
 End Sub
 End Class

Passing a value type argument to a procedure with a ByRef parameter passes the memory address of
the value; changes made in the target procedure are reflected immediately in the source value. (This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is true if the source value is a variable; constants and calculated expressions cannot be modified.)
Contrast the following code with its ByVal counterpart above.

 Public Sub ParentRoutine()
 Dim sourceValue As Integer = 5
 ChildRoutine(sourceValue)
 MsgBox(sourceValue) ' --> Displays "10"
 End Sub

 Public Sub ChildRoutine(ByRef incoming As Integer)
 incoming = 10
 End Sub

Changing ByVal to ByRef made a significant difference. For reference types, the difference is not as
noticeable unless you attempt to fully replace the original object in the target procedure. You can do
it! This is because the ByRef keyword causes the memory address of the memory address of the
object to be passed in. If you modify that memory address, you replace the address managed by the
source variable. In some languages, this is referred to as a double pointer. It's somewhat confusing,
but an example should make it clear. Contrast this code with the similar ByVal code shown earlier.

 Public Class DataClass
 Public DataMember As Integer
 End Class

 Public Class CodeClass
 Public Sub ParentRoutine()
 Dim sourceValue As New DataClass
 sourceValue.DataMember = 5
 ChildRoutine(sourceValue)
 MsgBox(sourceValue.DataMember) ' --> Displays "15"
 End Sub

 Public Sub ChildRoutine(ByRef incoming As DataClass)
 ' ----- This line changes the "real" member.
 incoming.DataMember = 10

 ' ----- These lines fully replace the object referred
 ' to by sourceValue.
 incoming = New DataClass
 incoming.DataMember = 15
 End Sub
 End Class

Using ByRef with reference types allows the target procedure to fully replace the original object with a
completely new instance of an object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7.2. Optional Arguments

Visual Basic supports optional parameters through the Optional keyword.

 Sub Calculate(Optional ByVal silent As Boolean = False)

The following rules apply to optional arguments:

Every optional argument must specify a default value, and this default must be a constant
expression (not a variable). This value is used when the calling code does not supply an
argument for the optional parameter.

Every argument following an optional argument must also be optional. All required arguments
must appear before the optional arguments in the parameter list.

Pre-.NET versions of VB allowed you to omit the default value, and, if the parameter was of type
Variant, you could use the IsMissing function to determine if a value was supplied. This is no longer
supported; if an argument is not supplied, the required default value is used instead.

4.7.3. Parameter Arrays

Normally, a procedure definition specifies a fixed number of parameters. However, the ParamArray
("parameter array") keyword allows the parameter list to be extended beyond the fixed elements.
Each call to the procedure can use a different number of parameters beyond any initial required
parameters.

Consider a function that takes the average of a number of test scores, but the number of scores may
vary.

 Public Function AverageScore(ByVal ParamArray scores() _
 As Single) As Single
 ' ----- Calculate the average score for any number of tests.
 Dim counter As Integer

 AverageScore = 0
 For counter = 0 To UBound(scores)
 AverageScore += scores(counter)
 Next counter
 AverageScore /= UBound(scores) + 1
 End Function

The call to AverageScore can now include a varied number of arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MsgBox(AverageScore(1, 2, 3, 4, 5)) ' --> Displays "3"
 MsgBox(AverageScore(1, 2, 3)) ' --> Displays "2"

The following rules apply to the use of ParamArray:

A procedure can only have one parameter array, and it must be the last parameter in the
parameter list.

The parameter array must be passed by value, and you must explicitly include ByVal in the
procedure definition.

The parameter array must be a one-dimensional array. If the type is not declared, it is assumed
to be System.Object.

The parameter array is automatically optional. Its default value is an empty one-dimensional array of
the parameter array's data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Operators
Operators are the basic data manipulation tools of any programming language. All data ultimately
breaks down into single bits of 0 and 1. And the whole reason a computer exists is to manipulate
those single bits of data with basic operators. This chapter discusses the basic operators available in
Visual Basic, and how they interact with data.

Operators come in two usage types: unary and binary. Unary operators work on a single operand,
while binary operators require two operands. Most operators in Visual Basic are binary operators.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. Arithmetic Operators

The VB arithmetic operators provide basic manipulation of integer and floating point numbers. They
could be called "the calculator operators," since most of them appear on even the most basic four-
function calculator.

+ (Addition)

The addition operator adds numeric expressions together and returns the result.

 result = expression1 + expression2

When used with string operands, the + operator acts like the & string concatenation operator, as
described below.

+ (Unary Plus)

Usually, the + operator only appears as a binary operator. But it can be used in a unary form.
In this usage, when placed immediately before a number or numeric expression, it ensures that
the expression retains its sign, either positive or negative. Since expressions retain their sign
by default, the unary plus operator is redundant and rarely used.

 result =+expression

New variation in 2005. Beginning with the 2005 release of Visual Basic, overloading this operator
may prove useful in some classes.

- (Subtraction)

The subtraction operator deducts the value of one expression from another, returning the
difference.

 result = expression1 - expression2

Unlike the addition operator, the subtraction operator cannot be used with string operands.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

- (Unary Negation)

The - operator performs double duty as both a unary and binary operator. In its unary form,
when placed immediately before a number or numeric expression, it negates the expression,
effectively multiplying the expression by -1.

 result =-expression

* (Multiplication)

The multiplication operator multiplies two numeric expressions together and returns the result.

 result = expression1 * expression2

/ (Division)

The division operator divides one numeric expression into another and returns the result,
retaining any decimal remainder. If the second operand is zero (0), a "divide by zero" error
occurs.

 result = expression1 / expression2

\ (Integer Division)

The integer division operator works just like the normal division operator, but any decimal
remainder is truncated (not rounded) before returning the result. If the second operand is zero
(0), a "divide by zero" error occurs.

 result = expression1 \ expression2

This operator always returns a non-decimal data type (such as Short, Integer, or Long), even if the
original operands were decimal.

Mod (Modulo)

The modulo operator divides one numeric expression into another and returns only the
remainder as a whole number, also known as the modulus. If either of the two source
expressions are decimal numbers, they are rounded to integer values prior to the modulo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

operation. To obtain expected results, explicitly truncate or round decimal expressions before
using them as operands. The return value is a nonnegative integral data type.

As an example, the expression:

 10 Mod 3

returns 1, because the remainder of 10 divided by 3 is 1.

 result = expression1 Mod expression2

^ (Exponentiation)

The exponentiation operator raises one numeric expression to the power of the second and
returns the result.

 result = number ^ exponent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Concatenation Operators

Concatenation operators connect two source string expressions together and return a single string
joined from the two original strings. Because strings in .NET are immutable, the returned string is
always a completely new string instance.

& (String Concatenation)

The string concatenation operator returns a concatenated string from two source string
expressions. Any non-string source expression is first converted to a string prior to
concatenation (even if OptionStrict is set to On).

 result = expression1 & expression2

+ (Addition)

When the addition operator is used with string operands, it concatenates the operands instead
of adding their values. However, using this operator for concatenation can make the source
code unclear, especially when using the new .NET-recommended variable naming conventions.
If you mix string and numeric operands, this operator may also cause compile-time or runtime
errors, depending on the content of the operands. For the clearest code, use the &
concatenation operator instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Logical and Bitwise Operators

Logical operators evaluate one or more expressions and return a Boolean result (true or False). VB
supports six logical operators , many of which can also be used as bitwise operators, along with two
bitwise-only operators. Bitwise operations work on integral (numeric integer) operands at the bit level
and return numeric results. Other languages, such as C#, include distinct logical and bitwise
operators , but for historical reasons, VB mostly uses a common set of operators for both types of
operations.

If any of the operands are numeric (that is, non-Boolean), a bitwise operation is done instead of a
logical operation. In cases where one operand is Boolean and the other is not, the Boolean operand is
converted to a number first, using 0 for False and -1 for TRue.

In performing some logical operations, the .NET versions of Visual Basic use conditional short-
circuiting , where complex conditional expressions are only partially evaluated if the final result of the
entire expression can be determined without full evaluation. Individual expressions within a larger
compound expression are evaluated only until the expression's overall value is known, unless one of
the individual expressions involves a call to another function or subroutine. Short-circuiting can occur
in logical AndAlso operations when the first operand evaluates to False, as well as in logical OrElse
operations when the first operand evaluates to TRue. When using the more common And and Or
operators, no short-circuiting is done.

Boolean operations always use the two Boolean values of TRue and False. Although Visual Basic's
Boolean data type is based on the underlying .NET System.Boolean data type, its use in Visual Basic
differs from that of other .NET languages. For historical reasons, Visual Basic's true value, when
converted to a number, equates to -1. Other .NET languagesspecifically C#use a value of 1 for TRue.
Although .NET resolves this difference through the shared data type, it can become an issue if you
use a non-.NET data transfer method (such as a plain text file) to share numeric Boolean data
between .NET languages.

And

The And operator performs a logical or bitwise conjunction on the two source operands. In
logical operations, it returns true if and only if both operands evaluate to TRue. If either
operand is False, then the result is False. The syntax is:

 result = expression1 And expression2

For example, consider the following statement:

 If (x = 5) And (y < 7) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, the code within the Then clause will be executed only if the value of x is 5 and the value
of y is less than 7.

As a bitwise operator, And returns 1 in a bit position if the compared bits in the same position in both
expressions are 1, and it returns 0 in all other cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 0

1 0 0

1 1 1

For example, the bitwise result of 15 And 179 is 3, as the following binary representation shows:

 00001111 And 10110011 00000011

AndAlso

The AndAlso operator works exactly like the logical And operator, but short-circuiting is enabled.
If the first operand evaluates to False, the second operand is not evaluated at all, even if that
expression includes function calls. Operands are evaluated from left to right. AndAlso does not
perform bitwise operations.

Or

The Or operator performs a logical or bitwise disjunction on the two source operands. In logical
operations, it returns true if either of the operands evaluates to TRue. If both operands are
False, then the result is False. The syntax is:

 result = expression1 Or expression2

For example, consider the following statement:

 If (x = 5) Or (y < 7) Then

In this case, the code within the Then clause will be executed if either the value of x is 5 or the value
of y is less than 7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As a bitwise operator, Or returns 1 in a bit position if either of the compared bits in the same position
in the source expressions are 1, and it returns 0 in all other cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 1

1 0 1

1 1 1

For example, the bitwise result of 15Or179 is 191, as the following binary representation shows:

 00001111 Or 10110011 10111111

OrElse

The OrElse operator works exactly like the logical Or operator, but short-circuiting is enabled. If
the first operand evaluates to TRue, the second operand is not evaluated at all, even if that
expression includes function calls. Operands are evaluated from left to right. OrElse does not
perform bitwise operations.

Not

The Not operator performs a logical or bitwise negation on a single expression. In logical
operations, it returns TRue if the operand is False, and False if the operand is true. The syntax
is:

 result = Not expression1

For example, consider the following statement:

 If Not IsNumeric(x) Then

In this example, the code within the Then clause will be executed if IsNumeric returns False,
indicating that x is not a value capable of being represented by a number.

As a bitwise operator, Not simply toggles the value of each bit in the source expression between 0
and 1, as shown in the following table:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bit in expression1 Result

0 1

1 0

For example, the bitwise result of Not 16 is 239, as the following binary representation shows:

 Not 00010000 11101111

Xor

The Xor (an abbreviation for "eXclusive OR") operator performs a logical or bitwise exclusion on
the two source operands. In logical operations, it returns true if and only if the two expressions
have different truth values. If both expressions are TRue, or both are False, this operator
returns False. If one of the operands is true but the other False, then Xor returns true. The
syntax is:

 result = expression1 Xor expression2

As a bitwise operator, Xor returns 1 in a bit position if the compared bits are different from each
other, and it returns 0 if they are the same, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 1

1 0 1

1 1 0

For example, the result of 15 Xor 179 is 188, as the following binary representation shows:

 00001111 Xor 10110011 10111100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Eqv and Imp

Eqv and Imp, two logical and bitwise operators present in VB 6, have been removed from
.NET implementations of Visual Basic. Eqv can be replaced with the = (equal to)
comparison operator. The expression:

 expression1 Eqv expression2

is the same as the logical comparison:

 expression1 = expression2

Imp can be replaced with a logical expression using the Not and Or operators. For
example:

 expression1 Imp expression2

can also be expressed as:

 (Not expression1) Or expression2

If you need more precise replacements using bitwise calculations, see the "Logical and
Bitwise Operators" section in Appendix D.

<< (Shift Left)

New in 2003. The << (shift left) operator performs a left shift of the bits in the first operand by
the number of bits specified in the second operand. All bits shifted off the left are lost. All bits
newly vacated on the right are filled with zeros.

The number of bits you can shift is limited by the number of possible bits in the first operand.
Any excess number of shift positions will be ignored. This operator never throws an overflow
exception. The syntax is:

 result = source << bits

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, the bitwise result of 15 << 5 is 224, as the following binary representation shows:

 00001111 << 5 11100000

>> (Shift Right)

New in 2003. The >> (shift right) operator performs a right shift of the bits in the first operand
by the number of bits specified in the second operand. All bits shifted off the right are lost. All
bits newly vacated on the left are filled with the bit value of the leftmost bit position before
shifting. When shifting unsigned data values (Byte, UShort, UInteger, ULong), the newly vacated
bits on the left are filled with zero (0).

The number of bits you can shift is limited by the number of possible bits in the first operand.
Any excess number of shift positions will be ignored. This operator never throws an overflow
exception. The syntax is:

 result = source >> bits

For example, the bitwise result of 12 >> 1 is 6, as the following binary representation shows:

 00001100 >> 1 00000110

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Assignment Operators

Along with the standard assignment operator (=), many other operators can be turned into
assignment operators by simply appending an equals sign to the right of the operator. These
converted operators all have the same form:

 expression1 <operator>= expression2

where <operator> is the operator being promoted to an assignment operator. This form is equivalent

to:

 expression1 = expression1 <operator> expression2

To illustrate, consider the addition assignment operator. The expression:

 x += 1

is equivalent to:

 x = x + 1

which simply adds 1 to the value of x. Similarly, the expression:

 s &= "end"

is equivalent to:

 s = s & "end"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which concatenates the string "end" to the end of the string s.

All of these "shortcut" assignment operators were introduced with Visual Basic .NET 2002.

= (Assignment)

The assignment operator assigns the value or reference of the expression on the right of the
assignment operator to the variable on the left. For example, the following assigns y plus an
additional value of 5 to x.

 x = y + 5

The assignment operator alone is used to assign both values and references; in previous versions of
VB, the Set statement had to be used along with the assignment operator to assign an object
reference. The Set keyword is no longer used in this context. Also, the previously optional Let
keyword is no longer part of the Visual Basic language.

+=

The addition assignment operator. As an example:

 totalValue += 1

adds 1 to the value of totalValue and assigns the result to totalValue.

-=

The subtraction assignment operator. As an example:

 totalValue -= 1

subtracts 1 from the value of totalValue and assigns the result to totalValue.

*=

The multiplication assignment operator. As an example:

 totalValue *= 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multiplies the value of totalValue by 3 and assigns the result to totalValue.

/=

The division assignment operator. As an example:

 totalValue /= 2

divides the value of totalValue by 2 and assigns the result to totalValue. If the value to the right of
the division assignment operator equates to 0, an error occurs.

\=

The integer division assignment operator. As an example:

 totalValue \= 2

divides the value of totalValue by 2, discards any fractional part, and assigns the result to
totalValue. If the value to the right of the integer division assignment operator equates to 0, an
error occurs.

^=

The exponentiation assignment operator. As an example:

 totalValue ^= 2

squares the value of totalValue and assigns the result to totalValue.

&=

The concatenation assignment operator. As an example:

 storyText &= "The End"

appends a literal text string to the end of storyText's existing content and assigns this new

http://lib.ommolketab.ir
http://lib.ommolketab.ir

concatenated string to storyText.

<<=

New in 2003. The shift left assignment operator. As an example:

 dataMask <<= 2

shifts the bits of dataMask left two positions and assigns the new value back to dataMask.

>>=

New in 2003. The shift right assignment operator. As an example:

 dataMask >>= 2

shifts the bits of dataMask right two positions and assigns the new value back to dataMask.

Unlike the comparison operators , in which the order of symbols is reversible
(that is, >= is the same as =>), the order of the "shortcut" assignment operator
symbols is not reversible. For example, while:

 x -= 1

decrements x by 1, the expression:

 x =- 1

assigns a value of 1 to the variable x. That is, it really looks like this:

 x = -1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. Comparison Operators

There are three main comparison operators: < (less than), > (greater than), and = (equal to). They
can be used individually, or any two operators can be combined with each other to form other
comparison operators. The general syntax is:

 result = expression1 <operator> expression2

The result is a Boolean value of TRue or False.

The following list indicates the condition required with each VB comparison operator to return a value
of TRue.

= (Equal To)

TRue if expression1 is equal to expression2

< (Less Than)

TRue if expression1 is less than (and not equal to) expression2

> (Greater Than)

true if expression1 is greater than (and not equal to) expression2

<= (Less Than or Equal To)

true if expression1 is less than or equal to expression2

>= (Greater Than or Equal To)

TRue if expression1 is greater than or equal to expression2

<> (Not Equal To)

TRue if expression1 is not equal to expression2

Comparison operators can be used with both numeric and string expressions. If one expression is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

numeric and the other is a string, the string is first converted to a number of type Double
(nonnumeric strings throw an exception). If both expression1 and expression2 are strings, the

"greatest" string is the one that appears second in sort order. The sorting is based on the current
character code page in use by the application, the region-specific locale information, and the
OptionCompare setting. If that setting is Binary, the comparison is case-sensitive, whereas a setting
of Text results in a case-insensitive comparison.

New in 2005. There are two "hidden" operators in Visual Basic: IsTrue(arg) and IsFalse(arg). They

return a Boolean value that indicates whether the supplied argument is true or False, respectively.
You cannot use them directly in your code, but they do exist, beginning in the 2005 release of Visual
Basic, to support operator overloading. This is covered in the "Operator Overloading" section later in
this chapter.

5.5.1. The Like Operator

The Like operator is used to match a string against a pattern. It compares a string expression or
literal with a string pattern expression and determines whether they match (the result is true) or not
(the result is False). For example:

 If (testString Like "[A-Z]#") Then

matches a capital letter followed by a digit.

For details on the use of this operator, including special characters used in the pattern string, see the
"Like Operator" entry in Chapter 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Object Operators

Visual Basic includes five operators that return results based on an operand's object properties.

Is

The Is operator determines whether two object reference variables refer to the same object
instance.

 result = object1 Is object2

If both object1 and object2 refer to the same object instance, the result is true; otherwise, the

result is False. You can also use the Is operator to determine if an object variable refers to a valid
object. This is done by comparing the object variable to the Nothing keyword:

 If (customerRecord Is Nothing) Then

The result is true if the object variable does not hold a reference to any object.

IsNot

New in 2005. The IsNot operator is equivalent to the Is operator used with the Not logical
operator. The statement:

 If (customerRecord IsNot Nothing) Then

is the same as:

 If Not (customerRecord Is Nothing) Then

There is no functional difference between the two statements. The IsNot operator was added to VB to
make such statements more readable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TypeOf

The TypeOf operator determines if an object variable is of a specific data type. It is always used
with the Is operator. (It does not work with the new VB 2005 IsNot operator.) The following
statement tests an object variable to see if it is an Integer.

 If (TypeOf someNumber Is Integer) Then

AddressOf

The AddressOf operator returns a procedure delegate that can be used to reference a
procedure through a variable. In VB¬6, the AddressOf operator returned a function pointer, the
memory address of the function. While the .NET version of this operator serves a similar
purpose, it does not return a memory address. The .NET Framework reserves the right to
move objects (including procedures) to new memory locations at any time, so you cannot
depend on the memory address.

For details on the AddressOf operator, including usage information, see the AddressOf Operator
entry in Chapter 12.

GetType

The GetType operator returns a System.Type object that contains information about the data
type of the operand. You cannot use expressions or variables as operands; you must pass a
data type itself. You can use VB data types (like Integer or String), .NET core types (like
System.Int32), or the name of any class, structure, or similar construct. For example:

 result = GetType(Integer)

returns a System.Type object that provides information about the System.Int32 data type, which is
the true data type of the Visual Basic Integer data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Operator Overloading

New in 2005. Although Visual Basic is as powerful as any other .NET language, early versions lacked
specific features found in some other .NET languages (just as VB had features absent from those
languages). One feature present in C#, but absent in VB, was operator overloading , the ability to
redefine unary and binary operators and give them special uses when working with specific classes or
structures. As of the 2005 release of Visual Basic, operator overloading is now part of the Visual Basic
experience.

To perform operator overloading, you simply create a special procedure in your class with the name
of the operator, indicate the data type(s) of the operand(s) and the data type of the return value,
make it Public and Shared, and it's ready to use. The class (or structure) you put the procedure in is
significant. At least one operand for the operator must be of the class data type in which the
procedure appears. For the special CType unary operator, either the operand or its return value must
use the data type of the class that includes the procedure.

All overloaded operator procedures share a common syntax.

 Public Shared [otherModifiers] Operator operatorSymbol _

 (ByVal operand1 As dataType[, ByVal operand2 As dataType]) _

 As returnDataType
 ' ----- Statements of the operator procedure.
 End Operator

As an example, consider a class named LandRegion that defines the boundaries of a piece of land.
Since you would like to merge two records together into a larger tract of land using the + addition
operator, you define the following procedure in the LandRegion class.

 Public Shared Operator +(ByVal firstArea As LandRegion, _
 ByVal secondArea As LandRegion) As LandRegion
 ' ----- Merge two land regions together.
 Dim combinedRegion As New LandRegion
 ' ...more code here...
 Return combinedRegion
 End Operator

Since the routine is Public, it is available to your entire program. Since it is Shared, the routine exists
even without the presence of any specific instance of the class (although at least one operand must
be of that class). The defined operands must always be passed ByVal. Using this operator is simple.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim mainCity As New LandRegion
 Dim unincorporatedArea As New LandRegion
 Dim annexation As LandRegion

 ' ...fill in mainCity and unincorporatedArea members, then...
 annexation = mainCity + unincorporatedArea

For binary operators, only one of the operands has to match the enclosing class or structure type.

 Public Shared Operator +(ByVal wholeOrder As OrderRecord, _
 ByVal orderDetailItem As DetailRecord) As OrderRecord
 ' ----- Append a new product item onto the order.
 ' ...more code here...
 End Operator

Table 5-1 describes the operators that can be overloaded.

Table 5-1. Operators that can be overloaded

Operator Description

+ Unary Plus operator. It differs from the binary addition operator in that you supply only
one operand in the procedure signature.

- Unary Negation operator. It differs from the binary subtraction operator in that you
supply only one operand in the procedure signature.

Not Bitwise Negation operator. For overloading, this is a bitwise operation only, not logical.

IsTrue If you overload the Or operator in a class, overloading the IsTrue operator in the same
class opens up the use of the OrElse operator with the class. You must also overload the
IsFalse operator. The overload procedure's return type must be Boolean.

IsFalse If you overload the And operator in a class, overloading the IsFalse operator in the same
class opens up the use of the AndAlso operator with the class. You must also overload
the IsTrue operator. The overload procedure's return type must be Boolean.

+ Binary Addition operator. It differs from the unary plus operator in that you supply two
operands in the procedure signature.

- Binary Subtraction operator. It differs from the unary negation operator in that you
supply two operands in the procedure signature.

* Multiplication operator.

/ Division operator.

\ Integer Division operator.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operator Description

Mod Modulo operator.

& Concatenation operator.

^ Exponentiation operator.

<< Shift Left operator. The second operator must use the Integer data type.

>> Shift Right operator. The second operator must use the Integer data type.

= Equal To comparison operator. You must also overload the <> Not Equal To operator.

< Less Than comparison operator. You must also overload the > Greater Than operator.

> Greater Than comparison operator. You must also overload the < Less Than operator.

<= Less Than or Equal To comparison operator. You must also overload the >= Greater Than
or Equal To operator.

>= Greater Than or Equal To comparison operator. You must also overload the <= Less Than
or Equal To operator.

<> Not Equal To comparison operator. You must also overload the = Equal To operator.

And Bitwise Conjunction operator. For overloading, this is a bitwise operation only, not
logical.

Or Bitwise Disjunction operator. For overloading, this is a bitwise operation only, not logical.

Xor Bitwise Exclusion operator. For overloading, this is a bitwise operation only, not logical.

Like Pattern Comparison operator.

CType Unary Conversion operator. Used to convert data from one data type (or class or
structure) to another. You must include either the Narrowing or Widening keyword in the
definition of the overload, somewhere between the Shared and Operator keywords.
These modifiers tell the compiler what type of conversion is allowed. Narrowing
conversions may fail if the destination data type cannot support the value of the source
data type. Either the operand or the return type of the overload procedure must be of
the class or structure that contains the procedure.

When you overload operators, you can define them to do whatever you want with the source classes
in question. In fact, you could create a class where the normal understandings of addition and
subtraction were reversed. However, such practices will make the code more difficult to understand
and debug.

For further details about operator overloading, see the "Operator Statement" entry in Chapter 12.

Mod Modulo operator.

& Concatenation operator.

^ Exponentiation operator.

<< Shift Left operator. The second operator must use the Integer data type.

>> Shift Right operator. The second operator must use the Integer data type.

= Equal To comparison operator. You must also overload the <> Not Equal To operator.

< Less Than comparison operator. You must also overload the > Greater Than operator.

> Greater Than comparison operator. You must also overload the < Less Than operator.

<= Less Than or Equal To comparison operator. You must also overload the >= Greater Than
or Equal To operator.

>= Greater Than or Equal To comparison operator. You must also overload the <= Less Than
or Equal To operator.

<> Not Equal To comparison operator. You must also overload the = Equal To operator.

And Bitwise Conjunction operator. For overloading, this is a bitwise operation only, not
logical.

Or Bitwise Disjunction operator. For overloading, this is a bitwise operation only, not logical.

Xor Bitwise Exclusion operator. For overloading, this is a bitwise operation only, not logical.

Like Pattern Comparison operator.

CType Unary Conversion operator. Used to convert data from one data type (or class or
structure) to another. You must include either the Narrowing or Widening keyword in the
definition of the overload, somewhere between the Shared and Operator keywords.
These modifiers tell the compiler what type of conversion is allowed. Narrowing
conversions may fail if the destination data type cannot support the value of the source
data type. Either the operand or the return type of the overload procedure must be of
the class or structure that contains the procedure.

When you overload operators, you can define them to do whatever you want with the source classes
in question. In fact, you could create a class where the normal understandings of addition and
subtraction were reversed. However, such practices will make the code more difficult to understand
and debug.

For further details about operator overloading, see the "Operator Statement" entry in Chapter 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Operator Precedence

If you include more than one operator in a single line of code, you need to know the order in which
VB will evaluate them. Otherwise, the results may be completely different from what you intended.
For instance, the following statement:

 x = 5 + 3 * 7

could be interpreted as:

 x = (5 + 3) * 7 ' --> 56

or as:

 x = 5 + (3 * 7) ' --> 26

The rule that defines the order in which a language processes operators is known as the order of
precedence . If the order of precedence results in operations being evaluated in an order other than
the intended one, you can explicitly override the order of precedence through the use of parentheses.
Indeed, complex (or even relatively simple) expressions should include parentheses to avoid any
compiler misinterpretation or human confusion. (By the way, the example, once parentheses are
removed, evaluates to 26.)

When multiple operators appear at the same level of evaluation (that is, they are not subgrouped
with parentheses), they are processed in a specific order of precedence. In some instances, multiple
operators appear at the same level of precedence (as are * and /). They are treated as equals as far
as precedence is concerned. The following list indicates the order of precedence in evaluation, from
first to last.

Exponentiation (^).1.

Negation (-).2.

Multiplication and division (*, /).3.

Integer division (\).4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

4.

Modulo operator (Mod).5.

Addition/concatenation and subtraction (+, -).6.

String concatenation (&).7.

New in 2003. Arithmetic bit shift (<<, >>).8.

Comparison and object operators (=, <>, <, <=, >, >=, Like, Is, IsNot, TypeOf); the = operator in
this list is the Equal To comparison operator, not the assignment operator. New in 2005. The
IsNot operator is new in the 2005 release of VB.

9.

Logical and bitwise negation (Not).10.

Logical and bitwise conjunction (And, AndAlso). New in 2005. The AndAlso operator is new in the
2005 release of VB.

11.

Logical and bitwise disjunction (Or, OrElse, Xor). New in 2005. The OrElse operator is new in the
2005 release of VB.

12.

Since the AddressOf and GetType operators are implemented like functions, they fall outside of the
order of precedence rules for operators.

If multiple operators of the same order of precedence appear at the same level of evaluation, they
are processed from left to right.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Program Structure
With its tight integration into the .NET Common Language Runtime, Visual Basic owes much of its
present personality to .NET. This tie to the .NET Framework and the object-oriented nature of the
language itself work together to influence the structure of VB programs. This chapter discusses
aspects of Visual Basic program structure in the .NET environment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. Visual Studio Application Types

The original version of Visual Basic generated applications that were form-focused and included rich
features for interaction with the user and the Windows environment. Later releases added support for
DLL generation, specifically ActiveX DLLs. With its integration into .NET, Visual Basic compiler can
now generate several specific types of output.

Windows (Forms) Applications

In .NET, Windows applications make heavy use of the System.Windows.Forms namespace and
the control classes contained within it. Although these applications may look like any other non-
.NET Windows application, internally they are quite different and are fully managed by the .NET
Common Language Runtime.

Console Applications

Back in the days before Windows and other GUI-based platforms, most applications were
console applications . These wonders of technology interacted with the user through the
medium of the 80 x 24 character screen display. Such programs generally displayed text on the
screen and then waited for keyboard input from the user before continuing. Some systems
were able to make use of simple graphic characters and screen positioning to give some
semblance of a graphical user interface, but this was generally done by sending special display
codes to the basic text display.

Console applications are often procedural in nature; they start at the beginning of the
application and run until the end, uninterrupted by external user events like mouse clicks. In
this era of Windows applications, console applications exist to provide some basic textual
information to the user or to control some service or process that does not logically have a
need for a user interface.

Windows Services

Windows services are long-running applications that interact directly with the system but not
with the user. In fact, they run only within the context of the Windows Service architecture;
you cannot start them directly like an EXE file. Even when they run, they belong to the system
(in terms of their security profile), not the local user.

Class Libraries

Class libraries are more commonly called dynamic link libraries, or DLLs. Although not true
standalone applications, most applications would be limited without the plethora of available
DLLs; the functionality in the .NET Framework Class Library is made available through DLL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

files. DLLs are loaded at runtime by the applications that use them, and they run in the
program space of the controlling application. A special variation of a class library, the Web
Control Library, is used for ASP.NET server controls.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. Referencing Components and Classes

Applications you develop in Visual Basic will contain custom classes and other .NET types, defined for
the specific needs of the application. But you probably want to take advantage of other code already
written, such as the classes in the .NET Framework Class Library. Namespaces and classes that you
do not write yourself must be specifically identified before they can be used in your code. This is done
in two steps.

Reference the assembly that contains the classes you wish to use. This is done through the
References section of the Project Properties for your application. For instance, to use the
Windows Forms features of .NET, your application must include a reference to the
System.Windows.Forms.dll file, which contains the System.Windows.Forms assembly and
namespace contents. When you create new projects of a specific type (such as a new "Windows
Application" project), the typical assemblies you need for that project type are referenced by
default.

1.

Specify the class or feature you want to use with its namespace. For instance, to use the Form
class, you must call it System.Windows.Forms.Form. Typing this much text quickly becomes a
burden, so .NET allows you provide relative names through the use of the Imports statement.
For example, the statement:

 Imports System.Windows.Forms

in a code file allows you to use the Form class without its full qualification. You can set up global
Imports-like settings through the Project Properties. Visual Studio defines several global
Imports-like settings for you based on project type.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Application Entry Points

Any Visual Basic executablea Windows Forms or Windows console applicationhas a single application-
level entry point, a subroutine named Main. Main must be a method within one of the application's
classes. It must also be:

A Public Routine

In VB 6, Main could be either public or privateor it didn't have to exist at all, when a form was
set as the startup object. In .NET, it must be public to be visible as an entry point.

A Shared (Static) Routine

Its declaration must include the Shared keyword; this allows it to be called without the need to
create an instance of its class. If Main resides in a module, it is automatically shared, even
without the Shared keyword.

6.3.1. Using Main in a Standard Class or Module

The Main routine can appear in any class in your application, including a Module (which is just a
Shared variation of a class). Consider the simple case of a console application, like the one shown in
Example 6-1. The example includes a module named StartsHere, which contains the Main routine. At
runtime, the Common Language Runtime finds the Main procedure, displays a message to the
console, and then terminates the program.

Example 6-1. A simple console application

Option Strict On

Imports System

Public Module StartsHere
 Public Sub Main
 Console.WriteLine("This is a console application.")
 End Sub
End Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since the example uses a Module instead of a Class, the Shared keyword decoration is not necessary
on the Main routine. The .NET compiler translates this code into a public class and gives it a single
method, Main, as shown in the ILDASM tree diagram (see Figure 6-1).

The IL code for Main also shows that it is marked as the program's entry point (through the
.enTRypoint text on the third line), and that it is a static (shared) member rather than an instance
member.

 .method public static void Main() cil managed
 {
 .entrypoint
 .custom instance void
 [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
 // Code size 11 (0xb)
 .maxstack 8

Figure 6-1. The StartsHere.Main method in ILDASM

 IL_0000: ldstr "This is a console application."
 IL_0005: call void [mscorlib]System.Console::WriteLine(string)
 IL_000a: ret
 } // end of method StartsHere::Main

The Visual Basic compiler and the .NET Common Language Runtime, it would seem, have
transformed this simple code module into a self-executing class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3.2. Using Main in Windows Forms Applications

All forms displayed in Windows Forms applications must be instantiated before use. Visual Basic
allows you to specify a Form as the startup object of an application (instead of a standard Class- or
Module-based Main routine), and you don't have to add the routine yourself. So is it really there?
Yes, the framework adds a shared Main routine to your class. What does it do? A quick look at the IL
gives the answer. (Lines in this presentation have been wrapped for readability.)

 .method public hidebysig static void Main() cil managed
 {
 .entrypoint
 .custom instance void
 [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
 // Code size 16 (0x10)
 .maxstack 8
 IL_0000: call class WindowsApplication1.My.MyProject/
 MyForms WindowsApplication1.My.MyProject::get_Forms()
 IL_0005: callvirt instance class WindowsApplication1.Form1
 WindowsApplication1.My.MyProject/MyForms::get_Form1()
 IL_000a: call void
 [System.Windows.Forms]System.Windows.Forms.Application::Run(
 class [System.Windows.Forms]System.Windows.Forms.Form)
 IL_000f: ret
 } // end of method Form1::Main

The Main routine creates an instance of the form Form1 and then calls the Run method (in the
System.Windows.Forms.Application class), passing it the instance of the form. This is the normal way
to run a Windows Forms application. If you want to create your own Main routine in another class
that starts a Windows Forms application, it will include this similar basic code.

 Module StartsHere
 Public Sub Main()
 Dim startForm As New Form1
 Application.Run(startForm)
 End Sub
 End Module

New in 2005. Visual Basic 2005 includes a new Windows application framework model, a structure
that provides events and actions during the startup, running, and shutdown of your application. This
feature is enabled or disabled through the Application tab of the Project Properties panel. When this
model is enabled, the default Main routine resides in a separate special class associated with the
application instead of in the default form's class. When creating new Windows Forms applications in
Visual Basic 2005, this framework is enabled by default.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. Code File Contents

Visual Basic applications include one or more source code files and possibly some other miscellaneous
files (such as ".resx" resource files). These files contain all of the types (classes, structures,
enumerations, etc.) of your application. Just as in Visual Basic 6, there is a small declarations section
available at the start of each code file, followed by the actual code.

6.4.1. Declarations Section

The declarations section of a code file includes statements that set up the environment for all the
code in that file. This section may include the various Option statements (Option Compare, Option
Explicit, Option Strict) and Imports statements that make possible terse class references in the
code file. Application-specific and module-specific attributes are defined here as well.

Unlike with VB 6, no global variables, constants, or Declare statements appear in the declarations
section.

6.4.2. Namespaces

All types must appear in namespaces in .NET. By default, all of the code in your application appears
in a top-level namespace that has the same name as your project's name. You can override this
default in the project property settings or identify a specific namespace for your types by using the
Namespace statement. Namespaces can be nested.

 Namespace Level1
 Namespace Level2
 ' ---- Perhaps put some code here.
 End Namespace
 ' ----- Or even here.
 End Namespace

All namespaces are public.

New in 2005. The new Global keyword provides a way to resolve conflicts in namespace usage. For
instance, if your application included a namespace named MyCompany.System, and you used the
Imports MyCompany statement in your code file, would a reference to "System" mean the .NET-
supplied System namespace or the MyCompany.System namespace? The Global keyword solves the
problem. To access the .NET-supplied System namespace, reference Global.System, which removes
any ambiguity.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4.3. Types

Most of your application is defined through types : the classes, structures, enumerations, interfaces,
and so on, of your application. Many types can be nested.

 Public Class ClassDepth1
 Public Class ClassDepth2
 ' ----- Add code here.
 End Class
 ' ----- And here, too.
 End Class

Types contain members, mainly the methods, properties, events, and fields of your classes and
structures. Members cannot be nested, although members with the same name may appear within
different nested types. For instance, if Class A contains Class B, both A and B may include a procedure
named ProcessData without conflict.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. The Structure of a Visual Basic Program

Broadly speaking, programs can be either procedure-driven or event-driven . In a procedure-driven
program, program flow is predefined. A classic example is a console application: program flow begins
at the program entry point (the Main routine) and proceeds along a predictable path until it reaches
program termination. But in an event-driven program, program flow is not predetermined and is
instead controlled by external eventsevents initiated by both the user and the systemand possibly by
internal code-specified events.

Both types of applications include a starting entry point (the Main routine), which can call other
functions and subroutines according to the logic needed in the application. Procedure-driven
applications are limited to this single entry point. But event-driven applications include many entry
points throughout their lifetime (beyond the initial Main entry point). These entry points are event
handlers, which are invoked automatically by the .NET Common Language Runtime in response to
user, system, or internal application actions.

The different procedures in your application can be grouped into three broad categories.

Entry Point Code

This procedure type includes the primary entry point (the Main routine), as well as all event
handlers needed to support the various events for which your application needs to act.

Custom Procedures

In these procedures, you often create the main functionality of your application. These
procedures are called methods within your classes and modules.

Property Procedures

These procedures are generally used to get and set the internal values managed by a class.

6.5.1. Events: The Starting Point

Events can be system generated (such as with Timer control events that trigger actions at a specific
time or interval) or user generated (as through a mouse click on a command button). You can also
include code that forces an event to fire as needed. For instance, a stock monitoring application
might generate a Positive event when a stock's value goes up and a Negative event when its value
decreases.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For a discussion of events and the way in which procedures can be defined to
handle events, see Chapter 8.

6.5.1.1. Windows Forms events

Windows Forms classes include many special events that fire during the creation and destruction of a
form instance. These events appear in the following order:

New Constructor
Load Event
Activated Event
Shown Event (New in 2005)
Closing Event
FormClosing Event (New in 2005)
Closed Event
FormClosed Event (New in 2005)
Deactivate Event

Other form-specific events occur while the form is active on the display. Individual controls also
expose events.

6.5.1.2. ASP.NET events

ASP.NET exposes a more complex event model, in which events can be trapped at the application,
session, and page level. Table 6-1 illustrates the sequence of application, session, and page events
for an ASP.NET application.

Table 6-1. ASP.NET events

Event Type Description

Start Application Fired when the application starts. The event handler must reside in
global.asax.

Start Session Fired when a user session is created. The event handler must reside in
global.asax.

Init Page Fired when the page is initialized.

Load Page Fired when the page is loaded.

PreRender Page Fired when the page is about to be rendered.

Unload Page Fired when the page is unloaded.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Event Type Description

Disposed Page Fired when the page is released from memory.

End Session Fired when a user session ends or times out. The event handler must reside
in global.asax.

End Application Fired when an application ends. The event handler must reside in
global.asax.

Individual controls also expose events .

6.5.1.3. Event arguments

When an event is fired, the CLR passes two arguments to the event handler:

sender

An object of type System.Object (or some more specific type) that represents the instance of
the class raising the event

e

An object of type System.EventArgs, or of a type derived from System.EventArgs, that
contains information about the event

Example 6-2 shows an event handler for a command button's Click event in a Windows Forms
application.

Example 6-2. A command button's event handler

Disposed Page Fired when the page is released from memory.

End Session Fired when a user session ends or times out. The event handler must reside
in global.asax.

End Application Fired when an application ends. The event handler must reside in
global.asax.

Individual controls also expose events .

6.5.1.3. Event arguments

When an event is fired, the CLR passes two arguments to the event handler:

sender

An object of type System.Object (or some more specific type) that represents the instance of
the class raising the event

e

An object of type System.EventArgs, or of a type derived from System.EventArgs, that
contains information about the event

Example 6-2 shows an event handler for a command button's Click event in a Windows Forms
application.

Example 6-2. A command button's event handler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Strict On

Imports Microsoft.VisualBasic
Imports System
Imports System.Drawing
Imports System.Windows.Forms

Public Class JustAButton
 Inherits System.Windows.Forms.Form

 Friend WithEvents ActionButton As Button

 Private Sub New()
 ' ----- Form constructor; add the child controls.
 Dim x As Integer
 Dim y As Integer

 ' ----- Configure the button control.
 ActionButton = New Button
 x = CInt(Me.Width/2 - ActionButton.Width / 2)
 y = CInt(Me.Height/2 - ActionButton.Height / 2)
 Me.ActionButton.Location = New System.Drawing.Point(x, y)
 Me.ActionButton.Text = "Event Information"

 Me.Controls.Add(ActionButton)
 End Sub

 Public Shared Sub Main
 ' ----- The application starts here.
 Application.Run(New JustAButton)
 End Sub

 Private Sub ActionButton_Click(sender As Object, e As EventArgs) _
 Handles ActionButton.Click
 ' ----- This is the button's Click event handler.
 MsgBox(sender.GetType.ToString & vbCrLf & _
 e.GetType.ToString)
 End Sub
End Class

When the event is fired, the dialog box shown in Figure 6-2 appears.

Figure 6-2. A dialog box displaying event information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The EventArgs class itself has no useful members; all of its members are inherited from the
System.Object class. Most event handlers are passed an instance of the EventArgs class, although
events with additional useful information to convey will pass an object derived from EventArgs, with
the extra informational members added. For example, the Button and ImageButton controls in the
System.Web.UI.WebControls namespace raise a Command event that is fired when the control is
clicked. Instead of an instance of the EventArgs class, the CLR passes the event handler an instance
of the CommandEventArgs class. It has the following properties:

CommandName Property

The name of the command to be executed. It corresponds to the Button or ImageButton
control's CommandName property.

CommandArgument Property

Any optional arguments passed along with the command.

In some cases, an event's default action can be cancelled. For instance, the CancelEventArgs class
(derived from EventArgs) has a Cancel property that, when set to true, cancels the pending action
related to the event.

6.5.2. Calling Routines from Event Handlers

Once processing has been directed to one of your event handlers, it's time to do some work. Of
course, you can write every bit of processing code right there in the event-handling routine, but for
readability, a divide-and-conquer approach often works better. An event handler can call methods,
functions , and procedures, and can set and retrieve property values, all from classes in your own
application or from the .NET Framework Class Library. In Example 6-3, the SaveAllData command
button's Click event demonstrates this approach to event handling by calling SaveDetails, a method
in some other part of the code, to do most of the work.

Example 6-3. Calling an external routine from an event handler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub SaveAllData_Click(sender As Object, e As EventArgs) _
 Handles SaveAllData.Click
 If SaveDetails() Then
 MsgBox("Data recorded successfully.", vbInformation)
 Else
 MsgBox("Error occurred while saving data.", vbCritical)
 End If
End Sub

The SaveDetails method contains all the code to actually save the details, and it can be called from
anywhere in the class (or from other classes, if it is public). Placing code in custom procedures not
only improves readability of the code, it centralizes the work, making it possible to use the same
collection of source code statements from multiple places in your application.

6.5.3. Writing Custom Procedures

Custom procedures can be added to any class, structure, or module in your application. Visual Basic
includes three main types of custom procedures or routines: Functions, Sub procedures, and
Properties.

6.5.3.1. Functions

A function is a collection of related statements and expressions used to perform a particular task.
When it completes execution, the function returns a value to the calling routine. If you don't specify
an explicit return value for the function, the default value of the return data type is used. If you write
a custom function in a class module and declare it as Public, it becomes a class method.

Consider the following simple function, which returns a String data value.

 Public Function PrepareForSQL(ByVal origText As String) As String
 ' ----- Prepare a string for use in a SQL statement. Any
 ' single quotes must be doubled-up.
 If (Len(origText) = 0) Then
 Return "NULL"
 Else
 Return "'" & Replace(origText, "'", "''") & "'"
 End If
 End Function

Because functions return values, you can use them as part of an expression in place of a variable or
literal value. The following statement includes a custom function as an argument to the VB InStr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function.

 If (InStr(GetCustomerStatusCodes(customerID), "P") > 0) Then

This statement is equivalent to this more verbose variation:

 Dim statusCodes As String
 statusCodes = GetCustomerStatusCodes(customerID)
 If (InStr(statusCodes, "P") > 0) Then

Functions include zero or more arguments, values or references that are passed to the function call
for use in that function. For instance, the statement:

 statusCodes = GetCustomerStatusCodes(customerID)

passes the variable customerID to the function. Each argument is of a certain data type, as defined in
the parameter list of the function's definition.

 Public Function GetCustomerStatusCodes(_
 ByVal customerID As Long) As String

For full details on the syntax and use of functions, see the entry for the "Function Statement" in
Chapter 12.

6.5.3.2. Sub procedures

A Sub procedure is used just like a function, except it does not return a value. Event handlers are, by
definition, Sub procedures, since they do not return values. As with functions, if you write a custom
Sub procedure in a class module and declare it as Public, it becomes a class method.

For full details of the syntax and use of Sub procedures, see the entry for the "Sub Statement" in
Chapter 12.

6.5.3.3. Properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Properties are specialized procedures used to assign and retrieve custom property values. When
accessed through code, they look like public variables or constants of a class (fields), but they include
logic in their data setting and retrieval code. Properties have two parts.

Property Accessor

Retrieves the value of a property, returning it to the caller. The accessor is defined through the
property's Get component.

Property Mutator

Assigns a value to or modifies a property's value. The mutator is defined through the property's
Set component.

Properties can be defined as ReadOnly or WriteOnly; when defined with one of these restrictions, the
applicable component (Get or Set) is left out of the property definition.

Example 6-4 defines a simple class with a single property.

Example 6-4. A property

Public Class Person
 Private theName As String

 Public Property Name() As String
 Get
 ' ----- Property accessor.
 Return theName
 End Get
 Set(ByVal value As String)
 ' ----- Property mutator.
 If (Trim(value) <> "") Then
 theName = value
 Else
 Throw New System.ArgumentException(_
 "Missing name value.", "Name")
 End If
 End Set
 End Property
End Class

While the Name member of the Person class could have just been a public variable for simplicity, using
a property made it possible to check for invalid use (an empty name value, in this case).

Internally, properties are implemented as methods. Visual Basic implements each property accessor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as a get_propertyname method, while each mutator is implemented as a set_propertyname method.

New in 2005. Normally, the Get and Set components of the Property statement share the same level
of accessibility (that is, they both are Public, Friend, or Private). Visual Basic 2005 allows you to
specify different access levels for the Get and Set components.

For full details of the syntax and use of Properties, see the entry for the Property Statement in
Chapter 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. The .NET Framework Class
Library
With its move to .NET, Visual Basic is now about classes, classes, and more classes. Even something
as simple as an Integer is implemented in a class (the System.Int32 class). As mentioned in Chapter
2, the .NET Framework defines an extensive network of classes and namespaces called the
Framework Class Library (FCL). This library provides basic application development services, such as
core data types, exception handling, and garbage collection, and support for higher-level
functionality, such as database interaction, a forms and control package, and a web-based
programming system. In total, there are about 200 namespaces containing several thousand classes,
interfaces, structures, enumerations, and other items in the .NET Framework Class Library.

The term Base Class Library (BCL) refers to an important subset of the larger Framework Class
Library. Because most programmers use the whole library without thinking much about whether they
are using FCL or BCL, the terms are used interchangeably. You will find the terms sometimes used
interchangeably even in this book.

The System namespace is at the top of the namespace hierarchy for most namespaces supplied with
the .NET Framework, and the System.Object class is at the top of the object hierarchy. All types in
the .NET Framework Class Library, no matter where they reside in the namespace hierarchy, derive
from the System.Object class.

The .NET Framework Class Library is sufficiently extensive to require an entire book for itself. This
chapter provides just a brief introduction and some examples. This should prepare you to dive into
the Class Library documentation supplied with Visual Studio or available through Microsoft's MSDN
web site (http://msdn.microsoft.com). In parallel with this chapter, you will find documentation for
select library elements in Chapter 12, particularly those most useful to VB programmers.

Before becoming intimidated by the size of the Framework Class Library, keep in mind that VB
provides wrappers for some elements of the FCL, so we can often just call a VB function rather than
resort to accessing the classes in the larger library directly. More generally, while the class library
does have much to offer a VB programmer and should not be ignored, it can be studied and used on
an "as needed" basis.

New in 2005. Beginning with the 2005 release of Visual Basic, a larger number of library features are
brought into easier use through the new My Namespace feature. This feature takes commonly used
FCL activities and wraps them into a smaller, neatly organized hierarchy of tools. For full information
on this new feature, see Chapter 13.

Here is a simple example of what the FCL has to offer beyond the basic Visual Basic language syntax.
As discussed in Chapter 4, the built-in VB data types are wrappers for corresponding BCL data
classes (for reference types) or structures (for value types). This means that your code has access to
any special features included with each data type. If we want to verify that a user has entered an
integer that lies within the valid range of the Integer data type, we can use code such as the
following:

http://msdn.microsoft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim userEntry As String
 Dim entryValue As Integer
 userEntry = InputBox("Enter an integer.")
 If IsNumeric(userEntry) Then
 If (CDbl(userEntry) >= entryValue.MinValue) And _
 (CDbl(userEntry) <= entryValue.MaxValue) Then
 entryValue = CInt(userEntry)
 Else
 Debug.WriteLine("Invalid number.")
 End If
 Else
 Debug.WriteLine("Non-numeric value.")
 End If

Visual Basic does not include features that indicate the lower and upper bounds of the Integer data
type, but .NET's Int32 data type does. And since VB's Integer data type is simply a wrapper for the
Int32 data type, VB gets all of its functionality for free, including the MinValue and MaxValue
members. Incidentally, because MinValue and MaxValue are shared class members, the conditions in
the sample code could also have been written as:

 If IsNumeric(userEntry) Then
 If (CDbl(userEntry) >= Integer.MinValue) And _
 (CDbl(userEntry) <= Integer.MaxValue) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. The System Namespace

The System namespace contains classes for such wide-ranging features as:

Data types

Data-type conversions

Events and event handlers

Mathematics

Program invocation

Application-environment management

It is also the root for almost every other significant Microsoft-supplied .NET class and namespace.

7.1.1. The System.Convert Class

The System namespace defines a class called Convert, which implements various data conversion
methods. One such method is ToBoolean, which includes the following usage variations:

 Overloads Public Shared Function ToBoolean(Boolean) As Boolean
 Overloads Public Shared Function ToBoolean(Byte) As Boolean
 Overloads Public Shared Function ToBoolean(Char) As Boolean
 Overloads Public Shared Function ToBoolean(DateTime) As Boolean
 Overloads Public Shared Function ToBoolean(Decimal) As Boolean
 Overloads Public Shared Function ToBoolean(Double) As Boolean
 Overloads Public Shared Function ToBoolean(Integer) As Boolean
 Overloads Public Shared Function ToBoolean(Long) As Boolean
 Overloads Public Shared Function ToBoolean(Object) As Boolean
 Overloads Public Shared Function ToBoolean(SByte) As Boolean
 Overloads Public Shared Function ToBoolean(Short) As Boolean
 Overloads Public Shared Function ToBoolean(Single) As Boolean
 Overloads Public Shared Function ToBoolean(String) As Boolean
 Overloads Public Shared Function ToBoolean(UInt16) As Boolean
 Overloads Public Shared Function ToBoolean(UInt32) As Boolean
 Overloads Public Shared Function ToBoolean(UInt64) As Boolean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, there are many ToBoolean functionseach one overloaded with a different argument
signatureto take care of converting various data types to a Boolean.

Now, just for exercise, consider this block of code:

 Dim textVersion As String
 Dim trueVersion As Boolean
 textVersion = "false"
 trueVersion = System.Convert.ToBoolean(textVersion)
 MsgBox(trueVersion) ' Displays "False"

Because the System namespace is always available (or if we are programming outside of Visual
Studio, we can import it using the Imports statement), we can omit the System qualifier and write:

 trueVersion = Convert.ToBoolean(textVersion)

The built-in VB function CBool also performs this conversion.

The Convert class contains methods for converting data to the standard Visual Basic data types, as
well as to other data types supported by the .NET Framework but not wrapped by Visual Basic. (New
in 2005. Beginning in the 2005 release, Visual Basic now includes native implementations of all core
.NET data types.) The most important of these methods are shown in Table 7-1.

Table 7-1. Members of the System.Convert class

Method VB equivalent Description

ToBoolean CBool Converts a value to Boolean

ToByte CByte Converts a value to an unsigned 8-bit integer Byte

ToChar CChar Converts a value to a single character Char

ToDateTime CDate Converts a value to date or time value DateTime (Date in Visual
Basic)

ToDecimal CDec Converts a value to a floating point Decimal

ToDouble CDbl Converts a value to a floating point Double

ToInt16 CShort Converts a value to a signed 16-bit integer Int16 (Short in Visual
Basic)

ToInt32 CInt Converts a value to a signed 32-bit integer Int32 (Integer in Visual
Basic)

ToInt64 CLng Converts a value to a signed 64-bit integer Int64 (Long in Visual
Basic)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method VB equivalent Description

ToSByte New in 2005:
CSByte

Converts a value to a signed 8-bit integer SByte (New in 2005:
SByte in Visual Basic)

ToSingle CSng Converts a value to a floating point Single

ToString CStr Converts a value to a character String

ToUInt16 New in 2005:
CUShort

Converts a value to an unsigned 16-bit integer UInt16 (New in
2005: UShort in Visual Basic)

ToUInt32 New in 2005:
CUInt

Converts a value to an unsigned 32-bit integer UInt32 (New in
2005: UInteger in Visual Basic)

ToUInt64 New in 2005:
CULng

Converts a value to an unsigned 64-bit integer UInt64 (New in
2005: ULong in Visual Basic)

7.1.2. The System.Array Class

The System.Array class contains useful methods for dealing with arrays. For instance, it has a Sort
method that sorts the elements of an array. The following block of code uses Array.Sort to order a
list of Integer values.

 Public Sub SortArray()
 ' ----- Simple array sorting example.
 Dim counter As Integer
 Dim dataToFix() As Integer = {9, 8, 12, 4, 5}

 ' ----- First, show the world the mixed-up mess.
 Console.WriteLine("Unsorted:")
 For counter = 0 To 4
 Console.WriteLine(CStr(dataToFix(counter)))
 Next counter

 ' ----- Yeah! I don't have to Bubble sort by myself.
 Array.Sort(dataToFix)

 ' ----- Display the correct results.
 Console.WriteLine("Sorted:")
 For counter = 0 To 4
 Console.WriteLine(dataToFix(counter))
 Next counter
 End Sub

The output is:

 Unsorted:

ToSByte New in 2005:
CSByte

Converts a value to a signed 8-bit integer SByte (New in 2005:
SByte in Visual Basic)

ToSingle CSng Converts a value to a floating point Single

ToString CStr Converts a value to a character String

ToUInt16 New in 2005:
CUShort

Converts a value to an unsigned 16-bit integer UInt16 (New in
2005: UShort in Visual Basic)

ToUInt32 New in 2005:
CUInt

Converts a value to an unsigned 32-bit integer UInt32 (New in
2005: UInteger in Visual Basic)

ToUInt64 New in 2005:
CULng

Converts a value to an unsigned 64-bit integer UInt64 (New in
2005: ULong in Visual Basic)

7.1.2. The System.Array Class

The System.Array class contains useful methods for dealing with arrays. For instance, it has a Sort
method that sorts the elements of an array. The following block of code uses Array.Sort to order a
list of Integer values.

 Public Sub SortArray()
 ' ----- Simple array sorting example.
 Dim counter As Integer
 Dim dataToFix() As Integer = {9, 8, 12, 4, 5}

 ' ----- First, show the world the mixed-up mess.
 Console.WriteLine("Unsorted:")
 For counter = 0 To 4
 Console.WriteLine(CStr(dataToFix(counter)))
 Next counter

 ' ----- Yeah! I don't have to Bubble sort by myself.
 Array.Sort(dataToFix)

 ' ----- Display the correct results.
 Console.WriteLine("Sorted:")
 For counter = 0 To 4
 Console.WriteLine(dataToFix(counter))
 Next counter
 End Sub

The output is:

 Unsorted:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 9
 8
 12
 4
 5
 Sorted:
 4
 5
 8
 9
 12

Some of the more important methods of the Array class are shown in Table 7-2.

Table 7-2. Some members of the System.Array class

Method Description

BinarySearch Searches a sorted one-dimensional array for a value

IndexOf
Returns the location of the first occurrence of a particular value in a one-dimensional
array

LastIndexOf
Returns the location of the last occurrence of a particular value in a one-dimensional
array

Reverse Reverses the order of the elements in a one-dimensional array or a portion of a one-
dimensional array

Sort Sorts a one-dimensional array

New in 2005. Beginning with the 2.0 release of the .NET Framework, System.Array now includes
features that support the new generics functionality, including a wrapper for read-only, type-specific
arrays. For information on using generics, see Chapter 10.

7.1.3. The System.Math Class

The System.Math class includes a number of mathematical methods (such as trigonometric
functions), as well as some more useful general numeric methods, such as Max and Min. For
instance, to determine the maximum of two values, use:

 MsgBox("The maximum of 4 and 7 is " & Math.Max(4, 7))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 7-3 shows the members of the Math class.

Table 7-3. The members of the System.Math class

Topic Description

Abs Method Absolute value

Acos Method Arccosine

Asin Method Arcsine

Atan Method Arctangent; returns the angle with the tangent that is a specified number

Atan2 Method
Arctangent; returns the angle with the tangent that is the quotient of two
specified numbers

BigMul Method Multiplies two large 32-bit integers, returning a 64-bit integer

Ceiling Method Returns the smallest integer greater than or equal to the argument

Cos Method Cosine

Cosh Method Hyperbolic cosine

DivRem Method Returns the modulus, that is, the remainder of a division operation

E Field The natural number e

Exp Method The natural number e raised to a power

Floor Method Returns the largest integer less than or equal to the argument

IEEERemainder
Method

Returns the remainder of a division operation using an IEEE-defined standard
function

Log Method Natural (base e) logarithm

Log10 Method Common (base 10) logarithm

Max Method Maximum of two values

Min Method Minimum of two values

Pi Field , the ratio of the circumference of a circle to its diameter

Pow Method Exponentiation function

Round Method Rounds a given number to a specified number of decimal places

Sign Method Determines the sign of a number

Sin Method Sine

Sinh Method Hyperbolic sine

Sqrt Method Square root of a value

Tan Method Tangent

Tanh Method Hyperbolic tangent

Truncate Method Returns the integral portion of a number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1.4. The System.String Class

The System.String class implements a set of string manipulation features, including methods for
substring isolation, concatenation, replacement, padding, trimming, and so on.

The VB String data type is equivalent to the System.String class, so the methods of System.String
apply directly to VB strings, as with the Insert method:

 Dim famousQuote As String = "To be to be"
 MsgBox(famousQuote.Insert(6, "or not "))

This displays the message, "To be or not to be."

In .NET, strings are immutable. That is, they cannot be modified once they are created. All methods
of the String class that make changes to strings actually create a new instance of a string that
contains the changes.

Table 7-4 shows some significant members of the System.String class.

Table 7-4. Some members of the System.String class

Member Description

Chars Property Returns the character at a specific position

Compare Method Compares two string objects

CompareTo Method Compares a string with a designated object

Concat Method Concatenates one or more strings

Contains Method Indicates whether a string contains a certain substring

Copy Method Creates a new copy of an existing string

CopyTo Method Copies characters from a string into a character array

Empty Field A read-only field that represents an empty string

EndsWith Method Indicates whether the end of a string matches a specified string

Equals Method Determines whether a string is equal to another string

Format Method Returns a new string built from a patterned format of one or more data objects

IndexOf Method Returns the position of the first occurrence of a substring within a string

IndexOfAny Method Returns the position within a string of the first occurrence of any character
from a given set of characters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Insert Method Inserts a substring into a string

Join Method Concatenates each element of a string array with a specific delimiter between
each original string, and returns a new string with the result

LastIndexOf
Method

Returns the position of the last occurrence of a substring within a string

LastIndexOfAny
Method

Returns the position within a string of the last occurrence of any character
from a given set of characters

Length Property Returns the number of characters in a string

PadLeft Method Right-aligns the characters in a string

PadRight Method Left-aligns the characters in a string

Remove Method
Deletes a specified number of characters from a string starting at a specific
position

Replace Method Replaces all occurrences of a substring in a string with another substring

Split Method Splits a delimited string into an array of strings

StartsWith Method Indicates whether the beginning of a string matches a particular substring

Substring Method Extracts a substring from a string by position

ToCharArray
Method

Copies the characters of a string to a character array

ToLower Method Converts a string to lowercase

ToUpper Method Converts a string to uppercase

Trim Method Removes all occurrences of a set of characters (usually whitespace characters)
from the beginning and end of a string

TrimEnd Method Removes all occurrences of a set of characters (usually whitespace characters)
from the end of a string

TrimStart Method Removes all occurrences of a set of characters (usually whitespace characters)
from the beginning of a string

Insert Method Inserts a substring into a string

Join Method Concatenates each element of a string array with a specific delimiter between
each original string, and returns a new string with the result

LastIndexOf
Method

Returns the position of the last occurrence of a substring within a string

LastIndexOfAny
Method

Returns the position within a string of the last occurrence of any character
from a given set of characters

Length Property Returns the number of characters in a string

PadLeft Method Right-aligns the characters in a string

PadRight Method Left-aligns the characters in a string

Remove Method
Deletes a specified number of characters from a string starting at a specific
position

Replace Method Replaces all occurrences of a substring in a string with another substring

Split Method Splits a delimited string into an array of strings

StartsWith Method Indicates whether the beginning of a string matches a particular substring

Substring Method Extracts a substring from a string by position

ToCharArray
Method

Copies the characters of a string to a character array

ToLower Method Converts a string to lowercase

ToUpper Method Converts a string to uppercase

Trim Method Removes all occurrences of a set of characters (usually whitespace characters)
from the beginning and end of a string

TrimEnd Method Removes all occurrences of a set of characters (usually whitespace characters)
from the end of a string

TrimStart Method Removes all occurrences of a set of characters (usually whitespace characters)
from the beginning of a string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. The System.Collections Namespace

The System.Collections namespace contains classes that implement a variety of collection types,
including stacks and queues. A queue is a first-in, first-out data structure. The following code
illustrates its use in Visual Basic:

 Dim textContent As String
 Dim wordQueue As New Collections.Queue()

 wordQueue.Enqueue("First")
 wordQueue.Enqueue("in")
 wordQueue.Enqueue("first")
 wordQueue.Enqueue("out")

 Do While (wordQueue.Count > 0)
 textContent &= " " & CStr(wordQueue.Dequeue)
 Loop
 MsgBox(textContent)

The output is "First in first out."

The System.Collections.Stack class implements a first-in, last-out stack structure, using the standard
methods Push and Pop. See the Stack Class entry in Chapter 12 for information on its use.

New in 2005. The 2005 release of Visual Basic includes a new generics feature. The collection classes
within the System.Collections namespace are perfectly suited for use with generics. See Chapter 10
for details on using collections with generics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. The System.Data Namespace

System.Data and its nested namespaces, notably System.Data.OleDb, System.Data.SqlClient, and
System.Data.OracleClient, implement the primary database interaction feature of the .NET
Framework, ADO.NET. The OleDb, SqlClient, and OracleClient namespaces define data providers that
connect to a data source, retrieve data from a data source, write data back to a data source, and
execute commands against the data source. The most important class in each of these namespaces
is the data adapter class (in the OleDb namespace, it's the OleDbDataAdapter class; in the SqlClient
namespace, it's the SqlDataAdapter class; OracleDataAdapter is its name in the OracleClient
namespace), which is used to retrieve data from a data source and write it to a dataset. Datasets in
ADO.NET include tables, fields, and their interrelations. They are never directly connected to the
original data source; datasets are disconnected. Any data added to them from a database comes
through the connected data adapter.

ADO.NET is not the same thing as ADO, nor is ADO.NET a new version of ADO.
ADO (or ActiveX Data Objects) is a COM-based object model for data access.
ADO.NET is an entirely new model for data access that is based on
disconnected datasets.

A typical ADO.NET activity involves the retrieval of data from a database, storing the returned
records in a dataset. The following function returns a dataset with a single named data table object,
based on the records returned from a SQL statement. This example uses the OleDB-focused classes,
although the SQL Server or Oracle classes would work the same way.

 Public Function CreateDataSet(ByVal sqlText As String, _
 ByVal tableName As String) As Data.DataSet
 ' ----- Create a data set/data table from a SQL statement.
 ' The sqlText argument is the actual SQL statement
 ' used to retrieve the records. The tableName argument
 ' gives a meaningful name to the new data set, since
 ' the data set will not extract it from the SQL code.
 Dim dbCommand As OleDb.OleDbCommand
 Dim dbAdaptor As OleDb.OleDbDataAdapter
 Dim dbNewSet As Data.DataSet

 dbCommand = New OleDb.OleDbCommand(sqlText, DBLibrary)
 dbAdaptor = New OleDb.OleDbDataAdapter(dbCommand)
 dbNewSet = New DataSet
 dbAdaptor.Fill(dbNewSet, tableName)
 dbAdaptor = Nothing
 dbCommand = Nothing
 Return dbNewSet
 End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ADO.NET is a robust and feature-rich set of database interfaces. Due to its size and vast number of
options, a full discussion is beyond the scope of this book. For a complete treatment, see Bill
Hamilton and Matthew MacDonald's book, ADO.NET in a Nutshell (O'Reilly Media).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. The System.IO Namespace

The classes in the System.IO namespace provide a variety of input/output functionality, such as:

Manipulating directories (Directory class) and files (File class)

Monitoring changes in directories and files (FileSystemWatcher class)

Reading and writing single bytes, multibyte blocks, or characters to and from streams

Reading and writing characters to and from strings (StringReader and StringWriter)

Reading and writing data types and objects to and from streams (BinaryWriter and
BinaryReader)

Providing random access to files (FileStream)

The System.IO namespace replaces the functionality found in the COM-based FileSystemObject
component, a tool commonly used in VBA-based scripting (and part of the Microsoft Scripting
Runtime). Chapter 12 includes entries related to the File and Directory classes of the System.IO
namespace.

New in 2005. With the addition of the My Namespace feature, Visual Basic programmers have one
more convenient place to accomplish file system-specific tasks. The My.Computer.FileSystem object
includes many of the most commonly used file system features. See the FileSystem Object entry in
Chapter 13 for additional usage information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. The System.Text.RegularExpressions Namespace

The System.Text.RegularExpressions namespace contains classes that provide access to the .NET
Framework's regular expression engine.

In its simplest form, a regular expression is a text string representing a pattern that other strings
may or may not match. In more complicated forms, a regular expression is a kind of programming
statement. For instance, the expression:

 s/ab*c/def

says to match the given string against the regular expression ab*c (strings that start with ab and end
with c). If a match exists, then replace the given string with the string def. Here are some simple
regular expressions for pattern matching:

Single character

This is matched only by itself. For example, the letter 'q' matches itself.

Dot (.)

This is matched by any character except the newline character.

Selection from Character Set

A string of characters in square brackets matches any single character from the string of
characters. For example, [abc] matches the single character a, b, or c. A dash can also be used
in the character list; [09] matches any single digit. The text [0-9a-z] matches any single digit
or any single lowercase character, and [a-zA-Z] matches any single lower-case or uppercase
character.

The ^ symbol negates the match when it appears immediately inside the square brackets. For
instance, [^09] matches any character except a digit.

Special Match Abbreviations

\d matches any single digit; \D matches any single non-digit.

\w is equivalent to [a-zA-Z_], thus matching any letter or underscore; \W is the negation of \w.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asterisk (*)

The asterisk matches zero or more repeated instances of the single character preceding the
asterisk. For instance, the regular expression \da*\d matches any string beginning with a single
digit, continuing with zero or more as and ending with a single digit, as with 01 or 0aaa1.

Plus Sign (+)

The plus sign matches one or more repeated instances of the single character preceding the
plus sign. It is similar to the asterisk character, but it requires at least one matching character.
For example, the regular expression \da+\d matches any string beginning with a single digit,
continuing with one or more as and ending with a single digit, as with 0a1 or 0aaa1, but not 01.

Question Mark (?)

The question mark matches exactly zero or one instances of the single character preceding the
question mark. For example, the regular expression \da?\d is matched by any string beginning
with a single digit, continuing with zero or one as and ending with a single digit, as with 01 and
0a1.

General Multiplier

A set of curly braces with two comma-delimited integer values indicates a repeated match a
specific number of times. The format is {x,y}, where x and y are nonnegative integers, and
matches if and only if there are at least x but at most y instances of the single character
preceding the opening bracket. For example, the regular expression \da{5,10}\d matches any
string beginning with a single digit, continuing with at least 5 but at most 10 as and ending with
a single digit, as with 0aaaaaa1.

You can leave out one of x or y. Thus, {x,} means "at least x," and {,y} means "at most y."

Escaped Characters

Several characters have special meaning within regular expression patterns, such as [and ?.
These characters must be escaped with the backslash character (\) before they can be
matched as ordinary non-special characters. For instance, \[matches an opening bracket, \?
matches a question mark, and \\ matches a backslash.

The System.Text.RegularExpressions namespace has a Regex class, which has objects that represent
regular expressions. Here's a simple example of using the Regex class.

 Dim matchPattern As New System.Text.RegularExpressions.Regex(_
 "\da{3,5}\d")
 MsgBox(matchPattern.IsMatch("0a1")) ' Displays False
 MsgBox(matchPattern.IsMatch("0aaa1")) ' Displays True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.6. The System.Windows.Forms Namespace

The System.Windows.Forms namespace is the starting point for creating Windows desktop
applications. It includes all of the classes that define forms, controls, form-based menus, message
boxes, and so on. New forms added to your VB desktop application project are tried directly to the
Form class from this namespace.

 Inherits System.Windows.Forms.Form

When you drag and drop a TextBox control on the form, Visual Studio writes code on your behalf
using the classes of the Windows.Forms namespace. This code is hidden from view by default, and it
is messy when made visible. Fortunately, with Visual Studio doing much of the detail programming
for you, Windows Forms application development turns out to be pretty straightforward.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.7. Other Namespaces

A number of useful second-level namespaces appear nested just below the System namespace.

System.CodeDOM

Contains classes representing the elements and structure of a source code document.

System.ComponentModel

Implement the runtime and design-time behavior of components and controls.

System.Configuration

Supports the creation of custom installers for software components.

System.Data

Consists mostly of the classes that constitute the ADO.NET architecture, used for database
connectivity.

System.Diagnostics

Supports the debugging and tracing of applications.

System.DirectoryServices

Provides access to Active Directory from managed code.

System.Drawing

Provides access to the GDI+ basic graphics functionality. More advanced functionality is
provided in the System.Drawing.Drawing2D, System.Drawing.Imaging, and
System.Drawing.Text namespaces.

System.Net

Provides a simple programming interface to many of the common network protocols, such as
FTP and HTTP. The System.Net.Sockets namespace provides lower-level network access
control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Reflection

Contains classes and interfaces that provide a managed view of loaded types, methods, and
fields, with the ability to create and invoke types dynamically.

System.Resources

Manages generic or culture-specific resources and resource files.

System.Security

Provides access to the underlying structure of the .NET Framework security system.

System.ServiceProcess

Supports the installation and running of Windows services. Services are long-running
executables with no user interface.

System.Text

Contains classes representing ASCII, Unicode, UTF-7, and UTF-8 character encodings, as well
as abstract base classes for converting blocks of characters to and from blocks of bytes, and
more.

System.Threading

Provides classes and interfaces that enable multithreaded programming.

System.Timers

Provides the Timer component, which allows you to raise an event at a specific interval.

System.Web and Related Namespaces

Contains classes and interfaces that enable browser/server communication and allow you to
develop ASP.NET applications and web services.

System.Xml

Provides standards-based support for processing XML content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Delegates and Events
Because Visual Basic is built on the foundation of the .NET Framework, it is object-oriented. But
because it is designed for use in the Microsoft Windows environment, it is also event-driven . In
standard procedural languages, all statements encountered in the program are processed from
beginning to end. The program begins at the start of the main routine (or its equivalent) and
continues to the end, sometimes taking detours into other routines, but always as dictated by the
organization of main.

In event-driven programs, a procedure can be called that has no direct or indirect relation to the
main routine. In fact, very little code within a typical event-driven application is called from main or
any of its descendants. Most code is called by events, user- and system-initiated actions that seek
some outlet in your application's code. Events are the natural programming style of any system with
multiple user input possibilities (keyboard, mouse, touch screen, the user pressing the system's
power button, etc.).

Perhaps you have a program that simulates a cat. Of course you will include a Meow procedure that
emits the language of the cat.

 Public Sub Meow()

Your cat program will need to respond to external stimuli, just like a real cat. This requires events.
One such event might be the SteppedOnTail event that, when triggered, calls the Meow method. Other
events, such as SeeDog and CraveMilk, might also call the Meow method.

In .NET, any class can respond to a set of events specifically designed for use in that class (or a
family of inherited classes). When events are triggered, they call special event-handling routines
through a system of delegates. Although you will usually implement a single event handler (defined
below) for each event of interest, events and event handlers can also exist in many-to-many
relationships. One event, when triggered, can call multiple event handlers, and a single event handler
can be used for multiple events.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. Delegates

An event needs some way to locate the event handler that will act when the event occurs. In some
languages, the location of the handler is identified by its memory address, which is stored in a
variable called a function pointer. In .NET, the location is stored instead as a delegate.

In pre-.NET application development, function pointers allowed you to call a function generically when
you didn't know in advance which function you were going to call. For instance, the Windows API
includes a function called EnumFontFamiliesEx that provides a listing of all installed fonts.

 Public Declare Function EnumFontFamiliesEx Lib "gdi32" _
 Alias "EnumFontFamiliesExA" (_
 ByVal hdc As Long, _
 lpLogFont As LOGFONT, _
 ByVal lpEnumFontProc As Long, _
 ByVal lParam As Long, _
 ByVal dw As Long) _
 As Long

The API works by calling a routine in your program, once for each font. When you use
EnumFontFamiliesEx, you pass it the memory address of a callback routine to use for each font; you
pass this function pointer through the lpEnumFontProc parameter. The callback routine needs to
include a specific parameter list signature, as defined in the API's documentation.

 Public Function EnumFontFamExProc(ByVal lpelfe As Long, _
 ByVal lpntme As Long, ByVal FontType As Long, _
 ByRef lParam As Long) As Long

In VB 6, the AddressOf keyword obtains this function pointer, which you then pass to the
enumeration API. The problem is that if any little thing goes wrong, your whole program will crash.
That's because the function pointer is nothing more than a memory address. It can't guarantee that
you put all of the ByVal and ByRef keywords in front of the right parameters, or that you even
included parameters at all. In fact, there's nothing to stop you from passing any random number as
the function pointer. The API doesn't care, until it crashes.

This is where delegates save the day. A .NET delegate isn't just a function pointer; it's a class that
includes everything you need to know to call the destination function correctly. It includes complete
information about the parameters and return value, and you won't be able to compile your program
until you get it all right.

All delegates derive from the System.Delegate or System.MulticastDelegate classes. The former

http://lib.ommolketab.ir
http://lib.ommolketab.ir

limits the delegate to a single target event handler, while the latter includes no such limit. Visual
Basic uses delegates to bind events to event handlers, and sometimes it seems like a lot of work.
Fortunately, Visual Studio links most events and event handlers automatically as you drag-and-drop
visual elements.

8.1.1. Using a Delegate to Call a Method

To call a method using a delegate, use the Invoke method of the delegate. To illustrate, consider a
class module with a simple method.

 Public Class SimpleClass
 Public Sub CallMe(ByVal content As String)
 MsgBox(content)
 End Sub
 End Class

Delegates are one of the many .NET types. Visual Basic includes a Delegate keyword that defines
delegates. Since the goal is to call the CallMe method through a delegate, that delegate must have
the same signature as the called method. This small example invokes the delegate from a click on a
form, so the delegate's definition appears in the form's class code.

 Delegate Sub MyDelegate(ByVal s As String)

Finally, in the form's Click event handler (which works via delegates, but don't think about that now),
the call to CallMe is made indirectly through a delegate.

 Private Sub Form1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Click
 ' ----- Get an instance of the destination class.
 Dim destClass As New SimpleClass()
 Dim theDelegate As MyDelegate

 ' ----- Connect the delegate to its target, the CallMe method.
 theDelegate = New MyDelegate(AddressOf destClass.CallMe)

 ' ----- Make the call.
 theDelegate.Invoke("Display this!")
 End Sub

It doesn't seem like much, since the code could have just called destClass.CallMe directly. But it is
much, since the delegate provides generic and indirect access to the target routine for those times

http://lib.ommolketab.ir
http://lib.ommolketab.ir

when the code needs something generic and indirect. MyDelegate can connect to any target routine,
as long as the routine shares the same signature. The Framework Class Library takes advantage of
this fact by using a common argument signature for all class events.

8.1.2. Using a Delegate as a Generic Callback

A delegate is the perfect solution when a generic callback function is needed. The following example
implements a simple sorting routine. Usually, sorting routines are limited to a specific type of content,
like integers or strings. That's because the sorting routine has to know how to compare the items.
But if you could supply a generic "compare function," the sorting routine could sort anything. Or
perhaps you need to sort the same type of data (such as an array of integers), but sort the data
based on differing comparison standards. It's this second alternative that appears in the example
below.

The first step declares the delegate for the common comparison function. Each compare function
takes two integers and returns TRue if they need to be swapped from their current order.

 Public Delegate Function CompareFunction(ByVal valueOne As Integer, _
 ByVal valueTwo As Integer) As Boolean

The two comparison functions take different approaches: one sorts in ascending order, while the
other sorts in descending order. As expected, they have the same signature as the delegate.

 Public Function SortAscending(ByVal valueOne As Integer, _
 ByVal valueTwo As Integer) As Boolean
 If (valueOne > valueTwo) Then Return True Else Return False
 End Function

 Public Function SortDescending(ByVal valueOne As Integer, _
 ByVal valueTwo As Integer) As Boolean
 If (valueOne < valueTwo) Then Return True Else Return False
 End Function

Here is the code for the sort routine. It uses the delegate's Invoke method to access the comparison
function.

 Public Sub FlexSort(ByVal compareMethod As CompareFunction, _
 ByVal dataValues() As Integer)
 ' ----- Don't tell anyone, but it's a Bubble Sort.
 Dim outer As Integer
 Dim inner As Integer
 Dim swap As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For outer = 0 To UBound(dataValues)
 For inner = outer + 1 To UBound(dataValues)
 ' ----- Make the generic delegate call here.
 If (compareMethod.Invoke(dataValues(outer), _
 dataValues(inner)) = True) Then
 swap = dataValues(inner)
 dataValues(inner) = dataValues(outer)
 dataValues(outer) = swap
 End If
 Next inner
 Next outer
 End Sub

The sorting code is tested from a button's Click event. Notice that the code does not specifically
create a delegate. Since the FlexSort routine's first argument accepts a delegate, and since a
delegate is really just a container for a matching function, the delegate gets created anyway by
passing the address of a matching function.

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Click a button, sort some numbers.
 Dim counter As Integer
 Dim dataValues() As Integer = New Integer() {6, 2, 4, 9}
 ' ----- First, try it in ascending order.
 FlexSort(AddressOf SortAscending, dataValues)
 For counter = 0 To 3
 Debug.WriteLine(CStr(dataValues(counter)))
 Next counter
 Debug.WriteLine("")

 ' ----- Next, sort them again in descending order.
 FlexSort(AddressOf SortDescending, dataValues)
 For counter = 0 To 3
 Debug.WriteLine(CStr(dataValues(counter)))
 Next counter
 End Sub

The output is:

 2
 4
 6
 9

 9
 6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4
 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Events and Event Binding

An event indicates some type of action. This action can be initiated by the user (such as through a
mouse click on a command button), by the application code (such as when a change is made to a
database record), or by the operating system (such as a timer event). When any action like this
occurs, it causes an event to be raised or fired.

Each event has a source. This is the object to which the action is applied, such as the button that was
clicked. The source is responsible for alerting the operating system that an event has occurred. It
does so by sending an event notification message. For this reason, the event source is often referred
to as the sender.

An event often has an event argument, a means of conveying data that pertains to the event. For
instance, the press of a keyboard key generates an event that includes event arguments describing
the "key code" of the key, and it also includes information on the state of modifier keys (the Shift,
Alt, and Ctrl keys). The event argument is part of the message sent by the event source.

An event handler is a procedure that is executed as a result of event notification. The process of
associating an event handler with an event is called binding.

In .NET applications, event handlers have a consistent procedure signature.

 Private Sub MyHandler(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)

The sender parameter receives the object that initiated the event, while the e parameter receives the
event argument. The System.EventArgs class is a generic event argument class that doesn't convey
any specific argument data at all. Those events that have actual event argument data to convey use
for e a class derived from System.EventArgs instead.

8.2.1. Control-Related Events

In Windows Forms applications, controls are a veritable smorgasbord of built-in events. For instance,
the TextBox control has events associated with changing the text in the TextBox, pressing a key
while the TextBox has the focus, clicking or double-clicking on the TextBox with the mouse, moving
the mouse over the TextBox, and more.

The Visual Studio IDE can insert an empty event handler for a control into your source code,
complete with the proper event parameters. Once you have added the control to the form, access the
source code related to the form. Just above the source code editing area are two drop-down lists. The
one to the left provides a list of all controls placed on the form. The drop-down list to the right

http://lib.ommolketab.ir
http://lib.ommolketab.ir

presents all available events that correspond to the control or source selected in the left drop-down
list (Figure 8-1). To add a new event handler, select the control from the list of controls, then select
the desired event from the list of events.

Figure 8-1. A control event ready to use

Each control has a default event, such as the Click event for Command Buttons. As a shortcut, Visual
Studio adds an empty default event for a control to your source code when you double-click on the
control. For instance, double-clicking a Command Button produces the following code:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 End Sub

The Handles clause at the end of the event signature tells the compiler that this procedure is bound to
Button1's Click event, Button1.Click. Using this clause, it's possible to assign any procedure to handle
an event, as long as it has the right signature. Unlike programming in VB 6, you don't have to name
your event handler Control_EventName; you can give it any name you want, as long as you include

the Handles clause.

One common event handler can be used for multiple events. Since every event handler has the same
argument signature, you can even share a common event handler for events from different controls
or system-defined actions. The Handles clause supports a comma-separated list of the events to
handle.

 Private Sub ManyButtonClicks(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Button2.Click, Button3.Click

 End Sub

It's easy to determine which control triggered the event, since the sender parameter contains a
reference to the source object. If your event handler processes events that use different derived
classes for the e parameter, use the common System.EventArgs class in the parameter signature and
then convert the argument to the appropriate class using the CType function. While loading up many
events in a single handler is convenient, it should only be done when the events truly result in
common functionality. You could send all events for every control on your form to a single handler
and use If statements to divide up the work, but that would defeat the elegant event system built
into .NET.

8.2.2. WithEvents

Events aren't limited to controls and forms. Your own custom classes can respond to events, too.
Events are added to classes using the Event statement and triggered with the RaiseEvent statement.

 Public Class ActiveClass
 ' ----- Declare an event.
 Public Event AnEvent(ByVal eventData As Integer)

 Public Sub RaiseTheEvent(ByVal eventData As Integer)
 ' ----- Method to raise the event.
 RaiseEvent AnEvent(eventData)
 End Sub
 End Class

The class's event is now ready to use. In a Windows Forms class, add a variable of type ActiveClass,
including the WithEvents keyword. This keyword enables event handling in the instance of the class.

 Public WithEvents stuffHappens As ActiveClass

This automatically causes the Visual Studio IDE to add the variable name stuffHappens to the left-
hand drop-down list above the code window. Selecting this variable causes the right-hand drop-down
list to display the events for the class. In this case, the list contains only the AnEvent event. Selecting
this event places an empty event shell in the code editor window (edited here to include a MsgBox
function).

 Private Sub stuffHappens_AnEvent(ByVal eventData As Integer) _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Handles stuffHappens.AnEvent
 MsgBox("Event raised: " & eventData)
 End Sub

Some code added to a button's Click event completes the demonstration.

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Raise an event in an ActiveClass instance.
 stuffHappens = New ActiveClass()
 stuffHappens.RaiseTheEvent(7)
 End Sub

The WithEvents keyword approach to event handling has one slight drawback in that the New keyword
cannot be used in the declaration, as in:

 ' ----- This doesn't work.
 Public WithEvents stuffHappens As New ActiveClass

Thus, the object must be instantiated separately from the variable declaration, as demonstrated in
the example.

8.2.3. AddHandler and RemoveHandler

Binding events to event handlers with the Handles keyword is easy, but it's not the only way to use
events. Visual Basic also includes the AddHandler statement (and its counterpart, the RemoveHandler
statement) to bind an event to an event handler at runtime instead of at design time. For instance,
you could connect a button's Click event to a handler at runtime. First, create the event handler in
the form's code.

 Private Sub LonelyHandler(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 MsgBox("You found me!")
 End Sub

Add a button named Button1 to the form surface. In the form's Load event, add the code that binds
the event to the event handler.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Bind the event to its handler.
 AddHandler Button1.Click, AddressOf Me.LonelyHandler

 ' ----- NOTE: The following would also work:
 '
 ' AddHandler Button1.Click, _
 ' New EventHandler(AddressOf Me.LonelyHandler)
 End Sub

Run the program and click the button. It works! To remove an existing handler at runtime, use the
RemoveHandler statement with a similar syntax to that of AddHandler.

 RemoveHandler Button1.Click, AddressOf Me.LonelyHandler

8.2.4. Custom Events

New in 2005. Sometimes there may be a software need to exhibit more control over the lifetime of
an event in your classes. The 2005 release of Visual Basic adds features that let you monitor and
take action each time a handler is added to an event, each time a handler is removed from an event,
and each time an event is raised. This new feature is called custom events.

Using these custom events is easy. In your class definition, simply type:

 accessModifier Custom Event eventName

and press the Enter key. (accessModifier is one of the standard access modifiers, like Public, that

can be used with events.) Visual Studio provides the outline of the custom event.

 accessModifier Custom Event eventName As EventHandler
 AddHandler(ByVal value As EventHandler)
 ' ----- Special code when adding handlers.
 End AddHandler

 RemoveHandler(ByVal value As EventHandler)
 ' ----- Special code when removing handlers.
 End RemoveHandler

 RaiseEvent(ByVal sender As Object, ByVal e As System.EventArgs)
 ' ----- Special code when raising the event.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End RaiseEvent
 End Event

These event handlers fire when the specific event-related action happens with the eventName event.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Attributes
Attributes are declarative tags that can be used to annotate types (classes, structures, etc.) or type
members, thereby modifying their meaning or customizing their behavior. The descriptive information
provided by each attribute is stored as metadata in the .NET assembly and can be extracted either at
design time or at runtime using a process called reflection.

Consider the following example that uses the <WebMethod> attribute.

 <WebMethod(Description:="Indicates number of visitors to a page")> _
 Public Function PageHitCount(baseURL As String) As Integer

Ordinarily, public methods of a class can be invoked locally through an instance of that class; they
are not treated as members of a web service. The <WebMethod> attribute marks an ordinary class
method so that it is callable over the Internet as part of a web service. This <WebMethod> attribute
includes a single property, Description, which provides the text that will appear on the page
describing the web service.

If attributes provide such important software features, why aren't they simply implemented as
language elements? The answer is "flexibility." Attributes are stored as metadata in an assembly,
rather than as part of its executable code. As an item of metadata, the attribute describes the
program element to which it applies and is available for retrieval and examination at design time
(when using a tool like Visual Studio that recognizes attributes), at compile time (when the compiler
can use attributes to modify, customize, or extend the compiler's basic operation), and at runtime
(when it can be used by the Common Language Runtime to modify the code's ordinary runtime
behavior).

Since metadata in an assembly can be examined by other applications, third-party tools can take
advantage of the attributes included in your code. A third-party tool may make available an attribute
previously unavailable with Visual Studio, and you can begin to use its enhanced behavior without
having to wait for Microsoft to update the language or the compiler. If these features were
implemented as language constructs instead of metadata-generating attributes , this level of
flexibility would be difficult or impossible.

The behavior of interface objects (such as Windows Forms controls) in Visual Studio illustrates the
importance of attributes. Since Visual Studio offers drag-and-drop placement of controls on forms or
web pages, it is necessary for controls to have a design time behavior in addition to their runtime
behavior. For instance, when you double-click on a control in Visual Studio (at design time), the code
or code template for its default event handler appears. How does Visual Studio know which event
handler is the default? An attribute provides the solution. Visual Studio recognizes an attribute named
<DefaultEvent>, which provides the control designer with a way to indicate a control's default event.
Since the attribute's information is stored in the assembly's metadata, Visual Studio can simply
examine the control's metadata to see whether a <DefaultEvent> attribute is attached to a particular
event.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The attribute-based system of programming implemented in .NET is extensible. In addition to the
attributes predefined by Visual Basic, the .NET Framework, or other vendors, you can define custom
attributes that you can then apply to program elements. For an attribute to be meaningful, there
must also be software that attempts to detect the presence of the attribute somewhere in your
code's lifetime (design time, compile time, runtime) and that acts based on the attribute's settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1. Syntax and Use

In Visual Basic, an attribute appears within angle brackets (< and >) immediately before the type or
type member that it modifies. The attribute name is followed by parentheses, which enclose a
comma-delimited list of arguments to be passed to the attribute. For example, the <Obsolete>
attribute marks a type or type member as obsolete. One of its optional arguments is a warning
message to be passed on to anyone interested. Apply the <Obsolete> attribute with a message as
follows:

 <Obsolete("Don't even think of using this feature.")>

If there are no arguments, or none that you wish to include, just use empty parentheses:

 <Obsolete()>

or remove the parentheses completely:

 <Obsolete>

If more than one attribute is applied to a single program element, the attributes are enclosed in a
single set of angle brackets and delimited from one another with commas.

 <Obsolete, WebMethod> Public Function PageHitCount(_
 baseURL As String) As Integer

Each attribute corresponds to a class derived from System.Attribute. In fact, the VB compiler actually
treats an attribute as an instance of the attribute's class. If you look in the .NET documentation, you
will recognize attribute classes by the word "Attribute" on the end of their class names. For instance,
the Obsolete attribute comes from the ObsoleteAttribute class. It's a good idea to include the word
"Attribute" on any attribute classes you create yourself. However, when you use an attribute (within
angle brackets), you can omit the trailing word "Attribute" if you want, just to keep things short. The
compiler will add "Attribute" back in, if needed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the shortened attribute name is a Visual Basic keyword, use the attribute's
full class name to prevent a compiler error. For example, the following
declaration produces an error because ParamArray is a Visual Basic keyword:

 <ParamArray> scores As Long

The following code compiles correctly:

 <ParamArrayAttribute> scores As Long

An attribute's class constructors determine whether any arguments are required. For example, the
<VBFixedString> attribute corresponds to the VBFixedStringAttribute class, which has the following
constructor:

 New(ByVal size As Integer)

The <VBFixedString> attribute can be used as follows:

 <VBFixedString(10)> Private customerID As String

Attribute constructors can be overloaded. The argument signature you use
must correspond to one of the constructor signatures for that attribute.

Arguments passed to an attribute can be positional or named. Positional arguments appear in the
same comma-separated position that is defined in the associated constructor. Named arguments can
appear out of order, but they must be preceded by the argument name and the := association
operator. Required arguments to a constructor must be positional. Optional arguments can be named
or positional, but they must appear after all required arguments. Attribute class properties can be set
using named arguments . For instance, the <WebMethod> attribute includes a Description property that
can be set as a named argument.

 <WebMethod(Description:="Page use counter")> _
 Public Function PageHitCount(baseURL As String) As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attributes are evaluated at compile time, when their data is written to the assembly's metadata. This
means that only literal values can be passed as arguments to an attribute's constructor, and not
variables.

When you use .NET classes in your application, you need to indicate where they reside in the
namespace hierarchy, either explicitly with each use or implicitly by using the Imports keyword. Since
attributes are just classes, you have to indicate their location as well. If an attribute is not in one of
the already loaded namespaces (like System), you can use Imports in the file where you make use of
the attribute and set a reference to it in Visual Studio or on the compiler command line.

An attribute immediately precedes the language element to which it applies (and that element's
modifiers, like Public), and it must be on the same logical line as that language element. Use the
standard line continuation character (the underscore, "_") to join multiple physical lines into a single
logical line, if desired.

Attributes can be applied to the following language elements:

Class
Constructor (methods with the name "New")
Delegate
Enum
Event
Field
Interface
Method
Parameter (of a procedure)
Property
Return value (of a procedure)
Structure

For example, the <AttributeUsage> attribute comes before Class statements.

 <AttributeUsage(AttributeTargets.All)> _
 Public Class MyCustomAttrAttribute

The <ParamArrayAttribute> attribute comes just before the final parameter in a procedure's
parameter list.

 Public Sub MyProcedure(baseAction As String, _
 <ParamArrayAttribute> actionValues As Long)

Attributes that are designed to decorate either an assembly or a module both appear at the top of a
source code file (just after any Option or Imports statements). To avoid confusion, these attributes
must be prefixed with a modifier (either Assembly: or Module:) indicating the program element to
modify. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Option Strict On
 Imports System.Data.SqlClient
 <Assembly: AssemblyDescription("Supplementary data access library")>

 Namespace SqlAccess
 ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. Defining a Custom Attribute

An attribute is merely a class that inherits from System.Attribute. This section shows you how to
build a custom attribute called <DeveloperNote>, which allows a developer to add assorted
information (the developer's name, the development date, a comment, and whether the code was
written in response to a bug) to a block of code.

Define a public class that inherits from System.Attribute or from another attribute class derived
from System.Attribute.

 Public Class DeveloperNoteAttribute
 Inherits System.Attribute

By convention, the name of the class ends with the substring "Attribute."

1.

Apply the <AttributeUsage> attribute to the class, which defines the language elements to which
the custom attribute can be applied. The attribute's only required argument is one of the
following members of the AttributeTargets enumeration:

AttributeTargets.All
AttributeTargets.Assembly
AttributeTargets.Class
AttributeTargets.Constructor
AttributeTargets.Delegate
AttributeTargets.Enum
AttributeTargets.Event
AttributeTargets.Field
AttributeTargets.GenericParameter
AttributeTargets.Interface
AttributeTargets.Method
AttributeTargets.Module
AttributeTargets.Parameter
AttributeTargets.Property
AttributeTargets.ReturnValue
AttributeTargets.Struct

If an attribute applies to multiple programming elements, but not all elements, the relevant
enumeration values can be Or'd together. Since the <DeveloperNote> attribute is pretty generic,
it will be applicable to All program elements.

 <AttributeUsage(AttributeTargets.All, _
 Inherited:=True, _

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AllowMultiple:=True)> _
 Public Class DeveloperNoteAttribute
 Inherits System.Attribute

The Inherited argument (set to true) allows new attribute classes to be derived from
DeveloperNoteAttribute. The AllowMultiple argument (set to TRue) allows the attribute to be
applied to the same program element multiple times.

Add some protected class members to hold the custom values, like the developer name.

 Protected developerName As String
 Protected codeComment As String
 Protected codeRecordDate As Date
 Protected dueToBug As Boolean

3.

Create the class constructor (the New routine), which is called when the attribute is applied to a
particular language element. The class constructor defines the attribute's required or positional
arguments. At a minimum, the developer using this attribute must to record his or her name, a
comment, and a date.

 Public Sub New(Name As String, Comment As String, _
 DateRecorded As String)
 ' ----- Store the commentary for this program element.
 MyBase.New()
 developerName = Name
 codeComment = Comment
 codeRecordDate = CDate(DateRecorded)
 End Sub

The DateRecorded parameter comes into the constructor as a String, not as a Date. Only certain
data types can be used as attribute parameters: integral data types (Byte, Short, Integer,
Long), floating point data types (Single and Double), Char, String, Boolean, an enumerated
type, or System.Type. Other data types, including Date, Decimal, Object, and structured types,
cannot be used as parameters. The new VB 2005 integral data types (SByte, UShort, UInteger,
and ULong) cannot be used, because only Common Language Specification (CLS) compliant data
types can be used in attribute definitions, and these new types do not meet that requirement.

4.

Declare properties and fields. The attribute's public properties and fields correspond to
parameters required by the class constructor and to optional parameters supplied when the
attribute is applied to a language element. The <DeveloperNote> attribute needs a property for
each of the three required constructor arguments, plus one for the optional Bug property.

 Public Property Name() As String
 Get

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Return developerName
 End Get
 Set(ByVal value As String)
 developerName = value
 End Set
 End Property

 Public Property Comment() As String
 Get
 Return codeComment
 End Get
 Set(ByVal value As String)
 codeComment = value
 End Set
 End Property

 Public Property DateRecorded() As Date
 Get
 Return codeRecordDate
 End Get
 Set(ByVal value As Date)
 codeRecordDate = value
 End Set
 End Property

 Public Property Bug() As Boolean
 Get
 Return dueToBug
 End Get
 Set(ByVal value As Boolean)
 dueToBug = value
 End Set
 End Property

That's the whole attribute class with only the most basic of features. The .NET Framework takes
care of everything else, including the recording of each custom attribute value in the assembly's
metadata. The complete code for the attribute class appears in Example 9-1.

Example 9-1. The DeveloperNoteAttribute attribute class

Option Strict On
Imports System

Namespace Extensions.CustomAttributes

<AttributeUsage(AttributeTargets.All, _
 Inherited:=True, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AllowMultiple:=True)> _
Public Class DeveloperNoteAttribute
 Inherits System.Attribute

 Protected developerName As String
 Protected codeComment As String
 Protected codeRecordDate As Date
 Protected dueToBug As Boolean

 Public Sub New(Name As String, Comment As String, _
 DateRecorded As String)
 ' ----- Store the commentary for this program element.
 MyBase.New()
 developerName = Name
 codeComment = Comment
 codeRecordDate = CDate(DateRecorded)
 End Sub

 Public Property Name() As String
 Get
 Return developerName
 End Get
 Set(ByVal value As String)
 developerName = value
 End Set
 End Property

 Public Property Comment() As String
 Get
 Return codeComment
 End Get
 Set(ByVal value As String)
 codeComment = value
 End Set
 End Property

 Public Property DateRecorded() As Date
 Get
 Return codeRecordDate
 End Get
 Set(ByVal value As Date)
 codeRecordDate = value
 End Set
 End Property

 Public Property Bug() As Boolean
 Get
 Return dueToBug
 End Get
 Set(ByVal value As Boolean)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dueToBug = value
 End Set
 End Property
End Class

End Namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. Using a Custom Attribute

The attribute classes included with .NET already have specific uses. Visual Studio and the various
.NET compilers take specific actions based on these attributes, such as making a method available on
the Internet through the <WebMethod> attribute. But no code yet exists to use the <DeveloperNote>
attribute designed above. Not only must you define the custom attribute, you must also develop
routines that will identify the attribute and take action as needed.

All attribute properties are stored in .NET assemblies as metadata. This metadata can be accessed
programmatically at runtime by using the .NET Framework's reflection classes.

An assembly's metadata is similar to a COM type library. In addition to its
greater accessibility through the .NET Framework's reflection features,
assembly metadata is always stored with the assembly. Although COM type
libraries can be stored in the EXE or DLL files containing the COM objects, they
are most commonly stored in separate files (such as ".tlb" files) that are
distinct from the COM objects they describe.

The .NET Framework provides support for reflection through the System.Type class and through the
features found in the System.Reflection namespace. The following code creates a console mode
application that uses reflection to extract <DeveloperNote> attribute details from an assembly that
uses this custom attribute.

 Option Strict On

 Imports Microsoft.VisualBasic
 Imports System
 Imports System.Reflection
 Imports System.Text

 ' ----- We placed the <DeveloperNote> attribute in
 ' the Extensions.CustomAttributes namespace.
 Imports Extensions.CustomAttributes

 Module modComments

 Public Sub Main()
 ' ----- Report on <DeveloperNote> use in an assembly.
 Dim fileToExamine As String
 Dim outputText As String
 Dim assemblyView As System.Reflection.Assembly
 Dim attributeSet() As Attribute
 Dim moduleScan As System.Reflection.Module
 Dim moduleSet() As System.Reflection.Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- The assembly to examine comes through the command line.
 fileToExamine = Command()
 If (fileToExamine = "") Then
 Console.WriteLine("Syntax is:" & vbCrLf & _
 " DevNotes <filename>")
 Exit Sub
 End If

 ' ----- Load the assembly through reflection.
 assemblyView = Reflection.Assembly.LoadFrom(fileToExamine)

 ' ----- Output information on assembly-level attributes.
 attributeSet = Attribute.GetCustomAttributes(assemblyView)
 If (attributeSet.Length > 0) Then
 outputText = PrepareDeveloperNotes(attributeSet)
 If (outputText <> "") Then
 Console.WriteLine(assemblyView.GetName.Name & _
 " Assembly Developer Notes:")
 Console.WriteLine(outputText)
 End If
 End If

 ' ----- Output information on module-level attributes.
 moduleSet = assemblyView.GetModules()
 For Each moduleScan In moduleSet
 attributeSet = Attribute.GetCustomAttributes(moduleScan)
 If (attributeSet.Length > 0) Then
 outputText = PrepareDeveloperNotes(attributeSet)
 If (outputText <> "") Then
 Console.WriteLine(moduleScan.Name & _
 " Module Developer Notes:)
 Console.WriteLine(outputText)
 End If
 End If
 Next moduleScan
 ' ----- Output information on type-level attributes.
 EnumerateTypes(assemblyView)
 End Sub

 Public Function PrepareDeveloperNotes(attributeSet() As Object) _
 As String
 ' ----- Format information about each attribute.
 Dim msg As New StringBuilder
 Dim attributeScan As Attribute
 Dim noteEntry As DeveloperNoteAttribute

 On Error Resume Next

 ' ----- Build the notes.
 For Each attributeScan In attributeSet
 If (TypeOf (attributeScan) Is DeveloperNoteAttribute) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 noteEntry = CType(attributeScan, DeveloperNoteAttribute)
 msg.Append(" Developer: " & noteEntry.Name & vbCrLf)
 msg.Append(" Comment: " & noteEntry.Comment & vbCrLf)
 msg.Append(" Date: " & noteEntry.DateRecorded & vbCrLf)
 msg.Append(" Bug: " & noteEntry.Bug & vbCrLf)
 End If
 Next attributeScan

 ' ----- Return the results as an ordinary string.
 Return msg.ToString
 End Function

 Private Sub EnumerateTypes(assemblyView As Reflection.Assembly)
 ' ----- Process each type in the entire assembly.
 Dim typeScan As Type
 Dim typeSet() As Type
 Dim typeCategory As String
 Dim attributeSet() As Object
 Dim attributeMsg As String
 Dim methodMsg As String

 ' ----- Retrieve the types for this assembly.
 typeSet = assemblyView.GetTypes()

 ' ----- Get a friendly name for the type category.
 For Each typeScan In typeSet
 If typeScan.IsClass Then
 typeCategory = "Class"
 ElseIf typeScan.IsValueType Then
 typeCategory = "Structure"
 ElseIf typeScan.IsInterface Then
 typeCategory = "Interface"
 ElseIf typeScan.IsEnum Then
 typeCategory = "Enum"
 Else
 typeCategory = ".NET Type"
 End If

 ' ----- Get any type-level attributes.
 attributeSet = typeScan.GetCustomAttributes(False)
 If (attributeSet.Length > 0) Then
 attributeMsg = PrepareDeveloperNotes(attributeSet)
 Else
 attributeMsg = ""
 End If

 ' ----- Get the details for this type's members.
 methodMsg = EnumerateTypeMembers(typeScan)

 ' ----- Display any collected information, if available.
 If (methodMsg <> "") Or (attributeMsg <> "") Then
 Console.WriteLine(typeCategory & " " & typeScan.Name & ":")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (attributeMsg <> "") Then _
 Console.WriteLine(attributeMsg)
 If (methodMsg <> "") Then _
 Console.WriteLine(methodMsg)
 End If
 Next typeScan
 End Sub

 Private Function EnumerateTypeMembers(typeEntry As Type) As String
 Dim memberInfo As String
 Dim fullInfo As String = ""
 Dim noteDetails As String
 Dim attributeSet() As Object
 Dim memberScan As MemberInfo
 Dim memberSet() As MemberInfo

 ' ----- Get members of the type.
 memberSet = typeEntry.GetMembers
 For Each memberScan In memberSet
 ' ----- Determine if any attributes are present.
 attributeSet = memberScan.GetCustomAttributes(False)
 If (attributeSet.Length > 0) Then
 ' ----- Determine the member type.
 Select Case memberScan.MemberType
 Case MemberTypes.All
 memberInfo = " All"
 Case MemberTypes.Constructor
 memberInfo = " Constructor"
 Case MemberTypes.Custom
 memberInfo = " Custom method"
 Case MemberTypes.Event
 memberInfo = " Event"
 Case MemberTypes.Field
 memberInfo = " Field"
 Case MemberTypes.Method
 memberInfo = " Method"
 Case MemberTypes.NestedType
 memberInfo = " Nested type"
 Case MemberTypes.Property
 memberInfo = " Property"
 Case MemberTypes.TypeInfo
 memberInfo = " TypeInfo"
 Case Else
 memberInfo = " Member"
 End Select

 ' ----- Add in the name of the member.
 If (memberScan.Name = ".ctor") Then
 ' ----- Constructor.
 memberInfo = "New" & memberInfo
 Else
 memberInfo = memberScan.Name & memberInfo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 ' ----- Get the note details.
 noteDetails = PrepareDeveloperNotes(attributeSet)
 If (noteDetails <> "") Then _
 fullInfo &= memberInfo & vbCrLf & noteDetails & vbCrLf
 End If
 Next memberScan

 ' ----- Fully formatted and ready to use.
 Return fullInfo
 End Function

 End Module

This program scans an assembly, examining almost everything that can have attributes attached. If
it finds attributes attached to an item, it loops through them looking for any that use the
<DeveloperNote> attribute. If a match is found, it prints the name of the item and the related
developer note details to the console.

The program's entry point, Main, first instantiates an Assembly object (from the System.Reflection
namespace) representing the assembly identified on the command line. It then calls the
System.Attribute's shared GetCustomAttributes method to obtain any attributes associated with the
assembly itself. If any exist, they are passed to the PrepareDeveloperNotes method, which looks
specifically for DeveloperNoteAttribute entries and formats them for printing.

Back in Main, the same process is done for each module contained within the assembly by calling the
assembly's GetModules method.

The final task displays the developer notes for each type in the assembly. Since the logic is somewhat
different, it's all done in the EnumerateTypes routine. This routine gets all the types for the entire
assembly through the assembly's GetTypes method. Then it scans each type, checking for associated
attributes. If it finds them, it documents any developer notes (once again through the
PrepareDeveloperNotes function).

Since each type contains members that, in turn, can have <DeveloperNote> attributes, those are
displayed as well through the EnumerateTypeMembers routine. This routine is not that different in its
overall structure from the EnumerateTypes routine, but there is some interesting code used in the
formatting of the member name. If the memberScan object represents a constructor, ".ctor" is used for
the member name. The routine converts this to the more user-friendly "New."

The program provides a good overview of attribute analysis, although it could be enhanced even
more. The EnumerateTypes routine could be made a little more generic, and recursion added, allowing
it to display attribute information found in nested classes. Another reasonable enhancement would
display developer notes associated with parameters belonging to individual methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Generics
The .NET Framework includes several useful collection classes in the System.Collections namespace.
These classes let you manage groups of objects in many useful ways. For instance, the
System.Collections.Stack class manages data objects in a last in, first out (LIFO) pancake-style
stack. The collection classes work with any type of object or, more accurately, any mixture of
objects. A single instance of a collection class can manage integers, strings, employee data objects,
Windows Forms instances, and any other type of object you wish to include. But what if you want to
only include a single data type? What if you want to require that only a single data type be included
in a collection instance? Welcome generics!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1. What Are Generics?

Visual Basic 2005 includes a new feature named generics, built upon features added to Version 2.0 of
the .NET Framework. Generics allow you to add enforced strong typing within an otherwise weakly
typed type (class, structure, interface, or delegate) or its methods (functions and sub procedures).

Before generics, if you wanted to use the Stack class to manage a set of Integer values, and only
Integer values, you had a few options.

Create a brand new collection-type class named IntegerStack that works just like the Stack
class but is hardcoded to use Integer values only. It would include the Stack class's Push and
Pop methods, but they would only deal with Integer value types. While this would solve your
problem, it wouldn't be fun to program. You would essentially rewrite all of the code in the
existing Stack class from scratch. If you later wanted to develop a similar class for strings, you
would have to do it all again, this time enforcing the data type to be String.

Create a new class named IntegerStack that derives from or wraps the functionality of the
Stack class. This class would have its own new methods that enforce the Integer restriction, but
each of those methods would, in turn, call the standard Stack class methods. This is a little
better, since you wouldn't have to recode the entire Stack logic. But you would still have to do it
again for String data. And all of this wrapping and type-casting between System.Object and
Integer can't be that efficient.

Just use the existing Stack class and hope that only integers are used. Unfortunately, this
doesn't really solve the problem.

Generics solve this problem by allowing an instance of a class to look like it was written just for a
restricted data type. All enforcement occurs at compile time, so the program is also more efficient,
since the data does not have to be converted to System.Object and back again all the time. Visual
Studio also uses the generic definitions to enhance the IntelliSense available when working with
generics -enabled types.

Generics are similar to a feature called templates in the C++ language, although generics are
somewhat easier to use and do not support all of the features available with templates.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. Type Parameters

Consider the following subset of the Stack class definition.

 Public Class StackSubset
 Public Sub Push(ByVal obj As System.Object)
 End Sub
 End Class

To define this same class using generics, use the new Of keyword.

 Public Class StackSubset(Of T)
 Public Sub Push(ByVal obj As T)
 End Sub
 End Class

The T just after Of is a type parameter. (You can use another more descriptive name besides T.) This
definition says, "In the StackSubset class, the type parameter T is acting kind of like a variable, but
for data types. Anywhere it is used within the class, treat it as if it were just some normal type, like
Integer or System.Windows.Forms.Form."

An instance of the StackSubset class can now be created, specifying a specific data type for the T
type parameter.

 Dim limitedStack As New StackSubSet(Of Integer)

This statement creates an instance of the StackSubset class and will only allow Integer objects to be
passed as arguments to the class's Push method.

In addition to standard data types such as Integer, the Of clause can be used with any valid type,
including interfaces, structures, and so on. If it can be treated as an instance of System.Object, you
can use it to replace the T type parameter.

Many of the collection classes available to .NET programmers have been modified in 2005 to support
a generic type parameter. These new classes are located in the System.Collections.Generic
namespace. The Stack class is one of the collections enabled for generics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim pileOfNumbers As New Stack(Of Integer)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3. Multiple Type Parameters

Some classes may require more than one generic type parameter. The Of keyword supports multiple
parameters, each separated by a comma.

 Public Class SpecialCollection(Of T1, T2)
 Public Sub TakeAction1(ByVal data1 As T1)
 End Sub

 Public Sub TakeAction2(ByVal data1 As T1, ByVal data2 As T2)
 End Sub

 Public Function GetResults() T2
 End Sub
 End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4. Constraints

In the class definition:

 Public Class WorkGroup(Of T)

the T type parameter can be assigned to any type when an instance of the class is created. Generics
also allow you to place some restrictions or constraints on the set of types used. For instance, if your
custom generic class is only designed to work with Windows Forms controls, allowing types like
Integer and String could mess things up. Adding an As clause to the type parameter limits the range
of data types that can be assigned to T. For example, the class definition:

 Public Class WorkGroup(Of T As System.Windows.Forms.Control)

limits T to the System.Windows.Forms.Control class or any class derived from it. The following
statements work:

 Dim anyControls As WorkGroup(System.Windows.Forms.Control)
 Dim buttonsOnly As WorkGroup(System.Windows.Forms.Button)

but statements using non-Control data types do not:

 ' ----- This doesn't work.
 Dim buttonsOnly As WorkGroup(Integer)

since Integer is not derived from System.Windows.Forms.Control.

This use of a type constraint to limit the selection of types used for T also applies to interfaces. The
statement:

 Public Class WorkGroup(Of T As Runtime.Serialization.ISerializable)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

restricts the type-specific use of the WorkGroup class to only those types that implement the
ISerializable interface.

In addition to these two flavors of type constraints (class and interface), the As clause is also used to
establish a new constraint. This type of constraint restricts the allowed replacement types to only
those types that have a parameterless constructorthat is, a constructor that takes no arguments. To
use a new constraint, add the As New clause to the type parameter.

 Public Class WorkGroup(Of T As New)

This enables the class to create new instances of the type replaced by T within the class's source
code.

 Public Class WorkGroup(Of T As New)
 Public Function DoSomeWork() As T
 ' ----- Create a new instance of whatever 'T' is.
 Dim result As New T
 ...
 Return result
 End Function
End Class

Because the As New clause prepares the class to create an instance of the type defined by the type
parameter, you cannot specify any type for the type parameter that includes the MustInherit
keyword. Such classes cannot be instantiated, and it would be meaningless (and an error) to use
them with the New keyword.

Each defined type parameter can include a different constraint, the same constraint used with other
type parameters, or no constraint at all. In this statement, T1 has no constraints placed on it, but the
other type parameters do.

 Public Class WorkGroup(Of T1, T2 As New, T3 As New, _
 T4 As Runtime.Serialization.ISerializable)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5. Multiple Constraints

A type parameter can specify multiple constraints at the same time, and only classes that meet all of
the constraints can be used for that parameter. To use multiple constraints, surround the list of
constraints with a set of curly braces and separate each constraint by a comma.

 Public Class WorkGroup(Of T As {New, _
 Runtime.Serialization.ISerializable})

This statement restricts the types used for T to only those that implement the ISerializable interface
and include a parameterless constructor. While you can include multiple interface constraints on a
single type parameter, each type parameter can include only one class-based type constraint. It
would not make sense to include two classes anyway, since Visual Basic does not allow a class to
inherit from more than one base class. The New constraint can be used with either class or interface
constraints.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.6. Accessing Type Parameter Members

Consider the following generic class definition.

 Public Class NoisyClass(Of T)
 Public Sub ShowMe(ByVal theItem As T)
 MsgBox(theItem.ToString())
 End Sub
 End Class

Using this class with an Integer parameter, as in:

 Dim notSoNoisy As New NoisyClass(Of Integer)
 notSoNoisy.ShowMe(5)

displays a message box with the integer value, in this case, 5. You can also use other types with the
class. For example, the code:

 Dim notSoNoisy As New NoisyClass(Of System.Exception)
 notSoNoisy.ShowMe(New System.Exception)

displays "System.Exception: Exception of type 'System.Exception' was thrown." When T includes no
class constraints, it becomes the lowest common denominator of all possible substitution types,
System.Object. The definition:

 Public Class WorkGroup(Of T)

is basically the same as:

 Public Class WorkGroup(Of T As System.Object)

Both definitions work with all types, since all types derive from System.Object. When you add a class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constraint to a type parameter (or use the default of System.Object), any members of that T class
type can be used within the generic class definition. For example, consider the following simple class:

 Public Class ControlLocator(Of T As System.Windows.Forms.Control)
 Public Sub WhereIsIt(ByVal theControl As T)
 MsgBox("Location: " & theControl.Left & ", " & _
 theControl.Top)
 End Sub
 End Class

Because only types that derive from System.Windows.Forms.Control can be used as substitutes for
T, all members of System.Windows.Forms.Control can be used in all references to T (such as the
theControl variable), including the Left and Top properties.

You can only use members that are related to the type constraints defined for a parameter. If you
don't include any type constraints, then you can only use the members of System.Object, which
appear in every object in .NET. Although the following class definition is slated to work with strings
(and the String class's ToUpper method), it will not compile, since there is no reference to String in
the type parameter's constraints.

 Public Class UsuallyString(Of T)
 Public Sub ShowUpperCase(ByVal theText As T)
 ' ----- The next line will not compile.
 MsgBox(theText.ToUpper())
 End Sub
 End Class

Even if you create an instance of this class with a String:

 Dim usingStringNow As UsuallyString(Of String)

the original class definition will not compile because the compiler does not know in advance that you
plan to use it with String data.

If you place an interface type constraint on a type parameter, uses of that type parameter can
access the members of the interface, as shown in the following code.

 Public Interface ISimple
 Sub WriteThisCode()
 End Interface

 Public Class UsesISimple(Of T As ISimple)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Sub DoTheWork(ByVal theData As T)
 ' ----- Uses the class-specific implementation.
 theData.WriteThisCode()
 End Sub
 End Class

If you have multiple type constraints on a type parameter, uses of that parameter can generally
access all members of all type constraints. If name conflicts do exist between two constraints (such
as a class and interface having a member of the same name), your code will have to cast or convert
the typed object to the desired class or interface (using CType or some other method) before calling
the conflicting member.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.7. Generic Methods

Type members (functions and sub procedures) can also be defined with type parameters, whether or
not the class in which they appear uses generics . The type parameter information appears between
the defined method name and its regular parameter list.

 Public Sub GenericMessage(Of T As System.Windows.Forms.Control) _
 (ByVal preamble As String, ByVal someObject As T)
 MsgBox(preamble & ": " & someObject.Location.ToString())
 End Sub

All of the multiple parameter, constraint, and member usage rules that apply to generic classes also
apply to generic members.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.8. Nested Generic Types

The type parameters included in a class definition can be used within nested classes:

 Public Class Level1(Of T1, T2)
 Public Class Level2
 Public theData As T1
 End Class
 End Class

However, when you create instances of the outer and inner classes based on different specified
parameters, the resulting instances are fully unrelated. For instance, using the Level1 and Level2
classes just defined, the statements:

 Dim first As New Level1(Integer, Double).Level2
 Dim second As Level1(Integer, String).Level2
 first.theData = 5
 second = first ' This line will not compile

will not compile successfully. Even though the Level2 classes both contain only an Integer public
member, they are not compatible because each class is tied to a different set of data types.

Nested types may also include their own type parameters.

 Public Class Level1(Of T1, T2)
 Public Class Level2(Of T3)
 Public theData As T3
 End Class
 End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.9. Overloaded Types and Members

Normally, you can only create a single definition of a named class within a namespace. However, you
can create multiple class definitions with the same name if they each include a different number of
type parameters (zero or more). The following statements define two distinct classes that share a
common name.

 Public Class OverloadedName(Of T1)
 End Class

 Public Class OverloadedName(Of T1, T2)
 End Class

The compiler will use the appropriate class definition, depending on the number of type parameters
supplied when instantiating that class name.

 ' ----- The compiler will use the (Of T1) definition.
 Dim justOne As OverloadedName(Of Integer)

Methods can be overloaded in the same way. This type of overloading can be mixed with the
standard method of overloading.

 Public Sub DoSomeWork(Of T)(ByVal data1 As T)
 End Sub

 Public Sub DoSomeWork(Of T)(ByVal data1 As T, data2 As String)
 End Sub

 Public Sub DoSomeWork(Of T1, T2)(ByVal data1 As T1, _
 ByVal data2 As T2)
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. Error Handling in Visual Basic
Even if your source code is completely free of all bugs, application errors may still appear, whether
from user data issues, integration problems with third-party components, or unexpected changes in
the system environment. This chapter takes a concise look at error-handling techniques in Visual
Basic. The terms exception and error are used synonymously throughout this chapter.

Visual Basic supports the On ErrorGoTo style of error handling that was introduced with the original
version of Visual Basic. This type of error handling is referred to as unstructured error handling. VB
also supports the structured exception handling technique familiar to C++ programmers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1. Error Detection and Error Handling

Dealing with errors in your code generally occurs in two steps: error detecting and error handling. In
most cases, you deal with the consequences of an error immediately, merging these two steps into
one seamless process. You can also break up the steps, recognizing an error immediately but dealing
with it later on in your block of code, or even in a different part of your application. The code location
where an error occurs is called the offending procedure.

There are two types of errors that can occur in a running program: runtime errors and logic errors . A
runtime error occurs when the code attempts to perform an operation that is impossible to perform,
such as opening a file that does not exist or dividing by zero. Visual Basic automatically takes care of
error detection of runtime errors because it has no other choice. Proper error handling of runtime
errors is up to the programmer. Without programmer action, Visual Basic itself handles the error by
presenting an error message to the user and then terminating the application, which is, at the very
least, a nuisance for the user.

A logic error is the production of an unexpected or incorrect result. Consider a function that returns
the IQ for an individual based on a set of IQ test scores. A result of 100 is entirely normal and
expected. If an individual is very smart, you might expect an IQ in the range of 120 or more. But if
the function returns an IQ of -350, that is a logic error, either due to bad code, bad data, or both.

Visual Basic does not provide error detection for logic errorsno computer language doesbecause to
Visual Basic, no error has occurred. However, an unhandled logic error may subsequently result in a
runtime error, which Visual Basic will certainly recognize. For instance, code that is intended to
retrieve a positive nonzero integer may instead retrieve zero. This is a logic error. If that integer is
later used as a denominator in some other part of the application, the seemingly small logic error will
become a large runtime problem.

The programmer must anticipate logic errors and provide both error detection and error handling.
From this perspective, logic errors are far more serious and much more difficult to deal with than
runtime errors. After all, a runtime error won't be completely overlookedat least Visual Basic will do
something about it.

The problem with an overlooked logic error is that it may give the user specious feedback. This is, no
doubt, the most insidious behavior a program can produce. In the best-case scenario, a logic error
will generate a runtime error at some later time, but tracking down the original logic error source of
that runtime error may be a daunting task.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2. Runtime Error Handling

Visual Basic supports both unstructured error handling and structured exception handling. This
discussion starts with a look at unstructured error handling , the same error-handling support
provided in VB 6. You are not required to include any error handling in a VB procedure. If you do
include such handling in a procedure, you must include either the structured or unstructured variety;
a single procedure cannot include both types of error-handling methods.

11.2.1. Unstructured Error Handling

Error-handling techniques that revolve around the various On Error... statements are referred to as
unstructured error-handling techniques. These techniques generally involve the Err object and the
Visual Basic call stack.

11.2.1.1. The Err object

Visual Basic's built-in error object, called Err, has several useful properties and methods, as shown in
Tables 11-1 and 11-2, respectively.

Table 11-1. Properties of the Err object

Property Description

Description A short string describing the error.

HelpContext The numeric context ID for a help topic associated with the error.

HelpFile The fully qualified filename of the associated help file, if available.

LastDLLError The return code from a call made to a function in an external DLL. This property may
change value at any time, so it is wise to store the current value in a variable
immediately upon return from the DLL call. VB does not raise errors based on the
return value of a DLL function, since it cannot know which return values indicate
errors.

Number The error number of the error.

Source A string that indicates the object that generated the error. When the error is
generated within your application, the Source property is the project programmatic
ID. For class-initiated errors, it is in the format project.class. When the error is
generated by an external COM component, the Source property returns the
programmatic ID of that component, generally in the form application.object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 11-2. Methods of the Err object

Method Description

Clear Clears the values of all properties of the Err object. Its syntax is:

 Err.Clear()

The Clear method is called implicitly when any of the following statements are executed: a
Resume statement; an Exit Sub, Exit Function, or Exit Property statement; a
try...Catch...Finally statement; or an On Error statement.

Raise Causes Visual Basic to generate a runtime error and sets the properties of the Err object
to the values given by the parameters of the Raise method. Its syntax is:

 Err.Raise(Number[, Source[, Description[, _

 HelpFile[, HelpContext]]]])

where all but the first named argument is optional. Each parameter corresponds to the
property of the same name.

11.2.1.2. Dealing with runtime errors

Visual Basic detects a runtime error as soon as it occurs, sets the properties of the Err object, and
directs the flow of execution to a location that the programmer has specified by the most recent On
Error statement. This location can be one of the following:

The line of code immediately following the line that caused the error

Another labeled location within the offending procedure

Any enabled error handler within the current procedure's call stack

New in 2005. In Windows Forms applications, the error handler associated with the
My.Application.UnhandledException event

If none of these methods exist or are enabled (and no structured exception handlers are in use), VB
issues an error message and terminates the application. The remainder of this section describes each
option in more detail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inline error handling. Code execution will be "redirected" to the line following the offending line of
code if the most recent On Error statement is:

 On Error Resume Next

This is referred to as inline error handling . The following example demonstrates this type of error
handling in the process of renaming a file. The code specifically examines any error number
(Err.Number) generated by the Rename function.

 Dim oldName As String
 Dim newName As String

 On Error Resume Next

 ' ----- Prompt the user for the old and new names.
 oldName = InputBox("Enter the file name to rename.")
 newName = InputBox("Enter the new file name.")

 ' ----- Rename the file.
 Err.Clear()
 Rename("c:\" & oldName, "c:\" & newName)

 ' ----- Deal with any error.
 If (Err.Number = 53) Then
 ' ----- File not found error.
 MsgBox("File '" & oldName & "' not found.")
 Exit Sub
 ElseIf (Err.Number <> 0) Then
 ' ----- All other errors.
 MsgBox("Error " & Err.Number & ": " & Err.Description)
 Exit Sub
 End If

Centralized error handling. Centralized error handling keeps error detection and error handling in
the same procedure, but it places all error-handling code in a common location within that procedure.
This is especially useful when code detection for a common set of errors occurs multiple times
throughout a large procedure. Execution is redirected to the central error-handling code block using
the statement:

 On Error GoTo label

This is outlined in the following code template:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Sub Example()
 On Error GoTo ErrorHandler
 ' ----- If a run-time error occurs here, Visual Basic
 ' directs execution to the ErrorHandler label.
 Exit Sub

 ErrorHandler:
 ' ----- Code can be placed here to handle errors directly.
 ' Err.Number, Err.Description, and Err.Source can be
 ' examined here.
 End Sub

Once the On Error GoTo ErrorHandler statement is executed, the error handler beginning at the label
ErrorHandler is active. There are several possibilities for dealing with the error. The most common
possibility is simply to handle the error in the active error handler, perhaps by displaying an error
message asking the user to take corrective action.

Another common approach is to pass information about an error to the calling procedure through
parameters or through the return value of the offending function. For instance, if a function is
designed to rename a file, the function might return an integer error code indicating the success or
failure of the operation. This method is quite common among the Win32 API functions. In particular,
the error code might be 0 for success, -1 if the file does not exist, -2 if the new filename is invalid,
and so on.

A third possibility is to pass the error to the calling procedure by invoking the Err.Raise method
within the active error handler:

 Err.Raise(Err.Number, Err.Source, Err.Description, _
 Err.HelpFile, Err.HelpContext)

This triggers the next procedure up in the call stack to process the error using its own active error
handler. This process is called regenerating or reraising the error. If that procedure does not have an
active error handler, the raised error continues up the call stack until it finds a procedure with an
active error handler.

No enabled error handler. When you first enter any procedure, error handling is disabled in that
procedure until the code encounters some sort of On Error or structured exception-handling
statement. Using On Error GoTo label enables centralized error handling, but what if you want to

turn off the central error- handling block code? The following statement takes just such an action,
restoring the error-handling state to what it was when you first entered the procedure.

 On Error GoTo 0

Without an enabled error handler, all errors cause execution to move up the call stack to the next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

procedure, continuing up until an enabled exception handler is found. A lack of exception handlers
causes Visual Basic to display an error message and terminate the application.

A third variation of the On Error statement disables an error handler from inside of an error handler:

 On Error GoTo -1

This statement can be used within a block of error-handling code. It causes the procedure to forget
that it is in an error handler; Resume statements will have no impact after using this statement. To
reinstate error handling, you must use another On Error statement.

New in 2005. Visual Basic 2005 adds support for a global, central error-handling routine. This feature
is only available in Windows Forms applications, and it is accessed through the
My.Application.UnhandledException event. The actual procedure for this event is found in the
application's ApplicationEvents.vb file, which is hidden from the Solution Explorer view by default.
(Click the Show All Files button in the Solution Explorer to display this and other hidden files.) The
event procedure has the following form.

 Namespace My
 Class MyApplication
 Private Sub MyApplication_UnhandledException(_
 ByVal sender As Object, _
 ByVal e As UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 ' ----- Special error handling code goes here.
 End Sub
 End Class
 End Namespace

This special event handler is ignored when running your application within the Visual Studio IDE.

11.2.2. Structured Exception Handling

Structured exception handling uses the TRy...Catch...Finally construct to handle local errors. This is
a much more object-oriented approach, involving objects of the System.Exception class and its
derived classes.

The syntax of the try...Catch...Finally construct is:

 Try

 tryStatements

 [Catch [exception [As type]] [When expression]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 catchStatements
 [Exit Try]]

 [Catch [exception [As type]] [When expression]

 catchStatements]
 ...

 [Catch [exception [As type]] [When expression]

 catchStatements]

 [Finally

 finallyStatements]
 End Try

The tryStatements (which are required) constitute the try block and are the statements that are

monitored for errors by VB. Error handling is active within the try block.

The Catch blocks (you can include zero or more of these) contain code that is executed in response to
VB "catching" a particular type of error within the TRy block. Thus, the Catch blocks consist of the
error handlers for the TRy block.

The exception [As type] and [When expression] clauses are referred to as filters. An exception is

either a variable of type System.Exception or one of its derived classes. It is by using one of these
derived classes that you can narrow the scope of a Catch clause to a specific error. The clause:

 Catch ex As Exception

will catch any exception for handling within that Catch block. The clause:

 Catch ex As DivideByZeroException

catches divide-by-zero division errors, but no others. The DivideByZeroException class is one of the
classes derived from System.Exception.

The When filter is typically used with user-defined errors. For instance, the code in the following TRy
block raises an error if the user does not enter a number.

 Dim userInput As String
 Try
 userInput = InputBox("Enter a number.")
 If Not IsNumeric(userInput) Then Err.Raise(1)
 Catch When Err.Number = 1
 MsgBox("Supplied data was non-numeric.")
 End Try

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code will not catch an error, since no true error is generated:

 Dim testNumber As Integer
 Try
 testNumber = 5
 Catch When testNumber = 5
 ' ----- Execution will never come here.
 MsgBox(testNumber & " is not right.")
 End Try

The Finally clause in a try statement includes any code that must be executed, whether an error
occurs or not. This final code can be used for cleanup in the event of an error.

The Exit Try statement can appear anywhere within a try...Catch...Finally block to jump out of the
statement immediately. Any remaining Finally clause statements are skipped.

As with unstructured error handling, VB may pass an error up the call stack when using structured
exception handling. This happens in the following situations:

An error occurs within a try block that is not handled by one of the Catch blocks.

An error occurs outside any try block.

11.2.2.1. Exception classes

The following list includes many of the common exception types derived from the System.Exception
class. Classes are indented under the class from which they are derived.

 Exception
 ApplicationException
 SystemException
 AccessException
 FieldAccessException
 MethodAccessException
 MissingMemberException
 MissingFieldException
 MissingMethodException
 AppDomainUnloadedException
 AppDomainUnloadInProgressException
 ArgumentException
 ArgumentNullException
 ArgumentOutOfRangeException
 DuplicateWaitObjectException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ArithmeticException
 DivideByZeroException
 NotFiniteNumberException
 OverflowException
 ArrayTypeMismatchException
 BadImageFormatException
 CannotUnloadAppDomainException
 ContextMarshalException
 CoreException
 ExecutionEngineException
 IndexOutOfRangeException
 StackOverflowException
 ExecutionEngineException
 FormatException
 InvalidCastException
 InvalidOperationException
 MulticastNotSupportedException
 NotImplementedException
 NotSupportedException
 PlatformNotSupportedException
 NullReferenceException
 OutOfMemoryException
 RankException
 ServicedComponentException
 TypeInitializationException
 TypeLoadException
 EntryPointNotFoundException
 TypeUnloadedException
 UnauthorizedAccessException
 WeakReferenceException
 URIFormatException

In general, the derived classes provide no additional class members; it is the class instance itself that
provides the information needed to distinguish between different types of errors. (It is possible to
access the exception class for an error even when you are using the On Error unstructured error-
handling methods. The Err object includes a GetException method that returns an instance of the
exception class related to the error.)

Some of the derived classes do include additional information that can be useful to your error-
processing actions. For instance, the ArgumentException class includes a ParamName property that
returns the name of the parameter that causes the exception. The following example demonstrates
its use.

 Sub CopyAnImportantFile()
 Dim sourceFile As String = "c:\temp.txt"
 Dim destFile As String = "I am not a file path!"
 Try
 FileCopy(sourceFile, destFile)
 Catch ex As ArgumentException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MsgBox(ex.Message & " Parameter: " & e.ParamName)
 End Try
 End Sub

The System.Exception class includes several important members, as listed in Table 11-3.

Table 11-3. Members of the System.Exception class

Member Description

Data Property. New in 2005. A dictionary collection used to add additional information to
custom exceptions.

Message Property. A string containing the error message.

Source Property. A string that describes the application or object that threw the exception.
Generally the application's programmatic ID, the COM programmatic ID, or a
project.class name for in-class errors.

StackTrace Property. A string that contains the stack trace immediately before the exception was
thrown.

TargetSite Property. The name of the method that threw the exception.

ToString Method. Obtains the name of the exception as a string and possible additional
information about the current error.

The following example displays the type of content you can except from these class properties. It
generates an ArgumentNullException exception manually, which is handled two procedures further up
the call stack.

 Public Sub Level1Routine()
 Dim info As String
 Try
 Level2Routine()
 Catch ex As Exception
 info = "Message: " & ex.Message & vbCrLf & _
 "Source: " & ex.Source & vbCrLf & _
 "Stack: " & ex.StackTrace & vbCrLf & _
 "Target: " & ex.TargetSite.Name & vbCrLf & _
 "ToString: " & ex.ToString
 Debug.WriteLine(info)
 End Try
 End Sub

 Sub Level2Routine()
 Level3Routine()
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Sub Level3Routine()
 Throw New ArgumentNullException()
 End Sub

In Level3Routine, an ArgumentNullException is thrown using the Throw statement, passing a new
instance of the exception up the call stack. The output from the call to Level1Routine is as follows
(slightly formatted for readability):

 Message: Value cannot be null.
 Source: WindowsApplication1
 Stack: at WindowsApplication1.Form1.Level3Routine()
 in C:\temp\Form1.vb:line 26
 at WindowsApplication1.Form1.Level2Routine()
 in C:\temp\Form1.vb:line 22
 at WindowsApplication1.Form1.Level1Routine()
 in C:\temp\Form1.vb:line 10
 Target: Level3Routine
 ToString: System.ArgumentNullException: Value cannot be null.
 at WindowsApplication1.Form1.Level3Routine()
 in C:\temp\Form1.vb:line 26
 at WindowsApplication1.Form1.Level2Routine()
 in C:\temp\Form1.vb:line 22
 at WindowsApplication1.Form1.Level1Routine()
 in C:\temp\Form1.vb:line 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3. Dealing with Logic Errors

Logic errors occur most often from conflicts between data and code. A function expects the user to
enter a date in string format; the user enters his name instead. A block of code requires a number of
1 to 100; the database field somehow contains -5 instead. Invalid user data entry, unexpected
results from external data sources, and good data turned bad by problematic algorithms in the code
work against the applicationand against the user.

Since so many logic errors stem from issues with the data being manipulated by the application, it
makes sense to focus on detecting and correcting data issues. There are two key places in any
application where data error detection is most useful: (1) when the data comes into the program and
(2) when the data is just about to be processed by the program. Although data comes from many
different sources (users, files, Internet connections, database queries), this section discusses user-
entered data.

Consider the following function, which retrieves a number from the user.

 Public Function GetSomeData() As Integer
 ' ----- Retrieve a number from 1 to 100 only.
 Dim userEntry As Integer

 userEntry = CInt(InputBox("Enter an integer from 1 to 100."))
 Return userEntry
 End Sub

Visual Basic sure makes the coding of such user interaction easy. But what happens when the user
enters "101" in the InputBox's text field, or "123456," or even "abc?" To protect the program against
bad data, this code needs to detect the potential logic error immediately, when the data is entering
the program. The GetSomeData routine can be corrected by adding some simple data confirmation
code.

 Public Function GetSomeData() As Integer
 ' ----- Retrieve a number from 1 to 100 only.
 Dim userEntry As String

 Do While True
 ' ----- Prompt the user for the number.
 userEntry = InputBox("Enter an integer from 1 to 100.")

 ' ----- Check for valid input.
 If (IsNumeric(userEntry) = False) Or _
 (InStr(userEntry, ".") > 0) Then
 MsgBox("Entry was non-numeric or decimal. Try again.")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ElseIf (Val(userEntry) < 1) Or (Val(userEntry) > 100) Then
 MsgBox("Entry must range from 1 to 100. Try again.")
 Else
 ' ----- Looks like good data.
 Return CInt(userEntry)
 End If
 Loop
 End Function

That takes care of the invalid data. This function could even be modified to use either structured
exception handling or unstructured error handling by manually raising errors.

 Public Function GetSomeData() As Integer
 ' ----- Retrieve a number from 1 to 100 only.
 Dim userEntry As String

 On Error GoTo ErrorHandler

 TryEntryAgain:
 ' ----- Prompt the user for the number.
 userEntry = InputBox("Enter an integer from 1 to 100.")

 ' ----- Check for valid input.
 If (IsNumeric(userEntry) = False) Or _
 (InStr(userEntry, ".") > 0) Then
 Err.Raise(1, Nothing, _
 "Entry was non-numeric or decimal. Try again.")
 ElseIf (Val(userEntry) < 1) Or (Val(userEntry) > 100) Then
 Err.Raise(2, Nothing, _
 "Entry must range from 1 to 100. Try again.")
 End If

 ' ----- Looks like good data.
 Return CInt(userEntry)
 Exit Function

 ErrorHandler:
 ' ----- Something happened. Show the error.
 MsgBox(Err.Description)
 Resume TryEntryAgain
 End Function

In most cases, detecting error issues right when they occur is best. This gives the user a chance to
correct the error right away, before the errant content can cause any damage. But sometimes it
makes sense to postpone analysis of the incoming data for just a little while, until just before it is
used. This is most often the case on a data-entry form with many input fields. Consider the data-
entry form in Figure 11-1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-1. Form in need of data verification

This type of form generally has code to send the user-supplied data to a database record. You could
monitor every data-entry field for valid data, perhaps when each field lost the input focus, and throw
up a warning message if anything was out of place. But this would quickly become tiresome to the
user. In forms such as this, it's better to wait until the user is finished with all data entry and then
verify the data just before using itor just before storing it in the database. The OKButton button's
Click event is the perfect place to confirm all data at once and only then warn the user of data
conflicts and issues.

 Private Sub OKButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles OKButton.Click
 ' ----- Confirm and save the data before closing the form.
 If (VerifyData() = False) Then Exit Sub
 If (SaveData() = False) Then Exit sub
 Me.Close()
 End Sub

On this particular form, the VerifyData routine would check for the following data issues.

All fields other than Date of Termination are required.1.

For new records, the Employee ID must not already exist in the database.2.

Date of Hire and Date of Termination (when supplied) must be valid dates.3.

If Date of Termination appears, it must occur chronologically after Date of Hire.4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

4.

Current Salary must be a valid number and should fall within some reasonable parameters,
such as not falling below some minimum salary value stored in the database.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.4. Error Constants

The sample code in the previous section demonstrated the Err.Raise method being used for custom
error reporting. Since .NET already uses this same method to indicate predefined system errors,
there needs to be some way to confirm that your code's custom error numbers do not conflict with
system-defined error numbers. Visual Basic defines a constant, vbObjectError, that assists in the
selection of custom error-code values. This constant represents the minimum error code you should
use for your own custom error messages. The recommended range is from vbObjectError to
vbObjectError + 65535. If your application interacts with COM components, you should start your
error codes with vbObjectError + 512, since COM components often use the first 512 values in this
range for their own error codes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part II: Reference
This section consists of two very long but useful chapters. Chapter 12, The Language Reference,
which contains an alphabetic reference of VB language elements, documents the following:

Statements, such as AddHandler and Structure...End Structure.

Procedures, such as AppActivate and Rename. Many of these were classified as statements
in pre-.NET versions of Visual Basic, but now they are methods of one class or another,
usually within the Microsoft.VisualBasic namespace. The official documentation often
describes them as functions, but since they don't return values, they are described here as
procedures.

Functions, such as Format and IsReference.

Compiler directives, such as #Const and #If.

Visual Basic classes and their members. Apart from the My Namespace objects, the two
intrinsic objects available in Visual Basic are the Collection class and the Err object.

Selected classes in the .NET Framework Class Library, along with their members.
Documentation of Framework Class Library entries, however, is highly selective; classes
and their members appear here either because they replace language elements that were
present in VB 6, or because they provide much- needed functionality that supplements
existing language elements.

Attributes, such as <AttributeUsage> and <VBFixedString>. Of the dozens of attributes
available in the .NET Framework, this chapter includes only those of greatest interest to
the VB programmer.

Most operators, such as the addition operator (+), are documented separately in Chapter 5.
Also, certain language features reference predefined constants and enumeration values. Some
of the more useful and interesting constants and enumerations are listed in Appendix C.

Chapter 13, The 'My' Reference, includes an alphabetic reference of all major nodes in the My
Namespace hierarchy. It specifically documents the following:

Objects, which include the major nodes of the hierarchy.

Properties, used for setting and retrieving values. Many properties are read- only, and
many provide access to consistent system and environment information.

Methods, which take a specific useful action.

Events, of which there are only a few supported through the My Namespace feature.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you're looking for a particular language element but don't quite remember what it's
called, an alphabetic reference is of little value. Appendix A provides just such a category-based
lookup. In a similar way, the My Namespace hierarchy isn't always easy to visualize when its
elements are sorted alphabetically. Therefore, Appendix B includes all My Namespace nodes
listed hierarchically.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. The Language Reference
This chapter documents the major Visual Basic language elements. The elements are arranged
alphabetically; see Appendix A for a listing by category.

Several different types of language elements appear in this chapter.

Functions

The entry for each function includes basic syntax information, with the details of parameters
and return values. This is followed by a functional description and usage information (in the
"Description" and "Usage at a Glance" sections). Many function entries also include source code
examples.

Each VB function is, in fact, a method, since it is a member of a particular class in the
Microsoft.VisualBasic (or other) namespace. Each entry identifies the class in which the
function appears.

Visual Basic supports both named and positional arguments for most functions , procedures,
and methods. Functions, procedures, or methods that accept parameter arrays as arguments
don't accept named arguments if the ParamArray parameter is present. Some functions are
actually resolved at compile time (the data-conversion functions fall into this category) and do
not accept named arguments. To use named arguments, consider the syntax of the Mid
function, which has two required arguments and one optional argument.

 Mid(str As String, start As Long[, length As Long])

Using positional arguments, you might call the function as follows:

 smallPart = Mid(wholeString, 12, 10)

The same function call using named arguments might appear as follows:

 smallPart = Mid(start:=12, str:=wholeString, length:=10)

Since most functions accept named arguments, the entries in this chapter only indicate when a
function or procedure does not support named arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The "Version Differences" section found in some entries documents changes in usage for the entry
between the different versions of Visual Basic, including Visual Basic 6.0, Visual Basic .NET 2002,
Visual Basic .NET 2003, and Visual Basic 2005.

Procedures

Procedures are functions that don't return a value to the caller. Except for the absence of a
return value, the same information is presented for procedures as for functions.

Statements

Visual Basic statements are not class members, do not support named arguments, and do not
return a value. Aside from these three differences, the same information is presented for
statements as for procedures and functions.

Directives

Visual Basic directives provide instruction to the VB compiler or to a .NET development
environment such as Visual Studio. Like statements, they are not class members, do not
support named arguments, and do not return a value. In general, the same information is
presented for directives as for statements.

Classes and Objects

Entries for classes and objects identify the namespace to which the class belongs and indicate
whether the class is directly creatable. If a class is creatable, a new instance of that class can
be created by using the New keyword, as in:

 Dim unitedStates As New Collection

In some cases, the entry for the class or object also includes a summary listing of the class's
members.

Class Members (Properties, Methods, and Events)

Class members of particular interest or importance have their own separate entries. These
entries generally contain the same level of detail as function entries.

Attributes

Attributes are classes derived from System.Attribute that allow you to store information with
an assembly's metadata. This chapter includes only those attributes that Visual Basic
programmers are most likely to use. Each attribute entry includes information about the
attribute, its constructor, and its properties. Attribute properties can be used as optional

http://lib.ommolketab.ir
http://lib.ommolketab.ir

named arguments in the constructor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#Const Directive

Syntax

 #Const constantName = expression

constantName (required)

Name of the compiler constant

expression (required; literal expression)

Any combination of literal values, other conditional compiler constants defined with the #Const
directive, and arithmetic or logical operators except Is and IsNot

Description

The #Const directive defines a conditional compiler constant. By using compiler constants to create
code blocks that are included in the compiled application only when a particular condition is met, you
can create more than one version of the application using the same source code. This is a two-step
process.

Define the conditional compiler constant through the #Const directive, the project properties, or
command-line compiler switches (see Appendix H).

1.

Evaluate the constant with a #If...Then directive block. If a particular compiler constant is
referenced in a #If...Then directive but is not defined, it has value of Nothing.

2.

A conditional compiler constant can be assigned any string, numeric, or logical value returned by an
expression. The expression can only consist of literals, operators other than Is and IsNot, and other
conditional compiler constants.

When the compiler evaluates the condition of a #If...Then directive, its block of code is compiled as
part of the application only when the evaluated expression is true.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use any arithmetic or logical operator in the expression except Is and IsNot.

You cannot use constants defined with the standard Const statement in the expression.

You cannot use regular Visual Basic functions or variables in the expression.

Setting a compiler constant to Nothing is the same as not defining it.

Constants defined with #Const can only be used in conditional code blocks, not in standard VB
code.

You can place the #Const directive anywhere within a source file. If placed outside of all types,
the defined constant is visible throughout the source file, but it is not visible to any other source
files in the project. If placed in a type, the scope of the constant is that type. If placed in a
procedure, the scope is that procedure and all called procedures.

The #Const directive must be the first statement on a line of code. It can be followed only by a
comment. The colon, which is used to combine multiple statements on a single logical line,
cannot be used with compiler directives.

Conditional compiler constants help you debug your code, as well as provide a way to create
more than one version of your application. For instance, you can include code that only operates
when run in debug mode. The code can be left in your final version and does not compile unless
running in the debugger. Therefore, you don't need to keep adding and removing debugging
code.

Conditional compiler constants may be defined in terms of other conditional compiler constants.
In this sample, the Flags constant will have a value of 2.

 #Const Flag1 = 1
 #Const Flag2 = 1
 #Const Flags = Flag1 + Flag2

A conditional compiler constant can be defined at the command line using the /define or /d
switch.

Constants defined by #Const are evaluated at compile time and therefore do not return
information about the system on which the application is running.

The Visual Basic compiler includes several predefined compiler constants for your use. See the
"Conditional Compilation Constants" section of Appendix H for a listing of these constants.

See Also

#If...Then...#Else Directive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#If...Then...#Else Directive

Syntax

 #If expression Then

 statements

 [#ElseIf expression Then

 [statements]]
 [#Else

 [statements]]
 #End If

expression (required)

An expression made up of literals, operators, and conditional compiler constants that evaluates
to true or False

statements (required for #If block)

One or more lines of code or compiler directives

Description

The #If...Then...#Else directive defines blocks of code that are only included in the compiled
application when a particular condition is met or not met, allowing you to create more than one
version of the application using the same source code.

Conditionally including a block of code is a two-step process:

Define the conditional compiler constant through the #Const directive, the project properties, or
command-line compiler switches (see Appendix H).

1.

Evaluate the constant with a #If...Then directive block. If a particular compiler constant is
referenced in a #If...Then directive but is not defined, it has value of Nothing.

2.

Only code blocks with expressions that evaluate to TRue are included in the executable. You can use
the #Else statement to include code when none of the conditions are met. Use the #ElseIf portion
any number of times to evaluate more conditions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conditional compilation blocks can be used to include or exclude debugging code. Such code can be
excluded from a release compilation of the project. They can also be used to conditionally include
code in different editions of your application. For instance, your project may result in two outputs,
one with limited features available at a lower price to your customers and one with more advanced
features.

Usage at a Glance

Unlike the normal If...Then statement, you cannot use a single-line version of the #If...Then
statement.

All expressions are evaluated using Option Compare Text, regardless of the setting of Option
Compare.

If a conditional compiler constant is undefined, comparing it to Nothing, 0, False, or an empty
string ("") returns TRue.

The Visual Basic compiler includes several predefined compiler constants for your use. See the
"Conditional Compilation Constants" section of Appendix H for a listing of these constants.

Example

 #Const UseAdvancedSet = True
 Private monitoredSet As Object

 Public Sub MonitorCorrectSet()
 #If UseAdvancedSet = True Then
 monitoredSet = New MyObject.AdvancedSet
 #Else
 monitoredSet = New MyObject.BasicSet
 #End If
 End Sub

Only one of the assignment statements will appear in the compiled output; for the line that is not
included, it will be as if the source code never included it at all.

See Also

#Const Directive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#Region...#End Region Directive

Syntax

 #Region "identifierString"
 ...code goes here
 #End Region

identifierString (required)

The title of the code block

Description

The #Region...#End Region directive marks a block of code as an expandable and collapsible region in
the Visual Studio editor.

Usage at a Glance

Code blocks delineated with the #Region...#End Region directive are collapsed by default.

identifierString identifies the region when it is collapsed.

Multiline directives (such as #If) cannot be split across a #Region or #End Region boundary.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Abs Function

Class

System.Math

Syntax

 Dim result As type = Math.Abs(value)

type (required; signed numeric type)

One of the following data types: Decimal, Double, Integer, Long, SByte, Single, or Short

value (required; expression of type type)

A number with the absolute value that is to be returned

Description

The Abs function returns the absolute value of value. The source and return data type are always the

same.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

If Option Strict is Off, you will be able to pass string representations of numbers to the Abs
function. Use the IsNumeric function to confirm that the string contains a valid number.

Example

This sample returns the difference between two integers, regardless of their order.

 Public Function IntegerDiff(ByVal first As Integer, _
 ByVal second As Integer) As Integer
 Return Math.Abs(second - first)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Function

Version Differences

In VB 6, Abs is an intrinsic VB function. In the .NET platform, it is a member of the System.Math class
and not directly part of the VB language.

See Also

Sign Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acos Function

Class

System.Math

Syntax

 Dim result As Double = Math.Acos(d)

d (required; Double)

A cosine, a number between -1 and 1 inclusive

Description

The Acos function returns the arccosine of d in radians, between 0 and .

Usage at a Glance

If d is out of range (less than -1 or greater than 1), Acos returns System.Double.NaN.

This is a shared member of the System.Math class, so it can be used without an instance.

To convert from radians to degrees, multiply by 180/ .

Version Differences

The Acos function did not exist in VB 6.

See Also

Asin Function, Atan Function, Atan2 Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AddHandler Statement

Syntax

 AddHandler nameOfEventSender, AddressOf

 nameOfEventHandler

nameOfEventSender (required)

The name of a class or object instance and its event, such as Button1.Click

nameOfEventHandler (required)

The name of a subroutine that is to serve as the event handler for nameOfEventSender

Description

The AddHandler statement binds an event handler to an event.

Usage at a Glance

The AddHandler and RemoveHandler statements can be used to dynamically add and remove event-
notification handlers at runtime. By contrast, the Handles keyword establishes an event-notification
handler at compile time.

Example

Chapter 8 includes examples of using event handlers.

Version Differences

Visual Basic 2005 includes a new Custom Events statement that impacts the use of the AddHandler
statement. See the Custom Event Statement entry in this chapter for additional information.

See Also

Custom Event Statement, RemoveHandler Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AddressOf Operator

Syntax

 AddressOf procedureName

procedureName (required)

The name of a procedure or method to be referenced as a delegate

Description

The AddressOf operator returns a procedure delegate instance that references a specific procedure.
Common uses of this operator include the following:

To bind event handlers to events through the AddHandler statement:

 AddHandler Form1.Click, AddressOf Me.Form1_Click

To create delegate objects, as in:

 Dim holdDelegate As Delegate = _
 New Delegate(AddressOf someClass.SomeMethod)

To pass the address of a callback function to a Win32 API function:

 Call TypicalAPI(1, AddressOf MyCallbackRoutine)

Version Differences

In VB 6, the procedure must reside in a standard code module, a restriction no longer enforced with
.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AppActivate Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

 AppActivate({ title | processID })

title (required if processID missing; String)

The name of the application as currently shown in the application's title bar

processID (required if title missing; Integer)

The task ID returned from the Shell function

Description

The AppActivate procedure activates a window based on its caption or process ID.

Usage at a Glance

When activating an application by title, AppActivate performs a case-insensitive search on all

top-level windows for a match. If an exact match is found, the window is activated. If no match
is found, then the window captions are searched for a prefix match (title matches the
beginning of the window caption). For example, the title "My Program" matches "My Program-

MyDocument.xyz." If a prefix match is found, the window is activated. If multiple prefix matches
are found, there is no way to predict which matching window will be activated.

The window state (Maximized, Minimized, or Normal) of the activated application is not affected
by AppActivate.

If a matching application cannot be found, an error occurs.

AppActivate searches only top-level windows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Shell function returns an Integer value representing the process ID of the new application.
This value can be passed directly to the AppActivate procedure.

Several years ago, Microsoft changed their recommended method of naming window captions.
The new standard places the document name first, followed by the application name, as in
"Untitled.doc - Microsoft Word." This can make it more difficult to locate a window by
caption.

AppActivate is often used to give the focus to a particular window before keystrokes are sent to
it using the SendKeys statement.

Example

 Public Function ActivateAppByTitle(ByVal theTitle As String) _
 As Boolean
 ' ----- Return success flag.
 On Error GoTo ErrorHandler

 AppActivate(theTitle)
 Return True

 ErrorHandler:
 MsgBox ("Application " & theTitle & " could not be activated.")
 Return False
 End Function

Version Differences

In VB 6, AppActivate has an optional Boolean parameter, wait, which postpones activation until the
local program has the focus. In .NET, wait is not supported.

See Also

SendKeys Statement, Shell Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application Class

Namespace

System.Windows.Forms

Creatable

No

Description

The Application class provides a diverse range of functionality, including support for multithreaded
programming, access to the system registry, and support for subclassing (intercepting messages sent
to application windows). It also includes a variety of informational functions, such as properties to
retrieve the company name, to retrieve the application's executable path, and to retrieve the
application's name and version. Members of the Application class are shared and do not require an
object instance for use.

The following table lists some of the more useful and interesting members of the Application class.
Those marked with an asterisk (*) have separate entries in this chapter.

Member Description

AddMessageFilter Method Adds a special filter procedure to a thread's message queue.

ApplicationExit Event Fires when an application is being shut down.

CompanyName Property * Gets the company name as stored in the assembly.

CurrentCulture Property
Retrieves an object that describes the active culture-specific
information.

CurrentInputLanguage
Property

Retrieves an object that describes the user-interface input
language.

DoEvents Method *
Allows the application to process pending messages in the message
queue.

EnableRTLMirroring Method
New in 2005. Enables automatic right-to-left mirroring when
displaying text.

ExecutablePath Property * Returns the full path of the current application.

Exit Method Exits the application gracefully.

ExitThread Method Exits the current thread gracefully.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Idle Event Fires when the application is about to enter an idle state.

OpenForms Property New in 2005. The collection of open forms in the application.

ProductName Property * Gets the product name as stored in the assembly.

ProductVersion Property * Gets the product version information as stored in the assembly.

RemoveMessageFilter Method Removes a previously added message filter.

Run Method * Starts a new thread and message loop.

StartupPath Property Gets the path of the application that started the current process.

ThreadExit Event Fires when a thread is about to shut down.

Version Differences

Beginning with Visual Basic 2005, the My.Application object provides simplified access to many
application-specific features and informational properties.

See Also

Application.CompanyName Property, Application.DoEvents Method, Application.ExecutablePath
Property, Application.ProductName Property, Application.ProductVersion Property

Idle Event Fires when the application is about to enter an idle state.

OpenForms Property New in 2005. The collection of open forms in the application.

ProductName Property * Gets the product name as stored in the assembly.

ProductVersion Property * Gets the product version information as stored in the assembly.

RemoveMessageFilter Method Removes a previously added message filter.

Run Method * Starts a new thread and message loop.

StartupPath Property Gets the path of the application that started the current process.

ThreadExit Event Fires when a thread is about to shut down.

Version Differences

Beginning with Visual Basic 2005, the My.Application object provides simplified access to many
application-specific features and informational properties.

See Also

Application.CompanyName Property, Application.DoEvents Method, Application.ExecutablePath
Property, Application.ProductName Property, Application.ProductVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.CompanyName Property

Class

System.Windows.Forms.Application

Syntax

 Dim result As String = Application.CompanyName

Description

The CompanyName property gets the company name for the application as recorded in the assembly.
It is set using the <AssemblyCompany> attribute of the assembly, which normally appears in the
AssemblyInfo.vb file. Its syntax is:

 <Assembly: AssemblyCompany("company")>

where company is the company name. This is a read-only property.

Version Differences

Visual Basic 2005 includes the My.Application.Info.CompanyName property, which provides similar
functionality.

See Also

Application Class, Application.ProductName Property, Application.ProductVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.DoEvents Method

Class

System.Windows.Forms.Application

Syntax

 Application.DoEvents()

Description

The DoEvents method allows the application to process events and messages waiting in its message
queue. Some processor-intensive activities in your application may prevent user-related input and
output events from occurring in a timely manner. The DoEvents method processes pending events.

Usage at a Glance

While DoEvents can be indispensable for increasing the responsiveness of your application, its
use should be limited, since it significantly impacts performance. For example, here are the
results of a test that counted the number of seconds required to iterate a simple For...Next loop
one million times, with and without an included DoEvents method call.

 Without DoEvents 0.01 seconds

 With DoEvents 49.26 seconds

If most of a procedure's processing occurs inside of a processor-intensive loop, one way to
avoid too many calls to DoEvents is to call it conditionally every 10, 100, or 1000 iterations. The
following code calls DoEvents once for every 1000 iterations:

 Dim soFar As Long = 0
 For soFar = 1 To 1000000
 If ((soFar Mod 1000) = 0) Then DoEvents
 Next soFar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Calling DoEvents from within event calls may cause pseudo-recursion issues, as the event
handler may be called again due to a separate message in the message queue.

Example

The following example demonstrates the usefulness of the DoEvents method. When the GetBusy
command button is clicked, it begins a very busy and infinite process. Normally, clicks on the
TakeABreak command button would be blocked by the activity, but the DoEvents method makes its
use possible.

 ' ----- Assumes a form with two buttons, GetBusy and TakeABreak.
 Private iterationsSoFar As Long
 Private interruptFlag As Boolean

 Private Sub GetBusy_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles GetBusy.Click
 interruptFlag = False
 Do While (interruptFlag = False)
 iterationsSoFar += 1
 DoEvents()
 Loop
 MsgBox("Loop interrupted after " & iterationsSoFar & _
 " iterations.")
 End Sub

 Private Sub TakeABreak_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles TakeABreak.Click
 ' ----- Stop the work.
 interruptFlag = True
 End Sub

Version Differences

Visual Basic 2005 adds an equivalent My.Application.DoEvents method.

See Also

Application Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.ExecutablePath Property

Class

System.Windows.Forms.Application

Syntax

 Dim result As String = Application.ExecutablePath

Description

The ExecutablePath property returns the complete path of the executable file for the application. This
is a read-only property.

Version Differences

The ExecutablePath property in the .NET Framework corresponds to the App.Path property in
VB 6.

Visual Basic 2005 includes the My.Application.Info.DirectoryPath property and other members of
the My.Application.Info object that provide similar information.

See Also

Application Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.ProductName Property

Class

System.Windows.Forms.Application

Syntax

 Dim result As String = Application.ProductName

Description

The ProductName property gets the product name of the application as recorded in the assembly. It
is set using the <AssemblyProduct> attribute of the assembly, which normally appears in the
AssemblyInfo.vb file. Its syntax is:

 <Assembly: AssemblyProduct("product")>

where product is the product name. This is a read-only property.

Version Differences

This property corresponds to the App.ProductName property in VB 6.

Visual Basic 2005 includes the My.Application.Info.ProductName property, which provides
similar functionality.

See Also

Application Class, Application.CompanyName Property, Application.ProductVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.ProductVersion Property

Class

System.Windows.Forms.Application

Syntax

 Dim result As String = Application.ProductVersion

Description

The ProductVersion property gets the product version information for the application as recorded in
the assembly. It is set using the <AssemblyVersion> attribute of the assembly, which normally
appears in the AssemblyInfo.vb file. Its syntax is:

 <Assembly: AssemblyVersion("major.minor.build.revision")>

where major, minor, build, and revision are the numeric parts of the version number. This is a read-

only property.

The version number is normally a set of four numbers that represent the major, minor, build, and
revision components of the version number. The default value is "1.0.*," which indicates that Visual
Studio maintains default build and revision numbers.

Version Differences

This property corresponds to the App.Major, App.Minor, and App.Revision properties in VB 6.

Visual Basic 2005 includes the My.Application.Info.Version property, which provides similar
functionality.

See Also

Application Class, Application.CompanyName Property, Application.ProductName Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.Run Method

Class

System.Windows.Forms.Application

Syntax

 Application.Run(mainForm)

mainForm (required; Windows.Forms.Form)

The form to use as the main form of the new application on the current thread

Other syntax variations are available.

Description

The Run method starts a new application on the current thread, specifying the main form to display
and use as the basis of the application. This is a common way of starting a Windows Forms
application.

Example

 Module GeneralCode
 Public Sub Main()
 ' ----- Starts the application.
 Application.Run(New Form1)
 End Sub
 End Module

Version Differences

Visual Basic 2005 includes new features that let you show the main form of an application with a
syntax more familiar to VB 6 developers. See the My.Forms Object entry in Chapter 13 for additional
information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Application Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array Class

Namespace

System

Creatable

Yes

Description

The Array object implements an ordered list of objects, numbered from 0 to a specified upper bound.
Arrays can include multiple dimensions, each of which has its own range. Although the Array class is
a distinct .NET class, it is wrapped by Visual Basic as its own array implementation; any standard VB
array can take advantage of the Array class features.

The following table lists some of the more useful and interesting members of the Array class. Those
marked with an asterisk (*) have separate entries in this chapter.

Member Description

BinarySearch
Method *

Searches for an element in a sorted array dimension

Clear Method Sets a range of array elements to their default content value

Clone Method
Creates a copy of an array, although reference type elements in the new array
refer to the same objects as those in the old array

Copy Method * Copies elements of one array into another existing array

GetValue Method Retrieves a single value from an array

IndexOf Method * Finds the first occurrence of a value in a range of array elements

IsReadOnly
Property

Indicates whether the array is read-only or not

LastIndexOf
Method *

Finds the last occurrence of a value in a range of array elements

Length Property Identifies the full number of elements in all dimensions

Rank Property Identifies the number of dimensions

Reverse Method * Reverses the order of a range of array elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

SetValue Method Sets a single value in an array

Sort Method * Sorts a range of elements in an array

Version Differences

Arrays in VB 6 were an intrinsic part of the language and were not associated with the larger set of
functionality available through the System.Array class.

SetValue Method Sets a single value in an array

Sort Method * Sorts a range of elements in an array

Version Differences

Arrays in VB 6 were an intrinsic part of the language and were not associated with the larger set of
functionality available through the System.Array class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.BinarySearch Method

Class

System.Array

Syntax

 Dim result As Integer = Array.BinarySearch(array, value[, comparer])

or:

 Dim result As Integer = Array.BinarySearch(array, index, _

 length, value[, comparer])

array (required; any array)

The one-dimensional array to be searched

value (required in syntax 1; any)

The value to search for in array

index (required in syntax 2; Integer)

The array element at which the search is to start

length (required in syntax 2; Integer)

The number of array elements to be searched

comparer (optional; IComparer interface)

A class implementing the IComparer interface that determines how two items are compared for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

equality

Description

The BinarySearch method returns the zero-based ordinal position of the first element that matches
value in array. The dimension or range being searched must already be sorted. This method uses a

binary search algorithm.

If nameSet is an array of names in alphabetical order, then the code:

 Array.BinarySearch(nameSet, "steve")

returns the position of the first element with the name "steve." If no match is found, BinarySearch
returns the negative number whose bitwise complement is the index of the first element that is larger
than "steve."

Usage at a Glance

The array must be a one-dimensional array sorted in ascending order.

If value is not found in the array, the method returns a negative number, which is the bitwise
complement of the index of the first element that is larger than value. To change this negative

value into an index you can use, use the Not operator, as in the following code fragment:

 position = Array.BinarySearch(someArray, valueToFind)
 If (position >= 0) Then
 MsgBox(position)
 Else
 MsgBox(position & vbCrLf & Not position)
 End If

If an array contains Boolean values, the method fails to correctly identify the position of the first
False value in the array.

By default, the System.Collections.Comparer class is used to compare value with the members
of array. It performs case-sensitive comparisons.

In addition to the Comparer class, you can also pass an instance of the
System.Collections.CaseInsensitiveComparer class as the comparer argument. It provides for

case-insensitive comparisons. For example:

 Dim someStates() As String = {"Alaska", "ALASKA", _
 "Michigan", "MICHIGAN", "New York", "NEW YORK"}
 Dim searchState As String
 Dim position As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim toCompare As New CaseInsensitiveComparer

 searchState = "MICHIGAN"
 position = Array.BinarySearch(someStates, searchState, toCompare)

The value of position will be 2.

See Also

Array Class, Array.IndexOf Method, Array.LastIndexOf Method, Array.Sort Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.Copy Method

Class

System.Array

Syntax

 Array.Copy(sourceArray, destinationArray, length)

or:

 Array.Copy(sourceArray, sourceIndex, destinationArray, _

 destinationIndex, length)

sourceArray (required; any array)

The source array to be copied

sourceIndex (required in syntax 2; Integer or Long)

The index in sourceArray at which copying begins

destinationArray (required; any array)

The destination array for the copied array items

destinationIndex (required in syntax 2; Integer or Long)

The index in destinationArray where the first element is to be copied

length (required; Integer or Long)

The number of elements to copy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The Copy method makes a copy of all or part of an array. Since arrays are reference types, setting
one array variable equal to another simply assigns a new reference to the same array. Consider the
following code:

 Dim mainArray() As Integer = {1, 2, 3}
 Dim otherArray() As Integer
 otherArray = mainArray
 otherArray(0) = 10
 MsgBox(mainArray(0)) ' Displays 10

Since changes to otherArray impacted mainArray, the two arrays are clearly the same.

The Copy method makes a true copy of the elements, not simply a new reference to the same array.
For arrays of value types, the new elements will be truly distinct. For arrays of reference types, the
new elements can still impact the original reference data.

Usage at a Glance

The first syntax copies a range of values from the beginning of sourceArray to the beginning of
destinationArray. The second syntax copies a range of values from anywhere in sourceArray to
anywhere in destinationArray.

sourceArray and destinationArray must have the same number of dimensions.

length is the total number of elements to be copied. If sampleArray is a two-by-two array (four

total elements), the statement:

 Array.Copy(sampleArray, 0, targetArray, 0, 3)

copies elements (0,0), (0,1), and (1,0) from sampleArray to targetArray.

To copy all elements, use UBound(sourceArray)+1 as an argument to length.

If sourceArray and destinationArray are the same, and destinationIndex lies within the range

of values being copied (that is, if the source and target ranges overlap), no data will be lost. The
method behaves as if it copies length elements from sourceArray to a temporary buffer, then
copies from the temporary buffer to destinationArray.

Example

This sample is similar to the code shown above in the "Description" section comments, but it uses the
Copy method instead of a direct assignment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim mainArray() As Integer = {1, 2, 3}
 Dim otherArray() As Integer
 ReDim otherArray(UBound(mainArray) + 1)
 Array.Copy(mainArray, otherArray, UBound(mainArray) + 1)
 otherArray(0) = 10
 MsgBox(mainArray(0)) ' Displays 1

Version Differences

Since arrays were not reference types in VB 6, you could simply create a copy of an existing array
through assignment, thus eliminating the need for a Copy method.

See Also

Array Class, Array.Sort Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.IndexOf Method

Class

System.Array

Syntax

 Dim result As Integer = Array.IndexOf(array, _

 value[, startIndex[, count]])

array (required; any array)

The array to be searched.

value (required; any)

The object to be searched for in the array.

startIndex (optional; Integer)

The index at which to begin the search. If omitted, the search begins with the first element of
the array.

count (optional; Integer)

The number of items to search. If omitted, the search continues to the end of the array.

Description

The IndexOf method returns the index of the first occurrence of value in array, or -1 if value was not

found within the range searched.

Usage at a Glance

array must be a one-dimensional array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifying a count value that goes past the end of the array results in an error.

Example

The following code searches for a value in an Integer array:

 Dim counter As Integer
 Dim dataSet(99999) As Integer
 For counter = 0 To 99999
 dataSet(counter) = CInt(Rnd() * 100000)
 Next counter
 MsgBox(Array.IndexOf(dataSet, 36500))

See Also

Array Class, Array.LastIndexOf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.LastIndexOf Method

Class

System.Array

Syntax

 Dim result As Integer = Array.LastIndexOf(array, _

 value[, startIndex[, count]])

array (required; any array)

The array to be searched.

value (required; any)

The object that is searched for in the array.

startIndex (optional; Integer)

The index at which to begin the search. If omitted, the search begins with the last element of
the array.

count (optional; Integer)

The number of items to search. If omitted, the search continues to the beginning of the array.
This count moves backward. If startIndex is 6 and count is 3, items 6, 5, and then 4 are

examined.

Description

The LastIndexOf method returns the index of the last occurrence of value in array, or -1 if value was

not found within the range searched.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

array must be a one-dimensional array.

The LastIndexOf method has the same syntax as the IndexOf method and works the same way
as IndexOf, except that it searches from the end of the array and returns the largest index of a
matching element.

Specifying a count value that goes past the beginning of the array results in an error.

Example

See the example for the Array.IndexOf Method entry, as the use of the LastIndexOf method is
identical.

See Also

Array Class, Array.IndexOf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.Reverse Method

Class

System.Array

Syntax

 Array.Reverse(array[, startindex, endindex])

array (required; any array)

The array to be reversed

startIndex (optional; Integer)

The index at which to start the reversal process

endIndex (optional; Integer)

The index at which to end the reversal process

Description

The Reverse method reverses a portion of, or all of, the elements of an array.

Example

 Dim counter As Integer
 Dim dataSet() As Integer = {1, 2, 3, 4, 5}
 Array.Reverse(dataSet, 1, 3)
 For counter = 0 To 4
 Debug.Write(dataSet(counter))
 Next counter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This code prints the sequence 14325, which is the original array 12345 with the middle section from
index 1 to index 3 reversed.

See Also

Array Class, Array.Sort Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.Sort Method

Class

System.Array

Syntax

 Array.Sort(array[, comparer])

 Array.Sort(array, index, length[, comparer])

 Array.Sort(keys, items[, comparer])

 Array.Sort(keys, items, index, length[, comparer])

array (required in syntax 1 and 2; any array)

The array of objects to be sorted.

keys (required in syntax 3 and 4; any array)

The array of keys to use for sorting. This array is also sorted.

items (required in syntax 3 and 4; any array)

A parallel array of values to be sorted in the order of keys, their corresponding keys.

index (required in syntax 2 and 4; Integer)

The index at which to start the sort.

length (required in syntax 2 and 4; Integer)

The number of items to include in the sort.

comparer (optional; IComparer interface)

An object implementing the IComparer interface to be used for sorting. If omitted, then the
sort uses the IComparable implementation of each element (either from array or keys).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The Sort method sorts a portion of, or all of, an entire one-dimensional array, with an optionally
specified key array and an optionally specified IComparer interface.

Example

 Public Sub SortArray()
 ' ----- Start with the unsorted data.
 Dim counter As Integer
 Dim dataSet() As Integer = {9, 8, 12, 4, 5}
 For counter = 0 To 4
 Console.Write(CStr(dataSet(counter)) & " ")
 Next counter
 Console.WriteLine("")

 ' ----- Sort and display the data.
 System.Array.Sort(dataSet)
 Console.WriteLine("Sorted:")
 For counter = 0 To 4
 Console.Write(CStr(dataSet(counter)) & " ")
 Next counter
 Console.WriteLine("")
 End Sub

The output is:

 9 8 12 4 5
 Sorted:
 4 5 8 9 12

See Also

Array Class, Array.Reverse Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asc, AscW Functions

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As Integer = Asc(string)

 Dim result As Integer = AscW(string)

string (required; String or Char)

Any expression that evaluates to a non-empty string

Description

The Asc and AscW functions return the character code for the first character of the string passed to
them. All other characters in the string are ignored. The range for the returned value is 0 to 255 on
Single Byte Character Set values, and 32768 to 32767 on Double Byte Character Set values. The
AscW version always uses the larger range.

Usage at a Glance

The Asc version uses the active code page of the current thread; the AscW function always uses the
general Unicode character set.

Example

 Dim charCode As Integer

 If Len(sampleString) > 0 Then
 charCode = Asc(sampleString)
 If (charCode < Asc("A")) Or (charCode > Asc("Z")) Then
 MsgBox("The first character must be uppercase.")
 End If
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Chr, ChrW Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AssemblyVersion Attribute

Class

System.Reflection.AssemblyVersionAttribute

Applies To

Assembly

Constructor

 New(version)

version (required; String)

The version of the assembly

Properties

Version (String)

Read-only. Value from the version constructor parameter.

Description

The <AssemblyVersion> attribute specifies the version of the assembly. The version is represented as
a four-part number, as follows:

 major.minor.build.revision

Ordinarily, the .NET runtime considers a difference in any one of these four-part numbers to indicate
a different version.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A wildcard character (*) in any of the four positions indicates that an assembly can be used with
clients requesting any value for the wildcard element. For example, if the version is set to "1.0.*,"
the assembly can be used for clients requesting Version 1.0.1681.0, 1.0.1723.0, and 1.0.1723.2.

In Visual Studio, the <AssemblyVersion> attribute is automatically added to the
AssemblyInfo.vb file, and its value is set to "1.0.*."

Version Differences

Beginning with Visual Basic 2005, the My.Application.Info.Version property returns the assembly
version information for the active application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asin Function

Class

System.Math

Syntax

 Dim result As Double = Math.Asin

(d)

d (required; Double)

A sine, a number from -1 to 1 inclusive

Description

The Asin function returns the arcsine of d in radians, between /2 and /2.

Usage at a Glance

If d is out of range, the function returns System.Double.NaN.

This is a shared member of the System.Math class, so it can be used without an instance.

To convert from radians to degrees, multiply by 180/ .

Version Differences

The Asin function did not exist in VB 6.

See Also

Acos Function, Atan Function, Atan2 Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Atan Function

Class

System.Math

Syntax

 Dim result As Double = Math.Atan(d)

d (required; Double)

A number representing a tangent

Description

The Atan function returns the arctangent in radians of d, in the range /2 to /2.

Usage at a Glance

If d is out of range, the function returns System.Double.NaN.

This is a shared member of the System.Math class, so it can be used without an instance.

To convert radians to degrees, multiply radians by 180/ .

Arctangent is not the cotangent. Arctangent is the inverse trigonometric function of the tangent;
cotangent is the reciprocal of the tangent.

Version Differences

In VB 6, Atan is an intrinsic VB function. In the .NET platform, it is a member of the System.Math
class and not directly part of the VB language.

See Also

Acos Function, Asin Function, Atan2 Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Atan2 Function

Class

System.Math

Syntax

 Dim result As Double = Math.Atan2(y, x)

x (required; Double)

The x-coordinate of a point

y (required; Double)

The y-coordinate of a point

Description

The Atan2 function returns the arctangent of the ratio x/y in radians. This is the angle in the

Cartesian plane formed by the x-axis and a vector starting from the origin (0,0) and terminating at
the point (x, y). More specifically, the return value satisfies the following:

For (x, y) in quadrant 1, 0 < result < /2.

For (x, y) in quadrant 2, /2 < result < .

For (x, y) in quadrant 3, < result < /2.

For (x, y) in quadrant 4, /2 < result < 0.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Atan2 function does not exist in VB 6.

See Also

Acos Function, Asin Function, Atan Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AttributeUsage Attribute

Class

System.AttributeUsageAttribute

Applies To

Class

Constructor

 New(validOn)

validOn (required; AttributeTargets enumeration)

Indicates the program elements to which a custom attribute can be applied. One of the
following System.AttributeTargets enumeration values: All, Assembly, Class, Constructor,
Delegate, Enum, Event, Field, Interface, Struct, Method, Module, Parameter, Property, or
ReturnValue. Multiple values can be Or'd together to indicate an attribute to be used for many
element types.

Properties

AllowMultiple (Boolean)

Indicates whether the attribute can be used more than once on a single program element. Its
default value is False.

Inherited (Boolean)

Indicates whether the attribute is automatically inherited by derived classes and overridden
members. Its default value is true.

ValidOn (AttributeTargets enumeration)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Read-only. Value from the validOn constructor parameter.

Description

The <AttributeUsage> attribute defines the program elements to which a custom attribute can be
applied. Its use is required when defining a custom attribute class.

Example

Chapter 9 discusses the use of the <AttributeUsage> attribute in the design of new custom attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Beep Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

 Beep()

Description

The Beep procedure sounds a tone through the computer's speaker.

Usage at a Glance

The frequency and duration of the tone depend on the computer's hardware. The user can also mute
all system sounds, and some users may be limited in their ability to hear the generated tone.

Example

 Public Sub Main()
 DoSomeLongFunction()
 Beep()
 MsgBox("Finished!")
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call Statement

Syntax

 [Call] procedureName([argumentList])

procedureName (required)

The name of the subroutine being called

argumentList (optional)

A comma-delimited list of arguments to pass to the subroutine being called

Description

The Call statement passes execution control to a procedure, function, or dynamic-link library (DLL)
procedure or function.

Usage at a Glance

Use of the Call keyword is optional.

argumentList, if present, must always be enclosed in parentheses.

If you use Call to call a function, the function's return value is discarded.

Example

 Call SomeProcedure(True, importantData)

 ...later...

 Public Sub SomeProcedure(ByVal silentFlag As Boolean, _
 ByVal workData As Integer)
 ...
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

In VB 6, calls to subroutines only included parentheses around the argument list when the Call
keyword was included. In .NET, parentheses are required whenever arguments are present.

In VB 6, when calling an external routine defined using the Declare statement, you could
override the defined method of passing an argument by specifying the ByVal or ByRef keywords
before the argument in the Call statement. In .NET, you cannot change the argument-passing
method from the defined setting.

See Also

CallByName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CallByName Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As Object = CallByName

(objectRef, procName, _

 useCallType, args())

objectRef (required; Object)

A reference to the object containing the property or method being accessed.

procName (required; String)

The name of the property or method to call or access.

useCallType (required; CallType enumeration)

The type of procedure being accessed. One of the following Microsoft.VisualBasic.CallType
enumeration values. Each member also has an equivalent Visual Basic intrinsic constant.

Value VB constant Description

Method vbMethod The called procedure is a method.

Get vbGet The called procedure retrieves a property value.

Set vbSet The called procedure sets the value of a property.

args (optional; any)

One or more comma-delimited arguments (a ParamArray argument) representing the
arguments required by the procedure being called. This may also be an array of argument
objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The CallByName function provides a method for calling a class member by name. It calls any property
accessor (get or set) or method and returns that member's return value, if available. The member
name is sent as a string instead of as a design-time compiled member.

Since procName is a string expression, it is possible to call routines dynamically at runtime using the

name of the members.

Usage at a Glance

The return type of CallByName is the return type of the called member.

procName is not case-sensitive.

The performance of CallByName is inferior to calling members through direct object member
access.

Example

The following example uses a parameter array to call the Multiply method of a class named
EasyMath:

 Module GeneralCode
 Public Sub TestCallByName()
 Dim mathTester As New EasyMath
 Dim testArguments() As Double = {1.0#, 2.0#, 3.0#}

 MsgBox(CallByName(mathTester, "Multiply", _
 CallType.Method, testArguments)) ' Displays "6"
 End Sub
 End Module

 Public Class EasyMath
 Public Function Multiply(ByVal sourceValues() As Double) _
 As Double
 Dim operationResult As Double = 1.0#
 Dim counter As Integer

 For counter = 0 To UBound(sourceValues)
 operationResult *= sourceValues(counter)
 Next counter
 Return operationResult
 End Function
 End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Call Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CBool Function

Syntax

 Dim result As Boolean = CBool(expression)

expression (required; String or Numeric)

Any numeric expression or a string representation of a numeric value. The string values "True"
and "False" are also supported.

Description

The CBool function converts expression to the Boolean data type.

Usage at a Glance

When a numeric value is converted to Boolean, any nonzero value is converted to true, and
zero is converted to False.

If the expression to be converted is a string, the string must be capable of being evaluated as a
number, or it must be "True" and "False." Any other string generates a runtime error.

You can check the validity of a numeric expression prior to using the CBool function by using the
IsNumeric function.

This function does not support named arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CByte Function

Syntax

 Dim result As Byte = CByte

(expression)

expression (required; String or Numeric)

Any expression in the valid range of the Byte data type

Description

The CByte function converts expression to the Byte data type.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

This function does not support named arguments.

Example

 Dim targetNumber As Byte
 If IsNumeric(stringNumber) Then
 targetNumber = CByte(stringNumber)
 End If

See Also

CSByte Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CChar Function

Syntax

 Dim result As Char = CChar(expression)

expression (required; String)

Any string expression

Description

The CChar function converts the first character of a string to the Char data type.

Usage at a Glance

Use the ChrW function to convert a numeric code to its corresponding Char data type.

This function does not support named arguments.

Example

 MsgBox(CChar("abc")) ' Displays "a"
 MsgBox(CChar("56")) ' Displays "5"

See Also

Chr, ChrW Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CDate Function

Syntax

 Dim result As Date = CDate

(expression)

expression (required; String or Numeric)

Any valid representation of a date and time

Description

The CDate function converts expression to the Date data type. The interpretation of the date

components in the expression is based on the locale setting of the local computer.

Usage at a Glance

The supported date range of the Date data type is from January 1, 1 AD to December 31, 9999
AD in the Gregorian calendar.

You can check that a date expression is valid using the IsDate function.

Passing an empty string to CDate generates an error.

This function does not support named arguments.

The CDate function makes some guesses about how to interpret invalid date formats so they are
still usable. For example, on systems that use the "m/d/yyyy" date component arrangement, a
source expression of "30/12/97" will still result in December 30, 1997, since CDate understands
that "30" is an invalid month, but "12" is valid. This can cause problems if your code expects an
error to be generated from this input.

The CDate function guesses the century if a two-digit year is supplied. It sometimes places it in
the previous century and sometimes in the current century. In general, two-digit years under
30 appear in the current century, while those 30 and beyond appear in the previous century.

If you do not specify a year, the CDate function uses the year from the current date on your
computer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

DateValue Function, TimeValue Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CDbl Function

Syntax

 Dim result As Double = CDbl(expression)

expression (required; Numeric or String)

Any expression in the valid range of the Double data type

Description

The CDbl function converts expression to the Double data type.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

In most cases, the numeric conversion functions are a better choice than the Val function when
converting a string, as the conversion functions take into account the system's regional settings.
However, Val converts empty strings to zero without error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

Example

 Dim targetNumber As Double
 If IsNumeric(stringNumber) Then
 targetNumber = CDbl(stringNumber)
 End If

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CSng Function, Val Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CDec Function

Syntax

 Dim result As Decimal = CDec(expression)

expression (required; Numeric or String)

Any expression in the valid range of the Decimal data type

Description

The CDec function converts expression to the Decimal data type.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

In most cases, the numeric conversion functions are a better choice than the Val function when
converting a string, as the conversion functions take into account the system's regional settings.
However, Val converts empty strings to zero without error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

Example

 Dim targetNumber As Decimal
 If IsNumeric(stringNumber) Then
 targetNumber = CDec(stringNumber)
 End If

Version Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Decimal data type replaces the VB 6 Currency data type, and it is appropriate for high-precision
numbers.

See Also

Val Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ceiling Function

Class

System.Math

Syntax

 Dim result As Double = Math.Ceiling(d)

d (required; Double)

Any valid number

Description

The Ceiling function returns the smallest integer greater than or equal to the argument d.

Example

 MsgBox(Math.Ceiling(12.1)) ' Displays 13
 MsgBox(Math.Ceiling(12.5)) ' Displays 13
 MsgBox(Math.Ceiling(-12.5)) ' Displays -12
 MsgBox(Math.Ceiling(-12.8)) ' Displays -12

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The Ceiling function did not exist in VB 6.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Floor Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ChDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 ChDir(path)

path (required; String)

The path of the directory to set as the new default or "current" directory

Description

The ChDir procedure changes the current working (default) directory.

Usage at a Glance

path can be either an absolute path or a relative path from the current directory.

Changing the default directory does not change the default drive; it only changes a particular
drive's default directory.

If the root of a drive is already the current directory, and you try to change to a parent
directory (".."), no error occurs and the directory is not changed.

An error occurs if the specified path does not exist.

Networked drives can only be used with ChDir if they have been mapped to a local drive letter
and that drive letter is used in path.

Example

 ChDir("c:\My Documents\My Folder\")
 ChDir("..") ' Uses the current directory's parent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

ChDir was a statement in VB 6; it is now a procedure (a method of the FileSystem class) and
requires parentheses around the path argument.

Visual Basic 2005 includes a My.Computer.FileSystem.CurrentDirectory property that provides
similar functionality.

See Also

ChDrive Procedure, CurDir Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ChDrive Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 ChDrive(drive)

drive (required; String or Char)

The letter of the drive (A-Z) to set as the new default drive

Description

The ChDrive procedure changes the current working (default) disk drive.

Usage at a Glance

Only the first character of drive is considered. If a zero-length string is supplied, the drive is not

changed.

The current directory is unaffected by the ChDrive procedure.

Since ChDrive only considers the first letter of the drive string, it is not valid to supply a UNC

path (such as \\ServerName\ShareName).

Use the CurDir function to determine the current drive and directory.

Example

The following example implements one method of testing for a valid drive using the ChDrive
procedure.

 Public Function IsAvailableDrive(newDrive As String) As Boolean
 ' ----- Check for the existence of a logical drive.
 Dim currentDrive As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- Save the current setting.
 On Error Resume Next
 currentDrive = Microsoft.VisualBasic.Left(CurDir(), 1)

 ' ----- Change to the proposed drive. If an error occurs,
 ' then assume the drive doesn't exist.
 Err.Clear()
 ChDrive(newDrive)
 If (Err.Number = 0) Then
 IsAvailableDrive = True
 Else
 IsAvailableDrive = False
 End If

 ' ----- Restore the previous settings.
 ChDrive(currentDrive)
 End Function

Version Differences

ChDrive was a statement in VB 6; it is now a procedure (a method of the FileSystem class) and
requires parentheses around the drive argument.

Visual Basic 2005 includes a My.Computer.FileSystem.CurrentDirectory property that provides
related functionality.

See Also

ChDrive Procedure, CurDir Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Choose Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As Object = Choose(index, item_1[, item_2[..., item_n]])

index (required; Double)

An expression that evaluates to the 1-based index of the object to choose from the list

item_1 to item_n (required; any)

A comma-delimited list of values from which to choose or a ParamArray object that includes the
items

Description

The Choose function programmatically selects an object from a predefined list of objects (which are
passed as parameters to the function) based on its ordinal position in the list.

Usage at a Glance

The item parameters can be variables, constants, literals, expressions, or function calls. Each
item may be of a different type; the return value will be of type Object.

If the rounded value of index does not correspond to an item in the list, the function returns

Nothing.

If index is not a whole number, it is rounded before being used.

All item parameters are fully evaluated before they are considered as results for the Choose
function. If they contain function calls, those functions will be called, even in the items that are
not returned by the function. For instance, in the statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 result = Choose(methodToUse, ProcessFile(tempFileName), _
 ProcessFile(mainFileName))

both calls to ProcessFile will always be performed, regardless of the value of methodToUse.
However, at most, only one return value from among the function calls will be returned from
the Choose function, and possibly none will be.

This function does not support named arguments.

By providing item_1 through item_n in the form of a ParamArray, the list of values can be

expanded or contracted programmatically at runtime.

Version Differences

In VB 6, item_1 through item_n must only take the form of a comma-delimited list. In .NET,

these arguments can also take the form of a ParamArray.

In VB 6, an error occurs if index falls outside the range of choices. In .NET, this condition results

in a return value of Nothing.

See Also

Switch Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chr, ChrW Functions

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As Char = Chr(charCode)

 Dim result As Char = ChrW(charCode)

charCode (required; Integer)

An expression that evaluates to a character code

Description

The Chr and ChrW functions return the character represented by charCode.

Usage at a Glance

The Chr version uses the active code page of the current thread; the ChrW function always uses
the general Unicode character set.

The following table lists some of the more commonly used character codes that are supplied in
the call to the Chr function:

Code Constant Description

0 vbNullChar
Used as a string terminator in many languages, such as
with C and C++

8 vbBack The backspace character

9 vbTab The tab character

10 vbLf The linefeed character

13 vbCr The carriage return character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Constant Description

34 ControlChars.Quote The quotation mark

Version Differences

The VB 6 ChrB function is no longer supported.

The VB 6 version of the Chr function returns a String; the .NET version returns a Char.

See Also

Asc, AscW Functions

34 ControlChars.Quote The quotation mark

Version Differences

The VB 6 ChrB function is no longer supported.

The VB 6 version of the Chr function returns a String; the .NET version returns a Char.

See Also

Asc, AscW Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CInt Function

Syntax

 Dim result As Integer = CInt(expression)

expression (required; Numeric or String)

Any expression in the valid range of the Integer data type

Description

The CInt function converts expression to the Integer data type; any fractional portion of expression

is rounded.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

In most cases, the numeric conversion functions are a better choice than the Val function when
converting a string, as the conversion functions take into account the system's regional settings.
However, Val converts empty strings to zero without error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

CInt differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same data type as what was passed in.

Example

 Dim targetNumber As Integer
 If IsNumeric(stringNumber) Then
 targetNumber = CInt(stringNumber)
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The CInt function under .NET most closely corresponds to the VB 6 CLng function, since both return
32-bit integers.

See Also

CLng Function, CShort Function, CUInt Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class...End Class Statement

Syntax

 [accessModifier] [Shadows] [MustInherit | NotInheritable]_

 Class name [(Of typeParamName)]

 [Inherits baseClass]

 [Implements interfaceName[, interfaceName...]]

 [statements]
 End Class

accessModifier (optional)

Specifies the scope and accessibility of the class. One of the following access levels:

Access level Description

Public
The class is publicly accessible anywhere, both inside and outside of the
project.

Private The class is accessible within the type in which it is defined.

Protected
The class is accessible only to the type in which it is defined and to derived
instances of that type.

Friend
The class is accessible only within the project that contains the structure
definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Friend access level is used.

Shadows (optional)

Indicates that the class shadows an identically named element in a base class.

MustInherit (optional)

This class can only be used as a base class for another derived class definition. Objects of this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

base class cannot be created.

NotInheritable (optional)

This class can only be used to create objects. It cannot be used as a base class for another
derived class.

name (required)

The name of the class.

typeParamName (optional; any)

Adds type parameter placeholders that will later enforce strong typing when the class is used.
The Of clause implements generics, which are fully described in Chapter 10. If generics will not
be used, this clause can be excluded.

baseClass (optional)

Indicates that the class inherits from another class.

interfaceName (optional)

Indicates that the class implements the members of one or more interfaces.

statements (required)

Code that defines the members of the class.

Description

The Class...End Class statement defines a class and its members. Class members include fields,
methods, properties, events, and other types.

Usage at a Glance

If the Inherits or Implements statements appear in a class module, they must appear before
any other statements in the module. If both are used, the Inherits keyword must appear
before the Implements keyword.

Class members are declared as Public, Private, Protected, Friend, or Protected Friend. The
Dim keyword is equivalent to Private when used for members.

To add a custom constructor within a class module, define a subroutine called New. The New
subroutine (like any other method) can be overloaded.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To add a destructor within a class module, override the Finalize method from the base
System.Object class, from which all classes inherit.

 Protected Overrides Sub Finalize()
 ' ----- Add other code here, and also call...
 MyBase.Finalize()
 End Sub

Destructors cannot be overloaded.

The Shadows keyword has the following meaning: if this class is derived from a base class and if
name is used in the base class as the name of any element type (property, method, constant,
enum, etc.), then any use of name in classes derived from the class name refers to the name class
rather than the name element in the base class. For more on shadowing, see Chapter 4.

For more information on classes and object-oriented programming practices, see Chapter 3.

One class property can be assigned as the default property using the Default keyword with its
definition.

The Me or MyClass keywords can be used within the Class...End Class construct to reference the
class.

Version Differences

The Class...End Class construct is new to VB under .NET. In VB 6, each class was defined in its
own class source code file. The syntax and functionality differences between them are
significant.

Visual Basic 2005 adds support for generics to classes, as discussed in Chapter 10.

See Also

Property Statement, Structure...End Structure Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clipboard Class

Namespace

System.Windows.Forms

Creatable

No

Description

The Clipboard class represents the Windows Clipboard, an object that allows data to be shared across
processes. The members of the Clipboard class allow data to be placed in, and retrieved from, the
Clipboard.

Version Differences

Visual Basic 2005 introduces the new My.Computer.Clipboard object, which encapsulates many
convenient clipboard-related features. Please refer to the "Clipboard Object" entry in Chapter 13 for
information on using the new features.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CLng Function

Syntax

 Dim result As Long = CLng(expression)

expression (required; Numeric or String)

Any expression in the valid range of the Long data type

Description

The CLng function converts expression to the Long data type; any fractional portion of expression is

rounded.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

In most cases, the numeric conversion functions are a better choice than the Val function when
converting a string, as the conversion functions take into account the system's regional settings.
However, Val converts empty strings to zero without error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

CLng differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same data type as what was passed in.

Example

 Dim targetNumber As Long
 If IsNumeric(stringNumber) Then
 targetNumber = CLng(stringNumber)
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The CLng function under .NET returns a 64-bit integer; the VB 6 CLng function returned a 32-bit
integer.

See Also

CInt Function, CShort Function, CULng Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CLSCompliant Attribute

Class

System.CLSCompliantAttribute

Applies To

All elements

Constructor

 New(isCompliant)

isCompliant (required; Boolean)

Indicates whether the program element is CLS-compliant

Property

IsCompliant (Boolean)

Read-only. Value from the isCompliant constructor parameter.

Description

The <CLSCompliant> attribute indicates whether the program element complies with the Common
Language Specification (CLS). If the <CLSCompliant> attribute is not present, the VB compiler does
not enforce CLS compliance. This can prevent other languages from successfully accessing
components written in VB.

If a particular program element is marked as CLS-compliant, it is assumed that all contained program
elements are CLS-compliant as well, unless they are explicitly marked otherwise.

By default, Visual Studio adds the <CLSCompliant> attribute to the AssemblyInfo.vb file and sets its
value to true.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CObj Function

Syntax

 Dim result As Object = CObj

(expression)

expression (required; any)

Any expression

Description

The CObj function converts any expression that can be interpreted as an object to the Object data
type.

Usage at a Glance

The operation of the CObj function is possible because all .NET data types derive from Object.

Once a data type is converted to type Object, you can display its value by calling its ToString
method:

 Dim strongFlag As Boolean = True
 Dim weakData As Object = CObj(strongFlag)
 MsgBox(weakData.ToString()) ' Displays "True"

Variables can be assigned to Object variables using direct assignment as well.

 Dim strongData As New SomeClass
 Dim weakData As Object
 weakData = strongData

This function does not support named arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The following code stores strongly typed data as an Object:

 Dim strongData As New SomeClass
 Dim weakData As Object
 weakData = CObj(strongData)

Version Differences

The CObj function did not exist in VB 6. The closest equivalent in VB 6 was CVar, which converted a
data type to a Variant.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection Class

Namespace

Microsoft.VisualBasic

Creatable

Yes

Syntax

 Dim result As [New] Collection

Description

A Collection object allows you to store members of any data type, including mixed types, as a
named group and to retrieve each one using a unique key.

Collection objects are a form of associative array, where each member is indexed by a meaningful
and unique key. The Collection object is discussed in more detail in Chapter 4.

The following table lists some of the more useful and interesting members of the Collection class.
Those marked with an asterisk (*) have separate entries in this chapter.

Member Description

Add Method * Adds a new item to the collection

Clear Method Removes all items from the collection

Contains Method Indicates whether the collection includes an item with a specific key

Count Property * Returns the number of items currently found in the collection

Item Property * Retrieves an item from the collection by position or by key

Remove Method * Removes an item from the collection

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use a Collection object to store data of any data type, including object types and even
other Collection objects.

The first member in a collection is stored at ordinal position 1, not at 0, as is done with arrays.

A highly efficient method of enumerating the members of a collection is to use the
ForEach...Next statement, as the following example shows:

 Dim unitedStates As New Collection
 Dim scanState As String

 ' ----- Build the list of states.
 unitedStates.Add("Alabama", "AL")
 unitedStates.Add("Alaska", "AK")
 ...and so on...

 ' ----- Process each state.
 For Each scanState In unitedStates
 MsgBox(scanState) ' Displays full name of state
 Next scanState

The Collection class is implemented specifically within the Visual Basic portion of the .NET
Framework. Other collection classes can be found in the System.Collections namespace.

Example

This example shows the basic use of the Collection class.

 Public Sub TestCollection()
 Dim miscItems As New Collection
 Dim displayText As string

 ' ----- Add each item with a key, but with different types.
 miscItems.Add("am", "second") ' Adds a String
 miscItems.Add(25, "third") ' Adds an Integer
 miscItems.Add("I"c, "first") ' Adds a Char

 ' ----- Now play them back in order.
 displayText = miscItems("first") & " " & _
 miscItems("second") & " " & miscItems("third")
 MsgBox(displayText) ' Displays "I am 25"
 End Sub

Version Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic 2005 adds support for generics to several collection-style classes. Generics are discussed
in Chapter 10.

See Also

Array Class, Hashtable Class, Queue Class, Stack Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection.Add Method

Class

Microsoft.VisualBasic.Collection

Syntax

 objectVariable.Add(item[, key[, before[, after]]])

objectVariable (required; Collection)

The instance of a Collection to which an item is to be added.

item (required; any)

The new item to add to the collection.

key (optional; String)

A unique string expression that specifies a key that can be used, instead of a positional index,
to access a member of the collection.

before (optional; Object)

The existing collection member immediately before which the new member will be inserted. If
after is used, this argument must be left blank. Either a numeric position or a key (String).

after (optional; Object)

The existing collection member immediately after which the new member will be inserted. If
before is used, this argument must be left blank. Either a numeric position or a key (String).

Description

The Add method adds an object to a collection with an optional search key and, optionally, at a
specific ordinal position. The new item may be of any type, and that type need not match the type of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

items already in the collection (unless using the new Visual Basic 2005 generics feature).

Usage at a Glance

If you do not specify a before or after value, the member is appended to the end of the

collection (in index order).

If you do not specify a key value, you will only be able to access the item by position or by

iteration using the For Each...Next statement.

The before or after argument can refer to an index or a key. For instance, consider the

following code:

 Dim someNames As New Collection()
 someNames.Add("Donna", "111")
 someNames.Add("Steve", "222")
 someNames.Add("Bill", "333", "222")
 MsgBox(someNames.Item(2))

This code adds "Bill" just before "Steve." The following statement could also be used to achieve
the same ordering of items.

 someNames.Add("Bill", "333", 2)

Key values must be unique, or an error occurs.

You can use named parameters to add items.

 unitedStates.Add(Key:="MT", Item:="Montana")

Version Differences

Visual Basic 2005 adds support for generics to several collection-style classes. Generics are discussed
in Chapter 10.

See Also

Collection Class, Collection.Count Property, Collection.Item Property, Collection.Remove Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection.Count Property

Class

Microsoft.VisualBasic.Collection

Syntax

 Dim result As Integer = objectVariable.Count

objectVariable (required; Collection)

The instance of a Collection for which items are to be counted

Description

The Count property returns the number of items currently contained in a collection.

Usage at a Glance

Collections are 1-based; this differs from arrays, which are 0-based. Collection items range from 1 to
the value returned by the Count property.

Example

 For counter = 1 To someCollection.Count
 oneItem = someCollection.Item(counter)
 ...more code here...
 Next counter

Version Differences

Visual Basic 2005 adds support for generics to several collection-style classes. Generics are discussed
in Chapter 10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Collection Class, Collection.Add Method, Collection.Item Property, Collection.Remove Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection.Item Property

Class

Microsoft.VisualBasic.Collection

Syntax

 objectVariable.Item(index)

objectVariable (required; Collection)

The instance of a Collection from which an item is to be retrieved

index (required; Integer or String)

Either the 1-based ordinal position (Integer) or the unique key (String) of an item in the
collection

Description

The Item property retrieves an item from a collection based on its position or its unique key.

Usage at a Glance

The Contains method of the Collection class can tell you whether the collection includes an
item with a specific key.

The Item property is the default member of the Collection object; the "Item" member name
can be omitted when retrieving items from a collection. The following two lines are functionally
identical:

 typicalItem = ordinaryCollection.Item(6)
 typicalItem = ordinaryCollection(6)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

Visual Basic 2005 adds support for generics to several collection-style classes. Generics are discussed
in Chapter 10.

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.Remove Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection.Remove Method

Class

Microsoft.VisualBasic.Collection

Syntax

 objectVariable.Remove(index)

objectvariable (required; Collection)

The instance of a Collection from which an item is to be removed

index (required; Integer or String)

Either the 1-based ordinal position (Integer) or the unique key (String) of an item in the
collection

Description

The Remove method removes an item from a collection based on its position or its unique key.

Usage at a Glance

Members of the collection that follow the removed member are automatically moved by one
ordinal position; no gaps are left in the collection. This also means that the ordinal positions of
many members may change during a deletion.

If you are deleting multiple members of a collection by numeric index value, you should delete
them backwardsfrom highest index value to lowestsince the collection is reindexed after each
deletion.

The Clear method of the Collection class removes all items immediately.

Version Differences

Visual Basic 2005 adds support for generics to several collection-style classes. Generics are discussed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in Chapter 10.

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.Item Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColorDialog Class

Namespace

System.Windows.Forms

Creatable

Yes

Description

The ColorDialog class represents a common dialog box for selecting a color. The ColorDialog class has
properties that let you configure, display, and retrieve the results from this dialog box, from which
the user selects a single color.

The following list discusses the more interesting members of the ColorDialog class.

AllowFullOpen Property

Configures the dialog box so that the user can define custom colors (true) or not (False). The
default is true.

AnyColor Property

Configures the dialog box so that all available basic colors are displayed (true), or so that only
a subset of these colors is displayed (False). The default is False.

Color Property

Upon successful use of the dialog box by the user, this property returns the selected color, an
instance of the System.Drawing.Color class. This class provides access to the color in several
ways. Distinct R, G, and B properties indicate the color components. The Name property
returns a preconfigured name for the coloror its numeric equivalent if no name is assigned.
There are also flags that provide more details about the color, such as IsKnownColor,
IsNamedColor, and IsSystemColor.

CustomColors Property

An array of integer values used to define the custom colors that will be shown in the dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

box.

Reset Method

Resets the dialog box, setting all options and custom colors to their default values, and setting
the selected color to black.

ShowDialog Method

Presents the dialog box to the user.

SolidColorOnly Property

For systems displaying 256 colors or less, this property, when TRue, restricts the dialog box to
solid colors only.

Example

The following code asks the user for a color and displays that color:

 Dim colorSelect As New ColorDialog()
 If (colorSelect.ShowDialog() = DialogResult.OK) Then
 Console.WriteLine(colorSelect.Color.ToString())
 Console.WriteLine(colorSelect.Color.Name)
 Else
 Console.WriteLine("No color chosen.")
 End If

Here is a typical example of what is returned by this code:

 Color [A=255, R=80, G=156, B=218]
 ff509cda

Version Differences

The public interfaces used for this ColorDialog class and the related VB 6 CommonDialog control are
quite different.

See Also

FontDialog Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

COMClass Attribute

Class

Microsoft.VisualBasic.COMClassAttribute

Applies To

Class

Constructor

 New([classID[, interfaceID[, eventID]]][, interfaceShadows])

classID (optional; String)

The class identifier (CLSID) globally unique identifier (GUID) that uniquely identifies the COM
class.

interfaceID (optional; String)

The interface identifier (IID) GUID that uniquely identifies the class's default COM interface.

eventID (optional; String)

The event identifier GUID that uniquely identifies an event.

interfaceShadows (optional; Boolean)

Indicates whether the COM interface name is the same as the name of another member of the
class or the base class. If omitted, the default value is False.

Properties

ClassID (String)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Read-only. Set by the classID class constructor parameter.

EventID (String)

Read-only. Set by the interfaceID class constructor parameter.

InterfaceID (String)

Read-only. Set by the eventID class constructor parameter.

InterfaceShadows (Boolean)

Indicates whether the COM interface name is the same as the name of another member of the
class or the base class. Set by the interfaceShadows class constructor parameter.

Description

The <COMClass > attribute adds metadata to a class that exposes a .NET class as a COM object. You
can supply the attribute with a class identifier, an interface identifier, and an event identifier. All are
GUIDs that can be generated by using the guidgen.exe utility. Using this attribute ensures that the
COM component retains the same GUIDs even when it is recompiled.

Example

The example defines a simple class named Contact that includes the <COMClass> attribute. The GUIDs
are in standard registry format except for the absence of the opening and closing braces.

 <COMClass(Contact.ClassID, Contact.InterfaceID, Contact.EventID)> _
 Public Class Contact
 Friend Const ClassID As String = _
 "C7BA6669-DCFB-43d6-9A74-B1BCC6EE467B"
 Friend Const InterfaceID As String = _
 "72663B50-6A44-46e7-83B6-F1A4F149FF5F"
 Friend Const EventID As String = _
 "BD2C0D5E-C0D7-4e1e-A9E8-AD29C8003D4B"

 Private contactName As String
 Private contactCity As String
 Private contactState As String
 Private contactZip As String

 Public Property Name() As String
 Get
 Return contactName
 End Get
 Set(ByVal value As String)
 contactName = value
 End Set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Property

 Public Sub New()
 MyBase.New()
 End Sub
 End Class

See Also

MarshalAs Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As String = Command()

Description

The Command function returns the arguments used when launching an application created with Visual
Basic.

Usage at a Glance

Command returns a string containing everything entered on the command line after the
executable filename. If there are no arguments available to return, the function returns an
empty string.

Command returns an unparsed string containing the command-line arguments. Use the Split
function to break the argument list up by spaces for easier processing.

 Dim eachArgument() As String
 eachArgument = Split(Command(), " ")

The shared GetCommandLineArgs method of the System.Environment class returns a string
array with a first element that is the program filename, and with remaining elements that are
the command-line arguments.

During the development phase, you can pass arguments to your program using the Command
line arguments text box, found in the Debug section of the application's Property Pages.

Example

The following example parses the command-line arguments, reporting them to the console. It looks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for a minus (-) or slash (/) sign at the start of an argument and considers everything after a colon to
be additional information for the argument. Given the command-line arguments:

 -d:50 -f -g -k

the program outputs the following text to the console:

 Option d, with parameter = 50
 Option f
 Option g
 Option k

The source code is as follows:

 ' Uses: Imports MVB = Microsoft.VisualBasic

 Public Sub ParseCommandLine()
 ' ----- Parse and display each argument.
 Dim eachArgument() As String
 Dim counter As Integer
 Dim optionText As String
 Dim paramText As String
 Dim colonPos As Integer

 ' ----- Put the arguments in an array.
 eachArgument = Split(Command(), " ")
 For counter = 0 To eachArgument.Length - 1
 optionText = eachArgument(counter)
 If (MVB.Left(optionText, 1) = "-") Or _
 (MVB.Left(optionText, 1) = "/") Then
 ' ----- Found a valid argument. Remove the - or /.
 optionText = Mid(optionText, 2)

 ' ----- See if there is a parameter.
 paramText = ""
 colonPos = InStr(optionText, ":")
 If (colonPos > 0) Then
 paramText = Mid(optionText, colonPos + 1)
 optionText = MVB.Left(optionText, colonPos - 1)
 End If

 ' ----- Report on the option.
 If (paramText = "") Then
 Console.WriteLine("Option " & optionText)
 Else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine("Option " & optionText & _
 ", with parameter = " & paramText)
 End If
 End If
 Next counter
 End Sub

Version Differences

Visual Basic 2005 includes a new My.Application.CommandLineArgs property that returns a collection
of the command-line arguments, with each argument as a separate item in the collection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Const Statement

Syntax

 [accessModifier] Const [Shadows] name [As type] = value

accessModifier (optional)

Specifies the scope and accessibility of the constant. One of the following access levels:

Access level Description

Public
The constant is publicly accessible anywhere, both inside and outside of the
project.

Private The constant is accessible only within the defining type.

Protected
The constant is accessible only to the code in the defining type or to one of
its derived types.

Friend
The constant is accessible only within the project that contains the constant
definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Public access level is used. The access modifier is excluded when the Const
statement is used within a procedure.

Shadows (optional)

Indicates that the constant shadows an identically named element in a base class. The Shadows
keyword is excluded when the Const statement is used within a procedure.

name (required)

The name of the constant.

type (optional; Type)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The data type of the constant; it can be Boolean, Byte, Char, Date, Decimal, Double, Integer,
Long, Object, SByte, Short, Single, String, UInteger, ULong, UShort, or the name of any
enumerated type.

value (required; any)

A literal, constant, or an expression made up of literals, constants, and the arithmetic or logical
operators, except Is and IsNot. Any of the conversion functions (such as CByte) are allowed, as
is AscW.

Description

The Const statement defines a constant value within a class, structure, or procedure. These constants
are also referred to as symbolic constants.

Usage at a Glance

If Option Strict is On, the As type clause is required.

Constants are inherently shared, static, and read-only.

Multiple constants can be defined through the same Const statement by separating the
definitions with commas. Each definition requires its own As clause.

If you are building a large application with many different modules, you may find your code
easier to maintain if you create a single separate code module to hold your Public constants.

If two or more constants with integral values make up a set of constants, you should consider
defining them through an enumerated data type using the Enum statement.

Example

 Private Const MY_CONSTANT As Double = 3.1417#

See Also

Dim Statement, Enum Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Continue Statement

Syntax

 Continue { Do | For | While }

Description

New in 2005. The Continue statement immediately jumps to the next iteration of a Do...Loop,
For...Next, For Each...Next, or While...End While loop construct. The second keyword of the Continue
statement matches the first word of the loop construct.

Usage at a Glance

If you have nested loops of the same type, the Continue statement goes to the next iteration of
the innermost loop (of the same type).

Continue Do is used for Do...Loop statements; Continue For is used for For...Next and For
Each...Next statements; Continue While is used for While...End While statements.

Using the Continue statement may cause a loop to exit if the next iteration would normally have
caused an exit of the loop.

Version Differences

The Continue statement is new with Visual Basic 2005.

See Also

Do...Loop Statement, For...Next Statement, For Each...Next Statement, While...End While Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cos Function

Class

System.Math

Syntax

 Dim result As Double = Math.Cos

(d)

d (required; Double)

An angle expressed in radians

Description

The Cos function returns the cosine of an angle, the ratio of the length of the side adjacent to the
angle divided by the length of the hypotenuse, in the range of -1 to 1 inclusive.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

To convert degrees to radians, multiply degrees by /180.

To convert radians to degrees, multiply radians by 180/ .

Version Differences

In VB 6, Cos is an intrinsic VB function. In the .NET platform, it is a member of the System.Math class
and not directly part of the VB language.

See Also

Cosh Function, Sin Function, Tan Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cosh Function

Class

System.Math

Syntax

 Dim result As Double = Math.Cosh(value)

value (required; Double)

An angle expressed in radians.

Description

The Cosh function returns the hyperbolic cosine of an angle.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The Cosh function did not exist in VB 6.

See Also

Cos Function, Sinh Function, Tanh Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateObject Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As Object = CreateObject(progID[, serverName])

progID (required; String)

The programmatic class identifier (ProgID) of the object to create. The ProgID is defined in the
system registry and usually takes the form library.class or application.class.

serverName (optional; String)

The name of the server on which the object resides. If omitted, the default value is an empty
string (""), which indicates that the local server is to be used.

Description

The CreateObject function creates an instance of an ActiveX or COM server and returns a new object
from that instance. Once created, that object's members can be accessed and used.

Usage at a Glance

If your project does not include a reference to the object's definition, you must declare the
object variable type as Object.

If an instance of the ActiveX object is already running, CreateObject may start a new server
instance when it creates the object.

CreateObject can only be used to create instances of COM or ActiveX objects; it cannot be used
to instantiate .NET components.

This function does not support named arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When using a variable of type System.Object to receive the result of the CreateObject function,
the new object will be late bound. Late binding is inherently less robust in terms of performance
than is early binding.

The serverName parameter allows you to specify a remote system as the source of the new

object instance. This code block demonstrates a possible use of this parameter:

 Dim primarySystem As String
 Dim secondarySystem As String
 Dim customer As Object

 primarySystem = "MainServer"
 secondarySystem = "BackupServer"

 If IsOnline(primarySystem) Then
 customer = CreateObject("Sales.Customer", primarySystem)
 Else
 customer = CreateObject("Sales.Customer", secondarySystem)
 End If

To obtain an object instance from an already running ActiveX server, use the GetObject function
instead.

If an object is registered as a single-instance object (an out-of-process ActiveX EXE), only one
instance of the object can be created at a time. Each time you call CreateObject to create this
object, you will obtain a reference to the same instance of the object.

Always set the instance variable to Nothing when you are finished, so that all required cleanup
code can run in a timely manner.

Example

The following code records the time required to access a Microsoft Excel application object, both by
early-binding and late-binding methods.

 Public Sub TestBinding()
 ' ----- Compare early and late binding.
 Dim startingTime As Double
 Dim message As String
 Dim excelAppLate As Object
 Dim excelAppEarly As Excel.Application

 ' ----- Calculate time for late binding.
 startingTime = DateAndTime.Timer
 excelAppLate = CreateObject("Excel.Application")
 excelAppLate = Nothing
 message = "Late Bound: " & _
 (DateAndTime.Timer - startingTime) & vbCrLf

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- Calculate time for early binding.
 startingTime = DateAndTime.Timer
 excelAppEarly = Excel.Application
 excelAppEarly = Nothing
 message &= "Early Bound: " & _
 (DateAndTime.Timer - startingTime)

 MsgBox (message, MsgBoxStyle.OKOnly, "Late and Early Binding")
 End Sub

See Also

GetObject Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CSByte Function

Syntax

 Dim result As SByte = CSByte(expression)

expression (required; String or Numeric)

Any expression in the valid range of the SByte data type

Description

New in 2005. The CSByte function converts expression to the SByte data type.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

Example

 Dim targetNumber As SByte
 If IsNumeric(stringNumber) Then
 targetNumber = CSByte(stringNumber)
 End If

Version Differences

The CSByte function is new in the 2005 version of VB.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CByte Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CShort Function

Syntax

 Dim result As Short = CShort(expression)

expression (required; Numeric or String)

Any expression in the valid range of the Short data type

Description

The CShort function converts expression to the Short data type; any fractional portion of expression

is rounded.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

In most cases, the numeric conversion functions are a better choice than the Val function when
converting a string, as the conversion functions take into account the system's regional settings.
However, Val converts empty strings to zero without error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

CShort differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same data type as what was passed in.

Example

 Dim targetNumber As Short
 If IsNumeric(stringNumber) Then
 targetNumber = CShort(stringNumber)
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The CShort function is new to VB under .NET. However, it corresponds directly to the VB 6 CInt
function, since both return 16-bit integers.

See Also

CInt Function, CLng Function, CUShort Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CSng Function

Syntax

 Dim result As Single = CSng(expression)

expression (required; Numeric or String)

Any expression in the valid range of the Single data type.

Description

The CSng function converts expression to the Single data type.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

In most cases, the numeric conversion functions are a better choice than the Val function when
converting a string, as the conversion functions take into account the system's regional settings.
However, Val converts empty strings to zero without error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

Example

 Dim targetNumber As Single
 If IsNumeric(stringNumber) Then
 targetNumber = CSng(stringNumber)
 End If

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CDbl Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CStr Function

Syntax

 Dim result As String = CStr(expression)

expression (required; any)

Any numeric, date, string, or Boolean expressionor most any other object

Description

The CStr function returns a string representation of expression.

Usage at a Glance

If expression is Boolean, the function returns one of the strings "true" or "False." For an

expression that can be interpreted as a date, the return value is a string representation of that
date, in the "short date" format of the host computer. For a numeric expression, the return
value is a string representing the number.

An uninitialized date variable passed to CStr returns "12:00:00AM."

This function does not support named arguments.

Objects in .NET include a ToString method, which can also be used to convert the object's value
to a string format.

See Also

CChar Function, Str Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CType Function

Syntax

 Dim result As typename = CType(expression, typename)

expression (required; any)

The value to be converted. This can be any data, object, structure, or interface type.

typename (required)

The data type, object type, structure, or interface to which expression is to be converted. This

can be virtually anything that can appear after the As clause of a Dim statement.

Description

The CType function converts an expression or object to the specified type.

Usage at a Glance

If expression cannot be converted to the new data type (perhaps due to incompatibility of the

types), an error occurs.

CType can perform the same conversions as the individual conversion functions. For example,
the last two lines in this code are equivalent:

 Dim booleanString As String = "True"
 Dim realBoolean As Boolean
 realBoolean = CBool(booleanString)
 realBoolean = CType(booleanString, Boolean)

This function does not support named arguments.

CType is often used to convert an object between its derived and base types. It is also used to
restore an object back to its true type from an instance of type Object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assignment of a derived object to its parent object type can be done implicitly. However,
assignments in the opposite direction (from base to descendant) need to be cast with CType if
Option Strict is On.

Example

Each list item added to a Windows Forms ListBox control includes an object of any type that is used
to both display the text and store custom user data. Internally, it is stored as Object. When you
retrieve the data object for a single list entry, you must convert it to the original type before using its
members.

This example defines a simple form with a ListBox. When an item is selected, the data associated
with the selected item is cast back to a TeamDetails object.

 Public Class BaseballTeams
 Inherits System.Windows.Forms.Form

 ' ----- Define a simple class to store in the list.
 Protected Class TeamDetails
 Public TeamName As String
 Public Members As Integer
 Public Sub New(ByVal fullName As String, _
 ByVal totalMembers As Integer)
 ' ----- Simple constructor.
 TeamName = fullName
 Members = totalMembers
 End Sub
 Public Overrides Function ToString() As String
 ' ----- Properly displays information in list box.
 Return TeamName & " (" & Members & ")"
 End Function
 End Class

 Private Sub BaseballTeams_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' ----- Add some basic teams.
 TeamNames.Items.Add(New TeamDetails("Tokyo Giants", 18))
 TeamNames.Items.Add(New TeamDetails("Seattle Mariners", 20))
 End Sub

 Private Sub TeamNames_SelectedIndexChanged(_
 ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles TeamNames.SelectedIndexChanged
 ' ----- To display the details, we must convert the type.
 Dim selectedTeam As TeamDetails

 selectedTeam = CType(TeamNames.SelectedItem, TeamDetails)
 MsgBox("Team = " & selectedTeam.TeamName & vbCrLf & _
 "Members = " & selectedTeam.Members)
 End Sub
 End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The CType function was not present in VB 6.

Visual Basic 2005 adds features that let you define custom CType conversions for use with your
own types. These features are part of the operator overloading additions, and they are
described in Chapter 5.

See Also

CBool Function, CByte Function, CChar Function, CDate Function, CDbl Function, CDec Function, CInt
Function, CLng Function, CObj Function, CSByte Function, CShort Function, CSng Function, CStr
Function, CUInt Function, CULong Function, CUShort Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CUInt Function

Syntax

 Dim result As UInteger = CUInt(expression)

expression (required; Numeric or String)

Any expression in the valid range of the UInteger data type

Description

New in 2005. The CUInt function converts expression to the UInteger data type; any fractional
portion of expression is rounded.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

In most cases, the numeric conversion functions are a better choice than the Val function when
converting a string, as the conversion functions take into account the system's regional settings.
However, Val converts empty strings to zero without error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

CUInt differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same data type as what was passed in.

Example

 Dim targetNumber As UInteger
 If IsNumeric(stringNumber) Then
 targetNumber = CUInt(stringNumber)
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The CUInt function is new in the 2005 version of VB.

See Also

CInt Function, CULng Function, CUShort Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CULng Function

Syntax

 Dim result As ULong = CULng

(expression)

expression (required; Numeric or String)

Any expression in the valid range of the ULong data type

Description

New in 2005. The CULng function converts expression to the ULong data type; any fractional portion of
expression is rounded.

Usage at a Glance

An expression that evaluates outside the valid range of the target data type results in a runtime
error. Nonnumeric expressions also generate an error.

In most cases, the numeric conversion functions are a better choice than the Val function when
converting a string, as the conversion functions take into account the system's regional settings.
However, Val converts empty strings to zero without error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

CULng differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same data type as what was passed in.

Example

 Dim targetNumber As ULong
 If IsNumeric(stringNumber) Then
 targetNumber = CULng(stringNumber)
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The CULng function is new in the 2005 version of VB.

See Also

CLng Function, CUInt Function, CUShort Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CUShort Function

Syntax

 Dim result As UShort = CUShort(expression)

expression (required; Numeric or String)

Any expression in the valid range of the UShort data type

Description

New in 2005. The CUShort function converts expression to the UShort data type; any fractional
portion of expression is rounded.

Usage at a Glance

An expression that evaluates outside the valid range of the target data-type results in a runtime
error. Nonnumeric expressions also generate an error.

In most cases, the numeric conversion functions are a better choice than the Val function when
converting a string, as the conversion functions take into account the system's regional settings.
However, Val converts empty strings to zero without error.

Use IsNumeric to test whether expression evaluates to a number.

This function does not support named arguments.

CUShort differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same data type as what was passed in.

Example

 Dim targetNumber As UShort
 If IsNumeric(stringNumber) Then
 targetNumber = CUShort(stringNumber)
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The CUShort function is new in the 2005 version of VB.

See Also

CShort Function, CUInt Function, CULng Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurDir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 CurDir([drive])

drive (optional; String or Char)

The letter of the drive (A to Z) from which to return the current directory

Description

The CurDir function returns the current directory of a particular drive or of the default drive.

Usage at a Glance

If no drive is specified or if drive is a zero-length string (""), CurDir returns the path for the

current working (default) drive.

Since CurDir only considers the first letter of the drive string, it's not possible to supply a UNC

path (such as \\ServerName\ShareName).

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.CurrentDirectory property that provides
related functionality.

See Also

ChDir Procedure, ChDrive Procedure, MkDir Procedure, RmDir Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Custom Event Statement

Syntax

 [accessModifier] [Shadows] Custom Event name As delegateName _

 [Implements implementsList]

 AddHandler(ByVal value As delegateName)

 [statements]
 End AddHandler

 RemoveHandler(ByVal value As delegateName)

 [statements]
 End RemoveHandler

 RaiseEvent(delegateSignature)

 [statements]
 End RaiseEvent
 End Event

accessModifier (optional)

Specifies the scope and accessibility of the custom event. One of the following access levels:

Access level Description

Public
The custom event is publicly accessible anywhere, both inside and outside of
the project.

Private The custom event is accessible only within the defining type.

Protected
The custom event is accessible only to the code in the defining type or to
one of its derived types.

Friend
The custom event is accessible only within the project that contains the
custom event definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Public access level is used.

Shadows (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Indicates that the custom event shadows an identically named element in a base class.

name (required)

The name of the custom event.

implementsList (optional)

Comma-separated list of the interface members implemented by this custom event.

delegateName (required)

A delegate with an argument signature that is used as the argument signature of this custom
event.

value (required)

The name of the accessor argument. By convention, this argument is named "value." The
argument is always of type delegateName.

statements (optional)

Program code to be executed within the AddHandler, RemoveHandler, and RaiseEvent accessors.

delegateSignature (optional; any)

A comma-delimited list of parameters to be supplied to the custom event as arguments when
the event is raised. This argument list must match the one defined by delegateName.

delegateSignature uses the following syntax and parts:

 [ByVal | ByRef] varname[()] [As argtype]

ByVal (optional)

The argument is passed by value; the local copy of the variable is assigned the value of the
argument. ByVal is the default method of passing variables.

ByRef (optional)

The argument is passed by reference; the local variable is a reference to the argument being
passed. All changes made to the local variable will also be reflected in the calling argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

varname (required)

The name of the argument.

argtype (optional; Type)

The data type of the argument. Any valid .NET data type can be used.

Description

New in 2005. The Custom Event statement defines a custom event that the containing type can raise
at any time using the RaiseEvent statement. As event handlers for this event are added, removed, or
called (raised), one the three accessors (AddHandler, RemoveHandler, and RaiseEvent) is called
respectively, immediately before the actual related action occurs. This allows the designer of the
event to exert more control over the lifetime of the event.

Usage at a Glance

To handle events, an object must be declared with the WithEvents keyword.

To declare an event without the additional AddHandler, RemoveHandler, and RaiseEvent
accessors, use the standard Event statement. See the Event Statement entry in this chapter for
more information.

Version Differences

The Custom Event statement is new with Visual Basic 2005.

See Also

Event Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateAdd Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Date = DateAdd

(interval, number, dateValue)

interval (required; String or DateInterval enumeration)

A String expression or Microsoft.VisualBasic.DateInterval enumeration item indicating which
part of the date to adjust. The following table lists both the string and enumeration choices.
Some intervals allow partial (decimal) values to be added to the date.

String DateInterval Description

d Day Day, to the nearest whole day

y DayOfYear Day, to the nearest whole day

h Hour Hour, to the nearest millisecond

n Minute Minute, to the nearest millisecond

m Month Month, to the nearest whole month

q Quarter Quarter (of a year), to the nearest whole quarter

s Second Second, to the nearest millisecond

w Weekday Day, to the nearest whole day

ww WeekOfYear Week, to the nearest whole week

yyyy Year Year, to the nearest whole year

number (required; Double)

An expression denoting the number of time intervals by which to alter the original date, either

http://lib.ommolketab.ir
http://lib.ommolketab.ir

positive (to add value) or negative (to subtract value).

dateValue (required; Date or date expression)

The starting date to which the interval is to be added or subtracted.

Description

The DateAdd function adds or subtracts a component date or time value to a starting date and returns
the new date. For instance, you can calculate the date 178 months before today's date, or the date
and time 12,789 minutes from now.

Usage at a Glance

The DateAdd function has a built-in calendar algorithm to prevent it from returning an invalid
date. For example, you can add 10 minutes to 31 December 1999 23:55, and DateAdd
automatically recalculates all elements of the date to return a valid date, in this case, 1 January
2000 00:05. Proper adjustments are made for leap years.

You can check that a date is valid using the IsDate function.

To add a number of days to dateValue, use either the day of the year ("y" or

DateInterval.DayOfYear), the day ("d" or DateInterval.Day), or the weekday ("w" or
DateInterval.Weekday).

DateAdd generates an error if the computed date falls outside the valid range of the Date data
type.

The Date data type also includes members that let you manipulate the date in ways that are
similar to the DateAdd function.

Example

 DateAdd(DateInterval.Day, 120, #3/3/2005#) ' Returns 7/1/2005

Version Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string for the interval

argument.

See Also

DateDiff Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateDiff Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Long = DateDiff(interval, date1, date2[, _

 dayOfWeek[, weekOfYear]])

interval (required; String or DateInterval enumeration)

A string expression or Microsoft.VisualBasic.DateInterval enumeration item indicating which
part of the date to report in the return value. The following table lists both the string and
enumeration choices.

String DateInterval Description

d Day The difference in days

y DayOfYear The difference in days

h Hour The difference in hours

n Minute The difference in minutes

m Month The difference in months

q Quarter The difference in quarters

s Second The difference in seconds

w Weekday The difference in weeks, based on counting individual days

ww WeekOfYear The difference in weeks, based on full calendar weeks

yyyy Year The difference in years

date1 (required; Date)

The first date from which to calculate the difference.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

date2 (required; Date)

The second date from which to calculate the difference. To return a positive result, this date
should occur after date1.

dayOfWeek (optional; FirstDayOfWeek enumeration)

Indicates the first day of the week. One of the following Microsoft.VisualBasic.FirstDayOfWeek
enumeration members: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or
System (to use the regional default). If omitted, Sunday is used.

weekOfYear (optional; FirstWeekOfYear enumeration)

Indicates which week counts as the first week of a given year. One of the following
Microsoft.VisualBasic.FirstWeekOfYear enumeration members.

Value Description

System Uses the system-defined value

Jan1 Uses the week in which January 1 appears

FirstFourDays Uses the first week of the year that has at least four days in it

FirstFullWeek Uses the first week of the year that has a full seven days in it

If omitted, Jan1 is used.

Description

The DateDiff function calculates the number of time intervals between two dates. For example, you
can use the function to determine how many days there are between January 1, 1980, and May 31,
1998.

Usage at a Glance

To calculate the number of days between date1 and date2, you can use the DateInterval

constants Day or DayOfYear or the string literals "d" or "y."

When interval is Weekday or "w," DateDiff returns the number of weeks between the two dates
based on the number of days between the two dates. When interval is Week or "ww," DateDiff
returns the number of weeks by first considering the full weeks in which date1 and date2 appear
and then counting based on the first day of each of these weeks. The dayOfWeek parameter is

significant in this calculation.

In the calculation, the interval is determined by subtracting date1 from date2. If date1 appears
before date2 in chronological order, the return value will be positive; if date1 appears after

http://lib.ommolketab.ir
http://lib.ommolketab.ir

date2 in chronological order, the return value will be negative.

The expression DateDiff("yyyy", #12/31/2005#, #1/2/2006#) returns 1, even though only two
days have elapsed. Similar results occur for related differences in other intervals.

DateDiff considers the four quarters of the year to be January 1 to March 31, April 1 to June
30, July 1 to September 30, and October 1 to December 31.

Version Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string for the interval

argument.

VB 6 supports a number of constants beginning with vb... (such as vbSunday) as values for the
dayOfWeek and weekOfYear arguments. While these are still supported in .NET, the new

FirstDayOfWeek and FirstWeekOfYear enumerations are preferred.

See Also

DateAdd Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DatePart Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 DatePart(interval, dateValue[, firstDayOfWeekValue[, _

 firstWeekOfYearValue]])

interval (required; String or DateInterval enumeration)

A String expression or Microsoft.VisualBasic.DateInterval enumeration item indicating which
part of the date to return. The following table lists both the string and enumeration choices.

String DateInterval Description

d Day The day of the month, from 1 to 31

y DayOfYear The day of the year, from 1 to 366

h Hour The hour of the day, from 0 to 23

n Minute The minute of the hour, from 0 to 59

m Month The month of the year, from 1 to 12

q Quarter The quarter of the year, from 1 to 4

s Second The second of the minute, from 0 to 59

w Weekday
The day of the week, from 1 to 7; the value 1 is normally used for
Sunday, but it may differ based on the firstDayOfWeekValue

parameter

ww WeekOfYear
The week number of the year, from 1 to 53; the
firstWeekOfYearValue parameter impacts this value

yyyy Year The year of the Gregorian calendar, from 1 AD to 9999 AD

dateValue (required; Date or date expression)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The date from which to extract a component.

firstDayOfWeekValue (optional; FirstDayOfWeek enumeration)

Indicates the first day of the week. One of the following Microsoft.VisualBasic.FirstDayOfWeek
enumeration members: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or
System (to use the regional default). If omitted, Sunday is used.

firstWeekOfYearValue (optional; FirstWeekOfYear enumeration)

Indicates which week counts as the first week of a given year. One of the following
Microsoft.VisualBasic.FirstWeekOfYear enumeration members.

Value Description

System Uses the system-defined value

Jan1 Uses the week in which January 1 appears

FirstFourDays Uses the first week of the year that has at least four days in it

FirstFullWeek Uses the first week of the year that has a full seven days in it

If omitted, Jan1 is used.

Description

The DatePart function returns an individual component of the date or time (such as the month or the
second) from a date or time value.

Usage at a Glance

DatePart replicates the functionality of the distinct Year, Month, Day, Hour, Minute, and Second
functions.

You can check that a date expression is valid using the IsDate function.

Version Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the interval

argument.

VB 6 supports a number of constants beginning with vb... (such as vbSunday) as values for the
firstDayOfWeekValue and firstWeekOfYearValue arguments. While these are still supported in

.NET, the new FirstDayOfWeek and FirstWeekOfYear enumerations are preferred.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

DateSerial Function, DateString Property, DateValue Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateSerial Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Date = DateSerial(year, month, day)

year (required; Integer)

The year, a number between 1 and 9999, inclusive

month (required; Integer)

The month, a number between 1 and 12, inclusive

day (required; Integer)

The day, a number between 1 and 31, inclusive

Description

The DateSerial function returns a Date with the value that is specified by the three date components.

Usage at a Glance

If the month or day value exceeds its normal limits in either a positive or negative direction,
DateSerial adjusts the date accordingly. For example, if you try DateSerial(2005, 1,
35)January 35, 2005DateSerial returns February 4, 2005.

If any of the parameters exceed the range of the Integer data type, a runtime error occurs.

DateSerial handles two-digit years in the same way as other Visual Basic date functions. A year
argument between 0 and 29 is taken to be in the current century; year arguments between 30
and 99 are taken to be in the previous century.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

DatePart Function, DateString Property, DateValue Function, TimeSerial Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateString Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As String = DateAndTime.DateString

or:

 DateAndTime.DateString = newDate

newDate (required in second syntax; String)

A date in string format used to set the current system date

Description

The DateString property gets or sets the current system date. The first syntax returns a string
representing the current system date in the "MM-dd-yyyy" format. The second syntax sets the
current system date using a string that is in a culture-independent format.

Usage at a Glance

The first syntax always returns a date in the format "MM-dd-yyyy."

The string in the second syntax must use one of the following date formats: "M-d-yyyy," "M-d-
y," "M/d/yyyy," or "M/d/y."

See the Format Function entry for details on custom date formats.

To get or set the current system time as a String, use the TimeString property.

To access the current system date as a Date, use the Today property.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The security settings of the active user may prevent the system date and time from being
altered.

Version Differences

The DateString property is new to VB under .NET. It is a replacement for the VB 6 Date statement,
which sets the system date, and the Date and Date$ functions, which retrieve the system date.

See Also

Format Function, Now Property, TimeString Property, Today Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateValue Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Date = DateValue(stringDate)

stringDate (required; String)

A string containing any valid date format

Description

The DateValue function converts stringDate to the Date data type, setting any time component to

midnight. The interpretation of the date components in the expression is based on the locale setting
of the local computer.

Usage at a Glance

The supported date range of the Date data type is from January 1, 1 AD to December 31, 9999
AD in the Gregorian calendar.

You can check that a date is valid using the IsDate function.

If stringDate includes time information as well as date information, the time information is

ignored. However, if only time information is passed to DateValue, an error is generated.

The DateValue function guesses the century if a two-digit year is supplied. It sometimes places
it in the previous century and sometimes in the current century. In general, two-digit years
under 30 appear in the current century, while those 30 and beyond appear in the previous
century.

See Also

CDate Function, DatePart Function, DateSerial Function, DateString Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Day Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Integer = Day(dateValue)

dateValue (required; Date)

The source date from which to extract the day

Description

The Day function returns a value from 1 to 31, representing the day of the month of the supplied
date.

Usage at a Glance

With Option Strict set to On, the source value must first be converted to a Date data type. You can
use the CDate function for this purpose. The IsDate function can also be used to confirm that the
source expression is a valid date.

See Also

DatePart Function, Month Function, WeekdayName Function, Year Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DDB Function

Class

Microsoft.VisualBasic.Financial

Syntax

 DDB(cost, salvage, life, period[, factor])

cost (required; Double)

The initial cost of the asset.

salvage (required; Double)

The value of the asset at the end of life.

life (required; Double)

Length of life of the asset.

period (required; Double)

Period for which the depreciation is to be calculated.

factor (optional; Double)

The rate at which the asset balance declines. If omitted, 2.0 is used by default (double-
declining method).

Description

The DDB function returns a Double representing the depreciation of an asset for a specific time period.
This is done using the double-declining balance method or another method that you specify using the
factor argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The double-declining balance method calculates depreciation at a differential rate, which varies
inversely with the age of the asset. Depreciation is highest at the beginning of an asset's life and
declines over time.

Usage at a Glance

The life and period arguments must be specified in the same time units. For instance, both

must be expressed in units of months, or both must be years.

All arguments must be positive numbers.

The double-declining balance depreciation method calculates depreciation at a higher rate in the
initial period and a decreasing rate in subsequent periods.

The DDB function uses the following formula to calculate depreciation for a given period:

 depreciation / period = ((cost - salvage) * factor) / life

Example

 Dim initialCost As Double = 2000
 Dim salvageValue As Double = 50
 Dim usefulLife As Double = 12
 Dim totalDepreciation As Double = 0
 Dim periodScan As Double
 Dim thisPeriodDepr As Double

 For periodScan = 1 To 12
 thisPeriodDepr = DDB(initialCost, salvageValue, _
 usefulLife, periodScan)
 totalDepreciation += thisPeriodDepr
 Console.WriteLine("Month " & periodScan & ": " & _
 thisPeriodDepr)
 Next periodScan

 Console.WriteLine("Total: " & totalDepreciation)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug Class

Namespace

System.Diagnostics

Creatable

No

Description

The Debug class is used to send messages to the Output Window (called the Immediate Window in
VB 6). The Debug class can also send output to other targets (such as text files) referred to as
listeners. See the Debug.Listeners Property entry for additional information. The Debug class also
allows you to check program logic with assertions.

Because the Debug class's members are shared, you do not need to instantiate a Debug object
before accessing its members. The following code fragment, for instance, illustrates a call to the
Debug object's WriteLine method:

 Debug.WriteLine(soFar & " iterations through the loop")

The following table lists some of the more useful and interesting members of the Debug class. Those
marked with an asterisk (*) have separate entries in this chapter.

Member Description

Assert Method * Tests a condition and reports problems

AutoFlush Property
Indicates whether written data should be flushed to the output stream
automatically

Close Method Flushes and closes each listener (except the Output Window)

Fail Method Sends an error message to the listeners

Flush Method Flushes all pending data to the listeners

Indent Method Increases the current indent level

IndentLevel
Property

Indicates the current indent level

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

IndentSize Property Identifies the number of spaces for each indent level

Listeners Property * Lists the collection of listeners

Unindent Method Decreases the current indent level

Write Method * Writes text to the debug listeners

WriteIf Method * Conditionally writes text to the debug listeners

WriteLine Method * Writes full-line text to the debug listeners

WriteLineIf Method
*

Conditionally writes full-line text to the debug listeners

Usage at a Glance

The Debug class features only work in the design-time environment; the statement has no effect in a
compiled application. You do not have to remove Debug-related features from your code before
release.

Version Differences

The VB 6 Debug object had only two methods: Assert and Print. The .NET Assert method is similar to
the VB 6 method of the same name, except that the .NET version displays a message if an
expression is False, while the VB 6 version suspends program execution. In .NET, the VB 6 Print
method is removed, replaced by the Write, WriteIf, WriteLine, and WriteLineIf methods.

See Also

Debug.Assert Method, Debug.Write Method, Debug.WriteLine Method

IndentSize Property Identifies the number of spaces for each indent level

Listeners Property * Lists the collection of listeners

Unindent Method Decreases the current indent level

Write Method * Writes text to the debug listeners

WriteIf Method * Conditionally writes text to the debug listeners

WriteLine Method * Writes full-line text to the debug listeners

WriteLineIf Method
*

Conditionally writes full-line text to the debug listeners

Usage at a Glance

The Debug class features only work in the design-time environment; the statement has no effect in a
compiled application. You do not have to remove Debug-related features from your code before
release.

Version Differences

The VB 6 Debug object had only two methods: Assert and Print. The .NET Assert method is similar to
the VB 6 method of the same name, except that the .NET version displays a message if an
expression is False, while the VB 6 version suspends program execution. In .NET, the VB 6 Print
method is removed, replaced by the Write, WriteIf, WriteLine, and WriteLineIf methods.

See Also

Debug.Assert Method, Debug.Write Method, Debug.WriteLine Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Assert Method

Class

System.Diagnostics.Debug

Syntax

 Debug.Assert(booleanExpression[, string1[, string2]])

booleanExpression (required; Boolean)

Expression that evaluates to a Boolean value

string1 (optional; String)

String to output if booleanExpression is False

string2 (optional; String)

Additional detail text to output if booleanExpression is False

Description

The Assert method outputs messages to the debug listeners if a condition fails.

Usage at a Glance

Assert is typically used to test an expression that should evaluate to true.

The Debug class features only work in the design-time environment; the statement has no
effect in a compiled application. You do not have to remove Debug-related features from your
code before release.

If neither string is supplied, the current call stack is output on failure.

Version Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The .NET Assert method is similar to the VB 6 method of the same name, except that the .NET
version displays a message if an expression is False, while the VB 6 version suspends program
execution.

See Also

Debug Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Listeners Property

Class

System.Diagnostics.Debug

Syntax

 Dim result As TraceListenerCollection = Debug.Listeners

Description

The Listeners property retrieves a collection of all TraceListener objects that monitor the debug
output. Each listener is a destination for all trace and debug information created by the application.

Usage at a Glance

While all Debug class features work within the development environment, they are disabled by
default in code compiled for release. They must be specifically enabled if you wish to use them in a
compiled application.

Example

The following code adds a text file output method to the collection of listeners. As a result, all
Debug.Write and similar methods will not only send the output to the Output Window (the default
listener) but also to the text file.

 ' ----- Uses "Imports System.IO" above.

 ' ----- Define a new listener object.
 Dim fileTrace As New TextWriterTraceListener()

 ' ----- Since the listener is generic and doesn't have any
 ' specific destination, the code needs to create the
 ' destination and associate it with the listener. In
 ' this case, the destination will be a file stream.
 Dim debugStream As FileStream = New FileStream("c:\log.txt", _
 FileMode.Append, FileAccess.Write)
 fileTrace.Writer = New StreamWriter(debugStream)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- Now the listener is ready to be used.
 Debug.Listeners.Add(fileTrace)

 ' ----- These Debug statements will go to the new file, and
 ' also to the Output Window.
 Debug.WriteLine("We are busy debug statements;")
 Debug.WriteLine("we go to two places at once.")

 ' ----- Test complete. Close all opened resources.
 Debug.Listeners.Remove(fileTrace)
 fileTrace.Close()
 debugStream.Close()

 ' ----- This Debug statement goes only to the Output Window.
 Debug.WriteLine("I'm not really that busy.")

See Also

Debug Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Write Method

Class

System.Diagnostics.Debug

Syntax

 Debug.Write(output[, category])

output (required; String or Object)

The string to be sent to the debug listener outputs. For Objects, the ToString method is used to
access the string content.

category (optional; String)

A category name used to group output messages; the text is attached to the beginning of
output.

Description

The Write method prints text to the Output Window and other debug listeners when an application
runs in the design-time environment.

Usage at a Glance

The Debug class features only work in the design-time environment; the statement has no effect in a
compiled application. You do not have to remove Debug-related features from your code before
release.

See Also

Debug Class, Debug.WriteIf Method, Debug.WriteLine Method, Debug.WriteLineIf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.WriteIf Method

Class

System.Diagnostics.Debug

Syntax

 Debug.WriteIf(condition, output[, category])

condition (required; Boolean)

Condition that must evaluate to true before output is sent to the debug listeners.

output (required; String or Object)

The string to be sent to the debug listener outputs. For Objects, the ToString method is used to
access the string content.

category (optional; String)

A category name used to group output messages; the text is attached to the beginning of
output.

Description

The WriteIf method prints text to the Output Window and other debug listeners when an application
runs in the design-time environment, provided that condition is TRue.

Usage at a Glance

The Debug class features only work in the design-time environment; the statement has no effect in a
compiled application. You do not have to remove Debug-related features from your code before
release.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug Class, Debug.Write Method, Debug.WriteLine Method, Debug.WriteLineIf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.WriteLine Method

Class

System.Diagnostics.Debug

Syntax

 Debug.WriteLine(output[, category])

output (required; String or Object)

The string to be sent to the debug listener outputs. For Objects, the ToString method is used to
access the string content.

category (optional; String)

A category name used to group output messages; the text is attached to the beginning of
output.

Description

The WriteLine method prints text to the Output Window and other debug listeners, followed by a line
break, when an application runs in the design-time environment.

Usage at a Glance

The Debug class features only work in the design-time environment; the statement has no effect in a
compiled application. You do not have to remove Debug-related features from your code before
release.

See Also

Debug Class, Debug.Write Method, Debug.WriteIf Method, Debug.WriteLineIf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.WriteLineIf Method

Class

System.Diagnostics.Debug

Syntax

 Debug.WriteLineIf(condition, output[, category])

condition (required; Boolean)

Condition that must evaluate to true before output is sent to the debug listeners.

output (required; String or Object)

The string to be sent to the debug listener outputs. For Objects, the ToString method is used to
access the string content.

category (optional; String)

A category name used to group output messages; the text is attached to the beginning of
output.

Description

The WriteLineIf method prints text to the Output Window and other debug listeners, followed by a
line break, when an application runs in the design-time environment, provided that condition is TRue.

Usage at a Glance

The Debug class features only work in the design-time environment; the statement has no effect in a
compiled application. You do not have to remove Debug-related features from your code before
release.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug Class, Debug.Write Method, Debug.WriteIf Method, Debug.WriteLine Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Declare Statement

Syntax

 [accessModifier] [Shadows] Declare [Ansi | Unicode | Auto] _

 {Sub | Function} name Lib "libname" [Alias "aliasname"] _

 [([arglist])] [As type]

accessModifier (optional)

Specifies the scope and accessibility of the declaration. One of the following access levels:

Access level Description

Public
The declaration is publicly accessible anywhere, both inside and outside of
the project.

Private The declaration is accessible only within the defining type.

Protected
The declaration is accessible only to the code in the defining type or to one
of its derived types.

Friend
The declaration is accessible only within the project that contains the
declaration definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Public access level is used.

Shadows (optional)

Indicates that the declaration shadows an identically named element in a base class.

Ansi (optional)

Converts all strings to ANSI values. This is the default if none of the string translation modifiers
are used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode (optional)

Converts all strings to Unicode values.

Auto (optional)

Converts the strings according to .NET rules based on the name of the method (or the alias
name, if specified).

name (required)

Any valid procedure name. Dynamic-link library (DLL) procedure and function names are case-
sensitive. If the aliasname argument is used, name represents the name by which the function
or procedure is referenced in your code, while aliasname represents the true name of the

routine as found in the DLL.

libname (required; String)

The name of the DLL or code resource that contains the declared procedure.

aliasname (optional; String)

Indicates the true name of the procedure or function in the DLL, as opposed to the local name
identified through name. If the true procedure or function name conflicts with a Visual Basic or

.NET keyword or reserved word, use this feature to supply a nonconflicting name.

arglist (optional)

A comma-delimited list of parameters defined by the DLL function or procedure. Each comma-
delimited parameter includes a parameter name and a data type.

arglist uses the following syntax and parts:

 [ByVal | ByRef] varname[()] [As argtype]

ByVal (optional)

The argument is passed by value to the DLL. ByVal is the default method of passing variables.

ByRef (optional)

The argument is passed by reference to the DLL. All changes made to the argument in the DLL
procedure will be reflected in the original variable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

varname (required)

The name of the argument, although it may vary from the parameter name given by the
designer of the DLL.

argtype (optional; Type)

The data type of the argument. Any valid .NET data type can be used. Visual Basic does not
examine the DLL at compile time to see if this data type is correct.

type (optional; Type)

Data type of the value returned by a DLL function. Arrays cannot be returned, but an Object
containing an array is valid.

Description

The Declare statement is used at the module level to declare references to external procedures in
DLLs.

Usage at a Glance

The data type of each parameter, and also the data type of the return value, may differ in name
between .NET and the DLL. For instance, 16-bit signed integers may be known as "Integer" in
the DLL, but they should be declared as Short in the Declare parameter list.

The number and type of arguments included in arglist are checked each time the procedure is

called.

You can use the # symbol at the beginning of aliasname to denote that aliasname is, in fact, the

ordinal position of a procedure within the DLL or code library. In this case, all characters
following the # sign must be numeric. For example:

 Friend Declare Function GetForegroundWindow Lib "user32" _
 Alias "#237" () As Long

DLL entry points are case-sensitive. Either name or aliasname (whichever one represents the

true name of the DLL procedure) must correspond in case exactly to the routine as it is defined
in the external DLL. If you aren't sure how the routine name appears in the DLL, use the
DumpBin.exe utility to view its export table. For instance, the following command displays the
export table of advapi32.dll, one of the Windows system files:

 dumpbin /exports c:\windows\system32\advapi32.dll

http://lib.ommolketab.ir
http://lib.ommolketab.ir

libname can include an optional path that identifies precisely where the external library is

located. If the path is not included along with the library name, VB searches the current
directory, the Windows directory, the Windows system directory, and the directories in the path,
in that order.

If the external library is one of the major Windows system DLLs (such as Kernel32.dll or
User32.dll), libname can consist of only the root filename, rather than the complete filename

and extension.

One of the most common uses of the Declare statement is to make routines in the Win32 API
accessible to your programs. For more on this topic, see Win32 API Programming with Visual
Basic by Steven Roman (O'Reilly Media).

The .NET Framework also defines a <DllImport> attribute that provides similar functionality.

In many cases, you can use routines available in the .NET Base Class Library or Framework
Class Library instead of calling procedures in the Win32 API.

Example

The following example retrieves the handle of a window from its title bar caption. This is done using
the FindWindow API function.

 Friend Declare Function FindWindow Lib "user32" _
 Alias "FindWindowA" (ByVal lpClassName As String, _
 ByVal lpWindowName As String) As Integer

 Private Sub ShowWindowHandle()
 MsgBox(FindWindow(vbNullString, "Document - WordPad"))
 End Sub

Version Differences

In VB 6, it is possible to declare the data type of an argument as Any, which suspends type
checking by the VB runtime engine. In .NET, this usage is not supported.

In VB 6, if ByVal or ByRef is not specified, an argument is passed to the calling procedure by
reference. In .NET, arguments are passed by value, by default.

In VB 6, it is possible to override the method in which an argument is passed to an external
function within the call itself by specifying either ByVal or ByRef before the argument. In .NET,
this usage is not permitted.

Due to data-type changes between VB 6 and VB under .NET, some data-type changes may be
required in the Declare statement. For instance, parameters declared as Integer in VB 6 are
declared as Short in .NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DefaultMember Attribute

Class

System.Reflection.DefaultMemberAttribute

Applies To

Class, Struct, or Interface

Constructor

 New(memberName)

memberName (required; String)

The name of the default member

Properties

MemberName (String)

Read-only. The name of the default member. Its value is set by the constructor's memberName

parameter.

Description

The <DefaultMember> attribute defines the default member of a structure, class, or interface. The
default member is the member executed by the Type object's InvokeMember method when a null
string is supplied as the method's name argument.

The Visual Basic Default keyword (part of the Property statement syntax) is ultimately translated by
the Visual Basic compiler into the <DefaultMember> attribute. Visual Basic, however, requires that
default members be parameterized. The use of the Default keyword allows you to specify a particular
array element without having to explicitly reference the member name. For instance, if the Items
property is the default member of CampSite, the statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CampSite.Items(10) = "Sleeping bag"

is functionally identical to:

 CampSite(10) = "Sleeping bag"

Because the <DefaultMember> attribute, unlike the Default keyword, does not have to refer to a
parameterized property, you can use the <DefaultMember> attribute to define default members that
are not parameterized. However, this does not allow you to omit a reference to that member in code
when using instances of the object. For instance, if the default member of the CashRegister object is
a member named TotalValue, you cannot reference it implicitly, as follows:

 CashRegister = 10

You can, however, invoke that member using the Type.InvokeMember method without explicitly
naming it.

The <DefaultMember> attribute and Default keyword are different in one other important respect. If
you use <DefaultMember> rather than Default to define a parameterized property as the default
member of a class, at runtime, Visual Basic will be unable to resolve implicit references to the
member. The sole capability that the <DefaultMember> attribute affords you is the ability to explicitly
invoke a default member using the Type.InvokeMember method.

If you use both the Default keyword and the <DefaultMember> attribute in the same class definition,
even if both reference the same member, an error occurs.

If memberName is not a member of the class, structure, or interface, the

<DefaultMember> attribute is ignored, and no error is raised.

Example

 Option Strict

 Imports System
 Imports System.Reflection

 <DefaultMember("GetName")> _
 Public Class Contact
 Private contactName As String
 Private contactCity As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private contactComments() As String

 Public Sub New()
 Me.New("John Doe", "Anywhere, U.S.A.")
 End Sub

 Public Sub New(ByVal fullName As String, _
 ByVal homeCity As String)
 MyBase.New()
 contactName = fullName
 contactCity = homeCity
 End Sub

 Public Property Name() As String
 Get
 Return contactName
 End Get
 Set(ByVal value As String)
 contactName = value
 End Set
 End Property

 Public Property Comments(index As Integer) As String
 Get
 Return contactComments(index)
 End Get
 Set(ByVal value As Integer)
 contactComments(index) = value
 End Set
 End Property

 Public Function GetName() As String
 Return contactName
 End Function

 Public Function GetCity() As String
 Return contactCity
 End Function
 End Class

 Module GeneralCode
 Public Sub Main
 Dim useContact As New Contact
 Dim contactType As Type = GetType(Contact)
 Dim bindings As BindingFlags = BindingFlags.Instance Or _
 BindingFlags.Public Or BindingFlags.InvokeMethod

 ' ----- The first two lines will produce the same result.
 Console.WriteLine(contactType.InvokeMember("", bindings, _
 Nothing, useContact, Nothing))
 Console.WriteLine(contactType.InvokeMember("GetName", _
 bindings, Nothing, useContact, Nothing))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine(contactType.InvokeMember("GetCity", _
 bindings, Nothing, useContact, Nothing))
 End Sub
 End Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Delegate Statement

Syntax

 [accessModifier] [Shadows] Delegate

 { Sub | Function } name _

 [(Of typeParamList)] [([argList])] [As type]

accessModifier (optional)

Specifies the scope and accessibility of the delegate. One of the following access levels:

Access level Description

Public
The delegate is publicly accessible anywhere, both inside and outside of the
project.

Private The delegate is accessible only within the defining type.

Protected
The delegate is accessible only to the code in the defining type or to one of
its derived types.

Friend
The delegate is accessible only within the project that contains the delegate
definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Public access level is used.

Shadows (optional)

Indicates that the delegate shadows an identically named element in a base class.

name (required)

The name of the delegate. It need not match the target procedure or function name.

typeParamList (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Adds type parameter placeholders that will later enforce strong typing when the delegate is
used. The Of clause implements generics, which are fully described in Chapter 10. If generics
will not be used, this clause can be excluded.

argList (optional; any)

The argument list specific to this delegate. It must have the same signature as the target
procedure or function, although the names of each argument need not match.

type (optional; any)

The return type of the function-associated delegate. The As clause is only used for function
parameters; it is excluded when defining a procedure delegate.

Description

The Delegate statement declares the parameters and return type of a delegate. The syntax is similar
to that used to declare subroutines and functions.

Usage at a Glance

Any procedure with an argument list and return type that match that of a declared delegate
class can be used to create an instance of this delegate class.

For more information on delegates, see Chapter 8.

Example

Consider the following class definition:

 Public Class SimpleClass
 Public Sub SimpleMethod(ByVal onlyArg As String)
 MsgBox(onlyArg)
 End Sub
 End Class

A delegate can be defined that carries the same signature as the SimpleMethod procedure.

 Delegate Sub MatchingDelegate(ByVal anyArg As String)

The following code uses the delegate to call the SimpleClass.SimpleMethod member:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Call a method through a delegate.
 Dim classInstance As New SimpleClass
 Dim theDelegate As MatchingDelegate

 ' ----- Define the delegate, passing the address of the
 ' object's method, which has a matching signature.
 theDelegate = New MatchingDelegate(AddressOf _
 classInstance.SimpleMethod)

 ' ----- Use Invoke to call the method.
 theDelegate.Invoke("test")
 End Sub

Version Differences

Delegates are new to VB under .NET.

Visual Basic 2005 adds support for generics to delegates. See Chapter 10 for information on
using generics.

See Also

Function Statement, Sub Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DeleteSetting Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

 DeleteSetting(appname[, section[, key]])

appname (required; String)

The name of the application branch to be deleted or that contains the setting to be deleted.

section (optional; String)

The name of the application's subkey that is to be deleted or that contains the key to be
deleted. This can be a single key or a relative registry path, with path components separated
by backslashes.

key (optional; String)

The name of the value entry to delete.

Description

The DeleteSetting procedure deletes a complete application settings branch, one of its subkeys, or a
single value entry within a subkey. All of these settings values are stored in the Windows registry.

Usage at a Glance

You cannot use DeleteSetting to delete entries from registry keys that are not subkeys of
HKEY_CURRENT_USER\Software\VBand VBA ProgramSettings.

section is a relative path (similar to that used to describe the directories on a hard drive) used

to navigate from the application key to the subkey to be deleted. For example, to delete the
value entry named TestKey in the registry key HKEY_CURRENT_USER\Software\VB and VBA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ProgramSettings\RegTester\BranchOne\BranchTwo, you would use:

 DeleteSetting("RegTester", "BranchOne\BranchTwo", "TestKey")

If key is supplied, only the value entry named key and its associated value are deleted. If key is
omitted, the subkey named section is deleted. If section is omitted, the entire application
branch named appname is deleted.

DeleteSetting cannot be used to delete the default value (i.e., the unnamed value entry)
belonging to any key. If you are using only the VB registry functions, though, this is not a
serious limitation, since SaveSetting does not allow you to create a default value.

Care should be used with this function, since it will allow you to delete entries created by other
Visual Basic applications.

If the key or branch to be deleted does not exist, an error occurs.

The .NET Framework includes registry-related features that provide more flexibility than the VB
"Settings" functions. These features are found in the Registry and RegistryKey classes of the
Microsoft.Win32 namespace.

Version Differences

Visual Basic 2005 includes several new features that let you manage the settings used by an
application. Although they are not compatible with the older VB "Settings" functions, they provide a
richer set of features. These features are located in the My.Settings object. The
My.Computer.Registry object also provides access to convenient registry-related features.

See Also

GetAllSettings Function, GetSetting Function, SaveSetting Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim Statement

Syntax

 [accessModifier] [[Shared] [Shadows] | [Static]] [ReadOnly] _
 [Dim

] [WithEvents] name[([subscripts])] _

 [As [New] type] [= expression]

accessModifier (optional)

Specifies the scope and accessibility of the variable(s). For variables defined within a procedure
or code block, no access modifier is permitted; all procedure-level and block-level variables
have procedure-level or block-level scope. For all module-level variables, one of the following
access levels may be used in place of the Dim keyword:

Access level Description

Public
The variable(s) are publicly accessible anywhere, both inside and outside of
the project.

Private The variable(s) are accessible only within the defining type.

Protected
The variable(s) are accessible only to the code in the defining type or to one
of its derived types.

Friend
The variable(s) are accessible only within the project that contains the
variable definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted in a declaration at the module level (and the Dim keyword is used instead), the
Public access level is used.

Shared (optional)

Indicates that the variables are shared variables instead of instance variables. Shared variables
may be accessed without a particular instance of the object. Shared variables are also known
as static variables, but they are different from Static variables used within procedures. The
Shared keyword is only valid in module-level declarations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shadows (optional)

Indicates that the variables shadow identically named elements in a base class. The Shadows
keyword is only valid in module-level declarations.

Static (optional)

Indicates that the variables have a lifetime that lasts for the lifetime of the object that contains
the variable, although their scope is limited to the procedure or code block in which they are
defined. The Static keyword is only valid in procedure-level or block-level declarations.

ReadOnly (optional)

Indicates that the variable(s) are read-only beyond their initial setting through expression;

they are functionally equivalent to Const fields. Static variables cannot be ReadOnly.

Dim (optional)

The Dim keyword is required unless one of the following keywords is used: Public, Private,
Friend, Protected, Protected Friend, or Static. When one of those keywords appears, Dim is
always excluded.

WithEvents (optional)

Indicates that the object will respond to, and process events through, event handlers. When
using the WithEvents keyword, the As clause must appear, and the data type may not be an
array. The WithEvents keyword is only valid in module-level declarations.

name (required)

The name of the variable.

subscripts (optional)

The dimensions of an array variable, with up to 60 comma-delimited dimensions. Each
dimension has the format:

 [[0 To] upper]

which indicates the upper bound of the array dimension. The optional 0 To clause is for clarity only;
all array dimensions have a lower bound of zero. All dimensions can be left blank to allow the array to
be dimensioned by expression, or later through a ReDim statement. You can indicate the number of
dimensions without indicating the range of each dimension by using commas only, without an upper

value for each dimension.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New (optional)

Creates an instance of an object and assigns it to name.

type (optional unless OptionStrict is On ; any)

The data type of name. If omitted, the data type is set to Object. If the New keyword is used,
type may be followed by constructor parameters in parentheses.

expression (optional)

Any expression that provides the initial value to assign to the variable; cannot be used if an As
New clause is used.

Description

The Dim statement declares and allocates storage space in memory for variables. The Dim statement
is used either at the module level or the procedure level to declare variables of a particular data type.

Usage at a Glance

If you use WithEvents, the variable cannot be of type Object.

If type does not expose any events, the WithEvents keyword generates a compiler error.

Reference types have an initial value of Nothing, unless the New keyword is used to assign an
initial value, or expression is used to assign an initial value.

Multiple variables may be declared with the same Dim statement; each variable is separated
from the others by a comma. If one of the variables is not given an explicit type declaration,
then its type is that of the next variable with an explicit type declaration. For example, in the
line:

 Dim first As Long, second, third, fourth As Integer

the variables second and third are of type Integer, as is fourth. In VB 6, the variables second
and third would have been of type Variant.

More than one variable can be assigned a value in a single Dim statement:

 Dim first As Integer = 6, second As Integer = 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variables that are not explicitly initialized by the Dim statement have the following default
values:

Data type Initial value

All numeric types 0

Boolean False

Date January 1, 1 AD, 12:00:00 AM

Object Nothing

String Nothing

Local variables can have procedure-level scope or block-level scope. A variable that is declared
within a Visual Basic procedure but not within a code block has procedure-level scope: its scope
consists of the procedure in which it is declared. If a variable is declared inside a code block (a
statement that contains subordinate statements, as with an If or For statement), then the
variable has block-level scope: it is visible only within that block. However, block-level variables
have a lifetime of the entire procedure. Once set, their value is retained even when the block is
exited.

There are several ways to declare and assign an initial value to a one-dimensional array:

 'Implicit constructor: No initial size and no initialization
 Dim sampleArray() As Integer

 'Explicit constructor: No initial size and no initialization
 Dim sampleArray() As Integer = New Integer() {}

 'Implicit constructor: Initial size but no initialization
 Dim sampleArray(6) As Integer

 'Explicit constructor: Initial size but no initialization
 Dim sampleArray() As Integer = New Integer(6) {}

 'Implicit constructor: Initial size implied by initialization
 Dim sampleArray() As Integer = {1, 2, 3, 4, 5, 6, 7}

 'Explicit constructor, Initial size and initialization
 Dim sampleArray() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

To declare a multidimensional array, use one of the following sample templates:

 ' Two-dimensional array of unknown size
 Dim sampleArray(,) As Integer

 ' Two-dimensional array of unknown size
 Dim sampleArray(,) As Integer = New Integer(,) {}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Two-dimensional array of size 3 by 2
 Dim sampleArray(3, 2) As Integer

 ' Two-dimensional array of size 3 by 2
 Dim sampleArray(,) As Integer = New Integer(3, 2) {}

 ' Two-dimensional array of size 3 by 2, initialized
 Dim sampleArray(,) As Integer = {{1, 4}, {2, 5}, {3, 6}}

 ' Two-dimensional array of size 3 by 2, initialized
 Dim sampleArray(,) As Integer = _
 New Integer(3, 2) {{1, 4}, {2, 5}, {3, 6}}

There is no limit to the number of object variables that can refer to the same instance using the
WithEvents keyword; they will all respond to that object's events.

Using Option Explicit On requires that each variable used in your code have a declaration.
Enforcing this requirement can greatly reduce potential errors in your code.

Static variables retain their value between calls to the procedure in which they are declared,
although a Static variable's scope is limited to the procedure in which it is created. A static
variable's initial value is set by expression. This initial assignment only occurs when the variable

is first created as part of the object instance creation process.

A type's constructor is called when you use the New keyword on a declaration. You may include
constructor parameters after type. If no parameters are supplied, the default parameterless

constructor is used.

If you attempt to iterate an array (such as with the For Each...Next statement) that has not yet
been dimensioned, an error occurs.

Version Differences

There are some syntax and functionality differences between the VB 6 and the .NET versions of
the Dim statement.

In VB 6, all variables that do not specifying a data type are of type Variant. In .NET, such
variables are of type Object.

When multiple variables are declared in a single Dim statement in VB 6, variables without a
specific data type are cast as Variant. In .NET, such variables are assigned to the data type of
the next variable (in the same statement) that has a declared data type.

.NET adds the ability to assign an initial value to a variable in the Dim statement.

In VB 6, all variables defined within a procedure have procedure-level scope. In .NET, variables
defined in code blocks (such as loops) have block-level scope.

VB 6 supports fixed-length strings; .NET does not include this feature.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB 6, arrays could be either fixed-length or dynamic. In .NET, all arrays are dynamic.

VB 6 allows you to set the lower bound of an array dimension to a nonzero value. The lower
bound of all .NET array dimensions is zero.

In VB 6, it was possible to define a procedure as Static; all variables within a Static procedure
would be Static. In .NET, the use of the Static keyword with Function or Sub statements is not
supported.

See Also

Private Keyword, Public Keyword, ReDim Statement, Static Statement, WithEvents Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As String = Dir([pathname[, attributes]])

pathname (optional; String)

A filename or directory, with optional wildcard characters * and ? in the filename component.

attributes (optional; FileAttribute enumeration)

One or more of the following Microsoft.VisualBasic.FileAttribute enumeration values, added or
Or'd together, specifying the file attributes to be matched:

Value Description

Normal Normal file (one that has neither the Hidden nor the System flag set)

ReadOnly Read-only flag set on file

Hidden Hidden file

System System file

Volume Volume label; must be used without any other attributes or enumeration values

Directory Directory or folder

Archive Archive flag set on file

If omitted, but pathname is supplied, Normal is used.

Description

The Dir function returns the name of a single file or directory matching the pattern and attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mask passed to the function. One or both of the arguments must be supplied the first time the Dir
function is called; this call returns the first match based on the supplied arguments. Subsequent calls
do not include any arguments and return the next match based on the original use of the function.
When there are no more matches, Dir returns an empty string.

Usage at a Glance

If attributes is not specified, files matching pathname are returned regardless of the attributes

defined for those files.

You can use the wildcard characters * and ? within pathname to return multiple files.

Using Volume for attributes returns the volume label for the drive specified by pathname instead

of a matching filename.

In previous versions of Visual Basic, the Dir function was commonly used to determine whether
a particular file existed. Although it can still be used for this purpose, the System.IO.File.Exists
method is more straightforward. In Visual Basic 2005, the My.Computer.FileSystem.FileExists
method also checks for the existence of a file.

The Dir function returns filenames in the order in which they appear in the file-allocation table.

The Dir function saves its state between invocations. This means that the function cannot be
called recursively. For example, if the function returns the name of the directory, you cannot
then call the Dir function to iterate the files in that directory and then return to the original
directory.

If you are calling the Dir function to return the names of one or more files, you must provide an
explicit file specification. For instance, if you want to retrieve the names of all files in the
Windows directory, the function call:

 fileMatch = Dir("C:\windows", FileAttribute.Normal)

fails. Instead, the Dir function must be called with pathname defined as follows:

 fileMatch = Dir("C:\windows*.*", FileAttribute.Normal)

Example

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Add all matching files to the list.
 Dim matchingFile As String

 ListBox1.Items.Clear()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 matchingFile = Dir(TextBox1.Text)
 Do While (matchingFile <> "")
 ListBox1.Items.Add(matchingFile)
 matchingFile = Dir()
 Loop
 End Sub

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.GetDirectoryInfo method that provides related
functionality. The My.Computer.FileSystem.FileExists method can be used to test for the existence of
a file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DirectCast Function

Syntax

 Dim result As typename = DirectCast(expression, typename)

expression (required; any)

The value to be converted. This can be any data, object, structure, or interface type.

typename (required; Type)

The data type, object type, structure, or interface to which expression is to be converted. This

can be virtually anything that can appear after the As clause of a Dim statement. However, this
type must have an inheritance relationship with the type of expression.

Description

The DirectCast function converts an expression or object to the specified type. The original type of
expression must have an inheritance relationship with the new type, or an error occurs.

Usage at a Glance

The cast will fail if the source and target data types do not have an inheritance relationshipthat
is, one does not eventually derive from the other. The cast may also fail if it is a narrowing cast
and Option Strict is On.

This function does not support named arguments.

Version Differences

The DirectCast function is new to VB under .NET.

Visual Basic 2005 includes a new tryCast function that includes slightly different functionality.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CType Function, TryCast Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory Class

Namespace

System.IO

Creatable

No

Description

The Directory class has a number of members that allow you to retrieve information about
directories, to move and delete a directory, and to create a new directory. All of the members of the
Directory class are shared methods, so they can be called without instantiating any objects. For
example, use the following statement to call the CreateDirectory method:

 Directory.CreateDirectory("C:\projects\project1")

The following table lists some of the more useful and interesting members of the Directory class.
Those marked with an asterisk (*) have separate entries in this chapter.

Member Description

CreateDirectory Method * Creates a new directory

Delete Method * Deletes an existing directory

Exists Method * Tests a directory to see if it exists

GetCreationTime Method * Gets the original creation date and time of a directory

GetCurrentDirectory Method
Gets the directory used for the "current" directory, from which all
relative paths derive

GetDirectories Method * Gets an array of all directories within a parent directory

GetDirectoryRoot Method * Gets the drive root of a given directory

GetFiles Method * Gets an array of all files within a parent directory

GetFileSystemEntries
Method *

Gets an array of all files and directories within a parent directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

GetLastAccessTime Method Gets the date and time that a directory was last accessed

GetLastWriteTime Method Gets the date and time that a directory was last modified

GetLogicalDrives Method * Gets an array of all logical drives on the local system

GetParent Method * Gets the parent directory of a given directory

Move Method * Moves a directory to a new location

SetCurrentDirectory Method
Selects the directory used for the "current" directory, from which all
relative paths derive

Version Differences

The Directory object loosely corresponds to the Folder object in the FileSystem Object object
model, part of the Microsoft Scripting Runtime Library and often used in VBScript and ASP-
based web development. There is, however, a significant difference in the members of each
class, and, in some cases, methods with similar functionality have different names.

Visual Basic 2005 includes a My.Computer.FileSystem object that provides directory
management functionality.

See Also

File Class

GetLastAccessTime Method Gets the date and time that a directory was last accessed

GetLastWriteTime Method Gets the date and time that a directory was last modified

GetLogicalDrives Method * Gets an array of all logical drives on the local system

GetParent Method * Gets the parent directory of a given directory

Move Method * Moves a directory to a new location

SetCurrentDirectory Method
Selects the directory used for the "current" directory, from which all
relative paths derive

Version Differences

The Directory object loosely corresponds to the Folder object in the FileSystem Object object
model, part of the Microsoft Scripting Runtime Library and often used in VBScript and ASP-
based web development. There is, however, a significant difference in the members of each
class, and, in some cases, methods with similar functionality have different names.

Visual Basic 2005 includes a My.Computer.FileSystem object that provides directory
management functionality.

See Also

File Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.CreateDirectory Method

Class

System.IO.Directory

Syntax

 Directory.CreateDirectory(path)

path (required; String)

The path of the new directory

Description

The CreateDirectory method creates a new directory based on a supplied path.

Usage at a Glance

path can be an absolute or a relative path. For example:

 ' ----- Absolute path.
 Directory.CreateDirectory("C:\Temp")

 ' ----- Relative path.
 Directory.CreateDirectory("..\Chapter2")

If needed, CreateDirectory creates all directories down the line to the final directory. For
example, the code:

 Directory.CreateDirectory("c:\NewDirectory\NewSubDirectory")

creates the NewDirectory directory if it does not exist and then creates the NewSubDirectory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directory if it does not exist.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path.

The CreateDirectory method does not raise an error if the directory to be created already exists.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.CreateDirectory method that provides similar
functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.Delete Method

Class

System.IO.Directory

Syntax

 Directory.Delete(path[, recursive])

path (required; String)

The path of the directory to delete.

recursive (optional; Boolean)

Indicates whether the directory and its entire contents (including nested subdirectories) are to
be deleted if the directory is not empty. Its default value is False.

Description

The Delete method deletes an existing directory, with all of its contents if requested.

Usage at a Glance

If path does not exist, a runtime error occurs.

If recursive is set to False and the directory is not empty, a runtime error occurs.

path can be either an absolute path or a relative path from the current directory.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path.

path cannot contain wildcard characters.

The Delete method permanently deletes directories and their contents. It doesn't move them to
the Recycle Bin.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Care must be taken when setting recursive to TRue, especially since no prompting is done

before the deletion occurs.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.DeleteDirectory method that provides similar
functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.Exists Method

Class

System.IO.Directory

Syntax

 Dim result As Boolean = Directory.Exists(path)

path (required; String)

The path of the directory whose existence is to be determined

Description

The Exists method indicates whether a given directory exists (true) or not (False).

Usage at a Glance

path can be either an absolute path or a relative path from the current directory.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path.

path cannot contain wildcard characters.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.DirectoryExists method that provides similar
functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetCreationTime Method

Class

System.IO.Directory

Syntax

 Dim result As Date = Directory.GetCreationTime(path)

path (required; String)

A valid path to be examined for a creation time

Description

Indicates the date and time when a given directory was first created

Usage at a Glance

path can be either an absolute path or a relative path from the current directory.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path.

path cannot contain wildcard characters.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.GetDirectoryInfo method that provides access
to detailed information about a directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetDirectories Method

Class

System.IO.Directory

Syntax

 Dim result() As String = Directory.GetDirectories(path[, _

 searchPattern[, searchOption]])

path (required; String)

A valid path to a directory.

searchPattern (optional; String)

A directory specification, optionally including the wildcard characters * and ?.

searchOption (optional; SearchOption enumeration)

New in 2005. One of the following Microsoft.VisualBasic.FileIO.SearchOption enumeration
members:

Member Description

AllDirectories The method returns information about all nested subdirectories.

TopDirectoryOnly The method returns information about the topmost directory only.

If omitted, TopDirectoryOnly is used.

Description

The GetDirectories method returns an array of strings, with each string containing the name of one
subdirectory of the specified main directory, optionally matching a pattern. The results can optionally
include all nested subdirectories.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usage at a Glance

path can be either an absolute path or a relative path from the current directory.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path.

path cannot contain wildcard characters, but searchPattern can.

If searchPattern is specified, the method returns only those directories with names that match

the string, which can contain wildcard characters. Otherwise, GetDirectories returns the names
of all the subdirectories in the path directory.

If the directory specified by path has no subdirectories, or if no directories match
searchPattern, an empty array is returned.

Example

The following code displays all top-level subdirectories of c:\ with names that start with the letter P:

 Dim thePDirectories() As String
 Dim counter As Integer
 thePDirectories = Directory.GetDirectories("c:\", "P*")
 For counter = 0 To UBound(thePDirectories)
 Console.WriteLine(thePDirectories(counter))
 Next counter

Version Differences

The searchOption parameter is new with Visual Basic 2005.

Visual Basic 2005 includes a My.Computer.FileSystem.GetDirectories method that provides
similar functionality.

See Also

Directory.GetFiles Method, Directory.GetFileSystemEntries Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetDirectoryRoot Method

Class

System.IO.Directory

Syntax

 Dim result As String = Directory.GetDirectoryRoot(path)

path (required; String)

A valid path to a directory

Description

The GetDirectoryRoot method returns the name of the root directory of the drive on which path

resides. For example, the code:

 Directory.GetDirectoryRoot("c:\Program Files\MyCompany")

returns the string "C:\" as the root directory.

Usage at a Glance

path can be either an absolute path or a relative path from the current directory.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path. For example, the code:

 Directory.GetDirectoryRoot("\\SomeServer\C\SomeFolder")

returns "\\SomeServer\C," and if the directory \\SomeServer\C\SomeFolder maps to the local
"Z" drive, then:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetDirectoryRoot("Z:\temp")

returns Z:\.

path cannot contain wildcard characters.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.GetDirectoryInfo method that provides access
to detailed information about a directory.

See Also

Directory.GetParent Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetFiles Method

Class

System.IO.Directory

Syntax

 Dim result() As String = Directory.GetFiles

(path[, _

 searchPattern[, searchOption]])

path (required; String)

A valid path to a directory

searchPattern (optional; String)

A file specification, optionally including the wildcard characters * and ?

searchOption (optional; SearchOption enumeration)

New in 2005. One of the following Microsoft.VisualBasic.FileIO.SearchOption enumeration
members:

Member Description

AllDirectories The method returns information about all nested subdirectories.

TopDirectoryOnly The method returns information about the top-most directory only.

If omitted, TopDirectoryOnly is used.

Description

The GetFiles method returns an array of strings, with each string containing the name of one file from
the specified main directory, optionally matching a pattern. The results can optionally include all
nested subdirectories.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usage at a Glance

path can be either an absolute path or a relative path from the current directory.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path.

path cannot contain wildcard characters, but searchPattern can.

If searchPattern is specified, the method returns only those files with names that match the

string, which can contain wildcard characters. Otherwise, the function returns the names of all
the files in the path directory.

If the directory specified by path has no files, or if no files match searchPattern, an empty

array is returned.

Example

The following code displays all files in c:\ that have the ".txt" extension:

 Dim allTextFiles() As String
 Dim counter As Integer
 allTextFiles = Directory.GetFiles("c:\", "*.txt")
 For counter = 0 To UBound(allTextFiles)
 Console.WriteLine(allTextFiles(counter))
 Next counter

Version Differences

The searchOption parameter is new with Visual Basic 2005.

Visual Basic 2005 includes a My.Computer.FileSystem.GetFiles method that provides similar
functionality.

See Also

Directory.GetDirectories Method, Directory.GetFileSystemEntries Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetFileSystemEntries Method

Class

System.IO.Directory

Syntax

 Dim result() As String = Directory.GetFileSystemEntries(path[, _

 searchPattern])

path (required; String)

A valid path to a directory

searchpattern (optional; String)

A file specification, optionally including the wildcard characters * and ?.

Description

The GetFileSystemEntries method returns a string array with the names of all files and directories in
the specified directory, optionally matching a pattern.

Usage at a Glance

path can be either an absolute path or a relative path from the current directory.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path.

path cannot contain wildcard characters, but searchPattern can.

If the directory specified by path has no files or subdirectories, or if no files or subdirectories
match searchPattern, an empty array is returned.

This method combines the functionality of the GetDirectories and GetFiles methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem object that provides access to detailed
information about files and directories.

See Also

Directory.GetDirectories Method, Directory.GetFiles Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetLogicalDrives Method

Class

System.IO.Directory

Syntax

 Dim result() As String = Directory.GetLogicalDrives
()

Description

The GetLogicalDrives method returns an array of strings, with each element containing the root
directory of each logical drive on the local system.

Usage at a Glance

In the case of a mapped network drive, GetLogicalDrives returns the letter to which the drive is
mapped. For instance, if the directory \\SomeServer\C\SomeFolder is mapped to the "Z" drive, then
GetLogicalDrives will return "Z:\" for this logical drive.

Example

 Dim allDrives() As String
 Dim counter As Integer
 allDrives = Directory.GetLogicalDrives()
 For counter = 0 To UBound(allDrives)
 Console.WriteLine(allDrives(counter))
 Next counter

Typical output for this code looks like the following:

 A:\
 C:\
 D:\

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 E:\
 F:\
 G:\

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.Drives property that provides similar
functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetParent Method

Class

System.IO.Directory

Syntax

 Dim result As DirectoryInfo = GetParent(path)

path (required; String)

A valid path to a directory

Description

The GetParent method returns a DirectoryInfo object representing the parent directory of path.

Usage at a Glance

path can be either an absolute path or a relative path from the current directory.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path.

path cannot contain wildcard characters.

The DirectoryInfo object contains many useful members, including informational properties and
directory manipulation tools.

Version Differences

Visual Basic 2005 includes My.Computer.FileSystem.GetDirectoryInfo and
My.Computer.FileSystem.GetParentPath methods that, when used together, provide one method of
achieving similar functionality.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetDirectoryRoot Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.Move Method

Class

System.IO.Directory

Syntax

 Directory.Move(sourceDirName, destDirName)

sourceDirName (required; String)

The name of the directory to be moved

destDirName (required; String)

The location to which the source directory and its contents are to be moved

Description

The Move method moves a directory and all its contents, including nested subdirectories and their
files, to a new location.

Usage at a Glance

sourceDirName and destDirName can be either absolute paths or relative paths from the current
directory. destDirName must include the name to be assigned to the moved directory. This

allows you to change the directory name as you move it.

sourceDirName and destDirName can be either paths on the local system, the paths of a mapped

network drive, or UNC paths.

Neither sourceDirName nor destDirName can contain wildcard characters.

If the directory indicated by destDirName already exists, an error occurs.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The statement:

 Directory.Move("c:\folder1", "c:\folder2")

moves folder1 to folder2 in the root of the C drive. That is, it moves all items found within folder1 to
a new directory named folder2 and removes the original folder1.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.MoveDirectory method that provides similar
functionality.

See Also

Directory.Delete Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do...Loop Statement

Syntax

 Do [{While | Until} condition]

 [statements]
 [Exit Do]

 [statements]
 [Continue Do]

 [statements]
 Loop

or:

 Do

 [statements]
 [Exit Do]

 [statements]
 [Continue Do]

 [statements]

 Loop [{While | Until} condition]

condition (optional; Boolean)

An expression that is reevaluated each pass through the loop

statements (optional)

Program statements to execute while (or until) condition is true

Description

The Do...Loop statement repeatedly executes program code while (or until) a given condition remains
TRue. When used with the While clause, the loop block is executed each time condition evaluates to
true; when used with the Until clause, the loop block is executed until condition evaluates to true.

Once the sustaining condition is no longer met, the entire loop is exited. The Exit Do statement can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be used at any time to exit the Do loop early.

If the condition appears at the top of the loop construct, the code within the loop might execute zero
or more times, depending on the evaluation result of condition. When the condition appears at the

bottom of the loop construct, the code within the loop always executes at least once.

New in 2005. The Continue Do statement can be used at any time to immediately jump back to the
top of the loop and attempt to process the next iteration. The condition is reevaluated immediately

upon reaching the top of the loop (or the bottom, if the condition is located there).

Usage at a Glance

You can create an infinite loop by leaving out the While and Until clauses completely.

 Do

 [statements]
 Loop

Such loops should generally include Exit statements so that the loop can eventually be exited.

A condition of Nothing is treated as False.

You can nest Do...Loop statements within each other.

Version Differences

Visual Basic 2005 includes the Continue Do statement.

See Also

While...End While Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E Field

Class

System.Math

Syntax

 Dim result As Double = Math.E

Description

The E field returns the approximate value of the irrational number e, the base of the natural
logarithms, approximately 2.71828182845905.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The E Field is new to VB under .NET.

See Also

PI Field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Statement

Syntax

 End

 End AddHandler
 End Class
 End Enum
 End Function
 End Get
 End If
 End Interface
 End Module
 End Namespace
 End Property
 End RaiseEvent
 End RemoveHandler
 End Select
 End Set
 End Structure
 End Sub
 End SyncLock
 End Try
 End Using
 End With
 End While

Description

Ends an application, a procedure, or a block of code.

Usage at a Glance

The End statement is used as follows:

Statement Description

End Terminates program execution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Statement Description

End AddHandler
New in 2005. Marks the end of an AddHandler block in a Custom
Event definition..

End Class Marks the end of a class definition.

End Enum Marks the end of a series of enumerated constants.

End Function Marks the end of a Function procedure.

End Get Marks the end of a Property Get definition.

End If Marks the end of an If...Then...Else statement.

End Interface Marks the end of an Interface definition.

End Module Marks the end of a code Module.

End Namespace Marks the end of a Namespace definition.

End Property Marks the end of a Property definition.

End RaiseEvent
New in 2005. Marks the end of a RaiseEvent block in a Custom
Event definition.

End
RemoveHandler

New in 2005. Marks the end of a RemoveHandler block in a Custom
Event definition.

End Select Marks the end of a SelectCase statement.

End Set Marks the end of a Property Set definition.

End Structure Ends the definition of a Structure (user-defined type).

End Sub Marks the end of a Sub procedure.

End SyncLock Terminates synchronization code in a SyncLock block.

End Try Marks the end of a try...Catch...Finally statement.

End Using New in 2005. Marks the end of a Using statement.

End With Marks the end of a With statement.

End While Marks the end of a While statement.

When used alone, the End statement wraps calls to the private FileSystem.CloseAllFiles function,
as well as to the System.Environment object's Exit method, making it a relatively safe
statement for terminating an application. However, it does not release resources not
automatically handled by the garbage collector, and it does not automatically call Finalize
destructors.

Version Differences

In VB 6, the End statement used by itself was to be avoided, since it terminated program
execution abruptly without performing normal cleanup operations. In .NET, End is much safer

End AddHandler
New in 2005. Marks the end of an AddHandler block in a Custom
Event definition..

End Class Marks the end of a class definition.

End Enum Marks the end of a series of enumerated constants.

End Function Marks the end of a Function procedure.

End Get Marks the end of a Property Get definition.

End If Marks the end of an If...Then...Else statement.

End Interface Marks the end of an Interface definition.

End Module Marks the end of a code Module.

End Namespace Marks the end of a Namespace definition.

End Property Marks the end of a Property definition.

End RaiseEvent
New in 2005. Marks the end of a RaiseEvent block in a Custom
Event definition.

End
RemoveHandler

New in 2005. Marks the end of a RemoveHandler block in a Custom
Event definition.

End Select Marks the end of a SelectCase statement.

End Set Marks the end of a Property Set definition.

End Structure Ends the definition of a Structure (user-defined type).

End Sub Marks the end of a Sub procedure.

End SyncLock Terminates synchronization code in a SyncLock block.

End Try Marks the end of a try...Catch...Finally statement.

End Using New in 2005. Marks the end of a Using statement.

End With Marks the end of a With statement.

End While Marks the end of a While statement.

When used alone, the End statement wraps calls to the private FileSystem.CloseAllFiles function,
as well as to the System.Environment object's Exit method, making it a relatively safe
statement for terminating an application. However, it does not release resources not
automatically handled by the garbage collector, and it does not automatically call Finalize
destructors.

Version Differences

In VB 6, the End statement used by itself was to be avoided, since it terminated program
execution abruptly without performing normal cleanup operations. In .NET, End is much safer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and is not to be avoided.

A number of the End statements, such as End Namespace, are new to .NET.

The End While statement replaces the VB 6 Wend statement to terminate a While loop.

The 2005 version of VB introduces the End Using, End AddHandler, End RaiseEvent, and End
RemoveHandler statements.

See Also

Exit Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enum Statement

Syntax

 accessModifier Enum [Shadows] name [As type]

 memberName [= constantExpression]

 memberName [= constantExpression]
 ...
 End Enum

accessModifier (optional)

Specifies the scope and accessibility of the enumeration. One of the following access levels:

Access
level

Description

Public
The enumeration is publicly accessible anywhere, both inside and outside of
the project.

Private
The enumeration is accessible only within the defining type. This level cannot
be used for namespace-level enumerations.

Protected
The enumeration is accessible only to the code in the defining type or to one of
its derived types. This level cannot be used for namespace-level enumerations.

Friend
The enumeration is accessible only within the project that contains the
enumeration definition.

Protected
Friend

Combines the access features of Protected and Friend. This level cannot be
used for namespace-level enumerations.

If omitted, the Public access level is used when declared within types, and Friend is used
when declared within namespaces.

Shadows (optional)

Indicates that the enumeration shadows an identically named element in a base class.

name (required)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the enumerated data type.

type (optional; integral type)

The data type of the enumeration. All enumerated members must be integer-based; possible
values are Byte, Integer, Long, SByte, Short, UInteger, ULong, and UShort. If omitted, the
default type is Integer.

memberName (required)

The name of a member of the enumerated data type.

constantExpression (optional; integral type)

The value to be assigned to memberName.

Description

The Enum statement defines an enumerated data type. All of the members and related values of the
data type are defined by the memberName entries.

Usage at a Glance

The Enum statement can appear at the namespace level and within types such as classes, but
not within members such as procedures.

constantExpression can be either a negative or a positive number. It can also be another

member of an enumerated data type or an expression that includes integers, constants, and
enumerated data types. The rules that apply to assigning values to constants also apply to
enumeration members. See the Const Statement entry in this chapter for more information.

If you assign a floating point value to constantExpression, it is automatically rounded and

converted to an integer only if Option Strict is Off; otherwise, it generates a compiler error.

If constantExpression is omitted, the value assigned to memberName is 0 if it is the first

expression in the enumeration. Otherwise, its value is 1 greater than the value of the preceding
memberName.

The values assigned to memberName entries cannot be modified at runtime.

Once you define an enumerated type, you can use name as you would any other data type.

Enumerated data type members appear as value types.

The compiler does not enforce range restrictions on variables declared using enumerated data
types. If an enumeration includes entries for integer values 1 through 5, your code can still
assign a value of 10 to the variable, even though 10 does not represent one of the enumerated
values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Individual values of an enumerated type can be used in your program just like normal
constants, except that they must be prefaced with the name of the enumeration.

If you want to retrieve or display the name of an enumerated member rather than its value,
you can use the member's ToString method. For example:

 Public Module GeneralCode
 Public Enum WorkDayTypes
 Weekday = 0
 Weekend = 1
 Holiday = 2
 Floating = 3
 Personal = 4
 Vacation = 5
 End Enum

 Public Sub TestEnum()
 Dim dayType As WorkDayTypes = WorkDayTypes.Vacation
 MsgBox(dayType.ToString()) ' Displays "Vacation"
 End Sub
 End Module

Example

 Public Enum AnnualQuarter
 FirstQuarter = 1
 SecondQuarter = 2
 ThirdQuarter = 3
 FourthQuarter = 4
 End Enum

Version Differences

In VB 6, members of an enumeration can be accessed without having to qualify them with the
name of the enumeration to which they belong. In .NET, this behavior is not permitted; the
members of an enumeration can only be accessed by referring to the name of their
enumeration.

In VB 6, all enumerated members are of type Long. .NET allows you to define the integral data
type of the enumeration's members.

In VB 6, members of a public enumeration can be hidden from the Object Browser by adding a
leading underscore to the member name. For example, in the enumeration:

 Public Enum Primes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [_x0] = 0
 x1 = 1
 x2 = 3
 End Enum

the constant _x0 is hidden in IntelliSense and the Object Browser unless the Object Browser's
"Show Hidden Members" option is selected. In .NET, a leading underscore does not hide a
member.

See Also

Const Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Environ Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As String = Environ(expression)

expression (required; String, or a numeric expression)

If expression is a string, it must be the name of an environment variable; if expression is

numeric, it must be the 1-based ordinal number of the environment variable within the
environment table.

Description

The Environ function returns the value assigned to an operating-system environment variable.

Usage at a Glance

A zero-length string ("") is returned if expression does not exist in the operating system's

environment-string table or if there is no environment string in the position specified by
expression.

If expression is numeric, both the name and the value of the variable are returned. An equals

sign (=) is used to separate them. For example, the function call Environ(1) might return the
string "TEMP=C:\WINDOWS\TEMP."

Environment variables are defined through various system startup files and relevant registry
entries.

Example

 Public Sub LoadEnvironmentStrings()
 ' ----- Store all environment strings internally.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim environmentEntries As New Collection
 Dim oneEntry As String
 Dim counter As Integer
 Dim parts As String()

 ' ----- Scan through each valid environment variable.
 counter = 1
 Do
 ' ----- Get the next entry.
 oneEntry = Environ(counter)
 If (oneEntry = "") Then Exit Do
 counter = counter + 1

 ' ----- Get the name and value parts.
 parts = Split(oneEntry, "=")

 ' ----- Store the variable in the collection.
 If (UBound(parts) = 0) Then
 environmentEntries.Add("(undefined)", parts(0))
 Else
 environmentEntries.Add(parts(1), parts(0))
 End If
 Loop
 MsgBox("Loaded " & environmentEntries.Count & " variable(s).")
 End Sub

Version Differences

In VB 6, the Environ function retrieved environmental variables and their values only from the
environment-string table. In .NET, the function retrieves values from both the environment-
string table and the system registry.

In VB 6, the function could be called using either the envString named argument (if the
argument was the name of an environment variable) or the number named argument (if the

number represented the ordinal position of the variable in the environment table). VB.NET
replaces these with a single named argument, expression.

Visual Basic 2005 adds the new My.Application.GetEnvironmentVariable method, which provides
related functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EOF Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As Boolean = EOF(fileNumber)

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

Description

The EOF function indicates whether the current position within an open file is at the end of the file
(true) or not (False). This function applies to files opened for binary, random, or sequential input.

Usage at a Glance

fileNumber must represent a file that is currently open.

If a file is opened for binary access, you cannot successfully use EOF with the Input procedure.
Instead, use LOF and Loc. If you want to use EOF, you must use FileGet rather than Input. In
this case, EOF returns False until the previous FileGet procedure is unable to read an entire
record.

When appending data to files, the current file position will always be the end of the file, since
the position marker is placed just after the most recently written data.

Example

 Dim oneLine As String
 Dim fileID As Integer = FreeFile()

 FileOpen(fileID, "c:\data.txt", OpenMode.Input, OpenAccess.Read)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Do While Not EOF(fileID)
 oneLine = LineInput(fileID)
 Console.WriteLine(oneLine)
 Loop
 FileClose(fileID)

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

LOF Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Erase Statement

Syntax

 Erase arrayList

arrayList (required)

A list of one or more comma-delimited array variable names to clear

Description

The Erase statement releases an array object and all of its items. This is equivalent to setting the
array variable to Nothing.

Usage at a Glance

The Erase statement causes all memory allocated to arrays to be released.

Once you use Erase to clear an array, it must be redimensioned with ReDim before being used
again.

See Also

Dim Statement, ReDim Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Erl Property

Class

Microsoft.VisualBasic.Information

Syntax

 Erl

Description

The Erl property indicates the line number on which an error occurred.

Usage at a Glance

Erl returns the line number only if one has been provided in the source code.

If the error occurs on a line that does not have a line number, Erl returns 0.

Erl is not affected by compiler settings. Compiling with the /debug- switch does not prevent Erl
from accurately reporting the line number.

Line numbersnumeric labels followed by a colonare rarely used in modern VB code.

Version Differences

In VB 6, line numbers are distinct from labels and do not require any colon or other symbol (other
than whitespace) to separate them from source code on the same lines. In .NET VB code, line
numbers are labels that must be followed by a colon.

See Also

Err Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err Object

Class

Microsoft.VisualBasic.ErrObject

Creatable

No

Description

The Err object supplies information about a single runtime error in a Visual Basic program. It also
lets you generate errors manually. Because the Err object is a shared object with global scope, you
do not need to create an instance of it to use its features.

When an error is generated in your applicationwhether it is handled or notVisual Basic populates the
properties of the Err object with the details of the error. You can also generate custom errors
through this object, to be handled by other parts of your code or by external assemblies that make
use of your components.

When your program reaches an Exit statement (such as Exit Function), a Resume statement, or
another On Error statement, the Err object is cleared and its properties reinitialized. This can also be
done explicitly using the Err.Clear method.

The following table lists some of the more useful and interesting members of the Err object. Those
marked with an asterisk (*) have separate entries in this chapter.

Member Description

Clear Method * Resets all the properties of the Err object.

Description
Property *

The text description for the active error.

Erl Property
Provides the line number of the active error; equivalent to the intrinsic Visual
Basic Erl property. See the Erl Property entry in this chapter for additional
information..

GetException
Method *

Returns an instance of a System.Exception object related to the active error, an
object more commonly used with the new structured exception handling
features of VB.

HelpContext
Property *

A related help context ID within an online help file, related to the active error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

HelpFile Property
*

The path to an online help file, related to the active error.

LastDLLError
Property *

The return value of the most recent DLL function call.

Number Property
*

The numeric code of the active error (the "error code").

Raise Method * Forces a specific error to occur immediately.

Source Property
*

The name of the application, project, or class that generated the active error.

Usage at a Glance

The Err object is not a collection; it contains information about only the most recent error, if
one occurred.

For a full description of error handling in Visual Basic, see Chapter 11.

See Also

Erl Property, Err.Description Property, Err.HelpContext Property, Err.HelpFile Property, Err.Number
Property, Err.Source Property

HelpFile Property
*

The path to an online help file, related to the active error.

LastDLLError
Property *

The return value of the most recent DLL function call.

Number Property
*

The numeric code of the active error (the "error code").

Raise Method * Forces a specific error to occur immediately.

Source Property
*

The name of the application, project, or class that generated the active error.

Usage at a Glance

The Err object is not a collection; it contains information about only the most recent error, if
one occurred.

For a full description of error handling in Visual Basic, see Chapter 11.

See Also

Erl Property, Err.Description Property, Err.HelpContext Property, Err.HelpFile Property, Err.Number
Property, Err.Source Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Clear Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

 Err.Clear()

Description

The Clear method explicitly resets all the properties of the Err object after an error has been
handled.

Usage at a Glance

Use the Clear method at your convenience when you want to make sure that an error contained
in the Err object is truly a new error and not a leftover error from an earlier block of code.

The Err object is automatically reset when any Resume, On Error, or Exit statement is executed.

Example

 On Error Resume Next
 Err.Clear()
 Call ErrorProneRoutineWithNoHandler()
 If (Err.Number <> 0) Then
 ' ----- The generated error must have come from the
 ' subroutine call, since the Clear() method
 ' set Err.Number to 0.
 MsgBox ("The Error : " & Err.Description & vbCrLf _
 & " was generated in " & Err.Source & ".")
 End If

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err Object, Err.Raise Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Description Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

 Dim result As String = Err.Description

Description

The Description property gets or sets a general text description of a runtime error.

Usage at a Glance

When a runtime error occurs, the Description property is automatically assigned the standard
description of the error.

While you can assign the Description property directly, the Err.Raise method is a better way to
assign the values of a custom error.

You can override a standard error description by assigning your own description to the
Description property for both VB errors and application-defined errors.

See Also

Err Object, Err.Number Property, Err.Source Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.GetException Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

 Dim result As System.Exception = Err.GetException()

Description

The GetException method returns the System.Exception object associated with the current error.

Usage at a Glance

If there is no exception, the method returns Nothing.

An Exception object is automatically supplied when using structured exception handling (the
try...Catch...Finally statement), but the traditional Visual Basic error-handling code relies on
the Err object. The GetException method lets you use elements of both types of error handling.

Version Differences

The GetException method is new to VB under .NET.

See Also

Err Object, Exception Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.HelpContext Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

 Dim result As Integer = Err.HelpContext

Description

The HelpContext property gets or sets the ID number of the online help page associated with the
active error, as found in the help file indicated by the Err.HelpFile property.

Usage at a Glance

When a runtime error occurs, the HelpContext property is automatically assigned for standard
Visual Basic and .NET errors.

While you can assign the HelpContext property directly, the Err.Raise method is a better way to
assign the values of a custom error.

When errors occur that have both the HelpFile and HelpContext properties set, the user can
press the F1 key from the standard Visual Basic error dialog box to view the related online help.
You can also use these values to manually display online help related to an error.

Help context IDs can be assigned to online help file pages as part of the design process for
these files. See the documentation supplied with your online help development tool for
information on setting these IDs.

See Also

Err Object, Err.HelpFile Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.HelpFile Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

 Dim result As String = Err.HelpFile

Description

The HelpFile property gets or sets the path to the online help file associated with the active error.

Usage at a Glance

When a runtime error occurs, the HelpFile property is automatically assigned for standard Visual
Basic and .NET errors.

While you can assign the HelpFile property directly, the Err.Raise method is a better way to
assign the values of a custom error.

When errors occur that have both the HelpFile and HelpContext properties set, the user can
press the F1 key from the standard Visual Basic error dialog box to view the related online help.
You can also use these values to manually display online help related to an error.

See Also

Err Object, Err.HelpContext Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.LastDLLError Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

 Dim result As Integer = Err.LastDLLError

Description

The LastDLLError property is a read-only property that contains the return code of the most recently
called external DLL function.

Usage at a Glance

Only direct calls to a Windows system DLL function from VB code will assign a value to the
LastDLLError property.

No error or exception is raised when Visual Basic sets the LastDllError property. You must
manually examine this field when appropriate.

The LastDLLError property is only used by system DLLs, such as kernel32.dll. Therefore, errors
that occur within DLLs you may have created will not cause an error code to be assigned to the
property.

Some DLL calls to the Windows API return 0 to denote a successful function call, and others
return 0 to denote an unsuccessful call.

See Also

Err Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Number Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

 Dim result As Integer = Err.Number

Description

The Number property gets or sets the numeric error code for the active error.

Usage at a Glance

When a runtime error occurs, the Number property is automatically assigned the numeric code
of the error.

While you can assign the Number property directly, the Err.Raise method is a better way to
assign the values of a custom error.

Many COM and OLE errors include an OLE-specific error flag in the error code. Use the following
code snippet to get the true error code after an OLE-related error.

 Dim trueError As Integer
 If ((Err.Number And vbObjectError) = vbObjectError) Then
 trueError = Err.Number - vbObjectError
 End If

See Also

Err Object, Err.Description Property, Err.Source Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Raise Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

 Err.Raise(number[, source[, description[, helpFile, helpContext]]])

number (required; Integer)

A numeric code for a particular error

source (optional; String)

The name of the project, application, or class responsible for generating the error

description (optional; String)

A useful description of the error

helpFile (optional; String)

The fully qualified path to a Microsoft Windows help file containing online help or reference
material about the error

helpContext (optional; Integer)

The context ID within helpFile

Description

The Raise method generates a runtime error, specifying the details of the error, including optional
online help file information.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you supply any of the number, source, description, helpFile, or helpContext arguments when

you call the Err.Raise method, they are supplied as values to the Number, Source, Description,
HelpFile, and HelpContext properties of the Err object, respectively. Refer to the entries of the
individual properties in this chapter for additional information.

Visual Basic errors are in the range 0 to 65535. The range 0 to 512 is reserved for system
errors; the range 513 to 65535 is available for user-defined errors. When setting the Number
property to your own error code, add the vbObjectError constant to your error code.

The Raise method does not reinitialize the Err object prior to assigning the values you pass in
as arguments. Any Err object property values not explicitly assigned through the Raise method
are retained.

Version Differences

Although the Error statement is still included in the .NET version of Visual Basic, it should not be
used. Use the Err.Raise method instead.

See Also

Err Object, Err.Clear Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Source Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

 Dim result As String = Err.Source

Description

The Source property gets or sets the project, application, or class name responsible for generating
the active error.

Usage at a Glance

When a runtime error occurs, the Source property is automatically assigned the name of the
originator of the error.

While you can assign the Source property directly, the Err.Raise method is a better way to
assign the values of a custom error.

The Source property is usually in the format project.class.

See Also

Err Object, Err.Description Property, Err.Number Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Error Statement

Syntax

 Error errorNumber

errorNumber (optional; Integer)

Any valid numeric error code

Description

The Error statement raises an error.

Usage at a glance

The Error statement is included only for backward compatibility; instead, if you're using unstructured
error handling, you should use the Err.Raise method and the Err object. You can also use structured
exception handling with the try...Catch...Finally construct.

See Also

Err.Raise Method, Try...Catch...Finally Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ErrorToString Function

Class

Microsoft.VisualBasic.Conversion

Syntax

 Dim result As String = ErrorToString([errorNumber])

errorNumber (optional; Integer)

A numeric error code

Description

The ErrorToString function returns the error message or description corresponding to a particular
error code. If no error code is supplied, the message for the most recent runtime error is returned
instead; this is generally the same as the Err.Description property.

Usage at a Glance

If no error code is supplied, and there have been no runtime errors, a blank string is returned.

If the supplied error code is not recognized as a valid error, a generic message indicating an
application-specific error is returned.

See Also

Err.Description Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Event Statement

Syntax

 [accessModifier] [Shadows] Event name ([arglist]) _

 [Implements implementsList]

or:

 [accessModifier] [Shadows] Event name As delegateName _

 [Implements implementsList]

accessModifier (optional)

Specifies the scope and accessibility of the event. One of the following access levels:

Access level Description

Public
The event is publicly accessible anywhere, both inside and outside of the
project.

Private The event is accessible only within the defining type.

Protected
The event is accessible only to the code in the defining type or to one of its
derived types.

Friend
The event is accessible only within the project that contains the event
definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Public access level is used.

Shadows (optional)

Indicates that the event shadows an identically named element in a base class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name (required)

The name of the event.

arglist (optional; any)

A comma-delimited list of parameters to be supplied to the event as arguments when the event
is fired.

arglist uses the following syntax and parts:

 [ByVal | ByRef] varname[()] [As argtype]

ByVal (optional)

The argument is passed by value; the local copy of the variable is assigned the value of the
argument. ByVal is the default method of passing variables.

ByRef (optional)

The argument is passed by reference; the local variable is a reference to the argument being
passed. All changes made to the local variable will also be reflected in the calling argument.

varname (required)

The name of the argument, although event handlers need not retain this name.

argtype (optional; Type)

The data type of the argument. Any valid .NET data type can be used.

implementsList (optional)

Comma-separated list of the interface members implemented by this event.

delegateName (optional)

New in 2005. A delegate with an argument signature that is used as the argument signature of
this event.

Description

The Event statement defines an event that the containing type can raise at any time using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RaiseEvent statement. Events can appear within classes, structures, and modules.

Usage at a Glance

To handle events, an object variable must be declared with the WithEvents keyword.

All events for forms and controls in the .NET Framework's Windows Forms package share a
common argument signature:

 Public Event name (ByVal sender As Object, _
 ByVal e As System.EventArgs)

VB events do not return a value; however, you can use the ByRef keyword in arglist to return

data from the event through a parameter.

Example

The following example implements a simple class with one event, which is triggered through the
UpdateRecords procedure.

 Friend Class EventLadenClass
 Public Event StatusChanged(ByVal message As String)

 Public Sub UpdateRecords()
 RaiseEvent StatusChanged("Records are being updated.")
 End Sub
 End Class

Version Differences

Visual Basic 2005 adds the As delegateName clause to the Event statement, a new way of

indicating the argument signature for an event.

Visual Basic 2005 adds a Custom Event statement that includes greater control over the lifetime
of an event. See the "Custom Event Statement" entry in this chapter for additional information.

See Also

Custom Event Statement, RaiseEvent Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exception Class

Namespace

System

Creatable

Yes

Description

The System.Exception class and its inherited (child) classes represent runtime exceptions. When
errors occur in the context of a TRy...Catch...Finally statement, an Exception object is made
available that describes the exception or runtime error.

The following table lists some of the more useful and interesting members of the Exception class.

Member Description

GetBaseException
Method

Exceptions may actually be a chain of related exceptions. This method
returns the Exception object that represents the "root cause" of the
exception chain.

HelpFile Property A path to the online help file related to the exception.

InnerException
Property

Exceptions may actually be a chain of related exceptions. This property
returns the Exception object that caused the active exception event.

Message Property The text of the error message.

Source Property The name of the application, project, or class that caused the exception.

StackTrace Property
A string that lists all methods currently on the stack. This information is
presented in a human-readable format.

TargetSite Property The name of the method that threw the exception.

The System.Exception class is the base class for a substantial collection of derived exception classes.
Each class represents a specific exception that can occur in the lifetime of an application. Chapter 11
includes a hierarchical listing of the derived exception classes.

Usage at a Glance

In the Catch clause of a try...Catch...Finally statement, you can trap the generic Exception object,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or you can trap a specific exception object descendant if you expect a certain type of error.

Version Differences

The Exception class, along with structured exception handling, is new to Visual Basic under the .NET
platform.

See Also

Err Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exit Statement

Syntax

 Exit Do
 Exit For
 Exit Function
 Exit Property
 Exit Select
 Exit Sub
 Exit Try
 Exit While

Description

The various Exit statements prematurely exit a block of code.

Usage at a Glance

The Exit statement is used as follows:

Statement Description

Exit Do
Exits a Do...Loop statement. If the statement appears in nested Do...Loop loops, only
the innermost loop is exited. Program execution continues with the first line of code
after the exited loop.

Exit For
Exits a For...Next or a For Each...Next loop. If the statement appears in nested For
loops of any type, only the innermost loop is exited. Program execution continues
with the first line of code after the exited loop.

Exit
Function

Exits the current function and returns control to the calling procedure.

Exit
Property

Exits the current property (either Get or Set) and returns control to the calling
procedure.

Exit Select
Exits a Select Case construct. If the statement appears in nested Select Case
blocks, only the innermost block is exited. Program execution continues with the first
line of code after the exited block.

Exit Sub Exits the current sub procedure and returns control to the calling procedure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Statement Description

Exit Try
Exits a try...Catch block. Program execution proceeds with the Finally block if it is
present or, otherwise, with the statement following the End Try statement.

Exit While Exits a While...End While statement. If the statement appears in nested While...End

While loops, only the innermost loop is exited. Program execution continues with the first line of code
after the exited loop.

See Also

Continue Statement, End Statement

Exit Try
Exits a try...Catch block. Program execution proceeds with the Finally block if it is
present or, otherwise, with the statement following the End Try statement.

Exit While Exits a While...End While statement. If the statement appears in nested While...End

While loops, only the innermost loop is exited. Program execution continues with the first line of code
after the exited loop.

See Also

Continue Statement, End Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exp Function

Class

System.Math

Syntax

 Dim result As Double = Math.Exp(d)

d (required; Double)

Any valid numeric expression

Description

The Exp function returns the natural number e raised to the power d.

Usage at a Glance

The maximum value for d is 709.782712893.

Exp is the inverse of the Log function.

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

In VB 6, Exp is an intrinsic VB function. In the .NET platform, it is a member of the System.Math class
and not directly part of the VB language.

See Also

Log Function, Log10 Function, E Field, Pow Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File Class

Namespace

System.IO

Creatable

No

Description

The File class has a number of members that allow you to retrieve information about files, and to
move and delete files. All of the members of the File class are shared methods, so they can be called
without instantiating any objects.

The following table lists some of the more useful and interesting members of the File class. Those
marked with an asterisk (*) have separate entries in this chapter.

Member Description

AppendText Method
Opens an existing text file, ready to add additional text to
the end of the file

Copy Method Copies an existing file to a new location

Create, CreateText Methods Opens a new file for output

Delete Method Deletes an existing file

Exists Method * Tests a file path to see if it exists

GetAttributes Method Retrieves the attributes for a given file

GetCreationTime Method
Retrieves the date and time that a file was originally
created

GetLastAccessTime Method Retrieves the date and time that a file was last accessed

GetLastWriteTime Method Retrieves the date and time that a file was last written

Move Method Moves an existing file to a new location

Open, OpenRead, OpenText, OpenWrite
Methods

Opens an existing file for input or output

SetAttributes Method Modifies the attributes of an existing file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem object that provides file management
functionality.

See Also

Directory Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File.Exists Method

Class

System.IO.File

Syntax

 Dim result As Boolean = File.Exists(path)

path (required; String)

The file path to test for existence

Description

The Exists method indicates whether a file exists (true) or not (False).

Usage at a Glance

path can be either an absolute path or a relative path from the current directory.

path can be either a path on the local system, the path of a mapped network drive, or a UNC

path.

path cannot contain wildcard characters.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.FileExists method that provides similar
functionality.

See Also

Directory.Exists Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileAttr Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As OpenMode = FileAttr(fileNumber)

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

Description

The FileAttr function indicates the file-access mode for a file opened using the FileOpen procedure.
One of the Microsoft.VisualBasic.OpenMode enumeration values from the following table:

Value Description

Input Sequential record input

Output Sequential record output

Random Random access within a binary or text file

Append Sequential record output, starting from the end of the file

Binary Access to formatted binary data

Version Differences

In VB 6, FileAttr included a superfluous returnType parameter that is no longer required in

.NET.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileClose Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 FileClose([fileNumber[, fileNumber[..., fileNumber]])

fileNumber (optional; Integer)

One or more file numbers, for files opened with FileOpen, which are to be closed

Description

The FileClose procedure closes one or more files previously opened with the FileOpen procedure. To
close multiple files, include them as multiple comma-delimited arguments.

Usage at a Glance

If no fileNumber values are included, all open files are closed.

If the file you are closing was opened for Output or Append, the remaining data in the I/O buffer
is written to the file. The memory buffer is then reclaimed.

When the FileClose procedure is executed, the file number used is freed for further use.

Version Differences

FileClose is new to VB under .NET. It replaces the Close statement in VB 6.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileOpen Procedure, Reset Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileCopy Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 FileCopy(source, destination)

source (required; String)

The path of the file to be copied

destination (required; String)

The path and name of the new target file

Description

The FileCopy procedure copies an existing file to a new location, optionally giving the file a new
name.

Usage at a Glance

The source and destination may contain absolute or relative paths, but they must always
contain the old and new filenames. destination must include the filename; it cannot be the

destination directory only.

You cannot copy a file that is currently open.

FileCopy raises errors on failure instead of returning an error code.

If the destination file already exists, it will be overwritten without warning.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.CopyFile method that provides similar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

functionality.

See Also

Rename Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileDateTime Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As Date = FileDateTime(pathName)

pathName (required; String)

The file from which to retrieve the date and time information

Description

The FileDateTime function retrieves the most recent modification date, which may be the same as
the creation date, for an existing file.

Usage at a Glance

pathName can be either an absolute path or a relative path from the current directory.

An error occurs if the file does not exist.

The File class, discussed elsewhere in this chapter, includes distinct members that specifically
retrieve either the creation date and time or the last modification date and time for a given file.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem object that provides file management
functionality.

See Also

File Class, File.Exists Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileGet, FileGetObject Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

 FileGet

(fileNumber, value[, recordNumber[, dataFlag]])
 FileGetObject

(fileNumber, value[, recordNumber[, dataFlag]])

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen.

value (required; multiple data types)

Variable in which to place retrieved data. May be one of the following data types: Object,
Short, Integer, Single, Double, Decimal, Byte, Boolean, Date, System.Array, or String.

recordNumber (optional; Integer)

The 1-based location at which reading begins, either a record number (for Random mode) or a
byte number (for Binary mode). If omitted, it defaults to 1, which indicates the next available
record in the file should be used.

dataFlag (optional; Boolean)

New in 2005. This flag is only used when value is of type System.Array or String. For

System.Array data, the flag indicates whether the array is dynamic (true) or not (False). For
strings, the flag indicates whether the string is fixed in size (TRue) or not (False). If omitted,
this field defaults to False.

Description

The FileGet and FileGetObject procedures read data from an open file into a variable. For files open

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in Random mode, the data is read from a record position. For Binary files, the data is read from a
byte position in the file. FileGet and FileGetObject are identical in functionality, but using
FileGetObject may reduce compile-time data-conversion issues when working with Object data
values.

Usage at a Glance

The number of bytes read is governed by the data type of value. When strings are written using
FilePut or FilePutObject, a length descriptor is included in the output, unless dataFlag is set to

true, which writes out a fixed-length string. When reading back such fixed-length strings, set
the dataFlag argument to true and preload the string with the right number of characters

before calling this function.

When a record or a number of bytes is read from a file using FileGet, the file pointer
automatically moves to the record or byte following the one just read. You can therefore read all
data sequentially from a Random or Binary file by omitting recordNumber, as this snippet shows:

 Dim oneChar As Char
 Dim fileID As Integer = FreeFile()

 FileOpen(fileID, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)
 Do While (Loc(fileID) <> LOF(fileID))
 FileGet(fileID, oneChar)
 ' ----- Do something with oneChar...
 Loop
 FileClose(fileID)

FileGet is most commonly used to read data from files written with the FilePut function.

Version Differences

The FileGet and FileGetObject procedures are new with .NET. They are replacements for the
Get statement in VB 6, which has a syntax similar to that of FileGet.

The dataFlag argument in both the FileGet and the FileGetObject functions is new with Visual

Basic 2005.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file-
management features.

See Also

FileOpen Procedure, FilePut, FilePutObject Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileLen Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As Long = FileLen(pathName)

pathName (required; String)

The name and path of the file to examine for its length

Description

The FileLen function retrieves the length of a disk file in bytes.

Usage at a Glance

pathName can be either an absolute path or a relative path from the current directory.

An error occurs if the file does not exist.

FileLen returns the length of a file as it was last recorded in the directory's record of files.
Changes made to the file while actively open may not be reflected in this number. For files
currently being modified by your application, use the LOF function instead.

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

LOF Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileOpen Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 FileOpen

(fileNumber, fileName, mode[, access[,_

 share[, recordLength]]])

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen.

fileName (required; String)

The name and path of the file to open.

mode (required; OpenMode enumeration)

The file access mode. One of the following Microsoft.VisualBasic.OpenMode enumeration
values:

Value Description

Append
Sequential output of data to an existing file, starting from the end of the current file
contents

Binary Reading and writing of binary data

Input Sequential input of data from a file

Output Sequential output of data to a file

Random Random access of records within a file, each of a specified length

http://lib.ommolketab.ir
http://lib.ommolketab.ir

access (optional; OpenAccess enumeration)

Specifies the allowable file operations. One of the following Microsoft.VisualBasic.OpenAccess
enumeration values:

Value Description

Default Same as ReadWrite

Read Allows reading of data from the file

ReadWrite Allows reading of data from, or writing of data to, the file

Write Allows writing of data to the file

If omitted, ReadWrite is used.

share (optional; OpenShare enumeration)

Indicates how the file will interact with external processes while in use by the current process.
One of the following Microsoft.VisualBasic.OpenShare enumeration values:

Value Description

Default Same as LockReadWrite

LockRead External processes are blocked from reading the file

LockReadWrite External processes are blocked from reading or writing the file

LockWrite External processes are blocked from writing the file

Shared External processed are permitted to read and write the file

If omitted, LockReadWrite is used.

recordLength (optional; Integer)

The length of each record (for Random mode), or the size of the input/output buffer (for
sequential modes). This value may not exceed 32,767. If omitted, it defaults to -1, which
indicates no specific record or buffer size.

Description

Opens or creates a file for reading or writing

Usage at a Glance

There are three modes of file access: sequential, binary, and random. The Input, Output, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Append access modes are sequential access modes. Sequential access is for text files consisting
of individual Unicode characters and control codes. Most of the file-manipulation functions
(LineInput, Print, PrintLine, and so on) apply to files opened for sequential access. Random
access (used with Random mode) is used with files that have a structurefiles that consist of
records, each of which is made up of the same set of fields. For instance, a record might contain
name, address, and employee ID number fields. Binary access (used with Binary mode) is for
files where each byte in the file is accessible independently.

fileName may be either an absolute path or a relative path from the current directory. The file

may reside on a local drive or a remote drive.

A new file is created if the specified file does not exist when opened in Append, Binary, Output,
or Random mode. The file must exist when opened in Input mode.

Always use the FreeFile function to retrieve an available file number before calling the FileOpen
function.

You can open an already opened file using a different file number in Binary, Input, and Random
modes. However, you must close a file opened using Append or Output before you can open it
with a different file number.

Example

The following example opens a random access data file, adds two records, and then retrieves some of
the written data.

 Option Strict Off
 Module GeneralCode
 Structure Person
 <VBFixedString(10)> Public Name As String
 Public Age As Short
 End Structure

 Public Sub ManageData()
 ' ----- Simple record management.
 Dim onePerson As New Person
 Dim fileID As Integer = FreeFile()

 ' ----- Create the file.
 FileOpen(fileID, "c:\data.txt", OpenMode.Random, _
 OpenAccess.ReadWrite, OpenShare.Default, Len(onePerson))

 ' ----- Write out two records.
 onePerson.Name = "Donna"
 onePerson.Age = 20
 FilePut
(fileID, onePerson, 1)

 onePerson.Name = "Steve"
 onePerson.Age = 30
 FilePut(fileID, onePerson, 2)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- Get the first record back. MsgBox displays:
 ' "Donna is 20"
 FileGet(fileID, onePerson, 1)
 MsgBox(onePerson.Name & " is " & onePerson.Age)

 FileClose(fileID)
 End Sub
 End Module

Since random access files require a fixed record length, the <VBFixedString(10)> attribute has been
included in the structure to ensure that the Name field is a constant size.

Version Differences

The FileOpen procedure is new to VB under .NET. It is a replacement for the VB 6 Open
statement.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file-
management features.

See Also

FileClose Procedure, FileGet, FileGetObject Procedures, FilePut, FilePutObject Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FilePut, FilePutObject Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

 FilePut(fileNumber, value[, recordNumber[, dataFlag]])

 FilePutObject(fileNumber, value[, recordNumber[, dataFlag]])

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen.

value (required; multiple data types)

Variable or data to be written to the file. May be one of the following data types: Object, Short,
Integer, Single, Double, Decimal, Byte, Boolean, Date, System.Array, or String.

recordNumber (optional; Integer)

The 1-based location at which writing begins, either a record number (for Random mode) or a
byte number (for Binary mode). If omitted, it defaults to -1, which indicates the next available
record in the file should be used.

dataFlag (optional; Boolean)

New in 2005. This flag is only used when value is of type System.Array or String. For

System.Array data, the flag indicates whether the array is dynamic (true) or not (False). For
strings, the flag indicates whether the string is fixed in size (TRue) or not (False). If omitted,
this field defaults to False.

Description

The FilePut and FilePutObject procedures write data to an open file. For files open in Random
mode, the data is written as a record. For Binary files, the data is written as a stream of bytes.
FilePut and FilePutObject are identical in functionality, but using FilePutObject may reduce

http://lib.ommolketab.ir
http://lib.ommolketab.ir

compile-time data conversion issues when working with Object data values.

Usage at a Glance

If you have opened a file in Random mode, it is important to ensure that the record length
specified in the recordLength argument of the FileOpen procedure matches the actual length of

the data being written. If the length of the data being written is less than that specified by the
recordLength argument, the space up to the end of the record will be padded. If the actual data

length is more than that specified, an error occurs.

If you open the file in Binary mode, the recordLength argument of the FileOpen procedure has

no effect. When you use FilePut to write data to the disk, the data is written contiguously, and
no padding is placed between records.

Records written with FilePut and FilePutObject are normally read using FileGet and
FileGetObject.

Example

The following code writes the letters A-Z to a file:

 Dim oneChar As Char
 Dim counter As Integer
 Dim fileID As Integer = FreeFile()

 FileOpen(fileID, "c:\data.txt", OpenMode.Binary)
 For counter = Asc("A") To Asc("Z")
 oneChar = Chr(counter)
 FilePut(fileID, oneChar)
 Next counter
 FileClose(fileID)

Version Differences

The FilePut and FilePutObject procedures are new to .NET. They are almost direct
replacements for the VB 6 Put statement.

The dataFlag argument in both the FilePut and the FilePutObject functions is new with Visual

Basic 2005.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file-
management features.

See Also

FileClose Procedure, FileGet, FileGetObject Procedures, FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileWidth Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 FileWidth(fileNumber, recordWidth)

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen.

recordWidth (required; Integer)

A number between 0 and 255 that indicates the output line width. Use 0 for unlimited length
lines.

Description

The FileWidth procedure specifies a virtual file width when working with files opened with the
FileOpen function. This line width can range from 1 to 255 characters. A setting of zero removes any
line width limitations.

Version Differences

The FileWidth procedure is new to VB under .NET.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Filter Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String() = Filter(source, match[, include[, compare]])

source (required; String array or Object array)

An array containing values to be filtered.

match (required; String)

The substring of characters to find in the elements of the source array.

include (optional; Boolean)

If true (the default value), Filter includes all matching values in the returned array; if False,
Filter includes all non-matching values.

compare (optional; CompareMethod enumeration)

Indicates the text comparison method. One of the following
Microsoft.VisualBasic.CompareMethod enumeration values:

Value Description

Binary Performs a binary (case-sensitive) comparison

Text Performs a text (case-insensitive) comparison

If omitted, Binary is used.

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Filter function produces an array of matching (or non-matching) values from an array of source
values.

Usage at a Glance

If no matches are found, Filter returns an empty array.

Although the Filter function is primarily a string function, you can also filter numeric values. To
do this, specify a source of type Object and populate this array with numeric values. Then
assign the string representation of the numeric value you wish to filter onto the match

parameter. The returned array contains string representations of the filtered numbers. For
example:

 Dim sourceArray() As Object = _
 {123, 222, 444, 139, 1, 12, 98, 908, 845, 22, 3, 9, 11}

 Dim targetArray() As String = Filter(sourceArray, "1")

returns an array containing five elements: 123, 139, 1, 12, and 11.

See Also

Partition Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fix Function

Class

Microsoft.VisualBasic.Conversion

Syntax

 Dim result As type = Fix(number)

number (required; any numeric expression)

The number to be processed. Uses one of the following data types: Double, Single, Decimal,
Integer, Long, Short, or Object. If Object is used, the value must evaluate to a number. The
return data type always matches the data type of number.

Description

The Fix function returns the integer portion of a number, with any fractional part truncated.

Usage at a Glance

Fix truncates numbers; it does not round. For example, Fix(100.9) returns 100.

Even for negative source values, Fix simply truncates the fractional portion. For example, Fix(-
10.9) returns -10.

A source of Nothing returns Nothing.

The Int and Fix functions work identically with positive numbers. However, for negative
numbers, Fix returns the first negative integer greater than the source value, while Int returns
the first negative integer less than that value. For example, Fix(-10.1) returns -10, while Int(-
10.1) returns -11.

See Also

Int Function, Round Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flags Attribute

Class

System.Flags

Applies To

Enum

Constructor

 New()

Properties

None defined

Description

The <Flags> attribute indicates that an enumerated type should be treated as a set of flags that can
be added together, rather than as a set of mutually exclusive values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Floor Function

Class

System.Math

Syntax

 Math.Floor(d)

d (required; Double)

Any valid number

Description

The Floor function returns the largest integer less than or equal to the argument d.

Example

 MsgBox(Math.Floor(12.9)) ' Displays 12
 MsgBox(Math.Floor(-12.1)) ' Displays -13

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The Floor function did not exist in VB 6.

See Also

Ceiling Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FontDialog Class

Namespace

System.Windows.Forms

Creatable

Yes

Description

The FontDialog class represents a common dialog box for selecting or saving a font. The FontDialog
class has properties that let you configure, display, and retrieve the results from this dialog box, from
which the user selects a font.

The following list discusses the more interesting members of the FontDialog class.

Color Property

Sets or retrieves the color of the font, an instance of System.Drawing.Color. Colors can be set
by their RBG value or by common names assigned to the more typical colors (like "Red").

Font Property

Sets or retrieves the font chosen by the user, an instance of System.Drawing.Font. The Font
class has a number of members, including:

Bold, Italic, Strikeout, and Underline Properties

Boolean properties for basic attributes of the font.

FontFamily Property

A FontFamily object associated with the font. Use the Name property to get the name of
the font family.

Name Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns the face name of the font as a String.

SizeInPoints Property

Returns the size of the font, in points, as a Single.

Style Property

Returns a FontStyle constant that contains information about the style of the font. The
FontStyle constants are Bold, Italic, Regular, Strikeout, and Underline, and they can
be combined using a bitwise Or operation.

MaxSize, MinSize Properties

Limits the font size that the user can specify for the font.

ShowApply Property

Indicates whether the dialog box has an Apply button. The default is False.

ShowColor Property

Indicates whether the dialog box shows the font-color-choice controls. (The default is False.)

ShowEffects Property

Indicates whether the dialog box shows the strikethrough and underline options. (The default is
true.)

Example

The following code displays the Font dialog box and then displays the user's choice of font family.

 Public Sub FontTest()
 Dim selectFont As New FontDialog
 selectFont.ShowDialog()
 MsgBox(selectFont.Font.FontFamily.Name)
 End Sub

Version Differences

The public interfaces used for this FontDialog class and the related VB 6 CommonDialog control are
quite different.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

ColorDialog Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For...Next Statement

Syntax

 For counter [As datatype] = start To end [Step step]

 [statements]
 [Exit For]

 [statements]
 [Continue For]

 [statements]

 Next [counter]

counter (required in For clause; numeric variable)

A variable that serves as the loop counter.

datatype (optional)

New in 2003. The data type of counter when including the declaration in the For clause.

start (required; numeric expression)

The starting value of counter for the first iteration of the loop.

end (required; numeric expression)

The maximum limit of counter (or minimum limit, if step is negative) during its iterations.

step (optional; numeric expression)

The amount by which counter is to be incremented or decremented on each iteration of the

loop. If omitted, the default value is 1.

statements (optional)

Lines of program code to execute within the loop.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The For...Next statement defines a loop that executes a given number of times, as determined by a
loop counter.

To use the For...Next loop, you must assign a numeric value to a counter variable. This counter is
either incremented or decremented automatically with each iteration of the loop. In the For
statement, you specify the value that is to be assigned to the counter initially and the maximum
value the counter will reach for the block of code to be executed. The Next statement marks the end
of the loop. The Exit For statement can be used at any time to exit the loop immediately.

New in 2005. The Continue For statement can be used at any time to immediately jump back to the
top of the loop and attempt to process the next iteration. The counter variable is adjusted by step

and is reevaluated immediately upon reaching the top of the loop.

Usage at a Glance

Normally, counter is an integral data type. However, it can be any data type that supports the

following operators: less than or equal to (<=), greater than or equal to (>=), addition (+), and
subtraction (-). Beginning with Visual Basic 2005, this can include any class or structure, as
long as these operators have been overloaded to support the specified class. counter cannot be

a Boolean variable or an array element.

The values for start, end, and step can be positive, negative, or zero. They are evaluated only

the first time through the loop. If you change their values in the loop's code, it has no impact on
the number of iterations.

If end is less than start and no Step keyword is used, or the step counter is positive, the

For...Next loop is ignored and execution commences with the first line of code immediately
following the Next statement.

If start and end are equal and step is 1, the loop will execute once.

The For...Next loop can contain any number of Exit For statements. When the Exit For
statement is executed, program execution continues with the first line of code immediately
following the Next statement.

For...Next loops can be nested, as shown here:

 For eachDay = 1 to 365
 For eachHour = 0 to 23
 For eachMinute = 0 to 59
 ...code here...
 Next eachMinute
 Next eachHour
 Next eachDay

You should avoid changing the value of counter in the code within the loop, as this can lead to

unexpected results.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once the loop has finished executing, the value of counter is officially undefined. That is, you

should not make any assumptions about its value outside of the For...Next loop, and you should
not use it unless you first reinitialize it.

Example

The following code adds up all of the values in an array.

 Public Function SumArray(ByVal sourceArray() As Integer) As Integer
 Dim counter As Integer
 Dim newTotal As Integer = 0

 For counter = LBound(sourceArray) To UBound(sourceArray)
 newTotal += sourceArray(counter)
 Next counter
 Return counter
 End Function

The following code block does the same thing, but in reverse order.

 For counter = UBound(sourceArray) To LBound(sourceArray) Step -1
 newTotal += sourceArray(counter)
 Next counter

Version Differences

Visual Basic .NET 2003 adds the As clause to the For statement for inline counter declaration.

Visual Basic 2005 includes the Continue For statement.

See Also

For Each...Next Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For Each...Next Statement

Syntax

 For Each element [As datatype] In group

 [statements]
 [Exit For]

 [statements]
 [Continue For]

 [statements]

 Next [element]

element (required; any)

An object variable to which the current element from the group is assigned. Its data type must
be compatible with the data elements in group.

datatype (optional)

New in 2003. The data type of element when including the declaration in the For Each clause.

group (required; IEnumerable interface)

A collection or array of elements to iterate. The object must implement the
System.Collections.IEnumerable interface.

statements (optional)

Lines of program code to execute within the loop.

Description

Defines a loop that iterates through all items in a collection or array. element and group must be of
compatible data types. The code within the loop is executed once for each element in group, with
element being assigned to each successive element within group, one assignment per pass. The Exit

For statement can be used at any time to exit the loop immediately.

New in 2005. The Continue For statement can be used at any time to immediately jump back to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

top of the loop and attempt to process the next iteration. The element variable is assigned the next
element in group upon reaching the top of the loop.

Usage at a Glance

The For Each...Next code block is executed only if group contains at least one element. If group

is an empty collection or an array that has not yet been initialized, an error occurs.

All statements are executed for each element in group in turn, until either there are no more
elements in group or the loop is exited prematurely using the Exit For statement. Program

execution then continues with the line of code following Next.

For Each...Next loops can be nested, but each element must be unique, as in:

 For Each groupScan In bigCollectionOfItems
 For Each subScan In groupScan.DetailItems
 ...processing code goes here...
 Next subScan
 Next groupScan

Version Differences

In VB 6, element had to be a variable of type Variant. .NET removes this restriction; element

can be a strongly typed data type or the more generic System.Object type.

Visual Basic .NET 2003 adds the As clause to the For Each statement for inline counter
declaration.

Visual Basic 2005 includes the Continue For statement.

See Also

For...Next Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Format Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = Format(expression[, style])

expression (required; Object)

The date, time, or numeric content to be formatted.

style (optional; String)

A named or user-defined format expression, as described below. If omitted, the default value is
"General Number" for numbers or "General Date" for dates and times.

Description

The Format function formats a date, time, or numeric expression according to a pre-defined format,
or through a user-defined set of format rules, and returns the resulting string. The Format function
examines the source expression to determine if it is a date/time or a number and then applies this
source against the supplied style.

The following table shows the available predefined numeric formats:

Numeric
format text

Description

General Number

or G or g
Displays a basic number with no digits grouping in the mantissa.

Currency or C or
c

Displays a number as currency, using settings defined by the in-effect locale.

Fixed or F or f Displays a number with two digits to the right of the decimal point.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Numeric
format text

Description

Standard or N or
n

Same as Fixed but includes digits grouping in the mantissa.

Percent
Displays a number as a percent, with a trailing percent sign (%) and two digits
to the right of the decimal point. The source value is first multiplied by 100.

E or e Displays a number in scientific notation.

D or d Displays a number using the decimal (base-10) system.

X or x Displays a number using the hexadecimal (base-16) system.

Yes/No Displays "No" for zero and "Yes" for all other values.

true/False Displays "False" for zero and "True" for all other values.

On/Off Displays "Off" for zero and "On" for all other values.

The following table shows the available predefined date and time formats. Those formats identified as
"locale-specific" format the date or time based on the in-effect locale settings.

Date/time format
text

Description

General Date or G
Displays a locale-specific date and time; typically equivalent to Short Date
and Long Time used together

Long Date or Medium
Date or D

Locale-specific long date format

Short Date or d Locale-specific short date format

Long Time or Medium
Time or T

Locale-specific long time format

Short Time or t Locale-specific short time format

f Locale-specific long date and short time format

F Locale-specific long date and long time format

g Locale-specific short date and short time format

M or m Full month name plus the day of the month, as in "August 23"

R or r
Date and time, adjusted to Greenwich Mean Time, and in the sample format
"Tue, 23 Aug 2005 17:33:11 GMT"

s
Formats the date and time in a format that allows for easy sorting: "2005-
08-23T17:33:11"

u
Adjusts the date and time to Greenwich Mean Time and then formats the
result for easy sorting: "2005-08-23 17:33:11Z"

Standard or N or
n

Same as Fixed but includes digits grouping in the mantissa.

Percent
Displays a number as a percent, with a trailing percent sign (%) and two digits
to the right of the decimal point. The source value is first multiplied by 100.

E or e Displays a number in scientific notation.

D or d Displays a number using the decimal (base-10) system.

X or x Displays a number using the hexadecimal (base-16) system.

Yes/No Displays "No" for zero and "Yes" for all other values.

true/False Displays "False" for zero and "True" for all other values.

On/Off Displays "Off" for zero and "On" for all other values.

The following table shows the available predefined date and time formats. Those formats identified as
"locale-specific" format the date or time based on the in-effect locale settings.

Date/time format
text

Description

General Date or G
Displays a locale-specific date and time; typically equivalent to Short Date
and Long Time used together

Long Date or Medium
Date or D

Locale-specific long date format

Short Date or d Locale-specific short date format

Long Time or Medium
Time or T

Locale-specific long time format

Short Time or t Locale-specific short time format

f Locale-specific long date and short time format

F Locale-specific long date and long time format

g Locale-specific short date and short time format

M or m Full month name plus the day of the month, as in "August 23"

R or r
Date and time, adjusted to Greenwich Mean Time, and in the sample format
"Tue, 23 Aug 2005 17:33:11 GMT"

s
Formats the date and time in a format that allows for easy sorting: "2005-
08-23T17:33:11"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Date/time format
text

Description

u
Adjusts the date and time to Greenwich Mean Time and then formats the
result for easy sorting: "2005-08-23 17:33:11Z"

U
Adjusts the date and time to Greenwich Mean Time, and then formats the
result using the locale-specific long date and long time format

Y or y Full month name, a comma, and then the year, as in "August, 2005"

User-defined style formats allow for more flexibility in the output. The user-defined numeric format

can include up to four semicolon delimited sections, although only one is required. Each section
applies to a different type of number.

Section 1 applies to all positive numbers and any numbers not formatted by one of the other
three sections.

Section 2 applies to negative numbers.

Section 3 applies to a value of zero.

Section 4 applies to a value of Nothing.

If you leave a section blank, it will use the format in the first section, the one used for positive
numbers. For example, the format string:

 "#.00;;#,##"

does not define a format for negative numbers or Nothing values. These will use the format for
positive values.

Each user-defined numeric section uses the following format codes:

Numeric
format code

Description

0
Displays a digit, or "0" if no digit is defined in that position in the source. Used to
add leading or trailing zeros.

Displays a digit, or nothing if no digit is defined in that position in the source.

. Inserts the locale-specific decimal separator.

%
Inserts the percent sign and treats the number as a percent, multiplying it by 100
before formatting.

u
Adjusts the date and time to Greenwich Mean Time and then formats the
result for easy sorting: "2005-08-23 17:33:11Z"

U
Adjusts the date and time to Greenwich Mean Time, and then formats the
result using the locale-specific long date and long time format

Y or y Full month name, a comma, and then the year, as in "August, 2005"

User-defined style formats allow for more flexibility in the output. The user-defined numeric format

can include up to four semicolon delimited sections, although only one is required. Each section
applies to a different type of number.

Section 1 applies to all positive numbers and any numbers not formatted by one of the other
three sections.

Section 2 applies to negative numbers.

Section 3 applies to a value of zero.

Section 4 applies to a value of Nothing.

If you leave a section blank, it will use the format in the first section, the one used for positive
numbers. For example, the format string:

 "#.00;;#,##"

does not define a format for negative numbers or Nothing values. These will use the format for
positive values.

Each user-defined numeric section uses the following format codes:

Numeric
format code

Description

0
Displays a digit, or "0" if no digit is defined in that position in the source. Used to
add leading or trailing zeros.

Displays a digit, or nothing if no digit is defined in that position in the source.

. Inserts the locale-specific decimal separator.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Numeric
format code

Description

%
Inserts the percent sign and treats the number as a percent, multiplying it by 100
before formatting.

,
Inserts the locale-specific thousands separator or digits grouping symbol. This only
needs to be included once per format section. For example, a format of "#,##0"
formats one million as "1,000,000."

: Inserts the locale-specific time separator.

/ Inserts the locale-specific date separator.

E+, e+, E-, or
e-

Formats the number in scientific notation. The "-" versions include a negative sign
before negative exponents; the "+" versions also include a plus sign before positive
exponents.

-, +, $, (,)
Inserts any of these literal characters in the output. Any other character you wish
to insert must be preceded (or escaped) by a backslash (\). Use \\ to insert a
backslash.

"any text" Any text between quotation marks appears as is.

User-defined dates only include a single section. The user-defined date and time formats use the
following format codes:

Date/time
format code

Description

: Inserts the locale-specific time separator.

/ Inserts the locale-specific date separator.

%
If your user-defined date format would otherwise include only a single letter,
prepend that letter with the percent sign so that the format is not confused with
the predefined date formats that use the same single letters.

d Day of the month with no leading zero.

dd Two-digit day of the month, with a leading zero if needed.

ddd Abbreviated locale-specific day of the week, as in "Tue."

dddd Full locale-specific day of the week, as in "Tuesday."

M Month of the year with no leading zero.

MM Two-digit month of the year, with a leading zero if needed.

MMM Abbreviated locale-specific month name, as in "Aug."

MMMM Full locale-specific month name, as in "August."

gg The period or era string, as in "A.D."

h Hour of the day with no leading zero, using a 12-hour clock.

%
Inserts the percent sign and treats the number as a percent, multiplying it by 100
before formatting.

,
Inserts the locale-specific thousands separator or digits grouping symbol. This only
needs to be included once per format section. For example, a format of "#,##0"
formats one million as "1,000,000."

: Inserts the locale-specific time separator.

/ Inserts the locale-specific date separator.

E+, e+, E-, or
e-

Formats the number in scientific notation. The "-" versions include a negative sign
before negative exponents; the "+" versions also include a plus sign before positive
exponents.

-, +, $, (,)
Inserts any of these literal characters in the output. Any other character you wish
to insert must be preceded (or escaped) by a backslash (\). Use \\ to insert a
backslash.

"any text" Any text between quotation marks appears as is.

User-defined dates only include a single section. The user-defined date and time formats use the
following format codes:

Date/time
format code

Description

: Inserts the locale-specific time separator.

/ Inserts the locale-specific date separator.

%
If your user-defined date format would otherwise include only a single letter,
prepend that letter with the percent sign so that the format is not confused with
the predefined date formats that use the same single letters.

d Day of the month with no leading zero.

dd Two-digit day of the month, with a leading zero if needed.

ddd Abbreviated locale-specific day of the week, as in "Tue."

dddd Full locale-specific day of the week, as in "Tuesday."

M Month of the year with no leading zero.

MM Two-digit month of the year, with a leading zero if needed.

MMM Abbreviated locale-specific month name, as in "Aug."

MMMM Full locale-specific month name, as in "August."

gg The period or era string, as in "A.D."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Date/time
format code

Description

h Hour of the day with no leading zero, using a 12-hour clock.

hh Two-digit hour of the day, with a leading zero if needed, using a 12-hour clock.

H Hour of the day with no leading zero, using a 24-hour clock.

HH Two-digit hour of the day, with a leading zero if needed, using a 24-hour clock.

m Minutes of the time with no leading zero.

mm Two-digit minutes of the time, with a leading zero if needed.

s Seconds of the time with no leading zero.

ss Two-digit seconds of the time, with a leading zero if needed.

f
Fractions of a second. Use multiple "f" characters for more digits. For example,
"s.fff" displays thousandths of a second. Uppercase or lowercase "f" will work.

t Displays "A" for prenoon times or "P" for noon and beyond.

tt Displays "AM" for prenoon times or "PM" for noon and beyond.

y Displays the last two digits of the year, removing any leading zero if needed.

yy Displays the last two digits of the year, adding a leading zero if needed.

yyy Same as "yyyy."

yyyy Displays the full year, up to four digits.

z
Displays the local offset from Greenwich Mean Time with no leading zeros. This
value may include a negative sign.

zz
Displays the local offset from Greenwich Mean Time as a two-digit number, with a
leading zero if needed. This value may include a negative sign.

zzz
Displays the local offset from Greenwich Mean Time in time format, as in "-7:00."
This value may include a negative sign.

Usage at a Glance

Unlike the Str function, the Format function removes the leading space normally reserved for the sign
from positive numbers.

Version Differences

The predefined and user-defined format codes available to the Format function in VB 6 differ
significantly from those available in .NET. This is especially true for the codes used for months and
minutes.

See Also

h Hour of the day with no leading zero, using a 12-hour clock.

hh Two-digit hour of the day, with a leading zero if needed, using a 12-hour clock.

H Hour of the day with no leading zero, using a 24-hour clock.

HH Two-digit hour of the day, with a leading zero if needed, using a 24-hour clock.

m Minutes of the time with no leading zero.

mm Two-digit minutes of the time, with a leading zero if needed.

s Seconds of the time with no leading zero.

ss Two-digit seconds of the time, with a leading zero if needed.

f
Fractions of a second. Use multiple "f" characters for more digits. For example,
"s.fff" displays thousandths of a second. Uppercase or lowercase "f" will work.

t Displays "A" for prenoon times or "P" for noon and beyond.

tt Displays "AM" for prenoon times or "PM" for noon and beyond.

y Displays the last two digits of the year, removing any leading zero if needed.

yy Displays the last two digits of the year, adding a leading zero if needed.

yyy Same as "yyyy."

yyyy Displays the full year, up to four digits.

z
Displays the local offset from Greenwich Mean Time with no leading zeros. This
value may include a negative sign.

zz
Displays the local offset from Greenwich Mean Time as a two-digit number, with a
leading zero if needed. This value may include a negative sign.

zzz
Displays the local offset from Greenwich Mean Time in time format, as in "-7:00."
This value may include a negative sign.

Usage at a Glance

Unlike the Str function, the Format function removes the leading space normally reserved for the sign
from positive numbers.

Version Differences

The predefined and user-defined format codes available to the Format function in VB 6 differ
significantly from those available in .NET. This is especially true for the codes used for months and
minutes.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FormatCurrency , FormatNumber , FormatPercent Functions, FormatDateTime Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FormatCurrency, FormatNumber, FormatPercent Functions

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = FormatCurrency(expression[, _

 numDigitsAfterDecimal[, includeLeadingDigit[, _

 useParensForNegativeNumbers[, groupDigits]]]])

 Dim result As String = FormatNumber(expression[, _

 numDigitsAfterDecimal[, includeLeadingDigit[, _

 useParensForNegativeNumbers[, groupDigits]]]])

 Dim result As String = FormatPercent(expression[, _

 numDigitsAfterDecimal[, includeLeadingDigit[, _

 useParensForNegativeNumbers[, groupDigits]]]])

Several parameters use the Microsoft.VisualBasic.TriState enumeration, which has the following
members:

Value Description

true Use the "true" or enabled setting.

False Use the "false" or disabled setting.

UseDefault Use the default regional setting for this parameter.

expression (required; Object)

The number or numeric expression to be formatted.

numDigitsAfterDecimal (optional; Integer)

The number of digits the formatted string should contain after the decimal point. If omitted, 1
is used, which indicates that the default regional settings should be used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

includeLeadingDigit (optional; TriState enumeration)

Indicates whether the formatted string is to have a 0 before floating point numbers between 1
and -1. If omitted, UseDefault is used.

useParensForNegativeNumbers (optional; TriState enumeration)

Indicates whether parentheses should be placed around negative numbers. If omitted,
UseDefault is used.

groupDigits (optional; TriState enumeration)

Determines whether digits in the returned string should be grouped using the delimiter
specified in the computer's regional settings. For example, in the United States region, the
value 1000000 is returned as "1,000,000" if groupDigits is true. If omitted, UseDefault is

used.

Description

The FormatCurrency, FormatNumber, and FormatPercent functions are used to format decimal numbers
using common formats. FormatCurrency returns the number formatted as currency based on the
regional settings; FormatNumber returns the number in a standard decimal format; and FormatPercent
returns the number formatted as a percentage (first multiplying the number by 100).

Usage at a Glance

In the FormatCurrency function, the position of the currency symbol in relation to the currency
value is defined by the computer's regional settings.

These three functions first appeared in VBScript Version 2 as "light" alternatives to the Format
function, which had originally been left out of VBScript due to its size.

See Also

Format Function, FormatDateTime Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FormatDateTime Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = FormatDateTime(expression[, dateFormat])

expression (required; Date)

The date to be formatted.

dateFormat (optional; DateFormat enumeration)

Defines the format of the date to return. One of the following Microsoft.VisualBasic.DateFormat
enumeration values.

Value Description

GeneralDate
Displays the date and time using the "Short Date" and "Long Time" formats
together. Either the date or time may be omitted if unset.

LongDate Displays the date using the regionally defined "Long Date" format.

ShortDate Displays the date using the regionally defined "Short Date" format.

LongTime Displays the time using the regionally defined "Long Time" format.

ShortTime Displays the time using a 24-hour format of "hh:mm."

If omitted, GeneralDate is used.

Description

The FormatDateTime function formats a date or time expression based on the computer's regional
settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usage at a Glance

The following two statements are identical:

 niceDate = FormatDateTime(sourceDate, DateFormat.LongDate)
 niceDate = Format(sourceDate, "Long Date")

See Also

Format Function, FormatCurrency, FormatNumber, FormatPercent Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FreeFile Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As Integer = FreeFile()

Description

The FreeFile function returns the next available file number for use with the FileOpen procedure.

Usage at a Glance

It is good programming practice to always use FreeFile to obtain a file number for use with the
FileOpen procedure, even for a given file number previously used with another file that is now
closed.

The number returned by FreeFile always represents the next available unopened file number.
After retrieving this file number, you should immediately call the FileOpen procedure,
particularly if your file access code resides in a multithreaded application or component. Failure
to do so may cause the same handle to be assigned to two different variables, so that one of
the calls to FileOpen fails.

Example

This example shows that file numbers should be used immediately. The following code is correct.

 Dim fileNum1 As Integer
 Dim fileNum2 As Integer

 fileNum1 = FreeFile()
 FileOpen(fileNum1, "c:\file1.txt", OpenMode.Input)

 fileNum2 = FreeFile()
 FileOpen(fileNum2, "c:\file2.txt", OpenMode.Input)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code, however, is incorrect, since fileNum1 and fileNum2 will likely be assigned the
same file number.

 Dim fileNum1 As Integer
 Dim fileNum2 As Integer

 fileNum1 = FreeFile()
 fileNum2 = FreeFile()

 FileOpen(fileNum1, "c:\file1.txt", OpenMode.Input)
 ' ----- The next line will generate an error.
 FileOpen(fileNum2, "c:\file2.txt", OpenMode.Input)

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Friend Keyword

Description

The Friend keyword is used to set the access level for various types and type members. By including
this keyword, the associated type or member can be accessed by the entire assembly or application
but not by other assemblies that may interact with the type or member.

When combined with the Protected keyword, the related element takes on all aspects of both the
Protected and Friend keywords.

The Friend keyword can be used with the following statements:

Class Statement
Const Statement (but not for local constants)
Declare Statement
Delegate Statement
Dim Statement (but not for local variables)
Enum Statement
Event Statement
Function Statement
Interface Statement
Module Statement
Property Statement
Structure Statement
Sub Statement

By default, classes, modules, structures, and interfaces have Friend access.

See Also

For the statements listed above, see the related entries elsewhere in this chapter for usage
information. For information on using the Friend keyword as a statement, see the entry for the Dim
Statement.

Private Keyword, Protected Keyword, Public Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function Statement

Syntax

 [accessModifier] [procModifier] [Shared] [Shadows] _
 Function

 name [(Of typeParamList)] ([arglist]) _

 [Implements implementsList | Handles eventList] [As type]

 [statements]

 [name = expression]

 [Exit Function | Return expression]

 [statements]
 End Function

accessModifier (optional)

Specifies the scope and accessibility of the function. One of the following access levels:

Access level Description

Public
The function is publicly accessible anywhere, both inside and outside of the
project.

Private The function is accessible only within the defining type.

Protected
The function is accessible only to the code in the defining type or to one of
its derived types.

Friend
The function is accessible only within the project that contains the function
definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Public access level is used.

procModifier (optional)

One of the keywords shown in the following table:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Keyword Description

Overloads
Indicates that more than one declaration of this function exists, each with a
different argument signature

Overrides
For derived classes, indicates that the function overrides a function with the
same name and argument signature in the base class

Overridable Indicates that the function can be overridden in a derived class

NotOverridable Indicates that the function cannot be overridden in a derived class

MustOverride Indicates that the function must be overridden in a derived class

Shared (optional)

Indicates that the function is shared and not an instance function. Shared functions may be
called without a particular instance of the type in which they appear. Shared functions are also
known as static functions.

Shadows (optional)

Indicates that the function shadows an identically named element in a base class.

name (required)

The name of the function.

typeParamName (optional; any)

Adds type parameter placeholders that will later enforce strong typing when the function is
used. The Of clause implements generics, which are fully described in Chapter 10. If generics
will not be used, this clause can be excluded.

arglist (optional; any)

A comma-delimited list of parameters to be supplied to the function as arguments from the
calling routine.

 arglist uses the following syntax and parts:

 [Optional] [ByVal | ByRef] [ParamArray] varname[()] _

 [As argtype] [= defaultValue]

Optional (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flags an argument as optional; optional arguments need not be supplied by the calling routine.
All arguments following an optional argument must also be optional. A ParamArray argument
cannot be optional.

ByVal (optional)

The argument is passed by value; the local copy of the variable is assigned the value of the
argument. ByVal is the default method of passing variables.

ByRef (optional)

The argument is passed by reference; the local variable is a reference to the argument being
passed. All changes made to the local variable will also be reflected in the calling argument.

ParamArray (optional)

The argument is an optional array containing an arbitrary number of elements. It can only be
used as the last element of the argument list, and it cannot be modified by either the ByRef or
Optional keywords. If Option Strict is on, the array type must also be specified.

varname (required)

The name of the argument as used in the local function.

argtype (optional; Type)

The data type of the argument. Any valid .NET data type can be used.

defaultValue (optional; any)

For optional arguments, indicates the default value to be supplied when the calling routine does
not supply the value. When the Optional keyword is used, this default value is required.

implementsList (optional)

Comma-separated list of the interface members implemented by this function.

eventList (optional)

Comma-separated list of the events handled by this function. Each event is in the form
eventVariable.eventMember, where eventVariable is a variable declared with the WithEvents
keyword, and eventMember is an event member of that variable.

type (optional; Type)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The return data type of the function.

statements (optional)

Program code to be executed within the function.

expression (optional)

The value to return from the function to the calling procedure.

Description

The Function statement defines a function, including all arguments and the return value. Functions
can appear within classes, structures, and modules. To call a function, specify its name, followed by
any arguments in parentheses.

 result = SomeFunction(12, "second argument")

The return value can be assigned to a variable, immediately used as a parameter for another
function, or ignored by using the Call keyword.

 Call SomeFunction(12, "second argument")

Usage at a Glance

Functions cannot be nested; that is, you cannot define one function inside another function.
(This restriction applies to all procedures.)

Overloads and Shadows cannot be used in the same declaration.

Any number of Exit Function or Return statements can be placed within the function. When
these statements are encountered, execution continues with the line of code immediately
following the call to the function. If a value has not been assigned to the function when the Exit
Function statement executes, the function will return the default initialization value of the data
type specified for the return value of the function. If the data type of the function is an object
reference, the exited function returns Nothing.

The return value of a function is passed back to the calling procedure by either assigning a
value to the function name or by using the Return statement. The Return statement also exits
the function; assigning the return value to the function name does not exit the function.

To return arrays of any type from a procedure, follow type with parentheses:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Function BuildIntArray() As Integer()

The names of a function's parameters become the function's named arguments.

Version Differences

There are several syntax and functionality differences in the declaration of a function between
VB 6 and the .NET version of VB.

In VB 6, arguments to functions are passed by reference if no passing method is specified. In
.NET, the default is to pass by value.

If a parameter array is used in VB 6, it is an array of variants. In .NET, all parameter arrays are
either of type Object or of some other specified type.

In VB 6, optional arguments do not require that you specify a default value. Instead, the
IsMissing function is used to determine whether the optional argument is supplied. In .NET, you
must assign a default value to an optional argument.

Visual Basic 2005 adds support for generics to functions, as discussed in Chapter 10.

See Also

Sub Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FV Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = FV

(rate, nPer, pmt[, pv [, due]])

rate (required; Double)

The interest rate per period.

nPer (required; Double)

The number of payment periods in the annuity.

pmt (required; Double)

The payment made in each period.

pv (optional; Double)

The present value of the loan or annuity. Defaults to 0.

due (optional; DueDate enumeration)

A value indicating when payments are due, from the Microsoft.VisualBasic.DueDate
enumeration. DueDate.EndOfPeriod indicates that payments are due at the end of the payment
period; DueDate.BegOfPeriod indicates that payments are due at the beginning of the period. If
omitted, the default value is DueDate.EndOfPeriod.

Description

The FV function calculates the future value of an annuity (either an investment or loan) based on a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

regular number of payments of a fixed value and a static interest rate over the period of the annuity.

Usage at a Glance

The time units used for the number of payment periods, the rate of interest, and the payment
amount must be the same. For instance, if you state the payment period in months, you must
also express the interest rate as a monthly rate and indicate the amount paid per month.

The rate is supplied as a decimal percent. For example, 10% is stated as 0.1. If you are
calculating using monthly periods, you must also divide the annual rate by 12. For example, a
10% per annum rate equates to .00833 per period.

The pv argument is most commonly used as the initial value of a loan.

Payments made against a loan or added to the value of savings are expressed as negative
numbers.

See Also

IPmt Function, NPer Function, NPV Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetAllSettings Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result(,) As String = GetAllSettings

(appname, section)

appname (required; String)

The name of the application branch to be retrieved.

section (required; String)

The name of the application's subkey that is to be retrieved. This can be a single key or a
relative registry path, with path components separated by backslashes.

Description

The GetAllSettings function returns the registry value entry names and their corresponding values
for the specified application and section, all as a two-dimensional array. For each entry in the first
dimension, entry (x, 0) contains the name, and entry (x, 1) contains its value.

Usage at a Glance

GetAllSettings works exclusively with the subkeys of HKEY_CURRENT_USER\Software\VB and VBA
ProgramSettings.

section is a relative path (similar to that used to describe the directories on a hard drive) used

to navigate from the application key to the subkey to be accessed. For example, to access the
HKEY_CURRENT_USER\Software\VB and VBA ProgramSettings\RegTester\BranchOne\BranchTwo

section, you would use:

 GetAllSettings("RegTester", "BranchOne\BranchTwo")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A call to GetAllSettings will return only the value entry names and data belonging to the final
registry key specified by the section argument. If that key itself has one or more subkeys, the

data for those subkeys will not be retrieved by the function.

If either appname or section do not exist, GetAllSettings returns Nothing.

Although the registry supports multiple data types, the GetAllSettings function only supports
string values.

GetAllSettings cannot be used to access the default value (i.e., the unnamed value entry)
belonging to any section. If you're using only the VB registry functions, though, this isn't a
serious limitation, since SaveSetting does not allow you to create a default value.

Data saved with SaveSetting is placed in the registry on a per-user basis.

The .NET Framework includes registry-related features that provide more flexibility than the VB
"Settings" functions. These features are found in the Registry and RegistryKey classes of the
Microsoft.Win32 namespace.

Version Differences

Visual Basic 2005 includes several new features that let you manage the settings used by an
application. Although they are not compatible with the older VB "Settings" functions, they provide a
richer set of features. These features are located in the My.Settings object. The
My.Computer.Registry object also provides access to convenient registry-related features.

See Also

DeleteSetting Procedure, GetSetting Function, SaveSetting Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetAttr Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As FileAttribute = GetAttr(pathname)

pathname (required; String)

The file or directory from which to obtain the attribute details

Description

The GetAttr function retrieves the current set of attributes for a specific file. The return value is the
sum of one or more of the following Microsoft.VisualBasic.FileAttribute enumeration values (each of
which has a related intrinsic Visual Basic constant):

Enumeration Constant Value Description

Normal vbNormal 0 Normal file (the absence of other attributes)

ReadOnly vbReadOnly 1 Read-only file

Hidden vbHidden 2 Hidden file

System vbSystem 4 System file

Directory vbDirectory 16 Directory or folder

Archive vbArchive 32 File has changed since last backup

Usage at a Glance

pathname can be either an absolute or relative path to a file. It can exist on the local or remote

drive and can use the drive-letter or UNC path format.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An error occurs if pathname is invalid or cannot be found.

You can check if a particular attribute has been set by performing a bitwise And comparison of
the GetAttr return value with the attribute constant. For example:

 If ((GetAttr("myfile.txt") And vbReadOnly) = 0) then
 MsgBox("The file is Read-Write")
 Else
 MsgBox("The file is Read-Only")
 End If

Version Differences

Visual Basic 2005 includes My.Computer.FileSystem.GetDirectoryInfo and
My.Computer.FileSystem.GetFileInfo methods that provide access to related functionality.

See Also

SetAttr Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetChar Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As Char = GetChar(str, index)

str (required; String)

The string from which to extract the character

index (required; Integer)

Position of the character to extract (1-based)

Description

The GetChar function returns the character that is at position index within a given string.

Usage at a Glance

If index exceeds the number of character positions in str, an error occurs.

Version Differences

The GetChar function did not exist in VB 6.

See Also

InStr Function, Left Function, Mid Function, Right Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetObject Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As Object = GetObject([pathname][, class])

pathname (optional; String)

The full path and name of the COM or ActiveX object.

class (optional; String)

The class's programmatic identifier (ProgID) of the object to obtain. The ProgID is defined in
the system registry and usually takes the form library.class or application.class.

Description

The GetObject function obtains an ActiveX or COM object from an already-running instance of that
server. Once created, that object's members can be accessed and used.

Usage at a Glance

Although both pathname and class are optional, at least one parameter must be supplied.

In situations where you cannot create a project-level reference to an ActiveX object, you can
use the GetObject function to assign an object reference from an external ActiveX object to an
object variable.

GetObject is used when there is already a current instance of the ActiveX object; to create the
first instance, use the CreateObject function.

If you specify pathname as a zero-length string, GetObject will return a new instance of the

objectunless the object is registered as single instance, in which case, the current instance will
be returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An error is generated if pathname is not specified and no current instance of the object can be

found.

When using a variable of type System.Object to receive the result of the GetObject function, the
new object will be late bound. Late binding is inherently lest robust in terms of performance
than is early binding.

If an object is registered as a single-instance object (an out-of-process ActiveX EXE), only one
instance of the object can be created at a time. Each time you call GetObject to create this
object, you will obtain a reference to the same instance of the object.

You cannot use GetObject to obtain a reference to a class created with Visual Basic 6 or earlier.

See Also

CreateObject Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetSetting Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 GetSetting(appname, section, key[, default])

appname (required; String)

The name of the application branch to be retrieved.

section (required; String)

The name of the application's subkey to be retrieved. This can be a single key or a relative
registry path, with path components separated by backslashes.

key (required; String)

The name of the value entry to retrieve.

default (optional; String)

The value to return if no setting can be found. If omitted, the default value is an empty string
("").

Description

The GetSetting function returns a single value from a specified section of your application's entry in
the HKEY_CURRENT_USER\Software\VB and VBA ProgramSettings\ branch of the registry. If a matching
entry is not found, or if any portion of the path to the entry is not found, default is returned instead.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

section is a relative path (similar to that used to describe the directories on a hard drive) used

to navigate from the application key to the subkey to be accessed. For example, to access the
value entry named TestKey in the registry key HKEY_CURRENT_USER\Software\VB and VBA
ProgramSettings\RegTester\BranchOne\BranchTwo, you would use:

 GetSetting("RegTester", "BranchOne\BranchTwo", "TestKey")

Although the registry supports multiple data types, the GetSetting function only supports string
values.

You cannot use GetSetting to access entries from registry keys that are not subkeys of
HKEY_CURRENT_USER\Software\VB and VBA ProgramSettings.

GetSetting cannot be used to access the default value (i.e., the unnamed value entry)
belonging to any key. If you're using only the VB registry functions, though, this isn't a serious
limitation, since SaveSetting does not allow you to create a default value.

Data saved with SaveSetting is placed in the registry on a per-user basis.

The .NET Framework includes registry-related features that provide more flexibility than the VB
"Settings" functions. These features are found in the Registry and RegistryKey classes of the
Microsoft.Win32 namespace.

Version Differences

Visual Basic 2005 includes several new features that let you manage the settings used by an
application. Although they are not compatible with the older VB "Settings" functions, they provide a
richer set of features. These features are located in the My.Settings object. The
My.Computer.Registry object also provides access to convenient registry-related features.

See Also

DeleteSetting Procedure, GetAllSettings Function, SaveSetting Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetType Operator

Syntax

 Dim result As System.Type = GetType(typename)

typename (required; any type)

The name of a type

Description

The GetType operator returns information about a particular type or instance, such as the name, base
type, reference or value type status, COM-related GUID, namespace, and so on.

Usage at a Glance

Passing an instance variable to GetType generates a compiler error.

If you don't know the name of the type about which you'd like to get information, but you do
have an object instance of that type, you can retrieve a System.Type object using the
Type.GetType method.

Version Differences

The GetType operator is new to VB under .NET.

See Also

CType Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Global Keyword

Syntax

 Global[.namespace...]

namespace (required)

The name of a top-level namespace, such as System or Microsoft, followed by additional
namespace and type qualifiers

Description

New in 2005. The Global keyword provides a way to specify, without ambiguity, a namespace from
the topmost level of the namespace hierarchy.

Normally, specifying a full namespace is unambiguous. However, it is possible to create situations
where conflicts arise. Consider the following code.

 Imports MyCompany
 Namespace MyCompany.System.Configuration
 Public Class Configuration
 ' ----- Class code here.
 End Class
 End Namespace
 Namespace MyCompany.MyProgram
 Public Module GeneralCode
 Public Sub SomeRoutine()
 ' ----- This next line is ambiguous.
 Dim whichOne As System.Configuration.Configuration
 End Sub
 End Module
 End Namespace

The Dim statement in this code is ambiguous because there are now two System.Configuration
namespaces: one at the top and one within the MyCompany namespace, both of which contain a
Configuration class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To resolve this conflict, use the Global keyword to specify a full namespace from the very top of the
hierarchy. Global appears just before all top-level namespaces. The two classes in this example can
each be specified using the Global keyword as follows:

Global.System.Configuration.Configuration

Global.MyCompany.System.Configuration.Configuration

Version Differences

The Global keyword is new in Visual Basic 2005.

See Also

Continue Statement, On Error Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GoTo Statement

Syntax

 GoTo label

label (required)

A source-code label that appears somewhere in the current procedure

Description

The GoTo statement passes execution to a specified line within a procedure.

Usage at a Glance

GoTo can branch only to lines within the procedure where it appears.

The GoTo statement cannot jump into one of the following block constructs from a location
outside of that block: For...Next, For Each...Next, SyncLock...End SyncLock,
try...Catch...Finally, Using...End Using, or With...End With.

Within a try...Catch...Finally statement, a GoTo statement can be used to jump out of the
entire statement only from the try or Catch blocks, not from the Finally block.

Within a try...Catch...Finally statement, a GoTo statement can be used to jump from a Catch
block to the try block, but no other inter-block jumps are permitted. Jumps are allowed within
the same block.

GoTo is frequently used to control program flow within a procedure, a technique that often
produces highly unreadable "spaghetti code." Great care and restraint should be taken when
using the GoTo statement.

Version Differences

Prior to the 2005 release of Visual Basic, the GoTo statement was sometimes used to skip a portion of
a loop and continue immediately with the next iteration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For counter = 1 To 10
 ' some code here
 If (someCondition) Then GoTo NextIteration
 ' some more code here

 NextIteration:
 ' ----- This label is only used to iterate.
 Next counter

In Visual Basic 2005, the new Continue keyword provides a better method for jumping to the next
iteration of a loop.

 For counter = 1 To 10
 ' some code here
 If (someCondition) Then Continue For
 ' some more code here
 Next counter

See Also

Continue Statement, On Error Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Guid Attribute

Class

System.Runtime.InteropServices.GuidAttribute

Applies To

Assembly, Class, Delegate, Enum, Interface, Struct

Constructor

 New(guid)

guid (required; String)

The GUID to be assigned to the program element

Properties

Value (String)

Read-only. Value from the guid constructor parameter.

Description

The <Guid> attribute assigns an explicit Globally Unique Identifier (GUID) to a program element when
an automatically generated GUID is undesirable. The <Guid> attribute is used for COM interop. A
GUID can be generated by a utility named guidgen.exe, which is included with Visual Studio.

Assigning a GUID to a program element, rather than allowing Visual Studio to do it automatically,
ensures that it remains constant over successive recompilations of the source code. Because COM
uses GUIDs to permanently identify program elements, inadvertently changing a GUID may cause
COM to fail to recognize a component. Visual Studio automatically adds the <Guid> attribute to each
AssemblyInfo.vb file to ensure that, should a type library be generated for a particular project, its
library identifier (LibID) will remain unchanged when the project is recompiled.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Handles Keyword

Syntax

 Handles name.event

name (required)

The name of the object with the event that the procedure is handling

event (required)

The name of the event member that the procedure is handling

Description

The Handles statement defines a procedure as the event handler for a particular class or type event.

Usage at a Glance

The Handles keyword is used to define event handlers for events trapped by an object defined
with the WithEvents keyword.

The Handles keyword can only be used with a Sub procedure declaration, since an event handler
must be a procedure rather than a function.

The Handles keyword must be on the same logical line as the procedure declaration.

A single Handles keyword can be followed by multiple comma-delimited event enTRies. This is

done when a single event handler is used for multiple events.

The WithEvents and Handles keywords are designed to define event handlers at compile time. If
you want to define event handlers dynamically at runtime, use the AddHandler and
RemoveHandler statements.

By convention, event handlers take the form objectname_eventname. For example, the default

event handler name for the Click event of an object named Button1 is Button1_Click. Although
this convention is traditional and in common use, you are not required to follow it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

If you add a command button to a new form, the form initialization code generated by Visual Studio
includes the following statement:

 Friend WithEvents Button1 As System.Windows.Forms.Button

The WithEvents keyword allows the events of this control to be processed by event handlers. The
default procedure template used to handle this button's Click event looks like the following:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' ----- Custom code goes here.
 End Sub

The Handles clause in this code is what links Button1's Click event with the event handler code.

Version Differences

The Handles keyword is new to VB under .NET. In VB 6, the link between an object and its event
handler was handled automatically and transparently by Visual Basic, based on the name of the
event-handling procedure.

Visual Basic 2005 includes a new Custom Event feature that gives the developer more control
over the lifetime of an event.

See Also

WithEvents Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable Class

Namespace

System.Collections

Creatable

Yes

Description

The Hashtable class implements a hash-based dictionary of value pairs. A hashtable represents a
collection of values that are indexed by keys; these values and keys are associated in a dictionary of
key/value pairs. A hashing function is used to speed up access to each pair. In .NET, both the values
and the keys are objects of any type. The Hashtable class is somewhat more flexible than the
standard VB Collection class.

The following table lists some of the more useful and interesting members of the Hashtable class.
Those marked with an asterisk (*) have separate entries in this chapter.

Member Description

Add Method * Adds a key/value pair to a hashtable

Clear Method * Removes all items from the hashtable

Clone Method Makes a distinct copy of the hashtable and its members

Contains Method Identical to the Hashtable.ContainsKey method

ContainsKey Method * Indicates whether a specific key is in the hashtable

ContainsValue Method * Indicates whether a specific value is in the hashtable

CopyTo Method * Copies hashtable elements to an existing array

Count Property Indicates the number of items currently in the hashtable

IsReadOnly Property Indicates whether the hashtable is read-only or not

Item Property * Retrieves a value from the hashtable based on its key

Keys Property * Retrieves the collection of all keys in the hashtable

Remove Method * Removes a value/key pair from the hashtable

Values Property * Retrieves the collection of all values in the hashtable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

This example makes use of a simple hashtable.

 ' ----- Build a simple hashtable.
 Dim nameHash As New Hashtable()
 nameHash.Add("Be", "Beethoven")
 nameHash.Add("Ch", "Chopin")
 nameHash.Add("Mo", "Mozart")

 ' ----- Select and remove items.
 MsgBox(nameHash.Item("Be")) ' Displays "Beethoven"
 nameHash.Remove("Ch") ' Removes "Chopin"
 MsgBox(nameHash.Count) ' Displays 2
 nameHash.Clear()

See Also

Collection Class, Queue Class, Stack Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Add Method

Class

System.Collections.Hashtable

Syntax

 hashtableVariable.Add(key, value)

key (required; any)

The key to be used to access the newly added value

value (required; any)

The new value to be added to the hashtable

Description

The Add method adds a key/value pair to the hashtable.

Usage at a Glance

key must be unique or a runtime error occurs. value does not need to be unique.

Keys are immutable. Once added, a particular key cannot be changed during the lifetime of the
hashtable except by removing it through the Remove or Clear method and then adding it once
again. Values associated with keys can be changed through the Item property.

The Item property can also be used to add new members to the hashtable.

To ensure that a key is unique when calling the Add method, use the ContainsKey method.

See Also

Hashtable Class, Hashtable.ContainsKey Method, Hashtable.Item Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.ContainsKey Method

Class

System.Collections.Hashtable

Syntax

 Dim result As Boolean = hashtableVariable.ContainsKey(key)

key (required; any)

The key to search for among the hashtable entries

Description

The ContainsKey method indicates whether a given key is contained in the hashtable (true) or not
(False).

Usage at a Glance

The Contains method is identical in functionality to the ContainsKey method.

See Also

Hashtable Class, Hashtable.ContainsValue Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.ContainsValue Method

Class

System.Collections.Hashtable

Syntax

 Dim result As Boolean = hashtableVariable.ContainsValue(value)

value (required; any)

The value to search for among the hashtable entries

Description

The ContainsValue method indicates whether a given value is contained in the hashtable (true) or not
(False).

See Also

Hashtable Class, Hashtable.ContainsKey Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.CopyTo Method

Class

System.Collections.Hashtable

Syntax

 hashtableVariable.CopyTo(array, arrayIndex)

array (required; array of DictionaryEntry)

Array to which to copy the hashtable's key/value pairs

arrayIndex (required; Integer)

The index of the first zero-based array element to receive a hashtable pair.

Description

The CopyTo method copies hashtable key/value pairs into an existing array, starting at a specified
array index. The array must use the DictionaryEntry structure for its type; this structure includes
members for both keys and values.

Usage at a Glance

The array must be sized to accommodate the elements of the hashtable prior to calling the
CopyTo method.

Elements are copied from the hashtable to array in the same order in which the hashtable is

iterated.

Example

The sample code copies hashtable pairs to an array.

 Dim nameTable As New Hashtable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim stateArray() As DictionaryEntry

 ' ----- Build the hashtable.
 nameTable.Add("Ch", "Chopin")
 nameTable.Add("Mo", "Mozart")
 nameTable.Add("Be", "Beethoven")

 ReDim stateArray(nameTable.Count - 1)
 nameTable.CopyTo(stateArray, 0)

See Also

Hashtable Class, Hashtable.Keys Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Item Property

Class

System.Collections.Hashtable

Syntax

 Dim result As Object = hashtableVariable.Item(key)

key (required; any)

The key with the related value that is to be retrieved

Description

The Item property returns the hashtable value associated with a particular key.

Usage at a Glance

Item is the default property of the Hashtable class, so ".Item" is optional. The following two
lines are equivalent.

 resultObject = myHashtable.Item("abc")
 resultObject = myHashtable("abc")

The Item property can be used to add or update values. The statement:

 myHashtable.Item("abc") = sourceObject

either updates the value associated with the key "abc" (if it already exists in the hashtable) or
adds it as a new item with the key "abc" (if it does not yet exist in the hashtable).

If key does not exist in the hashtable when you attempt to retrieve a value, the Item property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returns Nothing.

To guard against inadvertently adding a member to the hashtable when you intend to modify an
existing value, call the ContainsKey method to test the key.

You can also retrieve individual members of the Hashtable object by iterating it using the For
Each...Next statement. Each iteration of the loop returns a DictionaryEntry object containing a
single key/value pair.

See Also

Hashtable Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Keys Property

Class

System.Collections.Hashtable

Syntax

 Dim result As ICollection = hashtableVariable.Keys

Description

The Keys property returns a collection of the keys contained in a hashtable. The returned object
exposes the ICollection interface, so any feature that uses this interface can use the returned set of
keys.

See Also

Hashtable Class, Hashtable.Values Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Remove Method

Class

System.Collections.Hashtable

Syntax

 hashtableVariable.Remove(key)

key (required; any)

The key with the key/value pair that is to be removed

Description

The Remove method removes an element from a hashtable based on its key.

Usage at a Glance

If key is not found in the hashtable, the hashtable remains unchanged, and no error occurs.

For cases in which you need to know whether the call to the Remove method will actually
remove an entry, call the ContainsKey method beforehand to make sure that the key you want
to remove exists.

See Also

Hashtable Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Values Property

Class

System.Collections.Hashtable

Syntax

 Dim result As ICollection = hashtableVariable.Values

Description

The Values property returns a collection of the values contained in a hashtable. The returned object
exposes the ICollection interface, so any feature that uses this interface can use the returned set of
values.

See Also

Hashtable Class, Hashtable.Keys Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hex Function

Class

Microsoft.VisualBasic.Conversion

Syntax

 Dim result As String = Hex(number)

number (required; numeric or string value)

A number, or a string that can be interpreted as a number. Nonintegral numbers are rounded
before conversion.

Description

The Hex function returns a string that represents the hexadecimal value of a numeric expression.

Usage at a Glance

Nonintegral numbers are rounded before conversion to hexadecimal format. An Empty value
results in "0." A value of Nothing generates an error.

The hexadecimal result is limited to 16 digits. Numbers larger than this limit result in an
overflow error.

If the source value is a string, it may appear in hexadecimal format. Such strings begin with the
standard "&H" hexadecimal prefix for Visual Basic, as in "&H10" for a decimal value of 16.

Version Differences

The Visual Basic 6 version of the Hex function only handled up to eight hex digits. The .NET version
handles up to 16 digits.

See Also

Oct Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hour Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Integer = Hour(timeValue)

timeValue (required; Date)

The source date from which to extract the hour

Description

The Hour function returns a value from 0 to 23, representing the hour of the supplied date or time.

Usage at a Glance

With Option Strict set to On, the source value must first be converted to a Date data type. You
can use the CDate function for this purpose. The IsDate function can also be used to confirm
that the source expression is a valid date.

The Hour function always returns an hour value using a 24-hour clock.

Example

The following statement displays "13."

 MsgBox(Hour(#1:33:00 PM#))

See Also

DatePart Function, Minute Function, Second Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IEEERemainder Function

Class

System.Math

Syntax

 Dim result As Double = Math.IEEERemainder(x, y)

x (required; Double)

A numerator in a division expression

y (required; Double)

A nonzero denominator in a division expression

Description

The IEEERemainder function returns the remainder after dividing x by y.

Usage at a Glance

VB has a built-in Mod operator that also returns the remainder upon division.

The IEEERemainder function complies with the remainder operation as defined in Section 5.1 of
ANSI/IEEE Std 7541985; IEEE Standard for Binary Floating-Point Arithmetic; Institute of
Electrical and Electronics Engineers, Inc; 1985.

This is a shared member of the System.Math class, so it can be used without an instance.

Example

 MsgBox(Math.IEEEremainder(4, 3)) ' Displays 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The IEEERemainder function did not exist in VB 6.

See Also

Mod Operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If...Then...Else Statement

Syntax

 If condition [Then]

 [statements]

 [ElseIf condition [Then]

 [statements]] ...
 [Else

 [statements]]
 End If

Or:

 If condition Then [statements] [Else [statements]]

condition (required; Boolean)

An expression to be evaluated. If true, the related statements section executes.

statements (optional)

Program code to be executed if condition is TRue. The statements in the Else section only

execute if no other section does. In the single-line syntax, multiple statements may be
separated by colons.

Description

Executes a statement or block of statements based on the Boolean (TRue or False) value of an
expression. If a given condition is TRue, the statements following that condition are executed. If no
condition evaluates to TRue, the statements following the Else statement are executed.

Usage at a Glance

Any number of ElseIf clauses and related statements blocks may appear. In some cases, a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Select Case statement may be a better alternative than numerous End If statements.

In the block form, one End If clause ends the entire statement. ElseIf clauses do not have
their own End If.

The ElseIf and Else blocks are optional. If both are used, the Else block must appear last.

If condition returns Null, it will be treated as False.

condition can use the Is and TypeOf operators to test for object type, as follows:

 If (TypeOf objectName Is objectType) Then

statements are required when using the single-line form of If in which there is no Else clause.

Indentation is important for the readability of If blocks, especially in nested If statements. The
set of statements within each new If...Else...EndIf block should be indented, and it is
automatically indented by the Visual Studio IDE.

It is permissible to write a statement such as:

 If someValue Then ...

where someValue is an Integer variable. The statement works because Visual Basic interprets all
nonzero values as equal to the Boolean TRue and all zero values as False. However, if Option
Strict is On, statements such as these will generate a compiler error. One of the following two
statements will restore the condition to its Boolean form.

 If (someValue <> 0) Then

or:

 If CBool(someValue) Then

Logical comparison operators can be included in the condition expression, allowing you to make

decisions based on the outcome of more than one individual element. For instance, using the Or
operator, you can create conditions like:

 If (x = 0) Or (x = 2) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parentheses may be included to improve readability and to enforce a specific expression
analysis order.

See Also

IIf Function, Select Case Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IIf Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As Object = IIf(expression, truePart, falsePart)

expression (required; Boolean)

Expression to be evaluated

truePart (required; any value or expression)

Expression or value to return if expression is true

falsePart (required; any value or expression)

Expression or value to return if expression is False

Description

The IIf function returns one of two results, depending on whether expression evaluates to true or

False.

Usage at a Glance

The IIf function, as shown in the syntax listed above, is generally equivalent to:

 If expression Then

 Return truePart
 Else

 Return falsePart
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

truePart and falsePart can be variables, constants, literals, expressions, or function calls.
expression can also be built from many complex elements, as long as it ultimately results in a

Boolean value.

Both truePart and falsePart are fully evaluated before they are considered as results for the

IIf statement. If they contain function calls, those functions will be called, even in the part that
is not returned by the IIf function. For instance, in the statement:

 result = IIf(tempOnly, ProcessFile(tempFileName), _
 ProcessFile(mainFileName))

both calls to ProcessFile will always be performed, regardless of the value of tempOnly.
However, the return value from only one of the calls will be returned from the IIf function.

See Also

If...Then...Else Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implements Keyword

Syntax

 Implements interfaceName.interfaceMember[, ...]

interfaceName (required)

The name of the interface being implemented by a class or structure. This interface must
appear in the related Implements statement used at the start of the class or structure.

interfaceMember (required)

The name of the interface member being implemented by a local member of the current class
or structure.

Description

The Implements keyword indicates that a specific class or structure member provides the
implementation for a member defined in an interface. This keyword appears as part of the
implementation member definition.

Usage at a Glance

The Implements keyword can only be used in a class or structure in which the Implements
statement has also been used to associate the matching interface to the class or structure.

The Implements keyword must be on the same logical line as the property, function, procedure,
or event definition that implements the interface member.

The implementing member must have the same argument and return type signature, and be of
the same member type, as the interface member.

Classes and structures that implement interfaces must implement all members declared in the
interface.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See the example in the Implements Statement entry.

Version Differences

The Implements keyword is new to VB under .NET. Its addition means that the implementation
of a class or structure member does not have to use the name defined by the interface. This
differs from the VB 6 practice, which required that class members that implemented an
interface definition have the form interfaceName_membername.

VB 6 does not allow derived classes to implement events defined in interfaces. The .NET version
of Visual Basic removes this restriction.

See Also

Implements Statement, Interface...End Interface Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implements Statement

Syntax

 Implements interfaceName[, interfaceName...]

interfaceName (required)

The name of the interface that a class or structure implements. This name may include the
namespace of the interface, as in namespace.interface.

Description

The Implements statement specifies that a class or structure will implement an interface defined. The
Implements statement appears on the line immediately following the Class clause, or immediately
after the Inherits line if the class definition includes an Inherits statement:

 Friend Class ClassWithAPurpose
 Implements IPurpose
 ...

or:

 Friend Class ClassWithAPurpose
 Inherits ClassWithLimitedPurpose
 Implements IPurpose
 ...

A single class may implement multiple interfaces.

Usage at a Glance

Any interface specified by the Implements statement must have all of its members fully

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implemented by the class or structure where the Implements statement appears. However, if
you do not wish to support one interface member, the implementation procedure can simply
raise a NotImplementedException exception.

The Implements statement cannot be used with code modules; it is used only in class and
structure definitions.

Each class or structure member that implements a member of an interface uses the Implements
keyword as part of its definition.

Traditionally, once a public interface is implemented, it should not be changed. Any additional
functionality should be provided by defining additional interfaces.

VB under .NET provides only single inheritance using the Inherits statement. However, a single
class can implement multiple interfaces at the same time.

Example

 Friend Interface IAnimal
 ReadOnly Property Name() As String
 Function GetFood() As String
 Function GetNoise() As String
 End Interface

 Friend Class Wolf
 Implements IAnimal

 Public ReadOnly Property Name() As String _
 Implements IAnimal.Name
 Get
 Return "Wolf"
 End Get
 End Property

 Public Function GetFood() As String Implements IAnimal.GetFood
 Return "caribou, salmon, other fish"
 End Function

 Public Function GetNoise() As String Implements IAnimal.GetNoise
 Return "howl"
 End Function
 End Class

 Module GeneralCode
 Public Sub TestAnimal()
 Dim loneWolf As IAnimal=New Wolf
 MsgBox(loneWolf.GetNoise())
 loneWolf = Nothing
 End Sub
 End Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

In VB 6, the Implements statement does not support events; any events publicly declared in an
interface are ignored. VB under .NET allows interface events to be implemented in classes and
structures.

See Also

Implements Statement, Interface...End Interface Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports Statement

Syntax

 Imports [aliasName =] namespace[.element]

aliasName (optional)

The name by which the namespace or element must be referenced within the source-code file
that contains the Imports statement

namespace (required)

The name of the namespace being imported

element (optional)

The name of an element in the namespace

Description

The Imports statement makes a namespace or parts of a namespace available to the current module
without additional qualification.

Usage at a Glance

A single Imports statement can import only one namespace or element.

A module can have as many Imports statements as needed.

Imports statements are used to import names from other projects and assemblies, as well as
from namespaces in the current project.

Imports statements must be placed in a module before references to any types (classes,
structures, etc.).

namespace must be a fully qualified namespace name, even if you use the compiler option

/rootnamespace or supply a value for the "Root namespace" in the project's Properties dialog in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Studio.

If aliasName is absent from an Imports statement, types in that namespace can be referenced
without qualification. If aliasName is present in an Imports statement, types in that namespace
must be qualified with aliasName in order to be accessible without full qualification. The name
aliasName must not be assigned to any other member within the module.

If element is specified, it can be the name of an enumeration, structure, class, or module within

the namespace. If specified, this restricts importation to members of that element only.

You do not have to use the Imports statement to import namespaces into an ASP.NET
application. Instead, you can import a namespace into an ASP.NET application in a number of
ways:

By creating an "<add namespace>" directive in a web.config configuration file. For example:

 <compilation>
 <namespaces>
 <add namespace="System.IO" />
 ...
 </namespaces>

imports the System.IO namespace within the scope defined in the web.config file.

By adding an "@ Import" directive to global.asax. For example:

 <%@ Import namespace="System.IO" %>

imports the System.IO namespace for the ASP.NET application.

By adding an "@ Import" page directive. This has the same form as the global.asax
directive and must appear at the beginning of the page.

Example

 Imports MVB = Microsoft.VisualBasic

See Also

Namespace Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherits Statement

Syntax

 Inherits className

className (required)

The name of the inherited (base) class

Description

The Inherits statement specifies the name of the class from which a new class is being derived; it
specifies the base class of the current class. The statement appears immediately after the Class
statement or the Interface statement.

Usage at a Glance

The Inherits statement must be the first line of code in the class or interface. It can be
preceded only by blank lines and comments.

Visual Basic does not support simultaneous inheritance from multiple classes in a derived class.
There can be only a single Inherits statement in a class definition.

Interfaces support either single or multiple inheritance from other interfaces. Use a comma used
to delimit multiple base interfaces:

 Interface IPerson
 Property Name As String
 End Interface

 Interface IEmployee
 Property SSN As String
 End Interface

 Interface ISalaried
 Inherits IPerson, IEmployee

 Property Salaried As Boolean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Property Salary As Decimal
 End Interface

See Also

Class Statement, Interface...End Interface Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Input Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Input(fileNumber, value)

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

value (required; any)

The destination object into which data from the file will be stored

Description

The Input procedure reads delimited data from a file into a variable. This statement is used to read
files created using the Write and WriteLine procedures. Those procedures output data as comma-
delimited fields with quotation marks around strings.

Usage at a Glance

Data read by Input has usually been written using the Write and WriteLine procedures.

Use this statement with files that have been opened in Input or Binary mode only.

An error occurs if the data type of value cannot store the data being read by the Input

procedure.

The Input procedure removes quotation marks that it finds around strings before storing the
data in value.

After the Input procedure reads value, it advances the file pointer to the next unread variable

or, if the file contains no additional delimited data, to the end of the file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An error occurs if the end of the file is reached during the operation.

The Input procedure assigns string or numeric data to value without modification. However,

other types of data can be modified as shown in the following table:

Data Value assigned to variable

Delimiting comma or blank line "" (empty string)

#FALSE# False

#trUE# TRue

#yyyy-mm-dd hh:mm:ss# Date or time

#TRUE# and #FALSE# are case-sensitive.

Use the EOF function to determine whether the end of the file has been reached.

Use the Write and WriteLine procedures to write data to a file, since they delimit data fields
correctly. This ensures that the data can be read correctly with the Input procedure.

Example

If the file c:\data.txt contains the following data:

 "one", "two", "three"

then the following code will print each string on a separate line in the Output window:

 Dim oneValue As String
 Dim fileID As Integer = FreeFile()

 FileOpen(fileID, "c:\data.txt", OpenMode.Input)
 Do While Not EOF(fileID)
 Input(fileID, oneValue)
 Console.WriteLine(oneValue)
 Loop
 FileClose(fileID)

Version Differences

The Input procedure differs syntactically from its VB 6 counterpart. The VB 6 version supported
multiple input values in a single statement, among other changes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB 6, if value is numeric and the data read from the file is not numeric, value is initialized to

the default value for its type. In .NET, this generates an error.

In addition to the standard data types, VB 6 also recognizes Empty, Null, and Error types. In
.NET, these are not supported.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

Write, WriteLine Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InputBox Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As String = InputBox

(prompt[, title[, _

 defaultResponse[, xpos[, ypos]]]])

prompt (required; String)

A message displayed in the body of the dialog box that usually emphasizes the type of data to
be entered. May include line termination characters.

title (optional; String)

The text to display in the title bar of the dialog box. If omitted or blank, the name of the
application is used.

defaultResponse (optional; String)

String to be displayed in the text box when the dialog box first opens. This may be an empty
string.

xpos (optional; Numeric)

The distance in twips from the left-hand side of the screen to the left-hand side of the dialog
box. If omitted, the dialog box is centered horizontally.

ypos (optional; Numeric)

The distance in twips from the top of the screen to the top of the dialog box. If omitted, the
dialog box is positioned vertically about one-third of the way down from the top of the screen.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The InputBox function displays a dialog box containing a prompt for the user, a text box for entering
data, and OK and Cancel buttons. When the user clicks OK, the function returns the contents of the
text box. If the user clicks the Cancel button, an empty string ("") is returned.

Usage at a Glance

It is not possible to distinguish between a click on the OK button with a blank text field and a
click on the Cancel button.

prompt can contain approximately 1,000 characters, including nonprinting characters such as

the intrinsic vbCrLf constant.

If you are omitting one or more of the optional arguments and are using subsequent
arguments, you must use a comma to signify the missing parameter. For example, the following
code fragment displays a prompt and a default string in the text box; default values will be used
for the title and for dialog box positioning.

 Dim userResponse As String
 userResponse = InputBox("Enter the data", , "The Data")

InputBox always returns a string. Your code is responsible for converting it to the required data
type before use.

See Also

MsgBox Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InputString Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As String = InputString(fileNumber, charCount)

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

charCount (required; Integer)

Number of characters to read from the file

Description

The InputString function reads data from a file into a string variable, up to charCount characters in

length.

Usage at a Glance

InputString should only be used with files opened in Input or Binary modes.

InputString begins reading from the current read position in the file.

InputString returns all the characters it reads, regardless of their type. This includes spaces,
carriage returns, line feeds, commas, end-of-file markers, unprintable characters, and so on.

Once the function finishes reading charCount characters, it advances the current file position
charCount characters.

InputString is often used with data written to a file using the Print, PrintLine, or FilePut
procedures.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If a read of charCount characters moves past the end of the file, an error occurs.

Example

If the file c:\data.txt contains the data:

 abcdefghijklmnopq

the following code reads the characters, three at a time:

 Dim oneLine As String
 Dim counter As Long
 Dim fileID As Integer = FreeFile()

 FileOpen(fileID, "c:\data2.txt", OpenMode.Input)
 For counter = 1 To LOF(fileID) \ 3
 oneLine = InputString(fileID, 3)
 Console.WriteLine(oneLine)
 Next counter
 FileClose(fileID)

Version Differences

The new InputString function corresponds to the VB 6 Input, Input$, InputB, and InputB$
functions.

The order of parameters is reversed between the VB 6 and .NET versions. In VB 6, the first
parameter is charCount and the second is fileNumber.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

FilePut, FilePutObject Procedures, Print, PrintLine Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InStr Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As Integer = InStr([start,]string1, string2[, compare])

start (optional; Integer)

The 1-based starting position for the search. If omitted, 1 is used.

string1 (required; String)

The string being searched.

string2 (required; String)

The substring to be found within string2.

compare (optional; CompareMethod enumeration)

The type of string comparison. One of the following Microsoft.VisualBasic.CompareMethod
enumeration values.

Value Description

Binary Performs a binary (case-sensitive) comparison

Text Performs a text (case-insensitive) comparison

If omitted, the setting specified through the Option Compare statement is used.

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The InStr function finds the 1-based starting position of string2 within string1, optionally skipping

the first few characters. If a match is not found, zero is returned.

Usage at a Glance

If string2 is empty or Nothing, the value of start is returned.

See Also

InStrRev Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InStrRev Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As Integer = InStrRev(stringCheck, stringMatch[, _

 start[, compare]])

stringCheck (required; String)

The string being searched.

stringMatch (required; String)

The substring to be found within stringCheck.

start (optional; Numeric)

The 1-based starting position for the search. If omitted, -1 is used, which indicates the last
character of the string. Although the counting is done from the left end of the string, the search
uses the character at that position and proceeds to the left.

compare (optional; CompareMethod enumeration)

The type of string comparison. One of the following Microsoft.VisualBasic.CompareMethod
enumeration values.

Value Description

Binary Performs a binary (case-sensitive) comparison

Text Performs a text (case-insensitive) comparison

If omitted, Binary is used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

Finds the 1-based starting position of the last occurrence of stringMatch within stringCheck,

optionally skipping the last few characters. If a match is not found, zero is returned. The search is
done from the specified character position (the last character by default) and proceeds toward the
left, the beginning of the string.

Usage at a Glance

The syntax of InStrRev is different from InStr.

While InStr searches a string from left to right, InStrRev searches a string from right to left.

Example

This example uses both InStr and InStrRev to highlight the different results produced by each.

 Dim bigString As String = _
 "I like the functionality that InStrRev gives."
 MsgBox(InStr(bigString, "th")) ' Displays 8
 MsgBox(InStrRev(bigString, "th")) ' Displays 26

See Also

InStr Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Int Function

Class

Microsoft.VisualBasic.Conversion

Syntax

 Dim result As type = Int(number)

number (required; any numeric expression)

The number to be processed. The data type of number is one of Double, Single, Decimal,

Integer, Long, Short, or Object. If Object, the value must evaluate to a number. The return
data type always matches the data type of number.

Description

The Int function returns the whole number that is less than or equal to the source value.

Usage at a Glance

Int TRuncates numbers; it does not round. For example, Int(100.9) returns 100.

If the source value is negative, Int returns the first negative integer less than or equal to that
value. For example, Int(-10.1) returns -11.

A source of Nothing returns Nothing.

The Int and Fix functions work identically with positive numbers. However, for negative
numbers, Fix returns the first negative integer greater than the source value, while Int returns
the first negative integer less than that value. For example, Fix(-10.1) returns -10, while Int(-
10.1) returns -11.

Int is not the same as the CInt function. CInt casts the number passed to it as an Integer data
type, while Int returns the same data type that was passed to it.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CInt Function, Fix Function, Round Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface...End Interface Statement

Syntax

 [accessModifier] [Shadows] Interface name [(Of typeParamList)]

 [statements]
 End Interface

accessModifier (optional)

Specifies the scope and accessibility of the interface. One of the following access levels:

Access level Description

Public
The interface is publicly accessible anywhere, both inside and outside of the
project.

Private The interface is accessible within the type in which it is defined.

Protected
The interface is accessible only to the type in which it is defined and to
derived instances of that type.

Friend
The interface is accessible only within the project that contains the interface
definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Friend access level is used.

Shadows (optional)

Indicates that the interface shadows an identically named element in a base class.

name (required)

The name of the interface.

typeParamList (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Adds type parameter placeholders that will later enforce strong typing when the interface is
used through its class implementation. The Of clause implements generics, which are fully
described in Chapter 10. If generics will not be used, this clause can be excluded.

statements (optional)

Code that defines the interface members that derived classes must implement.

Description

The Interface...End Interface statement defines a virtual base class along with its members. The
members of an interface include sub procedures, functions, properties, and events. All members are
automatically public within the interface.

Interfaces are implemented by derived classes and structures using the Implements statement.

Usage at a Glance

By convention, interface names generally begin with the capital letter I.

The interface definition (statements) may contain the following elements:

Inherits statement

Indicates that name inherits some of its properties and methods from another interface. Its

syntax is:

Inherits interfaceName[, interfaceName...]

where interfacename is the name(s) of the interface(s) from which name inherits.

Property definitions

Property definitions take the form:

 [Default] [ReadOnly | WriteOnly] Property procname([arglist]) As type

where procname is the name of the property, with its defined arglist and return type. Default
indicates that procname is the interface's default member. The ReadOnly and WriteOnly

keywords limit the accessors of the property.

Function definitions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Functions are defined as:

 Function membername([arglist]) As type

where membername is the name of the function, arglist defines the number and type of
arguments that can be passed to the function, and type indicates the function's return value.

Procedure definitions

Procedures are defined as:

 Sub membername[(arglist)]

where membername is the name of the procedure, and arglist specifies the number and type of

arguments that can be passed to the procedure.

Event definitions

Events are defined as:

 Event membername[(arglist)]

where membername is the name of the event, and arglist defines the number and type of

arguments that are passed to an event handler whenever the event is fired.

In each case, the syntax of the statement is different from the "standard" implementation
syntax. Access modifiers, for instance, are not permitted as a part of interface member
definitions (since they would all be Public), nor are End statements, such as End Function, End
Sub, or End Property.

The name interface cannot inherit from an interface with an access type that is more restrictive
than its own. For example, if name is a Public interface, it cannot inherit from a Friend interface.

Classes and structures that implement the interface must implement all of its members, and
each member implementation must include the interface's signature for that member.

An interface can have only one default property. This includes properties defined in base
interfaces, as well as in the interface itself.

Version Differences

The Interface...End Interface construct is new to VB under .NET. In VB 6, an interface was

http://lib.ommolketab.ir
http://lib.ommolketab.ir

defined by creating a class module with members that had no implementation.

Visual Basic 2005 adds support for generics to interfaces, as discussed in Chapter 10.

See Also

Implements Keyword, Implements Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IPmt Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = IPmt(rate, per, nPer, pv[, fv[, due]])

rate (required; Double)

The interest rate per period.

per (required; Double)

The period for which a payment is to be computed.

nPer (required; Double)

The total number of payment periods.

pv (required; Double)

The present value of a series of future payments.

fv (optional; Double)

The future value or cash balance after the final payment. If omitted, the default value is 0.

due (optional; DueDate enumeration)

A value indicating when payments are due, from the Microsoft.VisualBasic.DueDate
enumeration. DueDate.EndOfPeriod indicates that payments are due at the end of the payment
period; DueDate.BegOfPeriod indicates that payments are due at the beginning of the period. If
omitted, the default value is DueDate.EndOfPeriod.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The IPmt function computes the interest payment for a given period of an annuity, based on regular
fixed payments and a fixed interest rate. An annuity is a series of fixed cash payments made over a
period of time. It can be either a loan or an investment.

Usage at a Glance

The value of per ranges from 1 to nPer.

If pv and fv represent liabilities, their values are negative; if they represent assets, their values

are positive.

rate and nPer must be expressed in the same time unit. That is, if nPer reflects the number of
monthly payments, rate must be the monthly interest rate.

The rate is supplied as a decimal percent. For example, 10% is stated as 0.1.

Example

The ComputeSchedule function accepts a loan amount, an annual interest rate, and a number of
payment months. It uses the IPmt and PPmt functions to calculate the interest and principal per
month, and it returns an array of all interest and principal payments.

 Public Structure PaymentData
 Public WhichPayment As Integer
 Public Interest As Double
 Public Principal As Double
 End Structure

 Public Function ComputeSchedule(ByVal amount As Double, _
 ByVal rate As Double, ByVal periods As Integer) _
 As PaymentData()
 Dim periodScan As Integer
 Dim allPayments(0 To periods - 1) As PaymentData

 For periodScan = 1 To periods
 With allPayments(periodScan - 1)
 .WhichPayment = periodScan
 .Interest = IPmt(rate / 12, periodScan, periods, -amount)
 .Principal = PPmt(rate / 12, periodScan, periods, -amount)
 End With
 Next periodScan

 Return allPayments
 End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

FV Function, NPer Function, NPV Function, Pmt Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IRR Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = IRR(valueArray()[, guess])

valueArray() (required; array of Double)

An array of cash flow values.

guess (optional; Double)

Estimated value to be returned by the function. If omitted, a value of 0.1 is used.

Description

The IRR function calculates the internal rate of return for a series of periodic cash flows (payments
and receipts). The internal rate of return is the interest rate generated by an investment consisting of
payments and receipts that occur at regular intervals. It is generally compared to a "hurdle rate," or
a minimum return, to determine whether a particular investment should be made.

Usage at a Glance

valueArray must be a one-dimensional array that contains at least one negative value (a

payment) and at least one positive value (a receipt).

Individual members of valueArray are interpreted sequentially, from first to last.

IRR begins with guess and uses iteration to obtain an internal rate of return that is accurate to

within 0.00001 percent. If this cannot be done within 20 iterations, the function fails. If it fails,
try a different value for guess.

Each element of valueArray represents a payment or a receipt that occurs at a regular time

interval. If this is not the case, IRR will return erroneous results.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

MIRR Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Is Operator

Syntax

 Dim result As Boolean = object1 Is { object2 | Nothing }

object1 (required; Object or any reference type)

An object or instance for comparison

object2 (required; Object or any reference type)

An object or instance for comparison

Description

The Is operator compares two object references and indicates whether they refer to the same
underlying instance (true) or not (False). It is most often used with If...Then...Else statements, as
in:

 If (someVariable Is someOtherVariable) Then
 ' ----- Equivalent-specific code here.
 End If

Comparing a variable with Nothing tests whether an instance has not yet been assigned to that
variable.

 If (someVariable Is Nothing) Then
 ' ----- The variable is undefined.
 End If

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Both object1 and object2 must be reference-type variables. This includes string variables,

object variables, and array variables. You can call the IsReference function to ensure that both
object1 and object2 are reference types.

The Is operator can be used with the TypeOf operator to determine if an object reference is of a
specific type.

The Is operator reports that uninitialized reference types are equal. For example, the following
comparison equates to true:

 Dim emptyForm As Windows.Forms.Form
 Dim ordinaryString As String
 If (emptyForm Is ordinaryString) Then MsgBox("Same")
 ' ----- The MsgBox will indeed appear.

Version Differences

In .NET, strings and arrays are reference types. In VB 6, strings and arrays are not reference types
and, therefore, cannot be used with the Is operator.

See Also

IsNot Operator, TypeOf Operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsArray Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Boolean = IsArray

(varName)

varName (required; any variable)

A variable that may be an array

Description

The IsArray function indicates whether a variable is an array (true) or not (False).

Usage at a Glance

Due to the nature of .NET objects, it is not always obvious that an Object variable contains an
array, since an entire array can be assigned to a simple Object variable. Calling array-specific
functions like UBound or trying to access array elements on a variable that is not an array will
generate an error. If there is doubt as to the nature of a variable, it should first be tested using
the IsArray function.

An uninitialized array returns False. For example:

 Dim unusedArray() As String
 MsgBox(IsArray(unusedArray)) ' Displays "False"

Array-like data structures, such as the Collection object, are not true arrays and return False
when passed to the IsArray function.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code displays "True," even though the Object variable was not initially declared as an
array.

 Dim multipleData() As Integer = {1, 2}
 Dim singleData As Object
 singleData = multipleData
 MsgBox(IsArray(singleData)) ' Displays "True"

Version Differences

In VB 6, the IsArray function returns TRue when passed an uninitialized array. In .NET, it returns
False.

See Also

Array Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsDate Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Boolean = IsDate(expression)

expression (required; any)

Expression containing a date or time

Description

The IsDate function determines if an expression can be interpreted as a date without error (true) or
not (False).

Usage at a Glance

Uninitialized Date variables return true.

IsDate uses the regional settings of the local system to determine if the value is recognizable as
a date. What is a legal date format on one machine may fail on another.

See Also

CDate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsDBNull Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Boolean = IsDBNull(expression)

expression (required; any)

The expression to be evaluated against System.DBNull

Description

The IsDBNull function determines whether expression evaluates to System.DbNull (true) or not

(False).

Usage at a Glance

DbNull is not the same as Nothing or an empty string. DbNull is used to denote a missing or
nonexistent value, and it is used primarily in the context of database field values.

Because of the way that VB deals with expressions containing DBNull, you cannot simply
compare a variable to DBNull, as in:

 If (someVariable = DbNull) Then

You must make the comparison using the IsDbNull function.

 If (IsDBNull(someVariable) = True) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The IsDBNull function is new with VB under .NET.

Visual Basic 2005 includes a new IsNullOrEmpty method as part of the String data type that
may better meet your needs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsError Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Boolean = IsError(expression)

expression (required; Object)

An object variable that may be a System.Exception object

Description

The IsError function indicates whether an object is an instance of the System.Exception class or one
of its derived classes (true) or not (False).

Example

The following example shows how a single object may or may not be an Exception object. However,
the method of indicating the error is nonstandard and is only used here as a demonstration.

 Public Sub TestForError()
 Dim testValue As Object = "You can't increment a string!"
 Dim testResult As Object

 ' ----- Perform the test.
 testResult = IncrementTest(testValue)
 If (IsError(testResult) = True) Then
 MsgBox(testResult.Message)
 Else
 MsgBox(testResult)
 End If
 End Sub

 Public Function IncrementTest(ByVal testValue As Object) As Object
 ' ----- Increment the value, but only if it is possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (IsNumeric(testValue) = True) Then
 Return testValue + 1
 Else
 Return New System.InvalidOperationException
 End If
 End Function

Version Differences

In VB 6, the IsError function takes a Variant argument and determines if its subtype is vbError. It is
often used with the CVErr function to determine if the value returned from a function is an error. In
.NET, the IsError function is used to test whether an object is an instance of the Exception class or
one of its derived classes.

See Also

Exception Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsNot Operator

Syntax

 Dim result As Boolean = object1 IsNot

 { object2 | Nothing }

object1 (required; Object or any reference type)

An object or instance for comparison

object2 (required; Object or any reference type)

An object or instance for comparison

Description

New in 2005. The IsNot operator compares two object references and indicates whether they refer to
a different underlying instance (true) or the same instance (False). It is most often used with
If...Then...Else statements, as in:

 If (someVariable IsNot someOtherVariable) Then
 ' ----- Non-equivalent-specific code here.
 End If

Comparing a variable with Nothing tests whether an instance has already been assigned to that
variable.

 If (someVariable IsNot Nothing) Then
 ' ----- The variable is already defined.
 End If

The IsNot operator is the negation of the Is operator. Before Visual Basic 2005, the functionality of
the IsNot operator had to be done with the Not operator.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If Not (someVariable Is Nothing) Then
 ' ----- The variable is already defined.
 End If

Usage at a Glance

Both object1 and object2 must be reference-type variables. This includes string variables,

object variables, and array variables. You can call the IsReference function to ensure that both
object1 and object2 are reference types.

The IsNot operator can be used with the TypeOf operator to determine if an object reference is
not of a specific type.

The IsNot operator reports that uninitialized reference types are equal. For example, the
following comparison equates to TRue:

 Dim emptyForm As Windows.Forms.Form
 Dim ordinaryString As String
 If (emptyForm IsNot ordinaryString) Then MsgBox("Different")
 ' ----- The MsgBox will not appear.

Version Differences

The IsNot operator is new with Visual Basic 2005.

In .NET, strings and arrays are reference types. In VB 6, strings and arrays are not reference
types and, therefore, cannot be used with the IsNot operator.

See Also

Is Operator, TypeOf Operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsNothing Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Boolean = IsNothing

(expression)

expression (required; any)

The expression to compare with Nothing

Description

The IsNothing function determines whether expression evaluates to Nothing (true) or not (False).

The line:

 If IsNothing(someObject) Then

is equivalent to:

 If (someObject Is Nothing) Then

Version Differences

The IsNothing function is new with VB under .NET.

Visual Basic 2005 includes a new IsNullOrEmpty method as part of the String data type that
may better meet your needs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Is Operator, IsNot Operator, Nothing Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsNumeric Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Boolean = IsNumeric(expression)

expression (required; any)

The expression to be examined for numeric content

Description

The IsNumeric function determines whether expression can be evaluated as a number (true) or not

(False).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsReference Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Boolean = IsReference(expression)

expression (required; any)

The expression to be examined

Description

The IsReference function determines if expression contains reference type data (true) or value type

data (False).

Usage at a Glance

IsReference returns true if expression is an array, since an array is a reference type.

Just because a variable has been declared to be of type Object does not mean that the
IsReference function will return true when that variable is passed to it as an argument.
Consider the following code:

 Dim generalData As Object
 MsgBox(IsReference(generalData)) ' Displays "True"

 generalData = New Employee
 MsgBox(IsReference(generalData)) ' Displays "True"

 generalData = 3
 MsgBox(IsReference(generalData)) ' Displays "False"

 generalData = "This is a string"
 MsgBox(IsReference(generalData)) ' Displays "True"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The IsReference function returns TRue only if an Object variable is Nothing, or if its true data
content is a reference type.

Version Differences

The IsReference function is new with VB in .NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Join Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = Join(sourceArray, [delimiter])

sourceArray (required; String or Object array)

Array with elements that are to be concatenated.

delimiter (optional; String)

String used to delimit the individual values in the new joined string. If omitted, the space
character ("") is used. delimiter may be an empty string ("").

Description

The Join function concatenates an array of strings or string expressions into a delimited string using
a specified delimiter.

Usage at a Glance

If you want to concatenate numeric or other nonstring values in sourceArray, use an Object

array.

The delimiter can be of any length. Include a zero-length string to concatenate the array

elements together without any delimiter.

See Also

Split Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Kill Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Kill(pathname)

pathname (required; String)

The file or files to be deleted

Description

The Kill procedure deletes one or more files. The supplied pathname may include the * and ? wildcard

characters in the filename component.

Usage at a Glance

pathname can be a relative or absolute path, either to a local or remote file.

If the file is open or is set to read-only, an error occurs.

The file or files are permanently deleted; they are not placed in the Recycle Bin. Visual Basic
2005 adds a new My.Computer.FileSystem.DeleteFile method that includes an option for the
Recycle Bin.

Use the RmDir procedure to delete directories.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.DeleteFile method that provides similar
functionality.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RmDir Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LBound Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Integer = LBound(array[, rank])

array (required; any array)

An array with a lower bound that is to be determined.

rank (optional; Integer)

The dimension to assess for a lower bound. If omitted, it defaults to 1.

Description

The LBound function returns the lower limit of the specified dimension of an array. In .NET, all array
dimensions have a lower bound of zero, so this function always return zero.

Usage at a Glance

If array is uninitialized, LBound generates a runtime error. Compare array to Nothing to prevent

this error:

 If (someArray IsNot Nothing) Then
 ' ----- OK to use LBound

Since VB.NET does not allow you to change the lower bound of an array, the LBound function
appears to be superfluous except for reasons of backward compatibility. However, as the .NET
Framework may someday support variable lower bounds, its use is still warranted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

In VB 6, with its ability to alter the lower bound of an array, the use of LBound was essential. As
of the 2005 release of VB, its use under .NET is optional.

The 2005 release of Visual Basic supports a new array declaration syntax that restores the VB 6
style "lower To upper" syntax, as in:

 Dim someArray(0 To 5) As String

However, the specified lower bound must still be 0.

See Also

UBound Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LCase Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As type = LCase(value)

type (required)

One of the following data types: Char or String

value (required; expression of type type)

A valid string expression or a character

Description

The LCase function converts a string or character to lowercase.

Usage at a Glance

LCase only affects uppercase letters; all other characters in value are unaffected.

LCase returns Nothing if value contains Nothing.

LCase returns the same data type as value.

See Also

UCase Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Left Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = Left(str, length)

str (required; String)

The string to be processed

length (required; Long)

The number of characters to return from the left portion of the string

Description

The Left function returns a string containing the leftmost length characters of str.

Usage at a Glance

If length is 0, a zero-length string is returned.

If length is greater than the length of str, str is returned.

If length is less than zero or is Nothing, an error is generated.

If str is Nothing, Left returns Nothing.

Because of naming conflicts, you may have to preface this function with the name of the
Microsoft.VisualBasic namespace.

Use the Len function to determine the overall length of str.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mid Function, Right Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Len Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As Integer = Len(expression)

expression (required; any)

Any valid variable name, object, or expression

Description

The Len function returns the number of characters within a string or the storage size in bytes for a
given variable.

Usage at a Glance

If expression contains Nothing, Len returns 0.

For string variables, Len returns the number of characters in the string. For all other types, Len
returns the number of bytes required to store the content.

If expression is an array, you must also specify a valid subscript. Len cannot be used to

determine the total number of elements in, or the total size of, an array.

Len cannot accurately report the number of bytes required to store structures that contain
variable-length strings. If you need to know how many bytes of storage space will be required
by a structure that includes string members, you can fix the length of the strings by using the
<VBFixedString(length)> attribute in the Structure statement. For details, see the

Structure...End Structure Statement entry.

For strings, Len is functionally similar to the String data type's Length public instance method,
although there are some differences for empty and nonstandard strings.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Structure...End Structure Statement, VBFixedString Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Like Operator

Syntax

 Dim result As Boolean = string Like pattern

string (required; String)

The string to be tested against pattern

pattern (required; String)

A series of characters used as rules by which string is evaluated

Description

The Like operator indicates whether string matches pattern (true) or not (False). In general,

characters match themselves; a pattern of "abc" matches a string of "abc." But there are a few
special characters that enable generic pattern matching.

Character Meaning

? Matches any single character

* Matches zero or more characters

Matches any single digit (09)

 [list]

Matches any single character in list

 [!list]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Matches any single character except those in list

The characters are used together to form patterns. For instance, the pattern "a?###" matches the
letter a followed by any single character and then followed by three digits.

The list character in square brackets may include a simple set of characters, like "[3kd]," but it can

also use the hyphen (-) character to specify a range, such as "[a-m0-9]," which specifies the
lowercase letters a through m or the digits 0 through 9. Use a hyphen at the beginning or end of list

to match the hyphen character.

To use special characters, such as #, as normal characters, enclose them in square brackets.

Usage at a Glance

If either string or pattern is Nothing, then result will be Nothing.

The default comparison method for the Like operator is binary (case sensitive). This can be
overridden using the OptionCompare statement. The overall sort order is based on the code page
currently being used, as determined by the Windows regional settings.

The exclamation point, when used outside of square brackets, matches itself.

Different written languages place different priorities on particular characters in relation to sort
order. Therefore, the same program using the same data may yield different results when run
on machines in different parts of the world, depending upon the locale settings of the systems.

Regular expressions provide an even more powerful method for searching and comparing
strings. You can use regular expressions through the .NET Framework's
System.Text.RegularExpressions.RegEx class.

Example

The following example matches a U.S. Social Security number, which is three groups of digits, 3, 2,
and 4 digits, respectively. The groups are separated by hyphens.

 Public Function IsSSN(ByVal testText As String) As Boolean
 If (testText Like "###-##-####") Then
 Return True
 Else
 Return False
 End if
 End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LineInput Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As String = LineInput(fileNumber)

filenumber (required; Integer)

Any valid file number of a file opened with FileOpen

Description

The LineInput function returns a single line of text from a file opened in Input mode. Single lines are
delimited by carriage returns (vbCr) or carriage return/line-feed pairs (vbCrLf). The line-delimiting
characters are not included in the returned string.

Usage at a Glance

After reading a line, the file pointer advances to the first character after the end of the line, or
to the end of file if there are no more lines.

Data read with the LineInput function is normally written to the source file with the Print and
PrintLine procedures.

Example

The following code reads all of the lines in a text file and sends them to the Output window:

 Dim fileID As Integer = FreeFile()
 FileOpen(fileID, "c:\data.txt", OpenMode.Input, OpenAccess.Read)
 Do While Not EOF(fileID)
 Console.WriteLine(LineInput(fileID))
 Loop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FileClose(fileID)

Version Differences

The LineInput function differs syntactically from the LineInput statement used in VB 6.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file-
management features.

See Also

Print, PrintLine Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Loc Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As Long = Loc(fileNumber)

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

Description

The Loc function indicates the current 0-based position within an open file.

Usage at a Glance

For files opened in Binary mode, Loc returns the position of the last byte read or written. For
files opened in Random mode, Loc returns the record number of the last record read or written.
For files opened in Input or Output modes (sequential), Loc returns the current byte position in
the file, divided by 128.

For sequential files, the return value of Loc is not consistent and should not be used.

The current position in the file cannot be changed using the Loc function.

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file-
management features.

See Also

FileOpen Procedure, LOF Function, Seek Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lock Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Lock(fileNumber[, record])

or:

 Lock(fileNumber[, fromRecord, toRecord])

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

record (optional; Long)

The 1-based record or byte number at which to commence the lock

fromRecord (optional; Long)

The first 1-based record or byte number to lock

toRecord (optional; Long)

The last 1-based record or byte number to lock

Description

The Lock procedure prevents another process from accessing a record, section, or whole file until it is
unlocked by the Unlock procedure. Use the Lock procedure in situations where multiple programs or
more than one instance of your program may need read-and-write access to the same data file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usage at a Glance

If only the fileNumber argument is included, the entire file is locked.

record is interpreted as a record number in Random files and as a byte number in Binary files.

The Lock procedure locks an entire file opened in Input or Output (sequential) mode, regardless
of any record number arguments.

Attempting to access a locked file or portion of a file generates a "Permission denied" error.

The matching Unlock procedure must include the same arguments.

You must take care to remove all file locks with the Unlock procedure before either closing a file
or ending the application; otherwise, you can leave the file in an unstable state. Where
appropriate, error-handling code must correctly unlock any locks that are no longer necessary.

Version Differences

In VB 6, the fromRecord argument can be left blank to lock all records up to toRecord. This

syntax is not supported in .NET.

In the VB 6 Lock statement, you can separate the fromRecord and toRecord arguments with the

To keyword. In the .NET Lock procedure, this syntax is not supported.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file-
management features.

See Also

Unlock Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LOF Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As Long = LOF(fileNumber)

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

Description

The LOF function returns the size of an open file in bytes.

Usage at a Glance

LOF works only on an open file; if you need to know the size of a file that isn't open, use the FileLen
function.

Example

The following example shows how to use the LOF function to prevent reading past the end of a file in
binary mode:

 Dim oneChar As Char
 Dim fileID As Integer = FreeFile()

 FileOpen(fileID, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)
 Do While (Loc(fileID) < LOF(fileID))
 FileGet(fileID, oneChar)
 Console.WriteLine(Loc(fileID) & ": " & oneChar)
 Loop
 FileClose(fileID)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file-
management features.

See Also

FileLen Function, FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Log Function

Class

System.Math

Syntax

 Dim result As Double = Math.Log

(d)

or:

 Dim result As Double = Math.Log(a, newBase)

d, a (required; Double)

A numeric expression greater than zero

newBase (required; Double)

The base of the logarithm

Description

The Log function returns the natural (base e) logarithm of a given number (the first syntax), or the
logarithm of a given number in a specified base (the second syntax).

Usage at a Glance

The Log function is the inverse of the Exp function.

This is a shared member of the System.Math class, so it can be used without an instance.

You can calculate base-n logarithms for any number, x, by dividing the natural logarithm of x by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the natural logarithm of n:

 Logn(x) = Log(x) / Log(n)

For example, you can replicate the Log10 function using this method:

 Static Function Log10(ByVal x As Double) As Double
 Return Log(x) / Log(10#)
 End Function

The inverse trigonometric functions, which are not intrinsic to VB, can be computed using the
value returned by the Log function. The functions and their formulas are:

Inverse hyperbolic sine

HArcsin(x) = Log(x + Sqrt(x * (x + 1)))

Inverse hyperbolic cosine

HArccos(x) = Log(x + Sqrt(x * (x - 1)))

Inverse hyperbolic tangent

HArctan(x) = Log((1 + x) / (1 - x)) / 2

Inverse hyperbolic secant

HArcsec(x) = Log((Sqrt(-x * (x + 1)) + 1) / x)

Inverse hyperbolic cosecant

HArccosec(x) = Log((Sign(x) * _

 Sqrt(x * x + 1) + 1) / x)

Inverse hyperbolic cotangent

HArccotan(x) = Log((x + 1) / (x - 1)) / 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Exp Function, Log10 Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Log10 Function

Class

System.Math

Syntax

 Dim result As Double = Math.Log10(d)

d (required; Double)

A numeric expression greater than zero

Description

The Log10 function returns the common (base 10) logarithm of a given number.

Usage at a Glance

The common logarithm satisfies the equation:

 10^Log10(x) = x

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The Log10 function did not exist in VB 6.

See Also

Exp Function, Log Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LSet Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = LSet(source, length)

source (required; String)

The string to be left-aligned

length (required; Integer)

The length of the returned string

Description

The LSet function left-aligns a string.

Usage at a Glance

If the length of source is greater than or equal to length, the function returns only the leftmost
length characters.

If the length of source is less than length, spaces are added to the right of the returned string
so that its length becomes length.

Version Differences

In VB 6, LSet was implemented as a kind of assignment statement. Because it is implemented
as a function in .NET, its syntax is completely different.

In VB 6, LSet could be used only with fixed-length strings. In .NET, LSet works with all string
data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

RSet Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LTrim Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = LTrim(str)

str (required; String)

A valid string expression

Description

The LTrim function removes any leading spaces from str.

Usage at a Glance

If str is Nothing, LTrim returns Nothing.

See Also

RTrim Function, Trim Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MarshalAs Attribute

Class

System.Runtime.InteropServices.MarshalAsAttribute

Applies To

Field, Parameter, ReturnValue

Constructor

 New(unmanagedType)

unmanagedType (required; UnmanagedType enumeration)

Indicates the unmanaged COM data type to which the data is to be converted. One of the
UnmanagedType enumeration members (see below).

Properties

Value (UnmanagedType enumeration)

The unmanaged COM data type that the managed .NET data is to be marshaled as. Defined
through the constructor's unmanagedType parameter. One of the UnmanagedType enumeration

members (see below).

Fields

ArraySubType (UnmanagedType enumeration)

The subtype of an array of type ByValArray or LPArray. It is used when an array contains
strings. This allows the runtime to correctly marshal a string array to COM. One of the
UnmanagedType enumeration members (see below).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MarshalCookie (String)

An undefined field that can be used to pass user-defined data to a custom marshaler. The
value of the MarshalCookie field as passed to the custom marshaler's GetInstance method.

MarshalType (String)

The fully qualified name of a custom marshaler. It is required if the Value property is set to
CustomMarshaler.

MarshalTypeRef (Type)

Implements the MarshalType value as a Type rather than as a string.

SafeArraySubType (VarEnum enumeration)

The data type of a SafeArray. One of the System.Runtime.InteropServices.VarEnum
enumeration values:

Value Description

VT_ARRAY A SAFEARRAY pointer

VT_BLOB A length-prefixed collection of bytes

VT_BLOB_OBJECT A VT_BLOB containing an object

VT_BOOL A Boolean value

VT_BSTR A string of type BSTR

VT_BYREF A value passed by reference

VT_CARRAY A C-style array

VT_CF Clipboard format

VT_CLSID A class identifier (CLSID)

VT_CY A currency value

VT_DATE A date or time value

VT_DECIMAL A decimal value

VT_DISPATCH An IDispatch pointer

VT_EMPTY No specified value

VT_ERROR An SCODE value

VT_FILETIME A FILETIME value

VT_HRESULT An HRESULT value

VT_I1 A signed 8-bit integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

VT_I2 A signed 16-bit integer

VT_I4 A signed 32-bit integer

VT_I8 A signed 64-bit integer

VT_INT An integer value

VT_LPSTR A null-terminated string

VT_LPWSTR A null-terminated Unicode string

VT_NULL A null reference (Nothing)

VT_PTR A pointer

VT_R4 A floating point value

VT_R8 A double value

VT_RECORD A user-defined type

VT_SAFEARRAY A SAFEARRAY

VT_STORAGE A named storage entry

VT_STORED_OBJECT Storage containing an object

VT_STREAM A named stream

VT_STREAMED_OBJECT A stream containing an object

VT_UI1 An unsigned 8-bit integer

VT_UI2 An unsigned 16-bit integer

VT_UI4 An unsigned 32-bit integer

VT_UI8 An unsigned 64-bit integer

VT_UINT An unsigned integer

VT_UNKNOWN An IUnknown pointer

VT_USERDEFINED A user-defined type

VT_VARIANT A VARIANT far pointer

VT_VECTOR A simple counted array

VT_VOID A C-style void

SafeArrayUserDefinedSubType (Type)

The user-defined type of the SAFEARRAY. This field is used only when the value of the
SafeArraySubType field is VT_UNKNOWN, VT_DISPATCH, or VT_RECORD.

VT_I2 A signed 16-bit integer

VT_I4 A signed 32-bit integer

VT_I8 A signed 64-bit integer

VT_INT An integer value

VT_LPSTR A null-terminated string

VT_LPWSTR A null-terminated Unicode string

VT_NULL A null reference (Nothing)

VT_PTR A pointer

VT_R4 A floating point value

VT_R8 A double value

VT_RECORD A user-defined type

VT_SAFEARRAY A SAFEARRAY

VT_STORAGE A named storage entry

VT_STORED_OBJECT Storage containing an object

VT_STREAM A named stream

VT_STREAMED_OBJECT A stream containing an object

VT_UI1 An unsigned 8-bit integer

VT_UI2 An unsigned 16-bit integer

VT_UI4 An unsigned 32-bit integer

VT_UI8 An unsigned 64-bit integer

VT_UINT An unsigned integer

VT_UNKNOWN An IUnknown pointer

VT_USERDEFINED A user-defined type

VT_VARIANT A VARIANT far pointer

VT_VECTOR A simple counted array

VT_VOID A C-style void

SafeArrayUserDefinedSubType (Type)

The user-defined type of the SAFEARRAY. This field is used only when the value of the
SafeArraySubType field is VT_UNKNOWN, VT_DISPATCH, or VT_RECORD.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SizeConst (Integer)

The number of elements in a fixed-length array.

SizeParamIndex (Short)

Indicates which zero-based parameter contains a count of array elements.

Description

The <MarshalAs> attribute defines the correct type conversion between managed and unmanaged
data. Unmanaged types are defined by the following
System.Runtime.InteropServices.UnmanagedType enumeration values.

Value Description

AnsiBStr An ANSI BSTR (a character string whose first byte indicates the string length).

AsAny Dynamic type determination at runtime.

Bool 4-byte Boolean (true <> 0, False = 0).

BStr
A Unicode BSTR (a character string with first two bytes that indicate the string
length).

ByValArray

An array passed by value. An array that is a field in a structure must have this
attribute. The SizeConst field must be set to the number of array elements, and
the ArraySubType field can optionally be set to the unmanaged data type of the
array.

ByValTStr
An inline fixed-length character array within a structure. The character type is
determined by the CharSet argument of the containing structure's

<StructLayout> attribute.

Currency A COM Currency data type. Used with the .NET Decimal data type.

CustomMarshaler
A custom marshaler class. The class is defined by the MarshalType or
MarshelTypeRef field. Additional information can be passed to the custom
marshaler by the MarshalCookie field.

Error
An hrESULT value. The native .NET type should be a 4-byte signed or unsigned
integer.

FunctionPtr A function pointer.

I1 A 1-byte signed integer.

I2 A 2-byte signed integer.

I4 A 4-byte signed integer.

I8 An 8-byte signed integer.

IDispatch A COM IDispatch pointer.

Interface A COM interface pointer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

IUnknown A COM IUnknown pointer.

LPArray
A C-style array. Its length is indicated by the SizeConst and SizeParamIndex
fields. Optionally, the ArraySubType field can indicate the unmanaged type of
string elements within the array.

LPStr An ANSI (single-byte) character string.

LPStruct A pointer to a structure.

LPTStr
A platform-dependent character string (ANSI on Windows 9x, Unicode on
Windows NT/2000/XP). LPTStr is supported only for platform invoke and not for
COM interop.

LPWStr A Unicode (double-byte) character string.

R4 A 4-byte floating point number.

R8 An 8-byte floating point number.

SafeArray
A SafeArray (a self-describing array that includes information on its type,
dimension, and bounds).

Struct A C-style structure used to marshal .NET formatted classes and value types.

SysInt
A platform-dependent integer (4 bytes on 32-bit Windows, 8 bytes on 64-bit
Windows).

SysUInt The hardware's natural-sized unsigned integer.

TBStr
A length-prefixed, platform-dependent character string (ANSI in Windows 9x,
Unicode on Windows NT/2000/XP).

U1 A 1-byte unsigned integer.

U2 A 2-byte unsigned integer.

U4 A 4-byte unsigned integer.

U8 An 8-byte unsigned integer.

VariantBool A 2-byte OLE-defined Boolean value (true = -1, False = 0).

VBByRefStr
Allows Visual Basic to change a string in unmanaged code and reflect the change
in managed code.

See Also

COMClass Attribute

IUnknown A COM IUnknown pointer.

LPArray
A C-style array. Its length is indicated by the SizeConst and SizeParamIndex
fields. Optionally, the ArraySubType field can indicate the unmanaged type of
string elements within the array.

LPStr An ANSI (single-byte) character string.

LPStruct A pointer to a structure.

LPTStr
A platform-dependent character string (ANSI on Windows 9x, Unicode on
Windows NT/2000/XP). LPTStr is supported only for platform invoke and not for
COM interop.

LPWStr A Unicode (double-byte) character string.

R4 A 4-byte floating point number.

R8 An 8-byte floating point number.

SafeArray
A SafeArray (a self-describing array that includes information on its type,
dimension, and bounds).

Struct A C-style structure used to marshal .NET formatted classes and value types.

SysInt
A platform-dependent integer (4 bytes on 32-bit Windows, 8 bytes on 64-bit
Windows).

SysUInt The hardware's natural-sized unsigned integer.

TBStr
A length-prefixed, platform-dependent character string (ANSI in Windows 9x,
Unicode on Windows NT/2000/XP).

U1 A 1-byte unsigned integer.

U2 A 2-byte unsigned integer.

U4 A 4-byte unsigned integer.

U8 An 8-byte unsigned integer.

VariantBool A 2-byte OLE-defined Boolean value (true = -1, False = 0).

VBByRefStr
Allows Visual Basic to change a string in unmanaged code and reflect the change
in managed code.

See Also

COMClass Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Max Function

Class

System.Math

Syntax

 Dim result As type = Math.Max

(val1, val2)

type (required)

One of the following data types: Byte, Decimal, Double, Integer, Long, SByte, Single, Short,
UInteger, ULong, or UShort

val1, val2 (required; any valid numeric expression of type type)

Two valid numbers to be compared

Description

The Max function returns the maximum of val1 and val2.

Usage at a Glance

If Option Strict is Off and the two values have different numeric data types, the narrower data
type is automatically converted to the wider data type before use in the function.

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The Max function did not exist in VB 6.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Min Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Me Keyword

Syntax

 Me

Description

The Me keyword represents a reference to the current class from within the class.

Usage at a Glance

Me is an explicit reference to the current class or type as defined by the Class...EndClass
construct or similar construct.

Me is particularly useful when passing an instance of the current class as a parameter to a
routine outside the class.

Example

This example shows how the Me keyword can be used to access class elements masked by local
variables with the same name.

 Public Class TestClass
 Private sampleData As Integer

 Private Sub CheckTheData()
 Dim sampleData As String = "abc"
 Me.sampleData = 5
 MsgBox(sampleData) ' Displays "abc"
 MsgBox(Me.sampleData) ' Displays "5"
 End Sub
 End Class

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyBase Keyword, MyClass Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mid Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result = String = Mid(str, start[, length])

str (required; String)

The expression from which to return a substring

start (required; Long)

The starting position of the substring

length (optional; Long)

The length of the substring to extract

Description

The Mid function returns a substring of a specified length from a given string.

Usage at a Glance

If str contains Nothing, Mid returns Nothing.

If start is greater than the length of str, a zero-length string is returned. An error occurs if
start is less than zero.

If length is omitted, or if selecting length characters would exceed the length of the string, all
characters from start to the end of str are returned.

Use the Len function to determine the total length of str.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Mid function corresponds to the String data type's Substring method. In the following code,
the two assignments to the twoOnly variable are identical.

 Dim twoOnly As String
 Dim threeNumbers As String = "One Two Three"
 twoOnly = Mid(threeNumbers, 5, 3)
 twoOnly = threeNumbers.Substring(4, 3)

The Substring method uses a zero-based index to determine the starting position of the
substring.

Example

The following example extracts the final directory name from a file path. For instance, in the path
c:\folder1\folder2\file.txt, the function returns "folder2."

 Public Function FinalDirectory(ByVal filePath As String) As String
 ' ----- Return the last directory name.
 Dim lastSlash As Integer
 Dim nextSlash As Integer

 ' ----- Check for missing data.
 If (Trim(filePath) = "") Then Return ""

 ' ----- Don't accept UNC paths.
 If (VisualBasic.Left(filePath, 1) = "\") Then Return ""

 ' ----- Find the slashes that surround the directory.
 lastSlash = InStrRev(filePath, "\")
 nextSlash = InStrRev(filePath, "\", lastSlash - 1)
 If (nextSlash = 0) Then Return ""

 ' ----- Extract and return the name.
 Return Mid
(filePath, nextSlash + 1, lastSlash - nextSlash - 1)
 End Function

See Also

Left Function, Mid Function, Right Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mid Statement

Syntax

 Mid(target, start[, length]) = expression

target (required; String)

The name of the string variable to be modified

start (required; Long)

The position within target at which the replacement begins

length (optional; Long)

The number of characters in target to replace

expression (required; String)

The string used to replace characters within target

Description

The Mid statement replaces a section of a string with characters from another string.

Usage at a Glance

If you omit length, as many characters of string as can fit into target are used.

If start + length is greater then the portion of target to be replaced, string is truncated to fit
in the same space as that portion of target. The length of target is not altered by the Mid

statement.

If start is less than zero, an error occurs.

If string is Nothing, a runtime error occurs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB includes the Replace function, which enhances the functionality of the Mid statement by
allowing you to specify the number of times a replacement is carried out in the same string.

Because it is a statement, this version of Mid does not accept named arguments. Mid is
implemented by the compiler rather than by the String data type.

See Also

Mid Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Min Function

Class

System.Math

Syntax

 Dim result As type = Math.Min(val1, val2)

type (required)

One of the following data types: Byte, Decimal, Double, Integer, Long, SByte, Single, Short,
UInteger, ULong, or UShort

val1, val2 (required; expressions of type type)

Two valid numbers to be compared

Description

The Min function returns the minimum of val1 and val2.

Usage at a Glance

If Option Strict is Off and the two values have different numeric data types, the narrower data
type is automatically converted to the wider data type before use in the function.

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The Min function did not exist in VB 6.

See Also

Max Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Minute Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Integer = Minute(timeValue)

timeValue (required; Date)

The source date from which to extract the minute

Description

The Minute function returns a value from 0 to 59, representing the minute of the supplied date or
time.

Usage at a Glance

With Option Strict set to On, the source value must first be converted to a Date data type. You can
use the CDate function for this purpose. The IsDate function can also be used to confirm that the
source expression is a valid date.

See Also

DatePart Function, Hour Function, Second Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MIRR Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = MIRR(valueArray(), financeRate, reinvestRate)

valueArray() (required; array of Double)

An array of cash-flow values

financeRate (required; Double)

The interest rate paid as the cost of financing.

reinvestRate (required; Double)

The interest rate received on gains from a cash investment.

Description

The MIRR function calculates the modified internal rate of return, the rate calculated from a series of
payments and receipts that are financed at different rates.

Usage at a Glance

valueArray must be a one-dimensional array that contains at least one negative value (a

payment) and at least one positive value (a receipt). The order of elements within the array
should reflect the order in which payments and receipts occur.

The rates are supplied as a decimal percent. For example, 10% is stated as 0.1.

Each element of valueArray represents a payment or a receipt that occurs at a regular time

interval. If this is not the case, MIRR will return erroneous results.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

IRR Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MkDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 MkDir

(path)

path (required; String)

The name of the directory to be created

Description

The MkDir procedure creates a new directory on a drive.

Usage at a Glance

path can be a relative or absolute path, either of a new local or remote directory.

An error occurs if the specified directory already exists.

MkDir does not automatically make the new directory the current working (default) directory.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.CreateDirectory method that provides similar
functionality.

See Also

RmDir Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mod Operator

Syntax

 Dim result As type = number1 Mod number2

type (required)

One of the following data types: Byte, Decimal, Double, Integer, Long, Single, or Short

number1 (required; any valid numeric expression)

A numerator in a division expression

number2 (required; any valid numeric expression)

A nonzero denominator in a division expression

Description

The Mod operator returns the modulus, that is, the remainder when number1 is divided by number2.

This return value is a nonnegative integral data type.

Usage at a Glance

Floating point numbers are rounded to integers before the division.

If number1 or number2 is Nothing, an error occurs.

The Mod operator returns the data type of number1 and number2 if they are the same type, or the
widest data type of number1 and number2 if they are different.

Example

 MsgBox(10 Mod 3) ' returns 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The Mod operator can be overloaded beginning in the 2005 edition of Visual Basic. The custom
overload can assign any logic or restrictions on its use.

See Also

IEEERemainder Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Module...End Module Statement

Syntax

 [accessModifier] Module name

 [statements]
 End Module

accessModifier (optional)

Specifies the scope and accessibility of the module. One of the following access levels:

Access
level

Description

Public
The module is publicly accessible anywhere, both inside and outside of the
project.

Friend
The module is accessible only within the project that contains the module
definition.

If omitted, the Friend access level is used.

name (required)

The name of the code module.

statements (optional)

Code that defines the members of the module.

Description

The Module...End Module statement defines a code block as a code module. A module is similar to a
class where every member is Shared by default. Modules may contain fields, properties, methods,
events, and other types.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Modules may not be nested, nor may modules inherit from any other type.

Since all members of a module are essentially Shared, modules cannot be instantiated as
objects.

Version Differences

The Module statement is new to VB under .NET, but the idea of a module was always part of Visual
Basic. VB 6 placed each code module in a separate BAS file, which rendered beginning and ending
statements unnecessary. A single VB source code file in .NET, on the other hand, can contain multiple
code modules and other types.

See Also

Class...End Class Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Month Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Integer = Month(dateValue)

dateValue (required; Date)

The source date from which to extract the month

Description

The Month function returns a value from 1 to 12, representing the month of the supplied date.

Usage at a Glance

With Option Strict set to On, the source value must first be converted to a Date data type. You can
use the CDate function for this purpose. The IsDate function can also be used to confirm that the
source expression is a valid date.

See Also

DatePart Function, Day Function, MonthName Function, Year Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MonthName Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As String = MonthName(month[, abbreviate])

month (required; Integer)

The ordinal number of the month, from 1 to 13 (that's right, 13).

abbreviate (optional; Boolean)

A flag to indicate if an abbreviated month name should be returned. The default value is False.

Description

The MonthName function returns the name of a given month, based on the current regional settings in
effect. For example, a month of 1 in an English-speaking region returns "January," or "Jan" if
abbreviate is set to true.

Usage at a Glance

The month value must be an integer; it cannot be a date. Use the Month function to obtain a

month number from a date.

Some regional calendar systems support 13 months. A 13th month is only supported under
such calendars; when a 12-month calendar is in effect, a value of 13 returns an empty string.

If month has a fractional portion, it is rounded before use.

MonthName with abbreviate set to False is the equivalent of Format(dateValue,"MMMM").

MonthName with abbreviate set to TRue is the equivalent of Format(dateValue,"MMM").

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Month Function, WeekdayName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MsgBox Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As MsgBoxResult = MsgBox(prompt[, buttons[, title]])

prompt (required; String)

The text of the message to display in the message dialog box.

buttons (optional; MsgBoxStyle enumeration)

One or more constants (either added or Or'd together) that set various display and action
properties of the dialog box. The constants are taken from the
Microsoft.VisualBasic.MsgBoxStyle enumeration:

Enumeration
member

Value Description

OKOnly 0 Buttons: Display OK button only

OKCancel 1 Buttons: Display OK and Cancel buttons

AbortRetryIgnore 2 Buttons: Display Abort, Retry, and Ignore buttons

YesNoCancel 3 Buttons: Display Yes, No, and Cancel buttons

YesNo 4 Buttons: Display Yes and No buttons

RetryCancel 5 Buttons: Display Retry and Cancel buttons

Critical 16 Icon: Display Critical Message icon

Question 32 Icon: Display Warning Query icon

Exclamation 48 Icon: Display Warning Message icon

Information 64 Icon: Display Information Message icon

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enumeration
member

Value Description

DefaultButton1 0 Default Button: Default to first button

DefaultButton2 256 Default Button: Default to second button

DefaultButton3 512 Default Button: Default to third button

DefaultButton4 768 Default Button: Default to fourth button

ApplicationModal 0 Modality: Response required to continue application

SystemModal 4096
Modality: Response required to continue application, and the
message box appears on top of all other windows

If omitted, this parameter defaults to OKOnly.

title (optional; String)

The title displayed in the title bar of the message dialog box. If omitted, the name of the
application or project is used.

Description

The MsgBox function displays a dialog box containing a message, buttons, and an optional icon. A
value indicating the button clicked by the user is returned by the function, one of the
Microsoft.VisualBasic.MsgBoxResult enumeration values:

Enumeration member Value Button clicked

OK 1 OK

Cancel 2 Cancel

Abort 3 Abort

Retry 4 Retry

Ignore 5 Ignore

Yes 6 Yes

No 7 No

If the message box contains a Cancel button, the Esc key simulates a click on that button. The Enter
key simulates a click on the currently highlighted button.

Usage at a Glance

prompt can contain approximately 1,024 characters, including special characters such as the

DefaultButton1 0 Default Button: Default to first button

DefaultButton2 256 Default Button: Default to second button

DefaultButton3 512 Default Button: Default to third button

DefaultButton4 768 Default Button: Default to fourth button

ApplicationModal 0 Modality: Response required to continue application

SystemModal 4096
Modality: Response required to continue application, and the
message box appears on top of all other windows

If omitted, this parameter defaults to OKOnly.

title (optional; String)

The title displayed in the title bar of the message dialog box. If omitted, the name of the
application or project is used.

Description

The MsgBox function displays a dialog box containing a message, buttons, and an optional icon. A
value indicating the button clicked by the user is returned by the function, one of the
Microsoft.VisualBasic.MsgBoxResult enumeration values:

Enumeration member Value Button clicked

OK 1 OK

Cancel 2 Cancel

Abort 3 Abort

Retry 4 Retry

Ignore 5 Ignore

Yes 6 Yes

No 7 No

If the message box contains a Cancel button, the Esc key simulates a click on that button. The Enter
key simulates a click on the currently highlighted button.

Usage at a Glance

prompt can contain approximately 1,024 characters, including special characters such as the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vbCrLf constant.

Application modality means that the user cannot access other parts of the application until a
response to the message box has been given.

System modality used to mean that all applications were suspended until the message box was
closed. However, this functionality was only supported in Microsoft Windows 3.x and earlier. In
newer versions of Windows, using system modality causes the message box to "stay on top" of
all application windows.

The message box is always displayed in the center of the screen.

If your application is to run out-of-process on a remote machine, you should remove all MsgBox
functions, since they will not appear on the user's workstation but on the monitor of the remote
system.

MsgBox should never be used in ASP.NET applications.

The System.Windows.Forms.MessageBox class provides enhanced message box functionality,
including the ability to specify online help information.

Version Differences

In VB 6, the MsgBox function includes a helpFile parameter and a context parameter, both used with

online help files. These two parameters are not supported in .NET.

See Also

InputBox Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MTAThread Attribute

Class

System.MTAThreadAttribute

Applies To

Method

Constructor

 New()

Properties

None defined

Description

The <MTAThread> attribute indicates that the application to which the program element belongs uses
the multithreaded apartment model for COM interop. The attribute should be applied to the
application's Main method or subroutine. This attribute only applies to applications that use COM
interop.

The <MTAThread> attribute is similar to setting a System.Threading.Thread object's ApartmentState
property to ApartmentState.MTA. The difference is that the <MTAThread> attribute creates a
multithreaded apartment at startup, while setting the property does it only from the point that the
property is set.

See Also

STAThread Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyBase Keyword

Syntax

 MyBase

Description

The MyBase keyword provides a reference to the base class from within a derived class. If you want to
call a member of the base class from within a derived class, you can use the syntax:

 MyBase.MemberName

where MemberName is the name of the member. This will resolve any ambiguity if the derived class also

has a member of the same name.

Usage at a Glance

MyBase will call through the chain of inherited classes until it finds a callable implementation. For
example, in the code:

 Public Class TestClass
 ...
 End Class

 Public Class TestClass2
 Inherits TestClass

 Public Function ShowType() As Type
 Return MyBase.GetType
 End Function
 End Class

the call to ShowType is eventually resolved as a call to Object.GetType, since all classes are
ultimately derived from the System.Object class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyBase cannot be used to call Private class members in the base class.

MyBase cannot be used to call base class members marked as MustOverride.

MyBase is commonly used to call an overridden member from the member that overrides it in
the derived class.

The MyBase keyword can be used to call the constructor of the base class to instantiate a
member of that class, as in:

 MyBase.New(...)

Version Differences

The MyBase keyword is new to VB under .NET.

See Also

Me Keyword, MyClass Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyClass Keyword

Syntax

 MyClass

Description

The MyClass keyword provides a reference to the class in which the keyword is used.

Usage at a Glance

When using MyClass (as opposed to Me) to qualify a method invocation, as in:

 MyClass.IncSalary()

the method is treated as if declared using the NotOverridable keyword. Regardless of the type
of the object at runtime, the method called is the one declared in the class containing this
statement (and not in any derived classes). The upcoming example illustrates this difference
between MyClass and Me.

MyClass cannot be used with shared members.

Example

The following code defines a base class and a derived class, each of which has an IncSalary method.

 Public Class BaseClass
 Public Overridable Function SuperSize _
 (ByVal startValue As Long) As Long
 ' ----- Double it!
 Return startValue * 2
 End Function

 Public Sub ShowSuperSize(ByVal startValue As Long)
 MsgBox(Me.SuperSize(startValue))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MsgBox(MyClass.SuperSize(startValue))
 End Sub
 End Class

 Public Class DerivedClass
 Inherits BaseClass

 Public Overrides Function SuperSize _
 (ByVal startValue As Long) As Long
 ' ----- Triple it!
 Return startValue * 3
 End Function
 End Class

Consider the following code, placed in a form module:

 Dim testWithBase As New BaseClass()
 Dim testWithDerived As New DerivedClass()

 Dim pointToTest As BaseClass

 pointToTest = testWithBase
 pointToTest.ShowSuperSize(100) ' Shows 200, 200

 pointToTest = testWithDerived
 pointToTest.ShowSuperSize(100) ' Shows 300, 200

The first call to ShowSuperSize is made using a variable of type BaseClass that refers to an object of
type BaseClass. In this case, both calls:

 Me.ShowSuperSize
 MyClass.ShowSuperSize

return the same value, because they both call BaseClass.SuperSize.

However, in the second case, the variable of type BaseClass holds a reference to an object of type
DerivedClass. In this case, Me refers to an object of type DerivedClass, whereas MyClass still refers to
BaseClass. So the statement:

 Me.ShowSuperSize(100)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returns 300, while:

 MyClass.ShowSuperSize(100)

returns 200.

Version Differences

The My Class keyword is new to VB under .NET.

See Also

Me Keyword, MyBase Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Namespace Statement

Syntax

 Namespace name

 component types
 End Namespace

name (required)

The name of the namespace, either a single namespace component or a hierarchy section of
namespaces, as in SomeCompany.SomeApplication

component types (required)

The elements that are being declared as part of the namespace, including enumerations,
structures, interfaces, classes, delegates, modules, and other nested namespaces

Description

The Namespace statement declares a namespace and specifies the items in the namespace.

Usage at a Glance

Namespaces are used in the .NET Framework as an organized method of exposing program
components to other programs and applications.

Namespaces are always Public, although types defined within a namespace can have varying
levels of declared access.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New Keyword

Syntax

 New type[(arglist)]

type (required; any)

The data type of the newly created object.

arglist (optional; any)

A list of comma-delimited parameters sent to the constructor type. If using a default
constructor that has no parameters, arglist can be left off completely.

Description

The New keyword creates a new instance of type. The New keyword is often used in assignment

statements or to create a new onetime instance to pass as a parameter to a function.

 someVariable = New InterestingClass

New instances of objects are also created as part of the Dim statement syntax. See the Dim
Statement entry in this chapter for additional information.

A completely different use of the New keyword is in the building of constructors. If you create a class
Sub procedure and give it the name New, it becomes a class constructor.

Usage at a Glance

The New keyword is only used with reference types.

A type's constructor is called when you use the New keyword on a declaration. You may include
constructor parameters after type. If no parameters are supplied, the default parameterless

constructor is used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Dim Statement, Sub Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nothing Keyword

Syntax

 Nothing

Description

The Nothing keyword represents an undefined instance of an object. Reference types that have not
yet been assigned an instance have a value of Nothing.

Value types never have a value of Nothing; they always have a value assigned. Assigning Nothing to
a value type assigns that variable the default value for that type. For instance, in the statement:

 Dim unassignedValue As Integer = Nothing

the unassignedValue variable is assigned zero, the default value for Integer variables.

Usage at a Glance

To test a value for Nothing, do not use the equals comparison operator (=). Instead, use the
IsNothing function or the Is operator.

 If (IsNothing(someVariable) = True) Then...

 If (someVariable Is Nothing) Then...

See Also

Is Operator, IsNot Operator, IsNothing Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Date = Now

Description

The Now property returns the current system date and time.

Usage at a Glance

The Now property is read-only.

The Now property is a wrapper for the Date data type's Now shared property. As a result, calls to
the Date.Now property may offer a slight performance improvement over calls to the
DateAndTime.Now property.

See Also

Today Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NPer Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = NPer(rate, pmt, pv [, fv [, due]])

rate (required; Double)

The interest rate per period.

per (required; Double)

The period for which a payment is to be computed.

pv (required; Double)

The present value of a series of future payments.

fv (optional; Double)

The future value or cash balance after the final payment. If omitted, the default value is 0.

due (optional; DueDate enumeration)

A value indicating when payments are due, from the Microsoft.VisualBasic.DueDate
enumeration. DueDate.EndOfPeriod indicates that payments are due at the end of the payment
period; DueDate.BegOfPeriod indicates that payments are due at the beginning of the period. If
omitted, the default value is DueDate.EndOfPeriod.

Description

The NPer function determines the number of payment periods for an annuity, based on regular fixed
payments and a fixed interest rate. An annuity is a series of fixed cash payments made over a period

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of time. It can be either a loan or an investment.

Usage at a Glance

If pv and fv represent liabilities, their value is negative; if they represent assets, their value is

positive.

rate and pmt must be expressed in the same time unit. That is, if pmt reflects the monthly
payment amount, rate must be the monthly interest rate.

The rate is supplied as a decimal percent. For example, 10% is stated as 0.1.

Example

This sample displays the amount of time needed to pay off a credit card. It uses the NPer function to
determine the length of time required.

 Public Sub HowLongToPay()
 ' ----- Detail the extent of a debt.
 Dim interestRate As Double
 Dim currentBalance As Double
 Dim monthlyPayment As Double
 Dim totalPeriods As Integer

 Try
 currentBalance = CDbl(InputBox("Credit card balance."))
 monthlyPayment = CDbl(InputBox("Monthly payment."))
 interestRate = CDbl(InputBox("Monthly interest rate " & _
 "(use 0.05 for 5%)."))
 totalPeriods = CInt(NPer(interestRate, -monthlyPayment, _
 currentBalance, 0#, DueDate.BegOfPeriod))

 MsgBox("Your credit card balance will be paid in " & _
 totalPeriods & " months. That's " & _
 Int(totalPeriods / 12) & " years and " & _
 (totalPeriods Mod 12) & " months.")
 Catch e As System.Exception
 MsgBox("Unable to compute period because of error " & _
 e.Message)
 End Try
 End Sub

See Also

FV Function, IPmt Function, NPV Function, Pmt Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NPV Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = NPV(rate, valueArray())

rate (required; Double)

The discount rate over the period, expressed as a decimal percent

valueArray() (required; array of Double)

An array of cash-flow values

Description

The NPV function calculates the net present value of an investment based on a series of periodic
variable cash-flow events (payments and receipts) and a discount rate. The net present value is the
value today of a series of future cash-flow events discounted at some rate back to the first day of the
investment period.

Usage at a Glance

The discount rate is stated as a decimal percent. For example, 10% is stated as 0.1.

valueArray is a one-dimensional array that must contain at least one negative value (a

payment) and one positive value (a receipt).

The NPV investment begins one period before the date of the first cash-flow value and ends with
the last cash-flow value in the array.

NPV requires future cash flows. If the first cash-flow occurs at the beginning of the first period,
the first value must be added to the value returned by NPV and must not be included in
valueArray.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NPV is like the PV function, except that PV allows cash flows to begin either at the beginning or
the end of a period and requires that cash flows be fixed throughout the investment.

See Also

FV Function, IPmt Function, NPer Function, Pmt Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Obsolete Attribute

Class

System.ObsoleteAttribute

Applies To

Class, Struct, Enum, Constructor, Method, Property, Field, Event, Interface, and Delegate (all
program elements except parameters and return values)

Constructors

 New([message[, error]])

message (optional; String)

Provides relevant information concerning the obsolete element, including possible workarounds.

error (optional; Boolean)

Indicates whether the compiler generates an error if the program element is used. If omitted,
the value defaults to False.

Properties

IsError (Boolean)

Read-only. Value from the error constructor parameter.

Message (String)

Read-only. Value from the message constructor parameter.

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The <Obsolete> attribute indicates that the program element is obsolete and no longer valid for use.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Oct Function

Class

Microsoft.VisualBasic.Conversion

Syntax

 Dim result As String = Oct

(number)

number (required; numeric or string value)

A number, or a string that can be interpreted as a number. Nonintegral numbers are rounded
before conversion.

Description

The Oct function returns a string that represents the octal value of a numeric expression.

Usage at a Glance

Nonintegral numbers are rounded before conversion to octal format. An empty value results in
"0." A value of Nothing generates an error.

The octal result is limited to 22 digits. Numbers larger than this limit result in an overflow error.

If the source value is a string, it may appear in octal format. Such strings begin with the
standard "&O" octal prefix for Visual Basic, as in "&O10" for a decimal value of 8.

Version Differences

The Visual Basic 6 version of the Oct function only handled up to 11 octal digits. The .NET version
handles up to 22 digits.

See Also

Hex Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of Keyword

Syntax

 (Of typeParamList)

typeParamList (required; any)

Adds type parameter placeholders that will later enforce strong typing when the related
construct is used.

Description

The Of keyword enables generics, the use of type parameters in a language construct, such as a class
definition. Type parameters are used as placeholders for strongly typed data, to be enforced when
the related construct is instantiated.

Generics are fully described in Chapter 10, complete with examples.

Usage at a Glance

Type parameters added with the Of keyword cannot be used with Common Language Specification
(CLS) compliant components.

Version Differences

Generics and the Of keyword are new with Visual Basic 2005.

See Also

Class...End Class Statement, Delegate Statement, Function Statement, Interface...End Interface
Statement, Structure Statement, Sub Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On Error Statement

 On Error { GoTo { label | 0 | -1 } | Resume Next }

label (required, unless 0 or -1 used)

A valid label within the procedure

Description

The On Error statement enables or disables error handling within a procedure. Error handling is
performed either by using a TRy...Catch...Finally statement or with an On Error statement. The On
Error statement has several variations.

On Error GoTo label

When an error occurs, execution continues within the procedure at the line marked with label.

A Resume statement can be used within that block of code to return to the errant section of
code.

On Error GoTo 0

Disables error handling in the current procedure. This is the same as if no error handlers were
ever enabled in the procedure in the first place.

On Error GoTo -1

Used inside of an error handler to make the code forget that it is inside of an error handler. It
says, "Forget that the error ever happened, but don't Resume me back to the earlier part of the
code; leave me here."

On Error Resume Next

When an error occurs, execution continues with the line that follows the errant line. The Err
object can be examined for the error details.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have no error handling in your procedure, or if error handling is disabled, the VB runtime
engine will trace back through the call stack until a procedure is reached where error handling is
enabled. In that case, the error will be handled by that procedure. However, if no error handler
can be found in the call stack, a runtime error occurs, and program execution is halted. (New in
2005. Visual Basic 2005 also allows you to include a global error handler that catches errors not
caught by another error handler.)

Use of the On Error Resume Next statement can cause legitimate errors to go unnoticed. Use it
with care.

The following code demonstrates the typical use of the On Error statement.

 Sub SomeProcedure()
 On Error Goto ErrorHandler
 ' ... other code goes here ...

 CleanupCode:
 ' ... cleanup code goes here ...
 Exit Sub

 ErrorHandler:
 ' ... error handling code goes here ...
 Resume CleanupCode
 End Sub

If cleanup code isn't required within the procedure, the CleanupCode section can be removed
(keep the Exit Sub statement), and the error handler can use Resume Next or Exit Sub to
complete the error.

If the calling procedure is responsible for handling the error, the following type of code will do
minimal error handling before reporting the error up the call stack.

 Sub SomeProcedure()
 On Error Goto ErrorHandler
 ' ... other code goes here ...

 ' ... cleanup code goes here ...
 Exit Sub

 ErrorHandler:
 ' ... minimal error handling code goes here ...
 Err.Raise ... ' passes the error up
 Exit Sub
 End Sub

For more information on both unstructured error handling and structured exception handling,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

see Chapter 11.

See Also

Err Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OpenFileDialog Class

Namespace

System.Windows.Forms

Creatable

Yes

Description

The OpenFileDialog class represents a common dialog box for selecting or opening a file. The
OpenFileDialog class has properties that let you configure, display, and retrieve the results from this
dialog box, from which the user selects a single file or multiple files. The dialog box does not open the
file(s); it only indicates the file(s) to be opened.

The following list discusses the more interesting members of the OpenFileDialog class.

AddExtension Property

Indicates whether the dialog box should automatically add the default file extension to the
user-supplied file name. The default value is true.

CheckFileExists Property

Indicates whether a warning message should be displayed if the user enters the name of a file
that does not exist. The default value is true.

DefaultExt Property

Defines the default file extension. The string should consist of the file extension only, without a
leading period.

FileName Property

Returns the fully qualified file namethe file name with its complete path and extension. If no file
is selected, the property returns an empty string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileNames Property

Returns an array of fully qualified file names (with complete paths and extensions) for the files
selected by the user. If no file is selected, the property returns an empty array. This property
returns a single-element array if the Multiselect property is False and the user selects a file.

Filter Property

Used to configure a filter string that indicates the types of files (by extension) to display in the
dialog box. These types appear in the "Files of type" drop-down control on the dialog box. A
single item consists of a file description, a vertical bar, and the file extension (usually "*." plus
the file extension). If there are multiple extensions in a single item, they are separated by
semicolons. If there are multiple items, they are separated by vertical bars. For example, the
following code fragment assigns a filter string for text files and VB source code files:

 Dim openPrompt As New OpenFileDialog
 openPrompt.Filter = _
 "Text files (*.txt; *.vb)|*.txt;*.vb|" & _
 "Visual Basic files (*.vb)|*.vb|" & _
 "All files (*.*)|*.*"

FilterIndex Property

Indicates the selected 1-based position in the Filter property's item list. The default is 1. If the
user selects a different filter, this property is updated to reflect that change.

InitialDirectory Property

Indicates the initial directory to use when first displaying the dialog.

Multiselect Property

Indicates whether the user is allowed to select more than one file.

OpenFile Method

Opens the file selected by the user, returning a Stream object. The file is opened in read-only
mode.

ReadOnlyChecked Property

Indicates whether the Read Only checkbox is selected on the dialog box. The default is False.

RestoreDirectory Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Indicates whether the current working (default) directory is restored before the dialog box
closes. The default value is False.

ShowDialog Method

Displays the dialog box to the user. Once the user has dismissed the dialog box, the FileName
and FileNames properties can be used to get the user's selection(s).

ShowReadOnly Property

Indicates whether the Read Only checkbox should appear on the dialog box.

Title Property

Sets the title of the dialog box.

Example

The following code asks the user for one or more files and then displays the filenames in the Output
window.

 Dim selectFile As New OpenFileDialog
 Dim counter As Integer
 selectFile.Multiselect = True
 If (selectFile.ShowDialog() = DialogResult.OK) Then
 For counter = 0 To UBound(selectFile.FileNames)
 Console.WriteLine(selectFile.FileNames(counter))
 Next counter
 End If

Version Differences

The public interfaces used for this OpenFileDialog class and the related VB 6 CommonDialog control
are quite different.

See Also

SaveFileDialog Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operator Statement

Syntax

 Public [Overloads] Shared [Shadows] [Widening | Narrowing] _

 Operator symbol (operand1[, operand2]) [As type]

 [statements]

 Return expression

 [statements]
 End Function

Overloads (optional)

Indicates that more than one declaration of this overloaded operator exists, each with a
different argument signature.

Shadows (optional)

Indicates that the overloaded operator shadows an identically named element in a base class.

Widening (optional)

Indicates that the use of the overloaded operator will never result in the loss of data due to a
change in data types.

Narrowing (optional)

Indicates that the use of the overloaded operator may possibly result in the loss of data, due to
a change in data types.

symbol (required)

The operator to overload. One of the following operator symbols:

Unary: +, -, IsFalse, IsTrue, Not, CType

Binary: +, -, *, /, \, &, ^, >>, <<, = (comparison), <>, >, >=, <, <=, And, Like, Mod, Or, Xor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

operand1 (required; any)

The first operand used with the operator. For binary operators, this operand appears to the left
of the operator. It has the form:

 [ByVal] operandName As operandType

where operandName is the name of the operand as used in the operator procedure, and operandType is

the data type as it is used in the operator.

operand2 (optional; any)

The second operand used with the binary operator. This operand appears to the right of the
operator. It has the form:

 [ByVal] operandName As operandType

where operandName is the name of the operand as used in the operator procedure, and operandType is

the data type as it is used in the operator. Its data type may or may not match the data type of
operand1 or of the return type.

type (optional; Type)

The return data type of the operator. This may or may not match the data type of the
operand(s).

statements (optional)

Program code to be executed within the procedure.

expression (optional)

The value of type type to return from the procedure to the calling procedure as a result of the

operation.

Description

New in 2005. The Operator statement defines an overloaded operator. Normally, the standard Visual
Basic operators can only be used with the built-in data types as defined by the VB compiler. The
Operator statement allows you to define new uses for these standard operators.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operators are fully described, with examples, in the "Operator Overloading" section of Chapter 5.

Usage at a Glance

All overloaded operators are Public and Shared. They can be used without a specific instance of
the type.

At least one of the operands must be of the type that contains the overloaded operator
definition. When overloading the CType operator, either the operand or the return value must be
of that containing data type.

Certain pairs of operators must be overloaded as a matched set:

= and <>

> and <

>= and <=

IsTrue and IsFalse

The IsTrue and IsFalse operators must return data of type Boolean.

The << and >> operators must use Integer for the data type of operand2.

The And, Or, Not, and Xor operators overload the bitwise versions of these operators, not the
logical versions.

The AndAlso operator requires that And and IsFalse also be overloaded. Likewise, the OrElse
operator requires that Or and IsTrue also be overloaded.

Version Differences

Operator overloading is new in Visual Basic 2005.

See Also

Sub Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Compare Statement

Syntax

 Option Compare {Binary | Text}

Description

The Option Compare statement is used to set the default method for comparing string data within a
source code file.

Usage at a Glance

A default project-wide setting for Option Compare can be set in the project properties within
Visual Studio. The Option Compare statement, when used in a source code file, takes precedence
over the project setting.

When OptionCompare is not used in a file, and there is no project-wide setting, the default
comparison method is Binary.

When OptionCompare is used, it must appear at the start of the module's declarations section,
before any types.

Binary comparisonthe default text comparison method in Visual Basicuses the internal binary
code of each character to determine the sort order of the characters. Binary comparisons are
case sensitive.

Text comparison uses the locale settings of the current system to determine the sort order of
the characters. Text comparison is case insensitive.

See Also

Option Explicit Statement, Option Strict Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Explicit Statement

Syntax

 Option Explicit [On | Off]

Description

Use the Option Explicit statement to generate a compile-time error whenever a variable that has
not been declared is used in a source code file.

Usage at a Glance

A default project-wide setting for Option Explicit can be set in the project properties within
Visual Studio. The Option Explicit statement, when used in a source code file, takes
precedence over the project-wide setting.

The Option Explicit statement must appear in the declarations section of a source code file,
before any types.

In source code files where the Option Explicit statement is not used, any undeclared variables
are automatically cast as Object.

The default action of Option Explicit is On, so that:

 Option Explicit

is equivalent to:

 Option Explicit On

It is considered good programming practice to always enable Option Explicit. The following
example shows why.

 1: Dim variable As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2: variable = 100
 3: variable = varable + 50
 4: MsgBox variable

In this code snippet, an integer variable, variable, has been declared. However, because the
name of the variable has been mistyped on line 3, the message box shows its value as only 100
instead of 150. This is because varable is assumed to be an undeclared variable with an initial
value of 0. If the Option Explicit On statement had been used, the code would not have
compiled, and varable would have been highlighted as the cause.

For an ASP.NET page, use the @PAGE directive, rather than Option Explicit, to require variable
declaration. Its syntax is:

 <%@ Page Language="VB" Explicit=true|false %>

By default, Explicit is true in ASP.NET pages.

You can also use the <system.web> section of the web.config file to require variable declaration
for an entire virtual directory or an ASP.NET application by adding an explicit attribute to the
compilation tag. Its syntax is:

 <compilation explicit="true|false">

In both cases, TRue corresponds to Option Explicit On, and false corresponds to Option
Explicit Off.

See Also

Option Compare Statement, Option Strict Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Strict Statement

Syntax

 Option Strict [On | Off]

Description

Use the Option Strict statement to allow or prevent VB from making any implicit data type
conversions that are narrowing in a source code file. Option Strict On disallows all implicit narrowing
conversions, while the Off setting permits them. Narrowing conversions may involve data loss. For
example:

 Dim bigNumber As Long = 2455622
 Dim smallNumber As Integer = bigNumber

converts a Long to an Integer. Even though in this case, no data loss would result from the
narrowing, Option Strict On still does not allow the conversion and would instead generate a
compiler error.

Usage at a Glance

A default project-wide setting for Option Strict can be set in the project properties within
Visual Studio. The Option Strict statement, when used in a source code file, takes precedence
over the project-wide setting.

If the Option Strict statement is not present in a module, it defaults to Off.

The default action for Option Strict is On, so that:

 Option Strict

is equivalent to the statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Option Strict On

The Option Strict statement must appear in the declarations section of a module, before any
types.

Option Strict On implies Option Explicit On.

Explicit narrowing conversions, such as those using the CInt function, are not affected by Option
Strict. However, if data loss does occur as a result of an explicit conversion, a runtime error
may still occur.

When Option Strict is On, literals must often be cast to a specific data type before use. For
example, the statement:

 Dim someMoney As Decimal = 10.32

generates a compiler error because 10.32 is interpreted as a Double, and implicit conversions
from Double to Decimal are not allowed. You can correct this compiler error with a statement
like:

 Dim someMoney As Decimal = 10.32D

Setting Option Strict On is highly recommended.

For an ASP.NET page, use the @Page directive, rather than Option Strict, to control strict type
checking. Its syntax is:

 <%@ Page Language="VB" Strict=true|false %>

By default, Strict is false in ASP.NET pages.

You can also use the <system.web> section of the web.config file to control strict type checking
for an entire virtual directory or an ASP.NET application by adding a strict attribute to the
compilation tag. Its syntax is:

 <compilation strict="true|false">

In both cases, true corresponds to Option Strict On, and false corresponds to Option Strict
Off.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The Option Strict statement did not exist in VB 6.

See Also

Option Compare Statement, Option Explicit Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Out Attribute

Class

System.Runtime.InteropServices.OutAttribute

Applies To

Parameter

Constructor

 New()

Properties

None defined

Description

The <Out> attribute defines an outbound parameter, a variation of a ByRef parameter. Memory
allocation for ByRef parameters is managed by the caller of the procedure; parameters with the <Out>
attribute applied have their memory allocation managed by the procedure itself. No value comes in
from the caller; a return value only goes out through the parameter. This makes <Out> parameters
far more efficient in remoting (calls across machines) and in web method calls.

Usage at a Glance

Although you can define an out parameter using the <Out> attribute, the Visual Basic compiler does
not enforce it. If you fail to assign a value to the out parameter, or if you indicate that the parameter
is to be passed by value rather than by reference, the compiler does not generate an error. Care
must be taken to ensure that all <Out> parameters are passed ByRef, and that they are explicitly
assigned a value before the method exits.

Example

 Imports System
 Imports System.Runtime.InteropServices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Class Person
 Public Name As String
 Private standardAge As Integer
 Dim standardHeight As Integer
 Dim standardWeight As Integer

 Public Sub New(fullName As String)
 ' ----- Perhaps the initial fields would come from a
 ' database, but here they are just hard-coded.
 Name = fullName
 standardAge = 26
 standardHeight = 73
 standardWeight = 185
 End Sub

 Public Sub GetStats(<Out> ByRef currentAge As Integer, _
 <Out> ByRef currentHeight As Integer, _
 <Out> ByRef currentWeight As Integer)
 currentAge = standardAge
 currentHeight = standardHeight
 currentWeight = standardWeight
 End Sub
 End Class

 Module GeneralCode
 Public Sub Main()
 Dim mrTypical As New Person("John Doe")
 Dim hisAge As Integer
 Dim hisHeight As Integer
 Dim hisWeight As Integer

 mrTypical.GetStats(hisAge, hisHeight, hisWeight)
 MsgBox(mrTypical.Name & " is " & hisHeight & " inches tall.")
 End Sub
 End Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ParamArray Attribute

Class

System.ParamArrayAttribute

Applies To

Parameter

Constructor

 New()

Properties

None defined

Description

The <ParamArray> attribute indicates that the parameter represents a parameter array, which can
support a variable number of arguments.

The same effect is achieved by using the ParamArray keyword in a function or subroutine declaration.
In fact, the ParamArray keyword is converted into the <ParamArray> attribute during a compile.

If you do use the attribute, it must appear as <ParamArrayAttribute> rather than as <ParamArray>,
since ParamArray is a Visual Basic keyword.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partial Keyword

Syntax

 Partial

 Class className

 [statements]
 End Class

or:

 Partial Structure structureName

 [statements]
 End Structure

These two syntax examples show only the minimal grammar for the Class and Structure
statements, for demonstration of the Partial keyword only.

Description

The Partial keyword allows a single class or structure definition to be divided into multiple source
code files. At least one of the class or structure portions must include the Partial keyword.

For syntax details on using the Partial keyword in context, see the Class...End Class Statement and
the Structure...End Structure Statement entries elsewhere in this chapter.

Example

This example shows a class divided into two distinct files. The first source code file includes the
following code.

 Public Class Customer
 ...statements...
 End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The second source code file includes this code.

 Public Partial Class Customer
 ...more statements...
 End Class

If desired, the Partial keyword could be added to both class component definitions.

Version Differences

The Partial keyword was introduced with Visual Basic 2005.

See Also

Class...End Class Statement, Structure...End Structure Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partition Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As String = Partition(number, start, stop, interval)

number (required; Long)

Number to evaluate against the intervals.

start (required; Long)

Start of the range. Must be nonnegative.

stop (required; Long)

End of the range. Must be greater than start.

interval (required; Long)

Size of each interval into which the range is partitioned.

Description

The Partition function returns a string that describes which interval contains number. The format

returned is x:y, where x is the start of the range, and y is the end of the range.

Usage at a Glance

Partition returns a range formatted with enough leading spaces so that there are the same
number of characters to the left and right of the colon as there are characters in stop, plus one.

This ensures that the interval text will be handled properly during any sort operations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If number is outside of the range of start, the range reported is :y, where y is start - 1, and no

value exists before the colon.

If number is outside the range of end, the range reported is x:, where x is end + 1, and no value

exists after the colon.

If interval is 1, the range is number:number, regardless of the start and stop arguments. For
example, if interval is 1, number is 100, and stop is 1000, Partition returns 100:100.

The Partition function is useful in creating histograms, which give the number of integers from
a collection that fall into various ranges.

Example

The code:

 Dim counter As Integer
 For counter = -1 To 110 \ 5
 Console.WriteLine(CStr(counter * 5) & " is in interval " & _
 Partition(counter * 5, 0, 100, 10))
 Next counter

produces the following output:

 -5 is in interval : -1
 0 is in interval 0: 9
 5 is in interval 0: 9
 10 is in interval 10: 19
 15 is in interval 10: 19
 20 is in interval 20: 29
 25 is in interval 20: 29
 30 is in interval 30: 39
 35 is in interval 30: 39
 40 is in interval 40: 49
 45 is in interval 40: 49
 50 is in interval 50: 59
 55 is in interval 50: 59
 60 is in interval 60: 69
 65 is in interval 60: 69
 70 is in interval 70: 79
 75 is in interval 70: 79
 80 is in interval 80: 89
 85 is in interval 80: 89
 90 is in interval 90: 99
 95 is in interval 90: 99
 100 is in interval 100:100
 105 is in interval 101:
 110 is in interval 101:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The Partition function did not exist in VB 6, although it was available in Microsoft Access.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PI Field

Class

System.Math

Syntax

 Dim result As Double = Math.PI

Description

The PI field returns the approximate value of the irrational number , approximately
3.14159265358979.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The PI field is new to VB under .NET.

See Also

E Field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pmt Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = Pmt(rate, nPer, pv[, fv[, due]])

rate (required; Double)

The interest rate per period.

nPer (required; Double)

The total number of payment periods.

pv (required; Double)

The present value of a series of future payments.

fv (optional; Double)

The future value or cash balance after the final payment. If omitted, the default value is 0.

due (optional; DueDate enumeration)

A value indicating when payments are due, from the Microsoft.VisualBasic.DueDate
enumeration. DueDate.EndOfPeriod indicates that payments are due at the end of the payment
period; DueDate.BegOfPeriod indicates that payments are due at the beginning of the period. If
omitted, the default value is DueDate.EndOfPeriod.

Description

The Pmt function calculates the periodic payment for an annuity, based on regular fixed payments and
a fixed interest rate. An annuity is a series of fixed cash payments made over a period of time. It can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be either a loan or an investment.

Usage at a Glance

If pv and fv represent liabilities, their value is negative; if they represent assets, their value is

positive.

rate and nPer must be expressed in the same time unit. That is, if nPer reflects the number of
monthly payments, rate must be the monthly interest rate.

The rate is supplied as a decimal percent. For example, 10% is stated as 0.1.

Example

See the example for the IPmt Function entry, which employs a similar syntax.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pow Function

Class

System.Math

Syntax

 Dim result As Double = Math.Pow(x, y)

x (required; Double)

The base number to be raised to a power

y (required; Double)

The exponent by which to raise the base number

Description

The Pow function returns the base x raised to the power (exponent) y.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Visual Basic also includes an intrinsic ^ exponentiation operator that performs the same
function.

Version Differences

The Pow function did not exist in VB 6.

See Also

Exp Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PPmt Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = PPmt(rate, per, nPer, pv[, fv[, due]])

rate (required; Double)

The interest rate per period.

per (required; Double)

The period for which a payment is to be computed.

nPer (required; Double)

The total number of payment periods.

pv (required; Double)

The present value of a series of future payments.

fv (optional; Double)

The future value or cash balance after the final payment. If omitted, the default value is 0.

due (optional; DueDate enumeration)

A value indicating when payments are due, from the Microsoft.VisualBasic.DueDate
enumeration. DueDate.EndOfPeriod indicates that payments are due at the end of the payment
period; DueDate.BegOfPeriod indicates that payments are due at the beginning of the period. If
omitted, the default value is DueDate.EndOfPeriod.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The PPmt function computes the principal payment for a given period of an annuity, based on regular
fixed payments and a fixed interest rate. An annuity is a series of fixed cash payments made over a
period of time. It can be either a loan or an investment.

Usage at a Glance

The value of per ranges from 1 to nPer.

If pv and fv represent liabilities, their value is negative; if they represent assets, their value is

positive.

rate and nPer must be expressed in the same time unit. That is, if nPer reflects the number of
monthly payments, rate must be the monthly interest rate.

The rate is supplied as a decimal percent. For example, 10% is stated as 0.1.

Example

See the example for the IPmt Function entry.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Print, PrintLine Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Print(fileNumber, output)

 PrintLine(fileNumber[, output])

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

output (required for Print ; any)

A comma-delimited list of expressions, or a ParamArray, to be written to the file

Description

The Print and PrintLine procedures output formatted data to a disk file opened in Append or Output
mode. The PrintLine version also appends line termination characters.

In addition to standard data, output can include the SPC and TAB functions, discussed in their own
entries in this chapter.

Usage at a Glance

The Print and PrintLine procedures use the locale settings for the system to format dates,
times, and numbers.

The Print and PrintLine procedures are often used to output data in a human-readable format,
not necessarily for reprocessing by a software application.

Example

The following code writes some simple formatted data using the PrintLine procedure and the TAB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function.

 Dim fileID As Integer = FreeFile()
 FileOpen(fileID, "c:\data.txt", OpenMode.Output, OpenAccess.Write)
 PrintLine(fileID, " 1 2")
 PrintLine(fileID, "12345678901234567890")
 PrintLine(fileID, "--------------------")
 PrintLine(fileID, 1, TAB(10), 10)
 PrintLine(fileID, 100, TAB(10), 1000)
 FileClose(fileID)

This code generates the following output.

 1 2
 12345678901234567890

 1 10
 100 1000

Version Differences

There are many syntactical differences between the VB 6 Print statement and the .NET Print
procedure.

The PrintLine procedure is new with .NET as a partial replacement for the VB 6 Print
statement.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file-
management features.

See Also

Write, WriteLine Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Keyword

Description

The Private keyword is used to set the access level for various types and type members. By including
this keyword, the associated type or member can only be accessed within its declaration context. For
instance, members within a class that use the Private keyword can only be accessed within that
class's code.

The Private keyword can be used with the following statements:

Class Statement
Const Statement (but not for local constants)
Declare Statement
Delegate Statement
Dim Statement (but not for local variables)
Enum Statement
Event Statement
Function Statement
Interface Statement
Property Statement
Structure Statement
Sub Statement

By default, fields and constants declared within classes have Private access.

See Also

For the statements listed above, see the related entries elsewhere in this chapter for usage
information. For information on using the Private keyword as a statement, see the entry for the Dim
Statement.

Friend Keyword, Protected Keyword, Public Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Statement

Syntax

 [Default] [accessModifier] [propModifier] [Shared] [Shadows] _

 [ReadOnly | WriteOnly] Property name [(ByVal arglist)] _

 [As type] [Implements implementsList]

 [subAccessModifier] Get

 [statements]

 [Exit Property | Return expression]

 [statements]
 End Get

 [subAccessModifier] Set(ByVal value As type)

 [statements]
 [Exit Property]

 [statements]
 End Set
 End Property

Default (optional)

Indicates that the property is the default property. Both a Get and a Set block must be defined
for default properties. Only one property in a class definition can be the default.

accessModifier (optional)

Specifies the primary scope and accessibility of the property. This setting can be further
restricted in the Get or Set blocks, beginning with Visual Basic 2005. One of the following
access levels:

Access level Description

Public
The property is publicly accessible anywhere, both inside and outside of the
project.

Private
The property is accessible only within the defining type. The default property
of a class cannot be Private.

Protected
The property is accessible only to the code in the defining type or to one of
its derived types.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Access level Description

Friend
The property is accessible only within the project that contains the property
definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Public access level is used.

procModifier (optional)

One of the keywords shown in the following table:

Keyword Description

Overloads
Indicates that more than one declaration of this property exists, each with a
different argument signature

Overrides
For derived classes, indicates that the property overrides a property with the
same name and argument signature in the base class

Overridable Indicates that the property can be overridden in a derived class

NotOverridable Indicates that the property cannot be overridden in a derived class

MustOverride Indicates that the property must be overridden in a derived class

Shared (optional)

Indicates that the property is shared and not an instance property. Shared properties may be
called without a particular instance of the type in which they appear. Shared properties are also
known as static properties.

Shadows (optional)

Indicates that the property shadows an identically named element in a base class.

ReadOnly (optional)

Indicates that the property is read-only. The Get block must be supplied; the Set block must be
absent.

WriteOnly (optional)

Indicates that the property is write-only. The Set block must be supplied; the Get block must
be absent.

Friend
The property is accessible only within the project that contains the property
definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Public access level is used.

procModifier (optional)

One of the keywords shown in the following table:

Keyword Description

Overloads
Indicates that more than one declaration of this property exists, each with a
different argument signature

Overrides
For derived classes, indicates that the property overrides a property with the
same name and argument signature in the base class

Overridable Indicates that the property can be overridden in a derived class

NotOverridable Indicates that the property cannot be overridden in a derived class

MustOverride Indicates that the property must be overridden in a derived class

Shared (optional)

Indicates that the property is shared and not an instance property. Shared properties may be
called without a particular instance of the type in which they appear. Shared properties are also
known as static properties.

Shadows (optional)

Indicates that the property shadows an identically named element in a base class.

ReadOnly (optional)

Indicates that the property is read-only. The Get block must be supplied; the Set block must be
absent.

WriteOnly (optional)

Indicates that the property is write-only. The Set block must be supplied; the Get block must
be absent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name (required)

The name of the property.

arglist (optional; any)

A comma-delimited list of parameters to be supplied to the property as arguments from the
calling routine. The value assigned to the property from the calling procedure is not included in
this argument list.

arglist uses the following syntax and parts:

 [Optional] ByVal [ParamArray] varname[()] _

 [As argtype] [= defaultValue]

Optional (optional)

Flags an argument as optional; optional arguments need not be supplied by the calling routine.
All arguments following an optional argument must also be optional. A ParamArray argument
cannot be optional.

ByVal (required)

The argument is passed by value; the local copy of the variable is assigned the value of the
argument. ByVal is the default method of passing variables. All arguments passed to properties
must be passed by value.

ParamArray (optional)

The argument is an optional array containing an arbitrary number of elements. It can only be
used as the last element of the argument list and cannot be modified by the Optional keyword.
If Option Strict is on, the array type must also be specified.

varname (required)

The name of the argument as used in the local property.

argtype (optional; Type)

The data type of the argument. Any valid .NET data type can be used.

defaultValue (optional; any)

For optional arguments, indicates the default value to be supplied when the calling routine does

http://lib.ommolketab.ir
http://lib.ommolketab.ir

not supply the value. When the Optional keyword is used, this default value is required.

type (optional; Type)

The return data type of the property. It is also the data type of the value assigned to the
property by the calling procedure, as processed by the Set block of the property. The default
data type is Object.

implementsList (optional)

Comma-separated list of the interface members implemented by this property.

subAccessModifier (optional)

New in 2005. This sub-access modifier allows one portion of the property to impose a more
restrictive access level than is used for the other portion. If both a Get and a Set block are
defined, one of them can also include a sub-access modifier. This modifier is one of the
following keywords: Private, Protected, Friend, or Protected Friend. It has the same impact
as the modifier used for the property's accessModifier, but it must be more restrictive than

that modifier.

statements (optional)

Program code to be executed within the property.

expression (optional)

The value to return from the Get block of the property to the calling procedure.

value (required)

The value assigned to the property from the calling procedure. By tradition, this parameter is
always named "value."

Description

The Property statement declares a class property, including distinct assignment (Set) and retrieval
(Get) accessors. Properties can appear within classes, structures, or modules.

Usage at a Glance

Overloads and Shadows cannot be used in the same property declaration.

In the Get block, the property value can be returned either by using the Return statement or by
assigning the value to a variable with a name that is the same as the property.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Default keyword can be used only with parameterized properties. Typically, these are
properties that either return collection items or are implemented as property arrays.

A Property Get procedure is used like a function; its return value can be assigned or used just
like a function's return value.

 Dim someValue = someClass.SomeProperty

The calling routine assigns a value to a property through a standard assignment statement. The
assigned value becomes the value argument in the Set block.

 someClass.SomeProperty = someValue

If an Exit Property or Return statement is used, the property procedure exits and program
execution continues with the statement following the call to the property. Any number of Exit
Property or Return statements can appear in a property.

The value managed by a property is usually a Private variable within the class or type. This
adheres to accepted object-oriented techniques by protecting the property value from accidental
modification with invalid data.

 Private hiddenSalary As Decimal
 Public Property Salary() As Decimal
 Get
 Return hiddenSalary
 End Get
 Set(ByVal value As Decimal)
 hiddenSalary = value
 End Set
 End Property

Typically, arglist is only used in the case of property arrays. This entry's example shows such a

use for the Wage property.

The class constructor is often used to set properties to their initial values.

Example

The example code illustrates a class that has a simple property and a property array.

 Public Enum WageCategory
 Rate = 0
 Overtime = 1
 Differential = 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Enum

 Public Class Employee
 ' ----- Simple class with two public properties.
 Dim empName As String
 Dim wagesByType(0 To 2) As Decimal

 Public Property Name() As String
 Get
 Return empName
 End Get
 Set(ByVal value As String)
 empName = value
 End Set
 End Property

 Public Property Wage(wageType As WageCategory) As Decimal
 Get
 Return wagesByType(wageType)
 End Get
 Set(ByVal value As Decimal)
 wagesByType(wageType) = value
 End Set
 End Property
 End Class

 Module GeneralCode
 Public Sub TestEmployeeClass()
 Dim oneEmployee As New Employee

 oneEmployee.Name = "Bill"
 oneEmployee.Wage(WageCategory.Rate) = 15@
 oneEmployee.Wage(WageCategory.Overtime) = 15@ * 1.5@
 oneEmployee.Wage(WageCategory.Differential) = 15@ * 0.1@.1@

 Console.WriteLine(oneEmployee.Name)
 Console.Writeline(oneEmployee.Wage(WageCategory.Rate))
 oneEmployee = Nothing
 End Sub
 End Module

Version Differences

VB 6 includes Property Get and Property Set features for its classes, but the syntax used in VB
6 is significantly different from the syntax used in .NET.

VB 6 support distinct Property Set and Property Let accessors. VB under .NET eliminates the
Property Let accessor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic 2005 adds subAccessModifier to the Get and Set block definitions, allowing

separate visibility for the two portions of the property.

See Also

Function Statement, Sub Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Protected Keyword

Description

The Protected keyword is used to set the access level for classes and class members. By including
this keyword, the associated class or member can be accessed by the entire class, and by all derived
classes, but not by any other code.

Declaring a class module as Protected limits all of the class's members to Protected access (or
stronger, if the member has further specific access restrictions).

When combined with the Friend keyword, the related element takes on all aspects of both the
Protected and Friend keywords.

The Protected keyword can be used with the following statements:

Class Statement
Const Statement (but not for local constants)
Declare Statement
Delegate Statement
Dim Statement (but not for local variables)
Enum Statement
Event Statement
Function Statement
Interface Statement
Property Statement
Structure Statement
Sub Statement

Even among these statements, the Protected keyword is only valid in the context of a class
definition.

Example

Consider the following class declaration.

 Public Class MainClass
 Protected internalData As String
 End Class

Then, within MainClass or any of its derived classes in any project, the internalData variable can be
accessed directly:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public
 Class LaterClass
 Inherits MainClass

 Public Sub Test()
 MsgBox(internalData)
 End Sub
 End Class

However, code that uses MainClass, but does not derive from it, cannot use the variable.

 Dim intruderAlert As New MainClass
 ' ----- The following line will not compile.
 intruderAlert.internalData = "Secret"

Version Differences

The Protected keyword is new to VB under .NET.

See Also

For the statements listed above, see the related entries elsewhere in this chapter for usage
information. For information on using the Protected keyword as a statement, see the entry for the
Dim Statement.

Friend Keyword, Private Keyword, Public Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Keyword

Description

The Public keyword is used to set the access level for various types and type members. By including
this keyword, the associated type or member can be used by virtually any code within the current
assembly, or within other assemblies if the code has been configured for external access.

The Public keyword can be used with the following statements:

Class Statement
Const Statement (but not for local constants)
Declare Statement
Delegate Statement
Dim Statement (but not for local variables)
Enum Statement
Event Statement
Function Statement
Interface Statement
Property Statement
Structure Statement
Sub Statement

By default, methods and properties declared within classes have Public access, as do all structure
members.

See Also

For the statements listed above, see the related entries elsewhere in this chapter for usage
information. For information on using the Public keyword as a statement, see the entry for the Dim
Statement.

Friend Keyword, Private Keyword, Protected Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PV Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = PV(rate, nPer, pmt[, fv [, due]])

rate (required; Double)

The interest rate per period.

nPer (required; Double)

The total number of payment periods.

pmt (required; Double)

The payment made in each period.

fv (optional; Double)

The future value or cash balance after the final payment. If omitted, the default value is 0.

due (optional; DueDate enumeration)

A value indicating when payments are due, from the Microsoft.VisualBasic.DueDate
enumeration. DueDate.EndOfPeriod indicates that payments are due at the end of the payment
period; DueDate.BegOfPeriod indicates that payments are due at the beginning of the period. If
omitted, the default value is DueDate.EndOfPeriod.

Description

The PV function calculates the present value of an annuity (either an investment or loan), based on a
regular number of future payments of a fixed value and a fixed interest rate. The present value is the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

current value of a future stream of equal cash-flow events discounted at some fixed interest rate.

Usage at a Glance

The time units used for the number of payment periods, the rate of interest, and the payment
amount must be the same. If you state the payment period in months, you must also express
the interest rate as a monthly rate and the amount paid as a per-month payment.

Payments made against a loan or added to the value of savings are expressed as negative
numbers.

The rate is supplied as a decimal percent. For example, 10% is stated as 0.1. If you are
calculating using monthly periods, you must also divide the annual rate by 12. For example,
10% per annum equates to a rate per period of .00833.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PPmt Function, Rate
Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QBColor Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Integer = QBColor(color)

color (required; Integer)

A whole number between 0 and 15

Description

The QBColor function returns a value representing the RGB ("red, green, blue") system color code.

Usage at a Glance

The source color value is one of the following values:

Value Description

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 White

8 Gray

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

9 Light Blue

10 Light Green

11 Light Cyan

12 Light Red

13 Light Magenta

14 Light Yellow

15 Bright White

The RGB function allows much more flexibility than the QBColor function, which is a remnant of
the older QBasic programming language.

Visual Basic now contains a wide range of intrinsic color constants that can be used to assign
colors directly to the color properties of objects. These colors are members of the
System.Drawing.Color structure.

See Also

RGB Function

9 Light Blue

10 Light Green

11 Light Cyan

12 Light Red

13 Light Magenta

14 Light Yellow

15 Bright White

The RGB function allows much more flexibility than the QBColor function, which is a remnant of
the older QBasic programming language.

Visual Basic now contains a wide range of intrinsic color constants that can be used to assign
colors directly to the color properties of objects. These colors are members of the
System.Drawing.Color structure.

See Also

RGB Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue Class

Namespace

System.Collections (standard version)

System.Collections.Generic (generic version)

Creatable

Yes

Description

A Queue object implements a "first in, first out" (FIFO) data structure. Items are added in a line
(queue), with new items placed at the end of the line. Only the item at the beginning of the line can
be removed. Its real-world counterpart is a line for the ticket counter at a movie theater.

The queue includes features for adding items (Enqueue), removing items (Dequeue), and counting
the items in the queue (Count), among other features. Objects of any type may be added to the
queue.

The following table lists some of the more useful and interesting members of the Queue class. Those
marked with an asterisk (*) have separate entries in this chapter.

Member Description

Clear Method Removes all items from the queue

Clone Method Makes a distinct copy of the queue and its members

Contains Method * Indicates whether a specific object is in the queue

CopyTo Method * Copies queue elements to an existing array

Count Property Indicates the number of items currently in the queue

Dequeue Method * Removes and returns the beginning item in the queue

Enqueue Method * Adds a new item to the end of the queue

IsReadOnly Property Indicates whether the queue is read-only or not

Peek Method * Returns the beginning queue item without removing it

ToArray Method * Copies the queue to a new array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

This sample code shows the basic use of the queue.

 ' ----- Add some basic items to a queue.
 Dim nameQueue As New Queue
 nameQueue.Enqueue("Chopin")
 nameQueue.Enqueue("Mozart")
 nameQueue.Enqueue("Beethoven")

 ' ----- Examine and return the items.
 MsgBox(nameQueue.Peek()) ' Displays "Chopin"
 MsgBox(nameQueue.Dequeue()) ' Displays "Chopin"
 MsgBox(nameQueue.Dequeue()) ' Displays "Mozart"

 ' ----- Remove the remaining items.
 MsgBox(nameQueue.Count) ' Displays 1 (for Beethoven)
 nameQueue.Clear()

Version Differences

Visual Basic 2005 adds support for generics to several collection-style classes, including the Queue
class. The version of the Queue class that supports generics appears in the
System.Collections.Generic namespace. Generics are discussed in Chapter 10.

See Also

Collection Class, Hashtable Class, Stack Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Contains Method

Class

System.Collections.Queue (standard version)

System.Collections.Generic.Queue (generic version)

Syntax

 Dim result As Boolean = queueVariable.Contains(obj)

obj (required; any)

The object to search for in the queue

Description

The Contains method indicates whether a given object is somewhere in the queue (true) or not
(False).

Usage at a Glance

obj must correspond exactly to an item in the queue for the method to return TRue.

String comparison is case sensitive and is not affected by the setting of Option Compare.

Version Differences

Visual Basic 2005 adds support for generics to queues, as discussed in Chapter 10.

See Also

Queue Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.CopyTo Method

Class

System.Collections.Queue (standard version)

System.Collections.Generic.Queue (generic version)

Syntax

 queueVariable.CopyTo(array, index)

array (required; compatible array)

Array to which to copy the queue's objects

index (required; Integer)

The index of the first zero-based array element to receive a queue member

Description

The CopyTo method copies the queue elements into an existing array, starting at a specified array
index.

Usage at a Glance

The array can be of any data type that is compatible with the queue elements. An array of
Integer can accept Short queue elements but not String elements.

The array must be sized to accommodate the elements of the queue prior to calling the CopyTo
method.

Example

The sample code copies queue items to an array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim nameQueue As New Queue
 Dim nameArray() As Object

 ' ----- Build the queue.
 nameQueue.Enqueue("Chopin")
 nameQueue.Enqueue("Mozart")
 nameQueue.Enqueue("Beethoven")

 ' ----- Size the array and copy elements.
 ReDim nameArray(nameQueue.Count - 1)
 nameQueue.CopyTo(nameArray, 0)

Version Differences

Visual Basic 2005 adds support for generics to queues, as discussed in Chapter 10.

See Also

Queue Class, Queue.ToArray Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Dequeue Method

Class

System.Collections.Queue (standard version)

System.Collections.Generic.Queue (generic version)

Syntax

 Dim result As Object = queueVariable.Dequeue()

Description

The Dequeue method removes the beginning item from the queue and returns it as an Object.

Usage at a Glance

Dequeue generates an error if applied to an empty queue. Use the Count property to check for items
in the queue.

Version Differences

Visual Basic 2005 adds support for generics to queues, as discussed in Chapter 10.

See Also

Queue Class, Queue.Peek Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Enqueue Method

Class

System.Collections.Queue (standard version)

System.Collections.Generic.Queue (generic version)

Syntax

 queueVariable.Enqueue(obj)

obj (required; any)

The item to place in the queue

Description

The Enqueue method places an object at the end of the queue.

Version Differences

Visual Basic 2005 adds support for generics to queues, as discussed in Chapter 10.

See Also

Queue Class, Queue.Dequeue Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Peek Method

Class

System.Collections.Queue (standard version)

System.Collections.Generic.Queue (generic version)

Syntax

 Dim result As Object = queueVariable.Peek()

Description

The Peek method returns the beginning item in the queue as an Object, but it does not remove it
from the queue.

Usage at a Glance

The Peek method is similar to the Queue object's Dequeue method, except that it leaves the queue
intact.

Version Differences

Visual Basic 2005 adds support for generics to queues, as discussed in Chapter 10.

See Also

Queue Class, Queue.Dequeue Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.ToArray Method

Class

System.Collections.Queue (standard version)

System.Collections.Generic.Queue (generic version)

Syntax

 Dim result() As Object = queueVariable.ToArray()

Description

The ToArray method creates an array of type Object, copies the elements of the queue in order into
the array, and then returns the array. The array need not be created in advance.

Usage at a Glance

The beginning item in the queue becomes array element zero.

Version Differences

Visual Basic 2005 adds support for generics to queues, as discussed in Chapter 10.

See Also

Queue Class, Queue.CopyTo Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RaiseEvent Statement

Syntax

 RaiseEvent

 eventName[(argList)]

eventName (required)

The name of the event to raise

argList (optional)

A comma-delimited list of arguments, each of which has its accepted data type defined by the
original event definition

Description

The RaiseEvent statement causes a specific event to fire, passing any required arguments expected
by the event handler(s).

Usage at a Glance

eventName must already be defined within the same module as the RaiseEvent statement.

argList must correctly match the number and data type of parameters defined in the Event

statement that defined the target event, and it must be surrounded by parentheses.

To allow the client code to handle the event being fired, the client object variable must be
declared using the WithEvents keyword.

RaiseEvent is not asynchronous. When you call the RaiseEvent statement in your class code,
your class code will not continue executing until the event has been either handled by the client
or ignored (if the client is not handling the events raised by the class).

For more information about implementing your own custom events, see Chapter 8.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code uses an event to notify the calling code when something important occurs (in this
case, having some processing limit exceeded). The event handler can return a status code through
one of its parameters. The instance of the object with the event must be declared with the
WithEvents keyword.

 Public Class Transact
 ' ----- Define the event with two arguments.
 Public Event Status(ByVal Message As String, _
 ByRef Cancel As Boolean)

 Public Function UpdateRecords(ByRef level As Integer) As Boolean
 ' ----- Pretend to process real records.
 Dim cancelNow As Boolean = False

 If (level > 1000) Then
 RaiseEvent Status("Is value too high?", cancelNow)
 If cancelNow Then
 Console.WriteLine("Abandoning operation...")
 Exit Function
 Else
 level = 1000
 End If
 End If
 Console.WriteLine(level)
 End Function
 End Class

 Module GeneralCode
 ' ----- Declare the object that has an event.
 Public WithEvents workObject As New Transact

 Public Sub Main
 workObject.UpdateRecords(1100)
 End Sub

 Private Sub CheckForProblem(ByVal problemPrompt As String, _
 ByRef cancelNow As Boolean) Handles workObject.Status
 If (MsgBoxResult.Yes = MsgBox(problemPrompt, _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question)) Then _
 cancelNow = True
 End Sub
 End Module

Version Differences

Visual Basic 2005 includes a new Custom Event declaration that provides for additional management
of event-related activities.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Event Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Randomize Procedure

Class

Microsoft.VisualBasic.VBMath

Syntax

 Randomize([number])

number (optional; Double)

A number used to initialize the random-number generator

Description

The Randomize procedure initializes the random-number generator with an optional "seed."

Usage at a Glance

Randomize uses number as a new seed value to initialize the pseudorandom-number generator
used by the Rnd function. If you do not supply number, the value of the system timer will be used

as the new seed value.

Repeatedly passing the same number to Randomize does not cause Rnd to repeat the same
sequence of random numbers.

If you need to repeat a sequence of random numbers, you should call the Rnd function with a
negative number as an argument immediately prior to using Randomize with any numeric
argument.

See Also

Rnd Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rate Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = Rate(nPer, pmt, pv[, fv[, due[, guess]]])

nPer (required; Double)

The total number of payment periods.

pmt (required; Double)

The payment amount per period.

pv (required; Double)

The present value of a series of future payments.

fv (optional; Double)

The future value or cash balance after the final payment. If omitted, the default value is 0.

due (optional; DueDate enumeration)

A value indicating when payments are due, from the Microsoft.VisualBasic.DueDate
enumeration. DueDate.EndOfPeriod indicates that payments are due at the end of the payment
period; DueDate.BegOfPeriod indicates that payments are due at the beginning of the period. If
omitted, the default value is DueDate.EndOfPeriod.

guess (optional; Double)

An estimate of the value to be returned by the function. If omitted, its value defaults to 0.1
(that is, 10%).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The Rate function calculates the interest rate for an annuity that consists of fixed payments over a
known duration. An annuity is a series of fixed cash payments made over a period of time. It can be
either a loan or an investment.

Usage at a Glance

If pv and fv represent liabilities, their value is negative; if they represent assets, their value is

positive.

The function works using iteration. Starting with guess, the function cycles through the

calculation until the result is accurate to within 0.00001 percent. If a result can't be found after
20 tries, it fails. If it fails, a different value for guess can be used.

The value returned is the per-period rate. If you calculate the monthly rate, multiply by 12 to
obtain the annual percentage rate.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PV Function, NPV Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ReDim Statement

Syntax

 ReDim [Preserve] name(boundList)[, name(boundList)...]

Preserve (optional)

Preserves existing data within an array when changing the range of the last array dimension.

name (required)

The name of the variable.

boundList (required; numeric)

Comma-delimited list of ranges for each dimension in the array. Each comma-delimited
element has the following syntax:

 [0 To] upper

where upper specifies the new upper bound of the array dimension. The lower bound of each array
dimension is always zero. The number of array dimensions must be the same as the dimensions
declared in the original Dim statement for the variable.

Description

The ReDim statement is used within a procedure to resize and reallocate storage space for an array.
This statement sets new upper bounds in each dimension of the existing array. The original array
dimensions for an array variable were defined through the Dim statement or an equivalent statement.
Only the range of each dimension can change using the ReDim statement; the number of dimensions
cannot be changed. If the Preserve keyword is included, only the last array dimension's range can be
adjusted.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is no limit to the number of times you can redimension a dynamic array with the ReDim
statement.

The number of dimensions cannot be changed, nor can the data type of the array.

If you do not use the Preserve keyword, you can resize any or all of the dimensions.

You can redimension an array in a called procedure if you pass the array to the procedure by
reference. For example:

 Public Sub WorkProcedure()
 Dim someArray() As Integer = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
 Dim oneElement As Integer

 ResizeArray(someArray)

 ' ----- The following loop will output all 16 elements of
 ' the array (0 to 15), including those assigned in
 ' the ResizeArray procedure.
 For Each oneElement In someArray
 Console.WriteLine(oneElement)
 Next oneElement
 End Sub

 Public Sub ResizeArray(ByRef arrayToChange() As Integer)
 ReDim Preserve arrayToChange(15)
 arrayToChange(10) = 20
 arrayToChange(11) = 50
 arrayToChange(12) = 80
 arrayToChange(13) = 90
 arrayToChange(14) = 100
 arrayToChange(15) = 200
 End Sub

If the ReDim Preserve statement is used to reduce the number of array elements, the data in
the discarded elements is lost.

Redimensioning an array, particularly a large string array, can be expensive in terms of an
application's performance. Frequent redimensioning, as with:

 ReDim Preserve nameSet(UBound(nameSet) + 1)

can noticeably degrade your application. You may experience better results if you "pool" the
allocation of array elements, redimensioning a block (of say 50 or 100) at once, and not
redimensioning again until that block is fully used.

Version Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB 6 allowed the initial declaration of an array to use the ReDim statement instead of the Dim
statement. With .NET, VB requires separate Dim and ReDim statements for the initial and
subsequent allocation actions.

In VB 6, only arrays declared without an explicit number of elements, such as:

 Dim vntData() As Variant

were dynamic arrays and could be redimensioned using ReDim. In .NET, all arrays are dynamic.

VB 6 allowed both the upper and lower bound of each array dimension to change. In .NET, since
the lower bound of every dimension is always zero, it cannot be changed.

VB 6 permitted changes in the number of array dimensions with the ReDim statement, as long as
the Preserve keyword wasn't used. .NET does not support this type of change.

Visual Basic 2005 adds an optional lower bound "0 To" clause in each array dimension, for
clarity:

 ReDim someArray(0 To 5)

Although this appears to specify the lower bound, that lower bound must always be zero.

See Also

Dim Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rem Statement

Syntax

 Rem comment

 ' comment

comment (optional)

A textual comment to place within the code

Description

Use the Rem statement or an apostrophe (') to place remarks within the code. The comment may
appear on a line by itself or at the end of a logical statement line.

New in 2005. Visual Basic 2005 includes a new XML Comments feature that lets you decorate your
class members with special XML-formatted comments. Visual Studio recognizes and uses these
comments to enhance the development environment. To use XML comments, place the insertion
point on a blank line in your code, just above a method definition, then type three single-quote
marks. Immediately, even before pressing the Enter key, the following template appears.

''' <summary>
'''
''' </summary>
''' <param name="sender"></param>
''' <param name="e"></param>
''' <remarks></remarks>

Once these parts are filled in with the appropriate content, Visual Studio uses the information to
display more verbose IntelliSense details concerning the related method. It also exports the XML
content to a documentation file during the compile of the assembly.

Usage at a Glance

Text or code commented out using the Rem statement or the apostrophe (') is not compiled into

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the final program and, therefore, does not add to the size of the executable.

If you use the Rem statement on the same line as program code, a colon is required after the
program code and before the Rem statement. For example:

 Set activeDoc = New AppDoc: Rem Define the object
 Rem reference.

The colon is not necessary when using the apostrophe as the comment marker:

 Set activeDoc = New AppDoc ' Define the object reference.

Apostrophes held within quotation marks are not treated as comment markers:

 quotedString = "'This string contains single quotes!'"

The Visual Studio development environment contains block-comment and block-uncomment
buttons on the Text Editor toolbar, which allow you to comment or uncomment a selection of
many rows of code at once.

You cannot use line-continuation characters ("_") with comments.

Version Differences

VB 6 allowed comment lines to be connected with the line-continuation character ("_"). In .NET,
each comment line must include its own Rem keyword or apostrophe (').

XML comments are new with Visual Basic 2005.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RemoveHandler Statement

Syntax

 RemoveHandler nameOfEventSender, AddressOf nameOfEventHandler

nameOfEventSender (required)

The name of a class or object instance and its event, such as Button1.Click

nameOfEventHandler (required)

The name of a subroutine to remove from the set of active event handlers for
nameOfEventSender

Description

The RemoveHandler statement removes a previous binding of an event handler to an event.

Usage at a Glance

The AddHandler and RemoveHandler statements can be used to add and remove event notification
handlers dynamically at runtime. By contrast, the Handles keyword establishes an event notification
handler for the lifetime of an object.

Example

Chapter 8 includes examples of using event handlers.

Version Differences

Visual Basic 2005 includes a new Custom Event statement that impacts the use of the RemoveHandler
statement. See the Custom Event Statement entry in this chapter for additional information.

See Also

AddHandler Statement, Custom Event Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rename Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Rename(oldpath, newpath)

oldpath (required; String)

The name and optional path of the file or directory to be renamed

newpath (required; String)

The new name and optional path to give to the file

Description

The Rename procedure renames a file or directory.

Usage at a Glance

If oldpath does not exist or is currently in use, or if newpath already exists or contains an invalid

path, an error occurs.

If newpath and oldpath include different directory paths, the file or directory will be renamed and

moved to the new location. Directories cannot be moved from one drive to another using this
method.

Path information included in newpath and oldpath can include relative or absolute paths and can

use the drive-letter or UNC format.

Wildcard characters cannot be used.

Version Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Rename procedure is new to VB under .NET.

Visual Basic 2005 includes My.Computer.FileSystem.RenameFile and
My.Computer.FileSystem.RenameDirectory methods that provide similar functionality.

See Also

FileCopy Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Replace Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = Replace(expression, find, replacement _

 [, start[, count[, compare]]])

expression (required; String)

The complete string containing the substring to be replaced.

find (required; String)

The substring to be found by the function.

replacement (required; String)

The new substring that will replace occurrences of the find substring.

start (optional; Integer)

The character position in expression at which the search for find begins. Any characters before

this position are not even returned. If omitted, the search begins with the first character.

count (optional; Integer)

The number of instances of find to replace. If omitted, all instances are replaced.

compare (optional; CompareMethod constant)

The method used to compare find with expression; its value can be CompareMethod.Binary

(for case-sensitive comparison) or CompareMethod.Text (for case-insensitive comparison). If
omitted, CompareMethod.Binary is used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The Replace function replaces a given number of instances of a specified substring in another string.
The starting position for replacement and a maximum number of replacements can be specified.

Usage at a Glance

Setting the replacement argument to an empty string removes all occurrences of find from the

original string.

The String data type also has a public instance Replace method, which replaces all occurrences
of a character or string with another. Its syntax is:

 someString.Replace(oldValue, newValue)

where oldValue is a String or Char value containing the text to be replaced, and newValue is a

String or Char value containing the replacement text.

See Also

InStr Function, InStrRev Function, Mid Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Reset Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Reset()

Description

The Reset procedure closes all files that have been opened using the FileOpen procedure.

Usage at a Glance

The contents of any current file buffers are written to disk by the Reset procedure immediately
prior to Reset closing the respective files.

The Reset procedure is functionally equivalent to the FileClose procedure used with no
arguments.

The Reset procedure is generally used as a last resort, closing all files if your program is
terminating abnormally. Normally, you should write code to close each open file using the
FileClose procedure.

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

FileClose Procedure, FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Resume Statement

Syntax

 Resume [Next | label]

label (required)

A source code label that appears somewhere in the current procedure

Description

The Resume statement is used to continue program execution when an error-handling routine is
complete. Resume can take any of the forms shown in the following list:

Resume

Program execution continues with the source-code line that caused the error. That line may be
a call to another subroutine where the actual error occurred but that contained no error-
handling code of its own.

Resume Next

Program execution continues with the source-code line immediately following the one that
caused the error. The line that caused the error may be a call to another subroutine where the
actual error occurred but that contained no error-handling code of its own; that line is still
skipped, and the subroutine call is not repeated.

Resume label

Program execution continues at the specified label, which must appear in the same procedure
as the error handler.

Usage at a Glance

You can only use the Resume statement in an error-handling section of code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An error-handling section of code does not have to contain a Resume statement. That code may
decide to exit the current routine altogether. In that case, it issues an Exit Sub or similar
statement instead of a Resume statement.

Version Differences

VB 6 supported a "Resume 0" syntax that was identical to a plain "Resume" statement. The "Resume 0"
syntax has been removed in .NET.

See Also

Err Object, On Error Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Return Statement

Syntax

In a subroutine or Set property accessor:

 Return

In a function or property Get accessor:

 Return returnValue

returnValue (required; any)

The return value of the function

Description

The Return statement returns control to the calling procedure from a sub procedure, property, or
function. When used from functions and property Get accessors, it also returns an associated value to
the calling procedure.

Usage at a Glance

If the Return statement appears in a function or in the Get component of a property, it must
specify a return value.

Return causes program flow to leave the active procedure and return to the calling procedure;
any statements in the function or subroutine that follow Return are not executed.

Return is identical in operation to the Exit Sub statement; it prematurely transfers control from
a procedure to the calling routine. It is also similar to the Exit Function statement; while it
prematurely transfers control out of the function, it also allows a particular value to be returned
by the function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

 Public Sub AddAndDisplayNumbers()
 Dim returnedValue As Double = GetNumbers()
 MsgBox("The sum of values is " & returnedValue)
 End Sub

 Public Function GetNumbers() As Double
 ' ----- Prompts for up to 10 numbers and returns the sum.
 Dim counter As Integer = 1
 Dim userInput As String
 Dim sumOfNumbers As Double = 0#

 Do
 ' ----- Get the number from the user.
 userInput = InputBox("Enter number " & counter & ":", "Sum")
 If (userInput = "") Then Exit Do

 ' ----- Check for valid input.
 If IsNumeric(userInput) Then
 sumOfNumbers += CDbl(userInput)
 counter = counter + 1
 End If
 Loop While (counter <= 10)

 ' ----- All added and ready to return.
 Return sumOfNumbers
 End Function

Version Differences

In VB 6, the Return statement was used in a block of code accessed through a GoSub statement. The
GoSub statement is no longer supported in VB under .NET, and the Return statement now serves a
different purpose.

See Also

Exit Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RGB Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As Integer = RGB(red, green, blue)

red (required; Integer)

A number between 0 and 255, inclusive

green (required; Integer)

A number between 0 and 255, inclusive

blue (required; Integer)

A number between 0 and 255, inclusive

Description

The RGB function returns a system color code, with combined red, green, and blue components, that
can be assigned to object color properties.

Usage at a Glance

The RGB color value represents the relative intensity of the red, green, and blue components of
a pixel that produces a specific color on the display.

The RGB function assumes any argument greater than 255 to be 255.

The following table demonstrates how the individual color values combine to create certain
colors:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color Red Green Blue

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Red 255 0 0

White 255 255 255

The RGB value is calculated using the following formula:

 RGB = red + (green * 256) + (blue * 65536)

Visual Basic now contains a wide range of intrinsic color constants that can be used to assign
colors directly to the color properties of objects. These colors are members of the
System.Drawing.Color structure.

See Also

QBColor Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Right Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = Right(str, length)

str (required; String)

The string to be processed

length (required; Integer)

The number of characters to return from the rightmost portion of the string

Description

The Right function returns a string containing the rightmost length characters of str.

Usage at a Glance

If length is zero, a zero-length string is returned.

If length is greater than the length of str, str is returned.

If length is less than zero or is Nothing, an error is generated.

If str contains Nothing, Right returns Nothing.

Because of naming conflicts, you may have to preface this function with the name of the
Microsoft.VisualBasic namespace.

Use the Len function to determine the total length of str.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example uses the Right function to ensure that a directory path ends with a "\"
character.

 Public Function ProperDirectory(origPath As String) As String
 If (Right(origPath, 1) = "\") Then
 Return origPath
 Else
 Return origPath & "\"
 End If
 End Function

See Also

Left Function, Mid Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RmDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 RmDir

(path)

path (required; String)

The directory to be deleted

Description

The RmDir procedure removes an empty directory from a drive.

Usage at a Glance

path can be a relative or absolute path, either of a local or remote directory.

If the directory contains any files or subdirectories, an error occurs.

The directory is permanently deleted; it is not placed in the Recycle Bin. Visual Basic 2005
includes a new My.Computer.FileSystem.DeleteDirectory method that includes an option for the
Recycle Bin.

The RmDir procedure only deletes empty directories. Visual Basic 2005 includes a new
My.Computer.FileSystem.DeleteDirectory method that includes an option to delete all
subordinate items.

Use the Kill procedure to delete files.

Version Differences

Visual Basic 2005 includes a My.Computer.FileSystem.DeleteDirectory method that provides similar
functionality but with a few additional options.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Kill Procedure, MkDir Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rnd Function

Class

Microsoft.VisualBasic.VBMath

Syntax

 Dim result As Single = Rnd[(number)]

number (optional; Single)

The pseudorandom-number generator seed value. The following list describes how the Rnd
function interprets number.

Number Rnd generates

Negative The same number each time, using number as the seed number

Positive The next random number in the current sequence

Zero The most recently generated number

Not Supplied The next random number in the current sequence

Description

The Rnd function returns a random number between 0 and 1, inclusive.

Usage at a Glance

Before calling the Rnd function, you should use the Randomize procedure to initialize the random-
number generator.

The standard formula for producing random numbers in a given range is:

 result = Int((highest - lowest + 1) * Rnd() + lowest)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where lowest is the lowest required number in the range and highest is the highest.

Example

The following example returns an array of 100 random numbers.

 Public Function GenerateRandomNumbers() As Single()
 Dim results As Single(0 To 99)
 Dim counter As Integer

 Randomize()
 For counter = 0 To 99
 results(counter) = Rnd()
 Next counter
 Return results
 End Function

See Also

Randomize Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Round Function

Class

System.Math

Syntax

 Dim result As type = Math.Round(value[, mode])

or

 Dim result As type = Math.Round(value, digits[, mode])

type (required)

One of the following data types: Decimal or Double.

value (required; any expression of type type)

A number to be rounded.

mode (optional; MidpointRounding enumeration)

New in 2005. Indicates how to round numbers found at the halfway point between two
rounding options, from the System.MidpointRounding enumeration. The AwayFromZero value
rounds in the opposite direction of zero, while ToEven rounds toward the nearest even number
(in the least significant decimal place). If not supplied, ToEven is used by default.

digits (optional; Integer)

The number of places to include after the decimal point and at which to perform the rounding.

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Round function rounds a given number to a specified number of decimal places.

Usage at a Glance

digits can be any whole number between 0 and 28.

This is a shared member of the System.Math class, so it can be used without an instance.

If value contains fewer decimal places than digits, Round does not pad the return value with

trailing zeros.

Version Differences

The named parameters of the Round function differ in VB 6 and in the .NET Framework. In VB
6, the named arguments are number and numDigitsAfterDecimal. In .NET, they are value and
digits.

The mode parameter was added in the 2005 release of the .NET Framework.

See Also

Fix Function, Int Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RSet Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = RSet(source, length)

source (required; String)

The string to be right aligned

length (required; Integer)

The length of the returned string

Description

The RSet function right aligns a string.

Usage at a Glance

If the length of source is greater than or equal to length, the function returns only the leftmost
length characters.

If the length of source is less than length, spaces are added to the left of the returned string so
that its length becomes length.

Version Differences

In VB 6, RSet was implemented as a kind of assignment statement. Because it is implemented
as a function in .NET, its syntax is completely different.

In VB 6, RSet could be used only with fixed-length strings. In .NET, RSet works with all string
data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

LSet Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RTrim Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = RTrim(str)

str (required; String)

A valid string expression

Description

The RTrim function removes any trailing spaces from str.

Usage at a Glance

If string contains Nothing, RTrim returns Nothing.

See Also

LTrim Function, Trim Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SaveFileDialog Class

Namespace

Windows.Forms

Creatable

Yes

Description

The SaveFileDialog class represents a common dialog box for selecting or saving a file. The
SaveFileDialog class has properties that let you configure, display, and retrieve the results from this
dialog box, from which the user selects a single file. The dialog does not create or update the file; it
only indicates the file to be modified.

The following list discusses the more interesting members of the SaveFileDialog class.

AddExtension Property

Indicates whether the dialog box should automatically add the default file extension to the
user-supplied file name. The default value is true.

DefaultExt Property

Defines the default file extension. The string should consist of the file extension only, without a
leading period.

FileName Property

Returns the fully qualified file namethe file name with its complete path and extension. If no file
is selected, the property returns an empty string.

Filter Property

Used to configure a filter string that indicates the types of files (by extension) to display in the
dialog box. These types appear in the "Save as type" drop-down control on the dialog box. A
single item consists of a file description, a vertical bar, and the file extension (usually "*." plus
the file extension). If there are multiple extensions in a single item, they are separated by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

semicolons. If there are multiple items, they are separated by vertical bars. For example, the
following code fragment assigns a filter string for text files and VB source code files:

 Dim savePrompt As New SaveFileDialog
 savePrompt.Filter = _
 "Text files (*.txt; *.vb)|*.txt;*.vb|" & _
 "Visual Basic files (*.vb)|*.vb|" & _
 "All files (*.*)|*.*"

FilterIndex Property

Indicates the selected 1-based position in the Filter property's item list. The default is 1. If the
user selects a different filter, this property is updated to reflect that change.

InitialDirectory Property

Indicates the initial directory to use when first displaying the dialog.

OverwritePrompt Property

Indicates whether a confirmation dialog box should appear automatically when the user selects
an existing file. The default value is true.

RestoreDirectory Property

Indicates whether the current working (default) directory is restored before the dialog box
closes. The default value is False.

ShowDialog Method

Displays the dialog box to the user. Once the user has dismissed the dialog box, the FileName
property can be used to get the user's selection.

Title Property

Sets the title of the dialog box.

Example

The following code prompts the user for a filename to save.

 Dim selectFile As New SaveFileDialog
 selectFile.OverwritePrompt = True
 If (selectFile.ShowDialog() = DialogResult.OK) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine(selectFile.FileName)
 End If

Version Differences

The public interfaces used for this SaveFileDialog class and the related VB 6 CommonDialog control
are quite different.

See Also

OpenFileDialog Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SaveSetting Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

 SaveSetting(appname, section, key, setting)

appname (required; String)

The name of the application branch to be updated.

section (required; String)

The name of the application's subkey to be updated. This can be a single key or a relative
registry path, with path components separated by backslashes.

key (required; String)

The name of the value entry to update.

setting (required; String)

The value to assign to the specified key value entry.

Description

The SaveSetting procedure creates or updates a single value in a specified section of your
application's entry in the HKEY_CURRENT_USER\Software\VB and VBA ProgramSettings\ branch of the
registry.

Usage at a Glance

The function writes a value within the KEY_CURRENT_USER\Software\VB and VBA ProgramSettings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

section of the registry.

If the appname, section, or key enTRies are not found in the registry, they are automatically

created.

section is a relative path (similar to that used to describe the directories on a hard drive) used

to navigate from the application key to the subkey to be updated. For example, to update the
value entry named TestKey in the registry key HKEY_CURRENT_USER\Software\VB and VBA
ProgramSettings\RegTester\BranchOne\BranchTwo, you would use:

 SaveSetting("RegTester", "BranchOne\BranchTwo", "TestKey", "test")

Although the registry supports multiple data types, the GetSetting function only supports string
values. All settings are written to the registry as REG_SZ entries.

If the setting cannot be saved, a runtime error occurs.

Since SaveSetting saves data on a per-user basis, it should not be used to save configuration
settings that apply to all users, such as hardware configuration values.

You cannot use SaveSetting to update entries from registry keys that are not subkeys of
HKEY_CURRENT_USER\Software\VB and VBA ProgramSettings.

SaveSetting does not allow you to write to the default value of a registry key. Attempting to do
so produces a runtime error. This isn't a serious limitation, since the other Visual Basic
"Settings" functions do not allow you to retrieve the default value of a registry key.

The .NET Framework includes registry-related features that provide more flexibility than the VB
"Settings" functions. These features are found in the Registry and RegistryKey classes of the
Microsoft.Win32 namespace.

Version Differences

Visual Basic 2005 includes several new features that let you manage the settings used by an
application. Although they are not compatible with the older VB "Settings" functions, they provide a
richer set of features. These features are located in the My.Settings object. The
My.Computer.Registry object also provides access to convenient registry-related features.

See Also

DeleteSetting Procedure, GetAllSettings Function, GetSetting Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptEngine Property

Class

Microsoft.VisualBasic.Globals

Syntax

 Dim result As String = Globals.ScriptEngine

Description

The ScriptEngine property returns the name of the script engine or programming language currently
in use. In Visual Basic, this property always returns "VB."

Usage at a Glance

The ScriptEngine is a read-only property.

A number of scripting engines support a ScriptEngine property, which allows you to determine
the programming language used for a particular block of code. The following table lists some
commonly supported values:

Language Property value

Microsoft Jscript JScript

VB for .NET VB

VBScript VBScript

Version Differences

The ScriptEngine property is new to .NET and is not supported in VB 6.

See Also

ScriptEngineBuildVersion Property, ScriptEngineMajorVersion Property, ScriptEngineMinorVersion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptEngineBuildVersion Property

Class

Microsoft.VisualBasic.Globals

Syntax

 Dim result As Integer = Globals.ScriptEngineBuildVersion

Description

The ScriptEngineBuildVersion property returns the build number of the Visual Basic language
engine.

Version Differences

The ScriptEngineBuildVersion property is new to .NET and is not supported in VB 6.

See Also

ScriptEngine Property, ScriptEngineMinorVersion Property, ScriptEngineMajorVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptEngineMajorVersion Property

Class

Microsoft.VisualBasic.Globals

Syntax

 Dim result As Integer = Globals.ScriptEngineMajorVersion

Description

The ScriptEngineMajorVersion property returns the major version number of the Visual Basic
language engine.

Usage at a Glance

This property returns 7 in the 2002 and 2003 releases of Visual Basic; the 2005 release of VB returns
8.

Version Differences

The ScriptEngineMajorVersion property is new to .NET and is not supported in VB 6.

See Also

ScriptEngine Property, ScriptEngineBuildVersion Property, ScriptEngineMinorVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptEngineMinorVersion Property

Class

Microsoft.VisualBasic.Globals

Syntax

 Dim result As Integer = Globals.ScriptEngineMinorVersion

Description

The ScriptEngineMinorVersion property returns the minor version number of the Visual Basic
language engine.

Usage at a Glance

This property returns 0 in the 2002 release of Visual Basic, 1 in the 2003 release, and 0 in the 2005
release.

Version Differences

The ScriptEngineMinorVersion property is new to .NET and is not supported in VB 6.

See Also

ScriptEngine Property, ScriptEngineBuildVersion Property, ScriptEngineMajorVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Second Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Integer = Second(timeValue)

timeValue (required; Date)

The source date from which to extract the second

Description

The Second function returns a value from 0 to 59, representing the second of the supplied date or
time.

Usage at a Glance

With Option Strict set to On, the source value must first be converted to a Date data type. You can
use the CDate function for this purpose. The IsDate function can also be used to confirm that the
source expression is a valid date.

See Also

DatePart Function, Hour Function, Minute Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Seek Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As Long = Seek(fileNumber)

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

Description

The Seek function returns the current 1-based position within an open file. This position represents
the next place that data will be either written or read. For files open in Random mode, this is the next
record number; for files open in other modes, this is the byte position.

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

Loc Function, Seek Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Seek Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Seek(fileNumber, position)

filenumber (required; Integer)

Any valid file number of a file opened with FileOpen

position (required; Long)

The new 1-based position within the file, to be used for the next read or write operation

Description

The Seek procedure moves the current position within an open file such that the next data read or
written will be at the 1-based location position. For files open in Random mode, this is the next record

number; for files open in other modes, this is the byte position.

Usage at a Glance

The use of a record number in any subsequent FileGet or FilePut procedure overrides the
position set by the Seek procedure.

position can be set to a value that is well beyond the end of the file. The file size will be

automatically increased as needed during the next write operation.

A runtime error occurs if position is 0 or negative.

Unwritten records in a data file are generally padded with spaces. For example, if you open a
brand new data file, perform a seek operation to record number 10, and then write a new
record, the preceding nine records will be padded as needed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

Seek Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Select Case Statement

Syntax

 Select Case testExpression

 [Case expressionList-n

 [statements-n]] ...
 [Case Else

 [elseStatements]]
 End Select

testExpression (required)

Any expression whose value determines which block of code within the larger Select Case
statement is executed. The expression must evaluate to one of the core Visual Basic data types
or Object.

expressionList-n (required)

Comma-delimited list of expressions to compare with testExpression. Each comma-delimited

part uses one syntax from the following table:

Expression list syntax Description

expression
testExpression is compared with expression. If they match,
the related statements are executed.

expression1 To expression2
testExpression is compared with an inclusive range from
expression1 to expression2. If they match, the related
statements are executed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Expression list syntax Description

Is op expression

testExpression is compared with expression by using a

specific comparison operator. If they match, the related
statements are executed. op may be one of the following

comparison operators: =, <>, <, <=, >, or >=. If "Is =" is used,
it can be replaced with just "Is."

statements-n (optional)

Program statements to execute if a match is found between testExpression and the related
expressionList entry.

elseStatements (optional)

Program statements to execute if none of the other expressionList sections resulted in a

match.

Description

The Select Case statement allows for conditional execution of code, typically out of three or more
available code blocks, based on some condition. Use the Select Case statement as an alternative to
complex If...Then...Else statements.

Usage at a Glance

Any number of Case clauses can be included in the Select Case statement.

If a match between testExpression and any part of a particular expressionList is found, the
program statements related to the matched expressionList will be executed. When program

execution encounters the next Case clause or the End Select clause, execution continues with
the statement immediately following the End Select clause.

If multiple Case clauses are true, only the statements belonging to the first true Case clause are
executed.

If used, the Case Else clause must be the last Case clause. Program execution will only
encounter the Case Else clauseand thereby execute the elseStatements sectionif all other
expressionList comparisons fail.

Use the To keyword to specify a range of values. The lower value must precede the To clause,
and the higher value must follow it. Failure to do this does not generate a syntax error. Instead,
it causes the comparison of the expression with testExpression to always fail, so that the

related section of code is never executed.

Select Case statements can be nested.

The Case Else clause is optional, but it should be included if you must take some action when all

Is op expression

testExpression is compared with expression by using a

specific comparison operator. If they match, the related
statements are executed. op may be one of the following

comparison operators: =, <>, <, <=, >, or >=. If "Is =" is used,
it can be replaced with just "Is."

statements-n (optional)

Program statements to execute if a match is found between testExpression and the related
expressionList entry.

elseStatements (optional)

Program statements to execute if none of the other expressionList sections resulted in a

match.

Description

The Select Case statement allows for conditional execution of code, typically out of three or more
available code blocks, based on some condition. Use the Select Case statement as an alternative to
complex If...Then...Else statements.

Usage at a Glance

Any number of Case clauses can be included in the Select Case statement.

If a match between testExpression and any part of a particular expressionList is found, the
program statements related to the matched expressionList will be executed. When program

execution encounters the next Case clause or the End Select clause, execution continues with
the statement immediately following the End Select clause.

If multiple Case clauses are true, only the statements belonging to the first true Case clause are
executed.

If used, the Case Else clause must be the last Case clause. Program execution will only
encounter the Case Else clauseand thereby execute the elseStatements sectionif all other
expressionList comparisons fail.

Use the To keyword to specify a range of values. The lower value must precede the To clause,
and the higher value must follow it. Failure to do this does not generate a syntax error. Instead,
it causes the comparison of the expression with testExpression to always fail, so that the

related section of code is never executed.

Select Case statements can be nested.

The Case Else clause is optional, but it should be included if you must take some action when all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other Case clauses fail.

The Is keyword used in the Select Case statement is not the same as the Is comparison
operator.

Multiple conditions in a single Case statement are evaluated separately, not together; they are
connected with a logical Or, not a logical And. For example, the statement:

 Case Is > 20, Is < 40

will evaluate to TRue whenever the value of testExpression is greater than 20. In this case, the
second comparison is never evaluated; it is evaluated only when testExpression is under 20. A
testExpression value of 60 evaluates to true in this case.

Example

The following example uses Select Case in response to a MsgBox function:

 Select Case MsgBox("Backup file before changing?", vbYesNoCancel)
 Case vbYes
 ' ----- Do something.
 Case vbNo
 ' ----- Do something.
 Case vbCancel
 ' ----- Do something.
 End Select

See Also

If...Then...Else Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Send, SendWait Methods

Class

System.Windows.Forms.SendKeys

Syntax

 SendKeys.Send(keys)

or:

 SendKeys.SendWait(keys)

keys (required; String)

String that describes the keystrokes to send to the active window

Description

The Send and SendWait methods simulate the typing of one or more keys in the active window. With
SendKeys.Send, further execution continues without waiting for the keys to be processed. With
SendKeys.SendWait, further execution is suspended until the keystrokes have been processed.

To send plain text, simply include that text in the keys argument. For instance, using "abc" for the
keys argument will send the characters a, b, and c, one at a time, to the active window. To have the

Shift key held down with a key, precede that key with a plus sign (+). To use the Control key with
another key, precede that key with the caret (^). To use the Alt key with another key, precede that
key with the percent sign (%). To use one of these special keys with multiple other keys, enclose
those other keys in parentheses. For instance, "+(abc)" sends a, b, and c with the Shift key held
down.

You can repeat a key multiple times by using the syntax "{key count}" (that is, the character, then a

space, and then a numeric value, all within braces). For example, "{a 25}" will send the "a" key 25
times.

These methods support several special keys, such as the Left Arrow key. Also, some standard keys

http://lib.ommolketab.ir
http://lib.ommolketab.ir

must be enclosed in a set of braces to be recognized as standard keys. The following table lists all of
these special keys and special-use standard keys.

To include Use this text

Backspace {BACKSPACE} or {BS} or {BKSP}

Break {BREAK}

Caps Lock {CAPSLOCK}

Caret (^) {^}

Clear {CLEAR}

Close Brace (}) {}}

Close Bracket (]) {]}

Close Parenthesis (")") {)}

Delete {DELETE} or {DEL}

Down Arrow {DOWN}

End {END}

Enter ~

Escape {ESCAPE} or {ESC}

F1 through F16 {F1} tHRough {F16}

Help {HELP}

Home {HOME}

Insert {INSERT} or {INS}

Keypad Add {ADD}

Keypad Divide {DIVIDE}

Keypad Enter {ENTER}

Keypad Multiply {MULTIPLY}

Keypad Subtract {SUBTRACT}

Left Arrow {LEFT}

Num Lock {NUMLOCK}

Open Brace ({) {{}

Open Bracket ([) {[}

Open Parenthesis ("(") {(}

Page Down {PGDN}

Page Up {PGUP}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To include Use this text

Percent Sign (%) {%}

Plus (+) {+}

Print Screen {PRTSC}

Return {RETURN}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Tilde (~) {~}

Up Arrow {UP}

Usage at a Glance

Send and SendWait will only work directly with applications designed to run in Microsoft
Windows.

You may find that some keys or key combinations cannot be sent successfully. For example,
you cannot send the Print Screen key to any application. Also, you cannot send the Alt+Tab key
combination ("%{Tab}").

Because of the event-driven nature of Windows, and because the user can change to a different
active window at any time, there is no guarantee that the keys you intend to send to a window
will ever arrive at that window.

Example

The following program uses the Notepad application to add some text to the clipboard.

 Dim notepadID As Integer

 ' ----- Start and activate the Notepad.
 notepadID = Shell("notepad.exe", AppWinStyle.NormalFocus)
 AppActivate(notepadID)
 Windows.Forms.Application.DoEvents()

 ' ----- Add some text.
 SendKeys.SendWait("+visual +basic~")
 SendKeys.SendWait("{- 12}~")
 SendKeys.SendWait("+it's fun{!}")

 ' ----- Select all text with Control+A, then copy with Control+C.
 SendKeys.SendWait("^(a)")

Percent Sign (%) {%}

Plus (+) {+}

Print Screen {PRTSC}

Return {RETURN}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Tilde (~) {~}

Up Arrow {UP}

Usage at a Glance

Send and SendWait will only work directly with applications designed to run in Microsoft
Windows.

You may find that some keys or key combinations cannot be sent successfully. For example,
you cannot send the Print Screen key to any application. Also, you cannot send the Alt+Tab key
combination ("%{Tab}").

Because of the event-driven nature of Windows, and because the user can change to a different
active window at any time, there is no guarantee that the keys you intend to send to a window
will ever arrive at that window.

Example

The following program uses the Notepad application to add some text to the clipboard.

 Dim notepadID As Integer

 ' ----- Start and activate the Notepad.
 notepadID = Shell("notepad.exe", AppWinStyle.NormalFocus)
 AppActivate(notepadID)
 Windows.Forms.Application.DoEvents()

 ' ----- Add some text.
 SendKeys.SendWait("+visual +basic~")
 SendKeys.SendWait("{- 12}~")
 SendKeys.SendWait("+it's fun{!}")

 ' ----- Select all text with Control+A, then copy with Control+C.
 SendKeys.SendWait("^(a)")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SendKeys.SendWait("^(c)")

 ' ----- Quit Notepad.
 SendKeys.SendWait("%{F4}")
 SendKeys.SendWait("n")

 ' ----- See if we copied the text correctly.
 MsgBox(My.Computer.Clipboard.GetText())

Version Differences

Visual Basic 2005 includes the My.Computer.Keyboard.SendKeys method, which provides equivalent
functionality.

See Also

AppActivate Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetAttr Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 SetAttr(pathname, attributes)

pathname (required; String)

The file or directory whose attribute details are to be set.

attributes (required; FileAttribute enumeration)

One or more of the following Microsoft.VisualBasic.FileAttribute enumeration values, added or
Or'd together. Each member also has a related Visual Basic intrinsic constant that can be used
instead.

Enumeration Constant Description

Normal vbNormal Normal file (the absence of other attributes)

ReadOnly vbReadOnly Read-only file

Hidden vbHidden Hidden file

System vbSystem System file

Archive vbArchive File has changed since the last backup

Description

The SetAttr procedure modifies the attributes of a file or directory.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pathname can be either an absolute or relative path to a file. It can exist on the local or remote

drive and can use the drive-letter or UNC path format.

An error occurs if pathname is invalid or cannot be found.

Attempting to set the attributes of an open file generates a runtime error.

Setting file attributes clears any attributes that are not included in the attributes argument.

For example, if somefile.txt is a read-only file, the statement:

 SetAttr("somefile.txt", vbArchive)

sets the archive attribute but clears the read-only attribute. To retain a file's attributes while
setting new ones, first retrieve its attributes using the GetAttr function.

The FileAttribute.Directory enumeration member cannot be applied to a file or directory; it can
only be set by the operating system.

Version Differences

Visual Basic 2005 includes My.Computer.FileSystem.GetDirectoryInfo and
My.Computer.FileSystem.GetFileInfo methods that provide access to related functionality.

See Also

GetAttr Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shadows Keyword

Description

The Shadows keyword identifies a type member in a derived class that masks another member of the
same name, as found in the base class.

When a member of a derived class has the same name as a member of the same type in the base
class, and the keywords Overridable and Overrides are used appropriately, then the derived class
member overrides the base class member. Any reference to the member using a derived class object
refers to the implementation in the derived class.

Shadowing works in a similar way but allows any member type to "override" any other member type.
For example, a method can "override" a property, or a constant can "override" a delegate. For a
complete discussion of shadowing, see the "Shadowing and Overloading Members" section of Chapter
3.

Version Differences

The Shadows keyword is new to VB under .NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shared Keyword

Description

The Shared keyword indicates that a type member is a shared member instead of an instance
member. Shared members are available without creating an instance of the type; instance members
can only be used through an instance. Consider the following simple class:

 Friend Class ClassForSharing
 Public Shared sharedValue As Integer
 Public unsharedValue As Integer
 End Class

The following code block shows how to access each member.

 Dim realInstance As New ClassForSharing
 ClassForSharing.sharedValue = 5
 realInstance.unsharedValue = 10

Shared members are indirectly shared among all instances of the class, even though they exist apart
from all instances.

The Shared keyword can be used with the following statements:

Dim Statement
Event Statement
Function Statement
Operator Statement
Property Statement
Sub Statement

By default, all of these members are instance members unless qualified with the Shared keyword.

See Also

For the statements listed above, see the related entries elsewhere in this chapter for usage
information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shell Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As Integer = Shell(pathName[, style[, wait[, timeout]]])

pathName (required; String)

The name and path of the program to start.

style (optional; AppWinStyle enumeration)

The style of the new application's window and whether it receives the focus automatically when
starting up. One of the following Microsoft.VisualBasic.AppWinStyle enumeration values:

Value Description

Hide The new application window is hidden and does not receive the focus.

NomalFocus
The new application window is displayed normally and immediately
receives the focus.

MinimizedFocus The new application window is minimized but does receive the focus.

MaximizedFocus
The new application window is maximized and immediately receives the
focus.

MinimizedNoFocus The new application window is minimized and does not receive the focus.

MaximizedNoFocus The new application window is maximized but does not receive the focus.

If omitted, the default value is MinimizedFocus.

wait (optional; Boolean)

Indicates whether to wait for the pathName application to finish execution before continuing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

execution of subsequent code (true) or not (False). If omitted, the default value is False.

timeout (optional; Integer)

If wait is true, this argument indicates the number of milliseconds to wait for the pathName

application to terminate before the Shell function times out. If omitted, the default value is -1,
which indicates that the Shell function should never time out.

Description

The Shell function launches another application and, if successful, returns that application's task or
process ID.

Usage at a Glance

pathName can be a relative or absolute path on a local or remote drive.

pathName can include, after the application name, any command-line arguments and switches

required by the application. For example:

 Call Shell("notepad.exe c:\data.txt", AppWinStyle.NormalFocus)

launches Notepad, which then loads the file c:\data.txt.

If the application named in pathName executes successfully, Shell returns the Windows task ID

of the program. (The task ID is also known as the process ID (PID), a unique 32-bit value used
to identify each running process.) This value can be used as an argument to the AppActivate
procedure. The process ID is also required by a number of Win32 API functions.

If the application named in pathName fails to execute, a runtime error occurs.

The file launched by Shell must be executable. That is, it must be a file with an extension that
is .EXE or .COM (an executable file), .BAT (a batch file), or .PIF (a DOS shortcut file). You
cannot use Shell to launch web pages or other URL-based resources. It also cannot be used to
launch applications by association. Using "MyDocument.txt" for pathName will not start Notepad.

Wait determines whether the Shell function operates synchronously (true) or asynchronously

(False). The default is False; control returns immediately to the application, and the code
continues executing as soon as the process ID is known. If TRue, the Shell function returns only
when the pathName application is closed or, if timeout is not -1, when the timeout period has

expired.

If the pathName application exits before the Shell function returns, the return value of Shell will

be 0.

Setting wait to true and leaving timeout at its default value of -1 creates the possibility that
control will never return from the pathName application to the initiating application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The wait and timeout arguments are new to .NET. They are not supported by VB 6.

See Also

AppActivate Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sign Function

Class

System.Math

Syntax

 Dim result As Integer = Sign(value)

value (required; any signed numeric type)

A numeric expression of one of the following data types: Decimal, Double, Integer, Long, SByte,
Single, or Short

Description

The Sign function determines the sign of a number. It returns 1 for negative numbers, 1 for positive
numbers, or 0 for zero.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Use the CBool function instead of the Sign function to evaluate a logic truth value.

Version Differences

The name of this function has changed since VB 6. In VB 6, its name was Sgn, and it was an intrinsic
VB function. In .NET, it is named Sign, and it is a member of the System.Math class.

See Also

Abs Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sin Function

Class

System.Math

Syntax

 Dim result As Double = Sin

(a)

a (required; Double)

An angle expressed in radians

Description

The Sin function returns the sine of an angle, the ratio of two sides of a right triangle, in the range -1
to 1.

Usage at a Glance

The ratio is determined by dividing the length of the side opposite the angle by the length of the
hypotenuse.

This is a shared member of the System.Math class, so it can be used without an instance.

To convert degrees to radians, multiply degrees by /180.

To convert radians to degrees, multiply radians by 180/ .

Version Differences

In VB 6, Sin is an intrinsic VB function. In the .NET platform, it is a member of the System.Math class
and not directly part of the VB language.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cos Function, Tan Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sinh Function

Class

System.Math

Syntax

 Dim result As Double = Math.Sinh(value)

value (required; Double)

An angle expressed in radians

Description

The Sinh function returns the hyperbolic sine of an angle.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The Sinh function did not exist in VB 6.

See Also

Cosh Function, Tanh Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SLN Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = SLN(cost, salvage, life)

cost (required; Double)

The initial cost of the asset

salvage (required; Double)

The value of the asset at the end of its useful life

life (required; Double)

The length of the useful life of the asset

Description

The SLN function computes the straight-line depreciation of an asset for a single period. Each period
receives an equal depreciation share.

Usage at a Glance

The function uses a very simple formula to calculate depreciation:

 depreciation = (cost - salvage) / life

All arguments must be positive numeric values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

DDB Function, SYD Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Space Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = Space(number)

number (required; Integer)

The number of spaces required

Description

The Space function creates a string containing number spaces.

Usage at a Glance

While number can be zero (in which case, the function returns the empty string), a runtime error
occurs if number is negative.

One of the custom constructors for the String data type can also be used to create a string of
spaces. The following statement creates a new string with 10 spaces.

 Dim blankString As New String(" "c, 10)

See Also

SPC Function, StrDup Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SPC Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As SPCInfo = SPC(count)

count (required; Short)

The number of spaces to insert before outputting the next data value

Description

The SPC function inserts spaces between expressions in a Print or PrintLine procedure.

Usage at a Glance

SPC is generally only useful with the Print or PrintLine procedures.

If the SPC function moves the current position past the end of the output width, count is first
reduced using the formula count Mod width. In some cases, this may still bring the print position

to the next line.

Use the TAB function to format data in columns, starting at specific positions on each line.

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

Print, PrintLine Procedures, TAB Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Split Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result() As String = Split(expression[, delimiter[, _

 limit[, compare]]])

expression (required; String)

A string to be broken up into multiple strings.

delimiter (optional; String)

The character used to delimit the substrings in expression. If omitted, the space character is

used.

limit (optional; Integer)

The maximum number of strings to return. If omitted, -1 is used, which indicates that no limit
is imposed.

compare (optional; CompareMethod enumeration)

Indicates the text comparison method. One of the following
Microsoft.VisualBasic.CompareMethod enumeration values:

Value Description

Binary Performs a binary (case-sensitive) comparison

Text Performs a text (case-insensitive) comparison

If omitted, Binary is used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The Split function splits a string into multiple smaller strings using delimiter to determine where to

divide the string, and it returns the results as an array of strings.

Usage at a Glance

If expression is a zero-length string, Split returns an empty array.

If delimiter is not found in expression, Split returns the entire string in element 0 of the

returned array.

Once one less than limit has been reached, the remainder of the string is placed, unprocessed,

into the final element of the returned array.

Strings are written to the returned array in the order in which they appear in expression.

The setting of compare impacts how delimiter is compared with the text of expression.

See Also

Join Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sqrt Function

Class

System.Math

Syntax

 Dim result As Double = Sqrt(d)

d (required; Double)

Any numeric expression greater than or equal to 0

Description

The Sqrt function calculates the square root of a given number, d.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The name of this function has changed since VB 6. In VB 6, its name was Sqr, and it was an intrinsic
VB function. In .NET, it is named Sqrt, and it is a member of the System.Math class.

See Also

Pow Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack Class

Namespace

System.Collections (standard version)

System.Collections.Generic (generic version)

Creatable

Yes

Description

The Stack object implements a "last in, first out" (LIFO) data structure. Items are added to the top of
the stack, and new items are placed "on top" of the previously added items. Only the current topmost
item can be removed. A real-life parallel would be a stack of books or a stack of pancakes.

The stack includes features for adding items (Push), removing items (Pop), and counting the items in
the stack (Count), among other features. Objects of any type may be added to the stack.

The following table lists some of the more useful and interesting members of the Stack class. Those
marked with an asterisk (*) have separate entries in this chapter.

Member Description

Clear Method Removes all items from the stack

Clone Method Makes a distinct copy of the stack and its members

Contains Method * Indicates whether a specific object is on the stack

CopyTo Method * Copies stack elements to an existing array

Count Property Indicates the number of items currently on the stack

IsReadOnly Property Indicates whether the stack is read-only or not

Peek Method * Returns the top stack item without removing it

Pop Method * Removes and returns the top item on the stack

Push Method * Adds a new item to the top of the stack

ToArray Method* Copies the stack to a new array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

This sample code shows the basic use of the stack.

 ' ----- Add some basic items to a stack.
 Dim nameStack As New Stack
 nameStack.Push("Chopin")
 nameStack.Push("Mozart")
 nameStack.Push("Beethoven")

 ' ----- Examine and return the items.
 MsgBox(nameStack.Peek()) ' Displays "Beethoven"
 MsgBox(nameStack.Pop()) ' Displays "Beethoven"
 MsgBox(nameStack.Pop()) ' Displays "Mozart"

 ' ----- Remove the remaining items.
 MsgBox(nameStack.Count) ' Displays 1 (for Chopin)
 nameStack.Clear()

Version Differences

Visual Basic 2005 adds support for generics to several collection-style classes, including the Stack
class. The version of the Stack class that supports generics appears in the
System.Collections.Generic namespace. Generics are discussed in Chapter 10.

See Also

Collection Class, Hashtable Class, Queue Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Contains Method

Class

System.Collections.Stack (standard version)

System.Collections.Generic.Stack (generic version)

Syntax

 Dim result As Boolean = stackVariable.Contains(obj)

obj (required; any)

The object to search for on the stack

Description

The Contains method indicates whether a given object is somewhere on the stack (true) or not
(False).

Usage at a Glance

obj must correspond exactly to an item on the stack for the method to return TRue.

String comparison is case-sensitive and is not affected by the setting of the OptionCompare
statement.

Version Differences

Visual Basic 2005 adds support for generics to stacks, as discussed in Chapter 10.

See Also

Stack Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.CopyTo Method

Class

System.Collections.Stack (standard version)

System.Collections.Generic.Stack (generic version)

Syntax

 stackVariable.CopyTo(array, index)

array (required; compatible array)

Array to which to copy the stack's objects

index (required; Integer)

The index of the first zero-based array element to receive a stack member

Description

The CopyTo method copies the stack elements into an existing array, starting at a specified array
index.

Usage at a Glance

The array can be of any data type that is compatible with the stack elements. An array of
Integer can accept Short stack elements but not String elements.

The array must be sized to accommodate the elements of the stack prior to calling the CopyTo
method.

Example

The sample code copies stack items to an array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim nameStack As New Stack
 Dim nameArray() As Object

 ' ----- Build the stack.
 nameStack.Push("Chopin")
 nameStack.Push("Mozart")
 nameStack.Push("Beethoven")

 ' ----- Size the array and copy elements.
 ReDim nameArray(nameStack.Count - 1)
 nameStack.CopyTo(nameArray, 0)

Version Differences

Visual Basic 2005 adds support for generics to stacks, as discussed in Chapter 10.

See Also

Stack Class, Stack.ToArray Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Peek Method

Class

System.Collections.Stack (standard version)

System.Collections.Generic.Stack (generic version)

Syntax

 Dim result As Object = stackVariable.Peek()

Description

The Peek method returns the top item on the stack as an Object, but does not remove it from the
stack.

Usage at a Glance

The Peek method is similar to the Stack object's Pop method, except that it leaves the stack intact.

Version Differences

Visual Basic 2005 adds support for generics to stacks, as discussed in Chapter 10.

See Also

Stack Class, Stack.Pop Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Pop Method

Class

System.Collections.Stack (standard version)

System.Collections.Generic.Stack (generic version)

Syntax

 Dim result As Object = stackVariable.Pop()

Description

The Pop method removes the top item from the stack and returns it as an Object.

Usage at a Glance

Pop generates an error if applied to an empty stack. Use the Count property to check for items on the
stack.

Version Differences

Visual Basic 2005 adds support for generics to stacks, as discussed in Chapter 10.

See Also

Stack Class, Stack.Peek Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Push Method

Class

System.Collections.Stack (standard version)

System.Collections.Generic.Stack (generic version)

Syntax

 stackVariable.Push(obj)

obj (required; any)

The item to place on the stack

Description

The Push method places an object on the top of the stack.

Version Differences

Visual Basic 2005 adds support for generics to stacks, as discussed in Chapter 10.

See Also

Stack Class, Stack.Pop Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.ToArray Method

Class

System.Collections.Stack (standard version)

System.Collections.Generic.Stack (generic version)

Syntax

 Dim result() As Object = stackVariable.ToArray()

Description

The ToArray method creates an array of type Object, copies the elements of the stack in order into
the array, and then returns the array. The array need not be created in advance.

Usage at a Glance

The top item on the stack becomes array element zero.

Version Differences

Visual Basic 2005 adds support for generics to stacks, as discussed in Chapter 10.

See Also

Stack Class, Stack.CopyTo Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

STAThread Attribute

Class

System.STAThreadAttribute

Applies To

Method

Constructor

 New()

Properties

None defined

Description

The <STAThread > attribute indicates that the application to which the program element belongs uses
the single-threaded apartment model for COM interop. The attribute should be applied to the
application's Main method or subroutine. This attribute only applies to applications that use COM
interop.

The <STAThread> attribute is similar to setting a System.Threading.Thread object's ApartmentState
property to ApartmentState.STA. The difference is that the <STAThread> attribute creates a single-
threaded apartment from startup, while setting the property does it only from the point that the
property is set.

See Also

MTAThread Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Static Statement

Description

The Static statement is used at the procedure level to define a local variable with a value that is
retained for the lifetime of the object in which it appears, even when the variable goes out of scope
(that is, even when the procedure's code is not currently being executed).

The Static statement is actually a variation of the Dim statement. For more information on the
syntax and use of the Static statement, see the Dim Statement entry elsewhere in this chapter.

See Also

Dim Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stop Statement

Syntax

 Stop

Description

The Stop statement suspends program execution.

Usage at a Glance

There is no limit to the number and position of Stop statements within procedures.

The Stop statement acts like a breakpointplacing the program in break mode and highlighting
the current line in the development environmentallowing you to step through the code line by
line.

Stop is intended primarily for use in the design-time environment, where it suspends program
execution without terminating it. In the runtime environment, Stop invokes the debugger.

Unlike the End statement, Stop does not explicitly close any open files or clear any variables,
except in a compiled executable.

See Also

End Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Str Function

Class

Microsoft.VisualBasic.Conversion

Syntax

 Dim result As String = Str(number)

number (required; Object)

Any valid numeric expression or an expression that can be converted to a number

Description

The Str function converts number from a number to a string.

Usage at a Glance

If number cannot be converted to a string, a runtime error occurs. To prevent this, check number

with the IsNumeric function first.

If the return value is positive, the Str function always includes a leading space in the returned
string for the sign of number.

Use the LTrim function to remove the leading space that the Str function adds to the start of
the returned string.

The CStr and Format functions are often a better choice than the Str function. The CStr function
does not add a leading space for the sign of a positive number. Both the CStr and the Format
functions are internationally aware, recognizing locale-specific decimal delimiters.

See Also

CStr Function, Format Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StrComp Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As Integer = StrComp

(string1, string2[, compare])

string1 (required; String)

Any string expression.

string2 (required; String)

Any string expression.

compare (optional; CompareMethod constant)

Indicates the text comparison method. One of the following
Microsoft.VisualBasic.CompareMethod enumeration values:

Value Description

Binary Performs a binary (case-sensitive) comparison

Text Performs a text (case-insensitive) comparison

If omitted, the current Option Compare method in effect is used.

Description

The StrComp function determines whether two strings are equal and, if not, which of the two strings
has the greater value. The following table identifies the return values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Scenario Return value

string1 < string2 -1

string1 = string2 0

string1 > string2 1

string1 or string2 is Null Null

Usage at a Glance

Using the comparison operators <, <=, >, and >= to compare strings performs a character-by-
character binary comparison.

The StrComp function can provide a significant performance improvement (in the neighborhood
of 30 percent to 70 percent) over the comparison operators.

See Also

StrConv Function, StrDup Function, StrReverse Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StrConv Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = StrConv(str, conversion[, localeID])

str (required; String)

The string expression to convert.

conversion (required; VbStrConv enumeration)

The type of conversion to perform. One or more of the following
Microsoft.VisualBasic.VbStrConv enumeration values (multiple constants can be Or'd together):

Value Description

UpperCase Converts the entire string to uppercase.

LowerCase Converts the entire string to lowercase.

ProperCase Capitalizes only the first letter of each word.

Wide Widens supported characters from their narrow equivalents.

Narrow Narrows supported characters from their wide equivalents.

Katakana Converts hiragana characters to katakana.

Hiragana Converts katakana characters to hiragana.

LinguisticCasing
Uses linguistic rules for casing. To use this, Or this constant together
with UpperCase or LowerCase.

None Performs no conversion; returns the original string.

SimplifiedChinese Converts traditional Chinese characters to simplified Chinese.

traditionalChinese Converts simplified Chinese characters to traditional Chinese.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

localeID (optional; Integer)

The locale identifier to use for the conversion.

Description

The StrConv function performs a special character conversion on str, and returns the converted

version.

Usage at a Glance

You can combine multiple VbStrConv constants together by adding or Or'ing them together, as
long as they are not mutually exclusive in meaning. For instance, the following pair is valid:

 VbStrConv.UpperCase Or VbStrConv.Wide

but the following statement is not:

 VbStrConv.UpperCase Or VbStrConv.LowerCase

VbStrConv.Katakana and VbStrConv.Hiragana can only be used with Japanese locales.

VbStrConv.Wide and VbStrConv.Narrow can only be used with Asian locales.

When determining the start of a new word to convert to proper case, StrConv recognizes the
following characters as word separators (with their decimal ASCII values in parentheses): Null
(0), Horizontal Tab (9), Line Feed (10), Vertical Tab (11), Form Feed (12), Carriage Return
(13), and Space (32).

If you convert to proper case, StrConv converts the first letter of each word to uppercase,
regardless of whether that word is significant. The string "this is the time" becomes "This Is The
Time," even though "the" ordinarily would not be capitalized.

Version Differences

Two conversion values supported in VB 6, vbUnicode and vbFromUnicode, have no equivalent in .NET.

The function can no longer be used to convert ASCII to Unicode or Unicode to ASCII.

See Also

StrComp Function, StrDup Function, StrReverse Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StrDup Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = StrDup(number, character)

number (required; Integer)

The number of times to duplicate the first character in a string.

character (required; String, Char, or Object)

The content with the first character that is to be duplicated. If the data type is Object, it must
contain a String or Char value, and Object will be returned instead of String.

Description

The StrDup function returns a string that consists of the first character of character duplicated number

times.

Version Differences

The StrDup function is new to .NET. It can be used as a partial replacement for the VB 6 String
function.

See Also

Space Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StrReverse Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = StrReverse(expression)

expression (required; String)

The string whose characters are to be reversed

Description

The StrReverse function returns a string that is the reverse of the string passed to it. For example, if
the string "and" is passed to it as an argument, StrReverse returns the string "dna."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Structure...End Structure Statement

Syntax

 [accessModifier] [Shadows] Structure name [(Of typeParamName)]

 [Implements interfaceName[, interfaceName...]]

 statements
 End Structure

accessModifier (optional)

Specifies the scope and accessibility of the structure. One of the following access levels:

Access level Description

Public
The structure is publicly accessible anywhere, both inside and outside of the
project.

Private The structure is accessible within the type in which it is defined.

Protected
The structure is accessible only to the type in which it is defined and to
derived instances of that type.

Friend
The structure is accessible only within the project that contains the structure
definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Friend access level is used.

Shadows (optional)

Indicates that the structure shadows an identically named element in a base class.

name (required)

The name of the structure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

typeParamName (optional; any)

Adds type parameter placeholders that will later enforce strong typing when the structure is
used. The Of clause implements generics, which are fully described in Chapter 10. If generics
will not be used, this clause can be excluded.

interfaceName (optional)

Indicates that the structure implements the members of one or more interfaces.

statements (required)

Code that defines the members of the structure. Structures must contain at least one instance
member.

Description

The Structure...End Structure statement is used to declare structures, also known as user-defined
types. Structures are similar to classes, but they are value types rather than reference types.
Although you can create an instance of a structure, you cannot derive another structure or class from
it.

Usage at a Glance

The members of a structure can be fields, properties, methods, events, or types. Each member
must be declared with an access modifier.

You cannot assign a structure member an initial value as part of its declaration. The initial
values of structure members can be set in the structure's constructor.

If a structure member is an array, it cannot be explicitly dimensioned in its definition.

Although structures are similar to classes, they cannot explicitly inherit, nor can they be
inherited. All constructors for a structure must be parameterized, and structures cannot define
destructors.

Example

The simplest and most common use of structures is to encapsulate related variables, as in this
sample code:

 Structure Person
 Public Name As String
 Public Address As String
 Public City As String
 Public State As String
 Public Zip As String
 Public Age As Short

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Structure

An instance of Person is declared as:

 Dim personRecord As Person

As with classes, structure members use the "dot" syntax:

 personRecord.Name = "Beethoven"

Version Differences

The Structure...EndStructure construct is new to VB under .NET. It replaces the Type...EndType
construct in VB 6. The syntax and functionality differences between the two are significant.

VB 6 user-defined types are groupings of basic data types. .NET structures are objects, similar
to classes, with similar OOP features.

Visual Basic 2005 adds support for generics to structures, as discussed in Chapter 10.

See Also

Class...End Class Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sub Statement

Syntax

 [accessModifier] [procModifier] [Shared] [Shadows] _

 Sub name [(Of typeParamName)] ([arglist]) _

 [Implements implementsList | Handles eventList]

 [statements]
 [Exit Sub
 | Return]

 [statements]
 End Sub

accessModifier (optional)

Specifies the scope and accessibility of the procedure. One of the following access levels:

Access level Description

Public
The procedure is publicly accessible anywhere, both inside and outside of
the project.

Private The procedure is accessible only within the defining type.

Protected
The procedure is accessible only to the code in the defining type or to one of
its derived types.

Friend
The procedure is accessible only within the project that contains the
procedure definition.

Protected
Friend

Combines the access features of Protected and Friend.

If omitted, the Public access level is used.

procModifier (optional)

One of the keywords shown in the following table:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Keyword Description

Overloads
Indicates that more than one declaration of this subroutine exists, each with
a different argument signature

Overrides
For derived classes, indicates that the subroutine overrides a subroutine
with the same name and argument signature in the base class

Overridable Indicates that the subroutine can be overridden in a derived class

NotOverridable Indicates that the subroutine cannot be overridden in a derived class

MustOverride Indicates that the subroutine must be overridden in a derived class

Shared (optional)

Indicates that the subroutine is shared and not an instance subroutine. The shared subroutine
may be called without a particular instance of the type in which it appears. Shared subroutines
are also known as static subroutines.

Shadows (optional)

Indicates that the subroutine shadows an identically named element in a base class.

name (required)

The name of the subroutine. If you use the name "New," the procedure will be a constructor. If
you use the name "Finalize" and include the Overrides keyword, the procedure will be a
destructor.

typeParamName (optional; any)

Adds type parameter placeholders that will later enforce strong typing when the procedure is
used. The Of clause implements generics, which are fully described in Chapter 10. If generics
will not be used, this clause can be excluded.

arglist (optional; any)

A comma-delimited list of parameters to be supplied to the procedure as arguments from the
calling routine.

arglist uses the following syntax and parts:

 [Optional] [ByVal | ByRef] [ParamArray] varname[()] _

 [As argtype] [= defaultValue]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Optional (optional)

Flags an argument as optional; optional arguments need not be supplied by the calling routine.
All arguments following an optional argument must also be optional. A ParamArray argument
cannot be optional.

ByVal (optional)

The argument is passed by value; the local copy of the variable is assigned the value of the
argument. ByVal is the default method of passing variables.

ByRef (optional)

The argument is passed by reference; the local variable is a reference to the argument being
passed. All changes made to the local variable will also be reflected in the calling argument.

ParamArray (optional)

The argument is an optional array containing an arbitrary number of elements. It can only be
used as the last element of the argument list and cannot be modified by either the ByRef or
Optional keywords. If Option Strict is on, the array type must also be specified.

varname (required)

The name of the argument as used in the local procedure.

argtype (optional; Type)

The data type of the argument. Any valid .NET data type can be used.

defaultValue (optional; any)

For optional arguments, indicates the default value to be supplied when the calling routine does
not supply the value. When the Optional keyword is used, this default value is required.

implementsList (optional)

Comma-separated list of the interface members implemented by this procedure.

eventList (optional)

Comma-separated list of the events handled by this procedure. Each event is in the form
eventVariable.eventMember, where eventVariable is a variable declared with the WithEvents
keyword, and eventMember is an event member of that variable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

statements (optional)

Program code to be executed within the procedure.

Description

The Sub statement defines a subroutine, including all arguments. Subroutines can appear within
classes, structures, or modules. To call a subroutine, specify its name, followed by any arguments in
parentheses.

 SomeSubroutine(12, "second argument")

Usage at a Glance

Subroutines cannot be nested; you cannot define one subroutine inside another subroutine.

Overloads and Shadows cannot be used in the same declaration.

Any number of ExitSub or Return statements can be placed within the subroutine. When these
statements are encountered, execution continues with the line of code immediately following the
call to the subroutine.

The names of a procedure's parameters become the procedure's named arguments.

Version Differences

There are several syntax and functionality differences in the declaration of a procedure between
VB 6 and the .NET version of VB.

In VB 6, arguments to procedures are passed by reference if no passing method is specified. In
.NET, the default is to pass by value.

If a parameter array is used in VB 6, it is an array of variants. In .NET, all parameter arrays are
either of type Object or of some other strong type.

In VB 6, parentheses only surrounded the arguments of a procedure call when the Call
keyword was used. In .NET, parentheses always surround the arguments.

In VB 6, optional arguments do not require that you specify a default value. Instead, the
IsMissing function is used to determine whether the optional argument is supplied. In .NET, you
must assign a default value to an optional argument.

Visual Basic 2005 adds support for generics to subroutines, as discussed in Chapter 10.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Function

Class

Microsoft.VisualBasic.Interaction

Syntax

 Dim result As Object = Switch(expr_1, value_1[, _

 expr_2, value_2[..., expr_n, value_n]])

expr_1 to expr_n (required; Boolean)

A number of expressions to be evaluated.

value_1 to value_n (required; Object)

A number of expressions from which one is returned if the associated expression is the first one
to evaluate to true.

Instead of using a comma-delimited list of expressions and values, all expressions and values can be
stored in a ParamArray object, with elements in the same order that they would appear in the
argument list.

Description

The Switch function evaluates a list of expressions and, on finding the first expression to evaluate to
TRue, returns an associated value.

Usage at a Glance

At least one expression/value pair must be included, and they must always appear in pairs.

Expressions are evaluated from left to right.

If none of the expressions is TRue, the Switch function returns Nothing.

The parameters can be variables, constants, literals, expressions, or function calls. Each value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parameter may be of a different type; the return value will be of type Object.

All parameters are fully evaluated before they are considered as conditions or results for the
Switch function. If they contain function calls, those functions will be called, even in the items
that are not returned by the function. For instance, in the statement:

 result = Switch(useTempFile, ProcessFile(tempFileName), _
 True, ProcessFile(mainFileName))

both calls to ProcessFile will always be performed, regardless of the value of useTempFile.
However, at most, only one return value from among the function calls will be returned from
the Switch function, and possibly none.

This function does not support named arguments.

By providing all parameters in the form of a ParamArray, the list of values can be expanded or
contracted programmatically at runtime.

Example

This example returns a string based on a selection of numeric ranges.

 rangeText = Switch(currentValue < 0, "Negative", _
 currentValue > 0, "Positive", True, "Neutral")

See Also

Choose Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SYD Function

Class

Microsoft.VisualBasic.Financial

Syntax

 Dim result As Double = SYD(cost, salvage, life, period)

cost (required; Double)

The initial cost of the asset

salvage (required; Double)

The value of the asset at the end of its useful life

life (required; Double)

The length of the useful life of the asset

period (required; Double)

The period whose depreciation is to be calculated

Description

The SYD function computes the sum-of-years' digits depreciation of an asset for a specified period.
The sum-of-years' digits method allocates a larger amount of the depreciation in the earlier years of
the asset.

Usage at a Glance

life and period must be expressed in the same time unit. For example, if life represents the
life of the asset in years, period must be a particular year for which the depreciation amount is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to be computed.

All arguments must be positive numeric values.

To calculate the depreciation for a given period, SYD uses the formula:

 (Cost-Salvage)*((Life-Period + 1)/(Life*(Life + 1)/2))

See Also

DDB Function, SLN Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SyncLock Statement

Syntax

 SyncLock lockObject

 [code]
 End SyncLock

lockObject (required; any)

The variable or instance to be locked; it is used as a gatekeeper for the enclosed code

code (optional)

Any Visual Basic source code that needs to be protected from simultaneous use by separate
threads

Description

The SyncLock statement prevents multiple threads of execution in the same process from accessing a
block of code at the same time.

Usage at a Glance

lockObject cannot be set to Nothing.

If lockObject is a shared object, all instances with access to that object are blocked until the

SyncLock block exits. If it is an instance object, only threads using that particular instance are
blocked.

You may not jump into a SyncLock block using a GoTo statement. You may jump out of the
block; the lock will be properly released.

The SyncLock statement wraps a call to the .NET Framework's System.Threading.Monitor class's
Enter and Exit methods.

.NET includes a number of other synchronization mechanisms, all of which are located in the
System.Threading namespace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

The SyncLock statement is new to VB under .NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SystemTypeName Function

Class

Microsoft.VisualBasic.Information

Syntax

 SystemTypeName(vbName)

vbName (required; String)

The name of a Visual Basic data type

Description

The SystemTypeName function returns the fully qualified type name of the Common Type System (CTS)
data type that corresponds to a particular Visual Basic data type. For instance, passing the name
"Date" to this function returns "System.DateTime."

Usage at a Glance

If vbName is not a valid Visual Basic data type, the function returns Nothing.

To determine the CTS data type of a particular variable, pass the variable as an argument to
the TypeName function and then pass that function's return value as an argument to the
SystemTypeName function. For example:

 trueType = SystemTypeName(TypeName(someVariable))

Version Differences

The SystemTypeName function is new to VB under .NET.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TypeName Function, VbTypeName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TAB Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Dim result As TABInfo = TAB([column])

column (optional; Short)

A column position to which the insertion point will move before outputting the next data value

Description

The TAB function is used with the Print and PrintLine procedures to move the text-insertion point to
a given 1-based column, or to the start of the next print zone, before outputting additional data.

Usage at a Glance

TAB is generally only useful with the Print and PrintLine procedures.

The TAB function does not actually insert any tab (ASCII 9) characters; instead, it fills the space
from the end of the last expression to column column (or to the start of the next print zone) with

space characters.

If the column argument is omitted, the text-insertion point will be moved to the beginning of the

next print zone.

The value of column determines the behavior of the insertion point:

Value of
column

Position of insertion point

Current
column >
column

Moves one line down to the column column.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value of
column

Position of insertion point

column >

Output Width

Uses the formula column Mod width. If the result is less than the

current insertion point, the insertion point will move down one line;
otherwise, the insertion point will remain on the same line.

< 1 Column 1

The width of the output is indicated by the FileWidth procedure.

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

SPC Function

column >

Output Width

Uses the formula column Mod width. If the result is less than the

current insertion point, the insertion point will move down one line;
otherwise, the insertion point will remain on the same line.

< 1 Column 1

The width of the output is indicated by the FileWidth procedure.

Version Differences

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

SPC Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tan Function

Class

System.Math

Syntax

 Dim result As Double = Tan(a)

a (required; Double)

An angle expressed in radians

Description

The Tan function returns the tangent of an angle, the ratio of two sides of a right triangle.

Usage at a Glance

The returned ratio is derived by dividing the length of the side opposite the angle by the length
of the side adjacent to the angle.

This is a shared member of the System.Math class, so it can be used without an instance.

To convert degrees to radians, multiply degrees by /180.

To convert radians to degrees, multiple radians by 180/ .

Version Differences

In VB 6, Tan is an intrinsic VB function. In the .NET platform, it is a member of the System.Math class
and not directly part of the VB language.

See Also

Cos Function, Sin Function, Tanh Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tanh Function

Class

System.Math

Syntax

 Dim result As Double = Math.Tanh(value)

value (required; Double)

An angle expressed in radians

Description

The Tanh function returns the hyperbolic tangent of an angle.

Usage at a Glance

This is a shared member of the System.Math class, so it can be used without an instance.

Version Differences

The Tanh function did not exist in VB 6.

See Also

Cosh Function, Sinh Function, Tan Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ThreadStatic Attribute

Class

System.ThreadStaticAttribute

Applies To

Field

Constructor

 New()

Properties

None defined

Description

The <ThreadStatic> attribute specifies that the value of a static field is not shared across threads, so
that each thread in the application has its own version of the field. In the absence of this attribute, a
static field is shared across all threads.

Example

The example illustrates the use of the <ThreadStatic> attribute by creating a second thread and
having both threads increment a static field. With the <ThreadStatic> attribute, the variable's value is
maintained on a per-thread basis. If you remove the <ThreadStatic> attribute and recompile the
source, the variable is maintained on a per-application basis.

 Option Strict On

 Imports Microsoft.VisualBasic
 Imports System
 Imports System.Threading

 Public Class ThreadingTest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ThreadStatic> Private Shared keepCount As Integer

 Public Shared Sub Main()
 ' ----- Start the second thread.
 Dim otherThread As New Thread(AddressOf SecondThread)
 otherThread.Start

 ' ----- Do the primary thread's work.
 IncrementCount("T1,1:")
 DelayLoop(2000)
 IncrementCount("T1,2:")
 DelayLoop(2000)
 IncrementCount("T1,3:")
 End Sub

 Private Shared Sub SecondThread()
 ' ----- Do the second thread's work.
 IncrementCount("T2,1:")
 DelayLoop(2000)
 IncrementCount("T2,2:")
 DelayLoop(2000)
 IncrementCount("T2,3:")
 End Sub

 Private Shared Sub IncrementCount(ByVal statusText As String)
 ' ----- Increment the thread-specfic static counter.
 keepCount += 1
 Console.WriteLine(statusText & keepCount)
 End Sub

 Private Shared Sub DelayLoop(ByVal milliSecs As Integer)
 ' ----- Wait a while.
 System.Threading.Thread.Sleep(milliSecs)
 End Sub
 End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Throw Statement

Syntax

 Throw exception

exception (required; Exception or derived from Exception)

A System.Exception object representing the exception being thrown

Description

The Throw statement initiates an exception that can be handled using either structured exception
handling (with a TRy...Catch...Finally statement) or unstructured error handling (with an On Error
statement).

Example

 Dim positiveNumber As Integer
 Try
 ' ----- Throw an exception if the user enters anything other
 ' than a positive number.
 positiveNumber = CInt(InputBox("Enter number of items."))
 If (positiveNumber <= 0) Then
 Throw New Exception("Entry must be a positive number.")
 End If
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

Version Differences

The Throw statement is new to VB under .NET.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exception Class, Try...Catch...Finally Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TimeOfDay Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Date = DateAndTime.TimeOfDay

or:

 DateAndTime.TimeOfDate = newTime

newTime (required in second syntax; Date)

A time used to set the current system time

Description

The TimeOfDay property gets or sets the current system time of day. The first syntax returns a Date
representing the current system time, with the date set to January 1, 1 AD. The second syntax sets
the current system time using a Date; any date component of that value is ignored.

Usage at a Glance

The TimeOfDay property includes the date January 1, 1 AD, along with the current system time.
Use one of the date formatting features to exclude this date when presenting the date for
display:

 MsgBox(Format(TimeOfDay, "Long Time"))
 MsgBox(FormatDateTime(TimeOfDay, DateFormat.LongTime))

The security settings of the active user may prevent the system date and time from being

http://lib.ommolketab.ir
http://lib.ommolketab.ir

altered.

See Also

Now Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Timer Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Double = DateAndTime.Timer

Description

The Timer property returns the number of seconds since midnight.

Usage at a Glance

The Timer property is useful as a seed value for the Randomize procedure:

 Randomize Timer

The Timer property is useful for measuring the time taken to execute a procedure or block of
code:

 Dim startTime As Double
 Dim counter As Integer
 startTime = Timer
 For counter = 1 To 100
 Console.WriteLine("Hello")
 Next counter
 MsgBox("Time Taken = " & Timer - startTime & " Seconds")

However, this type of code will sometimes fail, since the second reading of the Timer property
may sometimes be less than the first. This occurs when the first reading occurs before midnight,
but the second one is after midnight.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

In VB 6, Timer was classified as a function; it is a read-only property in .NET. Also, the VB 6
version returned a Single, while the .NET version returns a Double.

The 2005 release of VB includes a new My.Computer.Clock.TickCount property, which returns
the number of milliseconds since midnight.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TimeSerial Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Date = TimeSerial(hour, minute, second)

hour (required; Integer)

The hour, a number between 0 and 23, inclusive

minute (required; Integer)

The minute, a number between 0 and 59, inclusive

second (required; Integer)

The second, a number between 0 and 59, inclusive

Description

The TimeSerial function returns a Date with the value that is specified by the three time components.

Usage at a Glance

The hour argument requires a 24-hour clock format.

If an element exceeds its normal limits in either a positive or negative direction, TimeSerial
adjusts the time accordingly. For example, if you specify TimeSerial(11, 35,
82)11:35:82TimeSerial returns 11:36:22.

If any of the parameters exceed the range of the Integer data type, a runtime error occurs.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateSerial Function, TimeOfDay Property, TimeString Property, TimeValue Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TimeString Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As String = DateAndTime.TimeString

or:

 DateAndTime.TimeString = newTime

newTime (required in second syntax; String)

A time in string format used to set the current system time

Description

The TimeString property gets or sets the current system time. The first syntax returns a string
representing the current system time in the "HH:mm:ss" format, which uses a 24-hour clock. The
second syntax sets the current system time using a string that is in any system-recognized time
format.

Usage at a Glance

The first syntax always returns a time in the format "HH:mm:ss."

See the Format Function entry for details on custom time formats.

To get or set the current system date as a String, use the DateString property.

To access the current system time as a Date, use the TimeOfDay property.

The security settings of the active user may prevent the system date and time from being

http://lib.ommolketab.ir
http://lib.ommolketab.ir

altered.

Version Differences

The TimeString property is new to VB under .NET.

See Also

TimeOfDay Property, TimeSerial Function, TimeValue Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TimeValue Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Date = TimeValue(stringTime)

stringTime (required; String)

A string containing any valid time format

Description

The TimeValue function converts stringDate to the Date data type, setting any date component to

January 1, 1 AD. The interpretation of the time components in the expression is based on the locale
setting of the local computer.

Usage at a Glance

If stringTime is invalid or Nothing, a runtime error is generated.

Version Differences

In VB 6, TimeValue returns the time only. Under .NET, the function also returns the base date of
January 1, 1 AD.

See Also

DateValue Function, TimeOfDay Property, TimeSerial Function, TimeString Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Today Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Date = DateAndTime.Today

or:

 DateAndTime.Today = newDate

newDate (required in syntax 2; Date)

A date used to set the current system date

Description

The Today property gets or sets the current system date. The first syntax returns a Date representing
the current system date, with the time set to midnight. The second syntax sets the current system
date using a Date; any time component of that value is ignored.

Usage at a Glance

Older versions of Microsoft Windows, such as Windows 95, limit the system date to between
January 1, 1980 and December 31, 2099.

The security settings of the active user may prevent the system date and time from being
altered.

See Also

Now Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Trim Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As String = Trim(str)

str (required; String)

Any valid string expression

Description

The trim function removes both leading and trailing spaces from str.

Usage at a Glance

If str is Nothing, the trim function returns Nothing.

trim is equivalent to calling both the RTrim and LTrim functions.

Version Differences

In VB 6, the function's single named argument is string. In .NET, its single named argument is str.

See Also

LTrim Function, RTrim Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Try...Catch...Finally Statement

Syntax

 Try

 [tryStatements]

 [Catch [exception [As type]] [When expression]

 [catchStatements]
 [Exit Try]...]
 [Finally

 [finallyStatements]]
 End Try

tryStatements (optional)

Program code to be executed and monitored for exceptions.

exception (optional; System.Exception or a derived type)

The exception to catch. If exception is omitted, or if it is System.Exception, all exceptions will
be caught. However, if exception is omitted, no information about the exception will be

accessible within the Catch block.

type (optional)

The data type of the exception to be handled by the Catch block. Its value can be
System.Exception (to handle all possible exceptions) or any class derived from
System.Exception (to handle only exceptions of that specific type). If omitted, its value defaults
to System.Exception.

expression (optional; Boolean)

Defines a condition under which the error matching exception is to be handled by the Catch
block. If expression is TRue, the related Catch block is entered.

catchStatements (optional)

Program code to be executed when a general or specific exception occurs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

finallyStatements (optional)

Program code to be executed upon leaving the TRy...Catch...Finally statement for any reason,
whether there was an exception or not.

Description

The try...Catch...Finally statement enables structured exception handling for a specific block of
code. If an error or exception occurs in the tryStatements block of code, that exception is compared
with the exception defined by each Catch clause. If a match is found (and the optional When
expression also matches), the related catchStatements are processed. In all cases, the
finallyStatements are executed just before exiting the try statement, even if the TRy statement is

exited through a Return statement or any other method.

Usage at a Glance

The TRy statement can include any number of Catch blocks.

The ExitTry statement is used to break out of any portion of a TRy...Catch...Finally block. The
finallyStatements block is still executed. Exit Try is not permitted in the finallyStatements

block.

If multiple Catch clauses match a triggered exception, only the first matching Catch block is
executed. This means that Catch blocks should be ordered from most specific to most general,
with a Catch block handling errors of type System.Exception occurring last.

If an error occurs within tryStatements that is not handled by a Catch block, the error is passed

up the VB call stack to the next error handler, either structured or unstructured, that can handle
the exception.

Example

The code in the following try block will raise an error if the user does not enter a number. The Catch
block will catch this error.

 Dim numerator As Decimal
 Dim denominator As Decimal
 Dim quotient As Decimal
 Dim badData As Boolean = False
 Try
 numerator = CInt(InputBox("Enter the numerator."))
 denominator = CInt(InputBox("Enter the denominator."))
 quotient = numerator / denominator
 Catch ex As System.Exception
 ' ----- Probably a divide by zero error.
 MsgBox(ex.Message)
 badData = True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Try
 If (badData = False) Then MsgBox("Quotient = " & quotient)

Version Differences

Structured exception handling using the try...Catch...Finally construct is new to VB under .NET. It
provides an alternate method of monitoring and processing errors, in addition to the unstructured On
Error handling methods long a part of VB.

See Also

On Error Statement, Using Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TryCast Function

Syntax

 Dim result As typename = tryCast(expression, typename)

expression (required; any)

The value to be converted. This can be any data, object, structure, or interface type.

typename (required)

The data type, object type, structure, or interface to which expression is to be converted. This

can be virtually anything that can appear after the As clause of a Dim statement. However, this
type must have an inheritance relationship with the type of expression.

Description

New in 2005. The tryCast function converts an expression or object to the specified type. The original
type of expression must have an inheritance relationship with the new type, or an error occurs.

Usage at a Glance

The cast will fail if the source and target data types do not have an inheritance relationship, that
is, if one does not eventually derive from the other.

The cast may fail if it is a narrowing cast and Option Strict is On. Under such conditions,
Nothing is returned.

The TRyCast function works like DirectCast, but it returns Nothing instead of generating an
error on a narrowing failure.

This function does not support named arguments.

Version Differences

The TRyCast function is new to Visual Basic 2005.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

CType Function, DirectCast Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TypeName Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As String = TypeName(varName)

varName (required; any)

The variable, instance, or expression to assess

Description

The TypeName function returns the name of the data type for varName. The possible return values are:

String returned Variable contents

Boolean Boolean value (true or False)

Byte 8-bit binary value

Char 16-bit character value

Date 64-bit date and time value

DBNull Missing or nonexistent data

Decimal 96-bit fixed point numeric value

Double 64-bit floating point numeric value

Integer 32-bit integer value

Long 64-bit integer value type

Nothing Object with no instance; uninitialized string; undimensioned array

Object Unspecialized object; instance of System.Object

Short 16-bit integer value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String returned Variable contents

Single 32-bit floating point numeric value

String String of 16-bit characters

Anything else

The name of the class or structure used to create an instance of varName

Usage at a Glance

If varName is an array, the returned name is followed by a set of empty parentheses, as in

"Integer()."

This function returns the immediate type used for varName; it does not return the derived class

name. If it did, the function would always return "Object."

Only the type name is returned by TypeName; the namespace is not included.

Example

 Dim genericObject As Object
 genericObject = New Employee
 MsgBox(TypeName(genericObject)) ' Displays: Employee

 genericObject = 100
 MsgBox(TypeName(genericObject)) ' Displays: Integer

 genericObject = Nothing
 MsgBox(TypeName(genericObject)) ' Displays: Nothing

Version Differences

In VB 6, the following code fragment:

 Dim strVar As String
 MsgBox(TypeName(strVar))

returns "String." In .NET, this same code displays "Nothing," since the string has not yet been
assigned an instance.

Single 32-bit floating point numeric value

String String of 16-bit characters

Anything else

The name of the class or structure used to create an instance of varName

Usage at a Glance

If varName is an array, the returned name is followed by a set of empty parentheses, as in

"Integer()."

This function returns the immediate type used for varName; it does not return the derived class

name. If it did, the function would always return "Object."

Only the type name is returned by TypeName; the namespace is not included.

Example

 Dim genericObject As Object
 genericObject = New Employee
 MsgBox(TypeName(genericObject)) ' Displays: Employee

 genericObject = 100
 MsgBox(TypeName(genericObject)) ' Displays: Integer

 genericObject = Nothing
 MsgBox(TypeName(genericObject)) ' Displays: Nothing

Version Differences

In VB 6, the following code fragment:

 Dim strVar As String
 MsgBox(TypeName(strVar))

returns "String." In .NET, this same code displays "Nothing," since the string has not yet been
assigned an instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB 6, TypeName cannot be used with user-defined data types; this use is supported in .NET.

In VB 6, passing an uninitialized array to the TypeName function returns the type name plus
parentheses. In .NET, it returns "Nothing."

In VB 6, a variable with a type that is not declared is reported as "Variant;" in .NET, it is
"Object."

See Also

VarType Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TypeOf Operator

Syntax

 Dim result As Boolean = TypeOf

 varName Is typeName

or:

 Dim result As Boolean = TypeOf varName IsNot typeName

varName (required; any)

The variable, instance, or expression to compare with a data type

typeName (required)

The class, interface, structure, or other type name against which to compare varName

Description

The TypeOf operator indicates whether an instance of data is of a specific type (true) or not (False).
It is always used with the Is or IsNot keyword, followed by a valid .NET type. It is most often used
with If...Then...Else statements, as in:

 If (TypeOf someVariable Is Integer) Then
 ' ----- Integer-specific code here.
 End If

New in 2005. Visual Basic 2005 introduced a new IsNot keyword that negates the Boolean result of
the TypeOf operator.

 If (TypeOf someVariable IsNot Integer) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- Non-Integer-specific code here.
 End If

Before 2005, the equivalent of this syntax required the use of the Not operator.

 If Not (TypeOf someVariable Is Integer) Then
 ' ----- Non-Integer-specific code here.
 End If

Version Differences

Visual Basic 2005 includes a new IsNot keyword. It was not available in earlier versions of VB for
.NET or in VB 6.

See Also

Is Operator, IsNot Operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UBound Function

Class

VisualBasic.Information

Syntax

 Dim result As Integer = UBound(array[, rank])

array (required; any)

An array with an upper bound that is to be determined.

rank (optional; Integer)

The dimension to assess for an upper bound. If omitted, it defaults to 1.

Description

The UBound function returns the upper limit of the specified dimension of an array.

Usage at a Glance

If array is uninitialized, UBound generates a runtime error. Compare array to Nothing to prevent

this error:

 If (someArray IsNot Nothing) Then
 ' ----- OK to use UBound

Since the lower bound of .NET arrays is always 0, the number of items in an array dimension is
always UBound(array, rank) + 1.

Version Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The 2005 release of Visual Basic supports a new array declaration syntax that restores the VB 6 style
"lower To upper" syntax, as in:

 Dim someArray(0 To 5) As String

However, the specified lower bound must still be 0.

See Also

LBound Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UCase Function

Class

Microsoft.VisualBasic.Strings

Syntax

 Dim result As type = UCase(value)

type (required)

One of the following data types: Char or String

value (required; expression of type type)

A valid string expression or a character

Description

The UCase function converts a string or character to uppercase.

Usage at a Glance

UCase only affects lowercase letters; all other characters in value are unaffected.

UCase returns Nothing if value contains Nothing.

UCase returns the same data type as value.

See Also

LCase Function, StrConv Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unlock Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Unlock(fileNumber[, record])

or:

 Unlock(fileNumber[, fromRecord, toRecord])

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

record (required; Long)

The 1-based record or byte number at which to commence lock removal

fromRecord (required; Long)

The first 1-based record or byte number to unlock

toRecord (required; Long)

The last 1-based record or byte number to unlock

Description

The Unlock procedure removes record, section, or file locks previously set using the Lock procedure.
Locks are used in situations where multiple programs or more than one instance of the same
program may need read-and-write access to the same data file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usage at a Glance

If only the fileNumber argument is included, the entire file is unlocked.

record is interpreted as a record number in Random files and as a byte number in Binary files.

The Unlock procedure unlocks an entire file opened in Input or Output (sequential) mode,
regardless of any record number arguments.

The matching Lock procedure must include the same arguments.

All file locks should be removed with the Unlock procedure before either closing a file or ending
the application; otherwise, you can leave a file in an unstable state. Where appropriate, error-
handling code must correctly unlock any locks that are no longer necessary.

Version Differences

In VB 6, the fromRecord argument can be left blank to unlock all records up to toRecord. This

syntax is not supported in .NET.

In the VB 6 Unlock statement, you can separate the fromRecord and toRecord arguments with

the To keyword. In the .NET Unlock procedure, this syntax is not supported.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

Lock Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using...End Using Statement

Syntax

 Using resourceExpression...

 [statements]
 End Using

resourceExpression (required)

One or more resources to be allocated and used within the Using block. Multiple resources are
separated by commas. Resource expressions are similar to what you would see in a Dim
statement, either:

 resourceName As type[(arguments)]

or:

 resourceName As type = expression

where resourceName is the instance name to use, type is the data type of the resource instance,
arguments are the constructor arguments for the data type (if required), and expression is an
expression that evaluates to an instance of type.

statements (optional)

Program code to execute using the allocated resource(s).

Description

New in 2005. The Using...End Using block construct is used to execute a series of statements on one
or more resource objects, and to have those objects automatically release all of their allocated
resources when the block is left in any way. The Using statement is basically a formal method of
ensuring that the object's Dispose method is called when the object is no longer needed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usage at a Glance

Each object in resourceExpression must implement the IDisposable interface.

The Dispose method for each allocated resource object will always be called when the code exits
the block, even if the block is exited abnormally due to an exception.

You cannot jump into or out of a Using block using the GoTo statement. If you need to exit a
block early, you can place a label on the End Using line and use a GoTo statement to jump to
that line.

The various resourceExpression objects cannot be assigned a new instance while in the Using

block.

You can nest Using blocks. If there are no conditions on the allocation of the nested objects,
including those multiple objects in the original Using clause will achieve the same purpose as
nesting.

If the requested resource cannot be allocated, it will be set to Nothing.

Version Differences

The Using...End Using statement is new with Visual Basic 2005.

See Also

With...End With Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Val Function

Class

Microsoft.VisualBasic.Conversion

Syntax

 Dim result As Double = Val(expression)

or

 Dim result As Integer = Val(charExpression)

expression (required; String or Object)

Any string representation of a number

charExpression (required; Char)

Any valid character

Description

The Val function converts a string or object representation of a number to the Double data type. A
second variation converts a Char data type to its Integer equivalent.

Usage at a Glance

Only digits at the start of the string expression are examined for conversion; conversion stops
at the first nonnumeric character. All whitespace is removed before conversion. An empty string
converts to zero.

&O and &H (the octal and hexadecimal prefixes) are recognized by the Val function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Currency symbols, such as $ and £, and delimiters, such as commas, are not recognized by the
Val function.

The Val function only recognizes the period (.) as a decimal delimiter; regional settings are
ignored.

The conversion functions, such as the CDbl function, consider regional settings.

See Also

CDbl Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VarType Function

Class

Microsoft.VisualBasic.Information

Syntax

 Dim result As VariantType = VarType(varName)

varName (required; any)

The variable, instance, or expression to test

Description

The VarType function indicates the data type of an expression or instance, returning one of the
following Microsoft.VisualBasic.VariantType enumeration values. Visual Basic also defines intrinsic
constants for many of the members.

Enumeration
value

Intrinsic
constant

Description

Array vbArray An array of data.

Boolean vbBoolean Boolean data type (TRue or False).

Byte vbByte Byte data type.

Char vbChar Char data type.

Currency vbCurrency
Currency data type. This entry is for backward
compatibility. The .NET Decimal data type replaces the VB
6 Currency data subtype.

DataObject Data objects.

Date vbDate Date data type.

Decimal vbDecimal Decimal data type.

Double vbDecimal Double data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enumeration
value

Intrinsic
constant

Description

Empty vbEmpty Null reference.

Error System.Exception instance.

Integer vbInteger Integer data type.

Long vbLong Long data type.

Null vbNull Null object; DBNull.

Object vbObject
Object, uninitialized string, uninitialized array, object of a
nonspecific type; Nothing.

Short Short data type.

Single vbSingle Single data type.

String vbString String data type.

UserDefinedType vbUserDefinedType A structure instance.

Variant vbVariant
Variant data type. This entry is for backward compatibility.
The .NET Object data type replaces the VB 6 Variant data
type.

Usage at a Glance

If varName is a dimensioned array, the VarType function returns VariantType.Array and the data

type of the array elements, combined using a bitwise Or operation. You can test for an array
with a code fragment, such as the following:

 If ((VarType(someVariable) And VariantType.Array) = _
 VariantType.Array) Then

You can extract the data type of the array with the following code fragment:

 VarType(someVariable) And Not VariantType.Array

All object variables, whether late bound or early bound, return VariantType.Object.

Data types that are members of the base class library but do not directly map to one of the core
data types listed in the VariantType enumeration (such as UInt16 or even UInteger) return
VariantType.UserDefinedType.

Empty vbEmpty Null reference.

Error System.Exception instance.

Integer vbInteger Integer data type.

Long vbLong Long data type.

Null vbNull Null object; DBNull.

Object vbObject
Object, uninitialized string, uninitialized array, object of a
nonspecific type; Nothing.

Short Short data type.

Single vbSingle Single data type.

String vbString String data type.

UserDefinedType vbUserDefinedType A structure instance.

Variant vbVariant
Variant data type. This entry is for backward compatibility.
The .NET Object data type replaces the VB 6 Variant data
type.

Usage at a Glance

If varName is a dimensioned array, the VarType function returns VariantType.Array and the data

type of the array elements, combined using a bitwise Or operation. You can test for an array
with a code fragment, such as the following:

 If ((VarType(someVariable) And VariantType.Array) = _
 VariantType.Array) Then

You can extract the data type of the array with the following code fragment:

 VarType(someVariable) And Not VariantType.Array

All object variables, whether late bound or early bound, return VariantType.Object.

Data types that are members of the base class library but do not directly map to one of the core
data types listed in the VariantType enumeration (such as UInt16 or even UInteger) return
VariantType.UserDefinedType.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

You could not pass a user-defined data type to VarType in VB 6. This use is supported in .NET.

In VB 6, using the VarType function on an object returned the data type of its default property.
In .NET, all objects, including objects that have default properties, return VariantType.Object.

See Also

TypeName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VBFixedArray Attribute

Class

Microsoft.VisualBasic.VBFixedArrayAttribute

Applies To

Field

Constructor

 New(upper1[, upper2])

upper1 (required; Integer)

The upper limit of the array's first dimension

upper2 (optional; Integer)

The upper limit of the array's second dimension

Properties

Bounds (array of Integer)

The upper bounds of a particular dimension of the array. The first dimension is represented by
VBFixedArrayAttribute.Bounds(0). The upper boundary of the array dimension can be

retrieved by calling the UBound function.

Length (Integer)

The total number of elements in all dimensions of the array.

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The <VBFixedArray> attribute defines a fixed array. This attribute can be used in defining fixed arrays
within structures, particularly structures that are passed to Win32 API functions, and for defining
fixed-length structures used by VB file input and output functions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VBFixedString Attribute

Class

Microsoft.VisualBasic.VBFixedStringAttribute

Applies To

Field

Constructor

 New(length)

length (required; Integer)

The length of the string

Properties

Length (Integer)

Read-only. Value from the length constructor parameter.

Description

The <VBFixedString> attribute identifies a fixed-length string. It is the rough equivalent of the VB 6
declaration:

 Dim sFixed As String * length

This attribute can be used to define fixed-length strings within structures, particularly structures that
are to be passed to Win32 API functions. It is also useful when defining fixed-length strings to be
written to, and read from, random access files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

This example creates a random access file, which must contain fixed-length records, and uses the
<VBFixedString> attribute to create a fixed-length string of 10 characters. This ensures that all
records will be a uniform length. Without the <VBFixedString> attribute, the code would generate
runtime errors (IOException) due to the invalid record length.

 ' Assumes "Option Strict Off"
 Structure Person
 <vbFixedString(10)> Public Name As String
 Public Age As Short
 End Structure

 Public Sub BuildFile()
 Dim onePerson As New Person
 Dim outputFile As Integer = FreeFile()

 FileOpen(outputFile, ".\person.txt", OpenMode.Random, _
 OpenAccess.ReadWrite, OpenShare.Default, Len(onePerson))

 onePerson.Name = "John"
 onePerson.Age = 31
 FilePut(outputFile, onePerson, 1)

 onePerson.Name = "Jane"
 onePerson.Age = 27
 FilePut(outputFile, onePerson, 2)

 FileGet(outputFile, onePerson, 1)
 Console.WriteLine(Trim(onePerson.Name) & " is " & onePerson.Age)
 FileClose(outputFile)
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VbTypeName Function

Class

Microsoft.VisualBasic.Information

Syntax

 VbTypeName

(urtName)

urtName (required; String)

The name of a Common Type System data type

Description

The VbTypeName function returns the name of the Visual Basic data type wrapper that corresponds to
a particular Common Type System (CTS) data type. For instance, passing "DateTime" returns the text
"Date."

Usage at a Glance

If urtName is not a valid CTS data type or does not correspond to a Visual Basic data type, the

function returns Nothing.

To determine the VB data type of a particular variable, call the variable's GetType method to
retrieve a Type object and then call the Type object's ToString method to retrieve its data type
name. This string can then be passed to the VbTypeName function. For example:

 vbName = VbTypeName(someVariable.GetType().ToString())

Version Differences

The VbTypeName function is new to VB under .NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

SystemTypeName Function, TypeName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WebMethod Attribute

Class

System.Web.Services.WebMethodAttribute

Applies To

Method

Constructors

 New([[[[enableSession], transactionOption], cacheDuration], _

 bufferResponse])

enableSession (optional; Boolean)

Indicates whether session state is enabled for the web method call (true) or not (False). If
omitted, the default value is False.

transactionOption (optional; TransactionOption enumeration)

Indicates whether the web method supports transactions. One of the following
System.EnterpriseServices.TransactionOption enumeration values: Disabled, NotSupported,
Supported, Required, and RequiresNew. A web method must participate as the root object of a
transaction. Because of this, Supported and NotSupported are both equivalent to NotSupported,
and Required and RequiresNew are both equivalent to RequiresNew. If omitted, the default value
is Disabled.

cacheDuration (optional; Integer)

Indicates the number of seconds the response to the web method request should be stored in
the cache. If omitted, the default value is 0, which indicates that responses to web methods
are not cached.

bufferResponse (optional; Boolean)

Indicates whether the response to the web method request is buffered (true) or not (False). If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

omitted, the default value is TRue.

Properties

BufferResponse (Boolean)

Value from the bufferResponse constructor parameter.

CacheDuration (Integer)

Value from the cacheDuration constructor parameter.

Description (String)

Provides a description for the web service that is displayed in the Service Description page and
the Web Service Help page. Its default value is an empty string.

EnableSession (Boolean)

Read-only. Value from the enableSession constructor parameter.

MessageName (String)

Identifies the public name by which the web method is invoked by clients. Since web methods
do not support overloading, the property provides a method for identifying overloaded methods
that share the same name. Its default value is the name of the web method.

TransactionOption (TransactionOption enumeration)

Read-only. Value from the transactionOption constructor parameter.

Description

The <WebMethod> attribute marks a method within a web service as a web method callable from a web
client. The method and the class to which it belongs must be public and must be part of an ASP.NET
application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WebService Attribute

Class

System.Web.Services.WebServiceAttribute

Applies To

Class

Constructor

 New()

Properties

Description (String)

A textual description of the web service. The description is displayed in the Service Description
page and the Web Service Help page.

Name (String)

The name to be assigned to the web service. Ordinarily, the web service name corresponds to
the name of the class. However, the Name property of the <WebService> attribute is used
instead of the class name as the name of the web service.

Namespace (String)

The web service's namespace. During development, the namespace http://tempuri.org/ is used
by default. However, a unique namespace should be assigned to any production web service.
Although the namespace for a web service resembles a URL, it need not point to any valid
Internet resource.

Description

The <WebService> attribute is used to assign a namespace and a description to an ASP.NET web

http://tempuri.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

service. Each web service must also include the "@ WebService" directive.

Example

The example uses an ".asmx" file with the following contents:

 <%@ WebService Language="VB" Class="HelloWebService"
 Codebehind="Hello.asmx.vb" %>

It has the following code-behind file:

 Option Strict

 Imports System.Web.Services

 <WebService(Name:="Hello", _
 Description:="Displays a greeting to the user.", _
 Namespace:="http://www.oreilly.com/VbNet")> _
 Public Class HelloWebService
 <WebMethod> Public Function SayHello(ToWhom As String) As String
 Return "Hello, " & ToWhom
 End Function
 End Class

See Also

WebMethod Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Weekday Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Integer = Weekday(dateValue[, dayOfWeek])

dateValue (required; Date)

The source date from which to extract the weekday.

dayOfWeek (optional; FirstDayOfWeek enumeration)

Indicates the first day of the week. One of the following Microsoft.VisualBasic.FirstDayOfWeek
enumeration members: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or
System (to use the regional default). If omitted, Sunday is used.

Description

The Weekday function returns a value indicating the day of the week. A value of 1 indicates the first
day of the week; 7 is the last day. These numbers are interpreted based on the definition of the first
day of the week. By default, Sunday is the first day of the week.

Usage at a Glance

If passing a date literal as dateValue, the Weekday function requires that all four digits of the year be

present.

Example

Since the code:

 Weekday(#11/7/2005#, FirstDayOfWeek.Sunday)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returns 2; the date November 7, 2005 is a Monday.

Version Differences

The named parameters of the function have changed from date and firstDayOfWeek in VB 6 to
dateValue and dayOfWeek in .NET respectively.

See Also

DatePart Function, Day Function, WeekdayName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WeekdayName Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As String = WeekdayName(weekday[, abbreviate[, _

 firstDayOfWeekValue]])

weekday (required; Long)

The ordinal number of the weekday, from 1 (first) to 7 (last).

abbreviate (optional; Boolean)

Specifies whether to return the full day name or an abbreviation. The default value is False.

firstDayOfWeekValue (optional; FirstDayOfWeek constant)

Indicates the first day of the week. One of the following Microsoft.VisualBasic.FirstDayOfWeek
enumeration members: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or
System (to use the regional default). If omitted, System is used.

Description

The WeekdayName function returns the name of the indicated weekday.

Usage at a Glance

weekday must be a number between 1 and 7, or the function generates an error.

The weekday argument must be an Integer, not a Date. Use the Weekday function to obtain a

weekday from a date. The setting used for the first day of the week should be identical in both
functions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

MonthName Function, Weekday Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While...End While Statement

Syntax

 While condition

 [statements]
 [Exit While]

 [statements]
 [Continue While]

 [statements]
 End While

condition (required; Boolean)

An expression that is reevaluated each pass through the loop

statements (optional)

Program statements to execute while condition remains true

Description

The While...End While statement repeatedly executes program code while a given condition remains
true. The loop block is executed each time condition evaluates to true; the entire loop is skipped
once condition evaluates to False. The Exit While statement can be used at any time to exit the

While statement early.

New in 2005. The Continue While statement can be used at any time to immediately jump back to
the top of the loop and attempt to process the next iteration. The condition is reevaluated

immediately upon reaching the top of the loop.

Usage at a Glance

A Nothing condition is evaluated as False.

You can nest While...End While loops within each other.

The While...End While statement is a subset of the more flexible Do...Loop statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Differences

In VB 6, the ending clause that accompanies the While construct is Wend; in .NET, it is EndWhile.

Visual Basic 2005 includes the Continue While statement.

See Also

Do...Loop Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With...End With Statement

Syntax

 With object

 [statements]
 End With

object (required; Object)

A previously declared object variable or instance

statements (optional)

Program code to execute against object

Description

The With...End With block construct is used to execute a series of statements on an object without
having to qualify each use with the object name itself.

Usage at a Glance

A member of object is referenced within a With block by omitting the object name and simply

leading with a period and the member name.

With statements can be nested, but only the object referenced in the inner block's With clause
can be used without qualification by the code in the inner block.

You cannot jump into or out of a With block using the GoTo statement. If you need to exit a
block early, you can place a label on the End With line and use a GoTo statement to jump to that
line.

object cannot be assigned a new instance while in the With block.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Structure Point
 Public x As Integer
 Public y As Integer
 End Structure

 Public Sub TestPoint()
 Dim samplePoint As Point
 With samplePoint
 .x = 10 ' Refers to samplePoint.x
 .y = 100 ' Refers to samplePoint.y
 End With
 MsgBox(samplePoint.x)
 End Sub

See Also

Using...End Using Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WithEvents Keyword

Description

The WithEvents keyword enables event management on an instance variable. For more information
on using the WithEvents keyword, see the Dim Statement entry elsewhere in this chapter.

See Also

Dim Statement, Handles Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Write, WriteLine Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

 Write(fileNumber, output)

 WriteLine(fileNumber[, output])

fileNumber (required; Integer)

Any valid file number of a file opened with FileOpen

output (required for Write ; any)

A comma-delimited list of expressions, or a ParamArray, to be written to the file

Description

The Write and WriteLine procedures write data to a sequential file. The WriteLine version also
appends line termination characters.

Usage at a Glance

output can be a ParamArray array containing values to be written to the file indicated by
fileNumber.

The following table describes how the Write and WriteLine procedures handle certain types of
data, regardless of the locale, to allow files to be read universally:

Data type Data written to file

Numeric Decimal separator is always written as a period (.)

Boolean #TRUE# or #FALSE#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data type Data written to file

Date #yyyy-mm-dd hh:mm:ss# (uses a 24-hour clock)

Null #NULL#

Error #ERROR errorcode#

The Write and WriteLine procedures automatically delimit output fields with commas and
surround string data with quotation marks.

Data written to a file using the Write and WriteLine procedures is often read using the Input
procedure.

If no output arguments are supplied to the WriteLine procedure, only the line termination

characters are written.

These procedures do not support named arguments.

Version Differences

There are many syntactical differences between the VB 6 Write statement and the .NET Write
procedure.

The WriteLine procedure is new with .NET as a partial replacement for the VB 6 Write
statement.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

Input Procedure, Print, PrintLine Procedures

Date #yyyy-mm-dd hh:mm:ss# (uses a 24-hour clock)

Null #NULL#

Error #ERROR errorcode#

The Write and WriteLine procedures automatically delimit output fields with commas and
surround string data with quotation marks.

Data written to a file using the Write and WriteLine procedures is often read using the Input
procedure.

If no output arguments are supplied to the WriteLine procedure, only the line termination

characters are written.

These procedures do not support named arguments.

Version Differences

There are many syntactical differences between the VB 6 Write statement and the .NET Write
procedure.

The WriteLine procedure is new with .NET as a partial replacement for the VB 6 Write
statement.

In Visual Basic 2005, the My.Computer.FileSystem object provides more robust access to file
management features.

See Also

Input Procedure, Print, PrintLine Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Year Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

 Dim result As Integer = Year(dateValue)

dateValue (required; Date)

The source date from which to extract the year

Description

The Year function returns a value representing the year of the supplied date.

Usage at a Glance

With OptionStrict set to On, the source value must first be converted to a Date data type. You can
use the CDate function for this purpose. The IsDate function can also be used to confirm that the
source expression is a valid date.

See Also

DatePart Function, Day Function, Month Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. The 'My' Reference
The My Namespace feature is one of many productivity enhancements introduced with Visual Basic
2005 that bring additional ease of use to .NET. It collects many of the commonly used features of the
existing Framework Class Library and bundles them into an ordered hierarchy, simplifying the syntax
of those features where possible. More than just a quick lookup or a list of shortcuts, My takes many
complex Framework classes and simplifies them for VB programmers.

This chapter includes a reference entry for each member of the My Namespace hierarchy. Each entry
includes the following descriptive components:

Location

Identifies the position of the entry within the My hierarchy.

Syntax

Demonstrates the basic usage and syntax of the entry, with descriptions for all programmer-
supplied values.

Description

Provides general information on the entry and its use.

Public Members

For entries that represent entire objects, this component identifies some or all of the more
useful public members of that object. Some objects have separate entries in this chapter for
each member within the object.

Usage at a Glance

Identifies issues that may impact the use of this entry in your source code.

Example

Many entries include a short example that demonstrates common usage for the entry.

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most of the entries in the My hierarchy are derived from other parts of the Framework Class
Library. This component identifies those root sources and additional library features that
provide identical or related functionality.

See Also

Identifies related elements in the My hierarchy that are also defined in this chapter.

The My Namespace feature includes many hierarchy branches. Some branches, and also some
members within each branch, are only available for use in certain types of applications. For instance,
the My.Response object is only available in ASP.NET applications. Other members provide different
types of functionality, depending on the project type. All of these limitations are discussed within
each entry.

Some entries are only valid in Windows Forms applications, specifically those Windows forms
applications that have the "application framework" enabled. This feature, introduced in Visual Basic
2005, provides a simplified method of starting up and ending Windows Forms applications, at least
from the point of view of the source code. These features are enabled through the project's
Application Properties panel. To access the project's properties, select the Properties command in
Visual Studio's Project menu or double-click on the My Project entry in Visual Studio's Solution
Explorer. On this panel, use the Enable application framework field to toggle the use of this feature.

Some members within the My hierarchy are more commonly used than others. Some of the less
commonly used features are hidden from Visual Studio's IntelliSense feature by default. To view
these entries, select the All tab from the IntelliSense listing that appears while typing the entry's
parent in your source code.

Some features within the My hierarchy may be limited for use by the current set of security
permissions in effect for the active user, application, or thread of execution. Permissions are found in
the System.Security.Permissions namespace.

See Appendix B for a hierarchical listing of all entries discussed in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AllUsersApplicationData Property

Location

My.Computer.FileSystem.SpecialDirectories.AllUsersApplicationData

Syntax

 Dim result As String = My.Computer.FileSystem. _
 SpecialDirectories.AllUsersApplicationData

Description

The AllUsersApplicationData property returns a string that contains the full path name to the
"application data" directory shared by all users on the local workstation. Usually, this directory is
found at C:\Documents and Settings\All Users\ApplicationData, but it may vary from system to
system.

Usage at a Glance

This property is read-only.

This directory contains files and directories used to manage application-specific data that is
shared by all authorized users of the workstation.

This path may not be defined in some cases. In such cases, use of this property generates an
exception.

The returned path will never have a backslash "\" character at the end.

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy.AllUsersApplicationData Property

Microsoft.VisualBasic.FileIO.SpecialDirectories.AllUsersApplicationData Property

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurrentUserApplicationData Property, Desktop Property, MyDocuments Property, MyMusic Property,
MyPictures Property, ProgramFiles Property, Programs Property, SpecialDirectories Object, Temp
Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AltKeyDown Property

Location

My.Computer.Keyboard.AltKeyDown

Syntax

 Dim result As Boolean = My.Computer.Keyboard.AltKeyDown

Description

The AltKeyDown property that indicates the current state of the Alt key, whether down (TRue) or up
(False)

Usage at a Glance

This property is read-only.

This property is only valid in non-server applications.

For systems with two Alt keys, this setting indicates whether either Alt key is pressed. To
examine the state of a specific Alt key during a control event, perform a bitwise comparison of
the control's ModifierKeys property with the Keys.LMenu or Keys.RMenu enumeration value.

Related Framework Entries

Microsoft.VisualBasic.Devices.Keyboard.AltKeyDown Property

System.Windows.Forms.Control.ModifierKeys Property

System.Windows.Forms.Keys Enumeration

See Also

CtrlKeyDown Property, Keyboard Object, ShiftKeyDown Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application Object

Location

My.Application

Description

The Application object provides access to features and information about the currently running
application or DLL library.

Public Members

The following members of the My.Application object have their own entries elsewhere in this chapter.

ApplicationContext Property

ChangeCulture Method

ChangeUICulture Method

CommandLineArgs Property

Culture Property

Deployment Property

DoEvents Method

GetEnvironmentVariable Method

Info Object (My.Application)

IsNetworkDeployed Property

Log Object (My.Application)

MinimumSplashScreenDisplayTime Property

NetworkAvailabilityChanged Event (My.Application)

OpenForms Property

Run Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SaveMySettingsOnExit Property

Shutdown Event

SplashScreen Property

Startup Event

StartupNextInstance Event

UICulture Property

UnhandledException Event

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.ApplicationBase Class

Microsoft.VisualBasic.ApplicationServices.ConsoleApplicationBase Class

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase Class

See Also

Info Object (My.Application)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ApplicationContext Property

Location

My.Application.ApplicationContext

Syntax

 Dim result As System.Windows.Forms.ApplicationContext = _
 My.Application.ApplicationContext

Description

The ApplicationContext property returns an object of type System.Windows.Forms.ApplicationContext
for the active thread. This object provides features that let you monitor and interact with the closing
activities of the current thread of execution. For instance, you can force the exit of the current thread
based on conditions you determine.

Public Members

The returned ApplicationContext object includes the following notable public members.

Member Description

ExitThread Method. Forces the current application thread to exit.

MainForm
Property. Identifies the "main" Windows form within the running application
thread.

OnMainFormClosed
Method. This method is called when the main application form (as defined
through the MainForm property) closes. By default, this method causes the
thread to exit.

ThreadExit
Event. Called just before the active thread exits so that any closing activities
can be performed.

Usage at a Glance

This property is only valid in Windows Forms applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.ApplicationContext
Property

System.Windows.Forms.ApplicationContext Class

See Also

Application Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AssemblyName Property

Location

My.Application.Info.AssemblyName

Syntax

 Dim result As String = My.Application.Info.AssemblyName

Description

The AssemblyName property returns the name of the assembly file for the application, first removing
the extension. This file contains the manifest for the assembly.

Usage at a Glance

This property is read-only.

Any file extension, such as ".exe" or ".dll," is first removed before reporting the assembly name
through this property.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.AssemblyName Property

System.Reflection.AssemblyName.Name Property

See Also

DirectoryPath Property, Info Object (My.Application), LoadedAssemblies Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Audio Object

Location

My.Computer.Audio

Description

Use the Audio object to play system sound files and other sound files through the system speakers.

Public Members

The following members of the My.Computer.Audio object have their own entries elsewhere in this
chapter.

Play Method

PlaySystemSound Method

Stop Method

Usage at a Glance

This object and its members are only valid in non-server applications.

Related Framework Entries

Microsoft.VisualBasic.Devices.Audio Class

See Also

Computer Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AvailablePhysicalMemory Property

Location

My.Computer.Info.AvailablePhysicalMemory

Syntax

 Dim result As ULong = My.Computer.Info.AvailablePhysicalMemory

Description

The AvailablePhysicalMemory property returns the total amount of free bytes of physical memory on
the local computer.

Usage at a Glance

This property is read-only.

This property only works on platforms that make the information available. This includes
Windows XP, Windows 2000 Professional, Windows Server 2003, Windows 2000 Server, or any
later versions of these systems.

An exception is thrown if, for any reason, the application is unable to determine the current
status of memory on the system.

Related Framework Entries

Microsoft.VisualBasic.Devices.ComputerInfo.AvailablePhysicalMemory Property

See Also

AvailableVirtualMemory Property, Info Object (My.Computer), TotalPhysicalMemory Property,
TotalVirtualMemory Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AvailableVirtualMemory Property

Location

My.Computer.Info.AvailableVirtualMemory

Syntax

 Dim result As ULong = My.Computer.Info.AvailableVirtualMemory

Description

The AvailableVirtualMemory property returns the total amount of free bytes of virtual address space
on the local computer.

Usage at a Glance

This property is read-only.

This property only works on platforms that make the information available. This includes
Windows XP, Windows 2000 Professional, Windows Server 2003, Windows 2000 Server, or any
later versions of these systems.

An exception is thrown if, for any reason, the application is unable to determine the current
status of memory on the system.

Related Framework Entries

Microsoft.VisualBasic.Devices.ComputerInfo.AvailableVirtualMemory Property

See Also

AvailablePhysicalMemory Property, Info Object (My.Computer), TotalPhysicalMemory Property,
TotalVirtualMemory Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ButtonsSwapped Property

Location

My.Computer.Mouse.ButtonsSwapped

Syntax

 Dim result As Boolean = My.Computer.Mouse.ButtonsSwapped

Description

On most systems, the left mouse button performs selection, while the right mouse button performs
context-specific actions. The ButtonsSwapped property indicates whether the functionality normally
assigned to each button has been reversed (TRue) or not (False).

Usage at a Glance

This property is read-only.

This property is only valid in non-server applications.

An exception is thrown if the computer does not have an installed mouse.

Related Framework Entries

Microsoft.VisualBasic.Devices.Mouse.ButtonsSwapped Property

System.Windows.Forms.SystemInformation.MouseButtonsSwapped Property

See Also

Mouse Object, WheelExists Property, WheelScrollLines Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CapsLock Property

Location

My.Computer.Keyboard.CapsLock

Syntax

 Dim result As Boolean = My.Computer.Keyboard.CapsLock

Description

The CapsLock property indicates the current state of the Caps Lock key, whether on (TRue) or off
(False).

Usage at a Glance

This property is read-only.

This property is only valid in non-server applications.

Related Framework Entries

Microsoft.VisualBasic.Devices.Keyboard.CapsLock Property

See Also

Keyboard Object, NumLock Property, ScrollLock Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ChangeCulture Method

Location

My.Application.ChangeCulture

Syntax

 My.Application.ChangeCulture(cultureName)

cultureName (required; String)

The name of the culture to use. This parameter includes a two-letter lowercase language code,
optionally followed by a hyphen and a two-letter uppercase country or region code. These
codes are defined as ISO standards. For instance, the culture for the English language with no
specified region is "en," while English in the United States is defined as "en-US." Setting this
parameter to the empty string ("") indicates the default "invariant" culture. See the
System.Globalization.CultureInfo Class entry in the Visual Studio documentation for a full
listing of all possible culture name values.

Description

The ChangeCulture method modifies the active culture settings used by the active thread to format
and manage certain display elements. The culture setting controls the formatting of dates, times,
numbers, currency values, letter casing, and the sorting and comparison of text strings. For instance,
this setting controls the default order of the month, day, and year values when formatting dates.
Although the culture setting includes a language code, it is not used to determine the user interface
language.

Usage at a Glance

An exception is thrown if an invalid culture name is used.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.ApplicationBase.ChangeCulture Method

System.Globalization.CultureInfo Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Threading.Thread.CurrentCulture Property

See Also

Application Object, ChangeUICulture Method, Culture Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ChangeUICulture Method

Location

My.Application.ChangeUICulture

Syntax

 My.Application.ChangeUICulture(cultureName)

cultureName (required; String)

The name of the culture to use. This parameter includes a two-letter lowercase language code,
optionally followed by a hyphen and a two-letter uppercase country or region code. These
codes are defined as ISO standards. For instance, the culture for the English language with no
specified region is "en," while English in the United States is defined as "en-US." Setting this
parameter to the empty string ("") indicates the default "invariant" culture. See the
System.Globalization.CultureInfo Class entry in the Visual Studio documentation for a full
listing of all possible culture name values.

Description

The ChangeUICulture method modifies the active user-interface culture settings used by the active
thread to correctly locate display resources. An application may include different display strings and
other resources that vary by culture or language. This setting causes the application to automatically
select the appropriate set of resources.

Usage at a Glance

An exception is thrown if an invalid culture name is used.

The use of this method impacts the application's interaction with the Resource Manager and
alters the behavior of the My.Resources object.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.ApplicationBase.ChangeUICulture Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Globalization.CultureInfo Class

System.Threading.Thread.CurrentUICulture Property

See Also

Application Object, ChangeCulture Method, InstalledUICulture Property, Resources Object, UICulture
Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ClassesRoot Property

Location

My.Computer.Registry.ClassesRoot

Syntax

 Dim result As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.ClassesRoot

Description

The ClassesRoot property returns a Microsoft.Win32.RegistryKey object that refers to the
HKEY_CLASSES_ROOT location in the Windows registry. This entry point is used primarily to store
ActiveX class-specific information and Windows file associations.

Usage at a Glance

This property is read-only.

You must have sufficient security permissions to read or write keys and values in the registry.

Example

The following example displays all of the sub-elements of the HKEY_CLASSES_ROOT registry key element
in a listbox control. The example assumes that you are using this code on a form with a defined
ListBox1 control.

 ListBox1.DataSource = _
 My.Computer.Registry.ClassesRoot.GetSubKeyNames()

Related Framework Entries

Microsoft.VisualBasic.MyServices.RegistryProxy.ClassesRoot Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.Win32.Registry.ClassesRoot Property

See Also

CurrentConfig Property, CurrentUser Property, DynData Property, GetValue Method, LocalMachine
Property, PerformanceData Property, Registry Object, SetValue Method, Users Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clear Method

Location

My.Computer.Clipboard.Clear

Syntax

 My.Computer.Clipboard.Clear()

Description

The Clear method removes all data from the system clipboard.

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.Clear Method

System.Windows.Forms.Clipboard.Clear Method

See Also

Clipboard Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clipboard Object

Location

My.Computer.Clipboard

Description

Use the Clipboard object to add data to, and retrieve data from, the system clipboard.

Public Members

The following members of the My.Computer.Clipboard object have their own entries elsewhere in this
chapter.

Clear Method

ContainsAudio Method

ContainsData Method

ContainsFileDropList Method

ContainsImage Method

ContainsText Method

GetAudioStream Method

GetData Method

GetDataObject Method

GetFileDropList Method

GetImage Method

GetText Method

SetAudio Method

SetData Method

SetDataObject Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetFileDropList Method

SetImage Method

SetText Method

Usage at a Glance

This object and its members are only valid in non-server applications.

The lifetime of clipboard data is beyond the control of your application. Data that you place on
the clipboard may persist even after your application is closed. Also, other applications may
replace data you add with different data, even if your application is still active.

The clipboard only holds one set of data at a time, normally in a single format. The most
common formats are those defined through the System.Windows.Forms.DataFormats
enumeration. To store multiple formats on the clipboard at the same time, use the
My.Computer.Clipboard.SetDataObject method.

Only threads using the single-threaded apartment (STA) mode can access the clipboard
remotely. An exception is raised when accessing the clipboard remotely using other modes.

A class must be serializable (with the ISerializable interface) before its data can be added to the
clipboard.

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy

Microsoft.VisualBasic.VariantType.DataObject

System.Windows.Forms.Clipboard

System.Windows.Forms.DataFormats

See Also

Computer Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clock Object

Location

My.Computer.Clock

Description

Use this object to access features related to timing and the system clock.

Public Members

The following members of the My.Computer.Clock object have their own entries elsewhere in this
chapter.

GmtTime Property

LocalTime Property

TickCount Property

Related Framework Entries

Microsoft.VisualBasic.Devices.Clock Object

See Also

Computer Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Close Method

Location

TextFieldParser.Close

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 fileParser.Close()

Description

The Close method closes the file represented by a TextFieldParser object and ends the active parsing
process.

Usage at a Glance

You must close the TextFieldParser object when finished with it. Use the object's Close method or
create the object instance with the Using keyword. See the TextFieldParser Object entry in this
chapter for an example.

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.Close Method

See Also

EndOfData Property, ReadFields Method, ReadLine Method, ReadToEnd Method, TextFieldParser
Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CombinePath Method

Location

My.Computer.FileSystem.CombinePath

Syntax

 Dim result As String = _

 My.Computer.FileSystem.CombinePath(baseDirectory, relativePath)

baseDirectory (required; String)

The first path to be combined; an absolute path, either in UNC or drive-letter format

relativePath (required; String)

The second path to be combined; a relative path

Description

The CombinePath method combines an absolute path component with a relative path component and
returns a properly concatenated and formatted version. The concatenation properly inserts
backslashes in the right places.

Usage at a Glance

An exception is thrown if one or both of the paths are malformed. Neither the two input paths nor the
final output path need exist, but they all must be in a valid format.

Example

The following example combines a root directory path and a relative path component into a single
formatted path.

 Dim finalPath As String
 finalPath = My.Computer.FileSystem.CombinePath _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (My.Computer.FileSystem.SpecialDirectories.MyDocuments, _
 "Business\Expenses.txt")

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.CombinePath Method

Microsoft.VisualBasic.FileIO.FileSystem.CombinePath Method

System.IO.Path.Combine Method

See Also

FileSystem Object, GetName Method, GetParentPath Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CommandLineArgs Property

Location

My.Application.CommandLineArgs

Syntax

 Dim result As System.Collections.ObjectModel.ReadOnlyCollection(_
 Of String) = My.Application.CommandLineArgs

Description

The CommandLineArgs property returns a collection of each space-delimited argument from the
command-line text used to initiate the application. This collection includes the arguments only; the
application path used to start the application is not included. The System.Environment.CommandLine
property, on the other hand, includes the application path.

Usage at a Glance

This property is read-only.

If your application is configured to run as a single instance only, this property will always return
the command-line arguments for the initial instance. To view the arguments for subsequent
instances, use the My.Application.StartupNextInstance event and examine the CommandLine
property of the second parameter (e) for that event.

Example

The following example looks for the argument "/?" and takes action when found.

 Private Sub CheckCommandOptions()
 Dim scanArg As String

 For Each scanArg In My.Application.CommandLineArgs
 If (scanArg = "/?") Then
 ' ----- Show application usage.
 MsgBox("syntax: PrintInColor.exe [filename]")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End
 End If
 Next scanArg
 End Sub

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.ConsoleApplicationBase.CommandLineArgs Property

Microsoft.VisualBasic.ApplicationServices.StartupEventArgs.CommandLine Property

System.Environment.CommandLine Property

See Also

Application Object, GetEnvironmentVariable Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CommentTokens Property

Location

TextFieldParser.CommentTokens

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As String() = fileParser.CommentTokens

or:

 fileParser.CommentTokens = setOfTokens

setOfTokens (required; String array)

An array of the character or multicharacter values that, when appearing at the start of a line in
the input file being parsed by a TextFieldParser object, indicate that the line should be
considered as a comment. Any array elements with zero-length strings are ignored.

Description

The CommentTokens property sets or retrieves the comment tokens used with a TextFieldParser
object. Each comment token is a string of one or more characters. As each line of the input file is
read by the parser, a comparison is done between each token and the first few characters of the
input line. If there is a token match, the whole line is considered to be a comment line, and no fields
are extracted from the line.

Usage at a Glance

The CommentTokens property is valid with either fixed-width or delimited input files.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this chapter for an example.

Tokens assigned to the CommentTokens property may not include whitespace characters.

Example

The following example sets two comment tokens for the input file: "//" and "REM."

 Dim scanInput As Microsoft.VisualBasic.FileIO.TextFieldParser
 ' ...later...
 scanInput.CommentTokens = New String() {"//", "REM"}

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.CommentTokens Property

See Also

Delimiters Property, FieldWidths Property, PeekChars Method, TextFieldParser Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CompanyName Property

Location

My.Application.Info.CompanyName

Syntax

 Dim result As String = My.Application.Info.CompanyName

Description

The CompanyName property returns the company name as defined in the informational section of the
assembly.

Usage at a Glance

This property is read-only.

An exception occurs if the company name attribute, AssemblyCompanyAttribute (or
<AssemblyCompany>), is undefined in the active assembly.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.CompanyName Property

System.Diagnostics.FileVersionInfo.CompanyName Property

See Also

Copyright Property, Description Property, Info Object (My.Application), ProductName Property, Title
Property, Trademark Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Computer Object

Location

My.Computer

Description

Use the Computer object to access many features and objects related to the local computer.

Public Members

The following members of the My.Computer object have their own entries elsewhere in this chapter.

Audio Object

Clipboard Object

Clock Object

FileSystem Object

Info Object (My.Computer)

Keyboard Object

Mouse Object

Name Property (My.Computer)

Network Object

Ports Object

Registry Object

Screen Property

Related Framework Entries

Microsoft.VisualBasic.Devices.Computer Class

Microsoft.VisualBasic.Devices.ServerComputer Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

My Namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ContainsAudio Method

Location

My.Computer.Clipboard.ContainsAudio

Syntax

 Dim result As Boolean = My.Computer.Clipboard.ContainsAudio()

Description

The ContainsAudio method indicates whether the system clipboard contains audio data (TRue) or not
(False).

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.ContainsAudio Method

System.Windows.Forms.Clipboard.ContainsAudio Method

See Also

Clipboard Object, ContainsData Method, ContainsFileDropList Method, ContainsImage Method,
ContainsText Method, GetAudioStream Method, SetAudio Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ContainsData Method

Location

My.Computer.Clipboard.ContainsData

Syntax

 Dim result As Boolean = My.Computer.Clipboard.ContainsData(format)

format (required; String)

The name of the data type to look for on the clipboard

Description

The ContainsData method indicates whether the system clipboard contains the named custom format
of data (true) or not (False).

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Example

The following example checks the clipboard for data in the "MozartMusic" format.

 If My.Computer.Clipboard.ContainsData("MozartMusic") Then
 MsgBox("Found classical music.")
 End If

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.MyServices.ClipboardProxy.ContainsData Method

System.Windows.Forms.Clipboard.ContainsData Method

See Also

Clipboard Object, ContainsAudio Method, ContainsFileDropList Method, ContainsImage Method,
ContainsText Method, GetData Method, SetData Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ContainsFileDropList Method

Location

My.Computer.Clipboard.ContainsFileDropList

Syntax

 Dim result As Boolean = My.Computer.Clipboard.ContainsFileDropList()

Description

The ContainsFileDropList method indicates whether the system clipboard contains a list of file paths
(TRue) or not (False).

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.ContainsFileDropList Method

System.Windows.Forms.Clipboard.ContainsFileDropList Method

See Also

Clipboard Object, ContainsAudio Method, ContainsData Method, ContainsImage Method, ContainsText
Method, GetFileDropList Method, SetFileDropList Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ContainsImage Method

Location

My.Computer.Clipboard.ContainsImage

Syntax

 Dim result As Boolean = My.Computer.Clipboard.ContainsImage()

Description

The ContainsImage method indicates whether the system clipboard contains image data (TRue) or not
(False).

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.ContainsImage Method

System.Windows.Forms.Clipboard.ContainsImage Method

See Also

Clipboard Object, ContainsAudio Method, ContainsData Method, ContainsFileDropList Method,
ContainsText Method, GetImage Method, SetImage Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ContainsText Method

Location

My.Computer.Clipboard.ContainsText

Syntax

 Dim result As Boolean = My.Computer.Clipboard.ContainsText([format])

format (optional; TextDataFormat enumeration)

The specific type of text to be checked for on the clipboard. One of the following
System.Windows.Forms.TextDataFormat enumeration values.

Value Description

Not supplied Any type of text

CommaSeparatedValue Comma-separated fields of data in one or more records

Html HTML format

Rtf Rich Text Format

UnicodeText 16-bit Unicode character text

Description

The ContainsText method indicates whether the system clipboard contains text data (true) or not
(False), for either general text or a specific type of text.

Usage at a Glance

This method is only valid in non-server applications.

If the format parameter is missing, this method checks for any type of text on the system
clipboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Security restrictions in place for the active user may limit access to the system clipboard.

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.ContainsAudio Method

System.Windows.Forms.Clipboard.ContainsAudio Method

See Also

Clipboard Object, ContainsAudio Method, ContainsData Method, ContainsFileDropList Method,
ContainsImage Method, GetText Method, SetText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CopyDirectory Method

Location

My.Computer.FileSystem.CopyDirectory

Syntax

 My.Computer.FileSystem.CopyDirectory(source, _

 destination[, overwrite])

or:

 My.Computer.FileSystem.CopyDirectory(source, _

 destination, showUI[, onUserCancel])

source (required; String)

The path of the directory to be copied.

destination (required; String)

The path of the new directory. New copies of the files contained within source will be stored
directly within destination.

overwrite (optional; Boolean)

Indicates whether existing files at the destination should be overwritten (true) or not (False).
If this parameter is missing from the first syntax, it defaults to False.

showUI (required in syntax 2; UIOption enumeration)

Indicates whether error or progress dialog windows should appear during the copy. One of the
following Microsoft.VisualBasic.FileIO.UIOption enumeration values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

OnlyErrorDialogs Only shows error dialog boxes; does not display progress

AllDialogs Shows progress and error dialogs

If this parameter is missing, OnlyErrorDialogs is used by default.

onUserCancel (optional; UICancelOption enumeration)

The progress window includes a Cancel button. When pressed, the method takes action based
on this parameter. One of the following Microsoft.VisualBasic.FileIO.UICancelOption
enumeration values.

Value Description

DoNothing
Aborts the copy but returns no information indicating that the copy was
cancelled

ThrowException Throws an exception

If this parameter is missing, THRowException is used by default.

Description

The CopyDirectory method copies the indicated directory and all files within it to a new location.
destination is the new final directory; new copies of the files contained within the source directory
will appear directly within the destination directory.

Usage at a Glance

If the destination directory, though valid, does not exist, it will be created.

If a destination directory of the same name already exists, files already found in the destination
will be overwritten (when requested) as needed; files without name conflicts will remain. In
other words, the source and destination files will be merged.

An exception is thrown if the source or destination parameters are missing or invalid.

An exception is thrown if the source directory does not exist or a file to be overwritten is in use.

An exception is thrown if the user lacks sufficient file access permissions.

An exception is thrown if the source and destination are the same or the source contains the
destination.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example moves a directory to a new parent directory.

 My.Computer.FileSystem.CopyDirectory(_
 "C:\Templates\Documents", "C:\Archive")

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.CopyDirectory Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.CopyDirectory Method

See Also

CopyFile Method, CreateDirectory Method, DeleteDirectory Method, DeleteFile Method, FileSystem
Object, MoveDirectory Method, MoveFile Method, RenameDirectory Method, RenameFile Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CopyFile Method

Location

My.Computer.FileSystem.CopyFile

Syntax

 My.Computer.FileSystem.CopyFile(source, destination[, overwrite])

or:

 My.Computer.FileSystem.CopyFile(source, destination, _

 showUI[, onUserCancel])

source (required; String)

The path of the file to be copied.

destination (required; String)

The path of the new destination file.

overwrite (optional; Boolean)

Indicates whether an existing file at the destination should be overwritten (true) or not
(False). If this parameter is missing from the first syntax, it defaults to False.

showUI (required in syntax 2; UIOption enumeration)

Indicates whether error or progress dialog windows should appear during the copy. One of the
following Microsoft.VisualBasic.FileIO.UIOption enumeration values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

OnlyErrorDialogs Only shows error dialog boxes; does not display progress

AllDialogs Shows progress and error dialogs

If this parameter is missing, OnlyErrorDialogs is used by default.

onUserCancel (optional; UICancelOption enumeration)

The progress window includes a Cancel button. When pressed, the method takes action based
on this parameter. One of the following Microsoft.VisualBasic.FileIO.UICancelOption
enumeration values.

Value Description

DoNothing
Aborts the copy but returns no information indicating that the copy was
cancelled

ThrowException Throws an exception

If this parameter is missing, ThrowException is used by default.

Description

The CopyFile method copies the indicated file to a new location.

Usage at a Glance

If the destination directory, though valid, does not exist, it will be created.

An exception is thrown if the source or destination parameters are missing or invalid.

An exception is thrown if the source file does not exist or is in use, or if a file to be overwritten
is in use.

An exception is thrown if the user lacks sufficient file access permissions.

Example

The following example copies a file to a new location, overwriting any existing file with the same
name.

 My.Computer.FileSystem.CopyFile(_
 "C:\Templates\project.txt", "C:\NewProject\project.txt", True)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.CopyFile Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.CopyFile Method

System.IO.File.Copy Method

See Also

CopyDirectory Method, CreateDirectory Method, DeleteDirectory Method, DeleteFile Method,
FileSystem Object, MoveDirectory Method, MoveFile Method, RenameDirectory Method, RenameFile
Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright Property

Location

My.Application.Info.Copyright

Syntax

 Dim result As String = My.Application.Info.Copyright

Description

The Copyright property returns the copyright owner notice as defined in the informational section of
the assembly.

Usage at a Glance

This property is read-only.

An exception occurs if the copyright attribute, AssemblyCopyrightAttribute (or
<AssemblyCopyright>), is undefined in the active assembly.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.Copyright Property

System.Diagnostics.FileVersionInfo.LegalCopyright Property

See Also

CompanyName Property, Description Property, Info Object (My.Application), ProductName Property,
Title Property, Trademark Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateDirectory Method

Location

My.Computer.FileSystem.CreateDirectory

Syntax

 My.Computer.FileSystem.CreateDirectory(path)

path (required; String)

The path of the new directory to be created

Description

The CreateDirectory method creates a new empty directory.

Usage at a Glance

If the directory already exists, no error occurs.

Any nonexistent directories between the top of the file system and the destination directory to
be created will also be created.

An exception is thrown if the path parameter is missing or invalid.

An exception is thrown if the user lacks sufficient file access permissions.

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.CreateDirectory Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.CreateDirectory Method

System.IO.Directory.CreateDirectory Method

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CopyDirectory Method, CopyFile Method, DeleteDirectory Method, DeleteFile Method, FileSystem
Object, MoveDirectory Method, MoveFile Method, RenameDirectory Method, RenameFile Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CtrlKeyDown Property

Location

My.Computer.Keyboard.CtrlKeyDown

Syntax

 Dim result As Boolean = My.Computer.Keyboard.CtrlKeyDown

Description

The CtrlKeyDown property indicates the current state of the Control key, whether down (TRue) or up
(False).

Usage at a Glance

This property is read-only.

This property is only valid in non-server applications.

For systems with two Control keys, this setting indicates whether either Control key is pressed.
To examine the state of a specific Control key during a control event, perform a bitwise
comparison of the control's ModifierKeys property with the Keys.LControlKey or
Keys.RControlKey enumeration value.

Related Framework Entries

Microsoft.VisualBasic.Devices.Keyboard.CtrlKeyDown Property

System.Windows.Forms.Control.ModifierKeys Property

System.Windows.Forms.Keys Enumeration

See Also

AltKeyDown Property, Keyboard Object, ShiftKeyDown Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Culture Property

Location

My.Application.Culture

Syntax

 Dim result As System.Globalization.CultureInfo = _
 My.Application.Culture

Description

The Culture property returns a System.Globalization.CultureInfo object that indicates the active
culture settings used by the active thread to format and manage certain display elements. The
culture setting controls the formatting of dates, times, numbers, currency values, letter casing, and
the sorting and comparison of text strings. For instance, this setting controls the default order of the
month, day, and year values when formatting dates. Although the culture setting includes a language
code, it is not used to determine the user interface language.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.ApplicationBase.Culture Property

System.Globalization.CultureInfo Class

System.Threading.Thread.CurrentCulture Class

See Also

Application Object, ChangeCulture Method, InstalledUICulture Property, UICulture Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurrentConfig Property

Location

My.Computer.Registry.CurrentConfig

Syntax

 Dim result As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.CurrentConfig

Description

The CurrentConfig property returns a Microsoft.Win32.RegistryKey object that refers to the
HKEY_CURRENT_CONFIG location in the Windows registry. This entry point is used primarily to store
device-specific settings for the local computer.

Usage at a Glance

This property is read-only.

You must have sufficient security permissions to read or write keys and values in the registry.

Example

The following example displays all of the sub-elements of the HKEY_CURRENT_CONFIG registry key
element in a listbox control. The example assumes that you are using this code on a form with a
defined ListBox1 control.

 ListBox1.DataSource = My.Computer.Registry. _
 CurrentConfig.GetSubKeyNames()

Related Framework Entries

Microsoft.VisualBasic.MyServices.RegistryProxy.CurrentConfig Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.Win32.Registry.CurrentConfig Property

See Also

ClassesRoot Property, CurrentUser Property, DynData Property, GetValue Method, LocalMachine
Property, PerformanceData Property, Registry Object, SetValue Method, Users Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurrentDirectory Property

Location

My.Computer.FileSystem.CurrentDirectory

Syntax

 Dim result As String = My.Computer.FileSystem.CurrentDirectory

or:

 My.Computer.FileSystem.CurrentDirectory = path

path (required; String)

The full or relative path to a valid directory to use as the new "current" directory

Description

The CurrentDirectory property returns the full path to the "current" directory, the directory used
when referring to files with relative path names. This property can also set the current directory to a
new path.

Usage at a Glance

An exception is thrown if the user lacks sufficient privileges to examine the file system, or at
least the specified part of the file system.

An exception is thrown when setting this property if the supplied path is invalid.

Example

This sample code shows the basic functionality of the CurrentDirectory property.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 My.Computer.FileSystem.CurrentDirectory = "c:\Windows\System32"
 My.Computer.FileSystem.CurrentDirectory = ".." ' Up one level
 MsgBox(My.Computer.FileSystem.CurrentDirectory)
 ' ----- Displays "c:\WINDOWS"

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.CurrentDirectory Method

Microsoft.VisualBasic.FileIO.FileSystem.CurrentDirectory Method

System.IO.Directory.GetCurrentDirectory Method

See Also

Drives Property, FileSystem Object, FindInFiles Method, GetDirectories Method, GetDirectoryInfo
Method, GetDriveInfo Method, GetFileInfo Method, GetFiles Method, GetTempFileName Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurrentPrincipal Property

Location

My.User.CurrentPrincipal

Syntax

 Dim result As System.Security.Principal.IPrincipal = _
 My.User.CurrentPrincipal

Description

The CurrentPrincipal property gets or sets the current role-based security principal (the security
context, with access to user and role information) using the System.Security.Principal.IPrincipal
interface. In most Windows applications, this interface will exist through an instance of
Security.Principal.WindowsPrincipal. However, other custom principal formats are possible.

Usage at a Glance

An exception is thrown if you attempt to update this property without sufficient permissions.

In ASP.NET applications, the security information refers to the user associated with the current
HTTP request.

Example

The following example obtains the user name. This example checks if the application is using
Windows or custom authentication and uses that information to parse the My.User.Name property.

 Public Function GetCurrentUserName() As String
 If TypeOf My.User.CurrentPrincipal Is _
 System.Security.Principal.WindowsPrincipal Then
 ' ----- Windows username = "domain\user".
 Return Mid(My.User.Name, Instr(My.User.Name, "\") + 1)
 Else
 ' ----- Some other custom type of user.
 Return My.User.Name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If
 End Function

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.User.CurrentPrincipal Property

Microsoft.VisualBasic.ApplicationServices.WebUser.CurrentPrincipal Property

System.Security.Principal.GenericPrincipal

System.Security.Principal.IPrincipal Interface

System.Security.Principal.WindowsPrincipal

See Also

InitializeWithWindowsUser Method, IsAuthenticated Property, IsInRole Method, Name Property
(My.User), User Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurrentUser Property

Location

My.Computer.Registry.CurrentUser

Syntax

 Dim result As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.CurrentUser

Description

The CurrentUser property returns a Microsoft.Win32.RegistryKey object that refers to the
HKEY_CURRENT_USER location in the Windows registry. This entry point is used primarily to store
application and system settings specific to the current Windows user.

Usage at a Glance

This property is read-only.

You must have sufficient security permissions to read or write keys and values in the registry.

Example

The following example displays all of the sub-elements of the HKEY_CURRENT_USER registry key element
in a listbox control. The example assumes that you are using this code on a form with a defined
ListBox1 control.

 ListBox1.DataSource = My.Computer.Registry. _
 CurrentUser.GetSubKeyNames()

Related Framework Entries

Microsoft.VisualBasic.MyServices.RegistryProxy.CurrentUser Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.Win32.Registry.CurrentUser Property

See Also

ClassesRoot Property, CurrentConfig Property, DynData Property, GetValue Method, LocalMachine
Property, PerformanceData Property, Registry Object, SetValue Method, Users Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurrentUserApplicationData Property

Location

My.Computer.FileSystem.SpecialDirectories.CurrentUserApplicationData

Syntax

 Dim result As String = My.Computer.FileSystem. _
 SpecialDirectories.CurrentUserApplicationData

Description

The CurrentUserApplicationData property returns the full path name to the "application data" folder
for the current user on the local workstation. Usually, this directory is found at C:\Documents and
Settings\user\ApplicationData, but it may vary from system to system.

Usage at a Glance

This property is read-only.

This folder contains files and directories used to manage application-specific data for a specific
authorized user.

This path may not be defined in some cases. In such cases, use of this property generates an
exception.

The returned path will never have a backslash "\" character at the end.

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy.CurrentUserApplicationData Property

Microsoft.VisualBasic.FileIO.SpecialDirectories.CurrentUserApplicationData Property

See Also

AllUsersApplicationData Property, Desktop Property, MyDocuments Property, MyMusic Property,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyPictures Property, ProgramFiles Property, Programs Property, SpecialDirectories Object, Temp
Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DefaultFileLogWriter Property

Location

My.Application.Log.DefaultFileLogWriter

My.Log.DefaultFileLogWriter

Syntax

For client applications:

 Dim result As Microsoft.VisualBasic.Logging. _
 FileLogTraceListener = _
 My.Application.Log.DefaultFileLogWriter

For ASP.NET applications:

 Dim result As Microsoft.VisualBasic.Logging. _
 FileLogTraceListener = My.Log.DefaultFileLogWriter

Description

The DefaultFileLogWriter property returns an object of type
Microsoft.VisualBasic.Logging.FileLogTraceListener that identifies the current trace listener used by
the logging system.

Usage at a Glance

This property is read-only.

Diagnostic content written using the various Debug.Write methods is not sent to the trace
listeners.

This property is only valid in client and ASP.NET applications. For client applications, use
My.Application.Log.DefaultFileLogWriter. For ASP.NET applications, use
My.Log.DefaultFileLogWriter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.Logging.FileLogTraceListener Class

Microsoft.VisualBasic.Logging.Log.DefaultFileLogWriter Property

See Also

Log Object (My), Log Object (My.Application), TraceSource Property, WriteEntry Method,
WriteException Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DeleteDirectory Method

Location

My.Computer.FileSystem.DeleteDirectory

Syntax

 My.Computer.FileSystem.DeleteDirectory(path, onDirectoryNotEmpty)

or:

 My.Computer.FileSystem.DeleteDirectory(path, showUI, _

 recycle[, onUserCancel])

path (required; String)

The path to the directory to be deleted.

onDirectoryNotEmpty (required in syntax 1; DeleteDirectoryOption enumeration)

Indicates the action to take if the directory is not empty. One of the following
Microsoft.VisualBasic.FileIO.DeleteDirectoryOption enumeration values.

Value Description

DeleteAllContents Deletes all subordinate items.

ThrowIfDirectoryNonEmpty
Throws an exception. The Data property of the Exception object
lists the blocking items.

If this parameter is missing, DeleteAllContents is used by default.

showUI (optional; UIOption enumeration)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Indicates whether error or progress dialog windows should appear during the delete. One of the
following Microsoft.VisualBasic.FileIO.UIOption enumeration values.

Value Description

OnlyErrorDialogs Only shows error dialog boxes; does not display progress

AllDialogs Shows progress and error dialogs

If this parameter is missing, OnlyErrorDialogs is used by default.

recycle (optional; RecycleOption enumeration)

Indicates the state of the directory after it has been deleted. One of the following
Microsoft.VisualBasic.FileIO.RecycleOption enumeration values.

Value Description

DeletePermanently Permanently deletes the directory and its contents

SendToRecycleBin Moves the directory to the Recycle Bin

If this parameter is missing, DeletePermanently is used by default.

onUserCancel (optional; UICancelOption enumeration)

The progress window includes a Cancel button. When pressed, the method takes action based
on this parameter. One of the following Microsoft.VisualBasic.FileIO.UICancelOption
enumeration values.

Value Description

DoNothing
Aborts the deletion but returns no information indicating that the deletion
was cancelled

ThrowException Throws an exception

If this parameter is missing, ThrowException is used by default.

Description

The DeleteDirectory method deletes the indicated directory and all of its contents.

Usage at a Glance

Visual Basic includes an RmDir procedure that also deletes directories. However, that procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fails if the directory is not empty.

An exception is thrown if the path parameter is missing, invalid, or refers to a file.

An exception is thrown if the directory does not exist or is in use (including any of its contents).

An exception is thrown if the user lacks sufficient file access permissions.

Example

The following example permanently deletes a directory and its contents.

 My.Computer.FileSystem.DeleteDirectory(_
 ("C:\OldFiles", DeleteAllContents)

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.DeleteDirectory Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.DeleteDirectory Method

System.IO.Directory.Delete Method

See Also

CopyDirectory Method, CopyFile Method, CreateDirectory Method, DeleteFile Method, FileSystem
Object, MoveDirectory Method, MoveFile Method, RenameDirectory Method, RenameFile Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DeleteFile Method

Location

My.Computer.FileSystem.DeleteFile

Syntax

 My.Computer.FileSystem.DeleteFile(path[, showUI, _

 recycle[, onUserCancel]])

path (required; String)

The path to the file to be deleted.

showUI (optional; UIOption enumeration)

Indicates whether error or progress dialog windows should appear during the delete. One of the
following Microsoft.VisualBasic.FileIO.UIOption enumeration values.

Value Description

OnlyErrorDialogs Only shows error dialog boxes; does not display progress

AllDialogs Shows progress and error dialogs

If this parameter is missing, OnlyErrorDialogs is used by default.

recycle (optional; RecycleOption enumeration)

Indicates the state of the file after it has been deleted. One of the following
Microsoft.VisualBasic.FileIO.RecycleOption enumeration values.

Value Description

DeletePermanently Permanently deletes the file

SendToRecycleBin Moves the file to the Recycle Bin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If this parameter is missing, DeletePermanently is used by default.

onUserCancel (optional; UICancelOption enumeration)

The progress window includes a Cancel button. When pressed, the method takes action based
on this parameter. One of the following Microsoft.VisualBasic.FileIO.UICancelOption
enumeration values.

Value Description

DoNothing
Aborts the deletion but returns no information indicating that the deletion
was cancelled

ThrowException Throws an exception

If this parameter is missing, ThrowException is used by default.

Description

The DeleteFile method deletes the indicated file.

Usage at a Glance

Visual Basic includes a Kill procedure that also deletes files.

An exception is thrown if the path parameter is missing or invalid.

An exception is thrown if the file does not exist or is in use.

An exception is thrown if the user lacks sufficient file access permissions.

Example

The following example sends a file to the Recycle Bin.

 My.Computer.FileSystem.DeleteFile(_
 ("C:\workfile.txt", OnlyErrorDialogs, SendToRecycleBin)

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.DeleteFile Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.MyServices.FileSystemProxy.DeleteFile Method

System.IO.File.Delete Method

See Also

CopyDirectory Method, CopyFile Method, CreateDirectory Method, DeleteDirectory Method,
FileSystem Object, MoveDirectory Method, MoveFile Method, RenameDirectory Method, RenameFile
Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Delimiters Property

Location

TextFieldParser.Delimiters

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As String() = fileParser.Delimiters

or:

 fileParser.Delimiters = setOfDelimiters

setOfDelimiters (required; String array)

An array of the character or multicharacter values that identify the delimiters used to separate
data fields in each input line of a delimited text file being parsed by a TextFieldParser object.
End-of-line characters may not be used as field delimiters.

Description

The Delimiters property sets or retrieves the field delimiters used in delimited text-file parsing.
Although you can define more than one delimiter, most input files will use a single field delimiter,
such as a comma or a tab character.

You can also set the delimiters with the TextFieldParser object's SetDelimiters method.

Usage at a Glance

The Delimiters property is only useful with delimited input files, not fixed-width files.

Setting the Delimiters property does not alter the current value of the TextFieldType property.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An exception is thrown if you attempt to use line-termination characters, zero-length strings, or
Nothing as a field delimiter.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Example

The following example uses the Delimiters property to indicate the comma character as the field
delimiter.

 Dim scanInput As Microsoft.VisualBasic.FileIO.TextFieldParser
 ' ...later...
 scanInput.TextFieldType = _
 Microsoft.VisualBasic.FileIO.FieldType.Delimited
scanInput.Delimiters = New String() {","}

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.Delimiters Property

See Also

FieldWidths Property, HasFieldsEnclosedInQuotes Property, ReadFields Method, SetDelimiters Method,
SetFieldWidths Method, TextFieldParser Object, TextFieldType Property, TrimWhiteSpace Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deployment Property

Location

My.Application.Deployment

Syntax

 Dim result As System.Deployment.Application. _
 ApplicationDeployment = My.Application.Deployment

Description

The Deployment property returns the application's ClickOnce deployment object. This object provides
features that let you update the application's installation. It includes features to check for the
presence of an update and features that let you download updates interactively or in the background.

Public Members

The returned ApplicationDeployment object includes the following notable public members.

Member Description

CheckForDetailedUpdate

Method. Queries the network source for the deployment to see if an
updated version exists. If so, the returned
System.Deployment.Application.UpdateCheckInfo object includes
information about the update, such as its version number and size. An
asynchronous version of this method also exists.

CheckForUpdate
Method. Returns a Boolean that indicates whether an update is available
(true) or not (False).

CurrentVersion
Property. Indicates the version number of the currently deployed
instance.

DownloadFileGroup
Method. Downloads a specific subgroup of deployment files from the
network source. An asynchronous version of this method also exists.

Update
Method. Immediately updates this deployment from its network source.
An asynchronous version of this method also exists.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usage at a Glance

This property is read-only.

An exception is thrown if the application is not deployed as a ClickOnce application. Always use
the My.Application.IsNetworkDeployed property first to confirm that the application was
installed using ClickOnce.

Example

This sample code checks for an update.

 Public Sub CheckSoftwareUpdate()
 ' ----- Ask the user about updating the software.
 If (My.Application.IsNetworkDeployed = False) Then Exit Sub
 Dim updateInfo As System.Deployment.Application. _
 ApplicationDeployment = My.Application.Deployment
 Dim details As System.Deployment.Application.UpdateCheckInfo
 details = updateInfo.CheckForDetailedUpdate()
 If (details.UpdateAvailable = True) Then
 If (MsgBox("Version " & details.AvailableVersion.ToString & _
 " is available for download. Update now?", _
 MsgBoxStyle.Question Or MsgBoxStyle.YesNo, "Update") _
 = MsgBoxResult.Yes) Then
 ' ----- Continue with the update.
 updateInfo.Update()
 End If
 End If
 End Sub

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.ConsoleApplicationBase.Deployment Property

System.Deployment.Application.ApplicationDeployment

See Also

Application Object, IsNetworkDeployed Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description Property

Location

My.Application.Info.Description

Syntax

 Dim result As String = My.Application.Info.Description

Description

The Description property returns the application description as defined in the informational section of
the assembly.

Usage at a Glance

This property is read-only.

An exception occurs if the description attribute, AssemblyDescriptionAttribute (or
<AssemblyDescription>), is undefined in the active assembly.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.Description Property

System.Diagnostics.FileVersionInfo.FileDescription Property

See Also

CompanyName Property, Copyright Property, Info Object (My.Application), ProductName Property,
Title Property, Trademark Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Desktop Property

Location

My.Computer.FileSystem.SpecialDirectories.Desktop

Syntax

 Dim result As String = My.Computer.FileSystem. _
 SpecialDirectories.Desktop

Description

The Desktop property returns the full path name to the Desktop folder for the current user on the
local workstation. Usually, this directory is found at C:\Documents and Settings\user\Desktop, but it
may vary from system to system.

Usage at a Glance

This property is read-only.

This folder contains items that appear on the user's Windows desktop.

This path may not be defined in some cases. In such cases, use of this property generates an
exception.

The returned path will never have a backslash "\" character at the end.

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy.Desktop Property

Microsoft.VisualBasic.FileIO.SpecialDirectories.Desktop Property

See Also

AllUsersApplicationData Property, CurrentUserApplicationData Property, MyDocuments Property,
MyMusic Property, MyPictures Property, ProgramFiles Property, Programs Property, SpecialDirectories

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object, Temp Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DirectoryExists Method

Location

My.Computer.FileSystem.DirectoryExists

Syntax

 Dim result As Boolean = _

 My.Computer.FileSystem.DirectoryExists(path)

path (required; String)

The full path to a directory

Description

The DirectoryExists method indicates whether the supplied directory path exists (true) or not
(False).

Usage at a Glance

This method returns False if the user lacks sufficient file system access privileges.

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.DirectoryExists Method

Microsoft.VisualBasic.FileIO.FileSystem.DirectoryExists Method

System.IO.Directory.Exists Method

See Also

FileSystem Object, FileExists Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DirectoryPath Property

Location

My.Application.Info.DirectoryPath

Syntax

 Dim result As String = My.Application.Info.DirectoryPath

Description

The DirectoryPath property returns the name of the directory containing the active application.

Usage at a Glance

This property is read-only.

The returned path does not include a trailing backslash ("\").

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.DirectoryPath Property

System.Reflection.Assembly.Location Property

See Also

AssemblyName Property, Info Object (My.Application), LoadedAssemblies Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DoEvents Method

Location

My.Application.DoEvents

Syntax

 My.Application.DoEvents()

Description

The DoEvents method temporarily relinquishes control from the current block of code so that other
pending Windows messages can be processed. Using this method in a block of processing-intensive
code can make your application feel more responsive. In some instances, it may be better to use
multiple threads within your application to achieve this same goal.

Messages in the message queue for your application are normally processed one at a time by event
handlers. If you take a long time to complete processing for a single message, all other messages in
the queue will be blocked until the active event completes. Using the DoEvents method allows these
other messages to be processed.

Usage at a Glance

This method is only valid in Windows Forms applications.

When DoEvents is called from an event handler, it is possible that one of the messages being
handled will also call the same event handler.

Related Framework Entries

System.Windows.Forms.Application.DoEvents Method

See Also

Application Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DownloadFile Method

Location

My.Computer.Network.DownloadFile

Syntax

 My.Computer.Network.DownloadFile(address, destinationFileName _

 [, username, password [, showUI, connectionTimeout, _

 overwrite [, onUserCancel]]])

or:

 My.Computer.Network.DownloadFile(uri, destinationFileName _

 [, username, password [, showUI, connectionTimeout, _

 overwrite [, onUserCancel]]])

or:

 My.Computer.Network.DownloadFile(uri, destinationFileName, _

 networkCredentials, showUI, connectionTimeout, overwrite _

 [, onUserCancel])

address (required in syntax 1; String)

The file to download, including its full URL path.

uri (required in syntax 2 and 3; System.URI)

The uniform resource identifier (URI) of the file to download.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

destinationFileName (required; String)

The local destination path for the downloaded file.

username (optional; String)

The network user name for authentication purposes. If supplied, password must also be used.

password (optional; String)

The network password for authentication purposes. If supplied, username must also be used.

showUI (optional; Boolean)

Indicates whether a progress window should appear during the download. By default, no
progress window appears.

connectionTimeout (optional; Integer)

The number of seconds to wait before failure. By default, the timeout is 100 seconds.

overwrite (optional; Boolean)

Indicates whether any existing file at the destination location should be overwritten. By default,
existing files are not overwritten.

onUserCancel (optional; UICancelOption enumeration)

The progress window includes a Cancel button. When pressed, the method takes action based
on this parameter. One of the following Microsoft.VisualBasic.FileIO.UICancelOption
enumeration values.

Value Description

DoNothing
Aborts the download but returns no information indicating that the download
was cancelled

THRowException Throws an exception

If this parameter is missing, ThrowException is used by default.

networkCredentials (required in syntax 3; ICredentials interface)

The credentials to be supplied for authentication purposes, based on the
System.Net.ICredentials interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The DownloadFile method downloads a file from a network location, saving it in a specified
destination on the local computer.

Usage at a Glance

An exception is thrown if the source or destination path is invalid, or if the source web site
denies the request.

An exception is thrown if the user has invalid or insufficient security permissions to perform the
download.

An exception is thrown if a connection timeout occurs due to a lack of server response.

Example

The following example downloads a file from a web site and saves it to a path on the local hard drive.

 My.Computer.Network.DownloadFile _
 ("http://www.oreilly.com/PriceList.txt", "C:\PriceList.txt")

Related Framework Entries

Microsoft.VisualBasic.Devices.Network.DownloadFile Method

See Also

Network Object, UploadFile Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Drives Property

Location

My.Computer.FileSystem.Drives

Syntax

 Dim result As System.Collections.ObjectModel.ReadOnlyCollection(_
 Of System.IO.DriveInfo) = My.Computer.FileSystem.Drives

Description

The Drives property returns a collection of System.IO.DriveInfo objects that represents the available
logical disk drives currently configured on the local workstation.

Public Members

Each DriveInfo object in the returned collection has many useful members that provide information
about each logical drive. See the GetDriveInfo entry in this chapter for a summary of the members of
this object.

Usage at a Glance

The returned collection is read-only.

An error occurs if the user lacks sufficient privileges to retrieve the drive list.

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.Drives Propertry

Microsoft.VisualBasic.FileIO.FileSystem.Drives Propertry

System.IO.DriveInfo.GetDrives Method

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurrentDirectory Property, FileSystem Object, FindInFiles Method, GetDirectories Method,
GetDirectoryInfo Method, GetDriveInfo Method, GetFileInfo Method, GetFiles Method,
GetTempFileName Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DynData Property

Location

My.Computer.Registry.DynData

Syntax

 Dim result As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.DynData

Description

The DynData property returns a Microsoft.Win32.RegistryKey object that refers to the HKEY_DYNDATA
location in the Windows registry. This entry point is used primarily to store dynamic registry data.

Usage at a Glance

This property is read-only.

You must have sufficient security permissions to read or write keys and values in the registry.

Example

The following example displays all of the sub-elements of the HKEY_DYNDATA registry key element in a
listbox control. The example assumes that you are using this code on a form with a defined ListBox1
control.

 ListBox1.DataSource = My.Computer.Registry.DynData.GetSubKeyNames()

Related Framework Entries

Microsoft.VisualBasic.MyServices.RegistryProxy.DynData Property

Microsoft.Win32.Registry.DynData Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

ClassesRoot Property, CurrentConfig Property, CurrentUser Property, GetValue Method, LocalMachine
Property, PerformanceData Property, Registry Object, SetValue Method, Users Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EndOfData Property

Location

TextFieldParser.EndOfData

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As Boolean = fileParser.EndOfData

Description

The EndOfData property indicates whether the parser has passed the final valid data record in the file
(TRue) or not (False).

Usage at a Glance

This property only considers valid record entries. If there are blank lines or other non-data lines
between the current position and the true end of the file, those are ignored.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Example

The EndOfData property provides a convenient method to check for the end of the input data when
parsing the entire contents of a file.

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Do While Not fileParser.EndOfData
 ' ----- Read and process one record of data here.
 Loop
 fileParser.Close

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.EndOfData Property

See Also

Close Method, LineNumber Property, PeekChars Method, ReadFields Method, ReadLine Method,
ReadToEnd Method, TextFieldParser Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ErrorLine Property

Location

TextFieldParser.ErrorLine

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As String = fileParser.ErrorLine

Description

The ErrorLine property returns the contents of the most recent data input line that could not be
parsed by the TextFieldParser object. Failed parsing is indicated by the
Microsoft.VisualBasic.FileIO.MalformedLineException exception being thrown during a read operation.
The ErrorLineNumber property returns the numeric line position of the errant line.

Usage at a Glance

This property is read-only.

In the absence of malformed line errors, this property returns an empty string.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Example

The following code imports a comma-delimited file, monitoring the input for errors.

 Dim oneLine() As String
 Dim inputFile As New FileIO.TextFieldParser("c:\temp\data.txt")

 inputFile.SetDelimiters(",")
 Try

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Do While Not inputFile.EndOfData
 oneLine = inputFile.ReadFields()
 ' ----- Process data here...
 Loop
 Catch ex As FileIO.MalformedLineException
 ' ----- Bad data.
 MsgBox("Bad data found at line " & inputFile.ErrorLineNumber & _
 ":" & vbCrLf & vbCrLf & inputFile.ErrorLine & vbCrLf & _
 vbCrLf & "Processing aborted.")
 Finally
 inputFile.Close()
 End Try

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.ErrorLine Property

See Also

EndOfData Property, ErrorLineNumber Property, LineNumber Property, ReadFields Method,
TextFieldParser Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ErrorLineNumber Property

Location

TextFieldParser.ErrorLineNumber

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As Long = fileParser.ErrorLineNumber

Description

The ErrorLineNumber property returns the line number of the most recent data input line that could
not be parsed by the TextFieldParser object. Failed parsing is indicated by the
Microsoft.VisualBasic.FileIO.MalformedLineException exception being thrown during a read operation.
The ErrorLine property returns the text of the errant line.

Usage at a Glance

This property is read-only.

The first line in the file is line number 1.

Blank lines and comment lines are counted as valid lines when determining the line position.

In the absence of malformed line errors, this property returns -1.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Example

See the example in the ErrorLine Property entry.

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.FileIO.TextFieldParser.ErrorLineNumber Property

See Also

EndOfData Property, ErrorLine Property, LineNumber Property, ReadFields Method, TextFieldParser
Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FieldWidths Property

Location

TextFieldParser.FieldWidths

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As Integer() = fileParser.FieldWidths

or:

 fileParser.FieldWidths = setOfWidths

setOfWidths (required; Integer array)

An array of values, each of which indicates the character length of a positional field within a
fixed-width text file being parsed by a TextFieldParser object. All field widths must be greater
than zero, although the last array element may be less than or equal to zero to indicate a final
variable-width field.

Description

The FieldWidths property sets or retrieves the number of characters used for each field in fixed-width
text-file parsing. The first field begins with the first character on each record line, and subsequent
fields immediately follow the fields before. You can indicate that the last field is of variable length
(that is, it includes all characters until the end of the line) by setting the last field width to -1.

You can also set the field widths with the TextFieldParser object's SetFieldWidths method.

Usage at a Glance

The FieldWidths property is only useful with fixed-width input files, not delimited files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Setting the FieldWidths property does not alter the current value of the TextFieldType property.

An exception is thrown if you assign a zero or negative value to any field width other than the
last one.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Example

The following example uses the FieldWidths property to indicate that each line in the input file
contains three fields: a 3-character field, a 30-character field, and a 5-character field.

 Dim scanInput As Microsoft.VisualBasic.FileIO.TextFieldParser
 ' ...later...
 scanInput.TextFieldType = _
 Microsoft.VisualBasic.FileIO.FieldType.FixedWidth
 scanInput.FieldWidths = New Integer() {3, 30, 5}

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.FieldWidths Property

See Also

Delimiters Property, ReadFields Method, SetDelimiters Method, SetFieldWidths Method,
TextFieldParser Object, TextFieldType Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileExists Method

Location

My.Computer.FileSystem.FileExists

Syntax

 Dim result As Boolean = My.Computer.FileSystem.FileExists(path)

path (required; String)

The full path to a file

Description

The FileExists method indicates whether the supplied file path exists (true) or not (False).

Usage at a Glance

This method returns False if the user lacks sufficient file system access privileges.

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.FileExists Method

Microsoft.VisualBasic.FileIO.FileSystem .FileExists Method

System.IO.File.Exists Method

See Also

DirectoryExists Method, FileSystem Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileSystem Object

Location

My.Computer.FileSystem

Description

Use the FileSystem object to examine and manipulate drives, directories, and files.

Public Members

The following members of the My.Computer.FileSystem object have their own entries elsewhere in
this chapter.

CombinePath Method

CopyDirectory Method

CopyFile Method

CreateDirectory Method

CurrentDirectory Property

DeleteDirectory Method

DeleteFile Method

DirectoryExists Method

Drives Property

FileExists Method

FindInFiles Method

GetDirectories Method

GetDirectoryInfo Method

GetDriveInfo Method

GetFileInfo Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetFiles Method

GetName Method

GetParentPath Method

GetTempFileName Method

MoveDirectory Method

MoveFile Method

OpenTextFieldParser Method

OpenTextFileReader Method

OpenTextFileWriter Method

ReadAllBytes Method

ReadAllText Method

RenameDirectory Method

RenameFile Method

SpecialDirectories Object

WriteAllBytes Method

WriteAllText Method

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem

Microsoft.VisualBasic.MyServices.FileSystemProxy

See Also

Computer Object, SpecialDirectories Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FindInFiles Method

Location

My.Computer.FileSystem.FindInFiles

Syntax

 Dim result As System.Collections.ObjectModel.ReadOnlyCollection(_

 Of String) = My.Computer.FileSystem.FindInFiles(path, _

 containsText, ignoreCase, searchType[, wildcard])

path (required; String)

The path to the directory that includes the files to search.

containsText (required; String)

The text to search for in each file.

ignoreCase (required; Boolean)

Indicates whether the search should be case-sensitive (False) or case-insensitive (TRue).

searchType (optional; SearchOption enumeration)

The type of search to perform. One of the following Microsoft.VisualBasic.FileIO.SearchOption
enumeration values.

Value Description

SearchAllSubDirectories
Includes all files found directly under the specified path and also in
all descendant subdirectories below the specified path

SearchTopLevelOnly
Includes only those files found immediately under the specified
path; does not include files found in other descendant
subdirectories

http://lib.ommolketab.ir
http://lib.ommolketab.ir

wildcard (optional; String)

A pattern used to match file names. If missing, all names are matched. Use the asterisk
character (*) to match zero or more characters or the question mark character (?) to match
exactly one character.

Description

The FindInFiles method returns a collection of strings, each one the name of a file within the specified
directory that includes the specified search text. The set of files to search may be limited using the
wildcard parameter. If no searched files include the specified search text, an empty collection is

returned.

Usage at a Glance

The returned collection is read-only.

An exception is thrown if the supplied path is missing or invalid or if an invalid wildcard
expression appears.

An exception is thrown if the user lacks sufficient file system privileges.

Example

The following statement searches for files that contain the text "virus" (independent of case) in the
current user's MyDocuments folder, ignoring any subdirectories.

 Dim result As System.Collections.ObjectModel.ReadOnlyCollection(_
 Of String) = My.Computer.FileSystem.FindInFiles(_
 My.Computer.FileSystem.SpecialDirectories.MyDocuments, _
 "VIRUS", True, FileIO.SearchOption.SearchTopLevelOnly)

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.FindInFiles Method

Microsoft.VisualBasic.FileIO.FileSystem.FindInFiles Method

See Also

CurrentDirectory Property, Drives Property, FileSystem Object, GetDirectories Method,
GetDirectoryInfo Method, GetDriveInfo Method, GetFileInfo Method, GetFiles Method,
GetTempFileName Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Forms Object

Location

My.Forms

Description

The My.Forms object provides design-time and runtime access to all defined forms in a Windows
Forms project. As forms are added to the project, this object is automatically updated to include the
new form. For instance, if your project contains a form named "Form1," it is accessed through:

 My.Forms.Form1

This returns a reference to the System.Windows.Forms.Form object for Form1, from which all of the
relevant members can be accessed.

As a shortcut, the "My.Forms" prefix can be left off of references to forms. This allows your code to
reference forms as was done in pre-.NET Visual Basic. The statement:

 Form1.Show()

is equivalent to:

 My.Forms.Form1.Show()

For code located within Form1, all references to itself should use Me instead of Form1.

 Me.Show()

If you use My.Forms to access a form that has not yet been instantiated, it is instantiated
immediately. Setting this instance to Nothing will release the instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 My.Forms.Form1 = Nothing

To test whether a form has yet been instantiated, test the My.Forms reference for Nothing.

 If (My.Forms.Form1 Is Nothing) Then...

Public Members

The My.Forms object has no members other than each specific form defined within the project.

Usage at a Glance

This object and its members are only valid in Windows Forms applications.

Use the My.Application.OpenForms property to retrieve a collection of all forms currently open
within the application.

Example

This sample displays a specific form if it is not yet displayed.

 If (My.Forms.ToolboxForm Is Nothing) Then _
 My.Forms.ToolboxForm.Show()

Related Framework Entries

System.Windows.Forms.Form Class

See Also

My Namespace, OpenForms Property, Resources Object, Settings Object, WebServices Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetAudioStream Method

Location

My.Computer.Clipboard.GetAudioStream

Syntax

 Dim result As System.IO.Stream = _
 My.Computer.Clipboard.GetAudioStream()

Description

The GetAudioStream method returns a stream object from the system clipboard that contains audio
data.

Usage at a Glance

This method is only valid in non-server applications.

Always use the My.Computer.Clipboard.ContainsAudio method to check for the presence of
audio data before using this method.

Security restrictions in place for the active user may limit access to the system clipboard.

Example

The following example plays audio data from the system clipboard if such data is present.

 Dim soundToPlay As System.IO.Stream
 If (My.Computer.Clipboard.ContainsAudio() = True) Then
 soundToPlay = My.Computer.Clipboard.GetAudioStream
 My.Computer.Audio.Play(soundToPlay, AudioPlayMode.Background)
 End If

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.MyServices.ClipboardProxy.GetAudioStream Method

System.Windows.Forms.Clipboard.GetAudioStream Method

See Also

Clipboard Object, ContainsAudio Method, GetData Method, GetDataObject Method, GetFileDropList
Method, GetImage Method, GetText Method, SetAudio Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetData Method

Location

My.Computer.Clipboard.GetData

Syntax

 Dim result As Object = My.Computer.Clipboard.GetData(format)

format (required; String)

The named format of the data to return from the clipboard

Description

The GetData method returns data from the system clipboard in the specified custom named format.

Usage at a Glance

This method is only valid in non-server applications.

Always use the My.Computer.Clipboard.ContainsData method to check for the presence of the
specified named custom data before using this method.

Security restrictions in place for the active user may limit access to the system clipboard.

Example

The following example reads specialized data from the system clipboard and acts on it.

 Dim secretData As Object
 If (My.Computer.Clipboard.ContainsData("secretCode") = True) Then
 secretData = My.Computer.Clipboard.GetData("secretCode")
 MsgBox(DecodeSecret(secretData))
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.GetData Method

System.Windows.Forms.Clipboard.GetData Method

See Also

Clipboard Object, ContainsData Method, GetAudioStream Method, GetDataObject Method,
GetFileDropList Method, GetImage Method, GetText Method, SetData Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetDataObject Method

Location

My.Computer.Clipboard.GetDataObject

Syntax

 Dim result As System.Windows.Forms.IDataObject = _
 My.Computer.Clipboard.GetDataObject()

Description

The GetDataObject method returns an object that supports the interface
System.Windows.Forms.IDataObject using data from the system clipboard. The IDataObject interface
allows a single object to store the same data in multiple formats. For instance, a single data object
could store the same data in plain text, Rich Text Format, and HTML.

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Example

The following code displays the data formats current stored on the system clipboard.

 Dim clipboardFormats As System.Windows.Forms.IDataObject
 Dim formatNames() As String
 clipboardFormats = My.Computer.Clipboard.GetDataObject()
 formatNames = clipboardFormats.GetFormats(True)
 MsgBox(Join(formatNames, vbCrLf))

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.MyServices.ClipboardProxy.GetDataObject Method

System.Windows.Forms.Clipboard.GetDataObject Method

System.Windows.Forms.DataObject Class

System.Windows.Forms.IDataObject Interface

See Also

Clipboard Object, GetAudioStream Method, GetData Method, GetFileDropList Method, GetImage
Method, GetText Method, SetDataObject Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetDirectories Method

Location

My.Computer.FileSystem.GetDirectories

Syntax

 Dim result As System.Collections.ObjectModel.ReadOnlyCollection(_
 Of String) = My.Computer.FileSystem.GetDirectories(_

 path[, searchType, wildcard])

path (required; String)

The path to the directory that includes the subdirectories to return.

searchType (optional; SearchOption enumeration)

The type of search to perform. One of the following Microsoft.VisualBasic.FileIO.SearchOption
enumeration values.

Value Description

SearchAllSubDirectories
Includes all subdirectories found directly under the specified path
and all descendant subdirectories below them

SearchTopLevelOnly
Includes only those subdirectories found immediately under the
specified path; does not include descendants of those
subdirectories

If this parameter is missing, it defaults to SearchTopLevelOnly.

wildcard (optional; String)

A pattern used to match directory names. If missing, all names are matched. Use the asterisk
character (*) to match zero or more characters or the question mark character (?) to match
exactly one character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The GetDirectories method returns a collection of strings, each one the name of a subdirectory within
the specified directory. If no directories are found or match the specified wildcard, an empty
collection is returned.

Usage at a Glance

The returned collection is read-only.

An exception is thrown if the supplied path is missing or invalid or if an invalid wildcard
expression appears.

An exception is thrown if the user lacks sufficient file system privileges.

Each returned directory name includes the full path to that directory, not just the relative
directory name.

Example

The following example lists all subdirectories in the current directory.

 Dim dirList As String = ""
 Dim currentDir As System.Collections.ObjectModel. _
 ReadOnlyCollection(Of String) = _
 My.Computer.FileSystem.GetDirectories(".")

 For Each oneSubDir As String In currentDir
 dirList &= "|" & oneSubDir
 Next oneSubDir
 MsgBox("The current directory contains the following " & _
 "sub-directories:" & Replace(dirList, "|", vbCrLf))

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetDirectories Method

Microsoft.VisualBasic.FileIO.FileSystem.GetDirectories Method

System.IO.DirectoryInfo.GetDirectories Method

See Also

CurrentDirectory Property, Drives Property, FileSystem Object, FindInFiles Method, GetDirectoryInfo
Method, GetDriveInfo Method, GetFileInfo Method, GetFiles Method, GetTempFileName Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetDirectoryInfo Method

Location

My.Computer.FileSystem.GetDirectoryInfo

Syntax

 Dim result As System.IO.DirectoryInfo = _
 My.Computer.FileSystem.GetDirectoryInfo(path)

path (required; String)

The path to the directory to be examined; an absolute or relative path

Description

The GetDirectoryInfo method returns a System.IO.DirectoryInfo object for the indicated directory.

Public Members

The returned System.IO.DirectoryInfo object includes the following notable public members.

Member Description

Create
Method. Creates the directory itself. Only useful when the Exists member
returns False.

CreateSubdirectory Method. Creates a subdirectory within the directory.

Delete Method. Deletes the directory.

Exists Property. Indicates whether the directory exists (true) or not (False).

FullName Property. The full path text of the directory.

Getdirectories Method. Returns a collection of subdirectories in the directory.

GetFiles Method. Returns a collection of files in the directory.

MoveTo Method. Moves the directory to a different location on the same drive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Name Property. The name of the directory without its full path.

Parent Property. The parent folder of the directory.

Root Property. The root directory that contains the directory, such as "C:\."

Usage at a Glance

An exception is thrown if the path parameter is missing or invalid.

An exception is thrown if the user lacks sufficient file-access privileges.

If the indicated directory path does not exist, this function may complete successfully with no
exception thrown. However, an exception will be thrown when accessing most members of the
returned object. Use the Exists property to test for the directory if you are unsure of its
existence, or use the Create method member to create the new indicated directory.

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetDirectoryInfo Method

Microsoft.VisualBasic.FileIO.FileSystem.GetDirectoryInfo Method

System.IO.DirectoryInfo Class

See Also

CurrentDirectory Property, Drives Property, FileSystem Object, FindInFiles Method, GetDirectories
Method, GetDriveInfo Method, GetFileInfo Method, GetFiles Method, GetTempFileName Method

Name Property. The name of the directory without its full path.

Parent Property. The parent folder of the directory.

Root Property. The root directory that contains the directory, such as "C:\."

Usage at a Glance

An exception is thrown if the path parameter is missing or invalid.

An exception is thrown if the user lacks sufficient file-access privileges.

If the indicated directory path does not exist, this function may complete successfully with no
exception thrown. However, an exception will be thrown when accessing most members of the
returned object. Use the Exists property to test for the directory if you are unsure of its
existence, or use the Create method member to create the new indicated directory.

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetDirectoryInfo Method

Microsoft.VisualBasic.FileIO.FileSystem.GetDirectoryInfo Method

System.IO.DirectoryInfo Class

See Also

CurrentDirectory Property, Drives Property, FileSystem Object, FindInFiles Method, GetDirectories
Method, GetDriveInfo Method, GetFileInfo Method, GetFiles Method, GetTempFileName Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetDriveInfo Method

Location

My.Computer.FileSystem.GetDriveInfo

Syntax

 Dim result As System.IO.DriveInfo = _
 My.Computer.FileSystem.GetDriveInfo(drive)

drive (required; String)

The letter of the drive to be examined. The supplied string is normally just the single-character
drive letter. You can supply an absolute path as long as it begins with a drive letter; only the
first letter of the string will be examined.

Description

The GetDriveInfo method returns a System.IO.DriveInfo object for the indicated drive.

Public Members

The returned System.IO.DriveInfo object includes the following notable public members.

Member Description

AvailableFreeSpace
Property. The available free space on the drive, in bytes, possibly limited by
in-effect quotas.

DriveFormat
Property. The name of the format structure used on the drive, such as "NTFS"
or "FAT32."

DriveType Property. The type of drive, from the System.IO.DriveType enumeration.

IsReady
Property. Indicates whether the drive is ready for use (true) or not (False).
This is useful for removable media drives, such as DVD drives.

Name Property. The name of the drive, "C:" for example.

RootDirectory Property. The root directory of the drive as a System.IO.DirectoryInfo object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

TotalFreeSpace Property. The available free space on the drive in bytes.

TotalSize
Property. The total size of the drive in bytes, including both free and used
portions of the drive.

VolumeLabel Property. A short, friendly name for this drive.

The DriveType property uses one of the following System.IO.DriveType enumeration values.

Value Description

CDRom A CD-ROM device

Fixed A fixed disk, such as an internal hard disk

Network A nonlocal drive found on the network

NoRootDirectory A drive with no root directory

Ram A RAM disk

Removable A drive with removable media

Unknown Unknown device

Usage at a Glance

An exception is thrown if the drive parameter is missing or invalid. You can supply an absolute
path as the argument to the GetDriveInfo method, but the first letter of that path must be a
drive letter.

An exception is thrown if the user lacks sufficient file access privileges.

Example

The following example displays the amount of free space on the C drive.

 Dim cDrive As System.IO.DriveInfo
 cDrive = My.Computer.FileSystem.GetDriveInfo("C:\")
 MsgBox("Free space on the C drive: " & Format(_
 cDrive.TotalFreeSpace / (1024 * 1024), "0.00") & " MB")

Related Framework Entries

TotalFreeSpace Property. The available free space on the drive in bytes.

TotalSize
Property. The total size of the drive in bytes, including both free and used
portions of the drive.

VolumeLabel Property. A short, friendly name for this drive.

The DriveType property uses one of the following System.IO.DriveType enumeration values.

Value Description

CDRom A CD-ROM device

Fixed A fixed disk, such as an internal hard disk

Network A nonlocal drive found on the network

NoRootDirectory A drive with no root directory

Ram A RAM disk

Removable A drive with removable media

Unknown Unknown device

Usage at a Glance

An exception is thrown if the drive parameter is missing or invalid. You can supply an absolute
path as the argument to the GetDriveInfo method, but the first letter of that path must be a
drive letter.

An exception is thrown if the user lacks sufficient file access privileges.

Example

The following example displays the amount of free space on the C drive.

 Dim cDrive As System.IO.DriveInfo
 cDrive = My.Computer.FileSystem.GetDriveInfo("C:\")
 MsgBox("Free space on the C drive: " & Format(_
 cDrive.TotalFreeSpace / (1024 * 1024), "0.00") & " MB")

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetDriveInfo Method

Microsoft.VisualBasic.FileIO.FileSystem.GetDriveInfo Method

System.IO.DriveInfo Class

See Also

CurrentDirectory Property, Drives Property, FileSystem Object, FindInFiles Method, GetDirectories
Method, GetDirectoryInfo Method, GetFileInfo Method, GetFiles Method, GetTempFileName Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetEnvironmentVariable Method

Location

My.Application.GetEnvironmentVariable

Syntax

 Dim result As String = My.Application.GetEnvironmentVariable(name)

name (required; String)

The name of the environment variable value to return

Description

The GetEnvironmentVariable method returns the value of the named Windows environment variable.

Usage at a Glance

An exception is thrown if an invalid or unknown name is used.

An exception is thrown if the current user lacks sufficient security privileges to query
environment variables.

Example

The following example displays the value of the triggerValue environment variable.

 Try
 MsgBox("Application triggered at " & _
 My.Application.GetEnvironmentVariable("TriggerValue"))
 Catch ex As System.ArgumentException
 MsgBox("Trigger value not configured.")
 End Try

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

System.Environment.GetEnvironmentVariable Method

See Also

Application Object, CommandLineArgs Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetFileDropList Method

Location

My.Computer.Clipboard.GetFileDropList

Syntax

 Dim result As System.Collections.Specialized.StringCollection = _
 My.Computer.Clipboard.GetFileDropList()

Description

The GetFileDropList method returns a collection of strings from the system clipboard, each containing
a file path.

Usage at a Glance

This method is only valid in non-server applications.

Always use the My.Computer.Clipboard.ContainsFileDropList method to check for the presence
of the desired data format before using this method.

Security restrictions in place for the active user may limit access to the system clipboard.

Example

The following code displays the clipboard's file list.

 Dim dropFiles As System.Collections.Specialized.StringCollection
 If My.Computer.Clipboard.ContainsFileDropList() Then
 dropFiles = My.Computer.Clipboard.GetFileDropList()
 For Each oneFile As String In dropFiles
 ListBox1.Items.Add(oneFile)
 Next oneFile
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.GetFileDropList Method

System.Windows.Forms.Clipboard.GetFileDropList Method

See Also

Clipboard Object, ContainsFileDropList Method, GetAudioStream Method, GetData Method,
GetDataObject Method, GetImage Method, GetText Method, SetFileDropList Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetFileInfo Method

Location

My.Computer.FileSystem.GetFileInfo

Syntax

 Dim result As System.IO.FileInfo = _

 My.Computer.FileSystem.GetFileInfo(path)

path (required; String)

The path to the file to be examined

Description

The GetFileInfo method returns a System.IO.FileInfo object for the indicated file.

Public Members

The returned System.IO.FileInfo object includes the following notable public members.

Member Description

Attributes
Property. Gets or sets the attributes, using the System.IO.FileAttributes
enumeration.

CopyTo Method. Copies the file to a new location.

Create Method. Creates a new file and opens it for writing.

Delete Method. Deletes the file.

Directory Property. The immediate directory of the file.

DirectoryName Property. The full path of the directory containing the file.

Exists Property. Indicates whether the file exists (true) or not (False).

FullName Property. The full path to the file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

IsReadOnly Property. Indicates whether the file is read only (true) or not (False).

Length Property. The size of the file in bytes.

MoveTo Method. Moves the file to a new location.

Name Property. The name of the file without its full path.

Open Method. Opens the file for reading or writing.

Usage at a Glance

An exception is thrown if the path parameter is missing or invalid.

An exception is thrown if the user lacks sufficient file-access privileges.

If the indicated file does not exist, this function may complete successfully with no exception
thrown. However, an exception will be thrown when accessing most members of the returned
object. Use the Exists property to test for the file if unsure of its existence.

Example

The following example reports a file's size.

 Public Sub ShowFileSize(filePath As String)
 Dim theFile As System.IO.FileInfo
 theFile = My.Computer.FileSystem.GetFileInfo(filePath)
 If (theFile.Exists = True) Then
 MsgBox("'" & filePath & "' does not exist.")
 Else
 MsgBox("'" & filePath & "' size: " & _
 theFile.Length & "bytes")
 End If
 End Sub

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetFileInfo Method

Microsoft.VisualBasic.FileIO.FileSystem.GetFileInfo Method

System.IO.FileInfo Class

See Also

IsReadOnly Property. Indicates whether the file is read only (true) or not (False).

Length Property. The size of the file in bytes.

MoveTo Method. Moves the file to a new location.

Name Property. The name of the file without its full path.

Open Method. Opens the file for reading or writing.

Usage at a Glance

An exception is thrown if the path parameter is missing or invalid.

An exception is thrown if the user lacks sufficient file-access privileges.

If the indicated file does not exist, this function may complete successfully with no exception
thrown. However, an exception will be thrown when accessing most members of the returned
object. Use the Exists property to test for the file if unsure of its existence.

Example

The following example reports a file's size.

 Public Sub ShowFileSize(filePath As String)
 Dim theFile As System.IO.FileInfo
 theFile = My.Computer.FileSystem.GetFileInfo(filePath)
 If (theFile.Exists = True) Then
 MsgBox("'" & filePath & "' does not exist.")
 Else
 MsgBox("'" & filePath & "' size: " & _
 theFile.Length & "bytes")
 End If
 End Sub

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetFileInfo Method

Microsoft.VisualBasic.FileIO.FileSystem.GetFileInfo Method

System.IO.FileInfo Class

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurrentDirectory Property, Drives Property, FileSystem Object, FindInFiles Method, GetDirectories
Method, GetDirectoryInfo Method, GetDriveInfo Method, GetFiles Method, GetTempFileName Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetFiles Method

Location

My.Computer.FileSystem.GetFiles

Syntax

 Dim result As System.Collections.ObjectModel.ReadOnlyCollection(_
 Of String) = My.Computer.FileSystem.GetFiles(_

 path[, searchType, wildcard])

path (required; String)

The path to the directory that includes the files to return.

searchType (optional; SearchOption enumeration)

The type of search to perform. One of the following Microsoft.VisualBasic.FileIO.SearchOption
enumeration values.

Value Description

SearchAllSubDirectories
Includes all files found directly under the specified path and also in
all descendant subdirectories below the specified path

SearchTopLevelOnly
Includes only those files found immediately under the specified
path; does not include files found in other descendant
subdirectories

If this parameter is missing, it defaults to SearchTopLevelOnly.

wildcard (optional; String)

A pattern used to match file names. If missing, all names are matched. Use the asterisk
character (*) to match zero or more characters or the question mark character (?) to match
exactly one character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description

The GetFiles method returns a collection of strings, each one the name of a file within the specified
directory. If no files are found or match the specified wildcard, an empty collection is returned.

Usage at a Glance

The returned collection is read-only.

An exception is thrown if the supplied path is missing or invalid or if an invalid wildcard
expression appears.

An exception is thrown if the user lacks sufficient file-system privileges.

Each returned file name includes the full path to that file, not just the relative file name.

Example

The following example lists all files in the current directory.

 Dim fileList As String = ""
 Dim currentDir As System.Collections.ObjectModel. _
 ReadOnlyCollection(Of String) = _
 My.Computer.FileSystem.GetFiles(".")

 For Each oneFile As String In currentDir
 fileList &= "|" & oneFile
 Next oneFile
 MsgBox("The current directory contains the following " & _
 "files:" & Replace(fileList, "|", vbCrLf))

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetFiles Method

Microsoft.VisualBasic.FileIO.FileSystem.GetFiles Method

System.IO.Directory.GetFiles Method

See Also

CurrentDirectory Property, Drives Property, FileSystem Object, FindInFiles Method, GetDirectories
Method, GetDirectoryInfo Method, GetDriveInfo Method, GetFileInfo Method, GetTempFileName
Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetImage Method

Location

My.Computer.Clipboard.GetImage

Syntax

 Dim result As System.Drawing.Image = _
 My.Computer.Clipboard.GetImage()

Description

The GetImage method returns an image from the system clipboard.

Usage at a Glance

This method is only valid in non-server applications.

Always use the My.Computer.Clipboard.ContainsImage method to check for the presence of the
desired data format before using this method.

Security restrictions in place for the active user may limit access to the system clipboard.

If the clipboard does not contain image data, Nothing is returned.

Example

The following example displays an image from the system clipboard if it contains an image. This
example assumes that your form includes a picture box control named PictureBox1.

 If (My.Computer.Clipboard.ContainsImage() = True) Then
 PictureBox1.Image = My.Computer.Clipboard.GetImage()
 End If

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.MyServices.ClipboardProxy.GetImage Method

System.Windows.Forms.Clipboard.GetImage Method

See Also

Clipboard Object, ContainsImage Method, GetAudioStream Method, GetData Method, GetDataObject
Method, GetFileDropList Method, GetImage Method, GetText Method, SetImage Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetName Method

Location

My.Computer.FileSystem.GetName

Syntax

 Dim result As String = My.Computer.FileSystem.GetFileName(path)

path (required; String)

The path to be examined

Description

The GetName method examines a valid filename path and returns only the filename portion, with all
drive letters, folders, and directories removed.

Usage at a Glance

The original path must be correctly formatted, but it does not need to refer to an actual file on the file
system.

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetName Method

Microsoft.VisualBasic.FileIO.FileSystem.GetName Method

System.IO.Path.GetFileName Method

See Also

CombinePath Method, FileSystem Object, GetParentPath Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetParentPath Method

Location

My.Computer.FileSystem.GetParentPath

Syntax

 Dim result As String = My.Computer.FileSystem.GetParentPath(path)

path (required; String)

The path to be examined; an absolute or relative path

Description

The GetParentPath method examines a valid path and returns the parent portion. The path supplied

to the method does not have to exist, but it must be in a valid format. Whether you supply the full
path to a file or a directory, GetParentPath simply removes the final portion.

You can supply a relative path, but if you supply only a single path component (such as ".."), an
empty string will be returned.

Usage at a Glance

The source path supplied does not need to exist in the file system.

An exception occurs if the source path is in an invalid format, or if the path is a "root" path that
has no further parent.

Example

 workFolder = My.Computer.FileSystem.GetParentPath(workFile)

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetParentPath Method

Microsoft.VisualBasic.FileIO.FileSystem.GetParentPath Method

System.IO.Directory.GetParent Method

System.IO.Path.GetDirectoryName Method

See Also

CombinePath Method, FileSystem Object, GetName Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetTempFileName Method

Location

My.Computer.FileSystem.GetTempFileName

Syntax

 Dim result As String = My.Computer.FileSystem.GetTempFileName()

Description

The GetTempFileName method creates a temporary file name in the user's temporary files folder and
returns the full path to that new file as a string. The new file name will be unique and will initially be
empty. The file name always ends with a ".tmp" extension.

Usage at a Glance

An exception occurs if the active user lacks sufficient privileges to create the file.

Related Framework Entries

Microsoft.VisualBasic.MyServices.FileSystemProxy.GetTempFileName Method

Microsoft.VisualBasic.FileIO.FileSystem.GetTempFileName Method

System.IO.Path.GetTempFileName Method

See Also

CurrentDirectory Property, Drives Property, FileSystem Object, FindInFiles Method, GetDirectories
Method, GetDirectoryInfo Method, GetDriveInfo Method, GetFileInfo Method, GetFiles Method, Temp
Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetText Method

Location

My.Computer.Clipboard.GetText

Syntax

 Dim result As String = My.Computer.Clipboard.GetText([format])

format (optional; TextDataFormat enumeration)

The specific format of the text to retrieve from the system clipboard. One of the following
System.Windows.Forms.TextDataFormat enumeration values.

Value Description

Not supplied Any type of text

CommaSeparatedValue Comma-separated fields of data in one or more records

Html HTML format

Rtf Rich Text Format

UnicodeText 16-bit Unicode character text

If this parameter is not specified, CommaSeparatedValue is used by default.

Description

The GetText method returns a String of text retrieved from the system clipboard in a specified text
format. If the specified text data is not present on the clipboard, an empty string is returned.

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.GetText Method

System.Windows.Forms.Clipboard.GetText Method

See Also

Clipboard Object, ContainsText Method, GetAudioStream Method, GetData Method, GetDataObject
Method, GetFileDropList Method, GetImage Method, GetText Method, SetText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetValue Method

Location

My.Computer.Registry.GetValue

Syntax

 Dim result As Object = My.Computer.Registry.GetValue(keyName, _

 valueName, defaultValue)

keyName (required; String)

The hierarchy key under which to query the value for data.

valueName (required; Object)

The name of the value to be queried within the key. To retrieve the default value (the
"(Default)" entry) for a particular key, use Nothing or an empty string for this parameter.

defaultValue (required; Object)

The default data to be returned if the value does not exist. To indicate no default value, use the
Nothing keyword for this parameter.

Description

The GetValue method returns the data for a value entry in the registry. All values are stored within
"keys," the main hierarchy nodes within the registry.

Usage at a Glance

You must have sufficient security permissions to read or write keys and values in the registry.

keyName must start with the name of a valid registry hive, such as HKEY_CURRENT_USER.

This function returns data as type Object. If Option Strict is set to true, you will likely need to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

convert the data to another type before use. For example, when retrieving string results, use
the CStr function to convert the result to a String.

Example

The following code retrieves a string from the registry.

 ' ----- If the error limit is not recorded in the registry,
 ' use a reasonable value like 5.
 Dim errorLimit As String = CStr(My.Computer.Registry.GetValue(_
 "HKEY_CURRENT_USER\Software\MyCompany\MySoftware", _
 "ErrorLimit", "5"))

Related Framework Entries

Microsoft.VisualBasic.MyServices.RegistryProxy.GetValue Method

Microsoft.Win32.RegistryKey.GetValue Method

See Also

ClassesRoot Property, CurrentConfig Property, CurrentUser Property, DynData Property,
LocalMachine Property, PerformanceData Property, Registry Object, SetValue Method, Users Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GmtTime Property

Location

My.Computer.Clock.GmtTime

Syntax

 Dim result As Date = My.Computer.Clock.GmtTime

Description

The GmtTime property returns the current date and time as represented in Universal Coordinated
Time (UTC), which is equivalent to Greenwich Mean Time (GMT).

Usage at a Glance

This property is read-only.

Example

The following code displays the current UTC time in a message box.

 MsgBox("If you were in London, your watch would read " & _
 Format(My.Computer.Clock.GmtTime, "HH:mm"))

Related Framework Entries

Microsoft.VisualBasic.Devices.Clock.GmtTime Property

System.DateTime.UtcNow Property

See Also

Clock Object, LocalTime Property, TickCount Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HasFieldsEnclosedInQuotes Property

Location

TextFieldParser.HasFieldsEnclosedInQuotes

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As Boolean = fileParser.HasFieldsEnclosedInQuotes

or:

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...

fileParser.HasFieldsEnclosedInQuotes = hasQuotes

hasQuotes (required; Boolean)

Indicates whether the delimited strings in the file represented by fileParser are surrounded by
quotation marks (true) or not (False).

Description

The HasFieldsEnclosedInQuotes property gets or sets a value that indicates whether the delimited
fields parsed by a TextFieldParser object should accept quotation marks as field boundaries (true) or
not (False). If you do not specifically set this field, it defaults to true.

If this property is set to true and a field is enclosed by quotes, any active delimiters (such as
commas) found between the quotation marks are considered part of the field and are not used to
delimit portions of that field. For instance, if comma is used as a delimiter, in the input line:

 field1,field2,"field3,field4",field5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

there are only four fields represented, since "field3,field4" is a single field containing a comma.

Usage at a Glance

The HasFieldsEnclosedInQuotes property is only useful with delimited input files, not fixed-width
files.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.HasFieldsEnclosedInQuotes Property

See Also

Delimiters Property, ReadFields Method, SetDelimiters Method, TextFieldParser Object, TextFieldType
Property, TrimWhiteSpace Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Info Object (My.Application)

Location

My.Application.Info

Description

Use the Info object to access information about the current application.

Public Members

The following members of the My.Application.Info object have their own entries elsewhere in this
chapter.

AssemblyName Property

CompanyName Property

Copyright Property

Description Property

DirectoryPath Property

LoadedAssemblies Property

ProductName Property

StackTrace Property

Title Property

Trademark Property

Version Property

WorkingSet Property

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Diagnostics.FileVersionInfo Class

See Also

Application Object, Info Object (My.Computer)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Info Object (My.Computer)

Location

My.Computer.Info

Description

Use the Info object to access information about the local computer.

Public Members

The following members of the My.Computer.Info object have their own entries elsewhere in this
chapter.

AvailablePhysicalMemory Property

AvailableVirtualMemory Property

InstalledUICulture Property

OSFullName Property

OSPlatform Property

OSVersion Property

TotalPhysicalMemory Property

TotalVirtualMemory Property

Related Framework Entries

Microsoft.VisualBasic.Devices.ComputerInfo Class

See Also

Info Object (My.Application)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InitializeWithWindowsUser Method

Location

My.User.InitializeWithWindowsUser

Syntax

 My.User.InitializeWithWindowsUser()

Description

The My.User object generally refers to the user that owns the current execution thread. The
InitializeWithWindowsUser method resets the My.User object to the user that started the application.

Usage at a Glance

While this method will work in ASP.NET applications, its use has no true impact on the My.User
object.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.User.InitializeWithWindowsUser Method

Microsoft.VisualBasic.ApplicationServices.WebUser.InitializeWithWindowsUser Method

See Also

CurrentPrincipal Property, IsAuthenticated Property, IsInRole Method, Name Property (My.User),
User Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InstalledUICulture Property

Location

My.Computer.Info.InstalledUICulture

Syntax

 Dim result As System.Globalization.CultureInfo = _
 My.Computer.Info.InstalledUICulture

Description

The InstalledUICulture property returns a System.Globalization.CultureInfo object that describes the
user interface culture of the operating system. It is especially useful when working with localized
operating systems.

Usage at a Glance

This property is read-only.

Example

On a typical Windows system in the United States, this code:

 MsgBox(My.Computer.Info.InstalledUICulture.DisplayName)

displays the following message:

 English (United States)

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.Devices.ComputerInfo.InstalledUICulture Property

System.Globalization.CultureInfo.InstalledUICulture Property

See Also

ChangeUICulture Method, Info Object (My.Computer), UICulture Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsAuthenticated Property

Location

My.User.IsAuthenticated

Syntax

 Dim result As Boolean = My.User.IsAuthenticated

Description

The IsAuthenticated property indicates whether the current user has been successfully authenticated
(TRue) or not (False).

Usage at a Glance

This property is read-only.

Some systems do not support authentication, such as Windows 95 and Windows 98. On these
systems, this property always returns False.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.User.IsAuthenticated Property

Microsoft.VisualBasic.ApplicationServices.WebUser.IsAuthenticated Property

System.Security.Principal.IIdentity.IsAuthenticated Property

See Also

CurrentPrincipal Property, InitializeWithWindowsUser Method, IsInRole Method, Name Property
(My.User), User Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsAvailable Property

Location

My.Computer.Network.IsAvailable

Syntax

 Dim result As Boolean = My.Computer.Network.IsAvailable

Description

The IsAvailable property indicates whether the network connected to the computer is available (TRue)
or not (False).

Usage at a Glance

This property is read-only.

This property will always return False when called by a user who does not have the
NetworkInformationPermission permission.

This property always returns False from ClickOnce-deployed applications.

Related Framework Entries

Microsoft.VisualBasic.Devices.Network.IsAvailable Property

System.Net.NetworkInformation.NetworkInterface.GetIsNetworkAvailable Method

See Also

Network Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsInRole Method

Location

My.User.IsInRole

Syntax

 Dim result As Boolean = My.User.IsInRole(role)

or

 Dim result As Boolean = My.User.IsInRole(builtInRole)

role (required in syntax 1; String)

The role against which the user will be compared for inclusion.

builtInRole (required in syntax 2; BuiltInRole enumeration)

The predefined role against which the user will be compared for inclusion. One of the following
Microsoft.VisualBasic.ApplicationServices.BuiltInRole enumeration values.

Value Description

AccountOperator Users who manage local or domain user accounts

Administrator Users who have full access to local or domain resources

BackupOperator
Users who back up local or domain files and require temporary yet extensive
access

Guest Users with minimal security access

PowerUser
Users with sufficient understanding of the local or domain environment to warrant
enhanced security but not at the level of an administrator

PrintOperator Users who control or manage the printers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

Replicator Users who control or manage file replication in a domain

SystemOperator Users who have operational control over a local computer

User Ordinary users with access to specific resources as assigned by an administrator

Description

The IsInRole method indicates whether the current user belongs to the indicated role (true) or not
(False). The function accepts a predefined member of the BuiltInRole enumeration or a String with
the name of a role.

Usage at a Glance

If the current user is using a non-Windows authentication method and the BuiltInRole enumeration
syntax of this method is used, the final part of the enumeration name is converted into a string, and
that text is used as a lookup, as if the String syntax of this method had been called instead.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.BuiltInRole Enumeration

Microsoft.VisualBasic.ApplicationServices.User.IsInRole Method

Microsoft.VisualBasic.ApplicationServices.WebUser.IsInRole Method

System.Security.Principal.IPrincipal.IsInRole Method

See Also

CurrentPrincipal Property, InitializeWithWindowsUser Method, IsAuthenticated Property, Name
Property (My.User), User Object

Replicator Users who control or manage file replication in a domain

SystemOperator Users who have operational control over a local computer

User Ordinary users with access to specific resources as assigned by an administrator

Description

The IsInRole method indicates whether the current user belongs to the indicated role (true) or not
(False). The function accepts a predefined member of the BuiltInRole enumeration or a String with
the name of a role.

Usage at a Glance

If the current user is using a non-Windows authentication method and the BuiltInRole enumeration
syntax of this method is used, the final part of the enumeration name is converted into a string, and
that text is used as a lookup, as if the String syntax of this method had been called instead.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.BuiltInRole Enumeration

Microsoft.VisualBasic.ApplicationServices.User.IsInRole Method

Microsoft.VisualBasic.ApplicationServices.WebUser.IsInRole Method

System.Security.Principal.IPrincipal.IsInRole Method

See Also

CurrentPrincipal Property, InitializeWithWindowsUser Method, IsAuthenticated Property, Name
Property (My.User), User Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsNetworkDeployed Property

Location

My.Application.IsNetworkDeployed

Syntax

 Dim result As Boolean = My.Application.IsNetworkDeployed

Description

The IsNetworkDeployed property indicates whether the application was deployed from a network
using ClickOnce (TRue) or not (False).

Usage at a Glance

This property is read-only.

This property is only valid in Windows Forms and console applications.

Always use this property before using the My.Application.Deployment property. The Deployment
property is only valid when the IsNetworkDeployed property is true.

Example

The following example attempts to update the application, but only if it is a ClickOnce installation
deployed over a network.

 If (My.Application.IsNetworkDeployed = True) Then _
 My.Application.Deployment.Update()

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.ConsoleApplicationBase.,IsNetworkDeployed Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Application Object, Deployment Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Keyboard Object

Location

My.Computer.Keyboard

Description

Use the Keyboard object to access the current keyboard-related state and to send keystroke
sequences to applications.

Public Members

The following members of the My.Computer.Keyboard object have their own entries elsewhere in this
chapter.

AltKeyDown Property

CapsLock Property

CtrlKeyDown Property

NumLock Property

ScrollLock Property

SendKeys Method

ShiftKeyDown Property

Usage at a Glance

This object and its members are only valid in non-server applications.

Related Framework Entries

Microsoft.VisualBasic.Devices.Keyboard Class

See Also

Computer Object, Mouse Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LineNumber Property

Location

TextFieldParser.LineNumber

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As Long = fileParser.LineNumber

Description

The LineNumber property returns the 1-based current line number (the line about to be read) within
the file being parsed by a TextFieldParser object. If the end of the file has been reached, this
property returns -1.

Usage at a Glance

This property is read-only.

This property considers blank lines and comment lines. It is a line counter, not a record counter.
This property may return a value other than -1 even when the object's EndOfData property
returns true.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Example

The following example looks for "EOF" as an end-of-file marker.

 Dim fileParser As FileIO.TextFieldParser
 Dim oneLine() As String
 Dim lastLine As Long
 Dim markerFound As Boolean = False

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fileParser = New FileIO.TextFieldParser(dataFile)
 fileParser.SetDelimiters(",")
 Do While (fileParser.LineNumber <> -1)
 lastLine = fileParser.LineNumber
 oneLine = fileParser.ReadFields()
 If (UCase(oneLine(0)) = "EOF") Then
 MsgBox("Found EOF marker at line " & lastLine)
 markerFound = True
 Exit Do
 End If
 Loop
 fileParser.Close()
 If (markerFound = False) Then MsgBox("EOF marker not found.")

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.LineNumber Property

See Also

EndOfData Property, ErrorLineNumber Property, PeekChars Method, ReadFields Method, ReadLine
Method, ReadToEnd Method, TextFieldParser Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LoadedAssemblies Property

Location

My.Application.Info.LoadedAssemblies

Syntax

 Dim result As System.Collections.ObjectModel. _
 ReadOnlyCollection(Of System.Reflection.Assembly) = _
 My.Application.Info.LoadedAssemblies

Description

The LoadedAssemblies property returns a collection of all assemblies currently loaded by the active
application, with each element of type System.Reflection.Assembly.

Usage at a Glance

This property is read-only.

An application may include multiple loaded assemblies, including the primary application
assembly and associated libraries (DLLs).

An exception is thrown if the application domain is not loaded.

Example

The following example displays the names of all currently loaded assemblies in a message box.

 Dim assemblyList As String = ""
 Dim allAssemblies As System.Collections.ObjectModel. _
 ReadOnlyCollection(Of System.Reflection.Assembly) = _
 My.Application.Info.LoadedAssemblies
 For Each oneAssembly As System.Reflection.Assembly _
 In allAssemblies
 assemblyList &= "|" & oneAssembly.FullName
 Next oneAssembly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MsgBox("The following assemblies are currently loaded:" & _
 Replace(assemblyList, "|", vbCrLf))

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.LoadedAssemblies Property

System.AppDomain.GetAssemblies Method

See Also

AssemblyName Property, DirectoryPath Property, Info Object (My.Application)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LocalMachine Property

Location

My.Computer.Registry.LocalMachine

Syntax

 Dim result As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.LocalMachine

Description

The LocalMachine property returns a Microsoft.Win32.RegistryKey object that refers to the
HKEY_LOCAL_MACHINE location in the Windows registry. This entry point is used primarily to store
application and system settings that apply to all users on the local computer. It contains five major
subkeys: Hardware, SAM, Security, Software, and System.

Usage at a Glance

This property is read-only.

You must have sufficient security permissions to read or write keys and values in the registry.

Example

The following example displays all of the sub-elements of the HKEY_LOCAL_MACHINE registry key
element in a listbox control. The example assumes that you are using this code on a form with a
defined ListBox1 control.

 ListBox1.DataSource = _
 My.Computer.Registry.LocalMachine.GetSubKeyNames()

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.MyServices.RegistryProxy.LocalMachine Property

Microsoft.Win32.Registry.LocalMachine Property

See Also

ClassesRoot Property, CurrentConfig Property, CurrentUser Property, DynData Property, GetValue
Method, PerformanceData Property, Registry Object, SetValue Method, Users Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LocalTime Property

Location

My.Computer.Clock.LocalTime

Syntax

 Dim result As Date = My.Computer.Clock.LocalTime

Description

The LocalTime property returns the current date and time as represented by the current time zone
settings.

Usage at a Glance

This property is read-only.

Example

The following code displays the current local time in a message box.

 MsgBox("Look at your watch; it's " & _
 Format(My.Computer.Clock.LocalTime, "h:mm tt"))

Related Framework Entries

Microsoft.VisualBasic.Devices.Clock.LocalTime Property

System.DateTime.Now Property

See Also

Clock Object, GmtTime Property, TickCount Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Log Object (My)

Location

My.Log

Description

The Log object provides features that let you add content to one of the system logs. The My.Log
object is only available in ASP.NET applications. For client applications, use the My.Application.Log
object instead. Except for this difference in where the Log object resides in the My hierarchy, the two
objects are functionally equivalent. See the Log Object (My.Application) entry in this chapter for
combined information about the Log object and its members.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Log Object (My.Application)

Location

My.Application.Log

Description

The Log object provides features that let you add content to one of the system logs. The
My.Application.Log object is only available in client applications. For ASP.NET applications, use the
My.Log object instead. Except for this difference in where the Log object resides in the My hierarchy,
the two objects are functionally equivalent.

Public Members

The following members of the My.Log and My.Application.Log objects have their own entries
elsewhere in this chapter.

DefaultFileLogWriter Property

TraceSource Property

WriteEntry Method

WriteException Method

Usage at a Glance

The My.Application.Log object and its members are only valid in client applications.

The My.Log object and its members are only valid in ASP.NET applications.

Related Framework Entries

Microsoft.VisualBasic.Logging.Log Class

See Also

Log Object (My)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MinimumSplashScreenDisplayTime Property

Location

My.Application.MinimumSplashScreenDisplayTime

Syntax

 Dim result As Integer = _
 My.Application.MinimumSplashScreenDisplayTime

or:

My.Application.MinimumSplashScreenDisplayTime = showTime

showTime (required; Integer)

The minimum number of milliseconds that the application's splash screen should be displayed.

Description

The MinimumSplashScreenDisplayTime property gets or sets the number of milliseconds specified for display of
the application's "splash screen," the screen that first appears when the application is run. At the earliest, the
application's "main form" will not be displayed until this minimum time has elapsed.

Usage at a Glance

This property is only valid in Windows Forms applications.

Example

To set this property, you will need to override one of the application framework events, either OnInitialize or
OnCreateSplashScreen .These are methods of the WindowsFormsApplicationBase class; you can override them
in the ApplicationEvents.vb file. For instance, to set this value in the OnCreateSplashScreen method, use code
similar to the following block.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Namespace My
 Partial Friend Class MyApplication
 Protected Overrides Sub OnCreateSplashScreen()
 ' ----- Show the splash screen for 3 seconds.
 My.Application.MinimumSplashScreenDisplayTime = 3000
 MyBase.OnCreateSplashScreen()
 End Sub
 End Class
End Namespace

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.MinimumSplashScreenDisplayTime
Property

See Also

Application Object , SplashScreen Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mouse Object

Location

My.Computer.Mouse

Descripon

Use the Mouse object to determine the configuration and settings of the mouse attached to the local
computer.

Public Members

The following members of the My.Computer.Mouse object have their own entries elsewhere in this
chapter.

ButtonsSwapped Property

WheelExists Property

WheelScrollLines Property

Usage at a Glance

This object and its members are only valid in non-server applications.

Related Framework Entries

Microsoft.VisualBasic.Devices.Mouse Class

See Also

Computer Object, Keyboard Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MoveDirectory Method

Location

My.Computer.FileSystem.MoveDirectory

Syntax

 My.Computer.FileSystem.MoveDirectory(source, _
 destination[, overwrite])

or:

 My.Computer.FileSystem.MoveDirectory(source, _
 destination, showUI[, onUserCancel])

source (required; String)

The path of the directory to be moved.

destination (required; String)

The path of the parent directory to which the source directory will be moved.

overwrite (optional; Boolean)

Indicates whether an existing directory at the destination should be overwritten (true) or not
(False). If this parameter is missing from the first syntax, it defaults to False.

showUI (required in syntax 2; UIOption enumeration)

Indicates whether error or progress dialog windows should appear during the move. One of the
following Microsoft.VisualBasic.FileIO.UIOption enumeration values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

OnlyErrorDialogs Only shows error dialog boxes; does not display progress

AllDialogs Shows progress and error dialogs

If this parameter is missing, OnlyErrorDialogs is used by default.

onUserCancel (optional; UICancelOption enumeration)

The progress window includes a Cancel button. When pressed, the method takes action based
on this parameter. One of the following Microsoft.VisualBasic.FileIO.UICancelOption
enumeration values.

Value Description

DoNothing
Aborts the move but returns no information indicating that the move was
cancelled

ThrowException Throws an exception

If this parameter is missing, ThrowException is used by default.

Description

The MoveDirectory method moves the indicated directory and all files within it to a new parent
directory.

Usage at a Glance

If the destination directory, though valid, does not exist, it will be created.

An exception is thrown if the source or destination parameters are missing or invalid.

An exception is thrown if the source directory does not exist or is in use (including any included
files), or if a directory to be overwritten is in use.

An exception is thrown if the user lacks sufficient file access permissions.

An exception is thrown if the source and destination are the same or the source contains the
destination.

Example

The following example moves a directory to a new parent directory.

 My.Computer.FileSystem.MoveDirectory(_

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ("C:\Project\Documents", "C:\Archive")

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.MoveDirectory Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.MoveDirectory Method

System.IO.Directory.Move Method

See Also

CopyDirectory Method, CopyFile Method, CreateDirectory Method, DeleteDirectory Method, DeleteFile
Method, FileSystem Object, MoveFile Method, RenameDirectory Method, RenameFile Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MoveFile Method

Location

My.Computer.FileSystem.MoveFile

Syntax

My.Computer.FileSystem.MoveFile(source, destination[, overwrite])

or:

 My.Computer.FileSystem.MoveFile(source, destination, _

 showUI[, onUserCancel])

source (required; String)

The path of the file to be moved.

destination (required; String)

The path of the directory to which the file will be moved.

overwrite (optional; Boolean)

Indicates whether an existing file at the destination should be overwritten (true) or not
(False). If this parameter is missing from the first syntax, it defaults to False.

showUI (required in syntax 2; UIOption enumeration)

Indicates whether error or progress dialog windows should appear during the move. One of the
following Microsoft.VisualBasic.FileIO.UIOption enumeration values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

OnlyErrorDialogs Only shows error dialog boxes; does not display progress

AllDialogs Shows progress and error dialogs

If this parameter is missing, OnlyErrorDialogs is used by default.

onUserCancel (optional; UICancelOption enumeration)

The progress window includes a Cancel button. When pressed, the method takes action based
on this parameter. One of the following Microsoft.VisualBasic.FileIO.UICancelOption
enumeration values.

Value Description

DoNothing
Aborts the move but returns no information indicating that the move was
cancelled

ThrowException Throws an exception

If this parameter is missing, ThrowException is used by default.

Description

The MoveFile method moves the indicated file to a new directory.

Usage at a Glance

If the destination directory, though valid, does not exist, it will be created.

An exception is thrown if the source or destination parameters are missing or invalid.

An exception is thrown if the source file does not exist or is in use, or if a file to be overwritten
is in use.

An exception is thrown if the user lacks sufficient file access permissions.

Example

The following example moves a file to a new directory, overwriting any existing file of the same
name.

 My
.Computer.FileSystem.MoveFile(_
 ("C:\SourceDir\workfile.txt", "C:\DestDir", True)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.MoveFile Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.MoveFile Method

System.IO.File.Move Method

See Also

CopyDirectory Method, CopyFile Method, CreateDirectory Method, DeleteDirectory Method, DeleteFile
Method, FileSystem Object, MoveDirectory Method, RenameDirectory Method, RenameFile Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

My Namespace

Location

My

Description

The My Namespace feature provides access to many useful features of the .NET Framework Class
Library (FCL). These features are arranged in a hierarchy according to functionality, and some of the
features have simplified interfaces when compared to the original features in the FCL.

My acts as both a namespace of objects and as a Visual Basic-specific keyword. Some of its features
are dynamic in nature (as with the project-specific members of the My.Forms object), quite unlike
the behavior found in ordinary namespaces. But in practical use, it works just like a namespace, with
its "dot" notation and its extensibility.

Public Members

The following members of the My Namespace feature have their own entries elsewhere in this
chapter.

Application Object

Computer Object

Forms Object

Log Object (My)

Request Object

Resources Object

Response Object

Settings Object

User Object

WebServices Object

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Certain branches of the My namespace may be unavailable in your project. Some branches are not
relevant to all project types, and Visual Basic disables access to those branches that are not relevant
to the active project. The entries in this chapter indicate the types of projects for which they are
unavailable.

See Also

Application Object, Computer Object, Forms Object, Log Object (My), Request Object, Resources
Object, Response Object, Settings Object, User Object, WebServices Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyDocuments Property

Location

My.Computer.FileSystem.SpecialDirectories.MyDocuments

Syntax

 Dim result As String = My.Computer.FileSystem. _
 SpecialDirectories.MyDocuments

Description

The MyDocuments property returns the full path name to the "My Documents" folder for the current
user on the local workstation. Usually, this directory is found at C:\Documents and Settings\user\My
Documents, but it may vary from system to system.

Usage at a Glance

This property is read-only.

This folder contains user-specific files and directories.

This path may not be defined in some cases. In such cases, use of this property generates an
exception.

The returned path will never have a backslash "\" character at the end.

The path used for "My Documents" varies between the different Windows operating systems.
Windows Vista excludes the "My" prefix from the user-specific folder name, although the
MyDocuments property will retain its current name.

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy.MyDocuments Property

Microsoft.VisualBasic.FileIO.SpecialDirectories.MyDocuments Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

AllUsersApplicationData Property, CurrentUserApplicationData Property, Desktop Property, MyMusic
Property, MyPictures Property, ProgramFiles Property, Programs Property, SpecialDirectories Object,
Temp Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyMusic Property

Location

My.Computer.FileSystem.SpecialDirectories.MyMusic

Syntax

 Dim result As String = My.Computer.FileSystem. _
 SpecialDirectories.MyMusic

Description

The MyMusic property returns the full path name to the "My Music" folder for the current user on the
local workstation. Usually, this directory is found at C:\Documents and Settings\user\My
Documents\My Music, but it may vary from system to system.

Usage at a Glance

This property is read-only.

This folder contains music and multimedia files.

This path may not be defined in some cases. In such cases, use of this property generates an
exception.

The returned path will never have a backslash "\" character at the end.

The path used for "My Music" varies between the different Windows operating systems.
Windows Vista excludes the "My" prefix from the user-specific folder name, although the
MyMusic property will retain its current name.

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy.MyMusic Property

Microsoft.VisualBasic.FileIO.SpecialDirectories.MyMusic Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

AllUsersApplicationData Property, CurrentUserApplicationData Property, Desktop Property,
MyDocuments Property, MyPictures Property, ProgramFiles Property, Programs Property,
SpecialDirectories Object, Temp Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyPictures Property

Location

My.Computer .FileSystem.SpecialDirectories.MyPictures

Syntax

 Dim result As String = My.Computer.FileSystem. _
 SpecialDirectories.MyPictures

Description

The MyPictures property returns the full path name to the "My Pictures" folder for the current user on
the local workstation. Usually, this directory is found at C:\Documents and Settings\user\My
Documents\My Pictures, but it may vary from system to system.

Usage at a Glance

This property is read-only.

This folder contains image and multimedia files.

This path may not be defined in some cases. In such cases, use of this property generates an
exception.

The returned path will never have a backslash "\" character at the end.

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy.MyPictures Property

Microsoft.VisualBasic.FileIO.SpecialDirectories.MyPictures Property

See Also

AllUsersApplicationData Property, CurrentUserApplicationData Property, Desktop Property,
MyDocuments Property, MyMusic Property, ProgramFiles Property, Programs Property,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SpecialDirectories Object, Temp Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Property (My.Computer)

Location

My.Computer.Name

Syntax

 Dim result As String = My.Computer.Name

Description

The Name property returns the name of the local computer.

Usage at a Glance

This property is read-only.

Related Framework Entries

Microsoft.VisualBasic.Devices.Computer.Name Property

Microsoft.VisualBasic.Devices.ServerComputer.Name Property

System.Environment.MachineName Property

See Also

Computer Object, Name Property (My.User)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Property (My.User)

Location

My.User.Name

Syntax

 Dim result As String = My.User.Name

Description

The Name property returns the name of the current user. For most Windows applications, this name
will be in the format domain\user.

Usage at a Glance

This property is read-only.

This property returns an empty string on systems that do not support authentication, such as
Windows 95 and Windows 98.

Example

The following example obtains the user name. This example checks if the application is using
Windows or custom authentication, and it uses that information to parse the My.User.Name property.

Public Function GetCurrentUserName() As String
 If TypeOf My.User.CurrentPrincipal Is _
 System.Security.Principal.WindowsPrincipal Then
 ' ----- Windows username = "domain\user".
 Return Mid(My.User.Name, Instr(My.User.Name, "\") + 1)
 Else
 ' ----- Some other custom type of user.
 Return My.User.Name
 End If
End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.User.Name Property

Microsoft.VisualBasic.ApplicationServices.WebUser.Name Property

System.Security.Principal.IIdentity.Name Property

See Also

CurrentPrincipal Property, InitializeWithWindowsUser Method, IsAuthenticated Property, IsInRole
Method, Name Property (My.Computer), User Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Network Object

Location

My.Computer.Network

Description

Use the Network object to access features and information related to the computer's network.

Public Members

The following members of the My.Computer.Network object have their own entries elsewhere in this
chapter.

DownloadFile Method

IsAvailable Property

NetworkAvailabilityChanged Event (My.Computer.Network)

Ping Method

UploadFile Method

Related Framework Entries

Microsoft.VisualBasic.Devices.Network Class

See Also

Computer Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetworkAvailabilityChanged Event (My.Application)

Location

My.Application.NetworkAvailabilityChanged

Syntax

 Public Sub Me_NetworkAvailabilityChanged(ByVal sender As Object, _
 ByVal e As NetworkAvailableEventArgs) _
 Handles Me.NetworkAvailabilityChanged
 End Sub

sender (required; Object)

The control or object that raised the event

e (required; NetworkAvailableEventArgs)

An event parameter that contains information about the network, using the
Microsoft.VisualBasic.Devices.NetworkAvailableEventArgs class.

Description

The NetworkAvailabilityChanged event occurs whenever the network availability changes.

Public Members

The e argument for this event, as an instance of the NetworkAvailableEventArgs class, includes the

following notable public members.

Member Description

IsNetworkAvailable
Property. A Boolean that indicates whether the new state of the network is
available (TRue) or not (False).

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This event is only available in Windows Forms applications. A similar event, accessible to all
application types, exists in the My.Computer.Network object. See the
NetworkAvailabilityChangedEvent (My.Computer.Network) entry in this chapter for information
on that event.

This event handler can be found in the ApplicationEvents.vb source code file for your project.
This file is normally hidden but can be viewed by toggling the Show All Files button in the
Solution Explorer window in Visual Studio.

This event does not occur on Windows 95 and Windows 98 systems.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase Class

Microsoft.VisualBasic.Devices.NetworkAvailableEventArgs Class

See Also

Application Object, NetworkAvailabilityChanged Event (My.Computer.Network)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetworkAvailabilityChanged Event (My.Computer.Network)

Location

My.Computer.Network.NetworkAvailabilityChanged

Syntax

 Public Sub MyComputerNetwork_NetworkAvailabilityChanged(_
 ByVal sender As Object, _
 ByVal e As NetworkAvailableEventArgs)
 End Sub

Elsewhere:

 AddHandler My.Computer.Network.NetworkAvailabilityChanged, _
 AddressOf MyComputerNetwork_NetworkAvailabilityChanged

sender (required; Object)

The control or object that raised the event

e (required; NetworkAvailableEventArgs)

An event parameter that contains information about the network, using the
Microsoft.VisualBasic.Devices.NetworkAvailableEventArgs class.

Description

The NetworkAvailabilityChanged event occurs whenever the network availability changes.

Public Members

The e argument for this event, as an instance of the NetworkAvailableEventArgs class, includes the

following notable public members.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

IsNetworkAvailable
Property. A Boolean that indicates whether the new state of the network is
available (TRue) or not (False)

Usage at a Glance

This event is available to any type of application. A similar event, only available in Windows
Forms applications, exists in the My.Application object. See the
NetworkAvailabilityChangedEvent (My.Application) entry in this chapter for information on that
event.

You cannot use the Handles keyword when defining the event procedure for this event. You
must attach the event procedure to the event using the AddHandler statement.

This event does not occur on Windows 95 and Windows 98 systems.

Related Framework Entries

Microsoft.VisualBasic.Devices.Network Class

Microsoft.VisualBasic.Devices.NetworkAvailableEventArgs Class

See Also

Network Object, NetworkAvailabilityChanged Event (My.Application)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NumLock Property

Location

My.Computer.Keyboard.NumLock

Syntax

 Dim result As Boolean = My.Computer.Keyboard.NumLock

Description

The NumLock property indicates the current state of the Num Lock key, whether on (TRue) or off
(False).

Usage at a Glance

This property is read-only.

This property is only valid in non-server applications.

Related Framework Entries

Microsoft.VisualBasic.Devices.Keyboard.NumLock Property

See Also

CapsLock Property, Keyboard Object, ScrollLock Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OpenForms Property

Location

My.Application.OpenForms

Syntax

 Dim result As System.Windows.Forms.FormCollection = _
 My.Application.OpenForms

Description

The OpenForms property returns a collection of the application's currently open forms.

Usage at a Glance

This property is read-only.

This property is only valid in Windows Forms applications.

An exception may be thrown if you try to access a form opened by another thread of your
application. This property returns all forms currently open by all threads of the application. You
may be limited in which open forms you can access from the current thread. For a given form,
examine the System.Windows.Forms.Control.InvokeRequired property, which returns true if the
form was created by another thread. If true, you can access that form by using its
System.Windows.Forms.Control.Invoke method.

Example

The following code saves the location of each form to the application's area of the registry.

 Dim scanForm As System.Windows.Forms.Form
 For Each scanForm In My.Application.OpenForms
 SaveSetting("MySoftware", "FormPositions", _
 TypeName(scanForm), scanForm.Left & "," & scanForm.Top)
 Next scanForm

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.OpenForms Property

System.Windows.Forms.Application.OpenForms Property

See Also

Application Object, SplashScreen Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OpenSerialPort Method

Location

My.Computer.Ports.OpenSerialPort

Syntax

 Dim result As System.IO.Ports.SerialPort = _

 My.Computer.Ports.OpenSerialPort(portName[, baudRate _

 [, parity [, dataBits [, stopBits]]]])

portName (required; String)

The name of the port to open. Typically, this will be a numbered "COM" serial port, as in
"COM1."

baudRate (optional; Integer)

The desired baud rate of the port. The value you supply must be supported by the port you are
trying to open. By default, a value of 9600 bits per second (bps) is used.

parity (optional; Parity enumeration)

The parity settings of the port. One of the following System.IO.Ports.Parity enumeration
values.

Value Description

Even
Sets the parity bit so that the count of bits set within each unit is always an even
number of bits

Mark Always sets the parity bit to 0

None Skips all parity checks

Odd
Sets the parity bit so that the count of bits set within each unit is always an odd
number of bits

Space Always sets the parity bit to 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dataBits (optional; Integer)

Data-bit setting of the port. This value ranges from 5 to 8 and is set to 8 by default.

stopBits (optional; StopBits enumeration)

Stop-bit setting of the port, indicating the number of bits used to separate each unit of data.
One of the following System.IO.Ports.StopBits enumeration values.

Value Description

None Uses no stop bits

One Uses one stop bit

OnePointFive Uses 1.5 stop bits

Two Uses two stop bits

Description

The OpenSerialPort method opens one of the serial ports on the local computer and returns an
instance of System.IO.Ports.SerialPort for that port.

Usage at a Glance

This method is not valid in ASP.NET applications.

This serial port must be closed and disposed of when finished. Normally, this is done by using
the Close method on the object returned from the OpenSerialPort method. You may also close it
automatically by using the Using keyword. The example provided in this entry shows how to do
this.

An exception is thrown if any of the parameters passed are invalid or are not available through
the specified port.

Example

The following example opens the computer's COM1 serial port and sends a single line of text data.
The serial port is closed implicitly through the use of the Using keyword.

The System.IO.Ports.SerialPort.WriteLine method sends the data to the serial port.

 Public Sub SendTextToCOM1(ByVal textToSend As String)
 ' ----- Open COM1 and send some text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim comPort As System.IO.Ports.SerialPort
 Using comPort = My.Computer.Ports.OpenSerialPort("COM1")
 comPort.WriteLine(textToSend)
 End Using
 End Function

Related Framework Entries

Microsoft.VisualBasic.Devices.Ports.OpenSerialPort Method

System.IO.Ports.SerialPort.Open Method

See Also

Ports Object, SerialPortNames Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OpenTextFieldParser Method

Location

My.Computer.FileSystem.OpenTextFieldParser

Syntax

 Dim result As FileIO.TextFieldParser = _

 My.Computer.FileSystem.OpenTextFieldParser(path[, delimiters])

or:

 Dim result As FileIO.TextFieldParser = _

 My.Computer.FileSystem.OpenTextFieldParser(path[, fieldWidths])

path (required; String)

The path to the file to be read.

delimiters (optional; String array)

An array of the character or multicharacter values that identify the delimiters used to separate
data fields in each input line of a delimited text file being parsed by a TextFieldParser object.
End-of-line characters may not be used as field delimiters. If you only require a single
delimiter, passing an ordinary string is acceptable.

fieldWidths (optional; Integer array)

An array of values, each of which indicates the character length of a positional field within a
fixed-width text file being parsed by a TextFieldParser object. All field widths must be greater
than zero, although the last array element may be less than or equal to zero to indicate a final
variable-width field.

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The OpenTextFieldParser method creates a Microsoft.VisualBasic.FileIO.TextFieldParser object, which
represents each data row of the text input file, broken up into distinct fields. You can specify either
fixed-position fields or fields delimited by a specific delimiter.

Public Members

See the TextFieldParser Object entry in this chapter for additional information.

Usage at a Glance

The delimiters and fieldWidths parameters can also be set with the TextFieldParser's

Delimiters and FieldWidths properties or with the SetDelimiters and SetFieldWidths methods.

An exception is thrown if the path parameter is missing or invalid, or if the file it refers to does
not exist.

An exception is thrown if the user lacks sufficient file access permissions.

An exception is thrown if a row of the file's text data cannot be parsed according to the
parameters supplied through this method. The exception thrown is
Microsoft.VisualBasic.FileIO.TextFieldParser.MalformedLineException.

Example

This code opens a tab-delimited file for scanning.

 Dim oneLine() As String
 Dim inputFile As FileIO.TextFieldParser = _
 My.Computer.FileSystem.OpenTextFieldParser(_
 "c:\temp\data.txt", vbTab)

 Do While Not inputFile.EndOfData
 oneLine = inputFile.ReadFields()
 ' ----- Process data here...
 Loop
 inputFile.Close()

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.OpenTextFieldParser Method

Microsoft.VisualBasic.FileIO.TextFieldParser Class

Microsoft.VisualBasic.MyServices.FileSystemProxy.OpenTextFieldParser Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

FileSystem Object, OpenTextFileReader Method, OpenTextFileWriter Method, ReadAllBytes Method,
ReadAllText Method, TextFieldParser Object, WriteAllBytes Method, WriteAllText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OpenTextFileReader Method

Location

My.Computer.FileSystem.OpenTextFileReader

Syntax

 Dim result As System.IO.StreamReader = _

 My.Computer.FileSystem.OpenTextFileReader(path[, encoding])

path (required; String)

The path of the file to read.

encoding (optional; Encoding)

The character encoding method to use, as a System.Text.Encoding object. If this parameter is
missing, ASCII is used as the default encoding method.

Description

The OpenTextFileReader opens a file for text reading and returns a stream of type
System.IO.StreamReader.

Public Members

The returned StreamReader object includes the following notable public members.

Member Description

Close Method. Closes the file.

ReadLine Method. Reads one line from the file and returns it as a string.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An exception is thrown if the path parameter is missing or invalid, or if the file it refers to does
not exist.

An exception is thrown if the user lacks sufficient file access permissions.

Example

 Dim oneLine As String
 Dim inputFile As System.IO.StreamReader = _
 My.Computer.FileSystem.OpenTextFileReader("c:\temp\data.txt")
 Do While inputFile.EndOfStream = False
 oneLine = inputFile.ReadLine()
 ' ----- Process data here...
 Loop
 inputFile.Close()

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.OpenTextFileReader Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.OpenTextFileReader Method

System.IO.StreamReader Class

System.IO.TextReader Class

See Also

FileSystem Object, OpenTextFieldParser Method, OpenTextFileWriter Method, ReadAllBytes Method,
ReadAllText Method, WriteAllBytes Method, WriteAllText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OpenTextFileWriter Method

Location

My.Computer.FileSystem.OpenTextFileWriter

Syntax

 Dim result As System.IO.StreamWriter = _
 My.Computer.FileSystem.OpenTextFileWriter(_

 path, append[, encoding])

path (required; String)

The path of the file to written.

append (required; Boolean)

Indicates whether newly written text will be appended to the end of the file's existing content
(true) or used to replace any existing content (False).

encoding (optional; Encoding)

The character-encoding method to use, as a System.Text.Encoding object. If this parameter is
missing, ASCII is used as the default encoding method.

Description

The OpenTextFileWriter opens or creates a file for text writing and returns a stream of type
System.IO.StreamWriter.

Public Members

The returned StreamWriter object includes the following notable public members.

Member Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Close Method. Completes all pending writes and closes the file.

Flush
Method. Forces any pending buffered writes to be sent to the file immediately. You can
also set the related AutoFlush property to true to perform a Flush after every write.

Write Method. Writes data to the stream.

WriteLine Mathod. Writes data to the stream, followed by a line-termination character.

Usage at a Glance

An exception is thrown if the path parameter is missing or invalid or if the file exists and is in
use.

An exception is thrown if the user lacks sufficient file-access permissions.

If the file already exists and uses an encoding method other than the one specified by this
method, the original encoding method of the file will prevail.

Example

The following code creates or overwrites a file with some simple text data.

 Dim counter As Integer
 Dim outputFile As System.IO.StreamWriter = _
 My.Computer.FileSystem.OpenTextFileWriter(_
 "c:\temp\data.txt", False) ' False = Overwrite
 For counter = 1 To 10
 outputFile.WriteLine("This is line " & counter & ".")
 Next counter
 outputFile.Close()

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.OpenTextFileWriter Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.OpenTextFileWriter Method

System.IO.StreamWriter Class

System.IO.TextWriter Class

See Also

Close Method. Completes all pending writes and closes the file.

Flush
Method. Forces any pending buffered writes to be sent to the file immediately. You can
also set the related AutoFlush property to true to perform a Flush after every write.

Write Method. Writes data to the stream.

WriteLine Mathod. Writes data to the stream, followed by a line-termination character.

Usage at a Glance

An exception is thrown if the path parameter is missing or invalid or if the file exists and is in
use.

An exception is thrown if the user lacks sufficient file-access permissions.

If the file already exists and uses an encoding method other than the one specified by this
method, the original encoding method of the file will prevail.

Example

The following code creates or overwrites a file with some simple text data.

 Dim counter As Integer
 Dim outputFile As System.IO.StreamWriter = _
 My.Computer.FileSystem.OpenTextFileWriter(_
 "c:\temp\data.txt", False) ' False = Overwrite
 For counter = 1 To 10
 outputFile.WriteLine("This is line " & counter & ".")
 Next counter
 outputFile.Close()

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.OpenTextFileWriter Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.OpenTextFileWriter Method

System.IO.StreamWriter Class

System.IO.TextWriter Class

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileSystem Object, OpenTextFieldParser Method, OpenTextFileReader Method, ReadAllBytes Method,
ReadAllText Method, WriteAllBytes Method, WriteAllText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OSFullName Property

Location

My.Computer.Info.OSFullName

Syntax

 Dim result As String = My.Computer.Info.OSFullName

Description

The OSFullName property returns the full name of the operating system.

Usage at a Glance

This property is read-only.

An exception is thrown if the user does not have sufficient security privileges to access system
information.

If Windows Management Instrumentation (WMI) is not installed on the local computer, this
property returns the same data as the My.Computer.Info.OSPlatform property.

Example

The text returned by this property varies by operating system. For instance, the text returned for
Windows XP Professional is, as expected, "Microsoft Windows XP Professional."

Related Framework Entries

Microsoft.VisualBasic.Devices.ComputerInfo.OSFullName Property

See Also

Info Object (My.Computer), OSPlatform Property, OSVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OSPlatform Property

Location

My.Computer.Info.OSPlatform

Syntax

 Dim result As String = My.Computer.Info.OSPlatform

Description

The OSPlatform property returns the basic platform name of the operating system.

Usage at a Glance

This property is read-only.

An exception is thrown if the user does not have sufficient security privileges to access system
information.

If Windows Management Instrumentation (WMI) is installed on the local computer, the
My.Computer.Info.OSFullName property will provide much more detailed information than this
property.

Example

The text returned by this property varies by operating system. For instance, the text returned for
Windows XP Professional is "Win32NT."

Related Framework Entries

Microsoft.VisualBasic.Devices.ComputerInfo.OSPlatform Property

System.Environment.OSVersion Property

System.OperatingSystem.Platform Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Info Object (My.Computer), OSFullName Property, OSVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OSVersion Property

Location

My.Computer.Info.OSVersion

Syntax

 Dim result As String = My.Computer.Info.OSVersion

Description

The OSVersion property returns the version of the operating system, a set of four numbers in the
format "major.minor.build.revision."

Usage at a Glance

This property is read-only.

An exception is thrown if the user does not have sufficient security privileges to access system
information.

Example

The text returned by this property varies by operating system and installed features. For instance,
the text returned for a sample Windows XP Professional system with Service Pack 2 and several hot
fixes installed was "5.1.2600.131072."

Related Framework Entries

Microsoft.VisualBasic.Devices.ComputerInfo.OSFullName Property

System.Environment.OSVersion Property

System.OperatingSystem.Version Property

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Info Object (My.Computer), OSFullName Property, OSPlatform Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PeekChars Method

Location

TextFieldParser.PeekChars

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...

 Dim result As String = fileParser.PeekChars(peekLength)

peekLength (required; Integer)

The number of characters to read and return

Description

The PeekChars method returns the specified number of characters from the current position in the
input file, but it does not alter the current position. Blank lines are ignored when using this method.

Usage at a Glance

This method never returns characters beyond the end of the current line, no matter now many
characters were requested.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Example

This code opens a tab-delimited file for scanning but stops early if it detects an artificial end-of-file
marker.

 Dim oneLine() As String
 Dim inputFile As FileIO.TextFieldParser = _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 My.Computer.FileSystem.OpenTextFieldParser(_
 "c:\temp\data.txt", vbTab)

 Do While Not inputFile.EndOfData
 ' ----- Check for the EOF marker.
 If (inputFile.PeekChars(3) = "EOF") Then Exit Do

 ' ----- OK to process this line.
 oneLine = inputFile.ReadFields()
 ' ----- Process data here...
 Loop
 inputFile.Close()

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.PeekChars Method

See Also

EndOfData Property, LineNumber Property, ReadFields Method, ReadLine Method, ReadToEnd
Method, TextFieldParser Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PerformanceData Property

Location

My.Computer.Registry.PerformanceData

Syntax

 Dim result As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.PerformanceData

Description

The PerformanceData property returns a Microsoft.Win32.RegistryKey object that refers to the
HKEY_PERFORMANCE_DATA location in the Windows registry. This key refers to information that is not
actually stored in the registry, but the registry is the access point for this dynamically generated
data. The data includes performance counts and statistics, many of which are displayed through the
Performance control panel applet.

Usage at a Glance

This property is read-only.

You must have sufficient security permissions to read or write keys and values in the registry.

Related Framework Entries

Microsoft.VisualBasic.MyServices.RegistryProxy.PerformanceData Property

Microsoft.Win32.Registry.PerformanceData Property

See Also

ClassesRoot Property, CurrentConfig Property, CurrentUser Property, DynData Property, GetValue
Method, LocalMachine Property, Registry Object, SetValue Method, Users Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ping Method

Location

My.Computer.Network.Ping

Syntax

 Dim result As Boolean = My.Computer.Network.Ping(host[, timeout])

or:

 Dim result As Boolean = My.Computer.Network.Ping(uri[, timeout])

host (required in syntax 1; String)

The IP address, Internet domain, URL, or computer name of the system to ping.

uri (required in second syntax; System.Uri)

The uniform resource identifier of the system to ping.

timeout (optional; Integer)

The number of milliseconds to wait before skipping a ping request. By default, the timeout is
500 milliseconds.

Description

The Ping method can be used to test for the presence of another system by making an ICMP protocol
echo request over an IP network. This method returns TRue if the destination system was successfully
Ping'd or False on a lack of success.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Even if the Ping method returns False, the destination system may still be running and on the
network. Causes for failure include the ping protocol being turned off on the target system, the ping
request being blocked by a firewall, or a failure of the packet to reach the target system due to other
network issues.

Related Framework Entries

Microsoft.VisualBasic.Devices.Network.Ping Method

System.Net.NetworkInformation.Ping Class

See Also

Network Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Play Method

Location

My.Computer.Audio.Play

Syntax

 My.Computer.Audio.Play(location[, playMode])

or:

 My.Computer.Audio.Play(data, playMode)

or:

 My.Computer.Audio.Play(stream, playMode)

location (required; String)

The path to the sound file.

data (required in syntax 2; Byte array)

The binary content of a sound file stored in a Byte array.

stream (required in syntax 3; Stream)

The binary content of a sound file accessed through a System.IO.Stream object.

playMode (optional in syntax 1; AudioPlayMode enumeration)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The method by which the sound should be played. One of the following
Microsoft.VisualBasic.AudioPlayMode enumeration values.

Value Description

Background
Starts playing the sound in the background one time. The program
continues with the next source-code statement.

BackgroundLoop
Starts playing the sound in the background in a loop until stopped with the
My.Computer.Audio.Stop method. The program continues with the next
source-code statement.

WaitToComplete
Plays the sound but does not continue with the next source-code statement
until the playing of the sound ends.

If omitted, the default value is Background.

Description

The Play method plays a sound (WAV) through the system speakers. The WAV sound content can be
accessed as a file, a Byte array, or a Stream.

Usage at a Glance

This method is only valid in non-server applications.

Using an invalid or empty data source will cause an exception, as will using an invalid play
mode.

Trying to play a file-based sound without sufficient privileges will cause an exception.

Example

The following example plays a disk-based WAV file and waits for it to complete.

My.Computer.Audio.Play("C:\YouWin.wav", _
 AudioPlayMode.WaitToComplete)

Related Framework Entries

Microsoft.VisualBasic.Devices.Audio.Play Method

System.Media.SoundPlayer Class

System.Media.SoundPlayer.Play Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Media.SoundPlayer.PlayLooping Method

System.Media.SoundPlayer.PlaySyncMethod

See Also

Audio Object, PlaySystemSound Method, Stop Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PlaySystemSound Method

Location

My.Computer.Audio.PlaySystemSound

Syntax

My.Computer.Audio.PlaySystemSound(systemSound)

systemSound (required; SystemSound enumeration)

The system sound to play. One of the following System.Media.SystemSounds enumeration
values.

Value Description

Asterisk The sound played with an "asterisk" message box

Beep The default system "beep" sound

Exclamation The sound played with an "exclamation" message box

Hand The sound played with a "hand" message box

Question The sound played with a "question" message box

Description

The PlaySystemSound method plays a system sound, one of the sounds linked to a specific system-
initiated action. The sound is played in the background one time.

Usage at a Glance

This method is only valid in non-server applications.

Specifying an invalid system sound will cause an exception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The following example plays the system "Beep" sound.

 My.Computer.Audio.PlaySystemSound(_
 System.Windows.Forms.SystemSounds.Beep)

Related Framework Entries

Microsoft.VisualBasic.Devices.Audio.PlaySystemSound Method

System.Media.SystemSound Class

System.Media.SystemSound.Play Method

System.Media.SystemSounds Class

See Also

Audio Object, Play Method, Stop Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ports Object

Location

My.Computer.Ports

Description

Use the Ports object to access features related to the computer's serial ports.

Public Members

The following members of the My.Computer.Ports object have their own entries elsewhere in this
chapter.

OpenSerialPort Method

SerialPortNames Property

Usage at a Glance

This object and its members are not valid in ASP.NET applications.

Related Framework Entries

Microsoft.VisualBasic.Devices.Ports Class

System.IO.Ports.SerialPort Class

See Also

Computer Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ProductName Property

Location

My.Application.Info.ProductName

Syntax

 Dim result As String = My.Application.Info.ProductName

Description

The ProductName property returns the product name as defined in the informational section of the
assembly.

Usage at a Glance

This property is read-only.

An exception occurs if the product name attribute, AssemblyProductAttribute (or
<AssemblyProduct>), is undefined in the active assembly.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.ProductName Property

System.Diagnostics.FileVersionInfo.ProductName Property

See Also

CompanyName Property, Copyright Property, Description Property, Info Object (My.Application), Title
Property, Trademark Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ProgramFiles Property

Location

My.Computer.FileSystem.SpecialDirectories.ProgramFiles

Syntax

 Dim result As String = My.Computer.FileSystem. _
 SpecialDirectories.ProgramFiles

Description

The ProgramFiles property returns the full path name to the "Program Files" folder for the local
workstation. Usually, this directory is found at C:\Program Files, but it may vary from system to
system.

Usage at a Glance

This property is read-only.

This folder contains application files for installed programs.

This path may not be defined in some cases. In such cases, use of this property generates an
exception.

The returned path will never have a backslash "\" character at the end.

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy.ProgramFiles Property

Microsoft.VisualBasic.FileIO.SpecialDirectories.ProgramFiles Property

See Also

AllUsersApplicationData Property, CurrentUserApplicationData Property, Desktop Property,
MyDocuments Property, MyMusic Property, MyPictures Property, Programs Property,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SpecialDirectories Object, Temp Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programs Property

Location

My.Computer.FileSystem.SpecialDirectories.Programs

Syntax

 Dim result As String = My.Computer.FileSystem. _
 SpecialDirectories.Programs

Description

The Programs property returns the full path name to the start menu's "Programs" folder for the
current user. Usually, this directory is found at C:\Documents and Settings\user\Start
Menu\Programs, but it may vary from system to system.

Usage at a Glance

This property is read-only.

This folder contains user shortcuts for installed programs.

This path may not be defined in some cases. In such cases, use of this property generates an
exception.

The returned path will never have a backslash "\" character at the end.

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy.Programs Property

Microsoft.VisualBasic.FileIO.SpecialDirectories.Programs Property

See Also

AllUsersApplicationData Property, CurrentUserApplicationData Property, Desktop Property,
MyDocuments Property, MyMusic Property, MyPictures Property, ProgramFiles Property,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SpecialDirectories Object, Temp Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ReadAllBytes Method

Location

My.Computer.FileSystem.ReadAllBytes

Syntax

 Dim result As Byte() = My.Computer.FileSystem.ReadAllBytes(path)

path (required; String)

The path of the file to read

Description

The ReadAllBytes method returns the entire contents of a text file as a Byte array.

Usage at a Glance

An exception is thrown if the path parameter is missing or invalid, or if the file it refers to does
not exist.

An exception is thrown if the user lacks sufficient file access permissions.

An exception is thrown if the file content is too large for available memory.

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.ReadAllBytes Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.ReadAllBytes Method

See Also

FileSystem Object, OpenTextFieldParser Method, OpenTextFileReader Method, OpenTextFileWriter
Method, ReadAllText Method, WriteAllBytes Method, WriteAllText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ReadAllText Method

Location

My.Computer.FileSystem.ReadAllText

Syntax

 Dim result As String = My.Computer.FileSystem.ReadAllText(_

 path[, encoding])

path (required; String)

The path of the file to read.

encoding (optional; Encoding)

The character-encoding method to use as a System.Text.Encoding object. If this parameter is
missing, UTF-8 is used as the default encoding method.

Description

The ReadAllText method returns the entire contents of a text file as a String. For information on code
pages and encoding, see the System.Text.Encoding entry in the documentation supplied with the
.NET Framework.

Usage at a Glance

An exception is thrown if the path parameter is missing or invalid or if the file it refers to does
not exist.

An exception is thrown if the user lacks sufficient file-access permissions.

An exception is thrown if the file content is too large for available memory.

Example

The following example reads in the contents of a file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim errorText As String
 errorText = My.Computer.FileSystem.ReadAllText("C:\error.log")
 If (Len(Trim(errorText)) <> 0) Then _
 MsgBox("The following error was recorded:" & vbCrLf & _
 vbCrLf & errorText)

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.ReadAllText Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.ReadAllText Method

See Also

FileSystem Object, OpenTextFieldParser Method, OpenTextFileReader Method, OpenTextFileWriter
Method, ReadAllBytes Method, WriteAllBytes Method, WriteAllText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ReadFields Method

Location

TextFieldParser.ReadFields

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As String() = fileParser.ReadFields()

Description

The ReadFields method is the main processing method of the TextFieldParser object. It reads all
delimited or fixed-width fields in the current record of the input file and returns those fields as a
string array. The fields returned from a delimited input file may be altered in content through the
HasFieldsEnclosedInQuotes and TrimWhiteSpace properties. Blank lines and comment lines are
always ignored.

After reading the record, the current file position advances to the start of the next record.

Usage at a Glance

An exception is thrown if the parser is unable to extract the delimited or fixed-width fields currently
configured through the TextFieldParser object. The ErrorLine and ErrorLineNumber properties will
provide details on the errant record.

Example

This code processes a tab-delimited file using the ReadFields method.

 Dim oneLine() As String
 Dim inputFile As FileIO.TextFieldParser = _
 My.Computer.FileSystem.OpenTextFieldParser(_
 "c:\temp\data.txt", vbTab)

 Do While Not inputFile.EndOfData
 oneLine = inputFile.ReadFields()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- Process data here...
 Loop
 inputFile.Close()

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.ReadFields Method

See Also

Close Method, CommentTokens Property, Delimiters Property, EndOfData Property, ErrorLine
Property, ErrorLineNumber Property, FieldWidths Property, HasFieldsEnclosedInQuotes Property,
LineNumber Property, PeekChars Method, ReadLine Method, ReadToEnd Method, SetDelimiters
Method, SetFieldWidths Method, TextFieldParser Object, TextFieldType Property, TrimWhiteSpace
Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ReadLine Method

Location

TextFieldParser.ReadLine

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As String = fileParser.ReadLine()

Description

The ReadLine method reads and returns the current line from a file being parsed with the
TextFieldParser object. The returned line is not parsed into distinct fields. If the file position is already
at the end of the file, this method returns an empty string.

This method advances the current file position to the start of the next line.

Usage at a Glance

You must close the TextFieldParser object when finished with it. Use the object's Close method or
create the object instance with the Using keyword. See the TextFieldParser Object entry in this
chapter for an example.

Example

This code opens a tab-delimited file for scanning but performs a different type of processing on lines
marked by a special preamble.

 Dim oneLine As String
 Dim fieldSet() As String
 Dim inputFile As FileIO.TextFieldParser = _
 My.Computer.FileSystem.OpenTextFieldParser(_
 "c:\temp\data.txt", vbTab)

 Do While Not inputFile.EndOfData
 ' ----- Check for the special processing flag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (inputFile.PeekChars(5) = "SPEC:") Then
 ' ----- Do special processing of this line.
 oneLine = inputFile.ReadLine()
 ' ----- Process data here...
 Else
 ' ----- OK to process this line normally.
 fieldSet = inputFile.ReadFields()
 ' ----- Process data here...
 End If
 Loop
 inputFile.Close()

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.ReadLine Method

See Also

Close Method, CommentTokens Property, EndOfData Property, LineNumber Property, PeekChars
Method, ReadFields Method, ReadToEnd Method, TextFieldParser Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ReadToEnd Method

Location

TextFieldParser.ReadToEnd

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As String = fileParser.ReadToEnd()

Description

The ReadToEnd method reads and returns the remaining text in a file being parsed with the
TextFieldParser object, starting from the current file position. The text returned is not parsed into
distinct fields and may include blank lines and comment lines. If the file position is already at the end
of file, this method returns an empty string.

This method advances the current file position to the end of the file and sets the parser's LineNumber
property to -1.

Usage at a Glance

You must close the TextFieldParser object when finished with it. Use the object's Close method or
create the object instance with the Using keyword. See the TextFieldParser Object entry in this
chapter for an example.

Example

This code opens a tab-delimited file for scanning but looks for non-delimited data near the end of the
file.

 Dim oneLine() As String
 Dim commentary As String
 Dim inputFile As FileIO.TextFieldParser = _
 My.Computer.FileSystem.OpenTextFieldParser(_
 "c:\temp\data.txt", vbTab)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Do While Not inputFile.EndOfData
 ' ----- Check for the start of the commentary.
 If (inputFile.PeekChars(9) = "COMMENTS:") Then
 ' ----- Skip the first line.
 commentary = inputFile.ReadLine()
 commentary = inputFile.ReadToEnd()
 Else
 ' ----- OK to process this line.
 oneLine = inputFile.ReadFields()
 ' ----- Process data here...
 End If
 Loop
 inputFile.Close()

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.ReadToEnd Method

See Also

Close Method, CommentTokens Property, EndOfData Property, LineNumber Property, PeekChars
Method, ReadFields Method, ReadLine Method, TextFieldParser Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Registry Object

Location

My.Computer.Registry

Description

Use the Registry object to query or update keys and values in the Windows registry. The registry is a
hierarchy of data values used by both Windows and other applications to manage user and system
settings. You must have sufficient security privileges to use the members of this object.

Public Members

The following members of the My.Computer.Registry object have their own entries elsewhere in this
chapter.

ClassesRoot Property

CurrentConfig Property

CurrentUser Property

DynData Property

GetValue Method

LocalMachine Property

PerformanceData Property

SetValue Method

Users Property

Related Framework Entries

Microsoft.VisualBasic.MyServices.RegistryProxy Class

Microsoft.Win32.Registry Class

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Computer.Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RenameDirectory Method

Location

My.Computer.FileSystem.RenameDirectory

Syntax

 My.Computer.FileSystem.RenameDirectory(path, newName)

path (required; String)

The path to the directory to be renamed.

newName (required; String)

The new name of the directory. Include the basic directory name only; do not include drive,
parent directory, or path information.

Description

The RenameDirectory method renames an existing directory, keeping it in the same parent directory.

Usage at a Glance

The renamed directory always remains in the original parent directory. To move a directory to a
different location on the same drive and rename it at the same time, use the MoveDirectory
method instead.

Visual Basic includes a Rename statement that also renames directories.

An exception is thrown if the path or newName parameters are missing or invalid or if the newName

parameter contains any path-specific information.

An exception is thrown if the directory does not exist or is in use (including any files contained
within it) or if there is already a file or directory using the new name.

An exception is thrown if the user lacks sufficient file-access permissions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The following example renames a directory.

My.Computer.FileSystem.RenameDirectory("C:\vb_data", "vb_info")

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.RenameDirectory Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.RenameDirectory Method

System.IO.Directory.Move Method (if moving in same parent directory)

See Also

CopyDirectory Method, CopyFile Method, CreateDirectory Method, DeleteDirectory Method, DeleteFile
Method, FileSystem Object, MoveDirectory Method, MoveFile Method, RenameFile Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RenameFile Method

Location

My.Computer.FileSystem.RenameFile

Syntax

My.Computer.FileSystem.RenameFile(path, newName)

path (required; String)

The path to the file to be renamed.

newName (required; String)

The new name of the file. Include the basic filename and extension only; do not include drive,
directory, or path information.

Description

The RenameFile method renames an existing file, keeping it in the same directory.

Usage at a Glance

The renamed file always remains in the original directory. To move a file to a different directory
and rename it at the same time, use the MoveFile method instead.

Visual Basic includes a Rename statement that also renames files.

An exception is thrown if the path or newName parameters are missing or invalid, or if the newName

parameter contains any path-specific information.

An exception is thrown if the file does not exist or is in use, or if there is already a file or
directory using the new name.

An exception is thrown if the user lacks sufficient file-access permissions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The following example renames a file.

My.Computer.FileSystem.RenameFile("C:\workfile.txt", "playfile.txt")

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.RenameFile Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.RenameFile Method

System.IO.File.Rename Method

See Also

CopyDirectory Method, CopyFile Method, CreateDirectory Method, DeleteDirectory Method, DeleteFile
Method, FileSystem Object, MoveDirectory Method, MoveFile Method, RenameDirectory Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Request Object

Location

My.Request

Description

Use the Request object within ASP.NET applications to access the details of the active HTTP request.

Usage at a Glance

This object and its members are only valid in ASP.NET applications.

The Request object parallels the functionality of the original Request object found in the pre-
.NET Active Server Pages platform.

Related Framework Entries

System.Web.HttpRequest Object

See Also

Response Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Resources Object

Location

My.Resources

Description

Use the My.Resources object to access the global culture-specific resources for the active application.
Resources are initially managed in Visual Studio using the new Resources panel of the project's
Properties window. (Access this window by double-clicking on the "My Project" item in the Solution
Explorer or by selecting Properties from Visual Studio's Project menu.) This form lets you add
resources to a project, including named strings, images, icons, and other file-based resources. You
can also add file-based resources to the project as standard items in the Solution Explorer.

All added resources are defined through the project's Resources.resx (or similar) resource file. To
support the features required by My.Resources, Visual Studio also creates a separate
Resources.Designer.vb file. This file includes standard Visual Basic source code that provides
property-based retrieval of resources from the project's resource file.

As resources are added to a project, they are dynamically added as properties in the My.Resources
object. For example, if you add a string resource named ConfirmDataDelete, it can be accessed in
your code as:

My.Resources.ConfirmDataDelete

and it will be strongly typed as a String. For those resources added as file items to the project, the
resource is referenced as:

My.Resources.resourceFile.resourceName

All resource properties available through My.Resources are read-only.

My.Resources uses the resources associated with the My.Application.CurrentUICulture culture,
although you can override this default and use a different culture.

Public Members

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each resource added to your project becomes a property in the My.Resources object. In addition to
these, there are two members used to manage access to the resources.

Member Description

Culture
Property. Allows you to override the default culture used for resource retrieval.
Assigned culture objects of type System.Globalization.CultureInfo.

ResourceManager
Property. Provides access to an object of type
System.Resources.ResourceManager that provides more traditional .NET access
to resources.

Usage at a Glance

Only application-wide resources are accessible through My.Resources; form-level resources (often
used for culture-specific labels) are not available through this object.

Related Framework Entries

System.Resources.ResourceManager

See Also

Forms Object, My Namespace, ChangeUICulture Method, Settings Object, UICulture Property,
WebServices Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Response Object

Location

My.Response

Description

Use the Response object within ASP.NET applications to alter the content to be returned to the web-
based user who initiated the HTTP request.

Usage at a Glance

This object and its members are only valid in ASP.NET applications.

The Response object parallels the functionality of the original Response object found in the pre-
.NET Active Server Pages platform.

While you can use the Response.Write method to insert data into the outgoing HTTP content
stream, it is recommended that you instead use the control-specific features available through
ASP.NET.

Related Framework Entries

System.Web.HttpResponse

See Also

Request Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Run Method

Location

My.Application.Run

Syntax

My.Application.Run(commandLine)

commandLine (required; String array)

The command line used to start the application as an array of String values.

Description

The Run method starts an instance of the current Windows Forms application using the Visual Basic
Startup/Shutdown Application Framework for Windows Forms. This model supports startup and
shutdown events, a splash screen, and the display and monitoring of a main application form, among
other features.

Usage at a Glance

This method is only valid in Windows Forms applications that use the Windows Forms
Application Framework introduced with Visual Basic 2005.

Only use this method in the "Sub Main" procedure of an application.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.Run Method

See Also

Application Object, Shutdown Event, SplashScreen Property, Startup Event, StartupNextInstance
Event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SaveMySettingsOnExit Property

Location

My.Application.SaveMySettingsOnExit

Syntax

 Dim result As Boolean = My.Application.SaveMySettingsOnExit

or:

 My.Application.SaveMySettingsOnExit = value

value (required; Boolean)

Indicates whether the settings should be saved on exit (true) or not (False)

Description

The SaveMySettingsOnExit property indicates whether changes made to entries in the My.Settings
object will be saved automatically when the application exits (true) or not (False). You can also
modify this property while your application is running.

Usage at a Glance

Although you can modify this setting when your application is running, its value will revert to its
design-time setting the next time the application is run. To permanently change the value, modify the
project's Application Properties and set the "Save My.Settings on Shutdown" as desired.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.SaveMySettingsOnExit
Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Configuration.ApplicationSettingsBase.Save Method

See Also

Application Object, Settings Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Screen Property

Location

My.Computer.Screen

Syntax

 Dim result As System.Windows.Forms.Screen = My.Computer.Screen

Description

The Screen property returns an object of type System.Windows.Forms.Screen, which contains
various informational properties about the primary system display.

Public Members

The Screen object returned from this property includes the following notable public members.

Member Description

AllScreens
Property. For systems with multiple attached displays, this property returns an
array of all displays.

BitsPerPixel Property. The number of color-related bits used for each pixel of the display.

Bounds
Property. Returns a Drawing.Rectangle object that identifies the bounds of the
display.

DeviceName Property. Returns the device name for the display.

Primary Property. Indicates whether this is the primary display or not.

PrimaryScreen
Property. When using a Screen object for a secondary display, this property returns
the object for the system's primary display.

WorkingArea
Property. Returns a Drawing.Rectangle object that identifies the working area of
the display, which is the desktop area of the display minus any docked elements.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This property is read-only.

This property is only valid in non-server applications.

Example

This example displays the name of the screen device.

MsgBox("The primary screen's device name is: " & _
 My.Computer.Screen.DeviceName)

Related Framework Entries

Microsoft.VisualBasic.Devices.Computer.Screen Property

System.Windows.Forms.Screen.PrimaryScreen Class

See Also

Computer Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScrollLock Property

Location

My.Computer.Keyboard.ScrollLock

Syntax

 Dim result As Boolean = My.Computer.Keyboard.ScrollLock

Description

The ScrollLock property indicates the current state of the Scroll Lock key, whether on (TRue) or off
(False).

Usage at a Glance

This property is read-only.

This property is only valid in non-server applications.

Related Framework Entries

Microsoft.VisualBasic.Devices.Keyboard.ScrollLock Property

See Also

CapsLock Property, Keyboard Object, NumLock Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SendKeys Method

Location

My.Computer.Keyboard.SendKeys

Syntax

My.Computer.Keyboard.SendKeys(keys[, wait])

keys (required; String)

A string of standard and special keys to send to the active window.

wait (optional; Boolean)

Indicates whether to wait for the sent keys to be processed (true) or not (False) before
continuing with the next source-code statement. The default is true.

Description

The SendKeys method simulates the typing of one or more keys in the active window.

To send plain text, simply include that text in the keys argument. For instance, using "abc" for the
keys argument will send the characters a, b, and c, one at a time, to the active window. To have the

Shift key held down with a key, precede that key with a plus sign (+). To use the Control key with
another key, precede that key with the caret (^). To use the Alt key with another key, precede that
key with the percent sign (%). To use one of these special keys with multiple other keys, enclose
those other keys in parentheses. For instance, "+(abc)" sends a, b, and c with the Shift key held
down.

You can repeat a key multiple times by using the syntax "{key count}" (that is, the character, then a
space, then a numeric value, all within braces). For example, "{a 25}" will send the "a" key 25 times.

SendKeys supports several special keys, such as the Left Arrow key. Also, some standard keys must
be enclosed in a set of braces to be recognized as a standard key. The following table lists all of these
special keys and special-use standard keys.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To include Use this text

Backspace {BACKSPACE} or {BS} or {BKSP}

Break {BREAK}

Caps Lock {CAPSLOCK}

Caret (^) {^}

Clear {CLEAR}

Close Brace (}) {}}

Close Bracket (]) {]}

Close Parenthesis (")") {)}

Delete {DELETE} or {DEL}

Down Arrow {DOWN}

End {END}

Enter ~

Escape {ESCAPE} or {ESC}

F1 through F16 {F1} through {F16}

Help {HELP}

Home {HOME}

Insert {INSERT} or {INS}

Keypad Add {ADD}

Keypad Divide {DIVIDE}

Keypad Enter {ENTER}

Keypad Multiply {MULTIPLY}

Keypad Subtract {SUBTRACT}

Left Arrow {LEFT}

Num Lock {NUMLOCK}

Open Brace ({) {{}

Open Bracket ([) {[}

Open Parenthesis ("(") {(}

Page Down {PGDN}

Page Up {PGUP}

Percent Sign (%) {%}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To include Use this text

Plus (+) {+}

Print Screen {PRTSC}

Return {RETURN}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Tilde (~) {~}

Up Arrow {UP}

Usage at a Glance

This method is only valid in non-server applications.

This method sends keystrokes to the current active window, whether that window is part of
your application or not. Also, some keystrokes you send may cause a different window to
become active, depending on the functionality of that window.

If you lack the necessary permissions to send the keystrokes to another application, an
exception is raised.

Example

The following example starts up Notepad, adds some text to its editing area, copies that text to the
clipboard, and exits the program without saving changes.

 Dim notepadID As Integer

 ' ----- Start and activate the Notepad application.
 notepadID = Shell("notepad.exe", AppWinStyle.NormalFocus)
 AppActivate(notepadID)
 My.Application.DoEvents()

 ' ----- Add some text.
 My.Computer.Keyboard.SendKeys("+visual +basic~", True)
 My.Computer.Keyboard.SendKeys("{- 12}~", True)
 My.Computer.Keyboard.SendKeys("+it's fun{!}", True)

 ' ----- Select all text with Control+A, then copy with Control+C.
 My.Computer.Keyboard.SendKeys("^(a)", True)
 My.Computer.Keyboard.SendKeys("^(c)", True)

Plus (+) {+}

Print Screen {PRTSC}

Return {RETURN}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Tilde (~) {~}

Up Arrow {UP}

Usage at a Glance

This method is only valid in non-server applications.

This method sends keystrokes to the current active window, whether that window is part of
your application or not. Also, some keystrokes you send may cause a different window to
become active, depending on the functionality of that window.

If you lack the necessary permissions to send the keystrokes to another application, an
exception is raised.

Example

The following example starts up Notepad, adds some text to its editing area, copies that text to the
clipboard, and exits the program without saving changes.

 Dim notepadID As Integer

 ' ----- Start and activate the Notepad application.
 notepadID = Shell("notepad.exe", AppWinStyle.NormalFocus)
 AppActivate(notepadID)
 My.Application.DoEvents()

 ' ----- Add some text.
 My.Computer.Keyboard.SendKeys("+visual +basic~", True)
 My.Computer.Keyboard.SendKeys("{- 12}~", True)
 My.Computer.Keyboard.SendKeys("+it's fun{!}", True)

 ' ----- Select all text with Control+A, then copy with Control+C.
 My.Computer.Keyboard.SendKeys("^(a)", True)
 My.Computer.Keyboard.SendKeys("^(c)", True)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- Quit Notepad.
 My.Computer.Keyboard.SendKeys("%{F4}", True)
 My.Computer.Keyboard.SendKeys("n", True)

 ' ----- See if we copied the text correctly.
 MsgBox(My.Computer.Clipboard.GetText())

Related Framework Entries

Microsoft.VisualBasic.Devices.Keyboard.SendKeys Method

System.Windows.Forms.SendKeys.Send Method

System.Windows.Forms.SendKeys.SendWait Methods

See Also

Keyboard Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SerialPortNames Property

Location

My.Computer.Ports.SerialPortNames

Syntax

 Dim result As System.Collections.Generic.ReadOnlyCollection(_
 Of String) = My.Computer.Ports.SerialPortNames

Description

The SerialPortNames property returns a collection of serial port names available on the local
computer.

Usage at a Glance

This property is read-only.

This property is not valid in ASP.NET applications.

Example

The following example displays all serial port names in a list box.

ListBox1.DataSource = My.Computer.Ports.SerialPortNames

Related Framework Entries

Microsoft.VisualBasic.Devices.Ports.SerialPortNames Property

System.IO.Ports.SerialPort.GetPortNames Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

OpenSerialPort Method, Ports Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetAudio Method

Location

My.Computer.Clipboard.SetAudio

Syntax

My.Computer.Clipboard.SetAudio(audioBytes)

or:

My.Computer.Clipboard.SetAudio(audioStream)

audioBytes (required in syntax 1; Byte array)

A Byte array of the audio data to be written to the system clipboard

audioStream (required in syntax 2; Stream)

A System.IO.Stream object indicating the audio data content to be written to the system
clipboard

Description

The SetAudio method writes audio data to the system clipboard. Separate overloads allow you to
write the data from a Stream or a Byte array.

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example reads data from an audio file and saves it to the clipboard.

 Dim audioData As Byte() = _
 My.Computer.FileSystem.ReadAllBytes("c:\temp\SoundFile.wav")
 My.Computer.Clipboard.SetAudio(audioData)

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.SetAudio Method

System.Windows.Forms.Clipboard.SetAudio Method

See Also

Clipboard Object, ContainsAudio Method, GetAudioStream Method, SetAudio Method, SetData
Method, SetDataObject Method, SetFileDropList Method, SetImage Method, SetText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetData Method

Location

My.Computer.Clipboard.SetData

Syntax

My.Computer.Clipboard.SetData(format, data)

format (required; String)

The named custom format of the data to be written to the system clipboard

data (required; Object)

The data to be written to the system clipboard

Description

The SetData method writes data in a named custom format to the system clipboard.

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Example

This sample writes custom text data to the clipboard, but the data could also be in a non-text format.

 My.Computer.Clipboard.SetData("Japanese-Romaji", _
 "Kore wa pen desu.")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.SetData Method

System.Windows.Forms.Clipboard.SetData Method

See Also

Clipboard Object, ContainsData Method, GetData Method, SetAudio Method, SetData Method,
SetDataObject Method, SetFileDropList Method, SetImage Method, SetText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetDataObject Method

Location

My.Computer.Clipboard.SetDataObject

Syntax

My.Computer.Clipboard.SetDataObject(data)

data (required; DataObject)

The System.Windows.Forms.DataObject object to be written to the system clipboard

Description

The SetDataObject method writes an object of type System.Widows.Forms.DataObject to the system
clipboard. The DataObject class allows a single object to store the same data in multiple formats. For
instance, a single data object could store the same data in plain text, Rich Text Format, and HTML.

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Example

The following code adds two types of data to the clipboard.

 Dim pasteData As New System.Windows.Forms.DataObject
 pasteData.SetText("This is a pen.")
 pasteData.SetData("Japanese-Romaji", "Kore wa pen desu.")
 My.Computer.Clipboard.SetDataObject(pasteData)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.SetDataObject Method

System.Windows.Forms.Clipboard.SetDataObject Method

System.Windows.Forms.DataObject Class

System.Windows.Forms.IDataObject Interface

See Also

Clipboard Object, GetDataObject Method, SetAudio Method, SetData Method, SetDataObject Method,
SetFileDropList Method, SetImage Method, SetText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetDelimiters Method

Location

TextFieldParser.SetDelimiters

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...

fileParser.SetDelimiters(setOfDelimiters)

setOfDelimiters (required; String array)

An array of the character or multicharacter values that identify the delimiters used to separate
data fields in each input line of a delimited text file being parsed by a TextFieldParser object.
End-of-line characters may not be used as field delimiters.

Description

The SetDelimiters method sets the field delimiters used in delimited text file parsing. This method
also sets the TextFieldParser object's TextFieldType property to
Microsoft.VisualBasic.FileIO.FieldType.Delimited. Although you can define more than one delimiter,
most input files will use a single field delimiter, such as a comma or a tab character.

You can use the TextFieldParser object's Delimiters property to set the delimiters as well, but that
property does not alter the TextFieldType property.

Usage at a Glance

The SetDelimiters method is only useful with delimited input files, not fixed-width files.

An exception is thrown if you attempt to use line-termination characters, zero-length strings, or
Nothing as field delimiters.

If the file being parsed only uses a single delimiter, you can pass a standard string with that
delimiter to the SetDelimiters method.

You must close the TextFieldParser object when finished with it. Use the object's Close method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Example

The following example uses the SetDelimiters method to indicate the comma character as the field
delimiter.

 Dim scanInput As Microsoft.VisualBasic.FileIO.TextFieldParser
 ' ...later...
 scanInput.SetDelimiters(New String() {","})

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.SetDelimiters Method

See Also

CommentTokens Property, Delimiters Property, FieldWidths Property, HasFieldsEnclosedInQuotes
Property, ReadFields Method, SetFieldWidths Method, TextFieldParser Object, TextFieldType Property,
TrimWhiteSpace Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetFieldWidths Method

Location

TextFieldParser.SetFieldWidths

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
fileParser.SetFieldWidths(setOfWidths)

setOfWidths (required; Integer array)

An array of the Integer values that each indicate the character length of a positional field
within a fixed-width text file being parsed by a TextFieldParser object. All field widths must be
greater than zero, although the last array element may be less than or equal to zero to indicate
a final variable-width field.

Description

The SetFieldWidths method sets the number of characters used for each field in fixed-width text file
parsing. This method also sets the TextFieldParser object's TextFieldType property to
Microsoft.VisualBasic.FileIO.FieldType.FixedWidth. The first field begins with the first character on
each record line, and subsequent fields immediately follow the fields before. You can indicate that the
last field is of variable length (that is, it includes all characters until the end of the line) by setting the
last field width to -1.

You can use the TextFieldParser object's FieldWidths property to set the field widths as well, but that
property does not alter the TextFieldType property.

Usage at a Glance

The SetFieldWidths method is only useful with fixed-width input files, not delimited files.

An exception is thrown if you assign a zero or negative value to any field width other than the
last one.

If the file being parsed only uses a single fixed-width column, you can pass a standard integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with that width to the SetFieldWidths method.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Example

The following example uses the SetFieldWidths method to indicate that each line in the input file
contains three fields: a 3-character field, a 30-character field, and a 5-character field.

 Dim scanInput As Microsoft.VisualBasic.FileIO.TextFieldParser
 ' ...later...
 scanInput.SetFieldWidths(New Integer() {3, 30, 5})

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.SetFieldWidths Method

See Also

CommentTokens Property, Delimiters Property, FieldWidths Property, ReadFields Method,
SetDelimiters Method, TextFieldParser Object, TextFieldType Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetFileDropList Method

Location

My.Computer.Clipboard.SetFileDropList

Syntax

My.Computer.Clipboard.SetFileDropList(filePaths)

filePaths (required; StringCollection)

The set of file paths to be added to the clipboard, based on the collection
System.Collections.Specialized.StringCollection.

Description

The SetFileDropList method writes a collection of strings to the system clipboard, where each string
contains a file path.

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Example

The following code adds a list of files to the clipboard as a file drop list.

 Dim pasteFiles As New _
 System.Collections.Specialized.StringCollection
 pasteFiles.Add("c:\temp\file1.txt")
 pasteFiles.Add("c:\temp\file2.txt")
 My.Computer.Clipboard.SetFileDropList(pasteFiles)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.SetFileDropList Method

System.Windows.Forms.Clipboard.SetFileDropList Method

See Also

Clipboard Object, ContainsFileDropList Method, GetFileDropList Method, SetAudio Method, SetData
Method, SetDataObject Method, SetFileDropList Method, SetImage Method, SetText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetImage Method

Location

My.Computer.Clipboard.SetImage

Syntax

My.Computer.Clipboard.SetImage(image)

image (required; Image)

The System.Drawing.Image object to write to the system clipboard

Description

The SetImage method writes an image to the system clipboard.

Usage at a Glance

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.SetImage Method

System.Windows.Forms.Clipboard.SetImage Method

See Also

Clipboard Object, ContainsImage Method, GetImage Method, SetAudio Method, SetData Method,
SetDataObject Method, SetFileDropList Method, SetImage Method, SetText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetText Method

Location

My.Computer.Clipboard.SetText

Syntax

My.Computer.Clipboard.SetText(text[, format])

text (required; String)

The text to be written to the system clipboard.

format (optional; TextDataFormat enumeration)

The specific format of the text to write to the system clipboard. One of the following
System.Windows.Forms.TextDataFormat enumeration values.

Value Description

Not supplied Any type of text

CommaSeparatedValue Comma-separated fields of data in one or more records

Html HTML format

Rtf Rich Text Format

UnicodeText 16-bit Unicode character text

If this parameter is not specified, UnicodeText is used by default.

Description

The SetText method writes a string of text to the system clipboard in a specified text format. If no
specific format is indicated, text is written as plain Unicode text.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method is only valid in non-server applications.

Security restrictions in place for the active user may limit access to the system clipboard.

An exception is thrown if invalid or missing string data is passed to the method.

Example

The following code adds basic text to the clipboard.

My.Computer.Clipboard.SetText("This text is simple.")

Related Framework Entries

Microsoft.VisualBasic.MyServices.ClipboardProxy.SetText Method

System.Windows.Forms.Clipboard.SetText Method

See Also

Clipboard Object, ContainsText Method, GetText Method, SetAudio Method, SetData Method,
SetDataObject Method, SetFileDropList Method, SetImage Method, SetText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Settings Object

Location

My.Settings

Description

Use the My.Settings object to manage application-specific and user-specific settings for an application. The 2002 and 2003
releases of Visual Basic included a generic configuration system for projects, but it had certain deficiencies, including the
inability to manage strongly typed data. The new configuration system included with Visual Basic 2005 resolves many of the
deficiencies present in those earlier releases.

Settings are initially managed in Visual Studio through the new Settings panel of the project's Properties window. (Access this
window by double-clicking on the "My Project" item in the Solution Explorer or by selecting Properties from Visual Studio's
Project menu.) This form lets you add configuration settings to a project, including the name, data type, scope (application or
user), and initial value of each setting.

The name of each setting automatically becomes a property of the My.Settings object. For example, if you add an Integer
setting called AlarmDuration to the list of settings, it can be accessed in your code as:

 My.Settings.AlarmDuration

and it will be strongly typed as an Integer . If it is a user-scoped value, the code can update its value through direct
assignment.

 My.Settings.AlarmDuration = 5

The settings are automatically saved when the programs exits, depending on the setting of the
My.Application.SaveMySettingsOnExit property.

When developing an application in Visual Studio, the settings defined through the Project Properties window are stored in the
app.config file for the project.

Once your application is deployed, the application-scoped settings and the user-scoped settings for each user are stored in
different files. Each user's settings are usually stored in:

 C:\DocumentsandSettings\LocalSettings\ApplicationData\companyName\hashedAppDomain\version\user.config

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where companyName is the assembly-defined company name for your project, hashedAppDomain is constructed from the
application-related values, and version is the four-part, dot-delimited assembly version number. It's somewhat complex, but

it is also uniquely identifiable.

The application-scoped settings (and the default versions of all user-scoped setting) are stored in the Settings.settings file,
found in the same folder as the assembly file.

Public Members

Each setting added to your project through the Project Properties window becomes a property in the My.Settings object. In
addition to these, there are several members used to manage the settings.

Member Description

GetPreviousVersion
Method. Retrieves the value for a specific setting as stored in the settings file for a previous version of
the assembly.

Reload
Method. Reloads all settings to the values they contained before this instance of the application was
started. This is useful for discarding changes made during the current application session.

Reset
Method. Reloads all settings based on their default values. This discards any changes made since the
application (or a specific version) was installed.

Save Method. Immediately saves all modifications made to settings.

Usage at a Glance

Settings that have an application-level scope are read-only and cannot be modified through My.Settings . Settings with
user-level scope can be modified.

The settings functionality is extensible, so that additional providers that manage the settings can be added.

Related Framework Entries

System.Configuration.ApplicationSettingsBase

See Also

Forms Object , My Namespace , Resources Object , SaveMySettingsOnExit Property , WebServices Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetValue Method

Location

My.Computer.Registry.SetValue

Syntax

 My.Computer.Registry.SetValue(keyName, valueName, value _

 [, valueKind])

keyName (required; String)

The hierarchy key under which to write the data for a value.

valueName (required; Object)

The name of the value to be added or updated. To set the default value (the "(Default)" entry)
for a particular key, use Nothing or an empty string for this parameter.

value (required; Object)

The data to be written to the new or existing value. This parameter cannot be set to Nothing.

valueKind (optional; RegistryValueKind enumeration)

The type of data to be written. One of the following Microsoft.Win32.RegistryValueKind
enumeration values.

Value Description

Binary Binary data.

DWord A 32-bit "double word" numeric value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

ExpandString

A null-terminated path string with embedded environment variables. Surround such
environment variables with matching percent signs (like "%PATH%"). All embedded
environment variables are expanded to their current settings when this registry
value is read later.

MultiString
An array of strings. Each string is followed by a null character, and the full value is
terminated by two null characters.

QWord A 64-bit "quad word" numeric value.

String A null-terminated string.

Unknown Lets the SetValue method determine the correct storage method automatically.

Description

The SetValue method writes or updates a new or existing data value within a registry key location.

Usage at a Glance

If the specified key or value does not exist, it is created. This includes any middle-level entries
in the hierarchy leading to the key. For instance, if you specify
"HKEY_CURRENT_USER\Level1\Level2" and neither Level1 nor Level2 exist, they will both be
created.

keyName must start with the name of a valid registry hive, such as HKEY_CURRENT_USER.

To clear a registry value (but not delete it), send an empty version of its data type. For
instance, to clear a string value, send an empty string (""). The value parameter cannot be set

to Nothing.

You must have sufficient security permissions to read or write keys and values in the registry.

Avoid setting valueKind to Unknown when possible, as it reduces your application's control over

its own stored data.

Example

The following code updates a string in the registry.

 ' ----- Store the screen position for next time.
 My.Computer.Registry.SetValue(_
 "HKEY_CURRENT_USER\Software\MyCompany\MySoftware", _
 "ScreenPosition", Me.Left & "," & Me.Top, _
 Microsoft.Win32.RegistryValueKind.String)

ExpandString

A null-terminated path string with embedded environment variables. Surround such
environment variables with matching percent signs (like "%PATH%"). All embedded
environment variables are expanded to their current settings when this registry
value is read later.

MultiString
An array of strings. Each string is followed by a null character, and the full value is
terminated by two null characters.

QWord A 64-bit "quad word" numeric value.

String A null-terminated string.

Unknown Lets the SetValue method determine the correct storage method automatically.

Description

The SetValue method writes or updates a new or existing data value within a registry key location.

Usage at a Glance

If the specified key or value does not exist, it is created. This includes any middle-level entries
in the hierarchy leading to the key. For instance, if you specify
"HKEY_CURRENT_USER\Level1\Level2" and neither Level1 nor Level2 exist, they will both be
created.

keyName must start with the name of a valid registry hive, such as HKEY_CURRENT_USER.

To clear a registry value (but not delete it), send an empty version of its data type. For
instance, to clear a string value, send an empty string (""). The value parameter cannot be set

to Nothing.

You must have sufficient security permissions to read or write keys and values in the registry.

Avoid setting valueKind to Unknown when possible, as it reduces your application's control over

its own stored data.

Example

The following code updates a string in the registry.

 ' ----- Store the screen position for next time.
 My.Computer.Registry.SetValue(_
 "HKEY_CURRENT_USER\Software\MyCompany\MySoftware", _
 "ScreenPosition", Me.Left & "," & Me.Top, _
 Microsoft.Win32.RegistryValueKind.String)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.MyServices.RegistryProxy.SetValue Method

Microsoft.Win32.RegistryKey.SetValue Method

See Also

ClassesRoot Property, CurrentConfig Property, CurrentUser Property, DynData Property, GetValue
Method, LocalMachine Property, PerformanceData Property, Registry Object, Users Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ShiftKeyDown Property

Location

My.Computer.Keyboard.ShiftKeyDown

Syntax

 Dim result As Boolean = My.Computer.Keyboard.ShiftKeyDown

Description

The ShiftKeyDown property indicates the current state of the Shift key, whether down (TRue) or up
(False).

Usage at a Glance

This property is read-only.

This property is only valid in non-server applications.

For systems with two Shift keys, this setting indicates whether either Shift key is pressed. To
examine the state of a specific Shift key during a control event, perform a bitwise comparison of
the control's ModifierKeys property with the Keys.LShiftKey or Keys.RShiftKey enumeration
value.

Related Framework Entries

Microsoft.VisualBasic.Devices.Keyboard.ShiftKeyDown Property

System.Windows.Forms.Control.ModifierKeys Property

System.Windows.Forms.Keys Enumeration

See Also

AltKeyDown Property, CtrlKeyDown Property, Keyboard Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shutdown Event

Location

My.Application.Shutdown

Syntax

 Public Sub Me_Shutdown(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Me.Shutdown
 End Sub

sender (required; Object)

The object that raised the event

e (required; EventArgs)

An event parameter of type System.EventArgs, with no special members

Description

The Shutdown event occurs when the application shuts down.

Usage at a Glance

This event is only available in Windows Forms applications.

This event handler can be found in the ApplicationEvents.vb source code file for your project.
This file is normally hidden, but it can be viewed by toggling the Show All Files button in the
Solution Explorer window in Visual Studio.

Example

The Shutdown event's code appears in the ApplicationEvents.vb file in a Windows Forms application.

 Namespace My

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Class MyApplication
 Private Sub MyApplication_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown
 Console.WriteLine("See you later.")
 End Sub
 End Class
 End Namespace

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.Shutdown Event

See Also

Application Object, Startup Event, StartupNextInstance Event, UnhandledException Event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SpecialDirectories Object

Location

My.Computer.FileSystem.SpecialDirectories

Description

Use the SpecialDirectories object to access many special windows folders, such as "Program Files"
and "My Documents."

Public Members

The following members of the My.Computer.FileSystem.SpecialDirectories object have their own
entries elsewhere in this chapter.

AllUsersApplicationData Property

CurrentUserApplicationData Property

Desktop Property

MyDocuments Property

MyMusic Property

MyPictures Property

ProgramFiles Property

Programs Property

Temp Property

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy Class

Microsoft.VisualBasic.FileIO.SpecialDirectories Class

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileSystem Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SplashScreen Property

Location

My.Application.SplashScreen

Syntax

 Dim result As System.Windows.Forms.Form = _
 My.Application.SplashScreen

or:

My.Application.SplashScreen = someForm

someForm (required; Form)

An instance of System.Windows.Forms.Form that represents the application's "splash" or
informational startup form

Description

The SplashScreen property returns the instance of the application's form used as a "splash screen,"
the informational form that first appears when starting up the application. To change the splash
screen for your application, assign this property a different form instance.

Usage at a Glance

This property is only valid in Windows Forms applications.

An exception is thrown if Nothing is assigned to this property.

Changes made to this property persist only until the application exits. When the application is
run again, the SplashScreen property will expose the settings defined at design time.

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.SplashScreen Property

System.Windows.Forms.Form Class

See Also

Application Object, MinimumSplashScreenDisplayTime Property, OpenForms Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StackTrace Property

Location

My.Application.Info.StackTrace

Syntax

 Dim result As String = My.Application.Info.StackTrace

Description

The StackTrace property returns the current stack trace information. The stack appears in order,
from the closest procedure down to the original procedure, each on a separate text line.

Usage at a Glance

This property is read-only.

Some fields may be absent from the returned trace if debugging symbols have been excluded
from the project build.

An exception is thrown if the stack trace is out of range or cannot be gathered from the current
context.

Example

Creating a new Windows Forms project and adding the following code to Form1's source code:

 Public Class Form1
 Private Sub Form1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click
 MsgBox(My.Application.Info.StackTrace)
 End Sub
 End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

produced these results when clicking on the form (slightly formatted to fit this page):

 at System.Environment.GetStackTrace(Exception e,
 Boolean needFileInfo)
 at System.Environment.get_StackTrace()
 at Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.
 get_StackTrace()
 at WindowsApplication1.Form1.Form1_Click(Object sender,
 EventArgs e) in C:\temp\WindowsApplication1\Form1.vb:line 4
 at System.Windows.Forms.Control.OnClick(EventArgs e)
 at System.Windows.Forms.Control.WmMouseUp(Message& m,
 MouseButtons button, Int32 clicks)
 at System.Windows.Forms.Control.WndProc(Message& m)
 at System.Windows.Forms.ScrollableControl.WndProc(Message& m)
 at System.Windows.Forms.ContainerControl.WndProc(Message& m)
 at System.Windows.Forms.Form.WndProc(Message& m)
 at System.Windows.Forms.Control.ControlNativeWindow.
 OnMessage(Message& m)
 at System.Windows.Forms.Control.ControlNativeWindow.
 WndProc(Message& m)
 at System.Windows.Forms.NativeWindow.DebuggableCallback(
 IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam)
 at System.Windows.Forms.UnsafeNativeMethods.
 DispatchMessageW(MSG& msg)
 at System.Windows.Forms.Application.ComponentManager.
 System.Windows.Forms.UnsafeNativeMethods.
 IMsoComponentManager.FPushMessageLoop(Int32 dwComponentID,
 Int32 reason, Int32 pvLoopData)
 at System.Windows.Forms.Application.ThreadContext.
 RunMessageLoopInner(Int32 reason, ApplicationContext context)
 at System.Windows.Forms.Application.ThreadContext.
 RunMessageLoop(Int32 reason, ApplicationContext context)
 at System.Windows.Forms.Application.Run(
 ApplicationContext context)
 at Microsoft.VisualBasic.ApplicationServices.
 WindowsFormsApplicationBase.OnRun()
 at Microsoft.VisualBasic.ApplicationServices.
 WindowsFormsApplicationBase.DoApplicationModel()
 at Microsoft.VisualBasic.ApplicationServices.
 WindowsFormsApplicationBase.Run(String[] commandLine)
 at WindowsApplication1.My.MyApplication.Main(String[] Args)
 in 17d14f5c-a337-4978-8281-53493378c1071.vb:line 76
 at System.AppDomain.nExecuteAssembly(Assembly assembly,
 String[] args)
 at System.AppDomain.ExecuteAssembly(String assemblyFile,
 Evidence assemblySecurity, String[] args)
 at Microsoft.VisualStudio.HostingProcess.
 HostProc.RunUsersAssembly()
 at System.Threading.ThreadHelper.
 ThreadStart_Context(Object state)
 at System.Threading.ExecutionContext.Run(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ExecutionContext executionContext,
 ContextCallback callback, Object state)
at System.Threading.ThreadHelper.ThreadStart()

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.StackTrace Property

System.Environment.StackTrace Property

See Also

Info Object (My.Application)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Startup Event

Location

My.Application.Startup

Syntax

 Public Sub Me_Startup(ByVal sender As Object, _
 ByVal e As StartupEventArgs) Handles Me.Startup
 End Sub

sender (required; Object)

The object that raised the event

e (required; StartupEventArgs)

An event parameter that contains information about the command-line arguments, using the
Microsoft.VisualBasic.ApplicationServices.StartupEventArgs class

Description

The Startup event occurs when the application first starts. For single-instance applications, this event
only occurs for the initial application startup.

Public Members

The e argument to this event, as an instance of the StartupEventArgs class, includes the following
notable public members.

Member Description

Cancel
Property. Setting this Boolean value to true causes the application to exit without
displaying its main form.

CommandLine
Property. A collection of the command-line arguments. The application path itself is
not one of the collection members; the first member is the first true argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usage at a Glance

This event is only available in Windows Forms applications.

This event handler can be found in the ApplicationEvents.vb source code file for your project.
This file is normally hidden, but it can be viewed by toggling the Show All Files button in the
Solution Explorer window in Visual Studio.

Example

The Startup event's code appears in the ApplicationEvents.vb file in a Windows Forms application.

 Namespace My
 Class MyApplication
 Private Sub MyApplication_Startup(ByVal sender As Object, _
 ByVal e As Microsoft.VisualBasic.ApplicationServices. _
 StartupEventArgs) Handles Me.Startup
 Console.WriteLine("Welcome.")
 End Sub
 End Class
 End Namespace

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.StartupEventArgs Class

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.Startup Event

See Also

Application Object, CommandLineArgs Property, Shutdown Event, StartupNextInstance Event,
UnhandledException Event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StartupNextInstance Event

Location

My.Application.StartupNextInstance

Syntax

 Public Sub Me_StartupNextInstance(ByVal sender As Object, _
 ByVal e As StartupNextInstanceEventArgs) _
 Handles Me.StartupNextInstance
 End Sub

sender (required; Object)

The object that raised the event

e (required; StartupEventArgs)

An event parameter that contains information about the command-line arguments, using the
Microsoft.VisualBasic.ApplicationServices.StartupEventArgs class

Description

The StartupNextInstance event occurs in single-instance applications when subsequent instances of
the application begin. The initial use of the application fires the Startup event, not the
StartupNextInstance event. Non-single-instance applications never call the StartupNextInstance
event.

Public Members

The e argument to this event, as an instance of the StartupEventArgs class, includes the following
notable public members.

Member Description

Cancel
Property. Setting this Boolean value to true causes the newly initiated instance of the
application to exit without continuing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

CommandLine

Property. A collection of the command-line arguments used to start this specific
instance of the application. The application path itself is not one of the collection
members; the first member is the first true argument. Do not use the
My.Application.CommandLineArgs property, as that only includes the arguments for
the initial instance.

Usage at a Glance

This event is only available in Windows Forms applications.

This event handler can be found in the ApplicationEvents.vb source code file for your project.
This file is normally hidden, but it can be viewed by toggling the Show All Files button in the
Solution Explorer window in Visual Studio.

Applications are multi-instance by default. To set an application as single-instance, alter the
project's Application Properties, setting the "Make single instance application" field.

Example

The StartupNextInstance event's code appears in the ApplicationEvents.vb file in a Windows Forms
application.

 Namespace My
 Class MyApplication
 Private Sub MyApplication_StartupNextInstance(_
 ByVal sender As Object, ByVal e As _
 Microsoft.VisualBasic.ApplicationServices. _
 StartupNextInstanceEventArgs) _
 Handles Me.StartupNextInstance
 Console.WriteLine("I'm already running!")
 End Sub
 End Class
 End Namespace

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.StartupEventArgs Class

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.StartupNextInstance
Event

See Also

CommandLine

Property. A collection of the command-line arguments used to start this specific
instance of the application. The application path itself is not one of the collection
members; the first member is the first true argument. Do not use the
My.Application.CommandLineArgs property, as that only includes the arguments for
the initial instance.

Usage at a Glance

This event is only available in Windows Forms applications.

This event handler can be found in the ApplicationEvents.vb source code file for your project.
This file is normally hidden, but it can be viewed by toggling the Show All Files button in the
Solution Explorer window in Visual Studio.

Applications are multi-instance by default. To set an application as single-instance, alter the
project's Application Properties, setting the "Make single instance application" field.

Example

The StartupNextInstance event's code appears in the ApplicationEvents.vb file in a Windows Forms
application.

 Namespace My
 Class MyApplication
 Private Sub MyApplication_StartupNextInstance(_
 ByVal sender As Object, ByVal e As _
 Microsoft.VisualBasic.ApplicationServices. _
 StartupNextInstanceEventArgs) _
 Handles Me.StartupNextInstance
 Console.WriteLine("I'm already running!")
 End Sub
 End Class
 End Namespace

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.StartupEventArgs Class

Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.StartupNextInstance
Event

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application Object, CommandLineArgs Property, Shutdown Event, Startup Event, UnhandledException
Event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stop Method

Location

My.Computer.Audio.Stop

Syntax

My.Computer.Audio.Stop()

Description

The Stop method stops playing a WAV sound previously started in the background using the
My.Computer.Audio.Play method.

Usage at a Glance

This method is only valid in non-server applications.

Only sounds initiated by the same application are stopped.

Related Framework Entries

Microsoft.VisualBasic.Devices.Audio.Stop Method

System.Media.SoundPlayer Class

System.Media.SoundPlayer.Stop Method

See Also

Audio Object, Play Method, PlaySystemSound Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Temp Property

Location

My.Computer.FileSystem.SpecialDirectories.Temp

Syntax

 Dim result As String = My.Computer.FileSystem. _
 SpecialDirectories.Temp

Description

The Temp property returns the full path name to the temporary files folder for the current user on
the local workstation. Usually, this directory is found at C:\Documents and Settings\user\Local
Settings\Temp," but it may vary from system to system.

Usage at a Glance

This property is read-only.

This folder contains application-generated temporary files and directories.

This path may not be defined in some cases. In such cases, use of this property generates an
exception.

The returned path will never have a backslash "\" character at the end.

Related Framework Entries

Microsoft.VisualBasic.MyServices.SpecialDirectoriesProxy.Temp Property

Microsoft.VisualBasic.FileIO.SpecialDirectories.Temp Property

See Also

AllUsersApplicationData Property, CurrentUserApplicationData Property, Desktop Property,
MyDocuments Property, MyMusic Property, MyPictures Property, ProgramFiles Property, Programs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property, SpecialDirectories Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextFieldParser Object

Location

Microsoft.VisualBasic.FileIO.TextFieldParser

Description

The TextFieldParser object simplifies the process of extracting data fields from delimited and fixed-
width text data files. Existing data files are opened with the
My.Computer.FileSystem.OpenTextFieldParser method, which returns an object of type
TextFieldParser. You can also create a new instance of TextFieldParser directly, passing the file name
as a constructor parameter. The object includes several useful members for extracting data from the
data file.

You must close the TextFieldParser object when finished with it. This is normally done by calling the
object's Close method. However, you can also use the Using statement to release all parser-related
resources when the Using statement is complete.

 Using fileParser As New FileIO.TextFieldParser(dataFile)
 ...code to parse the file goes here...
 End Using

Public Members

The following members of the TextFieldParser object have their own entries elsewhere in this chapter.

Close Method

CommentTokens Property

Delimiters Property

EndOfData Property

ErrorLine Property

ErrorLineNumber Property

FieldWidths Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HasFieldsEnclosedInQuotes Property

LineNumber Property

PeekChars Method

ReadFields Method

ReadLine Method

ReadToEnd Method

SetDelimiters Method

SetFieldWidths Method

TextFieldType Property

TrimWhiteSpace Property

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser Class

See Also

My Namespace, OpenTextFieldParser Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TextFieldType Property

Location

TextFieldParser.TextFieldType

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As Microsoft.VisualBasic.FileIO.FieldType = _
 fileParser.TextFieldType

or:

fileParser.TextFieldType = useFieldType

useFieldType (required; FieldType enumeration)

Indicates the parsing method to be used. One of the following
Microsoft.VisualBasic.FileIO.FieldType enumeration values.

Value Description

Delimited Retrieves fields that are separated by a delimiter

FixedWidth Retrieves fields at specific positions and character lengths

Description

The TextFieldType property indicates the method used to retrieve fields from each record in the input
file. Set this property before processing the first record of the file.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If this property is not set before reading the first record, the object assumes delimited input
fields.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

Related Framework Entries

Microsoft.VisualBasic.FileIO.FieldType Enumeration

Microsoft.VisualBasic.FileIO.TextFieldParser.TextFieldType Property

See Also

Delimiters Property, FieldWidths Property, ReadFields Method, SetDelimiters Method, SetFieldWidths
Method, TextFieldParser Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TickCount Property

Location

My.Computer.Clock.TickCount

Syntax

 Dim result As Integer = My.Computer.Clock.TickCount

Description

The TickCount property returns the current millisecond count of the system timer, although with
limited granularity.

Usage at a Glance

This property is read-only.

The system timer has a limited resolution and is not accurate to more than 500 milliseconds.

After about 24.9 days, the TickCount value reaches the maximum integer value
(System.Int32.MaxValue). It then jumps to the minimum integer value, a negative number
(System.Int32.MinValue), and continues incrementing in the positive direction.

The system timer may stop incrementing when the system is in certain power-saving states,
such as hibernation.

Example

The following example returns the number of milliseconds that have elapsed since the last time the
function was called.

 Public Function SinceLastCall() As Integer
 ' ----- Return the number of milliseconds since the
 ' last call of this routine.
 Static lastTime As Integer = -1
 Dim thisTime As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- Get the current tick count and compare to last time.
 thisTime = My.Computer.Clock.TickCount
 If (lastTime = -1) Then lastTime = thisTime
 If (thisTime < lastTime) Then
 ' ----- The integer value wrapped.
 SinceLastCall = (Integer.MaxValue - lastTime) + _
 (thisTime - Integer.MinValue)
 Else
 ' ----- Simple advance of the timer.
 SinceLastCall = thisTime - lastTime
 End If
 lastTime = thisTime
 End Function

Related Framework Entries

Microsoft.VisualBasic.Devices.Clock.TickCount Property

System.Environment.TickCount Property

See Also

Clock Object, GmtTime Property, LocalTime Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Title Property

Location

My.Application.Info.Title

Syntax

 Dim result As String = My.Application.Info.Title

Description

The Title property returns the application title as defined in the informational section of the assembly.

Usage at a Glance

This property is read-only.

An exception occurs if the title attribute, AssemblyTitleAttribute (or <AssemblyTitle>), is
undefined in the active assembly.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.Title Property

System.Diagnostics.FileVersionInfo.FileDescription Property

See Also

CompanyName Property, Copyright Property, Description Property, Info Object (My.Application),
ProductName Property, Trademark Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TotalPhysicalMemory Property

Location

My.Computer.Info.TotalPhysicalMemory

Syntax

 Dim result As ULong = My.Computer.Info.TotalPhysicalMemory

Description

The TotalPhysicalMemory property returns the total amount of installed bytes of physical memory on
the local computer.

Usage at a Glance

This property is read-only.

This property only works on platforms that make the information available. This includes
Windows XP, Windows 2000 Professional, Windows Server 2003, Windows 2000 Server, or any
later versions of these systems.

An exception is thrown if for any reason the application is unable to determine the current
status of memory on the system.

Related Framework Entries

Microsoft.VisualBasic.Devices.ComputerInfo.TotalPhysicalMemory Property

See Also

AvailablePhysicalMemory Property, AvailableVirtualMemory Property, Info Object (My.Computer),
TotalVirtualMemory Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TotalVirtualMemory Property

Location

My.Computer.Info.TotalVirtualMemory

Syntax

 Dim result As ULong = My.Computer.Info.TotalVirtualMemory

Description

The TotalVirtualMemory property returns the total amount of configured bytes of virtual address
space on the local computer.

Usage at a Glance

This property is read-only.

This property only works on platforms that make the information available. This includes
Windows XP, Windows 2000 Professional, Windows Server 2003, Windows 2000 Server, or any
later versions of these systems.

An exception is thrown if for any reason the application is unable to determine the current
status of memory on the system.

Related Framework Entries

Microsoft.VisualBasic.Devices.ComputerInfo.TotalVirtualMemory Property

See Also

AvailablePhysicalMemory Property, AvailableVirtualMemory Property, Info Object (My.Computer),
TotalPhysicalMemory Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TraceSource Property

Location

My.Application.Log.TraceSource

My.Log.TraceSource

Syntax

For client applications:

 Dim result As System.Diagnostics.TraceSource = _
 My.Application.Log.TraceSource

For ASP.NET applications:

 Dim result As System.Diagnostics.TraceSource = My.Log.TraceSource

Description

The TraceSource property returns an object of type System.Diagnostics.TraceSource that identifies
the current configuration of the relevant Log object.

Usage at a Glance

This property is read-only.

Diagnostic content written using the various Debug.Write methods is not sent to the trace
listeners.

This property is only valid in client and ASP.NET applications. For client applications, use
My.Application.Log.TraceSource. For ASP.NET applications, use My.Log.TraceSource.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code adds a text file output method to the collection of listeners. As a result, all
Debug.Write and similar methods will not only send the output to the Output Window (the default
listener) but also to the text file.

 ' ----- Uses "Imports System.IO" above.

 ' ----- Define a new listener object.
 Dim fileTrace As New TextWriterTraceListener()

 ' ----- Since the listener is generic and doesn't have any
 ' specific destination, the code needs to create the
 ' destination and associate it with the listener. In
 ' this case, the destination will be a file stream.
 Dim traceStream As FileStream = New FileStream("c:\log.txt", _
 FileMode.Append, FileAccess.Write)
 fileTrace.Writer = New StreamWriter(traceStream)

 ' ----- Now the listener is ready to be used.
 My.Application.Log.TraceSource.Listeners.Add(fileTrace)

 ' ----- Add an entry to the log.
 My.Application.Log.WriteEntry("Diagnostic status line 1.")

 ' ----- Test complete. Close all opened resources.
 My.Application.Log.TraceSource.Listeners.Remove(fileTrace)
 fileTrace.Close()
 traceStream.Close()

 ' ----- This Debug statement goes only to the Output Window.
My.Application.Log.WriteEntry("Diagnostic status line 2.")

Related Framework Entries

Microsoft.VisualBasic.Logging.Log.TraceSource Property

System.Diagnostics.TraceSource Class

See Also

DefaultFileLogWriter Property, Log Object (My), Log Object (My.Application), WriteEntry Method,
WriteException Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Trademark Property

Location

My.Application.Info.Trademark

Syntax

 Dim result As String = My.Application.Info.Trademark

Description

The Trademark property returns the legal trademark as defined in the informational section of the
assembly.

Usage at a Glance

This property is read-only.

An exception occurs if the trademark attribute, AssemblyTrademarkAttribute (or
<AssemblyTrademark>), is undefined in the active assembly.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.Trademark Property

System.Diagnostics.FileVersionInfo.LegalTrademark Property

See Also

CompanyName Property, Copyright Property, Description Property, Info Object (My.Application),
ProductName Property, Title Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TrimWhiteSpace Property

Location

TextFieldParser.TrimWhiteSpace

Syntax

 Dim fileParser As FileIO.TextFieldParser
 ' ...later...
 Dim result As Boolean = fileParser.TrimWhiteSpace

or:

fileParser.TrimWhiteSpace = whiteSpace

whiteSpace (required; Boolean)

Indicates whether whitespace around returned fields should be trimmed before those fields are
returned (true) or not (False)

Description

The TrimWhiteSpace property gets or sets a value that indicates whether leading and trailing
whitespace characters surrounding delimited fields as parsed with the TextFieldParser object should
be removed from each field before use (true) or not (False). If you do not specifically set this field, it
defaults to true.

Usage at a Glance

The TrimWhiteSpace property is only useful with delimited input files, not fixed-width files.

You must close the TextFieldParser object when finished with it. Use the object's Close method
or create the object instance with the Using keyword. See the TextFieldParser Object entry in
this chapter for an example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.FileIO.TextFieldParser.TrimWhiteSpace Property

See Also

Delimiters Property, HasFieldsEnclosedInQuotes Property, ReadFields Method, SetDelimiters Method,
TextFieldParser Object, TextFieldType Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UICulture Property

Location

My.Application.UICulture

Syntax

 Dim result As System.Globalization.CultureInfo = _
 My.Application.UICulture

Description

The UICulture property returns a System.Globalization.CultureInfo object that indicates the regional
resource selections used by the active thread for user interface display.

Usage at a Glance

This property impacts the application's interaction with the Resource Manager, and alters the
behavior of the My.Resources object.

Related Framework Entries

System.Globalization.CultureInfo Class

System.Threading.Thread.CurrentUICulture Property

See Also

ChangeUICulture Method, Culture Property, InstalledUICulture Property, Resources Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UnhandledException Event

Location

My.Application.UnhandledException

Syntax

 Public Sub Me_UnhandledException(ByVal sender As Object, _
 ByVal e As UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 End Sub

sender (required; Object)

The control or object that raised the event

e (required; StartupEventArgs)

An event parameter that contains information about the error or exception, using the
Microsoft.VisualBasic.ApplicationServices.UnhandledExceptionEventArgs class

Description

The UnhandledException event occurs when an exception occurs in your application that is not
handled by any other exception handle. Normally, when an exception occurs, it is handled by the
surrounding try...Catch statement or by the On Error handler in effect for the procedure. If such
handlers do not exist, the exception moves up the call stack, checking for active event handlers at
each procedure in the stack. If there are no active event handlers in any of those procedures, the
UnhandledException event is ultimately called.

Public Members

The e argument to this event, as an instance of the UnhandledExceptionEventArgs class, includes the
following notable public members.

Member Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Exception Property. A System.Exception instance that provides the details of the exception.

ExitApplication
Property. By default, this Boolean property is set to true, which causes the
application to exit when the event exits. Setting this property to False keeps the
application running.

Usage at a Glance

This event is only available in Windows Forms applications.

This event never fires when running an application built using the "Debug" compile target.

This event does not fire when running an application from within the Visual Studio IDE.

This event handler can be found in the ApplicationEvents.vb source code file for your project.
This file is normally hidden, but it can be viewed by toggling the Show All Files button in the
Solution Explorer window in Visual Studio.

Example

The UnhandledException event's code appears in the ApplicationEvents.vb file in a Windows Forms
application.

 Namespace My
 Class MyApplication
 Private Sub MyApplication_UnhandledException(_
 ByVal sender As Object, ByVal e As _
 Microsoft.VisualBasic.ApplicationServices. _
 UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 MsgBox("I can't handle it!")
 e.ExitApplication = True
 End Sub
 End Class
 End Namespace

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.UnhandledExceptionEventArgs

System.Exception Class

See Also

Exception Property. A System.Exception instance that provides the details of the exception.

ExitApplication
Property. By default, this Boolean property is set to true, which causes the
application to exit when the event exits. Setting this property to False keeps the
application running.

Usage at a Glance

This event is only available in Windows Forms applications.

This event never fires when running an application built using the "Debug" compile target.

This event does not fire when running an application from within the Visual Studio IDE.

This event handler can be found in the ApplicationEvents.vb source code file for your project.
This file is normally hidden, but it can be viewed by toggling the Show All Files button in the
Solution Explorer window in Visual Studio.

Example

The UnhandledException event's code appears in the ApplicationEvents.vb file in a Windows Forms
application.

 Namespace My
 Class MyApplication
 Private Sub MyApplication_UnhandledException(_
 ByVal sender As Object, ByVal e As _
 Microsoft.VisualBasic.ApplicationServices. _
 UnhandledExceptionEventArgs) _
 Handles Me.UnhandledException
 MsgBox("I can't handle it!")
 e.ExitApplication = True
 End Sub
 End Class
 End Namespace

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.UnhandledExceptionEventArgs

System.Exception Class

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application Object, Shutdown Event, Startup Event, StartupNextInstance Event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UploadFile Method

Location

My.Computer.Network.UploadFile

Syntax

 My.Computer.Network.UploadFile(sourceFileName, address _

 [, username, password[, showUI, connectionTimeout _

 [, onUserCancel]]])

or:

 My.Computer.Network.UploadFile(sourceFileName, uri _

 [, username, password[, showUI, connectionTimeout _

 [, onUserCancel]]])

or:

 My.Computer.Network.UploadFile(sourceFileName, uri, _

 networkCredentials, showUI, connectionTimeout[, onUserCancel])

sourceFileName (required; String)

The local source path of the file to be uploaded.

address (required in syntax 1; String)

The destination web site address, including the full URL path.

uri (required in syntax 2 and 3; System.Uri)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The uniform resource identifier (URI) of the destination web site address.

username (optional; String)

The network user name for authentication purposes. If supplied, password must also be used.

password (optional; String)

The network password for authentication purposes. If supplied, username must also be used.

showUI (optional; Boolean)

Indicates whether a progress window should appear during the upload. By default, no progress
window appears.

connectionTimeout (optional; Integer)

The number of seconds to wait before failure. By default, the timeout is 100 seconds.

onUserCancel (optional; UICancelOption enumeration)

The progress window includes a Cancel button. When pressed, the method takes action based
on this parameter. One of the following Microsoft.VisualBasic.FileIO.UICancelOption
enumeration values.

Value Description

DoNothing
Aborts the upload but returns no information indicating that the upload was
cancelled

ThrowException Throws an exception

If this parameter is missing, ThrowException is used by default.

networkCredentials (required in syntax 3; ICredentials interface)

The credentials to be supplied for authentication purposes, based on the
System.Net.ICredentials interface.

Description

The UploadFile method sends a local file to a remote server via a web page that supports file
uploading.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An exception is thrown if the source or destination path is invalid, or if the destination web site
denies the request.

An exception is thrown if the user has invalid or insufficient security permissions to perform the
download.

An exception is thrown if a connection timeout occurs due to a lack of server response.

Example

The following example uploads a local file to a web site.

 My.Computer.Network.UploadFile _
 ("C:\PriceList.txt", "http://www.oreilly.com/upload.aspx",)

Related Framework Entries

Microsoft.VisualBasic.Devices.Network.UploadFile Method

See Also

Network Object, DownloadFile Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

User Object

Location

My.User

Description

Use the My.User object to access information about the active Windows user.

Public Members

The following members of the My.User object have their own entries elsewhere in this chapter.

CurrentPrincipal Property

InitializeWithWindowsUser Method

IsAuthenticated Property

IsInRole Method

Name Property (My.User)

Usage at a Glance

This object's members provide varying functionality, depending on the type of application.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.User Class

Microsoft.VisualBasic.ApplicationServices.WebUser Class

System.Web.HttpContext.User Class

See Also

CurrentPrincipal Property, InitializeWithWindowsUser Method, IsAuthenticated Property, IsInRole
Method, Name Property (My.User)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Users Property

Location

My.Computer.Registry.Users

Syntax

 Dim result As Microsoft.Win32.RegistryKey = _
 My.Computer.Registry.Users

Description

The Users property returns a Microsoft.Win32.RegistryKey object that refers to the HKEY_USERS
location in the Windows registry. This entry point is used primarily to store default settings for new
Windows users.

Usage at a Glance

This property is read-only.

To access the settings for the current Windows user, use the My.Computer.Registry.CurrentUser
property instead.

You must have sufficient security permissions to read or write keys and values in the registry.

Example

The following example displays all of the sub-elements of the HKEY_USERS registry key element in a
listbox control. The example assumes that you are using this code on a form with a defined ListBox1
control.

ListBox1.DataSource = My.Computer.Registry.Users.GetSubKeyNames()

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.MyServices.RegistryProxy.Users Property

Microsoft.Win32.Registry.Users Property

See Also

ClassesRoot Property, CurrentConfig Property, CurrentUser Property, DynData Property, GetValue
Method, LocalMachine Property, PerformanceData Property, Registry Object, SetValue Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Version Property

Location

My.Application.Info.Version

Syntax

 Dim result As System.Version = My.Application.Info.Version

Description

The Version property returns the version and revision numbers of the application as recorded in the
assembly. The values are returned through an instance of the System.Version class.

Public Members

The System.Version object returned by this property includes the following version-specific
components, each of type Integer.

Major

Minor

Build

Revision

Version numbers are generally presented to the user in the format:

Major.Minor.Build.Revision

Build and Revision are optional, and when not defined, their properties will return -1. Major and Minor
are required.

Usage at a Glance

This property is read-only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the ToString member of the returned object to generate a version number in a user-friendly
display format.

An exception occurs if the user does not have sufficient privileges to examine the version
number of the assembly.

Do not use this property from ClickOnce-deployed applications. Instead, use the
My.Application.Deployment.CurrentVersion property.

Example

The following example displays the version number of the application.

 MsgBox("You are using version " & _
 My.Application.Info.Version.ToString)

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.Version Property

System.Deployment.Application.ApplicationDeployment.CurrentVersion Property

System.Diagnostics.FileVersionInfo.FileVersion Property

System.Diagnostics.FileVersionInfo.ProductVersion Property

See Also

Info Object (My.Application)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WebServices Object

Location

My.WebServices

Description

Use the WebServices object to access an instance of each XML Web service currently available to
your application. The instances are created as needed, when you first reference an XML Web service
through My.WebServices. This object lists those XML Web services that have been added as
references to the application or those that are added at runtime. It is not available in ASP.NET
applications.

XML Web services made available through a DLL associated with your running application are not
added to My.WebServices. Access those services directly through the features provided by the DLL.

If you have a reference to an XML Web service named transferFunds, access to that service is done
by referencing that service as a property of My.WebServices:

My.WebServices.TransferFunds

When you are finished with an XML Web service and wish to dispose of it, set it to Nothing.

My.WebServices.TransferFunds = Nothing

You can test whether an instance of an XML Web service has already been created using the Is or
IsNot operator:

If (My.WebServices.TransferFunds Is Nothing) Then...

Public Members

The only public members of My.WebServices are the web services that have been referenced in your
application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usage at a Glance

This object and its members are not valid in ASP.NET applications.

Related Framework Entries

System.Web.Services Namespace

See Also

Forms Object, My Namespace, Resources Object, Settings Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WheelExists Property

Location

My.Computer.Mouse.WheelExists

Syntax

 Dim result As Boolean = My.Computer.Mouse.WheelExists

Description

The WheelExists property indicates whether the mouse installed on the local computer includes a
"mouse wheel" (TRue) or not (False).

Usage at a Glance

This property is read-only.

This property is only valid in non-server applications.

An exception is thrown if the computer does not have an installed mouse.

Always use this property to detect the presence of a mouse wheel before using the
My.Computer.Mouse.WheelScrollLines property.

Related Framework Entries

Microsoft.VisualBasic.Devices.Mouse.WheelExists Property

System.Windows.Forms.SystemInformation.MouseWheelPresent Property

See Also

ButtonsSwapped Property, Mouse Object, WheelScrollLines Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WheelScrollLines Property

Location

My.Computer.Mouse.WheelScrollLines

Syntax

 Dim result As Integer = My.Computer.Mouse.WheelScrollLines

Description

On systems that have a "mouse wheel" included on the installed mouse, the WheelScrollLines
indicates how far the context should be scrolled when the wheel is rotated one position.

Usage at a Glance

This property is read-only.

This property is only valid in non-server applications.

An exception is thrown if the computer does not have an installed mouse.

An exception is thrown if the installed mouse does not include a mouse wheel.

Always use the My.Computer.Mouse.WheelExists property to detect the presence of a mouse
wheel before using the WheelScrollLines property.

Example

The following example displays the scroll amount for each mouse wheel rotation position.

 If My.Computer.Mouse.WheelExists Then
 MsgBox("Mouse wheel scroll amount is " & _
 Abs(My.Computer.Mouse.WheelScrollLines) & ".")
 Else
 MsgBox("No mouse scroll wheel present.")
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related Framework Entries

Microsoft.VisualBasic.Devices.Mouse.WheelScrollLines Property

System.Windows.Forms.SystemInformation.MouseWheelScrollLines Property

See Also

ButtonsSwapped Property, Mouse Object, WheelExists Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WorkingSet Property

Location

My.Application.Info.WorkingSet

Syntax

 Dim result As Long = My.Application.Info.WorkingSet

Description

The WorkingSet property identifies the number of bytes of physical memory mapped to this process
context.

Usage at a Glance

This property is read-only.

An exception is thrown if the user lacks sufficient privileges to query this value.

This property always returns zero in Windows 98 and Windows Millenium Edition.

Related Framework Entries

Microsoft.VisualBasic.ApplicationServices.AssemblyInfo.WorkingSet Property

System.Environment.WorkingSet Property

See Also

Info Object (My.Application)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WriteAllBytes Method

Location

My.Computer.FileSystem.WriteAllBytes

Syntax

My.Computer.FileSystem.WriteAllBytes(path, byteData, append)

path (required; String)

The path of the file to be written

byteData (required; Byte array)

The data to be written to the file

append (required; Boolean)

Indicates whether the data will be appended to the end of the file's existing content (true) or
replaces any existing content (False)

Description

The WriteAllBytes method writes the content of a Byte array to a specified file. If the file does not
exist, it will be created, as long as the path specified with the file name is valid.

Usage at a Glance

An exception is thrown if the path parameter is missing or invalid, or if the file exists and is in
use.

An exception is thrown if the user lacks sufficient file-access permissions.

Related Framework Entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft.VisualBasic.FileIO.FileSystem.WriteAllBytes Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.WriteAllBytes Method

See Also

FileSystem Object, OpenTextFieldParser Method, OpenTextFileReader Method, OpenTextFileWriter
Method, ReadAllBytes Method, ReadAllText Method, WriteAllText Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WriteAllText Method

Location

My.Computer.FileSystem.WriteAllText

Syntax

 My.Computer.FileSystem.WriteAllText(path, textData, _

 append[, encoding])

path (required; String)

The path of the file to be written.

textData (required; String)

The text to be written to the file.

append (required; Boolean)

Indicates whether the text will be appended to the end of the file's existing content (true) or
replaces any existing content (False).

encoding (optional; Encoding)

The character-encoding method to use as a System.Text.Encoding object. If this parameter is
missing, UTF-8 is used as the default encoding method.

Description

The WriteAllText method writes the content of a string to a specified file. If the file does not exist, it
will be created, as long as the path specified with the file name is valid.

Usage at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An exception is thrown if the path parameter is missing or invalid or if the file exists and is in
use.

An exception is thrown if the user lacks sufficient file-access permissions.

If the file already exists and uses an encoding method other than the one specified by this
method, the original encoding method of the file will prevail.

Example

The following example appends text to a file.

 Public Sub RecordError(ByVal errorText As String)
 My.Computer.FileSystem.WriteAllText("C:\error.log", _
 errorText & vbCrLf, True)
 End Sub

Related Framework Entries

Microsoft.VisualBasic.FileIO.FileSystem.WriteAllText Method

Microsoft.VisualBasic.MyServices.FileSystemProxy.WriteAllText Method

See Also

FileSystem Object, OpenTextFieldParser Method, OpenTextFileReader Method, OpenTextFileWriter
Method, ReadAllBytes Method, ReadAllText Method, WriteAllBytes Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WriteEntry Method

Location

My.Application.Log.WriteEntry

My.Log.WriteEntry

Syntax

For client applications:

My.Application.Log.WriteEntry(message[, severity[, id]])

For ASP.NET applications:

My.Log.WriteEntry(message[, severity[, id]])

message (required; String)

The message to log or an empty string if there is no message.

severity (optional; TraceEventType enumeration)

The type of message to log. One of the following System.Diagnostics.TraceEventType
enumeration values.

Value Description Default ID

Critical Application fatal error or crash event 3

Error Recoverable error event 2

Information Non-debugging informational message 0

None Undefined event type

Resume Resumption of a logical operation 7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description Default ID

Start Starting of a logical operation 4

Stop Stopping of a logical operation 5

Suspend Suspension of a logical operation 6

TRansfer Transfer of control to another logical operation 9

Verbose Debugging informational message 8

Warning Noncritical event 1

If severity is not supplied, Information is used by default.

id (optional; Integer)

The programmer-defined identifier for this entry. If id is not supplied, a pre-defined value

associated with the TraceEventType enumeration is used. See the Default ID column in the
table of TraceEventType enumeration values discussed above in the entry for the severity

parameter.

Description

The WriteEntry method writes a message to the application's configured event log listeners.

Usage at a Glance

This method is only valid in client and ASP.NET applications. For client applications, use
My.Application.Log.WriteEntry. For ASP.NET applications, use My.Log.WriteEntry.

For more information about using log listeners, see the TraceSource Property entry.

An exception is thrown if you lack sufficient privileges to write to one of the configured log
listeners.

An exception is thrown if you specify an invalid severity.

Example

The following example writes an informational message (the default) to the configured logs from a
client application.

My.Application.Log.WriteEntry("Please read this; it's important.")

To write the same log message from an ASP.NET application, use this statement instead.

Start Starting of a logical operation 4

Stop Stopping of a logical operation 5

Suspend Suspension of a logical operation 6

TRansfer Transfer of control to another logical operation 9

Verbose Debugging informational message 8

Warning Noncritical event 1

If severity is not supplied, Information is used by default.

id (optional; Integer)

The programmer-defined identifier for this entry. If id is not supplied, a pre-defined value

associated with the TraceEventType enumeration is used. See the Default ID column in the
table of TraceEventType enumeration values discussed above in the entry for the severity

parameter.

Description

The WriteEntry method writes a message to the application's configured event log listeners.

Usage at a Glance

This method is only valid in client and ASP.NET applications. For client applications, use
My.Application.Log.WriteEntry. For ASP.NET applications, use My.Log.WriteEntry.

For more information about using log listeners, see the TraceSource Property entry.

An exception is thrown if you lack sufficient privileges to write to one of the configured log
listeners.

An exception is thrown if you specify an invalid severity.

Example

The following example writes an informational message (the default) to the configured logs from a
client application.

My.Application.Log.WriteEntry("Please read this; it's important.")

To write the same log message from an ASP.NET application, use this statement instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

My.Log.WriteEntry("Please read this; it's important.")

Related Framework Entries

Microsoft.VisualBasic.Logging.Log.WriteEntry Method

System.Diagnostics.TraceListener Class

See Also

DefaultFileLogWriter Property, Log Object (My), Log Object (My.Application), TraceSource Property,
WriteException Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WriteException Method

Location

My.Application.Log.WriteException

My.Log.WriteException

Syntax

For client applications:

 My.Application.Log.WriteException(ex[, severity, _

 additionalInfo[, id]])

For ASP.NET applications:

My.Log.WriteException(ex[, severity, additionalInfo[, id]])

ex (required; System.Exception)

The content of the exception to send to the log.

severity (optional; TraceEventType enumeration)

The type of message to log. One of the following System.Diagnostics.TraceEventType
enumeration values.

Value Description Default ID

Critical Application fatal error or crash event 3

Error Recoverable error event 2

Information Non-debugging informational message 0

None Undefined event type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description Default ID

Resume Resumption of a logical operation 7

Start Starting of a logical operation 4

Stop Stopping of a logical operation 5

Suspend Suspension of a logical operation 6

TRansfer Transfer of control to another logical operation 9

Verbose Debugging informational message 8

Warning Noncritical event 1

If severity is not supplied, Information is used by default.

additionalInfo (optional; String)

A message that is appended to the logged message.

id (optional; Integer)

The programmer-defined identifier for this entry. If id is not supplied, a pre-defined value

associated with the TraceEventType enumeration is used. See the Default ID column in the
table of TraceEventType enumeration values discussed above in the entry for the severity

parameter.

Description

The WriteException method writes an exception entry to the application's configured event log
listeners.

Usage at a Glance

This method is only valid in client and ASP.NET applications. For client applications, use
My.Application.Log.WriteException. For ASP.NET applications, use My.Log.WriteException.

For more information about using log listeners, see the TraceSource Property entry.

An exception is thrown if you lack sufficient privileges to write to one of the configured log
listeners.

An exception is thrown if you specify an invalid severity.

Example

The following example writes a exception warning message to the configured logs from a client

Resume Resumption of a logical operation 7

Start Starting of a logical operation 4

Stop Stopping of a logical operation 5

Suspend Suspension of a logical operation 6

TRansfer Transfer of control to another logical operation 9

Verbose Debugging informational message 8

Warning Noncritical event 1

If severity is not supplied, Information is used by default.

additionalInfo (optional; String)

A message that is appended to the logged message.

id (optional; Integer)

The programmer-defined identifier for this entry. If id is not supplied, a pre-defined value

associated with the TraceEventType enumeration is used. See the Default ID column in the
table of TraceEventType enumeration values discussed above in the entry for the severity

parameter.

Description

The WriteException method writes an exception entry to the application's configured event log
listeners.

Usage at a Glance

This method is only valid in client and ASP.NET applications. For client applications, use
My.Application.Log.WriteException. For ASP.NET applications, use My.Log.WriteException.

For more information about using log listeners, see the TraceSource Property entry.

An exception is thrown if you lack sufficient privileges to write to one of the configured log
listeners.

An exception is thrown if you specify an invalid severity.

Example

The following example writes a exception warning message to the configured logs from a client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application.

 Try
 ' ----- Important but exception-prone code here.
 Catch ex As System.Exception
 My.Application.Log.WriteException(ex, TraceEventType.Warning, _
 "Will try again in five minutes.")
 End Try

To write the same log message from an ASP.NET application, use this statement instead.

 Try
 ' ----- Important but exception-prone code here.
 Catch ex As System.Exception
 My.Log.WriteException(ex, TraceEventType.Warning, _
 "Will try again in five minutes.")
 End Try

Related Framework Entries

Microsoft.VisualBasic.Logging.Log.WriteException Method

System.Diagnostics.TraceListener Class

See Also

DefaultFileLogWriter Property, Log Object (My), Log Object (My.Application), TraceSource Property,
WriteEntry Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part III: Appendixes
Part III contains eight appendixes that supplement the core reference material provided in Parts
I and II. These include:

Appendix A, Language Elements by Category, which lists each entry from Chapter 12,
grouped into several different categories. You can use this Appendix to locate a particular
language element by usage and, having obtained its name, look it up in Chapter 12.

Appendix B, Namespace Hierarchy, which lists the My namespace entries from Chapter 13
in their original hierarchical arrangement. Also included is a hierarchical listing of many of
the namespaces included in the .NET Framework Class Library.

Appendix C, Constants and Enumerations, which lists VB intrinsic constants, as well as
.NET enumerations that are specific to VB.

Appendix D, What's New and Different in Visual Basic .NET 2002, which surveys the
extensive changes the language experienced with the original release of Visual Basic for
the .NET platform.

Appendix E, What's New and Different in Visual Basic .NET 2003, which extends Appendix
D by documenting changes introduced with Visual Basic .NET 2003 and Version 1.1 of the
.NET Framework.

Appendix F, What's New and Different in Visual Basic 2005, which further extends
Appendixes D and E by documenting changes introduced with Visual Basic 2005 and
Version 2.0 of the .NET Framework.

Appendix G, VB6 Language Elements No Longer Supported, which lists the elements that
have dropped out of the Visual Basic language as a result of its transition to the .NET
Framework.

Appendix H, The Visual Basic Command-Line Compiler, which documents the operation
and options of the Visual Basic command-line compiler.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. Language Elements by
Category
This appendix lists by category all the directives, statements, functions, procedures, and classes
available within the Visual Basic language. Also included are those Foundation Class Library members
that are documented in Chapter 12. The categories are:

Array Handling
Clipboard
Collection Objects
Common Dialogs
Conditional Compilation
Conversion: Data Type Conversion and Other Conversion
Date and Time
Debugging
Declaration
Error Handling
File System
Financial
Information
Input/Output
Integrated Development Environment
Interaction
Mathematics
Program Structure and Flow
Programming: Object Programming and Miscellaneous Programming
Registry
String Manipulation

Some individual entries appear in more than one category. Also, this appendix does not list any
members of the My Namespace feature. See Appendix B for a hierarchical listing of the My
Namespace feature members.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1. Array Handling

Element Description

Array Class Represents an array

Array.BinarySearch
Method

Searches for a value in a sorted one-dimensional array

Array.Copy Method Copies all or part of an array

Array.IndexOf Method
Searches for the first occurrence of a value in an unsorted one-
dimensional array

Array.LastIndexOf Method
Searches for the last occurrence of a value in an unsorted one-
dimensional array

Array.Reverse Method Reverses the order of elements in an array dimension

Array.Sort Method Sorts the elements of an array dimension

Erase Statement Resets an array to its uninitialized state

IsArray Function Indicates whether a variable is an array

Join Function Concatenates an array of values into a delimited string

LBound Function Returns the lower boundary of an array

ReDim Statement Adjusts the bounds of an array dimension

UBound Function Returns the upper boundary of an array

VBFixedArray Attribute Defines a fixed-length array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2. Clipboard

Element Description

Clipboard Class Encapsulates functionality related to the system clipboard

Clipboard.GetDataObject Method Places data on the clipboard

Clipboard.SetDataObject Method
Retrieves an IDataObject object representing data on the
clipboard

IDataObject Interface Defines an interface for clipboard format management

IDataObject.GetData Method Retrieves data from the clipboard in a given format

IDataObject.GetDataPresent
Method

Indicates whether the clipboard holds data of a particular format

IDataObject.GetFormats Method
Retrieves a list of all the formats with which the clipboard data is
associated or to which it can be converted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.3. Collection Objects

Element Description

Collection Class
Implements a Collection object that manages a set of related
objects.

Collection.Add Method Adds a member to a Collection object.

Collection.Count Property Indicates the number of items stored to a Collection object.

Collection.Item Property
Retrieves a member from a Collection object based on its key
value or ordinal position .

Collection.Remove Method
Removes the member associated with a given key or ordinal
position from a Collection object.

Hashtable Class Encapsulates a hashtable collection.

Hashtable.Add Method Adds a key-value pair to a Hashtable object.

Hashtable.ContainsKey
Method

Indicates whether a given key exists among the hashtable's items.

Hashtable.ContainsValue
Method

Indicates whether a given value exists among the hashtable's items.

Hashtable.CopyTo Method Copies hashtable values into an array of DictionaryEntry structures.

Hashtable.Item Property Retrieves the value of a Hashtable item given its key.

Hashtable.Keys Property
Returns an ICollection object that contains the keys in the
hashtable.

Hashtable.Remove Method Removes a key/value pair from a Hashtable object.

Hashtable.Values Property
Returns an ICollection object that contains the values in the
hashtable.

Of Keyword New in 2005. Enables generics on a type or member definition.

Queue Class Encapsulates a queue-style collection.

Queue.Contains Method Indicates whether a Queue contains a particular item.

Queue.CopyTo Method Copies the Queue items to an array.

Queue.Dequeue Method Removes an item from a Queue object.

Queue.Enqueue Method Places an item at the end of a Queue.

Queue.Peek Method Returns the first item in a Queue.

Queue.ToArray Method Copies the Queue items to an array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Stack Class Encapsulated a stack-style collection.

Stack.Contains Method Indicates whether a Stack contains a particular item.

Stack.CopyTo Method Copies the items in a Stack to an array.

Stack.Peek Method Returns the item at the top of a Stack.

Stack.Pop Method Removes the topmost item from a Stack.

Stack.Push Method Places an item at the top of a Stack.

Stack.ToArray Method Copies the items on a Stack to an array.

Stack Class Encapsulated a stack-style collection.

Stack.Contains Method Indicates whether a Stack contains a particular item.

Stack.CopyTo Method Copies the items in a Stack to an array.

Stack.Peek Method Returns the item at the top of a Stack.

Stack.Pop Method Removes the topmost item from a Stack.

Stack.Push Method Places an item at the top of a Stack.

Stack.ToArray Method Copies the items on a Stack to an array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.4. Common Dialogs

Element Description

ColorDialog Class Allows programmatic control of the Windows Common Color dialog box

FontDialog Class Allows programmatic control of the Windows Common Font dialog box

OpenFileDialog Class Allows programmatic control of the Windows File Open dialog box

SaveFileDialog Class Allows programmatic control of the Windows Save As dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.5. Conditional Compilation

Element Description

#Const Directive Declares a conditional compiler constant

#If...Then...#Else
Directive

Defines a block of code that will only be compiled into the program if the
expression evaluates to true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.6. Conversion

A.6.1. Data Type Conversion

Element Description

CBool Function Converts an expression to a Boolean data type.

CByte Function Converts an expression to a Byte data type.

CChar Function Converts a string expression to a Char data type.

CDate Function Converts an expression to a Date data type.

CDbl Function Converts an expression to a Double data type.

CDec Function Converts an expression to a Decimal data type.

CInt Function Converts an expression to an Integer data type.

CLng Function Converts an expression to a Long data type.

CObj Function Converts an expression to an Object data type.

CSByte Function New in 2005. Converts an expression to an SByte data type.

CShort Function Converts an expression to a Short data type.

CSng Function Converts an expression to a Single data type.

CStr Function Converts an expression to a String data type.

CType Function
Converts an expression to any valid data type, structure, object type, or
interface.

CUInt Function New in 2005. Converts an expression to a UInteger data type.

CULng Function New in 2005. Converts an expression to a ULong data type.

CUShort Function New in 2005. Converts an expression to a UShort data type.

DateValue Function Converts the string representation of a date to a Date data type.

DirectCast Function Converts a variable to its runtime type.

GetType Operator Returns the type of a given object.

Option Strict
Statement

Determines whether narrowing operations are allowed.

Str Function Converts a numeric value to a string.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

TimeValue Function Converts a string representation of time to a Date data type.

TryCast Function New in 2005. Converts a variable to a specified type, if possible.

Val Function Converts a numeric string to a number .

A.6.2. Other Conversion

Element Description

ErrorToString
Function

Returns the descriptive error message corresponding to a particular error
code

Fix Function Returns the integer portion of a number

Hex Function Converts a number to a string representing its hexadecimal equivalent

Int Function Returns the integer portion of a number

Oct Function Converts a number to a string representing its octal equivalent

QBColor Function Converts a QBasic color code to an RGB color value

RGB Function Returns a system color code that can be assigned to object color properties

TimeValue Function Converts a string representation of time to a Date data type.

TryCast Function New in 2005. Converts a variable to a specified type, if possible.

Val Function Converts a numeric string to a number .

A.6.2. Other Conversion

Element Description

ErrorToString
Function

Returns the descriptive error message corresponding to a particular error
code

Fix Function Returns the integer portion of a number

Hex Function Converts a number to a string representing its hexadecimal equivalent

Int Function Returns the integer portion of a number

Oct Function Converts a number to a string representing its octal equivalent

QBColor Function Converts a QBasic color code to an RGB color value

RGB Function Returns a system color code that can be assigned to object color properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.7. Date and Time

Element Description

DateAdd Function Returns the result of adding or subtracting a date or time

DateDiff Function Returns the difference between two dates

DatePart Function Returns the part (month, day, year) of the date requested

DateSerial Function Returns a date from month, day, and year components

DateString Property Retrieves or sets the current system date

DateValue Function Converts the string representation of a date to a Date data type

Day Function Returns a number representing the day of the month

GetTimer Function Returns the number of seconds since midnight

Hour Function Extracts the hour element from a time

Minute Function Extracts the minutes element from a time

Month Function Extracts the month element from a date

MonthName Function Returns the name of the month for a given date

Now Property Returns the current system date and time

Second Function Extracts the seconds element from a time

TimeOfDay Property Sets or retrieves the current system time

Timer Property Returns the number of seconds that have elapsed since midnight

TimeSerial Function Returns a time from its hour, minute, and second components

TimeString Property Sets or returns the current system time

TimeValue Function Converts a string representation of time to a Date data type

Today Property Sets or retrieves the current system date

Weekday Function Determines the day of the week for a given date

WeekdayName Function Returns the weekday name for a given weekday number

Year Function Returns the year element from a date

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.8. Debugging

Element Description

Debug.Assert Method Outputs a message if an expression is False

Debug.AutoFlush
Property

Determines whether each write operation should be followed by a call to
the Flush method

Debug.Close Method
Flushes the output buffer and closes any listeners except the Output
window

Debug.Flush Method Flushes the output buffer

Debug.Indent Method Increases the value of the IndentLevel property by 1

Debug.IndentLevel
Property

Determines the indent level for Debug object output

Debug.IndentSize
Property

Defines the current indent size in number of spaces

Debug.Listeners Property
Returns a collection of all TraceListener objects that are monitoring the
Debug object's output

Debug.Unindent Method Decreases the value of the IndentLevel property by 1

Debug.Write Method Sends output to the Output window and other listeners

Debug.WriteIf Method
Sends output to the Output window and other listeners if an expression
is true

Debug.WriteLine Method Writes output along with a newline character to the Output window

Debug.WriteLineIf
Method

Writes output along with a newline character to the Output window if an
expression is true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.9. Declaration

Element Description

Const Statement Declares a constant.

Class...End Class
Statement

Defines a class and its members

Custom Event Statement
New in 2005. Declares a custom event with specialized declaration
handlers.

Declare Statement Defines a prototype for a call to an external DLL library procedure.

Dim Statement Declares a variable.

Enum Statement Defines a series of constants as an enumerated type.

Flags Attribute Indicates that an enumeration should be treated as a set of flags.

Function Statement Defines a function.

Friend Keyword
Makes a procedure in a class callable from outside the class but within
the project in which the class is defined.

New Keyword Creates a new instance of an object.

Nothing Keyword The value of an undefined object.

Of Keyword New in 2005. Enables generics on a type or member definition.

Operator Statement New in 2005. Defines an overloaded operator.

Option Explicit Statement Requires declaration of all variables.

Partial Keyword
New in 2005. Allows a type to be divided among multiple source code
files.

Private Statement Declares a local variable.

Property Statement Defines a property.

Protected Keyword Declares a protected class member.

Public Keyword Declares a public or global variable.

Shared Keyword
Defines a shared member of a type that does not depend on an
instance.

Static Statement Declares a static variable.

Structure...End Structure
Statement

Declares a structure or user-defined type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Sub Statement Declares a subroutine.Sub Statement Declares a subroutine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.10. Error Handling

Element Description

Erl Property Indicates the line number at which an error occurred

Err Object Encapsulates an error

Err.Clear Method Clears the Err object

Err.Description Property Provides a textual description of an error

Err.GetException Method Returns the Exception object associated with the current error

Err.HelpContext Property Returns or sets the help file ID for the current error

Err.HelpFile Property
Returns or sets the name and path of the help file containing
information about the current error

Err.LastDLLError Property Returns the error number from an error raised by a system API DLL

Err.Number Property Returns or sets the current error code

Err.Raise Method Generates a user-defined error

Err.Source Property Returns or sets the source of an error

Error Statement Raises an error

ErrorToString Function
Returns the descriptive error message corresponding to a particular
error code

Exception Class Base class for all exceptions

IsError Function Determines whether an object is an exception type

On Error Statement Enables or disables an error handler

Resume Statement Transfers control from an error handler

Throw Statement Throws an exception

Try...Catch...Finally
Statement

Handles particular errors that may occur in a block of code through
structured exception handling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.11. File System

Element Description

ChDir Procedure Changes the current directory

ChDrive Procedure Changes the current drive

CurDir Function Returns the current directory of a drive

Dir Function
Returns the name of a file or directory matching a file
specification and having particular file attributes

Directory Class
Encapsulates various features related to file system directory
information

Directory.CreateDirectory Method Creates a new directory

Directory.Delete Method Deletes a directory

Directory.Exists Method Indicates whether a particular directory exists

Directory.GetCreationTime Method Retrieves the date and time the directory was created

Directory.GetDirectories Method Retrieves the names of the subdirectories of a given directory

Directory.GetDirectoryRoot Method Retrieves the name of the root directory of a given directory

Directory.GetFiles Method Retrieves the names of the files in a given directory

Directory.GetFileSystemEntries
Method

Retrieves the names of file system objects (files and
directories) in a given directory

Directory.GetLogicalDrives Method Retrieves the set of logical drives available on the local system

Directory.GetParent Method
Retrieves a DirectoryInfo object representing the parent of a
specified directory

Directory.Move Method
Moves a directory and its contents, including nested
subdirectories, to a new location

File Class
Encapsulates various features related to file system file
information

File.Exists Method Indicates whether a specified file exists

FileCopy Procedure Copies a file

FileDateTime Function Returns the date and time of file creation or last access

GetAttr Function Returns the attributes of a given file or directory

Kill Procedure Deletes one or more files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

MkDir Procedure Creates a new directory

Rename Procedure Renames a file or directory

RmDir Procedure Removes a directory

SetAttr Procedure Sets a file or directory's attributes

MkDir Procedure Creates a new directory

Rename Procedure Renames a file or directory

RmDir Procedure Removes a directory

SetAttr Procedure Sets a file or directory's attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.12. Financial

Element Description

DDB
Function

Returns double-declining balance depreciation of an asset for a specific period

FV Function Calculates the future value of an annuity

IPmt
Function

Computes the interest payment for a given period of an annuity

IRR Function Calculates the internal rate of return for a series of periodic cash flows

MIRR
Function

Calculates the modified internal rate of return

NPer
Function

Determines the number of payment periods for an annuity, based on fixed periodic
payments and a fixed interest rate

NPV
Function

Calculates the net present value of an investment

Pmt
Function

Calculates the payment for an annuity

PPmt
Function

Computes the payment of principal for a given period of an annuity

PV Function Calculates the present value of an annuity

Rate
Function

Returns the interest rate per period for an annuity

SLN Method Computes the straight-line depreciation of an asset

SYD
Function

Computes the sum-of-years' digits depreciation of an asset for a specified period

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.13. Information

Element Description

Application Class
Includes features and informational properties related to the
application

Application.CompanyName
Property

Returns the name of the company that created the application

Application.ExecutablePath
Property

Returns the executable path to the application

Application.ProductName
Property

Returns the application's product name

Application.ProductVersion
Property

Returns the application's version number

AssemblyVersion Attribute Defines the version information for an assembly

Erl Function Indicates the line number at which an error occurred

Global Keyword
New in 2005. Removes ambiguity from similarly named types
and namespaces

IsArray Function Indicates whether a variable is an array

IsDate Function
Indicates whether an argument is, or can be converted to, a
date

IsDBNull Function Determines whether an expression evaluates to DbNull

IsError Function Determines whether an object is an exception type

IsNothing Function Determines if an object reference evaluates to Nothing

IsNumeric Function
Determines if an expression is, or can be converted to, a
number

IsReference Function
Determines if an expression is a reference type rather than a
value type

Nothing Keyword The value of an undefined object

RGB Function
Returns a system color code that can be assigned to object
color properties

Rem Statement Indicates a remark or comment placed within the code

ScriptEngine Property Returns the name of the programming language

ScriptEngineBuildVersion Property Returns the build number of the programming language

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

ScriptEngineMajorVersion
Property

Returns the major version of the programming language

ScriptEngineMinorVersion
Property

Returns the minor version of the programming language

SystemTypeName Function
Returns the name of the .NET data type corresponding to a VB
data type

TypeName Function Returns the data type name of a variable

TypeOf Operator Compares an object to a defined type

VarType Function Returns a constant indicating the data type of a variable

VbTypeName Function
Returns the name of a VB data type that corresponds to a .NET
data type

ScriptEngineMajorVersion
Property

Returns the major version of the programming language

ScriptEngineMinorVersion
Property

Returns the minor version of the programming language

SystemTypeName Function
Returns the name of the .NET data type corresponding to a VB
data type

TypeName Function Returns the data type name of a variable

TypeOf Operator Compares an object to a defined type

VarType Function Returns a constant indicating the data type of a variable

VbTypeName Function
Returns the name of a VB data type that corresponds to a .NET
data type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.14. Input/Output

Element Description

EOF Function Returns a flag denoting the end of a file

FileAttr Function
Returns the file-access mode for a file opened using the FileOpen
procedure

FileClose Procedure Closes one or more open files

FileGet, FileGetObject
Procedures

Reads from a file to a variable

FileLen Function Returns the size of an open file

FileOpen Procedure Opens a file

FilePut, FilePutObject
Procedures

Writes from a variable to a file

FileWidth Procedure Sets the line width of a file opened using the FileOpen procedure

FreeFile Function Returns the number of the next available file

Input Procedure Reads delimited data from a sequential file

InputString Function Reads a designated number of characters from a file

LineInput Function Returns a string containing a line read from a file

Loc Function Returns the current position of the read/write pointer in a file

Lock Procedure
Locks a file, section of a file, or record in a file to prevent access by
another process

LOF Function Returns the size of an open file in bytes

Print, PrintLine Functions Writes formatted data to a sequential file

Reset Procedure Closes all open files

Seek Function Returns the position of the file pointer

Seek Procedure Sets the position of the file pointer

SPC Function Inserts spaces between expressions in output

TAB Function
Moves the text-insertion point to a given column or to the start of
the next print zone

Unlock Procedure
Removes a file or file section lock previously set with the Lock
procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Write, WriteLine Procedures Writes data to a fileWrite, WriteLine Procedures Writes data to a file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.15. Integrated Development Environment

Element Description

#Region...#End Region
Directive

Defines collapsible sections of code in VB source code files

Debug Class
Provides debugging services for the Output window and other
listeners

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.16. Interaction

Element Description

AppActivate
Procedure

Gives the focus to a window based on its title or task ID

Beep Procedure Sounds a note using the computer speaker

Choose Function Returns a value from a list based on its index

Command Function Returns the argument portion of the command line

Environ Function Retrieves the value of an environment variable

IIf Function Returns one of two values based on the evaluation of a Boolean expression

InputBox Function Returns user input from a simple dialog box

MsgBox Function
Displays a message box with buttons, an icon, and a message, and it returns
the response selected by the user

Shell Function Launches an external application

Switch Function Returns the first value or expression in a list that is true

Send, SendWait
Methods

Sends keystrokes to the active window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.17. Mathematics

Element Description

Abs Function Returns the absolute value of a number

Acos Function Returns the arccosine in radians

Asin Function Returns the angle in radians of a sine

Atan Function Returns the arctangent in radians of a tangent

Atan2 Function
Returns the angle in the Cartesian plane formed by the x-axis and a vector
starting from the origin (0, 0) and terminating at a point (x, y)

Ceiling Function Returns the smallest integer that is greater than or equal to a number

Cos Function Returns the cosine of an angle

Cosh Function Returns the hyperbolic cosine of an angle

E Field Returns the approximate value of the irrational number e

Exp Function Returns the base of a natural logarithm raised to a power

Fix Function Returns the integer portion of a number

Floor Function Returns the largest integer less than or equal to a number

IEEERemainder
Function

Returns the remainder resulting from division

Int Function Returns the integer portion of a number

Log Function Returns the natural (base e) logarithm of a given number

Log10 Function Returns the common (base 10) logarithm of a given number

Max Function Returns the larger of two numbers

Min Function Returns the smaller of two numbers

Mod Operator Returns the modulus (the remainder after division)

Partition Function Returns a string indicating the range in which a number appears

PI Field Returns the approximate value of

Pow Function Returns the result of a number raised to a specified power

Randomize
Procedure

Initializes the random-number generator

Rnd Function Returns a random number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Round Function Rounds a number to a specified number of decimal places

Sign Function Determines the sign of a number

Sin Function Returns the sine of an angle

Sinh Function Returns the hyperbolic sine of an angle

Sqrt Function Calculates the square root of a number

Tan Function Returns the ratio of two sides of a right triangle

Tanh Function Returns the hyperbolic tangent of an angle

Round Function Rounds a number to a specified number of decimal places

Sign Function Determines the sign of a number

Sin Function Returns the sine of an angle

Sinh Function Returns the hyperbolic sine of an angle

Sqrt Function Calculates the square root of a number

Tan Function Returns the ratio of two sides of a right triangle

Tanh Function Returns the hyperbolic tangent of an angle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.18. Program Structure and Flow

Element Description

Call Statement
Calls an intrinsic or user-defined procedure or function, a method, or a
routine in a dynamic link library.

CallByName Function Dynamically executes a class method or property.

Continue Statement New in 2005. Continues with the next cycle of the current loop block.

Do...Loop Statement Repeatedly executes a block of code while or until a condition is true.

Exit Statement Prematurely exits a code block.

End Statement Marks the end of a block of code or an entire program.

For...Next Statement Iterates through a section of code a given number of times.

For Each...Next
Statement

Iterates through a collection or array of objects or values, returning a
reference to each of the members.

GoTo Statement Passes program flow to a portion of code marked by a label.

If...Then...Else
Statement

Defines conditional blocks of code.

Operator Statement New in 2005. Defines an overloaded operator.

Return Statement Exits a function or procedure and returns a value from a function.

Select Case Statement
Executes one out of a series of code blocks based on the value of an
expression.

Stop Statement Suspends program execution.

Using...End Using
Statement

New in 2005. Automatically releases allocated resources used within a
code block.

While...End While
Statement

Executes a block of code until a condition becomes False.

With...End With
Statement

Enables simplified object referencing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.19. Programming

A.19.1. Object Programming

Element Description

AddHandler Statement Dynamically binds an event handler to an event.

AddressOf Operator
Creates a procedure delegate instance that references a particular
procedure.

AttributeUsage Attribute Defines which elements support a particular custom attribute.

Class...End Class
Statement

Defines a class and its members.

COMClass Attribute Allows a .NET component to be exposed as a COM object.

CreateObject Function Creates a new instance of a COM (ActiveX) object.

Custom Event Statement
New in 2005. Declares a custom event with specialized declaration
handlers.

DefaultMember Attribute Indicates which member of a type is considered the "default" member.

Delegate Statement Declares a delegate.

Event Statement Declares an event.

Get Statement
Defines a Property Get procedure that returns a property value to the
caller.

GetObject Function Returns a reference to a COM (ActiveX) object.

Handles Keyword Indicates that the procedure serves as a handler for an event.

Implements Keyword
Indicates that a class member implements a property, function,
procedure, or event of an abstract base class.

Implements Statement Specifies one or more interfaces that are implemented by a class.

Imports Statement
Imports a namespace from a project or an assembly, making its types
and their members accessible to the current project.

Inherits Statement Indicates that a class is derived from a base class.

Interface...End Interface
Statement

Defines an interface and its members.

Is Operator Compares two object references for equality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

IsNot Operator New in 2005. Compares two object references for inequality.

MarshalAs Attribute
Defines the conversion method between a COM data element and its
.NET counterpart.

Me Keyword Represents the current class instance.

Module...End Module
Statement

Defines a code module and its members.

MyBase Keyword Represents the base class from which an inherited class is derived.

MyClass Keyword Represents the current class instance.

Namespace Statement Declares the name of a namespace.

Operator Statement New in 2005. Defines an overloaded operator.

Partial Keyword
New in 2005. Allows a type to be divided among multiple source code
files.

Property Statement Defines a property.

RaiseEvent Statement Raises a custom event.

RemoveHandler
Statement

Disassociates an event from an event handler defined using the
AddHandler statement.

Set Statement Defines a Property Set procedure that assigns a property value.

Shadows Keyword
Indicates that a derived class hides an identically named member in a
base class.

Shared Keyword
Defines a shared member of a type that does not depend on an
instance.

WithEvents Keyword Receives notification of events raised by an object.

A.19.2. Miscellaneous Programming

Element Description

AddressOf Operator
Creates a procedure delegate instance that references a particular
procedure

Application.DoEvents
Method

Allows the operating system to process events and messages waiting in
the message queue

CLSCompliant Attribute
Indicates that an element is compliant with the minimal Common
Language Specification

Declare Statement Defines a prototype for a call to an external DLL library procedure

IsNot Operator New in 2005. Compares two object references for inequality.

MarshalAs Attribute
Defines the conversion method between a COM data element and its
.NET counterpart.

Me Keyword Represents the current class instance.

Module...End Module
Statement

Defines a code module and its members.

MyBase Keyword Represents the base class from which an inherited class is derived.

MyClass Keyword Represents the current class instance.

Namespace Statement Declares the name of a namespace.

Operator Statement New in 2005. Defines an overloaded operator.

Partial Keyword
New in 2005. Allows a type to be divided among multiple source code
files.

Property Statement Defines a property.

RaiseEvent Statement Raises a custom event.

RemoveHandler
Statement

Disassociates an event from an event handler defined using the
AddHandler statement.

Set Statement Defines a Property Set procedure that assigns a property value.

Shadows Keyword
Indicates that a derived class hides an identically named member in a
base class.

Shared Keyword
Defines a shared member of a type that does not depend on an
instance.

WithEvents Keyword Receives notification of events raised by an object.

A.19.2. Miscellaneous Programming

Element Description

AddressOf Operator
Creates a procedure delegate instance that references a particular
procedure

Application.DoEvents
Method

Allows the operating system to process events and messages waiting in
the message queue

CLSCompliant Attribute
Indicates that an element is compliant with the minimal Common
Language Specification

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Declare Statement Defines a prototype for a call to an external DLL library procedure

Environ Function Retrieves the value of an environment variable

Guid Attribute Assigns a GUID to a program element

Len Function Counts the number of characters in a string

MTAThread Attribute
Indicates that the multithreaded apartment model is to be used for a
class or application

Obsolete Attribute Indicates that a program element is obsolete or deprecated

Out Attribute
Indicates that a parameter is an "out" parameter for data returned from
a procedure

ParamArray Attribute Indicates that a parameter is a "parameter array" element

STAThread Attribute
Indicates that the single-threaded apartment model is to be used for a
class or application

SyncLock Statement
Prevents multiple threads of execution in the same process from
accessing shared data or resources at the same time

ThreadStatic Attribute Indicates that each thread maintains its own image of a static value

Declare Statement Defines a prototype for a call to an external DLL library procedure

Environ Function Retrieves the value of an environment variable

Guid Attribute Assigns a GUID to a program element

Len Function Counts the number of characters in a string

MTAThread Attribute
Indicates that the multithreaded apartment model is to be used for a
class or application

Obsolete Attribute Indicates that a program element is obsolete or deprecated

Out Attribute
Indicates that a parameter is an "out" parameter for data returned from
a procedure

ParamArray Attribute Indicates that a parameter is a "parameter array" element

STAThread Attribute
Indicates that the single-threaded apartment model is to be used for a
class or application

SyncLock Statement
Prevents multiple threads of execution in the same process from
accessing shared data or resources at the same time

ThreadStatic Attribute Indicates that each thread maintains its own image of a static value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.20. Registry

Element Description

DeleteSetting
Procedure

Removes a complete application key, one of its subkeys, or a single value
entry from the system registry

GetAllSettings
Function

Returns all values from an application key in the system registry

GetSetting Function Returns a specific value from an application key in the system registry

SaveSetting
Procedure

Creates or saves a value in the system registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.21. String Manipulation

Element Description

Asc, AscW Functions Returns the character code of the first character of a string

Chr, ChrW Functions
Returns a string containing a character based on its
numeric code

Filter Function
Returns an array of strings matching (or not matching) a
specified value

Format Function Returns a string formatted to a given specification

FormatCurrency, FormatNumber,
FormatPercent Functions

Returns a numeric value formatted as indicated by the
name of the specific function

FormatDateTime Function
Returns a string formatted using the date/time setting for
the current locale

GetChar Function
Returns a Char containing the character at a particular
position in a string

InStr Function Finds the starting position of a substring within a string

InStrRev Function
Returns the first occurrence of a string within another
string by searching from the end of the string

Join Function Concatenates an array of values into a delimited string

LCase Function Converts a character or string to lowercase

Left Function
Returns a string containing a specific number of characters
from the beginning of a string

Len Function Counts the number of characters in a string

Like Operator Compares two strings

LSet Function Left-aligns a string

LTrim Function Removes characters from the beginning of a string

Mid Function Extracts a substring from a larger string

Mid Statement Replaces a substring in a larger string

Option Compare Statement Sets the default method for comparing string data

Replace Function
Replaces one or more occurrences of a substring within a
larger string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Right Function
Returns a string containing a specific number of characters
from the end of a string

RSet Function Right-aligns a string

RTrim Function Removes characters from the end of a string

Str Function Converts a numeric value to a string

SPC Function Inserts spaces between expressions in output

Space Function Fills a string with a given number of spaces

Split Function Returns an array of strings from a single delimited string

StrComp Function Returns the result of comparing two strings

StrConv Function
Returns the result of converting a string in a number of
possible ways

StrDup Function
Returns a string consisting of the first character of another
string duplicated a given number of times

StrReverse Function Reverses the characters of a string

Trim Function Removes characters from the beginning and end of a string

UCase Function Converts a string to uppercase

Val Function Converts a numeric string to a number

VBFixedString Attribute Defines a fixed-length string

Right Function
Returns a string containing a specific number of characters
from the end of a string

RSet Function Right-aligns a string

RTrim Function Removes characters from the end of a string

Str Function Converts a numeric value to a string

SPC Function Inserts spaces between expressions in output

Space Function Fills a string with a given number of spaces

Split Function Returns an array of strings from a single delimited string

StrComp Function Returns the result of comparing two strings

StrConv Function
Returns the result of converting a string in a number of
possible ways

StrDup Function
Returns a string consisting of the first character of another
string duplicated a given number of times

StrReverse Function Reverses the characters of a string

Trim Function Removes characters from the beginning and end of a string

UCase Function Converts a string to uppercase

Val Function Converts a numeric string to a number

VBFixedString Attribute Defines a fixed-length string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix B. Namespace Hierarchy
The .NET Framework Class Library (FCL) is organized as a hierarchy, yet you rarely get to see it in
that formatbut you will in this appendix. Here you will find two hierarchical listings, one that shows
each major element in the My Namespace feature, and one that shows all major namespaces within
the master System namespace. The My Namespace hierarchy listing includes all nodes and elements
listed in chapter 13, but in hierarchy order instead of merged alphabetical order.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1. 'My' Namespace Hierarchy

 My Namespace
 Application Object
 ApplicationContext Property
 ChangeCulture Method
 ChangeUICulture Method
 CommandLineArgs Property
 Culture Property
 Deployment Property
 DoEvents Method
 GetEnvironmentVariable Method
 Info Object
 AssemblyName Property
 CompanyName Property
 Copyright Property
 Description Property
 DirectoryPath Property
 LoadedAssemblies Property
 ProductName Property
 StackTrace Property
 Title Property
 Trademark Property
 Version Property
 WorkingSet Property
 IsNetworkDeployed Property
 Log Object
 TraceSource Property
 WriteEntry Method
 WriteException Method
 NetworkAvailabilityChanged Event
 OpenForms Property
 Run Method
 SaveMySettingsOnExit Property
 Shutdown Event
 SplashScreen Property
 Startup Event
 StartupNextInstance Event
 UICulture Property
 UnhandledException Event
 Computer Object
 Audio Object
 Play Method
 PlaySystemSound Method
 Stop Method
 Clipboard Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Clear Method
 ContainsAudio Method
 ContainsData Method
 ContainsFileDropList Method
 ContainsImage Method
 ContainsText Method
 GetAudioStream Method
 GetData Method
 GetDataObject Method
 GetFileDropList Method
 GetImage Method
 GetText Method
 SetAudio Method
 SetData Method
 SetDataObject Method
 SetFileDropList Method
 SetImage Method
 SetText Method
 Clock Object
 GmtTime Property
 LocalTime Property
 TickCount Property
 FileSystem Object
 CombinePath Method
 CopyDirectory Method
 CopyFile Method
 CreateDirectory Method
 CurrentDirectory Property
 DeleteDirectory Method
 DeleteFile Method
 DirectoryExists Method
 Drives Property
 FileExists Method
 FindInFiles Method
 GetDirectories Method
 GetDirectoryInfo Method
 GetDriveInfo Method
 GetFileInfo Method
 GetFiles Method
 GetName Method
 GetParentPath Method
 GetTempFileName Method
 MoveDirectory Method
 MoveFile Method
 OpenTextFieldParser Method
 OpenTextFileReader Method
 OpenTextFileWriter Method
 ReadAllBytes Method
 ReadAllText Method
 RenameDirectory Method
 RenameFile Method
 SpecialDirectories Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AllUsersApplicationData Property
 CurrentUserApplicationData Property
 Desktop Property
 MyDocuments Property
 MyMusic Property
 MyPictures Property
 Programs Property
 Temp Property
 WriteAllBytes Method
 WriteAllText Method
 Info Object
 AvailablePhysicalMemory Property
 AvailableVirtualMemory Property
 InstalledUICulture Property
 OSFullName Property
 OSPlatform Property
 OSVersion Property
 TotalPhysicalMemory Property
 TotalVirtualMemory Property
 Keyboard Object
 AltKeyDown Property
 CapsLock Property
 CtrlKeyDown Property
 NumLock Property
 ScrollLock Property
 SendKeys Method
 ShiftKeyDown Property
 Mouse Object
 ButtonsSwapped Property
 WheelExists Property
 WheelScrollLines Property
 Name Property
 Network Object
 DownloadFile Method
 IsAvailable Property
 NetworkAvailabilityChanged Event
 Ping Method
 UploadFile Method
 Ports Object
 OpenSerialPort Method
 SerialPortNames Property
 Registry Object
 ClassesRoot Property
 CurrentConfig Property
 CurrentUser Property
 DynData Property
 GetValue Method
 LocalMachine Property
 PerformanceData Property
 SetValue Method
 Users Property
 Screen Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Forms Object
 Log Object
 TraceSource Property
 WriteEntry Method
 WriteException Method
 Request Object
 Resources Object
 Response Object
 Settings Object
 User Object
 CurrentPrincipal Property
 InitializeWithWindowsUser Method
 IsAuthenticated Property
 IsInRole Method
 Name Property
 WebServices Object
 TextFieldParser Object
 Close Method
 CommentTokens Property
 Delimiters Property
 EndOfData Property
 ErrorLine Property
 ErrorLineNumber Property
 FieldWidths Property
 HasFieldsEnclosedInQuotes Property
 LineNumber Property
 PeekChars Method
 ReadFields Method
 ReadLine Method
 ReadToEnd Method
 SetDelimiters Method
 SetFieldWidths Method
 TextFieldType Property
 TrimWhiteSpace Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.2. System Namespace Hierarchy

 System
 CodeDom
 Compiler
 Collections
 Generic
 ObjectModel
 Specialized
 ComponentModel
 Design
 Data
 Serialization
 Configuration
 Assemblies
 Install
 Internal
 Provider
 Data
 Common
 Design
 Odbc
 OleDb
 OracleClient
 Sql
 SqlClient
 SqlServerCe
 SqlTypes
 Deployment
 Application
 Internal
 DeploymentFramework
 FileTypes
 Diagnostics
 CodeAnalysis
 Design
 SymbolStore
 DirectoryServices
 ActiveDirectory
 Protocols
 Drawing
 Design
 Drawing2D
 Imaging
 Printing
 Text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 EnterpriseServices
 CompensatingResourceManager
 Internal
 Globalization
 IO
 Compression
 IsolatedStorage
 Ports
 Management
 Instrumentation
 Media
 Messaging
 Design
 Net
 Cache
 Configuration
 Mail
 Mime
 NetworkInformation
 Security
 Sockets
 Reflection
 Emit
 Resources
 Tools
 Runtime
 CompilerServices
 ConstrainedExecution
 Hosting
 InteropServices
 ComTypes
 CustomMarshalers
 Expando
 Remoting
 Activation
 Channels
 Http
 Ipc
 Tcp
 Contexts
 Lifetime
 Messaging
 Metadata
 W3cXsd2001
 MetadataServices
 Proxies
 Services
 Serialization
 Formatters
 Binary
 Soap
 Versioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Security
 AccessControl
 Authentication
 Cryptography
 Pkcs
 X509Certificates
 Xml
 Permissions
 Policy
 Principal
 ServiceProcess
 Design
 Text
 RegularExpressions
 Threading
 Timers
 Transactions
 Configuration
 Web
 Caching
 Compilation
 Configuration
 Internal
 Handlers
 Hosting
 Mail
 Management
 Mobile
 Profile
 RegularExpressions
 Security
 Services
 Configuration
 Description
 Discovery
 Protocols
 SessionState
 UI
 Adapters
 Design
 MobileControls
 Converters
 WebControls
 WebParts
 HtmlControls
 MobileControls
 Adapters
 XhtmlAdapters
 WebControls
 Adapters
 WebParts
 Util

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Windows
 Forms
 ComponentModel
 Com2Interop
 Design
 Behavior
 Layout
 PropertyGridInternal
 VisualStyles
 Xml
 Schema
 Serialization
 Advanced
 Configuration
 XPath
 Xsl
 Runtime

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix C. Constants and Enumerations
This appendix consists of a reference for Visual Basic's built-in constants and enumerations.

Visual Basic defines several enumerations in the Microsoft.VisualBasic namespace. For instance, the
CompareMethod enumeration is defined as:

 Enum CompareMethod
 Binary = 0
 Text = 1
 End Enum

Thus, you can use the following expressions in VB code:

 CompareMethod.Binary
 CompareMethod.Text

Visual Basic also defines two equivalent built-in constants in the Constants class of the
Microsoft.VisualBasic namespace that serve the same purpose:

 vbBinaryCompare
 vbTextCompare

While this is convenient, VB does not define built-in constants corresponding to every member of
every enumeration. For instance, there are no built-in constants that correspond to the OpenMode
enumeration members, used with the FileOpen procedure:

 Enum OpenMode
 Input = 1
 Output = 2
 Random = 4
 Append = 8
 Binary = 32
 End Enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.1. Visual Basic Intrinsic Constants

Table C-1 contains an alphabetical listing of VB's built-in symbolic constants. They are actually
implemented as fields of the Constants class in the Microsoft.VisualBasic namespace.

Table C-1. Visual Basic constants

Constant Value

vbAbort 3

vbAbortRetryIgnore &H00000002

vbApplicationModal &H00000000

vbArchive 32

vbArray 8192

vbBack Chr(8)

vbBinaryCompare 0

vbBoolean 11

vbByte 17

vbCancel 2

vbCr Chr(13)

vbCritical &H00000010

vbCrLf Chr(13) & Chr(10)

vbCurrency 6

vbDate 7

vbDecimal 14

vbDefaultButton1 &H00000000

vbDefaultButton2 &H00000100

vbDefaultButton3 &H00000200

vbDirectory 16

vbDouble 5

vbEmpty 0

vbExclamation &H00000030

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value

vbFalse 0

vbFirstFourDays 2

vbFirstFullWeek 3

vbFirstJan1 1

vbFormFeed Chr(12)

vbFriday 6

vbGeneralDate 0

vbGet 2

vbHidden 2

vbHide 0

vbHiragana 32

vbIgnore 5

vbInformation &H00000040

vbInteger 3

vbKatakana 16

vbLet 4

vbLf Chr(10)

vbLinguisticCasing 1024

vbLong 20

vbLongDate 1

vbLongTime 3

vbLowerCase 2

vbMaximizedFocus 3

vbMethod 1

vbMinimizedFocus 2

vbMinimizedNoFocus 6

vbMonday 2

vbMsgBoxHelp &H00004000

vbMsgBoxRight &H00080000

vbMsgBoxRtlReading &H00100000

vbMsgBoxSetForeground &H00010000

vbNarrow 8

vbNewLine Chr(13) & Chr(10)

vbFalse 0

vbFirstFourDays 2

vbFirstFullWeek 3

vbFirstJan1 1

vbFormFeed Chr(12)

vbFriday 6

vbGeneralDate 0

vbGet 2

vbHidden 2

vbHide 0

vbHiragana 32

vbIgnore 5

vbInformation &H00000040

vbInteger 3

vbKatakana 16

vbLet 4

vbLf Chr(10)

vbLinguisticCasing 1024

vbLong 20

vbLongDate 1

vbLongTime 3

vbLowerCase 2

vbMaximizedFocus 3

vbMethod 1

vbMinimizedFocus 2

vbMinimizedNoFocus 6

vbMonday 2

vbMsgBoxHelp &H00004000

vbMsgBoxRight &H00080000

vbMsgBoxRtlReading &H00100000

vbMsgBoxSetForeground &H00010000

vbNarrow 8

vbNewLine Chr(13) & Chr(10)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value

vbNo 7

vbNormal 0

vbNormalFocus 1

vbNormalNoFocus 4

vbNull 1

vbNullChar Chr(0)

vbNullString

vbObject 9

vbObjectError &H80040000

vbOK 1

vbOKCancel &H00000001

vbOKOnly &H00000000

vbProperCase 3

vbQuestion &H00000020

vbReadOnly 1

vbRetry 4

vbRetryCancel &H00000005

vbSaturday 7

vbSet 8

vbShortDate 2

vbShortTime 4

vbSimplifiedChinese 256

vbSingle 4

vbString 8

vbSunday 1

vbSystem 4

vbSystemModal &H00001000

vbTab Chr(9)

vbTextCompare 1

vbThursday 5

vbTraditionalChinese 512

vbTrue 1

vbTuesday 3

vbNo 7

vbNormal 0

vbNormalFocus 1

vbNormalNoFocus 4

vbNull 1

vbNullChar Chr(0)

vbNullString

vbObject 9

vbObjectError &H80040000

vbOK 1

vbOKCancel &H00000001

vbOKOnly &H00000000

vbProperCase 3

vbQuestion &H00000020

vbReadOnly 1

vbRetry 4

vbRetryCancel &H00000005

vbSaturday 7

vbSet 8

vbShortDate 2

vbShortTime 4

vbSimplifiedChinese 256

vbSingle 4

vbString 8

vbSunday 1

vbSystem 4

vbSystemModal &H00001000

vbTab Chr(9)

vbTextCompare 1

vbThursday 5

vbTraditionalChinese 512

vbTrue 1

vbTuesday 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value

vbUpperCase 1

vbUseDefault &HFFFFFFFE

vbUserDefinedType 36

vbUseSystem 0

vbUseSystemDayOfWeek 0

vbVariant 12

vbVerticalTab Chr(11)

vbVolume 8

vbWednesday 4

vbWide 4

vbYes 6

vbYesNo &H00000004

vbYesNoCancel &H00000003

vbUpperCase 1

vbUseDefault &HFFFFFFFE

vbUserDefinedType 36

vbUseSystem 0

vbUseSystemDayOfWeek 0

vbVariant 12

vbVerticalTab Chr(11)

vbVolume 8

vbWednesday 4

vbWide 4

vbYes 6

vbYesNo &H00000004

vbYesNoCancel &H00000003

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.2. ControlChars Class

The Microsoft.VisualBasic namespace includes a ControlChars class with shared fields that can be
used for device control and outputting special characters. Most of the shared fields also have
equivalent Visual Basic intrinsic constants.

Field Value Intrinsic constant

Back Chr(8) vbBack

Cr Chr(13) vbCr

CrLf Chr(13) & Chr(10) vbCrLf

FormFeed Chr(12) vbFormFeed

Lf Chr(10) vbLf

NewLine Chr(13) & Chr(10) vbNewLine

NullChar Chr(0) vbNullChar

Quote Chr(34)

Tab Chr(9) vbTab

VerticalTab Chr(11) vbVerticalTab

These constants must be qualified with their class name, as in:

 If (dataString = ControlChars.CrLf) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.3. Visual Basic Enumerations

The following is a list of the major VB-defined enumerations . Many of the enumeration values have
equivalent VB constants, which appear in the comments to the right of each value. In general, you
will need to qualify enumeration members with the enumeration name when using them in your code.

C.3.1. AppWinStyle Enumeration

 Enum AppWinStyle
 Hide = 0 ' vbHide
 NormalFocus = 1 ' vbNormalFocus
 MinimizedFocus = 2 ' vbMinimizedFocus
 MaximizedFocus = 3 ' vbMaximizedFocus
 NormalNoFocus = 4 ' vbNormalNoFocus
 MinimizedNoFocus = 6 ' vbMinimizedNoFocus
 End Enum

C.3.2. AudioPlayMode Enumeration

This enumeration is new with Visual Basic 2005.

 Enum AudioPlayMode
 WaitToComplete = 0
 Background = 1
 BackgroundLoop = 2
 End Enum

C.3.3. BuiltInRole Enumeration

This enumeration is new with Visual Basic 2005.

 Enum BuiltInRole
 Administrator = 544
 User = 545
 Guest = 546
 PowerUser = 547

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AccountOperator = 548
 SystemOperator = 549
 PrintOperator = 550
 BackupOperator = 551
 Replicator = 552
 End Enum

C.3.4. CallType Enumeration

 Enum CallType
 Method = 1 ' vbMethod
 Get = 2 ' vbGet
 Let = 4 ' vbLet
 Set = 8 ' vbSet
 End Enum

C.3.5. CompareMethod Enumeration

 Enum CompareMethod
 Binary = 0 ' vbBinaryCompare
 Text = 1 ' vbTextCompare
 End Enum

C.3.6. DateFormat Enumeration

 Enum DateFormat
 GeneralDate = 0 ' vbGeneralDate
 LongDate = 1 ' vbLongDate
 ShortDate = 2 ' vbShortDate
 LongTime = 3 ' vbLongTime
 ShortTime = 4 ' vbShortTime
 End Enum

C.3.7. DateInterval Enumeration

 Enum DateInterval

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Year = 0
 Quarter = 1
 Month = 2
 DayOfYear = 3
 Day = 4
 WeekOfYear = 5
 Weekday = 6
 Hour = 7
 Minute = 8
 Second = 9
 End Enum

C.3.8. DeleteDirectoryOption Enumeration

This enumeration is new with Visual Basic 2005.

 Enum DeleteDirectoryOption
 ThrowIfDirectoryNonEmpty = 0
 DeleteAllContents = 1
 End Enum

C.3.9. DueDate Enumeration

 Enum DueDate
 EndOfPeriod = 0
 BegOfPeriod = 1
 End Enum

C.3.10. FieldType Enumeration

This enumeration is new with Visual Basic 2005.

 Enum FieldType
 Delimited = 0
 FixedWidth = 1
 End Enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.3.11. FileAttribute Enumeration

 Enum FileAttribute
 Normal = 0 ' vbNormal
 ReadOnly = 1 ' vbReadOnly
 Hidden = 2 ' vbHidden
 System = 4 ' vbSystem
 Volume = 8 ' vbVolume
 Directory = 16 ' vbDirectory
 Archive = 32 ' vbArchive
 End Enum

C.3.12. FirstDayOfWeek Enumeration

 Enum FirstDayOfWeek
 System = 0 ' vbUseSystemDayOfWeek
 Sunday = 1 ' vbSunday
 Monday = 2 ' vbMonday
 Tuesday = 3 ' vbTuesday
 Wednesday = 4 ' vbWednesday
 Thursday = 5 ' vbThursday
 Friday = 6 ' vbFriday
 Saturday = 7 ' vbSaturday
 End Enum

C.3.13. FirstWeekOfYear Enumeration

 Enum FirstWeekOfYear
 System = 0 ' vbUseSystem
 Jan1 = 1 ' vbFirstJan1
 FirstFourDays = 2 ' vbFirstFourDays
 FirstFullWeek = 3 ' vbFirstFullWeek
 End Enum

C.3.14. MsgBoxResult Enumeration

 Enum MsgBoxResult
 OK = 1 ' vbOK

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Cancel = 2 ' vbCancel
 Abort = 3 ' vbAbort
 Retry = 4 ' vbRetry
 Ignore = 5 ' vbIgnore
 Yes = 6 ' vbYes
 No = 7 ' vbNo
 End Enum

C.3.15. MsgBoxStyle Enumeration

 Enum MsgBoxStyle
 DefaultButton1 = &H00000000 ' vbDefaultButton1
 ApplicationModal = &H00000000 ' vbApplicationModal
 OKOnly = &H00000000 ' vbOKOnly
 OKCancel = &H00000001 ' vbOKCancel
 AbortRetryIgnore = &H00000002 ' vbAbortRetryIgnore
 YesNoCancel = &H00000003 ' vbYesNoCancel
 YesNo = &H00000004 ' vbYesNo
 RetryCancel = &H00000005 ' vbRetryCancel
 Critical = &H00000010 ' vbCritical
 Question = &H00000020 ' vbQuestion
 Exclamation = &H00000030 ' vbExclamation
 Information = &H00000040 ' vbInformation
 DefaultButton2 = &H00000100 ' vbDefaultButton2
 DefaultButton3 = &H00000200 ' vbDefaultButton3
 SystemModal = &H00001000 ' vbSystemModal
 MsgBoxHelp = &H00004000 ' vbMsgBoxHelp
 MsgBoxSetForeground = &H00010000 ' vbMsgBoxSetForeground
 MsgBoxRight = &H00080000 ' vbMsgBoxRight
 MsgBoxRtlReading = &H00100000 ' vbMsgBoxRtlReading
 End Enum

C.3.16. OpenAccess Enumeration

 Enum OpenAccess
 Default = &HFFFFFFFF
 Read = 1
 Write = 2
 ReadWrite = 3
 End Enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.3.17. OpenMode Enumeration

 Enum OpenMode
 Input = 1
 Output = 2
 Random = 4
 Append = 8
 Binary = 32
 End Enum

C.3.18. OpenShare Enumeration

 Enum OpenShare
 Default = &HFFFFFFFF
 LockReadWrite = 0
 LockWrite = 1
 LockRead = 2
 Shared = 3
 End Enum

C.3.19. RecycleOption Enumeration

This enumeration is new with Visual Basic 2005.

 Enum RecycleOption
 DeletePermanently = 0
 SendToRecycleBin = 1
 End Enum

C.3.20. SearchOption Enumeration

This enumeration is new with Visual Basic 2005.

 Enum SearchOption
 SearchTopLevelOnly = 0
 SearchAllSubDirectories = 1
 End Enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.3.21. TriState Enumeration

 Enum TriState
 UseDefault = &HFFFFFFFE ' vbUseDefault
 False = 0 ' vbFalse
 True = 1 ' vbTrue
 End Enum

C.3.22. UICancelOption Enumeration

This enumeration is new with Visual Basic 2005.

 Enum UICancelOption
 DoNothing = 0
 ThrowException = 1
 End Enum

C.3.23. UIOption Enumeration

This enumeration is new with Visual Basic 2005.

 Enum UIOption
 OnlyErrorDialogs = 0
 AllDialogs = 1
 End Enum

C.3.24. VariantType Enumeration

 Enum VariantType
 Empty = 0 ' vbEmpty
 Null = 1 ' vbNull
 Short = 2
 Integer = 3 ' vbInteger
 Single = 4 ' vbSingle
 Double = 5 ' vbDouble
 Currency = 6 ' vbCurrency

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Date = 7 ' vbDate
 String = 8 ' vbString
 Object = 9 ' vbObject
 Error = 10
 Boolean = 11 ' vbBoolean
 Variant = 12 ' vbVariant
 DataObject = 13
 Decimal = 14 ' vbDecimal
 Byte = 17 ' vbByte
 Char = 18
 Long = 20 ' vbLong
 UserDefinedType = 36 ' vbUserDefinedType
 Array = 8192 ' vbArray
 End Enum

C.3.25. VbStrConv Enumeration

 Enum VbStrConv
 None = 0
 UpperCase = 1 ' vbUpperCase
 LowerCase = 2 ' vbLowerCase
 ProperCase = 3 ' vbProperCase
 Wide = 4 ' vbWide
 Narrow = 8 ' vbNarrow
 Katakana = 16 ' vbKatakana
 Hiragana = 32 ' vbHiragana
 SimplifiedChinese = 256 ' vbSimplifiedChinese
 TraditionalChinese = 512 ' vbTraditionalChinese
 LinguisticCasing = 1024 ' vbLinguisticCasing
 End Enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix D. What's New and Different in
Visual Basic .NET 2002
This appendix is for readers who are familiar with pre-.NET versions of Visual Basic, specifically
Version 6. The text describes the basic changes to the Visual Basic language, both in terms of syntax
and usage. General functional changes appear as well, including topics such as error handling and
objected-oriented programming support.

This appendix assumes that you are familiar with VB 6, so it does not go into the details of how VB 6
handles a given language feature, unless the contrast is specifically helpful. Readers familiar only with
versions of Visual Basic before Version 6 will also benefit from this chapter, although only changes
made since Version 6 appear here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.1. Language Changes in VB.NET 2002

This section outlines the changes made to the Visual Basic language from Version 6 to Visual Basic
.NET 2002. These language changes were made to bring VB under the umbrella of the .NET
Framework and to provide VB access to the Common Language Runtime shared by all languages in
the Visual Studio .NET family of languages.

D.1.1. Data Types

There have been fundamental changes to data types in the transition to VB.NET. The most important
change is that all .NET-compliant languages (including VB, C#, and Managed C++) now implement a
subset of a common set of data types, defined in the .NET Framework's Base Class Library (BCL);
specific languages, including VB.NET 2002, do not implement all available BCL data types. Each data
type in the BCL is implemented either as a class or as a structure and, as such, has members. The
VB.NET data types are wrappers for the corresponding BCL data types. Because of this, any feature
of the .NET Framework that uses a specific BCL data type will work seamlessly with the equivalent
VB.NET data type. For more discussion on data types, see Chapter 4.

D.1.1.1. Strings

In VB 6, strings were implemented as BSTRs ("B-Strings"). A BSTR is a pointer to a character array
that is preceded by a 4-byte Long specifying the length of the array. In VB.NET, strings are
implemented as objects of the System.String class.

One consequence of this reimplementation of strings is that VB.NET does not support fixed-length
strings, as did VB 6. Thus, the following code is illegal:

 Dim sName As String * 30

Strings in .NET are immutable. Once you assign a value to a string, neither its length nor its content
changes. If you change a string, the .NET Common Language Runtime actually gives you a reference
to a new String object. (For more on this, see Chapter 4.)

D.1.1.2. Integer/Long data-type changes

Visual Basic .NET 2002 defines the following signed-integer data types:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Short

A 16-bit integer data type, based on the System.Int16 data type.

Integer

A 32-bit integer data type, based on the System.Int32 data type.

Long

A 64-bit integer data type, based on the System.Int64 data type.

This means that in the transition from VB 6 to VB.NET:

The VB 6 Integer data type became the VB.NET Short data type.

The VB 6 Long data type became the VB.NET Integer data type.

The VB.NET Long data type has no direct equivalent in VB 6.

D.1.1.3. Variant data type

VB.NET does not support the Variant data type. The Object data type is VB.NET's universal data
type; it can hold data of any other data type. Although its use is somewhat different from the Variant
data type, both data types provide a general way to refer to a variety of data.

There are several penalties associated with using a universal data type, including poor performance
and poor program readability. While VB.NET still provides this opportunity through the Object data
type, its use is not recommended simply to avoid the clear categorization of your data values.

The VarType function, which was used in VB 6 to determine the type of data stored in a Variant
variable (that is, it returned the Variant's data subtype), now reports the true data type of the
Object instance instead. VB.NET still supports the TypeName function, which is used to return the
name of the true data type of an Object variable.

D.1.1.4. Other data-type changes

Here are some additional changes in data types:

The Deftype statements (DefBool, DefByte, etc.), which were used to define the default data

type for variables with names that began with particular letters of the alphabet, are not
supported in VB.NET.

The Currency data type is not supported in VB.NET. However, VB.NET's Decimal data type can
handle more digits on both sides of the decimal point than did the Currency data type, and it is
a superior replacement. The VB.NET Decimal data type is a true data type; VB 6's Currency data
type was a Variant subtype, and a variable could be cast as a Decimal in VB 6 only by calling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the CDec conversion function.

In VB 6, dates and times were stored in a Double format using four bytes. In VB.NET, the Date
data type is an 8-byte integral data type with a range of values that is from January 1, 1 to
December 31, 9999 in the Gregorian calendar.

D.1.2. Variables and Their Declaration

Visual Basic .NET 2002 introduced several changes related to variable use.

D.1.2.1. Variable declaration

The syntax used to declare variables changed with VB.NET, making it more flexible. In VB.NET, when
multiple variables are declared on the same line, if a variable is not declared with a type explicitly,
then its type is that of the next variable with an explicit type declaration. Thus, in the line:

 Dim first As Long, second, third, fourth As Integer

the variables second, third, and fourth are of type Integer. Using this same statement in VB 6 would
have defined second and third as type Variant, and only the variable fourth would have been an
Integer.

When declaring external procedures using the Declare statement, VB.NET does not support the As
Any type declaration clause. All parameters must have a specific type declaration.

D.1.2.2. Variable initialization

VB.NET permits the initialization of variables on the same line as their declaration. The statement:

 Dim x As Integer = 5

declares an Integer variable x and initializes its value to 5. More than one variable declaration and
assignment may appear on a single line:

 Dim x As Integer = 6, y As Integer = 9

D.1.2.3. Variable scope changes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB 6, a variable that is declared anywhere in a procedure has procedure scope; the variable is
visible to all code in the procedure. In VB.NET, if a variable is defined inside a code block (a set of
statements that is terminated by an End..., Loop, Next, or similar block closing keyword), then the
variable has block-level scope; it is visible only within that block. For example, consider the following
VB.NET code:

 Public Sub Test(sourceValue As Integer)
 If (sourceValue <> 0) Then
 Dim inverseResult As Integer
 inverseResult = 1 / sourceValue
 End If
 ' ----- The next line is invalid.
 MsgBox(CStr(inverseResult))
 End Sub

In this code, the variable inverseResult is not recognized outside the block in which it is defined, so
the final statement will produce a compile-time error.

The lifetime of a local variable is always that of the entire procedure, even if the variable's scope is
block-level. This implies that if a block is entered more than once, a block-level variable will retain its
value from the previous time through the code block.

D.1.2.4. Arrays and array declarations

VB 6 permitted you to define the lower bound of a specific array, as well as the default lower bound
of arrays with a lower bound that was not explicitly specified. In VB.NET, the lower bound of every
array dimension is zero and cannot be changed. The following examples show how to declare a one-
dimensional array, with or without an explicit size and initialization:

 ' Implicit constructor: No initial size and no initialization
 Dim days() As Integer

 ' Explicit constructor: No initial size and no initialization
 Dim days() As Integer = New Integer() {}

 ' Implicit constructor: Initial size but no initialization
 Dim days(6) As Integer

 ' Explicit constructor: Initial size but no initialization
 Dim days() As Integer = New Integer(6) {}

 ' Implicit constructor: Initial size implied by initialization
 Dim days() As Integer = {1, 2, 3, 4, 5, 6, 7}

 ' Explicit constructor: Initial size and initialization
 Dim days() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the declaration:

 Dim arrayName(upperBound) As arrayType

the number upperBound is the upper bound of the array. Thus, the array has size upperBound + 1,
with elements 0 through upperBound.

Multidimensional arrays are declared similarly. The following example declares and initializes a two-
dimensional array:

 Dim someData(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

The following code displays the contents of that array:

 Debug.Write(someData(0, 0))
 Debug.Write(someData(0, 1))
 Debug.WriteLine(someData(0, 2))
 Debug.Write(someData(1, 0))
 Debug.Write(someData(1, 1))
 Debug.WriteLine(someData(1, 2))

 ' ----- The output is:
 123
 456

In VB.NET, all arrays are dynamic; there is no such thing as a fixed-size array. The declared size
should be thought of simply as the initial size of the array, which is subject to change using the ReDim
statement. The number of dimensions of an array cannot be changed.

The ReDim statement in VB.NET cannot be used for array declaration but only for array resizing, which
differs from the functionality in VB 6. All arrays must be declared initially using the Dim (or
equivalent) statement.

D.1.2.5. Structure/user-defined type declarations

In VB 6, a structure or user-defined type is declared using the Type...End Type syntax. In VB.NET, the
Type statement isn't supported. Structures are declared using the Structure...End Structure
construct. Each member of this structure must be assigned an access modifier, which can be Public,
Protected, Friend, Protected Friend, or Private. (The Dim keyword is equivalent to Public in this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

context.)

For instance, the VB 6 user-defined type:

 Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
 End Type

has the following equivalent VB.NET declaration:

 Structure RECT
 Public Left As Integer
 Public Top As Integer
 Public Right As Integer
 Public Bottom As Integer
 End Structure

VB.NET Structure types are far more reaching than their VB 6 user-defined type counterparts.
Structures in .NET have many properties in common with classes, such as the presence of members
(like properties and methods). Structures are discussed in detail in Chapter 4.

D.1.3. Logical and Bitwise Operators

Eqv and Imp, two infrequently used VB 6 logical and bitwise operators , have been removed from
VB.NET.

In VB 6, Eqv is the equivalence operator. As a logical operator, it returns true if both operands are
either TRue or False, but it returns False if one is true while the other is False. As a bitwise operator,
it returns 1 for a given bit if both source bits are the same (that is, if both are 1 or both are 0), but it
returns 0 if they are different. In VB.NET, Eqv can be replaced with the Equal To (=) comparison
operator for logical operations. If you require the true bitwise result of the equivalence operation, use
the following code.

 Public Function BitwiseEqv(ByVal x1 As Byte, ByVal x2 As Byte) As Byte
 ' ----- Functional equivalent to the VB 6 'Eqv' keyword.
 Dim bit1 As Byte
 Dim bit2 As Byte
 Dim result As Byte = 0
 Dim counter as Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' ----- Scan each of the eight bits.
 For counter = 0 To 7
 ' ----- Compare this specific bit.
 bit1 = x1 And 2 ^ counter
 bit2 = x2 And 2 ^ counter
 If (bit1 = bit2) Then result += 2 ^ counter
 Next counter
 Return result
 End Function

In VB 6, Imp is the implication operator. As a logical operator, it returns TRue in all cases except when
the first operand is TRue and the second is False. As a bitwise operator, it returns 1 in a bit position in
all cases, except when that positional bit in the first operand is 1 and the same bit in the second
operand is 0. In VB.NET, Imp can be replaced with a combination of the Not and Or operators for
logical operations. For example, the statement:

 result = (Not flag1) Or flag2

is equivalent to the VB 6 statement:

 result = flag1 Imp flag2

For bitwise operations, a bit-by-bit comparison is again necessary. The following code implements the
missing functionality.

 Public Function BitwiseImp(ByVal x1 As Byte, _
 ByVal x2 As Byte) As Byte
 ' ----- Functional equivalent to the VB 6 'Imp' keyword.
 Dim bit1 As Byte
 Dim bit2 As Byte
 Dim result As Byte = 0
 Dim counter As Integer

 ' ----- Scan each of the eight bits.
 For counter = 0 to 7
 bit1 = Not(x1) And 2 ^ counter
 bit2 = x2 And 2 ^ counter
 If (bit1 Or bit2) Then result += 2 ^ counter
 Next counter
 Return result
 End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Many programming languages support short-circuiting, which allows the language to abort evaluation
of a complex conditional expression early when it is already clear what the final logical result will be.
As expressions are evaluated from left to right, once the eventual truth or falsity of the whole
condition is known, the remaining expressions are skipped. For instance, if a condition includes two
expressions joined with an "And" logical operator, short-circuiting ceases evaluation if the first
expression evaluates to False, since the value of the second expression will not impact the final
result.

Visual Basic 6 did not support short-circuiting, but VB.NET now supports it through the AndAlso and
OrElse logical operators. If these operators are used (instead of the non-short-circuiting And and Or
logical operators), the condition may exit early if warranted. For example, consider the statement:

 If (X AndAlso Y) Then

If X is False, then Y is not evaluated, because the entire statement is False regardless of the truth
value of Y.

VB.NET introduced new operators to support short-circuiting rather than simply modifying the
behavior of And and Or, largely for reasons of compatibility. In most cases, short-circuiting has no
effect on a program's execution other than an improvement in performance and an increase in
robustness (expressions that are not evaluated cannot raise errors or consume CPU cycles).
However, care must be taken when the second expression includes function calls. For example:

 If Increment(x) AndAlso Increment(y) Then
 ' ----- Do something.
 End If
 ...

 Private Function Increment(ByRef n As Integer) As Boolean
 If (n < 10) Then
 n += 1
 Return True
 Else
 Return False
 End If
 End Function

The original condition is somewhat ambiguous, since y will be incremented only sometimes. In such
cases, it may be preferable to avoid short-circuiting with AndAlso in favor of the And operator.

D.1.4. Changes Related to Procedures

VB.NET includes several changes in the way that procedures are defined and called, with clearer and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

more consistent results.

D.1.4.1. Calling a procedure

In VB 6, parentheses are required around arguments when making function calls, but when calling
subroutines, argument parentheses are only used with the Call keyword. In VB.NET, parentheses are
always required around a non-empty argument list for any procedure callfunction or subroutine. (In
subroutine calls, the Call statement is still optional.) When calling a procedure with no arguments,
empty parentheses are optional.

D.1.4.2. Default method of passing arguments

In VB 6, if the parameters to a function or subroutine are not explicitly prefaced with the ByVal or
ByRef keywords, arguments are passed to that routine by reference, and modifications made to the
argument in the function or subroutine are reflected in the variable's value once control returns to
the calling routine. In VB.NET, if the ByRef or ByVal keyword is not used with a parameter, the
argument is passed to the routine by value, and modifications made to the argument in the function
or subroutine are discarded once control returns to the calling routine.

D.1.4.3. Optional arguments

In VB 6, a procedure parameter can be declared as Optional without specifying a default value. For
optional Variant parameters, the IsMissing function determines whether the parameter is present.
In VB.NET, an optional parameter must declare a default value, which is passed to the routine if the
calling code does not supply an argument. The IsMissing function is not supported. The following
example shows an optional parameter declaration in VB.NET:

 Public Sub Calculate(Optional ByVal silent As Boolean = False)

D.1.4.4. GoSub and Return statements

In VB 6, the GoSub and Return statements provide support for a subroutine-like block of code within a
larger procedure. VB.NET no longer supports this construct. The GoSub statement has been removed
from the language, and the Return statement is now used to exit a procedure immediately, with the
option of setting the return value, as demonstrated in the following VB.NET code:

 Public Function SafeDivide(numerator As Decimal, _
 denominator As Decimal) As Decimal
 ' ----- Division with a check for divide-by-zero.
 If (denominator = 0) Then
 Return 0
 Else
 Return numerator / denominator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If
 End Function

D.1.4.5. Passing Property parameters in procedures

In VB 6, properties passed as arguments to procedures were always passed by value, even if the
procedure defined the argument as ByRef.

 Public Sub ShrinkToHalf(ByRef lSize As Long)
 lSize = CLng(lSize / 2)
 End Sub

 ' ----- In some other routine...
 Call ShrinkToHalf(Text1.Height)

In VB 6, Text1.Height remains unaltered by the ShrinkToHalf routine. In VB.NET, properties passed
to ByRef parameters will be updated to reflect any changes made within the procedure.

D.1.4.6. ParamArray parameters

In VB 6, a parameter marked with the ParamArray keyword only accepts arguments through the
Variant data type, and the arguments are passed ByRef. In VB.NET, ParamArray parameters are
always passed ByVal, and the parameters in the array may be of any data type.

D.1.5. Miscellaneous Language Changes

VB.NET includes several miscellaneous language changes that don't fit into other broad categories.

D.1.5.1. Line numbers

Visual Basic .NET requires that every line number be followed immediately by a colon (:). A
statement can optionally follow the colon. In VB 6, nonnumeric line labels had to include a colon, but
numeric line numbers did not.

D.1.5.2. On GoSub and On GoTo statements

The On...GoSub and On...GoTo value-based branching constructs are no longer supported. However,
VB.NET still supports the On Error GoTo statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.1.5.3. While statement

VB 6 included a While...Wend conditional loop construct. Although VB.NET retains this statement, it
replaces the Wend keyword with the End While keyword pair.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.2. Changes to Programming Elements

VB.NET has removed support for several programming elements because the underlying .NET
Framework Class Library and the Common Language Runtime (CLR) contain equivalent functionality.
Other syntax and usage changes have been made as well.

D.2.1. Constants

Many predefined constants available in VB 6, such as the familiar vbCrLf constant, are now part of
VB.NET's Microsoft.VisualBasic.Constants class. They can be used in VB.NET just as they were used
in VB 6. However, some constants, such as the color constants vbRed and vbBlue, are no longer
directly supported. The color constants are part of the System.Drawing namespace's Color structure
and are accessed as follows:

 Me.BackColor = System.Drawing.Color.BlanchedAlmond

When using most constants, other than those in the Microsoft.VisualBasic.Constants class, you will
need to include some or all of their namespace and class name prefix. For example, the vbYes
constant in VB 6 continues to exist in VB.NET as a member of the MsgBoxResult enumeration. It can
be used as follows:

 If (MsgBoxResult.Yes = MsgBox("OK to proceed?", ...

For a list of built-in constants and enumerations, see Appendix C.

D.2.2. String Functions

The String function has been removed from VB.NET. Its functionality now appears as part of the
String data-type constructor.

 Dim giveThemAnA As New String("A"c, 5)

which defines a string containing five As. The c modifier in "A"c indicates a character literal (data type
Char) as opposed to a standard one-character string (data type String).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.2.3. Emptiness

In VB 6, the Empty keyword indicated an uninitialized variable, and the Null keyword was used when
a variable contained no valid data. VB.NET does not support either keyword but uses the Nothing
keyword in both of these cases. The Null keyword continues to be a reserved word in VB.NET, but it
has no functionality.

The IsEmpty function is no longer supported in VB.NET; use the IsNothing function instead.

D.2.4. Graphical Functionality

The System.Drawing namespace contains classes that implement graphical methods. Its Graphics
class contains methods such as DrawEllipse and DrawLine. As a result, the VB 6 Circle and Line
methods, associated with Forms and other drawing surfaces, have been removed.

VB 6's PSet and Scale methods are no longer supported, and they have no direct equivalents in the
System.Drawing namespace.

D.2.5. Mathematical Functionality

Mathematical functions are implemented as members of .NET's System.Math class. All VB 6 math
functions, such as the trigonometric functions, have been dropped from the VB.NET language itself,
replaced with members of System.Math. Typical using is:

 result = Math.Cos(1)

The Round function has been replaced by the Round method of the System.Math class.

D.2.6. Diagnostics

The System.Diagnostics namespace provides classes related to programming diagnostics. Most
notably, the VB 6 Debug object is gone, but its functionality is implemented in the
System.Diagnostics.Debug class, which has methods such as Write, WriteLine (replacing Print),
WriteIf, and WriteLineIf.

D.2.7. Miscellaneous

Here are a few additional changes to consider.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The VB 6 DoEvents statement has been replaced by the DoEvents method of the
System.Windows.Forms.Application class.

The VB 6 IsNull and IsObject functions have been replaced by the IsDBNull and IsReference
methods respectively, both part of the Information class in the Microsoft.VisualBasic
namespace.

Several VB 6 functions have two versions: a string version (such as trim$) and a variant version
(TRim). In VB.NET, these functions are replaced by a single overloaded function. The trim
function can now be called directly using either a String or Object argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.3. Obsolete Programming Elements

Several features of Visual Basic 6 are no longer supported by Visual Basic .NET or have been replaced
by equivalent functionality elsewhere in the .NET Framework. See Appendix G for a listing of these
unsupported or redirected elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.4. Structured Exception Handling

VB.NET has added a significant new technique for error handling. Along with the traditional
unstructured error handling through On Error GoTo statements, VB.NET adds structured exception
handling, using the try...Catch...Finally syntax supported in other languages, such as C++. This
new syntax is discussed in detail in Chapter 11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.5. Changes in Object Orientation

Visual Basic has implemented some features of object-oriented programming (OOP) since Version 4.
However, the OOP changes made between VB 6 and VB.NET are very significant. Some people did
not consider VB 6 (or earlier versions) to be a true object-oriented programming language. VB.NET
2002 includes support for most major OOP concepts, and the general changes introduced with
VB.NET appear in this section. Chapter 3 includes a general overview of OOP concepts and introduces
VB.NET's specific OOP implementation.

D.5.1. Inheritance

VB.NET supports object-oriented inheritance (but not multiple inheritance). This means that a class
can derive from another (base) class, thereby inheriting all of the properties, methods, events, and
other types of the base class. Since .NET forms are classes, inheritance applies to them as well. This
allows new forms to be created based on existing control-laden forms.

D.5.2. Overloading

VB.NET supports a language feature known as function overloading. Within a class, a single method
can include multiple argument signature variations. That is, the number and data type of each
method argument can vary between the different versions, despite the method having the same
name in each version. The following declarations are valid in the same class.

 Public Overloads Sub OpenFile()
 ' ----- Prompt user for file to open, and open it.
 End Sub

 Public Overloads Sub OpenFile(ByVal fileToOpen As String)
 ' ----- Open the specified file.
 End Sub

D.5.3. Object Creation

VB 6 supports a form of object creation called implicit object creation. If an object variable is
declared using the New keyword, as in:

 Dim obj As New SomeClass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

then the object is created the first time it is used in code. More specifically, the object variable is
initially given the value Nothing, and then every time the variable is encountered during code
execution, VB checks to see if the variable is Nothing. If so, the object is created at that time. (This
behavior was changed somewhat in a Visual Studio 6.0 service pack.)

VB.NET does not support implicit object creation. If an object variable contains Nothing when it is
encountered, it is left unchanged, and no object is created.

VB.NET supports object creation in the declaration statement, as with:

 Dim someInstance As SomeClass = New SomeClass

or the shorter equivalent:

 Dim someInstance As New SomeClass

If the object's class constructor takes parameters, they can be included, as with:

 Dim someInstance As SomeClass = New SomeClass(arg1, arg2, ...)

or the shorter equivalent:

 Dim someInstance As New SomeClass(arg1, arg2, ...)

D.5.4. Properties

There have been a few changes in how VB handles properties, particularly default properties and
property declarations.

D.5.4.1. Default properties

VB 6 supports default properties. For instance, if txtQuote is a TextBox control, then:

 txtQuote = "To be or not to be"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

assigns the string "To be or not to be" to the default Text property of txtQuote.

However, this can sometimes lead to ambiguity. For example, if TextBox1 and TextBox2 are TextBox
controls on a form, what does the following statement do?

 TextBox1 = TextBox2

In VB 6, this assigns the default property of TextBox2 (the Text property) to the same property in
TextBox1, although it looks like the object itself is being assigned. Object assignment in VB 6 uses the
Set keyword, as in the following syntax:

 Set TextBox1 = TextBox2

But in VB.NET, the Set keyword is no longer used for object assignment. Therefore, to avoid any
ambiguity, default properties in VB.NET are not supported unless the property takes one or more
parameters. In VB.NET, the line:

 TextBox1 = TextBox2

is an object assignment statement. To copy the contents of the Text property, the following syntax is
required:

 TextBox1.Text = TextBox2.Text

For object variable comparison, VB.NET uses the Is operator rather than the Equal To (=) comparison
operator, as in:

 If (TextBox1 Is TextBox2) Then

or:

 If Not (TextBox1 Is TextBox2) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.5.4.2. Property declarations

In VB 6, properties are defined using Property Let, Property Set, and Property Get procedures.
VB.NET uses a modified Property statement syntax.

 Property Salary() As Decimal
 Get
 Salary = employeeSalary
 End Get
 Set(ByVal value As Decimal)
 employeeSalary = value
 End Set
 End Property

The former differentiation between Property Let and Property Set no longer exists in VB.NET due to
default property changes; only Property Set is retained.

VB.NET does not support ByRef property parameters. All property parameters are passed ByVal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix E. What's New and Different in
Visual Basic .NET 2003
If Visual Basic .NET 2002 represented a monumental leap in the path of the Visual Basic language,
the 2003 release of Visual Basic .NET was, in many ways, the extra step you take to balance yourself
after making the first big leap. VB.NET 2003 was a minor upgrade to the language, as acknowledged
by its internal version number, 7.1. Its release paralleled the upgrade to the .NET Framework, also
short-stepping to just Version 1.1.

This is not to say that there were no benefits to the programmer in this release. There were clearly
improvements in terms of both performance and usability, especially through changes made to the
Visual Studio environment. However, changes to the Visual Basic language itself were limited.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.1. Language Changes in VB.NET 2003

Visual Basic .NET 2003 included two changes of note in its implementation of the Visual Basic
language.

E.1.1. Bit Shift Operators

The collection of bitwise operators increased in 2003 with the addition of the bit shift operators, <<
(Shift Left) and >> (Shift Right). Also added were their assignment operator equivalents, <<= and >>=.
These operators are discussed in Chapter 5.

E.1.2. Declaration in For Loops

Visual Basic .NET 2002 introduced block-level declaration to the language, allowing you to use Dim
statements within an If statement, a loop, or other block constructs and have that variable apply in
scope only to that block. The other benefit of such usage was that a local variable could be defined at
the moment of its first use in a procedure. However, this was not true for loop variables used to
control For statements.

In the 2003 release, For statements can now include a declaration for the looping variable directly in
the For statement. The new syntax adds an As clause to the loop variable name. The following
VB.NET 2002 code:

 Dim counter As Integer
 For counter = 1 To 10
 MsgBox(counter)
 Next counter

can now be written in VB.NET 2003 as:

 For counter As Integer = 1 To 10
 MsgBox(counter)
 Next counter

As with block variables, these For loop variables have valid scope only within the block (the For
statement block, in this case). Also, if you want to add a second loop at the same block level to your
code using the same variable name, you must include the As clause to that second loop, as its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

definition does not carry from one loop to the next.

This new syntax can also be used with For Each statements.

 For Each player As TeamMember In baseballTeam
 MsgBox(player.Name)
 Next player

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix F. What's New and Different in
Visual Basic 2005
The 2005 release of Visual Basic includes major enhancements over the previous 2003 edition. Its
internal version number is 8.0, and it matches a related major update of the .NET Framework, now at
Version 2.0. Microsoft also removed the ".NET" term from the name of each product in the Visual
Studio family. Visual Basic .NET is now known officially as Visual Basic.

This release includes many usability enhancements, many of which are realized only when using the
Visual Studio 2005 product. For instance, Visual Basic now includes Edit and Continue, a feature
available in all pre-.NET versions of Visual Basic, which allows source code to be modified in an
actively running program. The changes are immediately reflected in the running code. A parallel
change, design-time expression evaluation, processes individual source-code statements without the
need to fully build an application (although Visual Studio actually builds a mini-application in the
background to evaluate the expression).

The Visual Studio environment also includes enhanced error reporting, including recommendations on
changing errant VB code. Code snippets, auto-completion features, and enhanced project and item
templates also support faster code development.

While these and other Visual Studio-level enhancements make Visual Basic a more productive
language, this appendix focuses on the language enhancements included in the 2005 release.

Visual Basic 2005 includes several new keywords that may have been used as variable or member
names in your pre-2005 Visual Basic code. This release includes a command-line utility, vb7to8.exe,
which checks existing Visual Basic code for keyword conflicts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

F.1. Enhancements of Existing Functionality

Some of the changes included in Visual Basic 2005 modify or enhance existing Visual Basic features.

F.1.1. Custom Event Statement

Events in Visual Basic are linked to event handlers either through the AddHandler statement or with
the Handles clause on a member declaration. The process of adding and removing handlers is fully
managed by the framework, as is the process of calling handlers when events occur.

Visual Basic 2005 adds a new custom events feature that allows your code to partner with the .NET
Framework in the management of adding and removing handler, and in calling event handlers.

The general syntax of a custom event handler is as follows:

 accessModifier Custom Event eventName As EventHandler
 AddHandler(ByVal value As EventHandler)
 ' ----- Special code when adding handlers.
 End AddHandler

 RemoveHandler(ByVal value As EventHandler)
 ' ----- Special code when removing handlers.
 End RemoveHandler

 RaiseEvent(ByVal sender As Object, ByVal e As System.EventArgs)
 ' ----- Special code when raising the event.
 End RaiseEvent
 End Event

Your own custom code can be included in any of the three event procedures. Custom events are
discussed in Chapter 8.

F.1.2. Data-Type Additions

Visual Basic 2005 includes four new data types : SByte (signed byte), UShort (unsigned short),
UInteger (unsigned integer), and ULong (unsigned long). Actually, these four data types existed in the
.NET Framework from the initial release of .NET and could even be used from Visual Basic code.
However, Visual Basic wrappers were not included for these data types as they were for all of the
other core data types. These four new data types complete Visual Basic's implementation of the Base
Class Library's basic data types.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These four data types are not compliant with the minimal Common Language Specification.
Components and applications using that standard may not be compatible with applications that use
SByte, UShort, UInteger, or ULong.

Additional information about these data types is available in Chapter 4.

F.1.3. Global Keyword

If your application includes a namespace named something like MyCompany.System, and you use the
Imports MyCompany statement in your code file, any reference to "System" becomes ambiguous. To
resolve possible conflicts such as these, Visual Basic 2005 includes a new Global keyword.

When potential conflicts exist, the Global keyword can be used to provide a true top-level reference
to the desired namespace-based type. To access the .NET-supplied System namespace, reference
Global.System, which removes any ambiguity conflicts with MyCompany.System.

F.1.4. IsNot Operator

Visual Basic has always included an Is operator, used to establish the equivalence of an object with
another object or type. This operator is most often used in If statements.

 If (someInstance Is SomeClass) Then

The operator is also used to test for an uninitialized object.

 If (someInstance Is Nothing) Then

However, to reverse the statement to test for something that the object "is not," the Not operator
had to be used separately.

 If Not (someInstance Is SomeClass) Then

Visual Basic 2005 adds a new IsNot operator.

 If (someInstance IsNot SomeClass) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The IsNot operator is functionally equivalent to the combined Is and Not operators, but it was added
to increase readability of the source code.

F.1.5. Lower Bound in Array Declarations

Pre-.NET versions of Visual Basic allowed both a lower bound and an upper bound in the sizing of an
array dimension.

 Dim dataArray(0 To 5) As Integer

Visual Basic .NET 2002 removed the lower bound declaration and the To keyword, since all arrays had
a lower bound of zero.

 Dim dataArray(5) As Integer

The 2005 update to Visual Basic restores the lower bound element and the To keyword; they can now
be included, although they are optional. When included, the lower bound must still always be zero.

F.1.6. Partial Types

In most Visual Basic code, each source-code file includes a single class or other similar type. The
language also permitted any number of classes or types to appear in a single source code file, but a
class could not be split between multiple source-code files. This has changed with the 2005 release.

Visual Basic now permits classes and structures to be split across multiple source-code files in the
same project. This change permits Microsoft to move the Windows Forms-specific initialization code,
previously contained in a #Region block, into its own source code file.

To use this feature, begin a class or structure definition with the new Partial keyword.

 Partial Friend Class Employee
 ...
 End Class

At least one of the class portions must include the Partial keyword. See the "Partial Keyword" entry
in Chapter 12 for additional usage information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

F.1.7. Property Accessor Enhancements

In Visual Basic .NET 2002 and 2003, the Get and Set portions of a Property member always had the
same level of access, such as Public or Private. The 2005 update to the language allows each of the
two portions to have different levels of accessibility.

The syntax is generally unchanged, with a primary access modifier included with the Property
statement itself. But an additional access modifier can be added to the start of the Get or Set
statement.

 Public Property Name() As String
 Get
 Return fullName
 End Get
 Friend Set(ByVal value As String)
 fullName = value
 End Set
 End Property

The additional access modifier must always be more restrictive than the general modifier used for the
Property statement itself.

F.1.8. TryCast Function

Visual Basic permits general conversions of one class or data type to another using either the CType
function or the DirectCast function. These functions both generate exceptions if the conversion
cannot be performed successfully.

While an exception is a clear indication of a failed conversion, it is not the most elegant or
straightforward, as you must set up explicit error handlers for such conditions. Therefore, Visual
Basic 2005 includes a new tryCast function. It works just like a CType or DirectCast function, but it
returns Nothing on failed conversions instead of generating an exception.

 newObject = tryCast(origObject, NewType)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

F.2. The 'My' Namespace

One of the biggest features included with Visual Basic 2005 is the new My Namespace feature. This
feature adds a new namespace named My at the top of the namespace hierarchy, parallel with the
System namespace. This namespace contains a conveniently arranged subset of the features
available in the Framework Class Library, designed to be as easy as possible to use. The My
namespace is a hierarchy and contains different branches covering major subsets of functionality. For
instance, the My.Computer.Network portion of the hierarchy provides access to properties and
methods that relate to the local computer's network.

Most of the My namespace is static, with specific features permanently located at known locations.
However, parts of the hierarchy are dynamic, with different items included depending on the
configuration of the system and the application. One of these dynamic sections, My.Forms, makes
available all of the forms in the current application. This collection changes dynamically as forms are
added to the application, either at design time or at runtime.

One use of the My.Forms dynamic collection is the ability to reference a form directly and display it
on-screen without first creating an instance of the form. The general syntax to display a form in this
manner is:

 My.Forms.Form1.Show()

The same statement also appears in a simplified form:

 Form1.Show()

which is quite similar to the syntax used in VB 6. These default instances simplify the accessibility of
forms.

Another new 2005 feature works hand in hand with some of the My Namespace feature elements.
Portions of the namespace expose application-wide events, events that impact the entire application
and not simply one control or class. To support these events, Visual Basic includes a new "application
framework," a set of features that simplify the management of an application's lifetime, from startup
to shutdown.

All of the My Namespace features are documented in Chapter 13. A hierarchical listing of the
elements included in the My Namespace hierarchy appears in Appendix B.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

F.3. Other New Features

Some features included in Visual Basic 2005 are completely new, unrelated to any existing 2003
version features.

F.3.1. ClickOnce Installation

Visual Studio has included features to develop Windows Installer-based setup projects since the initial
.NET release. The 2005 releases of the .NET Framework and Visual Studio add a new installation type
called ClickOnce that provides an alternative to the standard installation process. While not officially
part of Visual Basic, this new feature impacts Visual Basic as if it were a language enhancement.

Normally, the installation of complex applications requires the person performing the installation to
be at least a local administrator on the workstation. However, there may be instances where this is
neither convenient nor possible. ClickOnce applications can be installed by any user without the
assistance of a local administrator, although there may be limits on the system resources available to
the application. ClickOnce applications can also be configured to support automatic updates of
installed components from a web site or server.

F.3.2. Continue Statement

Visual Basic includes various loops, including For, For Each, and Do...Loop constructs. It has always
been possible to exit a loop immediately using a related Exit statement, such as Exit For. But there
was no feature that would let you immediately skip to the next pass through the loop. Such an action
required complex conditional constructs, or at least a GoTo statement.

 For counter = 1 To 10
 ' ----- Do some processing here, then
 If (someCondition) Then GoTo NextIteration
 ' ----- More code here.

 NextIteration:
 ' ----- This label exists simply to skip to the next loop counter.
 Next counter

Visual Basic 2005 includes a new Continue statement that returns to the top of the loop with the next
iteration in place, as if the current pass through the loop had been completed successfully.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For counter = 1 To 10
 ' ----- Do some processing here, then
 If (someCondition) Then Continue For
 ' ----- More code here.
 Next counter

F.3.3. Generics

The collection classes included in the .NET Framework (through System.Collections) and the Visual
Basic Collection class (through Microsoft.VisualBasic.Collection) are great for managing a lot of
objects, but each collection stores the objects in a weakly typed manner. You can put any type of
object into the collection; each object you add to a collection instance can be of a unique type.

Visual Basic 2005 adds a new feature called generics that allows you to create a strongly typed
collection. A collection, once bound to a specific class through the generics declaration, can only be
used to store that specific class or its descendants; any other use will generate an exception. Several
new generics-specific collection classes appear in the System.Collections.Generic namespace.

A collection is bound to a type using the new Of keyword.

 Dim oneClassOnly As System.Collections.Generic.List(Of Employee)

You can also use generics in the design of your own custom classes. Chapter 10 discusses the use
and syntax of generics.

F.3.4. Operator Overloading

Visual Basic has supported method overloading in classes since the initial .NET release of the
language. Other languages, such as C#, also supported operator overloading , where standard
language operators, such as the + addition operator, could be given custom meanings when used
with specific classes. Visual Basic now includes this feature in its 2005 release.

Consider a class that manages video media. The code to join together two portions of video would
likely be quite complex, but the syntax to join the videos could be straightforward.

 Dim clip1, clip2, clip3 As VideoClip
 ...
 clip3 = clip1 + clip2

The VideoClip class would include an overloaded operator definition that provides the logic to
perform the custom addition.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Friend Class VideoClip
 Public Shared Operator +(ByVal firstClip As VideoClip, _
 ByVal secondClip As VideoClip) As VideoClip
 ' ----- Append one clip to another.
 Dim largerClip As New VideoClip
 ' ...more code here...
 Return largerClip
 End Operator
 End Class

Your class can also define custom conversions from one class or data type to another by overloading
the CType conversion function. Operator overloading is discussed in the "Operator Overloading"
section of Chapter 5.

F.3.5. Using Statement

Some classes acquire resources that must be manually released when an instance of the class is no
longer needed. This is done by calling the class's Dispose method. Visual Basic 2005 includes the new
Using statement to simplify the process of resource acquisition and release.

The Using statement is a block construct that includes code at the start that acquires the resource to
use. For instance, "pens" used to draw on the display screen or other drawing surface, defined in the
System.Drawing.Pen class, must be disposed of when no longer needed. This is normally done with a
separate call to the class's Dispose method. But it can also be accomplished in a single Using
statement.

 Using redPen As System.Drawing.Pen = _
 New System.Drawing.Pen(Brushes.Red)
 ' ----- Add drawing code here.
 End Using

The redPen instance is guaranteed to be disposed of properly, even if you jump out of the Using block
abnormally. In this way, Using acts somewhat like the Finally block in a try...Catch statement.

For more information on implementing the Using statement in your code, see its entry in Chapter 12.

F.3.6. XML Comments

Visual Basic 2005 includes a new XML Comments feature that lets you decorate your class members
with special XML-formatted comments. Visual Studio recognizes and uses these comments to
enhance the development environment. To use XML comments , place the insertion point on a blank

http://lib.ommolketab.ir
http://lib.ommolketab.ir

line in your code, just above a method definition, then type three single-quote marks. Immediately,
even before pressing the Enter key, the following template (or one similar to it) appears.

 ''' <summary>
 '''
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>

Once these parts are filled in with the appropriate content, Visual Studio uses the information to
display more verbose IntelliSense details concerning the related method. It also exports the XML
content to a documentation file during the compile of the assembly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix G. VB 6 Language Elements No
Longer Supported
This appendix provides an alphabetical list of language elements that are present in VB 6 but are not
supported by Visual Basic .NET 2002, or in subsequent versions of the language. Several math-
related functions, formerly part of the Visual Basic language but now located in the System.Math
namespace, are not included in this appendix.

Table G-1. VB 6 elements no longer supported

Element Description

Array Function Returns a variant array with elements that contain the values passed as
arguments to the function

Any Keyword Used in Declare statements to indicate generic parameter data types; all
parameters must now have a declared data type

AscB Function Returns an integer representing the character code of the first byte of a
string

Atn Function Returns the arctangent of a number; replaced by the Atan method in the
System.Math class

Calendar Property Determines whether a project should use the Gregorian or Hijri calendar;
replaced by classes in the System.Globalization namespace

CCur Function Converts an expression into a Currency data type

ChrB Function Returns the character corresponding to an 8-bit character code

Circle Method Draws circles on a form, PictureBox control, or other drawing surface;
replaced by features in the System.Drawing namespace

Close Statement Closes a file opened with the Open statement

Currency Data Type Data type for accurate financial calculations; replaced by the Decimal data
type

CVar Function Converts an expression into a Variant data type

CVDate Function Returns a Date variant

CVErr Function Returns an error from a procedure

Date, Date$ Functions Returns the current system date; replaced by the DateTime.Today
property

Date Statement Sets the current system date; replaced by the DateTime.Today property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Debug.Assert Statement Conditionally suspends execution based on a Boolean test; consider
replacement with the Debug.Assert method in the System.Diagnostics
namespace

Debug.Print Statement Sends output to the Immediate window; consider replacement with the
Debug.WriteLine method and similar methods in the System.Diagnostics
namespace

DefBool Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Boolean

DefByte Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Byte

DefCur Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Currency

DefDate Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Date

Defdbl Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Double

Defdec Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Decimal

Defint Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Integer

DefLng Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Long

Defobj Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Object

Defsng Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Single

Defstr Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as String

DefVar Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Variant

DoEvents Statement Releases control to the application's message queue; replaced with the
DoEvents method in the Windows.Forms namespace, or in Visual Basic
2005 with the My.Application.DoEvents method

Empty Keyword Indicates an empty or uninitialized data value; replaced by the Nothing
keyword

Eqv Operator Represents a logical equivalence operator; use the Equal To (=)
comparison operator instead

Error Function Returns a standard description of a particular error code

Get Statement Retrieves data from a disk file into a program variable; replaced by the
FileGet function

Debug.Assert Statement Conditionally suspends execution based on a Boolean test; consider
replacement with the Debug.Assert method in the System.Diagnostics
namespace

Debug.Print Statement Sends output to the Immediate window; consider replacement with the
Debug.WriteLine method and similar methods in the System.Diagnostics
namespace

DefBool Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Boolean

DefByte Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Byte

DefCur Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Currency

DefDate Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Date

Defdbl Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Double

Defdec Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Decimal

Defint Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Integer

DefLng Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Long

Defobj Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Object

Defsng Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Single

Defstr Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as String

DefVar Statement Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Variant

DoEvents Statement Releases control to the application's message queue; replaced with the
DoEvents method in the Windows.Forms namespace, or in Visual Basic
2005 with the My.Application.DoEvents method

Empty Keyword Indicates an empty or uninitialized data value; replaced by the Nothing
keyword

Eqv Operator Represents a logical equivalence operator; use the Equal To (=)
comparison operator instead

Error Function Returns a standard description of a particular error code

Get Statement Retrieves data from a disk file into a program variable; replaced by the
FileGet function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

GoSub...Return
Statement

Passes execution to, and returns from, a block subroutine within a
procedure

Imestatus Function Returns the state of the Input Method Editor, used for localized or
specialized data input

Imp Operator Represents a logical implication operator; use the expression "(Not A) Or
B" instead

Initialize Event Fires when an object is first used; use class constructors instead

InputB, InputB$
Functions

Reads a designated number of characters from a file opened in input or
binary mode

Instancing Property Defines how instances of a class are created; specify instancing in the
class constructor instead

InStrB Function Returns the position of a particular byte in a binary string

IsEmpty Function Determines if a variable has been initialized; replaced by the IsNothing
function

IsMissing Function Determines whether an argument has been passed to a procedure

Isnull Function Indicates whether an expression contains Null data; replaced by the
IsDbNull function

IsObject Function Indicates whether a variable contains a reference to an object; replaced
by the IsReference function

LeftB, LeftB$ Functions Returns the leftmost specified number of bytes of binary data

LenB Function Returns the actual size of a user-defined type in memory

Let Statement Assigns the value of an expression to a variable; simply assign values
without the Let keyword

Line Input # Statement Retrieves a single line from an input file into a variable; replaced by the
LineInput function

Line Method Draws lines or boxes on a form, PictureBox control, or other drawing
surface; replaced by features in the System.Drawing namespace

Load Statement Loads a form or control into memory for use

LoadResData Function Extracts a string containing a resource included in a resource project; in
Visual Basic 2005, use the My.Resources object

LoadResPicture Function Assigns a graphic from a resource file to the Picture property of an object;
in Visual Basic 2005, use the My.Resources object

LoadResString Function Retrieves a string from a resource file; in Visual Basic 2005, use the
My.Resources object

MidB, MidB$ Functions Returns a specified number of bytes from a larger binary string

MidB Statement Replaces a specified number of bytes in a binary string

MTSTransactionMode
Property

Indicates whether a component is an MTS object and, if so, determines its
level of transaction support

GoSub...Return
Statement

Passes execution to, and returns from, a block subroutine within a
procedure

Imestatus Function Returns the state of the Input Method Editor, used for localized or
specialized data input

Imp Operator Represents a logical implication operator; use the expression "(Not A) Or
B" instead

Initialize Event Fires when an object is first used; use class constructors instead

InputB, InputB$
Functions

Reads a designated number of characters from a file opened in input or
binary mode

Instancing Property Defines how instances of a class are created; specify instancing in the
class constructor instead

InStrB Function Returns the position of a particular byte in a binary string

IsEmpty Function Determines if a variable has been initialized; replaced by the IsNothing
function

IsMissing Function Determines whether an argument has been passed to a procedure

Isnull Function Indicates whether an expression contains Null data; replaced by the
IsDbNull function

IsObject Function Indicates whether a variable contains a reference to an object; replaced
by the IsReference function

LeftB, LeftB$ Functions Returns the leftmost specified number of bytes of binary data

LenB Function Returns the actual size of a user-defined type in memory

Let Statement Assigns the value of an expression to a variable; simply assign values
without the Let keyword

Line Input # Statement Retrieves a single line from an input file into a variable; replaced by the
LineInput function

Line Method Draws lines or boxes on a form, PictureBox control, or other drawing
surface; replaced by features in the System.Drawing namespace

Load Statement Loads a form or control into memory for use

LoadResData Function Extracts a string containing a resource included in a resource project; in
Visual Basic 2005, use the My.Resources object

LoadResPicture Function Assigns a graphic from a resource file to the Picture property of an object;
in Visual Basic 2005, use the My.Resources object

LoadResString Function Retrieves a string from a resource file; in Visual Basic 2005, use the
My.Resources object

MidB, MidB$ Functions Returns a specified number of bytes from a larger binary string

MidB Statement Replaces a specified number of bytes in a binary string

MTSTransactionMode
Property

Indicates whether a component is an MTS object and, if so, determines its
level of transaction support

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Name Statement Renames a disk file or directory; replaced by the Rename function

Null Keyword Indicates a Null data value; use the DBNull class in the System
namespace

ObjPtr Function Returns a pointer to an object

On...GoSub Statement Causes program execution to jump to a block subroutine based on the
value of a control variable

On...Goto Statement Causes program execution to jump to a label based on the value of a
control variable

Open Statement Opens a file; replaced by the FileOpen function

Option Base Statement Defines the default lower bound for arrays dimensioned within a module;
all arrays now have a lower bound of 0

Option Private Module
Statement

Restricts the scope and visibility of a module to the module's project; use
access modifiers in each Module statement

Persistable Property Determines whether a class in an ActiveX DLL project can be saved to disk

Property Statement Declares procedures for read and write support of class property values;
replaced with an updated Property statement syntax

PSet Method Draws a colored point on a form, PictureBox control, or other drawing
surface; replaced by features in the System.Drawing namespace

Put Statement Writes data from a program variable to a disk file; replaced by the FilePut
function

RightB, RightB$
Functions

Returns the rightmost bytes from a binary string

Scale Method Defines a custom coordinate system on a form, PictureBox control, or
other drawing surface; replaced by features in the System.Drawing
namespace

Set Statement Assigns an object reference to a variable; simply assign objects without
the Set keyword

Sgn Function Determines the sign of a number; replaced by the Sign method in the
System.Math class

Sqr Function Calculates the square root of a number; replaced by the Sqrt method in
the System.Math class

String Function Creates a string composed of a single character repeated a given number
of times; replaced by special constructors on the String data type

StrPtr Function Returns a pointer to a BSTR (Visual Basic string)

Terminate Event Fires when an object is destroyed; use the Dispose and Finalize methods
of a class instead

Time Function Returns the current system time; replaced by the DateTime.TimeOfDay
property

Name Statement Renames a disk file or directory; replaced by the Rename function

Null Keyword Indicates a Null data value; use the DBNull class in the System
namespace

ObjPtr Function Returns a pointer to an object

On...GoSub Statement Causes program execution to jump to a block subroutine based on the
value of a control variable

On...Goto Statement Causes program execution to jump to a label based on the value of a
control variable

Open Statement Opens a file; replaced by the FileOpen function

Option Base Statement Defines the default lower bound for arrays dimensioned within a module;
all arrays now have a lower bound of 0

Option Private Module
Statement

Restricts the scope and visibility of a module to the module's project; use
access modifiers in each Module statement

Persistable Property Determines whether a class in an ActiveX DLL project can be saved to disk

Property Statement Declares procedures for read and write support of class property values;
replaced with an updated Property statement syntax

PSet Method Draws a colored point on a form, PictureBox control, or other drawing
surface; replaced by features in the System.Drawing namespace

Put Statement Writes data from a program variable to a disk file; replaced by the FilePut
function

RightB, RightB$
Functions

Returns the rightmost bytes from a binary string

Scale Method Defines a custom coordinate system on a form, PictureBox control, or
other drawing surface; replaced by features in the System.Drawing
namespace

Set Statement Assigns an object reference to a variable; simply assign objects without
the Set keyword

Sgn Function Determines the sign of a number; replaced by the Sign method in the
System.Math class

Sqr Function Calculates the square root of a number; replaced by the Sqrt method in
the System.Math class

String Function Creates a string composed of a single character repeated a given number
of times; replaced by special constructors on the String data type

StrPtr Function Returns a pointer to a BSTR (Visual Basic string)

Terminate Event Fires when an object is destroyed; use the Dispose and Finalize methods
of a class instead

Time Function Returns the current system time; replaced by the DateTime.TimeOfDay
property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Time Statement Sets the current system time; replaced by the DateTime.TimeOfDay
property

Type Statement Defines a user-defined type; replaced by the Structure statement (or
even the Class statement)

Unload Statement Removes a form or a dynamically created member of a control array from
memory

Variant Data Type Generic data type; use the Object or other relevant data type instead

VarPtr Function Returns a pointer to a variable

Wend Keyword Terminates a While loop block; replaced by the End While keyword pair

Width# Statement Specifies a virtual file width when working with files opened with the Open
statement

Time Statement Sets the current system time; replaced by the DateTime.TimeOfDay
property

Type Statement Defines a user-defined type; replaced by the Structure statement (or
even the Class statement)

Unload Statement Removes a form or a dynamically created member of a control array from
memory

Variant Data Type Generic data type; use the Object or other relevant data type instead

VarPtr Function Returns a pointer to a variable

Wend Keyword Terminates a While loop block; replaced by the End While keyword pair

Width# Statement Specifies a virtual file width when working with files opened with the Open
statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix H. The Visual Basic Command-
Line Compiler
Although the Visual Studio Integrated Development Environment (IDE) is an efficient tool for
developing your VB applications, you can actually do all of your development in Notepad (a.k.a.
"Visual Notepad") and compile the source code from the Windows command prompt. This appendix
details the operation of the Visual Basic compiler, vbc.exe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

H.1. Compiler Basics

The compiler uses command-line switches to control its operation. A command-line switch is
designated by a slash or hyphen, followed by a keyword. If the keyword takes an argument, it is
separated from the keyword by a colon (:). For example:

 vbc sample1.vb /target:library

indicates that the compiler should generate a library (a DLL file) as the output target file type. In
this case, target is the switch keyword and library is the argument. If multiple arguments are
required, they are usually separated from one another by commas (unless otherwise noted). For
example:

 vbc sample1.vb /r:system.design.dll,system.messaging.dll

references the metadata in the system.design.dll and system.messaging.dll assemblies.

The minimal syntax required to compile a file named sample1.vb is:

 vbc sample1.vb

This generates a console-mode application named sample1.exe. You can specify the type of
component or application you wish to generate by using the /target (or /t) switch. To generate a
Windows executable, you enter something like the following at the command line:

 vbc sample1.vb /t:winexe /r:system.windows.forms.dll

The /r switch adds a reference to the assembly that contains the System.Windows.Forms
namespace. You must explicitly add references to any assemblies your application requires, other
than mscorlib.dll and microsoft.visualbasic.dll.

To compile multiple files, just list them on the command line using a space to separate them. For
example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 vbc sample1.vb sample2.vb /t:winexe /r:system.windows.forms.dll

Since sample1.vb is the first file listed, and since a specific output filename is not indicated, the
compiler will generate a Windows executable named sample1.exe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

H.2. Command-Line Switches

The VB compiler supports the following command-line switches .

H.2.1. Output Filename and File Type

Switch Description

/out:<file>
Defines the output filename. If not present, the output file will have the same root
filename as the first input file. <file> need not include a file extension.

/target:<type>

or:

/t:<type>

Defines the type of file to be generated by the compiler. <type> can be any of the

following keywords: exe (to create a console application), winexe (to create a
Windows application), library (to create a library assembly in a DLL), or module (to
create a ".netmodule" file that can be added to an assembly). If the switch is not
present, <type> defaults to exe.

H.2.2. Input Files

Switch Description

/addmodule:<file>
Includes the ".netmodule" file named <file> in the output file. May

include multiple comma-separated files.

/libpath:<path>

Specifies the directory or directories to search for metadata references
(which are specified by the /reference switch) that are not found in
either the current directory or the CLR's system directory. <path> is a

list of directories, with multiple directories separated by semicolons.
You can also use /libpath multiple times to add additional paths. By

default, the global assembly cache is automatically searched for
references.

/recurse:<[dir\]wildcard>

Compiles all files in the current directory and its subdirectories
according to the wildcard specifications. For example:

 vbc /recurse:*.vb /t:library
 /out:mylibrary.lib

If you use the /recurse switch, you do not have to name a specific file
to compile; however, if you do, it should not match the specification

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Description to compile; however, if you do, it should not match the specification
provided as an argument to the /recurse switch. To start from a
directory other than the current directory, prepend the wildcard with
the directory path.

/reference:<file>

or:

/r:<file>

References metadata from the assemblies contained in <file>. May
include multiple comma-separated files. Each filename in <file> must

include a file extension.

/sdkpath:<path>
New in 2005. Indicates the location of the main .NET library files
mscorlib.dll and microsoft.visualbasic.dll. <path> indicates the folder.

This switch is often used with the /netcf switch.

H.2.3. Resources

Switch Description

/linkresource:<resinfo>

or:

/linkres:<resinfo>

Links to a managed resource file without embedding it in the output file.
<resinfo> has the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical name

used to load the resource, and the public and private keywords
determine whether the resource is public or private in the assembly
manifest. By default, resources are public.

/resource:<resinfo>

or:

/res:<resinfo>

Embeds the managed resource or resources named <resinfo> in the
output file. <resinfo> takes the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical name

used to load the resource, and the public and private keywords
determine whether the resource is public or private in the assembly
manifest. By default, resources are public. The /resource switch cannot
be used with the /target:module switch.

/win32icon:<file> Indicates the path to the Win32 icon (.ico) file for the output file.

/win32resource:<file>
Indicates the path to a Win32 resource (.res) file to insert into the output
file.

to compile; however, if you do, it should not match the specification
provided as an argument to the /recurse switch. To start from a
directory other than the current directory, prepend the wildcard with
the directory path.

/reference:<file>

or:

/r:<file>

References metadata from the assemblies contained in <file>. May
include multiple comma-separated files. Each filename in <file> must

include a file extension.

/sdkpath:<path>
New in 2005. Indicates the location of the main .NET library files
mscorlib.dll and microsoft.visualbasic.dll. <path> indicates the folder.

This switch is often used with the /netcf switch.

H.2.3. Resources

Switch Description

/linkresource:<resinfo>

or:

/linkres:<resinfo>

Links to a managed resource file without embedding it in the output file.
<resinfo> has the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical name

used to load the resource, and the public and private keywords
determine whether the resource is public or private in the assembly
manifest. By default, resources are public.

/resource:<resinfo>

or:

/res:<resinfo>

Embeds the managed resource or resources named <resinfo> in the
output file. <resinfo> takes the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical name

used to load the resource, and the public and private keywords
determine whether the resource is public or private in the assembly
manifest. By default, resources are public. The /resource switch cannot
be used with the /target:module switch.

/win32icon:<file> Indicates the path to the Win32 icon (.ico) file for the output file.

/win32resource:<file>
Indicates the path to a Win32 resource (.res) file to insert into the output
file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

H.2.4. Code Generation

Switch Description

/netcf
New in 2005. Tells the compiler to target the .NET Compact Framework.
This switch is often used with the /sdkpath switch.

/optimize[+|-]

Enables (+) or disables () the compiler's code optimizers. Optimizing
generates smaller binary files that offer improved efficiency and
performance but are more difficult to debug. Its default value is on (+).
/optimize is equivalent to /optimize+.

/platform:<type>

New in 2005. Indicates the target processor platform. The <type> argument
is one of the following: anycpu (any CPU), x86 (Intel 32-bit compatible
processor), x64 (AMD 64-bit processor), or Itanium (Intel 64-bit processor).
The default is to target any CPU.

/removeintchecks[+|-
]

Enables (-) or disables (+) integer overflow checks. (Yes, the options do
seem reversed.) The default is to enable these checks (-), which improves
safety but reduces performance. /removeintchecks is equivalent to
/removeintchecks+.

H.2.5. Debugging

Switch Description

/debug[+|-]
Instructs the compiler to include (+) or exclude (-) debugging information in the
compiled output file. The default value is /debug-, which suppresses the
generation of debug information. /debug+ and /debug are equivalent.

/debug:full

or:

/debug:pdbonly

Defines the form of debugging information output by the compiler. The full
option generates full debugging information and allows a debugger to be attached
to the running program; this is the default value if debugging is enabled. The
pdbonly option generates a debug symbol (.pdb) file only. It supports source-code
debugging when the program is started in the debugger but displays assembler
only when the running program is attached to the debugger.

H.2.6. Errors and Warnings

Switch Description

/bugreport:<file>
Generates a file named <file> that contains information needed to report a

compiler bug. May be used with the /errorreport switch.

New in 2005. Indicates how internal errors in the compiler should be
reported to Microsoft. The values for <type> include: prompt (ask whether to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Description

/errorreport:<type>

reported to Microsoft. The values for <type> include: prompt (ask whether to
send the error to Microsoft or not, pending security settings), send (if
security settings allow, send the error report to Microsoft automatically),
and none (output errors to a text file, but do not report them to Microsoft).
If this switch is not used, none is the default. May be used with the
/bugreport switch.

/nowarn[:<warnList>]
Disables compiler-generated warnings about nonfatal code errors. New
variation in 2005: You can include a comma-separated list of warning
codes, <warnlist>, to suppress specific compiler warnings.

/unify
New in 2005. Suppresses warnings concerning mismatched assembly
version numbers.

/warnaserror[+|-]

Instructs the compiler to abort (+) or continue (-) when encountering
normally nonfatal code errors. That is, when this option is enabled, the
compiler treats warnings as errors, preventing the code from compiling. Its
default value is off (-). /warnaserror is equivalent to /warnaserror+.

H.2.7. Language

Switch Description

/define:<symbol>

or:

/d:<symbol>

Declares global conditional compiler constants. <symbol> has the
form name=value, with multiple name-value pairs separated by

commas. See the Conditional Compilation Constants section later in
this appendix for information on predefined constants.

/imports:<namespace>
Globally imports namespaces, eliminating the need to define them
with individual Imports statements. <namespace> is a comma-

delimited list of namespaces.

/optioncompare:<type>

Indicates the method used for string comparison. The values for
<type> include: binary (case-sensitive comparisons) and text (case-

insensitive comparisons). The default value is binary. This switch
sets the default application-wide setting; it does not override any
explicit Option Compare statements found in individual source-code
files.

/optionexplicit[+|-]

Indicates that variables must be explicitly defined (+) or not (-)
before they are used. The default setting is on (+). This switch sets
the default application-wide setting; it does not override any explicit
Option Explicit statements found in individual source-code files.
/optionexplicit is the same as /optionexplicit+.

/optionstrict[+|-]

Indicates that implicit narrowing conversions should be allowed (-)
or rejected (+) by the compiler. The default setting is off (-). This
switch sets the default application-wide setting; it does not override
any explicit Option Strict statements found in individual source-
code files. /optionstrict is the same as /optionstrict.

/errorreport:<type>

reported to Microsoft. The values for <type> include: prompt (ask whether to
send the error to Microsoft or not, pending security settings), send (if
security settings allow, send the error report to Microsoft automatically),
and none (output errors to a text file, but do not report them to Microsoft).
If this switch is not used, none is the default. May be used with the
/bugreport switch.

/nowarn[:<warnList>]
Disables compiler-generated warnings about nonfatal code errors. New
variation in 2005: You can include a comma-separated list of warning
codes, <warnlist>, to suppress specific compiler warnings.

/unify
New in 2005. Suppresses warnings concerning mismatched assembly
version numbers.

/warnaserror[+|-]

Instructs the compiler to abort (+) or continue (-) when encountering
normally nonfatal code errors. That is, when this option is enabled, the
compiler treats warnings as errors, preventing the code from compiling. Its
default value is off (-). /warnaserror is equivalent to /warnaserror+.

H.2.7. Language

Switch Description

/define:<symbol>

or:

/d:<symbol>

Declares global conditional compiler constants. <symbol> has the
form name=value, with multiple name-value pairs separated by

commas. See the Conditional Compilation Constants section later in
this appendix for information on predefined constants.

/imports:<namespace>
Globally imports namespaces, eliminating the need to define them
with individual Imports statements. <namespace> is a comma-

delimited list of namespaces.

/optioncompare:<type>

Indicates the method used for string comparison. The values for
<type> include: binary (case-sensitive comparisons) and text (case-

insensitive comparisons). The default value is binary. This switch
sets the default application-wide setting; it does not override any
explicit Option Compare statements found in individual source-code
files.

/optionexplicit[+|-]

Indicates that variables must be explicitly defined (+) or not (-)
before they are used. The default setting is on (+). This switch sets
the default application-wide setting; it does not override any explicit
Option Explicit statements found in individual source-code files.
/optionexplicit is the same as /optionexplicit+.

/optionstrict[+|-]

Indicates that implicit narrowing conversions should be allowed (-)
or rejected (+) by the compiler. The default setting is off (-). This
switch sets the default application-wide setting; it does not override
any explicit Option Strict statements found in individual source-
code files. /optionstrict is the same as /optionstrict.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Description

/rootnamespace:<namespace>

Defines a root namespace for all type declarations. This means that
an Imports statement need not be used to import the root
namespace, and that the relative path of a type (starting from the
root namespace) can be used in place of its fully qualified name. Any
Imports statements, however, must contain the fully qualified
namespace name.

H.2.8. Miscellaneous

Switch Description

/help

or:

/?

Displays information on compiler option usage.

/nologo Suppresses the display of the compiler's copyright banner.

/quiet
Turns on quiet output mode; the compiler displays less information about errors
than it does ordinarily. Specifically, it withholds the display of errant source code
from error messages.

/verbose[+|-
]

Causes the compiler to emit verbose (+) or standard (-) status and error messages.
The default setting is off (-). /verbose is the same as /verbose+.

H.2.9. Advanced

Switch Description

/baseaddress:<number>

Specifies the default base address at which a DLL library should be
loaded. Runtime performance increases when all loaded DLLs for an
application have a unique base address. <number> is a hexadecimal

address.

/codepage:<id>
New in 2005. Indicates the code page that the compiler should use
when generating the output file. <id> is the numeric identifier of the

code page to use.

/delaysign[+|-]

Indicates whether the generated assembly will be fully signed (-) or
partially signed (+). Partially signed assemblies use only the public
portion of the strong name key. The default setting is fully signed (-).
The /delaysign option must be used with either the /keycontainer or
/keyfile switch.

/rootnamespace:<namespace>

Defines a root namespace for all type declarations. This means that
an Imports statement need not be used to import the root
namespace, and that the relative path of a type (starting from the
root namespace) can be used in place of its fully qualified name. Any
Imports statements, however, must contain the fully qualified
namespace name.

H.2.8. Miscellaneous

Switch Description

/help

or:

/?

Displays information on compiler option usage.

/nologo Suppresses the display of the compiler's copyright banner.

/quiet
Turns on quiet output mode; the compiler displays less information about errors
than it does ordinarily. Specifically, it withholds the display of errant source code
from error messages.

/verbose[+|-
]

Causes the compiler to emit verbose (+) or standard (-) status and error messages.
The default setting is off (-). /verbose is the same as /verbose+.

H.2.9. Advanced

Switch Description

/baseaddress:<number>

Specifies the default base address at which a DLL library should be
loaded. Runtime performance increases when all loaded DLLs for an
application have a unique base address. <number> is a hexadecimal

address.

/codepage:<id>
New in 2005. Indicates the code page that the compiler should use
when generating the output file. <id> is the numeric identifier of the

code page to use.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Description

/delaysign[+|-]

Indicates whether the generated assembly will be fully signed (-) or
partially signed (+). Partially signed assemblies use only the public
portion of the strong name key. The default setting is fully signed (-).
The /delaysign option must be used with either the /keycontainer or
/keyfile switch.

/doc[+|-]

New in 2005. Indicates whether the compiler should generate an XML
documentation file (+) or not (-). The default is to not generate the file
(-). If generated, the XML file shares the same base name as the
compiled output file but with a ".xml" extension.

/doc:<file>
New in 2005. Indicates that the compiler should generate an XML
documentation file. <file> is the name of the file to generate.

/filealign:<number>
New in 2005. Specifies the boundary size used to align sections of the
compiled output in bytes. <number> must be one of the following

values: 512, 1024, 2048, 4096, or 8192.

/keycontainer:<container>
Specifies a strong-name key container with the assembly's key pair.
The name of the container is indicated by <container>. May be used

with the /delaysign switch.

/keyfile:<file>
Specifies the file containing a key or key pair that will be used to give
an assembly a strong name. The file name is indicated by <file>. May

be used with the /delaysign switch.

/main:<class>

or:

/m:<class>

Specifies the class or module that contains Sub Main, the entry point
for applications and components. This switch is particularly useful if
more than one class or module in a project has a subroutine named
Main. <class> can be a module name (optionally prefixed with a

namespace) or a Windows Form class.

/noconfig

New in 2005. The vbc.rsp file, a response file found in the same
directory as vbc.exe, contains default configuration settings for use by
the compiler. This switch instructs the compiler to ignore the vbc.rsp
file. See the Using a Response File section below for information on
response files and their contents.

/nostdlib

New in 2005. By default, the compiler references the Mscorlib.dll,
System.dll, and Microsoft.VisualBasic.dll assembly files when compiling
source code. This switch instructs the compiler to ignore these
assembly files.

/utf8output[+|-]

Emits compiler output in UTF8 character encoding (+) or with default
encoding (-). UTF8 encoding is useful when local settings prevent
compiler output from being displayed correctly on the console. The
default value is off (-). /utf8output is the same as /utf8output+.

/delaysign[+|-]

Indicates whether the generated assembly will be fully signed (-) or
partially signed (+). Partially signed assemblies use only the public
portion of the strong name key. The default setting is fully signed (-).
The /delaysign option must be used with either the /keycontainer or
/keyfile switch.

/doc[+|-]

New in 2005. Indicates whether the compiler should generate an XML
documentation file (+) or not (-). The default is to not generate the file
(-). If generated, the XML file shares the same base name as the
compiled output file but with a ".xml" extension.

/doc:<file>
New in 2005. Indicates that the compiler should generate an XML
documentation file. <file> is the name of the file to generate.

/filealign:<number>
New in 2005. Specifies the boundary size used to align sections of the
compiled output in bytes. <number> must be one of the following

values: 512, 1024, 2048, 4096, or 8192.

/keycontainer:<container>
Specifies a strong-name key container with the assembly's key pair.
The name of the container is indicated by <container>. May be used

with the /delaysign switch.

/keyfile:<file>
Specifies the file containing a key or key pair that will be used to give
an assembly a strong name. The file name is indicated by <file>. May

be used with the /delaysign switch.

/main:<class>

or:

/m:<class>

Specifies the class or module that contains Sub Main, the entry point
for applications and components. This switch is particularly useful if
more than one class or module in a project has a subroutine named
Main. <class> can be a module name (optionally prefixed with a

namespace) or a Windows Form class.

/noconfig

New in 2005. The vbc.rsp file, a response file found in the same
directory as vbc.exe, contains default configuration settings for use by
the compiler. This switch instructs the compiler to ignore the vbc.rsp
file. See the Using a Response File section below for information on
response files and their contents.

/nostdlib

New in 2005. By default, the compiler references the Mscorlib.dll,
System.dll, and Microsoft.VisualBasic.dll assembly files when compiling
source code. This switch instructs the compiler to ignore these
assembly files.

/utf8output[+|-]

Emits compiler output in UTF8 character encoding (+) or with default
encoding (-). UTF8 encoding is useful when local settings prevent
compiler output from being displayed correctly on the console. The
default value is off (-). /utf8output is the same as /utf8output+.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

H.3. Using a Response File

The Visual Basic compiler allows you to specify command-line options and settings from a text file of
settings called a response file. The syntax for using a response file is:

 vbc @<file>

where <file> is the full or relative path of the response file. The response file contains source

filenames and compiler switches; it is interpreted as if the filenames and compiler switches were
entered directly on the command line.

The syntax of a response file is simple. Multiple filenames or switches can be included on a single line,
or you can put each filename and switch on a line of its own. However, a single filename or switch
cannot span multiple lines. The # symbol indicates a comment that continues until the end of the line.

Consider the following response file named mylib.rsp:

 # Build the library
 /target:library
 /out:mylibrary
 /debug+
 /debug:full
 libfunc1.vb
 libproc1.vb
 libstrings.vb

The compiler acts on this file by entering the following at the command prompt:

 vbc @mylib.rsp

Even when using a response file, you can continue to use switches and filenames on the command
line, and multiple response files can be used. The compiler processes all command-line arguments in
the order in which they appear. This means that settings in a response file can be overridden by
specifying command-line options after the response file name, or that command-line settings can be
overridden by following them with a response filename. For example, the command line:

 vbc libnumeric.vb @mylib.rsp /debug-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

compiles a file named libnumeric.vb, in addition to the three files already named in mylib.rsp. It also
reverses a setting from mylib.rsp by preventing debugging information from being included in the
output file.

New in 2005. Beginning with the 2005 release of Visual Basic, the compiler automatically includes a
response file named vbc.rsp each time it runs. This file is located in the same directory as the vbc.exe
compiler itself. It includes all of the default files and switches that should be included in every
compile, such as references to each of the core assemblies shipped with the .NET Framework. Modify
this file if you wish to add files or switches to every compile event. You can also tell the compiler to
exclude the vbc.rsp file by adding the /noconfig switch to the vbc.exe command.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

H.4. Conditional Compilation Constants

Visual Basic includes support for conditional compilation in your source code through the #Const and
#If directives. While you can add your own constants , there are several predefined constants
available for use in conditionally compiling your code.

Constant Description

CONFIG New in 2005. This string indicates the current solution configuration in
effect for the project from within the Visual Studio IDE. Typically, this
constant is set to "Debug" or "Release." This constant is not set by default
when using the command-line compiler.

DEBUG A Boolean value that indicates whether debugging should be enabled (true)
or disabled (False) in the compiled output. Code in the
System.Diagnostics.Debug class responds to this constant. You can also
use it to limit your own code. This constant is not set by default when using
the command-line compiler.

TARGET New in 2005. This string indicates the output target type as defined
through the /target command-line switch. One of the following values:
"exe" (console application), "winexe" (Windows application), "library"
(DLL), or "module" (a ".netmodule" for later use in an assembly).

TRACE A Boolean value that indicates whether tracing should be enabled (true) or
disabled (False) in the compiled output. Code in the
System.Diagnostics.Trace class responds to this constant. You can also use
it to limit your own code. This constant is not set by default when using the
command-line compiler.

VBC_VER New in 2005. A numeric value that indicates the version number of Visual
Basic being used to compile the application. Always in major.minor format.
The Visual Basic 2005 compiler sets this constant to 8.0.

_MYAPPLICATIONTYPE New in 2005. Indicates the type of Windows-based (not Web-based)
application for the active project. Set automatically based on the _MYTYPE
compiler constant value. One of the following values.

"Console" when _MYTYPE is set to "Console" or
"WindowsFormsWithCustomSubMain"

"Windows" when _MYTYPE is set to "Windows" or "" (empty string)

"WindowsForms" when _MYTYPE is set to "WindowsForms"

For other _MYTYPE values, this constant is undefined. The My.Application
namespace branch is unavailable when this constant is not one of the
values listed above. When My.Application is available, its functionality

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Description values listed above. When My.Application is available, its functionality
varies based on this constant.

_MYCOMPUTERTYPE New in 2005. Indicates whether the active application is a Windows-based
or Web-based application. Set automatically based on the _MYTYPE compiler
constant value. One of the following values.

"Web" for Web-based applications when _MYTYPE is set to "Web" or
"WebControl"

"Windows" for Windows-based applications when _MYTYPE is set to
"Console," "Windows," "" (empty string), "WindowsForms," or
"WindowsFormsWithCustomSubMain"

For other _MYTYPE values, this constant is undefined. The My.Computer
namespace branch is unavailable when this constant is not one of the
values listed above. When My.Computer is available, its functionality varies
based on this constant.

_MYFORMS New in 2005. Indicates whether the My.Forms namespace branch is
available in the application. Set automatically based on the _MYTYPE
compiler constant value. One of the following Boolean values.

true when _MYTYPE is set to "WindowsForms" or
"WindowsFormsWithCustomSubMain"

False when _MYTYPE is set to "Web" or "WebControl"

For other _MYTYPE values, this constant is undefined. The My.Forms
namespace branch is only available when this constant is set to TRue.

_MYTYPE New in 2005. Indicates the general project type of the current application.
This setting and others that begin with "_MY" are used in conjunction with
the My namespace feature. Although this value is set automatically, if you
choose to override it, you will alter the availability of different portions of
the My namespace hierarchy. One of the following values.

"Console" for console applications and windows services.

"Custom" for a custom solution that disables most My namespace
features. This value is never set automatically.

"Web" for an ASP.NET-based standard application.

"WebControl" for an ASP.NET-based web control application.

"Windows" for a Windows Forms class library or control library. A
_MYTYPE value of "" (empty string) has the same application impact as
a setting of "Windows."

"WindowsForms" for a Windows Forms application.

values listed above. When My.Application is available, its functionality
varies based on this constant.

_MYCOMPUTERTYPE New in 2005. Indicates whether the active application is a Windows-based
or Web-based application. Set automatically based on the _MYTYPE compiler
constant value. One of the following values.

"Web" for Web-based applications when _MYTYPE is set to "Web" or
"WebControl"

"Windows" for Windows-based applications when _MYTYPE is set to
"Console," "Windows," "" (empty string), "WindowsForms," or
"WindowsFormsWithCustomSubMain"

For other _MYTYPE values, this constant is undefined. The My.Computer
namespace branch is unavailable when this constant is not one of the
values listed above. When My.Computer is available, its functionality varies
based on this constant.

_MYFORMS New in 2005. Indicates whether the My.Forms namespace branch is
available in the application. Set automatically based on the _MYTYPE
compiler constant value. One of the following Boolean values.

true when _MYTYPE is set to "WindowsForms" or
"WindowsFormsWithCustomSubMain"

False when _MYTYPE is set to "Web" or "WebControl"

For other _MYTYPE values, this constant is undefined. The My.Forms
namespace branch is only available when this constant is set to TRue.

_MYTYPE New in 2005. Indicates the general project type of the current application.
This setting and others that begin with "_MY" are used in conjunction with
the My namespace feature. Although this value is set automatically, if you
choose to override it, you will alter the availability of different portions of
the My namespace hierarchy. One of the following values.

"Console" for console applications and windows services.

"Custom" for a custom solution that disables most My namespace
features. This value is never set automatically.

"Web" for an ASP.NET-based standard application.

"WebControl" for an ASP.NET-based web control application.

"Windows" for a Windows Forms class library or control library. A
_MYTYPE value of "" (empty string) has the same application impact as
a setting of "Windows."

"WindowsForms" for a Windows Forms application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Description

"WindowsFormsWithCustomSubMain" for a Windows Forms
application that has been altered to use a custom Sub Main entry
point.

The My.Log, My.Request, and My.Response namespace branches are
available only when this constant is set to "Web."

_MYUSERTYPE New in 2005. Indicates the functionality of the My.User namespace branch.
Set automatically based on the _MYTYPE compiler constant value. Always
set to the same value as the _MYCOMPUTERTYPE constant.

"Web" for Web-based applications when _MYTYPE is set to "Web" or
"WebControl"

"Windows" for Windows-based applications when _MYTYPE is set to
"Console," "Windows," "" (empty string), "WindowsForms," or
"WindowsFormsWithCustomSubMain"

For other _MYTYPE values, this constant is undefined. The My.User
namespace branch is unavailable when this constant is not one of the
values listed above. When My.User is available, its functionality varies
based on this constant.

_MYWEBSERVICES New in 2005. Indicates whether the My.WebServices namespace branch is
available in the application. Set automatically based on the _MYTYPE
compiler constant value. One of the following Boolean values.

true when _MYTYPE is set to "WebControl," "Windows," "" (empty
string), "WindowsForms," or "WindowsFormsWithCustomSubMain"

False when _MYTYPE is set to "Web"

For other _MYTYPE values, this constant is undefined. The My.WebServices
namespace branch is only available when this constant is set to TRue.

"WindowsFormsWithCustomSubMain" for a Windows Forms
application that has been altered to use a custom Sub Main entry
point.

The My.Log, My.Request, and My.Response namespace branches are
available only when this constant is set to "Web."

_MYUSERTYPE New in 2005. Indicates the functionality of the My.User namespace branch.
Set automatically based on the _MYTYPE compiler constant value. Always
set to the same value as the _MYCOMPUTERTYPE constant.

"Web" for Web-based applications when _MYTYPE is set to "Web" or
"WebControl"

"Windows" for Windows-based applications when _MYTYPE is set to
"Console," "Windows," "" (empty string), "WindowsForms," or
"WindowsFormsWithCustomSubMain"

For other _MYTYPE values, this constant is undefined. The My.User
namespace branch is unavailable when this constant is not one of the
values listed above. When My.User is available, its functionality varies
based on this constant.

_MYWEBSERVICES New in 2005. Indicates whether the My.WebServices namespace branch is
available in the application. Set automatically based on the _MYTYPE
compiler constant value. One of the following Boolean values.

true when _MYTYPE is set to "WebControl," "Windows," "" (empty
string), "WindowsForms," or "WindowsFormsWithCustomSubMain"

False when _MYTYPE is set to "Web"

For other _MYTYPE values, this constant is undefined. The My.WebServices
namespace branch is only available when this constant is set to TRue.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Authors

Tim Patrick is the senior software architect at TiMaki Services, where he develops custom
client/server and multi-tier software solutions targeting Microsoft Windows client workstations and
Internet/Intranet/Extranet users. Tim has more than 20 years of experience in software development
and software architecture. He is a Microsoft Certified Solution Developer (MCSD). He wrote The Visual
Basic Style Guide and its successor, The Visual Basic .NET Style Guide. He has also published many
magazine articles on topics related to Visual Basic development.

Steven Roman, Ph.D., is a professor emeritus of mathematics at California State University,
Fullerton. His previous books with O'Reilly include Access Database Design and Programming, Writing
Excel Macros with VBA, and Win32 API Programming with Visual Basic.

Ron Petrusha is the author or co-author of many books, including VBScript in a Nutshell. He began
working with computers in the mid 1970s, programming in SPSS and FORTRAN on the IBM 370
family. Since then, he has been a computer book buyer, an editor of a number of books on Windows
and Unix, and a consultant on projects written in dBASE, Clipper, and Visual Basic.

Paul Lomax is the author of O'Reilly's VB & VBA in a Nutshell and a co-author of VBScript in a
Nutshell, and is an experienced VB programmer with a passion for sharing his knowledgeand his
collection of programming tips and techniques gathered from real-world experience.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

The animal on the cover of Visual Basic 2005 in a Nutshell, Third Edition is a catfish. Catfish can be
found all over the world, most often in freshwater environments. Catfish are identified by their
whiskers, called "barbels," as well by as their scaleless skin; fleshy, rayless posterior fins; and sharp,
defensive spines in the dorsal and shoulder fins. Catfish have complex bones and sensitive hearing.
They are omnivorous feeders and skilled scavengers. A marine catfish can taste with any part of its
body.

Though most madtom species of catfish are no more than 5 inches in length, some Danube catfish
(called wels or sheatfish) reach lengths of up to 13 feet and weights of 400 pounds. Wels catfish
(found mostly in the U.K.) are dark, flat, and black in color with white bellies. They breed in the
springtime in shallow areas near rivers and lakes. The females hatch eggs in their mouths and leave
them on plants for the males to guard. Two to three weeks later, the eggs hatch into tadpole-like
fish, which grow quickly in size. The largest recorded wels catfish was 16 feet long and weighed 675
pounds.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The cover font is
Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

+ (addition) operator)

\ (division) operator

^ (exponentiation) operator

* (multiplication) operator

<< (Shift Left) operator

>> (Shift Right) operator

- (subtraction) operator

+ (unary) operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Abs function

abstraction

Acos function

AddHandler statement 2nd

addition (+) operator

address variables

AddressOf operator 2nd

AllUsersApplicationData property

AltKeyDown property

And operator

AndAlso operator

AppActivate procedure

Application class

application deployment

Application object

Application.CompanyName property

Application.DoEvents method

Application.ExecutablePath property

Application.ProductName property

Application.ProductVersion property

Application.Run method

ApplicationContext property

applications

 class libraries

 console applications

 entry points

 types

 Windows

 Windows services

AppWinStyle enumeration

arguments

 attributes

 events

 introduction

 optional

 passing

arithmetic operators

Array class 2nd

array handling elements

Array.BinarySearch method

Array.Copy method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.IndexOf method

Array.LastIndexOf method

Array.Reverse method

Array.Sort method

arrays

 declarations

 overview

 parameter arrays

Asc function

AscW function

Asin function

ASP.NET events

assemblies

AssemblyName property

AssemblyVersion attribute

assignment operators

Atan function

Atan2 function

attributes

 arguments

 AssemblyVersion

 AttributeUsage

 CLSCompliant

 COMClass

 custom

 defining

 using

 DefaultMember

 Flags

 Guid

 introduction

 language reference

 MarshalAs

 MTAThread

 Obsolete

 Out

 ParamArray

 STAThread

 syntax

 ThreadStatic

 VBFixedArray

 VBFixedString

 WebMethod

 WebService

AttributeUsage attribute

Audio object

AudioPlayMode enumeration

AvailablePhysicalMemory property

AvailableVirtualMemory property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

BCL (Base Class Library)

Beep procedure

bitwise operators

 VB.NET 2002 changes

block-level scope, variables

Boolean data type

BuiltInRole enumeration

ButtonsSwapped property

Byte data type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Call statement

callbacks, delegates as

CallByName function

calling methods, delegates

calling routines from event handlers

CallType enumeration

CapsLock property

CBool function

CByte function

CChar function

CDate function

CDbl function

CDec function

Celing function

centralized error handling

ChangeCulture method

ChangeUICulture method

Char data type

ChDir procedure

ChDrive procedure

Choose function

Chr function

ChrW function

CIL (Common Intermediate Langage)

CInt function

class libraries

Class...End Class statement

classes 2nd

 Application

 Array

 Clipboard

 Collection

 ColorDialog

 ControlChars

 Debug

 Directory

 Exception

 exception

 File

 FontDialog

 Hashtable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 language reference

 Main routine

 members

 accessibility

 methods

 OOP

 OpenFileDialog

 properties

 Queue

 referencing

 SaveFileDialog

 Stack

ClassesRoot property

Clear method

Clipboard

 class

 language elements

 object

CLng function

CLR (Common Language Runtime) 2nd

 CTS and

CLS (Common Language Specification)

CLSCompliant attribute

CObj function

code files

 declarations section

 managed code

 namespaces

 types

Collection class

collection objects, elements

Collection.Add method

Collection.Count property

Collection.Item property

Collection.Remove method

collections

ColorDialog class

COMClass attribute

Command function

command-line switches

Common Language Specification (CLS)

common runtime environment

Common Type System (CTS)

CompareMethod enumeration

comparison operators

compiler overview

compiling

 conditional

 constants

 elements

components, referencing

concatentation operators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

conditional compilation

 constants

 elements

console applications

#Const directive

Const statement

constants

 conditional compilation

 ControlChars class

 error constants

 intrinsic

 overview

Constants class

constraints, generics

constructors

Continue statement 2nd

ControlChars class

conversion

 data types

 elements

 elements

Convert class, System namespace

CopyFile method

Copyright property

Cos function

Cosh functon

CreateDirectory method

CreatObject function

CSByte function

CShort function

CSng function

CStr function

CtrlKeyDown property

CTS (Common Type System)

 data types

CType function

CUInt function

CULng function

Culture property

CurDir function

CurrentConfig property

CurrentDirectory property

CurrentPrincipal property

CurrentUser property

CurrentUserApplicationData property

CUShort function

custom attributes

 defining

 using

custom events, VB 2005

custom procedures

 functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 properties

 sub procedures

CustomEvent statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

data types

 Boolean

 Byte

 Char

 conversion

 elements

 CTS

 Date

 Decimal

 Double

 Integer

 Long

 Object

 reference types

 SByte

 Short

 Single

 String

 UInteger

 ULong

 user-defined

 UShort

 value types

 variables

 VB 2005

 VB.NET 2002 changes

date and time elements

Date data type

DateAdd function

DateDiff function

DateFormat enumeration

DateInterval enumeration

DatePart function

DateSerial function

DateString property

DateValue function

Day function

DDB function

Debug class

Debug.Assert method

Debug.Listeners property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Write method

Debug.WriteIf method

Debug.WriteLine method

Debug.WriteLineIf method

debugging elements

Decimal data type

declarations

 arrays

 code file section

 elements

 variables

Declare statement

DefaultFileLogWriter property

DefaultMember attribute

Delegate statement

delegates

 as callbacks

 methods, calling

DeleteDirectoryOption enumeration

DeleteFile method

DeleteSetting procedure

Delimiters property

Deployment property

Description property

Desktop property

development environment

 elements

dialogs, elements

Dim statement

Dir function

DirectCast function

directives

 #Const

 #If...Then...#Else

 #Region...#End

 language reference

Directory class

Directory.CreateDirectory method

Directory.Delete method

Directory.Exists method

Directory.GetCreationTime method

Directory.GetDirectories method

Directory.GetDirectoryRoot method

Directory.GetFiles method

Directory.GetFileSystemEntries method

Directory.GetLogicalDrives method

Directory.GetParent method

Directory.Move method

DirectoryExists method

DirectoryPath property

division (\) operator

DLLs (dynamic link libraries)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do...Loop statement

DoEvents method

Double data type

DownloadFile method

Drives property

DueDate enumeration

DynData property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

E field

encapsulation

End statement

EndOfData property

Enum statement

enumerations

 overview

Environ function

EOF function

Eqv operator

Erase statement

Erl property

Err object 2nd

Err.Clear method

Err.Description property

Err.GetException method

Err.HelpContext property

Err.HelpFile property

Err.LastDLLError property

Err.Number property

Err.Raise method

Err.Source property

error constants

error detection

error handling

 centralized

 elements

 Err object

 inline error handling

 runtime errors, unstructured

Error statement

ErrorLine property

ErrorLineNumber property

errors

 logic errors 2nd

 runtime errors

ErrorToString function

event binding, introduction

event handlers

 AddHandler

 calling routines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RemoveHandler

event members

Event statement

event-driven programs

events

 arguments

 ASP.NET

 control-related

 custom

 introduction

 NetworkAvailabilityChanged (My.Application)

 NetworkAvailabilityChanged (My.Computer.Network)

 Shutdown

 Startup

 StartupNextInstance

 UnhanldedException

 Windows Forms

 WithEvent keyword

Exception class

exception classes

exception handling, structured

Exit statement

Exp function

exponentiation (^) operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

FCL (Framework Class Library)

 namespace hierarchy

 my namespace

 System namespace

fields

 E

 members

 PI

FieldType enumeration

FieldWidths property

File class

File.Exists method

FileAttr function

FileAttribute enumeration

FileClose procedure

FileCopy procedure

FileDateTime function

FileExists method

FileGet procedure

FileGetObject procedure

FileLen function

FileOpen procedure

FilePut procedure

FilePutObject procedure

filesystem elements

FileSystem object

FileWidth procedure

Filter functions

financial elements

FindInFiles method

FirstDayOfWeek enumeration

FirstWeekOfYear enumeration

Fix function

Flags attribute

Floor function

FontDialog class

For Each...Next statement

For...Next statement

Format function

FormatCurrency function

FormatDateTime function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FormatNumber function

FormatPercent function

Forms object

Framework Class Library 2nd

FreeFile function

Friend keyword

Function statement

functions

 Abs

 Acos

 Asc

 AscW

 Asin

 Atan

 Atan2

 CallByName

 CBool

 CByte

 CChar

 CDate

 CDbl

 CDec

 Ceiling

 Choose

 Chr

 ChrW

 CInt

 CLng

 CObj

 Command

 Cos

 Cosh

 CreateObject

 CSByte

 CShort

 CSng

 CStr

 CType

 CUInt

 CULng

 CurDir

 CUShort

 custom procedures

 DateAdd

 DateDiff

 DatePart

 DateSerial

 DateValue

 Day

 DDB

 Dir

 DirectCast

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Environ

 EOF

 ErrorToString

 Exp

 FileAttr

 FileDateTime

 FileLen

 Filter

 Fix

 Floor

 Format

 FormatCurrency

 FormatDateTime

 FormatNumber

 FormatPercent

 FreeFile

 FV

 GetAllSettings

 GetAttr

 GetChar

 GetObject

 GetSetting

 Hex

 Hour

 IEEERemainder

 IIf

 InputBox

 InputString

 InStr

 InStrRev

 Int

 IPmt

 IRR

 IsArray

 IsDate

 IsDBNull

 IsError

 IsNothing

 IsNumeric

 IsReference

 Join

 language reference

 LBound

 LCase

 Left

 Len

 LineInput

 Loc

 LOF

 Log

 Log10

 LSet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LTrim

 Max

 Mid

 Min

 Minute

 MIRR

 Month

 MonthName

 MsgBox

 NPer

 NPV

 Oct

 Partition

 Pmt

 Pow

 PPmt

 PV

 QBColor

 Rate

 Replace

 RGB

 Right

 Rnd

 Round

 RSet

 RTrim

 Second

 Seek

 Shell

 Sign

 Sin

 Sinh

 SLN

 Space

 SPC

 Split

 Sqrt

 Str

 StrComp

 StrConv

 StrDup

 StrReverse

 Switch

 SYD

 SystemTypeName

 TAB

 Tan

 Tanh

 TimeSerial

 TimeValue

 Trim

 TryCast

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TypeName

 UBound

 UCase

 Val

 VarType

 VbTypeName

 Weekday

 WeekdayName

 Year

FV function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

garbage collection 2nd

generics

 constraints

 multiple

 introduction

 methods

 nested types

 overloading methods

 type parameters

 members

 multiple type parameters

 types, overloading

 VB 2005

GetAllSettings function

GetAttr function

GetAudioStream method

GetChar function

GetData method

GetDataObject method

GetDirectories method

GetDirectoryInfo method

GetDriveInfo method

GetEnvironmentVariable method

GetFileDropList method

GetFileInfo method

GetFiles method

GetImage method

GetName method

GetObject function

GetParentPath method

GetSetting function

GetTempFileName method

GetText method

GetType operator 2nd

GetValue method

Global keyword 2nd

GmtTime property

GoTo statement

Guid attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Handles keyword

HasFieldsEnclosedInQuotes property

Hashtable class

Hashtable.Add method

Hashtable.ContainsKey method

Hashtable.ContainsValue method

Hashtable.CopyTo method

Hashtable.Item property

Hashtable.Keys property

Hashtable.Remove method

Hashtable.Values property

Hex function

Hour function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

IEEERemainder function

#If...Then...#Else directive

If...Then...Else statement

IIf function

IL (Intermediate Language) code

Imp operator

Implements keyword

Implements statement

Imports statement

Info object (My.Application)

Info object (My.Computer)

information elements

inheritance 2nd

Inherits statement

InitializeWithWindowsUser method

inline error handling

Input procedure

input/output elements

InputBox function

InputString function

InstalledUICulture property

instance members, shared members and

InStr function

InStrRev function

Int function

Integer data type

integer division (\) operator

integrated development environment

 elements

interaction elements

Interface...End Interface statement

interfaces 2nd

IPmt function

IRR function

Is operator 2nd

IsArray function

IsAuthenticated property

IsAvailable property

IsDate function

IsDBNull function

IsError function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsInRole method

IsNetworkDeployed property

IsNot operator 2nd 3rd

IsNothing function

IsNumeric function

IsReference function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Join function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Keyboard object

keywords

 Friend

 Global 2nd

 Handles

 Implements

 Me 2nd

 MyBase 2nd

 MyClass 2nd

 New

 Nothing

 Partial

 Private

 Protected

 Public

 Shadows

 Shared

 WithEvent

 WithEvents

Kill procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

language reference

 attributes

 clas members

 classes

 directives

 functions

 objects

 procedures

 statements

LBound function

LCase function

Left function

Len function

libraries, class libraries

Like operator 2nd

LineInput function

LineNumber property

LoadedAssemblies property

Loc function

local variable scope

LocalMachine property

LocalTime property

Lock procedure

LOF function

Log function

Log object

Log10 function

logic errors 2nd

logical operators

 VB.NET 2002 changes

Long data type

LSet function

LTrim function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Main routine

 Windows Forms applications

managed code

managed execution

MarshalAs attribute

Math class, System namespace

mathematics elements

Max function

Me keyword 2nd

members

 classes

 accessibility

 constructors

 event members

 fields

 instance versus shared

 methods

 overloading

 properties

 shadowing

 types

methods

 Application.DoEvents

 Application.Run

 Array.BinarySearch

 Array.Copy

 Array.IndexOf

 Array.LastIndexOf

 Array.Reverse

 Array.Sort

 calling, delegates and

 ChangeCulture

 ChangeUICulture

 Clear

 Collection.Add

 Collection.Remove

 constructors

 CopyFile

 CreateDirectory

 Debug.Assert

 Debug.Write

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Debug.WriteIf

 Debug.WriteLine

 Debug.WriteLineIf

 DeleteFile

 Directory.CreateDirectory

 Directory.Delete

 Directory.Exists

 Directory.GetCreationTime

 Directory.GetDirectories

 Directory.GetDirectoryRoot

 Directory.GetFiles

 Directory.GetFileSystemEntries

 Directory.GetLogicalDrives

 Directory.GetParent

 Directory.Move

 DirectoryExists

 DoEvents

 DownloadFile

 Err.Clear

 Err.GetException

 Err.Raise

 File.Exists

 FileExists

 FindInFiles

 generics

 overloading

 GetAudioStream

 GetData

 GetDataObject

 GetDirectories

 GetDirectoryInfo

 GetDriveInfo

 GetEnvironmentVariable

 GetFileDropList

 GetFileInfo

 GetFiles

 GetImage

 GetName

 GetParentPath

 GetTempFileName

 GetText

 GetValue

 Hashtable.Add

 Hashtable.ContainsKey

 Hashtable.ContainsValue

 Hashtable.CopyTo

 Hashtable.Remove

 InitializeWithWindowsUser

 IsInRole

 members

 MoveDirectory

 MoveFile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OpenSerialPort

 OpenTextFieldParser

 OpenTextFieldReader

 OpenTextFieldWriter

 PeekChars

 Ping

 Play

 PlaySystemSound

 Queue.Contains

 Queue.CopyTo

 Queue.Dequeue

 Queue.Enqueue

 Queue.Peek

 Queue.ToArray

 ReadAllBytes

 ReadAllText

 ReadFields

 ReadLine

 ReadToEnd

 RenameDirectory

 RenameFile

 Run

 Send

 SendKeys

 SendWait

 SetAudio

 SetData

 SetDataObject

 SetDelimiters

 SetFieldWidths

 SetFileDropList

 SetImage

 SetText

 SetValue

 Stack.Contains

 Stack.CopyTo

 Stack.Peek

 Stack.Pop

 Stack.Push

 Stack.ToArray

 Stop

 UploadFile

 WriteAllBytes

 WriteAllText

 WriteEntry

 WriteException

Mid function

Mid statement

Min function

MinimumSplashScreenDisplayTime property

Minute function

MIRR function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MkDir procedure

Mod operator 2nd

module-level scope, variables

Module...End Module statement

modules

 Main routine

Month function

MonthName function

Mouse object

MoveDirectory method

MoveFile method

MsgBox function

MsgBoxResult enumeration

MsgBoxStyle enumeration

MSIL (Microsoft Intermediate Language)

MTAThread attribute

multiplication (*) operator

My namespace

 AllUsersApplicationData

 VB 2005

My reference 2nd 3rd

 events

 NetworkAvailabilityChanged (My.Application)

 NetworkAvailabilityChanged (My.Computer.Network)

 Shutdown

 Startup

 StartupNextInstance

 UnhandledException

 GetName

 methods

 ChangeCulture

 ChangeUICulture

 CreateDirectory

 DeleteFile

 DirectoryExists

 DoEvents

 DownloadFile

 FileExists

 FindInFiles

 GetAudioStream

 GetData

 GetDataObject

 GetDirectories

 GetDirectoryInfo

 GetDriveInfo

 GetEnvironmentVariable

 GetFileDropList

 GetFileInfo

 GetFiles

 GetImage

 GetParentPath

 GetTempFileName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 GetText

 GetValue

 InitializeWithWindowsUser

 IsInRole

 MovedDirectory

 MoveFile

 OpenSerialPort

 OpenTextFieldParser

 OpenTextFieldReader

 OpenTextFileWriter

 PeekChars

 Ping

 Play

 PlaySystemSound

 ReadAllBytes

 ReadAllText

 ReadFields

 ReadLine

 ReadToEnd

 RenameDirectory

 RenameFile

 Run

 SendKey

 SetAudio

 SetData

 SetDataObject

 SetDelimiters

 SetFieldWidth

 SetFileDropList

 SetImage

 SetText

 SetValue

 Stop

 UploadFile

 WriteAllBytes

 WriteAllText

 WriteEntry

 WriteException

 objects

 Application

 Audio

 Clipboard

 FileSystem

 Forms

 Info (My.Application)

 Info (My.Computer)

 Keyboard

 Log

 Mouse

 Network

 Ports

 Registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Request

 Resources

 Response

 Settings

 SpecialDirectories

 TextFieldParser

 User

 WebServices

 properties

 AltKeyDown

 ApplicationContext

 AssemblyName

 AvailablePhysicalMemory

 AvailableVirtualMemory

 ButtonsSwapped

 CapsLock

 ClassesRoot

 Copyright

 CtrlKeyDown

 Culture

 CurrentDirectory

 CurrentPrincipal

 CurrentUser

 CurrentUserApplicationData

 DefaultFileLogWriter

 Delimiters

 Deployment

 Description

 Desktop

 DirectoryPath

 Drives

 DynData

 EndOfData

 ErrorLine

 ErrorLineNumber

 FieldWidths

 GmtTime

 HasFieldsEnclosedInQuotes

 InstalledUICulture

 IsAuthenticated

 IsAvailable

 IsNetworkDeplooyed

 LineNumber

 LoadedAssemblies

 LocalMachine

 LocalTime

 MinimumSplashScreenDisplay-Time

 MyDocuments

 MyMusic

 MyPictures

 Name (My.Computer)

 Name (My.User)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NumLock

 OpenForms

 OSFullName

 OSPlatform

 OSVersion

 PerformanceData

 ProductName

 ProgramFiles

 Programs

 SaveMySettingsOnExit

 Screen

 ScrollLock

 SerialPortNames

 ShiftKeyDown

 SplashScreen

 StackTrace

 Temp

 TextFieldType

 TickCount

 Title

 TotalPhysicalMemory

 TotalVirtualMemory

 TraceSource

 Trademark

 TrimWhiteSpace

 UICulture

 Users

 Version

 WheelExists

 WheelScrollLines

 WorkingSet

MyBase keyword 2nd

MyClass keyword 2nd

MyDocuments property

MyMusic property

MyPictures property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Name property

 My.Computer

 My.User

named arguments

names, variables

Namespace statement

namespaces

 code file section

 hierarchy

 my namespace

 System namespace

 My 2nd

 System

 Array class

 Convert class

 Math class

 second-level namespaces

 String class

 System.Collections

 System.Data

 System.IO

 System.Text.RegularExpressions

 System.Windows.Forms

naming conventions

nested generic types

.NET Framework, Visual Basic and

Network object

NetworkAvailabilityChanged event (My.Application)

NetworkAvailabilityChanged event (My.Computer.Network)

New keyword

Not operator

Nothing keyword

Now property

NPer function

NPV function

NumLock property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Object data type

object operators

object orientation

object programming, elements

object-orientation changes, VB.NET 2002

objects 2nd

 Application

 Audio

 Clipboard

 collection objects, elements

 Err 2nd

 FileSystem

 Forms

 Info (My.Application)

 Info (My.Computer)

 Keyboard

 language reference

 Log

 Mouse

 Network

 Ports

 Registry

 Request

 Resources

 Response

 Settings

 SpecialDirectories

 TextFieldParser

 User

 WebServices

Obsolete attribute

Oct function

On Error statement

OOP

 abstraction

 classes 2nd

 VB

 encapsulation

 event members

 fields, members

 garbage collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 inheritance 2nd

 interfaces 2nd

 Me keyword

 members

 instance versus shared

 overloading

 shadowing

OOP (continued)

 methods

 constructors

 members

 modules

 MyBase keyword

 MyClass keyword

 obejcts

 overloading

 polymorphism

 properties, members

 structures

 types, members

OpenAccess enumeration

OpenFileDialog class

OpenForms property

OpenMode enumeration

OpenSerialPort method

OpenShare enumeration

OpenTextFieldParser method

OpenTextFileReader method

OpenTextFileWriter method

operator overloading 2nd

 VB 2005

Operator statement

operators

 AddressOf 2nd

 ANd

 AndAlso

 arithmetic

 assignment

 bitwise

 comparison

 concatentation

 Eqv

 GetType 2nd

 Imp

 Is 2nd

 IsNot 2nd

 Like 2nd

 logical

 Mod 2nd

 Not

 object operators

 Or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OrElse

 precedence

 TypeOf 2nd

 Xor

Option Compare statement

Option Explicit statement

Option Strict statement

Or operator

OrElse operator

OSFullName property

OSPlatform property

OSVersion property

Out attribute

overloading

overloading members

overloading operators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ParamArray attribute

parameter arrays

parameters

 introduction

 type parameters

 members

 multiple type parameters

Partial keyword

Partition function

passing arguments

PeekChars method

PerformanceData property

PI field

Ping method

Play method

PlaySystemSound method

Pmt function

polymorphism

Ports object

positional arguments

Pow function

PPmt function

precedence, operators

Print procedure

PrintLine procedure

Private keyword

procedure-driven programs

procedure-level scope, variables

procedure-related changes, VB.NET 2002

procedures

 AppActivate

 Beep

 ChDir

 ChDrive

 custom

 functions

 properties

 sub procedures

 DeleteSetting

 FileClose

 FileCopy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FileGet

 FileGetObject

 FileOpen

 FilePut

 FilePutObject

 FileWidth

 Input

 Kill

 language reference

 Lock

 MkDir

 Print

 PrintLine

 Randomize

 Rename

 Reset

 RmDir

 SaveSetting

 Seek

 SetAttr

 sub procedures

 Ulock

 Write

 WriteLine

ProductName property

ProgramFiles property

programming

 miscellaneous elements

 object programming elements

 VB.NET 2002 changes

programs

 event-driven 2nd

 procedure-driven

 structure

 structure and flow elements

Programs property

properties

 AllUsersApplicationData

 AltKeyDown

 Application.CompanyName

 Application.ExecutablePath

 Application.ProductionName

 Application.ProductVersion

 ApplicationContext

 Assemblyname

 AvailablePhysicalMemory

 AvailableVirtualMemory

 ButtonsSwapped

 CapsLock

 ClassesRoot

 Collection.Count

 Collection.Item

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Copyright

 CtrlKeyDown

 Culture

 CurrentConfig

 CurrentDirectory

 CurrentPrincipal

 CurrentUser

 CurrentUserApplicationData

 DateString

 Debug.Listeners

 DefaultFileLogWriter

 Delimiters

 Deployment

 Description

 Desktop

 DirectoryPath

 Drives

 DynData

 EndOfData

 Erl

 Err.Description

 Err.Help

 Err.HelpFile

 Err.LastDLLError

 Err.Number

 Err.Source

 ErrorLine

 ErrorLineNumber

 FieldWidths

 GmtTime

 HasFieldsEnclosedInQuotes

 Hashtable.Item

 Hashtable.Keys

 Hashtable.Values

 InstalledUICulture

 IsAuthenticated

 IsAvailable

 IsNetworkDeployed

 LineNumber

 LoadedAssemblies

 LocalMachine

 LocalTime

 members

 MinimumSplashScreenDisplayTime

 MyDocuments

 MyMusic

properties (continued)

 MyPictures

 Name (My.Computer)

 Name (My.User)

 Now

 NumLock

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OpenForms

 OSFullName

 OSPlatform

 OSVersion

 PerformanceData

 procedures, custom

 ProductName

 ProgramFiles

 Programs

 SaveMySettingsOnExit

 Screen

 ScriptEngineBuildVersion

 ScriptEngineMajorVersion

 ScriptEngineMinorVersion

 ScrollLock

 SendPortNames

 ShiftKeyDown

 SplashScreen

 StackTrace

 Temp

 TextFieldType

 TickCount

 TimeOfDay

 Timer

 TimeString

 Title

 Today

 TotalPhysicalMemory

 TotalVirtualMemory

 TraceSource

 Trademark

 TrimWhiteSpace

 UICulture

 Users

 Version

 WheelExists

 WheelScrollLines

 WorkingSet

Property statement

Protected keyword

Public keyword

public routines

PV function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

QBColor function

Queue class

Queue.Contains method

Queue.CopyTo method

Queue.Dequeue method

Queue.Enqueue method

Queue.Peek method

Queue.ToArray method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

RAD (rapid application development)

RaiseEvent statement

Randomize procedure

Rate function

ReadAllBytes method

ReadAllText method

ReadFields method

ReadLine method

ReadToEnd method

ReDim statement

references

 classes

 components

 types

#Region...#End Region directive

registry elements

Registry object

Rem statement

RemoveHandler statement 2nd

Rename procedure

RenameDirectory method

RenameFile method

Replace function

Request object

Reset procedure

Resources object

response file

Response object

Resume statement

Return statement

ReycleOption enumeration

RGB function

Right function

RmDir procedure

Rnd function

Round function

routines, calling from event handlers

RSet function

RTrim function

Run methods

runtime errors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 unstructured

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

SaveFileDialog class

SaveMySettingsOnExit property

SaveSetting procedure

SByte data type

scope

 block-level

 module-level

 procedure-level

 variables

Screen property

ScriptEngine propertyproperties

 ScriptEngine

ScriptEngineBuildVersion property

ScriptEngineMajorVersion property

ScriptEngineMinorVersion property

ScrollLock property

SearchOption enumeration

Second function

second-level namespaces

Seek function

Seek procedure

Select Case statement

Send method

SendKeys method

SendWait method

SerialPortNames property

SetAttr procedure

SetAudio method

SetData method

SetDataObject method

SetDelimiters method

SetFieldWidths method

SetFileDropList method

SetImage method

SetText method

Settings object

SetValue method

shadowing members

Shadows keyword

Shared keyword

shared members, instance members and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shared routines

Shell function

Shift Left (<<) operator

Shift Right (>>) operator

ShiftKeyDown property

Short data type

short-circuiting

Shutdown event

Sign function

Sin function

Single data type

Sinh function

SLN function

Space function

SPC function

SpecialDirectories object

SplashScreen property

Split function

Sqrt function

Stack class

Stack.Contains method

Stack.CopyTo method

Stack.Peek method

Stack.Pop method

Stack.Push method

Stack.ToArray method

StackTrace property

Startup event

StartupNextInstance event

statements

 AddHandler

 Call

 Class...End Class

 Const

 Continue

 Custom Event

 Declare

 Delegate

 Dim

 Do...Loop

 End

 Enum

 Erase

 Error

 Event

 Exit

 For Each...Next

statements (continued)

 For...Next

 Function

 GoTo

 If...Then...Else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Implements

 Imports

 Inherits

 Interface...End Interface

 language reference

 Mid

 Module...End Module

 Namespace

 On Error

 Operator

 Option Compare

 Option Explicit

 Option Strict

 Property

 RaiseEvent

 ReDim

 Rem

 RemoveHandler

 Resume

 Return

 Select Case

 Static

 Stop

 Structure...End Structure

 Sub

 SyncLock

 Throw

 Try...Catch...Finally

 Using...End Using

 While...End While

 With...End With

STAThread attribute

Static statement

Stop method

Stop statement

Str function

StrComp function

StrConv function

StrDup function

String class, System namespace

String data type

string elements

StrReverse function

Structure...End Structure statement

structured exception handling

structures

sub procedures

Sub statement

subtraction (-) operator

Switch function

switches, command-line

SYD function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SyncLock statement

syntax

 attributes

System namespace

 Array class

 Convert class

 Math class

 second-level namespaces

 String class

System.Collections namespace

System.Data namespace

System.IO namespace

System.Text.RegularExpressions namespace

System.Windows.Forms namespace

SystemTypeName function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

TAB function

Tan function

Tanh function

Temp property

TextFieldParser object

TextFieldType property

ThreadStatic attribute

Throw statement

TickCount property

time elements

TimeOfDay property

Timer property

TimeSerial function

TimeString property

TimeValue function

Title property

Today property

TotalPhysicalMemory property

TotalVirtualMemory property

TraceSource property

Trademark property

Trim function

TrimWhiteSpace property

TriState enumeration

Try...Catch...Finally statement

TryCast function 2nd

two's-complement represetnation

type parameters

 generics

 multiple type parameters

 members

TypeName function

TypeOf operator 2nd

types

 code files

 generics, overloading

 members

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

UBound function

UCase function

UICancelOption enumeration

UICulture property

UInteger data type

UIOption enumeration

ULong data type

unary (+) operator

UnhandledException event

Unlock procedure

unstructured error handling

UploadFile method

User object

user-defined data types

Users property

UShort data type

Using statement, VB 2005

Using...End Using statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Val function

value types

values, variables

variables

 access level

 addresses

 data types

 declaration

 lifetime

 local, scope

 names

 scope 2nd

 values

 VB.NET 2002 changes

VariantType enumeration

VarType function

VB 2005

 arrays, lower bound

 ClickOnce installation

 Continue statement

 custom events

 data types

 generics

 Global keyword

 IsNot operator

 My namespace

 operator overloading

 partial types

 properties

 TryCast function

 Using statement

 XML comments

VB.NET 2002

 language changes

 bitwise operators

 data types

 logical operators

 miscellaneous

 procedure-related

 variables

 object-orientation changes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 programming changes

VB.NET 2003 language changes

VB.NET 2005 changes

 enhancements

VBFixedArray attribute

VBFixedString attribute

VbStrConv enumeration

VbTypeName function

Version property

Visual Basic .NET

 introduction

 object orientation

 reasons for

 type system

 uses

 versions

Visual Studio application types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WebMethod attribute

WebService attribute

WebServices object

Weekday function

WeekdayName function

WheelExists property

WheelScrollLines property

While...End While statement

Windows applications

 Forms, Main routine

Windows Forms events

Windows services

With...End With statement

WithEvent keyword

WithEvents keyword

WorkingSet property

Write procedure

WriteAllBytes method

WriteAllText method

WriteEntry method

WriteException method

WriteLine procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

XML, comments

Xor operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Year function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Visual Basic 2005: In a Nutshell, 3rd Edition
	Table of Contents
	Copyright
	Preface
	Why Another Visual Basic Book?
	Who This Book Is For
	How This Book Is Structured
	About the Third Edition
	Using Code Examples
	Conventions Used in This Book
	Safari® Enabled
	How to Contact Us
	Acknowledgments

	Part I: The Basics
	Chapter 1. Introduction
	Section 1.1. Why Visual Basic .NET?
	Section 1.2. What Is Visual Basic .NET?
	Section 1.3. What Can You Do with Visual Basic .NET?
	Section 1.4. Versions of Visual Basic for .NET

	Chapter 2. The .NET Framework: General Concepts
	Section 2.1. Common Language Runtime
	Section 2.2. Managed Code
	Section 2.3. Namespaces
	Section 2.4. Types and Objects
	Section 2.5. Assemblies
	Section 2.6. The Framework Class Library
	Section 2.7. Application Deployment
	Section 2.8. The .NET Framework and Visual Basic

	Chapter 3. Introduction to Object-Oriented Programming
	Section 3.1. Principles of Object-Oriented Programming
	Section 3.2. OOP Development in Visual Basic

	Chapter 4. Variables and Data Types
	Section 4.1. Data Types
	Section 4.2. Variables
	Section 4.3. Constants
	Section 4.4. Enumerations
	Section 4.5. Arrays
	Section 4.6. Collections
	Section 4.7. Parameters and Arguments

	Chapter 5. Operators
	Section 5.1. Arithmetic Operators
	Section 5.2. Concatenation Operators
	Section 5.3. Logical and Bitwise Operators
	Section 5.4. Assignment Operators
	Section 5.5. Comparison Operators
	Section 5.6. Object Operators
	Section 5.7. Operator Overloading
	Section 5.8. Operator Precedence

	Chapter 6. Program Structure
	Section 6.1. Visual Studio Application Types
	Section 6.2. Referencing Components and Classes
	Section 6.3. Application Entry Points
	Section 6.4. Code File Contents
	Section 6.5. The Structure of a Visual Basic Program

	Chapter 7. The .NET Framework Class Library
	Section 7.1. The System Namespace
	Section 7.2. The System.Collections Namespace
	Section 7.3. The System.Data Namespace
	Section 7.4. The System.IO Namespace
	Section 7.5. The System.Text.RegularExpressions Namespace
	Section 7.6. The System.Windows.Forms Namespace
	Section 7.7. Other Namespaces

	Chapter 8. Delegates and Events
	Section 8.1. Delegates
	Section 8.2. Events and Event Binding

	Chapter 9. Attributes
	Section 9.1. Syntax and Use
	Section 9.2. Defining a Custom Attribute
	Section 9.3. Using a Custom Attribute

	Chapter 10. Generics
	Section 10.1. What Are Generics?
	Section 10.2. Type Parameters
	Section 10.3. Multiple Type Parameters
	Section 10.4. Constraints
	Section 10.5. Multiple Constraints
	Section 10.6. Accessing Type Parameter Members
	Section 10.7. Generic Methods
	Section 10.8. Nested Generic Types
	Section 10.9. Overloaded Types and Members

	Chapter 11. Error Handling in Visual Basic
	Section 11.1. Error Detection and Error Handling
	Section 11.2. Runtime Error Handling
	Section 11.3. Dealing with Logic Errors
	Section 11.4. Error Constants

	Part II: Reference
	Chapter 12. The Language Reference
	#Const Directive
	#If...Then...#Else Directive
	#Region...#End Region Directive
	Abs Function
	Acos Function
	AddHandler Statement
	AddressOf Operator
	AppActivate Procedure
	Application Class
	Application.CompanyName Property
	Application.DoEvents Method
	Application.ExecutablePath Property
	Application.ProductName Property
	Application.ProductVersion Property
	Application.Run Method
	Array Class
	Array.BinarySearch Method
	Array.Copy Method
	Array.IndexOf Method
	Array.LastIndexOf Method
	Array.Reverse Method
	Array.Sort Method
	Asc, AscW Functions
	AssemblyVersion Attribute
	Asin Function
	Atan Function
	Atan2 Function
	AttributeUsage Attribute
	Beep Procedure
	Call Statement
	CallByName Function
	CBool Function
	CByte Function
	CChar Function
	CDate Function
	CDbl Function
	CDec Function
	Ceiling Function
	ChDir Procedure
	ChDrive Procedure
	Choose Function
	Chr, ChrW Functions
	CInt Function
	Class...End Class Statement
	Clipboard Class
	CLng Function
	CLSCompliant Attribute
	CObj Function
	Collection Class
	Collection.Add Method
	Collection.Count Property
	Collection.Item Property
	Collection.Remove Method
	ColorDialog Class
	COMClass Attribute
	Command Function
	Const Statement
	Continue Statement
	Cos Function
	Cosh Function
	CreateObject Function
	CSByte Function
	CShort Function
	CSng Function
	CStr Function
	CType Function
	CUInt Function
	CULng Function
	CUShort Function
	CurDir Function
	Custom Event Statement
	DateAdd Function
	DateDiff Function
	DatePart Function
	DateSerial Function
	DateString Property
	DateValue Function
	Day Function
	DDB Function
	Debug Class
	Debug.Assert Method
	Debug.Listeners Property
	Debug.Write Method
	Debug.WriteIf Method
	Debug.WriteLine Method
	Debug.WriteLineIf Method
	Declare Statement
	DefaultMember Attribute
	Delegate Statement
	DeleteSetting Procedure
	Dim Statement
	Dir Function
	DirectCast Function
	Directory Class
	Directory.CreateDirectory Method
	Directory.Delete Method
	Directory.Exists Method
	Directory.GetCreationTime Method
	Directory.GetDirectories Method
	Directory.GetDirectoryRoot Method
	Directory.GetFiles Method
	Directory.GetFileSystemEntries Method
	Directory.GetLogicalDrives Method
	Directory.GetParent Method
	Directory.Move Method
	Do...Loop Statement
	E Field
	End Statement
	Enum Statement
	Environ Function
	EOF Function
	Erase Statement
	Erl Property
	Err Object
	Err.Clear Method
	Err.Description Property
	Err.GetException Method
	Err.HelpContext Property
	Err.HelpFile Property
	Err.LastDLLError Property
	Err.Number Property
	Err.Raise Method
	Err.Source Property
	Error Statement
	ErrorToString Function
	Event Statement
	Exception Class
	Exit Statement
	Exp Function
	File Class
	File.Exists Method
	FileAttr Function
	FileClose Procedure
	FileCopy Procedure
	FileDateTime Function
	FileGet, FileGetObject Procedures
	FileLen Function
	FileOpen Procedure
	FilePut, FilePutObject Procedures
	FileWidth Procedure
	Filter Function
	Fix Function
	Flags Attribute
	Floor Function
	FontDialog Class
	For...Next Statement
	For Each...Next Statement
	Format Function
	FormatCurrency, FormatNumber, FormatPercent Functions
	FormatDateTime Function
	FreeFile Function
	Friend Keyword
	Function Statement
	FV Function
	GetAllSettings Function
	GetAttr Function
	GetChar Function
	GetObject Function
	GetSetting Function
	GetType Operator
	Global Keyword
	GoTo Statement
	Guid Attribute
	Handles Keyword
	Hashtable Class
	Hashtable.Add Method
	Hashtable.ContainsKey Method
	Hashtable.ContainsValue Method
	Hashtable.CopyTo Method
	Hashtable.Item Property
	Hashtable.Keys Property
	Hashtable.Remove Method
	Hashtable.Values Property
	Hex Function
	Hour Function
	IEEERemainder Function
	If...Then...Else Statement
	IIf Function
	Implements Keyword
	Implements Statement
	Imports Statement
	Inherits Statement
	Input Procedure
	InputBox Function
	InputString Function
	InStr Function
	InStrRev Function
	Int Function
	Interface...End Interface Statement
	IPmt Function
	IRR Function
	Is Operator
	IsArray Function
	IsDate Function
	IsDBNull Function
	IsError Function
	IsNot Operator
	IsNothing Function
	IsNumeric Function
	IsReference Function
	Join Function
	Kill Procedure
	LBound Function
	LCase Function
	Left Function
	Len Function
	Like Operator
	LineInput Function
	Loc Function
	Lock Procedure
	LOF Function
	Log Function
	Log10 Function
	LSet Function
	LTrim Function
	MarshalAs Attribute
	Max Function
	Me Keyword
	Mid Function
	Mid Statement
	Min Function
	Minute Function
	MIRR Function
	MkDir Procedure
	Mod Operator
	Module...End Module Statement
	Month Function
	MonthName Function
	MsgBox Function
	MTAThread Attribute
	MyBase Keyword
	MyClass Keyword
	Namespace Statement
	New Keyword
	Nothing Keyword
	Now Property
	NPer Function
	NPV Function
	Obsolete Attribute
	Oct Function
	Of Keyword
	On Error Statement
	OpenFileDialog Class
	Operator Statement
	Option Compare Statement
	Option Explicit Statement
	Option Strict Statement
	Out Attribute
	ParamArray Attribute
	Partial Keyword
	Partition Function
	PI Field
	Pmt Function
	Pow Function
	PPmt Function
	Print, PrintLine Procedures
	Private Keyword
	Property Statement
	Protected Keyword
	Public Keyword
	PV Function
	QBColor Function
	Queue Class
	Queue.Contains Method
	Queue.CopyTo Method
	Queue.Dequeue Method
	Queue.Enqueue Method
	Queue.Peek Method
	Queue.ToArray Method
	RaiseEvent Statement
	Randomize Procedure
	Rate Function
	ReDim Statement
	Rem Statement
	RemoveHandler Statement
	Rename Procedure
	Replace Function
	Reset Procedure
	Resume Statement
	Return Statement
	RGB Function
	Right Function
	RmDir Procedure
	Rnd Function
	Round Function
	RSet Function
	RTrim Function
	SaveFileDialog Class
	SaveSetting Procedure
	ScriptEngine Property
	ScriptEngineBuildVersion Property
	ScriptEngineMajorVersion Property
	ScriptEngineMinorVersion Property
	Second Function
	Seek Function
	Seek Procedure
	Select Case Statement
	Send, SendWait Methods
	SetAttr Procedure
	Shadows Keyword
	Shared Keyword
	Shell Function
	Sign Function
	Sin Function
	Sinh Function
	SLN Function
	Space Function
	SPC Function
	Split Function
	Sqrt Function
	Stack Class
	Stack.Contains Method
	Stack.CopyTo Method
	Stack.Peek Method
	Stack.Pop Method
	Stack.Push Method
	Stack.ToArray Method
	STAThread Attribute
	Static Statement
	Stop Statement
	Str Function
	StrComp Function
	StrConv Function
	StrDup Function
	StrReverse Function
	Structure...End Structure Statement
	Sub Statement
	Switch Function
	SYD Function
	SyncLock Statement
	SystemTypeName Function
	TAB Function
	Tan Function
	Tanh Function
	ThreadStatic Attribute
	Throw Statement
	TimeOfDay Property
	Timer Property
	TimeSerial Function
	TimeString Property
	TimeValue Function
	Today Property
	Trim Function
	Try...Catch...Finally Statement
	TryCast Function
	TypeName Function
	TypeOf Operator
	UBound Function
	UCase Function
	Unlock Procedure
	Using...End Using Statement
	Val Function
	VarType Function
	VBFixedArray Attribute
	VBFixedString Attribute
	VbTypeName Function
	WebMethod Attribute
	WebService Attribute
	Weekday Function
	WeekdayName Function
	While...End While Statement
	With...End With Statement
	WithEvents Keyword
	Write, WriteLine Procedures
	Year Function

	Chapter 13. The 'My' Reference
	AllUsersApplicationData Property
	AltKeyDown Property
	Application Object
	ApplicationContext Property
	AssemblyName Property
	Audio Object
	AvailablePhysicalMemory Property
	AvailableVirtualMemory Property
	ButtonsSwapped Property
	CapsLock Property
	ChangeCulture Method
	ChangeUICulture Method
	ClassesRoot Property
	Clear Method
	Clipboard Object
	Clock Object
	Close Method
	CombinePath Method
	CommandLineArgs Property
	CommentTokens Property
	CompanyName Property
	Computer Object
	ContainsAudio Method
	ContainsData Method
	ContainsFileDropList Method
	ContainsImage Method
	ContainsText Method
	CopyDirectory Method
	CopyFile Method
	Copyright Property
	CreateDirectory Method
	CtrlKeyDown Property
	Culture Property
	CurrentConfig Property
	CurrentDirectory Property
	CurrentPrincipal Property
	CurrentUser Property
	CurrentUserApplicationData Property
	DefaultFileLogWriter Property
	DeleteDirectory Method
	DeleteFile Method
	Delimiters Property
	Deployment Property
	Description Property
	Desktop Property
	DirectoryExists Method
	DirectoryPath Property
	DoEvents Method
	DownloadFile Method
	Drives Property
	DynData Property
	EndOfData Property
	ErrorLine Property
	ErrorLineNumber Property
	FieldWidths Property
	FileExists Method
	FileSystem Object
	FindInFiles Method
	Forms Object
	GetAudioStream Method
	GetData Method
	GetDataObject Method
	GetDirectories Method
	GetDirectoryInfo Method
	GetDriveInfo Method
	GetEnvironmentVariable Method
	GetFileDropList Method
	GetFileInfo Method
	GetFiles Method
	GetImage Method
	GetName Method
	GetParentPath Method
	GetTempFileName Method
	GetText Method
	GetValue Method
	GmtTime Property
	HasFieldsEnclosedInQuotes Property
	Info Object (My.Application)
	Info Object (My.Computer)
	InitializeWithWindowsUser Method
	InstalledUICulture Property
	IsAuthenticated Property
	IsAvailable Property
	IsInRole Method
	IsNetworkDeployed Property
	Keyboard Object
	LineNumber Property
	LoadedAssemblies Property
	LocalMachine Property
	LocalTime Property
	Log Object (My)
	Log Object (My.Application)
	MinimumSplashScreenDisplayTime Property
	Mouse Object
	MoveDirectory Method
	MoveFile Method
	My Namespace
	MyDocuments Property
	MyMusic Property
	MyPictures Property
	Name Property (My.Computer)
	Name Property (My.User)
	Network Object
	NetworkAvailabilityChanged Event (My.Application)
	NetworkAvailabilityChanged Event (My.Computer.Network)
	NumLock Property
	OpenForms Property
	OpenSerialPort Method
	OpenTextFieldParser Method
	OpenTextFileReader Method
	OpenTextFileWriter Method
	OSFullName Property
	OSPlatform Property
	OSVersion Property
	PeekChars Method
	PerformanceData Property
	Ping Method
	Play Method
	PlaySystemSound Method
	Ports Object
	ProductName Property
	ProgramFiles Property
	Programs Property
	ReadAllBytes Method
	ReadAllText Method
	ReadFields Method
	ReadLine Method
	ReadToEnd Method
	Registry Object
	RenameDirectory Method
	RenameFile Method
	Request Object
	Resources Object
	Response Object
	Run Method
	SaveMySettingsOnExit Property
	Screen Property
	ScrollLock Property
	SendKeys Method
	SerialPortNames Property
	SetAudio Method
	SetData Method
	SetDataObject Method
	SetDelimiters Method
	SetFieldWidths Method
	SetFileDropList Method
	SetImage Method
	SetText Method
	Settings Object
	SetValue Method
	ShiftKeyDown Property
	Shutdown Event
	SpecialDirectories Object
	SplashScreen Property
	StackTrace Property
	Startup Event
	StartupNextInstance Event
	Stop Method
	Temp Property
	TextFieldParser Object
	TextFieldType Property
	TickCount Property
	Title Property
	TotalPhysicalMemory Property
	TotalVirtualMemory Property
	TraceSource Property
	Trademark Property
	TrimWhiteSpace Property
	UICulture Property
	UnhandledException Event
	UploadFile Method
	User Object
	Users Property
	Version Property
	WebServices Object
	WheelExists Property
	WheelScrollLines Property
	WorkingSet Property
	WriteAllBytes Method
	WriteAllText Method
	WriteEntry Method
	WriteException Method

	Part III: Appendixes
	Appendix A. Language Elements by Category
	Section A.1. Array Handling
	Section A.2. Clipboard
	Section A.3. Collection Objects
	Section A.4. Common Dialogs
	Section A.5. Conditional Compilation
	Section A.6. Conversion
	Section A.7. Date and Time
	Section A.8. Debugging
	Section A.9. Declaration
	Section A.10. Error Handling
	Section A.11. File System
	Section A.12. Financial
	Section A.13. Information
	Section A.14. Input/Output
	Section A.15. Integrated Development Environment
	Section A.16. Interaction
	Section A.17. Mathematics
	Section A.18. Program Structure and Flow
	Section A.19. Programming
	Section A.20. Registry
	Section A.21. String Manipulation

	Appendix B. Namespace Hierarchy
	Section B.1. 'My' Namespace Hierarchy
	Section B.2. System Namespace Hierarchy

	Appendix C. Constants and Enumerations
	Section C.1. Visual Basic Intrinsic Constants
	Section C.2. ControlChars Class
	Section C.3. Visual Basic Enumerations

	Appendix D. What's New and Different in Visual Basic .NET 2002
	Section D.1. Language Changes in VB.NET 2002
	Section D.2. Changes to Programming Elements
	Section D.3. Obsolete Programming Elements
	Section D.4. Structured Exception Handling
	Section D.5. Changes in Object Orientation

	Appendix E. What's New and Different in Visual Basic .NET 2003
	Section E.1. Language Changes in VB.NET 2003

	Appendix F. What's New and Different in Visual Basic 2005
	Section F.1. Enhancements of Existing Functionality
	Section F.2. The 'My' Namespace
	Section F.3. Other New Features

	Appendix G. VB 6 Language Elements No Longer Supported
	Appendix H. The Visual Basic Command-Line Compiler
	Section H.1. Compiler Basics
	Section H.2. Command-Line Switches
	Section H.3. Using a Response File
	Section H.4. Conditional Compilation Constants

	About the Authors
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

