downloaded from: lib.ommolkefab.ir

Visual Basic 2005: In a Nutshell, 3rd Edition

By Paul Lomax, Tim Patrick, Ron Petrusha,
Steven Roman, Ph.D.

VISLAL BASIC
201

Publisher: O'Reilly

Pub Date: January 2006

Print ISBN-10: 0-596-10152-X
Print ISBN-13: 978-0-59-610152-7
Pages: 766

1% A SEMTHHELL

Table of Contents | Index
Overview

When Microsoft made Visual Basic into an object-oriented programming language, millions of VB
developers resisted the change to the .NET platform. Now, after integrating feedback from their
customers and creating Visual Basic 2005, Microsoft finally has the right carrot. Visual Basic 2005
offers the power of the .NET platform, yet restores the speed and convenience of Visual Basic.
Accordingly, we've revised the classic in a Nutshell guide to the Visual Basic language to cover the
Visual Basic 2005 version and all of its new features.

Unlike other books on the subject, Visual Basic 2005 in a Nutshell, 3rd Edition doesn't assume
you're a novice. It's a detailed, professional reference to the Visual Basic language-a reference that
you can use to jog your memory about a particular language element or parameter. It'll also come
in handy when you want to make sure that there isn't some "gotcha" you've overlooked with a
particular language feature.

The book is divided into three major parts: Part | introduces the main features and concepts behind
Visual Basic programming; Part Il thoroughly details all the functions, statements, directives,
objects, and object members that make up the Visual Basic language; and Part Il contains a series
of helpful appendices. Some of the new features covered include Generics, a convenient new library
called My Namespace, and the operators used to manipulate data in Visual Basic.

No matter how much experience you have programming with Visual Basic, you want Visual Basic
2005 in a Nutshell, 3rd Edition close by, both as a standard reference guide and as a tool for
troubleshooting and identifying programming problems.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Visual Basic 2005: In a Nutshell, 3rd Edition

By Paul Lomax, Tim Patrick, Ron Petrusha,
Steven Roman, Ph.D.

VISLAL BASIC
201

Publisher: O'Reilly

Pub Date: January 2006

Print ISBN-10: 0-596-10152-X
Print ISBN-13: 978-0-59-610152-7
Pages: 766

1% A SEMTHHELL

Table of Contents | Index

Copyright
Preface

Why Another Visual Basic Book?
Who This Book Is For

How This Book Is Structured
About the Third Edition

Using Code Examples

Conventions Used in This Book
Safari® Enabled
How to Contact Us

Acknowledgments
Part I: The Basics

Chapter 1. Introduction

Section 1.1. Why Visual Basic .NET?

Section 1.2. What Is Visual Basic .NET?

Section 1.3. What Can You Do with Visual Basic .NET?
Section 1.4. Versions of Visual Basic for .NET

Chapter 2. The .NET Framework: General Concepts

Section 2.1. Common Language Runtime

Section 2.2. Managed Code

Section 2.3. Namespaces

Section 2.4. Types and Objects

Section 2.5. Assemblies

Section 2.6. The Framework Class Library

Section 2.7. Application Deployment

Section 2.8. The .NET Framework and Visual Basic

Chapter 3. Introduction to Object-Oriented Programming

Section 3.1. Principles of Object-Oriented Programming

Section 3.2. OOP Development in Visual Basic

Chapter 4. Variables and Data Types

Section 4.1. Data Types

Section 4.2. Variables

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 4.3.

Constants

Section 4.4.

Enumerations

Section 4.5.

Arrays

Section 4.6.

Collections

Section 4.7.

Parameters and Arguments

Chapter 5. Operators

Section 5.1.

Arithmetic Operators

Section 5.2.

Concatenation Operators

Section 5.3.

Logical and Bitwise Operators

Section 5.4.

Assignment Operators

Section 5.5.

Comparison Operators

Section 5.6.

Object Operators

Section 5.7.

Operator Overloading

Section 5.8.

Operator Precedence

Chapter 6. P

rogram Structure

Section 6.1.

Visual Studio Application Types

Section 6.2.

Referencing Components and Classes

Section 6.3.

Application Entry Paints

Section 6.4.

Code File Contents

Section 6.5.

The Structure of a Visual Basic Program

Chapter 7. The .NET Framework Class Library

Section 7.1.

The System Namespace

Section 7.2.

The System.Collections Namespace

Section 7.3.

The System.Data Namespace

Section 7.4.

The System.|lO Namespace

Section 7.5.

The System.Text.RegularExpressions Namespace

Section 7.6.

The System.Windows.Forms Namespace

Section 7.7.

Other Namespaces

Chapter 8. D

elegates and Events

Section 8.1.

Delegates

Section 8.2.

Events and Event Binding

Chapter 9. Attributes

Section 9.1.

Syntax and Use

Section 9.2.

Defining a Custom Attribute

Section 9.3.

Using a Custom Attribute

Chapter 10. Generics

Section 10.1.

What Are Generics?

Section 10.2.

Type Parameters

Section 10.3.

Multiple Type Parameters

Section 10.4.

Constraints

Section 10.5.

Multiple Constraints

Section 10.6.

Accessing Type Parameter Members

Section 10.7.

Generic Methods

Section 10.8.

Nested Generic Types

Section 10.9.

Overloaded Types and Members

Chapter 11. Error Handling in Visual Basic

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section 11.1. Error Detection and Error Handling

Section 11.2. Runtime Error Handling

Section 11.3. Dealing with Logic Errors

Section 11.4. Error Constants

Part Il: Reference
Chapter 12. The Language Reference

#Const Directive
#lIf...Then...#Else Directive
#Region...#End Region Directive

Abs Function

Acos Function
AddHandler Statement
AddressOf Operator
AppActivate Procedure

Application Class
Application.CompanyName Property

Application.DoEvents Method

Application.ExecutablePath Property

Application.ProductName Property

Application.ProductVersion Property

Application.Run Method
Array Class
Array.BinarySearch Method
Array.Copy Method
Array.IndexOf Method
Array.LastindexOf Method
Array.Reverse Method

Array.Sort Method
Asc, AscW Functions

AssemblyVersion Attribute

Asin Function

Atan Function

Atan2 Function
AttributeUsage Attribute

Beep Procedure
Call Statement

CallByName Function

CBool Function
CByte Function
CChar Function
CDate Function
CDbl Function
CDec Function
Ceiling Function
ChDir Procedure
ChDrive Procedure

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Choose Function
Chr, ChrW Functions
Clnt Function

Class...End Class Statement

Clipboard Class

CLng Function
CLSCompliant Attribute
CObj Function

Collection Class
Collection.Add Method
Collection.Count Property

Collection.ltem Property

Collection.Remove Method
ColorDialog Class
COMClass Attribute
Command Function

Const Statement
Continue Statement

Cos Function
Cosh Function
CreateObject Function

CSByte Function
CShort Function

CSng Function
Cstr Function

CType Function
CUInt Function

CULng Function
CUShort Function

CurDir Function

Custom Event Statement
DateAdd Function
DateDiff Function

DatePart Function
DateSerial Function

DateString Property

DateValue Function

Day Function
DDB Function

Debug Class
Debug.Assert Method
Debug.Listeners Property
Debug.Write Method
Debug.Writelf Method
Debug.WriteLine Method
Debug.WriteLinelf Method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Declare Statement
DefaultMember Attribute
Delegate Statement

DeleteSetting Procedure

Dim Statement
Dir Function
DirectCast Function

Directory Class
Directory.CreateDirectory Method

Directory.Delete Method

Directory.Exists Method

Directory.GetCreationTime Method

Directory.GetDirectories Method

Directory.GetDirectoryRoot Method
Directory.GetFiles Method
Directory.GetFileSystemEntries Method

Directory.GetLogicalDrives Method

Directory.GetParent Method

Directory.Move Method

Do...Loop Statement
E Field
End Statement

Enum Statement
Environ Function
EOF Function
Erase Statement
Erl Property

Err Object
Err.Clear Method

Err.Description Property
Err.GetException Method
Err.HelpContext Property

Err.HelpFile Property

Err.LastDLLError Property

Err.Number Property
Err.Raise Method
Err.Source Property

Error Statement
ErrorToString Function

Event Statement
Exception Class
Exit Statement
Exp Function

Eile Class
File.Exists Method
FileAttr Function

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

FileClose Procedure

FileCopy Procedure

FileDateTime Function
FileGet, FileGetObject Procedures
FileLen Function

FileOpen Procedure

FilePut, FilePutObject Procedures
FileWidth Procedure

Filter Function

Fix Function
Flags Attribute
Floor Function

FontDialog Class
For...Next Statement

For Each...Next Statement

Format Function
FormatCurrency, FormatNumber, FormatPercent Functions

FormatDateTime Function

EreeFile Function
Friend Keyword
Function Statement

FV Function
GetAllSettings Function
GetAttr Function
GetChar Function
GetObject Function
GetSetting Function
GetType Operator

Global Keyword
GoTo Statement

Guid Attribute

Handles Keyword

Hashtable Class

Hashtable.Add Method
Hashtable.ContainsKey Method
Hashtable.ContainsValue Method
Hashtable.CopyTo Method
Hashtable.ltem Property

Hashtable.Keys Property

Hashtable.Remove Method

Hashtable.Values Property

Hex Function
Hour Function
IEEERemainder Function

If...Then...Else Statement

IIf Function

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Implements Keyword

Implements Statement

Imports Statement
Inherits Statement
Input Procedure

InputBox Function
InputString Function

InStr Function

InStrRev Function

Int Function

Interface...End Interface Statement

IPmt Function
IRR Function

Is Operator

IsArray Function
IsDate Function

IsDBNull Function
IsError Function
IsNot Operator

IsNothing Function
IsNumeric Function

IsReference Function

Join Function
Kill Procedure
LBound Function
LCase Function
Left Function
Len Function

Like Operator

Linelnput Function
Loc Function

Lock Procedure
LOF Function
Log Function

Log10 Function
LSet Function

LTrim Function
MarshalAs Attribute
Max Function

Me Keyword

Mid Function

Mid Statement

Min Function

Minute Function
MIRR Function
MKDir Procedure

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Mod Operator
Module...End Module Statement

Month Function

MonthName Function

MsgBox Function
MTAThread Attribute
MyBase Keyword
MyClass Keyword
Namespace Statement
New Keyword

Nothing Keyword

Now Property
NPer Function

NPV Function
Obsolete Attribute
Oct Function

Of Keyword
On Error Statement

OpenFileDialog Class

Operator Statement

Option Compare Statement

Option Explicit Statement

Option Strict Statement
Out Attribute
ParamArray Attribute
Partial Keyword
Partition Function

Pl Field

Pmt Function

Pow Function

PPmt Function

Print, PrintLine Procedures
Private Keyword

Property Statement
Protected Keyword

Public Keyword

PV Function

QBColor Function

Queue Class

Queue.Contains Method
Queue.CopyTo Method
Queue.Dequeue Method

Queue.Enqueue Method
Queue.Peek Method
Queue.ToArray Method
RaiseEvent Statement

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Randomize Procedure

Rate Function

ReDim Statement

Rem Statement
RemoveHandler Statement

Rename Procedure
Replace Function
Reset Procedure
Resume Statement
Return Statement
RGB Function
Right Function
RmDir Procedure
Rnd Function
Round Function
RSet Function
RTrim Function
SaveFileDialog Class

SaveSetting Procedure

ScriptEngine Property

ScriptEngineBuildVersion Property

ScriptEngineMajorVersion Property

ScriptEngineMinorVersion Property

Second Function

Seek Function

Seek Procedure

Select Case Statement
Send, SendWait Methods
SetAttr Procedure
Shadows Keyword
Shared Keyword

Shell Function

Sign Function
Sin Function

Sinh Function
SLN Function
Space Function
SPC Function
Split Function

Sart Function
Stack Class

Stack.Contains Method
Stack.CopyTo Method
Stack.Peek Method

Stack.Pop Method
Stack.Push Method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Stack.ToArray Method
STAThread Attribute
Static Statement

Stop Statement
Str Function

StrComp Function
StrConv Function

StrDup Function
StrReverse Function

Structure...End Structure Statement

Sub Statement
Switch Function
SYD Function
SyncLock Statement

SystemTypeName Function
TAB Function
Tan Function

Tanh Function
ThreadStatic Attribute
Throw Statement

TimeOfDay Property

Timer Property
TimeSerial Function

TimeString Property

TimeValue Function

Today Property
Trim Function

Try...Catch...Finally Statement
TryCast Function
TypeName Function

TypeOf Operator
UBound Function

UCase Function
Unlock Procedure
Using...End Using Statement

Val Function

VarType Function
VBFixedArray Attribute
VBFixedString Attribute
VbTypeName Function
WebMethod Attribute
WebService Attribute
Weekday Function
WeekdayName Function
While...End While Statement
With...End With Statement

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

WithEvents Keyword

Write, WriteLine Procedures

Year Function
Chapter 13. The 'My' Reference
AllUsersApplicationData Property

AltKeyDown Property

Application Object
ApplicationContext Property

AssemblyName Property

Audio Object
AvailablePhysicalMemory Property

AvailableVirtualMemory Property

ButtonsSwapped Property
CapsLock Property
ChangeCulture Method
ChangeUICulture Method
ClassesRoot Property
Clear Method

Clipboard Object

Clock Object
Close Method

CombinePath Method
CommandLineArgs Property

CommentTokens Property

CompanyName Property
Computer Object
ContainsAudio Method
ContainsData Method
ContainsFileDropList Method

Containsimage Method
ContainsText Method
CopyDirectory Method
CopyFile Method

Copyright Property
CreateDirectory Method

CtrIKeyDown Property

Culture Property
CurrentConfig Property

CurrentDirectory Property

CurrentPrincipal Property

CurrentUser Property

CurrentUserApplicationData Property
DefaultFileLogWriter Property
DeleteDirectory Method

DeleteFile Method

Delimiters Property

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Deployment Property

Description Property

Desktop Property
DirectoryExists Method

DirectoryPath Property
DoEvents Method
DownloadFile Method
Drives Property

DynData Property
EndOfData Property
ErrorLine Property
ErrorLineNumber Property
FieldWidths Property
FileExists Method

FileSystem Object
FindInFiles Method

Forms Object
GetAudioStream Method
GetData Method
GetDataObject Method
GetDirectories Method
GetDirectorylnfo Method
GetDrivelnfo Method
GetEnvironmentVariable Method
GetFileDropList Method
GetFilelnfo Method
GetFiles Method

Getlmage Method
GetName Method
GetParentPath Method
GetTempFileName Method
GetText Method

GetValue Method

GmtTime Property
HasFieldsEnclosedinQuotes Property

Info Object (My.Application)

Info Object (My.Computer)
InitializeWithWindowsUser Method
InstalledUICulture Property

IsAuthenticated Property

IsAvailable Property
IsinRole Method
IsNetworkDeployed Property

Keyboard Object
LineNumber Property

LoadedAssemblies Property

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LocalMachine Property

LocalTime Property

Log Object (My)
Log Object (My.Application)

MinimumSplashScreenDisplayTime Property
Mouse Object

MoveDirectory Method

MoveFile Method

My Namespace

MyDocuments Property

MyMusic Property
MyPictures Property

Name Property (My.Computer)

Name Property (My.User)

Network Object
NetworkAvailabilityChanged Event (My.Application)

NetworkAvailabilityChanged Event (My.Computer.Network)
NumLock Property

OpenForms Property

OpenSerialPort Method

OpenTextFieldParser Method

OpenTextFileReader Method

OpenTextFileWriter Method

OSFullName Property

OSPlatform Property

OSVersion Property
PeekChars Method
PerformanceData Property
Ping Method

Play Method
PlaySystemSound Method

Ports Object
ProductName Property

ProgramFiles Property
Programs Property
ReadAlBytes Method
ReadAllText Method
ReadFields Method
ReadLine Method
ReadToEnd Method

Registry Object
RenameDirectory Method

RenameFile Method
Request Object
Resources Object
Response Object

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Run Method
SaveMySettingsOnExit Property
Screen Property

ScrollLock Property

SendKeys Method
SerialPortNames Property

SetAudio Method
SetData Method
SetDataObject Method
SetDelimiters Method
SetFieldWidths Method
SetFileDropList Method

Setlmage Method
SetText Method

Settings Object
SetValue Method

ShiftKkeyDown Property

Shutdown Event
SpecialDirectories Object

SplashScreen Property

StackTrace Property

Startup Event
StartupNextlnstance Event
Stop Method

Temp Property
TextFieldParser Object

TextFieldType Property
TickCount Property

Title Property
TotalPhysicalMemory Property

TotalVirtualMemory Property

TraceSource Property

Trademark Property

TrimWhiteSpace Property
UlCulture Property
UnhandledException Event
UploadFile Method

User Object

Users Property

Version Property
WebServices Object

WheelExists Property

WheelScrollLines Property

WorkingSet Property
WriteAllIBytes Method
WriteAllText Method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

WriteEntry Method
WriteException Method

Part Ill: Appendixes

Appendix A. Language Elements by Category

Section A.1. Array Handling
Section A.2. Clipboard
Section A.3. Collection Objects

Section A.4. Common Dialogs

Section A.5. Conditional Compilation

Section A.6. Conversion

Section A.7. Date and Time

Section A.8. Debugging

Section A.9. Declaration
Section A.10. Error Handling
Section A.11. File System
Section A.12. Financial

Section A.13. Information
Section A.14. Input/Output
Section A.15. Integrated Development Environment

Section A.16. Interaction

Section A.17. Mathematics

Section A.18. Program Structure and Flow

Section A.19. Programming

Section A.20. Registry

Section A.21. String Manipulation

Appendix B. Namespace Hierarchy

Section B.1. 'My' Namespace Hierarchy

Section B.2. System Namespace Hierarchy

Appendix C. Constants and Enumerations

Section C.1. Visual Basic Intrinsic Constants

Section C.2. ControlChars Class

Section C.3. Visual Basic Enumerations

Appendix D. What's New and Different in Visual Basic .NET 2002
Section D.1. Language Changes in VB.NET 2002

Section D.2. Changes to Programming Elements

Section D.3. Obsolete Programming Elements

Section D.4. Structured Exception Handling

Section D.5. Changes in Object Orientation

Appendix E. What's New and Different in Visual Basic .NET 2003
Section E.1. Language Changes in VB.NET 2003

Appendix F. What's New and Different in Visual Basic 2005
Section F.1. Enhancements of Existing Functionality

Section F.2. The 'My' Namespace

Section F.3. Other New Features

Appendix G. VB 6 Language Elements No Longer Supported

Appendix H. The Visual Basic Command-Line Compiler

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Section H.1.

Compiler Basics

Section H.2.

Command-Line Switches

Section H.3.

Using a Response File

Section H.4.

Conditional Compilation Constants

About the Authors

Colophon
Index

downloaded from: lib.ommolkefab.ir

MEXT B

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Visual Basic 2005 in a Nutshell

by Tim Patrick, Steven Roman, Ron Petrusha, and Paul Lomax

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions

are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jeff Pepper

Production Editor: Darren Kelly

Copyeditor: Chris Downey

Proofreader: Genevieve Rajewski

Indexer: Johnna VanHoose Dinse

Cover Designer: Pam Spremulli

Interior Designer: David Futato

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:

August 2001: First Edition.
April 2002: Second Edition.
January 2006: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The In a Nutshell series designations, Visual Basic 2005 in a Nutshell, Third
Edition, the image of a catfish, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors

assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ISBN: 0-596-10152-X

M]
e prcy

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Preface

Microsoft Visual Basic began its life back in 1991 as a kind of amalgamation of Microsoft's QBasic
programming language and a graphical interface design program developed in part by Alan Cooper.
Since then, it has become one of the most popular programming languages in the world.

The 10th anniversary of Visual Basic coincided with the announcement of Microsoft's new .NET
platform, and with it a totally revised and revamped version of Visual Basic named "Visual Basic
.NET." With the initial release in 2002, the language was streamlined and modernized, and many old
"compatibility" elements were dropped from the language. Since that first release, VB.NET has been
enhanced and improved through two more general releases (in 2003 and 2005).

Pre-.NET versions of VB included a "good try" implementation of standard object-oriented features,
but they often came up short. Teamed with .NET, Visual Basic is now a fully object-oriented
programming (OOP) language, with the inclusion of the long sought-after class inheritance feature,
as well as other OOP elements. The 2005 release adds operator overloading to the language,
something that was absent in the initial .NET version.

Before .NET, Microsoft's Component Object Model (COM) technology played a significant role in
application development, especially when it became part of the foundation of Visual Basic 4.0. With
the advent of .NET, COM begins to take its exit from the Windows programming stage, as .NET
includes a new namespace-based component integration system. This is somewhat unfortunate, since
Visual Basic developers have a lot of time and source code invested in COM components. As great as
COM was, it was also complex, and there were numerous compatibility issues when sharing
components between Visual Basic, Visual C++, and other languages that either produced or
consumed these "ActiveX" libraries. All core compatibility issues are banished with .NET, and although
you can still take advantage of your substantial investment in COM components through .NET's
"interop" features, the enhancements available through .NET will certainly draw all developers
eventually to abandon the COM system.

For developers who have made the switch from .NET, the best news of all is that Visual Basic is now
an "equal player" with other languages, in terms of programming power and accessibility of Windows
features and services. In the past, Visual Basic served as a "wrapper" that simplified and hid much of
the complexity of Windows and its Application Programming Interface (API). Now, Visual Basic
programmers have full and easy access to all features of the .NET and Windows platforms, just as
Visual C++ and C# programmers do.

The extensive changes to the language and the introduction of the .NET platform make a reference
guide to the Visual Basic language more essential than ever. At the same time, they make it easy to
delineate this book's subject matter. This is a book that focuses on the language elements of .NET-
powered Visual Basicon its statements, functions, procedures, directives, and objects.

This book provides essential information on the Visual Basic language for the .NET platform, but there
are some things this book is not:

e It is not a reference guide to Visual Basic for Applications (VBA), the programming language

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

used in all of the major applications in the Microsoft Office suite, as well as in dozens of other
third-party applications. VBA served as the core programming language in earlier versions of
Visual Basic. However, VBA is not the programming language for the .NET versions of Visual
Basic. Microsoft Office Version 12 (not named as of this writing) will include Visual Studio Tools
for Applications (VSTA), a new .NET replacement for VBA.

e It is not a reference guide to the .NET Framework Class Library. The Framework Class Library is
discussed in these pages, and a number of its classes and their members are documented in
this book's reference section. But that documentation just scratches the surface; the
Framework Class Library consists of about 200 namespaces (one of which, incidentally, is
Microsoft.VisualBasic, the namespace that defines many features of the Visual Basic language),
several thousand types (including classes, interfaces, delegates, and enumerations), and an
enormous number of members. In selecting the .NET Framework classes to document in this
book, we've tried to focus on .NET elements that replace commonly used features in pre-.NET
versions of Visual Basic, as well as on .NET elements that expand and enhance the productivity
of Visual Basic developers.

e It is not a reference guide to the attributes that you can apply to program elements. Chapter 9
introduces attribute-based programming, and there are entries for important language-based
attributes in the reference section. But with hundreds of attributes available in the .NET
Framework Class Library, only language-related attributes and the general-purpose attributes
VB developers are most likely to use are documented in this book.

e It is not a guide to developing full applications or components using Visual Basic or .NET. The
text includes simple code fragments that illustrate relevant syntax and code usage, to
demonstrate how a language element works. But it doesn't show you the big-picture activities,
such as how to use the Windows Forms package to build a Windows application, how to develop
a web application using ASP.NET, or how to implement a web service.

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Why Another Visual Basic Book?

Each major release of Visual Basic leaves shelves full of tutorial and training books in its wake. The
2005 release of Visual Basic is no exception, especially since Microsoft expects adoption of Visual
Basic on the .NET platform to dramatically increase with this edition. The majority of VB books
assume that you're a complete novice and slowly introduce you to basic concepts such as variables,
arrays, and looping structures.

This is a different kind of book. It is a detailed, professional reference to the Visual Basic languagea
reference that you can use to jog your memory about a particular language element or a particular
parameter. It will come in handy when you need to review the rules for a particular language
element, or when you want to check that there isn't some "gotcha" you've overlooked with a
particular language feature.

In addition, this book serves as a valuable reference for VB 6 programmers who are upgrading to
.NET and for existing .NET programmers who need to know about specific differences found in each
subsequent release of the Visual Basic language. To this end, we have devoted considerable space to
the extensive language differences between VB 6 and VB.NET 2002, and the versions beyond. For
each relevant language entry in the large reference chapter (Chapter 12), we have included a
"Version Differences” section that details the usage changes for the language element between VB 6
and the 2002, 2003, and 2005 releases of Visual Basic.

e prey NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Who This Book Is For

Just like any reference, this book will be useful to many types of readers:

e Developers who have used previous versions of Visual Basic

e Developers who are new to Visual Basic, but who have been developing applications in other
programming languages, such as C++

e Those who are learning VB as their first language and would like to have a definitive language
reference on their shelf

Readers New to Visual Basic

If you are new to the Visual Basic language, then you will want to pay particular attention to the first
part of the book, which discusses many important areas of programming in .NET with Visual Basic,
including variables, data types, the basic principles of object-oriented programming, and error-
handling techniques.

VB and VBScript Developers New to .NET

Some critics have argued that with .NET, Microsoft has introduced an entirely new VB language,
separate and distinct from VB 6. While we wouldn't go quite that far, we do recognize that beyond
the syntax changes, the new .NET platform brings a paradigm shift that affects the way we think
about application development. As a VB 6 or VBScript developer new to .NET, you may find yourself
in a position similar to that of a developer who is new to all flavors of Visual Basic.

This book will ease your transition to .NET from earlier versions of Visual Basic. In particular, the first
11 chapters of the book offer a rapid introduction to VB and .NET and to their new features. Appendix
D discusses many of the major language changes between VB 6 and VB.NET 2002, while Appendix G

lists VB 6 language elements that are no longer supported in .NET editions. The "Version Differences”
entries in Chapter 12 also provide support for your migration to .NET.

Existing .NET Developers

Early adopters of Visual Basic for the .NET platform have been vindicated, as the Windows
development world has followed their lead in droves. And while programmers coming fresh into the
language with the 2005 release will experience a completely new level of software development, the
update introduces changes that keep VB a moving target even for experienced .NET programmers.
That's why Visual Basic 2005 in a Nutshell includes Appendix E and Appendix F, which document the
major changes introduced into the language since the initial 2002 release. You will also find some use

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

for the "Version Differences" entries in Chapter 12.

e prcy NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

How This Book Is Structured

Visual Basic 2005 in a Nutshell is divided into three parts. Part I, The Basics, is an introduction to the
main features and concepts of Visual Basic programming. If you are new to Visual Basic or .NET, this
part of the book is essential reading. It is divided into the following chapters:

Chapter 1, Introduction

In this chapter, you will read how Visual Basic has been transformed into its .NET variation and
get some sense of how and why the .NET version is different from previous editions of Visual
Basic.

Chapter 2, The .NET Framework: General Concepts

This chapter surveys some of the features of the .NET Framework that most impact the VB
developer. These include namespaces, the Common Language Runtime (CLR), and assemblies.

Chapter 3, Introduction to Object-Oriented Programming

This chapter discusses the basic concepts of object-oriented programming and shows how to
implement VB's object-oriented features in your code.

Chapter 4, Variables and Data Types

This chapter looks at the standard Visual Basic data types and how to use them. Behind the
scenes, VB takes advantage of the .NET Framework's Common Type System, so the chapter
also examines the .NET data types and the way in which VB wraps these data types.

Chapter 5, Operators
This chapter surveys the operators you use to manipulate data in VB. It also introduces
operator overloading, a new feature with the 2005 release.

Chapter 6, Program Structure
This chapter discusses the entry points that allow the .NET runtime to execute your code and

shows how to structure the code in a Visual Basic program.

Chapter 7, The .NET Framework Class Library

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The .NET Framework Class Library (FCL) replaces portions of the Win32 API, as well as many of
the individual object models familiar to pre-.NET VB programmers. This chapter offers a fast-
paced overview of the Framework Class Library and some of its features.

Chapter 8, Delegates and Events
While handling events was more or less automatic in previous versions of VB, events in .NET
are "wired" through the source code itself. This chapter shows how events work and what they
mean to you as a programmer.

Chapter 9, Attributes

The .NET Framework supports attributes, an extensible mechanism that lets you "decorate”
program elements (such as classes and class members) with tags that describe or alter the use
of those elements. Attributes are stored in the assembly’'s "metadata” and can be used to
influence the compiler, the design time environment, or the runtime environment. This chapter
explains attributes and shows you how to use and define them.

Chapter 10, Generics
Visual Basic 2005 includes a new feature called "generics" that lets you better control the
objects managed by other general-use classes. This chapter describes the feature and provides
examples for its use.

Chapter 11, Error Handling in Visual Basic

Visual Basic now offers two techniques for error handling. The first, which uses the OnErr or
statement, is termed unstructured error handling and is a traditional part of VB. The second,
which uses the try...Cat ch...Fi nal | y construct, is termed structured exception handling and is
new to the .NET implementation. In this chapter, we’'ll show you how to use both.

Part Il of the book thoroughly details all the functions, statements, directives, objects, and object
members that make up the Visual Basic language.

Chapter 12, The Language Reference
This chapter provides syntax and usage information for all major VB language features, plus
information on some of the more useful .NET Framework features that are not officially part of
the VB language.

Chapter 13, The 'My' Reference

This chapter fully documents the My Namespace feature, a convenient new library introduced
with Visual Basic 2005.

The third and final section, Part 111, consists of the following appendixes:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Appendix A, Language Elements by Category

A listing of all VB functions, statements, and major keywords, grouped by category.

Appendix B, Namespace Hierarchy
A hierarchical listing of the .NET namespaces from System on down, plus the hierarchy of the
Visual Basic My Namespace feature.

Appendix C, Constants and Enumerations

A list of VB intrinsic constants, as well as VB enumerations and their members.

Appendix D, What's New and Different in Visual Basic .NET 2002

A discussion of language changes from VB 6 to Visual Basic .NET 2002.

Appendix E, What's New and Different in Visual Basic .NET 2003
A discussion of language changes introduced with Visual Basic .NET 2003 and the .NET
Framework, Version 1.1.

Appendix F, What's New and Different in Visual Basic 2005
A discussion of language changes introduced with Visual Basic 2005 and the .NET Framework,
Version 2.0.

Appendix G, VB 6 Language Elements No Longer Supported
A list of the language elements that have dropped out of the Visual Basic language as a result
of its transition to the .NET Framework.

Appendix H, The Visual Basic Command-Line Compiler
Visual Basic includes a command-line compileryou can actually use Notepad as your primary

"development environment" for Visual Basic and use the compiler to compile your code. This
Appendix documents the operation of the Visual Basic command-line compiler and its options.

e prcy NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

About the Third Edition

The first two editions of Visual Basic 2005 in a Nutshell (which were both named VB.NET Language in
a Nutshell) focused solely on the initial release of Visual Basic .NET (the 2002 release) and related
.NET features (the .NET Framework, Version 1.0). This third edition incorporates all new and
significant features added in both the 2003 and 2005 releases of Visual Basic. Part |, The Basics, has
been reorganized to better support the learning process for programmers new to Visual Basic and
.NET concepts in general. The largest change is the addition of two new chapters: Generics (Chapter
10) and The 'My' Reference (Chapter 13). Chapter 5, Operators, is also a new chapter, although it
existed in the second edition as an appendix. While the third edition focuses on Visual Basic 2005, it
is still useful with earlier releases of VB.NET; all feature differences between the various releases of
Visual Basic for .NET are clearly marked throughout the book.

When the first release of Visual Basic for .NET appeared in 2002, the official name of the product was
"Visual Basic .NET," a naming convention that was retained in the 2003 release. However, beginning
with the 2005 release, the language name has officially reverted back to plain "Visual Basic." As this
book focuses on the 2005 release of Visual Basic, this name change is reflected throughout the text.
In most cases, the meaning of "Visual Basic" or "VB" will be clear through context, but in situations
where confusion may exist, the text will specify the version discussed. Because Appendixes D and E
specifically discuss the 2002 and 2003 releases of Visual Basic, they still include references to "Visual
Basic .NET" and "VB.NET." There are also a few other places in the text where such usage is
warranted.

=3 NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact O'Reilly for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Visual Basic 2005 in a Nutshell, by Tim Patrick, Steven Roman,
Ron Petrusha, and Paul Lomax. Copyright 2006 O'Reilly Media, Inc., 0-596-10152-X."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact the publisher at permissions@oreilly.com.

e prey NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Conventions Used in This Book

Throughout this book, we've used the following typographic conventions:

Constant Wdth

Constant width in body text indicates a language construct, such as a VB keyword (like For or
Do Wi | e), or a named element from an adjacent block of sample source code. Members of the
Microsoft.VisualBasic namespace usually appear in constant-width text as well. Code fragments
and code examples appear exclusively in constant-width text. In syntax statements and
prototypes, text set in constant width indicates such language elements as the function or
procedure name and any invariable elements required by the syntax.

Constant Wdth Italic

Italic

In syntax statements and code prototypes, constant width italic indicates replaceable
parameters.

Italicized words in the text indicate intrinsic or user-defined namespaces, classes, functions,
procedures, and other member names (except for those in the Microsoft.VisualBasic
namespace). Many system elements, such as paths and filenames, are also italicized. In
addition, URLs and email addresses are italicized. Finally, italics are employed the first time a
term is used or defined.

Code prototypes use a simplified Backus-Naur notation, presenting all optional elements of the syntax
in square brackets ([and]). Curly braces ({ and }) surround a set of choices from which one must
be chosen. The individual choices, whether required or optional, are delimited by a vertical bar (]).

This icon indicates a note, which is an important aside to its nearby text.

| i!: This icon indicates a warning.

k=1 NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Safari® Enabled

: When you see a Safari® Enabled icon on the cover of your favorite technology book, it
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

How to Contact Us

We have tested and verified all the information in this book to the best of our ability, but you may
find that features have changed (or even that we have made mistakes). Please let us know about
any errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, California 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookqguestions@oreilly.com

It's our hope that, as the Visual Basic language continues to grow and evolve, so too will Visual Basic
2005 in a Nutshell and that the book will come to be seen by VB developers as the "official unofficial”
documentation on the Visual Basic language. To do that, we need your help. If you see errors here,
we'd like to hear about them. If you're looking for information on some VB language feature and
can't find it in this book, we'd like to hear about that, too. And finally, if you would like to contribute
your favorite programming tip or "gotcha,"” we'll do our best to include it in the next edition of this
book. You can request these fixes, additions, and amendments to the book at our web site,
http://www.oreilly.com/catalog/vb2005ian3.

Steven Roman maintains a web site at www.romanpress.com that includes information on his other
books published by O'Reilly (and others), articles on VB/VBA and VB.NET, and a variety of software.

Tim Patrick's web site, www.timaki.com, includes information on his software development books and
links to his technical articles written for Visual Basic and .NET programmers.

k=1 NExT

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/vb2005ian3
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Acknowledgments

Writing a book always requires a substantial commitment of time and effort, and for that we are
grateful to our spouses and families for their support in helping to bring this project through to
completion. Steve would like to thank Donna; Ron would like to thank Vanessa, Sean, and Ami; Paul
would like to thank Deb, Russel, and Victoria; Tim would like to thank Maki and Spencer.

In expectation of the 15t anniversary of Visual Basic, we would also like to acknowledge the
contributions of the designers and developers who transformed Visual Basic from an idea into a
reality. Truly, it has been a monumental accomplishment that has changed the way in which
applications are created.

We'd also like to thank the book's original technical reviewers, Daniel Creeron, Budi Kurniawan, and
Matt Childs, for their thoughtful, careful reviews of our work. We'd also like to thank Alan Carter,
Chris Dias, Amanda Silver, Sam Spencer, Jay Roxe, and Joe Binder at Microsoft for their help in
answering our annoying questions and for reviewing portions of the manuscript. Scott Isaacs, William
Murray, and Gerry O'Brien provided great technical reviews for the third edition.

e prcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Part I: The Basics

This section serves as a general introduction to Visual Basic for the .NET platform. Taken
together, the chapters in this section form an extremely fast-paced introduction to the most
critical VB and .NET programming topics. If you're an experienced programmer who is learning
VB as a second (or additional) programming language, the material should familiarize you with
VB in as short an amount of time as possible.

In addition to its role as a tutorial, Chapter 4 is an essential reference to the data types
supported by VB. Chapter 5 also plays the part of a half-tutorial, half-reference chapter.

Part | consists of the following chapters:

Chapter 1, Introduction

Chapter 2, The .NET Framework: General Concepts
Chapter 3, Introduction to Object-Oriented Programming
Chapter 4, Variables and Data Types

Chapter 5, Operators

Chapter 6, Program Structure

Chapter 7, The .NET Framework Class Library
Chapter 8, Delegates and Events

Chapter 9, Attributes

Chapter 10, Generics

Chapter 11, Error Handling in Visual Basic

=1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Chapter 1. Introduction

Since its introduction in 1991, Microsoft Visual Basic has enjoyed unprecedented success. In fact, in
slightly more than a decade, it has become one of the world's most widely used programming
languages, with millions of productive developers using various flavors of the language.

The reason for this success is twofold. First, Visual Basic has excelled as a rapid application
development (RAD) environment for corporate and commercial applications. Second, Visual Basic
offers a programming language and development environment noted for its simplicity and ease of
use, making it an extremely attractive choice for those new to programming.

With the introduction of the .NET platform, Microsoft also released a new version of the Visual Basic
language, Visual Basic .NET. VB.NET is a from-the-ground-up rewrite of Visual Basic that not only
adds a number of new features but also differs significantly from previous versions of Visual Basic.
From a high-level view, two of these differences are especially noteworthy:

e Until the release of .NET, Microsoft focused on creating a unified version of Visual Basic for
Applications (VBA), the language engine used in Visual Basic, which could serve as a "universal
batch language" for Windows and Windows applications. With Version 6 of Visual Basic, this goal
was largely successful: VB 6.0 featured VBA 6.0, the same language engine that provided
macro language functionality to the Microsoft Office suite, Microsoft Project, Microsoft
FrontPage, Microsoft Visio, and a host of popular third-party applications such as AutoDesk's
AutoCAD and Corel's WordPerfect Office suite. With the release of .NET, this emphasis on a
unified programming language has, for the moment at least, faded into the background; .NET
did not become the macro language platform for Microsoft Office or other applications. (That
may change over time; SQL Server 2005, for instance, provides significant support for stored
procedure scripting using .NET languages.)

e Since Version 4, Visual Basic had increasingly been used with COM and ActiveX. The
development of ActiveX components was generally straightforward in VB, and the language
could also take advantage of an increasing number of Microsoft-supplied and third-party ActiveX
components, including ActiveX Data Objects (ADO), Collaborative Data Objects (CDO), and the
Outlook object model. Although .NET supports COM for reasons of backward compatibility, it is
designed primarily to work with .NET Framework-generated components rather than with COM.

You may be wondering why Microsoft would totally redesign a programming language and

development environment that is so wildly successful. As you shall see, there is some method to this
madness.

[Py | NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

1.1. Why Visual Basic .NET?

When Visual Basic was introduced in 1991, Windows 3.0 was a fairly new operating system in need of
application and utility software. Although Windows 3.0 itself had proven successful, the graphical
applications that offered native support for Windowsand upon the release of which the ultimate
success or failure of Windows would dependwere slow in coming. The major problem was that C and
C++ programmers, who had produced the majority of applications for the MS-DOS operating system,
were faced with a substantial learning curve in writing Windows applications and adapting to
Windows' event-driven programming model.

The introduction of Visual Basic immediately addressed this problem by offering a programming
model that was thoroughly consistent with Windows' graphical nature. Although Windows marked a
radical change in the way programs were written, C and C++ programmers continued to produce
code as they always had: a text editor was used to write source code, the source code was compiled
into an executable, and the executable was finally run under Windows. Visual Basic programmers, on
the other hand, worked in a programming environment that its critics derisively labeled a "drawing
program.” Visual Basic automatically created a form (or window) whenever the developer began a
new project. The developer would then "draw" the user interface by dragging and dropping controls
from a toolbox onto the form. Finally, the developer would write code snippets that responded to
particular events, such as the window being resized or a button control being clicked. Visual Basic's
initial success was due to its ease of use, especially the simplicity of its graphical programming
environment that was entirely consistent with the graphical character of Windows itself.

To get some sense of the revolutionary character of Visual Basic, it is instructive to compare a simple
"Hello World" program for Windows 3.0 written in C (see Example 1-1) with one written in pre-.NET
Visual Basic (see Example 1-2). While the former program is over two pages long, its Visual Basic
counterpart takes only three lines of codeand two of them are provided automatically by the Visual
Basic environment.

Example 1-1. "Hello World" in C

/1 "Hello World" exanple

/1

/1 The user clicks a command button, and a "Hello Wrl d"
/'l message box appears.

#i ncl ude <w ndows. h>

LRESULT CALLBACK WhdProc (HWND, U NT, WPARAM LPARAM) ;
int WNAPI W nMain (H NSTANCE hl nstance, H NSTANCE hPrevl nstance,

PSTR szCOndLi ne, int i CndShow)
{

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

static char szAppNane[] = "SayHello" ;

HWD hwnd ;

MSG nsg

WADCLASSEX wndcl ass ;

wndcl ass. cbSi ze = si zeof (wndcl ass) ;

wndcl ass. styl e = CS_HREDRAW | CS_VREDRAW
wndcl ass. | pf nWdPr oc = WhdProc ;

wndcl ass. cbC sExtra =0 ;

wndcl ass. cbWhdExt ra =0 ;

wndcl ass. hl nst ance = hlnstance ;

wndcl ass. hl con = Loadl con(NULL, |DI _APPLI CATION) ;

wndcl ass. hCur sor
wndcl ass. hbr Backgr ound

LoadCur sor (NULL, | DC_ARROW ;
(HBRUSH) Get St ockObj ect (VWHI TE_BRUSH)

wndcl ass. | pszMenuNanme = NULL ;
wndcl ass. | pszCl assNane = szAppNane ;
wndcl ass. hl conSm = Loadl con(NULL, |DI _APPLI CATION) ;

Regi st er Cl assEx(&wndcl ass)

hwnd = Creat eW ndow(szAppNane, "Hello Wrld",
W5_OVERLAPPEDW NDOW
CW USEDEFAULT, CW USEDEFAULT,
CW USEDEFAULT, CW USEDEFAULT,
NULL, NULL, hlnstance, NULL) ;
ShowwW ndow(hwnd, i CnrdShow)
Updat eW ndow(hwnd) ;

whil e (Get Message(&rsg, NULL, 0, 0))
{
Transl at eMessage(&sq) ;
Di spat chMessage(&rsg) ;
}

return nsg. wParam ;

}

LRESULT CALLBACK WhdProc(HWD hwnd, U NT i Msg, WPARAM wPar am
LPARAM | Par am)

{
int wNotifyCode ;
HAWD hwndCt| ;
static HWND hwndButton ;
static RECT rect ;
static int cxChar, cyChar
HDC hdc ;
PAI NTSTRUCT ps ;

TEXTMETRIC tm;

switch (i MsQ)
{

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

case WM CREATE :
hdc = Get DC(hwnd) ;
Sel ect oj ect (hdc, Cet St ockCbj ect (SYSTEM _FI XED_FONT))
Cet Text Metrics(hdc, &m ;
cxChar = tmtmAveCharWdth ;
cyChar = tmtnHei ght + tmtnExternal Leading ;
Rel easeDC(hwnd, hdc) ;

CGet C i ent Rect (hwnd, &rect)

hwndButt on = Creat eW ndow("BUTTON', "&Say Hel |l 0",
W5 CHI LD | WS VISIBLE | BS_PUSHBUTTON,
(rect.right-rect.left)/20*9,
(rect.bottomrect.top)/10*4,
14 * cxChar, 3 * cyChar,
(HWND) hwnd, 1,
((LPCREATESTRUCT) | Paran) -> hlnstance, NULL)

return O ;

case WM SI ZE :

rect.left = 24 * cxChar ;
rect.top = 2 * cyChar ;
rect.right = LOAORD(I Paran) ;
rect.bottom = H WORD(| Param ;
return 0 ;

case WM _PAINT :

I nval i dat eRect (hwnd, &rect, TRUE) ;
hdc = Begi nPai nt (hwnd, &ps)
EndPai nt (hwnd, &ps)
return 0 ;

case WV DRAW TEM :
case W/ _COMVAND :
wNot i f yCode = HI WORD(wPar an

hwndCtl = (HWND) | Param ;
if ((hwndCtl == hwndButton) && (wNotifyCode == BN _CLI CKED))
MessageBox(hwnd, "Hello, Wrld!'", "G eetings", MB CK) ;

Val i dat eRect (hwnd, &rect)
break ;
case WM DESTROY :
Post Qui t Message (0)
return 0 ;

}

return Def WndowProc (hwnd, iMsg, wParam | Param

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 1-2. ""Hello World" in Visual Basic

Private Sub Commandl_Cl i ck()
MsgBox "Hello, World!", vbOKOnly O vbExcl amation, "G eetings”
End Sub

While Version 1.0 of Visual Basic was relatively underpowered, Microsoft displayed a firm
commitment to Visual Basic and worked very hard to increase its power and flexibility with each new
release. By the time Version 3.0 was released, Visual Basic offered a programming paradigm that
was completely intuitive, making it easy for novice programmers to get started and produce simple
applications very quickly. At the same time, particularly through its ability to access the Windows
Application Programming Interface (API) and through its support for add-on controls, Visual Basic
had become a programming tool capable of creating applications of considerable sophistication and
complexity. Professional developers now had an additional language selection beyond the usual
choices of C and C++.

Visual Basic Version 4.0, which was released in 1995 to support Microsoft's 32-bit family of operating
systems, was a complete rewrite of Visual Basic. It featured limited support for object-oriented
programming in the form of class modules (CLS files) and the ability to generate not only Windows
executables but ActiveX DLLs (also known as COM components) as well.

At about this same time, the character of programming in general changed dramatically. The rise of
the Internet as an application platform meant that programmers needed to do more than write
single-user, locally installed, standalone Windows applications. The increased prominence of
distributed applications that assumed the presence of the Internet marked a huge change in
programming focus. Visual Basic continued to be a great tool for implementing Windows desktop
applications, and it was a reasonable choice for developing middle-tier components, but those
strengths didn't translate easily into situations that required more direct interaction with the Web.

This disparity between Visual Basic's strengths and the new distributed and disconnected
programming paradigm created something of a contradiction. On the one hand, Visual Basic excelled
at graphically depicting the Windows interface. On the other hand, developers were creating more
and more applications that ignored the Windows interface completely. When it came to the Internet,
programmers were now using Visual Basic to write source code that would eventually be compiled
into middle-tier components. Ironically, a programming environment whose real strength was its
graphical character was now being used as a text editor, in very much the same way that the first
generation of Windows programmers used text editors to create C source code for graphical Windows
applications.

Moreover, as the popularity of the Internet grew, it became clearer that Visual Basic was not a
particularly good platform for developing Internet applications. With VB 6, Microsoft introduced Web
Classes as the preferred technology for Internet application development in VB. The metaphor
presented by Web Classes (which focused on separating a web application’s presentation from its

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

programmatic functionality) was confusing to developers, and, as a result, Web Classes never
became popular. While VB remained critically important for developing middle-tier components for
distributed applications, both it and the Visual Basic community that grew up around it remained
strangely isolated from the Internet as an application platform.

Numerous detractors have labeled the .NET-era Visual Basic offering as an entirely new language
with little relationship to previous versions of Visual Basica dubious innovation foisted on the Visual
Basic community by Microsoft in an attempt to sell a new version of its development products.
However, that argument ignores one of the main reasons why Visual Basic, or any language, exists:
to develop software applications in the most effective and efficient manner possible. The introduction
of Visual Basic .NET was a logical and even necessary step forward in the development of Visual Basic
as a premier programming language. .NET addresses the limitations of Visual Basic as a development
language and brings it into the Internet age so that it can remain a major platform for developing
applications of all kinds. Just as Visual Basic 1.0 offered a graphical interface that was suitable for
Windows applications, the .NET flavors of Visual Basic and Visual Studio provide a graphical interface
that is suitable for developing both desktop and web-based applications. No longer a glorified text
editor, Visual Basic (built on the object-oriented foundation of .NET) can now take full advantage of
the Internet as an application-development target and will continue to be a tool of choice for
developing Windows applications and components.

e prcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

1.2. What Is Visual Basic .NET?

Visual Basic .NET is a programming language designed to create applications that work with
Microsoft's .NET Framework. The .NET platform, in turn, addresses many of the limitations of
"classic" COM, Microsoft's Component Object Model, which provided one approach toward application
and component interoperability. These limitations included type incompatibilities when calling COM
components, versioning difficulties when developing and installing new versions of COM components
(known as "DLL hell™), and the need for developers to write a certain amount of code (mostly in
C++) to handle the COM "plumbing.” In contrast to pre-.NET VB, with its reliance on COM, Visual
Basic as a .NET language offers a number of new features and advantages. Let's take a look at some
of these.

1.2.1. Object Orientation

With the release of Version 4, Visual Basic added support for classes and class modules and, in the
process, became an object-oriented programming (OOP) language. Yet the debate persists about
whether pre-.NET Visual Basic was a "true" object-oriented language, or whether it only supported
limited features of object orientation. Detractors point out that Visual Basic did not support
inheritance of a base class's functionality, only of its interface or signature. While Visual Basic still had
a solid base of object-oriented features, purists emphasized the very real limitations in VB's OOP
implementation.

While the object-oriented character of previous versions of VB may be in doubt, there is no question
that .NET is an object-oriented programming platform. In fact, even if Visual Basic .NET is used to
write what appears to be procedural code, it is object-oriented "under the hood." As an example,
consider the clearly procedural, non-object-oriented program shown in Example 1-3.

Example 1-3. A procedural program in .NET

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Mbdul e Modul el
Public Sub Main()
Dim x As |nteger
x = 10
MsgBox(| ncrenment (X))
End Sub

Private Function |Increnment(ByVal baseValue As |Integer) As Integer
Return baseValue + 1
End Function
End Modul e

If you use ILDASM (.NET's equivalent of a disassembler) to look at the IL ("Intermediate Language,”
somewhat similar to assembly language in the non-.NET world) generated for this source code (see
Figure 1-1), you see that internally, Modul el is in fact defined as a class that has two methods,

I ncrement and Mai n.

Figure 1-1. A program viewed through ILDASM

FCtempiWindowsApplication1\bin\Release\WindowsApplication1.exe - IL DASM |'Z||§ x|

P MAMIFEST
= Windowsipplicationl

+ W Windowsipplication] bty

= [JE Windowsipplicstion] Moduiel
¥ class pervate subo shs sssled
¥ Loueshon ibeshane woid [Microsoft. VisaiBade Wicrosoft. YeuaBes: Compiler Services. Standar dModulattribute: s ctor() = (01 D0 0000 3 ..,
Bl Ineremant ; ink32(nk32)
B Main ; void{h

[JE Windowsapplcation] . Settings

Eemsemitly Windowsioolic stion]

>

1.2.2. ACommon Type System

Traditionally, one of the problems of calling routines written in other languages from Visual Basic, or
of calling Visual Basic routines from other languages, is that such inter-language calls presuppose a
common type system . This is the case when calling Win32 API functions from Visual Basic, but it also
applies to attempts to call methods in a VB COM component from other languages, or to call methods
in a non-VB COM component from VB.

For instance, until the addition of the AddressOf operator, which obtained the memory address of a
procedure, there was no way to indicate a "callback" function, a requirement of many Win32 API
enumeration functions. As another example, it is expected that members of structures passed to
Win32 API functions be aligned or padded in specific ways, something that VB programmers had

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

great difficulty accomplishing.

Problems of type compatibility tended to occur most often when scripted applications were used to
call and pass arguments to COM components. An excellent example is the attempt to pass an array
from a script written in JScript to a COM component. COM sees JScript arrays as a string of comma-
delimited values rather than as a COM-compatible array (called a SafeArray). This, and similar
problems, caused no end of type-related headaches.

The .NET platform removes these difficulties by providing a Common Type System (CTS). Ultimately,
all data types are either classes or structures defined by or inherited from the .NET Base Class
Library. Having this Common Type System means that .NET components are truly language-
independent, and that a .NET component written in one language will be seamlessly interoperable
with .NET components written in any other .NET language. The problem of incompatible types simply
disappears.

On the surface, VB appears to have retained its old type system. VB still supports the Long data type,
for instance, although it is now a 64-bit data type instead of the 32-bit data type of VB 4 through VB
6. Most of the following .NET code is strikingly similar to VB 6 in its use of data types.

Publ i ¢ Modul e Gener al Code
Publ i c Sub Main()
DiminfoText As String = "This is a string."
Di m bi gNunber As Long = 12344
Dim tinyNunmber As Integer = 10
End Sub
End Modul e

However, if you use ILDASM to examine the IL generated from this Visual Basic code, you see that
VB data types are merely wrappers for data types provided by the .NET Framework. Where you
expect to see | nt eger and Long, you instead see i nt 32 and i nt 64, two of the core .NET data types.

.method public static void WMin() cil nanaged
{
.entrypoint
.custom instance void
[mscorlib] System STAThreadAttribute::.ctor() = (01 00 00 00)
/'l Code size 17 (0x11)
.maxstack 1
.locals init ([0] int64 bigNunber,
[1] string infoText,
[2] int32 tinyNunber)

I L_0000: Idstr "This is a string."
IL_0005: stloc.1
IL_0006: Idc.i4 0x3038

IL_000b: conv.i8
IL_000c: stloc.0
IL_000d: ldc.id.s 10
IL_000f: stloc.2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

IL_0010: ret
} /1 end of nmethod CGeneral Code: : Main

1.2.3. Access to System Services: The Framework Class Library

Ever since VB added support for calls to the Windows and Win32 APIls, many Visual Basic
programmers have come to regard APl programming as a kind of black art. Not only was there a
confusing and seemingly limitless array of functions that might be called, but the craft of passing
parameters to routines and receiving their return values was equally mysterious. Moreover, with the
growing emphasis on object-oriented programming, the Win32 API, with its procedural approach to
programming, seemed more and more archaic.

The Decl ar e statement still appears in the .NET Visual Basic language, and programmers can
continue to use the Win32 API and routines from other external Windows DLLs. However, many of
the common system services provided by the Win32 APl and other COM components are now
available through the .NET Framework Class Library. The Framework Class Library is a collection of
classes, class members, and other OOP-enabled elements, arranged in a convenient hierarchy of
logical "namespaces" (read more about these in Chapter 2).

To get some sense of the difference in programming style between the Win32 API and the .NET
Framework Class Library, as well as to appreciate the simplicity and ease with which the Framework
Class Library can be accessed, compare Examples Example 1-4 and Example 1-5. Example Example
1-4is a VB 6 routine that adds an entry in the registry that will load a particular program on Windows
startup. As is clear in the code, all APl constants must be defined, as must the API functions
themselves. The API functions must be called correctly, using the ByVal keyword, to avoid passing a
BSTR rather than a C null-terminated string to the RegSetValueEx function. Neglect this important
rule if you like to see applications crash frequently for no apparent reason.

Example 1-4. Writing to the registry using the Win32 API

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Private Const ERROR SUCCESS = 0&

Private Const HKEY_CLASSES ROOT = &H80000000
Private Const HKEY_CURRENT_CONFI G = &H80000005
Private Const HKEY_CURRENT_USER = &H80000001
Private Const HKEY_DYN DATA = &H30000006

Private Const HKEY_LOCAL_MACHI NE = &H80000002
Private Const HKEY_PERFORMANCE DATA = &H80000004
Private Const HKEY_USERS = &H30000003

Private Const REG SZ = 1
Private Const KEY_SET VALUE = &H2

Private Declare Function RegCd oseKey Lib "advapi 32.dl 1" _
(ByVal hKey As Long) As Long

Private Declare Functi on RegOpenKeyEx Lib "advapi 32.dl 1"
Alias "RegOpenKeyExA" _
(ByVval hKey As Long, ByVal |pSubKey As String, _
ByVal ul Options As Long, ByVal sanDesired As Long,
phkResult As Long) As Long

Private Declare Function RegSetVal ueEx Lib "advapi 32.dl|"
Ali as "RegSet Val ueExA" _
(ByVval hKey As Long, ByVal |pValueNane As String, _
ByVal Reserved As Long, ByVal dwlype As Long, |pData As Any,
Byval cbData As Long) As Long

Private Sub LoadByRegistry()
Di m hKey As Long
DimnResult As Long
Const cPGM As String = "C:\Test\Test Startup. exe"

nResult = RegOpenKeyEx(HKEY_CURRENT USER, _
" Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Run", 0,
KEY_SET VALUE, hKey)

If (nResult = ERROR _SUCCESS) Then
RegSet Val ueEx hKey, "M/VBApp", 0, REG SZ, ByVal cPGM Len(cPGV
RegCl oseKey hKey
End |f
End Sub

In contrast, Example 1-5 shows the comparable .NET code that uses the RegistryKey class in the
Framework Class Library's Microsoft.Win32 namespace. The code is short and simple and, therefore,
far less error-prone.

Example 1-5. Writing to the registry using the Framework Class Library

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

----- "I nports M crosoft.Wn32" included at top of file.
Private Const TargetFile As String = "C:\Test\TestStartup. exe"

Private Shared Sub LoadByRegistry()
Dim hive As RegistryKey = Registry. Current User
DimtargetKey as Regi stryKey = hive. OpenSubKey(_
" Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Run", True)
t ar get Key. Set Val ue(" MyVBApp", TargetFile)
t ar get Key. Cl ose()
End Sub

No worries about putting ByVal in the right place. No messy declarations muddying up the code. Just
nice, clean, obvious logic. This code could be simplified even more by using the registry management
features available in the new Visual Basic My Namespace feature. See the Registry Object entry in
Chapter 13 for additional information.

The .NET Framework Class Libraries (FCL) is a gigantic set of classes, built upon the smaller Base
Class Libraries (BCL). FCL adds a lot of the convenience features, such as the Windows Forms
namespaces (for Windows desktop development). When you are using the .NET libraries, there is no
clear division between BCL and FCL; there are no BCL or FCL prefixes on class hames. Somewhere at
Microsoft there is probably a document that clearly lists the differences, but for most programmers, it
really doesn't matter. Whatever you call it, it's still a big heap of functionality. Many resources use
the terms interchangeably, and this book continues that practice.

1.2.4. A Common Runtime Environment

Although VB had traditionally shielded the developer from many of the intricacies of Windows as an
operating system, or of COM as a method for interoperability, some knowledge of how the system
worked was still essential to maintain problem-free applications. Programs and components written
with one tool did not always work well with code from other tools. Working with the Win32 API often
required a more advanced introduction to Windows development concepts than the typical novice
Visual Basic programmer was ready to handle. Not all COM components were created equal either. It
was quite easy to generate a COM component in C++ that could not be used in VB, and vice versa.
Such incompatibilities kept many a programmer from developing and deploying components in their
language of choice.

Under .NET, many problems like these are eliminated because of the .NET platform's Common
Language Runtime (CLR). The CLR, as its name clearly implies, provides a variety of common
services to applications and processes running under the .NET platform, regardless of the language in
which they were originally written. These services include memory management and garbage
collection. They also include a unified system of exception handling and the ability to use the same
set of debugging tools on all code, regardless of the original .NET language used. A common set of
data types ensures that data and classes interact easily between the various .NET languages. Many
of these features are described later in Part | of this book.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2.5. Naming Conventions

Although naming conventions are not strictly part of a programming language, most Visual Basic
developers had adopted some form of the prefix-based "Hungarian" naming system developed many
years ago by Charles Simonyi. With the release of .NET, Microsoft now recommends a hew naming
system. This system dispenses with the endless lists of type-specific prefixes and instead assigns
names to elements (classes, functions, local variables, global constants, etc.) based solely on what
they are. So a variable that holds a customer name is no longer sCust Name (with "'s" for "string) or
even | pszCust Nane (don't ask); you now simply use cust oner Nane.

The new conventions include two types of naming: "Pascal Casing"” and "Camel Casing." All names
are mixed case, with a capital letter appearing at the start of each new word within the name. Pascal
Casing also capitalizes the first letter, and it is used for all public class members and global elements.
Camel Casing includes a lowercase initial letter, and it is used for private members, procedure
arguments, and local variables. There are some additional details to the rules, and some people differ
on when to use Pascal Casing and when to use Camel Casing. The online help included with Visual
Studio includes an entry that discusses these conventions in more detail.

In keeping with the spirit of .NET programming, all .NET examples in this book employ the new
naming conventions.

e prcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

1.3. What Can You Do with Visual Basic .NET?

With its language enhancements and its tight integration into the .NET Framework, Visual Basic is a
thoroughly modernized language that has become one of the premier development tools for creating
a wide range of .NET applications. In the past, Visual Basic was often seen as a "lightweight"
language that could be used for particular kinds of tasks but was wholly unsuited for others. (It was
often argued, sometimes incorrectly, that you couldn't create such things as Windows dynamic link
libraries or shell extensions using Visual Basic.) In the .NET Framework, Visual Basic emerges as an
equal player; Microsoft's claim of language independencethat programming language should be a
lifestyle choice, rather than something forced on the developer by the character of a projectis
realized in the .NET platform.

This means that Visual Basic can be used to create a wide range of applications and components,
including the following:

e Standard Windows applications

e Windows console mode applications

e Windows services

e Windows controls and Windows control libraries

e Web (ASP.NET) applications

e XML Web services

e Web controls and web control libraries

.NET classes and namespaces

Applications that interact with legacy COM components
Most importantly, with the release of .NET, Visual Basic becomes an all-purpose development
environment for building Internet applications, an area in which it has traditionally been weak. Each

successive release of Visual Basic should further enhance its position as the tool of choice for
developing state-of-the-art software, both now and long into the future.

=3 NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

1.4. Versions of Visual Basic for .NET

.NET brought about a major progression in the Visual Basic language, but it wasn't a once-and-for-all
change. Since VB's initial .NET release in 2002, it and the underlying .NET Framework have been
updated several times to include new functionality. As of this writing, there have been three major
releases of Visual Basic.

e Visual Basic .NET 2002. This was the original release of Visual Basic .NET and was packaged
with Version 1.0 of the .NET Framework. Internally, this release is known as Visual Basic 7.0.
For a list of changes between Visual Basic 6.0 and the 2002 release of VB.NET, see Appendix D.

e Visual Basic .NET 2003. The second release of Visual Basic was a "minor" release, with limited
functionality changes. It shipped with Version 1.1 of the .NET Framework and was identified
internally as Visual Basic 7.1. For a list of changes between the 2002 and 2003 releases of
VB.NET, see Appendix E.

e Visual Basic 2005. The third and most recent release of Visual Basic is a "major" update to the
language. Internally, it is known as Visual Basic 8.0, and it comes with a parallel update to the
.NET Framework, Version 2.0. For a list of changes between the 2003 and 2005 releases of VB,

see Appendix F.

When .NET first appeared, it significantly raised the learning curve for first-time developers looking to
try out Visual Basic. It was designed as a professional tool for professional programmers. The 2005
release of Visual Basic attempts to bring new programmers back into the Visual Basic world by
expanding the usability range of the product line. Visual Studio 2005 includes several distinct
audience-targeted packages.

e Visual Studio 2005 Express Edition. This is the entry-level product, and it is available as a more
specific Visual Basic 2005 Express Edition. (Actually, each .NET language is a separate product
in the Express Edition line.) This package includes a simplified development environment
interface, some restrictions on functionality (at least through the development environment),
and features that help first-time developers become more productive in Visual Basic. A
companion product (though included in Visual Studio 2005 Express Edition) is Visual Web
Developer 2005 Express Edition, a simpler and more lightweight web application development
tool. Express Edition users who want to develop web applications must install Visual Web
Developer.

e Visual Studio 2005 Standard Edition. The standard edition of Visual Basic 2005 uses the same
simplified development environment as the Express Edition but adds some extra functionality. It
includes the full MSDN documentation set (instead of just Getting Started guides), a class
designer, full support for building Windows Forms applications, richer XML features, support for
source-code-control integration, application-deployment support through the new "ClickOnce"
deployment feature, and access to SQL Server's reporting services. You can also target mobile
devices with this package.

e Visual Studio 2005 Professional Edition. Visual Basic 2005 Professional Edition part of the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

professional Visual Studio release, includes all the features of the Standard Edition but adds
more enhanced features for the full-time developer. The simplified user interface is replaced
with the full Integrated Development Environment (IDE). The package also includes Crystal
Reports, support for remote debugging, the ability to generate 64-bit applications, full access to
system services and databases (including SQL Server), and full deployment support through
both ClickOnce and Windows Installer projects. A copy of SQL Server 2005 Developer Edition
also appears at this level.

e Visual Studio 2005 Tools for the Microsoft Office System. This product is similar to the
Professional Edition but includes additional tools that make development with Microsoft Office
easier. The package adds tools for specifically working with Microsoft Access databases.
However, some Professional Edition-level features are removed. This edition includes no support
for mobile devices, and you cannot generate 64-bit applications. Visual J# and Visual C++ are
absent as well.

e Visual Studio 2005 Team System. This product is actually three distinct packages targeted at
(1) software architects, (2) software developers, and (3) software testers. A fourth "suite"
package combines all the features of the other three. All of the packages are designed for
projects with multiple developers and include tools for testing and profiling .NET applications.
Source code control and project management tools also appear. A separate package, Visual
Studio 2005 Team Foundation Server, is a server-side product that provides additional
collaborative and support features for all team members.

e SQL Server 2005. Although not officially a Visual Studio development language, Microsoft
released the 2005 edition of its premier database platform at the same time that it released
Visual Studio 2005. (Some Visual Studio editions include a developer's version of SQL Server
2005.) SQL Server 2005 includes support for .NET application development, especially through
its use of stored procedures written in any .NET language.

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Chapter 2. The .NET Framework: General
Concepts

This chapter provides a high-level overview of the most important .NET Framework concepts. There
are many concepts that are new and different from Visual Basic's pre-.NET days, but some of them
are quite technical or esoteric and are beyond the scope of this book. The discussion here is limited to
those essential features that you must know to program effectively using .NET. For a more thorough
coverage of .NET concepts, see Thuan Thai and Hoang Q. Lam's book, .NET Framework Essentials

(O'Reilly).

[Py | NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

2.1. Common Language Runtime

The Common Language Runtime (CLR) is an environment that manages code execution and provides
application-development services. It provides all of the common features required by all .NET-
enabled languages. Visual Basic and other .NET languages are simply wrappers that expose the CLR's
functionality. Because the CLR provides all of the core functionality for all .NET languages,
components written in different .NET languages can interact with each other immediately, with no
language-specific conflicts. Even data types are shared among .NET languages through the CLR's
Common Type System (CTS). While data types may have different names in Visual Basic than they
do in C#, they will all be based on underlying CLR data types.

The Common Language Specification (CLS) defines the minimal set of .NET features that must be
implemented by a .NET-compliant compiler. Components developed to be CLS-compliant may be
limited in their ability to interact with applications and components that use a wider range of .NET
features.

The output of a .NET compiler includes metadata, which is information that describes the objects that
are part of the generated application or library. The metadata describes the following:

Data types and their dependencies

Objects and their members

References to required components

Information (including versioning information) about components and resources that were used
to build the application or library

Metadata is used by the CLR to support functionality such as:

e Manage memory allocations

e Locate and load class instances

e Manage object references and perform garbage collection

e Resolve method invocations

e Generate native code

e Make sure that the application has the correct versions of necessary components and resources
e Enforce security

By including metadata in a compiled software component, that component becomes "self-describing."
This tells the CLR everything it needs to prepare and execute a .NET application, and to allow it to

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

interact with other .NET components.

e prey NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

2.2. Managed Code

Code created within the CLR environment is called managed code . Applications and libraries created
using non-.NET tools, such as VB 6 applications, and COM and ActiveX components, are not managed
code. You can still use unmanaged components in your .NET applications, but they must be
referenced through special "interop™ conduits to prevent the unmanaged code from having any
detrimental impact on the managed side of the application.

Having a central manager of all things .NET like the CLR makes possible some nice centralized
functionality. One such feature in .NET is the garbage collection system, which automatically disposes
of all variables and data objects when an application is finished with them, reclaiming every byte and
releasing all references to the related memory.

Managed execution is the process of running your .NET applications in the context of the CLR,
although this process officially starts when writing your first line of .NET source code. There are three
simple steps to managed execution .

1. Write code using one or more .NET compilers. Some compilers (like the C++ compiler for .NET)
can generate code that is unmanaged or that falls outside the official CLS. Such code cannot
easily interact with components from other .NET languages, so avoid it in mixed-language
applications.

2. Compile the code. The compiler translates source code to Intermediate Language code (IL), also
called Microsoft Intermediate Language (MSIL) or Common Intermediate Language (CIL), and
generates the necessary metadata for the application.

3. Run the code. When .NET code is executed, the IL is compiled into CPU-specific native code by a
Just In Time (JIT) compiler. The resulting application is run within the context of the CLR.

One benefit of running applications within the CLR-managed environment is that data within the

application is kept safe. The CLR keeps errant code and malformed data from interfering with the rest
of memory, either in your application or elsewhere in the system.

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

2.3. Namespaces

The notion of a namespace plays a fundamental role in the .NET Framework. In general, a
namespace is a logical grouping of types (classes and similar constructs) for the purposes of
identification and navigation. There are so many classes and features in .NET that there are bound to
be name conflicts. And since third-party libraries can be integrated into the class space just like the
Microsoft-supplied libraries, namespaces keep everything neat and orderly.

Imagine that, in a certain business, there is an executive named John Smith, a secretary named John
Smith, and a custodian named John Smith. In this case, the name John Smith is ambiguous. When
the paymaster stands on a table and calls out the names of people to receive their paychecks, the
executive John Smith won't be happy if he rushes to the table when custodian John Smith's paycheck
is in the paymaster's hand.

To resolve the naming ambiguity, the business can define three namespaces: Executive, Secretarial,
and Custodial. Now the three individuals can be unambiguously referred to by their fully qualified
names:

e Executive.John Smith

e Secretarial.John Smith

e Custodial.John Smith

Namespaces in .NET look a lot like these references to John Smith. They are simply names used to
group and organize all of the .NET classes into a hierarchy. Namespaces can be nested. Consider the
following three possible namespaces.

e America Namespace

e America.Washington Namespace

¢ America.Washington.Seattle Namespace

Each of these namespaces can include classes (and other types) and additional namespaces. And the
same class name can appear in multiple namespaces, even in nested namespaces.

America.Demographics Class

America.Washington.Demographics Class

America.Washington.Seattle.Demographics Class

America.Montana.Demographics Class

The .NET Framework Class Library (FCL) consists of several thousand classes and other types (such

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

as interfaces, structures, and enumerations) that are divided into about 200 namespaces. All classes
considered to be the "core" language-neutral classes of .NET appear in the System namespace, or in
one of the nested namespaces within System. The namespaces supplied with .NET provide basic
system services, such as:

e Basic and advanced data types and exception handling (the System namespace)

e Data access (the System.Data namespace)

e User-interface elements for standard Windows applications (the System.Windows.Forms
namespace)

e User-interface elements for web applications (the System.Web.Ul namespace)

Many Visual Basic language features are implemented within the classes of the Microsoft.VisualBasic
namespace. (The C# and J# languages have corresponding namespaces.)

All classes (and other types) exist in a namespace, even the classes of your application. By default,
your project's namespace is at the top of the hierarchy (next to System) and is named after your

project's name. You can alter this by using the Nanmespace statement at the beginning of a code file,
or by defining a different project namespace through the Project Properties.

=3 NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

2.4. Types and Objects

Pretty much everything in a .NET application is contained in a type. Types include:

e Classes, which are basically collections of data values, and the related code that manages that
data. Usually a class has both data and code, but a particular class might just have either data
or code. In Visual Basic, a Mbdul e is a variation of a class.

e Interfaces, which are class "skeletons." Interfaces define the basic structure of a class but
without the actual implementation. They are useful for defining a common layout of features to
be shared by many related classes.

e Delegates, which .NET uses to implement its event-driven infrastructure.
e Enumerations, which are collections of named numeric elements.

e Value types and reference types. Normally, when you create an object (an in-memory instance
of a class), that object sits in memory somewhere, and your object variable contains the
memory location of the object block. (It's like a pointer, for those familiar with the C language
parlance.) These are reference types. The .NET type system also supports value types. A value
type variable stores the actual data value instead of a memory address to the true location of
the data.

e Other similar things. You can subdivide the type system forever, but everything is eventually
called a type.

From the Visual Basic point of view, all types are really classes. Of course, all data objects are
instances of classes, but even your source codeeven your Sub Main routineis part of a class, and it
must be part of a class to be part of a .NET application.

Classes define a chunk of related data and functionality. When you design a class, you are saying,
"I'm planning on creating an object that has these features and that stores this type of data and
information.” Objects are the actual in-memory instances of a class. For a much richer description of
objects and other object-oriented concepts, see Chapter 3.

The root of the type hierarchy is the System.Object class. All new classes you design eventually tie

back to the System.Object class. This class provides some basic functionality required of all classes
and provides a convenient way to generically identify any object in your application.

e prey NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

2.5. Assemblies

An assembly is a single .NET executable (EXE file) or library (DLL file). Since these file types existed
before .NET was invented, why bother to give them a special name? Well, it's not just the type of file;
it's what is in the file that counts. (By the way, a .NET purist will insist that a single assembly can be
split into multiple files. While this is true, it rarely happens, especially since it can't be done from
within the Visual Studio development environment.)

An assembly is a unit of deployment; that is, it's a file that can be deployed on a user's system. .NET
applications are made up of one or more assemblies , all working together for a common goal. Inside
of an assembly, you find the following:

e The executable code of your application. Generally you will have a single primary EXE assembly,
plus optional DLL assembilies.

e Embedded data, such as resources (graphics, strings, etc.).
e _NET-specific security permissions required for the assembly.

e The types (classes and so on) used in the assembly, including public classes that can be
accessed by other assemblies (applications).

e Listings of the external types and references needed by the assembly, including references to
other assemblies. These references also indicate the specific or minimum version number
expected for those external components.

e Version information for the assembly. Assemblies include a four-part version number (major,
minor, revision, and build, as in "2.1.0.25"), and this version number determines how the
assembly interacts with other assemblies and components. .NET allows you to install different
versions of an assembly on a single machine and have specific versions accessed by other
applications. For instance, you may have Versions 1.0 and 2.0 of a spellchecking component
installed on a workstation, one for an old word processor (that requires Version 1.0) and one for
a newer email system (that uses Version 2.0). Both versions can reside on the same system
without conflict. In fact, both versions can be actively running at the same time, a feature
known as side-by-side execution.

Much of this information is stored in the assembly's metadata, which was discussed earlier. As a unit,
this metadata is known as the assembly’'s manifest. Although this is somewhat repetitive, the
manifest contains at least the following information.

e The name of the assembly

e Version information for the assembly

e Security information for the assembly

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A list of all files that are part of the assembly

Type reference information for the types specified in the assembly

A list of other assemblies that are referenced by the assembly

Custom information, such as a user-friendly assembly title, description, company name,
copyright information, and product information

If your application is split up into multiple assemblies, each assembly is only loaded into memory as it
is needed. One interesting side effect of this as-needed access is that you can update an assembly
file while the application that uses the file is still running. If you replace a DLL, the application will
start using the new DLL the next time it has fully discontinued use of the old DLL. Of course, this
generally happens when you exit and restart the application, but in some complex applications, you
could perform a live update of an assembly.

e prey NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

2.6. The Framework Class Library

Although .NET itself is very powerful and very cool, it doesn't provide much in the way of specific
functionality. The .NET Framework provides a generic system for application development, but it's
really all plumbing. It's not that different from the old-style C++ or Pascal compilers. If you want to
sort a list of strings in reverse order by length, draw a line on the screen, interact with a database, or
send a data packet across the Internet, you still have to write all of that functionality yourself. Or do
you?

Fortunately, you don't have to do it all by yourself. The .NET Framework includes a library of
prewritten features that provide a lot of the functionality you really wanted, but that you didn't want
to write yourself. This library uses a layered approach. At the bottom of the library is the Base Class
Library (BCL), which defines the central and common features that every .NET language will use,
such as:

Implementation of all core data types

Data structures, such as stacks, queues, and collections

Diagnostic and tracking features

Basic input and output with various sources, such as files and serial ports

On top of this foundation you find the FCL, which is pretty much everything else that Microsoft
thought programmers (including programmers designing the .NET system) would find useful. Among
the many library classes are:

e XML manipulation tools

e ADO.NET, a collection of generic and platform-specific database interaction components

GDI+, the core drawing system for on-screen and printed output

¢ Windows Forms, a package for creating desktop applications

ASP.NET, a web-based programming system

e prey NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

k=2

2.7. Application Deployment

Once you write your VB application, you still have to install it on each user's system. .NET provides
two deployment methods. The first method, Windows Installer deployment, was actually around for a
while before the first release of the .NET Framework. Windows Installer deployments are basic Setup
packages that the user installs from a single ".msi" file. All releases of .NET-centric Visual Basic
(except for some of the more entry-level 2005 editions) allow you to create a deployment project,
the output of which is an ".msi" file packed with all the files needed to install your application. Since
the basic installer project features in Visual Studio include limited support for custom installation
scenarios, several third-party vendors provide enhanced products for generating more advanced
Windows Installer files.

New in 2005. The .NET Framework, Version 2.0, part of the 2005 release of Visual Studio, includes a
new deployment method called ClickOnce. Because Windows Installer deployments often update
important system files or registry entries, the user installing the package usually needs to be a local
administrator on the workstation to complete the installation. ClickOnce deployments get around this
by installing the application in its own protected environment (that is, the rest of the workstation is
protected from it!). ClickOnce-installed applications are convenient for users; they are designed for
easy single-click installation from a web site, and they can be configured to automatically check for
and install updated versions.

e rrcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

2.8. The .NET Framework and Visual Basic

Visual Basic, as a .NET language, uses all of the core features of the Common Language Runtime, the
Common Type System, namespaces, assemblies, types, and all other .NET elements, packaging them
up in a nice, neat programming system.

To write a Visual Basic application, you create classes that implement your desired functionality and
data manipulation features. All application data is stored in memory using the Common Type System
data types that Visual Basic uses for its own basic data types. The application manipulates this data
using many of the prewritten classes in the Framework Class Library. All of this code gets organized
into namespaces of your choosing and is compiled into one or more assemblies. Your application is
now ready to deploy and run.

=3 NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Chapter 3. Introduction to Object-Oriented
Programming

Before you can write quality Visual Basic applications on the .NET platform, you must have a good
understanding of objected-oriented programming (OOP) concepts. This chapter presents a brief
introduction to these concepts.

Visual Basic has included at least some object-oriented programming features since Version 4. But
these features were limited, and some workarounds were required to simulate the missing features, if
they could be simulated at all. The advent of .NET infused Visual Basic with a more complete set of
OOP features.

You may be saying to yourself: "I prefer not to use object-oriented techniques in my programming."
Unfortunately, this is not an option in the .NET flavor of Visual Basic. Every line of code, apart from a
few statements that appear in the declarations section of each code file, appears within a classone of
the core building blocks of object-oriented software development. Also, all features contained within

the Framework Class Library are built on object-oriented principles.

e prcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

3.1. Principles of Object-Oriented Programming

Object-oriented programming is a software development architecture that uses the objecta "black
box"™ of data and related functionalityas its focus. These objects are built on four main facets of OOP
design: abstraction, encapsulation, inheritance, and polymorphism. This section introduces each of
these concepts and also the notion of an interface as the means of interaction with the contents of an
object's black box.

3.1.1. Objects and Classes

An object is a software-based collection of data elements and related procedures that act on those
data elements. Obviously, objects are the central theme of "object-oriented" programming. In Visual
Basic and other similar OOP languages, a class is the source code design of an object. An object is an
in-memory instance of a class in a running program. Multiple object instances based on a single class
can exist in memory at the same time.

Although the terms "class" and "object" have distinct meanings, the terms are used somewhat
interchangeably in this chapter, at least in those cases where the distinction is not necessarily
important.

3.1.2. Abstraction

An abstraction is a view of an entity that includes only those aspects that are relevant for a particular
situation. It takes something from the real worldan employee, a book, a chart of accounts, a galaxy,
a grain of sandand breaks it down into individual elements that can be managed with software.
Consider a software component that provides services for tracking an employee's information. The
first step in designing such a component is to identify the items or features that would be managed
by the component. Some of these items may be:

e Employee full name

e Employee home address

e Company ID for the employee

e Current salary

e Length of employment

e Features to adjust the salary based on a rule

This list includes not only basic data values, or properties , but also common actions to be taken on

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the data, or methods . Properties of the class, such as the employee's full name, are sometimes
called fields, and they may have limits on the type or range of data allowed. Methods may require
additional information (such as a table of salary adjustment rules for the salary adjustment feature)
to work properly. These actions are sometimes referred to as operations or behaviors. Together, the
properties and methods are known as members of the abstraction.

The properties and methods of a class are relevant to that class. Although the Employee class could
have included properties for 1Q or the number of hairs on the employee's head, these data values
have no relevance to the purpose of the class. Even though they are part of each employee, they
provide no value to the class and are therefore excluded.

In short, the true employee has been abstractedthe class includes only those properties and methods
of employees that are relevant to the needs of the class. Once the abstraction is complete, the
properties and methods can be built into a software component.

3.1.3. Encapsulation

Encapsulation is the process of converting an abstraction into a usable software componentthe black
boxand exposing to the public only those portions of the abstraction that are absolutely necessary.
The complete logic needed to manage each public property or method is fully contained
("encapsulated™) inside the black box.

Encapsulation serves three useful purposes:

e It permits the protection of these properties and methods from any outside tampering.

e It allows the inclusion of validation code to help catch errors in the use of the public interface.
For instance, the encapsulation can be programmed to prevent a negative number from being
used for an employee’s salary.

e It frees the user from having to know (or worry about) the details of how the properties and
methods are implemented.

High-level programming languages already perform some encapsulation to simplify the work required
by the programmer. For instance, the SByt e data type, introduced in Visual Basic 2005, is an 8-bit
integer data type that supports a range of numbers from -128 to 127. But how exactly does it record
those 128 negative numbers? If you are familiar with binary representation, you know that each bit
of the integer number represents a power of 2: the right-most bit (bit 0) represents 29, the bit just to
the left of that (bit 1) represents 21, and so on up to the left-most bit (bit 7), which represents 27.
Setting each of these bits results in a different number. For instance, the binary number 00100110
sets bits 1, 2, and 5, and the sum of 21, 22, and 25 is 38 (decimal). In unsigned data, the binary
number 11111111 equals 255 decimal. But that's all the bits. How do you get a negative number?

Visual Basic uses a system named two's-complement representation to handle negative numbers.
Basically, any time the leftmost bit is set to 1, the number is negative. Then there are various rules
used to interpret the remaining bits, depending on whether the leftmost bit is set or not.

Do you want to know those rules? Do you really need to know those rule, or how negative values are

managed at all? The great answer is: no! In most programming, you don't have to worry about how
Visual Basic stores negative numbers at the binary level. Who cares? You only need access to

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

negative numbers, not to the complex rules about how they are processed in the computer. Visual
Basic wraps up all of this functionality for you automatically in the SByt e data type. This is the
essence of encapsulation: just the right amount of visible functionality, all of the messy details hidden
from view.

Moreover, encapsulation protects programmers from making errors. For instance, if every
programmer had to do the negating by setting each bit manually and following all of the various and
sundry rules, some important step would be forgotten. The encapsulated data type takes care of this
automatically.

Encapsulation has yet another important feature. Any code written using the exposed interface of the
SByt e data type remains valid, even if the internal workings of the SByt e data type are changed for
some reason. If Microsoft decided to have the SByt e data type use one's complement representation
(another method for managing negative numbers), it wouldn't matter to programs that used SByt e,
as long as the interface to the data type did not change.

3.1.4. Inheritance

Inheritance makes it possible for OOP code to build classes that extend or restrict features in other
existing classes, without the need to fully rewrite the original class. For instance, a class of Pet may
have generic data fields such as Name, Age, and Color. This single class could be extended into
other, more specific classes through inheritance . A class named Dog that is derived from Pet would
automatically include the Name, Age, and Color members, but it may add additional canine-specific
members such as Breed and a ShedsHair flag. In this situation, the Dog class inherits from the Pet
class.

Inheritance used in this manner certainly reduces duplication of code, since the derived class does
not have to rewrite the code for the existing base class's members. But inheritance also makes
interactions between these objects easier, since an object of type Dog is also a true object of type
Pet. Objects of a derived class are also objects of the base class, and they can be used in code as if
they were actually members of the base class. (The reverse is not true; objects of type Pet are not
necessarily objects of type Dog).

Some languages allow a class to inherit from multiple base classes at the same time. Visual Basic
does not support this feature.

3.1.5. Interfaces

The public members of an object are known as its interface (or public interface). Usually, an object
has a single public interface, since its class was designed with a single purpose in mind. But
sometimes it is useful for a class to have multiple interfaces . For instance, along with the Pet class,
consider another class called House. These two classes have some common aspects and tasks that
apply to both, one of which is a cleaning strategy. While you could add distinct CleanNow,
CleanserName, and CleaningTimeRequired members to each class, it would be more convenient to
have a separate interface, called the Cleaning interface, that could then be applied to both Pet and
House. Then your code could call the cleaning-related members on any object that implemented the
Cleaning interface.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Interfaces are simply templates of desired functionality. To make these templates a functional reality,
they must be implemented through a class. Implementing is a little different from inheriting. With
inheritance, the new class receives the existing functionality of the base class; the new class doesn't
have to reinvent this functionality. When implementing an interface, the new class is responsible for
providing all of the functionality of the interface.

While Visual Basic classes cannot inherit from multiple base classes, a single class can implement
multiple interfaces at the same time.

3.1.6. Polymorphism

The term polymorphism means having or passing through many different forms. The Dog class,
derived from the Pet class, automatically receives the prewritten members of the Pet class. However,
if one or more of these members needs to be extended in a special way to meet the needs of the new
derived class (Dog), special Dog-specific versions of those members can be added to the Dog class.
Any Dog object that calls these methods will use the Dog-specific versions; any general Pet object
will use the default Pet-specific versions. If your code is currently treating a Dog object as a more
generic Pet object, it will still use the Dog-specific versions, since the object is still a Dog.

Sound confusing? Welcome to polymorphism. Fortunately, the Visual Basic compiler figures out all of
these relationships for you; you just need to write your code to enable the class-specific actions you
require.

3.1.7. Overloading

Sometimes it is useful to have more than one way of performing the same action in a single class.
For instance, if your Dog class has a TakeForWalk action, you might require several ways of taking
this action to mimic real-world actions. For instance, you might want to call TakeForWalk with a time
duration ("30 minutes™) for a generic time-based walk, or call it with instructions for a specific path-
based exercise plan. You would need one version of this action that takes a number (time-based) and
one that takes a path plan (path-based), perhaps sent as a string.

When a class includes multiple versions of the same member that differ by their argument signatures
(that is, by the parameters and return values of those members), that is overloading . This allows the
member to take an action, but with different types of input data. Overloading most often occurs with

actions taken on the object's data. The ability to provide differing sets of supporting data to an action
can greatly expand the functionality of a class.

New in 2005. The original .NET release of Visual Basic did not include operator overloading . This
form of overloading allows you to provide custom meanings to the standard language operator
symbols, such as the + (addition) and <> (not equal to) operators. The 2005 release of Visual Basic
adds this form of overloading to the language. See the Chapter 5" section of Chapter 5 for
information on this enhancement, including examples.

e prcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

3.2. OOP Development in Visual Basic

The .NET Framework is an OOP-rich development environment. Within that environment, Visual Basic
provides access to most OOP features.

The primary OOP entity in Visual Basic is the class, but the language also supports two additional
variations of this standard entity: (1) the structure, a value-type variation (always derived from
System.ValueType) of the normally reference-type class, and (2) modules, a class in which all
members are shared and public by default. These three primary development entities, along with a
few other entities, such as enumerations, fall under the broad name of type in .NET parlance. Unless
otherwise noted, all discussions of class features apply also to structures and modules.

3.2.1. Classes in Visual Basic

Most Visual Basic development establishes a one-to-one relationship between a class and a source
code file. However, a single file may include multiple classes . Beginning in 2005, the code for a single
class may also be split among multiple source code files by using the new Parti al keyword. See the
entry for that keyword in Chapter 12 for additional information on its usage.

The basic source code needed to define a class is pretty simple.

Public C ass cl assNane

End d ass

Once a class is defined, it can be used by creating an instance of the class, which is what is really
known as the object. (Some class members can be used without creating an instance; these "shared
members" are discussed below.) Instantiating an object requires (1) a variable to hold the object and
(2) the creation of the object using the New keyword. These two steps are often performed in two
separate VB statements.

Dim nyl nstance As SinpleC ass ' Defines the variable
nmyl nstance = New Si npl eCl ass ' Creates the object

These two steps can be combined into a single statement:

Dim nmyl nstance As Sinpl eC ass = New Si npl eC ass

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A shortcut syntax makes the instantiation even simpler:

Di m nyl nstance As New Si npl ed ass

3.2.2. Class Members

Visual Basic classes contain the following types of members:

Field Menbers
This includes member variables and constants. Enumerated data types defined within a class
fall into this category.

Event Menbers
Events are procedures that are called automatically by the Common Language Runtime in
response to some action that occurs, such as an object being created, a button being clicked, a
piece of data being changed, or an object going out of scope. Events can also be manually fired
through code.

Met hod Menbers
This refers to both functions and subroutines. A special method subroutine called a constructor
is used to help create new instances of the class.

Property Menbers
Properties combine aspects of both function methods and fields. They are often used to provide
access to a hidden class field through a pair of property procedures, one for updating the data
and one for retrieving the current data value.

Type Members
Classes may be nested, with one class contained completely within another.

The following Per son class sample illustrates all of the various member types except class nesting.

Public C ass Person

BT Field Menbers -----
Private full Name As String

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Private current Age As Short
Publ i ¢ Const MaxAge As Short = 120

----- Event Menber -----
Publ i c Event Testing()

oeeeaa Construct or Met hod Menbers -----
Public Sub New()

oeeaas Def ault constructor.

full Name = "<unnamed>"
End Sub

Public Sub New(ByVal newNanme As String)

----- Sinmpl e constructor to set an initial field.
ful |l Nane = newNane

End Sub

B Met hod Menbers -----

Public Sub Test()

----- Test the class-defined event.
Rai seEvent Testing()

End Sub

Public Overrides Function ToString() As String
----- Returns a friendly string related to the instance.
' NOTE: The ' Overrides' keyword wi |l be discussed
later in the chapter.

Return full Nane & ", Age " & current Age
End Function

----- Property Menbers -----
Public Property Age() As Short
----- This property perforns sinple error checking.

Ret urn current Age
End Cet
Set (ByVal value As Short)
If (value < 0) O (value > MaxAge) Then
Throw New System Argument Exception(_

"Age ranges fromO to " & MAX AGE & ".", "Age")
El se
current Age = val ue
End | f
End Set

End Property

Public Property Name() As String

----- This property adds no special logic; it could
have been a public field instead.

Return ful | Nanme
End Cet

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Set (ByVal value As String)
ful | Name = val ue
End Set
End Property
End C ass

3.2.3. Class Member Accessibility

Generally, the members of a class constitute that class's public interface. But some members may
exist only for the internal use of the class instance itself. Each member of a class includes an access
modifier. These special keywords indicate just how visible a particular member is to code outside of
the class. Table 3-1 shows the five available access modifiers.

Table 3-1. Access Modifiers

Access Description
modifier P
Public members are accessible to any code that accesses an instance of the class or
Public structure, or that has access to the module containing the member. If a class has a
public member, and an instance of that class is accessed from a separate project,
application, or component, the public member is fully accessible to that external code.
Protected members are accessible within the confines of a class and can be used in any
code derived from that class, but they cannot be accessed outside of the class.
Protected -
Protected members only apply to classes; they are not available to structures or
modules.
Friend members are accessible anywhere within the assembly, but no further.
Friend Instances of a class with a friend member consumed outside of the assembly hide the

member from that external code. Friend members can be used in classes, structures,
and modules.

Using Prot ect ed and Fri end together grants a member all the benefits of both; such
Protected members are accessible within the class and all derived classes, and within the
Friend assembly, but not outside of it. Protected Friend members can be used in classes, but
not in structures or modules.

Private members are accessible anywhere within a class, structure, or module, but not

Private outside. They are also hidden from the custom members of derived classes.

A class itself also has an access modifier, one of Publ i c, Fri end, or Private. Public classes can be
accessed by another assembly that uses your class' assembly; Fri end classes are accessible
throughout your assembly, but not outside of it; and Pri vat e classes are only accessible within their
"declaration context." Generally, Pri vat e is similar to Fri end, but nested classes can be limited to use
only within their parent class by using the Pri vat e keyword.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.2.4. Field Members

Variables, constants, and enumerations declared inside of a class, but outside of any class member
procedure, are field members. (Enumerations can also be declared outside of classes altogether.)
They are simple to declare and use, as done in the Per son class earlier.

Private full Nane As String
Private current Age As Short
Public Const MaxAge As Short = 120

Private field members are often used in tandem with member property procedures to provide logic-
controlled access to a data field in the class.

Public field members are available through instances of your class.

Di m onePerson As New Person
MsgBox(" Maxi mum al | owed age is " & onePerson. MaxAge & ".")

3.2.5. Event Members

Events members provide a way to tap into the event-controlled interfaces of the .NET Framework.
The declaration and use of events is fully described in Chapter 8. The 2005 release of Visual Basic
adds a new feature called custom events that provides more control over the lifetime of an event.
This feature is also discussed in Chapter 8.

3.2.6. Method Members and Constructors

The function and sub procedures contained within your classes will generally make up the bulk of
your Visual Basic application. (Procedures that intercept events are also considered method
members.) Methods contain two main parts: (1) the declaration and (2) the body.

' ---- This is the declaration...

Publ i c Function Agel nDogYears(sourceAge As Decimal) As Deci nal
e ...and this is the body.
Return sourceAge * 7@

End Function

The declaration of a method is often referred to as its signature. The signature includes the specific

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

argument list and the return value; the method name is not part of the signature.

Private methods can only be called within the class itself. Public members can be used within your
class or by external users of the class.

----- This code resides outside of the class that defines
the Agel nDogYears functi on.

Di m neAsFi do As Deci mal

nmeAsFi do = t heDog. Agel nDogYear s(38@

When an object of a particular class is created, the compiler calls a special procedure within the class
called a constructor or instance constructor. Constructors initialize an object when necessary.
(Constructors take the place of the O ass_Initialize eventin pre-.NET versions of VB.)

Constructor procedures always have a name of New; more than one New procedure may appear in
your class, provided each one has a different argument signature. (Normally when two procedures
with the same name appear in a class, the Overl oads keyworddescribed later in this chaptermust be
added to each declaration. However the New procedure is a special case; it does not require the
Over | oads keyword.)

For classes that require no special initialization of their public or private members , the constructor
can be omitted from the class; Visual Basic will provide a default constructor when no defined
constructor exists in a class. But many classes require some basic initialization, and the constructor is
the place to do it. The Per son class defined earlier includes two constructors.

Public Sub New()

----- Default constructor.
full Nanme = "<unnaned>"

End Sub

Public Sub New(ByVal newNarme As String)

----- Si npl e constructor to set an initial field.
full Nane = newNane

End Sub

The first constructor is the default constructor; since it includes no arguments in its declaration
signature, it is used by default when an instance is created that lacks any initialization arguments.
The second constructor is a custom constructor; it is called when an instance is created that passes a
single string argument.

----- Uses the default constructor.
Di m byDefault As Person = New Person

----- Uses the custom constructor.
Di m byCust om As Person = New Person("John Q Public")

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The arguments included in the instance declaration must match one of the constructor signatures as
declared in the class.

If a class lacks any constructors, a default constructor is added automatically that does nothing
beyond instantiating an object. If you want to force the class to be created with a custom constructor
only, add at least one custom constructor to the class.

3.2.7. Property Members

Consider the following simple class.

Publ i ¢ d ass Anot her Person
Public Nane As String
Public Age As Short

End C ass

This class includes some of the functionality of the Per son class defined earlier. However, the Age
property has some problems. Because it is a simple public field, any instance of the class can have its
Age field set to any Short value, whether 25, 87, 3349, or -23. Some of these ages are certainly
invalid. How do you keep the user from setting the Age field to an invalid value?

While you could add specialized function members to set and retrieve the age, .NET includes
properties that provide a more elegant solution. Within the class, properties look just like specialized
functions; to the user of a class, they look like fields. (When a Visual Basic application is compiled,
properties actually become method members.) The Per son class defined earlier includes a more
protected Age property.

Private current Age As Short
...and later...

Public Property Age() As Short
Get
Return current Age
End Cet
Set (ByVal value As Short)
If (value < 0) O (value > MaxAge) Then
Throw New System Argunent Exception(_

"Age ranges fromO to " & MAX AGE & ".", "Age")
El se
current Age = val ue
End | f
End Set

End Property

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The property procedure includes two distinct property accessors, one for setting the hidden tandem
value (the Set procedure) and one for retrieving the current value (the Get procedure). You can
create a read-only property by supplying only the Get component and adding the ReadOnl y keyword
to the property definition.

Public ReadOnly Property Age() As Short
Get
Return current Age
End Cet
End Property

The WiteOnly keyword allows you to similarly define a property with only a Set component.

New in 2005. The 2005 release of Visual Basic allows you to specify different access levels (such as
Publ i ¢ and Fri end) to the Get and Set accessors.

3.2.8. Type Members

Classes may include nested classes as needed.

Public d ass Level 1C ass
Private C ass Level 2 ass
e Add | evel 2 class code here.
End C ass

BRI Add other level 1 class code here.
End C ass

If the nested class is private, it will only be accessible within the outer class.

3.2.9. Instance Members Versus Shared Members

Members of a class can either be instance members or shared members. Instance members are only
useful in a specific instance of the class, that is, from an object. Until an instance of the object exists,
these members cannot be used or referenced in any way. Instance members belong to specific
instances of the class instead of to the class as a whole. The members added to the sample Per son
class above are all instance members.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Public C ass Sinpled ass
T This is an instance nenber.
Public Comment As String

End C ass

----- In some other code.
Di m nyl nstnace = New Si npl eCl ass
nyl nst ance. Conment = "I am not shared!"

Shared members (sometimes called static members) can be accessed without the presence of any
particular instance of the class. They belong to the whole class, but they are also "shared” among all

instances of the class. Shared members are accessed by qualifying the name of the member with the
name of the class.

Public C ass Sinpled ass
oeae-- This is an instance nenber.
Publ i c Shared Comment As String
End d ass

----- In sone other code.
Si mpl edl ass. Corment = "I am shared!"

All members of a Modul e are automatically shared, even though the Shar ed keyword is not used on
each member of the module.

Consider a class that keeps track of how many instances of itself have been created.

Public Cl ass Tracker
R Shared vari abl es can be private.
Private Shared totallnstances As Integer

Public Sub New()
B Each constructor call increnents the total.
total I nstances += 1

End Sub

Publ i ¢ Shared Function CetlnstanceCount () As Integer

————— Provi de read-only access to the count.
Return total | nstances

End Function

Protected Overrides Sub Finalize()
————— Decrenent the count in the destructor.

total I nstances -= 1
MyBase. Final i ze
End Sub

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

End d ass

Code such as the following accesses the shared member:

DimfirstUse As New Tracker
MsgBox(Tracker. Get | nst anceCount ()) ' --> Displays "1"

Di m secondUse As New Tracker
MsgBox(Tracker. Get | nst anceCount ()) ' --> Displays "2"

This sample code does have a few issues. Although the Finalize destructor (called when an instance is
destroyed, and described more fully later in this chapter) will eventually be called, there is no
guarantee that it will be called in a timely manner. Even if a TRacker object goes out of scope or is
specifically destroyed by setting the object variable to Not hi ng, the Finalize method may not be called
for quite some time, and the instance count may appear to be inaccurate.

Another problem appears because Visual Basic is a multithreaded programming language. If separate
threads of your application each create an instance of TRacker at the same time, their respective calls
to the New constructor may overlap and produce invalid results. The .NET Framework includes classes
that guard against such overlapping code. Mutexes, semaphores, and monitors can be used to
manage conflicts between threads in your application. Visual Basic includes a SyncLock statement
that also supports some conflict resolution between threads. This statement is described in the
SyncLock Statement entry in Chapter 12.

3.2.10. Finalize, Dispose, and Garbage Collection

An instance of an object can be specifically destroyed by setting the variable that refers to the
instance to Not hi ng.

Di m usef ul Cbj ect As New Si npl ed ass

useful bj ect = Not hi ng

An object is also automatically destroyed when all variable references to that object go out of scope
or otherwise cease to exist. When an object is destroyed using any of these methods, the garbage
collection process begins.

The .NET Framework includes a garbage collection system that exists to accurately reclaim memory
used by objects within .NET applications. When the garbage collector determines that an object is no
longer needed, it automatically runs a special destructor method of the class called Finalize. However,
there is no way to determine exactly when the garbage collector will call the Finalize method. It will
be called at some time in the future, but it may not happen immediately. The .NET Framework uses a

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

system called reference-tracing garbage collection, which periodically releases unused resources
according to its schedule, not your program's schedule.

Finalize is a Pr ot ect ed method. It can be called from a class and its derived classes, but not from
outside the class. (Since the Finalize destructor is automatically called by the garbage collector, a
class should never call its own Finalize method directly.) If a class has a Finalize method, that
method should in turn explicitly call its base class's Finalize method as well. The general syntax and
format of the Finalize method is:

Protected Overrides Sub Finalize()

----- Cl eanup code goes here, and then...
MyBase. Fi nal i ze()

End Sub

(The MyBase and Overri des keywords are discussed later in this chapter.) Garbage collection is
automatic, and it ensures that unused resources are always released without any specific interaction
on the part of the programmer. In most cases, the programmer has no control over the garbage
collection schedule; a garbage collection event may occur many minutes after you release an object.
This may cause some resources to remain in use longer than necessary.

Since some classes may acquire resources that must be released immediately upon completed use of

an object instance, .NET supports a "second destructor" called Dispose. Its general syntax and usage
is:

Cl ass cl assNane

| mpl enent's | Di sposabl e

Public Sub Dispose() Inplenents |IDi sposable.Di spose
————— I mredi at e cl eanup code goes here.
End Sub

oo O her class code.

End d ass

(The | mpl enent s keyword is discussed later in this chapter.) The Dispose method is not called
automatically by the .NET Framework. Any code that uses a class with a Dispose method must
specifically call that method to initiate the first-level cleanup code. Still, a programmer may forget to
call the Dispose method, and resources may be retained until they are fully cleaned up through the
Finalize method.

3.2.11. Structures and Modules Versus Classes

In addition to classes, Visual Basic also supports "structures " and "modules ." (These are somewhat

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

analogous to the VB 6 "Type" and "code module"” features.) These two types are really just classes
with syntax rules and default behaviors that differ somewhat from standard classes.

Structures implement instances of a value type and always derive from System.ValueType. They can
never derive from any other base class, nor can a structure be used to derive other structures or
classes. The members of a structure cannot specify Pr ot ect ed as an access modifier. Since they are
value types, structures are destroyed immediately on disuse; they do not support the Finalize
destructor. However, they are lightweight and simple to use for basic data constructs. Structures,
when they are not too large, experience some performance increase over equivalent classes.

Public Structure SinpleStructure
Public Comment As String
Publ i c Total Cost As Deci nal

Public Overrides Function ToString() As String
Return Conment & ", " & Format(Total Cost, "$#, ##0.00")
End Function

End Structure

Modules are similar to classes that have the Publ i c and Shar ed keyword added to every member by
default (although members can be made Pri vat e as well). Since all members of a module are shared,
there is no need to create an instance of the module to access the members. In fact, modules cannot
be instantiated. They cannot be used to derive other modules or classes, either. Modules can contain
nested classes and structures, but modules themselves cannot be nested in any other type. Modules
are commonly used for common procedures and global variables that need to be accessed
throughout your application.

Fri end Mbdul e Generi cCode
Publ i c Function CToF(cel sius As Decimal) As Deci nmal
e Convert Celsius to Fahrenheit.
Return (celsius * 1.8@ + 32@
End Function
End Modul e

3.2.12. Interfaces

Visual Basic implements the object-oriented concept of interfaces through the I nt er f ace keyword.
Interfaces define the members of a class but not the implementation. They look a lot like classes, but
without the member bodies or End constructs (such as End Sub). An interface equivalent to the Person
class defined earlier in this chapter might look like the following:

Interface | Person
Event Testing()
Sub Test ()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Property Age() As Short
Property Nane() As String
End Interface

(By convention, interfaces always begin with the uppercase letter 1 .") Interfaces define the public
properties, methods, and events of an abstract class. Since interfaces do not support variables,
constants, or constructors, some elements of the Per son class are missing from this interface
definition. Also, since all members of an interface are public by definition, the Publ i ¢ keyword is not

needed on each member.

Classes implement one or more interfaces through the | npl enent s keyword. This keyword is used in
two contexts within the class: (1) at the beginning of the class to declare which interface(s) will be
used in the class, and (2) attached to each member that implements a specific member of an

interface. Consider the following code.

I nterface | Dog

Sub Bar k()

Sub Scrat chFl eas()
End Interface

Interface | Cat
Sub Meow()

Sub Dest royFurniture()
End Interface

C ass M xedUpAni nal
| mpl emrent's | Dog
| mpl emrent's | Cat

Public Sub ScratchFl eas() |nplenents |Dog. ScratchFl eas
BT Add code here.
End Sub

Public Sub MakeNoi se() Inplenents |Dog.Bark, |Cat.Mow
BT Add code here.

Public Sub Redecorate() Inplenents |Cat.DestroyFurniture
B Add code here.
End Sub
Public Sub ShowOrf ()
B Add code here.
End Sub
End d ass

This code displays various aspects of interface usage.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e A class declares its intention to use an interface immediately, through distinct | npl enent s
statementsone for each interface to be used.

e A class may implement multiple interfaces at once.

e When a class implements an interface, it must implement all members of the interface, not just
some.

e Specific members of an interface are implemented through standard class members, each
decorated with a separate | npl enent s keyword followed by the name of the interface and
member, as in | npl enent's | Dog. Scr at chFl eas. The implementation's signature must match the
interface member's signature.

e A single class member may implement multiple interface members, as long as those members
share the same signature with the class member. Each interface member is added to the
I mpl enent s keyword, separated by commas, as in | npl enents | Dog. Bark, | Cat.Meow.

e The class member implementing an instance member may use the same name as the interface
member, but it does not have to. The association between a class member and an interface
member occurs through the | npl enent s keyword, not through the class member name.

e A class may implement its own members, fully unrelated to any interface members
implemented in the class, as is done with the ShowCf f procedure in the sample.

While the M xedUpAni mal class implements two distinct interfaces, the term interface also describes
the complete set of all public members exposed by this class. This dual use of "interface" is generally
not a problem, since when discussing the implementation of a specific interface, the name of that
interface is usually included in the discussion.

3.2.13. Inheritance

Visual Basic implements OOP inheritance through the I nherits keyword. When a class inherits from a
base class, it takes on all public and protected members of that base class; in a way, the derived
class is a real implementation of the base class.

As an example of inheritance, consider a simple Enpl oyee class.

Public O ass Enpl oyee
Public Full Nane As String
Private currentSalary As Deci nal

Public Property Salary() As Decinal
B Sal ary can be set directly.

Return current Sal ary
End GCet
Set (val ue As Deci mal)
current Sal ary = val ue
End Set
End Property

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Public Overridable Sub IncSal ary(ByVal raisePercent As Decimal)
————— Rai ses gi ven based on a supplied percentage.
The percent shoul d appear as a deci nal percentage,
as in 0.03 for a 3% raise.
currentSalary *= 1@+ rai sePercent
End Sub
End d ass

This class can be used immediately to manage employee names and salaries. But there may be
special salary-related circumstances that apply to specific categories of employees. In this example,
all salary increases given to executives include an additional 5 percent increase for a car allowance;
secretaries receive an additional 2 percent for an overtime allowance. While distinct classes could be
used, inheritance allows all of the classes to still be instances of the Enpl oyee class, despite their
derived differences.

The I ncSal ary member in the Enpl oyee class includes the Overri dabl e keyword. This keyword allows
a derived class to modify the implementation of the base class' member. Here are the definitions for
the derived Executive and Secr et ary classes, each of which overrides the base | ncSal ary member.

Public Cl ass Executive
I nherits Enpl oyee

Public Overrides Sub IncSal ary(ByVal raisePercent As Decinmal)
BT Extra 5% for car all owance.
Me. Salary *= 1. 05@ + rai sePercent
End Sub
End d ass

Public C ass Secretary
I nherits Enpl oyee
Public Overrides Sub IncSalary(ByVal raisePercent As Decinal)
----- Extra 2% for overtine all owance.
Me. Sal ary *= 1.02@ + rai sePercent
End Sub
End d ass

The Me keyword will be discussed in more detail below, but in the code it means, "I'm trying to access
members of the current class"in this case, either the Executi ve or the Secret ary class. Since the
current Sal ary member is private to the Enpl oyee class, it can't be accessed directly by the derived
classes; all access is made through the public Sal ary property.

Both derived classes include the statement | nherits Enpl oyee, which sets up the inheritance
relationship from Enpl oyee (the base class) to either Executi ve or Secretary (the derived classes).

Each derived instance of the I ncSal ary class includes the Overri des keyword, which states that this

member is specifically overriding an overridable member of the base class. A derived class is not
required to override an Overri dabl e member, but it may.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Each of these classes can now be used in code, and Visual Basic will call the appropriate class
member.

Di m wor ker As New Enpl oyee
Dimtypi st As New Secretary
Dim ceo As New Executive

e Set the initial salaries.
wor ker . Sal ary = 30000

typi st. Sal ary = 40000

ceo. Sal ary = 50000

————— G ve everyone a 5% rai se.
wor ker . I ncSal ary(0. 05@
typist.lncSalary(0.05@

ceo. I ncSal ary(0.05@

————— Di splay the new sal ari es.

MsgBox(wor ker . Sal ary) " --> Displays 31500, a 5% i ncrease
MsgBox(typi st. Sal ary) " --> Displays 42800, a 7% i ncrease
MsgBox(ceo. Sal ary) ' --> Displays 55000, a 10% i ncrease

The derived classes each have access to all public members of the base class.

ceo. Ful | Nanme = "Bill Fences"

Suppose that, in a more complete employee model, there is a derived class for every type of
employee. If each of these derived classes implements its own version of | ncSal ary, then there is no
need for any logic to exist in the | ncSal ary method of the base Enpl oyee class. The code could simply
leave the Enpl oyee. I ncSal ary method empty. Visual Basic also allows you to define an abstract
member, a member that has no implementation, only a definition (sort of a single-member
interface). Each derived class must implement this member to be valid, so VB includes a

Must Over ri de keyword for this purpose.

Public Mustlnherit C ass Enpl oyee
' ---- Define other nmenmbers, then...
Public MustOverride Sub IncSal ary(ByVal raisePercent As Deci mal)
End d ass

Members added with the Must Overri de keyword do not include a body or an end marker (End Sub, in
this case). Visual Basic does not allow a class instance to exist with any abstract members; this
semiabstract Enpl oyee class can no longer be used to create instances directly. The class can only be

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

used to derive other classes. To state this clearly, the class itself is decorated with the Must | nheri t
keyword.

Any class that contains at least one abstract member is termed an abstract class. There may be
situations where all members of a class need to be abstract. Such a class (called a pure abstract
class) defines an interface, although it is not a true Visual Basic I nterf ace.

Consider a Shape class that is designed to model the general properties and actions of geometric
shapes (ellipses, rectangles, trapezoids, etc.). All shapes need a Draw method, but the
implementation varies, depending on the type of shape. Similarly, methods such as Rot at e,

transl ate, and Ref | ect would each likely require their own shape-specific logic. This Shape class can
be implemented as a pure abstract class, from which distinct El | i pse, Rect angl e, and other shape-
specific classes derive.

Public Mistlnherit C ass Shape
Public MustOverride Sub Draw()
Public Must Override Sub Rotate(ByVal degrees As Single)
Public MustOverride Sub Translate(ByVal x As Single,
ByVal y As Single)
Public Must Override Sub Reflect(ByVal slope As Single,
ByVal intercept As Single)
End d ass

Classes can also be defined so that they cannot be used to create new derived classes. The
Not | nheri t abl e keyword enables this restriction.
Public Notlnheritable C ass UseThi sOne

End d ass

Non-inheritable classes may not include any abstract members. Visual Basic also includes a
Not Over ri dabl e keyword that can be used to decorate individual members in a base class.

Classes can be derived at any depth. Class A can be derived into Class B, and Class B can further be
derived into Class C.

Certain rules apply to the inheritance of classes:

Pri vat e members are never inherited.
e Publ i c members are inherited by all derived classes.
e Protected members are inherited by all derived classes, as are Prot ect ed Fri end members.

e Fri end members are inherited by all derived classes in the same project as the base class, but
not by derived classes in another assembly or application.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

3.2.14. MyBase, MyClass, and Me

When working with derived classes, there are times when references to a member may be somewhat
ambiguous; a member name may exist in both the derived class and the base class. Visual Basic
provides special keywords to help alleviate this ambiguity.

The MyBase keyword provides a reference to the base class from within a derived class. If you want to
call a member of the base class from within a derived class, you can use the syntax:

MyBase. Menber Nane

This will resolve any ambiguity if the derived class also has a member of the same name. The M/Base
keyword can also be used to create an instance of the base class through its constructor:

MyBase. New(. . .)

The MyBase keyword cannot be used to access Pri vat e members of the base class, as they are
inaccessible from derived classes.

If a class is derived from a chain of base and derived classes, WyBase looks first to the closet "parent
class in the chain for a matching member (including a matching signature). If a match is not found,
VB continues up the chain until the root class, which is always System.Object.

The keywords Me and Myd ass both provide a reference to the local class (the class in which the
current code resides), but they exhibit slight differences. Consider a class named BaseC ass and
another derived from it, named Deri vedd ass.

Public C ass BaseC ass
Public Overridable Function WiereAm () As String
Return "Base"
End Function

Publi ¢ Sub ShowlLocati on()
MegBox(Me. Wher eAm ())
MegBox(MyCl ass. Wher eAmi ())

End Sub

End d ass

Public C ass Derivedd ass
I nherits Based ass
Public Overrides Function WiereAm () As String
Return "Derived"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

End Function
End d ass

Now consider the following code that uses these classes:

DmfirstTry As New BaseC ass
Di m secondTry As New Derivedd ass
Di m useAsBase As Based ass

useAsBase = firstTry
useAsBase. ShowLocation() ' --> Shows "Base", "Base"

useAsBase = secondTry
useAsBase. ShowLocation() ' --> Shows "Derived", "Base"

The first call to ShowLocat i on is made using a variable of type BaseC ass that refers to an object of
type Based ass. In this case, both of the calls:

Me. Wher eAnd ()
My d ass. Wher eAn ()

return the same value, because they both call Wher eAm in BaseCd ass.

However, in the second case, the variable of type BaseC ass holds a reference to an object of
Derivedd ass. In this case, Me refers to an object of type Deri vedd ass (the secondTry reference),
whereas W ass still refers to the base class BaseC ass (the useAsBase reference). When using the Me

keyword, the actual object as originally instantiated is used; when using MyCl ass, the class of the
variable that is used to make the method call becomes the controlling class.

3.2.15. Shadowing and Overloading Members

Visual Basic provides a few additional features that let you provide even more control over which
members are used in your base and derived classes.

3.2.15.1. Shadowing

Shadowing is similar to overriding, but with some very important differences. Consider two classes,
BaseC ass and Deri vedd ass:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Public C ass Based ass
Public sinpleField As Integer =1

Public Overridable Sub TestOverride()
MsgBox (" BaseC ass: Test Overri de")
End Sub

Publ i c Sub Test Shadow()
MsgBox (" BaseCl ass: Test Shadow")
End Sub

End C ass

Public C ass Derivedd ass
I nherits BaseC ass

Publ i ¢ Shadows sinpleField As Integer = 2

Public Overrides Sub TestOverride()
MsgBox (" Deri vedd ass: Test Overri de")
End Sub

Publ i ¢ Shadows Sub Test Shadow()
MsgBox (" Deri vedd ass: Test Shadow")
End Sub
End d ass

BaseC ass has two methods, Test Overri de (with the Overri dabl e keyword) and Test Shadow.

Deri vedd ass also defines methods with the same names; in this case, Test Overri de includes the
Overri des keyword, and Test Shadow uses the Shadows keyword. Both fields also have a related public
I nt eger field.

The following code tests the derived class:

DiminUse As DerivedC ass = New Derivedd ass
i nUse. Test Overri de()

i nUse. Test Shadow()

MsgBox("Field = " & inUse. sinpleField)

Because the object reference i nUse is to an object of Deri vedd ass, the calls to the Test Overri de and
Test Shadow methods, as well as to the public variable si npl eFi el d, all refer to code in Deri vedd ass;
the output messages are as expected:

DerivedCd ass: Test Overri de
Deri vedd ass: Test Shadow
Field = 2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The test of the classes working together, though, is a little more interesting:

DiminUse As BaseC ass = New DerivedC ass
i nUse. Test Overri de()

i nUse. Test Shadow()

MsgBox("Field = " & inUse. sinpleField)

In this case, a variable of type Based ass refers to an object of type Deri vedd ass. The output this
time is:

Deri vedCd ass: Test Overri de
BaseCl ass: Test Shadow
Field = 1

When interacting with base and shadowed members, the type of variable used to reference the
members is the deciding factor. In the sample, even though the actual object was of type

Deri vedd ass, the fact that the variable was of type BaseC ass caused VB to use the BaseC ass
version of shadowed features.

Class fields, such as si npl eFi el d, can only be shadowed; they cannot be overridden.

One other difference between shadowing and overriding is that a shadow element need not be the
same type of element as its base class partner. For instance, the following code is valid.

Public C ass BaseCd ass
Publ i ¢ TheShadowKnows As | nteger
End C ass

Public C ass Derivedd ass
I nherits BaseC ass

Publ i ¢ Shadows Sub TheShadowKnows()
MsgBox (" This code | acks clarity!")
End Sub
End d ass

Shadowing only considers the name of the member, not its type or signature. While allowing
members of different types to shadow each other seems like a hazardous practice, it actually has its
use. In Visual Basic, your code can include a global variable and a local variable of the same name,
but of different data types. This ability is possible because the local variable is shadowing its global
namesake. In such a case, references to the variable name in the local procedure always refer to the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

local variable, not the global variable of the same name. This process is known as shadowing by

scope.

3.2.15.2. Overloading

Overloading refers to an item being used in more than one way. Generally, overloading occurs when
a class includes multiple methods with the same name but with different signatures. For instance, the
Abs function in the System.Math class includes several versions, but each uses different source and
return data types.

Over | oads
Over | oads
Over | oads
Over | oads
Over | oads
Over | oads
Over | oads

Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i

O 000000

Shar ed
Shar ed
Shar ed
Shar ed
Shar ed
Shar ed
Shar ed

Functi
Functi
Functi
Functi
Functi
Functi
Functi

on
on
on
on
on
on
on

Abs(Decimal) As Deci nal
Abs(Doubl e) As Doubl e
Abs(Int16) As Intl6
Abs(1nt32) As Int32
Abs(Int64) As Int64
Abs(SByte) As SByte
Abs(Single) As Single

Each entry includes the Over | oads keyword, which tells VB that this function is overloaded. You can
create your own overloaded methods. Consider a function that retrieves a current account balance.
The account could be identified either by the customer's account number or driver's license number.
The method that retrieves the balance might be defined with two different signatures.

Overl oads Function CetBal ance(account Nunmber As Long) As Deci nal
Overl oads Function GetBal ance(licenseNunber As String) As Decinal

When calling Get Bal ance, VB decides which version to use based on whether the method is passed a
string or a long integer value.

New in 2005. The 2005 release of Visual Basic introduced operator overloading to the language. This
feature allows a class to define functionality for the standard VB operators, such as the addition
operator (+). Operator overloading is discussed in full in Chapter 5.

downloaded from: lib.ommolkefab.ir

MNEXT B

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Chapter 4. Variables and Data Types

Data manipulation is the heart of any software application. You could choose to process the data the
way that your computer's CPU does: bit by bit. But that quickly becomes tedious, so languages like
Visual Basic include a variety of data types , implementations of data management tools each based
on a subset of possible data values. This chapter discusses data types, the data managed by those
types, and how they are processed in Visual Basic and .NET.

The term "data types" differs from the more general term "types" used throughout this and other
.NET documentation. .NET is built on the concept of the type, the basic data construct of .NET, which
includes classes, structures, delegates, and other high-level elements used to build applications and
pass data around programs. The data types available in .NET are built from these more generalized
types, as are your own custom classes. Data types provide a small but essential set of data
manipulation tools, grouped by the subset of possible data values managed by each data type.

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

4.1. Data Types

The .NET Common Language Runtime (CLR) includes the Common Type System (CTS), which
defines the data types that are supported by the CLR. Each .NET-enabled language implements a
subset of the CLR data types, although some languages implement all of them (Visual Basic does,
starting in 2005).

In .NET, data types are special classes and structures whose instances manipulate a data value that
must fall within the limited range of the data type. For instance, the Byt e data type can support and
manage any 8-bit unsigned integer value, from O to 255. It allows no other data values outside of
this defined subset, but it handles this subset extremely well. .NET provides data types for those
subsets of data that programmers have found essential in software development. These data types
make it possible to manipulate virtually any variation of data. For those instances where a predefined
.NET data type will not meet your needs, you can use the predefined data types as building blocks to
develop your own custom data management class.

The .NET Framework implements nearly 20 of these essential core data types, most designed to
manipulate integer or floating point numbers. The native VB data types are wrappers for the core
data types. For instance, the VB | nt eger data type is a wrapper for the System.Int32 structure. One
of the members of the Int32 structure is MaxValue, which returns the maximum numeric value
allowed for this data type. Thus, even though MaxValue is not officially part of VB, the | nt eger data
type's full dependence on the Int32 data type allows the following usage:

Di m usesInt32 As | nteger
MsgBox(usesl nt 32. MaxVal ue) " Displays 2147483647

Before the 2005 release of .NET, only some of the core .NET data types were implemented in Visual
Basic. Yet even without specific VB wrappers, the earlier releases of VB.NET still provided access to

the unwrapped data types. Since the core data types are simply classes and structures, they can be
instantiated just like any other class or structure.

4.1.1. Value and Reference Types

Data types in Visual Basic fall into two broad categories: (1) value types and (2) reference types .
Value types and reference types differ primarily in how they are stored in memory. The memory
allocated to a value type variable contains the actual value. In a statement such as:

Di m sinpl evValue As Integer = 5

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

a memory location is set aside to hold the value of 5. In contrast, the memory storage allocated to a
reference type variable stores another memory address location where the real data can be found.
It's like a forwarding address at the post office. In a reference type declaration such as:

Di m somewher eEl se As New MyCust onCl ass

the VB compiler creates an instance of the MyCust onCl ass class in memory and then sets the value of
somewher eEl se to the true memory address of that instance. If you are familiar with pointers in
languages such as C++, this is Visual Basic's closest equivalent.

In short, value type variables contain the data, and reference type variables point to the data.

The distinction between value types and reference types has several consequences, one of which is in
the way assignments work. Consider the following class, which has a single field:

Public C ass Sinpled ass
Public Age As Short
End d ass

and an equivalent structure:

Structure SinpleStruct
Public Age As Short
End Structure

Classes are reference types, but structures are value types. The following code illustrates the
difference in usage between the two similar yet different types.

B Declare two of each type.
Di mref Typel As Sinpl eCl ass
Di mrefType2 As Sinpl eCl ass
Di m val Typel As Sinpl eStruct
Di m val Type2 As Sinpl eStruct

e First, a denmponstration of reference types. Setting
' ref Type2 = ref Typel causes refType2 to *reference*
' the sanme nenory | ocation. Further changes nmade to
' menbers of refTypel will inpact refType2, and vice
' versa. They share the same object instance.

ref Typel = New Si npl eCl ass

ref Typel. Age = 20

ref Type2 = refTypel

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ref Type2. Age = 30
Debug. WiteLine(ref Typel. Age) ' --> Shows 30
Debug. Wi teLi ne(ref Type2. Age) ' --> Shows 30

----- Now for value types. Setting val Type2 = val Typel
mekes a *copy* of the nenbers of val Typel. Any
further changes to the nenbers of one variable
wi |l have *no* inpact on the other.

val Typel = New Sinpl eStruct

val Typel. Age = 20

val Type2 = val Typel

val Type2. Age = 30

Debug. Witeline(val Typel. Age) ' --> Shows 20

Debug. Witeline(val Type2. Age) ' --> Shows 30

In a way, both assignments of one variable to the other did the same thing: they copied the value of
the right-hand variable to the left-hand. But since the reference type, r ef Typel, had a value of a
memory address, that memory address was copied into r ef Type2. Since both variables pointed to the
same location in memory where the members were stored, both shared a common set of members.

The assignment of the value type val Typel to val Type2 also copied the value of the right-hand
variable to the left hand. But the value of val Typel contained its actual members. A distinct copy of
those members (only the Age member, in this case) was made for the separate use of val Type2.

To clear a reference type, set it to Not hi ng. Value types always have a value, even if it is zero; they
cannot be set to Not hi ng.

All of the core Visual Basic data types that manage numeric values (such as | nt eger and Doubl e) are
value types. The String data type is a reference type, but it acts like a value type. When you assign
a string from one variable to another, you do not get a reference to the first string, as you would

expect. That's because the implementation of the St ri ng data type always creates a completely new
instance of the original string each time an assignment or change is made.

4.1.2. Visual Basic Data Types: A Reference

Visual Basic implements all of the core .NET data types as of the 2005 edition of the language. These
basic data types provide a broad range of features for managing all categories of data. The data
types can be arranged into five groups by the type of data managed.

Boolean Data

This single data type provides a single bit of data, either True or False.

Character Data

Visual Basic includes data types that manage either single characters or long strings of

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

characters.

Date and Time Data

A single data type manages both date and time values.

Floating Point Data
The various floating point data types each manage a subset of rational numbers. Some of these
data types provide more mathematical accuracy than others.

Integer Data

The integer data types, and there are many, store integer values between a data type-defined
minimum and maximum value. Some of these data types support negative numbers.

The remainder of this section includes definitions and commentary on each core data type supplied
with the Visual Basic language.

4.1.2.1. Boolean data type

Quick Facts

Core .NET Type: System.Boolean

Implementation: Value Type (Structure)

Storage Size: 2 bytes

Value Range: true or Fal se
The Bool ean data type supports only two possible values: TRue or Fal se. The VB keywords t rue and
Fal se are used to assign these values to a Boolean variable. You can also assign the result of any

logical operation to a Boolean variable.

When a numeric value is converted to Boolean, any nonzero value is converted to t rue, and zero is
converted to Fal se. In the other direction, Fal se is converted to zero, and true is converted to -1.
(This differs from other .NET languages, which convert TRue to 1. Visual Basic uses -1 for reasons of
backward compatibility. When sharing Boolean data between components built in different .NET
languages, the .NET Framework automatically makes the correct adjustments according to the
language in use.)

4.1.2.2. Byte data type

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Quick Facts
Core .NET Type: System.Byte
Implementation: Value Type (Structure)
Storage Size: 1 byte
Value Range: O to 255 (unsigned)

The Byt e data type is the smallest unsigned integer data type supported by Visual Basic. While its
range is small, it is especially useful when working with raw binary data.

4.1.2.3. Char data type

Quick Facts

Core .NET Type: System.Char

Implementation: Value Type (Structure)

Storage Size: 2 bytes

Value Range: A character code from O to 65,535 (unsigned)
The Char data type stores a single 16-bit Unicode character. All characters in .NET are 16 bits in
length, which is sufficient to support double-byte character set (DBCS) languages, such as Japanese.

There was no equivalent to the Char data type in pre-.NET versions of Visual Basic.

When using a literal Char value, append the single letter "c" to the value.

Di msingleLetter As Char = "A'c

A String variable containing a single character is not the same as a Char variable holding that same
single character. They are distinct data types, and an explicit conversion is required to move data
between the two types (when Option Strict isenabled).

4.1.2.4. Date data type

Quick Facts
Core .NET Type: System.DateTime

Implementation: Value Type (Structure)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Storage Size: 8 bytes
Value Range: January 1, 1 AD to December 31, 9999 AD (Gregorian)

Date values are stored as IEEE 64-bit long integers that can represent dates in the range January 1,
1 to December 31, 9999, and times from 0:00:00 to 23:59:59. The actual value is stored internally
as the number of "ticks" since midnight on January 1, 1 AD. Each tick represents 100 nanoseconds.

Literal dates must be enclosed in number signs (#).

Di m i ndependenceDay As Date = #7/4/ 1776#

4.1.2.5. Decimal data type

Quick Facts
Core .NET Type: System.Decimal
Implementation: Value Type (Structure)
Storage Size: 12 bytes

Value Range: +/-79,228,162,514,264,337,593,543,950,335 with no decimal portion; +/-
7.9228162514264337593543950335 with 28 decimal places; the smallest nonzero number is
+/-0.0000000000000000000000000001
Values of the Deci nal data type are stored as 96-bit signed integers, along with an internal scale
factor ranging from O to 28, which is applied automatically. This provides a high level of mathematical
accuracy for numbers in the valid range, especially currency values.
Literal instances of Deci nal data append the letter "D" or the character "@ to the end of the numeric
value.

DimstartingVal ue As Decinmal = 123. 45D
Di m endi ngVal ue As Decimal = 543.21@

You can also use the "@ character to indicate that a declared variable is of type Deci mal .

Dim startingVal ue@= 123. 45D

The MaxVal ue and M nVal ue members of the Deci nal data type provide the range limits.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In pre-.NET implementations of Visual Basic, the Deci mal data type was not a true data type; it
existed as a subtype to the Vari ant data type. The .NET version of the Deci mal data type is a true
data type implementation.

4.1.2.6. Double data type

Quick Facts
Core .NET Type: System.Double
Implementation: Value Type (Structure)
Storage Size: 8 bytes

Value Range: -1.79769313486231E+308 to -4.94065645841247E-324 for negative values;
4.94065645841247E-324 t0 1.79769313486232E+308 for positive values

Values of type Doubl e are IEEE 64-bit (8-byte) double-precision signed floating point numbers. They
include a large range but also experience some accuracy loss in certain calculations.

Literal instances of Doubl e data append the letter "R" or the character "#" to the end of the numeric
value.

Dim startingVal ue As Double = 123. 45R
Di m endi ngVal ue As Doubl e = 543. 21#

You can also use the "#" character to indicate that a declared variable is of type Doubl e.

DimstartingVal ue# = 123. 45R

4.1.2.7. Integer data type

Quick Facts
Core .NET Type: System.Int32
Implementation: Value Type (Structure)
Storage Size: 4 bytes

Value Range: -2,147,483,648 to 2,147,483,647

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The | nt eger data type is a 32-bit signed integer data type. This is the native word size in 32-bit
processors, so its use can provide some performance enhancements over other integral data types
on those processors.

In pre-.NET versions of Visual Basic, the | nt eger data type was only 16 bits in size and had a smaller
range. The .NET version of Visual Basic includes Short as its 16-bit signed data type.

Literal instances of | nt eger data optionally append the letter "I " or the character "%' to the end of the

numeric value.

Dim startingValue As Integer = 123l
Di m endi ngVal ue As I nteger = 543%

You can also use the "%' character to indicate that a declared variable is of type I nt eger.

Di mstartingVal ue% = 123l

4.1.2.8. Long data type

Quick Facts
Core .NET Type: System.Int64
Implementation: Value Type (Structure)
Storage Size: 8 bytes
Value Range: -9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807
The Long data type is a 64-bit signed integer data type. In pre-.NET versions of Visual Basic, the Long
data type was only 32 bits in size and had a smaller range. The .NET version of Visual Basic uses
I nt eger as its 32-bit signed data type.
Literal instances of Long data append the letter "L" or the character "&" to the end of the numeric

value.

123L

Dim startingVal ue As Long =
= 543&

Di m endi ngVal ue As Long

You can also use the "&" character to indicate that a declared variable is of type Long.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Di mstartingVal ue& = 123L

When using the "&" character to identify a Long literal, do not leave a space between the number and
the "&" character, as the "&" character alone acts as the string concatenation operator.

4.1.2.9. Object data type

Quick Facts
Core .NET Type: System.Object
Implementation: Reference Type (Class)
Storage Size: 4 bytes
Value Range: Any type can be stored in an Obj ect variable
The Obj ect data type is the universal data type; an Obj ect variable can refer to (point to) data of any

other data type. For instance, an bj ect can refer to Long values, Stri ng values, or any other class
instance.

Di m amazi ngVari abl e As bj ect

amazi ngVari abl e = 123L
amazingVariable = "Isn't it great?"
amazi ngVari abl e New MyCust onCl ass

There is a performance penalty when using Obj ect variables. Visual Basic cannot associate the true
data's members with the Obj ect variable at compile time; this linking has to be done at runtime,
which increases the amount of code required to process object-related methods. This is referred to as
late binding. Declaring objects as their true type results in early binding, where all member links are
managed by the compiler. Code such as:

Di m | at eBound As bj ect

| at eBound = New MyCust onTl ass
| at eBound. SoneMet hod()

requires the application to match up the | at eBound variable with MyCust onCl ass's SoneMet hod member
at runtime. This is much less efficient than:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Di m ear | yBound As MyCust onCl ass

ear | yBound = New MyCust onC ass
ear | yBound. SoneMet hod()

In pre-.NET versions of Visual Basic, the Var Type function identified the specific subtype of a Vari ant
value. The Var Type function still exists in .NET-enabled Visual Basic; it identifies the true type of the
variable or value. The System.Object class (and by derivation, all classes in .NET) also includes a
GetType method that returns information about the true type of the object. Although these tools
work with any data type, they are especially useful with objects of type Obj ect .

4.1.2.10. SByte data type

Quick Facts
Core .NET Type: System.SByte
Implementation: Value Type (Structure)
Storage Size: 1 byte
Value Range: -128 to 127

New in 2005. The SByt e data type is the smallest signed integer data type supported by Visual Basic.
It acts as the signed counterpart to the unsigned Byt e data type.

The SByt e data type is one of four Visual Basic data types, added in the 2005 release of the language,
that are not compliant with the minimal Common Language Specification. Components and
applications using that standard may not be compatible with applications that use the SByt e data

type.

4.1.2.11. Short data type

Quick Facts
Core .NET Type: System.Int1l6
Implementation: Value Type (Structure)
Storage Size: 2 bytes
Value Range: -32,768 to 32,767

The Short data type is a 16-bit signed integer data type. In pre-.NET versions of Visual Basic, the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

I nt eger data type was a 16-bit signed data type; the Short data type did not exist in Visual Basic
before .NET.

Literal instances of Short data append the letter "S" to the end of the numeric value.

DimstartingVal ue As Short = 123S

4.1.2.12. Single data type

Quick Facts
Core .NET Type: System.Single
Implementation: Value Type (Structure)
Storage Size: 4 bytes

Value Range: -3.402823E+38 to -1.401298E-45 for negative values, and 1.401298E-45 to
3.402823E+38 for positive values

Values of type Si ngl e are IEEE 32-bit (4-byte) single-precision signed floating point numbers. They
include a moderate range but also experience some accuracy loss in certain calculations.

Literal instances of Si ngl e data append the letter "F" or the character to the end of the numeric

value.

Dim startingVal ue As Single = 123. 45F
Di m endi ngVal ue As Single = 543. 21!

You can also use the "! " character to indicate that a declared variable is of type Si ngl e.

Dim startingVal ue! = 123. 45F

4.1.2.13. String data type

Quick Facts

Core .NET Type: System.String

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Implementation: Reference Type (Class)
Storage Size: 10 + (2 * string_length) bytes
Value Range: O to approximately 2 billion Unicode characters

The Stri ng data type holds variable-length Unicode character strings of up to approximately 2 billion
characters in length.

All strings in .NET are immutable. Once a value is assigned to a string, it cannot be changed. When
you modify the contents of a string, the Stri ng data type returns a new instance of a string with the
modifications.

A String variable containing a single character is not the same as a Char variable holding that same
single character. They are distinct data types, and an explicit conversion is required to move data
between the two types (when Option Strict is enabled).

4.1.2.14. Ulnteger data type

Quick Facts
Core .NET Type: System.UInt32
Implementation: Value Type (Structure)
Storage Size: 4 bytes
Value Range: O to 4,294,967,295 (unsigned)

New in 2005. The Ul nt eger data type is a 32-bit unsigned integer data type. It acts as the unsigned
counterpart to the signed I nt eger data type.

The Ul nt eger data type is one of four Visual Basic data types, added in the 2005 release of the

language, that are not compliant with the minimal Common Language Specification. Components and
applications using that standard may not be compatible with applications that use the Ul nt eger data

type.

4.1.2.15. ULong data type
Quick Facts
Core .NET Type: System.UInt64

Implementation: Value Type (Structure)

Storage Size: 8 bytes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Value Range: O to 18,446,744,073,709,551,615 (unsigned)

New in 2005. The ULong data type is a 64-bit unsigned integer data type. It acts as the unsigned
counterpart to the signed Long data type.

The ULong data type is one of four Visual Basic data types, added in the 2005 release of the language,
that are not compliant with the minimal Common Language Specification. Components and
applications using that standard may not be compatible with applications that use the ULong data

type.

4.1.2.16. UShort data type

Quick Facts
Core .NET Type: System.UInt16
Implementation: Value Type (Structure)
Storage Size: 2 bytes
Value Range: O to 65,535 (unsigned)

New in 2005. The UShort data type is a 16-bit unsigned integer data type. It acts as the unsigned
counterpart to the signed Short data type.

The Ushort data type is one of four Visual Basic data types, added in the 2005 release of the
language, that are not compliant with the minimal Common Language Specification. Components and
applications using that standard may not be compatible with applications that use the UShort data

type.

4.1.3. User-Defined Data Types

While individual variables can potentially meet all of your programming needs, it is often more
productive to combine multiple basic data values into logical groups. These user-defined data types
extend the basic data types with new types of your own choosing.

Pre-.NET versions of Visual Basic supported user-defined data type creation through the Type
statement. These structured types were simply groupings of variables with no functionality beyond
the ability to set and retrieve the value of each type member. Visual Basic under the .NET Framework
greatly expands this feature by allowing code into each structure, as well as other basic .NET
elements. Visual Basic 6 types are replaced by the .NET concept of a Structure.

Classes are the basic code and data containers in .NET. Structures are similar to classes, although
they have certain limitations that don't apply to classes. One significant difference is that structures
implement value types (inherited directly from System.ValueType), while classes implement
reference types.

To declare a structure, use the Struct ure statement:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[Public|Private|Friend] Structure structureNane
menber decl arations
End Structure

The members of a structure can be fields, properties, methods, shared events, enumerations, or
other nested structures. Each member must be declared with an access modifier: Public, Private, or
Friend.

The simplest and most common use of structures is to encapsulate related variables, or fields. For
instance, a simple structure can be used to define demographic information for a person:

Structure Person
Public Nanme As String
Public Address As String
Public City As String
Public State As String
Public Zip As String
Public Age As Short
End Structure

A standard declaration defines a variable of type Per son:

Di m onePer son As Person

Members of the structure are accessed using the standard "dot" syntax that applies also to classes:

onePer son. Nane = " Beet hoven"

More complex structures may include members and properties:

Public Structure NanmeAndSt at e
R Public and private fields.
Public Name As String
Private theState As String

Publ i c Function ShowAll() As String
e A public nmethod. Show all stored val ues.
If (theState = "") And (Nanme = "") Then
Return "<No Nane> from <Nowher e>"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

El self (theState = "") Then

Return Name & " from <Nowhere>"
El self (Name = "") Then

Return "<No Nanme> from" & theState
El se

Return Name & " from" & theState
End If

End Function

Public Property State() As String
----- A public property. Limt state val ues.

Return theState
End Cet
Set (ByVal value As String)
If (Len(value) = 2) Then
theState = UCase(val ue)

El se
Throw New System Argunent Exception(_
"State limted to 2 characters.”, "State")
End If
End Set

End Property
End Structure

Instances of the structure can now be created and used just like classes:

Di m onePerson As New NaneAndSt at e
onePerson. Nane = "Donna"
onePerson. State = "CA"
MsgBox(onePer son. ShowAl | (1))

Structures can be passed as arguments to functions or used as the return type of a function.
Although structures are similar to classes, they do not support the following class features:

Structures cannot explicitly inherit, nor can they be inherited.

All constructors for a structure must be parameterized.

Structures cannot define destructors; Finalize is never called.

an initial array size.

For a reference to the object-oriented terminology, see Chapter 3.

downloaded from: lib.ommolkefab.ir

Member declarations cannot include initializers, nor can they use the As New syntax or specify

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.1.4. Data Type Conversion

The process of converting a value of one data type to another is called conversion or casting. A
conversion can be applied to a literal value, variable, or expression of a given type. Visual Basic
includes several conversion functions that cast data between the basic data types .

Dmmni Size As Byte = 6

Di m super Si ze As Long

superSize = CLng(mni Size) ' Convert Byte variable to Long
super Si ze = CLng("12") " Convert String literal to Long

Casts and conversions can be widening or narrowing. A widening cast is one in which the conversion
is to a target data type that can accommodate all possible values in the source data type, such as
casting from Short to I nt eger or from | nt eger to Doubl e. Data is never lost in widening casts. A
narrowing cast is one in which the target data type cannot accommodate all possible values of the
source data type. In this case, data may be lost, and the cast may not succeed.

Visual Basic conversions are made in two ways: implicitly and explicitly. An implicit conversion is
done by the compiler when circumstances warrant it (and it is legal). For instance, in the statements:

DimsnallerData As | nteger = 3948
DimlargerData As Long
| argerData = snal | er Dat a

the snal | er Dat a value is automatically converted to the larger Long data type used by the | ar ger Dat a
variable. The type of implicit conversion that the compiler will do depends in part on the setting of the
OptionStrict statement. This statement appears at the top of a source code file, before any class-
specific code.

Option Strict {On | Of}

If Option Strict is On, only widening casts can be implicit; narrowing casts such as:

Dim snal | erData As | nteger
DimlargerData As Long = 3948
snal | erData = | argerDat a

generate a compile-time error due to the narrowing conversion, even though the sample data could
easily fit in the destination variable. Explicit conversion is required.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

smal | erData = ClInt (Il argerData)

Setting Option Strict to OFf permits the implicit conversion, even though the conversion may fail.
In addition to the Option Strict statement, Visual Basic also includes an Opti on Explicit statement

that appears at the start of a source code file.

Option Explicit {On | Of}

When Option Explicit is On, all variables must be declared (using Di mor a similar declaring keyword)
before use. When Option Explicit is O f, VB will automatically add a declaration at compile time for
any variable name it encounters that does not already have a declaration. (It won't add new Di m
statements to your source code; it will add the declarations silently during the compile process.)
Turning this option O f can lead to esoteric bugs that are hard to locate. See the "Option Explicit
Statement" entry in Chapter 12 for additional information. The default values for both Opti on Stri ct
and Option Explicit can be set in the project's properties.

Visual Basic includes conversion functions for the basic data types.

CBool Function
Converts any valid string or numeric expression to Bool ean. When a numeric value is converted

to Bool ean, any nonzero value is converted to true, and zero is converted to Fal se.

CByte Function

Converts any numeric expression in the range of a Byt e to Byt e, rounding any fractional part.

CChar Function

Converts the first character of a string to the Char data type.

CDate Function

Converts any valid representation of a date or time to Dat e.

CDbl Function

Converts any numeric expression in the range of a Doubl e to Doubl e.

CDec Function

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Converts any numeric expression in the range of a Deci nal to Deci nal .

CInt Function
Converts any numeric expression in the range of an I nt eger to | nt eger, rounding any fractional
part.

CLng Function

Converts any numeric expression in the range of a Long to Long, rounding any fractional part.

CODbj Function
Converts any expression to an oj ect . This is useful when you need to treat a value type as a
reference type.

CSByte Function
New in 2005. Converts any numeric expression in the range of an SByt e to SByt e, rounding any
fractional part.

CShort Function

Converts any numeric expression in the range of a Short to Short, rounding any fractional part.

CSng Function

Converts any numeric expression in the range of a Si ngl e to Si ngl e.

CStr Function
Converts an expression to its string representation. Boolean values are converted to either
"True" or "False." Dates are converted based on the date format defined by the regional
settings of the host computer.

CType Function
Provides generalized casting, allowing an object or expression of any type to be converted to

another type. It works with all classes, structures, and interfaces. This applies to both the basic
data types and custom classes. The function has the following syntax:

CType(expression, typenane)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For instance, the statement:

Di m target Number As | nteger CType(" 12", Integer)

is equivalent to:

Di m target Nunber As I|nteger Clnt("12")

New in 2005. The 2005 release of Visual Basic adds operator overloading features, described in
Chapter 5. One component of operator overloading is the ability to define CType conversion rules for
your own custom classes.

CUlInteger Function

New in 2005. Converts any numeric expression in the range of a U nt eger to Ul nt eger,
rounding any fractional part.

CULong Function
New in 2005. Converts any numeric expression in the range of a ULong to ULong, rounding any

fractional part.

CUShort Function

New in 2005. Converts any numeric expression in the range of a UShort to UShort, rounding
any fractional part.

[prev | NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

4.2. Variables

A variable can be defined as an entity that has the following six properties:

Name

A variable's name is used to identify it in code. In VB, a variable name starts with a Unicode
alphabetic character or an underscore and is then followed by additional underscore characters
or various Unicode characters, such as alphabetic, numeric, formatting, or combined
characters. With the introduction of .NET, Microsoft recommends a new set of naming
standards for use with variables and other named objects. These naming standards are
discussed briefly in the "Naming Conventions" section of Chapter 1.

Address

Every variable has an associated memory address, the location where the variable's value is

stored. Variables are not guaranteed to maintain a permanent memory address in .NET, so the
address of a variable should not be recorded or used.

Data Type

The data type of a variable determines the possible values that the variable can assume.

Value

The value of a variable is the data content it contains at its memory address. This is also
sometimes referred to as the r-value of the variable, since it is what appears on the right side
of a variable assignment statement. For instance, in the code:

DimtargetValue As Integer = 5

the statement can be read as "store the value of 5 in memory at the address of t ar get Val ue."

Because it appears on the left side of an assignment operator, the variable (or its memory location)
is sometimes called an I-value.

Scope

The scope of a variable determines where in a program that variable is visible to the code.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Variable scope is discussed in more detail later in this chapter.
Lifetime
A variable's lifetime determines when and for how long a particular variable exists. It may or

may not be visible (that is, be in scope) for that entire period. Variable lifetime is described in
more detail later in this chapter.

4.2.1. Variable Declaration

A variable declaration is an association of a variable name with a data type. For non-object variables
(value types), declaration is firmly tied to variable instance creation. A declaration such as:

Di m creat eMeNow As | nt eger

creates an | nt eger variable named cr eat eMeNow. This is equivalent to:

Di m creat eMeNow As | nteger = New I nteger

or even:

Di m creat eMeNow As New | nt eger

which emphasizes the creation of a new instance of the variable object.
Multiple variables can be declared within a single statement. Although each variable generally has its

own type declaration, this is not a requirement. If a variable lacks an explicit type declaration, then
its type is that of the next variable with an explicit type declaration. Thus, in the line:

Dimfirst As Long, second, third As Integer, fourth As String

the variables second and t hi rd have type I nteger. (In VB 6, second would have been Vari ant .)

Visual Basic permits the initialization of variables in the same line as their declaration. (The assigned
value is called an initializer.) The statement:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Dim al wayslnitialized As Integer = 5

declares and creates an | nt eger, and assigns it an initial value of 5. Multiple assignments in a single
statement also work.

Dmfirst As Integer = 6, second As Integer = 9

When using initializers, each variable must include an explicit data type.

Object variables (reference types) are declared just like their core data type counterparts:

Di m newHi re As Enpl oyee

However, this declaration does not create an object variable; the variable's value is equal to Not hi ng.
Object creation requires an explicit call to the object's constructor, as in:

Di m newHi re As New Enpl oyee

or:

Di m newHi re As Enpl oyee = New Enpl oyee

or even:

Di m newHi re As Enpl oyee
newH re = New Enpl oyee

4.2.2. Variable Scope, Lifetime, and Access Level

Variables have a scope, which indicates where in the program the variable is recognized or visible to
the code.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.2.2.1. Local variables: block-level scope and procedure-level

All variables declared within a function, sub procedure, or property are local variables. These
variables may be used only within that routine; when the routine is complete, they cease to exist (if
they haven't been passed to another variable with a larger scope).

Local variables generally have procedure-level scope; they are accessible by every line of code in the
procedure. These local variables often appear immediately upon entering the code of the procedure.

Public Sub DoTheWsrk()
DimlocallInt As Integer
Di m | ocal Enp As New Enpl oyee

Code blocks are sets of statements contained within an | f statement, a For loop, a Wt h statement,
or any other similar block of code that has separate starting and ending statements. All statements
that appear between the opening statement (I f, El sel f, For, Wt h, and so on) and the closing
statement (End I f, Next, End Wth, and so on) are part of that code block. Any variable defined
within a code block has block-level scope; it is only visible within that block of code. Since code blocks
can be nested, block-level variables can appear at any depth within the nesting.

Public Sub DoTheWrk(ByVal fromMen As Date, ByVal howMuch As Deci nal)
If (fromMen < Today) Then
B This variable is available within the outer-nost
If block, which also includes the inner-nost bl ock.
' It is not available outside the outer-nost |If bl ock.
Di m si npl eCal cul ati on As | nteger

If (howMuch > 0@ Then
----- This variable is only available within the
i nner-nmost | f bl ock.
Di m conpl exCal cul ati on As | nteger
End I f
End I f
End Sub

Block-level variables cannot be accessed at all outside of their defined block. Consider the following
code:

If (origVvalue <> 0) Then
Di minverseVal ue As Deci nal
inversevValue = 1 / origVal ue
End |f
B The next statenent will not conpile.
MsgBox(CStr (i nverseVal ue))

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In this code, the variable i nver seVal ue is not recognized outside of the block in which it is defined, so
the final line produces a compile-time error.

All local variables, whether procedure-level or block-level in scope, have a lifetime of the entire
procedure. This means that block-level variables retain their value during the entire procedure's
lifetime, even when code outside the block is being executed. In the code:

Di m counter As Integer
For counter =1 To 5
If (ProcessData(counter)
Di m soFarl As Integer
Dim soFar2 As Integer = 0
soFarl +=1
soFar2 += 1
MsgBox("Status so far: " & soFarl & ", " & soFar2)
End |f
Next counter

True) Then

the variable soFar 1 retains its value from the previous time through the | f block. It displays "1" in its
first MsgBox use, "2" the second time, and so on. Because the soFar 2 variable includes an initializer, it
is reset to that value (O, in this case) each time through the block. It always displays "1" in the
MsgBox statement.

A procedure can have variables passed to it through its argument list. These variables are always
procedure-level in scope.

Local variables can extend their lifetime beyond the execution timeline of the procedure in which they
reside. Static variables, though local in scope, live for the entire lifetime of the class or module in
which they are contained. They are declared with the St ati ¢ keyword instead of the Di mkeyword:

Static |ongLasting As Integer = 0

The initializer of a static variable is applied when the class or module is instantiated, not each time
the statement is encountered. When you enter a procedure with a static variable, the variable will
contain the same value it had the last time the procedure was used. Static variables are not allowed
in the procedures of a Structure.

4.2.2.2. Module-level scope and access levels

All variables declared within a class (or structure or module), but outside of any procedure within that
class, have type-level scope; they are available to all procedures within the class. However, the scope

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

of these variables can go beyond the type level through the use of an access modifier.

Each type-level variable is defined using an access modifier keyword. (You can use Di mas well, but as
Di s access level varies between the different module types, this makes the code unclear.) The
access modifier grants access in a specific order, with Publ i ¢ granting the most generous level of

access (see Table 4-1).

Table 4-1. Access modifiers

Access Description
modifier P
Public Public variables are accessible to any code that accesses an instance of the class or

structure, or that has access to the type containing the variable. If a class has a public
variable, and an instance of that class is accessed from a separate project, application,
or component, the public variable is fully accessible to that code.

Protected Protected variables are accessible within the confines of a class and can be used in any
code derived from that class, but cannot be accessed outside of the class. Protected
variables only apply to classes; they are not available to structures or modules.

Friend Friend variables are accessible anywhere within the assembly, but no further.
Instances of a class with a friend variable consumed outside of the assembly hide the
variable from that external code. Friend variables can be used in classes, structures,
and modules.

Protected Using Protected and Fri end together grants that variable all the benefits of both; such

Friend variables are accessible within the class and all derived classes, and within the
assembly, but not outside of it. Protected Friend variables can only be used in classes,
not in structures or modules.

Private Private variables are accessible anywhere within a class, structure, or module, but not
outside. They are also hidden from the custom members of derived classes.

Type-level variables have a lifetime that spans the entire lifetime of the class instance, structure
instance, or module that contains it. Variables can be marked as Shar ed; they exist without a specific
instance of the class, structure, or module being created. These variables have a lifetime that lasts
for the entire application's lifetime. All members of a Modul e are shared by default.

k=1 NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

4.3. Constants

Constants are essentially read-only variables. Once their value is set in code (at compile time), they
cannot change. Constants are defined at the local or module level using the Const keyword:

accessModi fier Const nane As type = val ue

where accessModi fi er is one of the access modifiers defined earlier. (Access modifiers are not used
for constants declared in procedures.) When Option Strict is On, all constant declarations must have
a declared type.

k=1 NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.4. Enumerations

An enumeration appears as a group of related integer constants. All members of an enumeration
share the same data type, and it must be an integral data type (Byte, | nteger, Long, or Short, and
alsoin 2005 or beyondSByt e, Ul nt eger , ULong, or UShort). The enumeration members are shared and

read-only for the lifetime of the application.

Publ i ¢ Enum Vehi cl eType As I nteger
bicycle = 2
tricycle = 3
passengerCar = 4
ei ght eenVWeel er = 18
End Enum

They are used in code just like constants or variables.

Dimwhat| Drive As Vehicl eType
what | Dri ve = Vehi cl eType. passenger Car

Enumerations are declared at the namespace or module level only; you cannot define an

enumeration within a procedure.

downloaded from: lib.ommolkefab.ir

MNEXT B

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

4.5. Arrays

The array is a fundamental data structure in many programming languages, including Visual Basic.
Arrays store a collection of similar data types or objects. Each element has a numbered position,
ranging from O (the lower bound) to the defined upper bound of the array.
The following examples show various ways to declare a one-dimensional array:

" Implicit constructor: No initial size and no initialization

Dim days() As Integer

" Explicit constructor: No initial size and no initialization
Dimdays() As Integer = New Integer() {}

" Inplicit constructor: Initial size but no initialization
Di m days(6) As Integer

" Explicit constructor: Initial size but no initialization
Dimdays() As Integer = New Integer(6) {}

" Inplicit constructor: Initial size inplied by initialization
Dimdays() As Integer = {1, 2, 3, 4, 5 6, 7}

" Explicit constructor, Initial size and initialization
Dimdays() As Integer = New Integer(6) {1, 2, 3, 4, 5 6, 7}

Array declarations can:

e Call the array's constructor implicitly or explicitly
e Specify an initial size for each dimension or leave the initial size unspecified
e Initialize the elements of the array or not

In VB 6, the programmer could specify both the lower and upper bounds of any array dimension.
With .NET, all Visual Basic arrays have a lower bound of zero. The statement:

Dim nyArray(5) As Integer

declares an array with six elements, numbered zero through five.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Arrays can include multiple dimensions. The following example declares and initializes a two-
dimensional array:

DimrectArray(,) As Integer = {{1, 2, 3}, {4, 5 6}}

The following code displays the contents of this array:

Debug. Wite(rectArray(0, 0))
Debug. Wite(rectArray(0, 1))
Debug. WiteLine(rectArray(0, 2))
Debug. Wite(rectArray(1l, 0))
Debug. Wite(rectArray(1l, 1))
Debug. WiteLine(rectArray(1, 2))

R The output is:

The upper bound of any array dimension can be modified using the ReDi mstatement.

ReDi m [Preserve] arrayName(newUpper Bound)

The Preserve qualifier retains any existing values in the array; all array elements are cleared in the
absence of this qualifier. When using Pr eserve, only the last dimension of an array can have its upper
bound modified. The number of dimensions in an array cannot be changed.

You can determine the lower and upper bounds of an array dimension using the LBound and UBound
functions respectively.

Dim snal | Array(5) As Integer
MsgBox(UBound(smal | Array)) ' Displays "5"

Since all array dimensions have a lower bound of zero, the LBound function always returns zero.

k=1 NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

4.6. Collections

Visual Basic defines an associative array object called a collection. Although similar to an array in that
elements appear in a specific order, a collection stores its elements as key-value pairs. Once in a
collection, each element can be retrieved by position, by key, or by iterating through the collection
one element at a time.

Five of the Col I ecti on class's members are especially useful.

Add Method
Adds an item to the collection. Along with the data itself, you can specify an optional key by
which the member can be referenced.

Clear Method

Removes all elements from the collection.

Count Property

Returns the number of elements in the collection.

Item Property
Retrieves an element from the collection either by its index (or ordinal position in the
collection) or by its key (if provided when the element was added).
Remove Method
Deletes an element from the collection using the element's index or key.
The following code defines a collection of state names, using the state abbreviation as the key.
Dim states As New Col | ection

states. Add(" New Yor k", "NY")
states. Add("M chi gan", "M")

The elements of this collection can then be iterated using the For Each...Next construct.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DimoneState As String

For Each oneState In states
MsgBox(oneSt at e)

Next oneState

Like arrays, collection members are accessible by their index value. The lower bound of a collection is
always one (1).

New in 2005. The 2005 release of Visual Basic includes a new generics feature that allows collection

(and other class) instances to be tied to a specific data type. See Chapter 10 for details on using this
new feature.

=1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

4.7. Parameters and Arguments

Although procedures are self-contained blocks of code, they often need to interact with data from
outside of the procedure. External data can be passed into the procedure through its parameter list.
This list appears immediately on the declaration line of the procedure itself.

Publ i ¢ Function Repeat String(ByVal origText As String,
ByVal howManyTi nes As Integer) As String

----- Return a string concatenated to itself many tinmes.
Di m counter As I nteger
Repeat String = ""
For counter = 1 To howvanyTi nes

Repeat String &= ori gText

Next counter

End Function

The Repeat St ri ng function includes two parameters, ori gText and howvanyTi nes. Each parameter
includes a data type and a passing method. The passing method is either ByVal (*'by value™) or ByRef
("by reference™). In .NET, the default parameter passing method is ByVal .

When calling a procedure that has parameters, the values you send from the initiating code are called
arguments. The following statement includes two arguments in the call to the Repeat St ri ng function:
a string ("abc™) and an integer (5).

targetString = Repeat String("abc", 5)

Because classes in .NET support overloaded methods, the arguments you send to a procedure must
match the parameter signature of one of the overloaded methods. See Chapter 3 for a broader
discussion of overloading.

4.7.1. Passing Arguments

All arguments are passed by value or by reference, depending on whether the ByVal or ByRef
keyword is used with a parameter. When data is passed by value, a copy of the source expression or
variable is sent to the target procedure. While in that procedure, the parameter acts just like a local
variable; it can be examined and modified within the procedure, and it disappears when the
procedure is finished. Any changes made to a ByVal parameter in the procedure are not reflected in

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the source variable. This is clearest when working with value types. Consider the following code.

Public Sub Parent Routine()
Di m sourceValue As Integer = 5
Chi | dRout i ne(sour ceVal ue)
MsgBox(sour ceVal ue) ' --> Displays "5"
End Sub

Public Sub Chil dRoutine(ByVal inconng As |Integer)
i ncomng = 10
End Sub

Even though sour ceVal ue was passed to Chi | dRout i ne, and its associated parameter i nconi ng was
modified, that change did not propagate back to Par ent Rout i ne, since i nconi ng contained only a copy
of sour ceVval ue's value.

Objects (reference types) passed into routines ByVal , however, can be modified by the target
procedure. More correctly, the members of an object can be modified, not the object itself. Objects
passed by value pass the memory location of the object, so changes made within that memory area
in the target procedure are reflected in the original object. However, you cannot fully replace the
object with a new object instance when using ByVal .

Public d ass DataCl ass
Publ i ¢ Dat aMenber As I|nteger
End C ass

Public C ass CodeCd ass
Public Sub Parent Routine()
Di m sourceVal ue As New Dat aCl ass
sour ceVal ue. Dat aMenber = 5
Chi | dRout i ne(sour ceVal ue)
MsgBox(sour ceVal ue. Dat aMenber) ' --> Displays "10"
End Sub

Publi c Sub Chil dRoutine(ByVal incom ng As Datad ass)
B This line changes the "real" nenber.
i ncom ng. Dat aMenber = 10

----- But these |ines have no inpact on sourceVal ue.
i ncom ng = New Dat adl ass
i ncom ng. Dat aMenber = 15
End Sub
End d ass

Passing a value type argument to a procedure with a ByRef parameter passes the memory address of
the value; changes made in the target procedure are reflected immediately in the source value. (This

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

is true if the source value is a variable; constants and calculated expressions cannot be modified.)
Contrast the following code with its ByVal counterpart above.

Public Sub Parent Routine()

Di m sourceValue As Integer = 5

Chi | dRout i ne(sour ceVal ue)

MsgBox(sour ceVal ue) ' --> Displays "10"
End Sub

Public Sub Chil dRoutine(ByRef inconm ng As |nteger)
i ncomng = 10
End Sub

Changing ByVal to ByRef made a significant difference. For reference types, the difference is not as
noticeable unless you attempt to fully replace the original object in the target procedure. You can do
it! This is because the ByRef keyword causes the memory address of the memory address of the
object to be passed in. If you modify that memory address, you replace the address managed by the
source variable. In some languages, this is referred to as a double pointer. It's somewhat confusing,
but an example should make it clear. Contrast this code with the similar ByVval code shown earlier.

Public C ass Dat ad ass
Publ i ¢ Dat aMenber As | nteger
End d ass

Public C ass CodeC ass
Public Sub Parent Routine()
Di m sourceVal ue As New Dat aCl ass
sour ceVal ue. Dat aMenber = 5
Chi | dRout i ne(sour ceVal ue)
MsgBox(sour ceVal ue. Dat aMenber) ' --> Displays "15"
End Sub

Publi ¢ Sub Chil dRouti ne(ByRef incom ng As Datad ass)
B This line changes the "real" nenber.
i ncom ng. Dat aMenber = 10

e These lines fully replace the object referred
' to by sourceVal ue.
i ncom ng = New Dat adl ass
i ncom ng. Dat aMenber = 15
End Sub
End d ass

Using ByRef with reference types allows the target procedure to fully replace the original object with a
completely new instance of an object.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4.7.2. Optional Arguments

Visual Basic supports optional parameters through the Opti onal keyword.

Sub Cal cul at e(Optional ByVal silent As Bool ean = Fal se)

The following rules apply to optional arguments:

e Every optional argument must specify a default value, and this default must be a constant
expression (not a variable). This value is used when the calling code does not supply an
argument for the optional parameter.

e Every argument following an optional argument must also be optional. All required arguments
must appear before the optional arguments in the parameter list.

Pre-.NET versions of VB allowed you to omit the default value, and, if the parameter was of type
Vari ant, you could use the | sM ssi ng function to determine if a value was supplied. This is no longer
supported; if an argument is not supplied, the required default value is used instead.

4.7.3. Parameter Arrays

Normally, a procedure definition specifies a fixed number of parameters. However, the Par amar r ay
("parameter array") keyword allows the parameter list to be extended beyond the fixed elements.
Each call to the procedure can use a different number of parameters beyond any initial required
parameters.

Consider a function that takes the average of a number of test scores, but the number of scores may
vary.

Publ i c Function AverageScore(ByVal ParamArray scores()
As Single) As Single
e Cal cul ate the average score for any nunber of tests.
Di m counter As I nteger

AverageScore = 0
For counter = 0 To UBound(scores)
Aver ageScore += scores(counter)
Next counter
Aver ageScore /= UBound(scores) + 1
End Function

The call to Aver ageScor e can now include a varied number of arguments.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

MsgBox(Aver ageScore(1, 2, 3, 4, 5)) ' --> Displays "3"
MsgBox(Aver ageScore(1l, 2, 3)) ' --> Displays "2"

The following rules apply to the use of ParanmArray:

e A procedure can only have one parameter array, and it must be the last parameter in the
parameter list.

e The parameter array must be passed by value, and you must explicitly include ByVval in the
procedure definition.

e The parameter array must be a one-dimensional array. If the type is not declared, it is assumed
to be System.Object.

The parameter array is automatically optional. Its default value is an empty one-dimensional array of
the parameter array's data type.

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Chapter 5. Operators

Operators are the basic data manipulation tools of any programming language. All data ultimately
breaks down into single bits of 0 and 1. And the whole reason a computer exists is to manipulate
those single bits of data with basic operators. This chapter discusses the basic operators available in
Visual Basic, and how they interact with data.

Operators come in two usage types: unary and binary. Unary operators work on a single operand,
while binary operators require two operands. Most operators in Visual Basic are binary operators.

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

5.1. Arithmetic Operators

The VB arithmetic operators provide basic manipulation of integer and floating point numbers. They
could be called "the calculator operators," since most of them appear on even the most basic four-
function calculator.

+ (Addition)
The addition operator adds numeric expressions together and returns the result.

result = expressionl + expression2

When used with string operands, the + operator acts like the & string concatenation operator, as
described below.

+ (Unary Plus)
Usually, the + operator only appears as a binary operator. But it can be used in a unary form.
In this usage, when placed immediately before a number or numeric expression, it ensures that

the expression retains its sign, either positive or negative. Since expressions retain their sign
by default, the unary plus operator is redundant and rarely used.

result =+expression

New variation in 2005. Beginning with the 2005 release of Visual Basic, overloading this operator
may prove useful in some classes.

- (Subtraction)

The subtraction operator deducts the value of one expression from another, returning the
difference.

result = expressionl - expression2

Unlike the addition operator, the subtraction operator cannot be used with string operands.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

- (Unary Negation)
The - operator performs double duty as both a unary and binary operator. In its unary form,
when placed immediately before a number or numeric expression, it negates the expression,
effectively multiplying the expression by -1.

result =-expression

* (Multiplication)
The multiplication operator multiplies two numeric expressions together and returns the result.

result = expressionl * expression2

/ (Division)
The division operator divides one numeric expression into another and returns the result,
retaining any decimal remainder. If the second operand is zero (0), a "divide by zero" error
occurs.

result = expressionl / expression2

\ (Integer Division)
The integer division operator works just like the normal division operator, but any decimal
remainder is truncated (not rounded) before returning the result. If the second operand is zero
(0), a "divide by zero" error occurs.

result = expressionl \ expression2

This operator always returns a non-decimal data type (such as Short, I nt eger, or Long), even if the
original operands were decimal.

Mod (Modulo)
The modulo operator divides one numeric expression into another and returns only the

remainder as a whole number, also known as the modulus. If either of the two source
expressions are decimal numbers, they are rounded to integer values prior to the modulo

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

operation. To obtain expected results, explicitly truncate or round decimal expressions before
using them as operands. The return value is a nonnegative integral data type.

As an example, the expression:

10 Mod 3

returns 1, because the remainder of 10 divided by 3 is 1.

result = expressionl Mdd expression2

~ (Exponentiation)

The exponentiation operator raises one numeric expression to the power of the second and
returns the result.

result = nunber ~ exponent

e prcy NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

5.2. Concatenation Operators

Concatenation operators connect two source string expressions together and return a single string
joined from the two original strings. Because strings in .NET are immutable, the returned string is
always a completely new string instance.

& (String Concatenation)

The string concatenation operator returns a concatenated string from two source string
expressions. Any non-string source expression is first converted to a string prior to
concatenation (even if Opti onStrict is set to On).

result = expressionl & expression2

+ (Addition)

When the addition operator is used with string operands, it concatenates the operands instead
of adding their values. However, using this operator for concatenation can make the source
code unclear, especially when using the new .NET-recommended variable naming conventions.
If you mix string and numeric operands, this operator may also cause compile-time or runtime
errors, depending on the content of the operands. For the clearest code, use the &
concatenation operator instead.

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

5.3. Logical and Bitwise Operators

Logical operators evaluate one or more expressions and return a Boolean result (t rue or Fal se). VB
supports six logical operators , many of which can also be used as bitwise operators, along with two
bitwise-only operators. Bitwise operations work on integral (numeric integer) operands at the bit level
and return numeric results. Other languages, such as C#, include distinct logical and bitwise
operators , but for historical reasons, VB mostly uses a common set of operators for both types of
operations.

If any of the operands are numeric (that is, non-Boolean), a bitwise operation is done instead of a
logical operation. In cases where one operand is Boolean and the other is not, the Boolean operand is
converted to a number first, using O for Fal se and -1 for TRue.

In performing some logical operations, the .NET versions of Visual Basic use conditional short-
circuiting , where complex conditional expressions are only partially evaluated if the final result of the
entire expression can be determined without full evaluation. Individual expressions within a larger
compound expression are evaluated only until the expression's overall value is known, unless one of
the individual expressions involves a call to another function or subroutine. Short-circuiting can occur
in logical AndAl so operations when the first operand evaluates to Fal se, as well as in logical O El se
operations when the first operand evaluates to TRue. When using the more common And and O
operators, no short-circuiting is done.

Boolean operations always use the two Boolean values of TRue and Fal se. Although Visual Basic's
Bool ean data type is based on the underlying .NET System.Boolean data type, its use in Visual Basic
differs from that of other .NET languages. For historical reasons, Visual Basic's tr ue value, when
converted to a number, equates to -1. Other .NET languagesspecifically C#use a value of 1 for TRue.
Although .NET resolves this difference through the shared data type, it can become an issue if you
use a non-.NET data transfer method (such as a plain text file) to share numeric Boolean data
between .NET languages.

And

The And operator performs a logical or bitwise conjunction on the two source operands. In
logical operations, it returns true if and only if both operands evaluate to TRue. If either
operand is Fal se, then the result is Fal se. The syntax is:

result = expressionl And expression2

For example, consider the following statement:

If (x =5) And (y < 7) Then

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

In this case, the code within the Then clause will be executed only if the value of x is 5 and the value
of y is less than 7.

As a bitwise operator, And returns 1 in a bit position if the compared bits in the same position in both
expressions are 1, and it returns O in all other cases, as shown in the following table:

Bit in expressionl Bit in expression2 Result
0] 0 0
0] 1 0
1 0 0
1 1 1

For example, the bitwise result of 15 And 179 is 3, as the following binary representation shows:

00001111 And 10110011 == 00000011

AndAl so
The AndAl so operator works exactly like the logical And operator, but short-circuiting is enabled.
If the first operand evaluates to Fal se, the second operand is not evaluated at all, even if that

expression includes function calls. Operands are evaluated from left to right. AndAl so does not
perform bitwise operations.

The O operator performs a logical or bitwise disjunction on the two source operands. In logical
operations, it returns t r ue if either of the operands evaluates to TRue. If both operands are
Fal se, then the result is Fal se. The syntax is:

result = expressionl Or expression2

For example, consider the following statement:

If (x =5) O (y < 7) Then

In this case, the code within the Then clause will be executed if either the value of x is 5 or the value
of y is less than 7.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As a bitwise operator, O returns 1 in a bit position if either of the compared bits in the same position
in the source expressions are 1, and it returns O in all other cases, as shown in the following table:

Bit in expressionl Bit in expression2 Result
0 0 0
0 1 1
1 0 1
1 1 1

For example, the bitwise result of 150r 179 is 191, as the following binary representation shows:

00001111 Or 10110011 =% 10111111

O El se
The O El se operator works exactly like the logical O operator, but short-circuiting is enabled. If
the first operand evaluates to TRue, the second operand is not evaluated at all, even if that

expression includes function calls. Operands are evaluated from left to right. O El se does not
perform bitwise operations.

The Not operator performs a logical or bitwise negation on a single expression. In logical
operations, it returns TRue if the operand is Fal se, and Fal se if the operand is true. The syntax
is:

result = Not expressionl

For example, consider the following statement:

If Not IsNuneric(x) Then

In this example, the code within the Then clause will be executed if | sNunreri ¢ returns Fal se,
indicating that x is not a value capable of being represented by a number.

As a bitwise operator, Not simply toggles the value of each bit in the source expression between O
and 1, as shown in the following table:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Bit in expressionl Result
0 1
1 0

For example, the bitwise result of Not 16 is 239, as the following binary representation shows:

Not 00010000 =% 11101111

Xor

The Xor (an abbreviation for "eXclusive OR™) operator performs a logical or bitwise exclusion on
the two source operands. In logical operations, it returns t r ue if and only if the two expressions
have different truth values. If both expressions are TRue, or both are Fal se, this operator
returns Fal se. If one of the operands is t rue but the other Fal se, then Xor returns true. The
syntax is:

result = expressionl Xor expression2

As a bitwise operator, Xor returns 1 in a bit position if the compared bits are different from each
other, and it returns O if they are the same, as shown in the following table:

Bit in expressionl Bit in expression2 Result
0 0 0
0 1 1
1 0 1
1 1 0

For example, the result of 15 Xor 179 is 188, as the following binary representation shows:

00001111 Xor 10110011 =% 10111100

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Eqv and Imp

Eqv and | np, two logical and bitwise operators present in VB 6, have been removed from
.NET implementations of Visual Basic. Eqv can be replaced with the = (equal to)
comparison operator. The expression:

expressionl Eqv expression2

is the same as the logical comparison:

expressionl = expression2

I np can be replaced with a logical expression using the Not and Or operators. For
example:

expressionl | np expression2

can also be expressed as:

(Not expressionl) O expression2

If you need more precise replacements using bitwise calculations, see the "Logical and
Bitwise Operators” section in Appendix D.

<< (Shift Left)

New in 2003. The << (shift left) operator performs a left shift of the bits in the first operand by
the number of bits specified in the second operand. All bits shifted off the left are lost. All bits
newly vacated on the right are filled with zeros.

The number of bits you can shift is limited by the number of possible bits in the first operand.
Any excess number of shift positions will be ignored. This operator never throws an overflow
exception. The syntax is:

result = source << bits

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For example, the bitwise result of 15 << 5 is 224, as the following binary representation shows:

00001111 << 5 ==3% 11100000

>> (Shift Right)

New in 2003. The >> (shift right) operator performs a right shift of the bits in the first operand
by the number of bits specified in the second operand. All bits shifted off the right are lost. All
bits newly vacated on the left are filled with the bit value of the leftmost bit position before
shifting. When shifting unsigned data values (Byt e, UShort, Ul nt eger , ULong), the newly vacated
bits on the left are filled with zero (0).

The number of bits you can shift is limited by the number of possible bits in the first operand.
Any excess number of shift positions will be ignored. This operator never throws an overflow
exception. The syntax is:

result = source >> bhits

For example, the bitwise result of 12 >> 1 is 6, as the following binary representation shows:

00001100 >> 1 ==* 00000110

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

5.4. Assignment Operators

Along with the standard assignment operator (=), many other operators can be turned into
assignment operators by simply appending an equals sign to the right of the operator. These
converted operators all have the same form:

expressionl <operator>= expression2

where <oper at or > is the operator being promoted to an assignment operator. This form is equivalent
to:

expressionl = expressionl <operator> expression2

To illustrate, consider the addition assignment operator. The expression:

X +=1

is equivalent to:

which simply adds 1 to the value of x. Similarly, the expression:

s & "end"

is equivalent to:

s = s & "end"

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

which concatenates the string "end" to the end of the string s.

All of these "shortcut™ assignment operators were introduced with Visual Basic .NET 2002.

= (Assignment)
The assignment operator assigns the value or reference of the expression on the right of the
assignment operator to the variable on the left. For example, the following assigns y plus an
additional value of 5 to x.

X =y +5

The assignment operator alone is used to assign both values and references; in previous versions of
VB, the Set statement had to be used along with the assignment operator to assign an object
reference. The Set keyword is no longer used in this context. Also, the previously optional Let
keyword is no longer part of the Visual Basic language.

The addition assignment operator. As an example:

total Value += 1

adds 1 to the value of t ot al Val ue and assigns the result to t ot al Val ue.

The subtraction assignment operator. As an example:

total Value -= 1

subtracts 1 from the value of t ot al Val ue and assigns the result to t ot al Val ue.

The multiplication assignment operator. As an example:

total Value *= 3

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

multiplies the value of t ot al Val ue by 3 and assigns the result to t ot al Val ue.

The division assignment operator. As an example:

total Value /= 2

divides the value of t ot al Val ue by 2 and assigns the result to t ot al Val ue. If the value to the right of
the division assignment operator equates to 0, an error occurs.

The integer division assignment operator. As an example:

total Value \= 2

divides the value of t ot al Val ue by 2, discards any fractional part, and assigns the result to
t ot al Val ue. If the value to the right of the integer division assignment operator equates to 0, an
error occurs.

The exponentiation assignment operator. As an example:

total Value "= 2

squares the value of t ot al Val ue and assigns the result to t ot al Val ue.

The concatenation assignment operator. As an example:

storyText &= "The End"

appends a literal text string to the end of st or yText 's existing content and assigns this new

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

concatenated string to st or yText .

<<=
New in 2003. The shift left assignment operator. As an example:

dat aMask <<= 2

shifts the bits of dat aMask left two positions and assigns the new value back to dat aMask.

>>=
New in 2003. The shift right assignment operator. As an example:

dat aMask >>= 2

shifts the bits of dat aMask right two positions and assigns the new value back to dat aMask.

o Unlike the comparison operators , in which the order of symbols is reversible
o, (that is, >=is the same as =>), the order of the "shortcut" assignment operator
o . . -
. 4+ symbols is not reversible. For example, while:

assigns a value of 1 to the variable x. That is, it really looks like this:

X = -1

=3 NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

5.5. Comparison Operators

There are three main comparison operators: < (less than), > (greater than), and = (equal to). They
can be used individually, or any two operators can be combined with each other to form other
comparison operators. The general syntax is:

result = expressionl <operator> expression2

The result is a Boolean value of TRue or Fal se.

The following list indicates the condition required with each VB comparison operator to return a value
of TRue.

= (Equal To)
TRue if expressi onl is equal to expressi on2

< (Less Than)

TRue if expressionl is less than (and not equal to) expr essi on2

> (Greater Than)

true if expressi onl is greater than (and not equal to) expr essi on2

<= (Less Than or Equal To)

true if expressionl is less than or equal to expr essi on2

>= (Greater Than or Equal To)

TRue if expressi onl is greater than or equal to expressi on2

<> (Not Equal To)
TRue if expressi onl is not equal to expressi on2

Comparison operators can be used with both numeric and string expressions. If one expression is

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

numeric and the other is a string, the string is first converted to a number of type Doubl e
(nonnumeric strings throw an exception). If both expr essi onl and expr essi on2 are strings, the
"greatest” string is the one that appears second in sort order. The sorting is based on the current
character code page in use by the application, the region-specific locale information, and the

Opt i onConpar e setting. If that setting is Bi nary, the comparison is case-sensitive, whereas a setting
of Text results in a case-insensitive comparison.

New in 2005. There are two "hidden" operators in Visual Basic: | sTrue(arg) and | sFal se(arg). They
return a Boolean value that indicates whether the supplied argument is true or Fal se, respectively.
You cannot use them directly in your code, but they do exist, beginning in the 2005 release of Visual
Basic, to support operator overloading. This is covered in the "Operator Overloading" section later in
this chapter.

5.5.1. The Like Operator

The Li ke operator is used to match a string against a pattern. It compares a string expression or
literal with a string pattern expression and determines whether they match (the result is t rue) or not
(the result is Fal se). For example:

If (testString Like "[A-Z]#") Then

matches a capital letter followed by a digit.

For details on the use of this operator, including special characters used in the pattern string, see the
"Like Operator" entry in Chapter 12.

e prcy | nexT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

5.6. Object Operators

Visual Basic includes five operators that return results based on an operand's object properties.

The | s operator determines whether two object reference variables refer to the same object
instance.

result = objectl |Is object2

If both obj ect 1 and obj ect 2 refer to the same object instance, the result is t rue; otherwise, the
result is Fal se. You can also use the | s operator to determine if an object variable refers to a valid
object. This is done by comparing the object variable to the Not hi ng keyword:

If (customerRecord |Is Nothing) Then

The result is t rue if the object variable does not hold a reference to any object.

| sNot

New in 2005. The | sNot operator is equivalent to the | s operator used with the Not logical
operator. The statement:

I f (custonmerRecord | sNot Nothing) Then

is the same as:

If Not (custonerRecord |Is Nothing) Then

There is no functional difference between the two statements. The | sNot operator was added to VB to
make such statements more readable.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

TypeOt

The TypeOr operator determines if an object variable is of a specific data type. It is always used
with the | s operator. (It does not work with the new VB 2005 | sNot operator.) The following
statement tests an object variable to see if it is an | nt eger.

I f (TypeOF sonmeNunber Is Integer) Then

Addr essOf

The AddressOf operator returns a procedure delegate that can be used to reference a
procedure through a variable. In VB—6, the AddressOf operator returned a function pointer, the
memory address of the function. While the .NET version of this operator serves a similar
purpose, it does not return a memory address. The .NET Framework reserves the right to
move objects (including procedures) to new memory locations at any time, so you cannot
depend on the memory address.

For details on the AddressOf operator, including usage information, see the AddressOf Operator
entry in Chapter 12.

Cet Type
The Get Type operator returns a System.Type object that contains information about the data
type of the operand. You cannot use expressions or variables as operands; you must pass a
data type itself. You can use VB data types (like I nt eger or String), .NET core types (like
System.Int32), or the name of any class, structure, or similar construct. For example:

result = Get Type(lnteger)

returns a System.Type object that provides information about the System.Int32 data type, which is
the true data type of the Visual Basic | nt eger data type.

e prcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

5.7. Operator Overloading

New in 2005. Although Visual Basic is as powerful as any other .NET language, early versions lacked
specific features found in some other .NET languages (just as VB had features absent from those
languages). One feature present in C#, but absent in VB, was operator overloading , the ability to
redefine unary and binary operators and give them special uses when working with specific classes or
structures. As of the 2005 release of Visual Basic, operator overloading is now part of the Visual Basic
experience.

To perform operator overloading, you simply create a special procedure in your class with the name
of the operator, indicate the data type(s) of the operand(s) and the data type of the return value,
make it Publ i ¢ and Shar ed, and it's ready to use. The class (or structure) you put the procedure in is
significant. At least one operand for the operator must be of the class data type in which the
procedure appears. For the special CType unary operator, either the operand or its return value must
use the data type of the class that includes the procedure.

All overloaded operator procedures share a common syntax.

Publ i c Shared [otherModifiers] Operator operatorSynbol _
(ByVal operandl As dataType[, ByVal operand2 As dataType]) _
As returnDat aType
e Statenents of the operator procedure.
End Operat or

As an example, consider a class hamed LandRegi on that defines the boundaries of a piece of land.
Since you would like to merge two records together into a larger tract of land using the + addition
operator, you define the following procedure in the LandRegi on class.

Public Shared Operator +(ByVal firstArea As LandRegi on,
ByVal secondArea As LandRegi on) As LandRegi on
oeae-- Merge two | and regi ons together.
Di m conbi nedRegi on As New LandRegi on
' ...nore code here...
Ret urn conbi nedRegi on
End Operator

Since the routine is Publ i c, it is available to your entire program. Since it is Shar ed, the routine exists
even without the presence of any specific instance of the class (although at least one operand must
be of that class). The defined operands must always be passed ByVal . Using this operator is simple.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Dmmai nCity As New LandRegi on
Di m uni ncor por at edArea As New LandRegi on
Di m annexati on As LandRegi on

fill in mainCity and unincorporatedArea nenbers, then...

annexation = mainCity + unincorporatedArea

For binary operators, only one of the operands has to match the enclosing class or structure type.

Publ i c Shared Operator +(ByVal whol eOrder As O derRecord,

ByVal orderDetailltem As Detail Record) As Order Record
----- Append a new product itemonto the order.
...nmore code here. ..

End Operat or

Table 5-1 describes the operators that can be overloaded.

Table 5-1. Operators that can be overloaded

Operator Description

+

| sTrue

| sFal se

Unary Plus operator. It differs from the binary addition operator in that you supply only
one operand in the procedure signature.

Unary Negation operator. It differs from the binary subtraction operator in that you
supply only one operand in the procedure signature.

Bitwise Negation operator. For overloading, this is a bitwise operation only, not logical.

If you overload the O operator in a class, overloading the | sTrue operator in the same
class opens up the use of the O El se operator with the class. You must also overload the
| sFal se operator. The overload procedure's return type must be Bool ean.

If you overload the And operator in a class, overloading the | sFal se operator in the same
class opens up the use of the AndAl so operator with the class. You must also overload
the | sTrue operator. The overload procedure’'s return type must be Bool ean.

Binary Addition operator. It differs from the unary plus operator in that you supply two
operands in the procedure signature.

Binary Subtraction operator. It differs from the unary negation operator in that you
supply two operands in the procedure signature.

Multiplication operator.
Division operator.

Integer Division operator.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Operator Description

Mod Modulo operator.

& Concatenation operator.

" Exponentiation operator.

<< Shift Left operator. The second operator must use the | nt eger data type.
>> Shift Right operator. The second operator must use the | nt eger data type.

= Equal To comparison operator. You must also overload the <> Not Equal To operator.

< Less Than comparison operator. You must also overload the > Greater Than operator.

> Greater Than comparison operator. You must also overload the < Less Than operator.

<= Less Than or Equal To comparison operator. You must also overload the >= Greater Than
or Equal To operator.

>= Greater Than or Equal To comparison operator. You must also overload the <= Less Than
or Equal To operator.

<> Not Equal To comparison operator. You must also overload the = Equal To operator.

And Bitwise Conjunction operator. For overloading, this is a bitwise operation only, not
logical.

O Bitwise Disjunction operator. For overloading, this is a bitwise operation only, not logical.

Xor Bitwise Exclusion operator. For overloading, this is a bitwise operation only, not logical.

Li ke Pattern Comparison operator.

CType Unary Conversion operator. Used to convert data from one data type (or class or

structure) to another. You must include either the Nar r owi ng or W deni ng keyword in the
definition of the overload, somewhere between the Shar ed and Oper at or keywords.
These modifiers tell the compiler what type of conversion is allowed. Narrowing
conversions may fail if the destination data type cannot support the value of the source
data type. Either the operand or the return type of the overload procedure must be of
the class or structure that contains the procedure.

When you overload operators, you can define them to do whatever you want with the source classes
in question. In fact, you could create a class where the normal understandings of addition and
subtraction were reversed. However, such practices will make the code more difficult to understand
and debug.

For further details about operator overloading, see the "Operator Statement™ entry in Chapter 12.

=1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

5.8. Operator Precedence

If you include more than one operator in a single line of code, you need to know the order in which
VB will evaluate them. Otherwise, the results may be completely different from what you intended.
For instance, the following statement:

X =5+3*7

could be interpreted as:

x
1

(5+3) * 7' --> 56

or as:

x
1

5+ (3*7) ' -->26

The rule that defines the order in which a language processes operators is known as the order of
precedence . If the order of precedence results in operations being evaluated in an order other than
the intended one, you can explicitly override the order of precedence through the use of parentheses.
Indeed, complex (or even relatively simple) expressions should include parentheses to avoid any
compiler misinterpretation or human confusion. (By the way, the example, once parentheses are
removed, evaluates to 26.)

When multiple operators appear at the same level of evaluation (that is, they are not subgrouped
with parentheses), they are processed in a specific order of precedence. In some instances, multiple
operators appear at the same level of precedence (as are * and /). They are treated as equals as far
as precedence is concerned. The following list indicates the order of precedence in evaluation, from
first to last.

1. Exponentiation (*).
2. Negation (-).
3. Multiplication and division (*, /).

4. Integer division (\).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

5. Modulo operator (Mod).

6. Addition/concatenation and subtraction (+, -).

7. String concatenation (&).

8. New in 2003. Arithmetic bit shift (<<, >>).

9. Comparison and object operators (=, <>, <, <=, >, >=, Like, |'s, I sNot, TypeXf); the = operator in
this list is the Equal To comparison operator, not the assignment operator. New in 2005. The
I sNot operator is new in the 2005 release of VB.

10. Logical and bitwise negation (Not).

11. Logical and bitwise conjunction (And, AndAl so). New in 2005. The AndAl so operator is new in the
2005 release of VB.

12. Logical and bitwise disjunction (O, O El se, Xor). New in 2005. The O El se operator is new in the
2005 release of VB.

Since the AddressOf and Get Type operators are implemented like functions, they fall outside of the
order of precedence rules for operators.

If multiple operators of the same order of precedence appear at the same level of evaluation, they
are processed from left to right.

[Py | NEXT B

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Chapter 6. Program Structure

With its tight integration into the .NET Common Language Runtime, Visual Basic owes much of its
present personality to .NET. This tie to the .NET Framework and the object-oriented nature of the

language itself work together to influence the structure of VB programs. This chapter discusses
aspects of Visual Basic program structure in the .NET environment.

k=1 NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

6.1. Visual Studio Application Types

The original version of Visual Basic generated applications that were form-focused and included rich
features for interaction with the user and the Windows environment. Later releases added support for
DLL generation, specifically ActiveX DLLs. With its integration into .NET, Visual Basic compiler can
now generate several specific types of output.

Windows (Forms) Applications

In .NET, Windows applications make heavy use of the System.Windows.Forms namespace and
the control classes contained within it. Although these applications may look like any other non-
.NET Windows application, internally they are quite different and are fully managed by the .NET
Common Language Runtime.

Console Applications

Back in the days before Windows and other GUI-based platforms, most applications were
console applications . These wonders of technology interacted with the user through the
medium of the 80 x 24 character screen display. Such programs generally displayed text on the
screen and then waited for keyboard input from the user before continuing. Some systems
were able to make use of simple graphic characters and screen positioning to give some
semblance of a graphical user interface, but this was generally done by sending special display
codes to the basic text display.

Console applications are often procedural in nature; they start at the beginning of the
application and run until the end, uninterrupted by external user events like mouse clicks. In
this era of Windows applications, console applications exist to provide some basic textual
information to the user or to control some service or process that does not logically have a
need for a user interface.

Windows Services

Windows services are long-running applications that interact directly with the system but not
with the user. In fact, they run only within the context of the Windows Service architecture;
you cannot start them directly like an EXE file. Even when they run, they belong to the system
(in terms of their security profile), not the local user.

Class Libraries

Class libraries are more commonly called dynamic link libraries, or DLLs. Although not true
standalone applications, most applications would be limited without the plethora of available
DLLs; the functionality in the .NET Framework Class Library is made available through DLL

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

files. DLLs are loaded at runtime by the applications that use them, and they run in the
program space of the controlling application. A special variation of a class library, the Web
Control Library, is used for ASP.NET server controls.

e prcy NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

6.2. Referencing Components and Classes

Applications you develop in Visual Basic will contain custom classes and other .NET types, defined for
the specific needs of the application. But you probably want to take advantage of other code already
written, such as the classes in the .NET Framework Class Library. Namespaces and classes that you
do not write yourself must be specifically identified before they can be used in your code. This is done
in two steps.

1. Reference the assembly that contains the classes you wish to use. This is done through the
References section of the Project Properties for your application. For instance, to use the
Windows Forms features of .NET, your application must include a reference to the
System.Windows.Forms.dll file, which contains the System.Windows.Forms assembly and
namespace contents. When you create new projects of a specific type (such as a new "Windows
Application” project), the typical assemblies you need for that project type are referenced by
default.

2. Specify the class or feature you want to use with its namespace. For instance, to use the Form
class, you must call it System.Windows.Forms.Form. Typing this much text quickly becomes a

burden, so .NET allows you provide relative names through the use of the | nport s statement.
For example, the statement:

I nports System W ndows. For s

in a code file allows you to use the Form class without its full qualification. You can set up global
I mpor t s-like settings through the Project Properties. Visual Studio defines several global
I mpor t s-like settings for you based on project type.

=1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

6.3. Application Entry Points

Any Visual Basic executablea Windows Forms or Windows console applicationhas a single application-
level entry point, a subroutine named Main. Main must be a method within one of the application's
classes. It must also be:

A Public Routine

In VB 6, Main could be either public or privateor it didn't have to exist at all, when a form was
set as the startup object. In .NET, it must be public to be visible as an entry point.

A Shared (Static) Routine

Its declaration must include the Shar ed keyword; this allows it to be called without the need to
create an instance of its class. If Main resides in a module, it is automatically shared, even
without the Shar ed keyword.

6.3.1. Using Main in a Standard Class or Module

The Main routine can appear in any class in your application, including a Module (which is just a
Shared variation of a class). Consider the simple case of a console application, like the one shown in
Example 6-1. The example includes a module named St art sHer e, which contains the Main routine. At
runtime, the Common Language Runtime finds the Main procedure, displays a message to the
console, and then terminates the program.

Example 6-1. A simple console application

Option Strict On
I nports System

Public Modul e StartsHere
Public Sub Main
Consol e.WiteLine("This is a console application.")
End Sub
End Modul e

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Since the example uses a Modul e instead of a d ass, the Shar ed keyword decoration is not necessary
on the Main routine. The .NET compiler translates this code into a public class and gives it a single
method, Main, as shown in the ILDASM tree diagram (see Figure 6-1).

The IL code for Main also shows that it is marked as the program's entry point (through the

. enTRypoi nt text on the third line), and that it is a static (shared) member rather than an instance
member.

.nmethod public static void Min() cil managed
{
.entrypoint
.custom instance void

[mscorlib] System STAThreadAttribute::.ctor() = (01 00 00 00)
/'l Code size 11 (0xb)

.maxstack 8

Figure 6-1. The StartsHere.Main method in ILDASM

F C:\temp\ConsoleApplication 1\bin\Release\ConsoleApplication1.exe - IL DASM
Fie View Hel

- B

SRR templConsoledpplication] \biniRelease Consolefpplication .exe
F MAMNIFEST
=W Consoleapplication]
@ Consoleapplication] .My
[JE Conscletpplication] . Settings
= JE Consclefpplication] . StartsHere
Pk .class public auto ansi sealed

I .custom instance void [Microsoft. VisualBasic Jcrosoft. VisualBasic, Compiler Services . StandardModule At ribute
B main : void()

I L_0000: Idstr "This is a console application."
I L_0005: call void [nscorlib] System Consol e:: WiteLine(string)
IL_000a: ret

} // end of nethod StartsHere::Min

The Visual Basic compiler and the .NET Common Language Runtime, it would seem, have
transformed this simple code module into a self-executing class.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.3.2. Using Main in Windows Forms Applications

All forms displayed in Windows Forms applications must be instantiated before use. Visual Basic
allows you to specify a Form as the startup object of an application (instead of a standard Class- or
Module-based Main routine), and you don't have to add the routine yourself. So is it really there?
Yes, the framework adds a shared Main routine to your class. What does it do? A quick look at the IL
gives the answer. (Lines in this presentation have been wrapped for readability.)

. met hod public hidebysig static void Min() cil nmanaged
{
.entrypoi nt
.custom i nstance void
[mscorlib] System STAThreadAttribute::.ctor() = (01 00 00 00)

/'l Code size 16 (0x10)

. maxstack 8

IL_0000: call cl ass W ndowsApplicationl. My. MyProj ect/
MyForms W ndowsAppl i cati onl. My. MyProj ect::get_Forns()

IL_0005: callvirt i nstance class W ndowsApplicationl. Forni
W ndowsAppl i cati onl. My. MyProj ect/ MyForns: : get _Forml()

IL_000a: call voi d

[System W ndows. For ns] Syst em W ndows. For ns. Appl i cati on: : Run(
cl ass [System W ndows. For ns] Syst em W ndows. For ns. For nm
IL_000f: ret
} // end of nethod Forml:: Min

The Main routine creates an instance of the form For nl and then calls the Run method (in the
System.Windows.Forms.Application class), passing it the instance of the form. This is the normal way
to run a Windows Forms application. If you want to create your own Main routine in another class
that starts a Windows Forms application, it will include this similar basic code.

Modul e StartsHere
Public Sub Main()
Dim start Form As New For ml
Application. Run(startForn
End Sub
End Modul e

New in 2005. Visual Basic 2005 includes a new Windows application framework model, a structure
that provides events and actions during the startup, running, and shutdown of your application. This
feature is enabled or disabled through the Application tab of the Project Properties panel. When this
model is enabled, the default Main routine resides in a separate special class associated with the
application instead of in the default form's class. When creating new Windows Forms applications in
Visual Basic 2005, this framework is enabled by default.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

k=1 NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

6.4. Code File Contents

Visual Basic applications include one or more source code files and possibly some other miscellaneous
files (such as ".resx" resource files). These files contain all of the types (classes, structures,
enumerations, etc.) of your application. Just as in Visual Basic 6, there is a small declarations section
available at the start of each code file, followed by the actual code.

6.4.1. Declarations Section

The declarations section of a code file includes statements that set up the environment for all the
code in that file. This section may include the various Opti on statements (Opti on Conpare, Opti on
Explicit, Option Strict) and I nports statements that make possible terse class references in the
code file. Application-specific and module-specific attributes are defined here as well.

Unlike with VB 6, no global variables, constants, or Decl ar e statements appear in the declarations
section.

6.4.2. Namespaces

All types must appear in namespaces in .NET. By default, all of the code in your application appears
in a top-level namespace that has the same name as your project's name. You can override this
default in the project property settings or identify a specific namespace for your types by using the
Nanmespace statement. Namespaces can be nested.

Nanespace Level 1
Nanespace Level 2
' ---- Perhaps put some code here.
End Namespace
e O even here.
End Nanmespace

All namespaces are public.

New in 2005. The new d obal keyword provides a way to resolve conflicts in namespace usage. For
instance, if your application included a nhamespace named MyCompany.System, and you used the

I mports MyConpany statement in your code file, would a reference to "System™ mean the .NET-
supplied System namespace or the MyCompany.System namespace? The d obal keyword solves the
problem. To access the .NET-supplied System namespace, reference d obal . Syst em, which removes
any ambiguity.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

6.4.3. Types

Most of your application is defined through types : the classes, structures, enumerations, interfaces,
and so on, of your application. Many types can be nested.

Public C ass C assDepthl
Public O ass O assDepth2

R Add code here.
End d ass

B And here, too.
End d ass

Types contain members, mainly the methods, properties, events, and fields of your classes and
structures. Members cannot be nested, although members with the same name may appear within

different nested types. For instance, if Class A contains Class B, both Aand B may include a procedure
named Pr ocessDat a without conflict.

e prcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

6.5. The Structure of a Visual Basic Program

Broadly speaking, programs can be either procedure-driven or event-driven . In a procedure-driven
program, program flow is predefined. A classic example is a console application: program flow begins
at the program entry point (the Main routine) and proceeds along a predictable path until it reaches
program termination. But in an event-driven program, program flow is not predetermined and is
instead controlled by external eventsevents initiated by both the user and the systemand possibly by
internal code-specified events.

Both types of applications include a starting entry point (the Main routine), which can call other
functions and subroutines according to the logic needed in the application. Procedure-driven
applications are limited to this single entry point. But event-driven applications include many entry
points throughout their lifetime (beyond the initial Main entry point). These entry points are event
handlers, which are invoked automatically by the .NET Common Language Runtime in response to
user, system, or internal application actions.

The different procedures in your application can be grouped into three broad categories.

Entry Point Code

This procedure type includes the primary entry point (the Main routine), as well as all event
handlers needed to support the various events for which your application needs to act.

Custom Procedures

In these procedures, you often create the main functionality of your application. These
procedures are called methods within your classes and modules.

Property Procedures

These procedures are generally used to get and set the internal values managed by a class.

6.5.1. Events: The Starting Point

Events can be system generated (such as with Timer control events that trigger actions at a specific
time or interval) or user generated (as through a mouse click on a command button). You can also
include code that forces an event to fire as needed. For instance, a stock monitoring application
might generate a Positive event when a stock's value goes up and a Negative event when its value
decreases.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

."‘ For a discussion of events and the way in which procedures can be defined to
as handle events, see Chapter 8.
wh ..
[N

6.5.1.1. Windows Forms events

Windows Forms classes include many special events that fire during the creation and destruction of a
form instance. These events appear in the following order:

New Constructor

Load Event

Activated Event

Shown Event (New in 2005)
Closing Event

FormClosing Event (New in 2005)
Closed Event

FormClosed Event (New in 2005)
Deactivate Event

Other form-specific events occur while the form is active on the display. Individual controls also
expose events.

6.5.1.2. ASP.NET events

ASP.NET exposes a more complex event model, in which events can be trapped at the application,
session, and page level. Table 6-1 illustrates the sequence of application, session, and page events
for an ASP.NET application.

Table 6-1. ASP.NET events

Event Type Description

Start Application Fired when the application starts. The event handler must reside in
global.asax.

Start Session Fired when a user session is created. The event handler must reside in
global.asax.

Init Page Fired when the page is initialized.

Load Page Fired when the page is loaded.

PreRender Page Fired when the page is about to be rendered.

Unload Page Fired when the page is unloaded.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Event Type Description

Disposed Page Fired when the page is released from memory.

End Session Fired when a user session ends or times out. The event handler must reside
in global.asax.

End Application Fired when an application ends. The event handler must reside in
global.asax.

Individual controls also expose events .

6.5.1.3. Event arguments

When an event is fired, the CLR passes two arguments to the event handler:

sender

An object of type System.Object (or some more specific type) that represents the instance of
the class raising the event

An object of type System.EventArgs, or of a type derived from System.EventArgs, that
contains information about the event

Example 6-2 shows an event handler for a command button's Click event in a Windows Forms

application.

Example 6-2. A command button's event handler

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Option Strict On

I mports M crosoft. Visual Basic
I nports System

| mports System Draw ng

| nports System W ndows. For ns

Public C ass JustAButton
I nherits System W ndows. Forns. Form

Friend WthEvents Acti onButton As Button

Private Sub New()
----- Form constructor; add the child controls.
Dim x As |nteger
Dimy As Integer

----- Configure the button control.

ActionButton = New Button

X = Clnt(Me.Wdth/2 - ActionButton.Wdth / 2)

y = Clnt(Me. Height/2 - ActionButton. Height / 2)

Me. Acti onButton. Locati on = New System Draw ng. Point(x, vy)
Me. Acti onButton. Text = "Event |nfornmation"

Me. Cont rol s. Add(Acti onBut t on)
End Sub

Publ i c Shared Sub Main
B The application starts here.
Application. Run(New Just AButt on)

End Sub

Private Sub ActionButton_Cick(sender As Object, e As EventArgs) _
Handl es ActionButton. dick
----- This is the button's Cdick event handler.
MsgBox(sender. Get Type. ToString & vbCrLf & _
e. Get Type. ToStri ng)
End Sub
End d ass

When the event is fired, the dialog box shown in Figure 6-2 appears.

Figure 6-2. A dialog box displaying event information

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

WindowsApplication1 |.z|

System. Windows.Forms.Button
System.EventArgs

The EventArgs class itself has no useful members; all of its members are inherited from the
System.Object class. Most event handlers are passed an instance of the EventArgs class, although
events with additional useful information to convey will pass an object derived from EventArgs, with
the extra informational members added. For example, the Button and ImageButton controls in the
System.Web.Ul.WebControls namespace raise a Command event that is fired when the control is
clicked. Instead of an instance of the EventArgs class, the CLR passes the event handler an instance
of the CommandEventArgs class. It has the following properties:

CommandName Property

The name of the command to be executed. It corresponds to the Button or ImageButton
control's CommandName property.

CommandArgument Property
Any optional arguments passed along with the command.

In some cases, an event's default action can be cancelled. For instance, the CancelEventArgs class
(derived from EventArgs) has a Cancel property that, when set to t r ue, cancels the pending action
related to the event.

6.5.2. Calling Routines from Event Handlers

Once processing has been directed to one of your event handlers, it's time to do some work. Of
course, you can write every bit of processing code right there in the event-handling routine, but for
readability, a divide-and-conquer approach often works better. An event handler can call methods,
functions , and procedures, and can set and retrieve property values, all from classes in your own
application or from the .NET Framework Class Library. In Example 6-3, the SaveAl | Dat a command
button's Click event demonstrates this approach to event handling by calling SaveDet ai | s, a method
in some other part of the code, to do most of the work.

Example 6-3. Calling an external routine from an event handler

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Private Sub SaveAl | Data _Click(sender As (bject, e As EventArgs) _
Handl es SaveAl | Data. d i ck
I f SaveDetails() Then

MsgBox(" Data recorded successfully.", vblnformation)
El se
MsgBox("Error occurred while saving data.", vbCritical)
End |f
End Sub

The SaveDet ai | s method contains all the code to actually save the details, and it can be called from
anywhere in the class (or from other classes, if it is public). Placing code in custom procedures not
only improves readability of the code, it centralizes the work, making it possible to use the same
collection of source code statements from multiple places in your application.

6.5.3. Writing Custom Procedures

Custom procedures can be added to any class, structure, or module in your application. Visual Basic
includes three main types of custom procedures or routines: Functions, Sub procedures, and
Properties.

6.5.3.1. Functions

A function is a collection of related statements and expressions used to perform a particular task.
When it completes execution, the function returns a value to the calling routine. If you don't specify
an explicit return value for the function, the default value of the return data type is used. If you write
a custom function in a class module and declare it as Publ i c, it becomes a class method.

Consider the following simple function, which returns a St ri ng data value.

Publ i c Function PrepareForSQ.(ByVal origText As String) As String
----- Prepare a string for use in a SQL statenent. Any
singl e quotes nust be doubl ed-up.
If (Len(origText) = 0) Then
Return "NULL"
El se
Ret urn
End | f
End Function

& Repl ace(origText, """, ""'") &"""

Because functions return values, you can use them as part of an expression in place of a variable or
literal value. The following statement includes a custom function as an argument to the VB I nStr

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

function.

If (InStr(GetCustonerStatusCodes(custoneriD), "P") > 0) Then

This statement is equivalent to this more verbose variation:

Di m statusCodes As String
st at usCodes = Get Cust oner St at usCodes(cust oner | D)
If (InStr(statusCodes, "P') > 0) Then

Functions include zero or more arguments, values or references that are passed to the function call
for use in that function. For instance, the statement:

st at usCodes = Get Cust oner St at usCodes(cust oner | D)

passes the variable cust oner | D to the function. Each argument is of a certain data type, as defined in
the parameter list of the function's definition.

Publ i c Function GetCustoner StatusCodes(_
ByVal custonerl D As Long) As String

For full details on the syntax and use of functions, see the entry for the "Function Statement" in
Chapter 12.

6.5.3.2. Sub procedures

A Sub procedure is used just like a function, except it does not return a value. Event handlers are, by
definition, Sub procedures, since they do not return values. As with functions, if you write a custom
Sub procedure in a class module and declare it as Publ i c, it becomes a class method.

For full details of the syntax and use of Sub procedures, see the entry for the "Sub Statement” in
Chapter 12.

6.5.3.3. Properties

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Properties are specialized procedures used to assign and retrieve custom property values. When
accessed through code, they look like public variables or constants of a class (fields), but they include
logic in their data setting and retrieval code. Properties have two parts.

Property Accessor

Retrieves the value of a property, returning it to the caller. The accessor is defined through the
property's Get component.

Property Mutator

Assigns a value to or modifies a property's value. The mutator is defined through the property's
Set component.

Properties can be defined as ReadOnl y or Wit eOnl y; when defined with one of these restrictions, the
applicable component (Get or Set) is left out of the property definition.

Example 6-4 defines a simple class with a single property.

Example 6-4. A property

Public C ass Person
Private theNane As String

Public Property Nanme() As String
Cet

----- Property accessor.
Ret urn t heNane

End Cet

Set (ByVal value As String)
o-e--- Property nutator.
If (Trim(value) <> "") Then

t heName = val ue

El se
Throw New System Argunent Exception(_
"M ssing nane value.", "Nane")
End |f
End Set
End Property

End d ass

While the Name member of the Per son class could have just been a public variable for simplicity, using
a property made it possible to check for invalid use (an empty name value, in this case).

Internally, properties are implemented as methods. Visual Basic implements each property accessor

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

as a get _propertynane method, while each mutator is implemented as a set _propertynanme method.

New in 2005. Normally, the Get and Set components of the Property statement share the same level
of accessibility (that is, they both are Publ i c, Fri end, or Pri vat e). Visual Basic 2005 allows you to
specify different access levels for the Get and Set components.

For full details of the syntax and use of Properties, see the entry for the Property Statement in
Chapter 12.

k=1 NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Chapter 7. The .NET Framework Class
Library

With its move to .NET, Visual Basic is now about classes, classes, and more classes. Even something
as simple as an | nt eger is implemented in a class (the System.Int32 class). As mentioned in Chapter
2, the .NET Framework defines an extensive network of classes and namespaces called the
Framework Class Library (FCL). This library provides basic application development services, such as
core data types, exception handling, and garbage collection, and support for higher-level
functionality, such as database interaction, a forms and control package, and a web-based
programming system. In total, there are about 200 namespaces containing several thousand classes,
interfaces, structures, enumerations, and other items in the .NET Framework Class Library.

The term Base Class Library (BCL) refers to an important subset of the larger Framework Class
Library. Because most programmers use the whole library without thinking much about whether they
are using FCL or BCL, the terms are used interchangeably. You will find the terms sometimes used
interchangeably even in this book.

The System namespace is at the top of the namespace hierarchy for most namespaces supplied with
the .NET Framework, and the System.Object class is at the top of the object hierarchy. All types in
the .NET Framework Class Library, no matter where they reside in the namespace hierarchy, derive
from the System.Object class.

The .NET Framework Class Library is sufficiently extensive to require an entire book for itself. This
chapter provides just a brief introduction and some examples. This should prepare you to dive into
the Class Library documentation supplied with Visual Studio or available through Microsoft's MSDN
web site (http://msdn.microsoft.com). In parallel with this chapter, you will find documentation for
select library elements in Chapter 12, particularly those most useful to VB programmers.

Before becoming intimidated by the size of the Framework Class Library, keep in mind that VB
provides wrappers for some elements of the FCL, so we can often just call a VB function rather than
resort to accessing the classes in the larger library directly. More generally, while the class library
does have much to offer a VB programmer and should not be ignored, it can be studied and used on
an "as needed" basis.

New in 2005. Beginning with the 2005 release of Visual Basic, a larger number of library features are
brought into easier use through the new My Namespace feature. This feature takes commonly used
FCL activities and wraps them into a smaller, neatly organized hierarchy of tools. For full information
on this new feature, see Chapter 13.

Here is a simple example of what the FCL has to offer beyond the basic Visual Basic language syntax.
As discussed in Chapter 4, the built-in VB data types are wrappers for corresponding BCL data
classes (for reference types) or structures (for value types). This means that your code has access to
any special features included with each data type. If we want to verify that a user has entered an
integer that lies within the valid range of the | nt eger data type, we can use code such as the
following:

downloaded from: lib.ommolkefab.ir

http://msdn.microsoft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

DimuserEntry As String
DimentryVal ue As | nteger
userEntry = I nputBox("Enter an integer.")
If IsNuneric(userEntry) Then
If (CDbl (userEntry) >= entryVal ue. M nVal ue) And _
(CDbl (userEntry) <= entryVal ue. MaxVal ue) Then
entryValue = Cint(userEntry)

El se
Debug. WiteLi ne("lInvalid nunber.")
End |f
El se
Debug. Wit eLi ne("Non-nuneric value.")
End |f

Visual Basic does not include features that indicate the lower and upper bounds of the I nt eger data
type, but .NET's Int32 data type does. And since VB's | nt eger data type is simply a wrapper for the
Int32 data type, VB gets all of its functionality for free, including the MinValue and MaxValue
members. Incidentally, because MinValue and MaxValue are shared class members, the conditions in
the sample code could also have been written as:

If IsNuneric(userEntry) Then
If (CDbl (userEntry) >= Integer.M nValue) And _
(CDbl (userEntry) <= |Integer.MaxVal ue) Then

e prcy NEXT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

7.1. The System Namespace

The System namespace contains classes for such wide-ranging features as:

e Data types

e Data-type conversions

e Events and event handlers

e Mathematics

e Program invocation

e Application-environment management

It is also the root for almost every other significant Microsoft-supplied .NET class and namespace.

7.1.1. The System.Convert Class

The System namespace defines a class called Convert, which implements various data conversion
methods. One such method is ToBoolean, which includes the following usage variations:

Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i
Overl oads Publ i

Shared Function ToBool ean(Bool ean) As Bool ean
Shared Function ToBool ean(Byte) As Bool ean
Shared Function ToBool ean(Char) As Bool ean
Shared Function ToBool ean(DateTi ne) As Bool ean
Shared Function ToBool ean(Deci mal) As Bool ean
Shared Function ToBool ean(Doubl e) As Bool ean
Shared Function ToBool ean(l nteger) As Bool ean
Shared Function ToBool ean(Long) As Bool ean
Shared Function ToBool ean(Qbj ect) As Bool ean
Shared Function ToBool ean(SByte) As Bool ean
Shared Function ToBool ean(Short) As Bool ean
Shared Function ToBool ean(Si ngl e) As Bool ean
Shared Function ToBool ean(String) As Bool ean
Shared Function ToBool ean(Ul nt16) As Bool ean
Shared Function ToBool ean(Ul nt32) As Bool ean
Shared Function ToBool ean(Ul nt 64) As Bool ean

OO0 000000000000 O0OO0

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As you can see, there are many ToBoolean functionseach one overloaded with a different argument
signatureto take care of converting various data types to a Boolean.

Now, just for exercise, consider this block of code:
DimtextVersion As String
Di m trueVersi on As Bool ean
text Version = "fal se"

trueVersion = System Convert. ToBool ean(t ext Ver si on)
MsgBox ('t rueVer si on) " Displays "Fal se"

Because the System namespace is always available (or if we are programming outside of Visual
Studio, we can import it using the | nport s statement), we can omit the System qualifier and write:

trueVersi on = Convert. ToBool ean(text Version)

The built-in VB function CBool also performs this conversion.

The Convert class contains methods for converting data to the standard Visual Basic data types, as
well as to other data types supported by the .NET Framework but not wrapped by Visual Basic. (New
in 2005. Beginning in the 2005 release, Visual Basic now includes native implementations of all core
.NET data types.) The most important of these methods are shown in Table 7-1.

Table 7-1. Members of the System.Convert class

Method VB equivalent Description

ToBool ean CBool Converts a value to Bool ean

ToByt e CByt e Converts a value to an unsigned 8-bit integer Byt e

ToChar CChar Converts a value to a single character Char

ToDat eTi me CDat e Converts a value to date or time value DateTime (Dat e in Visual
Basic)

ToDeci mal CDec Converts a value to a floating point Deci mal

ToDoubl e CDbl Converts a value to a floating point Doubl e

Tol nt 16 CShort Converts a value to a signed 16-bit integer Int16 (Short in Visual
Basic)

Tol nt 32 Cl nt Converts a value to a signed 32-bit integer Int32 (I nt eger in Visual
Basic)

Tol nt 64 CLng Converts a value to a signed 64-bit integer Int64 (Long in Visual
Basic)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Method VB equivalent Description

ToSByt e New in 2005: Converts a value to a signed 8-bit integer SByte (New in 2005:
CSByt e SByt e in Visual Basic)

ToSi ngl e CSng Converts a value to a floating point Si ngl e

ToString CStr Converts a value to a character String

ToUl nt 16 New in 2005: Converts a value to an unsigned 16-bit integer UInt16 (New in
Cushor t 2005: uUshort in Visual Basic)

ToUl nt 32 New in 2005: Converts a value to an unsigned 32-bit integer UInt32 (New in
CUl nt 2005: Ul nt eger in Visual Basic)

ToUl nt 64 New in 2005: Converts a value to an unsigned 64-bit integer UInt64 (New in
CULng 2005: ULong in Visual Basic)

7.1.2. The System.Array Class

The System.Array class contains useful methods for dealing with arrays. For instance, it has a Sort
method that sorts the elements of an array. The following block of code uses Array.Sort to order a
list of I nt eger values.

Public Sub SortArray()

----- Sinmple array sorting exanple.

Di m counter As I|nteger

Dim dataToFi x() As Integer = {9, 8, 12, 4, 5}

B First, show the world the m xed-up ness.
Consol e. WiteLine("Unsorted:")
For counter = 0 To 4

Consol e. WiteLine(CStr(dataToFi x(counter)))
Next counter

- Yeah! | don't have to Bubble sort by nyself.
Array. Sort (dat aToFi x)

----- Di splay the correct results.
Consol e. WiteLine("Sorted:")
For counter = 0 To 4
Consol e. Wit eLi ne(dataToFi x(counter))
Next counter
End Sub

The output is:

Unsort ed:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Some of the more important methods of the Array class are shown in Table 7-2.

Table 7-2. Some members of the System.Array class

Method Description
Bi narySear ch Searches a sorted one-dimensional array for a value

Returns the location of the first occurrence of a particular value in a one-dimensional

| ndexOf
array

Last | ndexOf Returns the location of the last occurrence of a particular value in a one-dimensional
array

Rever se Reverses the order of the elements in a one-dimensional array or a portion of a one-
dimensional array

Sort Sorts a one-dimensional array

New in 2005. Beginning with the 2.0 release of the .NET Framework, System.Array now includes
features that support the new generics functionality, including a wrapper for read-only, type-specific
arrays. For information on using generics, see Chapter 10.

7.1.3. The System.Math Class

The System.Math class includes a number of mathematical methods (such as trigonometric
functions), as well as some more useful general numeric methods, such as Max and Min. For
instance, to determine the maximum of two values, use:

MsgBox(" The maxi mumof 4 and 7 is " & Math. Max(4, 7))

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 7-3 shows the members of the Math class.

Table 7-3. The members of the System.Math class

Topic

Abs Method
Acos Method
Asin Method
Atan Method

Atan2 Method

BigMul Method
Ceiling Method
Cos Method
Cosh Method
DivRem Method
E Field

Exp Method
Floor Method

IEEERemainder
Method

Log Method
Log10 Method
Max Method
Min Method

Pi Field

Pow Method
Round Method
Sign Method
Sin Method
Sinh Method
Sqrt Method
Tan Method
Tanh Method

Truncate Method

downloaded from: lib.ommolkefab.ir

Description

Absolute value

Arccosine

Arcsine

Arctangent; returns the angle with the tangent that is a specified number

Arctangent; returns the angle with the tangent that is the quotient of two
specified numbers

Multiplies two large 32-bit integers, returning a 64-bit integer
Returns the smallest integer greater than or equal to the argument
Cosine

Hyperbolic cosine

Returns the modulus, that is, the remainder of a division operation
The natural number e

The natural number e raised to a power

Returns the largest integer less than or equal to the argument

Returns the remainder of a division operation using an IEEE-defined standard
function

Natural (base e) logarithm

Common (base 10) logarithm

Maximum of two values

Minimum of two values

n, the ratio of the circumference of a circle to its diameter
Exponentiation function

Rounds a given number to a specified number of decimal places
Determines the sign of a number

Sine

Hyperbolic sine

Square root of a value

Tangent

Hyperbolic tangent

Returns the integral portion of a number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

7.1.4. The System.String Class

The System.String class implements a set of string manipulation features, including methods for
substring isolation, concatenation, replacement, padding, trimming, and so on.

The VB String data type is equivalent to the System.String class, so the methods of System.String
apply directly to VB strings, as with the Insert method:

Dim famobusQuote As String = "To be to be"
MsgBox(famusQuote. I nsert (6, "or not "))

This displays the message, "To be or not to be."

In .NET, strings are immutable. That is, they cannot be modified once they are created. All methods
of the String class that make changes to strings actually create a new instance of a string that
contains the changes.

Table 7-4 shows some significant members of the System.String class.

Table 7-4. Some members of the System.String class

Member Description
Chars Property Returns the character at a specific position
Compare Method Compares two string objects

CompareTo Method Compares a string with a designated object

Concat Method Concatenates one or more strings

Contains Method Indicates whether a string contains a certain substring

Copy Method Creates a new copy of an existing string

CopyTo Method Copies characters from a string into a character array

Empty Field A read-only field that represents an empty string

EndsWith Method Indicates whether the end of a string matches a specified string

Equals Method Determines whether a string is equal to another string

Format Method Returns a new string built from a patterned format of one or more data objects
IndexOf Method Returns the position of the first occurrence of a substring within a string

IndexOfAny Method Returns the position within a string of the first occurrence of any character
from a given set of characters

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Member
Insert Method
Join Method

LastIndexOf
Method

LastindexOfAny
Method

Length Property
PadLeft Method
PadRight Method

Remove Method

Replace Method
Split Method
StartsWith Method
Substring Method

ToCharArray
Method

ToLower Method
ToUpper Method
Trim Method

TrimEnd Method

TrimStart Method

downloaded from: lib.ommolkefab.ir

Description

Inserts a substring into a string

Concatenates each element of a string array with a specific delimiter between
each original string, and returns a new string with the result

Returns the position of the last occurrence of a substring within a string
Returns the position within a string of the last occurrence of any character
from a given set of characters

Returns the number of characters in a string

Right-aligns the characters in a string

Left-aligns the characters in a string

Deletes a specified number of characters from a string starting at a specific
position

Replaces all occurrences of a substring in a string with another substring
Splits a delimited string into an array of strings
Indicates whether the beginning of a string matches a particular substring

Extracts a substring from a string by position
Copies the characters of a string to a character array

Converts a string to lowercase
Converts a string to uppercase

Removes all occurrences of a set of characters (usually whitespace characters)
from the beginning and end of a string

Removes all occurrences of a set of characters (usually whitespace characters)
from the end of a string

Removes all occurrences of a set of characters (usually whitespace characters)
from the beginning of a string

MNEXT B

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

7.2. The System.Collections Namespace

The System.Collections namespace contains classes that implement a variety of collection types,
including stacks and queues. A queue is a first-in, first-out data structure. The following code
illustrates its use in Visual Basic:

DimtextContent As String
Di m wor dQueue As New Col | ections. Queue()

wor dQueue. Enqueue("First")
wor dQueue. Enqueue("in")
wor dQueue. Enqueue("first™)
wor dQueue. Enqueue("out ™)

Do Wil e (wordQueue. Count > 0)

textContent &= " " & CStr(wordQueue. Dequeue)
Loop
MsgBox(t ext Cont ent)

The output is "First in first out.”

The System.Collections.Stack class implements a first-in, last-out stack structure, using the standard
methods Push and Pop. See the Stack Class entry in Chapter 12 for information on its use.

New in 2005. The 2005 release of Visual Basic includes a new generics feature. The collection classes

within the System.Collections namespace are perfectly suited for use with generics. See Chapter 10
for details on using collections with generics.

e prcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

7.3. The System.Data Namespace

System.Data and its nested namespaces, notably System.Data.OleDb, System.Data.SqlClient, and
System.Data.OracleClient, implement the primary database interaction feature of the .NET
Framework, ADO.NET. The OleDb, SqlClient, and OracleClient namespaces define data providers that
connect to a data source, retrieve data from a data source, write data back to a data source, and
execute commands against the data source. The most important class in each of these namespaces
is the data adapter class (in the OleDb namespace, it's the OleDbDataAdapter class; in the SqlClient
namespace, it's the SqglDataAdapter class; OracleDataAdapter is its name in the OracleClient
namespace), which is used to retrieve data from a data source and write it to a dataset. Datasets in
ADO.NET include tables, fields, and their interrelations. They are never directly connected to the
original data source; datasets are disconnected. Any data added to them from a database comes
through the connected data adapter.

ADO.NET is not the same thing as ADO, nor is ADO.NET a new version of ADO.

ADO (or ActiveX Data Objects) is a COM-based object model for data access.
ADO.NET is an entirely new model for data access that is based on
disconnected datasets.

A typical ADO.NET activity involves the retrieval of data from a database, storing the returned
records in a dataset. The following function returns a dataset with a single named data table object,
based on the records returned from a SQL statement. This example uses the OleDB-focused classes,
although the SQL Server or Oracle classes would work the same way.

Public Function CreateDataSet(ByVal sql Text As String,
ByVval tableNane As String) As Data. Dat aSet
I Create a data set/data table froma SQ. statenent.
' The sql Text argunment is the actual SQ. statenent
' used to retrieve the records. The tabl eNanme argunent
' gi ves a neani ngful nanme to the new data set, since
' the data set will not extract it fromthe SQ. code.
Di m dbConmand As d eDb. A eDbConmand
Di m dbAdapt or As O eDb. O eDbDat aAdapt er
Di m dbNewSet As Dat a. Dat aSet

dbConmand = New O eDb. A eDbComand(sql Text, DBLi brary)
dbAdapt or New O eDb. O eDbDat aAdapt er (dbCommand)
dbNewSet = New Dat aSet
dbAdapt or. Fi | | (dbNewSet, tabl eNane)
dbAdapt or = Not hi ng
dbCommand = Not hi ng
Ret ur n dbNewSet
End Function

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ADO.NET is a robust and feature-rich set of database interfaces. Due to its size and vast number of
options, a full discussion is beyond the scope of this book. For a complete treatment, see Bill
Hamilton and Matthew MacDonald's book, ADO.NET in a Nutshell (O'Reilly Media).

e prey NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

7.4. The System.lO Namespace

The classes in the System.lO namespace provide a variety of input/output functionality, such as:

e Manipulating directories (Directory class) and files (File class)

e Monitoring changes in directories and files (FileSystemWatcher class)

e Reading and writing single bytes, multibyte blocks, or characters to and from streams
e Reading and writing characters to and from strings (StringReader and StringWriter)

e Reading and writing data types and objects to and from streams (BinaryWriter and
BinaryReader)

e Providing random access to files (FileStream)

The System.lO namespace replaces the functionality found in the COM-based FileSystemObject
component, a tool commonly used in VBA-based scripting (and part of the Microsoft Scripting
Runtime). Chapter 12 includes entries related to the File and Directory classes of the System.lO
namespace.

New in 2005. With the addition of the My Namespace feature, Visual Basic programmers have one
more convenient place to accomplish file system-specific tasks. The My.Computer.FileSystem object
includes many of the most commonly used file system features. See the FileSystem Object entry in
Chapter 13 for additional usage information.

e prey NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

7.5. The System.Text.RegularExpressions Namespace

The System.Text.RegularExpressions namespace contains classes that provide access to the .NET
Framework's regular expression engine.

In its simplest form, a regular expression is a text string representing a pattern that other strings

may or may not match. In more complicated forms, a regular expression is a kind of programming
statement. For instance, the expression:

s/ ab*c/ def

says to match the given string against the regular expression ab*c (strings that start with ab and end
with c¢). If a match exists, then replace the given string with the string def . Here are some simple
regular expressions for pattern matching:

Single character

This is matched only by itself. For example, the letter 'q" matches itself.

Dot (.)

This is matched by any character except the newline character.

Selection from Character Set

A string of characters in square brackets matches any single character from the string of
characters. For example, [abc] matches the single character a, b, or c. A dash can also be used
in the character list; [09] matches any single digit. The text [0- 9a- z] matches any single digit
or any single lowercase character, and [a- zA- Z] matches any single lower-case or uppercase
character.

The ~ symbol negates the match when it appears immediately inside the square brackets. For
instance, [709] matches any character except a digit.

Special Match Abbreviations
\ d matches any single digit; \ D matches any single non-digit.

\wis equivalent to [a- zA- Z_] , thus matching any letter or underscore; \ Wis the negation of \ w.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Asterisk (*)

The asterisk matches zero or more repeated instances of the single character preceding the
asterisk. For instance, the regular expression \ da*\ d matches any string beginning with a single
digit, continuing with zero or more as and ending with a single digit, as with 01 or Oaaal.

Plus Sign (+)

The plus sign matches one or more repeated instances of the single character preceding the
plus sign. It is similar to the asterisk character, but it requires at least one matching character.
For example, the regular expression \ da+\ d matches any string beginning with a single digit,
continuing with one or more as and ending with a single digit, as with 0al or 0aaal, but not 01.

Question Mark (?)

The question mark matches exactly zero or one instances of the single character preceding the
question mark. For example, the regular expression \ da?\ d is matched by any string beginning
with a single digit, continuing with zero or one as and ending with a single digit, as with 01 and
Oal.

General Multiplier

A set of curly braces with two comma-delimited integer values indicates a repeated match a
specific number of times. The format is {x, y}, where x and y are nonnegative integers, and
matches if and only if there are at least x but at most y instances of the single character
preceding the opening bracket. For example, the regular expression \ da{5, 10}\ d matches any
string beginning with a single digit, continuing with at least 5 but at most 10 as and ending with
a single digit, as with Oaaaaaal.

You can leave out one of x or y. Thus, {x,} means "at least x," and {, y} means "at mosty."

Escaped Characters

Several characters have special meaning within regular expression patterns, such as[and ?.
These characters must be escaped with the backslash character (\) before they can be
matched as ordinary non-special characters. For instance, \[matches an opening bracket, \ ?
matches a question mark, and \\ matches a backslash.

The System.Text.RegularExpressions namespace has a Regex class, which has objects that represent
regular expressions. Here's a simple example of using the Regex class.

Dim matchPattern As New System Text. Regul ar Expressi ons. Regex(_
"\'da{3,5}\d")

MsgBox(mat chPattern. | svatch("0al")) ' Displays Fal se

MsgBox(mat chPatt ern. | svat ch("0Oaaal")) " Displays True

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e prcy | nexT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

7.6. The System.Windows.Forms Namespace

The System.Windows.Forms namespace is the starting point for creating Windows desktop
applications. It includes all of the classes that define forms, controls, form-based menus, message
boxes, and so on. New forms added to your VB desktop application project are tried directly to the
Form class from this namespace.

I nherits System W ndows. For ns. For m

When you drag and drop a TextBox control on the form, Visual Studio writes code on your behalf
using the classes of the Windows.Forms namespace. This code is hidden from view by default, and it
is messy when made visible. Fortunately, with Visual Studio doing much of the detail programming
for you, Windows Forms application development turns out to be pretty straightforward.

e prey NEXT b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

7.7. Other Namespaces

A number of useful second-level namespaces appear nested just below the System namespace.

System.CodeDOM

Contains classes representing the elements and structure of a source code document.

System.ComponentModel

Implement the runtime and design-time behavior of components and controls.

System.Configuration

Supports the creation of custom installers for software components.

System.Data

Consists mostly of the classes that constitute the ADO.NET architecture, used for database
connectivity.

System.Diagnostics

Supports the debugging and tracing of applications.

System.DirectoryServices

Provides access to Active Directory from managed code.

System.Drawing

Provides access to the GDI+ basic graphics functionality. More advanced functionality is
provided in the System.Drawing.Drawing2D, System.Drawing.lmaging, and
System.Drawing.Text namespaces.

System.Net

Provides a simple programming interface to many of the common network protocols, such as
FTP and HTTP. The System.Net.Sockets namespace provides lower-level network access
control.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

System.Reflection
Contains classes and interfaces that provide a managed view of loaded types, methods, and
fields, with the ability to create and invoke types dynamically.

System.Resources

Manages generic or culture-specific resources and resource files.

System.Security

Provides access to the underlying structure of the .NET Framework security system.

System.ServiceProcess
Supports the installation and running of Windows services. Services are long-running
executables with no user interface.

System.Text
Contains classes representing ASCII, Unicode, UTF-7, and UTF-8 character encodings, as well
as abstract base classes for converting blocks of characters to and from blocks of bytes, and
more.

System.Threading

Provides classes and interfaces that enable multithreaded programming.

System.Timers

Provides the Timer component, which allows you to raise an event at a specific interval.

System.Web and Related Namespaces

Contains classes and interfaces that enable browser/server communication and allow you to
develop ASP.NET applications and web services.

System.Xml

Provides standards-based support for processing XML content.

k=1 NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

Chapter 8. Delegates and Events

Because Visual Basic is built on the foundation of the .NET Framework, it is object-oriented. But
because it is designed for use in the Microsoft Windows environment, it is also event-driven . In
standard procedural languages, all statements encountered in the program are processed from
beginning to end. The program begins at the start of the main routine (or its equivalent) and
continues to the end, sometimes taking detours into other routines, but always as dictated by the
organization of main.

In event-driven programs, a procedure can be called that has no direct or indirect relation to the
main routine. In fact, very little code within a typical event-driven application is called from main or
any of its descendants. Most code is called by events, user- and system-initiated actions that seek
some outlet in your application's code. Events are the natural programming style of any system with
multiple user input possibilities (keyboard, mouse, touch screen, the user pressing the system's
power button, etc.).

Perhaps you have a program that simulates a cat. Of course you will include a Meow procedure that
emits the language of the cat.

Public Sub Meow()

Your cat program will need to respond to external stimuli, just like a real cat. This requires events.
One such event might be the St eppedOnTai | event that, when triggered, calls the Meow method. Other
events, such as SeeDog and CraveM | k, might also call the Meow method.

In .NET, any class can respond to a set of events specifically designed for use in that class (or a
family of inherited classes). When events are triggered, they call special event-handling routines
through a system of delegates. Although you will usually implement a single event handler (defined
below) for each event of interest, events and event handlers can also exist in many-to-many
relationships. One event, when triggered, can call multiple event handlers, and a single event handler
can be used for multiple events.

e prcv NExT

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=1

8.1. Delegates

An event needs some way to locate the event handler that will act when the event occurs. In some
languages, the location of the handler is identified by its memory address, which is stored in a
variable called a function pointer. In .NET, the location is stored instead as a delegate.

In pre-.NET application development, function pointers allowed you to call a function generically when
you didn't know in advance which function you were going to call. For instance, the Windows API
includes a function called EnumFontFamiliesEx that provides a listing of all installed fonts.

Publ i ¢ Decl are Function EnunfFont Fam |iesEx Lib "gdi 32"
Al i as "EnunfFont Fam | i esEXA" (
ByVal hdc As Long, _
| pLogFont As LOGFONT, _
ByVal | pEnuntont Proc As Long,
ByVal | Param As Long,
ByvVal dw As Long) _
As Long

The APl works by calling a routine in your program, once for each font. When you use
EnumFontFamiliesEx, you pass it the memory address of a callback routine to use for each font; you
pass this function pointer through the | pEnunfont Pr oc parameter. The callback routine needs to
include a specific parameter list signature, as defined in the API's documentation.

Publ i ¢ Function Enunfont FanExProc(ByVal |pelfe As Long,
ByVal |pntne As Long, ByVal FontType As Long,
ByRef | Param As Long) As Long

In VB 6, the AddressOf keyword obtains this function pointer, which you then pass to the
enumeration API. The problem is that if any little thing goes wrong, your whole program will crash.
That's because the function pointer is nothing more than a memory address. It can't guarantee that
you put all of the Byval and ByRef keywords in front of the right parameters, or that you even
included parameters at all. In fact, there's nothing to stop you from passing any random number as
the function pointer. The API doesn't care, until it crashes.

This is where delegates save the day. A .NET delegate isn't just a function pointer; it's a class that
includes everything you need to know to call the destination function correctly. It includes complete
information about the parameters and return value, and you won't be able to compile your program
until you get it all right.

All delegates derive from the System.Delegate or System.MulticastDelegate classes. The former

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

limits the delegate to a single target event handler, while the latter includes no such limit. Visual
Basic uses delegates to bind events to event handlers, and sometimes it seems like a lot of work.
Fortunately, Visual Studio links most events and event handlers automatically as you drag-and-drop
visual elements.

8.1.1. Using a Delegate to Call a Method

To call a method using a delegate, use the Invoke method of the delegate. To illustrate, consider a
class module with a simple method.

Public C ass Sinpled ass
Public Sub Call Me(ByVal