
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Professional
Visual studio® 2010

introduction . xxxix

chaPter 1 A Quick Tour . 3

chaPter 2 The Solution Explorer, Toolbox, and Properties .15

chaPter 3 Options and Customizations . 33

chaPter 4 The Visual Studio Workspace . 53

chaPter 5 Find and Replace and Help . 73

chaPter 6 Solutions, Projects, and Items . 89

chaPter 7 IntelliSense and Bookmarks . 119

chaPter 8 Code Snippets and Refactoring .137

chaPter 9 Server Explorer . 159

chaPter 10 Modeling with the Class Designer . 175

chaPter 11 Unit Testing . 191

chaPter 12 Documentation with XML Comments . 219

chaPter 13 Code Consistency Tools . 245

chaPter 14 Code Generation with T4 . 263

chaPter 15 Project and Item Templates . 291

chaPter 16 Language-Specific Features . 311

chaPter 17 Windows Forms Applications . 335

chaPter 18 Windows Presentation Foundation (WPF) . 351

chaPter 19 Office Business Applications . 379

chaPter 20 ASP .NET Web Forms . 399

chaPter 21 ASP .NET MVC . 437

chaPter 22 Silverlight .471

chaPter 23 Dynamic Data . 485

chaPter 24 SharePoint . 513

chaPter 25 Windows Azure . 533

chaPter 26 Visual Database Tools . 549

chaPter 27 DataSets and DataBinding . 559

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chaPter 28 Language Integrated Queries (LINQ) . 587

chaPter 29 The ADO .NET Entity Framework . 621

chaPter 30 Reporting . 645

chaPter 31 Windows Communication Foundation (WCF) . 681

chaPter 32 Windows Workflow Foundation (WF) . 701

chaPter 33 Client Application Services . 725

chaPter 34 Synchronization Services . 745

chaPter 35 WCF RIA Services . 757

chaPter 36 Configuration Files . 773

chaPter 37 Connection Strings . 795

chaPter 38 Resource Files .805

chaPter 39 Using the Debugging Windows . 827

chaPter 40 Debugging with Breakpoints . 845

chaPter 41 DataTips, Debug Proxies, and Visualizers . 857

chaPter 42 Debugging Web Applications . 871

chaPter 43 Advanced Debugging Techniques . 887

chaPter 44 Upgrading with Visual Studio 2010 .905

chaPter 45 Build Customization . 911

chaPter 46 Assembly Versioning and Signing . 929

chaPter 47 Obfuscation, Application Monitoring, and Management 937

chaPter 48 Packaging and Deployment . 961

chaPter 49 Web Application Deployment . 983

chaPter 50 The Automation Model . 1001

chaPter 51 Add-Ins . 1009

chaPter 52 Macros . 1025

chaPter 53 Managed Extensibility Framework (MEF) . 1033

chaPter 54 Visual Studio Ultimate for Architects .1061

chaPter 55 Visual Studio Ultimate for Developers . 1075

chaPter 56 Visual Studio Ultimate for Testers . 1095

chaPter 57 Team Foundation Server .1111

index . 1139

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Professional

Visual studio® 2010

Nick Randolph
David Gardner

Michael Minutillo
Chris Anderson

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Professional Visual studio® 2010

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-54865-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010922566

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Visual Studio is a registered trademark of Microsoft
Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://lib.ommolketab.ir
http//lib.ommolketab.ir

To my beautiful Cynthia

—Nick Randolph

To my wife Julie

—David Gardner

For Barbara, amore sempre

—Michael Minutillo

For my parents, Michael and Narelle

—Chris Anderson

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

about the authors

nick randolPh currently runs Built To Roam which focuses on building rich mobile applications.
Previously, Nick was co-founder and Development Manager for nsquared solutions where he led a
team of developers to build inspirational software using next wave technology. Prior to nsquared,
Nick was the lead developer at Intilecta Corporation where he was integrally involved in designing
and building their application framework.

After graduating with a combined Engineering (Information Technology)/Commerce degree, Nick
went on to be nominated as a Microsoft MVP in recognition of his work with the Perth .NET user
group and his focus on mobile devices. He is still an active contributor in the device application
development space via his blog at http://community.softteq.com/blogs/nick/ and via the
Professional Visual Studio web site, www.professionalvisualstudio.com/.

Nick has been invited to present at a variety of events including Tech Ed Australia, MEDC and
Code camp. He has also authored articles for MSDN Magazine (ANZ edition), two books entitled
Professional Visual Studio 2005 and Professional Visual Studio 2008, and helped judge the 2004,
2005, 2007 and 2008 world finals for the Imagine Cup.

daVid Gardner is a seasoned.NET developer and the Chief Software Architect at Intilecta
Corporation. David has an ongoing passion to produce well-designed, high-quality software
products that engage and delight users. Since the mid 90s, He has worked as a solutions architect,
consultant, and developer and has lent his expertise to organizations in Australia, New Zealand,
and Malaysia.

David is a regular speaker at the Perth .NET user group and has presented at events including Microsoft
TechEd and the Microsoft Executive Summit. He holds a Bachelor of Science (Computer Science) and
is a Microsoft Certified Systems Engineer. David was co-author of Professional Visual Studio 2008, and
blogs about Visual Studio and .NET at www.professionalvisualstudio.com.

Michael Minutillo is a .NET software engineer with a Bachelor of Science degree in Computer
Science. A self-described “Indiscriminate Information Sponge,” he started writing .NET software
in early 2000 to fund his university studies and has been an active member of the .NET community
ever since.

Michael is a regular attendee at the Perth .NET Community of Practice where he has given
presentations on the new features of C#, ASP.NET MVC and Test-Driven Philosophy. In 2009
Michael started the Perth ALT.NET User Group which meets monthly to discuss software
engineering tools and practices in the .NET development space.

Michael maintains a technical blog at http://wolfbyte-net.blogspot.com and can be contacted
at http://twitter.com/wolfbyte.

http://community.softteq.com/blogs/nick/
http://www.professionalvisualstudio.com/
http://www.professionalvisualstudio.com
http://wolfbyte-net.blogspot.com
http://twitter.com/wolfbyte
http://lib.ommolketab.ir
http//lib.ommolketab.ir

chris anderson has been a professional developer for over 10 years, specializing in building
desktop, Web, and mobile business applications using Microsoft technologies for industries
as wide ranging as accounting, property valuation, mining, the fresh produce industry, pet
cremations, logistics, field services, sales, and construction. He holds a Bachelor of Engineering
in Computer Systems with a Diploma in Engineering Practise. Chris is a co-owner of Peer
Placements (a specialist recruitment firm for software developers) in addition to working as a
consultant and author. Currently specializing in Silverlight (particularly in relation to building
business applications in Silverlight), Chris has spoken on this topic at Code Camp Australia
2009, TechEd Australia 2009, Silverlight Code Camp Australia 2010, and numerous Sydney
Silverlight Designer and Developer Network (SDDN) meetings for which he is a co-organizer.
Chris maintains a blog at http://chrisa.wordpress.com and can be found on Twitter at
http://twitter.com/christhecoder.

about the technical editor

Joe bennett has been consulting as a developer and software solutions architect for more than
20 years and has been working with .NET exclusively since the beta for version 1.0. He is passionate
about building well-architected, robust software for organizations of all sizes, and loves sharing his
knowledge and experience with other developers.

Joe is the Chief Software Architect at Carolina Software Consultants, LLC and a past President of the
Triangle .NET User Group located in the Triangle area of North Carolina. He frequently speaks at
meetings and events and holds a Bachelor of Science degree in Computer Science from the University
of Houston.

http://chrisa.wordpress.com
http://twitter.com/christhecoder
http://lib.ommolketab.ir
http//lib.ommolketab.ir

credits

acquisitions editor
Paul Reese

ProJect editor
Kelly Talbot

technical editor
Joe Bennett

Production editor
Eric Charbonneau

coPy editor
Kim Cofer

editorial director
Robyn B . Siesky

editorial ManaGer
Mary Beth Wakefield

associate director of MarketinG
David Mayhew

Production ManaGer
Tim Tate

Vice President and executiVe GrouP
Publisher
Richard Swadley

Vice President and executiVe Publisher
Barry Pruett

associate Publisher
Jim Minatel

ProJect coordinator, coVer
Lynsey Stanford

Proofreaders
Scott Klemp and Beth Prouty, Word One

indexer
Johnna Vanhoose Dinse

coVer desiGner
Michael E . Trent

coVer iMaGe
© Eric Delmar/istockphoto

http://lib.ommolketab.ir
http//lib.ommolketab.ir

acknowledGMents

the Process of writinG this book for Visual Studio 2010 has been frustrating at times; however,
the journey of investigating new or forgotten features has reignited my passion for being a developer
and working with one of the premiere development tools on the market. As with the previous two
editions, this was a time-demanding exercise and I must again thank my partner, Cynthia, who
consistently encouraged me to “get it done,” so that we can once again have a life.

I would especially like to thank everyone at Wrox who has helped me re-learn the art of technical
writing—in particular, Kelly Talbot, whose attention to detail has resulted in consistency
throughout the book despite there being four authors contributing to the process, and Paul Reese
(whose ability to get us back on track was a life-saver), who made the whole process possible.

I have to pass on a big thank you to my co-authors, Dave, Mike and Chris, who agreed to work
with me on this edition. I doubt that I really gave an accurate representation of exactly how much
work would be involved, and I really appreciated having co-authors of such high caliber to bounce
ideas off of and share the workload.

Lastly, I would like to thank all of my fellow Australian MVP developers and the Microsoft staff,
who were always able to answer any questions along the way.

—Nick Randolph

writinG a book is without a doubt among the most rewarding and challenging activities I’ve
ever undertaken. I thought it would be easier the second time around, but alas I was quickly proven
wrong. However, in the process I have amassed a wealth of knowledge that I never would have
found the time to learn otherwise.

The production behind this book is significant, and I am especially thankful to the team at Wrox
who worked tirelessly behind the scenes to bring it to fruition. Without Paul Reese and Kelly Talbot
working as hard as they did to cajole the next chapter out of us, we never would have gotten this
finished. It was a pleasure to be in such experienced hands, and I thank them for their patience and
professionalism.

A huge thank you goes to my co-authors Nick Randolph, Michael Minutillo, and Chris Anderson,
whose excellent contributions have improved this book significantly over the previous edition.
I enjoyed collaborating on such a big project and the ongoing conversations about the latest cool
feature that we’d just discovered.

My appreciation and thanks go to Gabriel Torok, Bill Leach, and Mike Moores from PreEmptive
Solutions; Jonathan Carter from Microsoft; and SharePoint extraordinaire Jeremy Thake, whose

http://lib.ommolketab.ir
http//lib.ommolketab.ir

feedback and suggestions greatly improved various chapters. Also thanks to my fellow coffee
drinkers and .NET developers who (unintentionally) remind me how much I still have to learn
about .NET development.

Special thanks to my parents, John and Wendy, who have always been there for me and who have
always provided me with the encouragement and support I needed to achieve my goals. Special
thanks also to my daughters Jasmin and Emily, who gave up countless cuddles and tickles so that
Daddy could find the time to write this book. I promise I’ll do my best to catch up on the tickles that
I owe you and pay them back with interest.

Most of all I would like to thank my extraordinarily supportive wife and best friend, Julie. She
knew exactly what she was getting herself into when I agreed to write this book, and yet she still
offered her full encouragement and support. Julie did way more than her fair share for our family
when I needed to drop everything except work and writing, and I am truly grateful for her love and
friendship.

—David Gardner

first and foreMost I’d like to thank my co-authors Nick and Dave for inviting me to join them
on this adventure. That act of trust and faith has sustained me during several very early morning
writing sessions. When I first appeared on the Perth .NET scene Nick and Dave welcomed me with
loads of friendly advice and conversation. It’s an atmosphere that the community here retains to this
day. A special thanks goes to Chris for racing me to the finish line. When one day we finally meet in
person, I think I owe you a drink.

Like most first-time authors I had no real clue what I was getting myself into when I agreed to write
this book. Thanks to the team at Wrox for patiently educating me. Special thanks goes to Kelly
Talbot who continually worked to keep me on schedule and who coordinated the team that made
my sections readable. Editing a technical book of this size has got to be an interesting challenge and
ensuring consistency across four authors must make it particularly difficult.

Writing a book is a great way to teach you just how much you still have to learn. While researching
material I was constantly surprised by the little corners of Visual Studio that I hadn’t previously
been aware of, but there was always someone hanging out on twitter with a useful link or comment.
There are too many of you to thank individually, so in true twitter style I’ll just say thanks and
know that you are all listening.

Finally, I would particularly like to thank Barbara, the wonderful woman I am so lucky to be married
to. When Nick and Dave first approached me about being involved in this book, I don’t think either
of us realized the impact it would have on our lives. Barbara gave me the courage and the support to
step up to the challenge and was ready to be banished from the house for whole weekends at a time,
taking the kids on wonderful (and tiring) adventures so that I could get a chapter completed. To her
and to my three beautiful children, Chiara, Caleb and Will, I promise I can come with you on the
next adventure. And I won’t write any more books for a while. I promise.

—Michael Minutillo

xi

acknowledGMents

http://lib.ommolketab.ir
http//lib.ommolketab.ir

when i was inVited to Join Nick, Dave, and Michael in writing this book, I had no idea what
I was getting myself into. Writing is a gruelling and time-consuming process — far more than
I could have ever imagined. Each chapter is almost like writing a thesis in itself, but on a strict
time budget, only to move onto the next once it’s done. Knowing that thousands of people would
be reading my chapters and relying on the information that they contain only added to the stress,
but I am quite proud of what we’ve managed to produce, and hope that it gives you the skills and
knowledge to become a Visual Studio power user. It’s been a big learning curve, and I came to
realize how much I think and produce solely in code rather than in English. There’s a definite skill
in effectively expressing concepts in the written form, and I have a newfound appreciation and
respect for those who do it so well.

I’d like to thank Nick and Dave for inviting me to be a part of the team. I was very much honored
to be asked and to actually be involved in this project. My thanks go to all three of my co-authors:
Nick, Dave, and Michael. Despite being located at opposite sides of Australia I think we’ve worked
remarkably well as a team, and I appreciate all your effort, feedback, and encouragement. My thanks
also go to our editor Kelly Talbot, who kept us in check and valiantly (if not always successfully)
attempted to keep us on schedule. While I have received help from a number of people at Microsoft,
I must particularly thank Dustin Campbell and John Vulner who provided me with some valuable
help and answers.

On a personal note, I would like to thank my parents Michael and Narelle, whose hard work,
generosity, and love have been my inspiration.

—Chris Anderson

xii

acknowledGMents

http://lib.ommolketab.ir
http//lib.ommolketab.ir

contents

IntroductIon xxxix

Part i: inteGrated deVeloPMent enVironMent

chaPter 1: a quick tour 3

Getting started 3
Installing Visual Studio 2010 3

Running Visual Studio 2010 5

The Visual studio iDe 7
Developing, Building, Debugging, and Deploying Your
First Application 9

summary 13

chaPter 2: the solution exPlorer, toolbox,
and ProPerties 15

The solution explorer 15
Common Tasks 17

The Toolbox 22
Arranging Components 24

Adding Components 25

Properties 26
Extending the Properties Window 28

summary 32

chaPter 3: oPtions and custoMizations 33

The start Page 33
Customizing the Start Page 34

Code Behind with User Controls 36

Window layout 39
Viewing Windows and Toolbars 39

Navigating Open Items 40

Docking 41

The editor space 43
Fonts and Colors 43

Visual Guides 44

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiv

contents

Full-Screen Mode 45

Tracking Changes 46

other options 46
Keyboard Shortcuts 46

Projects and Solutions 48

Build and Run 49

VB Options 50

importing and exporting settings 51
summary 52

chaPter 4: the Visual studio worksPace 53

The Code editor 53
The Code Editor Window Layout 53

Regions 54

Outlining 55

Code Formatting 55

Navigating Forward/Backward 57

Additional Code Editor Features 57

Split View 58

Tear Away (Floating) Code Windows 58

Creating Tab Groups 59

Advanced Functionality 59

The Command Window 61
The immediate Window 62
The Class View 63
The error list 64
The object Browser 64
The Code Definition Window 66
The Call Hierarchy Window 66
The Document outline Tool Window 68

HTML Outlining 68

Control Outlining 69

reorganizing Tool Windows 70
summary 71

chaPter 5: find and rePlace and helP 73

Quick find/replace 73
Quick Find 74

Quick Replace 75

Find Options 75

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xv

ConTenTs

Wildcards 75

Regular Expressions 76

Find and Replace Options 77

find/replace in files 78
Find in Files 78

Find Dialog Options 79

Results Window 79

Replace in Files 80

find symbol 81
navigate To 82
incremental search 82
accessing Help 83

Navigating and Searching the Help System 84

Configuring the Help System 85

summary 86

Part ii: GettinG started

chaPter 6: solutions, ProJects, and iteMs 89

solution structure 89
solution file format 91
solution Properties 92

Common Properties 92

Configuration Properties 93

Project Types 94
Project files format 96
Project Properties 96

Application 97

Compile (Visual Basic Only) 100

Build (C# and F# Only) 102

Build Events (C# and F# Only) 103

Debug 103

References (Visual Basic Only) 105

Resources 106

Services 107

Settings 108

Reference Paths (C# and F# Only) 108

Signing 109

My Extensions (Visual Basic Only) 110

Security 111

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xvi

contents

Publish 111

Code Analysis (VSTS Premium and Ultimate Editions Only) 112

Web application Project Properties 113
Web 113

Silverlight Applications 114

Package/Publish Web 115

Package/Publish SQL 116

Web site Projects 116
summary 117

chaPter 7: intellisense and bookMarks 119

intellisense explained 119
General IntelliSense 120

Completing Words and Phrases 121

Parameter Information 127

Quick Info 128

Javascript intellisense 128
The JavaScript IntelliSense Context 129

Referencing another JavaScript File 129

intellisense options 130
General Options 131

Statement Completion 132

C#-Specific Options 132

extended intellisense 132
Code Snippets 133

XML Comments 133

Adding Your Own IntelliSense 133

Bookmarks and the Bookmark Window 133
summary 135

chaPter 8: code sniPPets and refactorinG 137

Code snippets revealed 138
Storing Code Blocks in the Toolbox 138

Code Snippets 138

Using Snippets in C# 139

Using Snippets in VB 140

Surround With Snippet 141

Code Snippets Manager 142

Creating Snippets 143

Reviewing Existing Snippets 144

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xvii

ConTenTs

accessing refactoring support 147
refactoring actions 148

Extract Method 148

Encapsulate Field 150

Extract Interface 151

Reorder Parameters 153

Remove Parameters 154

Rename 154

Promote Variable to Parameter 155

Generate Method Stub 156

Organize Usings 156

summary 157

chaPter 9: serVer exPlorer 159

server Connections 159
Event Logs 160

Management Classes 162

Management Events 164

Message Queues 167

Performance Counters 169

Services 172

Data Connections 173
sharePoint Connections 174
summary 174

chaPter 10: ModelinG with the class desiGner 175

Creating a Class Diagram 176
The Design surface 177
The Toolbox 178

Entities 178

Connectors 179

The Class Details 180
The Properties Window 181
layout 181
exporting Diagrams 182
Code Generation and refactoring 182

Drag-and-Drop Code Generation 182

IntelliSense Code Generation 184

Refactoring with the Class Designer 185

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xviii

contents

Modeling Power Toys for Visual studio 186
Visualization Enhancements 186

Functionality Enhancements 187

summary 188

Part iii: diGGinG deePer

chaPter 11: unit testinG 191

Your first Test Case 192
Identifying Tests using Attributes 200

Additional Test Attributes 200

asserting the facts 202
The Assert Class 203

The StringAssert Class 203

The CollectionAssert Class 204

The ExpectedException Attribute 204

initializing and Cleaning Up 206
TestInitialize and TestCleanup 206

ClassInitialize and ClassCleanup 206

AssemblyInitialize and AssemblyCleanup 207

Testing Context 207
Data 207

Writing Test Output 210

advanced Unit Testing 211
Custom Properties 211

Testing Private Members 213

Testing Code Contracts 214
Managing large numbers of Tests 216
summary 217

chaPter 12: docuMentation with xMl coMMents 219

inline Commenting 220
XMl Comments 220

Adding XML Comments 221

XML Comment Tags 222

Using XMl Comments 235
IntelliSense Information 237

Generating Documentation with GhostDoc 237

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xix

ConTenTs

Compiling Documentation with sandcastle 238
Task list Comments 241
summary 243

chaPter 13: code consistency tools 245

source Control 245
Selecting a Source Control Repository 246

Accessing Source Control 248

Offline Support for Source Control 253

Coding standards 254
Code Analysis with FxCop 254

Style Using StyleCop 258

Code Contracts 258

summary 260

chaPter 14: code Generation with t4 263

Creating a T4 Template 264
T4 Building Blocks 268

Expression Blocks 268

Statement Blocks 268

Class Feature Blocks 270

How T4 Works 272
T4 Directives 275

Template Directive 275

Output Directive 275

Assembly Directive 276

Import Directive 276

Include Directive 277

Troubleshooting 278
Design-Time Errors 278

Compiling Transformation Errors 279

Executing Transformation Errors 279

Generated Code Errors 280

Generating Code assets 280
Preprocessed Text Templates 284

Using Preprocessed Text Templates 286

Differences Between a Standard T4 Template 288

Tips and Tricks 289
summary 290

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xx

contents

chaPter 15: ProJect and iteM teMPlates 291

Creating Templates 291
Item Template 291

Project Template 295

Template Structure 296

Template Parameters 298

Template Locations 299

extending Templates 299
Template Project Setup 299

IWizard 301

Generating the Extended Project Template 306

starter Kits 308
online Templates 308
summary 309

chaPter 16: lanGuaGe-sPecific features 311

Hitting a nail with the right Hammer 311
Imperative 312

Declarative 312

Dynamic 312

Functional 313

What’s It All Mean? 314

a Tale of Two languages 314
Compiling without PIAs 315

Generic Variance 316

Visual Basic 321
Lambdas and Anonymous Methods 321

Implicit Line Continuation 322

Automatic Properties with Initial Values 322

Collection Initializers and Array Literals 323

Nullable Optional Parameters 324

Visual Basic PowerPacks 325

C# 325
Late Binding with Dynamic Lookup 325

Named and Optional Parameters 326

f# 327
Your First F# Program 327

Exploring F# Language Features 330

summary 331

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxi

ConTenTs

Part iV: rich client aPPlications

chaPter 17: windows forMs aPPlications 335

Getting started 335
The Windows form 336

Appearance Properties 338

Layout Properties 338

Window Style Properties 338

form Design Preferences 338
adding and Positioning Controls 341

Vertically Aligning Text Controls 342

Automatic Positioning of Multiple Controls 342

Tab Order and Layering Controls 344

Locking Control Design 344

Setting Control Properties 345

Service-Based Components 346

Smart Tag Tasks 346

Container Controls 347
Panel and SplitContainer 347

FlowLayoutPanel 348

TableLayoutPanel 348

Docking and anchoring Controls 349
summary 350

chaPter 18: windows Presentation foundation (wPf) 351

What is WPf? 352
Getting started with WPf 353

XAML Fundamentals 355

The WPF Controls 357

The WPF Layout Controls 358

The WPf Designer and XaMl editor 360
Working with the XAML Editor 361

Working with the WPF Designer 362

The Properties Tool Window 364

Data Binding Features 367

styling Your application 371
Windows forms interoperability 372

Hosting a WPF Control in Windows Forms 372

Hosting a Windows Forms Control in WPF 374

Debugging with the WPf Visualizer 376
summary 377

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxii

contents

chaPter 19: office business aPPlications 379

Choosing an office Project Type 380
Document-Level Customizations 381

Application-Level Add-Ins 381

Creating a Document-level Customization 382
Your First VSTO Project 382

Protecting the Document Design 385

Adding an Actions Pane 386

Creating an application add-in 388
Some Outlook Concepts 388

Creating an Outlook Form Region 389

Debugging office applications 392
Unregistering an Add-In 392

Disabled Add-Ins 394

Deploying office applications 394
summary 396

Part V: web aPPlications

chaPter 20: asP .net web forMs 399

Web application vs. Web site Projects 400
Creating Web Projects 401

Creating a Web Site Project 401

Creating a Web Application Project 404

Other Web Projects 406

Starter Kits, Community Projects, and Open-Source Applications 406

Designing Web forms 407
The HTML Designer 407

Positioning Controls and HTML Elements 409

Formatting Controls and HTML Elements 411

CSS Tools 412

Validation Tools 416

Web Controls 417
Navigation Components 418

User Authentication 418

Data Components 420

Web Parts 423

Master Pages 424

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxiii

ConTenTs

rich Client-side Development 425
Developing with JavaScript 426

Working with ASP .NET AJAX 427

Using AJAX Control Extenders 429

asP.neT Web site administration 431
Security 432

Application Settings 433

ASP .NET Configuration in IIS 434

summary 434

chaPter 21: asP .net MVc 437

Model View Controller 438
Getting started with asP.neT MVC 439
Choosing a Model 440
Controllers and action Methods 441
rendering a Ui with Views 443
advanced MVC 451

Routing 451

Action Method Parameters 456

Areas 459

Validation 461

Partial Views 463

Custom View Templates 463

Dynamic Data Templates 464

jQuery 468

summary 470

chaPter 22: silVerliGht 471

What is silverlight? 472
Getting started with silverlight 473
navigation framework 478
Theming 479
enabling running out of Browser 481
summary 484

chaPter 23: dynaMic data 485

Creating a Dynamic Data Web application 486
Adding a Data Model 487

Exploring a Dynamic Data Application 489

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxiv

contents

Customizing the Data Model 491
Scaffolding Individual Tables 491

Customizing Individual Data Fields 492

Adding Custom Validation Rules 494

Customizing the Display Format 496

Customizing the Presentation 498
Page Templates 499

Field Templates 502

Entity Templates 506

Filter Templates 509

enabling Dynamic Data for existing Projects 511
summary 512

chaPter 24: sharePoint 513

Preparing the Development environment 514
Installing the Prerequisites 515

Installing SharePoint 2010 517

exploring sharePoint 2010 518
Creating a sharePoint Project 520
Building Custom sharePoint Components 524

Developing Web Parts 524

Creating Content Types and Lists 525

Adding Event Receivers 527

Creating SharePoint Workflows 528

Working with features 529
Packaging and Deployment 530
summary 532

chaPter 25: windows azure 533

The Windows azure Platform 534
The Development Fabric 535

Table, Blob, and Queue Storage 536

Application Deployment 540

Tuning Your Application 543

sQl azure 544
appfabric 545

Service Bus 545

Access Control Service 545

summary 546

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxv

ConTenTs

Part Vi: data

chaPter 26: Visual database tools 549

Database Windows in Visual studio 2010 549
Server Explorer 550

The Data Sources Window 556

editing Data 556
Previewing Data 557
summary 558

chaPter 27: datasets and databindinG 559

Datasets overview 559
Adding a Data Source 561

The DataSet Designer 563

Binding Data 565
BindingSource 567

BindingNavigator 569

Data Source Selections 570

Saving Changes 573

Inserting New Items 575

Validation 576

Customized DataSets 578

BindingSource Chains and the DataGridView 579

Working with Data sources 581
The Web Service Data Source 583

Browsing Data 584

summary 586

chaPter 28: lanGuaGe inteGrated queries (linq) 587

linQ Providers 588
old-school Queries 588
Query Pieces 590

From 591

Select 592

Where 592

Group By 593

Custom Projections 594

Order By 594

Debugging and execution 596
linQ to XMl 597

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxvi

contents

VB XML Literals 598

Paste XML as XElement 599

Creating XML with LINQ 600

Querying XMl 602
schema support 603
linQ to sQl 605

Creating the Object Model 606

Querying with LINQ to SQL 608

Binding LINQ to SQL Objects 614

linQPad 618
summary 618

chaPter 29: the ado .net entity fraMework 621

What is the entity framework? 622
Comparison with LINQ to SQL 622

Entity Framework Concepts 623

Getting started 624
Creating an entity Model 624

The Entity Data Model Wizard 624

The Entity Framework Designer 626

Creating/Modifying Entities 630

Creating/Modifying Entity Associations 634

Entity Inheritance 635

Validating an Entity Model 635

Updating an Entity Model with Database Changes 635

Querying the entity Model 636
LINQ to Entities Overview 636

Getting an Object Context 636

CRUD Operations 637

Navigating Entity Associations 641

advanced functionality 642
Updating a Database from an Entity Model 642

Adding Business Logic to Entities 643

Plain Old CLR Objects (POCO) 643

summary 643

chaPter 30: rePortinG 645

Getting started with reporting 645
Designing reports 647

Defining Data Sources 648

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxvii

ConTenTs

Reporting Controls 650

Expressions, Placeholders, and Aggregates 661

Custom Code 663

Report Layout 668

Subreports 670

The Report Wizard 672

rendering reports 673
The Report Viewer Controls 673

Generating the Report 674

Rendering Reports to Different Formats 675

Deploying reports 677
summary 677

Part Vii: aPPlication serVices

chaPter 31: windows coMMunication
foundation (wcf) 681

What is WCf? 681
Getting started 682
Defining Contracts 683

Creating the Service Contract 684

Creating the Data Contract 685

Configuring WCf service endpoints 688
Hosting WCf services 691
Consuming a WCf service 696
summary 699

chaPter 32: windows workflow foundation (wf) 701

What is Windows Workflow foundation? 701
Why Use Windows Workflow? 702
Workflow Concepts 703

Activities 703

Control Flow Activities 704

Expressions 705

Workflow Run Time/Scheduler 705

Bookmarks 705

Persistence 706

Tracking 706

Getting started 707

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxviii

contents

The Workflow foundation Designer 709
Creating a Workflow 712

Designing a Workflow 713

Writing Code Activities 715

Executing a Workflow 716

Debugging Workflows 718

Testing Workflows 719

Hosting the Workflow Designer 719
summary 723

chaPter 33: client aPPlication serVices 725

Client services 725
role authorization 729
User authentication 731
settings 733
login form 738
offline support 740
summary 743

chaPter 34: synchronization serVices 745

occasionally Connected applications 746
server Direct 746
Getting started with synchronization services 749
synchronization services over n-Tiers 751
Background synchronization 752
Client Changes 755
summary 756

chaPter 35: wcf ria serVices 757

Getting started 757
Domain services 760
Domain operations 762

Query Operations 762

Insert/Update/Delete Operations 763

Other Operation Types 763

Consuming a Domain service in silverlight 764
summary 769

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxix

ConTenTs

Part Viii: confiGuration and resources

chaPter 36: confiGuration files 773

.Config files 773
Machine .Config 773

Web .Config 774

App .Config 774

Security .Config 775

ApplicationHost .Config 775

Configuration schema 775
Section: configurationSections 775

Section: startup 777

Section: runtime 777

Section: system .runtime .remoting 778

Section: system .net 778

Section: cryptographySettings 779

Section: system .diagnostics 779

Section: system .web 779

Section: compiler 780

Configuration Attributes 780

application settings 782
Using appSettings 782

Project Settings 783

Dynamic Properties 784

Custom Configuration Sections 785

User settings 790
referenced Projects with settings 792
summary 793

chaPter 37: connection strinGs 795

Connection string Wizard 795
sQl server format 800
in-Code Construction 801
encrypting Connection strings 803
summary 804

chaPter 38: resource files 805

What are resources? 805
Text File Resources 806

Resx Resource Files 807

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxx

contents

Binary Resources 807

Adding Resources 808

Embedding Files as Resources 808

Naming Resources 809

Accessing Resources 809

Designer Files 810

resourcing Your application 811
Control Images 813

satellite resources 813
Cultures 813

Creating Culture Resources 814

Loading Culture Resource Files 814

Satellite Culture Resources 815

accessing specifics 816
Bitmap and Icon Loading 816

Cross-Assembly Referencing 816

ComponentResourceManager 816

Coding resource files 817
ResourceReader and ResourceWriter 818

ResxResourceReader and ResxResourceWriter 818

Custom resources 819
summary 823

Part ix: debuGGinG

chaPter 39: usinG the debuGGinG windows 827

The Code Window 827
Breakpoints 828

DataTips 828

The Breakpoints Window 828
The output Window 829
The immediate Window 830
The Watch Windows 831

QuickWatch 831

Watch Windows 1–4 832

Autos and Locals 833

The Code execution Windows 833
Call Stack 833

Threads 834

Modules 834

Processes 835

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxxi

ConTenTs

The Memory Windows 835
Memory Windows 1–4 836

Disassembly 836

Registers 836

intelliTrace (Ultimate edition only) 837
The Parallel Debugging Windows 838

Parallel Stacks 839

Parallel Tasks 840

exceptions 841
Customizing the Exception Assistant 842

Unwinding an Exception 843

summary 843

chaPter 40: debuGGinG with breakPoints 845

Breakpoints 845
Setting a Breakpoint 846

Adding Break Conditions 848

Working with Breakpoints 850

Tracepoints 852
Creating a Tracepoint 852

Tracepoint Actions 852

execution Control 853
Stepping Through Code 853

Moving the Execution Point 855

edit and Continue 855
Rude Edits 855

Stop Applying Changes 856

summary 856

chaPter 41: datatiPs, debuG Proxies, and Visualizers 857

DataTips 858
Debugger attributes 859

DebuggerBrowsable 859

DebuggerDisplay 860

DebuggerHidden 861

DebuggerStepThrough 862

DebuggerNonUserCode 862

DebuggerStepperBoundary 862

Type Proxies 863
Raw View 865

Visualizers 865

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxxii

contents

advanced Techniques 867
Saving Changes to Your Object 867

summary 869

chaPter 42: debuGGinG web aPPlications 871

Debugging server-side asP.neT Code 872
Web Application Exceptions 874

Edit and Continue 876

Error Handling 876

Debugging Client-side Javascript 877
Setting Breakpoints in JavaScript Code 878

Debugging Dynamically Generated JavaScript 878

Debugging ASP .NET AJAX JavaScript 879

Debugging silverlight 879
Tracing 880

Page-Level Tracing 881

Application-Level Tracing 882

Trace Output 882

The Trace Viewer 883

Custom Trace Output 884

Health Monitoring 884
summary 886

chaPter 43: adVanced debuGGinG techniques 887

start actions 887
Debugging with Code 890

The Debugger Class 890

The Debug and Trace Classes 890

Debugging running applications 892
Attaching to a Windows Process 892

Attaching to a Web Application 893

Remote Debugging 894

.neT framework source 896
Multi-Threaded and Parallelized application Debugging 897
Debugging sQl server stored Procedures 899
Mixed-Mode Debugging 899
Post-Mortem Debugging 900

Generating Dump Files 900

Debugging Dump Files 901

summary 902

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxxiii

ConTenTs

Part x: build and dePloyMent

chaPter 44: uPGradinG with Visual studio 2010 905

Upgrading from Visual studio 2008 905
Upgrading to .neT framework 4.0 909
summary 910

chaPter 45: build custoMization 911

General Build options 911
Manual Dependencies 914
The Visual Basic Compile Page 915

Advanced Compiler Settings 916

Build Events 917

C# Build Pages 919
MsBuild 920

How Visual Studio Uses MSBuild 921

The MSBuild Schema 923

Assembly Versioning via MSBuild Tasks 925

summary 927

chaPter 46: asseMbly VersioninG and siGninG 929

assembly naming 929
Version Consistency 932
strongly named assemblies 933
The Global assembly Cache 933
signing an assembly 934
summary 936

chaPter 47: obfuscation, aPPlication MonitorinG,
and ManaGeMent 937

The Msil Disassembler 938
Decompilers 939
obfuscating Your Code 941

Dotfuscator Software Services 941

Obfuscation Attributes 945

Words of Caution 948

application Monitoring and Management 949
Tamper Defense 950

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxxiv

contents

Runtime Intelligence Instrumentation and Analytics 952

Application Expiry 956

Application Usage Tracking 957

summary 959

chaPter 48: PackaGinG and dePloyMent 961

Windows installers 961
Building an Installer 962

Customizing the Installer 966

Adding Custom Actions 970

The Service Installer 973

Clickonce 976
One Click to Deploy 976

One Click to Update 980

summary 982

chaPter 49: web aPPlication dePloyMent 983

Web site Deployment 984
Publish Web Site 984

Copy Web Site 985

Web application Deployment 986
Publishing a Web Application 986

Packaging a Web Application 987

web .config Transformations 989

Web Project installers 991
The Web Platform installer 992

Extending the Web Platform Installer 993

summary 997

Part xi: custoMizinG and extendinG Visual studio

chaPter 50: the autoMation Model 1001

Visual studio extensibility options 1001
The Visual studio automation Model 1002

An Overview of the Automation Model 1002

Solutions and Projects 1004

Windows and Documents 1005

Commands 1006

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxxv

ConTenTs

Debugger 1007

Events 1007

summary 1008

chaPter 51: add-ins 1009

Developing an add-in 1009
The Add-in Wizard 1010

Project Structure 1012

Testing Your Add-in 1013

The .AddIn File 1014

The Connect Class 1015

Creating a Tool Window 1015

Accessing the Visual Studio Automation Model 1018

Handling Visual Studio Events 1020

Deploying add-ins 1022
summary 1023

chaPter 52: Macros 1025

Understanding Macros 1025
The Macro explorer Tool Window 1026
The Macros iDe 1026
Creating a Macro 1027

How to Record a Macro 1028

How to Develop a Macro 1028

running a Macro 1030
Deploying Macros 1030
summary 1031

chaPter 53: ManaGed extensibility fraMework (Mef) 1033

Getting started with Mef 1034
Imports and Exports 1036

Contracts 1037

Catalogs 1040

Advanced MEF 1041

The Visual studio 2010 editor 1041
The Text Model Subsystem 1042

The Text View Subsystem 1042

The Classification Subsystem 1043

The Operations Subsystem 1043

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxxvi

contents

extending the editor 1044
Editor Extension Points 1045

Editor Services 1050

The Check Comment Highlighter Extension 1050

summary 1057

Part xii: Visual studio ultiMate (aVailable online)

chaPter 54: Visual studio ultiMate for architects 1061

Modeling Projects 1061
UML Diagrams 1062

UML Model Explorer 1066

Using Layer Diagrams to Verify Application Architecture 1066

Linking to Team Foundation Server 1068

exploring Code 1068
The Architecture Explorer 1068

Dependency Graphs 1070

Generate Sequence Diagram 1072

summary 1073

chaPter 55: Visual studio ultiMate for deVeloPers 1075

Code Metrics 1075
Lines of Code 1076

Depth of Inheritance 1077

Class Coupling 1077

Cyclomatic Complexity 1078

Maintainability Index 1078

Excluded Code 1078

Managed Code analysis Tool 1078
C/C++ Code analysis Tool 1079
Profiling Tools 1080

Configuring Profiler Sessions 1080

Reports 1082

stand-alone Profiler 1083
intelliTrace 1084
Database Tools 1086

SQL-CLR Database Project 1086

Offline Database Schema 1086

Data Generation 1089

Database Refactoring 1090

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxxvii

ConTenTs

Schema Compare 1091

Data Compare 1092

Static Analysis 1093

Transact-SQL Editor 1093

Best Practices 1093

summary 1094

chaPter 56: Visual studio ultiMate for testers 1095

automated Tests 1095
Web Performance Tests 1096

Load Tests 1099

Database Unit Test 1100

Coded UI Test 1101

Generic Tests 1102

Ordered Test 1102

relating Code and Tests 1103
Code Coverage 1103

Test Impact Analysis 1105

Visual studio Test Management 1105
Test and lab Manager 1106

Testing Center 1106

Lab Center 1108

summary 1110

chaPter 57: teaM foundation serVer 1111

Team Project 1112
Process Templates 1112
Work item Tracking 1113

Work Item Queries 1114

Work Item Types 1115

Adding Work Items 1116

Work Item State 1116

excel and Project integration 1117
Excel 1117

Project 1118

Version Control 1119
Working from Solution Explorer 1120

Check Out 1121

Check In 1121

Resolve Conflicts 1122

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxxviii

contents

Working Offline 1124

Label 1124

History 1125

Annotate 1125

Shelve 1125

Branch 1126

Merge 1128

Team foundation Build 1128
reporting and Business intelligence 1130
Team Portal 1132

Documents 1132

Process Guidance 1132

SharePoint Lists 1132

Dashboards 1132

Team system Web access 1133
administering Tfs 1134
Tfs automation and Process Customization 1135

Work Item Types 1135

Customizing the Process Template 1136

summary 1137

Index 1139

http://lib.ommolketab.ir
http//lib.ommolketab.ir

introduction

Visual Studio 2010 is an enormous product no matter which way you look at it. Incorporating the
latest advances in Microsoft’s premiere programming languages, Visual Basic and C#, along with a
host of improvements and new features in the user interface, can be intimidating to both newcomers
and experienced .NET developers.

Professional Visual Studio 2010 looks at every major aspect of this developer tool, showing you
how to harness each feature and offering advice about how best to utilize the various components
effectively. It shows you the building blocks that make up Visual Studio 2010, breaking the user
interface down into manageable chunks for you to understand.

It then expands on each of these components with additional details about exactly how it works
both in isolation and in conjunction with other parts of Visual Studio 2010 to make your
development efforts even more efficient.

who this book is for

Professional Visual Studio 2010 is for all developers new to Visual Studio as well as those programmers
who have some experience but want to learn about features they may have previously overlooked.

If you are familiar with the way previous versions of Visual Studio worked, you may want to skim
over Part I, which deals with the basic constructs that make up the user interface, and move on to
the remainder of the book where the new features found in Visual Studio 2010 are discussed in
detail. While you may be familiar with most of Part I, it is worth reading this section in case there
are features of Visual Studio 2010 that you haven’t seen or used before.

If you’re just starting out, you’ll greatly benefit from the first part, where basic concepts are
explained and you’re introduced to the user interface and how to customize it to suit your own style.

what this book coVers

Microsoft Visual Studio 2010 is arguably the most advanced integrated development environment
(IDE) available for programmers today. It is based on a long history of programming languages
and interfaces and has been influenced by many different iterations of the theme of development
environments.

The next few pages introduce you to Microsoft Visual Studio 2010, how it came about, and what
it can do for you as a developer. If you’re already familiar with what Visual Studio is and how it
came to be, you may want to skip ahead to the next chapter and dive into the various aspects of the
integrated development environment itself.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xl

introduction

a brief history of Visual studio
Microsoft has worked long and hard on its development tools. Actually, its first software product
was a version of BASIC in 1975. Back then, programming languages were mainly interpretive
languages in which the computer would process the code to be performed line by line. In the past
three decades, programming has seen many advances, one of the biggest by far being development
environments aimed at helping developers be efficient at producing applications in their chosen
language and platform.

In the 32-bit computing era, Microsoft started releasing comprehensive development tools, commonly
called IDEs (integrated development environments), which contained not just a compiler but also
a host of other features to supplement it, including a context-sensitive editor and rudimentary
IntelliSense features that helped programmers determine what they could and couldn’t do in a given
situation. Along with these features came intuitive visual user interface designers with drag-and-drop
functionality and associated tool windows that gave developers access to a variety of properties for
the various components on a given window or user control.

Initially, these IDEs were different for each language, with Visual Basic being the most advanced in
terms of the graphical designer and ease of use, and Visual C++ having the most power and flexibility.
Under the banner of Visual Studio 6, the latest versions of these languages were released in one large
development suite along with other “Visual” tools such as FoxPro and InterDev. However, it was obvious
that each language still had a distinct environment in which to work, and as a result, development
solutions had to be in a specific language.

one comprehensive environment
When Microsoft first released Visual Studio .NET in 2002, it inherited many features and attributes
of the various, disparate development tools the company had previously offered. Visual Basic 6,
Visual InterDev, Visual C++, and other tools such as FoxPro all contributed to a development effort
that the Microsoft development team mostly created on its own. The team had some input from
external groups, but Visual Studio .NET 2002 and .NET 1.0 were primarily founded on Microsoft’s
own principles and goals.

Visual Studio .NET 2003 was the next version released, and it provided mostly small enhancements
and big fixes. Two years later, Visual Studio 2005 and the .NET Framework 2.0 were released.
Subsequently Visual Studio 2008, coupled with the .NET Frameworks 3.0 and 3.5, was then
released. These were both major releases with new foundation framework classes that went far
beyond anything Microsoft had released previously. However, the most significant part of these
releases was realized in the IDE where the various components continued to evolve in a cohesive way
to provide you with an efficient tool set where everything was easily accessible.

The latest release, Visual Studio 2010 and .NET Framework 4.0, builds on this strong foundation.
With the code shell being re-written to use Windows Presentation Foundation, many of the now
out-dated designers have been given a new lease of life. In addition there are new designers to assist
with building Silverlight applications and built-in support for building Office applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xli

introduction

Visual Studio 2010 comes in several versions: Express, Professional, Premium and Ultimate. The
majority of this book deals with the Professional Edition of Visual Studio 2010, but some parts utilize
features found only in the Premium and Ultimate editions. If you haven’t used these editions before, read
through Chapters 54 to 57 (available online) for an overview of the features they offer over and above the
Professional Edition.

how this book is structured

This book’s first section is dedicated to familiarizing you with the core aspects of Visual Studio
2010. Everything you need is contained in the first five chapters, from the IDE structure and layout
to the various options and settings you can change to make the user interface synchronize with your
own way of doing things.

From there, the remainder of the book is broken into 11 parts:

 ➤ Getting Started: In this part, you learn how to take control of your projects and organize
them in ways that work with your own style.

 ➤ Digging Deeper: Though the many graphical components of Visual Studio that make a
programmer’s job easier are discussed in many places throughout this book, you often need
help when you’re in the process of actually writing code. This part deals with features that
support the coding of applications such as IntelliSense, code refactoring, and creating and
running unit tests In the latest version of the .NET Framework, enhancements were added
to support dynamic languages and move towards feature parity between the two primary
.NET languages, C# and VB. This part covers changes to these languages, as well as
looking at a range of features that will help you write better and more consistent code.

 ➤ Rich Client and Web Applications: For support building everything from Office add-ins to
cloud applications, Visual Studio enables you to develop applications for a wide range of
platforms. These two parts cover the application platforms that are supported within Visual
Studio 2010, including ASP.NET and Office, WPF, Silverlight 2 and ASP.NET MVC.

 ➤ Data: A large proportion of applications use some form of data storage. Visual Studio 2010
and the .NET Framework include strong support for working with databases and other
data sources. This part examines how to use DataSets, the Visual Database Tools, LINQ,
Synchronization Services and ADO.NET Entity Framework to build applications that work
with data. It also shows you how you can then present this data using Reporting.

 ➤ Application Services: Through the course of building an application you are likely to require
access to services that may or may not reside within your organization. This part covers
core technologies such as WCF, WF, Synchronization Services and WCF RIA Services that
you can use to connect to these services.

 ➤ Configuration and Internationalization: The built-in support for configuration files allows
you to adjust the way an application functions on the fly without having to rebuild it.
Furthermore, resource files can be used to both access static data and easily localize an
application into foreign languages and cultures. This part of the book shows how to use
.NET configuration and resource files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xlii

introduction

 ➤ Debugging: Application debugging is one of the more challenging tasks developers have to
tackle, but correct use of the Visual Studio 2010 debugging features will help you analyze
the state of the application and determine the cause of any bugs. This part examines the rich
debugging support provided by the IDE.

 ➤ Build and Deployment: In addition to discussing how to build your solutions effectively and
getting applications into the hands of your end users, this part also deals with the process of
upgrading your projects from previous versions.

 ➤ Customizing and Extending Visual Studio: If the functionality found in the previous part
isn’t enough to help you in your coding efforts, Microsoft has made Visual Studio 2010 even
more extensible. This part covers the automation model, how to write add-ins and macros,
and then how to use a new extensibility framework, MEF, to extend Visual Studio 2010.

 ➤ Visual Studio Ultimate (available online): The final part of the book examines the
additional features only available in the Premium and Ultimate versions of Visual Studio
2010. In addition, you’ll also learn how the Team Foundation Server provides an essential
tool for managing software projects.

Though this breakdown of the Visual Studio feature set provides the most logical and easily
understood set of topics, you may need to look for specific functions that will aid you in a particular
activity. To address this need, references to appropriate chapters are provided whenever a feature is
covered in more detail elsewhere in the book.

what you need to use this book

To use this book effectively, you’ll need only one additional item — Microsoft Visual Studio 2010
Professional Edition. With this software installed and the information found in this book, you’ll be
able to get a handle on how to use Visual Studio 2010 effectively in a very short period of time.

This book assumes that you are familiar with the traditional programming model, and it uses
both the C# and Visual Basic (VB) languages to illustrate features within Visual Studio 2010. In
addition, it is assumed that you can understand the code listings without an explanation of basic
programming concepts in either language. If you’re new to programming and want to learn Visual
Basic, please take a look at Beginning Visual Basic 2010 by Thearon Willis and Bryan Newsome.
Similarly, if you are after a great book on C#, track down Beginning Visual C# 2010, written
collaboratively by a host of authors.

Some chapters discuss additional products and tools that work in conjunction with Visual Studio.
The following are all available to download either on a trial basis or for free:

 ➤ Code Snippet Editor: This is a third-party tool developed for creating code snippets in VB.
The Snippet Editor tool is discussed in Chapter 8.

 ➤ Sandcastle: Using Sandcastle, you can generate comprehensive documentation for every
member and class within your solutions from the XML comments in your code. XML
comments and Sandcastle are discussed in Chapter 12.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xliii

introduction

 ➤ SQL Server 2008: The installation of Visual Studio 2010 includes an install of SQL Server
2008 Express, enabling you to build applications that use database fi les. However, for
more comprehensive enterprise solutions, you can use SQL Server 2008 instead. Database
connectivity is covered in Chapter 26.

 ➤ Visual Studio 2010 Premium or Ultimate edition: These more advanced versions of Visual
Studio introduce tools for other parts of the development process such as testing and design.
They are discussed in Chapters 54-57 that are available online.

 ➤ Team Foundation Server: The server product that provides application lifecycle management
throughout Visual Studio 2010. This is covered in Chapter 57.

 conVentions

 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of
conventions throughout the book.

 Boxes with a warning icon like this one hold important, not - to - be forgotten
information that is directly relevant to the surrounding text.

 The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

 As for styles in the text:

 We ➤ highlight new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A. ➤

 We show fi le names, URLs, and code within the text like so: ➤

 persistence.properties .

 We present code in two different ways: ➤

We use a monofont type with no highlighting for most code
examples.
We use bold to emphasize code that's particularly important in the
present context or to show changes from a previous code snippet.

 source code

 As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. All the source code used in this

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xliv

introduction

book is available for download at http://www.wrox.com . When at the site, simply locate the book ’ s
title (use the Search box or one of the title lists) and click the Download Code link on the book ’ s
detail page to obtain all the source code for the book. Code that is included on the Web site is
highlighted by the following icon:

 Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a code
note such as this:

 code snippet fi lename

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-0-470-54865-3.

 Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

 errata

 We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

 To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using
the Search box or one of the title lists. Then, on the book details page, click the Book Errata
link. On this page you can view all errata that has been submitted for this book and posted by
Wrox editors. A complete book list including links to each book ’ s errata is also available at
 www.wrox.com/misc-pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We ’ ll check
the information and, if appropriate, post a message to the book ’ s errata page and fi x the problem in
subsequent editions of the book.

http://www.wrox.com
http://www.wrox.com/dynamic/books/
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

xlv

introduction

 P2P .wrox .coM

 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e - mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1 . Go to p2p.wrox.com and click the Register link.

 2 . Read the terms of use and click Agree.

 3 . Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4 . You will receive an e - mail with information describing how to verify your account and
complete the joining process.

 You can read messages in the forums without joining P2P but in order to post
your own messages, you must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://p2p.wrox.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PART I

integrated Development
environment

 ⊲ Chapter 1 : A Quick Tour

 Chapter 2 : ⊲ The Solution Explorer, Toolbox, and Properties

 Chapter 3 : ⊲ Options and Customizations

 Chapter 4 : ⊲ The Visual Studio Workspace

Chapter ⊲ 5 : Find and Replace and Help

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1
 A Quick Tour

 What ’ S iN thiS Chapter?

 Installing and getting started with Visual Studio 2010 ➤

 Creating and running your fi rst application ➤

 Debugging and deploying an application ➤

 Ever since we have been developing software, there has been a need for tools to help us write,
compile, debug, and deploy our applications. Microsoft Visual Studio 2010 is the next iteration
in the continual evolution of a best - of - breed integrated development environment (IDE).

 This chapter introduces the Visual Studio 2010 user experience and shows you how to work
with the various menus, toolbars, and windows. It serves as a quick tour of the IDE, and
as such it doesn ’ t go into detail about what settings can be changed or how to go about
customizing the layout, because these topics are explored in the following chapters.

 gettiNg StarteD

 With each iteration of the Visual Studio product, the installation process has been incrementally
improved, meaning that you can now get up and running with Visual Studio 2010 with minimal
fuss. This section walks you through the installation process and getting started with the IDE.

 installing Visual Studio 2010
 When you launch Visual Studio 2010 setup, you see the dialog in Figure 1 - 1 showing you the
three product installation stages. As you would imagine, the fi rst stage is to install the product
itself. The other two stages are optional. You can either install the product documentation
locally, or use the online (and typically more up - to - date) version. It is recommended that you
do search for service releases because it ensures you are working with the most recent version
of the product and associated tools.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 ❘ Chapter 1 A Quick Tour

As you progress through the setup process you are prompted to provide feedback to Microsoft (left
image, Figure 1-2) and agree to the licensing terms for the product (right image, Figure 1-2).

Figure 1-2

Figure 1-1

The Visual Studio 2010 setup process has been optimized for two general categories of developers:
those writing managed, or .NET, applications, and those writing native, or C++, applications (left
image, Figure 1-3). The Customize button allows you to select components from the full component
tree as shown in the right image of Figure 1-3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started ❘ 5

Once you have selected the components you want to install, you see the updated progress dialog in
the left image of Figure 1-4. Depending on which components you already have installed on your
computer, you may be prompted to restart your computer midway through the installation process.
When all the components have been installed, you see the setup summary dialog in the right image
of Figure 1-4. You should review this to ensure that no errors were encountered during installation.

Figure 1-3

running Visual Studio 2010
When you launch Visual Studio the Microsoft
Visual Studio 2010 splash screen appears.
Like a lot of splash screens, it provides
information about the version of the product
and to whom it has been licensed, as shown in
Figure 1-5.

Figure 1-4

Figure 1-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 ❘ Chapter 1 A Quick Tour

 The fi rst time you run Visual Studio 2010, you see the splash screen only for a short period before
you are prompted to select the default environment settings. It may seem unusual to ask those
who haven ’ t used a product before how they imagine themselves using it. Because Microsoft has
consolidated a number of languages and technologies into a single IDE, that IDE must account for
the subtle (and sometimes not so subtle) differences in the way developers work.

 If you take a moment to review the various options in this list, as shown in Figure 1 - 6, you ’ ll
fi nd that the environment settings that are affected include the position and visibility of various
windows, menus, and toolbars, and even keyboard shortcuts. For example, if you select the General
Development Settings option as your default preference, this screen describes the changes that will
be applied. Chapter 3 covers how you can change your default environment settings at a later stage.

 An interesting fact about the splash screen is that while a large portion of Visual
Studio now uses WPF to display its content, the new splash screen in Visual
Studio 2010 is still done in native code so that it displays as soon as possible
after you start Visual Studio. A signifi cant amount of time went into hand craft-
ing the wave at the bottom of the splash screen, so make sure you marvel at it
whenever you ’ re sitting there patiently waiting for Visual Studio to load.

 Figure 1 - 6

 A tip for Visual Basic .NET developers coming from previous versions of Visual
Studio is that they should not use the Visual Basic Development Settings option.
This option has been confi gured for VB6 developers and will only infuriate
Visual Basic .NET developers, because they will be used to different shortcut
key mappings. We recommend that you use the general development settings,
because these will use the standard keyboard mappings without being geared
toward another development language.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 the ViSuaL StuDiO iDe

 Depending on which set of environment settings you select, when you click the Start Visual Studio
button you will most likely see a dialog indicating that Visual Studio is confi guring the development
environment. When this process is complete, Visual Studio 2010 opens, ready for you to start work,
as shown in Figure 1 - 7.

 Figure 1 - 7

 Regardless of the environment settings you selected, you see the Start Page in the center of the screen.
However, the contents of the Start Page and the surrounding toolbars and tool windows can vary.

 If you click the grey rounded rectangle with the text “ Download the latest
 information for developers to the Start Page, ” this pulls down news items from an
RSS feed specifi ed in the environment settings you specifi ed. Each item is displayed
in summary within the rectangle, allowing you to click through to the full article.
You can customize this feed by changing the Start Page News Channel property on
the Environment ➪ Startup node of the Options dialog, accessible via the Options
item on the Tools menu.

The Visual Studio IDE ❘ 7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 ❘ Chapter 1 A Quick Tour

 Before you launch into building your fi rst application, it ’ s important to take a step back and look at
the components that make up the Visual Studio 2010 IDE. Menus and toolbars are positioned
along the top of the environment, and a selection of subwindows, or panes, appears on the left,
right, and bottom of the main window area. In the center is the main editor space: whenever you
open a code fi le, an XML document, a form, or some other fi le, it appears in this space for editing.
With each fi le you open, a new tab is created so that you can toggle among opened fi les.

 On either side of the editor space is a set of tool windows: these areas provide additional contextual
information and functionality. In the case of the general developer settings, the default layout
includes the Solution Explorer and Class View on the right, and the Server Explorer and Toolbox on
the left. The tool windows on the left are in their collapsed, or unpinned , state. If you click a tool
window ’ s title, it expands; it collapses again when it no longer has focus or you move the cursor to
another area of the screen. When a tool window is expanded, you see a series of three icons at the
top right of the window, similar to those shown in the left image of Figure 1 - 8.

 Figure 1 - 8

 If you want the tool window to remain in its expanded, or pinned , state, you can click the middle
icon, which looks like a pin. The pin rotates 90 degrees to indicate that the window is now pinned.
Clicking the third icon, the X, closes the window. If later you want to reopen this or another tool
window, you can select it from the View menu.

 Some tool windows are not accessible via the View menu; for example, those
having to do with debugging, such as threads and watch windows. In most cases
these windows are available via an alternative menu item; in the case of the
debugging windows, it is the Debug menu.

 The right image in Figure 1 - 8 shows the context menu that appears when the fi rst icon, the down
arrow, is clicked. Each item in this list represents a different way of arranging the tool window. As
you would imagine, the Float option allows the tool window to be placed anywhere on the screen,
independent of the main IDE window. This is useful if you have multiple screens, because you
can move the various tool windows onto the additional screen, allowing the editor space to use
the maximum screen real estate. Selecting the Dock as Tabbed Document option makes the tool
window into an additional tab in the editor space. In Chapter 4, you learn how to effectively manage
the workspace by docking and pinning tool windows.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Developing, Building, Debugging, and Deploying
Your First application

Now that you have seen an overview of the Visual Studio 2010 IDE, this section walks through
creating a simple application that demonstrates working with some of these components. This is,
of course, the mandatory “Hello World” sample that every developer needs to know, and it can be
done in either Visual Basic .NET or C#, depending on what you feel more comfortable with.

 1. Start by selecting File ➪ New ➪ Project. This opens the New Project dialog, as shown in
Figure 1-9. If you have worked with earlier versions of Visual Studio you will notice that
this dialog has had a significant facelift. There is still the tree on the left side of the dialog
for grouping templates based on language and technology, but now there is also a search
box in the top-right corner. The right pane of this dialog displays additional information
about the project template you have selected. Lastly, you can select the version of the .NET
Framework that the application will target using the drop-down at the top of the dialog.

Figure 1-9

Select the WPF Application from the Templates area (this item exists under the root
Visual Basic and Visual C# nodes, or under the sub-node Windows) and set the Name to
GettingStarted, before selecting OK. This should create a new WPF application project,
which includes a single startup window and is contained within a GettingStarted solution,
as shown in the Solution Explorer window of Figure 1-10. This startup window has auto-
matically opened in the visual designer, giving you a graphical representation of what the
window will look like when you run the application. You will notice that the Properties
tool window has appeared at the bottom of the right tool windows area.

The Visual Studio IDE ❘ 9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 ❘ Chapter 1 A Quick Tour

 2. Click the Toolbox tool window, which causes the window to expand, followed by
the pin icon, which pins the tool window open. To add controls to the window, select the
 appropriate items from the Toolbox and drag them onto the form. Alternatively, you can
double-click the item and Visual Studio automatically adds them to the window.

 3. Add a button and textbox to the form so that the layout looks similar to the one shown in
Figure 1-11. Select the textbox and select the Properties tool window (you can press F4 to
automatically open the Properties tool window). Change the name of the control to
txtToSay. Repeat for the Button control, naming it btnSayHello and setting the Content
property to Say Hello!

Figure 1-10

Figure 1-11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 You can quickly locate a property by typing its name into the search fi eld located beneath
the Name fi eld. In Figure 1 - 11 “ Conten ” has been entered in order to reduce the list of
Properties so that it ’ s easier to locate the Content property.

 You will also notice that after you add controls to the window, the tab is updated with an
asterisk (*) after the text to indicate that there are unsaved changes to that particular item.
If you attempt to close this item while changes are pending, you are asked if you want to
save the changes. When you build the application, any unsaved fi les are automatically saved
as part of the build process.

 One thing to be aware of is that some fi les, such as the solution fi le, are modifi ed
when you make changes within Visual Studio 2010 without your being given any
indication that they have changed. If you try to exit the application or close the
solution, you are still prompted to save these changes.

 4. Deselect all controls and then double - click the button. This not only opens the code editor
with the code - behind fi le for this form, it also creates and wires up an event handler for the
click event on the button. Figure 1 - 12 shows the code window after a single line has been
added to echo the message to the user.

 Figure 1 - 12

The Visual Studio IDE ❘ 11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 ❘ Chapter 1 A Quick Tour

 5. Before you build and execute your application, place the cursor somewhere on the line
containing Messagebox.Show and press F9. This sets a breakpoint — when you run the
application by pressing F5 and then click the “Say Hello!” button, the execution halts at
this line. Figure 1-13 illustrates this breakpoint being reached. The data tip, which
appears when the mouse hovers over the line, shows the contents of the txtToSay.Text
property.

Figure 1-13

The layout of Visual Studio in Figure 1-13 is significantly different from the previous
screenshots, because a number of new tool windows are visible in the lower half of the
screen, and new command bars are visible at the top. When you stop the application you
will notice that Visual Studio returns to the previous layout. Visual Studio 2010 maintains
two separate layouts: design time and run time. Menus, toolbars, and various windows have
default layouts for when you are editing a project, whereas a different setup is defined for
when a project is being executed and debugged. You can modify each of these layouts to suit
your own style and Visual Studio 2010 will remember them.

 6. The last step is to deploy your application. Whether you’re building a rich client application
using Windows Forms or WPF, or a web application, Visual Studio 2010 has the ability
to publish your application. Double-click the Properties node in Solution Explorer and
select the Publish node to display the options for publishing your application, as shown in
Figure 1-14.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Figure 1-14, the publishing folder has been set to a local path, but you can specify a
network folder, an IIS folder, or an FTP site instead. Once you have specified where you
want to publish to, clicking Publish Now publishes your application to that location.

SummarY

You’ve now seen how the various components of Visual Studio 2010 work together to build an
application. The following list outlines the typical process of creating a solution:

 1. Use the File menu to create a solution.

 2. Use the Solution Explorer to locate the window that needs editing and double-click the item
to show it in the main workspace area.

 3. Drag the necessary components onto the window from the Toolbox.

 4. Select the window and each component in turn, and edit the properties in the Properties
window.

 5. Double-click the window or a control to access the code behind the component’s graphical
interface.

Figure 1-14

Summary ❘ 13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 ❘ Chapter 1 A Quick Tour

 6. Use the main workspace area to write code and design the graphical interface, switching
between the two via the tabs at the top of the area.

 7. Use the toolbars to start the program.

 8. If errors occur, review them in the Error List and Output windows.

 9. Save the project using either toolbar or menu commands, and exit Visual Studio 2010.

In subsequent chapters, you learn how to customize the IDE to more closely fit your own working
style, and how Visual Studio 2010 takes a lot of the guesswork out of the application development
process. You also see a number of best practices for working with Visual Studio 2010 that you can
reuse as a developer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2
 The solution explorer, Toolbox,
and Properties

 what ’ s in this chaPter?

 Arranging fi les with the Solution Explorer ➤

 Adding projects, items and references to your solution ➤

 Working with the Properties tool window ➤

 Include your own properties in the Properties tool window ➤

 In Chapter 1 you briefl y saw and interacted with a number of the components that make up
the Visual Studio 2010 IDE. Now you get an opportunity to work with three of the most
commonly used tool windows — the Solution Explorer, the Toolbox, and Properties.

 Throughout this and other chapters you see references to keyboard shortcuts, such as Ctrl+S.
In these cases, we assume the use of the general development settings, as shown in Chapter 1.
Other profi les may have different key combinations.

 the solution exPlorer

 Whenever you create or open an application, or for that matter just a single fi le, Visual Studio
2010 uses the concept of a solution to tie everything together. Typically, a solution is made up
of one or more projects, each of which in turn can have multiple items associated with it. In
the past these items were typically just fi les, but increasingly projects are made up of items that
may consist of multiple fi les, or in some cases no fi les at all. Chapter 6 goes into more detail
about projects, the structure of solutions, and how items are related.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 ❘ chaPter 2 The SoluTion explorer, Toolbox, And properTieS

 The Solution Explorer tool window (Ctrl+Alt+L) provides a
convenient visual representation of the solution, projects, and
items, as shown in Figure 2 - 1. In this fi gure you can see three
projects presented in a tree: a C# WPF application, a C# WCF
service library, and a VB class library.

 Each project has an icon associated with it that typically
indicates the type of project and the language it is written in.
There are some exceptions to this rule, such as setup projects
that don ’ t have a language.

 One node is particularly noticeable, because the font is
boldfaced. This indicates that this project is the startup
project — in other words, the project that is launched when
you select Debug ➪ Start Debugging or press F5. To change the
startup project, right - click the project you want to nominate and select Set as StartUp Project. It is
also possible to nominate multiple projects as startup projects via the Solution Properties dialog,
which you can reach by selecting Properties from the right - click menu of the Solution node.

 fiGure 2 - 1

 With certain environment settings (see “ Let ’ s Get Started ” in Chapter 1), the
Solution node is not visible when only a single project exists. The problem with
this is that it becomes diffi cult to access the Solution Properties window. To get
the Solution node to appear you can either add another project to the solution or
check the Always Show Solution item from the Projects and Solutions node in
the Options dialog, accessible via Tools ➪ Options.

 The toolbar across the top of the Solution Explorer enables you to
customize the way the contents of the window appear to you, as well
as giving you shortcuts to the different views for individual items. For
example, the fi rst button, Show All Files, expands the solution listing
to display the additional fi les and folders, shown in Figure 2 - 2. You
can see that the My Project node is actually made up of multiple fi les,
which hold settings, resources, and information about the assembly.

 In this expanded view you can see all the fi les and folders contained
under the project structure. Unfortunately, if the fi le system changes,
the Solution Explorer does not automatically update to refl ect these
changes. The second button, Refresh, can be used to make sure you
are seeing the correct list of fi les and folders.

 The Solution Explorer toolbar is contextually aware, with different buttons displayed depending
on what type of node is selected. This is shown in Figure 2 - 2, where a folder not contained in the
project (as indicated by the faded icon color) is selected and the remaining buttons from Figure
2 - 1 are not visible. In short, these buttons when visible can be used to view code (in this case, the
 Window1.xaml.cs fi le) or open the designer, which displays both the design and xaml views of
the Window1.xaml fi le. Figure 2 - 2 also shows the Class Diagram button.

 fiGure 2 - 2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 common tasks
 In addition to providing a convenient way to manage projects and items, the Solution Explorer has
a dynamic context menu that gives you quick access to some of the most common tasks, such as
building the solution or individual projects, accessing the build confi guration manager, and opening
fi les. Figure 2 - 3 shows how the context menu varies depending on which item is selected in the
Solution Explorer.

 fiGure 2 - 3

 If you don ’ t already have a class diagram in your project, clicking the View Class
Diagram button will insert one and automatically add all the classes. For a
project with a lot of classes, this can be quite time consuming and will result in a
large and unwieldy class diagram. It is generally a better idea to manually add
one or more class diagrams, which gives you total control.

 The fi rst items in the left - hand and center menus relate to building either the entire solution or the
selected project. In most cases, selecting Build is the most effi cient option, because it only builds
projects that have changed. However, in some cases you may need to force a Rebuild, which builds
all dependent projects regardless of their states. If you just want to remove all the additional fi les
that are created during the build process, you can invoke Clean. This option can be useful if you
want to package your solution in order to e - mail it to someone — you wouldn ’ t want to include all
the temporary or output fi les that are created by the build.

The solution explorer ❘ 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 ❘ chaPter 2 The SoluTion explorer, Toolbox, And properTieS

 For most items in the Solution Explorer, the fi rst section of the context menu is similar to the right -
 hand menu in Figure 2 - 3: the default Open and Open With items allow you to determine how the
item will be opened. This is of particular use when you are working with XML resource fi les. Visual
Studio 2010 opens this fi le type using the built - in resource editor, but this prevents you from making
certain changes and doesn ’ t support all data types you might want to include (Chapter 38 goes into
how you can use your own data types in resource fi les), Using the Open With menu item, you can
use the XML Editor instead.

 fiGure 2 - 4

 The context menu for the Solution, Project, and Folder nodes contains the Open
Folder in Windows Explorer item. This enables you to open Windows Explorer
quickly to the location of the selected item, saving you the hassle of having to
navigate to where your solution is located and then fi nd the appropriate subfolder.

 In the Installed Templates hierarchy on the left of the Add New Project dialog, the templates are
primarily arranged by language and then by technology. The templates include Offi ce project types,
enabling you to build both application - and document - level add - ins for most of the Offi ce products.
Though the Offi ce add - ins still make use of Visual Studio Tools for Offi ce (VSTO), this is built

 adding Projects and items
 The most common activities carried out in the Solution Explorer are the addition, removal, and
renaming of projects and items. To add a new project to an existing solution, you select Add ➪ New
Project from the context menu off the Solution node. This invokes the dialog in Figure 2 - 4, which
has undergone a few minor changes since previous versions of Visual Studio. Project templates can
now be sorted and searched. The pane on the right side displays information about the selected
project, such as the type of project and its description (Chapter 15 covers creating your own Project
and Item templates, including setting these properties).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

into Visual Studio 2010 instead of being an additional installer. You ’ ll see in Chapter 19 how you
can use these project types to build add - ins for the core Offi ce applications. There are also tabs
for Recent Templates and Online Templates. The Online Templates can be sorted and searched in
the same way as your Installed Templates, although the sort criteria has been extended to include
creation date, ratings, and downloaded frequency.

 The other thing you will notice in this dialog is the ability to select different framework versions. If
you have existing projects that you don ’ t want to have to migrate forward to the new version of the
.NET Framework, you can still immediately take advantage of the new features, such as improved
IntelliSense. The alternative would have been to have both Visual Studio 2010 and a previous
version installed in order to build projects for earlier framework versions. The framework selection
is also included in the search criteria, limiting the list of available project templates to those that are
compatible with the selected .NET Framework version.

 fiGure 2 - 5

 When you open your existing solutions or projects in Visual Studio 2010, they
will still go through the upgrade wizard (see Chapter 44 for more information)
but will essentially make only minor changes to the solution and project fi les.
Unfortunately, these minor changes, which involve the inclusion of additional
properties, will break your existing build process if you are using a previous
version of MSBuild. For this reason, you will still need to migrate your entire
development team across to using Visual Studio 2010.

 One of the worst and most poorly understood features in Visual Studio is the concept of a Web Site
project. This is distinct from a Web Application project, which can be added via the aforementioned
Add New Project dialog. To add a Web Site project you need to select Add ➪ Web Site from the
context menu off the Solution node. This displays a dialog similar to the one shown in Figure 2 - 5,
where you can select the type of web project to be created. In most cases, this simply determines the
type of default item that is to be created in the project.

The solution explorer ❘ 19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 ❘ chaPter 2 The SoluTion explorer, Toolbox, And properTieS

 Once you have a project or two, you will need to start adding items. You do this via the Add context
menu item off the project node in the Solution Explorer. The fi rst submenu, New Item, launches the
Add New Item dialog, as seen in Figure 2 - 6.

 fiGure 2 - 6

 It is important to note that the types of web projects listed in Figure 2 - 5 are the
same as the types listed under the Web node in the Add New Project dialog.
However, understand that they will not generate the same results, because signifi cant
differences exist between Web Site projects (created via the Add New Web Site
dialog) and Web Application projects (created via the Add New Project dialog).
The differences between these project types are covered in detail in Chapter 20.

 Like the New Project and New Web Site dialogs, the Add New Item dialog has also had a facelift.
In addition to listing only those item templates that are relevant to the project you have selected,
this dialog enables you to search the installed templates, as well as go online to look for templates
generated by third parties.

 Returning to the Add context menu, you will notice a number of predefi ned shortcuts such as User
Control and Class. These do little more than bypass the stage of locating the appropriate template
within the Add New Item dialog. The Add New Item dialog is still displayed, because you need to
assign a name to the item being created.

 It is important to make the distinction that you are adding items rather than fi les
to the project. Though a lot of the templates contain only a single fi le, some, like
the Window or User Control, will add multiple fi les to your project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 adding references
 Each new software development technology that is released promises better reuse, but few are able
to actually deliver on this promise. One way that Visual Studio 2010 supports reusable components
is via the references for a project. If you expand out any project you will observe a number of .NET
Framework libraries, such as System and System.Core, that need to be referenced by a project in
order to be built. Essentially, a reference enables the compiler to resolve type, property, fi eld, and
method names back to the assembly where they are defi ned. If you want to reuse a class from a
third - party library, or even your own .NET assembly, you need to add a reference to it via the Add
Reference context menu item on the project node of the Solution Explorer.

 When you launch the Add Reference dialog, shown
in Figure 2 - 7, Visual Studio 2010 interrogates
the local computer, the Global Assembly Cache,
and your solution in order to present a list of
known libraries that can be referenced. This
includes both .NET and COM references that
are separated into different lists, as well as
projects and recently used references. In previous
versions of Visual Studio this dialog was
notoriously slow to load. If the component you
need to reference isn ’ t present in the appropriate
list, you can choose the Browse tab, which
enables you to locate the fi le containing the
component directly in the fi le system. By initially
loading the list of projects within your solution
and presenting that as the default tab, then lazy
loading the content for the remaining tabs, this
dialog now displays almost instantly.

 As in other project - based development environments going back as far as the fi rst versions of VB, you
can add references to projects contained in your solution, rather than adding the compiled binary
components. The advantage to this model is that it ’ s easier to debug into the referenced component
and helps ensure you are running the latest version of all components, but for large solutions this
may become unwieldy.

 fiGure 2 - 7

 When you have a solution with a large number of projects (large can be relevant
to your computer but typically anything over 20), you may want to consider
having multiple solutions that reference subsets of the projects. This will continue
to give you a nice debugging experience throughout the entire application while
improving Visual Studio performance during both loading and building of the
solution. Alternatively, you may want to create different build confi gurations
(see Chapter 45) to build a subset of the projects.

The solution explorer ❘ 21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22 ❘ chaPter 2 The SoluTion explorer, Toolbox, And properTieS

adding service references
The other type of reference that the Solution Explorer caters to is service references. In previous
versions of Visual Studio this was referred to as web references, but with the advent of the Windows
Communication Foundation (WCF) there is now a more generic Add Service Reference menu item.
This invokes the Add Service Reference dialog, which you can see in Figure 2-8. In this example the
drop-down feature of the Discover button has
been used to look for Services in Solution.

Unfortunately, this dialog is another case
of Microsoft not understanding the usage
pattern properly. Though the dialog itself
is resizable, the status response message
area is not, making it hard to read any
errors generated. Luckily, if any errors are
thrown while Visual Studio 2010 attempts
to access the service information, it provides
a hyperlink that opens the Add Service
Reference Error dialog. This generally
gives you enough information to resolve
the problem.

In the lower left-hand corner of Figure 2-8 is an Advanced button. The Service Reference Settings
dialog that this launches enables you to customize which types are defined as part of the service
reference. By default, all local system types are assumed to match those being published by the
service. If this is not the case, you may want to adjust the values in the Data Type area of this dialog.
There is also an Add Web Reference button in the lower left-hand corner of the Service Reference
Settings dialog, which enables you to add more traditional .NET Web service references. This might
be important if you have some limitations or are trying to support intersystem operability. Adding
services to your application is covered in more detail in Chapter 31 on WCF.

the toolbox

One of the major advantages over many other IDEs
that Microsoft has offered developers is true drag-
and-drop placement of elements during the design
of both web and rich client applications. These
elements are all available in what is known as the
Toolbox (Ctrl+Alt+X), a tool window accessible via
the View menu, as shown in Figure 2-9.

The Toolbox window contains all of the available
components for the currently active document
being shown in the main workspace. These can be visual components, such as buttons and
textboxes; invisible, service-oriented objects, such as timers and system event logs; or even designer
elements, such as class and interface objects used in the Class Designer view.

fiGure 2-9

fiGure 2-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Visual Studio 2010 presents the available components in groups rather than as one big mess of
components. This default grouping enables you to more easily locate the controls you need — for
example, data - related components are in their own Data group.

 By default, groups are presented in List view (see the left side of Figure 2 - 9). Each component
is represented by its own icon and the name of the component. This differs from the old way of
displaying the available objects, in which the Toolbox was simply a stacked list of icons that left you
guessing as to what some of the more obscure components were, as shown with the Common Controls
group on the right side of Figure 2 - 9. You can change the view of each control group individually —
right - click anywhere within the group area and deselect the List View option in the context menu.

 Regardless of how the components are presented, the
way they are used in a program is usually the same: click
and drag the desired component onto the design surface
of the active document, or double - click the component ’ s
entry for Visual Studio to automatically add an instance.
Visual components, such as buttons and textboxes,
appear in the design area where they can be repositioned,
resized, and otherwise adjusted via the property grid.
Non - visual components, such as the Timer control,
appear as icons, with associated labels, in a non - visual
area below the design area, as shown in Figure 2 - 10.

 At the top left - hand side of Figure 2 - 9 is a group called Reference Library Controls with a single
component, MyControl. “ Reference_Library ” is actually the name of a class library that is defi ned
in the same solution, and it contains the MyControl control. When you start to build your own
components or controls, instead of your having to manually create a new tab and go through the
process of adding each item, Visual Studio 2010 automatically interrogates all the projects in your
solution. If any components or controls are identifi ed (essentially any class that implements System
.ComponentModel.IComponent or System.Windows.FrameworkElement for WPF), a new tab is
created for that project and the appropriate items are added with a default icon and class name (in
this case MyControl), as you can see on the left in Figure 2 - 9. For components, this is the same icon
that appears in the non - visual part of the design area when you use the component.

 fiGure 2 - 10

 An interesting feature of the Toolbox is that you can copy snippets of code into
the Toolbox by simply selecting a region and dragging it onto the Toolbox. You
can rename and reorder your code snippets, making it really useful for
presentations or storing chunks of code you use frequently.

 Visual Studio 2010 interrogates all projects in your solution, both at startup and
after build activities. This can take a signifi cant amount of time if you have a
large number of projects. If this is the case, you should consider disabling this
feature by setting the AutoToolboxPopulate property to false under the
Windows Forms Designer node of the Options dialog (Tools ➪ Options).

The Toolbox ❘ 23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24 ❘ chaPter 2 The SoluTion explorer, Toolbox, And properTieS

 To customize how your items appear in the Toolbox, you need to add a 16 16 pixel bitmap to the
same project as your component or control. Next, select the newly inserted bitmap in the Solution
Explorer and navigate to the Properties window. Make sure the Build property is set to Embedded
Resource. All you now need to do is attribute your control with the ToolboxBitmap attribute:

 Vb

 < ToolboxBitmap(GetType(MyControl), "MyControlIcon.bmp") >
Public Class MyControl

 c#

[ToolboxBitmap(typeof(MyControl), "MyControlIcon.bmp")]
public class MyControl

 This attribute uses the type reference for MyControl to locate the appropriate assembly from which
to extract the MyControlIcon.bmp embedded resource. Other overloads of this attribute can use a
fi le path as the only argument. In this case you don ’ t even need to add the bitmap to your project.

 Unfortunately, you can ’ t customize the way the automatically generated items
appear in the Toolbox. However, if you manually add an item to the Toolbox
and select your components, you will see your custom icon. Alternatively, if you
have a component and you drag it onto a form, you will see your icon appear in
the non - visual space on the designer.

 It is also worth noting that customizing the Toolbox and designer experience for Windows
Presentation Foundation (WPF) controls uses the notion of a Metadata store instead of attributes.
This typically results in additional assemblies that can be used to tailor the design experience in
both Visual Studio 2010 and Expression Blend.

 arranging components
 Having Toolbox items in alphabetical order is a good default because it enables you to locate items
that are unfamiliar. However, if you ’ re only using a handful of components and are frustrated by
having to continuously scroll up and down, you can create your own groups of controls and move
existing object types around.

 Repositioning an individual component is easy. Locate it in the Toolbox and click and drag it to the
new location. When you ’ re happy with where it is, release the mouse button and the component will
move to the new spot in the list. You can move it to a different group in the same way — just keep
dragging the component up or down the Toolbox until you ’ ve located the right group. These actions
work in both List and Icon views.

 If you want to copy the component from one group to another, rather than move it, hold down the
Ctrl key as you drag, and the process will duplicate the control so that it appears in both groups.

 Sometimes it ’ s nice to have your own group to host the controls and components you use the most.
To create a new group in the Toolbox, right - click anywhere in the Toolbox area and select the Add
Tab command. A new blank tab will be added to the bottom of the Toolbox with a prompt for you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to name it. Once you have named the tab, you can then add components to it by following the steps
described in this section.

 When you fi rst start Visual Studio 2010, the items within each group are arranged alphabetically.
However, after moving items around, you may fi nd that they ’ re in a bewildering state and decide
that you simply need to start again. All you have to do is right - click anywhere within the group and
choose the Sort Items Alphabetically command.

 By default, controls are added to the Toolbox according to their class names. This means you
end up with some names that are hard to understand, particularly if you add COM controls to
your Toolbox. Visual Studio 2010 enables you to modify a component ’ s name to something more
understandable.

 To change the name of a component, right - click the component ’ s entry in the Toolbox and select the
Rename Item command. An edit fi eld will appear inline in place of the original caption, enabling
you to name it however you like, even with special characters.

 If you ’ ve become even more confused, with components in unusual groups, and you have lost sight
of where everything is, you can choose Reset Toolbox from the same right - click context menu.
This restores all of the groups in the Toolbox to their original states, with components sorted
alphabetically and in the groups in which they started.

 adding components
 Sometimes you ’ ll fi nd that a particular component you need is not present in the lists displayed
in the Toolbox. Most of the main .NET components are already present, but some are not.
For example, the WebClient class component is not displayed in the Toolbox by default.
Managed applications can also use COM components in their design. Once added to the Toolbox,
COM objects can be used in much the same way as regular .NET components, and if coded
correctly you can program against them in
precisely the same way, using the Properties
window and referring to their methods, properties,
and events in code.

 To add a component to your Toolbox layout, right -
 click anywhere within the group of components
you want to add it to and select Choose Items.
After a moment (this process can take a few
seconds on a slower machine, because the machine
needs to interrogate the .NET cache to determine
all the possible components you can choose from),
you are presented with a list of .NET Framework
components, as Figure 2 - 11 shows. fiGure 2 - 11

 Remember: Selecting Reset Toolbox deletes any of your own custom - made
groups of commands, so be very sure you want to perform this function!

The Toolbox ❘ 25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

26 ❘ chaPter 2 The SoluTion explorer, Toolbox, And properTieS

Scroll through the list to locate the item you want to add to the Toolbox and check the
corresponding checkbox. You can add multiple items at the same time by selecting each of them
before clicking the OK button to apply your changes. At this time you can also remove items from
the Toolbox by deselecting them from the list. Note that this removes the items from any groups to
which they belong, not just from the group you are currently editing.

If you’re finding it hard to locate the item you need, you can use the Filter box, which filters the list
based on name, namespace, and assembly name. On rare occasions the item may not be listed at all.
This can happen with nonstandard components, such as ones that you build yourself or that are not
registered in the Global Assembly Cache (GAC). You can still add them by using the Browse button
to locate the physical file on the computer. Once you’ve selected and deselected the items you need,
click the OK button to save them to the Toolbox layout.

COM components, WPF components, Silverlight Components, and (Workflow) Activities can be
added in the same manner. Simply switch over to the relevant tab in the dialog window to view
the list of available, properly registered COM components to add. Again, you can use the Browse
button to locate controls that may not appear in the list.

ProPerties

One of the most frequently used tool windows built into Visual Studio 2010 is the Properties
window (F4), as shown in Figure 2-12. The Properties window is made up of a property grid and is
contextually aware, displaying only relevant properties of the currently selected item, whether that
item is a node in the Solution Explorer or an element in the form design area. Each line represents
a property with its name and corresponding value in two columns. The right side of Figure 2-12
shows the updated property grid for WPF applications, which includes a preview icon and search
capabilities.

fiGure 2-12

The Properties window is capable of grouping properties, or sorting them alphabetically — you
can toggle this layout using the first two buttons at the top of the Properties window. It has built-in
editors for a range of system types, such as colors, fonts, anchors, and docking, which are invoked

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Properties ❘ 27

when you click into the value column of the property to be changed. When a property is selected, as
shown in the center of Figure 2 - 12, the property name is highlighted and a description is presented
in the lower region of the property grid.

 In the Properties window, read - only properties are indicated in gray and you will not be able to
modify their values. The value SayHello for the Text property on the left side of Figure 2 - 12 is
boldfaced, which indicates that this is not the default value for this property. Similarly on the right
side of Figure 2 - 12 the Text property has a fi lled - in black square between the property name and
value, indicating the value has been specifi ed. If you inspect the following code that is generated by
the designer, you will notice that a line exists for each property that is boldfaced in the property
grid — adding a line of code for every single property on a control would signifi cantly increase the
time to render the form.

 Vb

Me.btnSayHello.Location = New System.Drawing.Point(12, 12)
Me.btnSayHello.Name = "btnSayHello"
Me.btnSayHello.Size = New System.Drawing.Size(100, 23)
Me.btnSayHello.TabIndex = 0
Me.btnSayHello.Text = "Say Hello!"
Me.btnSayHello.UseVisualStyleBackColor = True

 Code snippet Form1.Designer.vb

 c#

this.btnSayHello.Location = new System.Drawing.Point(12, 12);
this.btnSayHello.Name = "btnSayHello";
this.btnSayHello.Size = new System.Drawing.Size(100, 23);
this.btnSayHello.TabIndex = 0;
this.btnSayHello.Text = "Say Hello!";
this.btnSayHello.UseVisualStyleBackColor = true;

 Code snippet Form1.Designer.cs

 For Web and WPF applications, the properties set in the Properties window are
persisted as markup in the aspx or xaml fi le, respectively. As with the Windows
forms designer, only those values in the Properties window that have been set are
persisted into markup.

 In addition to displaying properties for a selected item, the Properties window also provides a design
experience for wiring up event handlers. The Properties window on the left of Figure 2 - 13 illustrates
the event view that is accessible via the fourth button, the lightning bolt, across the top of the
Properties window. In this case, you can see that there is an event handler for the click event. To wire
up another event you can either select from a list of existing methods via a drop - down list in the
value column, or you can double - click the value column. This creates a new event - handler method
and wires it up to the event. If you use the fi rst method you will notice that only methods that match
the event signature are listed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

28 ❘ chaPter 2 The SoluTion explorer, Toolbox, And properTieS

Certain components, such as the DataGridView, expose a number of commands, or shortcuts,
that can be executed via the Properties window. On the right side of Figure 2-13 you can see two
commands for the DataGridView: Edit Columns and Add Column. When you click either of these
command links, you are presented with a dialog for performing that action.

If the Properties window has only a small amount of screen real estate, it can be difficult to scroll
through the list of properties. If you right-click in the property grid you can uncheck the Command
and Description checkboxes to hide these sections of the Properties window.

extending the Properties window
You have just seen how Visual Studio 2010 highlights properties that have changed by boldfacing
the value. The question that you need to ask is, How does Visual Studio 2010 know what the default
value is? The answer is that when the Properties window interrogates an object to determine what
properties to display in the property grid, it looks for a number of design attributes. These attributes
can be used to control which properties are displayed, the editor that is used to edit the value, and
what the default value is. To show how you can use these attributes on your own components, start
with adding a simple automatic property to your component:

Vb

Public Property Description As String

Code snippet MyControl.vb

c#

public string Description { get; set; }

Code snippet MyControl.cs

The Browsable attribute
By default, all public properties are displayed in the property grid. However, you can explicitly
control this behavior by adding the Browsable attribute. If you set it to false the property will not
appear in the property grid.

fiGure 2-13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Properties ❘ 29

Vb

<System.ComponentModel.Browsable(False)>
Public Property Description As String

Code snippet MyControl.vb

c#

[System.ComponentModel.Browsable(false)]
public string Description { get; set; }

Code snippet MyControl.cs

Displayname attribute
The DisplayName attribute is somewhat self-explanatory; it enables you to modify the display name
of the property. In our case, we can change the name of the property as it appears in the property
grid from Description to VS2010 Description.

Vb

<System.ComponentModel.DisplayName("VS2010 Description")>
Public Property Description As String

Code snippet MyControl.vb

c#

[System.ComponentModel.DisplayName("VS2010 Description")]
public string Description { get; set; }

Code snippet MyControl.cs

Description
In addition to defining the friendly or display name for the property, it is also worth providing
a description, which appears in the bottom area of the Properties window when the property is
selected. This ensures that users of your component understand what the property does.

Vb

<System.ComponentModel.Description("My first custom property")>
Public Property Description As String

Code snippet MyControl.vb

c#

[System.ComponentModel.Description("My first custom property")]
public string Description { get; set; }

Code snippet MyControl.cs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

30 ❘ chaPter 2 The SoluTion explorer, Toolbox, And properTieS

Category
By default, any property you expose is placed in the Misc group when the Properties window is
in grouped view. Using the Category attribute, you can place your property in any of the existing
groups, such as Appearance or Data, or a new group if you specify a group name that doesn’t exist.

Vb

<System.ComponentModel.Category("Appearance")>
Public Property Description As String

Code snippet MyControl.vb

c#

[System.ComponentModel.Category("Appearance")]
public string Description { get; set; }

Code snippet MyControl.cs

DefaultValue
Earlier you saw how Visual Studio 2010 highlights properties that have changed from their initial or
default values. The DefaultValue attribute is what Visual Studio 2010 looks for to determine the
default value for the property.

Vb

Private Const cDefaultDescription As String = "<enter description>"
<System.ComponentModel.DefaultValue(cDefaultDescription)>
Public Property Description As String = cDefaultDescription

Code snippet MyControl.vb

c#

private const string cDefaultDescription = "<enter description>";
private string mDescription = cDefaultDescription;
[System.ComponentModel.DefaultValue(cDefaultDescription)]
public string Description
{
 get
 {
 return mDescription;
 }
 set
 {
 mDescription = value;
 }
}

Code snippet MyControl.cs

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Properties ❘ 31

 In this case, if the value of the Description property is set to “ < enter description > “ , Visual
Studio 2010 removes the line of code that sets this property. If you modify a property and want to
return to the default value, you can right - click the property in the Properties window and select
Reset from the context menu.

 It is important to note that the DefaultValue attribute does not set the initial
value of your property. It is recommended that if you specify the DefaultValue
attribute you also set the initial value of your property to the same value, as
done in the preceding code.

 ambientValue
 One of the features we all take for granted but that few truly understand is the concept of ambient
properties. Typical examples are background and foreground colors and fonts: unless you explicitly
set these via the Properties window they are inherited — not from their base classes, but from their
parent control. A broader defi nition of an ambient property is a property that gets its value from
another source.

 Like the DefaultValue attribute, the AmbientValue attribute is used to indicate to Visual Studio
2010 when it should not add code to the designer fi le. Unfortunately, with ambient properties you
can ’ t hard - code a value for the designer to compare the current value to, because it is contingent
on the property ’ s source value. Because of this, when you defi ne the AmbientValue attribute this
tells the designer to look for a function called ShouldSerialize PropertyName . In our case, it would
be ShouldSerializeDescription , and this method is called to determine whether the current
value of the property should be persisted to the designer code fi le.

 Vb

Private mDescription As String = cDefaultDescription
 < System.ComponentModel.AmbientValue(cDefaultDescription) >
Public Property Description As String
 Get
 If Me.mDescription = cDefaultDescription AndAlso
 Me.Parent IsNot Nothing Then
 Return Parent.Text
 End If
 Return mDescription
 End Get
 Set(ByVal value As String)
 mDescription = value
 End Set
End Property

Private Function ShouldSerializeDescription() As Boolean
 If Me.Parent IsNot Nothing Then
 Return Not Me.Description = Me.Parent.Text

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32 ❘ chaPter 2 The SoluTion explorer, Toolbox, And properTieS

 Else
 Return Not Me.Description = cDefaultDescription
 End If
End function

Code snippet MyControl.vb

c#

private string mDescription = cDefaultDescription;
[System.ComponentModel.AmbientValue(cDefaultDescription)]
public string Description{
 get{
 if (this.mDescription == cDefaultDescription &&
 this.Parent != null){
 return Parent.Text;
 }
 return mDescription;
 }
 set{
 mDescription = value;
 }
}

private bool ShouldSerializeDescription(){
 if (this.Parent != null){
 return this.Description != this.Parent.Text;
 }
 else{
 return this.Description != cDefaultDescription;
 }
}

Code snippet MyControl.cs

When you create a control with this property, the initial value would be set to the value of the
DefaultDescription constant, but in the designer you would see a value corresponding to
the Parent.Text value. There would also be no line explicitly setting this property in the designer
code file, as reflected in the Properties window by the value being non-boldfaced. If you change the
value of this property to anything other than the DefaultDescription constant, you will see that it
becomes bold and a line is added to the designer code file. If you reset this property, the underlying
value is set back to the value defined by AmbientValue, but all you will see is that it has returned to
displaying the Parent.Text value.

suMMary

In this chapter you have seen three of the most common tool windows in action. Knowing how to
manipulate these windows can save you considerable time during development. However, the true
power of Visual Studio 2010 is exposed when you start to incorporate the designer experience into
your own components. This can be useful even if your components aren’t going to be used outside
your organization. Making effective use of the designer can improve not only the efficiency with
which your controls are used, but also the performance of the application you are building.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3
 options and Customizations

 what ’ s in this chaPter?

 Customizing the Visual Studio 2010 start page ➤

 Tweaking options ➤

 Controlling window layout ➤

 Now that you ’ re familiar with the general layout of Visual Studio 2010, it ’ s time to learn
how you can customize the IDE to suit your working style. In this chapter you learn how to
manipulate tool windows, optimize the code window for maximum viewing space, and change
fonts and colors to reduce developer fatigue.

 As Visual Studio has grown, so too has the number of settings that you can adjust to optimize
your development experience. Unfortunately, unless you ’ ve periodically spent time sifting
through the Options dialog (Tools ➪ Options), it ’ s likely that you ’ ve overlooked one or two
settings that might be important. Through the course of this chapter, you see a number of
recommendations of settings you might want to investigate further.

 A number of Visual Studio add - ins will add their own nodes to the Options dialog because
this provides a one - stop shop for confi guring settings within Visual Studio. Note also that
some developer setting profi les, as selected in Chapter 1, show only a cut - down list of options.
In this case, checking the Advanced checkbox shows the complete list of available options.

 the start PaGe

 By default, when you open a new instance of Visual Studio 2010 you see what is known
as the Start Page. You can adjust this behavior from the Environment ➪ Startup node of
the Options dialog. Other alternatives are to display the Home Page (which you can set via the
Environment ➪ Web Browser node), the last loaded solution, open or new project dialogs, or
no action at all.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

34 ❘ chaPter 3 opTionS And cuSTomizATionS

The reason that most developers stick with the Start Page is that it provides a useful starting point
from which to jump to any number of actions. In the left image of Figure 3-1, you can see that there
are links down the left side for connecting to Team Foundation Server and for creating or opening
projects. There is also a list of recent projects allowing you to quickly open projects that you have
recently been working on. Hovering the mouse over the left side of a project displays a horizontal
pin. Clicking the pin changes the orientation to vertical to indicate that the project has been pinned
to the Recent Projects list. Alternatively, you can right-click a project and either open the containing
folder (useful if you want to locate the project on disk rather than actually opening it) or remove the
project from the list. In the lower-left corner there are two checkboxes that control whether the Start
Page is closed after opening a project and whether it’s displayed at startup. If for whatever reason the
Start Page is closed and you want to open it again, you can do so by selecting the View ➪ Start Page
menu item.

On the right side of the Start Page are a series of tabs. The Get Started tab (the left image of
Figure 3-1) contains various subsections on a variety of topics including Windows, Web, Office
and the Cloud. Click on any of these to find information on how to get started working with these
technologies and what’s new in Visual Studio 2010.

On the Guidance and Resources tab (the center image of Figure 3-1) are links to topics pertaining to
best practices, how-to’s, and other reference material on designing, building, testing and deploying
software using Visual Studio 2010.

fiGure 3-1

Finally, the Latest News tab (the right image of Figure 3-1) keeps you abreast of the latest
happenings around Visual Studio 2010 and the .NET Framework. You can either use the default
RSS feed or specify your own feed that you want to be displayed within the Start Page.

customizing the start Page
In Visual Studio 2010, the Start Page is in fact a WPF control that is hosted within the IDE shell.
As such, it is possible to tailor the Start Page to feature information or actions that are relevant to
you. Rather than modifying the default Start Page, Visual Studio supports user-specific or Custom
Start Pages. By default, this features is disabled so before you can start customizing your Start Page
you have to enable the Allow Custom Start Page checkbox on the Environment ➪ Startup tab of the
Options dialog.

Because the Start Page is just a WPF control, you could simply create a new WPF control project
and build your page from scratch. However, in most cases it is much simpler to start with the default
Start Page and tailor it to suit your needs. To do this you need to copy the default Start Page from
where it is installed into your Documents folder.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The start Page ❘ 35

 1 . Copy the contents of the directory C:\Program Files\Microsoft Visual Studio 10.0\
Common7\IDE\StartPages\<culture> into the directory C:\Users\<user name>\

Documents\Visual Studio 10\StartPages (you may need to create this folder because it
may not exist by default).

 2 . Double-click the project file StartPage.csproj to open the project in Visual Studio 2010,
as shown in Figure 3-2.

As you can see from Figure 3-2, you are able to modify the Start Page using either the WPF designer
or directly in the XAML page. The XAML page is broken down into a number of sections. The
best place to get started is where the TabItem tags are defined for the existing tabs. To create
an additional tab, copy one of the existing tags and modify it to include your own content. For
example, add the following tag after the Latest News tab to add information pertaining to your
company.

fiGure 3-2

xaMl

<!-- Company Tab -->
<TabItem Header=”Company” Height=”Auto” x:Uid=”Company_Tab”
 DataContext=”{Binding Links.Content, Converter=
 {StaticResource StringToXmlDataProviderConverter}}”>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto”></RowDefinition>
 <RowDefinition Height=”*”></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock Foreground=”#E8E8E8” Margin=”15” TextWrapping=”Wrap”
 x:Uid=”Information_Paragraph” >
 The Company has put a lot of effort into writing this custom

http://lib.ommolketab.ir
http//lib.ommolketab.ir

36 ❘ chaPter 3 opTionS And cuSTomizATionS

 Start Page so that you can quickly access information relevant to
 your job, the projects you are working on etc.
 </TextBlock>
 </Grid>
</TabItem>

As soon as you save this change, if you click back to the Start Page tab in Visual Studio 2010 you
will notice that your changes have already been applied, giving you a new Company tab, as shown
in Figure 3-3.

fiGure 3-3

Of course, if you want to do away with the default Start Page layout, you can remove any of the
existing elements and replace it with your own layout, information, and functionality. To do this,
select the elements either in the designer or the XAML page and delete them. Then use any of the
WPF controls in your Toolbox to build your own Start Page interface.

code behind with user controls
To extend the functionality of the Start Page further you may want to execute code on particular
events. The Start Page itself doesn’t support having a code-behind file in which to code event
handlers. However, you can encapsulate your functionality into a user control that can then be used
on your Start Page.

With your Start Page project open, created in the previous section, add a new project in which to
place the control you are going to create. To do this, select File ➪ Add ➪ New Project and select
the WPF User Control Library from the Windows node under either the VB or C# node. Give the
project a name, such as CompanyStartPageControls, and click OK. Now, follow these steps to
create a button that launches your company web site:

 1 . Rename UserControl1.xaml to CompanyPortalControl.xaml in Solution Explorer.

 2 . Double-click the CompanyPortalControl.xaml file in Solution Explorer to open it in the
designer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The start Page ❘ 37

 3 . Replace the XAML with the following markup that creates a button with a Click event
handler.

xaMl

<UserControl x:Class=”CompanyStartPageControls.CompanyPortalControl”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <Grid>
 <Button Click=”LaunchWebsite”>Company Website</Button>
 </Grid>
</UserControl>

 4 . Right-click the CompanyPortalControl.xaml file in Solution Explorer and select View
Code.

 5 . Replace the code with the following, which implements the Click event handler for the
 button to launch the company web site.

Vb

Class CompanyPortalControl
 Private Sub LaunchWebsite(ByVal sender As Object, ByVal e As RoutedEventArgs)
 System.Diagnostics.Process.Start("http://www.builttoroam.com")
 End Sub
End Class

c#

namespace CompanyStartPageControls{
 public partial class CompanyPortalControl : UserControl{
 public CompanyPortalControl(){
 InitializeComponent();
 }
 private void LaunchWebsite(object sender, RoutedEventArgs e){
 System.Diagnostics.Process.Start(
 @"http://www.builttoroam.com");
 }
 }
}

You have now created a control with basic functionality encapsulated within it. Follow these steps
to now use this control within your Start Page:

 1 . Right-click the StartPage project within Solution Explorer and select Add Reference. From
the Projects tab, select the CompanyStartPageControls project and click OK.

 2 . Force a rebuild of your solution by selecting the Build ➪ Rebuild Solution menu item.

 3 . Double-click the StartPage.xaml file in Solution Explorer to open the designer.

 4 . In the Toolbox you will now see a tab for CompanyStartPageControls, in which you will
find your CompanyPortalControl. Drag this item onto the StartPage beneath the information
about the Company. The Company TabItem XAML should now look like the following.

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://www.builttoroam.com
http://www.builttoroam.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

38 ❘ chaPter 3 opTionS And cuSTomizATionS

xaMl

<!-- Company Tab -->
<TabItem Header=”Company” Height=”Auto” x:Uid=”Company_Tab”
 DataContext=”{Binding Links.Content, Converter=
 {StaticResource StringToXmlDataProviderConverter}}”>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto”></RowDefinition>
 <RowDefinition Height=”*”></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock Foreground=”#E8E8E8” Margin=”15” TextWrapping=”Wrap”
 x:Uid=”Information_Paragraph” >
 The Company has put a lot of effort into writing this custom
 Start Page so that you can quickly access information relevant to your
 job, the projects you are working on etc.
 </TextBlock>
 <my:CompanyPortalControl Grid.Row=”1” HorizontalAlignment=”Left”
 Margin=”6,12,0,0” VerticalAlignment=”Top” />
 </Grid>
</TabItem>

If you now save all files (Ctrl+Shift+S) and select the Start Page tab in Visual Studio 2010, you
will see an error as the assembly containing your CompanyPortalControl cannot be found. To fix
this issue, you need to copy the CompanyStartPageControls.dll into the c:\Program Files\
Microsoft Visual Studio 10.0\Common7\IDE\StartPageAssemblies directory. This directory
doesn’t exist by default, so you will need to create it prior to copying the assembly in there.

Once you have copied CompanyStartPageControls.dll, you need to restart Visual Studio. Your
start page should display as shown in Figure 3-4.

fiGure 3-4

If you click the Company Website button, it will launch your company portal in your external web
browser, directly from the Start Page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 window layout

 If you are unfamiliar with Visual Studio, the behavior of the numerous tool windows may strike you
as erratic, because they seem to appear in random locations and then come and go when you move
between writing code (design time) and running code (run time). In actual fact, Visual Studio 2010
remembers the locations of tool windows in each of these modes. This way you can optimize the
way you write and debug code.

 As you open different items from the Solution Explorer, you ’ ll see that the number of toolbars across
the top of the screen varies depending on the type of fi le being opened. Each toolbar has a built - in
association to specifi c fi le extensions so that Visual Studio knows to display the toolbar when a fi le
with one of those extensions is opened. If you close a toolbar when a fi le is open that has a matching
fi le extension, Visual Studio will remember this when future fi les with the same extension are opened.

 You can reset the association between toolbars and the fi le extensions via the
Customize dialog (Tools ➪ Customize). Select the appropriate toolbar and click
the Reset button.

 Viewing windows and toolbars
 Once a tool window or toolbar has been closed it can be diffi cult to locate it again. Luckily, most
of the most frequently used tool windows are accessible via the View menu. Other tool windows,
mainly related to debugging, are located under the Debug menu.

 All the toolbars available in Visual Studio 2010 are listed under the View ➪ Toolbars menu item.
Each toolbar that is currently visible is marked with a tick against the appropriate menu item. You
can also access the list of toolbars by right - clicking in any empty space in the toolbar area at the top
of the Visual Studio window.

 Once a toolbar is visible, you can customize which buttons are displayed, either via View ➪ Toolbars
 ➪ Customize or under the Tools menu. Alternatively, as shown in Figure 3 - 5, if you select the down
arrow at the end of a toolbar you will see a list of all the buttons available on that toolbar, from
which you can check the buttons you want to appear on the toolbar.

 fiGure 3 - 5

Window layout ❘ 39

http://lib.ommolketab.ir
http//lib.ommolketab.ir

40 ❘ chaPter 3 opTionS And cuSTomizATionS

 navigating open items
 After opening multiple items you ’ ll notice that you run out of room across the top of the editor
space and that you can no longer see the tabs for all the items you have open. Of course, you can go
back to the Solution Explorer window and select a specifi c item. If the item is already open it will
be displayed without reverting to its saved state. However, it is still inconvenient to have to fi nd the
item in the Solution Explorer.

 Luckily, Visual Studio 2010 has a number of shortcuts to the list of open items. As with most
document - based applications, Visual Studio has a Windows menu. When you open an item its title
is added to the bottom section of this menu. To display an open item just select the item from the
Windows menu, or click the generic Windows item, which displays a modal dialog from which you
can select the item you want.

 Another alternative is to use the drop - down menu at the
end of the tab area of the editor space. Figure 3 - 6 shows
the drop - down list of open items from which you can
select the item you want to access.

 Figure 3 - 6 (right) is the same as Figure 3 - 6
(left) except for the drop - down icon. This
menu also displays a down arrow, but this one
has a line across the top. This line indicates
that there are more tabs than can fi t across
the top of the editor space.

 Another way to navigate through the open
items is to press Ctrl+Tab, which displays a
temporary window, as shown in Figure 3 - 7. It is
a temporary window because when you release
the Ctrl key it disappears. However, while the
window is open you can use the arrow keys or
press Tab to move among the open windows.

 The Ctrl+Tab window is divided into three sections, which include the active tool windows, active
fi les (this should actually be active items because it contains some items that don ’ t correspond to a
single fi le), and a preview of the currently selected item. As the number of either active fi les or active
tool windows increases, the windows expand vertically until there are 15 items, at which point an
additional column is formed.

 fiGure 3 - 6

 fiGure 3 - 7

 If you get to the point where you are seeing multiple columns of active fi les,
you might consider closing some or all of the unused fi les. The more fi les Visual
Studio 2010 has open, the more memory it uses and the slower it performs.

 If you right - click the tab of an open item, you will see a hidden context menu that gives you
a quick way to do common tasks such as save or close the fi le that ’ s associated with the tab. Two
particularly useful actions are Close All But This and the Open Containing Folder. These are

http://lib.ommolketab.ir
http//lib.ommolketab.ir

self-descriptive as the former closes all tabs other than the one you clicked to get the context menu,
while the latter opens the folder that contains the file in Windows Explorer. Now that all windows
are dockable, there are also actions to Float or Dock as Tabbed Document, which are enabled
depending on what state the tab is in.

docking
Each tool window has a default position, which it will resume when it is opened from the View
menu. For example, View ➪ Toolbox opens the Toolbox docked to the left edge of Visual Studio.
Once a tool window is opened and is docked against an edge, it has two states, pinned and
unpinned. As you saw in Chapter 1, you can toggle between these states by clicking the vertical pin
to unpin the tool window or the horizontal pin to pin the tool window.

You will notice that as you unpin a tool window it slides back against the edge of the IDE, leaving
visible a tag displaying the title of the tool window. This animation can be annoying and time-
consuming when you have tool windows unpinned. On the Environment node of the Options dialog,
you can control whether Visual Studio should automatically adjust the visual experience based on client
performance. Alternatively, you can elect to uncheck the Enable rich client visual experience option.

Most developers accept the default location of tool windows, but occasionally you may want to
adjust where the tool windows appear. Visual Studio 2010 has a sophisticated system for controlling
the layout of tool windows. In Chapter 1 you saw how you could use the drop-down, next to the
Pin and Close buttons at the top of the tool window, to make the tool window floating, dockable, or
even part of the main editor space (using the Tabbed Document option).

When a tool window is dockable, you have a lot of control over where it is positioned. In Figure 3-8
you can see the top of the Properties window, which has been dragged away from its default
position at the right of the IDE. To begin dragging, you need to make sure the tool window is pinned
and then click either the title area at the top of the tool window or the tab at the bottom of the tool
window and drag the mouse in the direction you want the window to move. If you click in the title
area you’ll see that all tool windows in that section of the IDE will also be moved. Clicking the tab
results in only the corresponding tool window moving.

fiGure 3-8

Window layout ❘ 41

http://lib.ommolketab.ir
http//lib.ommolketab.ir

42 ❘ chaPter 3 opTionS And cuSTomizATionS

As you drag the tool window around Visual Studio 2010, you’ll see that translucent icons appear
at different locations around the IDE. These icons are a useful guide to help you position the tool
window exactly where you want. In Figure 3-9 the Data Sources tool window has been pinned
against the left side. Now when the Properties window is positioned over the left icon of the center
image, the blue shading again appears on the inside of the existing tool window. This indicates that
the Properties tool window will be pinned to the right of the Data Sources tool window and visible
if this layout is chosen. If the far left icon was selected, the Properties tool window would again be
pinned to the left of the IDE, but this time to the left of the Data Sources window.

fiGure 3-9

fiGure 3-10

Alternatively, if the Properties tool window is dragged over the Data Sources tool window as in
Figure 3-10, the center image will move over the existing tool window. This indicates that the
Properties tool window will be positioned within the existing tool window area. As you drag
the window over the different quadrants, you will see that the blue shading again indicates
where the tool window will be positioned when the mouse is released. In Figure 3-10 it indicates
that the Properties tool window will appear below the Data Sources tool window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 the editor sPace

 Like most IDEs, Visual Studio 2010 has been built up around the central code - editing window.
Over time, it has evolved and is now much more than a simple text editor. Though most developers
will spend considerable time writing code in the editor space, an increasing number of designers
are available for performing tasks such as building forms, adjusting project settings, and editing
resources. Regardless of whether you are writing code or doing form design, you are going to spend
a lot of your time within Visual Studio 2010 in the editor space. Because of this, it is important for
you to know how to tweak the layout so you can work more effi ciently.

 fonts and colors
 Some of the fi rst things that presenters change in Visual Studio are the fonts and colors used in
the editor space, in order to make the code more readable. However, it shouldn ’ t just be presenters
who adjust these settings. Selecting fonts and colors that are easy for you to read and that aren ’ t
harsh on the eyes will make you more productive and enable you to code for longer without feeling
fatigued. Figure 3 - 11 shows the Fonts and Colors node of the Options dialog, where you can make
adjustments to the font, size, color, and styling of different display items. One thing to note about
this node in the Options dialog is that it is very slow to load, so try to avoid accidentally clicking it.

 It should be noted that if you have a large screen or multiple screens, it is worth
spending time laying out the tool windows you use frequently. With multiple
screens, using fl oating tool windows means that you can position them away from
the main editor space, maximizing your screen real estate. If you have a small
screen you may fi nd that you continually have to adjust which tool windows are
visible, so becoming familiar with the docking and layout options is essential.

 fiGure 3 - 11

The editor space ❘ 43

http://lib.ommolketab.ir
http//lib.ommolketab.ir

44 ❘ chaPter 3 opTionS And cuSTomizATionS

 To adjust the appearance of a particular text item within Visual Studio 2010, you fi rst need to select
the area of the IDE that it applies to. In Figure 3 - 11 the Text Editor has been selected, and has been
used to determine which items should appear in the Display Items list. Once you have found the
relevant item in this list, you can make adjustments to the font and colors.

 Some items in this list, such as Plain Text, are reused by a number of areas
within Visual Studio 2010, which can result in some unpredictable changes when
you tweak fonts and colors.

 When choosing a font, remember that proportional fonts are usually not as effective for writing code
as non - proportional fonts (also known as fi xed - width fonts). As indicated in Figure 3 - 11, fi xed - width
fonts are distinguished in the list from the variable - width types so they are easy to locate.

 Visual Guides
 When you are editing a fi le, Visual Studio 2010 automatically color - codes the code based on the
type of fi le. For example, VB code highlights keywords in blue, variable names and class references
are in black, and string literals are in red. In Figure 3 - 12 you can see that there is a line running up
the left side of the code. This is used to indicate where the code blocks are. You can click the minus
sign to condense the btnSayHello_Click method or the entire Form1 code block.

 Various points about visual guides are illustrated in Figures 3 - 12 to 3 - 14. Those readers familiar
with VB.NET will realize that Figure 3 - 12 is missing the end of the line where the method is set
to handle the Click event of the btnSayHello button. This is because the rest of the line is being
obscured by the edge of the code window. To see what is at the end of the line, the developer has
to either scroll the window to the right or use the keyboard to navigate the cursor to the end of the
line. In Figure 3 - 13, word wrap has been enabled via the Options dialog (see the Text ➪ Editor ➪ All
Languages ➪ General node).

 fiGure 3 - 12

 fiGure 3 - 13

 fiGure 3 - 14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Unfortunately, enabling word wrapping can make it hard to work out which lines have been
wrapped. Luckily, Visual Studio 2010 has an option (immediately below the checkbox to enable
word wrapping in the Options dialog) that can display visual glyphs at the end of each line that will
indicate a line has been wrapped to the next line, as you can see in Figure 3 - 14. In this fi gure you
can also see two other visual guides. On the left, outside the code block markers, are line numbers.
These can be enabled via the Line Numbers checkbox below both the Word Wrap and Visual
Glyphs checkboxes. The other guide is the dots that represent space in the code. Unlike the other
visual guides, this one can be enabled via the Edit ➪ Advanced ➪ View White Space menu item
when the code editor space has focus.

 full - screen Mode
 If you have a number of tool windows and multiple toolbars visible, you will have noticed that you
quickly run out of space for actually writing code. For this reason, Visual Studio 2010 has a
full - screen mode that you can access via the View ➪ Full Screen menu item. Alternatively, you can press
Shift+Alt+Enter to toggle in and out of full - screen mode. Figure 3 - 15 shows the top of Visual Studio
2010 in full - screen mode. As you can see, no toolbars or tool windows are visible and the window is
completely maximized, even to the exclusion of the normal Minimize, Restore, and Close buttons.

 fiGure 3 - 15

 If you are using multiple screens, full - screen mode can be particularly useful.
Undock the tool windows and place them on the second monitor. When the
editor window is in full - screen mode you still have access to the tool windows,
without having to toggle back and forth. If you undock a code window this will
not be set to full screen.

The editor space ❘ 45

http://lib.ommolketab.ir
http//lib.ommolketab.ir

46 ❘ chaPter 3 opTionS And cuSTomizATionS

 tracking changes
 To enhance the experience of editing, Visual Studio 2010 uses line - level tracking to indicate which
lines of code you have modifi ed during an editing session. When you open a fi le to begin editing
there will be no line coloring. However, when you begin to edit you will notice that a yellow mark
appears next to the lines that have been modifi ed. In Figure 3 - 16 you can see that the MessageBox
line has been modifi ed since this fi le was last saved.

 fiGure 3 - 16

 When the fi le is saved, the modifi ed lines will change to having a green mark next to them. In
Figure 3 - 17 the fi rst MessageBox line has changed since the fi le was opened, but those changes have
been saved to disk. However, the second MessageBox line has not yet been saved.

 fiGure 3 - 17

 If you don ’ t fi nd tracking changes to be useful, you can disable this feature by
unchecking the Text Editor ➪ General ➪ Track Change item in the Options
dialog.

 other oPtions

 Many options that we haven ’ t yet touched on can be used to tweak the way Visual Studio operates.
Through the remainder of this chapter you will see some of the more useful options that can help you
be more productive.

 keyboard shortcuts
 Visual Studio 2010 ships with many ways to perform the same action. Menus, toolbars, and various
tool windows provide direct access to many commands, but despite the huge number available,
many more are not accessible through the graphical interface. Instead, these commands are accessed
(along with most of those in the menus and toolbars) via keyboard shortcuts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 These shortcuts range from the familiar Ctrl+Shift+S to save all changes, to the obscure Ctrl+Alt+E
to display the Exceptions dialog window. As you might have guessed, you can set your own
keyboard shortcuts and even change the existing ones. Even better, you can fi lter the shortcuts to
operate only in certain contexts, meaning you can use the same shortcut differently depending on
what you ’ re doing.

 Figure 3 - 18 shows the Keyboard node in the Environment section of the Options dialog with the
default keyboard mapping scheme selected. If you want to change to use a different keyboard
mapping scheme, simply select it from the drop - down and hit the Reset button.

 fiGure 3 - 18

 The keyboard mapping schemes are stored as VSK fi les at C:\Program Files\
Microsoft Visual Studio 10.0\Common7\IDE . This is the keyboard mapping
fi le format used in versions of Visual Studio prior to Visual Studio 2005. To
import keyboard mappings from Visual Studio 2005, use the import settings
 feature (see the end of this chapter); for earlier versions, copy the appropriate
VSK fi le into the aforementioned folder, and you will be able to select it from
the mapping scheme drop - down the next time you open the Options dialog.

 The listbox in the middle of Figure 3 - 18 lists every command that is available in Visual Studio
2010. Unfortunately, this list is quite extensive and the Options dialog is not resizable, which makes
navigating this list diffi cult. To make it easier to search for commands, you can fi lter the command
list using the Show Commands Containing textbox. In Figure 3 - 18 the word Build has been used
to fi lter the list down to all the commands starting with or containing that word. From this list the
 Build.BuildSolution command has been selected. Because there is already a keyboard shortcut
assigned to this command, the Shortcuts for Selected Command drop - down and the Remove
button have been enabled. It is possible to have multiple shortcuts for the same command, so the
drop - down enables you to remove individual assigned shortcuts.

other options ❘ 47

http://lib.ommolketab.ir
http//lib.ommolketab.ir

48 ❘ chaPter 3 opTionS And cuSTomizATionS

 Having multiple shortcuts is useful if you want to keep a default shortcut — so
that other developers feel at home using your setup — but also add your own
personal one.

 The remainder of this dialog enables you to assign a new shortcut to the command you have
selected. Simply move to the Press Shortcut Keys textbox and, as the label suggests, press the
appropriate keys. In Figure 3 - 18 the keyboard chord Ctrl+Alt+B has been entered, but this shortcut
is already being used by another command, as shown at the bottom of the dialog window. If you
click the Assign button, this keyboard shortcut will be remapped to the Build.BuildSolution
command.

 To restrict a shortcut ’ s use to only one contextual area of Visual Studio 2010, select the context
from the Use New Shortcut In drop - down list. The Global option indicates that the shortcut should
be applied across the entire environment, but we want this new shortcut to work only in the editor
window, so the Text Editor item has been selected in Figure 3 - 18.

 Chapter 52 deals with macros that you can create and maintain to make your
 coding experience easier. These macros can also be assigned to keyboard shortcuts.

 Projects and solutions
 Several options relate to projects and solutions. The fi rst of these is perhaps the most helpful — the
default locations of your projects. By default, Visual Studio 2010 uses the standard Documents and
Settings path common to many applications (see Figure 3 - 19), but this might not be where you ’ ll
want to keep your development work.

 fiGure 3 - 19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 You can also change the location of template fi les at this point. If your organization uses a common
network location for corporate project templates, you can change the default location in Visual
Studio 2010 to point to this remote address rather than map the network drive.

 You can adjust a number of other options to change how projects and solutions are managed in
Visual Studio 2010. One of particular interest is Track Active Item in Solution Explorer. With this
option enabled, the layout of the Solution Explorer changes as you switch among items to ensure
the current item is in focus. This includes expanding (but not collapsing again) projects and folders,
which can be frustrating on a large solution because you are continually having to collapse projects
so that you can navigate.

 Another option that relates to solutions, but doesn ’ t appear
in Figure 3 - 19, is to list miscellaneous fi les in the Solution
Explorer. Say you are working on a solution and you have
to inspect an XML document that isn ’ t contained in the
solution. Visual Studio 2010 will happily open the fi le, but
you will have to reopen it every time you open the solution.
Alternatively, if you enable Environment Documents Show
Miscellaneous Files in Solution Explorer via the Options
dialog, the fi le will be temporarily added to the solution. The miscellaneous fi les folder to which
this fi le is added is shown in Figure 3 - 20.

 fiGure 3 - 20

 Visual Studio 2010 will automatically manage the list of miscellaneous fi les,
keeping only the most recent ones, based on the number of fi les defi ned in the
Options dialog. You can get Visual Studio to track up to 256 fi les in this list, and
fi les will be evicted based on when they were last accessed.

 build and run
 The Projects and Solutions ➪ Build and Run node, shown in Figure 3 - 21, can be used to tailor
the build behavior of Visual Studio 2010. The fi rst option to notice is Before Building. With the
default option of Save All Changes, Visual Studio will apply any changes made to the solution
prior to compilation. In the event of a crash during the build process or while you ’ re debugging
the compiled code, you can be assured that your code is safe. You may want to change this option
to Prompt to Save All Changes if you don ’ t want changes to be saved prematurely, though this is
not recommended. This setting will inform you of unsaved modifi cations made in your solution,
enabling you to double - check those changes prior to compilation.

other options ❘ 49

http://lib.ommolketab.ir
http//lib.ommolketab.ir

50 ❘ chaPter 3 opTionS And cuSTomizATionS

 To reduce the amount of time it takes to build your solution, you may want to increase the
maximum number of parallel builds that are performed. Visual Studio 2010 can build in parallel
only those projects that are not dependent, but if you have a large number of independent projects
this might yield a noticeable benefi t. Be aware that on a single - core or single - processor machine this
may actually increase the time taken to build your solution.

 Figure 3 - 21 shows that projects will Always Build when they are out of date, and that if there are
build errors the solution will not launch. Both these options can increase your productivity, but be
warned that they eliminate dialogs letting you know what ’ s going on.

 fiGure 3 - 21

 The last option worth noting in Figure 3 - 21 is MSBuild project build output
 verbosity. In most cases the Visual Studio 2010 build output is suffi cient for
debugging build errors. However, in some cases, particularly when building
ASP.NET projects, you will need to increase verbosity to diagnose the build
error. New to this version of the Visual Studio 2010 is the ability to control the
log fi le verbosity independently of the output.

 Vb options
 VB programmers have four compiler options that can be confi gured at a project or a fi le level. You
can also set the defaults on the Projects and Solutions ➪ VB Defaults node of the Options dialog.
Previous versions of VB had an Option Explicit, which forced variables to be defi ned prior to their
use in code. When it was introduced, many experts recommended that it be turned on permanently
because it did away with many runtime problems in VB applications that were caused by improper
use of variables.

 Option Strict takes enforcing good programming practices one step further by forcing developers to
explicitly convert variables to their correct types, rather than let the compiler try to guess the proper
conversion method. Again, this results in fewer runtime issues and better performance.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 iMPortinG and exPortinG settinGs

 Once you have the IDE in exactly the confi guration you want, you may want to back up the settings
for future use. You can do this by exporting the IDE settings to a fi le that can then be used to
restore the settings or even transfer them to a series of Visual Studio 2010 installations, so that they
all share the same IDE setup.

 We advise strongly that you use Option Strict to ensure that your code is not
implicitly converting variables inadvertently. If you are not using Option Strict,
with all the new language features, you may not be making the most effective use
of the language.

 The Environment ➪ Import and Export Settings node in the Options dialog
enables you to specify a team settings fi le. This can be located on a network
share, and Visual Studio 2010 will automatically apply new settings if the fi le
changes.

 To export the current confi guration, select
Tools ➪ Import and Export Settings to start
the Import and Export Settings Wizard,
shown in Figure 3 - 22. The fi rst step in the
wizard is to select the Export option and
which settings are to be backed up during
the export procedure.

 As shown in Figure 3 - 22, a variety of
grouped options can be exported. The
screenshot shows the Options section
expanded, revealing that the Debugging and
Projects settings will be backed up along with
the Text Editor and Windows Forms Designer
confi gurations. As the small exclamation
icons indicate, some settings are not included
in the export by default, because they
contain information that may infringe on
your privacy. You will need to select these sections manually if you want them to be included in the
backup. Once you have selected the settings you want to export, you can progress through the rest
of the wizard, which might take a few minutes depending on the number of settings being exported.

 Importing a settings fi le is just as easy. The same wizard is used, but you select the Import option on
the fi rst screen. Rather than simply overwriting the current confi guration, the wizard enables you to
back up the current setup fi rst.

 fiGure 3 - 22

importing and exporting settings ❘ 51

http://lib.ommolketab.ir
http//lib.ommolketab.ir

52 ❘ chaPter 3 opTionS And cuSTomizATionS

 You can then select from a list of preset confi guration fi les — the same set of fi les from which you
can choose when you fi rst start Visual Studio 2010 — or browse to a settings fi le that you created
previously. Once the settings fi le has been chosen, you can then choose to import only certain
sections of the confi guration, or import the whole lot.

 The wizard excludes some sections by default, such as External Tools or Command Aliases, so that
you don ’ t inadvertently overwrite customized settings. Make sure you select these sections if you
want to do a full restore.

 If you just want to restore the confi guration of Visual Studio 2010 to one of
the default presets, you can choose the Reset All Settings option in the opening
screen of the wizard, rather than go through the import process.

 suMMary

 This chapter covered only a core selection of the useful options available to you as you start to shape
the Visual Studio interface to suit your own programming style; many other options are available.
These numerous options enable you to adjust the way you edit your code, add controls to your
forms, and even select the methods to use when debugging code.

 The settings within the Visual Studio 2010 Options page also enable you to control how and where
applications are created, and even to customize the keyboard shortcuts you use. Throughout the
remainder of this book, you ’ ll see the Options dialog revisited according to specifi c functionality
such as compiling, debugging, and writing macros.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4
 The Visual studio Workspace

 what ’ s in this chaPter?

 Using the code editor ➤

 Exploring the core Visual Studio tool windows ➤

 Reorganizing your workspace ➤

 So far you have seen how to get started with Visual Studio 2010 and how to customize the
IDE to suit the way that you work. In this chapter, you learn to take advantage of some of the
built - in commands, shortcuts, and supporting tool windows that will help you to write code
and design forms.

 the code editor

 As a developer you ’ re likely to spend a considerable portion of your time writing code, which
means that knowing how to tweak the layout of your code and being able to navigate it
effectively are particularly important. Visual Studio 2010 introduces an all new WPF - based
code editor that provides numerous new features from what was available in previous versions
of Visual Studio.

 the code editor window layout
 When you open a code fi le for editing you are working in the code editor window, as shown
in Figure 4 - 1 . The core of the code editor window is the code pane in which the code is
displayed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

54 ❘ chaPter 4 The ViSuAl STudio WorkSpAce

Above the code pane are two drop-down lists that can help you navigate the code file. The first
drop-down lists the classes in the code file, and the second one lists the members of the selected
class in the first drop-down. These are listed in alphabetical order, making it easier to find a method
or member definition within the file.

As you modify the code in the code editor window, lines of code that you’ve modified since the file
has been opened are marked in the left-hand margin (which can be seen in Figure 4-2) — yellow for
unsaved changes and green for those that have been saved.

regions
Effective class design usually results in classes that serve a single purpose and are not overly complex
or lengthy. However, there will be times when you have to implement so many interfaces that your
code file will become unwieldy. In this case, you have a number of options, such as partitioning the
code into multiple files or using regions to condense the code, thereby making it easier to navigate.

The introduction of partial classes (where the definition of a class can be split over two or more
files) means that at design time you can place code into different physical files representing a
single logical class. The advantage of using separate files is that you can effectively group all methods
that are related, for example, methods that implement
an interface. The problem with this strategy is that
navigating the code then requires continual switching
between code files.

An alternative is to use named code regions to condense
sections of code that are not currently in use. In Figure 4-2
you can see that two regions are defined, Constructor
and IComparable. Clicking the minus sign next to
#Region condenses the region into a single line and
clicking the plus sign expands it again.

fiGure 4-1

fiGure 4-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 outlining
 In addition to regions that you have defi ned, Visual Studio 2010 has the ability to auto - outline
your code, making it easy to collapse methods, comments, and class defi nitions. Auto - outlining
is enabled by default, but if it ’ s not enabled you can enable it using the Edit ➪ Outlining ➪ Start
Automatic Outlining menu item.

 Figure 4 - 3 shows four condensable regions. One is a defi ned
region called Constructor , however there are also three other
automatic regions, outlining the class, the XML comments, and
the constructor method (which has been collapsed). Automatic
outlines can be condensed and expanded in the same way as
regions you defi ne manually.

 The Edit ➪ Outlining menu provides a number of commands
to help in toggling outlining, such as collapsing the entire fi le to
just method/property defi nitions (Edit ➪ Outlining ➪ Collapse to Defi nitions) and expanding it to
display all collapsed code again (Edit ➪ Outlining ➪ Stop Outlining). The other way to expand and
condense regions is via the keyboard shortcut Ctrl+M, Ctrl+M. This shortcut toggles between the
two layouts.

 fiGure 4 - 3

 You don ’ t need to expand a region to see the code within it. Simply hover the
mouse cursor over the region and a tooltip displays the code within it.

 One trick for C# developers is that Ctrl+] enables you to easily navigate from the
beginning of a region, outline, or code block to the end and back again.

 code formatting
 By default, Visual Studio 2010 assists you in writing readable code by automatically indenting
and aligning. However, it is also confi gurable so that you can control how your code is arranged.
Common to all languages is the ability to control what happens when you create a new line. In
Figure 4 - 4 you can see that there is a Tabs node under the Text Editor ➪ All Languages node of the
Options dialog. Setting values here defi nes the default value for all languages, which you can then
overwrite for an individual language using the Basic ➪ Tabs node (for VB.NET), C# ➪ Tabs, or
other language nodes.

 By default, the indenting behavior for both C# and VB.NET is smart indenting, which will, among
other things, automatically add indentation as you open and close enclosures. Smart indenting is not
available for all languages, in which case block indenting is used.

The Code editor ❘ 55

http://lib.ommolketab.ir
http//lib.ommolketab.ir

56 ❘ chaPter 4 The ViSuAl STudio WorkSpAce

 Visual Studio ’ s Smart Indenting does a pretty good job of automatically indenting code as it is
written or pasted into the code editor, but occasionally you can come across code that has not been
properly formatted, making it diffi cult to read. To have Visual Studio reformat the entire document
and set the brace locations and line indentations, select Edit ➪ Advanced ➪ Format Document or
press Ctrl+K, Ctrl+D. To reformat just the selected code block, select Edit ➪ Advanced ➪ Format
Selection or press Ctrl+K, Ctrl+F.

 When writing code, to indent an entire block of code one level without changing each line
individually, simply select the block and press Tab. Each line will have a tab inserted at its start.
To unindent a block one level, select it and press Shift+Tab.

 fiGure 4 - 4

 If you are working on a small screen, you might want to reduce the tab and
indent sizes to optimize screen usage. Keeping the tab and indent sizes the same
ensures that you can easily indent your code with a single tab keypress.

 What is interesting about this dialog is the degree of control C# users have over
the layout of their code. Under the VB Specifi c node is a single checkbox entitled
 “ Pretty listing (reformatting) of code, ” which if enabled keeps your code looking
uniform without your having to worry about aligning methods, closures, class
defi nitions, or namespaces. C# users, on the other hand, can control nearly
every aspect of how the code editor reformats code, as you can see from the
additional nodes for C# in Figure 4 - 4 .

 You may have noticed the Tabify/Untabify Selected Lines commands under
the Edit ➪ Advanced menu and wondered how these differ from the Format
Selection command. These commands simply convert leading spaces in lines
to tabs and vice versa, rather than recalculating the indenting as the Format
Selection command does.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

navigating forward/backward
As you move within and between items, Visual Studio 2010 tracks where you have been, in much
the same way that a web browser tracks the sites you have visited. Using the Navigate Forward
and Navigate Backward items from the View menu, you can easily go back and forth between the
various locations in the project that you have made changes to. The keyboard shortcut to navigate
backward is Ctrl+–. To navigate forward again it is Ctrl+Shift+–.

additional code editor features
The Visual Studio code editor is very rich with far more features than we can cover in depth here.
However, here are a few additional features that you may find useful.

reference Highlighting
A new feature in Visual Studio 2010 is reference highlighting.
All uses of the symbol (such as a method or property) under the
cursor within its scope are highlighted (as shown in Figure 4-5).
This makes it easy to spot where else this symbol is used within
your code. You can easily navigate between the uses by
Ctrl+Shift+Up/Down.

Code Zooming
You can use Ctrl+Mouse Wheel to zoom in and out of your code (effectively making the text
larger or smaller). This feature can be especially useful when presenting to a group to enable the
people at the back of the audience to see the code being demonstrated. The bottom left-hand
corner of the code editor also has a drop-down enabling you to select from some predefined
zoom levels.

Word Wrap
You can turn on word wrap in the code editor from the options. Go to Tools ➪ Options, expand the
Text Editor node, select the All Languages subnode, and select the Word Wrap option. You can also
choose to display a return arrow glyph where text has been wrapped by selecting the Show Visual
Glyphs for Word Wrap option below the Word Wrap option.

You can turn this on for the current project by selecting Edit ➪
Advanced ➪ Word Wrap.

line numbers
To keep track of where you are in a code file you may find it
useful to turn on line numbers in the code editor (as shown in
Figure 4-6). To turn line numbers on, go to Tools ➪ Options,
expand the Text Editor node, select the All Languages subnode,
and select the Line Numbers option.

fiGure 4-5

fiGure 4-6

The Code editor ❘ 57

http://lib.ommolketab.ir
http//lib.ommolketab.ir

58 ❘ chaPter 4 The ViSuAl STudio WorkSpAce

split View
Sometimes you want to view two different parts of
the same code file at the same time. Split view enables
you to do this by splitting the active code editor
window into two horizontal panes separated by a
splitter bar. These can then be scrolled separately to
display different parts of the same file simultaneously
(as shown in Figure 4-7).

To split a code editor window, select Split from the
Window menu. Alternatively, drag the handle directly
above the vertical scroll bar down to position the
splitter bar.

Drag the splitter bar up and down to adjust the size
of each pane. To remove the splitter simply double-
click the splitter bar, or select Remove Split from the Window menu.

tear away (floating) code windows
A welcome new feature in Visual Studio 2010 for those with multiple monitors is the ability to
“tear off” or float code editor windows (and tool windows) and move them outside the main Visual
Studio IDE window (as shown in Figure 4-8), including onto another monitor. This allows you to
now make use of the extra screen real-estate that having multiple monitors provides by enabling
multiple code editor windows to be visible at the same time over separate monitors. To tear off a
window, make sure it has the focus and then select Float from the Window menu. Alternatively,
right-click the title bar of the window and select Float from the drop-down menu, or simply click
and drag the tab for that window (effectively tearing it away from its docked position) and position
it where you want it to be located.

fiGure 4-7

fiGure 4-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You may find halving the code editor window in split view (discussed in the previous section) in order
to view different parts of a file at the same time too much of a limited view, so you might want to
use the floating code windows feature instead to open another code editor window for the same file,
and place it, say, on a different screen (if you have a multiple monitor setup). The trick to doing this
(because double-clicking the file again in the Solution Explorer simply activates the existing code editor
window instance for that file) is to select New Window from the Window menu. This will open the file
currently being viewed in another window which you can then tear away and position as you please.

creating tab Groups
If you don’t have the privilege of having more than one monitor, it is still possible to view more than
one code editor window at the same time. You do this by creating tab groups, and tiling these groups
to display at the same time. As their name would indicate, a tab group is a group of code editor
window tabs, with each tab group appearing in a separate tile. Multiple tab groups can be created,
limited only by the amount of screen real-estate they will occupy. You can choose to tile the tab
groups vertically or horizontally, although you cannot use a mix of the two.

To start this process you need to have more than one
tab open in the code editor window. Ensure a code
editor tab has the focus, then select Window ➪ New
Horizontal Tab Group or Window ➪ New Vertical
Tab Group from the menu displayed. This starts a
new tab group and creates a tile for it (as shown in
Figure 4-9).

Alternatively, you can simply drag a tab below or
beside an existing one and dock it to achieve the
same effect.

You can drag tabs between tab groups or move
them between tab groups using Window ➪ Move to
Next Tab Group and Window ➪ Move to Previous
Tab Group. These options are also available from
the drop-down menu when right-clicking a tab.

To restore the user interface to having a single tab group again, move the tabs from the new tab
group(s) back into the original one again and the tiling will be removed.

advanced functionality
To be a truly productive developer it can help to know various advanced features available in the
code editor that are hidden away but can save you a lot of time. Here are some of the most useful
commands that aren’t immediately obvious within the code editor.

Commenting/Uncommenting a Code Block
Often you need to comment or uncomment a block of code, and you don’t want to have to add/
remove the comment characters to/from the start of each line, especially when there are many lines
in the block. Of course, in C# you could wrap the block of code between a /* and */ to comment it

fiGure 4-9

The Code editor ❘ 59

http://lib.ommolketab.ir
http//lib.ommolketab.ir

60 ❘ chaPter 4 The ViSuAl STudio WorkSpAce

out, but this type of comment isn ’ t available in Visual Basic, and it can be problematic in C# when
commenting out a block that already contains a comment using this style.

 Visual Studio provides a means to comment/uncomment a block of code easily, by selecting the
block, then selecting Edit ➪ Advanced ➪ Comment Selection to comment it out, or selecting Edit ➪
Advanced ➪ Uncomment Selection to uncomment it.

 The easiest way to access these commands (you are likely to use these often) is via their shortcuts.
Press Ctrl + K, Ctrl + C to comment a block of code, and Ctrl + K, Ctrl + U to uncomment it. The Text
Editor toolbar is another simple means to access these commands.

 Block selection
 Also known as box selection, column selection, rectangle selection,
or vertical text selection, block selection is the ability to select text
in a block (as shown in Figure 4 - 10) instead of the normal behavior
of selecting lines of text (stream selection). To select a block of text,
hold down the Alt key while selecting text with the mouse, or use
Shift + Alt + Arrow with the keyboard. This feature can come in handy when, for example, you have
code lined up and want to remove a vertical portion of that code (such as a prefi x on variable
declarations).

 Multiline editing
 Multiline editing is a new feature available in Visual Studio 2010 that extends the abilities of block
selection. In previous versions, after selecting a vertical block of text you could only delete, cut, or
copy the block. With Visual Studio 2010 you can now type after selecting a vertical block of text,
which will replace the selected text with what ’ s being typed on each line. This can be handy for
changing a group of variables from private to protected, for example.

 fiGure 4 - 10

 You can also insert text across multiple lines by creating a block with zero width
and simply starting to type.

 The Clipboard ring
 Visual Studio keeps track of the last 20 snippets of text that have been copied or cut to the
clipboard. To paste text that was previously copied to the clipboard but overwritten, instead of the
normal Ctrl + V when pasting, use Ctrl + Shift + V. Pressing V while holding down Ctrl + Shift cycles
through the entries.

 full - screen View
 You can maximize the view for editing the code by selecting View ➪ Full Screen, or using the
Shift + Alt + Enter shortcut. This effectively maximizes the code editor window, hiding the other tool
windows and the toolbars. To return to the normal view, press Shift + Alt + Enter again or click the

Full - Screen toggle button that has been added to the end of the menubar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 the coMMand window

 As you become more familiar with Visual Studio 2010, you will spend less time looking for
functionality and more time using keyboard shortcuts to navigate and perform actions within the
IDE. One of the tool windows that ’ s often overlooked is the Command window, accessible via
View ➪ Other Windows ➪ Command Window
(Ctrl + Alt + A). From this window you can
execute any existing Visual Studio command
or macro, as well as any additional macros
you may have recorded or written. Figure 4 - 11
illustrates the use of IntelliSense to show the
list of commands that can be executed from
the Command window. This list will include all
macros defi ned within the current solution.

 A full list of the Visual Studio commands is available via the Environment ➪ Keyboard node of the
Options dialog (Tools ➪ Options). The commands all have a similar syntax based on the area of the
IDE that they are derived from. For example, you can open the debugging output window (Debug ➪
Windows ➪ Output) by typing Debug.Output into the Command window.

 The commands fall into three rough groups. Many commands are shortcuts to either tool windows
(which are made visible if they aren ’ t already open) or dialogs. For example, File.NewFile opens
the new fi le dialog. Other commands query information about the current solution or the debugger.
Using Debug.ListThreads lists the current threads, in contrast to Debug.Threads , which opens
the Threads tool window. The third type includes those commands that perform an action without

 Go To Defi nition
 To quickly navigate to the defi nition of the class, method, or member under the cursor, right - click ➪
Go To Defi nition, or simply press F12.

 find all references
 You can fi nd where a method or property is called by right - clicking its defi nition and selecting
Find All References from the drop - down menu, or placing the cursor in the method defi nition and
pressing Shift + F12. This activates the Find Symbol Results tool window and displays the locations
throughout your solution where that method or property is referenced. You can then double - click a
reference in the results window to navigate to that result in the code editor window.

 fiGure 4 - 11

 This feature has somewhat been made obsolete by the new Call Hierarchy
window, discussed later in this chapter. However, it can still be a quick way to
view where a method is used without navigating through the Call Hierarchy
window.

The Command Window ❘ 61

http://lib.ommolketab.ir
http//lib.ommolketab.ir

62 ❘ chaPter 4 The ViSuAl STudio WorkSpAce

displaying a dialog. This would include most macros and a number of commands that accept
arguments (a full list of these, including the arguments they accept, is available within the MSDN
documentation). There is some overlap between these groups: for example, the Edit.Find command
can be executed with or without arguments. If this command is executed without arguments, the
Find and Replace dialog is displayed. Alternatively, the following command will find all instances of
the string MyVariable in the current document (/d) and place a marker in the code window border
against the relevant lines (/m):

>Edit.Find MyVariable /m /d

Although there is IntelliSense within the Command window, you may find typing a frequently
used command somewhat painful. Visual Studio 2010 has the ability to assign an alias to a particular
command. For example, the alias command can be used to assign an alias, e?, to the find command
used previously:

>alias e? Edit.Find MyVariable /m /d

With this alias defined you can easily perform this command from anywhere within the IDE:
press Ctrl+Alt+A to give the Command Window focus, then type e? to perform the find-and-mark
command.

You will have imported a number of default aliases belonging to the environment settings when
you began working with Visual Studio 2010. You can list these using the alias command with
no arguments. Alternatively, if you want to find out what command a specific alias references, you
can execute the command with the name of the alias. For example, querying the previously defined
alias, e?, would look like the following:

>alias e?
alias e? Edit.Find SumVals /m /doc

Two additional switches can be used with the alias command. The /delete switch, along with
an alias name, removes a previously defined alias. If you want to remove all aliases you may have
defined and revert any changes to a predefined alias, you can use the /reset switch.

the iMMediate window

Quite often when you are writing code or
debugging your application, you will want to
evaluate a simple expression either to test a bit
of functionality or to remind yourself of how
something works. This is where the Immediate
window comes in handy. This window enables you
to run expressions as you type them. Figure 4-12
shows a number of statements — from basic
assignment and print operations to more
advanced object creation and manipulation.

fiGure 4-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The Immediate window supports a limited form of IntelliSense, and you can use the arrow keys to
track back through the history of previous commands executed. Variable values can be displayed
by means of the Debug.Print statement. Alternatively, you can use its ? alias. Neither of these
are necessary in C#; simply type the variable ’ s name into the window and press Enter to print
its value.

 When you execute a command in the Immediate window while in design mode, Visual Studio will
build the solution before executing the command. If your solution doesn ’ t compile, the expression
cannot be evaluated until the compilation errors are resolved. If the command execute code has
an active breakpoint, the command will break there. This can be useful if you are working on a
particular method that you want to test without running the entire application.

 You can access the Immediate window via the Debug ➪ Windows ➪ Immediate menu or the
Ctrl + Alt + I keyboard chord, but if you are working between the Command and Immediate windows
you may want to use the predefi ned aliases cmd and immed , respectively.

 In Visual Basic you can ’ t do explicit variable declaration in the Immediate
window (for example, Dim x as Integer), but instead you do this implicitly
via the assignment operator. The example shown in Figure 4 - 12 shows a new
customer being created, assigned to a variable c, and then used in a series of
operations. When using C#, new variables in the Immediate window must be
declared explicitly before they can be assigned a value.

 Note that in order to execute commands in the Immediate window you need to
add > as a prefi x (for example, > cmd to go to the Command window); otherwise
Visual Studio tries to evaluate the command.

 Also, you should be aware that the language used in the Immediate window is
that of the active project. The examples shown in Figure 4 - 12 will work only if a
Visual Basic project is currently active.

 the class View

 Although the Solution Explorer is probably the most useful tool window for navigating your
solution, it can sometimes be diffi cult to locate particular classes and methods. The Class View
tool window provides you with an alternative view of your solution that lists namespaces, classes,
and methods so that you can easily navigate to them. Figure 4 - 13 shows a simple Windows
application that contains a single form (MainForm), which is selected in the class hierarchy. Note
that there are two Chapter04Sample nodes. The fi rst is the name of the project (not the assembly

The Class View ❘ 63

http://lib.ommolketab.ir
http//lib.ommolketab.ir

64 ❘ chaPter 4 The ViSuAl STudio WorkSpAce

as you might expect), and the second is the namespace that
MainForm belongs to. If you were to expand the References
node, you would see a list of assemblies that this project
references. Drilling further into each of these would yield a
list of namespaces, followed by the classes contained in the
assembly.

In the lower portion of Figure 4-13 you can see the list of
members that are available for the class Form1. Using the
right-click shortcut menu, you can either filter this list based
on accessibility, sort and group the list, or use it to navigate to
the selected member. For example, clicking Go To Definition
on InitializeComponent() would take you to the Form1.
Designer.vb file.

The Class View is useful for navigating to generated members,
which are usually in a file hidden in the default Solution Explorer
view (such as the designer file in the previous example). It can
also be a useful way to navigate to classes that have been added
to an existing file — this would result in multiple classes in the
same file, which is not a recommended practice. Because the file
does not have a name that matches the class name, it becomes
hard to navigate to that class using the Solution Explorer; hence
the Class View is a good alternative.

the error list

The Error List window displays compile errors,
warnings, and messages for your solution, as
shown in Figure 4-14. You can open the Error
List window by selecting View ➪ Error List, or
by using the keyboard shortcut Ctrl+\, Ctrl+E.
Errors will appear in the list as you edit code
and when you compile the project. Double-clicking an error in the list opens the file and takes you
to the line of code that is in error.

You can filter the entries in the list by toggling the buttons above the list to select the types of errors
(Errors, Warnings, and/or Messages) you want to display.

the obJect browser

Another way of viewing the classes that make up your application is via the Object Browser.
Unlike most other tool windows, which appear docked to a side of Visual Studio 2010 by default,
the Object Browser appears in the editor space. To view the Object Browser window, select

fiGure 4-13

fiGure 4-14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

View ➪ Object Browser, or by using the keyboard shortcut Ctrl+Alt+J (or F2, depending on your
keyboard settings). As you can see in Figure 4-15, at the top of the Object Browser window is a
drop-down box that defines the object browsing scope. This includes a set of predefined values, such
as All Components, .NET Framework 4.0, and My Solution, as well as a Custom Component Set.
Here, My Solution is selected and a search string of sample has been entered. The contents of the
main window are then all the namespaces, classes, and members that match this search string.

fiGure 4-15

In the top right-hand portion of Figure 4-15
you can see the list of members for the selected
class (MainForm), and in the lower window
the full class definition, which includes its
base class and namespace information. One
of the options in the Browse drop-down of
Figure 4-15 is a Custom Component Set. To
define what assemblies are included in this set
you can either click the ellipsis next to the
drop-down or select Edit Custom Component
Set from the drop-down itself. This presents
you with an edit dialog similar to the one
shown in Figure 4-16.

Selecting items in the top section and clicking
Add inserts that assembly into the component
set. Similarly, selecting an item in the lower
section and clicking Remove deletes that
assembly from the component set. Once you
have finished customizing the component set, it
will be saved between Visual Studio sessions.

The object Browser ❘ 65

fiGure 4-16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

66 ❘ chaPter 4 The ViSuAl STudio WorkSpAce

 the code definition window

 When navigating around your code you might come across a method call that you ’ d like to view
the code for without leaving your current position in the code editor. This is where the Code
Defi nition window can come in handy, to show the source of the method when the cursor has been
placed within a reference to it (as shown in Figure 4 - 17). Access it via View ➪ Other Windows ➪
Code Defi nition window (Ctrl + \ , Ctrl + D). It ’ s just like another code editor window with many of
the same commands available (such as inserting a breakpoint, view call hierarchy, and so on), but
is read - only. To edit the code for that method, right - click anywhere within the Code Defi nition
window and select Edit Defi nition. The source code fi le for this method will be opened in a code
editor window and the method defi nition will be navigated to.

 fiGure 4 - 17

 You can also use the Code Defi nition window with the Class View and the
Object Browser windows to view the code for the selected member of a class.

 the call hierarchy window

 A new feature in Visual Studio 2010, the Call Hierarchy window displays all the calls to and from a
method (or property or constructor, but each henceforth referred to as methods), enabling you to see
where a method is being used and additionally what calls it makes to other methods. This enables
you to easily follow the execution path and the fl ow of the code.

 To view the call hierarchy for a method, select a method defi nition in the code editor window and
select View Call Hierarchy from the right - click context menu. This adds the method to the tree

http://lib.ommolketab.ir
http//lib.ommolketab.ir

in the Call Hierarchy window with two subnodes — Calls To (MethodName) and Calls From
(MethodName), as shown in Figure 4 - 18 .

 fiGure 4 - 18

 Expanding the Calls To (MethodName) lists all the methods that call the specifi ed method. Expanding
the Calls From (MethodName) lists all the other methods that are called by the specifi ed method.

 The Call Hierarchy window allows you to drill down through the results to build a hierarchy of the
program execution fl ow — seeing which methods call the specifi ed method, which methods call them,
and so on.

 Double - clicking a method navigates to that method defi nition in the code editor window.

 You can view the call hierarchy for methods in the Class View window or the
Object Browser window also, by right - clicking the method and selecting View
Call Hierarchy from the drop - down menu.

 Despite the fact that the Call Hierarchy window can be left fl oating or be docked, it doesn ’ t work in
the same way as the Code Defi nition window. Moving around the code editor window to different
methods will not display the call hierarchy automatically for the method under the cursor — instead
you will need to explicitly request to view the call hierarchy for that method, at which point it will
be added to the Call Hierarchy window. The Call Hierarchy window can display the call hierarchy
for more than just one method and each time you view the call hierarchy for a method it is added
to the window rather than replacing the call hierarchy currently being viewed. When you no longer
need to view the call hierarchy for a method, select it in the window and press Delete (or the red
cross in the toolbar) to remove it.

 This window can come in very handy when working on an unfamiliar project or
refactoring a project.

The Call Hierarchy Window ❘ 67

http://lib.ommolketab.ir
http//lib.ommolketab.ir

68 ❘ chaPter 4 The ViSuAl STudio WorkSpAce

the docuMent outline tool window

Editing HTML files, using either the visual designer or code view, is never as easy as it could be,
particularly when you have a large number of nested elements. When Visual Studio .NET first arrived
on the scene, a feature known as document outlining came to at least partially save the day. In fact,
this feature was so successful for working with HTML files that it was repurposed for working with
non-web forms and controls. This section introduces you to the Document Outline window and
demonstrates how effective it can be at manipulating HTML documents, and forms and controls.

htMl outlining
The primary purpose of the Document Outline window is to present a navigable view of HTML
pages so that you could easily locate the different HTML elements and the containers they were in.
Because it is difficult to get HTML layouts correct, especially with the many .NET components that
could be included on an ASP.NET page, the Document Outline view provides a handy way to find
the correct position for a specific component.

Figure 4-19 shows a typical HTML page. Without the Document Outline window, selecting an
element in the designer can be rather tricky if it’s small or not visible in the designer. The Document
Outline pane (View ➪ Other Windows ➪ Document Outline), on the left of Figure 4-19, enables
you to easily select elements in the hierarchy to determine where in the page they are located, and to
enable you to set their properties.

fiGure 4-19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Visual Studio analyzes the content of the currently active file and populates it with a tree view
containing every element in the page hierarchy. The Name or ID value of each element will be displayed
in the tree (if they are assigned one), while unnamed elements are simply listed with their HTML tags.

As you select each entry in the Document Outline window, the Design view is updated to select the
component and its children. In Figure 4-19, the SelectCategoryList RadioButtonList control’s tag is
selected in the Document Outline window, highlighting the control in the Design view, and enabling you
to see where it is located on the page. Correspondingly, selecting a control or element in the Design view
will select the corresponding tag in the page hierarchy in the Document Outline window (although
you will need to set the focus back to the Document Outline window for it to update accordingly).

control outlining
The Document Outline window has been available in Visual Studio since the first .NET version for
HTML files but has been of little use for other file views. When Visual Studio 2003 was released, an
add-in called the Control view was developed that allowed a similar kind of access to Windows Forms.

The tool was so popular that Microsoft incorporated its functionality into the Document Outline
tool window, so now you can browse Windows Forms in the same way.

Figure 4-20 shows a typical complex form, with many panels to provide structure and controls to
provide the visual elements. Each component is represented in the Document Outline by its name
and component type. As each item is selected in the Document Outline window, the corresponding
visual element is selected and displayed in the Design view.

This means that when the item is in a menu (as is the case in Figure 4-20) Visual Studio
automatically opens the menu and selects the menu item ready for editing. As you can imagine, this
is an incredibly useful way of navigating your form layouts, and it can often provide a shortcut for
locating wayward items.

fiGure 4-20

The Document outline Tool Window ❘ 69

http://lib.ommolketab.ir
http//lib.ommolketab.ir

70 ❘ chaPter 4 The ViSuAl STudio WorkSpAce

 The Document Outline window has more functionality when used in Control Outline mode than
just a simple navigation tool. Right - clicking an entry gives you a small context menu of actions that
can be performed against the selected item. The most obvious is to access the Properties window.

 One tedious chore is renaming components after you ’ ve added them to the form. You can select each
one in turn and set its Name property in the Properties window, but using the Document Outline
window you can simply choose the Rename option in the context menu and Visual Studio will
automatically rename the component in the design code, thus updating the Name property for you
without your needing to scroll through the Properties list.

 Complex form design can sometimes produce unexpected results. This often happens when a
component is placed in an incorrect or inappropriate container control. In such a case you ’ ll need
to move the component to the correct container. Of course, you have to locate the issue before you
even know that there is a problem.

 The Document Outline window can help with both of these activities. First, using the hierarchical
view, you can easily locate each component and check its parent container elements. The example
shown in Figure 4 - 20 indicates that the TreeView control is in Panel1, which in turn is in
SplitContainer, which is itself contained in a ContentPanel object. In this way you can easily
determine when a control is incorrectly placed on the form ’ s design layout.

 When you need to move a component it can be quite tricky to get the layout right. In the Document
Outline window it ’ s easy. Simply drag and drop the control to the correct position in the hierarchy.
For example, dragging the TreeView control to Panel2 results in its sharing the Panel2 area with the
ListView control.

 You also have the option to cut, copy, and paste individual elements or whole sets of containers and
their contents by using the right - click context menu. The copy - and - paste function is particularly
useful, because you can duplicate whole chunks of your form design in other locations on the form
without having to use trial and error to select the correct elements in the Design view, or resort to
duplicating them in the code - behind in the Designer.vb fi le.

 When you cut an item, remember to paste it immediately into the destination
location.

 reorGanizinG tool windows

 The Visual Studio IDE has been designed to be very customizable to enable you to position tool
windows such that you can be the most productive and can make full use of your available screen
real estate. You can dock tool windows, have them fl oating, or minimize them to the edge of the
IDE displaying only their tab using auto hide.

 When dragging a tool window around, a series of guides are displayed to help you move the tool
window to a docked position. Drag the tool window onto a guide to dock the window. Dragging
over a part of a guide highlights the part of the IDE that the tool window would be docked to if you
were to drop it there (as shown in Figure 4 - 21).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 fiGure 4 - 21

 To fl oat a docked tool window simply click and drag it to a new position (making sure not to drop
it on top of one of the guides that appears). Pressing the Ctrl key while moving the window will
prevent the guides from appearing and the window from snapping to them. When a tool window is
docked and part of a tab group (that is, windows that occupy the same space and can be switched
between by clicking their tabs), clicking and dragging the tab for the tool window moves just that
window, whereas clicking and dragging the title bar for the tool window moves the entire tab group.

 To access a tool window that is set to auto hide, put your mouse over its tab to make it slide out. To
put a tool window into auto hide mode, click the pushpin button in the title bar for the window, and
click it again while in the auto hide mode to return it to its docked position.

 After dragging a tool window out of its docked position and moving it elsewhere
(such as onto another monitor), simply double - click its title bar while holding the
Ctrl key to return it to its previously docked position.

 suMMary

 In this chapter you have seen a number of tool windows that can help you not only write code but
also prototype and try it out. Making effective use of these windows will dramatically reduce the
number of times you have to run your application in order to test the code you are writing. This,
in turn, will improve your overall productivity and eliminate idle time spent waiting for your
application to run.

summary ❘ 71

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5
 find and replace and Help

 what ’ s in this chaPter?

 Using Visual Studio ’ s various Find and Replace tools ➤

 Navigating Visual Studio ’ s local help system ➤

 To be a productive developer, you need to be able to navigate your way around a code base and
fi nd what you need quickly. Visual Studio 2010 provides not just one but a number of search
functions, each suited to particular searching tasks. The fi rst part of this chapter discusses
each of these search functions and when and where to use them.

 Visual Studio 2010 is an immensely complex development environment that encompasses
multiple languages based on an extensive framework of libraries and components. You will
fi nd it almost impossible to know everything about the IDE, let alone each of the languages
or even the full extent of the .NET Framework. As both the .NET Framework and Visual
Studio evolve, it becomes increasingly diffi cult to stay abreast of all the changes; moreover, it
is likely that you need to know only a subset of this knowledge. Of course, you ’ ll periodically
need to obtain more information on a specifi c topic. To help you in these situations, Visual
Studio 2010 comes with comprehensive documentation in the form of the MSDN Library,
Visual Studio 2010 Edition. The second part of this chapter walks you through the methods of
researching documentation associated with developing projects in Visual Studio 2010.

 quick find/rePlace

 The simplest means of searching in Visual Studio 2010 is via the Quick Find dialog.

 The fi nd - and - replace functionality in Visual Studio 2010 is split into two broad tiers with a
shared dialog and similar features: Quick Find , and the associated Quick Replace , are for
searches that you need to perform quickly on the document or project currently open in the
IDE. These two tools have limited options to fi lter and extend the search, but as you ’ ll see in a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

74 ❘ chaPter 5 Find And replAce And help

moment, even those options provide a powerful search engine that goes beyond what you ’ ll fi nd
in most applications.

 quick find
 Quick Find is the term that Visual Studio 2010 uses to refer to the most basic search functionality.
By default, it enables you to search for a simple word or phrase within the current document, but
even Quick Find has additional options that can extend the search beyond the active module,
or even incorporate wildcards and regular expressions in the search criteria.

 To start a Find action, press the standard keyboard shortcut Ctrl+F
or select Edit Find and Replace Quick Find. Visual Studio will display
the basic Find and Replace dialog, with the default Quick Find action
selected (see Figure 5 - 1).

 Type the search criteria into the Find what textbox, or select from
previous searches by clicking the drop - down arrow and scrolling
through the list of criteria that have been used. By default, the scope
of the search is restricted to the current document or window you ’ re
editing, unless you have a number of lines selected, in which case
the default scope is the selection. The Look in drop - down list gives you additional options based
on the context of the search itself, including Selection, Current Block, Current Document, Current
Project, Entire Solution, and All Open Documents.

 Find - and - replace actions will always wrap around the selected scope looking for the search terms,
stopping only when the fi nd process has reached the starting point again. As Visual Studio fi nds
each result, it highlights the match and scrolls the code window so you can view it. If the match is
already visible in the code window, Visual Studio does not scroll the code. Instead, it just highlights
the new match. However, if it does need to scroll the window, it attempts to position the listing
so the match is in the middle of the code editor window.

 In the Standard toolbar there is a Quick Find box, as shown in Figure 5 - 2.
This box actually has multiple purposes. The keyboard shortcut Ctrl+/
will place focus on the box. You can then enter a search phrase and press
Enter to fi nd the next match in the currently open fi le. If you prefi x what

 fiGure 5 - 1

 fiGure 5 - 2

This search tool is best suited for when you need to do a simple text - based
search/replace (as opposed to searching for a symbol).

Once you have performed the fi rst Quick Find search, you no longer need the
dialog to be visible. You can simply press F3 to repeat the same search.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

you type with > , Visual Studio 2010 attempts to execute the command as if it had been entered into
the Command window (see Chapter 4 for more information).

 quick replace
 Performing a Quick Replace is similar to performing a Quick Find.
You can switch between Quick Find and Quick Replace by clicking
their respective buttons at the top of the dialog window. If you want
to go directly to Quick Replace, you can do so with the keyboard
shortcut Ctrl+H or the menu command Edit Find and Replace Quick
Replace. The Quick Replace options (see Figure 5 - 3) are the same
as those for Quick Find, but with an additional fi eld where you can
specify what text should be used in the replacement.

 The Replace With fi eld works in the same way as Find What — you
can either type a new replacement string or, with the drop - down list
provided, choose any you ’ ve previously entered.

 find options
 Sometimes you will want to fi lter the search results in different ways,
and that ’ s where the fi nd options come into play. First, to display the
options section (available in all fi nd - and - replace actions), click the
expand icon next to Find Options. The dialog will expand to show
a set of checkbox options and drop - down lists from which you can
choose, as shown in Figure 5 - 4.

 These options enable you to refi ne the search to be case - sensitive
(Match Case) or an exact match (Match Whole Word). You can also
change the direction of the search (Search Up), and specify that you
are performing a more advanced search that is using wildcards or
regular expressions.

 wildcards
 Wildcards are simple text symbols that represent one or more characters, and are familiar to
many users of Windows applications. Figure 5 - 5 illustrates the Expression Builder when the
wildcard option is specifi ed under the Use drop - down. Although additional characters can be

 fiGure 5 - 3

A simple way to delete recurring values is to use the replace functionality with
nothing specifi ed in the Replace With text area. This enables you to fi nd all
occurrences of the search text and decide if it should be deleted.

 fiGure 5 - 4

 Quick find/replace ❘ 75

http://lib.ommolketab.ir
http//lib.ommolketab.ir

76 ❘ chaPter 5 Find And replAce And help

used in a wildcard search, the most common
characters are ? for a single character and *
for multiple characters that are unknown or
variable in the search.

regular expressions
Regular expressions take searching to a whole
new level, with the capability to do complex text
matching based on the full RegEx engine built
into Visual Studio 2010. Although this book
doesn’t go into great detail on the advanced
matching capabilities of regular expressions, it’s
worth mentioning the additional help provided
by the Find and Replace dialog if you choose to
use them in your search terms.

Figure 5-6 again shows the Expression Builder,
this time for building a regular expression as
specified in the Use drop-down. From here you
can easily build your regular expressions with a
menu showing the most commonly used regular
expression phrases and symbols, along with
English descriptions of each.

An example of where using regular expressions
might come in handy is when reversing
assignments. For example, if you have
this code:

Vb

Description = product.Description
Quantity = product.Quantity
SellPrice = product.SellPrice

c#

Description = product.Description;
Quantity = product.Quantity;
SellPrice = product.SellPrice;

and want to reverse the assignments like so:

Vb

product.Description = Description
product.Quantity = Quantity
product.SellPrice = SellPrice

fiGure 5-6

fiGure 5-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 c#

 product.Description = Description;
product.Quantity = Quantity;
product.SellPrice = SellPrice;

this would be a perfect use for performing a Quick Replace with regular expressions rather than
modifying each line of code manually. Ensure you select regular expressions in the fi nd options, and
enter the following as the “ text ” to fi nd:

 Vb

{ < .*} = {.*}

 c#

 { < .*} = {.*};

and the following as the replace with “ text ” :

 Vb

\2 = \1

 c#

\2 = \1;

As a brief explanation, you are searching for two groups (defi ned by the curly brackets) separated
by an equals sign. The fi rst group is searching for the fi rst character of a word (<) and then any
characters (.*). The second group is searching for any characters until an end - of - line character is
found in the VB example or a semicolon is found in the C# example. Then when you do the replace,
you are simply inserting the characters from the second group found in its place, an equals sign
(surrounded by a space on each side), then the characters from the fi rst group found (followed by
a semicolon in the C# example). If you aren ’ t familiar with regular expressions it may take some
time to get your head around it, but it is a very quick and easy way to perform an otherwise rather
mundane manual process.

 find and replace options
 You can further confi gure the fi nd - and - replace functionality with its own set of options in the
Tools ➪ Options dialog. Found in the Environment group, the Find and Replace options enable you
to enable/disable displaying informational and warning messages, as well as to indicate whether the
Find what fi eld should be automatically fi lled with the current selection in the editor window. There
is also an option to hide the Find dialog after performing a Quick Find or Quick Replace, which can
be handy if you typically look only for the fi rst match.

Note that the regular expressions used in the Quick Find tool don ’ t have exactly
the same syntax as the standard regular expressions you might fi nd in the .NET
Framework, with a few differences present between the two.

 Quick find/replace ❘ 77

http://lib.ommolketab.ir
http//lib.ommolketab.ir

78 ❘ chaPter 5 Find And replAce And help

 find/rePlace in files

 The Find in Files and Replace in Files commands enable you to broaden the search beyond the current
solution to whole folders and folder structures, and even to perform mass replacements on any matches
for the given criteria and fi lters. Additional options are available to you when using these commands,
and search results can be placed in one of two tool windows so you can easily navigate them.

 find in files
 The really powerful part of the search engine built into Visual Studio is found in the Find in Files
command. Rather than restrict yourself to fi les in the current solution, Find in Files gives you the
ability to search entire folders (along with all their subfolders), looking for fi les that contain
the search criteria.

 The Find in Files dialog, shown in Figure 5 - 7, can be invoked via the menu command Edit ➪ Find
and Replace ➪ Find in Files. Alternatively, if you have the Quick Find dialog open, you can switch
over to Find in Files mode by clicking the small drop - down arrow next to Quick Find and choosing
Find in Files. You can also use the keyboard shortcut Ctrl+Shift+F to launch this dialog.

 Most of the Quick Find options are still available to you, including wildcard and regular expressions
searching, but instead of choosing a scope from the project or solution, you use the Look In fi eld to
specify where the search is to be performed. Either type the location you want to search or click the
ellipsis to display the Choose Search Folders dialog, shown in Figure 5 - 8.

 fiGure 5 - 7 fiGure 5 - 8

This search tool is best suited when you need to do a simple text - based search/
replace across fi les that are not necessarily a part of your current solution.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 You can navigate through the entire fi lesystem, including networked drives, and add the
folders you want to the search scope. This enables you to add disparate folder hierarchies to
the one single search. Start by using the Available Folders list on the left to select the folder(s)
that you would like to search. Add them to the Selected Folders list by clicking the right arrow.
Within this list you can adjust the search order using the up and down arrows. Once you have
added folders to the search, you can simply click OK to return a semicolon - delimited list of
folders. If you want to save this set of folders for future use you can enter a name into the Folder
Set drop - down and click Apply.

 find dialog options
 The options for the Find in Files dialog are similar to those for the Quick Find dialog. Because the
search is being performed on fi les that are not necessarily open within the IDE or are even code fi les,
the Search Up option is therefore not present. There is an additional fi lter that can be used to select
only specifi c fi le types to search in.

 The Look at these fi le types drop - down list contains several extension sets, each associated with a
particular language, making it easy to search for code in Visual Basic, C#, J#, and other languages.
You can type in your own extensions too, so if you ’ re working in a non - Microsoft language, or just
want to use the Find in Files feature for non - development purposes, you can still limit the search
results to those that correspond to the fi le types you want.

 In addition to the Find options are confi guration settings for how the results will be displayed. For
searching, you can choose one of two results windows, which enables you to perform a subsequent
search without losing your initial action. The results can be quite lengthy if you show the full output
of the search, but if you ’ re interested only in fi nding out which fi les contain the information you ’ re
looking for, check the Display Filenames Only option and the results window will be populated with
only one line per fi le.

 results window
 When you perform a Find in Files action, results are displayed in one of two Find Results windows.
These appear as open tool windows docked to the bottom of the IDE workspace. For each line that
contains the search criteria, the results window displays a full line of information, containing the
fi lename and path, the line number that contained the match, and the actual line of text itself, so
you can instantly see the context (see Figure 5 - 9).

The process of saving search folders is less than intuitive, but if you think of the
Apply button as more of a Save button then you can make sense of this dialog.

 find/replace in files ❘ 79

http://lib.ommolketab.ir
http//lib.ommolketab.ir

80 ❘ chaPter 5 Find And replAce And help

 Along the edge of each results window is a small toolbar, as shown in
Figure 5 - 10 (left), for navigation within the results themselves. These
commands are also accessible through a context menu, as shown in
Figure 5 - 10 (right).

 Simply double - click a specifi c match to navigate to that line
of code.

 replace in files
 Although it ’ s useful to search a large number of fi les and fi nd a
number of matches to your search criteria, even better is the
Replace in Files action. Accessed via the keyboard shortcut
Ctrl+Shift+H or the drop - down arrow next to Quick Replace,
Replace in Files performs in much the same way as Find in Files,
with all the same options.

 The main difference is that you can enable an additional
Results option when you ’ re replacing fi les. When you ’ re
performing a mass replacement action like this, it can be
handy to have a fi nal confi rmation before committing changes.
To have this sanity check available to you, select the Keep Modifi ed
Files Open After Replace All checkbox (shown at the bottom of
Figure 5 - 11).

 Note that this feature works only when you ’ re using Replace All; if
you just click Replace, Visual Studio will open the fi le containing the
next match and leave the fi le open in the IDE anyway.

 fiGure 5 - 11

 fiGure 5 - 9

 fiGure 5 - 10

Important: If you leave this option unchecked and perform a mass replacement
on a large number of fi les, they will be changed permanently without your
having any recourse to an undo action. Be very sure that you know what
you ’ re doing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Whether or not you have this option checked, after performing a Replace All action, Visual Studio
reports back to you how many changes were made. If you don ’ t want to see this dialog box, you
have an option to hide the dialog with future searches.

 find syMbol

 The Find Symbol search tool enables you to search for a class, method, property, or other types of symbols.
Whereas the standard Quick Find function is essentially a plaintext search across your selected scope
(current document, current project, and so on), Find Symbol is limited to searching only for symbols.

 You can invoke the Find Symbol dialog by the keyboard shortcut Alt+F12 or the menu command
Edit ➪ Find and Replace ➪ Find Symbol. Alternatively, you can switch the normal Find and Replace
dialog over to Find Symbol by clicking the drop - down arrow next to
Quick Find or Find in Files.

 The Find Symbol dialog (see Figure 5 - 12) has slightly different options
from the dialogs for the other Find actions. Rather than having its
scope based on a current document or solution like Quick Find, or
on the fi lesystem like Find in Files, Find Symbol can search through
your whole solution, a full component list, or even the entire .NET
Framework. In addition, you can include any references added to the
solution as part of the scope. To create your own set of components in
which to search, click the ellipsis next to the Look in fi eld and browse
through and select the .NET and COM components registered in the
system, or browse to fi les or projects.

 After you click Find All, the search results are compiled and presented in a special tool window
entitled Find Symbol Results. By default, this window shares space with the Find Results windows
at the bottom of the IDE, and displays each result with any references to the particular object or
component. This is extremely handy when you ’ re trying to determine where and how a particular
object is used or referenced from within your project.

 fiGure 5 - 12

The Find options are also simplifi ed. You can search only for whole words,
substrings (the default option), or prefi xes.

This search tool is best suited for when you need to search for all instances of
a symbol and retrieve a list of all matches within the selected scope so you can
easily navigate to a number of the results. By limiting the search scope to only
symbols, you aren ’ t searching extraneous text such as comments, code within
methods, and so on. The search is also not limited to just your code but can
also search the .NET Framework and referenced assemblies.

 find symbol ❘ 81

http://lib.ommolketab.ir
http//lib.ommolketab.ir

82 ❘ chaPter 5 Find And replAce And help

 naViGate to

 Navigate To is a powerful new search tool in Visual Studio 2010, providing an alternative to the
standard fi nd functions when searching for symbols. Like Find Symbol, you are limited to only
searching for symbols; a number of differences between this and how Find Symbol operates can
make this more useful.

 As opposed to Find Symbol, Navigate To displays live results as you type the search text. The more
of the search text you type, the more the results are narrowed down. Double - clicking one of the
results closes the dialog and navigates to that result.

 One of the most unique features of the Navigate To dialog, however, is in how it searches. Say you
are looking for a class named ProductSummary. In this search tool, spaces are essentially AND
operators, so typing prod sum as the search text (that is, searching for prod and sum in the same
symbol name) returns the ProductSummary class as a result, as would typing in sum prod .

 The other unique search capability that it
has is its camel case searching. To fi nd the
ProductSummary class you can simply search
for PS (the capitals in its name) to return it
as a result (as shown in Figure 5 - 13) — a
very powerful feature found only in this
search tool.

 If you enter the text to search for in
lowercase, the matching will be non - case -
 specifi c. However, if you enter an uppercase
character as a part of the search text, the
search will become case - specifi c.

 The shortcut to open the Navigate To dialog is Ctrl+, (comma).

 increMental search

 If you ’ re looking for something in the current code window and don ’ t want to bring up a
dialog, the Incremental Search function might be what you need. Invoked by either the
Edit ➪ Advanced ➪ Incremental Search menu command or the keyboard shortcut Ctrl+I,
Incremental Search locates the next match based on a plaintext search of what you type. To
search up the document instead of down use Ctrl+Shift+I.

 Immediately after invoking Incremental Search, simply begin typing the text you need to fi nd. The
mouse pointer will change to a set of binoculars and a down arrow. As you type each character,

 fiGure 5 - 13

This search tool is best suited for when you need to search for and navigate to a
single instance of a symbol, with the benefi ts of “ live ” results as you type and its
partial/camel case search capabilities.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the editor will move to the next match for the text you entered. For example, typing f would fi nd the
fi rst word containing an f — such as offer . Typing an o would then move the cursor to the fi rst word
containing fo — such as form ; and so on.

 If you enter the text to search for in lowercase, the matching will be non - case - specifi c. However, if
you enter an uppercase character as a part of the search text, the search will become case - specifi c.

 accessinG helP

 You are exposed to a wide range of technologies as a developer. Not only do they evolve at a rapid
pace, but you are constantly being bombarded with additional new technologies which you must
get up to speed on quickly. It ’ s impossible to know everything about these technologies, and being
a developer involves constantly learning. Often, knowing how to fi nd information on using these
technologies is as important a skill as being able to actually implement them. Luckily, there are a
multitude of information sources on these technologies from which you can draw on. The inclusion
of IntelliSense into IDEs over a decade ago was one of the most useful tools for helping developers
write code, but it ’ s rarely a substitute for a full blown help system that provides all the ins and outs
of a technology. Visual Studio ’ s help system provides this support for developers.

 The easiest way to get help for Visual Studio 2010 is to use the same method you would use for
almost every Windows application ever created — press the F1 key, the universal shortcut key for
help. Visual Studio 2010 has a brand new help system which uses Microsoft Help 3. Rather than
using a special “ shell ” to host the help and enable you to navigate around and search it, the help
system now runs in a browser window. To support some of the more complex features of the
help system such as the search functionality (when using the offl ine help), there is now a help
listener application that runs in your system tray and serves these requests. You ’ ll also note that
the address in the browser ’ s address bar points to a local web server on your machine. The online
and offl ine help modes look and behave very similarly to one another, but this chapter specifi cally
focuses on the offl ine help.

This search tool is really mostly for use in the same situations as you might use
the Quick Find tool, but it searches only the current fi le and doesn ’ t have the
additional options that Quick Find does. It does keep the Quick Find dialog
from getting in the way if you don ’ t require these advanced search features.
However, you are better off using the Quick Find dialog if you want to fi nd a
result, make a change, then fi nd the next result, as when fi nding the next result
you would have to start typing the incremental search text all over again.

You may fi nd that you receive a Service Unavailable message when using the help
system. The likely cause of this error is that the help listener is no longer running
in your system tray. Simply open the help system from within Visual Studio and
the help listener will be automatically started again.

 accessing Help ❘ 83

http://lib.ommolketab.ir
http//lib.ommolketab.ir

84 ❘ chaPter 5 Find And replAce And help

The help system in Visual Studio is contextual. This means that if the cursor is currently positioned
on or inside a class definition in a project and you press F1, the help window will open immediately
with a mini-tutorial about what the class statement is and how to use it, as shown in Figure 5-14.

fiGure 5-14

This is incredibly useful because more often than not if you
simply press F1, the help system will navigate directly to the help
topic that deals with the problem you’re currently researching.

However, in some situations you will want to go directly to the
table of contents within the help system. Visual Studio 2010
enables you to do this through the Visual Studio Documentation
menu item in its main Help menu (see Figure 5-15).

In addition to the several help links you also have shortcuts to
MSDN forums and for reporting a bug.

navigating and searching the help system
Navigating through the help system should be very familiar, as it is essentially the same as
navigating the Web. On the left-hand side of the browser window you will find links to pages in the
same part of the help system as the page being currently viewed, and you will also find links that
might be related to the current page.

In the top left of the browser window, you will find a search text box. Enter your search query here
(in much the same way you would in a search engine like Google or Bing). This search is a full text

fiGure 5-15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

search of the pages in the help system, and your query does not necessarily need to appear in the title
of the pages. This will take you to the results, which are again provided in a manner similar to the
results from a search engine. A one-line extract from the page of each result is displayed to help you
determine if it is the article you are after, and you can click through to view the corresponding page.

configuring the help system
When you first start using the help system, it’s
a good idea to configure it to your needs. To
do so, select the Help ➪ Manage Help Settings
menu. This opens the Help Library Manager
dialog, as shown in Figure 5-16.

The first option, Choose online or local help,
opens another screen in the dialog that enables
you to select whether you will be using the
online or offline help. If you select the online
option, pressing F1 or opening the help from
the Help menu will automatically navigate
to the appropriate page in the documentation
on MSDN online (for the current context in
Visual Studio). Selecting the offline option
will navigate to the appropriate page in the documentation installed locally (assuming that the
documentation has actually been installed on your machine).

The advantage of the online help over the offline help is that it will always be up to date and won’t
consume space on your hard drive (assuming you don’t install the help content). The disadvantage
is that you must always have an active Internet connection, and at times (depending on your
bandwidth) it may be slower than the offline version to access. Essentially it is a trade-off, and you
must choose the most appropriate option for your work environment.

The Check for updates online option will check if there are any updates to each of the product
documentation sets that are currently installed. A screen will show the documentation sets that
are installed and do a check for updates for each. When the checks are complete, it will show an
estimated download size at the bottom of the dialog. Be aware that these documentation sets can
be rather large, and only continue with the update if you have the bandwidth to download files of
that size.

The Find content online option enables you to download and add additional product documentation
sets to your offline library. The dialog will obtain a list of the available documentation sets and their
size from the Internet. You can then click the Add hyperlink button next to each documentation set
that your want to download. Again, be aware that these files can be rather large.

The Find content on disk option enables you to install documentation sets from local media, such as
a CD/DVD, SD card, or hard drive. You will need to navigate to a manifest file (which has a .msha
extension) that accompanies the documentation, and the Help Library Manager will take it from
there and handle the installation of the related documentation.

fiGure 5-16

accessing Help ❘ 85

http://lib.ommolketab.ir
http//lib.ommolketab.ir

86 ❘ chaPter 5 Find And replAce And help

The final option is Remove content, which enables you to remove product documentation sets from
your local disk and free some disk space. The screen will show the documentation sets that are
currently installed, and you can uninstall a documentation set by pressing the Remove hyperlink
button next to its name.

suMMary

As you’ve seen in this chapter, Visual Studio 2010 comes with a number of search-and-replace tools,
each best suited to a particular type of search task to enable you to navigate and modify your code
quickly and easily.

The new help system is a powerful interface to the documentation that comes with Visual Studio
2010. The ability to switch easily between online and local documentation ensures that you can
balance the speed of offline searches with the relevance of information found on the Web. And the
abstract paragraphs that are shown in all search results, regardless of their locations, help reduce
the number of times you might click a false positive.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART II

Getting started

chaPter 6: ⊲ Solutions, Projects, and Items

chaPter 7: ⊲ IntelliSense and Bookmarks

chaPter 8: ⊲ Code Snippets and Refactoring

chaPter 9: ⊲ Server Explorer

chaPter 10: ⊲ Modeling with the Class Designer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6
 solutions, Projects, and items

 what ’ s in this chaPter?

 Creating and confi guring solutions and projects ➤

 Controlling how an application is compiled, debugged, and ➤

deployed

 Confi guring the many project - related properties ➤

 Including resources and settings with an application ➤

 Enforcing good coding practices with the Code Analysis Tools ➤

 Modifying the confi guration, packaging, and deployment options for ➤

web applications

 Other than the simplest applications, such as Hello World, most applications require more
than one source fi le. This raises a number of issues, such as how the fi les will be named, where
they will be located, and whether they can be reused. Within Visual Studio 2010, the concept
of a solution , containing a series of projects , made up of a series of items , is used to enable
developers to track, manage, and work with their source fi les. The IDE has a number of built -
 in features that aim to simplify this process, while still allowing developers to get the most out
of their applications. This chapter examines the structure of solutions and projects, looking at
available project types and how they can be confi gured.

 solution structure

 Whenever you ’ re working within Visual Studio, you will have a solution open. When you ’ re
editing an ad hoc fi le, this will be a temporary solution that you can elect to discard when
you have completed your work. However, the solution enables you to manage the fi les that
you ’ re currently working with, so in most cases saving the solution means that you can return

http://lib.ommolketab.ir
http//lib.ommolketab.ir

90 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

to what you were doing at a later date without having to locate and reopen the fi les on which you
were working.

 Solutions should be thought of as a container of related projects. The projects
within a solution do not need to be of the same language or project type. For
example, a single solution could contain an ASP.NET web application written
in Visual Basic, an F# library, and a C# WPF application. The solution allows
you to open all these projects together in the IDE and manage the build and
deployment confi guration for them as a whole.

 The most common way to structure applications written within
Visual Studio is to have a single solution containing a number of
projects. Each project can then be made up of a series of both code
fi les and folders. The main window in which you work with solutions
and projects is the Solution Explorer, shown in Figure 6 - 1.

 Within a project, folders are used to organize the source code and
have no application meaning associated with them (with the exception
of web applications, which can have specially named folders that have
specifi c meaning in this context). Some developers use folder names
that correspond to the namespace to which the classes belong. For
example, if class Person is found within a folder called DataClasses in
a project called FirstProject, the fully qualifi ed name of the class could
be FirstProject.DataClasses.Person .

 Solution folders are a useful way to organize the projects in a large solution. Solution folders are
visible only in the Solution Explorer — a physical folder is not created on the fi lesystem. Actions
such as Build or Unload can be performed easily on all projects in a solution folder. Solution
folders can also be collapsed or hidden so that you can work more easily in the Solution Explorer.
Projects that are hidden are still built when you build the solution. Because solution folders do not
map to a physical folder, they can be added, renamed, or deleted at any time without causing invalid
fi le references or source control issues.

 Miscellaneous Files is a special solution folder that can be used to keep track of
other fi les that have been opened in Visual Studio but are not part of any projects
in the solution. The Miscellaneous Files solution folder is not visible by default.
You can fi nd the settings to enable it under Tools ➪ Options ➪ Environment ➪ 

Documents.

 There is a common misconception that projects necessarily correspond to .NET assemblies.
Although this is generally true, it is possible for multiple projects to represent a single .NET
assembly. However, this case is not supported by Visual Studio 2010, so this book assumes that a
project will correspond to an assembly.

fiGure 6-1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 In Visual Studio 2010, although the format for the solution fi le has not changed, you cannot open
a solution fi le that was created with Visual Studio 2010 with Visual Studio 2008. However, project
fi les can be opened with both Visual Studio 2008 and Visual Studio 2010.

 In addition to tracking which fi les are contained within an application, solution and project fi les
can record other information, such as how a particular fi le should be compiled, project settings,
resources, and much more. Visual Studio 2010 includes non - modal dialog for editing project
properties, whereas solution properties still open in a separate window. As you might expect, the
project properties are those properties pertaining only to the project in question, such as assembly
information and references, whereas solution properties determine the overall build confi gurations
for the application.

 solution file forMat

 Visual Studio 2010 actually creates two fi les for a solution, with extensions .suo and .sln (solution
fi le). The fi rst of these is a rather uninteresting binary fi le, and hence diffi cult to edit. It contains
user - specifi c information — for example, which fi les were open when the solution was last closed
and the location of breakpoints. This fi le is marked as hidden, so it won ’ t appear in the solution
folder using Windows Explorer unless you have enabled the option to show hidden fi les.

 Occasionally the .suo fi le becomes corrupted and causes unexpected behavior
when building and editing applications. If Visual Studio becomes unstable for a
particular solution, you should exit and delete the .suo fi le. It will be re - created
by Visual Studio the next time the solution is opened.

 The .sln solution fi le contains information about the solution, such as the list of projects, build
confi gurations, and other settings that are not project - specifi c. Unlike many fi les used by Visual
Studio 2010, the solution fi le is not an XML document. Instead it stores information in blocks, as
shown in the following example solution fi le:

Microsoft Visual Studio Solution File, Format Version 11.00
Visual Studio 10
Project("{F184B08F-C81C-45F6-A57F-5ABD9991F28F}") = "FirstProject",
 "FirstProject\FirstProject.vbproj", "{D4FAF2DD-A26C-444A-9FEE-2788B5F5FDD2}"
EndProject
Global
 GlobalSection(SolutionConfigurationPlatforms) = preSolution
 Debug|Any CPU = Debug|Any CPU
 EndGlobalSection
 GlobalSection(ProjectConfigurationPlatforms) = postSolution
 {D4FAF2DD-A26C-444A-9FEE-2788B5F5FDD2}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
 {D4FAF2DD-A26C-444A-9FEE-2788B5F5FDD2}.Debug|Any CPU.Build.0 = Debug|Any CPU
 EndGlobalSection
 GlobalSection(SolutionProperties) = preSolution
 HideSolutionNode = FALSE
 EndGlobalSection
EndGlobal

solution file format ❘ 91

http://lib.ommolketab.ir
http//lib.ommolketab.ir

92 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

 In this example, the solution consists of a single project, FirstProject, and a Global section outlining
settings that apply to the solution. For instance, the solution itself will be visible in the Solution
Explorer because the HideSolutionNode setting is FALSE . If you were to change this value to TRUE ,
the solution name would not be displayed in Visual Studio.

As long as a solution consists of projects that do not target the .NET Framework
version 4.0, you can open the solution with Visual Studio 2008 by performing a
quick edit to the .sln fi le. Simply replace the fi rst two lines of the fi le with the
following, and the solution will open with no errors:

Microsoft Visual Studio Solution File, Format Version 10.00
Visual Studio 2008

 solution ProPerties

 You can reach the solution Properties dialog by right - clicking the Solution node in the Solution
Explorer and selecting Properties. This dialog contains two nodes to partition Common and
Confi guration properties, as shown in Figure 6 - 2.

fiGure 6-2

 The following sections describe the Common and Confi guration properties nodes in more detail.

 common Properties
 You have three options when defi ning the Startup Project for an application, and they ’ re somewhat
self - explanatory. Selecting Current Selection starts the project that has current focus in the Solution
Explorer. Single Startup ensures that the same project starts up each time. This is the default
selection, because most applications have only a single startup project. The last option, Multiple

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Startup Projects, allows for multiple projects to be started in a particular order. This can be useful
if you have a client/server application specifi ed in a single solution and you want them both to be
running. When running multiple projects, it is also relevant to control the order in which they
start up. Use the up and down arrows next to the project list to control the order in which projects
are started.

 The Project Dependencies section is used to indicate other projects on which a specifi c project
is dependent. For the most part, Visual Studio will manage this for you as you add and remove
project references for a given project. However, sometimes you may want to create dependencies
between projects to ensure that they are built in the correct order. Visual Studio uses its list of
dependencies to determine the order in which projects should be built. This window prevents you
from inadvertently adding circular references and from removing necessary project dependencies.

 In the Debug Source Files section, you can provide a list of directories through which Visual Studio
can search for source fi les when debugging. This is the default list that is searched before the Find
Source dialog is displayed. You can also list source fi les that Visual Studio should not try to locate.
If you click Cancel when prompted to locate a source fi le, the fi le will be added to this list.

 The Code Analysis Settings section is available only in the Visual Studio Team Suite editions. This
allows you to select the static code analysis rule set that will be run for each project. Code Analysis
is discussed in more detail later in the chapter.

 confi guration Properties
 Both projects and solutions have build confi gurations associated with them that determine
which items are built and how. It can be somewhat confusing because there is actually no
correlation between a project confi guration, which determines how things are built, and a
solution confi guration, which determines which projects are built, other than they might have the
same name. A new solution will defi ne both Debug and Release (solution) confi gurations, which
correspond to building all projects within the solution in Debug or Release (project) confi gurations.

 For example, a new solution confi guration called Test can be created, which consists of two projects:
MyClassLibrary and MyClassLibraryTest. When you build your application in Test confi guration,
you want MyClassLibrary to be built in Release mode so you ’ re testing as close to what you would
release as possible. However, to be able to step through your test code, you want to build the test
project in Debug mode.

 When you build in Release mode, you don ’ t want the Test solution to be built or deployed with
your application. In this case, you can specify in the Test solution confi guration that you want
the MyClassLibrary project to be built in Release mode, and that the MyClassLibraryTest project
should not be built.

 You can switch between confi gurations easily via the Confi guration drop - down
on the standard toolbar. However, it is not as easy to switch between platforms,
because the Platform drop - down is not on any of the toolbars. To make this
available, select View ➪ Toolbars ➪ Customize. From the Build category on the
Commands, the Solution Platforms item can be dragged onto a toolbar.

solution Properties ❘ 93

http://lib.ommolketab.ir
http//lib.ommolketab.ir

94 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

You will notice that when the Configuration Properties node is selected from the Solution
Properties dialog as shown in Figure 6-2, the Configuration and Platform drop-down boxes are
enabled. The Configuration drop-down contains each of the available solution configurations
(Debug and Release by default), Active, and All. Similarly, the Platform drop-down contains each
of the available platforms. Whenever these drop-downs appear and are enabled, you can specify
the settings on that page on a per-configuration and/or per-platform basis. You can also use the
Configuration Manager button to add additional solution configurations and/or platforms.

When adding additional solution configurations, there is an option (checked by default) to create
corresponding project configurations for existing projects (projects will be set to build with
this configuration by default for this new solution configuration), and an option to base the new
configuration on an existing configuration. If the Create Project Configurations option is checked
and the new configuration is based on an existing configuration, the new project configurations
will copy the project configurations specified for the existing configuration.

The options available for creating new platform configurations are limited by the types of CPU
available: Itanium, x86, and x64. Again, the new platform configuration can be based on existing
configurations, and the option to create project platform configurations is also available.

The other thing you can specify in the solution configuration file is the type of CPU for which you
are building. This is particularly relevant if you want to deploy to 64-bit architecture machines.

You can reach all these solution settings directly from the right-click context menu from the
Solution node in the Solution Explorer window. Whereas the Set Startup Projects menu item opens
the solution configuration window, the Configuration
Manager, Project Dependencies, and Project Build Order
items open the Configuration Manager and Project
Dependencies window. The Project Dependencies and
Project Build Order menu items will be visible only if you
have more than one project in your solution.

When the Project Build Order item is selected, this opens
the Project Dependencies window and lists the build order,
as shown in Figure 6-3. This tab reveals the order in which
projects will be built, according to the dependencies. This
can be useful if you are maintaining references to project
binary assemblies rather than project references, and it
can be used to double-check that projects are being built
in the correct order.

ProJect tyPes

Within Visual Studio, the projects for Visual Basic and C# are broadly classified into different
categories. With the exception of Web Site projects, which are discussed separately later in this
chapter, each project contains a project file (.vbproj or .csproj) that conforms to the MSBuild
schema. Selecting a project template creates a new project, of a specific project type, and populates

fiGure 6-3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

it with initial classes and settings. Following are some of the more common categories of projects as
they are grouped under Visual Studio:

 ➤ Windows: The Windows project category is the broadest category and includes most of the
common project types that run on end-user operating systems. This includes the Windows
Forms executable projects, Console application projects, and Windows Presentation
Foundation (WPF) applications. These project types create an executable (.exe) assembly
that is executed directly by an end user. The Windows category also includes several types
of library assemblies that can easily be referenced by other projects. These include both
class libraries and control libraries for Windows Forms and WPF applications. A class
library reuses the familiar DLL extension. The Windows Service project type can also be
found in this category.

 ➤ Web: The Web category includes the project types that run under ASP.NET. This includes
ASP.NET web applications, XML web services, and control libraries for use in web
applications and rich AJAX-enabled web applications.

 ➤ Office: As its name suggests, the Office category creates managed code add-ins for
Microsoft Office products, such as Outlook, Word, or Excel. These project types use Visual
Studio Tools for Office (VSTO), and are capable of creating add-ins for most products in
both the Office 2003 and Office 2007 product suite.

 ➤ SharePoint: Another self-describing category, this contains projects that target Windows
SharePoint Services, such as SharePoint Workflows or Team Sites.

 ➤ Database: The Database category contains a project type for creating code that can be
used with SQL Server. This includes stored procedures, user-defined types and functions,
triggers, and custom aggregate functions.

 ➤ Reporting: This category includes a project type that is ideal for quickly generating complex
reports against a data source.

 ➤ Silverlight: This contains project types for creating Silverlight Applications or Class Library
projects.

 ➤ Test: The Test category includes a project type for projects that contain tests using the
MSTest unit testing framework.

 ➤ WCF: This contains a number of project types for creating applications that provide
Windows Communication Foundation (WCF) services.

 ➤ Workflow: This contains a number of project types for sequential and state machine
workflow libraries and applications.

The New Project dialog box in Visual Studio 2010, shown in Figure 6-4, allows you to browse
and create any of these project types. The target .NET Framework version is listed in a drop-down
selector in the top right-hand corner of this dialog box. If a project type is not supported by the
selected .NET Framework version, such as a WPF application under .NET Framework 2.0, that
project type will not be displayed.

Project Types ❘ 95

http://lib.ommolketab.ir
http//lib.ommolketab.ir

96 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

 ProJect files forMat

 The project fi les (.csproj , .vbproj , or .fsproj) are text fi les in an XML document format that
conforms to the MSBuild schema. The XML schema fi les for the latest version of MSBuild are
installed with the .NET Framework, by default in C:\WINDOWS\Microsoft.NET\Framework\
v4.0.20506\MSBuild\Microsoft.Build.Core.xsd .

 To view the project fi le in XML format, right - click the project and select Unload.
Then right - click the project again and select Edit < project name > . This will
display the project fi le in the XML editor, complete with IntelliSense.

 The project fi le stores the build and confi guration settings that have been specifi ed for the project and
details about all the fi les that are included in the project. In some cases, a user - specifi c project fi le is
also created (.csproj.user or .vbproj.user), which stores user preferences such as startup and
debugging options. The .user fi le is also an XML fi le that conforms to the MSBuild schema.

 ProJect ProPerties

 You can reach the project properties by either right - clicking the Project node in Solution Explorer
and then selecting Properties, or by double - clicking My Project (Properties in C#) just under the
Project node. In contrast to solution properties, the project properties do not display in a modal

fiGure 6-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Project Properties ❘ 97

dialog. Instead they appear as an additional tab alongside your code fi les. This was done in part
to make it easier to navigate between code fi les and project properties, but it also makes it possible
to open project properties of multiple projects at the same time. Figure 6 - 5 illustrates the project
settings for a Visual Basic Windows Forms project. This section walks you through the vertical tabs
on the project editor for both Visual Basic and C# projects.

fiGure 6-5

 The project properties editor contains a series of vertical tabs that group the properties. As changes
are made to properties in the tabs, a star is added to the corresponding vertical tab. This functionality
is limited, however, because it does not indicate which fi elds within the tab have been modifi ed.

 application
 The Application tab, visible in Figure 6 - 5 for a Visual Basic Windows Forms project, enables
the developer to set the information about the assembly that will be created when the project
is compiled. These include attributes such as the output type (that is, Windows or Console
Application, Class Library, Windows Service, or a Web Control Library), application icon, and
startup object. The Application tab for C# applications, shown in Figure 6 - 6, has a different format,
and provides options such as the ability to select the target .NET Framework version.

 To change the .NET Framework version on a Visual Basic project, use the
Advanced Compile Options on the Compile tab.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

98 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

assembly information
Attributes that previously had to be configured by hand in the AssemblyInfo file contained in the
project can also be set via the Assembly Information button. This information is important, because
it shows up when an application is installed and when the properties of a file are viewed in Windows
Explorer. Figure 6-7 (left) shows the assembly information for a sample application and Figure 6-7
(right) shows the properties of the compiled executable.

fiGure 6-6

fiGure 6-7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project Properties ❘ 99

Each of the properties set in the Assembly Information dialog is represented by an attribute that
is applied to the assembly. This means that the assembly can be queried in code to retrieve this
information. In Visual Basic, the My.Application.Info namespace provides an easy way to
retrieve this information.

User account Control settings
Visual Studio 2010 provides support for developing applications that work with User
Account Control (UAC) under Windows Vista and Windows 7. This involves generating an
assembly manifest file, which is an XML file that notifies the operating system if an application
requires administrative privileges on startup. In Visual Basic applications, the View Windows
Settings button on the Application tab can be used to generate and add an assembly manifest file
for UAC to your application. The following code shows the default manifest file that is generated by
Visual Studio.

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <!-- UAC Manifest Options
 If you want to change the Windows User Account Control level replace the
 requestedExecutionLevel node with one of the following.

 <requestedExecutionLevel level="asInvoker" />
 <requestedExecutionLevel level="requireAdministrator" />
 <requestedExecutionLevel level="highestAvailable" />

 If you want to utilize File and Registry Virtualization for backward
 compatibility then delete the requestedExecutionLevel node.
 -->
 <requestedExecutionLevel level="asInvoker" />
 </requestedPrivileges>
 <applicationRequestMinimum>
 <defaultAssemblyRequest permissionSetReference="Custom" />
 <PermissionSet ID="Custom" SameSite="site" />
 </applicationRequestMinimum>
 </security>
 </trustInfo>
</asmv1:assembly>

If the UAC-requested execution level is changed from the default asInvoker to require
Administrator, Windows will present a UAC prompt when the application is launched. If you
have UAC enabled, Visual Studio 2010 will also prompt to restart in administrator mode if an

http://www.w3.org/2001/XMLSchema-instance
http://lib.ommolketab.ir
http//lib.ommolketab.ir

100 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

application requiring admin rights is started
in Debug mode. Figure 6-8 shows the prompt
that is shown on Windows allowing you to
restart Visual Studio in administrator mode.

If you agree to the restart, Visual Studio
will not only restart with administrative
privileges, it will also reopen your solution
including all files you had opened. It will even
remember the last cursor position.

application framework (Visual Basic only)
Additional application settings are available for Visual Basic Windows Forms projects because they
can use the Application Framework that is exclusive to Visual Basic. This extends the standard event
model to provide a series of application events and settings that control the behavior of the application.
You can enable the Application Framework by checking the Enable Application Framework checkbox.
The following three checkboxes control the behavior of the Application Framework:

 ➤ Enable XP Visual Styles: XP visual styles are a feature that significantly improves the
look and feel of applications running on Windows XP or later, because it provides a much
smoother interface through the use of rounded buttons and controls that dynamically
change color as the mouse passes over them. Visual Basic applications enable XP styles by
default and can be disabled from the Project Settings dialog, or controlled from within code
through the EnableVisualStyles method on the Application class.

 ➤ Make Single Instance Application: Most applications support multiple instances running
concurrently. However, an application opened more than two or three times may be run
only once, with successive executions simply invoking the original application. Such an
application could be a document editor, whereby successive executions simply open a
different document. This functionality can be easily added by marking the application as a
single instance.

 ➤ Save My.Settings on Shutdown: Selecting the Save My.Settings on Shutdown option
ensures that any changes made to user-scoped settings will be preserved, saving the settings
provided prior to the application shutting down.

This section also allows you to select an authentication mode for the application. By default this is
set to Windows, which uses the currently logged-on user. Selecting Application-defined allows you
to use a custom authentication module.

You can also identify a form to be used as a splash screen when the application is first launched, and
specify the shutdown behavior of the application.

compile (Visual basic only)
The Compile section of the project settings, as shown in Figure 6-9, enables the developer to control
how and where the project is built. For example, the output path can be modified so that it points
to an alternative location. This might be important if the output is to be used elsewhere in the
build process.

fiGure 6-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Project Properties ❘ 101

 The Confi guration drop - down selector at the top of the tab page allows different build settings for
the Debug and Release build confi guration.

 If your dialog is missing the Confi guration drop - down selector, you need to check the Show
Advanced Build Confi gurations property in the Projects and Solutions node of the Options window,
accessible from the Tools menu. Unfortunately, this property is not checked for some of the setting
profi les — for example, the Visual Basic Developer profi le.

 Some Visual Basic – specifi c properties can be confi gured in the Compile pane. Option Explicit
determines whether variables that are used in code have to be explicitly defi ned. Option Strict forces the
type of variables to be defi ned, rather than it being late - bound. Option Compare determines whether
strings are compared using binary or text comparison operators. Option Infer specifi es whether to
allow local type inference in variable declarations or whether the type must be explicitly stated.

 All four of these compile options can be controlled at either the Project or File -
 level. File - level compiler options will override the Project - level options.

 The Compile pane also defi nes a number of different compiler options that can be adjusted to
improve the reliability of your code. For example, unused variables may only warrant a warning,
whereas a path that doesn ’ t return a value is more serious and should generate a build error. It is
possible either to disable all these warnings or treat all of them as errors.

fiGure 6-9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

102 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

Visual Basic developers also have the capability to generate XML documentation. Of course,
because the documentation takes time to generate, it is recommended that you disable this option
for debug builds. This will speed up the debugging cycle; however, when turned off warnings will
not be given for missing XML documentation.

The last element of the Compile pane is the Build Events button. Click this button to view
commands that can be executed prior to and after the build. Because not all builds are successful,
the execution of the post-build event can depend on a successful build. C# projects have a separate
Build Events tab in the project properties pages for configuring pre- and post-build events.

build (c# and f# only)
The Build tab, shown in Figure 6-10, is the C# equivalent of the Visual Basic Compile tab. This
tab enables the developer to specify the project’s build configuration settings. For example, the
Optimize code setting can be enabled, which results in assemblies that are smaller, faster, and
more efficient. However, these optimizations typically increase the build time, and as such are not
recommended for the Debug build.

fiGure 6-10

On the Build tab, the DEBUG and TRACE compilation constants can be enabled. Alternatively, you
can easily define your own constants by specifying them in the Conditional compilation symbols
textbox. The value of these constants can be queried from code at compile-time. For example, the
DEBUG constant can be queried as follows:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project Properties ❘ 103

c#

#if(DEBUG)
 MessageBox.Show("The debug constant is defined");
#endif

Vb

#If DEBUG Then
 MessageBox.Show("The debug constant is defined")
#End If

The compilation constants are defined on the Advanced Compiler Settings dialog, which can be
displayed by clicking the Advanced Compile Options... button on the Compile tab.

The Configuration drop-down selector at the top of the tab page allows different build settings for
the Debug and Release build configuration. You can find more information on the Build options in
Chapter 45.

build events (c# and f# only)
The Build Events tab allows you to perform additional actions before or after the build process.
In Figure 6-11, you can see a post-build event that executes the FXCop Static Code Analysis tool
after every successful build.

fiGure 6-11

You can use environment variables such as ProgramFiles in your command lines by enclosing them
with the percent character. A number of macros are also available, such as ProjectPath. These
macros are listed on the Edit Pre-build and Edit Post-build dialog box.

debug
The Debug tab, shown in Figure 6-12, determines how the application will be executed when run
from within Visual Studio 2010. This tab is not visible for web applications — instead the Web tab
is used to configure similar options.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

104 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

start action
When a project is set to start up, this set of radio buttons controls what actually happens when the
application is run. Initially, this is set to start the project, which will call the Startup object specified
on the Application tab. The other options are to either run an executable or launch a specific web site.

start options
The options that can be specified when running an application are additional command-line
arguments (generally used in conjunction with an executable start action) and the initial working
directory. You can also specify to start the application on a remote computer. Of course, this is
possible only when debugging is enabled on a remote machine.

enable Debuggers
Debugging can be extended to include unmanaged code and SQL Server. The Visual Studio
hosting process can also be enabled here. This process has a number of benefits associated with
the performance and functionality of the debugger. The benefits fall into three categories. First, the
hosting process acts as a background host for the application you are debugging. In order to
debug a managed application, various administrative tasks must be performed, such as creating
an AppDomain and associating the debugger, which take time. With the hosting process enabled,
these tasks are handled in the background, resulting in a much quicker load time during debugging.

Second, in Visual Studio 2010, it is quite easy to create, debug, and deploy applications that
run under partial trust. The hosting process is an important tool in this process because it gives
you the ability to run and debug an application in partial trust. Without this process, the
application would run in full trust mode, preventing you from debugging the application in
partial trust mode.

fiGure 6-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project Properties ❘ 105

The last benefit that the hosting process provides is design-time evaluation of expressions. This
is in effect an optical illusion, because the hosting process is actually running in the background.
However, using the Immediate window as you’re writing your code means that you can easily
evaluate expressions, call methods, and even hit breakpoints without running up the entire
application.

references (Visual basic only)
The References tab enables the developer to reference classes in other .NET assemblies, projects,
and native DLLs. Once the project or DLL has been added to the references list, a class can be
accessed either by its full name, including namespace, or the namespace can be imported into a code
file so the class can be referenced by just the class name. Figure 6-13 shows the References tab for a
project that has a reference to a number of framework assemblies.

fiGure 6-13

One of the features of this tab for Visual Basic developers is the Unused References button, which
performs a search to determine which references can be removed. It is also possible to add a
reference path, which will include all assemblies in that location.

Once an assembly has been added to the reference list, any public class contained within that
assembly can be referenced within the project. Where a class is embedded in a namespace (which
might be a nested hierarchy), referencing a class requires the full class name. Both Visual Basic and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

106 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

C# provide a mechanism for importing namespaces so that classes can be referenced directly. The
References section allows namespaces to be globally imported for all classes in the project, without
them being explicitly imported within the class fi le.

 References to external assemblies can either be File references or Project references. File references
are direct references to an individual assembly. File references are created by using the Browse tab of
the Add Reference dialog box. Project references are references to a project within the solution. All
assemblies that are outputted by that project are dynamically added as references. Project references
are created by using the Project tab of the Add Reference dialog box.

 You should generally not add a File reference to a project that exists in the same
solution. If a project requires a reference to another project in that solution, a
Project reference should be used.

 The advantage of a Project reference is that it creates a dependency between the projects in the
build system. The dependent project will be built if it has changed since the last time the referencing
project was built. A File reference doesn ’ t create a build dependency, so it ’ s possible to build the
referencing project without building the dependent project. However, this can result in problems
with the referencing project expecting a different version from what is included in the output.

 resources
 Project resources can be added and removed via the Resources tab, shown in Figure 6 - 14. In the
example shown, four icons have been added to this application. Resources can be images, text,
icons, fi les, or any other serializable class.

fiGure 6-14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project Properties ❘ 107

This interface makes working with resource files at design time very easy. Chapter 38 examines
in more detail how resource files can be used to store application constants and internationalize
your application.

services
Client application services allow Windows-based applications to use the authentication, roles,
and profile services that were introduced with Microsoft ASP.NET 2.0. The client services enable
multiple web- and Windows-based applications to centralize user profiles and user-administration
functionality.

Figure 6-15 shows the Services tab, which is used to configure client application services for
Windows applications. When enabling the services, the URL of the ASP.NET service host must be
specified for each service. This will be stored in the app.config file. The following client services
are supported:

 ➤ Authentication: This enables the user’s identity to be verified using either the native
Windows authentication, or a custom forms-based authentication that is provided by the
application.

 ➤ Roles: This obtains the roles an authenticated user has been assigned. This enables you
to allow certain users access to different parts of the application. For example, additional
administrative functions may be made available to admin users.

 ➤ Web Settings: This stores per-user application settings on the server, which allows them to
be shared across multiple computers and applications.

fiGure 6-15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

108 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

Client application services utilize a provider model for web services extensibility. The service
providers include offline support that uses a local cache to ensure that it can still operate even when
a network connection is not available.

Client application services are discussed further in Chapter 33.

settings
Project settings can be of any type and simply reflect a name/value pair whose value can be
retrieved at run time. Settings can be scoped to either the Application or the User, as shown in
Figure 6-16. Settings are stored internally in the Settings.settings file and the app.config file. When
the application is compiled this file is renamed according to the executable being generated — for
example, SampleApplication.exe.config.

fiGure 6-16

Application-scoped settings are read-only at run time, and can only be changed by manually editing
the config file. User settings can be dynamically changed at run time, and may have a different value
saved for each user who runs the application. The default values for User settings are stored in
the app.config file, and the per-user settings are stored in a user.config file under the user’s private
data path.

Application and User settings are described in more detail in Chapter 36.

reference Paths (c# and f# only)
The Reference Paths tab, shown in Figure 6-17, is used to specify additional directories that are
searched for referenced assemblies.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project Properties ❘ 109

When an assembly reference has been added, Visual Studio resolves the reference by looking in the
following directories in order:

 1 . The project directory.

 2 . Directories specified in this Reference Paths list.

 3 . Directories displaying files in the Add Reference dialog box.

 4 . The obj directory for the project. This is generally only relevant to COM interop assemblies.

signing
Figure 6-18 shows the Signing tab, which provides developers with the capability to determine how
assemblies are signed in preparation for deployment. An assembly can be signed by selecting a key
file. A new key file can be created by selecting <New…> from the file selector drop-down.

fiGure 6-17

fiGure 6-18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

110 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

The ClickOnce deployment model for applications enables an application to be published to a
web site where a user can click once to download and install the application. Because this model
is supposed to support deployment over the Internet, an organization must be able to sign the
deployment package. The Signing tab provides an interface for specifying the certificate to use to
sign the ClickOnce manifests.

Chapter 46 provides more detail on assembly signing and Chapter 48 discusses ClickOnce
deployments.

My extensions (Visual basic only)
The My Extensions tab, shown in Figure 6-19, allows you to add reference to an assembly that
extends the Visual Basic My namespace, using the extension methods feature. Extension methods
were initially introduced to enable LINQ to be shipped without requiring major changes to the base
class library. They allow developers to add new methods to an existing class, without having to use
inheritance to create a subclass or recompile the original type.

fiGure 6-19

The My namespace was designed to provide simplified access to common library methods. For
example, My.Application.Log provides methods to write an entry or exception to a log file using a
single line of code. As such it is the ideal namespace to add custom classes and methods that provide
useful utility functions, global state or configuration information, or a service that can be used by
multiple applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Project Properties ❘ 111

security
Applications deployed using the ClickOnce deployment model may be required to run under limited
or partial trust. For example, if a low-privilege user selects a ClickOnce application from a web site
across the Internet, the application will need to run with partial trust as defined by the Internet zone.
This typically means that the application can’t access the local filesystem, has limited networking
ability, and can’t access other local devices such as printers, databases, and computer ports.

The Security tab, illustrated in Figure 6-20, allows you to define the trust level that is required by
your application to operate correctly.

fiGure 6-20

Modifying the permission set that is required for a ClickOnce application may limit who can
download, install, and operate the application. For the widest audience, specify that an application
should run in partial trust mode with security set to the defaults for the Internet zone. Alternatively,
specifying that an application requires full trust ensures that the application has full access to all
local resources, but will necessarily limit the audience to local administrators.

Publish
The ClickOnce deployment model can be divided into two phases: initially publishing
the application and subsequent updates, and the download and installation of both the original
application and subsequent revisions. You can deploy an existing application using the ClickOnce
model using the Publish tab, shown in Figure 6-21.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

112 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

If the install mode for a ClickOnce application is set to be available offline when it is initially
downloaded from the web site, it will be installed on the local computer. This will place the
application in the Start menu and the Add/Remove Programs list. When the application is run and a
connection to the original web site is available, the application will determine whether any updates
are available. If there are updates, users will be prompted to determine whether they want the
updates to be installed.

The ClickOnce deployment model is explained more thoroughly in Chapter 48.

code analysis (Vsts Premium and ultimate editions only)
Most developers who have ever worked in a team have had to work with an agreed-upon set
of coding standards. Organizations typically use an existing standard or create their own.
Unfortunately, standards are useful only if they can be enforced, and the only way that this can
be effectively done is using a tool. In the past this had to be done using an external utility, such as
FXCop. The VSTS Premium and Ultimate Editions of Visual Studio 2010 have the capability to
carry out static code analysis from within the IDE.

The Code Analysis tab, shown in Figure 6-22, can be used to enable code analysis as part of the
build process. Because this can be quite a time-consuming process, it may be included only in
release or test build configurations. Regardless of whether code analysis has been enabled for a
project, it can be manually invoked from the Build menu.

fiGure 6-21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Not all rules defi ned in the Code Analysis pane are suitable for all organizations or applications. This
pane gives the developer control over which rules are applied, and whether they generate a warning or
a build error. Deselecting the rule in the Rules column disables the rule. Double - clicking a cell in the
Status column toggles what happens when a rule fails to be met between a warning and a build error.

 FXCop is covered in Chapter 13 and the native Visual Studio Code Analysis tools are discussed
further in Chapter 55.

 web aPPlication ProJect ProPerties

 Due to the unique requirements of web applications, four additional project property tabs are
available to ASP.NET Web Application projects. These tabs control how web applications are run
from Visual Studio as well as the packaging and deployment options.

 web
 The Web tab, shown in Figure 6 - 23, controls how Web Application projects are launched when
executed from within Visual Studio. Visual Studio ships with a built - in web server suitable for
development purposes. The Web tab enables you to confi gure the port and virtual path that this
runs under. You may also choose to enable NTLM authentication.

 The Edit and Continue option allows editing of code - behind and standalone
class fi les during a debug session. Editing of the HTML in an .aspx or .ascx
page is allowed regardless of this setting; however, editing inline code in an
 .aspx page or an .ascx fi le is never allowed.

fiGure 6-22

 Web application Project Properties ❘ 113

http://lib.ommolketab.ir
http//lib.ommolketab.ir

114 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

The debugging options for web applications are explored in Chapter 42.

silverlight applications
The Silverlight Applications tab provides an
easy way to provide a link to a Silverlight
project and host it within an ASP.NET Web
Application.

When you add a Silverlight application to
a Web Application project, you can select
an existing Silverlight project if one exists
in the current solution, or create a new
Silverlight project as shown in Figure 6-24.
The dialog box allows you to select the
location and language for the new project,
as well as options for how the Silverlight
application will be included in the current
web application.

fiGure 6-23

fiGure 6-24

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you accept the defaults when you add a new Silverlight application, Visual Studio will create a
reference to the new project and generate three files in the web application: a static HTML page, an
ASP.NET web form, and a JavaScript file that contains logic for loading Silverlight applications and
installing the run time if required.

Chapter 22 explores the development of Silverlight applications and the options for hosting them
within an existing web application.

Package/Publish web
Application deployment has always been a difficult challenge, especially when it comes to complex
web applications. A typical web application comprises not only a large number of source files and
assemblies, but also images, style sheets, and JavaScript files. To complicate matters further, it may
be dependent on a specific configuration of the IIS web server.

Visual Studio 2010 simplifies this process by allowing you to package a Web Application
project with all of the necessary files and settings contained in a single compressed (.zip) file.
Figure 6-25 shows the packaging and deployment options that are available to an ASP.NET Web
Application.

fiGure 6-25

Further discussion on web application deployment is included in Chapter 49.

Web application Project Properties ❘ 115

http://lib.ommolketab.ir
http//lib.ommolketab.ir

116 ❘ chaPter 6 SoluTionS, projecTS, And iTemS

Package/Publish sql
All but the simplest of web applications are backed by a database of some description. For ASP.NET
Web applications this is typically a SQL Server database.

The Visual Studio 2010 web packaging and deployment functionality includes support for
packaging one or more SQL Server databases. As illustrated in Figure 6-26, when you create a
package you can specify a connection string for your source database and allow Visual Studio to
create SQL scripts for the database schema only or schema and data. You can also provide custom
SQL scripts to be executed either before or after the auto-generated script.

fiGure 6-26

Chapter 49 explores the web application deployment options in more detail.

web site ProJects

The Web Site project functions quite differently from other project types. Web Site projects do
not include a .csproj or .vbproj file, which means they have a number of limitations in terms of
build options, project resources, and managing references. Instead, Web Site projects use the folder

http://lib.ommolketab.ir
http//lib.ommolketab.ir

structure to defi ne the contents of the project. All fi les within the folder structure are implicitly part
of the project.

 Web Site projects provide the advantage of dynamic compilation, which allows pages to be edited
without rebuilding the entire site. The fi le can be saved and simply reloaded in the browser. As such
they enable extremely short code and debug cycles. Microsoft fi rst introduced Web Site projects
with Visual Studio 2005; however, it was quickly inundated with customer feedback to reintroduce
the Application Project model, which had been provided as an additional download. By the release
of Service Pack 1, Web Application projects were back within Visual Studio as a native project type.

 Since Visual Studio 2005, an ongoing debate has been raging about which is
 better — Web Site projects or Web Application projects. Unfortunately, there is
no simple answer to this debate. Each has its own pros and cons, and the
decision comes down to your requirements and your preferred development
workfl ow.

 You can fi nd further discussion on Web Site and Web Application projects in Chapter 20.

 suMMary

 In this chapter you have seen how a solution and projects can be confi gured using the user interfaces
provided within Visual Studio 2010. In particular, this chapter showed you how to do the following:

 Create and confi gure solutions and projects. ➤

 Control how an application is compiled, debugged, and deployed. ➤

 Confi gure the many project - related properties. ➤

 Include resources and settings with an application. ➤

 Enforce good coding practices with the Code Analysis Tools. ➤

 Modify the confi guration, packaging, and deployment options for web applications. ➤

 In subsequent chapters many of the topics, such as building and deploying projects and the use of
resource fi les, are examined in more detail.

 summary ❘ 117

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7
 intellisense and Bookmarks

 what ’ s in this chaPter?

 Improving effi ciency with contextual help ➤

 Detecting and fi xing simple errors ➤

 Reducing keystrokes ➤

 Generating code ➤

 Navigating source code with bookmarks ➤

 One thing that Microsoft has long been good at is providing automated help as you write your
code. Older versions of Visual Basic had a limited subset of this automated intelligence known
as IntelliSense, but with the introduction of Visual Studio .NET, Microsoft fi rmly established
the technology throughout the whole IDE. With recent releases of Visual Studio, IntelliSense
has become so pervasive that it has been referred to as IntelliSense Everywhere.

 This chapter illustrates the many ways in which IntelliSense helps you write your code.
Among the topics covered are detecting and repairing syntax errors, harnessing contextual
information, and variable name completion. You also learn how to set and use bookmarks in
your code for easier navigation.

 intellisense exPlained

 IntelliSense is the general term for automated help and actions in a Microsoft application. The
most commonly encountered aspects of IntelliSense are those wavy lines you see under words
that are not spelled correctly in Microsoft Word, or the small visual indicators in a Microsoft
Excel spreadsheet that inform you that the contents of the particular cell do not conform to
what was expected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

120 ❘ chaPter 7 inTelliSenSe And bookmArkS

 Even these basic indicators enable you to quickly perform related actions. Right - clicking a word
with red wavy underlining in Word displays a list of suggested alternatives. Other applications have
similar features.

 The good news is that Visual Studio has had similar functionality for a long time. In fact, the
simplest IntelliSense features go back to tools such as Visual Basic 6. With each release of Visual
Studio, Microsoft has refi ned the IntelliSense features, making them more context - sensitive and
putting them in more places so that you should always have the information you need right at your
fi ngertips.

 In Visual Studio 2010, the IntelliSense name is applied to a number of different features from visual
feedback for bad code and smart tags for designing forms to shortcuts that insert whole slabs of
code. These features work together to provide you with deeper insight, effi ciency, and control of
your code. Some of the features new to Visual Studio 2010, such as suggestion mode and Generate
From Usage, are designed to support the alternative style of application development known as
test - driven development (TDD).

 General intellisense
 The simplest feature of IntelliSense gives you immediate feedback about bad code in your code
listings. Figure 7 - 1 shows one such example, in which an unknown data type is used to instantiate
an object. Because the data type is unknown where this code appears, Visual Studio draws a red
(C#) or blue (VB) wavy line underneath to indicate a problem.

 fiGure 7 - 1

 Hovering the mouse over the offending piece of code displays a tooltip to explain the problem.
In this example the cursor was placed over the data type, with the resulting tooltip “ The type or
namespace name ‘ Customer ’ could not be found. ”

 Visual Studio is able to look for this kind of error by continually precompiling the code you write
in the background, and looking for anything that will produce a compilation error. If you were to
add the Customer class to your project, Visual Studio would automatically process this and remove
the IntelliSense marker.

 Figure 7 - 2 displays the smart tag associated with the error. This applies only to errors for which
Visual Studio 2010 can offer you corrective actions. Just below the problem code, a small blue (C#)

The formatting of this color feedback can be adjusted in the Fonts and Colors
group of Options.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

or red (VB) rectangle is displayed. Placing the mouse
cursor over this marker displays the smart tag action
menu associated with the type of error — in this case
the action menu provides options for generating your
 Customer class from what Visual Studio is able to
determine from the way you have used it.

 The smart tag technology found in Visual Studio
is not solely reserved for the code window. In fact,
Visual Studio 2010 also includes smart tags on visual
components when you are editing a form or user control
in Design view (see Figure 7 - 3).

 When you select a control that has a smart tag, a small
triangle appears at the top - right corner of the control
itself. Click this button to open the smart tag Tasks list — Figure 7 - 3 shows the Tasks list for a
standard TextBox control.

 completing words and Phrases
 The power of IntelliSense in Visual Studio 2010 becomes apparent as soon as you start writing code.
As you type, various drop - down lists are displayed to help you choose valid members, functions,
and parameter types, thus reducing the number of potential compilation errors before you even
fi nish writing your code. Once you become familiar with the IntelliSense behavior, you ’ ll notice that
it can greatly reduce the amount of code you actually have to write. This can be a signifi cant savings
to developers using more verbose languages such as Visual Basic.

 in Context
 In Visual Studio 2010, IntelliSense appears almost as soon as you begin to type within the code
window. Figure 7 - 4 illustrates the IntelliSense displayed during the creation of a For loop in Visual
Basic. On the left side of the image, IntelliSense appeared as soon as the f was entered, and the list
of available words progressively shrank as each subsequent key was pressed. As you can see, the list

 fiGure 7 - 2

 fiGure 7 - 3

The standard shortcut key used by all Microsoft applications to activate an
IntelliSense smart tag is Shift+Alt+F10, but Visual Studio 2010 provides the
more wrist - friendly Ctrl+. shortcut for the same action.

The keyboard shortcuts for opening smart tags also work for visual controls.

 intellisense explained ❘ 121

http://lib.ommolketab.ir
http//lib.ommolketab.ir

122 ❘ chaPter 7 inTelliSenSe And bookmArkS

is made up of all the alternatives, whether they
be statements, classes, methods, or properties,
that match the letters entered (in this case those
containing the word For).

 Notice the difference in the right - hand image
of Figure 7 - 4, where a space has been entered
after the word for . Now the IntelliSense list
has expanded to include all the alternatives that
could be entered at this position in the code.
In addition, there is a tooltip that indicates the
syntax of the For statement. Lastly, there is a
 < new variable > item just above the IntelliSense
list. This is to indicate that it ’ s possible for you
to specify a new variable at this location.

 Although it can be useful that the IntelliSense list is reduced based on the letters you enter, this
feature is a double - edged sword. Quite often you will be looking for a variable or member but won ’ t
quite remember what it is called. In this scenario, you might enter the fi rst couple of letters of a
guess and then use the scrollbar to locate the right alternative. Clearly, this won ’ t work if the letters
you have entered have already eliminated the alternative. To bring up the full list of alternatives,
simply hit the Backspace key with the IntelliSense list visible.

 In previous versions of Visual Studio, IntelliSense has only been able to help you fi nd members
that began with the same characters that you typed into the editor. In Visual Studio 2010 this is
no longer true. Now it is possible to fi nd words that appear in the middle of member names as
well. It does this by looking for word boundaries
within the member names. Figure 7 - 5 shows an
example in C# where typing Console.in will
fi nd In , InputEncoding , OpenStandardInput ,
 SetIn , and TreatControlCAsInput but does not
fi nd LargestWindowHeight despite the fact that it
contains the substring “ in. ” fiGure 7 - 5

 fiGure 7 - 4

The < new variable > item appears only for Visual Basic users.

If you know exactly what you are looking for, you can save even more
keystrokes by typing the fi rst character of each word in uppercase. As an
example, if you type System.Console.OSI , then OpenStandardInput will be
selected by IntelliSense.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you find that the IntelliSense information is obscuring
other lines of code, or you simply want to hide the list, you
can press Esc. Alternatively, if you simply want to view
what is hidden behind the IntelliSense list without closing it
completely, you can hold down the Ctrl key. This makes the
IntelliSense list translucent, enabling you to read the code
behind it, as shown in Figure 7-6.

The IntelliSense list is not just for informational purposes. You can select an item from this list
and have Visual Studio actually insert the full text into the editor window for you. You have a
number of ways to select an item from the list. You can double-click the desired item with the
mouse; you can use the arrow keys to change which item is highlighted and then press the Enter or
Tab keys to insert the text; and finally, when an item is highlighted in the list it will automatically
be selected if you enter a commit character. Commit characters are those that are not normally
allowed within member names. Examples include parentheses, braces, mathematical symbols, and
semicolons.

list Members
Because IntelliSense has been around for so long, most developers will be familiar with the member
list that appears when you type the name of an object and immediately follow it by a period. This
indicates that you are going to refer to a member of the object, and Visual Studio automatically
displays a list of members available to you for that object (see Figure 7-7). If this is the first time
you’ve accessed the member list for a particular object, Visual Studio simply shows the member list
in alphabetical order with the top of the list visible. However, if you’ve used it before, it highlights
the last member you accessed to speed up the process for repetitive coding tasks.

Figure 7-7 also shows another helpful aspect of the member list for Visual Basic programmers.
The Common and All tabs (at the bottom of the member list) enable you to view either just the
commonly used members or a comprehensive list.

fiGure 7-6

fiGure 7-7

intellisense explained ❘ 123

http://lib.ommolketab.ir
http//lib.ommolketab.ir

124 ❘ chaPter 7 inTelliSenSe And bookmArkS

 suggestion Mode
 By default, when Visual Studio 2010 shows the IntelliSense member list, one member is selected and
as you type, the selection is moved to the item in the list that best matches the characters entered.
If you press Enter, Space, or type one of the commit characters (such as an open parenthesis), the
currently selected member is inserted into the editor window. This default behavior is known as
 “ completion mode. ”

 In most cases completion mode provides the desired behavior and can save you a great deal of
typing, but it can be problematic for some activities. One such activity is test - driven development
where references are frequently made to members that have not yet been defi ned. This causes
IntelliSense to select members that you didn ’ t intend it to and insert text that you do not want.

 To avoid this issue Microsoft has introduced a new IntelliSense mode into Visual Studio 2010 called
 suggestion mode . When IntelliSense is in suggestion mode one member in the list will have focus
but will not be selected by default. As you type, IntelliSense moves the focus indicator to the item
that most closely matches the characters you typed, but it will not automatically select it. Instead,
the characters that you type are added to the top of the IntelliSense list and if you type one of the
commit characters or press Space or Enter, the exact string that you typed is inserted into the editor
window.

 Figure 7 - 8 shows an example of the problem that suggestion mode is designed to address. On the
left - hand side we are writing a test for a new method called Load on the CustomerData class.
The CustomerData class does not have a method called Load yet but it does have a method called
 LoadAll .

 On the right - hand side of Figure 7 - 8 we have typed Load
followed by the open parenthesis character. IntelliSense has
incorrectly assumed that we wanted the LoadAll method
and has inserted it into the editor.

 To avoid this behavior we can turn on suggestion mode by pressing
Ctrl+Alt+Space. Now when we type Load it appears at the top of the
IntelliSense list. When we type the open parenthesis character we get Load as
originally intended (see Figure 7 - 9).

 fiGure 7 - 8

 fiGure 7 - 9

Only Visual Basic gives you the option to fi lter the member list down to
commonly accessed properties, methods, and events.

You can still make a selection from the IntelliSense list by using the arrow keys.
Also, you can select the item that has focus in the member list by pressing the
Tab key.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 stub Completion
 In addition to word and phrase completion, the IntelliSense engine has another feature known as
 stub completion. This feature can be seen in Visual Basic when you create a function by writing
the declaration of the function and pressing Enter. Visual Studio automatically reformats the line,
adding the appropriate ByVal keyword for parameters that don ’ t explicitly defi ne their contexts,
and also adding an End Function line to enclose the function code. Another example can be seen
when editing an XML document. When you type the open tag of a new element, Visual Studio
automatically puts the closing tag in for you.

 Visual Studio 2010 takes stub completion an extra step by enabling you to do the same for interface
and method overloading. When you add certain code constructs such as an interface in a C# class
defi nition, Visual Studio gives you the opportunity to automatically generate the code necessary to
implement the interface. To show you how this works, the following steps outline a task in which
the IntelliSense engine generates an interface implementation in a simple class:

 1 . Start Visual Studio 2010 and create a C# Windows Forms Application project. When the
IDE has fi nished generating the initial code, open Form1.cs in the code editor.

 2 . At the top of the fi le, add a using statement to provide a shortcut to the System.Collections
namespace:

using System.Collections;

 3 . Add the following line of code to start a new class defi nition:

public class MyCollection: IEnumerable

 As you type the IEnumerable interface, Visual Studio fi rst
adds a red wavy line at the end to indicate that the class
defi nition is missing its curly braces, and then adds a smart
tag indicator at the beginning of the interface name (see
Figure 7 - 10).

 4 . Hover your mouse pointer over the
smart tag indicator. When the drop -
 down icon appears, click it to open
the menu of possible actions, as
shown in Figure 7 - 11.

 5 . Click either of the options to “ implement interface ‘ IEnumerable ’ ” and Visual Studio 2010
automatically generates the rest of the code necessary to implement the minimum interface

 fiGure 7 - 10

 fiGure 7 - 11

IntelliSense remains in suggestion mode until you press Ctrl+Alt+Space again to
revert back to completion mode.

 intellisense explained ❘ 125

http://lib.ommolketab.ir
http//lib.ommolketab.ir

126 ❘ chaPter 7 inTelliSenSe And bookmArkS

definition. Because it detects that the class definition
itself isn’t complete, it also adds the braces to correct that
issue at the same time. Figure 7-12 shows what the final
interface will look like.

Event handlers can also be automatically generated by Visual
Studio 2010. The IDE does this much as it performs interface
implementation. When you write the first portion of the statement (for instance,
myBase.OnClick +=), Visual Studio gives you a suggested completion that you can select
simply by pressing Tab.

Generate from Usage
Rather than generating code from a definition that already exists, sometimes it is more convenient
to generate the definition of a code element from the way you have used it. This is especially true
if you practice test-driven development where you write tests for classes that have not been defined
yet. It would be convenient to be able to generate the classes from the tests themselves and this is the
purpose of the Generate From Usage feature in C# and Visual Basic.

To understand how you might use this in practice, the following steps outline the creation of a very
simple Customer class by writing some client code that uses it and then generating the class from
that usage:

 1 . Start Visual Studio 2010 and create a C# Command Line project. When the IDE is ready
open the Program.cs file.

 2 . Update the Main method with the following code:

c#

Customer c = new Customer
{
 FirstName = "Joe",
 LastName = "Smith"
};

Console.WriteLine(c.FullName);
c.Save();

 3 . You should see a red wiggly line underneath both instances of the class name Customer.
Right-click one of them and select Generate ➪ Class. This should create a new class in your
project called Customer. If you open Customer.cs you will see an empty class declaration.
Visual Studio will discover that FirstName, LastName, FullName, and Save are not
 members on this class.

 4 . For each property that does not exist, right-click it and select Generate ➪ Property. Now
go and look at Customer.cs again and note that Visual Studio has been able to provide an
implementation for you.

 5 . You can do the same for the Save method by right-clicking and selecting Generate ➪
Method Stub.

fiGure 7-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 If the undefi ned code that you are trying to generate is
a type, you will have the option to Generate Class or
Generate Other. If you select Generate Other, the Generate
New Type dialog is shown (see Figure 7 - 13). This dialog
gives you more options to confi gure your new type
including whether you want a class, enumeration, interface,
or structure; whether the new type should be public,
private, or internal; and where the new type should go.

 Parameter information
 In old versions of Microsoft development tools, such
as Visual Basic 6, as you created the call to a function,
IntelliSense would display the parameter information as
you typed. Thankfully, this incredibly useful feature is still
present in Visual Studio 2010.

 The problem with the old way parameter information was displayed was that it would only be
shown if you were actually modifying the function call. Therefore, you could see this helpful tooltip
as you created the function call or when you changed it but not if you were just viewing the code.
The result was that programmers sometimes inadvertently introduced bugs into their code because
they intentionally modifi ed function calls so they could view the parameter information associated
with the calls.

 Visual Studio 2010 eliminates that risk by providing an easily accessible command to display the
information without modifying the code. The keyboard shortcut Ctrl+Shift+Space displays the
information about the function call, as displayed in
Figure 7 - 14. You can also access this information
through the Edit ➪ IntelliSense ➪ Parameter Info menu
command.

 fiGure 7 - 13

 fiGure 7 - 14

Though generated properties and classes can be used straight away, method
stubs are generated to throw a NotImplementedException .

In Figure 7 - 14 the PrintGreeting method takes two parameters. The second
parameter is optional and displays in square brackets with an assignment
showing its default value if you don ’ t provide one. VB programmers will be
familiar with this syntax but it is new to C# 4.0.

 intellisense explained ❘ 127

http://lib.ommolketab.ir
http//lib.ommolketab.ir

128 ❘ chaPter 7 inTelliSenSe And bookmArkS

 quick info
 In a similar vein, sometimes you want to see the information about an object or interface without
modifying the code. The Ctrl+K, Ctrl+I keyboard shortcut displays a brief tooltip explaining what
the object is and how it was declared (see Figure 7 - 15).

 You can also display this tooltip through the Edit ➪ IntelliSense ➪
Quick Info menu command.

 JaVascriPt intellisense

 If you are building web applications, you will fi nd yourself working in JavaScript to provide a richer
client - side experience for your users. Unlike C# and Visual Basic, which are compiled languages,
JavaScript is an interpreted language, which means that traditionally the syntax of a JavaScript
program has not been verifi ed until it is loaded into the browser. Although this can give you a lot of
fl exibility at run time, it requires discipline, skill, and a heavy emphasis on testing to avoid a large
number of common mistakes.

 In addition to this, while developing JavaScript components for use in a browser, you must
keep track of a number of disparate elements. This can include the JavaScript language features
themselves, HTML DOM elements, and handwritten and third - party libraries. Luckily Visual
Studio 2010 is able to provide a full IntelliSense experience for JavaScript, which will help you to
keep track of all of these elements and warn you of syntax errors.

 As you type JavaScript into the code editor window, Visual Studio lists keywords, functions,
parameters, variables, objects, and properties just as if you were using C# or Visual Basic. This
works for built - in JavaScript functions and objects as well as those you defi ne in your own custom
scripts and those found in third - party libraries. Visual Studio is also able to detect and highlight
syntax errors in your JavaScript code.

The keyboard shortcuts for each VS2010 install depend on the settings selected
(i.e. Visual Basic Developer, Visual C# Developer, and so on). All of the shortcut
keys in this chapter are based on using the General Developer Profi le setting.

 fiGure 7 - 15

Since Internet Explorer 3.0 Microsoft, has maintained its own dialect of
JavaScript called JScript. Technically, the JavaScript tools in Visual Studio 2010
are designed to work with Jscript, so you will sometimes see menu options and
window titles containing this name. In practice, the differences between the two
languages are so minor that the tools work equally well with either one.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 the Javascript intellisense context
 To prevent you from accidentally referring to JavaScript elements that are not available, Visual
Studio 2010 builds up an “ IntelliSense context ” based on the location of the JavaScript block that
you are editing. The context is made up of the following items:

 The current script block. This includes inline script blocks for ➤ .aspx , .ascx , .master ,
 .html , and .htm fi les.

 Any script fi le imported into the current page via a ➤ < script / > element or a ScriptManager
control. In this case the imported script fi le must have the .js extension.

 Any script fi les that are referenced with a references directive (see the section “ Referencing ➤

another JavaScript File ” later in this chapter).

 Any references made to XML Web Services. ➤

 The items in the Microsoft AJAX Library (if you are working in an AJAX - enabled ➤

ASP.NET web application).

 Occasionally something will go wrong and
Visual Studio will be unable to build a JavaScript
IntelliSense context. Often, though, Visual Studio
will be able to determine what caused the error
and provide you with feedback that you can use
to correct the issue. In Figure 7 - 16, Visual Studio
has detected that we have made a reference to a
JavaScript fi le that does not exist. When you add
the fi le to the project, Visual Studio will detect its
presence and remove the error indicator and error
message. Although this error detection normally
happens as a background process you can force
Visual Studio to check a page by selecting Edit ➪
Advanced ➪ Validate Document.

 referencing another Javascript file
 Sometimes one JavaScript fi le builds upon the base functionality of another. When this happens
they are usually referenced together by any page using them but have no direct reference explicitly
defi ned. Because there is no explicit reference, Visual Studio 2010 is unable to add the fi le with the
base functionality to the JavaScript IntelliSense context and you won ’ t get full IntelliSense support.

 fiGure 7 - 16

Visual Studio keeps track of fi les in the context and updates JavaScript
IntelliSense whenever one of them changes. Sometimes this update may be
pending and the JavaScript IntelliSense data will be out of date. You can force
Visual Studio to update the JavaScript IntelliSense data by selecting Edit ➪
IntelliSense ➪ Update JScript IntelliSense.

 Javascript intellisense ❘ 129

http://lib.ommolketab.ir
http//lib.ommolketab.ir

130 ❘ chaPter 7 inTelliSenSe And bookmArkS

 To allow Visual Studio to discover the base fi le and add it to the context you can provide a reference
to it by using a references directive. A references directive is a special kind of comment that provides
information about the location of another fi le. You can use references directives to make a reference
to any of the following:

 ➤ Other JavaScript fi les: This includes .js fi les and JavaScript embedded in assemblies. It does
not include absolute paths so the fi le you reference must be a part of the current project.

 ➤ Web Service (.asmx) fi les: These also must be a part of the current project and Web Service
fi les in Web Application projects are not supported.

 ➤ Pages containing JavaScript: One page may be referred to in this way. If any page is
 referenced, no other references can be made.

 Following are some examples of references directives. These must appear before any other code in
your JavaScript fi le.

 Javascript

 // JavaScript file in current folder
/// < reference path="Toolbox.js" / >

// JavaScript file in parent folder
/// < reference path="../Toolbox.js" / >

// JavaScript file in a path relative to the root folder of the site
/// < reference path="~/Scripts/Toolbox.js" / >

// JavaScript file embedded in Assembly
/// < reference name="Ajax.js" path="System.Web.Extensions, … " / >

// Web Service file
/// < reference path="MyService.asmx" / >

// Standard Page
/// < reference path="Default.aspx" / >

 intellisense oPtions

 Visual Studio 2010 sets up a number of default options for your experience with IntelliSense, but
you can change many of these in the Options dialog if they don ’ t suit your own way of doing things.
Some of these items are specifi c to individual languages.

A few restrictions exist on how far references directives will work. First,
references directives that refer to a path outside of the current project are
ignored. Second, references directives are not recursively evaluated so only those
in the fi le currently being edited are used to help build the context. References
directives inside other fi les in the context are not used.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

General options
The first options to look at are in the
Environment section under the Keyboard group.
Every command available in Visual Studio has a
very specific entry in the keyboard mapping list
(see the Options dialog shown in Figure 7-17,
accessible via Tools ➪ Options).

You can override the predefined keyboard
shortcuts or add additional ones. The
commands for the IntelliSense features are
shown in Table 7-1.

fiGure 7-17

table 7-1: IntelliSense commands

coMMand naMe default shortcut coMMand descriPtion

Edit.QuickInfo Ctrl+K, Ctrl+I Displays the Quick Info information

about the selected item

Edit.CompleteWord Ctrl+Space Attempts to complete a word if there

is a single match, or displays a list to

choose from if multiple items match

Edit.ToggleConsumeFirst

CompletionMode

Ctrl+Alt+Space Toggles IntelliSense between

suggestion and completion modes

Edit.ParameterInfo Ctrl+Shift+Space Displays the information about the

parameter list in a function call

Edit.InsertSnippet Ctrl+K, Ctrl+X Invokes the Code Snippet dialog,

from which you can select a code

snippet to insert code automatically

(see the next chapter)

Edit.GenerateMethodStub Ctrl+K,Ctrl+M Generates the full method stub from

a template

Edit.ImplementAbstract

ClassStubs

None Generates the abstract class

definitions from a stub

Edit.ImplementInterfaceStubs

Explicitly

None Generates the explicit implementation

of an interface for a class definition

Edit.ImplementInterfaceStubs

Implicitly

None Generates the implicit implementation

of an interface for a class definition

intellisense options ❘ 131

http://lib.ommolketab.ir
http//lib.ommolketab.ir

132 ❘ chaPter 7 inTelliSenSe And bookmArkS

Use the techniques discussed in Chapter 3 to add additional keyboard shortcuts to any of these
commands.

statement completion
You can control how IntelliSense works on a
global language scale (see Figure 7-18) or per
individual language. In the General tab of the
language group in the Options dialog, you
want to change the Statement Completion
options to control how member lists should
be displayed, if at all.

c#-specific options
Besides the general IDE and language options
for IntelliSense, some languages, such as C#,
provide an additional IntelliSense tab in their
own sets of options. Displayed in Figure 7-19, the IntelliSense for C# can be further customized to
fine-tune how the IntelliSense features should be invoked and used.

First, you can turn off completion lists so they do not appear automatically, as discussed earlier in
this chapter. Some developers prefer this because the member lists don’t get in the way of their code
listings. If the completion list is not to be automatically displayed, but instead only shown when you
manually invoke it, you can choose what is
to be included in the lists in addition to the
normal entries, including keywords and code
snippet shortcuts.

To select an entry in a member list, you
can use any of the characters shown in the
Selection In Completion List section, or
optionally after the spacebar is pressed.
Finally, as mentioned previously, Visual
Studio automatically highlights the member
in a list that was last used. You can turn this
feature off for C# or just clear the history.

extended intellisense

In addition to the basic aspects of IntelliSense, Visual Studio 2010 also implements extended IDE
functionality that falls into the IntelliSense feature set. These features are discussed in detail in
other chapters in this book, as referenced in the following discussion, but this section provides a
quick summary of what’s included in IntelliSense.

fiGure 7-18

fiGure 7-19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

code snippets
Code snippets are sections of code that can be
automatically generated and pasted into your
own code, including associated references
and using statements, with variable phrases
marked for easy replacement. To invoke the
Code Snippets dialog, press Ctrl+K, Ctrl+X.
Navigate the hierarchy of snippet folders
(shown in Figure 7-20) until you find the one
you need. If you know the shortcut for the
snippet, you can simply type it and press Tab,
and Visual Studio invokes the snippet without
displaying the dialog. In Chapter 8, you see
just how powerful code snippets are.

xMl comments
XML comments are described in Chapter 12 as a way of providing automated documentation
for your projects and solutions. However, another advantage of using XML commenting in
your program code is that Visual Studio can use it in its IntelliSense engine to display tooltips
and parameter information beyond the simple variable-type information you see in normal
user-defined classes.

adding your own intellisense
You can also add your own IntelliSense schemas, normally useful for XML and HTML editing, by
creating a correctly formatted XML file and installing it into the Common7\Packages\schemas\
xml subfolder inside your Visual Studio installation directory (the default location is C:\Program
Files\Microsoft Visual Studio 10.0). An example of this would be extending IntelliSense
support for the XML editor to include your own schema definitions. The creation of such a schema
file is beyond the scope of this book, but you can find schema files on the Internet by searching for
“IntelliSense schema in Visual Studio.”

bookMarks and the bookMark window

Bookmarks in Visual Studio 2010 enable you to mark
places in your code modules so you can easily return to
them later. They are represented by indicators in the left
margin of the code, as shown in Figure 7-21.

To toggle between bookmarked and not bookmarked
on a line, use the shortcut Ctrl+K, Ctrl+K.
Alternatively, you can use the Edit ➪ Bookmarks ➪
Toggle Bookmark menu command to do the
same thing.

fiGure 7-21

fiGure 7-20

Bookmarks and the Bookmark Window ❘ 133

http://lib.ommolketab.ir
http//lib.ommolketab.ir

134 ❘ chaPter 7 inTelliSenSe And bookmArkS

 Figure 7 - 21 shows a section of the code editor window with two bookmarks set. The top bookmark
is in its normal state, represented by a shaded blue rectangle. The lower bookmark has been
disabled and is represented by a solid white rectangle. Disabling a bookmark enables you to keep it
for later use while excluding it from the normal bookmark - navigation functions.

 To enable or disable a bookmark use the Edit ➪ Bookmarks ➪ Enable Bookmark toggle menu
command. Use the same command to re - enable the bookmark. This seems counterintuitive because
you actually want to disable an active bookmark, but for some reason the menu item isn ’ t updated
based on the cursor context.

 Along with the ability to add and remove bookmarks, Visual Studio provides a Bookmarks tool
window, shown in Figure 7 - 22. You can display this tool window by pressing Ctrl+K, Ctrl+W or via
the View Bookmark Window menu item. By default, this window is docked to the bottom of the
IDE and shares space with other tool windows, such as the Task List and Find Results windows.

Remember that toggle means just that. If you use this command on a line
already bookmarked, it removes the bookmark.

You may want to set up a shortcut for disabling and enabling bookmarks if
you plan on using them a lot in your code management. To do so, access the
Keyboard Options page in the Environment group in Options and look for
 Edit.EnableBookmark .

 fiGure 7 - 22

 Figure 7 - 22 illustrates some useful features of bookmarks in Visual Studio 2010. The fi rst feature is
the ability it gives you to create folders that can logically group the bookmarks. In the example list,
notice that a folder named Old Bookmarks contains a bookmark named Bookmark3.

 To create a folder of bookmarks, click the New Folder icon in the toolbar along the top of the
Bookmarks window (it ’ s the second button from the left). This creates an empty folder (using a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

default name of Folder1, followed by Folder2, and so on) with the name of the folder in focus so
that you can make it more relevant. You can move bookmarks into the folder by selecting their
entries in the list and dragging them into the desired folder. Note that you cannot create a hierarchy
of folders, but it ’ s unlikely that you ’ ll want to. Bookmarks can be renamed in the same way as
folders, and for permanent bookmarks renaming can be more useful than accepting the default
names of Bookmark1, Bookmark2, and so forth. Folders are not only a convenient way of grouping
bookmarks; they also provide an easy way for you to enable or disable a number of bookmarks in
one go, simply by using the checkbox beside the folder name.

 To navigate directly to a bookmark, double - click its entry in the Bookmarks tool window.
Alternatively, if you want to cycle through all of the enabled bookmarks defi ned in the project, use
the Previous Bookmark (Ctrl+K, Ctrl+P) and Next Bookmark (Ctrl+K, Ctrl+N) commands. You can
restrict this navigation to only the bookmarks in a particular folder by fi rst selecting a bookmark in
the folder and then using the Previous Bookmark in Folder (Ctrl+Shift+K, Ctrl+Shift+P) and Next
Bookmark in Folder (Ctrl+Shift+K, Ctrl+Shift+N) commands.

 The last two icons in the Bookmarks window are Toggle All Bookmarks, which can be used to
disable (or re - enable) all of the bookmarks defi ned in a project, and Delete, which can be used
to delete a folder or bookmark from the list.

 Bookmarks can also be controlled via the Bookmarks submenu, which is found in the Edit main
menu. In Visual Studio 2010, bookmarks are also retained between sessions, making permanent
bookmarks a much more viable option for managing your code organization.

 Task lists are customized versions of bookmarks that are displayed in their own tool windows. The
only connection that still exists between the two is that there is an Add Task List Shortcut command
still in the Bookmarks menu. Be aware that this does not add the shortcut to the Bookmarks
window but instead to the Shortcuts list in the Task List window.

 suMMary

 IntelliSense functionality extends beyond the main code window. Various other windows,
such as the Command and Immediate tool windows, can harness the power of IntelliSense
through statement and parameter completion. Any keywords, or even variables and objects,
known in the current context during a debugging session can be accessed through the IntelliSense
member lists.

 IntelliSense in all its forms enhances the Visual Studio experience beyond most other tools available
to you. Constantly monitoring your keystrokes to give you visual feedback or automatic code

Deleting a folder also removes all the bookmarks contained in the folder. Visual
Studio provides a confi rmation dialog to safeguard against accidental loss of
bookmarks. Deleting a bookmark is the same as toggling it off.

 summary ❘ 135

http://lib.ommolketab.ir
http//lib.ommolketab.ir

136 ❘ chaPter 7 inTelliSenSe And bookmArkS

completion and generation, IntelliSense enables you to be extremely effective at writing code quickly
and correctly the first time. In the next chapter you dive into the details behind code snippets, a
powerful addition to IntelliSense.

In this chapter you’ve also seen how you can set and navigate between bookmarks in your code.
Becoming familiar with using the associated keystrokes will help you improve your coding
efficiency.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8
 Code snippets and refactoring

 what ’ s in this chaPter?

 Using code snippets ➤

 Creating your own code snippets ➤

 Refactoring code ➤

 One of the advantages of using an Integrated Development Environment (IDE) over a plain
text editor is that it ’ s designed to help you be more productive and effi cient by enabling you to
write code faster. Two of Visual Studio 2010 ’ s most powerful features that help increase your
productivity are its support for code snippets and the refactoring tools that it provides.

 Code snippets are small chunks of code that can be inserted into an application ’ s code base
and then customized to meet the application ’ s specifi c requirements. They do not generate
full - blown applications or whole fi les, unlike project and item templates. Instead, code
snippets are used to insert frequently used code structures or obscure program code blocks
that are not easy to remember. In the fi rst part of this chapter you see how using code snippets
can improve your coding effi ciency enormously.

 This chapter also focuses on Visual Studio 2010 ’ s refactoring tools — refactoring being the
process of reworking code to improve it without changing its functionality. This might entail
simplifying a method, extracting a commonly used code pattern, or even optimizing a section
of code to make it more effi cient.

 Although refactoring tools are implemented for C# in Visual Studio, unfortunately they
haven ’ t been implemented for VB. In order to fi ll this hole in functionality in previous
versions of Visual Studio, Microsoft licensed the VB version of Refactor! from Developer
Express. For Visual Studio 2010, CodeRush Xpress (also from Developer Express) takes
over from Refactor! to implement refactoring for VB. Even though Microsoft has licensed
CodeRush Xpress, it still needs to be downloaded and installed separately from Visual Studio

http://lib.ommolketab.ir
http//lib.ommolketab.ir

138 ❘ chaPter 8 code SnippeTS And reFAcToring

(as an add - in). You can download it from the VB developer center at http://msdn.microsoft.
com/vbasic/ ; follow the links to Downloads, then Tools and Utilities.

 CodeRush Xpress provides a range of additional refactoring support that complements the
integrated support available for C# developers. However, this chapter ’ s discussion is restricted to
the built - in refactoring support provided within Visual Studio 2010 (for C# developers) and the
corresponding action in CodeRush Xpress (for VB developers).

 code sniPPets reVealed

 Code snippets have been around in a variety of forms for a long time but generally required third - party
add - ins for languages such as VB 6 and the early versions of Visual Studio. Visual Studio 2010 includes
extensive code snippet support that allows a block of code along with predefi ned replacement variables
to be inserted into a fi le, making it easy to customize the inserted code to suit the task at hand.

 storing code blocks in the toolbox
 Before looking at code snippets, this section looks at the simplest means Visual Studio provides to
insert predefi ned blocks of text into a fi le. Much like it can hold controls to be inserted on a form,
the Toolbox can also hold blocks of text (such as code) that can be inserted into a fi le. To add a
block of code (or other text) to the Toolbox, simply select the text in the editor and drag it over
onto the Toolbox. This creates an entry for it
in the Toolbox with the fi rst line of the code
as its name. You can rename, arrange, and
group these entries like any other element in
the Toolbox. To insert the code block you
simply drag it from the Toolbox to the desired
location in a fi le as shown in Figure 8 - 1, or
simply double - click the Toolbox entry to
insert it at the current cursor position in the
active fi le. fiGure 8 - 1

 Many presenters use this simple feature to quickly insert large code blocks when
writing code live in presentations.

 This is the simplest form of “ code snippet ” behavior in Visual Studio 2010, but with its simplicity
comes limited functionality, such as the lack of ability to modify and share them. Nevertheless, this
method of keeping small sections of code can prove useful in some scenarios to maintain a series of
code blocks for short - term use.

 code snippets
 Now we come to a much more useful way to insert blocks of code into a fi le: code snippets . Code
snippets are defi ned in individual XML fi les, each containing a block of code that programmers

http://msdn.microsoft
http://lib.ommolketab.ir
http//lib.ommolketab.ir

may want to insert into their code, and may also include replaceable parameters making it easy to
then customize the inserted snippet for the current task. They are integrated with Visual Studio ’ s
IntelliSense, making them very easy to fi nd and insert into a code fi le.

 VB code snippets also have the ability to add assembly references and insert
 Imports statements.

 Visual Studio 2010 ships with many predefi ned code snippets for the two main languages, VB
and C#, along with snippets for JavaScript, HTML, and XML. These snippets are arranged
hierarchically in a logical fashion so that you can easily locate the appropriate snippet. Rather than
locate the snippet in the Toolbox, you can use menu commands or keyboard shortcuts to bring up
the main list of groups.

 In addition to the predefi ned code snippets, you can create your own code snippets and store them
in this code snippet library. Because each snippet is stored in a special XML fi le, you can even share
them with other developers.

 Following are three scopes under which a snippet can be inserted:

 ➤ Class Declaration: The snippet actually generates an entire class.

 ➤ Member Declaration: This snippet scope includes code that defi nes members, such as
 methods, properties, and event handler routines. This means it should be inserted outside
an existing member.

 ➤ Member Body: This scope is for snippets that are inserted into an already defi ned member,
such as a method.

 using snippets in c#
 Insert Snippet is a special kind of IntelliSense that appears inline in the code editor. Initially, it
displays the words “ Insert Snippet ” along with a drop - down list of code snippet groups from which
to choose. Once you select the group that contains the snippet you require (using up and down
arrows, followed by the Tab key), it shows you a list of snippets, and you can simply double - click
the one you need (alternatively, pressing Tab or Enter with the required snippet selected has the
same effect).

 To insert a code snippet in C#, simply locate the position where you want to insert the generated
code, and then the easiest way to bring up the Insert Snippet list is to use the keyboard shortcut
combination of Ctrl+K, Ctrl+X. You have two additional methods to start the Insert Snippet
process. The fi rst is to right - click at the intended insertion point in the code window and select
Insert Snippet from the context menu that is displayed. The other option is to use the Edit ➪
IntelliSense ➪ Insert Snippet menu command.

 At this point, Visual Studio brings up the Insert Snippet list, as Figure 8 - 2 demonstrates. As you
scroll through the list and hover the mouse pointer over each entry, a tooltip is displayed to indicate
what the snippet does and a shortcut that can be used to insert it.

Code snippets revealed ❘ 139

http://lib.ommolketab.ir
http//lib.ommolketab.ir

140 ❘ chaPter 8 code SnippeTS And reFAcToring

To use the shortcut for a code snippet, simply type it into the code editor (note that it appears in the
IntelliSense list) and press the Tab key twice to insert the snippet at that position.

Figure 8-3 displays the result of selecting the Automatically
Implemented Property snippet. To help you modify the code to
your own requirements, the sections you would normally need
to change (the replacement variables) are highlighted, with the first
one conveniently selected.

When you are changing the variable sections of the generated
code snippet, Visual Studio 2010 helps you even further. Pressing the Tab key moves to the next
highlighted value, ready for you to override the value with your own. Shift+Tab navigates backward,
so you have an easy way of accessing the sections of code that need changing without needing to
manually select the next piece to modify. Some code snippets use the same variable for multiple
pieces of the code snippet logic. This means changing the value in one place results in it changing in
all other instances.

To hide the highlighting of these snippet variables once you are done you can simply continue
coding, or press either Enter or Esc.

using snippets in Vb
Code snippets in VB have additional features over what is available in C#, namely the ability to
automatically add references to assemblies in the project, and insert Imports statements into a file
that the code needs in order to compile.

To use a code snippet you should first locate where you want the generated code to be placed in the
program listing and position the cursor at that point. You don’t have to worry about the associated
references and Imports statements; they will be placed in the correct location. Then, as with C#
snippets, you can use one of the following methods to display the Insert Snippet list:

Use the keyboard chord Ctrl+K, Ctrl+X ➤

Right-click and choose Insert Snippet from the context menu ➤

Run the Edit ➤ ➪ IntelliSense ➪ Insert Snippet menu command

VB also has an additional way to show the Insert Snippet List: simply type ? and press Tab.

fiGure 8-3

fiGure 8-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s navigate through the hierarchy and insert a snippet named Draw a Pie Chart. Figure 8-4
demonstrates how you might navigate through the hierarchy to find the snippet and insert it into
your project.

fiGure 8-4

You might have noticed in Figure 8-4 that the tooltip text includes the words “Shortcut: drawPie.”
This text indicates that the selected code snippet has a text shortcut that you can use to automatically
invoke the code snippet behavior without navigating the code snippet hierarchy. As with C# all you
need to do is type the shortcut into the code editor and press the Tab key once for it to be inserted. In
VB the shortcut isn’t case-sensitive, so this example can be generated by typing the term “drawpie”
and pressing Tab. Note that shortcuts don’t appear in IntelliSense in VB as they do in C#.

After inserting the code snippet, if it contains replacement variables you can enter their values
then navigate between these by pressing Tab as described for C#. To hide the highlighting of these
snippet variables once you are done, you can simply continue coding, or right-click and select Hide
Snippet Highlighting. If you want to highlight all the replacement variables of the code snippets
inserted since the file was opened, right-click and select Show Snippet Highlighting.

surround with snippet
The last refactoring action, available in C# (and VB with CodeRush Xpress), is the capability to
surround an existing block of code with a code snippet. For example, to wrap an existing block
with a conditional try-catch block, right-
click and select Surround With, or select
the block of code and press Ctrl+K, Ctrl+S.
This displays the Surround With dialog that
contains a list of surrounding snippets
that are available to wrap the selected line
of code, as shown in Figure 8-5.

Selecting the try snippet results in the following code:

Vb

Public Sub MethodXYZ(ByVal name As String)
 Try
 MessageBox.Show(name)

fiGure 8-5

Code snippets revealed ❘ 141

http://lib.ommolketab.ir
http//lib.ommolketab.ir

142 ❘ chaPter 8 code SnippeTS And reFAcToring

 Catch ex As Exception
 Throw
 End Try
End Sub

c#

public void MethodXYZ(string name)
{
 try
 {
 MessageBox.Show(name);
 }
 catch (Exception)
 {
 throw;
 }
}

code snippets Manager
The Code Snippets Manager is the central library for the code snippets known to Visual Studio
2010. You can access it via the Tools ➪ Code Snippet Manager menu command or the keyboard
shortcut chord Ctrl+K, Ctrl+B.

When it is initially displayed, the Code Snippets Manager shows the HTML snippets available,
but you can change it to display the snippets for the language you are using via the Language
drop-down list. Figure 8-6 shows how it looks when you’re editing a C# project. The hierarchical
folder structure follows the same set of folders on the PC by default, but as you add snippet files
from different locations and insert them into the different groups, the new snippets slip into the
appropriate folders.

If you have an entire folder of snippets
to add to the library, such as when you
have a corporate setup and need to import
the company-developed snippets, you use the
Add button. This brings up a dialog that you
use to browse to the required folder. Folders
added in this fashion appear at the root level
of the tree — on the same level as the main
groups of default snippets. However, you can
add a folder that contains subfolders, which
will be added as child nodes in the tree.

Removing a folder is just as easy — in fact,
it’s dangerously easy. Select the root node that
you want to remove and click the Remove
button. Instantly, the node and all child nodes
and snippets are removed from the Snippets Manager without a confirmation window. If you do
this by accident you are best off clicking the Cancel button and opening the dialog again. If you’ve
made changes you don’t want to lose, you can add them back by following the steps explained in
the previous walkthrough, but it can be frustrating trying to locate a default snippet folder that you
inadvertently deleted from the list.

fiGure 8-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The location for the code snippets that are installed with Visual Studio 2010 is deep within the
installation folder. By default, the code snippet library when running on 32-bit Windows is installed
in %programfiles%\Microsoft Visual Studio 10.0\VB\Snippets\1033 for VB snippets and
%programfiles%\Microsoft Visual Studio 10.0\VC#\Snippets\1033 for C# (for 64-bit
Windows, replace %programfiles% with %programfiles(x86)%). Individual snippet files can be
imported into the library using the Import button. The advantage of this method over the Add button
is that you get the opportunity to specify the location of each snippet in the library structure.

creating snippets
Visual Studio 2010 does not ship with a code snippet creator or editor. However, Bill McCarthy’s
Snippet Editor allows you to create, modify, and manage your snippets (including support for VB, C#,
HTML, JavaScript, and XML snippets). Starting as an internal Microsoft project, the Snippet Editor is
now an open source project hosted on CodePlex where Bill fixed the outstanding issues and proceeded
to add functionality. With the help of other MVPs it is now also available in a number of different
languages. You can download the snippet editor from http://snippeteditor.codeplex.com.

Creating code snippets by manually editing the .snippet XML files can be a tedious and error-
prone process, so the Snippet Editor makes it a much more pleasant experience. When you start the
Snippet Editor you will notice a drop-down list in the top left-hand corner — make sure you select
Visual Studio 2010. Below this is a tree containing all the snippets known to Visual Studio 2010. By
expanding a node you’ll see a set of folders similar to those in the code snippet library (see Figure 8-7).

fiGure 8-7

Code snippets revealed ❘ 143

http://snippeteditor.codeplex.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

144 ❘ chaPter 8 code SnippeTS And reFAcToring

 reviewing existing snippets
 An excellent feature of the Snippet Editor is the view it offers of the structure of any snippet fi le in
the system. This means you can browse the default snippets installed with Visual Studio, which can
provide insight into how to better build your own snippets.

 Browse to the snippet you ’ re interested in and double - click its entry to display it in the Editor
window. Figure 8 - 7 shows a simple snippet to Display a Windows Form. Four main panes contain
all the associated information about the snippet. From top to bottom, these panes are described
in Table 8 - 1.

 table 8 - 1: Information Panes for Snippets

 Pane function

 Properties The main properties for the snippet, including title, shortcut, and description .

 Code Defi nes the code for the snippet, including all Literal and Object replacement

regions .

 References If your snippet will require assembly references, this tab enables you to defi ne them .

 Imports Similar to the References tab, this tab enables you to defi ne any Imports

statements that are required in order for your snippet to function correctly .

 Browsing through these tabs enables you to analyze an existing snippet for its properties and
replacement variables. In the example shown in Figure 8 - 7, there is a single replacement region with
an ID of formName and a default value of “ Form ” .

 To demonstrate how the Snippet Editor makes creating your own snippets straightforward, follow
this next exercise, in which you create a snippet that creates three subroutines, including a helper
subroutine:

 1 . Start the Snippet Editor and create a new snippet. To do this, select a destination folder in
the tree, right - click, and select Add New Snippet from the context menu that is displayed.

 2 . When prompted, name the snippet “ Create A Button Sample ” and click OK. Double - click
the new entry to open it in the Editor pane.

 Note that creating the snippet does not automatically open the new snippet in
the Editor — don ’ t overwrite the properties of another snippet by mistake!

 3 . The fi rst thing you need to do is edit the Title , Description , and Shortcut fi elds (see
Figure 8 - 8):

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ➤ Title: Create A Button Sample

 ➤ Description: This snippet adds code to create a button control and hook an event
handler to it

 ➤ Shortcut: CreateAButton

fiGure 8-8

 4 . Because this snippet contains member definitions, set the Type to “Member Declaration.”

 5 . In the Editor window, insert the code necessary to create the three subroutines:

Vb

Private Sub CreateButtonHelper
 CreateAButton(controlName, controlText, Me)
End Sub

Private Sub CreateAButton(ByVal ButtonName As String, _
 ByVal ButtonText As String, _
 ByVal Owner As Form)
 Dim MyButton As New Button

 MyButton.Name = ButtonName

Code snippets revealed ❘ 145

http://lib.ommolketab.ir
http//lib.ommolketab.ir

146 ❘ chaPter 8 code SnippeTS And reFAcToring

 MyButton.Text = ButtonName
 Owner.Controls.Add(MyButton)

 MyButton.Top = 0
 MyButton.Left = 0
 MyButton.Text = ButtonText
 MyButton.Visible = True

 AddHandler MyButton.Click, AddressOf ButtonClickHandler
End Sub

Private Sub ButtonClickHandler(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 MessageBox.Show("The " & sender.Name & " button was clicked")
End Sub

c#

private void CreateButtonHelper()
{
 CreateAButton(controlName, controlText, this);
}

private void CreateAButton(string ButtonName, string ButtonText,
 Form Owner)
{
 Button MyButton = new Button();

 MyButton.Name = ButtonName;
 MyButton.Text = ButtonName;
 Owner.Controls.Add(MyButton);

 MyButton.Top = 0;
 MyButton.Left = 0;
 MyButton.Text = ButtonText;
 MyButton.Visible = true;

 MyButton.Click += MyButton_Click;
}

private void MyButton_Click(object sender, EventArgs e)
{
 MessageBox.Show("The " + sender.Name + " button was clicked");
}

 6 . You will notice that your code differs from that shown in Figure 8-8 in that the word
controlName does not appear highlighted. In Figure 8-8, this argument has been made a
replacement region. You can do this by selecting the entire word, right-clicking, and selecting
Add Replacement (or alternatively, clicking the Add button in the area below the code window).

 7 . Change the replacement properties like so:

 ➤ ID: controlName

 ➤ Defaults to: “MyButton”

 ➤ Tooltip: The name of the button

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 8 . Repeat this for controlText:

 ➤ ID: controlText

 ➤ Defaults to: “Click Me!”

 ➤ Tooltip: The text property of the button

Your snippet is now done and ready to be used. You can use Visual Studio 2010 to insert the snippet
into a code window.

accessinG refactorinG suPPort

There are a number of ways to invoke the refactoring tools in Visual Studio 2010, including from the
right-click context menu, smart tags, and the Refactor menu in the main menu (for C# developers only).

Figure 8-9 shows the Refactor context menu available for C# developers. The full list of refactoring
actions available to C# developers within Visual Studio 2010 includes Rename, Extract Method,
Encapsulate Field, Extract Interface, Promote Local Variable to Parameter, Remove Parameters, and
Reorder Parameters. You can also use Generate Method Stub and Organize Usings, which can be
loosely classified as refactoring.

fiGure 8-9

The built-in refactoring support provided by Visual Studio 2010 for VB developers is limited to the
symbolic Rename and Generate Method Stub. Additional refactoring support for VB developers
is provided by CodeRush Xpress, which can be
accessed via the right-click context menu (which
dynamically changes so that only valid refactoring
actions are displayed), or via the smart tags
(as shown in Figure 8-10) that it displays
when a refactoring is available for the current
selection (which can be clicked, or activated by
pressing Ctrl+`).

fiGure 8-10

accessing refactoring support ❘ 147

http://lib.ommolketab.ir
http//lib.ommolketab.ir

148 ❘ chaPter 8 code SnippeTS And reFAcToring

CodeRush Xpress adds support for all of the refactoring tools that C# has, and it adds many
more (to both languages). Examples of additional refactorings include Create Overload, Flatten
Conditional, Inline Temp, Introduce Constant, Introduce Local, Move Declaration Near Reference,
Move Initialization to Declaration, Remove Assignments to Parameters, Rename, Reorder
Parameters, Replace Temp with Query, Reverse Conditional, Safe Rename, Simplify Expression,
Split Initialization from Declaration, and Split Temporary Variable.

refactorinG actions

The following sections describe each of the refactoring options and provide examples of how to use
built-in support for both C# and CodeRush Xpress for VB.

extract Method
One of the best ways to start refactoring a long method is to break it up into several smaller methods.
The Extract Method refactoring action is invoked by selecting the region of code you want moved out
of the original method and selecting Extract Method from the context menu. In C#, this will prompt
you to enter a new method name, as shown
in Figure 8-11. If there are variables within
the block of code to be extracted that were
used earlier in the original method, they
automatically appear as variables in the method
signature. Once the name has been confirmed,
the new method is created immediately
after the original method. A call to the new
method replaces the extracted code block.

For example, in the following code snippet, if you wanted to extract the conditional logic into a
separate method, you would select the code, shown in bold, and choose Extract Method from the
right-click context menu:

c#

private void button1_Click(object sender, EventArgs e)
{
 string connectionString = Properties.Settings.Default.ConnectionString;
 if (connectionString == null)
 {
 connectionString = "DefaultConnectionString";
 }
 MessageBox.Show(connectionString);
 /* ... Much longer method ... */
}

This would automatically generate the following code in its place:

c#

Private void button1_Click(object sender, EventArgs e)
{

fiGure 8-11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

refactoring actions ❘ 149

After selecting the insert location,
CodeRush Xpress inserts the new method,
giving it an arbitrary name. In doing so it
highlights the method name, enabling you
to rename the method either at the insert
location or where the method is called (see
Figure 8-13).

Using the Extract Method refactoring on the
following code:

Vb

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click

 string connectionString = Properties.Settings.Default.ConnectionString;
 connectionString = ValidateConnectionString(output);
 MessageBox.Show(connectionString);
 /* ... Much longer method ... */
 }

private static string ValidateConnectionString(string connectionString)
{
 if (connectionString == null)
 {
 connectionString = "DefaultConnectionString";
 }
 return connectionString;
}

CodeRush Xpress handles this refactoring action slightly differently for VB developers. After you
select the code you want to replace, CodeRush Xpress prompts you to select a place in your code
where you want to insert the new method. This can help developers organize their methods in
groups, either alphabetically or according to functionality.

Figure 8-12 illustrates the aid that appears which enables you to position where the method should
be inserted using the cursor keys.

fiGure 8-12

fiGure 8-13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

150 ❘ chaPter 8 code SnippeTS And reFAcToring

 Dim connectionString As String = My.MySettings.Default.ConnectionString
 If connectionString Is Nothing Then
 connectionString = "DefaultConnectionString"
 End If
 MessageBox.Show(connectionString)
 'Much longer method
End Sub

And renaming the method to give it an appropriate name will result in the following code:

Vb

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim connectionString As String = My.MySettings.Default.ConnectionString
 ValidateConnectionString(connectionString)
 MessageBox.Show(connectionString)
 'Much longer method
End Sub

Private Shared Sub ValidateConnectionString(ByRef connectionString As String)
 If connectionString Is Nothing Then
 connectionString = "DefaultConnectionString"
 End If
End Sub

encapsulate field
Another common task when refactoring is to
encapsulate an existing class variable with a property.
This is what the Encapsulate Field refactoring action
does. To invoke this action, select the variable you
want to encapsulate and then choose the appropriate
refactoring action from the context menu. This gives
you the opportunity to name the property and elect
where to search for references to the variable, as
shown in Figure 8-14.

The next step after specifying the new property
name is to determine which references to the class
variable should be replaced with a reference to the new
property. Figure 8-15 shows the preview window that
is returned after the reference search has been completed. In the top pane is a tree indicating which
files and methods have references to the variable. The checkbox beside each row indicates whether
a replacement will be made. Selecting a row in the top pane brings that line of code into focus in
the lower pane. Once each of the references has been validated, the encapsulation can proceed. The
class variable is updated to be private, and the appropriate references are also updated.

The Encapsulate Field refactoring action using CodeRush Xpress works in a similar way, except
that it automatically assigns the name of the property based on the name of the class variable. The
interface for updating references is also different, as shown in Figure 8-16. Instead of a modal dialog,

fiGure 8-14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

refactoring actions ❘ 151

CodeRush Xpress presents a visual aid that can be used to navigate through the references (or you can
navigate between references using the Tab key). Where a replacement is required, click the check mark
or press Enter. Unlike the C# dialog box, in which the checkboxes can be checked and unchecked as
many times as needed, once you accept a replacement there is no way to undo this action.

fiGure 8-15 fiGure 8-16

extract interface
As a project goes from prototype or early-stage development to a full implementation or growth
phase, it’s often necessary to extract the core methods for a class into an interface to enable other
implementations or to define a boundary between
disjointed systems. In the past you could do this
by copying the entire method to a new file and
removing the method contents so you were just
left with the interface stub. The Extract Interface
refactoring action enables you to extract an
interface based on any number of methods within
a class. When this refactoring action is invoked
on a class, the dialog in Figure 8-17 is displayed,
which enables you to select which methods are
included in the interface. Once selected, those
methods are added to the new interface. The new
interface is also added to the original class.

In the following example, the first method needs
to be extracted into an interface:

c#

public class ConcreteClass
{
 public void ShouldBeInInterface()

fiGure 8-17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

152 ❘ chaPter 8 code SnippeTS And reFAcToring

 { /* ... */ }

 public void AnotherNormalMethod(int ParameterA, int ParameterB)
 { /* ... */ }

 public void NormalMethod()
 { /* ... */ }
}

Selecting Extract Interface from the right-click context menu and selecting only the
ShouldBeInInterface method to be extracted from the Extract Interface dialog introduces a new
interface (in a new file) and updates the original class as follows:

c#

interface IBestPractice
{
 void ShouldBeInInterface();
}

public class ConcreteClass: Chapter08Sample.IBestPractice
{
 public void ShouldBeInInterface()
 { /* ... */ }

 public void NormalMethod(int ParameterA, int ParameterB)
 { /* ... */ }

 public void AnotherNormalMethod()
 { /* ... */ }
}

Extracting an interface is also available within CodeRush Xpress, however it doesn’t allow you
to choose which methods you want to include in the interface. Unlike the C# interface extraction,
which places the interface in a separate file (which is recommended), CodeRush Xpress simply
extracts all public class methods into an interface in the same code file. For example, using
CodeRush Xpress’s Extract Interface refactoring action on the following class:

Vb

Public Class ConcreteClass
 Public Sub ShouldBeInInterface()
 '...
 End Sub

 Public Sub NormalMethod(ByVal ParameterA As Integer,
 ByVal ParameterB As Integer)
 '...
 End Sub

 Public Sub AnotherNormalMethod()
 '...
 End Sub
End Class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

refactoring actions ❘ 153

Will result in the following code:

Vb

Public Interface IConcreteClass
 Sub ShouldBeInInterface()
 Sub NormalMethod(ByVal ParameterA As Integer, ByVal ParameterB As Integer)
 Sub AnotherNormalMethod()
End Interface

Public Class ConcreteClass
 Implements IConcreteClass
 Public Sub ShouldBeInInterface() Implements IConcreteClass.ShouldBeInInterface
 '...
 End Sub

 Public Sub NormalMethod(ByVal ParameterA As Integer,
 ByVal ParameterB As Integer) _
 Implements IConcreteClass.NormalMethod
 '...
 End Sub

 Public Sub AnotherNormalMethod() Implements IConcreteClass.AnotherNormalMethod
 '...
 End Sub
End Class

reorder Parameters
Sometimes it’s necessary to reorder
parameters. This is often for cosmetic reasons,
but it can also aid readability and is sometimes
warranted when implementing interfaces.
The Reorder Parameters dialog, shown in
Figure 8-18, enables you to move parameters
up and down in the list according to the order
in which you want them to appear.

Once you establish the correct order, you’re
given the opportunity to preview the changes.
By default, the parameters in every reference
to this method are reordered according to the
new order. The Preview dialog, similar to
the one shown in Figure 8-15, enables you to
control which references are updated.

The CodeRush Xpress experience for
reordering parameters is somewhat more
intuitive than the native action for C#. Again,
the creators have opted for visual aids instead
of a modal dialog, as shown in Figure 8-19.
You can move the selected parameter left or

fiGure 8-18

fiGure 8-19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

154 ❘ chaPter 8 code SnippeTS And reFAcToring

right in the parameter list and navigate between parameters with the Tab key. Once the parameters
are in the desired order, the search and replace interface, illustrated in Figure 8-16, enables the
developer to verify all updates.

remove Parameters
When removing a parameter from a method, using the refactoring function to do this considerably
reduces the amount of searching that has to be done for compile errors that can occur when a
parameter is removed. The other time this action is particularly useful is when there are multiple
overloads for a method, and removing a parameter may not generate compile errors; in such a case,
runtime errors may occur due to semantic, rather than syntactical, mistakes.

Figure 8-20 illustrates the Remove Parameters dialog that is used to remove parameters from the
parameters list. If a parameter is accidentally removed, it can be easily restored until the correct
parameter list is arranged. As the warning on this dialog indicates, removing parameters can often
result in unexpected functional errors, so it is important to review the changes made. Again, you
can use the preview window to validate the proposed changes.

CodeRush Xpress only supports removing unused parameters, as shown in Figure 8-21.

fiGure 8-20 fiGure 8-21

rename
Visual Studio 2010 provides rename support
in both C# and VB. The Rename dialog for
C# is shown in Figure 8-22; it is similar in
VB although it doesn’t have the options to
search in comments or strings.

Unlike the C# rename support, which
displays the preview window so you can
confirm your changes, the rename capability
in VB simply renames all references to that
variable. fiGure 8-22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

refactoring actions ❘ 155

Promote Variable to Parameter
One of the most common refactoring techniques is to adapt an existing method to accept an
additional parameter. Promoting a method variable to a parameter makes the method more generic.
It also promotes code reuse. Intuitively, this operation would introduce compile errors wherever the
method was referenced. However, the catch is that the variable you are promoting to a parameter
must have an initial constant value. This value is added as a parameter value to all the method
references to prevent any changes to functionality. Starting with the following snippet, if the method
variable output is promoted, you end up with the second snippet:

Vb

Private Sub MethodA()
 MethodB()
End Sub

Private Sub MethodB()
 Dim output As String = "Test String"
 MessageBox.Show(output)
End Sub

c#

public void MethodA()
{
 MethodB();
}
public void MethodB()
{
 string output = "Test String";
 MessageBox.Show(output);
}

After the variable is promoted, you can see that the initial value is now being passed through as a
parameter wherever this method is referenced:

Vb

Private Sub MethodA()
 MethodB("Test String")
End Sub

Private Sub MethodB(ByVal output As String)
 MessageBox.Show(output)
End Sub

c#

public void MethodA()
{
 MethodB("Test String");
}
public void MethodB(string output)
{
 MessageBox.Show(output);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

156 ❘ chaPter 8 code SnippeTS And reFAcToring

Generate Method stub
As you write code, you may realize that you need to call a method that you haven’t written yet. For
example, the following snippet illustrates a new method that you need to generate at some later stage:

Vb

Private Sub MethodA()
 Dim InputA As String
 Dim InputB As Double
 Dim OutputC As Integer = NewMethodIJustThoughtOf(InputA, InputB)
End Sub

c#

public void MethodA()
{
 string InputA;
 double InputB;
 int OutputC = NewMethodIJustThoughtOf(InputA, InputB);
}

Of course, the preceding code generates a build error because this method has not been defined.
Using the Generate Method Stub refactoring action (available as a smart tag in the code itself), you
can generate a method stub. As you can see from the following sample, the method stub is complete
with input parameters and output type:

Vb

Private Function NewMethodIJustThoughtOf(ByVal InputA As String,
 ByVal InputB As Double) As Integer
 Throw New NotImplementedException
End Function

c#

private int NewMethodIJustThoughtOf(string InputA, double InputB)
{
 throw new Exception("The method or operation is not implemented.");
}

organize usings
It’s good practice to maintain a sorted list of Using statements in each file (in C#), and only reference
those namespaces that are actually required within that file. The Organize Usings menu (available
from the context menu when right-clicking in the code editor as shown in Figure 8-23) can help you
in both these cases.

fiGure 8-23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 After a major refactoring of your code you may fi nd that you have a number of using directives at the
top of your code fi le that are no longer being used. Rather than going through a process of trial and error
to determine what is and isn ’ t being used, you can use an operation in Visual Studio to do this for you
by right - clicking in the code editor and choosing Organize Usings ➪ Remove Unused Usings (C# only).
Using directives, using aliases, and external assembly aliases not being used in the code fi le are removed.

 VB developers don ’ t have a way to sort and remove unused Imports statements.
However, on the References tab on the Project Properties dialog, it ’ s possible to
mark namespaces to be imported into every code fi le. This can save signifi cantly
on the number of Imports statements. On this page you also have the ability to
remove unused assembly references.

 It ’ s good practice to organize the using directives in alphabetical order to make it easy to manage
what namespaces are being referenced. To save you doing this manually you can right - click in
the code editor and choose Organize Usings ➪ Sort Usings to have Visual Studio do this for you.
The using directives from the System namespace appear fi rst, then the using directives from other
namespaces appear in alphabetical order. If you have aliases defi ned for namespaces, these are
moved to the bottom of the list, and if you are using external assembly aliases (using the extern
keyword in C#), these are moved to the top of the list.

 To sort using directives and remove those that are not being used in one action, right - click in the
code editor and choose Organize Usings ➪ Remove and Sort.

 The default Visual Studio template code fi les have the using statements at the top of
the fi le outside the namespace block. However, if you are following the StyleCop
guidelines these specify that using statements should be contained within the
namespace block. The Organize Usings functions handle either situation based upon
the current location of the using statements in the fi le and retaining that location.

 suMMary

 Code snippets are a valuable inclusion in the Visual Studio 2010 feature set. You learned in this
chapter how to use them, and how to create your own, including variable substitution (and Imports
and reference associations for VB snippets). With this information you ’ ll be able to create your
own library of code snippets from functionality that you use frequently, saving you time in coding
similar constructs later.

 This chapter also provided examples of each of the refactoring actions available within Visual Studio
2010. Although VB developers do not get complete refactoring support out of the box, CodeRush
Xpress provides a wide range of refactoring actions that enable them to easily refactor their projects.

summary ❘ 157

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9
 server explorer

 what ’ s in this chaPter?

 Querying hardware resources and services on local and remote ➤

computers

 Using the Server Explorer to easily add code that ➤

works with computer resources to your applications

 The Server Explorer is one of the few tool windows in Visual
Studio that is not specifi c to a solution or project. It allows
you to explore and query hardware resources and services on
local or remote computers. You can perform various tasks and
activities with these resources, including adding them to your
applications.

 The Server Explorer, shown in Figure 9 - 1, has three types of
resources to which it can connect. The fi rst, under the Servers
node, enables you to access hardware resources and services on a
local or remote computer. This functionality is explored in detail
in this chapter. The second type of resources is under the Data
Connections node and allows you to work with all aspects of data connections, including the
ability to create databases, add and modify tables, build relationships, and even execute queries.
Chapter 26 covers the Data Connections functionality in detail. Finally, you can add a connection
to a SharePoint server and browse SharePoint - specifi c resources such as Content Types, Lists,
Libraries, and Workfl ows. SharePoint connections are covered in more detail in Chapter 24.

 serVer connections

 The Servers node would be better named Computers, because it can be used to attach to and
interrogate any computer to which you have access, regardless of whether it is a server or a
desktop workstation. Each computer is listed as a separate node under the Servers node. Below

fiGure 9-1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

160 ❘ chaPter 9 SerVer explorer

each computer node is a list of the hardware, services, and other components that belong to that
computer. Each of these contains a number of activities or tasks that can be performed. Several software
vendors have components that plug into and extend the functionality provided by the Server Explorer.

 To access Server Explorer, select Server Explorer on the View menu. By default, the local computer
appears in the Servers list. To add another computer, right - click the Servers node and select Add
Server from the context menu.

 Entering a computer name or IP address initiates
an attempt to connect to the machine using your
credentials. If you do not have suffi cient privileges,
you can elect to connect using a different username
by clicking the appropriate link. The link appears to
be disabled, but clicking it does bring up a dialog,
shown in Figure 9 - 2, in which you can provide an
alternative username and password.

 You will need Administrator privileges on any server that you want to access
through the Server Explorer.

 event logs
 The Event Logs node gives you access to the machine
event logs. You can launch the Event Viewer from the
right - click context menu. Alternatively, as shown in
Figure 9 - 3, you can drill into the list of event logs to
view the events for a particular application. Clicking
any of the events displays information about the event
in the Properties window.

 Although the Server Explorer is useful for
interrogating a machine while writing your code, the
true power comes with the component creation you
get when you drag a resource node onto a Windows
Form. For example, if you drag the Application node
onto a Windows Form, you get an instance of the
 System.Diagnostics.EventLog class added to
the nonvisual area of the designer. You can then write
an entry to this event log using the following code:

 c#

this.eventLog1.Source = "My Server Explorer App";
this.eventLog1.WriteEntry("Something happened",
 System.Diagnostics.EventLogEntryType.Information);

 Code snippet Form1.cs

fiGure 9-2

fiGure 9-3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server Connections ❘ 161

 Vb

Me.EventLog1.Source = "My Server Explorer App"
Me.EventLog1.WriteEntry("Something happened",
 System.Diagnostics.EventLogEntryType.Information)

 Code snippet Form1.vb

 Because the preceding code creates a new Source in the Application Event Log, it
requires administrative rights to execute. If you are running Windows Vista or
Windows 7 with User Account Control enabled, you should create an
application manifest. This is discussed in Chapter 6.

 After you run this code, you can view the results directly in the Server Explorer. Click the Refresh
button on the Server Explorer toolbar to ensure that the new Event Source is displayed under the
Application Event Log node.

 For Visual Basic programmers, an alternative to adding an EventLog class to your code is to use
the built - in logging provided by the My namespace. For example, you can modify the previous code
snippet to write a log entry using the My.Application.Log.WriteEntry method:

 Vb

My.Application.Log.WriteEntry("Button Clicked", TraceEventType.Information)

 You can also write exception information using the My.Application.Log.WriteException
method, which accepts an exception and two optional parameters that provide additional
information.

 Using the My namespace to write logging information has a number of additional benefi ts.
In the following confi guration fi le, an EventLogTraceListener is specifi ed to route log
information to the event log. However, you can specify other trace listeners — for example,
the FileLogTraceListener , which writes information to a log fi le by adding it to the
 SharedListeners and Listeners collections:

 < ?xml version="1.0" encoding="utf-8" ? >
 < configuration >
 < system.diagnostics >
 < sources >
 < source name="DefaultSource" switchName="DefaultSwitch" >
 < listeners >
 < add name="EventLog"/ >
 < /listeners >
 < /source >
 < /sources >
 < switches >
 < add name="DefaultSwitch" value="Information"/ >
 < /switches >

http://lib.ommolketab.ir
http//lib.ommolketab.ir

162 ❘ chaPter 9 SerVer explorer

 <sharedListeners>
 <add name="EventLog"
 type="System.Diagnostics.EventLogTraceListener"
 initializeData="ApplicationEventLog"/>
 </sharedListeners>
 </system.diagnostics>
</configuration>

This configuration also specifies a switch called DefaultSwitch. This switch is associated with the
trace information source via the switchName attribute and defines the minimum event type that will
be sent to the listed listeners. For example, if the value of this switch were Critical, events with the
type Information would not be written to the event log. The possible values of this switch are shown
in Table 9-1.

table 9-1: Values for DefaultSwitch

defaultswitch eVent tyPes written to loG

Off No Events

Critical Critical Events

Error Critical and Error Events

Warning Critical, Error, and Warning Events

Information Critical, Error, Warning, and Information events

Verbose Critical, Error, Warning, Information, and Verbose events

ActivityTracing Start, Stop, Suspend, Resume, and Transfer events

All All Events

Note that there are overloads for both WriteEntry and
WriteException that do not require an event type to be
specified. In this case the event types will default to Information
and Error, respectively.

Management classes
Figure 9-4 shows the full list of management classes
available via the Server Explorer. Each node exposes a set
of functionalities specific to that device or application. For
example, right-clicking the Printers node enables you to add
a new printer connection, whereas right-clicking the named
node under My Computer enables you to add the computer to
a domain or workgroup. The one thing common to all these
nodes is that they provide a strongly typed wrapper around the
Windows Management Instrumentation (WMI) infrastructure.
In most cases, it is simply a matter of dragging the node

fiGure 9-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server Connections ❘ 163

representing the information in which you’re
interested across to the form. From your code
you can then access and manipulate that
information.

To give you an idea of how these wrappers can
be used, this section walks through how you
can use the management classes to retrieve
information about a computer. Under the My
Computer node, you will see a node with the
name of the local computer. Selecting this
node and dragging it onto the form gives you a
ComputerSystem component in the nonvisual
area of the form. Also add a Label control, a
TextBox control, a Button, and a PropertyGrid
control from the All Windows Forms tab on
the Toolbox and arrange them on the Form as
shown in Figure 9-5.

If you look in the Solution Explorer, you will see that it has also added a custom component called
root.CIMV2.Win32_ComputerSystem (or similar depending on the computer configuration).
This custom component is generated by the Management Strongly Typed Class Generator
(Mgmtclassgen.exe) and includes the ComputerSystem and other classes, which will enable you to
expose WMI information.

If you click the computerSystem1 object on the form, you can see the information about that
computer in the Properties window. In this application, however, you’re not that interested in that
particular computer; that computer was selected as a template to create the ComputerSystem class.
The ComputerSystem1 object can be deleted, but before deleting it, take note of the Path property
of the object. The Path is used, combined with the computer name entered in the form in Figure 9-5,
to load the information about that computer. You can see this in the following code that is added to
the button click event handler for the Load button:

c#

const string compPath = "\\\\{0}\\root\\CIMV2:Win32_ComputerSystem.Name=\"{0}\"";

if (!string.IsNullOrEmpty(this.textBox1.Text))
{
 string computerName = this.textBox1.Text;
 string pathString = string.Format(compPath, computerName);
 var path = new System.Management.ManagementPath(pathString);
 ROOT.CIMV2.ComputerSystem cs = new ROOT.CIMV2.ComputerSystem(path);

 this.propertyGrid1.SelectedObject = cs;
}

Code snippet Form2.cs

fiGure 9-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

164 ❘ chaPter 9 SerVer explorer

Vb

Const compPath As String = "\\{0}\root\CIMV2:Win32_ComputerSystem.Name=""{0}"""

If Not Me.TextBox1.Text = "" Then
 Dim computerName As String = Me.TextBox1.Text
 Dim pathString As String = String.Format(compPath, computerName)
 Dim path As New System.Management.ManagementPath(pathString)
 Dim cs As New ROOT.CIMV2.ComputerSystem(path)

 Me.PropertyGrid1.SelectedObject = cs
End If

Code snippet Form2.vb

In this example, the Path property, which was
obtained earlier from the computerSystem1 object,
has been used in a string constant with the string
replacement token {0} where the computer name
should go. When the button is clicked, the computer
name entered into the textbox is combined with this
path using String.Format to generate the full WMI
path. The path is then used to instantiate a new
ComputerAccount object, which is in turn passed to
the PropertyGrid control. The result of this at run
time is shown in Figure 9-6.

Though most properties are read-only, for those fields
that are editable, changes made in this PropertyGrid are
immediately committed to the computer. This behavior can
be altered by changing the AutoCommit property on the
ComputerSystem class.

Management events
In the previous section you learned how you can drag a
management class from the Server Explorer onto the form and
then work with the generated classes. The other way to work
with the WMI interface is through the Management Events
node. A management event enables you to monitor any WMI
data type and have an event raised if an object of that type is
created, modified, or deleted. By default, this node is empty,
but you can create your own by right-clicking the Management
Events node and selecting Add Event Query, which invokes the
dialog shown in Figure 9-7.

Use this dialog to locate the WMI data type in which you are
interested. Because there are literally thousands of these, it
is useful to use the Find box. In Figure 9-7, the search term
“process” was entered, and the class CIM Processes was found

fiGure 9-6

fiGure 9-7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server Connections ❘ 165

under the root\CIMV2 node. Each instance of this class represents a single process running on
the system. You are only interested in being notified when a new process is created, so ensure that
Object Creation is selected from the drop-down menu.

After clicking OK, a CIM Processes Event Query node is
added to the Management Events node. If you open a new
instance of an application on your system, such as
Notepad, you will see events being progressively added
to this node. In the Build Management Event Query
dialog shown in Figure 9-7, the default polling interval
was set to 60 seconds, so you may need to wait up to
60 seconds for the event to show up in the tree once
you have made the change.

When the event does finally show up, it appears along
with the date and time in the Server Explorer, and it
also appears in the Output window, as shown in the
lower pane of Figure 9-8. If you select the event, you
will notice that the Properties window is populated
with a large number of properties that don’t really
make any sense. However, once you know which of
the properties to query, it is quite easy to trap, filter,
and respond to system events.

To continue the example, drag a CheckBox control and a ListBox control from the Toolbox onto a
new Windows Form.

Next drag the CIM Processes Event Query node from the Server Explorer onto a new form. This
generates an instance of the System.Management.ManagementEventWatcher class, with properties
configured so it will listen for the creation of a new process. The actual query can be accessed via
the QueryString property of the nested ManagementQuery object. As with most watcher classes, the
ManagementEventWatch class triggers an event when the watch conditions are met — in this case,
the EventArrived event. To handle this event, add the following code:

c#

private void managementEventWatcher1_EventArrived(System.Object sender,
 System.Management.EventArrivedEventArgs e)
{
 foreach (System.Management.PropertyData p in e.NewEvent.Properties)
 {
 if (p.Name == "TargetInstance")
 {
 var mbo = (System.Management.ManagementBaseObject)p.Value;
 string[] sCreatedProcess = {(string)mbo.Properties["Name"].Value,
 (string)mbo.Properties["ExecutablePath"].
 Value };
 this.BeginInvoke(new LogNewProcessDelegate(LogNewProcess),
 sCreatedProcess);
 }
 }
}

fiGure 9-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

166 ❘ chaPter 9 SerVer explorer

delegate void LogNewProcessDelegate(string ProcessName, string ExePath);
private void LogNewProcess(string ProcessName, string ExePath)
{
 this.listBox1.Items.Add(string.Format("{0}—{1}", ProcessName, ExePath));
}

private void checkBox1_CheckedChanged(System.Object sender, System.EventArgs e)
{
 if (this.checkBox1.Checked)
 {
 this.managementEventWatcher1.Start();
 }
 else
 {
 this.managementEventWatcher1.Stop();
 }
}

Code snippet Form3.cs

Vb

Private Sub ManagementEventWatcher1_EventArrived(ByVal sender As System.Object, _
 ByVal e As System.Management.EventArrivedEventArgs)
 For Each p As System.Management.PropertyData In e.NewEvent.Properties
 If p.Name = "TargetInstance" Then
 Dim mbo As System.Management.ManagementBaseObject = _
 CType(p.Value, System.Management.ManagementBaseObject)
 Dim sCreatedProcess As String() = {mbo.Properties("Name").Value, _
 mbo.Properties("ExecutablePath").Value}
 Me.BeginInvoke(New LogNewProcessDelegate(AddressOf LogNewProcess), _
 sCreatedProcess)
 End If
 Next
End Sub

Delegate Sub LogNewProcessDelegate(ByVal ProcessName As String, _
 ByVal ExePath As String)
Private Sub LogNewProcess(ByVal ProcessName As String, ByVal ExePath As String)
 Me.ListBox1.Items.Add(String.Format("{0}—{1}", ProcessName, ExePath))
End Sub

Private Sub CheckBox1_CheckedChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles CheckBox1.CheckedChanged
 If Me.CheckBox1.Checked Then
 Me.ManagementEventWatcher1.Start()
 Else
 Me.ManagementEventWatcher1.Stop()
 End If
End Sub

Code snippet Form3.vb

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server Connections ❘ 167

 In the event handler, you need to iterate through the Properties collection on the NewEvent object.
Where an object has changed, two instances are returned: PreviousInstance , which holds the state
at the beginning of the polling interval, and TargetInstance , which holds the state at the end of the
polling interval. It is possible for the object to change state multiple times within the same polling
period. If this is the case, an event will be triggered only when the state at the end of the period differs
from the state at the beginning of the period. For example, no event is raised if a process is started
and then stopped within a single polling interval.

 The event handler constructs a new
 ManagementBaseObject from a value passed into
the event arguments to obtain the display name and
executable path of the new process. Since UI controls
can only be updated from the UI thread, you cannot
directly update the ListBox. Instead you must call
 BeginInvoke to execute the LogNewProcess function
on the UI thread. Figure 9 - 9 shows the form in action.

 Message queues
 The Message Queues node, expanded in Figure 9 - 10, gives you access to the message queues
available on your computer. You can use three types of queues: private, which will not appear when
a foreign computer queries your computer; public, which will appear; and system, which is used for
unsent messages and other exception reporting.

 To use the Message Queues node, you need to ensure that MSMQ is installed on
your computer. You can do this via Programs and Features in the Control Panel.
Select the Turn Windows Features On or Off task menu item and then select the
checkbox to enable the Microsoft Message Queue (MSMQ) Server feature.

 In Figure 9-10, a message queue called samplequeue has been added
to the Private Queues node by selecting Create Queue from the
right - click context menu. Once you have created a queue, you can
create a properly confi gured instance of the MessageQueue class
by dragging the queue onto a new Windows Form. To demonstrate
the functionality of the MessageQueue object, add two TextBoxes
and a button to the form, laid out as shown in Figure 9 - 11. The
Send button is wired up to use the MessageQueue object to send the
message entered in the fi rst textbox. In the Load event for the form,
a background thread is created that continually polls the queue to
retrieve messages, which will populate the second textbox:

 c#

public Form4()
{
 InitializeComponent();
 var monitorThread = new System.Threading.Thread(MonitorMessageQueue);

fiGure 9-9

fiGure 9-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

168 ❘ chaPter 9 SerVer explorer

 monitorThread.IsBackground = true;
 monitorThread.Start();
 this.Button1.Click +=new EventHandler(btn_Click);
}

private void btn_Click(object sender, EventArgs e)
{
 this.messageQueue1.Send(this.TextBox1.Text);
}

private void MonitorMessageQueue()
{
 var m = default(System.Messaging.Message);
 while (true)
 {
 try
 {
 m = this.messageQueue1.Receive(new TimeSpan(0, 0, 0, 0, 50));
 this.ReceiveMessage((string)m.Body);
 }
 catch (System.Messaging.MessageQueueException ex)
 {
 if (!(ex.MessageQueueErrorCode ==
 System.Messaging.MessageQueueErrorCode.IOTimeout))
 {
 throw ex;
 }
 }
 System.Threading.Thread.Sleep(10000);
 }
}

private delegate void MessageDel(string msg);
private void ReceiveMessage(string msg)
{
 if (this.InvokeRequired)
 {
 this.BeginInvoke(new MessageDel(ReceiveMessage), msg);
 return;
 }
 this.TextBox2.Text = msg;
}

Code snippet Form4.cs

Vb

Private Sub Form_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim monitorThread As New Threading.Thread(AddressOf MonitorMessageQueue)
 monitorThread.IsBackground = True
 monitorThread.Start()
End Sub

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server Connections ❘ 169

Private Sub btn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles Button1.Click
 Me.MessageQueue1.Send(Me.TextBox1.Text)
End Sub

Private Sub MonitorMessageQueue()
 Dim m As Messaging.Message
 While True
 Try
 m = Me.MessageQueue1.Receive(New TimeSpan(0, 0, 0, 0, 50))
 Me.ReceiveMessage(m.Body)
 Catch ex As Messaging.MessageQueueException
 If Not ex.MessageQueueErrorCode = _
 Messaging.MessageQueueErrorCode.IOTimeout Then
 Throw ex
 End If
 End Try
 Threading.Thread.Sleep(10000)
 End While
End Sub

Private Delegate Sub MessageDel(ByVal msg As String)
Private Sub ReceiveMessage(ByVal msg As String)
 If Me.InvokeRequired Then
 Me.BeginInvoke(New MessageDel(AddressOf ReceiveMessage), msg)
 Return
 End If
 Me.TextBox2.Text = msg
End Sub

Code snippet Form4.vb

Note in this code snippet that the background thread is
never explicitly closed. Because the thread has the
IsBackground property set to True, it is automatically
terminated when the application exits. As with the
previous example, because the message processing is done
in a background thread, you need to switch threads when
you update the user interface using the BeginInvoke
method. Putting this all together, you get a form like the
one shown in Figure 9-11.

As messages are sent to the message queue, they appear
under the appropriate queue in Server Explorer. Clicking
the message displays its contents in the Properties window.

Performance counters
One of the most common things developers forget to consider when building an application is how
it will be maintained and managed. For example, consider an application that was installed a year

fiGure 9-11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

170 ❘ chaPter 9 SerVer explorer

ago and has been operating without any issues. All
of a sudden, requests start taking an unacceptable
amount of time. It is clear that the application is not
behaving correctly, but there is no way to determine
the cause of the misbehavior. One strategy for
identifying where the performance issues are is
to use performance counters. Windows has many
built - in performance counters that can be used to
monitor operating system activity, and a lot of third -
 party software also installs performance counters so
administrators can identify any rogue behavior.

 The Performance Counters node in the Server
Explorer tree, expanded in Figure 9 - 12, has two
primary functions. First, it enables you to view
and retrieve information about the currently
installed counters. You can also create new
performance counters, as well as edit or delete existing counters. As you can see in Figure 9 - 12,
under the Performance Counters node is a list of categories and under those is a list of counters.

 You must be running Visual Studio with Administrator rights to view the
Performance Counters under the Server Explorer.

 To edit either the category or the counters, select
Edit Category from the right - click context menu
for the category. To add a new category and
associated counters, right - click the Performance
Counters node and select Create New Category
from the context menu. Both of these operations
use the dialog shown in Figure 9 - 13. Here, a new
performance counter category has been created
that will be used to track a form ’ s open and
close events.

 The second function of the Performance Counters
section is to provide an easy way for you to access
performance counters via your code. By dragging
a performance counter category onto a form, you
gain access to read and write to that performance
counter. To continue with this chapter ’ s example,
drag the new My Application performance
counters, Form Open and Form Close, onto a new
Windows Form. Also add a couple of textboxes and a button so you can display the performance
counter values. Finally, rename the performance counters so they have friendly names. This should
give you a form similar to the one shown in Figure 9 - 14.

fiGure 9-13

fiGure 9-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server Connections ❘ 171

In the properties for the selected performance counter, you can see that the appropriate counter — in
this case, Form Close — has been selected from the My Application category. You will also notice a
MachineName property, which is the computer from which you are retrieving the counter information,
and a ReadOnly property, which needs to be set to False if you want to update the counter. (By
default, the ReadOnly property is set to True.) To complete this form, add the following code to the
Retrieve Counters button click event handler:

c#

this.textBox1.Text = this.perfFormOpen.RawValue.ToString();
this.textBox2.Text = this.perfFormClose.RawValue.ToString();

Code snippet Form5.cs

Vb

Me.textBox1.Text = Me.perfFormOpen.RawValue
Me.textBox2.Text = Me.perfFormClose.RawValue

Code snippet Form5.vb

You also need to add code to the application to update the performance counters. For example, you
might have the following code in the Form Load event handlers:

c#

this.perfFormOpen.Increment();

Vb

Me.perfFormOpen.Increment()

When you dragged the performance counter onto the form, you may have noticed a smart tag (small
arrow that appears near the top-right corner when a control is selected) on the performance counter

fiGure 9-14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

172 ❘ chaPter 9 SerVer explorer

component that had a single item, Add Installer. When the component is selected, as in
Figure 19-14, you will notice the same action at the bottom of the Properties window. Clicking
this action in either place adds an Installer class to your solution that can be used to install the
performance counter as part of your installation process. Of course, for this installer to be called,
the assembly it belongs to must be added as a custom action for the deployment project. For more
information on custom actions, see Chapter 48.

Prior to Visual Studio 2008, you needed to manually modify the installer to create multiple
performance counters. In the current version, you can simply select each additional performance
counter and click Add Installer. Visual Studio 2010 will direct you back to the first installer that
was created and will have automatically added the second counter to the Counters collection of the
PerformanceCounterInstaller component, as shown in Figure 9-15.

fiGure 9-15

You can also add counters in other categories by adding
additional PerformanceCounterInstaller components
to the design surface. You are now ready to deploy your
application with the knowledge that you will be able to use
a tool such as PerfMon to monitor how your application is
behaving.

services
The Services node, expanded in Figure 9-16, shows the
registered services for the computer. Each node indicates
the state of that service in the bottom-right corner of the
icon. Possible states are Stopped, Running, or Paused.
Selecting a service displays additional information about the
service, such as other service dependencies, in the Properties
window. fiGure 9-16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As with other nodes in the Server Explorer, each service can be dragged onto the design surface
of a form. This generates a ServiceController component in the nonvisual area of the form. By
default, the ServiceName property is set to the service that you dragged across from the Server
Explorer, but this can be changed to access information and control any service. Similarly, the
MachineName property can be changed to connect to any computer to which you have access. The
following code shows how you can stop a Service using ServiceController component:

c#

this.serviceController1.Refresh();
if (this.serviceController1.CanStop)
{
 if (this.serviceController1.Status ==
 System.ServiceProcess.ServiceControllerStatus.Running)
 {
 this.serviceController1.Stop();
 this.serviceController1.Refresh();
 }
}

Code snippet Form6.cs

Vb

Me.ServiceController1.Refresh()
If Me.ServiceController1.CanStop Then
 If Me.ServiceController1.Status = _
 ServiceProcess.ServiceControllerStatus.Running Then
 Me.ServiceController1.Stop()
 Me.ServiceController1.Refresh()
 End If
End If

Code snippet Form6.vb

In addition to the three main states — Running, Paused, or Stopped — other transition states
are ContinuePending, PausePending, StartPending, and StopPending. If you are about to start a
service that may be dependent on another service that is in one of these transition states, you can
call the WaitForStatus method to ensure that the service will start properly.

data connections

The Data Connections node allows you to connect to a database and perform a large range of
administrative functions. You can connect to a wide variety of data sources including any edition
of SQL Server, Microsoft Access, Oracle, or a generic ODBC data source. Figure 9-17 shows the
Server Explorer connected to a SQL Server database file.

Data Connections ❘ 173

http://lib.ommolketab.ir
http//lib.ommolketab.ir

174 ❘ chaPter 9 SerVer explorer

The Server Explorer provides access to the Visual
Database, which will allow you to perform a large range of
administrative functions on the connected database. You can
create databases, add and modify tables, views, and stored
procedures, manage indexes, execute queries, and much
more. Chapter 26 covers all aspects of the Data Connections
functionality.

sharePoint connections

New to Visual Studio 2010 is the ability to connect to a
Microsoft Office SharePoint Server with the Server Explorer.
This feature allows you to navigate and view many of the
SharePoint resources and components.

The Server Explorer only provides read-only access to
SharePoint resources — you cannot, for example, create or
edit a list definition. Even so, it can be useful to have ready
access to this information in Visual Studio when developing a
SharePoint application. As with many of the components under the Servers Node you can also drag
and drop certain SharePoint resources directly onto the design surface of your SharePoint project.

Using the Server Explorer to browse SharePoint resources is covered in detail in Chapter 24.

suMMary

In this chapter you learned how the Server Explorer can be used to manage and work with computer
resources and services. Chapter 22 continues the discussion on the Server Explorer, covering
the Data Connections node in more detail. Chapter 24 wraps it all up with an in-depth look at
managing SharePoint resources using the Server Explorer.

fiGure 9-17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10
 Modeling with the Class
Designer

 what ’ s in this chaPter?

 Using the Class Designer to create a graphical visualization of your ➤

class architecture

 Easily generating and refactoring your classes with the Class ➤

Designer

 Using the Modeling Power Toys for Visual Studio 2010 add - in to ➤

better work with large class hierarchies

 Traditionally, software modeling has been performed separately from coding, often
during a design phase that is completed before coding begins. More often than not,
the modeling diagrams that are constructed during design are not kept up to date as
the development progresses, and they quickly lose their value as design changes are
inevitably made.

 The Class Designer in Visual Studio 2010 brings modeling into the IDE, as an activity that
can be performed at any time during a development project. Class diagrams are constructed
dynamically from the source code, which means that they are always up to date. Any change
made to the source code is immediately refl ected in the class diagram, and any change to
the diagram is also made to the code.

 This chapter looks at the Class Designer in detail and explains how you can use it to design,
visualize, and refactor your class architecture.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

176 ❘ chaPter 10 modeling WiTh The clASS deSigner

creatinG a class diaGraM

The design process for an application typically involves at least a sketch of the classes that are
going to be created and how they interact. Visual Studio 2010 provides a design surface, called the
Class Designer, onto which classes can be drawn to form a class diagram. Fields, properties, and
methods can then be added to the classes, and relationships can be established between classes.
Although this design is called a class diagram, it supports classes, structures, enumerations,
interfaces, abstract classes, and delegates.

There is more than one way to add a Class Diagram to your project. One way to add a Class
Diagram is through the Add New Item dialog, as shown in Figure 10-1. This will create a new blank
Class Diagram within the project.

fiGure 10-1

You can also add a new Class Diagram to your project by selecting the View Class Diagram button
from the toolbar in the Solution Explorer window or by right-clicking a project or class and selecting
the View Class Diagram menu item. If the project is selected when you create a Class Diagram in
this way, Visual Studio will automatically add all the types defined within the project to the initial
class diagram. Although this may be desirable in some instances, for a project that contains a large
number of classes the process of creating and laying out the diagram can be quite time consuming.

Unlike some tools that require all types within a project to be on the same diagram, the class
diagram can include as many or as few of your types as you want. This makes it possible to add
multiple class diagrams to a single solution.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The scope of the Class Designer is limited to a single project. You cannot add
types to a class diagram that are defi ned in a different project, even if it is part of
the same solution.

 The Class Designer can be divided into four components: the design surface, the Toolbox,
the Class Details window, and the property grid. Changes made to the class diagram are saved
in a .cd fi le, which works in parallel with the class code fi les to generate the visual layout shown in
the Class Designer.

 the desiGn surface

 The design surface of the Class Designer enables the developer to interact with types using a
drag - and - drop - style interface. You can add existing types to the design surface by dragging them
from either the class view or the Solution Explorer. If a fi le in the Solution Explorer contains more
than one type, they are all added to the design surface.

 Figure 10 - 2 shows a simple class diagram that contains two classes, Customer and Order , and an
enumeration, OrderStatus . Each class contains fi elds, properties, methods, and events. There is
an association between the classes, because a Customer class contains a property called Orders
that is a list of Order objects, and the Order class implements the IDataErrorInfo interface. All this
information is visible from this class diagram.

fiGure 10-2

The Design surface ❘ 177

http://lib.ommolketab.ir
http//lib.ommolketab.ir

178 ❘ chaPter 10 modeling WiTh The clASS deSigner

Each class appears as an entity on the class diagram, which can be dragged around the design
surface and resized as required. A class is made up of fields, properties, methods, and events.
In Figure 10-2, these components are grouped into compartments. You can select alternative
layouts for the class diagram, such as listing the components in alphabetical order or grouping
the components by accessibility.

The Class Designer is often used to view multiple classes to get an understanding of how they
are associated. In this case, it is convenient to hide the components of a class to simplify the
diagram. To hide all the components at once, use the toggle in the top-right corner of the class on
the design surface. If only certain components need to be hidden, they can be individually hidden,
or the entire compartment can be hidden, by right-clicking the appropriate element and selecting
the Hide menu item.

the toolbox

To facilitate items being added to the class diagram there is a Class Designer
tab in the Toolbox. To create an item, drag the item from the Toolbox
onto the design surface or simply double-click it. Figure 10-3 shows the
Toolbox with the Class Designer tab visible. The items in the Toolbox can be
classified as either entities or connectors. Note the Comment item, which can
be added to the Class Designer but does not appear in any of the code; it is
there simply to aid documentation of the class diagram.

entities
The entities that can be added to the class diagram all correspond to types in
the .NET Framework. When you add a new entity to the design surface, you
need to give it a name. In addition, you need to indicate whether it should be added to a new file or
an existing file.

You can remove entities from the diagram by right-clicking and selecting the Remove From
Diagram menu item. This does not remove the source code; it simply removes the entity from
the diagram. In cases where it is desirable to delete the associated source code, select the Delete
Code menu item.

You can view the code associated with an entity by either double-clicking the entity or selecting
View Code from the right-click context menu.

The following list explains the entities in the Toolbox:

 ➤ Class: Fields, properties, methods, events, and constants can all be added to a class via
the right-click context menu or the Class Details window. Although a class can support
nested types, they cannot be added using the Designer surface. Classes can also implement
interfaces. In Figure 10-2, the Order class implements the IDataErrorInfo interface.

fiGure 10-3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ➤ Enum: An enumeration can only contain a list of members that can have a value
assigned to them. Each member also has a summary and remarks property, but
these appear only as an XML comment against the member.

 ➤ Interface: Interfaces defi ne properties, methods, and events that a class must implement.
Interfaces can also contain nested types, but recall that adding a nested type is not
supported by the Designer.

 ➤ Abstract Class: Abstract classes behave the same as classes except that they appear
on the design surface with an italic name and are marked as Abstract (C#) or
 MustInherit (VB) .

 ➤ Structure: A structure is the only entity, other than a comment, that appears on the
Designer in a rectangle. Similar to a class, a structure supports fi elds, properties, methods,
events, and constants. It, too, can contain nested types. However, unlike a class, a structure
cannot have a destructor.

 ➤ Delegate: Although a delegate appears as an entity on the class diagram, it can ’ t
contain nested types. The only components it can contain are parameters that defi ne
the delegate signature.

 connectors
 Two types of relationships can be established between entities. These are illustrated on the class
diagram using connectors, and are explained in the following list:

 ➤ Inheritance: The Inheritance connector is used to show the relationship between classes
that inherit from each other.

 ➤ Association: Where a class makes reference to another class, there is an association between
the two classes. This is shown using the Association connector.

 If a relationship is based around a collection — for example, a list of Order objects — this can
be represented using a collection association . A collection association called Orders is shown
in Figure 10 - 2 connecting the Customer and Order classes.

 A class association can be represented as either a fi eld or property of a class, or as an association
link between the classes. You can use the right - click context menu on either the fi eld or property or
the association to toggle between the two representations.

To show a property as a collection association you need to right - click the
property in the class and select Show as Collection Association. This hides
the property from the class and displays it as a connector to the associated
class on the diagram.

The Toolbox ❘ 179

http://lib.ommolketab.ir
http//lib.ommolketab.ir

180 ❘ chaPter 10 modeling WiTh The clASS deSigner

the class details

You can add a component to an entity by right-clicking and selecting the appropriate
component to add. Unfortunately, this is a time-consuming process and doesn’t afford you the
ability to add method parameters or return values. The Class Designer in Visual Studio 2010
includes a Class Details window, which provides a user interface that enables components to be
quickly entered. This window is illustrated in Figure 10-4 for the Customer class previously shown
in Figure 10-2.

fiGure 10-4

On the left side of the window are buttons that can aid in navigating classes that contain a large
number of components. The top button can be used to add methods, properties, fields, or events to
the class. The remaining buttons can be used to bring any of the component groups into focus. For
example, the second button is used to navigate to the list of methods for the class. You can navigate
between components in the list using the up and down arrow keys.

Because Figure 10-4 shows the details for a class, the main region of the window is divided into
four alphabetical lists: Methods, Properties, Fields, and Events. Other entity types may have
other components, such as Members and Parameters. Each row is divided into five columns that
show the name, the return type, the modifier or accessibility of the component, a summary, and
whether the item is hidden on the design surface. In each case, the Summary field appears as
an XML comment against the appropriate component. Events differ from the other components in
that the Type column must be a delegate. You can navigate between columns using the left and right
arrow keys, Tab (next column), and Shift+Tab (previous column).

To enter parameters on a method, use the right arrow key to expand the method node so that a
parameter list appears. Selecting the Add Parameter node adds a new parameter to the method.
Once added, the new parameter can be navigated to by using the arrow keys.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the ProPerties window

Although the Class Details window is useful it does
not provide all the information required for entity
components. For example, properties can be marked
as read-only, which is not displayed in the Class Details
window. The Properties window in Figure 10-5 shows
the full list of attributes for the Orders property of the
Customer class.

Figure 10-5 shows that the Orders property is
read-only and that it is not static. It also shows that
this property is defined in the Customer.cs file. With
partial classes, a class may be separated over multiple
files. When a partial class is selected, the File Name
property shows all files defining that class as a
comma-delimited list. Although some of these
properties are read-only in this window, they can, of
course, be adjusted within the appropriate code file.

layout

Because the class diagram is all about visualizing
classes, you have several toolbar controls at your
disposal to create the layout of the entities on the
Designer. Figure 10-6 shows the toolbar that appears as part of the Designer surface.

The first three buttons control the layout of entity components. From left to right, the buttons are
Group by Kind, Group by Access, and Sort Alphabetically.

The next two buttons are used to automate the process of arranging the entities on the design
surface. On the left is the Layout Diagram button, which automatically repositions the entities on
the design surface. It also minimizes the entities, hiding all components. The right button, Adjust
Shapes Width, adjusts the size of the entities so that all components are fully visible. If a single
component is selected, the “Adjust Shapes Width” button adjusts the width of only that component.
If no components are selected, the width of all components are adjusted.

Entity components, such as fields, properties, and methods, can be hidden using the Hide
Member button.

The display style of entity components can be adjusted using the next three buttons. The left button,
Display Name, sets the display style to show only the name of the component. This can be extended
to show both the name and the component type using the Display Name and Type button. The right
button, Display Full Signature, sets the display style to be the full component signature. This is
often the most useful, although it takes more space to display.

The remaining controls on the toolbar enable you to zoom in and out on the Class Designer, and to
display the Class Details window.

fiGure 10-5

fiGure 10-6

layout ❘ 181

http://lib.ommolketab.ir
http//lib.ommolketab.ir

182 ❘ chaPter 10 modeling WiTh The clASS deSigner

exPortinG diaGraMs

Quite often, the process of designing which classes will be part of the system architecture is a part
of a much larger design or review process. Therefore, it is a common requirement to export the class
diagram for inclusion in reports.

You can export a class diagram either by right-clicking the context menu from any space on
the Class Designer or via the Class Diagram menu. Either way, selecting the Export Diagram as
Image menu item opens a dialog prompting you to select an image format and filename for saving
the diagram.

You can also copy and paste an image directly into Microsoft Word or a drawing program such as
Visio. To do this, you must first select one or more classes on the diagram.

Lastly, you can also print Class Diagrams directly from Visual Studio through the normal
File ➪ Print menu option.

code Generation and refactorinG

One of the core goals of Visual Studio 2010 and the .NET Framework is to reduce the amount
of code that developers have to write. This goal is achieved in two ways: either reduce the total
amount of code that has to be written or reduce the amount that actually has to be written
manually. The first approach is supported through a very rich set of base classes included in
the .NET Framework. The second approach, reduce the amount of code that is written
manually, is supported by the code generation and refactoring tools included with the
Class Designer.

drag-and-drop code Generation
Almost every action performed on the class diagram results in a change in the underlying source
code, and essentially provides some level of code generation. We’ve already covered a number
of these changes, such as adding a property or method to a class in the Class Details window.
However, some more advanced code generation actions can be performed by manipulating the
class diagram.

As explained earlier in the chapter, you can use the Inheritance connector to establish an
inheritance relationship between a parent class and an inheriting class. When you do this, the code
file of the derived class is updated to reflect this change. However, when the parent class is abstract,
as in the case of the Product class in Figure 10-7, the Class Designer can perform some additional
analysis and code generation. If the parent class is an abstract class and contains any abstract
members, those members are automatically implemented in the inheriting classes. This is shown
in Figure 10-7 (right) where the abstract properties Description, Price, and SKU have been added
to the Book class. The method GetInventory() was not implemented because it was not marked
as abstract.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Inheritance connector can be used in one more way that results in automatic code generation.
In Figure 10-8 (left) an interface, ICrudActions, has been added to the diagram. When the
Inheritance connector is dragged from a class to the interface, all the members of the interface are
implemented on the class, as shown in Figure 10-8 (right).

fiGure 10-7

fiGure 10-8

The following code shows the code that is automatically generated when the ICrudActions interface
is added to the Book class.

c#

#region ICrudActions Members
 public Guid UniqueId
 {
 get
 {
 throw new NotImplementedException();
 }
 set
 {
 throw new NotImplementedException();
 }
 }

Code Generation and refactoring ❘ 183

http://lib.ommolketab.ir
http//lib.ommolketab.ir

184 ❘ chaPter 10 modeling WiTh The clASS deSigner

 public void Create()
 {
 throw new NotImplementedException();
 }

 public void Update()
 {
 throw new NotImplementedException();
 }

 public void Read()
 {
 throw new NotImplementedException();
 }

 public void Delete()
 {
 throw new NotImplementedException();
 }
#endregion

Visual basic

#Region ICrudActions Members
 Public Property UniqueId As Guid
 Get
 throw new NotImplementedException()
 End Get
 Set
 throw new NotImplementedException()
 End Set
 End Property

 Public Sub Create()
 throw new NotImplementedException()
 End Sub

 Public Sub Update()
 throw new NotImplementedException()
 End Sub

 Public Sub Read()
 throw new NotImplementedException()
 End Sub

 Public Sub Delete()
 throw new NotImplementedException()
 End Sub
#End Region

intellisense code Generation
The rest of the code generation functions in the Class Designer are available under the somewhat
unintuitively named IntelliSense submenu. Because these code generation functions apply only to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

classes, this menu is visible only when a class or abstract class has been selected on the diagram.
The two code generation functions included on this menu are Implement Abstract Class and
Override Members.

 The Implement Abstract Class function ensures that all abstract members from the base class
are implemented in the inheriting class. To access
this function, right - click the inheriting class,
choose IntelliSense, and then choose Implement
Abstract Class.

 Somewhat related is the Override Members
function, which is used to select public properties
or methods from a base class that you would like
to override. To access this function, right - click
the inheriting class, choose IntelliSense, and then
choose Override Members. The dialog box shown
in Figure 10 - 9 is displayed, populated with the base
classes and any properties or methods that have not
already been overridden.

 refactoring with the class designer
 In Chapter 8 you saw how Visual Studio 2010 provides support for refactoring code from the code
editor window. The Class Designer also exposes a number of these refactoring functions when
working with entities on a class diagram.

 The refactoring functions in the Class Designer are available by right - clicking an entity, or any of its
members, and choosing an action from the Refactor submenu. The following refactoring functions
are available:

 ➤ Rename Types and Type Members: Allows you to rename a type or a member of a type on
the class diagram or in the Properties window. Renaming a type or type member changes it
in all code locations where the old name appeared. You can even ensure that the change is
propagated to any comments or static strings.

 ➤ Encapsulate Field: Enables you to quickly create a new property from an existing fi eld, and
then seamlessly update your code with references to the new property.

 ➤ Reorder or Remove Parameters (C# only): Enables you to change the order of method
parameters in types, or to remove a parameter from a method.

 ➤ Extract Interface (C# only): You can extract the members of a type into a new interface.
This function allows you to select only a subset of the members that you want to extract
into the new interface.

You can also use the standard Windows Cut, Copy, and Paste actions to copy
and move members between types.

fiGure 10-9

Code Generation and refactoring ❘ 185

http://lib.ommolketab.ir
http//lib.ommolketab.ir

186 ❘ chaPter 10 modeling WiTh The clASS deSigner

ModelinG Power toys for Visual studio

Although the Class Designer is a very useful tool for designing and visualizing a class hierarchy,
it can be cumbersome and unwieldy when trying to work with very large diagrams. To ease this
burden you can either break up the diagram into multiple class diagrams, or install the Modeling
Power Toys for Visual Studio 2010.

Modeling Power Toys is a free add-in to Visual Studio that extends the functionality of the Class
Designer in several ways. It includes enhancements that enable you to work more effectively with
large diagrams including panning and zooming, improved scrolling, and diagram search. It also
provides functions that address some of the limitations of the Class Designer such as the ability to
create nested types and new derived classes and display XML comments.

The add-in, including source code, is available from http://modeling.codeplex.com/.
The download includes an MSI file for easy installation.

Visualization enhancements
The Modeling Power Toys for Visual Studio 2010
provides some very useful enhancements for visualizing
and working with large class diagrams. The diagram
search feature is one of the more useful; it allows you
to search the entities on a diagram for a specific search
term. The search dialog, shown in Figure 10-10, is
invoked via the standard Find menu item or Ctrl+F
shortcut.

Another useful tool for large diagrams is the panning tool, which provides an easy way to see an
overview of the entire diagram and navigate to different areas without changing the zoom level. You
can invoke this tool by clicking a new icon that appears in the bottom right of the window, which
displays the panning window, as shown in Figure 10-11.

fiGure 10-10

fiGure 10-11

http://modeling.codeplex.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Modeling Power Toys also allows quite fine control over what is displayed on the diagram via
the filtering options. These are available via the Class Diagram menu, and include:

 ➤ Hide Inheritance Lines: Hides all inheritance lines in the selection.

 ➤ Show All Inheritance Lines: Shows all hidden inheritance lines on the diagram.

 ➤ Show All Public Associations: Shows all possible public associations on the diagram.

 ➤ Show All Associations: Shows all possible associations on the diagram.

 ➤ Show Associations As Members: Shows all association lines as members.

 ➤ Hide Private: Hides all private members.

 ➤ Hide Private and Internal: Hides all private and/or internal members.

 ➤ Show Only Public: Hides all members except for public; all hidden public members are
shown.

 ➤ Show Only Public and Protected: Hides all members except for public and protected; hidden
public and/or protected members are shown.

 ➤ Show All Members: Shows all hidden members.

functionality enhancements
Modeling Power Toys includes a number of enhancements that address some of the functional
limitations of the Class Designer. Though the Class Designer can display nested types, you cannot
create them using the design surface.

This constraint is addressed by the Modeling Power Toys by enabling you to add nested types
including classes, enumerations, structures, or delegates. You can also easily add several new
member types, such as read-only properties and indexers.

There are also some improvements around
working with interfaces. Often it is difficult to
understand what members of a class have been
used to implement an interface. The Modeling
Power Toys simplifies this by adding a Select
Members menu item to the interface lollipop
label on a type. For example, in Figure 10-12,
the Select Members command is being invoked
on the IStatus interface.

In addition to those mentioned here, many
other minor enhancements and functionality
improvements are provided by the Modeling
Power Toys that add up to make it a very
useful extension.

fiGure 10-12

Modeling Power Toys for Visual studio ❘ 187

http://lib.ommolketab.ir
http//lib.ommolketab.ir

188 ❘ chaPter 10 modeling WiTh The clASS deSigner

suMMary

This chapter focused on the Class Designer, one of the best tools built into Visual Studio 2010
for generating and understanding code. The design surface and supporting toolbars and
windows provide a rich user interface with which complex class hierarchies and associations
can be modeled and designed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART III

digging deeper

chaPter 11: ⊲ Unit Testing

chaPter 12: ⊲ Documentation with XML Comments

chaPter 13: ⊲ Code Consistency Tools

chaPter 14: ⊲ Code Generation with T4

chaPter 15: ⊲ Project and Item Templates

chaPter 16: ⊲ Language-Specifi c Features

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11
 Unit Testing

 what ’ s in this chaPter?

 Generating a test harness from existing code ➤

 Making assertions about the behavior of your code ➤

 Executing custom code during test life - cycle events ➤

 Creating data - driven tests ➤

 Testing private members and code contracts ➤

 Managing lists of tests ➤

 Application testing is one of the most important parts of writing software. Research into
the costs of software maintenance have revealed that a software defect can cost up to 25
times more to fi x if it makes it to a production environment than if it had been caught during
development. At the same time, a lot of testing involves repetitive, dull, and error - prone work
that must be undertaken every time you make a change to your code base. The easiest way to
counter this is to produce repeatable automated tests that can be executed by a computer on
demand. This chapter looks at a specifi c type of automated testing that focuses on individual
components, or units, of a system. Having a suite of automated unit tests gives you the power
to verify that your individual components all work as specifi ed even after making radical
changes to them.

 Visual Studio 2010 has a built - in framework for authoring, executing, and reporting on test
cases. Originally included only in the Team System Edition of Visual Studio, many of the
testing tools are now available in the Professional Edition. This means a much wider audience
can now more easily obtain the benefi ts of automated, robust testing. This chapter focuses on
creating, confi guring, running, and managing a suite of unit tests as well as adding support to
drive the tests from a set of data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

192 ❘ chaPter 11 uniT TeSTing

your first test case

Writing test cases is not a task that is easily automated, because the test cases have to mirror the
functionality of the software being developed. However, at several steps in the process code stubs
can be generated by a tool. To illustrate this, start with a fairly straightforward snippet of code to
learn to write test cases that fully exercise the code. Setting the scene is a Subscription class with
a public property called CurrentStatus, which returns the status of the current subscription as an
enumeration value:

Vb

Public Class Subscription
 Public Enum Status
 Temporary
 Financial
 Unfinancial
 Suspended
 End Enum

 Public Property PaidUpTo As Nullable(Of Date)

 Public ReadOnly Property CurrentStatus As Status
 Get
 If Not Me.PaidUpTo.HasValue Then Return Status.Temporary
 If Me.PaidUpTo > Now Then
 Return Status.Financial
 Else
 If Me.PaidUpTo >= Now.AddMonths(-3) Then
 Return Status.Unfinancial
 Else
 Return Status.Suspended
 End If
 End If
 End Get
 End Property
End Class

Code snippet Subscriptions\Subscription.vb

c#

public class Subscription
{
 public enum Status
 {
 Temporary,
 Financial,
 Unfinancial,
 Suspended
 }

 public DateTime? PaidUpTo { get; set; }

 public Status CurrentStatus

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {
 get
 {
 if (this.PaidUpTo.HasValue == false)
 return Status.Temporary;
 if (this.PaidUpTo > DateTime.Today)
 return Status.Financial;
 else
 {
 if (this.PaidUpTo >= DateTime.Today.AddMonths(-3))
 return Status.Unfinancial;
 else
 return Status.Suspended;
 }
 }
 }
}

Code snippet Subscriptions\Subscription.cs

As you can see from the code snippet, four code paths need to be tested for the Current
Status property. To test this property you create a separate SubscriptionTest test class
in a new test project, into which you add a test method that contains the code necessary
to instantiate a Subscription object, set the PaidUpTo property, and check that the
CurrentStatus property contains the correct result. Then you keep adding test methods
until all of the code paths through the CurrentStatus property have been executed
and tested.

Fortunately, Visual Studio automates the process of creating a new test project, creating
the appropriate SubscriptionTest class and writing the code to create the Subscription
object. All you have to do is complete the test method. It also provides a runtime engine that
is used to run the test case, monitor its progress, and report on any outcome from the test.
Therefore, all you have to do is write the code to test the property in question. In fact, Visual
Studio generates a code stub that executes the property being tested. However, it does not
generate code to ensure that the Subscription object is in the correct initial state; this you
must do yourself.

You can create empty test cases from the Test menu by selecting the New Test item. This prompts
you to select the type of test to create, after which a blank test is created in which you need to
manually write the appropriate test cases. However, you can also create a new unit test that contains
much of the stub code by selecting the Create Unit Tests menu item from the right-click context menu
of the main code window. For example, right-clicking within the CurrentStatus property and
selecting this menu item brings up the Create Unit Tests dialog displayed in Figure 11-1. This dialog
shows all the members of all the classes within the current solution and enables you to select the items
for which you want to generate a test stub.

Your first Test Case ❘ 193

http://lib.ommolketab.ir
http//lib.ommolketab.ir

194 ❘ chaPter 11 uniT TeSTing

 If you have a unit test project already in your solution you can generate your new test class into it by
selecting it from the Output Project drop - down list; otherwise, keep the default selection and Visual
Studio will create a new test project for you. Unlike alternative unit test frameworks such as NUnit,
which allow test classes to reside in the same project as the source code, the testing framework
within Visual Studio requires that all test cases reside in a separate test project. When test cases are
created from the dialog shown in Figure 11 - 1, they are named according to the name of the member
and the name of the class to which they belong.

 fiGure 11 - 1

 You can alter this naming convention in the Test Generation Settings dialog,
which you can access by clicking the Settings button. You will fi nd other settings
that allow you to control how the test code is generated as well.

 With the CurrentStatus property checked as in Figure 11 - 1, clicking the OK button generates the
following code (some comments and commented - out code have been removed from this code):

 Vb

 < TestClass() >
Public Class SubscriptionTest

 Private testContextInstance As TestContext

 Public Property TestContext() As TestContext

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Get
 Return testContextInstance
 End Get
 Set(ByVal value As TestContext)
 testContextInstance = value
 End Set
 End Property

 <TestMethod()>
 Public Sub CurrentStatusTest()
 Dim target As Subscription = New Subscription()
‘ TODO: Initialize to an appropriate value
 Dim actual As Subscription.Status
 actual = target.CurrentStatus
 Assert.Inconclusive(“Verify the correctness of this test method.”)
 End Sub
End Class

Code snippet SubscriptionTests\SubscriptionTest.vb

c#

[TestClass()]
public class SubscriptionTest
{

 private TestContext testContextInstance;

 public TestContext TestContext
 {
 get
 {
 return testContextInstance;
 }
 set
 {
 testContextInstance = value;
 }
 }

 [TestMethod()]
 public void CurrentStatusTest()
 {
 Subscription target = new Subscription();
// TODO: Initialize to an appropriate value
 Subscription.Status actual;
 actual = target.CurrentStatus;
 Assert.Inconclusive(“Verify the correctness of this test method.”);
 }
}

Code snippet SubscriptionTests\SubscriptionTest.cs

Your first Test Case ❘ 195

http://lib.ommolketab.ir
http//lib.ommolketab.ir

196 ❘ chaPter 11 uniT TeSTing

 The test case generated for the CurrentStatus property appears in the fi nal method of this code
snippet. (The top half of this class is discussed later in this chapter.) As you can see, the test case
was created with a name that refl ects the property it is testing (in this case CurrentStatusTest) in
a class that refl ects the class in which the property appears (in this case SubscriptionTest). One of
the diffi culties with test cases is that they can quickly become unmanageable. This simple naming
convention ensures that test cases can easily be found and identifi ed.

 If you look at the test case in more detail, you
can see that the generated code stub contains
the code required to initialize everything for
the test. A Subscription object is created,
and a test variable called actual is assigned
the CurrentStatus property of that object.
All that is missing is the code to actually test
that this value is correct. Before going any
further, run this test case to see what happens
by opening the Test View window, shown in
Figure 11 - 2, from the Test Windows menu.

 Selecting the CurrentStatusTest item and clicking the Run Selection button, the fi rst on the left,
invokes the test. This also opens the Test Results window, which initially shows the test as being
either Pending or In Progress.

 fiGure 11 - 2

 The Test View is just one way to select and run a test case. If you right - click the
test case itself in the code window there is a Run Tests option. There is also a
Tests toolbar with an option to run all the tests in the current context. This will
run an individual test case, a whole test class, a test assembly, or all tests in the
solution depending on the current selection. Finally, you can create lists of tests
using the Test List Editor, which you see later in this chapter.

 In addition to each of these methods you can also set breakpoints in your code
and run test cases in the debugger by selecting one of the Debug Tests options
from the main toolbar or the Test View window.

 Once the test has completed, the Test Results window will look like the one shown in Figure 11 - 3.

 fiGure 11 - 3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 You can see from Figure 11 - 3 that the test case has returned an inconclusive result. Essentially, this
indicates either that a test is not complete or that the results should not be relied upon, because
changes may have been made that would make this test invalid.

 You can get more information on the result of any particular test result by double - clicking it.
Figure 11 - 4 shows the result of double - clicking the inconclusive result for the example. The results
show basic information about the test, the result, and other useful environmental information such
as the computer name, test execution duration, and start and end times.

 As well as information about a particular result, you can also get information
about a complete test run by clicking the Run Details button in the Test Results
window. By default, the Test Results window shows the details of the most
recent test run, but Visual Studio stores all of the results from a number of recent
test runs and you can use the Test Run drop - down list to browse the results of
previous runs.

 fiGure 11 - 4

 When test cases are generated by Visual Studio, they are all initially marked as inconclusive by
means of the Assert.Inconclusive statement. In addition, depending on the test stub that was
created, there may be additional TODO statements that will prompt you to complete the test case.

 Returning to the code snippet generated for the CurrentStatusTest method, you can see both
an Assert.Inconclusive statement and a TODO item. To complete this test case, remove the TODO
comment and replace the Assert.Inconclusive statement with Assert.AreEqual , as shown in the
following code:

 Vb

 < TestMethod() >
 Public Sub CurrentStatusTest()
 Dim target As Subscription = New Subscription
 Dim actual As Subscription.Status
 actual = target.CurrentStatus
 Assert.AreEqual(Subscription.Status.Temporary, actual, _
 “ Subscription.CurrentStatus was not set correctly. ”)
 End Sub

Code snippet SubscriptionTests\SubscriptionTest.vb

Your first Test Case ❘ 197

http://lib.ommolketab.ir
http//lib.ommolketab.ir

198 ❘ chaPter 11 uniT TeSTing

 c#

[TestMethod()]
public void CurrentStatusTest()
{
 Subscription target = new Subscription();
 Subscription.Status actual;
 actual = target.CurrentStatus;
 Assert.AreEqual(Subscription.Status.Temporary, actual,
 “ Subscription.CurrentStatus was not set correctly. ”);
}

Code snippet SubscriptionTests\SubscriptionTest.cs

 Each test shown in the Test Results window has a checkbox next to it allowing it to be selected.
When test results are selected, clicking the Run Tests button in the Test Results window causes only
those selected tests to be run. By default, after a test run any tests that did not pass are selected.
After you fi x the code that caused these tests to fail, click the Run Tests button to re - run these test
cases and produce a successful result, as shown in Figure 11 - 5.

 fiGure 11 - 5

 When you fi rst created the unit test at the start of this chapter you may have noticed that, in
addition to the new test project, two items were added under a new solution folder called Solution
Items. These are Chapter11.vsmdi and Local.testsettings .

 The .vsmdi fi le is a metadata fi le that contains information about the tests within the solution.
When you double - click this fi le in Visual Studio, it opens the Test List Editor, which is discussed at
the end of this chapter.

 The .testsettings fi le is a Test Run Confi guration fi le. This is an XML fi le that stores settings
that control how a set of tests, called a test run , is executed. You can create and save multiple run

 Any test case that makes no assertions is considered to pass, which is why Visual
Studio automatically puts an Assert.Inconclusive warning into generated
test cases. By removing this assertion you are indicating that the test case is
complete. In this example, we have only exercised one code path and you should
add further test cases that fully exercise the other three.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

confi gurations that represent different scenarios, and then make a specifi c run confi guration active
using the Test ➪ Select Active Test Run Confi guration menu item. This defi nes which of the test run
confi gurations should be used when tests are run.

 If you are using the Ultimate edition of Visual Studio then you might also have
a TraceAndTestImpact.testsettings fi le when you create a new test project.
This Test Run Confi guration is used by Visual Studio to implement the Test
Impact Analysis feature which is covered in Chapter 56.

 When you double - click to open the Local.testsettings fi le, it launches a special - purpose editor.
Within this editor you can confi gure a test run to copy required support fi les to a deployment
directory, or link to custom startup and cleanup scripts. The editor also includes a Test Timeouts
section, shown in Figure 11 - 6, which enables you to defi ne a timeout after which a test will be
aborted or marked as failed. This is useful if a global performance limit has been specifi ed for your
application (for example, if all screens must return within fi ve seconds).

 fiGure 11 - 6

 Most of these settings can be overridden on a per - method basis by means of test attributes, which
are discussed in the next section.

Your first Test Case ❘ 199

http://lib.ommolketab.ir
http//lib.ommolketab.ir

200 ❘ chaPter 11 uniT TeSTing

identifying tests using attributes
Before going any further with this scenario, take a step back and consider how testing is carried
out within Visual Studio 2010. As mentioned earlier, all test cases have to exist within test classes
that themselves reside in a test project. But what really distinguishes a method, class, or project as
containing test cases? Starting with the test project, if you look at the underlying XML project file,
you will see that there is virtually no difference between a test project file and a normal class library
project file. In fact, the only difference appears to be the project type: When this project is built
it simply outputs a standard .NET class library assembly. The key difference is that Visual Studio
recognizes this as a test project and automatically analyzes it for any test cases in order to populate
the various test windows.

Classes and methods used in the testing process are marked with an appropriate attribute. The
attributes are used by the testing engine to enumerate all the test cases within a particular assembly.

TestClass
All test cases must reside within a test class that is appropriately marked with the TestClass
attribute. Although it may appear that there is no reason for this attribute other than to align test
cases with the class and member that they are testing, you will later see some benefits associated
with grouping test cases using a test class. In the case of testing the Subscription class, a test class
called SubscriptionTest was created and marked with the TestClass attribute. Because Visual
Studio uses attributes to locate classes that contain test cases, the name of this class is irrelevant.
However, adopting a naming convention, such as adding the Test suffix to the class being tested,
makes it easier to manage a large number of test cases.

TestMethod
Individual test cases are marked with the TestMethod attribute, which is used by Visual Studio
to enumerate the list of tests that can be executed. The CurrentStatusTest method in the
SubscriptionTest class is marked with the TestMethod attribute. Again, the actual name of
this method is irrelevant, because Visual Studio only uses the attributes. However, the method
name is used in the various test windows when the test cases are listed, so it is useful for test
methods to have meaningful names. This is especially true when reviewing test results.

additional test attributes
As you have seen, the unit-testing subsystem within Visual Studio uses attributes to identify test
cases. A number of additional properties can be set to provide further information about a test case.
This information is then accessible either via the Properties window associated with a test case or
within the other test windows. This section goes through the descriptive attributes that can be applied
to a test method.

Description
Because test cases are listed by test method name, a number of tests may have similar names, or
names that are not descriptive enough to indicate what functionality they test. The Description
attribute, which takes a String as its sole argument, can be applied to a test method to provide
additional information about a test case.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 owner
 The Owner attribute, which also takes a String argument, is useful for indicating who owns, wrote,
or is currently working on a particular test case.

 Priority
 The Priority attribute, which takes an Integer argument, can be applied to a test case to indicate
the relative importance of a test case. Though the testing framework does not use this attribute, it is
useful for prioritizing test cases when you are determining the order in which failing, or incomplete,
test cases are resolved.

 Test Categories
 The TestCategory attribute accepts a single String identifying one user - defi ned category for
the test. Like the Priority attribute the TestCategory attribute is essentially ignored by Visual
Studio but is useful for sorting and grouping related items together. A test case may belong to many
categories but must have a separate attribute for each one.

 Work items
 The WorkItem attribute can be used to link a test case to one or more work items in a work - item -
 tracking system such as Team Foundation Server. If you apply one or more WorkItem attributes to a
test case, you can review the test case when making changes to existing functionality. You can read
more about Team Foundation Server in Chapter 57.

 ignore
 It is possible to temporarily prevent a test method from running by applying the Ignore attribute to
it. Test methods with the Ignore attribute will not be run and will not show up in the results list of
a test run.

 You can apply the Ignore attribute to a test class as well to switch off all of the
test methods within it.

 Timeout
 A test case can fail for any number of reasons. A performance test, for example, might require
a particular functionality to complete within a specifi ed time frame. Instead of the tester having
to write complex multi - threading tests that stop the test case once a particular timeout has been
reached, you can apply the Timeout attribute to a test case with a timeout value in milliseconds, as
shown in the following code. This ensures that the test case fails if that timeout is reached.

Your first Test Case ❘ 201

http://lib.ommolketab.ir
http//lib.ommolketab.ir

202 ❘ chaPter 11 uniT TeSTing

Vb

<TestMethod()>
<Owner(“Mike Minutillo”)>
<Description(“Tests the functionality of the Current Status Property”)>
<Priority(3)>
<Timeout(10000)>
<TestCategory(“Financial”)>
Public Sub CurrentStatusTest()
 Dim target As Subscription = New Subscription
 Dim actual As Subscription.Status
 actual = target.CurrentStatus
 Assert.AreEqual(Subscription.Status.Temporary, actual, _
 “Subscription.CurrentStatus was not set correctly.”)
End Sub

Code snippet SubscriptionTests\SubscriptionTest.vb

c#

[TestMethod()]
[Owner(“Mike Minutillo”)]
[Description(“Tests the functionality of the Current Status Method”)]
[Priority(3)]
[Timeout(10000)]
[TestCategory(“Financial”)]
public void CurrentStatusTest()
{
 Subscription target = new Subscription();
 Subscription.Status actual;
 actual = target.CurrentStatus;
 Assert.AreEqual(Subscription.Status.Temporary, actual,
 “Subscription.CurrentStatus was not set correctly.”);
}

Code snippet SubscriptionTests\SubscriptionTest.cs

This snippet augments the original CurrentStatusTest method with some of these attributes to
illustrate their usage. In addition to providing additional information about what the test case does
and who wrote it, this code assigns the test case a priority of 3 and a category of “Financial”.
Lastly, the code indicates that this test case should fail if it takes more than 10 seconds (10,000
milliseconds) to execute.

assertinG the facts

So far, this chapter has examined the structure of the test environment and how test cases are
nested within test classes in a test project. What remains is to look at the body of the test case and
review how test cases either pass or fail. (When a test case is generated, you saw that an Assert
.Inconclusive statement is added to the end of the test to indicate that it is incomplete.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The idea behind unit testing is that you start with the system, component, or object in a known
state, and then run a method, modify a property, or trigger an event. The testing phase comes at
the end, when you need to validate that the system, component, or object is in the correct state.
Alternatively, you may need to validate that the correct output was returned from a method or
property. You do this by attempting to assert a particular condition. If this condition is not true, the
testing system reports this result and ends the test case. A condition is asserted, not surprisingly, via
the Assert class. There is also a StringAssert class and a CollectionAssert class, which provide
additional assertions for dealing with String objects and collections of objects, respectively.

the assert class
The Assert class in the UnitTesting namespace, not to be confused with the Debug.Assert or
Trace.Assert method in the System.Diagnostics namespace, is the primary class used to make
assertions about a test case. The basic assertion has the following format:

Vb

Assert.IsTrue(variableToTest, “Output message if this fails”)

c#

Assert.IsTrue(variableToTest, “Output message if this fails”);

As you can imagine, the first argument is the condition to be tested. If this is true, the test case
continues operation. However, if it fails, the output message is emitted and the test case exits with a
failed result.

This statement has multiple overloads whereby the output message can be omitted or String
formatting parameters supplied. Because quite often you won’t be testing a single positive condition,
several additional methods simplify making assertions within a test case:

 ➤ IsFalse: Tests for a negative, or false, condition

 ➤ AreEqual: Tests whether two arguments have the same value

 ➤ AreSame: Tests whether two arguments refer to the same object

 ➤ IsInstanceOfType: Tests whether an argument is an instance of a particular type

 ➤ IsNull: Tests whether an argument is nothing

This list is not exhaustive — several more methods exist, including negative equivalents of those
listed. Also, many of these methods have overloads that allow them to be invoked in several
different ways.

the stringassert class
The StringAssert class does not provide any additional functionality that cannot be achieved with
one or more assertions via the Assert class. However, it not only simplifies the test case code by
making it clear that String assertions are being made; it also reduces the mundane tasks associated
with testing for particular conditions. The additional assertions are as follows:

asserting the facts ❘ 203

http://lib.ommolketab.ir
http//lib.ommolketab.ir

204 ❘ chaPter 11 uniT TeSTing

 ➤ Contains: Tests whether a String contains another String

 ➤ DoesNotMatch: Tests whether a String does not match a regular expression

 ➤ EndsWith: Tests whether a String ends with a particular String

 ➤ Matches: Tests whether a String matches a regular expression

 ➤ StartsWith: Tests whether a String starts with a particular String

the collectionassert class
Similar to the StringAssert class, CollectionAssert is a helper class that is used to make
assertions about a collection of items. Some of the assertions are as follows:

 ➤ AllItemsAreNotNull: Tests that none of the items in a collection is a null reference

 ➤ AllItemsAreUnique: Tests that no duplicate items exist in a collection

 ➤ Contains: Tests whether a collection contains a particular object

 ➤ IsSubsetOf: Tests whether a collection is a subset of another collection

the expectedexception attribute
Sometimes test cases have to execute paths of code that can cause exceptions to be raised. Though
exception coding should be avoided, conditions exist where this might be appropriate. Instead
of writing a test case that includes a Try-Catch block with an appropriate assertion to test that
an exception was raised, you can mark the test case with an ExpectedException attribute. For
example, change the CurrentStatus property to throw an exception if the PaidUp date is prior to
the date the subscription opened, which in this case is a constant:

Vb

Public Const SubscriptionOpenedOn As Date = #1/1/2000#
Public ReadOnly Property CurrentStatus As Status
 Get
 If Not Me.PaidUpTo.HasValue Then Return Status.Temporary
 If Me.PaidUpTo > Now Then
 Return Status.Financial
 Else
 If Me.PaidUpTo >= Now.AddMonths(-3) Then
 Return Status.Unfinancial
 ElseIf Me.PaidUpTo > SubscriptionOpenedOn Then
 Return Status.Suspended
 Else
 Throw New ArgumentOutOfRangeException(_
 “Paid up date is not valid as it is before the subscription opened.”)
 End If
 End If
 End Get
End Property

Code snippet Subscriptions\Subscription.cs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

public static readonly DateTime SubscriptionOpenedOn = new DateTime(2000, 1, 1);
public Status CurrentStatus
{
 get
 {
 if (this.PaidUpTo.HasValue == false)
 return Status.Temporary;
 if (this.PaidUpTo > DateTime.Today)
 return Status.Financial;
 else
 {
 if (this.PaidUpTo >= DateTime.Today.AddMonths(-3))
 return Status.Unfinancial;
 else if (this.PaidUpTo >= SubscriptionOpenedOn)
 return Status.Suspended;
 else
 throw new ArgumentOutOfRangeException(
 “Paid up date is not valid as it is before the subscription opened”);
 }
 }
}

Code snippet Subscriptions\Subscription.vb

Using the same procedure as before, you can create a separate test case for testing this code path, as
shown in the following example:

Vb

<TestMethod()>
<ExpectedException(GetType(ArgumentOutOfRangeException),
 “Argument exception not raised for invalid PaidUp date.”)>
Public Sub CurrentStatusExceptionTest()
 Dim target As Subscription = New Subscription

 target.PaidUpTo = Subscription.SubscriptionOpenedOn.AddMonths(-1)

 Dim expected = Subscription.Status.Temporary

 Assert.AreEqual(expected, target.CurrentStatus, _
 “This assertion should never actually be evaluated“)
End Sub

Code snippet SubscriptionTests\SubscriptionTest.vb

c#

[TestMethod()]
[ExpectedException(typeof(ArgumentOutOfRangeException),
 “Argument Exception not raised for invalid PaidUp date.”)]
public void CurrentStatusExceptionTest()
{

asserting the facts ❘ 205

http://lib.ommolketab.ir
http//lib.ommolketab.ir

206 ❘ chaPter 11 uniT TeSTing

 Subscription target = new Subscription();
 target.PaidUpTo = Subscription.SubscriptionOpenedOn.AddMonths(-1);

 var expected = Subscription.Status.Temporary;

 Assert.AreEqual(expected, target.CurrentStatus,
 “This assertion should never actually be evaluated“);
}

Code snippet SubscriptionTests\SubscriptionTest.cs

The ExpectedException attribute not only catches any exception raised by the test case; it also
ensures that the type of exception matches the type expected. If no exception is raised by the test
case, this attribute will cause the test to fail.

initializinG and cleaninG uP

Despite Visual Studio generating the stub code for test cases you are to write, typically you have
to write a lot of setup code whenever you run a test case. Where an application uses a database,
that database should be returned to its initial state after each test to ensure that the test cases are
completely repeatable. This is also true for applications that modify other resources such as the file
system. Visual Studio provides support for writing methods that can be used to initialize and clean
up around test cases. (Again, attributes are used to mark the appropriate methods that should be
used to initialize and clean up the test cases.)

The attributes for initializing and cleaning up around test cases are broken down into three levels:
those that apply to individual tests, those that apply to an entire test class, and those that apply to
an entire test project.

testinitialize and testcleanup
As their names suggest, the TestInitialize and TestCleanup attributes indicate methods that
should be run before and after each test case within a particular test class. These methods are
useful for allocating and subsequently freeing any resources that are needed by all test cases in the
test class.

classinitialize and classcleanup
Sometimes, instead of setting up and cleaning up after each test, it can be easier to ensure
that the environment is in the correct state at the beginning and end of running an entire test
class. Previously, we explained that test classes are a useful mechanism for grouping test cases;
this is where you put that knowledge to use. Test cases can be grouped into test classes that
contain one method marked with the ClassInitialize attribute and another marked with the
ClassCleanup attribute. These methods must both be marked as static, and the one marked with
ClassInitialize must take exactly one parameter that is of type UnitTesting.TestContext,
which is explained later in this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 assemblyinitialize and assemblycleanup
 The fi nal level of initialization and cleanup attributes is at the assembly, or project, level. Methods
that are intended to initialize the environment before running an entire test project, and cleaning up
after, can be marked with the AssemblyInitialize and AssemblyCleanup attributes, respectively.
Because these methods apply to any test case within the test project, only a single method can
be marked with each of these attributes. Like the class - level equivalents, these methods must
both be static and the one marked with AssemblyInitialize must take a parameter of type
 UnitTesting.TestContext .

 For both the assembly - level and class - level attributes, it is important to remember that even if only
one test case is run, the methods marked with these attributes will also be run.

 When you use the Create Unit Test menu to generate a unit test, it generates
stubs for the TestInitialize , TestCleanup , ClassInitialize , and
 ClassCleanup methods in a source code region that is commented out.

 It is a good idea to put the methods marked with AssemblyInitialize and
 AssemblyCleanup together into their own test class to make them easy to fi nd.
If there is more than one method marked with either of these attributes, then
running any tests in the project results in a runtime error.

 testinG context

 When you are writing test cases, the testing engine can assist you in a number of ways, including
by managing sets of data so you can run a test case with a range of data, and by enabling you
to output additional information for the test case to aid in debugging. This functionality is
available through the TestContext object that is generated within a test class and passed into the
 AssemblyInitialize and ClassInitialize methods.

 data
 The CurrentStatusTest method generated in the fi rst section of this chapter tested only a single
path through the CurrentStatus property. To fully test this method, you could have written
additional statements and assertions to set up and test the Subscription object. However, this
process is fairly repetitive and would need to be updated if you ever changed the structure of the
 CurrentStatus property. An alternative is to provide a DataSource for the CurrentStatusTest

Testing Context ❘ 207

http://lib.ommolketab.ir
http//lib.ommolketab.ir

208 ❘ chaPter 11 uniT TeSTing

method whereby each row of data tests a different path through the property. To add appropriate
data to this method, use the following process:

 1 . Create a local SQL CE database and database table to store the various test data. In this
case, create a database called LoadTest with a table called Subscription_CurrentStatus .
The table has an Identity bigint column called Id, a nullable datetime column called
PaidUp, and an nvarchar(20) column called Status.

 2 . Add appropriate data values to the table to cover all paths
through the code. Test values for the CurrentStatus
property are shown in Figure 11 - 7.

 3 . Select the appropriate test case in the Test View window
and open the Properties window. Select the Data
Connection String property and click the ellipsis button
to open the Connection Properties dialog.

 4 . Use the Connection Properties dialog to connect to the database created in Step 1. You
should see a connection string similar to the following:

data source=|DataDirectory|\LoadTest.sdf

 5 . If the connection string is valid, a drop - down box appears when you select the DataTable
property, enabling you to select the database table you created in Step 1.

 6 . To open the test case in the main window, return to the Test View window and select Open
Test from the right - click context menu for the test case. Notice that a DataSource attribute
has been added to the test case. This attribute is used by the testing engine to load the
appropriate data from the specifi ed table. This data is then exposed to the test case through
the TestContext object.

 fiGure 11 - 7

 If you are using a SQL Server CE database, you ’ ll also get a DeploymentItem
attribute added by default. This ensures that the database will be copied if the
test assembly is deployed to another location.

 7 . Modify the test case to access data from the TestContext object and use the data to drive
the test case, which gives you the following CurrentStatusTest method:

Vb

<DataSource(“System.Data.SqlServerCe.3.5”, _
 “data source=|DataDirectory|\LoadTest.sdf”, _
 “Subscription_CurrentStatus”, DataAccessMethod.Sequential)> _
<DeploymentItem(“SubscriptionTests\LoadTest.sdf”)> _
<TestMethod()>_
Public Sub CurrentStatusDataTest()
 Dim target As Subscription = New Subscription

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 If Not IsDBNull(Me.TestContext.DataRow.Item(“PaidUp”)) Then
 target.PaidUpTo = CType(Me.TestContext.DataRow.Item(“PaidUp”), Date)
 End If
 Dim val As Subscription.Status = _
 CType([Enum].Parse(GetType(Subscription.Status), _
 CStr(Me.TestContext.DataRow.Item(“Status”))), Subscription.Status)

 Assert.AreEqual(val, target.CurrentStatus, _
 “Subscripiton.CurrentStatus was not set correctly.”)
End Sub

Code snippet SubscriptionTests\SubscriptionTest.vb

c#

[DataSource(“System.Data.SqlServerCe.3.5”,
 “data source=|DataDirectory|\\LoadTests.sdf”,
 “Subscription_CurrentStatus”,
 DataAccessMethod.Sequential)]
[DeploymentItem(“SubscriptionTests\\LoadTests.sdf“)]
[TestMethod()]
public void CurrentStatusDataTest()
{
 var target = new Subscription();
 var date = this.TestContext.DataRow[“PaidUp“] as DateTime?;
 if (date != null)
 {
 target.PaidUpTo = date;
 }

 var val = Enum.Parse(typeof(Subscription.Status),
 this.TestContext.DataRow[“Status“] as string);

 Assert.AreEqual(val, target.CurrentStatus,
 “Subscription.CurrentStatus was not set correctly.”);

}

Code snippet SubscriptionTests\SubscriptionTest.cs

When this test case is executed, the CurrentStatusTest method is executed four times (once for
each row of data in the database table). Each time it is executed, a DataRow object is retrieved
and exposed to the test method via the TestContext.DataRow property. If the logic within the
CurrentStatus property changes, you can add a new row to the Subscription_CurrentStatus
table to test any code paths that may have been created.

Before moving on, take one last look at the DataSource attribute that was applied to the
CurrentStatusTest. This attribute takes four arguments, the first three of which are
used to determine which DataTable needs to be extracted. The remaining argument is a
DataAccessMethod enumeration, which determines the order in which rows are returned from the
DataTable. By default, this is Sequential, but it can be changed to Random so the order is different
every time the test is run. This is particularly important when the data is representative of end user
data but does not have to be processed in any particular order.

Testing Context ❘ 209

http://lib.ommolketab.ir
http//lib.ommolketab.ir

210 ❘ chaPter 11 uniT TeSTing

 writing test output
 Writing unit tests is all about automating the process of testing an application. Because of this,
these test cases can be executed as part of a build process, perhaps even on a remote computer. This
means that the normal output windows, such as the console, are not a suitable place for outputting
test - related information. Clearly, you also don ’ t want test - related information interspersed
throughout the debugging or trace information being generated by the application. For this reason,
there is a separate channel for writing test - related information so it can be viewed alongside the test
results.

 The TestContext object exposes a WriteLine method that takes a String and a series of String.
Format arguments that can be used to output information to the results for a particular test. For
example, adding the following line to the CurrentStatusDataTest method generates additional
information with the test results:

 Vb

TestContext.WriteLine(“ No exceptions thrown for test id {0} ” , _
 CInt(Me.TestContext.DataRow.Item(0)))

 Code snippet SubscriptionTests\SubscriptionTest.vb

 c#

TestContext.WriteLine(“ No exceptions thrown for test id {0} ” ,
 this.TestContext.DataRow[0]);

Code snippet SubscriptionTests\SubscriptionTest.cs

 Data - driven tests are not just limited to database tables; they can be driven by
Excel spreadsheets or even from Comma - Separated Values (CSV) fi les.

Although you should use the TestContext.WriteLine method to capture details
about your test executions, the Visual Studio test tools will collect anything
written to the standard error and standard output streams and add that data to
the Test Results window.

 After the test run is completed, the Test Results window is displayed, listing all the test cases that
were executed in the test run along with their results. The Test Results Details window, shown in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 11-8, displays any additional information that was
outputted by the test case. You can view this window by
double-clicking the test case in the Test Results window.

In Figure 11-8, you can see in the Additional Information
section the output from the WriteLine method you added to
the test method. Although you added only one line to the test
method, the WriteLine method was executed for each row
in the database table. The Data Driven Test Results section
of Figure 11-8 provides more information about each of the
test passes, with a row for each row in the table. Your results
may differ from those shown in Figure 11-8, depending on
the code you have in your Subscription class.

adVanced unit testinG

Up until now, you have seen how to write and execute unit tests. This section goes on to examine
how you can add custom properties to a test case, and how you can use the same framework to test
private methods and properties.

custom Properties
The testing framework provides a number of test attributes that you can apply to a method
to record additional information about a test case. This information can be edited via the
Properties window and updates the appropriate attributes on the test method. At times you
might want to drive your test methods by specifying your own properties, which can also be
set using the Properties window. To do this, add TestProperty attributes to the test method.
For example, the following code adds two attributes to the test method to enable you to specify
an arbitrary date and an expected status. This might be convenient for ad hoc testing using the
Test View and Properties window:

Vb

<TestMethod()>
<TestProperty(“SpecialDate”, “1/1/2008”)>
<TestProperty(“SpecialStatus”, “Suspended”)>
Public Sub SpecialCurrentStatusTest()
 Dim target As New Subscription

 target.PaidUpTo = CType(Me.TestContext.Properties.Item(“SpecialDate”), _
 Date)

 Dim val As Subscription.Status = _
 [Enum].Parse(GetType(Subscription.Status), _
 CStr(Me.TestContext.Properties.Item(“SpecialStatus”)))

 Assert.AreEqual(val, target.CurrentStatus, _

fiGure 11-8

advanced Unit Testing ❘ 211

http://lib.ommolketab.ir
http//lib.ommolketab.ir

212 ❘ chaPter 11 uniT TeSTing

 “Correct status not set for Paidup date {0}”, target.PaidUpTo)
End Sub

Code snippet SubscriptionTests\SubscriptionTest.vb

 c#

[TestMethod]
 [TestProperty(“ SpecialDate ” , “ 1/1/2008 “)]
 [TestProperty(“ SpecialStatus ” , “ Suspended “)]
public void SpecialCurrentStatusTest()
{
 var target = new Subscription();

 target.PaidUpTo = this.TestContext.Properties[“ SpecialDate “] as DateTime?;

 var val = Enum.Parse(typeof(Subscription.Status),
 this.TestContext.Properties[“ SpecialStatus “] as string);

 Assert.AreEqual(val, target.CurrentStatus,
 “ Correct status not set for Paidup date {0} ” , target.PaidUpTo);

}

Code snippet SubscriptionTests\SubscriptionTest.cs

 By using the Test View to navigate to this test case and accessing
the Properties window, you can see that this code generates two
additional properties, SpecialDate and SpecialStatus , as
shown in Figure 11 - 9.

 You can use the Properties window to adjust the SpecialDate
and SpecialStatus values. Unfortunately, the limitation here is
that there is no way to specify the data type for the values. As a
result, the property grid displays and enables edits as if they were
 String data types.

 fiGure 11 - 9

 In the previous version of Visual Studio the TestContext.Properties
dictionary was not automatically fi lled in and you had to do this by hand in your
 TestInitialize method. In Visual Studio 2010 this is all handled for you.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

testing Private Members
One of the selling points of unit testing is that it is particularly effective for testing the internals
of your class to ensure that they function correctly. The assumption here is that if each of your
components works in isolation, there is a better chance that they will work together correctly; and
in fact, you can use unit testing to test classes working together. However, you might be wondering
how well the unit-testing framework handles testing private methods.

One of the features of the .NET Framework is the capability to reflect over any type that has been
loaded into memory and to execute any member regardless of its accessibility. This functionality
does come at a performance cost, because the reflection calls obviously include an additional level
of redirection, which can prove costly if done frequently. Nonetheless, for testing, reflection enables
you to call into the inner workings of a class and not worry about the potential performance
penalties for making those calls.

The other, more significant issue with using reflection to access non-public members of a class
is that the code to do so is somewhat messy. Fortunately, Visual Studio 2010 does a very good
job of generating a wrapper class that makes testing even private methods easy. To show this,
return to the CurrentStatus property, change its access from public to private, and rename it
PrivateCurrentStatus. Then regenerate the unit test for this property as you did earlier.

The following code snippet is the new unit-test method that is generated:

Vb

<TestMethod(), _
 DeploymentItem(“Subscriptions.dll“)> _
Public Sub PrivateCurrentStatusTest()
 Dim target As Subscription_Accessor = New Subscription_Accessor()
 ‘ TODO: Initialize to an appropriate value
 Dim actual As Subscription.Status
 actual = target.PrivateCurrentStatus
 Assert.Inconclusive(“Verify the correctness of this test method.”)
End Sub

Code snippet SubscriptionTests\SubscriptionTest.vb

c#

[TestMethod()]
[DeploymentItem(“Subscriptions.dll“)]
public void PrivateCurrentStatusTest()
{
 Subscription_Accessor target = new Subscription_Accessor();
 Subscription.Status actual;
 actual = target.PrivateCurrentStatus;
 Assert.Inconclusive(“Verify the correctness of this test method.”);
}

Code snippet SubscriptionTests\SubscriptionTest.cs

advanced Unit Testing ❘ 213

http://lib.ommolketab.ir
http//lib.ommolketab.ir

214 ❘ chaPter 11 uniT TeSTing

 As you can see, the preceding example uses an instance of a new Subscription_Accessor class to
access the PrivateCurrentStatus property. This is a class that was auto - generated and compiled
into a new assembly by Visual Studio. A new fi le was also added to the test project with the
 .accessor extension, which is what causes Visual Studio to create the new accessor classes.

 You can add a private accessor class to a test project without generating a unit test. To do this, open
the class that you want a private accessor for and select Create Private Accessor from the context
menu of the editor.

 You don ’ t need to create a private accessor for every class in a project
individually. Each .accessor fi le actually relates of a single project and creates an
accessor class for all of the classes in that project.

 testinG code contracts

 If you are using the new Code Contracts feature described in Chapter 13, then you might want to
write tests that verify the behavior of your contracts. The simplest way to do this is to open the
Code Contracts project properties page and uncheck the Assert on Contract Failure checkbox.
When you do this the Code Contracts API will raise exceptions instead of causing Assertion
failures. You can check for these exceptions with an ExpectedException attribute if you know
the type of exception to expect. By default, the Code Contracts tools generate the exceptions that
will be thrown and their type cannot be known at runtime. Many of the contract methods have an
overload which accepts an exception type as a generic parameter.

 Here is a simple class which performs a mathematical operation on positive integers and a unit test
to check the case where a negative number is passed in.

 Vb

Class Calculator
 Public Function Factorial(ByVal n As Integer) As Integer
 Contract.Requires(Of ArgumentOutOfRangeException)(n > = 0, “ n “)

 If n = 0 Then Return 1
 Return n * Factorial(n - 1)

 End Function
End Class

 < TestMethod(), ExpectedException(GetType(ArgumentOutOfRangeException)) >
Public Sub NegativeTest()

 Dim generator As New Calculator()
 Dim actual = generator.Factorial(- 1)

 Assert.Fail(“ Contract not working “)
End Sub

Code snippet CodeContracts1\CalculatorTests.vb

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

class Calculator
{
 public int Factorial(int n)
 {
 Contract.Requires<ArgumentOutOfRangeException>(n >= 0, “n“);

 if (n == 0) return 1;
 return n * Factorial(n - 1);
 }
}

[TestMethod, ExpectedException(typeof(ArgumentOutOfRangeException))]
public void NegativeTest()
{
 var generator = new Calculator();
 var actual = generator.Factorial(-1);

 Assert.Fail(“Contract not working“);
}

Code snippet CodeContracts1\CalculatorTests.cs

Although this method of testing Code Contracts works, it is not really recommended as it may
cover up errors in the code. A better option is to hook into the Code Contracts system and
override its default behavior from within the test project itself. You do this by registering for
the ContractFailed event on the static Contract class inside of an AssemblyInitialize
method. Inside of the event handler you tell the Code Contracts API that you have handled the
contract failure and that you would like to throw an appropriate exception.

Vb

<AssemblyInitialize()>
Public Shared Sub AssemblyInitialize(ByVal testContext As TestContext)

 AddHandler Contract.ContractFailed, Sub(sender As Object,
 e As ContractFailedEventArgs)
 e.SetHandled()
 e.SetUnwind()
 End Sub
End Sub

<TestMethod(), ExpectedException(GetType(Exception), AllowDerivedTypes:=True)>
Public Sub NegativeTest()

 Dim generator As New Calculator()

Testing Code Contracts ❘ 215

http://lib.ommolketab.ir
http//lib.ommolketab.ir

216 ❘ chaPter 11 uniT TeSTing

 Dim actual = generator.Factorial(- 1)

 Assert.Fail(“ Contract not working “)
End Sub

Code snippet CodeContracts2\CalculatorTests.vb

 c#

[AssemblyInitialize]
public static void AssemblyInitialize(TestContext testContext)
{
 Contract.ContractFailed += (s, e) = >
 {
 e.SetHandled();
 e.SetUnwind();
 };
}

[TestMethod , ExpectedException(typeof(Exception), AllowDerivedTypes = true)]
public void NegativeTest()
{
 var generator = new Calculator();
 var actual = generator.Factorial(- 1);
 Assert.Fail(“ Contract not working “);
}

Code snippet CodeContracts2\CalculatorTests.cs

When Code Contracts are confi gured to cause Asserts, the intended exception
is lost, so the code sample checks for any subclass of Exception . The
actual exception that gets thrown is a System.Diagnostics.Contracts
.ContractException , which is private to the .NET Framework, so you can ’ t
detect it directly.

 ManaGinG larGe nuMbers of tests

 Visual Studio provides both the Test View window and the Test List Editor to display a list of all of
the tests in a solution. The Test View window, which was shown earlier in the chapter in Figure 11 - 2,
simply displays the unit tests in a fl at list. However, if you have hundreds, or even thousands, of unit
tests in your solution, trying to manage them with a fl at list will quickly become unwieldy.

 The Test List Editor enables you to group and organize related tests into test lists. Because test lists
can contain both tests and other test lists, you can further organize your tests by creating a logical,
hierarchical structure. All the tests in a test list can then be executed together from within Visual
Studio, or via a command - line test utility.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can open the Test List Editor from the
Test Windows menu, or you can double-click
the Visual Studio Test Metadata (.vsmdi) file
for the solution. Figure 11-10 shows the Test
List Editor for a solution with a number of
tests organized into a hierarchical structure
of related tests.

On the left in the Test List Editor window is
a hierarchical tree of test lists available for
the current solution. At the bottom of the tree
are two project lists, one showing all the test
cases (All Loaded Tests) and one showing those test cases that haven’t been put in a list (Tests Not
in a List). Under the Lists of Tests node are all the test lists created for the project.

To create a new test list, click Test ➪ Create New Test List. Test cases can be dragged from any
existing list into the new list. Initially, this can be a little confusing because a test will be moved to
the new list and removed from its original list. To add a test case to multiple lists, either hold the
Ctrl key while dragging the test case or copy and paste the test case from the original list to the new
list.

After creating a test list, you can run the whole list by checking the box next to the list in the Test
Manager. The Run button executes all lists that are checked. Alternatively, you can run the list with
the debugger attached using the Debug Checked Tests menu item.

suMMary

This chapter described how you can use unit testing to ensure the correct functionality of your
code. The unit-testing framework within Visual Studio is quite comprehensive, enabling you to both
document and manage test cases.

You can fully exercise the testing framework using an appropriate data source to minimize the
repetitive code you have to write. You can also extend the framework to test all the inner workings
of your application.

Visual Studio Premium and Ultimate contain even more functionality for testing, including the
ability to track and report on code coverage, and support for load and web application testing.
Chapter 56 provides more detail on these advanced testing capabilities.

fiGure 11-10

 summary ❘ 217

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12
 Documentation with XMl
Comments

 what ’ s in this chaPter?

 Adding inline documentation to your code using XML comments ➤

 Using the GhostDoc Visual Studio Add - In to automatically generate ➤

XML comments

 Producing stand - alone documentation from XML comments with ➤

Sandcastle

 Using Task List comments to keep track of pending coding tasks ➤

and other things to do

 Documentation is a critical, and often overlooked, feature of the development process.
Without documentation, other programmers, code reviewers, and project managers have
a more diffi cult time analyzing the purpose and implementation of code. You can even
have problems with your own code once it becomes complex, and having good internal
documentation can aid in the development process.

 XML comments are a way of providing that internal documentation for your code without
having to go through the process of manually creating and maintaining a separate document.
Instead, as you write your code, you include metadata at the top of every defi nition to explain
the intent of your code. Once the information has been included in your code, it can be
consumed by Visual Studio to provide Object Browser and IntelliSense information.

 GhostDoc is a free third - party add - in for Visual Studio that can automatically insert an XML
comment block for a class or member.

 Sandcastle is a set of tools that act as a documentation compiler. These tools can be used
to easily create standalone documentation in Microsoft compiled HTML help or Microsoft
Help 2 format from the XML comments you have added to your code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

220 ❘ chaPter 12 documenTATion WiTh xml commenTS

inline coMMentinG

All programming languages supported by Visual Studio provide a method for adding inline
documentation. By default, all inline comments are highlighted in green.

C# supports both single line comments and comment blocks. Single line comments are denoted by
// at the beginning of the comment. Block comments typically span multiple lines and are opened
by /* and closed off by */, as shown in the following code:

c#

// Calculate the factorial of an integer
public int Factorial(int number)
{
 /* This function calculates a factorial using an
 * iterative approach.
 */
 int intermediateResult = 1;
 for (int factor = 2; factor <= number; factor++)
 {
 intermediateResult = intermediateResult * factor;
 }
 return intermediateResult; //The calculated factorial
}

VB just uses a single quote character to denote anything following it to be a comment, as shown in
the following code:

Vb

' Calculate the factorial of an integer
Public Function Factorial(ByVal number As Integer) As Integer
 ' This function calculates a factorial using an
 ' iterative approach.
 '
 Dim intermediateResult As Integer = 1
 For factor As Integer = 2 To number
 intermediateResult = intermediateResult * factor
 Next
 Return intermediateResult 'The calculated factorial
End Function

xMl coMMents

XML comments are specialized comments that you include in your code. When the project goes
through the build process, Visual Studio can optionally include a step to generate an XML file based
on these comments to provide information about user-defined types such as classes and individual
members of a class (user defined or not), including events, functions, and properties.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 XML comments can contain any combination of XML and HTML tags. Visual Studio performs
special processing on a particular set of predefi ned tags, as you see throughout the bulk of this
chapter. Any other tags are included in the generated documentation fi le as is.

 adding xMl comments
 XML comments are added immediately before the property, method, or class defi nition they are
associated with. Visual Studio automatically adds an XML comment block when you type the
shortcut code /// in C# before a member or class declaration. In some cases the XML comments
will already be present in code generated by the supplied project templates, as shown in Figure 12 - 1.

fiGure 12-1

The automatic insertion of the summary section can be enabled or disabled in
the Visual Studio options. Select Tools ➪ Options, and then choose Text
Editor ➪ C# ➪ Advanced from the navigation tree. Uncheck the “ Generate
XML documentation comments for /// ” option to disable this feature.

 Adding an XML comment block to VB is achieved by using the ‘ ' ’ shortcut code. In this way it
replicates the way C# documentation is generated.

 In both languages, once the comments have been added, Visual Studio automatically adds a
collapsible region to the left margin so you can hide the documentation when you ’ re busy writing
code. Hovering over the collapsed area displays a tooltip message containing the fi rst few lines of
the comment block.

XMl Comments ❘ 221

http://lib.ommolketab.ir
http//lib.ommolketab.ir

222 ❘ chaPter 12 documenTATion WiTh xml commenTS

 xMl comment tags
 Though you can use any kind of XML comment structure you like, including your own custom
XML tags, Visual Studio ’ s XML comment processor recognizes a number of predefi ned tags and
automatically formats them appropriately. The Sandcastle document compiler, which is discussed
later in this chapter, has support for a number of additional tags, and you can supplement these
further with your own XML schema document.

 If you need to use angle brackets in the text of a documentation comment, use
the entity references & lt; and & gt; .

 Because documentation is so important, the next section of this chapter details each of these
predefi ned tags, their syntax, and how you would use them in your own documentation.

 The < c > Tag
 The < c > tag indicates that the enclosed text should be formatted as code, rather than normal text.
It ’ s used for code that is included in a normal text block. The structure of < c > is simple, with any
text appearing between the opening and closing tags being marked for formatting in the code style.

 < c > code-formatted text < /c >

 The following example shows how < c > might be used in the description of a property:

 c#

/// <summary>
/// The <c>UserId</c> property is used in conjunction with other properties
/// to setup a user properly. Remember to set the <c>Password</c> field too.
/// </summary>
public string UserId { get; set; }

 Vb

‘’’ <summary>
‘’’ The <c>UserId</c> property is used in conjunction with other properties
‘’’ to setup a user properly. Remember to set the <c>Password</c> field too.
‘’’ </summary>
Public Property UserId() As String

 The < code > Tag
 If the amount of text in the documentation you need to format as code is more than just a
phrase within a normal text block, you can use the < code > tag instead of < c > . This tag marks
everything within it as code, but it ’ s a block - level tag, rather than a character - level tag. The syntax
of this tag is a simple opening and closing tag with the text to be formatted inside, as shown here:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<code>
Code-formatted text
Code-formatted text
</code>

The <code> tag can be embedded inside any other XML comment tag. The following code shows an
example of how it could be used in the summary section of a property definition:

c#

/// <summary>
/// The <c>UserId</c> property is used in conjunction with other properties
/// to setup a user properly. Remember to set the <c>Password</c> field too.
/// For example:
/// <code>
/// myUser.UserId = "daveg"
/// myUser.Password = "xg4*Wv"
/// </code>
/// </summary>
public string UserId { get; set; }

Vb

''' <summary>
''' The <c>UserId</c> property is used in conjunction with other properties
''' to setup a user properly. Remember to set the <c>Password</c> field too.
''' For example:
''' <code>
''' myUser.UserId = "daveg"
''' myUser.Password = "xg4*Wv"
''' </code>
''' </summary>
Public Property UserId() As String

The <example> Tag
A common requirement for internal documentation is to provide an example of how a particular
procedure or member can be used. The <example> tags indicate that the enclosed block should be
treated as a discrete section of the documentation, dealing with a sample for the associated member.
Effectively, this doesn’t do anything more than help organize the documentation, but used in
conjunction with an appropriately designed XML style sheet or processing instructions, the example
can be formatted properly.

The other XML comment tags, such as <c> and <code>, can be included in the text inside the
<example> tags to give you a comprehensively documented sample. The syntax of this block-level
tag is simple:

<example>
Any sample text goes here.
</example>

XMl Comments ❘ 223

http://lib.ommolketab.ir
http//lib.ommolketab.ir

224 ❘ chaPter 12 documenTATion WiTh xml commenTS

Using the example from the previous discussion, the following code moves the <code> formatted
text out of the <summary> section into an <example> section:

c#

/// <summary>
/// The <c>UserId</c> property is used in conjunction with other properties
/// to setup a user properly. Remember to set the <c>Password</c> field too.
/// </summary>
/// <example>
/// <code>
/// myUser.UserId = "daveg"
/// myUser.Password = "xg4*Wv"
/// </code>
/// </example>
public string UserId { get; set; }

Vb

''' <summary>
''' The <c>UserId</c> property is used in conjunction with other properties
''' to setup a user properly. Remember to set the <c>Password</c> field too.
''' </summary>
''' <example>
''' <code>
''' myUser.UserId = "daveg"
''' myUser.Password = "xg4*Wv"
''' </code>
''' </example>
Public Property UserId() As String

The <exception> Tag
The <exception> tag is used to define any exceptions that could be thrown from within the
member associated with the current block of XML documentation. Each exception that can be
thrown should be defined with its own <exception> block, with an attribute of cref identifying
the fully qualified type name of an exception that could be thrown. Note that the Visual Studio
2010 XML comment processor checks the syntax of the exception block to enforce the inclusion
of this attribute. It also ensures that you don’t have multiple <exception> blocks with the same
attribute value. The full syntax is as follows:

<exception cref="exceptionName">
Exception description.
</exception>

Extending the examples from the previous tag discussions, the following code adds two
exception definitions to the XML comments associated with the UserId property: System.
TimeoutException, and System.UnauthorizedAccessException.

c#

/// <summary>
/// The <c>UserId</c> property is used in conjunction with other properties
/// to setup a user properly. Remember to set the <c>Password</c> field too.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

/// </summary>
/// <exception cref="System.TimeoutException">
/// Thrown when the code cannot determine if the user is valid within a reasonable
/// amount of time.
/// </exception>
/// <exception cref="System.UnauthorizedAccessException">
/// Thrown when the user identifier is not valid within the current context.
/// </exception>
/// <example>
/// <code>
/// myUser.UserId = "daveg"
/// myUser.Password = "xg4*Wv"
/// </code>
/// </example>
public string UserId { get; set; }

Vb

''' <summary>
''' The <c>UserId</c> property is used in conjunction with other properties
''' to setup a user properly. Remember to set the <c>Password</c> field too.
''' </summary>
''' <exception cref="System.TimeoutException">
''' Thrown when the code cannot determine if the user is valid within a reasonable
''' amount of time.
''' </exception>
''' <exception cref="System.UnauthorizedAccessException">
''' Thrown when the user identifier is not valid within the current context.
''' </exception>
''' <example>
''' <code>
''' myUser.UserId = "daveg"
''' myUser.Password = "xg4*Wv"
''' </code>
''' </example>
Public Property UserId() As String

The <include> Tag
You’ll often have documentation that needs to be shared across multiple projects. In other
situations, one person may be responsible for the documentation while others are doing the
coding. Either way, the <include> tag will prove useful. The <include> tag enables you to refer to
comments in a separate XML file so they are brought inline with the rest of your documentation.
Using this method, you can move the actual documentation out of the code, which can be handy
when the comments are extensive.

The syntax of <include> requires that you specify which part of the external file is to be used in the
current context. The path attribute is used to identify the path to the XML node, and uses standard
XPath terminology:

<include file="filename" path="XPathQuery" />

XMl Comments ❘ 225

http://lib.ommolketab.ir
http//lib.ommolketab.ir

226 ❘ chaPter 12 documenTATion WiTh xml commenTS

The external XML file containing the additional documentation must have a path that can be
navigated with the attribute you specify, with the end node containing an attribute of name to
uniquely identify the specific section of the XML document to be included.

You can include files in either VB or C# using the same tag. The following code takes the samples
used in the <exception> tag discussion and moves the documentation to an external file:

c#

/// <include file="externalFile.xml" path="MyDoc/Properties[@name='UserId']/*" />
public string UserId { get; set; }

Vb

''' <include file="externalFile.xml" path="MyDoc/Properties[@name='UserId']/*" />
Public Property UserId() As String

The external file’s contents would be populated with the following XML document structure to
synchronize it with what the <include> tag processing expects to find:

<MyDoc>
 <Properties name="UserId">
 <summary>
 The <c>sender</c> object is used to identify who invoked the procedure.
 </summary>
 <summary>
 The <c>UserId</c> property is used in conjunction with other properties
 to setup a user properly. Remember to set the <c>Password</c> field too.
 </summary>
 <exception cref="System.TimeoutException">
 Thrown when the code cannot determine if the user is valid within a
 reasonable amount of time.
 </exception>
 <exception cref="System.UnauthorizedAccessException">
 Thrown when the user identifier is not valid within the current context.
 </exception>
 <example>
 <code>
 myUser.UserId = "daveg"
 myUser.Password = "xg4*Wv"
 </code>
 </example>
 </Procedures>
</MyDoc>

The <list> Tag
Some documentation requires lists of various descriptions, and with the <list> tag you can
generate numbered and unnumbered lists along with two-column tables. All three take two
parameters for each entry in the list — a term and a description — represented by individual XML
tags, but they instruct the processor to generate the documentation in different ways.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To create a list in the documentation, use the following syntax, where type can be one of the
following values — bullet, numbered, or table:

<list type="type">
 <listheader>
 <term>termName</term>
 <description>description</description>
 </listheader>
 <item>
 <term>myTerm</term>
 <description>myDescription</description>
 </item>
</list>

The <listheader> block is optional, and is usually used for table-formatted lists or definition lists.
For definition lists, the <term> tag must be included, but for bullet lists, numbered lists, or tables
the <term> tag can be omitted.

The XML for each type of list can be formatted differently using an XML style sheet. An example
of how to use the <list> tag appears in the following code. Note how the sample has omitted the
listheader tag, because it was unnecessary for the bullet list:

c#

/// <summary>
/// This function changes a users password. The password change could fail for
/// several reasons:
/// <list type="bullet">
/// <item>
/// <term>Too Short</term>
/// <description>The new password was not long enough.</description>
/// </item>
/// <item>
/// <term>Not Complex</term>
/// <description>The new password did not meet the complexity requirements. It
/// must contain at least one of the following characters: lowercase, uppercase,
/// and number.
/// </description>
/// </item>
/// </list>
/// </summary>
public bool ChangePwd(string oldPwd, string newPwd)
{
 //...code...
 return true;
}

Vb

''' <summary>
''' This function changes a users password. The password change could fail for
''' several reasons:
''' <list type="bullet">
''' <item>

XMl Comments ❘ 227

http://lib.ommolketab.ir
http//lib.ommolketab.ir

228 ❘ chaPter 12 documenTATion WiTh xml commenTS

''' <term>Too Short</term>
''' <description>The new password was not long enough.</description>
''' </item>
''' <item>
''' <term>Not Complex</term>
''' <description>The new password did not meet the complexity requirements. It
''' must contain at least one of the following characters: lowercase, uppercase,
''' and number.
''' </description>
''' </item>
''' </list>
''' </summary>
Public Function ChangePwd(ByVal oldPwd As String, ByVal newPwd As String) _
 As Boolean
 '...code...
 Return True
End Function

The <para> Tag
Without using the various internal block-level XML comments such as <list> and <code>, the
text you add to the main <summary>, <remarks>, and <returns> sections all just runs together.
To break it up into readable chunks, you can use the <para> tag, which simply indicates that the
text enclosed should be treated as a discrete paragraph. The syntax is simple:

<para>This text will appear in a separate paragraph.</para>

The <param> Tag
To explain the purpose of any parameters in a function declaration, you can use the <param>
tag. This tag will be processed by the Visual Studio XML comment processor with each instance
requiring a name attribute that has a value equal to the name of one of the properties. Enclosed
between the opening and closing <param> tag is the description of the parameter:

<param name="parameterName">Definition of parameter.</param>

The XML processor will not allow you to create multiple <param> tags for the one parameter, or
tags for parameters that don’t exist, producing warnings that are added to the Error List in Visual
Studio if you try. The following example shows how the <param> tag is used to describe two
parameters of a function:

c#

/// <param name="oldPwd">Old password-must match the current password</param>
/// <param name="newPwd">New password-must meet the complexity requirements</param>
public bool ChangePwd(string oldPwd, string newPwd)
{
 //...code...
 return true;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Vb

 ''' < param name="oldPwd" > Old password-must match the current password < /param >
''' < param name="newPwd" > New password-must meet the complexity requirements < /param >
Public Function ChangePwd(ByVal oldPwd As String, ByVal newPwd As String) _
 As Boolean
 '...code...
 Return True
End Function

The < param > tag is especially useful for documenting preconditions for a
method ’ s parameters, such as if a null value is not allowed.

 The < paramref > Tag
 If you are referring to the parameters of the method defi nition elsewhere in the documentation
other than the < param > tag, you can use the < paramref > tag to format the value, or even link to
the parameter information depending on how you code the XML transformation. The compiler
does not require that the name of the parameter exist, but you must specify the text to be used in
the name attribute, as the following syntax shows:

 < paramref name="parameterName" / >

 Normally, < paramref > tags are used when you are referring to parameters in the larger sections of
documentation such as the < summary > or < remarks > tags, as the following example demonstrates:

 c#

/// < summary >
/// This function changes a users password. This will throw an exception if
 /// < paramref name="oldPwd" / > or < paramref name="newPwd" / > are nothing.
/// < /summary >
/// < param name="oldPwd" > Old password-must match the current password < /param >
/// < param name="newPwd" > New password-must meet the complexity requirements < /param >
public bool ChangePwd(string oldPwd, string newPwd)
{
 //...code...
 return true;
}

 Vb

''' < summary >
''' This function changes a users password. This will throw an exception if
 ''' < paramref name="oldPwd" / > or < paramref name="newPwd" / > are nothing.
''' < /summary >
''' < param name="oldPwd" > Old password-must match the current password < /param >
''' < param name="newPwd" > New password-must meet the complexity requirements < /param >
Public Function ChangePwd(ByVal oldPwd As String, ByVal newPwd As String) _
 As Boolean

XMl Comments ❘ 229

http://lib.ommolketab.ir
http//lib.ommolketab.ir

230 ❘ chaPter 12 documenTATion WiTh xml commenTS

 '...code...
 Return True
End Function

The <permission> Tag
To describe the code access security permission set required by a particular method, use the
<permission> tag. This tag requires a cref attribute to refer to a specific permission type:

<permission cref="permissionName">
 description goes here
</permission>

If the function requires more than one permission, use multiple <permission> blocks, as shown in
the following example:

c#

/// <permission cref="System.Security.Permissions.RegistryPermission">
/// Needs full access to the Windows Registry.
/// </permission>
/// <permission cref="System.Security.Permissions.FileIOPermission">
/// Needs full access to the .config file containing application information.
/// </permission>
public string UserId { get; set; }

Vb

''' <permission cref="System.Security.Permissions.RegistryPermission">
''' Needs full access to the Windows Registry.
''' </permission>
''' <permission cref="System.Security.Permissions.FileIOPermission">
''' Needs full access to the .config file containing application information.
''' </permission>
Public Property UserId() As String

The <remarks> Tag
The <remarks> tag is used to add an additional comment block to the documentation associated
with a particular method. Discussion on previous tags has shown the <remarks> tag in action, but
the syntax is as follows:

<remarks>
 Any further remarks go here
</remarks>

Normally, you would create a summary section, briefly outline the method or type, and then
include the detailed information inside the <remarks> tag, with the expected outcomes of
accessing the member.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The < returns > Tag
 When a method returns a value to the calling code, you can use the < returns > tag to describe what
it could be. The syntax of < returns > is like most of the other block - level tags, consisting of an
opening and closing tag with any information detailing the return value enclosed within:

 < returns >
 Description of the return value.
 < /returns >

 A simple implementation of < returns > might appear like the following code:

 c#

/// < summary >
/// This function changes a user’s password.
/// < /summary >
/// < returns >
/// This function returns:
/// < c > True < /c > which indicates that the password was changed successfully,
/// or < c > False < /c > which indicates that the password change failed.
/// < /returns >
public bool ChangePwd(string oldPwd, string newPwd)
{
 //...code...
 return true;
}

 Vb

''' < summary >
''' This function changes a user’s password.
''' < /summary >
''' < returns >
''' This function returns:
''' < c > True < /c > which indicates that the password was changed successfully,
''' or < c > False < /c > which indicates that the password change failed.
''' < /returns >
Public Function ChangePwd(ByVal oldPwd As String, ByVal newPwd As String) _
 As Boolean
 '...code...
 Return True
End Function

In addition to return value of a function, the < returns > tag is especially useful
for documenting any post - conditions that should be expected.

XMl Comments ❘ 231

http://lib.ommolketab.ir
http//lib.ommolketab.ir

232 ❘ chaPter 12 documenTATion WiTh xml commenTS

 The < see > Tag
 You can add references to other items in the project using the < see > tag. Like some of the other tags
already discussed, the < see > tag requires a cref attribute with a value equal to an existing member,
whether it is a property, method, or class defi nition. The < see > tag is used inline with other areas of
the documentation such as < summary > or < remarks > . The syntax is as follows:

 < see cref="memberName" / >

 When Visual Studio processes the < see > tag it produces a fully qualifi ed address that can then be
used as the basis for a link in the documentation when transformed via style sheets. For example,
referring to an application with a class containing a function named ChangePwd would result in the
following cref value:

 < see cref="applicationName.className.ChangePwd"/ >

 The following example uses the < see > tag to provide a link to another function called CheckUser :

 c#

/// < remarks >
/// Use < see cref="CheckUser" / > to verify that the user exists before calling
 /// ChangePwd.
/// < /remarks >
public bool ChangePwd(string oldPwd, string newPwd)
{
 //...code...
 return true;
}

 Vb

''' < remarks >
 ''' Use < see cref="CheckUser" / > to verify that the user exists before calling
 ''' ChangePwd.
''' < /remarks >
Public Function ChangePwd(ByVal oldPwd As String, ByVal newPwd As String) _
 As Boolean
 '...code...
 Return True
End Function

In VB only, if the member specifi ed in the cref value does not exist, Visual
Studio will use IntelliSense to display a warning and add it to the Error List.

 The < seealso > Tag
 The < seealso > tag is used to generate a separate section containing information about related topics
within the documentation. Rather than being inline like < see > , the < seealso > tags are defi ned

http://lib.ommolketab.ir
http//lib.ommolketab.ir

outside the other XML comment blocks, with each instance of <seealso> requiring a cref attribute
containing the name of the property, method, or class to which to link. The full syntax appears like so:

<seealso cref="memberName" />

Modifying the previous example, the following code shows how the <seealso> tag can be
implemented in code:

c#

/// <remarks>
/// Use <see cref="CheckUser" /> to verify that the user exists before calling
/// ChangePwd.
/// </remarks>
/// <seealso cref="ResetPwd" />
public bool ChangePwd(string oldPwd, string newPwd)
{
 //...code...
 return true;
}

Vb

''' <remarks>
''' Use <see cref="CheckUser" /> to verify that the user exists before calling
''' ChangePwd.
''' </remarks>
''' <seealso cref="ResetPwd" />
Public Function ChangePwd(ByVal oldPwd As String, ByVal newPwd As String) _
 As Boolean
 '...code...
 Return True
End Function

The <summary> Tag
The <summary> tag is used to provide the brief description that appears at the top of a specific topic
in the documentation. As such it is typically placed before all public and protected methods and
classes. In addition, the <summary> area is used for Visual Studio’s IntelliSense engine when using
your own custom-built code. The syntax to implement <summary> is as follows:

<summary>
 A description of the function or property goes here.
</summary>

The <typeparam> Tag
The <typeparam> tag provides information about the type parameters when dealing with a generic
type or member definition. The <typeparam> tag expects an attribute of name containing the type
parameter being referred to:

<typeparam name="typeName">
 Description goes here.
</typeparam>

XMl Comments ❘ 233

http://lib.ommolketab.ir
http//lib.ommolketab.ir

234 ❘ chaPter 12 documenTATion WiTh xml commenTS

You can use <typeparam> in either C# or VB, as the following code shows:

c#

/// <typeparam name="T">
/// Base item type (must implement IComparable)
/// </typeparam>
public class myList<T> where T : IComparable
{
 //...code...
}

Vb

''' <typeparam name="T">
''' Base item type (must implement IComparable)
''' </typeparam>
Public Class myList(Of T As IComparable)
 '...code...
End Class

The <typeparamref> Tag
If you are referring to a generic type parameter elsewhere in the documentation other than the
<typeparam> tag, you can use the <typeparamref> tag to format the value, or even link to
the parameter information depending on how you code the XML transformation.

<typeparamref name="parameterName" />

Normally, <typeparamref> tags are used when you are referring to parameters in the larger
sections of documentation such as the <summary> or <remarks> tags, as the following code
demonstrates:

c#

/// <summary>
/// Creates a new list of arbitrary type <typeparamref name="T"/>
/// </summary>
/// <typeparam name="T">
/// Base item type (must implement IComparable)
/// </typeparam>
public class myList<T> where T : IComparable
{
 //...code...
}

Vb

''' <summary>
''' Creates a new list of arbitrary type <typeparamref name="T"/>
''' </summary>
''' <typeparam name="T">
''' Base item type (must implement IComparable)
''' </typeparam>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Public Class myList(Of T As IComparable)
 '...code...
End Class

The <value> Tag
Normally used to define a property’s purpose, the <value> tag gives you another section in the
XML where you can provide information about the associated member. The <value> tag is not
used by IntelliSense.

<value>The text to display</value>

When used in conjunction with a property, you would normally use the <summary> tag to describe
what the property is for, whereas the <value> tag is used to describe what the property represents:

c#

/// <summary>
/// The <c>UserId</c> property is used in conjunction with other properties
/// to setup a user properly. Remember to set the <c>Password</c> field too.
/// </summary>
/// <value>
/// A string containing the UserId for the current user
/// </value>
public string UserId { get; set; }

Vb

''' <summary>
''' The <c>UserId</c> property is used in conjunction with other properties
''' to setup a user properly. Remember to set the <c>Password</c> field too.
''' </summary>
''' <value>
''' A string containing the UserId for the current user
''' </value>
Public Property UserId() As String

usinG xMl coMMents

Once you have the XML comments inline with your code, you’ll most likely want to generate an
XML file containing the documentation. In VB this setting is on by default, with an output path
and filename specified with default values. However, C# has the option turned off as its default
behavior, so if you want documentation you’ll need to turn it on manually.

To ensure that your documentation is being generated where you require, open the property pages
for the project through the Solution Explorer’s right-click context menu. Locate the project for
which you want documentation, right-click its entry in the Solution Explorer, and select Properties.

The XML documentation options are located in the Build section (see Figure 12-2). Below
the general build options is an Output section that contains a checkbox that enables XML

Using XMl Comments ❘ 235

http://lib.ommolketab.ir
http//lib.ommolketab.ir

236 ❘ chaPter 12 documenTATion WiTh xml commenTS

documentation fi le generation. When this checkbox is checked, the text fi eld next to it becomes
available for you to specify the fi lename for the XML fi le that will be generated.

fiGure 12-2

 For VB applications, the option to generate an XML documentation fi le is on the Compile tab of the
project properties.

 Once you ’ ve saved these options, the next time you perform a build, Visual Studio adds the /doc
compiler option to the process so that the XML documentation is generated as specifi ed.

Generating an XML documentation fi le will slow down the compile time. If this
is impacting your development or debugging cycle, you can disable it for the
Debug build while leaving it enabled for the Release build.

 The XML fi le that is generated will contain a full XML document that you can apply XSL
transformations against, or process through another application using the XML document object
model. All references to exceptions, parameters, methods, and other “ see also ” links will be
included as fully addressed information, including namespace, application, and class data. Later in
this chapter you see how you can make use of this XML fi le to produce professional - looking
documentation using Sandcastle.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 intellisense information
 The other useful advantage of using XML comments is how Visual Studio consumes them in
its own IntelliSense engine. As soon as you defi ne the documentation tags that Visual Studio
understands, it will generate the information into its IntelliSense, which means you can refer to the
information elsewhere in your code.

 You can access IntelliSense in two ways. If the member referred to is within the same project or is in
another project within the same solution, you can access the information without having to build or
generate the XML fi le. However, you can still take advantage of IntelliSense even when the project
is external to your current application solution.

 The trick is to ensure that when the XML fi le is generated by the build process, it must have
the same name as the .NET assembly being built. For example, if the compiled output is
 MyApplication.exe , the associated XML fi le should be named MyApplication.xml . In addition,
this generated XML fi le should be in the same folder as the compiled assembly so that Visual Studio
can locate it.

 GeneratinG docuMentation with Ghostdoc

 Although most developers will agree that documentation is important, it still takes a lot of time
and commitment to write. The golden rule of “ if it ’ s easy the developer will have more inclination
to do it ” means that any additional enhancements to the documentation side of development will
encourage more developers to embrace it.

You can always take a more authoritarian approach to documentation and use a
source code analysis tool such as StyleCop to enforce a minimum level of
documentation. StyleCop ships with almost 50 built - in rules specifi cally for
verifying the content and formatting of XML documentation. StyleCop is
discussed in more detail in chapter 13.

 GhostDoc is an add - in for Visual Studio that attempts to do just that, providing the capability to set
up a keyboard shortcut that automatically inserts the XML comment block for a class or member.
However, the true power of GhostDoc is not in the capability to create the basic stub, but to
automate a good part of the documentation itself.

 Through a series of lists that customize how different parts of member and variable names
should be interpreted, GhostDoc generates simple phrases that get you started in creating your
own documentation. For example, consider the list shown in Figure 12 - 3, where words are
defi ned as trigger points for “ Of the ” phrases. Whenever a variable or member name has the
string “ color ” as part of its name, GhostDoc attempts to create a phrase that can be used in
the XML documentation.

 Generating Documentation with GhostDoc ❘ 237

http://lib.ommolketab.ir
http//lib.ommolketab.ir

238 ❘ chaPter 12 documenTATion WiTh xml commenTS

For instance, a property called NewBackgroundColor will generate a complete phrase of New color
of the background. The functionality of GhostDoc also recognizes common parameter names
and their purpose. Figure 12-4 shows this in action with a default Click event handler for a button
control. The sender and e parameters were recognized as particular types in the context of an event
handler, and the documentation that was generated by GhostDoc reflects this accordingly.

fiGure 12-3

fiGure 12-4

GhostDoc is an excellent resource for those who find documentation difficult. You can find it at its
official web site, http://submain.com/ghostdoc.

coMPilinG docuMentation with sandcastle

Sandcastle is a set of tools published by Microsoft that act as documentation compilers. These
tools can be used to easily create very professional-looking external documentation in Microsoft
compiled HTML help (.chm) or Microsoft Help 2 (.hsx) format.

http://submain.com/ghostdoc
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The primary location for information on Sandcastle is the Sandcastle blog at http://blogs.msdn.
com/sandcastle/ . There is also a project on CodePlex, Microsoft ’ s open source project hosting
site, at http://sandcastle.codeplex.com/ . You can fi nd documentation, a discussion forum, and
a link to download the latest Sandcastle installer package on this site.

 By default, Sandcastle installs to c:\Program Files\Sandcastle . When it is run, Sandcastle
creates a large number of working fi les and the fi nal output fi le under this directory. Unfortunately
all fi les and folders under Program Files require administrator permissions to write to, which can
be problematic particularly if you are running on Windows Vista with UAC enabled. Therefore it is
recommended that you install it to a location where your user account has write permissions.

 Out of the box, Sandcastle is used from the command line only. A number of third - parties have put
together GUI interfaces for Sandcastle, which are linked to on the Wiki.

 To begin, open a Visual Studio 2010 Command Prompt from Start Menu ➪ All Programs ➪
Microsoft Visual Studio 2010 ➪ Visual Studio Tools, and change directory to < Sandcastle
Install Directory > \Examples\sandcastle\ .

The Visual Studio 2010 Command Prompt is equivalent to a normal command
prompt except that it also sets various environment variables, such as
directory search paths, which are often required by the Visual Studio 2010
command - line tools.

 In this directory you will fi nd an example class fi le, test.cs, and an MSBuild project fi le,
build.proj. The example class fi le contains methods and properties that are commented with the
standard XML comment tags that were explained earlier in this chapter, as well as some additional
Sandcastle - specifi c XML comment tags. You can compile the class fi le and generate the XML
documentation fi le by entering the following command:

csc /t:library test.cs /doc:example.xml

 Once that has completed, you are now ready to generate the documentation help fi le. The simplest
way to do this is to execute the example MSBuild project fi le that ships with Sandcastle. This project
fi le has been hard - coded to generate the documentation using test.dll and example.xml. Run the
MSBuild project by entering the following command:

msbuild build.proj

 The MSBuild project will call several Sandcastle tools to build the documentation fi le including
MRefBuilder, BuildAssembler, and XslTransform.

Rather than manually running Sandcastle every time you build a release version,
it would be better to ensure that it is always run by executing it as a post - build
event. Chapter 6 describes how to create a build event.

Compiling Documentation with sandcastle ❘ 239

http://blogs.msdn
http://sandcastle.codeplex.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

240 ❘ chaPter 12 documenTATion WiTh xml commenTS

 You may be surprised at how long the documentation takes to generate. This is partly because the
MRefBuilder tool uses refl ection to inspect the assembly and all dependant assemblies to obtain
information about all of the types, properties, and methods in the assembly and all dependant
assemblies. In addition, anytime it comes across a base .NET Framework type, it will attempt to
resolve it to the MSDN online documentation in order to generate the correct hyperlinks in the
documentation help fi le.

 The fi rst time you run the MSBuild project, it generates refl ection data for all of
the .NET Framework classes, so you can expect it to take even longer to complete.

 By default, the build.proj MSBuild project generates the documentation with the vs2005 look -
 and - feel, as shown in Figure 12 - 4, in the directory < Sandcastle Install Directory > \Examples\
sandcastle\chm\ . You can choose a different output style by adding one of the following options
to the command line:

/property:PresentationStyle=vs2005
/property:PresentationStyle=hana
/property:PresentationStyle=prototype

fiGure 12-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The following code shows the source code section from the example class fi le, test.cs , which
relates to the page of the help documentation shown in Figure 12 - 5.

/// < summary >
/// Swap data of type < typeparamref name="T"/ >
/// < /summary >
/// < param name="lhs" > left < typeparamref name="T"/ > to swap < /param >
/// < param name="rhs" > right < typeparamref name="T"/ > to swap < /param >
/// < typeparam name="T" > The element type to swap < /typeparam >
public void Swap < T > (ref T lhs, ref T rhs)
{
 T temp;
 temp = lhs;
 lhs = rhs;
 rhs = temp;
}

 The default target for the build.proj MSBuild project is “ Chm, ” which builds a CHM compiled
HTML Help fi le for the test.dll assembly. You can also specify one of the following targets on the
command line:

/target:Clean - removes all generated files
/target:HxS - builds HxS file for Visual Studio in addition to CHM

The Microsoft Help 2 (.HxS) is the format that the Visual Studio help system
uses. You must install the Microsoft Help 2.x SDK in order to generate .HxS
fi les. This is available and included as part of the Visual Studio 2010 SDK.

 task list coMMents

 The Task List window is a feature of Visual Studio 2010 that allows you to keep track of any coding
tasks or outstanding activities you have to do. Tasks can be manually entered as User Tasks, or
automatically detected from the inline comments. You can open the Task List window by selecting
View ➪ Task List, or using the keyboard shortcut CTRL+\, CTRL+T. Figure 12 - 6 shows the Task
List window with some User Tasks defi ned.

 User Tasks are saved in the solution user options (.suo) fi le, which contains
user - specifi c settings and preferences. It is not recommended that you check this
fi le into source control and, as such, User Tasks cannot be shared by multiple
developers working on the same solution.

Task list Comments ❘ 241

http://lib.ommolketab.ir
http//lib.ommolketab.ir

242 ❘ chaPter 12 documenTATion WiTh xml commenTS

The Task List has a fi lter in the top - left corner that toggles the code between
Comment Tasks and manually entered User Tasks.

 When you add a comment into your code that begins with a comment token , the comment will
be added to the Task List as a Comment Task. The default comment tokens that are included with
Visual Studio 2010 are TODO , HACK , UNDONE , and UnresolvedMergeConflict .

 The following code shows a TODO comment. Figure 12 - 7 shows how this comment appears as a task
in the Task List window. You can double - click the Task List entry to go directly to the comment line
in your code.

 c#

using System;
using System.Windows.Forms;

namespace CSWindowsFormsApp
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 //TODO: The database should be initialized here
 }
 }
}

fiGure 12-6

fiGure 12-7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can edit the list of comment tokens
from an options page under Tools ➪ Options
➪ Environment ➪ Task List, as shown in
Figure 12-8. Each token can be assigned a
priority — Low, Normal, High. The default
token is TODO and it cannot be renamed or
deleted. You can, however, adjust its priority.

In addition to User Tasks and Comments,
you can also add shortcuts to code within
the Task List. To create a Task List Shortcut,
place the cursor on the location for the
shortcut within the code editor and select
Edit ➪ Bookmarks ➪ Add Task List Shortcut.
This will place an arrow icon in the gutter of the
code editor, as shown in Figure 12-9.

If you now go to the Task List window you will
see a new category called Shortcuts listed in the
drop-down list, as shown in Figure 12-10. By default the description for the shortcut will contain
the line of code; however, you can edit this and enter whatever text you like. Double-clicking an
entry takes you to the shortcut location in the code editor.

fiGure 12-8

fiGure 12-9

fiGure 12-10

As with User Tasks, Shortcuts are stored in the .suo file, and aren’t typically checked into source
control or shared among users. Therefore, they are a great way to annotate your code with private
notes and reminders.

suMMary

XML comments are not only extremely powerful, but also very easy to implement in a development
project. Using them enables you to enhance the existing IntelliSense features by including your
own custom-built tooltips and Quick Info data. You can automate the process of creating
XML comments with the GhostDoc Visual Studio add-in. Using Sandcastle, you can generate
professional-looking standalone documentation for every member and class within your solutions.
Finally, Task List comments are useful for keeping track of pending coding tasks and other
outstanding activities.

summary ❘ 243

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13
 Code Consistency Tools

 what ’ s in this chaPter?

 Working with source control ➤

 Creating, adding, and updating code in a source repository ➤

 Defi ning and enforcing code standards ➤

 Adding contracts to your code ➤

 If you are building a small application by yourself, it ’ s very easy to understand how all the pieces
fi t together and to make changes to accommodate new or changed requirements. Unfortunately,
even on such a small project the code base can easily go from being very well structured and
organized to being a mess of variables, methods, and classes. This problem is amplifi ed if the
application is large, complex, and has multiple developers working on it concurrently.

 In this chapter, you will learn about how you and your team can use features of Visual Studio
2010 to write and maintain consistent code. The fi rst part of this chapter is dedicated to the
use of source control to assist you in tracking changes to your code base over time. Use of
source control facilitates sharing of code and changes among a team but more importantly
gives you a history of changes made to an application over time.

 In the remainder of the chapter you will learn about FxCop and StyleCop, which can be used
to set up and enforce coding standards. Adhering to a set of standards and guidelines ensures
the code you write will be easier to understand, leading to fewer issues and shorter development
times. You ’ ll also see how you can use Code Contracts to write higher quality code.

 source control

 Many different methodologies for building software applications exist, and though the
theories about team structure, work allocation, design, and testing often differ, one point
that they agree on is that there should be a repository for all source code for an application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

246 ❘ chaPter 13 code conSiSTency ToolS

Source control is the process of storing source code (referred to as checking code in) and accessing
it again (referred to as checking code out) for editing. When we refer to source code, we mean any
resources, confi guration fi les, code fi les, or even documentation that is required to build and deploy
an application.

 Source code repositories also vary in structure and interface. Basic repositories provide a limited
interface through which fi les can be checked in and out. The storage mechanism can be as simple
as a fi le share, and no history may be available. Yet this repository still has the advantage that all
developers working on a project can access the same fi le, with no risk of changes being overwritten
or lost. More sophisticated repositories not only provide a rich interface for checking in and out,
they also assist with fi le merging and confl ict resolution. They can also be used from within Visual
Studio to manage the source code. Other functionality that a source control repository can provide
includes versioning of fi les, branching, and remote access.

 Most organizations start using a source control repository to provide a mechanism for sharing
source code between participants in a project. Instead of developers having to manually copy code
to and from a shared folder on a network, the repository can be queried to get the latest version
of the source code. When a developer fi nishes his or her work, any changes can simply be checked
into the repository. This ensures that everyone in the team can access the latest code. Also, having
the source code checked into a single repository makes it easy to perform regular backups.

 Version tracking, including a full history of what changes were made and by whom, is one of the
biggest benefi ts of using a source control repository. Although most developers would like to think
that they write perfect code, the reality is that quite often a change might break something else.
Being able to review the history of changes made to a project makes it possible to identify which
change caused the breakage. Tracking changes to a project can also be used for reporting and
reviewing purposes, because each change is date stamped and its author indicated.

 selecting a source control repository
 Visual Studio 2010 does not ship with a source control repository, but it does include rich support
for checking fi les in and out, as well as merging and reviewing changes. To make use of a repository
from within Visual Studio 2010, it is necessary to specify which repository to use. Visual Studio
2010 supports deep integration with Team Foundation Server (TFS), Microsoft ’ s premier source
control and project tracking system. In addition, Visual Studio supports any source control client
that uses the Source Code Control (SCC) API. Products that use the SCC API include Microsoft
Visual SourceSafe, and the free, open - source source - control repositories Subversion and CVS.

 You would be forgiven for thinking that Microsoft Visual SourceSafe is no
longer available, considering that all the press mentions is TFS. However,
Microsoft Visual SourceSafe 2005 is still available and compatible with Visual
Studio 2010. There will, however, be a new licensing option for TFS, which
is specifi cally designed for small development teams as a replacement for
SourceSafe.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 To make Visual Studio 2010 easy to navigate and work with, any functionality that is not available
is typically hidden from the menus. By default, Visual Studio 2010 does not display the source
control menu item. To get this item to appear, you must confi gure the source control provider
information under the Options item on the Tools menu. The Options window, with the Source
Control tab selected, is shown in Figure 13 - 1.

 fiGure 13 - 1

 Initially, very few settings for source control appear. However, once a provider has been selected,
additional nodes are added to the tree to control how source control behaves. These options are
specifi c to the source control provider that has been selected.

 The remainder of this chapter focuses on the use of Visual SourceSafe with Visual Studio
2010. Chapter 57 covers the use of Team Foundation, which offers much richer integration and
functionality as a source control repository.

 The Internet - based version of Visual SourceSafe uses a client - server model that
runs over HTTP or HTTPS, instead of accessing the source code repository
through a fi le share. Additional setup is required on the server side to expose this
functionality.

 Once a source control repository has been selected from the plug - in menu, it is necessary to
confi gure the repository for that machine. For Visual SourceSafe, this includes specifying the path to
the repository, the user with which to connect, and the settings to use when checking fi les in and out
of the repository.

source Control ❘ 247

http://lib.ommolketab.ir
http//lib.ommolketab.ir

248 ❘ chaPter 13 code conSiSTency ToolS

environment settings
Most source control repositories define a series of settings that must be configured for Visual Studio
2010 to connect to and access information from the repository. These settings are usually unique to
the repository, although some apply across most repositories.

In Figure 13-2 the Environment tab is shown, illustrating the options that control when files are
checked in and out of the repository. These options are available for most repositories. The drop-
down menu at the top of the pane defines a couple of profiles, which provide suggestions for
different types of developers.

fiGure 13-2

Plug-in settings
Many source control repositories need some additional settings for Visual Studio 2010 to connect
to the repository. These are specified in the Plug-in Settings pane, which is customized for each
repository. Some repositories, such as SourceSafe, do not require specific information regarding
the location of the repository until a solution is added to source control. At that point, SourceSafe
requests the location of an existing repository or enables the developer to create a new repository.

accessing source control
This section walks through the process of adding a solution to a new Visual SourceSafe 2010
repository, although the same principles apply regardless of the repository chosen. This process can
be applied to any new or existing solution that is not already under source control. We also assume
here that Visual SourceSafe is not only installed, but that it has been selected as the source control
repository within Visual Studio 2010.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the repository
The first step in placing a solution under source control is to create a repository in which to store
the data. It is possible to place any number of solutions in the same repository, although this means
that it is much harder to separate information
pertaining to different projects. Furthermore,
if a repository is corrupted, it may affect all
solutions contained within that repository.

To begin the process of adding a solution
to source control, navigate to the File menu
and select Source Control ➪ Add Solution
to Source Control, as shown in Figure 13-3.
Alternatively, if you are creating a new
solution, there is a checkbox entitled “Add
to Source Control” on the New Project
dialog that you can check to immediately
add your new solution to a source control
repository.

If this is the first time you have accessed SourceSafe, this opens a dialog box that lists the available
databases, which at this stage will be empty. Clicking the Add button initiates the Add SourceSafe
Database Wizard, which steps you through either referencing an existing database, perhaps on a
server or elsewhere on your hard disk, or creating a new database.

To create a new SourceSafe database you need to specify a location for the database and a name.
You must also specify the type of locking that is used when checking files in and out. Selecting the
Lock-Modify-Unlock model allows only a single developer to check out a file at any point in time.
This prevents two people from making changes to the same file at the same time, which makes
the check-in process very simple. However, this model can often lead to frustration if multiple
developers need to adjust the same resource. Project files are a common example of a resource that
multiple developers may need to be able to access at the same time. In order to add or remove files
from a project, this file must be checked out. Unless developers are diligent about checking the
project file back in after they add a new file, this can significantly slow down a team.

An alternative model, Copy-Modify-Merge, allows multiple developers to check out the same file.
Of course, when they are ready to check the file back in, there must be a process of reconciliation
to ensure that their changes do not overwrite any changes made by another developer. Merging
changes can be a difficult process and can easily result in loss of changes or a final code set that
neither compiles nor runs. This model offers the luxury of allowing concurrent access to files, but
suffers from the operational overhead during check in.

adding the solution
Once a SourceSafe repository has been created, the Add to SourceSafe dialog appears, which
prompts you for a location for your application and a name to give it in the repository. SourceSafe
works very similarly to a network file share — it creates folders under the root ($/) into which it
places the files under source control.

fiGure 13-3

source Control ❘ 249

http://lib.ommolketab.ir
http//lib.ommolketab.ir

250 ❘ chaPter 13 code conSiSTency ToolS

 solution explorer
 The fi rst difference that you will see after adding your solution to source
control is that Visual Studio 2010 adjusts the icons within the Solution
Explorer to indicate their source control status. Figure 13 - 4 illustrates
three fi le states. When the solution is initially added to the source
control repository, the fi les all appear with a little padlock icon next to
the fi le type icon. This indicates that the fi le has been checked in and is
not currently checked out by anyone. For example, the Solution fi le and
Properties have this icon.

 Once a solution is under source control, all changes are recorded,
including the addition and removal of fi les. Figure 13 - 4 illustrates the addition of Form2.cs to
the solution. The plus sign next to Form2.cs indicates that this is a new fi le. The tick next to the
SourceSafeSample project and Form1.cs signifi es that the fi les are currently checked out. In
the scenario where two people have the same fi le checked out, this will be indicated with a double
tick next to the appropriate item.

 Checking in and out
 Files can be checked in and out using the
right - click shortcut menu associated with
an item in the Solution Explorer. When a
solution is under source control, this menu
expands to include the items shown on the
left in Figure 13 - 5.

 Before a fi le can be edited, it must be checked out. This can be done using the Check Out for Edit menu
item. Once a fi le is checked out, the shortcut menu expands to include additional options, including Check
In, View Pending Checkins, Undo Checkout, and more, as shown on the right in Figure 13 - 5.

 Pending Changes
 In a large application, it can often be diffi cult to see at a glance which fi les have been checked out
for editing, or recently added or removed from a project. The Pending Checkins window (accessible
from the right - click context menu off the Solution Explorer or via the View menu), shown in Figure
13 - 6, is very useful for seeing which fi les are waiting to be checked into the repository. It also
provides a space into which a comment can be added. This comment is attached to the fi les when

 fiGure 13 - 4

 Although it is no longer required with SourceSafe, many development teams
align the SourceSafe folder structure to the directory structure on your computer.
This is still considered a recommended practice because it encourages the use of
good directory and folder structures.

 The Source Code Control (SCC) API assumes that the .sln solution fi le is
located in the same folder or a direct parent folder as the project fi les. If you
place the .sln solution fi le in a different folder hierarchy than the project fi les,
then you should expect some “ interesting ” source control maintenance issues.

 fiGure 13 - 5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

they are checked into the repository so that
the reason for the change(s) can be reviewed
at a later date.

To check a file back in, you should ensure
that there is a check against the file in the
list, add an appropriate comment in the
space provided, and then select the Check In
button. Depending on the options you have
specified, you may also receive a confirmation
dialog prior to the item’s being checked in. If
the Keep All Checked Out option shown in
Figure 13-6 is checked, the files being checked in will remain in the checked out state, even after the
check in has completed successfully. This can be useful if you are in the middle of a set of changes
and want to commit your current changes so that other developers can access them.

One option that many developers prefer is to set Visual Studio to automatically check out a file
when it is edited. This saves the often unnecessary step of having to check the file out before editing.
However, it can result in files being checked out prematurely; for example, if a developer accidentally
makes a change in the wrong file. Alternatively, a developer may decide that changes made
previously are no longer required and wish to revert to what is contained in the repository. The last
button on the Toolbar contained within the Pending Checkins window is an Undo Checkout button.
This retrieves the current version from the repository, in the process overwriting the local changes
that were made by the developer. This option is also available via the right-click shortcut menu.

Before checking a file into the repository, it is a good idea for someone to review any changes that
have been made. In fact, some organizations have a policy requiring that all changes be reviewed
before being checked in. Selecting the Compare Versions menu item brings up an interface that
highlights any differences between two versions of a file. Figure 13-7 shows that a Form Load event
handler has been added to Form1.vb. Although not evident in Figure 13-7, the type of change is also
color coded; additions (such as the Say_HelloButton_Click method) are highlighted in green text,
and red and blue lines indicate deleted and changed lines.

fiGure 13-6

fiGure 13-7

source Control ❘ 251

http://lib.ommolketab.ir
http//lib.ommolketab.ir

252 ❘ chaPter 13 code conSiSTency ToolS

Because source files can often get quite large, this window provides some basic navigation shortcuts.
The Find option can be used to locate particular strings. Bookmarks can be placed to ease
navigation forward and backward within a file. The most useful shortcuts are the Next and Previous
difference buttons. These enable the developer to navigate through the differences without having to
manually scroll up and down the file.

Merging Changes
Occasionally, changes might be made to the same file by multiple developers. In some cases, these
changes can be automatically resolved if they are unrelated, such as the addition of a method to an
existing class. However, when changes are made to the same portion of the file, there needs to be a
process by which the changes can be mediated to determine the correct code.

Figure 13-8 illustrates the Merge dialog that is presented to developers when they attempt to check
in a file that has been modified by another developer. The top half of the dialog shows the two
versions of the file that are in conflict. Each pane indicates where that file differs from the original
file that the developer checked out. The left pane shows what is now in the source repository, while
the right pane shows the changes the developer has made. In this case, both versions had a message
box inserted, and it is up to the developer to determine which of the messages is correct.

Unlike the Compare Versions dialog, the Merge dialog has been designed to facilitate developer
interaction. From the top panes, changes made in either version can be accepted or rejected by
simply clicking the change. The highlighting changes to indicate that a change has been accepted,
and that piece of code is inserted into the appropriate place in the code presented in the lower pane.
The lower pane also allows the developer to enter code, although it does not support IntelliSense or
error detection.

fiGure 13-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once the conflicts have been resolved, clicking the OK button saves the changes to your local file.
The merged version can then be checked into the repository.

History
Any time a file is checked in and out of the SourceSafe repository, a history is recorded of each
version of the file. Use the View History option on the right-click shortcut menu from the Solution
Explorer to review this history. Figure 13-9 shows a brief history of a file that had four revisions
checked in. This dialog enables developers to view previous versions, look at details (such as
the comments), get the particular version (overwriting the current file), and check out the file.
Additional functionality is provided to compare different versions of the file, pin a particular
version, roll the file back to a previous version (which will erase newer versions), and report on the
version history. When you select View History, you can also constrain the list by a date range and/or
by user.

fiGure 13-9

Pinning
The History window (refer to Figure 13-9) can be used to pin a version of the file. Pinning a version
of a file makes that version the current version. When a developer gets the current source code from
the repository, the pinned version is returned. Pinning a version of a file also prevents anyone
from checking out that file. This can be useful if changes that have been checked are incomplete
or are causing errors in the application. A previous version of the file can be pinned to ensure that
other developers can continue to work while the problem is resolved.

offline support for source control
Visual Studio 2010 provides built-in offline support for Visual SourceSafe when the source code
repository is not available. A transient outage could occur for many reasons — the server may be
down, a network outage may have occurred, or you could be using your laptop at home.

source Control ❘ 253

http://lib.ommolketab.ir
http//lib.ommolketab.ir

254 ❘ chaPter 13 code conSiSTency ToolS

 If you open a solution in Visual Studio that
has been checked into Visual SourceSafe,
and the source code repository is not
available, you are fi rst prompted to continue
or select a different repository. You may
also be asked if you want to try to connect
using HTTP. Assuming you select No for
both of these prompts, you are presented
with four options on how to proceed, as
shown in Figure 13 - 10.

 If the issue is transient, you should select the
fi rst option: Temporarily Work Offl ine in
Disconnected Mode. This allows you to check out fi les and continue editing source code.

 fiGure 13 - 10

 The fi rst time you attempt to check out a fi le while working in disconnected
mode, you are presented with a very large dialog box that displays a small essay.
The basic gist of this message is that Visual Studio will actually be simulating a
checkout on your behalf, and you may need to manually merge changes when
you go to check code back in.

 The next time you open the solution and the source code repository is available, Visual Studio
automatically checks out any “ simulated ” checkouts that occurred while working in disconnected mode.

 Many of the source control operations are not available while working in disconnected mode.
These are operations that typically depend on direct access to the server, such as Check In, Merge
Changes, View History, and Compare Versions.

 codinG standards

 As software development projects and teams grow, there is a tendency for code to rapidly become
a mixed - bag of styles, standards, and approaches. This can lead to a maintenance nightmare, often
resulting in new features being parked due to an abundance of bugs and issues that need to be
addressed. Luckily, some great tools are both built into Visual Studio 2010 and available as Addins
that can enforce things like naming conventions, ordering of methods, and ensure appropriate
comments are written. In this section you learn about some tools that can be used to improve the
consistency of the code you and your team write.

 code analysis with fxcop
 Over several iterations of the .NET Framework and Visual Studio, Microsoft has put together a
set of coding standards that development teams can choose to adhere to. These are well documented
under the topic of Code Analysis for Managed Code Warnings on MSDN (http://msdn.microsoft
.com) and can be enforced using a tool called FxCop, which you can download from the
Microsoft download site.

http://msdn.microsoft.com
http://msdn.microsoft.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Once you have downloaded and installed FxCop you need to run it as a standalone tool from the
Start menu. If you want to run FxCop as part of your build process you can run it from the command
line using the FxCopCmd.exe found in the install folder. When FxCop launches, it automatically
creates and opens a new project. Start by saving the project into the folder alongside the solution fi le
for your application. Then from the Project menu, select Add Targets and select the assemblies (dlls
and exes) that make up your application. Click the Analyze button to run the code analysis over
your application; the result should look similar to Figure 13 - 11.

 Visual Studio 2010 Premium edition and above include the Managed Code
Analysis tool, which is essentially a version of FxCop that is integrated into the
IDE. This is discussed in Chapter 55.

 fiGure 13 - 11

 As you can see from Figure 13 - 11, there are three errors (including one marked as critical) and one
warning. Although you can ignore the warnings, they quite often indicate an area of concern, either
to do with the architecture or security of your code, so it is wise to try to minimize or eliminate
where possible the number of warnings and errors. In this example, the fi rst error is easy to resolve;
you can just code sign the application and the error will go away. However, it may not be possible to
mark your assembly with the CLSCompliant attribute, which is what the second error is requiring.
So that this error doesn ’ t appear each time in the active errors list, you can right - click the error and
select Exclude. You ’ ll be prompted to add a comment so that you can justify the exclusion of that
error. Once you click OK, the excluded error will appear in the Excluded In Project tab, as shown in
the background of Figure 13 - 12. Double - clicking this error opens the details for the error, in which
you can fi nd your comment in the Notes section.

Coding standards ❘ 255

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

256 ❘ chaPter 13 code conSiSTency ToolS

The third error in Figure 13-11 points out that the MessageBoxOptions parameter hasn’t been
specified. In this case, this is by design so you want to exclude the error in source. To do this, add
the SuppressMessage attribute to the method calling MessageBox.Show as in the following code.
The parameters supplied are the Category, CheckId, and Name of the error as found in the Message
Details window for the error.

c#

[System.Diagnostics.CodeAnalysis.SuppressMessage(“Microsoft.Globalization”,
 “CA1300:SpecifyMessageBoxOptions”,
 Justification=“MessageBoxOptions omitted intentionally“)]
private void SayHelloButton_Click(object sender, EventArgs e){
 MessageBox.Show(“Hello World!“);
}

Vb

<System.Diagnostics.CodeAnalysis.SuppressMessage(“Microsoft.Globalization”,
 “CA1300:SpecifyMessageBoxOptions”,
 Justification:=“MessageBoxOptions omitted intentionally“)>
Private Sub SayHelloButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles SayHelloButton.Click
 MessageBox.Show(“Hello World!“)
End Sub

To get FxCop to notice the SuppressMessage attribute, you also need to set the CODE_ANALYSIS
compilation flag. You do this by adding the CODE_ANALYSIS keyword to the Custom Constants
textbox in the Advanced Compile Options dialog (from the Compile tab of the project

fiGure 13-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

properties page) for VB, or by adding the same keyword to the Conditional compilation symbols
textbox (on the Build tab of the project properties page) for C#. After saving, rebuilding your
application and rerunning the Analysis (note that you don ’ t need to restart or even reload the project
within FxCop) you will see that the error has been moved to the Excluded in Source tab. Again,
double - clicking the error and going to the Notes tab reveals the contents of the Justification
parameter specifi ed as part of the SuppressMessage attribute (you may need to import the System
.Diagnostic.CodeAnalysis namespace to use this attribute).

 You have two other ways to control how FxCop is applied to your code. The fi rst is to use the
Targets window to enable/disable the running of rules on sections of code. The left image of
Figure 13 - 13 shows the Targets window with the SourceSafeSample expanded to view the
 IsAdminUser property. In this example the checkboxes have been unchecked to indicate that rules
should not be run on this property.

 fiGure 13 - 13

 In the right image of Figure 13 - 13 you can see the Rules list that has been expanded to show the
Mark assemblies with NeutralResourcesLanguageAttribute rule. This was the rule that was
generating a warning in Figure 13 - 11 and has been unchecked to prevent this rule being used in the
analysis.

 Excluding an entire rule is generally not a good practice because it can hide
errors at a later date. For example, if an assembly is added to the project, this
rule will never be run on that assembly, even though it may be important for
the rule to be applied to that assembly.

 FxCop comes with a large selection of rules that may or may not align with the way you and your
team write code. If you want to enforce your own standards you can extend the default set of rules
by writing your own, using the FxCop SDK that comes with FxCop as a reference.

Coding standards ❘ 257

http://lib.ommolketab.ir
http//lib.ommolketab.ir

258 ❘ chaPter 13 code conSiSTency ToolS

style using stylecop
Although FxCop is great for picking up issues
relating to the way that you write your code,
it doesn’t do much for maintaining a common
coding style. For this, you need to download
and install StyleCop, which is available by
searching for StyleCop on the MSDN code gallery
(http://code.msdn.microsoft.com). Unlike
FxCop, which runs as a standalone tool, StyleCop
integrates into the Visual Studio 2010 IDE,
allowing you to invoke the analysis from Solution Explorer, as shown in Figure 13-14.

After running StyleCop, you will see that any issues are by default reported as warnings, as
in Figure 13-5. If you want to enforce StyleCop you need to tell Visual Studio 2010 to treat
warnings as errors.

fiGure 13-14

fiGure 13-15

As with FxCop you can elect to ignore rules via the StyleCop settings, or suppress rules in specific
instances by adding the SuppressMessage attribute. You will most likely have to right-click the
warning and select Show Error Help to access the Category, CheckId, and Name of the warning
you are going to suppress. The format for the SuppressMessage arguments are (“[Category]”,
“[CheckId]:[Name]”), so for example, (“Maintainability Rules”, “SA1400:
AccessModifierMustBeDeclared“).

code contracts
The last tool that we’re going to cover is Microsoft Code Contracts, which at the time of writing is
currently available as a download from the Code Contracts project at Microsoft DevLabs (http://
msdn.microsoft.com/devlabs). After downloading and installing this tool, you will need to restart
Visual Studio 2010 to get the IDE extensions to appear. Once you have reopened your project you
will also need to add a reference to Microsoft.Contracts, which should be on the .NET tab of the
Add References dialog (right-click the project in Solution Explorer and select Add References).

Now you can add contracts in the form of pre- and post-conditions to your code. In the
following example you can see a pre-condition set for the Divide method that requires (using

http://code.msdn.microsoft.com
http://msdn.microsoft.com/devlabs
http://msdn.microsoft.com/devlabs
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contract.Requires) that the denominator is not zero. Similarly, there is a post-condition that
ensures (using Contract.Ensure) the Add method increments the field currentValue by the correct
amount.

c#

private double currentValue;
private double Divide(double denominator){
 Contract.Requires(denominator != 0);
 return currentValue / denominator;
}
private void Add(double valueToAdd){
 Contract.Ensures(currentValue == Contract.OldValue(currentValue) + valueToAdd);
 // Do nothing so that contract fails
}

private void InvokeDivision(){
 currentValue = 7.0;
 double c = Divide(0); // fails validation because b == 0
}
private void InvokeAddition(){
 currentValue = 13.0;
 Add(6);
}

Vb

Private currentValue As Double
Private Function Divide(ByVal denominator As Double) As Double
 Contract.Requires(denominator <> 0)
 Return currentValue / denominator
End Function
Private Sub Add(ByVal valueToAdd As Double)
 Contract.Ensures(currentValue = Contract.OldValue(currentValue) + valueToAdd)
 ‘ Do nothing so that contract fails
End Sub

Private Sub InvokeDivision()
 currentValue = 7.0
 Dim c = Divide(0.0) ‘fails validation because b == 0
End Sub

Private Sub InvokeAddition()
 currentValue = 13.0
 Add(6)
End Sub

With these contracts in place, you need to enable contract verification via the Code Contracts
tab of the project properties page, as shown in Figure 13-16. Now when you build and run your
application, you will see an Assert dialog thrown when either InvokeDivision or InvokeAddition
are called, reflecting the contract that has been violated.

Coding standards ❘ 259

http://lib.ommolketab.ir
http//lib.ommolketab.ir

260 ❘ chaPter 13 code conSiSTency ToolS

 Here you can see that run time checking has been enabled and that it has been set to raise an Assert
on Contract Failure. If you disable this option a ContractException is raised instead, which you
can handle via code.

 fiGure 13 - 16

 In Figure 13 - 16, there is space in the middle for Static Checking options. These
are available if you install Code Contracts for Visual Studio 2010 Premium and
above. This enables further static checking to attempt to ensure contracts are not
violated at design time, rather than waiting for them to fail at run time.

 suMMary

 This chapter demonstrated Visual Studio 2010 ’ s rich interface for using a source control repository
to manage fi les associated with an application. Checking fi les in and out can be done using the
Solution Explorer window, and more advanced functionality is available via the Pending Changes
window.

 Although SourceSafe is suffi cient for individuals and small teams of developers, it has not been
designed to scale for a large number of developers. It also doesn ’ t provide any capability to track

http://lib.ommolketab.ir
http//lib.ommolketab.ir

tasks or reviewer comments against a set of changes. Chapter 57 discusses the advantages and
additional functionality that is provided by Team Foundation Server, an enterprise-class source
control repository system.

This chapter also introduced you to FxCop, StyleCop, and Code Contracts, which can all be used
to improve the quality, reliability, and consistency of your code. Their close integration into or with
Visual Studio 2010 makes them invaluable tools for development teams of any size.

summary ❘ 261

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14
 Code Generation with T4

 what ’ s in this chaPter?

 Using T4 templates to generate text and code ➤

 Troubleshooting T4 templates ➤

 Creating Preprocessed T4 template to include templating in your ➤

projects

 Frequently, when writing software applications you will come across large areas of boilerplate
code in which the same pattern is repeated over and over. Working on these areas of code
can be time - consuming and tedious, which leads to inattention and easily avoidable errors.
Writing this code is a task best suited to automation.

 Code generation is a common software engineering practice where some mechanism, rather
than a human engineer, is used to write program components automatically. The tool used
to generate the code is known as a code generator. A number of commercial and free code
generators are available in the market from the very general in nature to those that are
targeted toward a very specifi c task.

 Visual Studio 2010 includes a code generator that can generate fi les from simple template
defi nitions. This code generator is known as the Text Template Transformation Toolkit, or
more commonly, T4.

 T4 was originally introduced as part of the Domain Specifi c Languages Toolkit, which was
an add - in for Visual Studio 2005. T4 was included out of the box in Visual Studio 2008 but it
was poorly documented and there were very few hints in the IDE that it existed. Visual Studio
2010 makes T4 a fi rst - class citizen so that Text Template is now one of the options in the
File ➪ New dialog.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

264 ❘ chaPter 14 code generATion WiTh T4

This chapter explores the creation, configuration, and execution of T4 templates. You also see how to
troubleshoot templates when they go wrong. Finally, you create a Preprocessed Text Template that allows
you to create reusable T4 templates that you can easily call from your own code.

creatinG a t4 teMPlate

In previous versions of Visual Studio, creating a new T4 template was a hidden feature that involved
creating a text file with the .tt extension. In Visual Studio 2010 you can create a T4 template
simply by selecting Text Template from the General page of the Add New Item dialog shown in
Figure 14-1.

fiGure 14-1

When a new T4 template is created or saved,
Visual Studio displays the warning dialog shown
in Figure 14-2. T4 templates execute normal .NET
code and can theoretically be used to run any sort
of .NET code. T4 templates are executed every
time they are saved so you will likely see this
warning a lot. There is an option to suppress
these warnings but it is global to all templates
in all solutions. If you do turn it off and decide you’d rather have the warnings, you can reactivate
them by changing Show Security Message to True in Tools ➪ ptions ➪ Text Templating.

fiGure 14-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Once the template has been created it appears in the Solution Explorer window as
a fi le with the .tt extension. The template fi le can be expanded to reveal the fi le
it generates. Each template generates a single fi le, which will have the same name
as the template fi le itself and a different extension. Figure 14 - 3 shows a template fi le and the fi le it
generates in Solution Explorer.

 fiGure 14 - 3

 The generated fi le is initially empty because no output has been defi ned in the template fi le. The
template fi le is not empty, however. When it is fi rst generated it contains the following two lines:

 < #@ template debug="false" hostspecific="false" language="C#" # >
 < #@ output extension=".txt" # >

 Each of these two lines is a T4 directive , which controls some aspect of the way in which the
template is executed. T4 directives are discussed later in the chapter but there are a few things of
interest here. The template directive contains an attribute specifying which language the template
will use. Each template fi le can include code statements that are executed to generate the fi nal fi le
and this attribute tells Visual Studio which language those statements will be in.

 If you are using VB you need to enable Show All Files for the project to see the
generated fi le.

 The template language has no impact on the fi le being generated. You can
generate a C# fi le from a template that uses the VB language and vice versa. This
defaults to the language of the current project but can be changed. Both C# and
VB templates are supported in projects of either language.

 The second thing of note is the extension attribute on the output directive. The name of the
generated fi le is always the same as that of the template fi le except that the .tt extension is replaced
by the contents of this attribute. If Visual Studio recognizes the extension of the generated fi le,
it treats it the same as if you had created it from the Add New Item dialog. In particular, if the
extension denotes a code fi le, such as .cs or .vb , Visual Studio adds the generated fi le to the build
process of your project.

 When the output extension of a template is changed, the previously generated
fi le is deleted the next time the template is run. As long as you are not editing the
generated fi le this shouldn ’ t be an issue.

Creating a T4 Template ❘ 265

http://lib.ommolketab.ir
http//lib.ommolketab.ir

266 ❘ chaPter 14 code generATion WiTh T4

At the bottom of the template file add a single line containing the words Hello World and save the
template.

 c#

<#@ template debug="false" hostspecific="false" language="C#" #>
<#@ output extension=".txt" #>
Hello World

Code snippet HelloWorld.tt

 Vb

<#@ template debug="false" hostspecific="false" language="VB" #>
<#@ output extension=".txt" #>
Hello World

Code snippet HelloWorld.tt

As was mentioned previously, templates are run every time they are saved, so the generated file will
be updated with the new contents of the template. Open up the generated file and you will see the
text Hello World in there.

Although each individual template file can always be regenerated by
opening it and saving it again, Visual Studio also has a button at the top
of the Solution Explorer tool window to Transform All Templates (see
Figure 14-4). Clicking this button transforms all of the templates in the
solution.

As was mentioned previously, if the output directive specifies an extension that matches the
language of the current project, the resulting generated file is included in the project. You will get
full IntelliSense from types and members declared within generated files. The next code snippet
shows a T4 template along with the code that it generates. The generated class can be accessed by
other parts of the program and a small console application demonstrating this follows.

 c#

<#@ template debug="false" hostspecific="false" language="C#" #>
<#@ output extension=".cs" #>

namespace AdventureWorks {
 class GreetingManager {
 public static void SayHi() {
 System.Console.WriteLine("Aloha Cousin!");
 }
 }
}

Code snippet GreetingManager.tt

namespace AdventureWorks {
 class GreetingManager {
 public static void SayHi() {

fiGure 14-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 System.Console.WriteLine("Aloha Cousin!");
 }
 }
}

Code snippet GreetingManager.cs

namespace AdventureWorks {
 class Program {
 static void Main(string[] args) {
 GreetingManager.SayHi();
 }
 }
}

Code snippet Program.cs

 Vb

 < #@ template debug="false" hostspecific="false" language="VB" # >
 < #@ output extension=".vb" # >
Public Class GreetingManager
 Public Shared Sub SayHi
 System.Console.WriteLine("Aloha Cousin!")
 End Sub
End Class

Code snippet GreetingManager.tt

Public Class GreetingManager
 Public Shared Sub SayHi()
 System.Console.WriteLine("Aloha Cousin!")
 End Sub
End Class

Code snippet GreetingManager.vb

Module Module1
 Sub Main()
 GreetingManager.SayHi()
 End Sub
End Module

Code snippet Module1.vb

Although the rest of your application will get IntelliSense covering your
generated code, the T4 template fi les themselves have no IntelliSense or syntax
highlighting in Visual Studio 2010. A few third - party editors and plug - ins are
available that provide a richer design - time experience for T4.

Creating a T4 Template ❘ 267

http://lib.ommolketab.ir
http//lib.ommolketab.ir

268 ❘ chaPter 14 code generATion WiTh T4

This example works, but it doesn’t really demonstrate the power and flexibility that T4 can offer.
This is because the template is completely static. To create useful templates, more dynamic capabilities
are required.

t4 buildinG blocks

Each T4 template consists of a number of blocks which affect the generated file. The line
Hello World from the first example is a Text block. Text blocks are copied verbatim from the
template file into the generated file. They can contain any kind of text and can contain other blocks.

In addition to Text blocks, three other types of blocks exist: Expression blocks, Statement blocks,
and Class Feature blocks. Each of the other types of block is surrounded by a specific kind of
markup to identify it. Text blocks are the only type of block that have no special markup.

expression blocks
An Expression block is used to pass some computed value to the generated file. Expression blocks
normally appear inside of Text blocks and are denoted by <#= and #> tags. Here is an example of a
template that outputs the date and time that the file was generated.

 c#

<#@ template debug="false" hostspecific="false" language="C#" #>
<#@ output extension=".txt" #>
This file was generated: <#=System.DateTime.Now #>

Code snippet Existential.tt

 Vb

<#@ template debug="false" hostspecific="false" language="VB" #>
<#@ output extension=".txt" #>
This file was generated: <#=System.DateTime.Now #>

Code snippet Existential.tt

The expression inside the block may be any valid expression in the template language that is
specified in the template directive. Every time it is run the template evaluates the expression and
then calls ToString() on the result. This value is then inserted into the generated file.

statement blocks
A Statement block is used to execute arbitrary statements when the template is run. Code inside a
Statement block might log the execution of the template, create temporary variables, or delete a file
from your computer, so you need to be careful. In fact, the code inside a Statement block can consist
of any valid statement in the template language. Statement blocks are commonly used to implement
flow control within a template, manage temporary variables, and interact with other systems. A
Statement block is denoted by <# and #> tags which are similar to Statement block delimiters but
without the equals sign. The following example produces a file with all 99 verses of a popular
drinking song.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 c#

 < #@ template debug="false" hostspecific="false" language="C#" # >
 < #@ output extension=".txt" # >
 < # for(int i = 99; i > = 1; i--)
 { # >
 < #=i # > Bottles of Non-alcoholic Carbonated Beverage on the wall
 < #=i # > Bottles of Non-alcoholic Carbonated Beverage
Take one down
And pass it around
 < # if(i-1 == 0) { # >
There's no Bottles of Non-alcoholic Carbonated Beverage on the wall
 < # } else { # >
There's < #=i-1 # > Bottles of Non-alcoholic Carbonated Beverage on the wall
 < # } # >

 < # } # >

Code snippet DrinkingSong.tt

 Vb

 < #@ template debug="false" hostspecific="false" language="VB" # >
 < #@ output extension=".txt" # >
 < # For i As Integer = 99 To 1 Step -1 # >
 < #= i # > Bottles of Non-alcoholic Carbonated Beverage on the wall
 < #= i # > Bottles of Non-alcoholic Carbonated Beverage
 Take one down
 And pass it around
 < # If i - 1 = 0 Then # >
 There's no Bottles of Non-Alcoholic Carbonated Beverage on the wall.
 < # Else # >
 There's < #= i-1 # > Bottles of Non-alcoholic Carbonated Beverage on the wall.
 < # End If # >

 < # Next # >

Code snippet DrinkingSong.tt

In the preceding example the Statement block contains another Text block,
which in turn contains a number of Expression blocks. Using these three block
types alone enables you to create some very powerful templates.

 Although the Statement block in the example contains other blocks, it doesn ’ t need to. From within
a Statement block you can write directly to the generated fi le using the Write() and WriteLine()
methods. Here is the example again using this method.

 c#

 < #@ template debug=”false” hostspecific=”false” language=”C#” #>
<#@ output extension=”.txt” #>
<#

T4 Building Blocks ❘ 269

http://lib.ommolketab.ir
http//lib.ommolketab.ir

270 ❘ chaPter 14 code generATion WiTh T4

for(int i = 99; i > 1; i--)
{
 WriteLine(“{0} Bottles of Non-alcoholic Carbonated Beverage on the wall”, i);
 WriteLine(“{0} Bottles of Non-alcoholic Carbonated Beverage”, i);
 WriteLine(“Take one down”);
 WriteLine(“And pass it around”);
 if(i - 1 == 0) {
 WriteLine(
 “There’s no Bottles of Non-alcoholic Carbonated Beverage on the wall.”);
 } else {
 WriteLine(
 “There’s {0} Bottles of Non-alcoholic Carbonated Beverage on the wall.”,i-1);
 }
 WriteLine(“”);
} #>

Code snippet ImperativeDrinkingSong.tt

 Vb

<#@ template debug=”false” hostspecific=”false” language=”VB” #>
<#@ output extension=”.txt” #>
<# For i As Integer = 99 To 1 Step -1
 Me.WriteLine(“{0} Bottles of Non-alcoholic Carbonated Beverage on the wall”, i)
 Me.WriteLine(“{0} Bottles of Non-alcoholic Carbonated Beverage”, i)
 Me.WriteLine(“Take one down”)
 Me.WriteLine(“And pass it around”)
 If i - 1 = 0 Then
 WriteLine(“There’s no Bottles of Non-Alcoholic Carbonated Beverage on the” &_
 “ wall.”)
 Else
 WriteLine(“There’s {0} Bottles of Non-alcoholic Carbonated Beverage on the” &_
 “ wall.”,i-1)
 End If
 Me.WriteLine(“”)

 Next #>

Code snippet ImperativeDrinkingSong.tt

The final generated results for these two templates are the same. Depending on the template, you
might find one technique or the other easier to understand. It is recommended that you use one
technique exclusively in each template to avoid confusion.

class feature blocks
The final type of T4 block is the Class Feature block. These blocks contain arbitrary code that can
be called from Statement and Expression blocks to help in the production of the generated file. This
often includes custom formatting code or repetitive tasks. Class Feature blocks are denoted using
<#+ and #> tags which are similar to those that denote Expression blocks except that the equals sign
in the opening tag becomes a plus character. The following template writes the numbers from –5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to 5 using a typical financial format where every number has two decimal places, is preceded by a
dollar symbol, and negatives are written as positive amounts but are placed in brackets.

 c#

<#@ template debug=”false” hostspecific=”false” language=”C#” #>
<#@ output extension=”.txt” #>

Financial Sample Data
<# for(int i = -5; i <= 5; i++)
 {
 WriteFinancialNumber(i);
 WriteLine(“”);
 } #>
End of Sample Data

 <#+
 void WriteFinancialNumber(decimal amount)
 {
 if(amount < 0)
 Write(“(${0:#0.00})”, System.Math.Abs(amount));
 else
 Write(“${0:#0.00}”, amount);
 }
 #>

Code snippet FinancialData.tt

 Vb

<#@ template debug=”true” hostspecific=”false” language=”VB” #>
<#@ output extension=”.txt” #>

Financial Sample Data
<# For i as Integer = -5 To 5
 WriteFinancialNumber(i)
 WriteLine(“”)
 Next #>
End of Sample Data

<#+
Sub WriteFinancialNumber(amount as Decimal)
 If amount < 0 Then
 Write(“(${0:#0.00})”, System.Math.Abs(amount))
 Else
 Write(“${0:#0.00}”, amount)
 End If
End Sub
#>

Code snippet FinancialData.tt

Class Feature blocks can contain Text blocks and Expression blocks but they cannot contain
Statement blocks. In addition to this, no Statement blocks are allowed to appear once the first Class
Feature block is encountered.

T4 Building Blocks ❘ 271

http://lib.ommolketab.ir
http//lib.ommolketab.ir

272 ❘ chaPter 14 code generATion WiTh T4

 Now that you know the four different types of T4 blocks that can appear within a template fi le, it ’ s
time to see how Visual Studio 2010 is able to use them to generate the output fi le.

 how t4 works

 The process of generating a fi le from a T4 template comprises two basic steps. In the fi rst step,
the .tt fi le is used to generate a standard .NET class. This class inherits from the abstract
(MustInherit) Microsoft.VisualStudio.TextTemplating.TextTransformation class and
overrides a method called TransformText() .

 In the second step, an instance of this class is created and confi gured, and the TransformText
method is called. This method returns a string that is used as the contents of the generated fi le.

 Normally, you won ’ t see the generated class fi le but you can confi gure the T4 engine to make a copy
available by turning debugging on for the template. This simply involves setting the debug attribute
of the template directive to true and saving the template fi le.

 After a T4 template is executed in Debug mode a number of fi les are created in the temporary folder
of the system. One of these fi les will have a random name and a .cs or a .vb extension (depending
on the template language). This fi le contains the actual generator class.

 You can fi nd the temporary folder of the system by opening a Visual Studio
command prompt and entering the command echo %TEMP%.

 This code contains a lot of pre - processor directives that support template debugging but
make the code quite diffi cult to read. Here are the contents of the code fi le generated from the
 FinancialSample.tt template presented in the previous section reformatted and with these
directives removed.

 C#
namespace Microsoft.VisualStudio.TextTemplatingBE7601CBE8A6858147D586FD8FC4C6F9
{
 using System;
 public class GeneratedTextTransformation :
 Microsoft.VisualStudio.TextTemplating.TextTransformation
 {
 public override string TransformText()
 {
 try
 {
 this.Write("\r\nFinancial Sample Data\r\n");

 for(int i = -5; i < = 5; i++)
 {
 WriteFinancialNumber(i);
 WriteLine("");
 }

 this.Write("End of Sample Data\r\n\r\n ");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }
 catch (System.Exception e)
 {
 System.CodeDom.Compiler.CompilerError error = new~CA
 System.CodeDom.Compiler.CompilerError();
 error.ErrorText = e.ToString();
 error.FileName = "C:\\dev\\Chapter 14\\Chapter 14\\Finance.tt";
 this.Errors.Add(error);
 }
 return this.GenerationEnvironment.ToString();
 }

 void WriteFinancialNumber(decimal amount)
 {
 if(amount < 0)
 Write("({0:#0.00})", System.Math.Abs(amount));
 else
 Write("{0:#0.00}", amount);
 }
 }
}

Vb

Imports System
Namespace Microsoft.VisualStudio.TextTemplating2739DD4202E83EF5273E1D1376F8FC4E
 Public Class GeneratedTextTransformation
 Inherits Microsoft.VisualStudio.TextTemplating.TextTransformation

 Public Overrides Function TransformText() As String
 Try
 Me.Write(""&Global.Microsoft.VisualBasic.ChrW(13) _
 & Global.Microsoft.VisualBasic.ChrW(10) _
 & "Financial Sample Data" _
 & Global.Microsoft.VisualBasic.ChrW(13) _
 & Global.Microsoft.VisualBasic.ChrW(10)) _

 For i as Integer = -5 To 5
 WriteFinancialNumber(i)
 WriteLine("")
 Next

 Me.Write("End of Sample Data" _
 & Global.Microsoft.VisualBasic.ChrW(13) _
 & Global.Microsoft.VisualBasic.ChrW(10) _
 & Global.Microsoft.VisualBasic.ChrW(13) _
 & Global.Microsoft.VisualBasic.ChrW(10)&" ")
 Catch e As System.Exception
 Dim [error] As System.CodeDom.Compiler.CompilerError = _
 New System.CodeDom.Compiler.CompilerError()
 [error].ErrorText = e.ToString
 [error].FileName = "C:\\dev\\Chapter 14\\Chapter 14\\Finance.tt"
 Me.Errors.Add([error])
 End Try
 Return Me.GenerationEnvironment.ToString

How T4 Works ❘ 273

continues

http://lib.ommolketab.ir
http//lib.ommolketab.ir

274 ❘ chaPter 14 code generATion WiTh T4

(continued)
 End Function

 Sub WriteFinancialNumber(amount as Decimal)
 If amount < 0 Then
 Write("(${0:#0.00})", System.Math.Abs(amount))
 Else
 Write("${0:#0.00}", amount)
 End If
 End Sub

 End Class
End Namespace

 Note a few things of interest in this code. First, the template is executed by running the
 TransformText() method. The contents of this method run within the context of a try - catch block
where all errors are captured and stored. Visual Studio 2010 knows how to retrieve these errors and
displays them in the normal errors tool window.

 The next interesting thing is the use of Write() . You can see that each Text block has been
translated into a single string, which is passed to the Write() method. Under the covers this is
added to the GenerationEnvironment property, which is then converted into a string and returned
to the T4 engine.

 The Statement blocks and the Class Feature blocks are copied verbatim into the generated class. The
difference is in where they end up. Statement blocks appear inside the TransformText() method
but Class Feature blocks appear after it and exist at the same scope. This should give you some idea
as to the kinds of things you could declare within a Class Feature block.

 Finally, Expression blocks are evaluated and the result is passed into Microsoft.VisualStudio
.TextTemplating.ToStringHelper.ToStringWithCulture() . This method returns a string,
which is then passed back into Write() as if it were a Text block. Note that the ToStringHelper
takes a specifi c culture into account when producing a string from an expression. This culture can
be specifi ed as an attribute of the template directive.

 When the TransformText() method fi nishes execution it passes a string back to the host environment,
which in this case is Visual Studio 2010. It is up to the host to decide what to do with it. Visual Studio
uses the output directive for this task. Directives are the subject of the next section.

 Before moving on, the previous paragraph implied that T4 does not need to run
inside Visual Studio. There is a command - line tool called TextTransform.exe ,
which you can fi nd in the %CommonProgramFiles%\microsoft shared\
TextTemplating\10.0\ folder (C:\Program Files(x86)\Common Files\
microsoft shared\TextTemplating\10.0\ on 64 - bit machines). Although
you can use this to generate fi les during a build process, T4 itself relies on the
presence of certain libraries that are installed with Visual Studio to run. This
means that if you have a separate build machine you will need to install Visual
Studio on it. Within Visual Studio, fi les with the .tt extension are processed
with a custom tool referred to as TextTemplatingFileGenerator .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 t4 directiVes

 A T4 template can communicate with its execution environment by using directives. Each directive
needs to be on its own line and is denoted with < #@ and # > tags. This section discusses the fi ve
standard directives.

 template directive
 The template directive controls a number of diverse options about the template itself. It contains
the following attributes:

 ➤ language : Defi nes the .NET language used throughout the template inside of Expression,
Statement, and Class Feature blocks. Valid values are C# and VB .

 ➤ inherits : Determines the base class of the generated class used to produce the output
fi le. This can be overridden to provide additional functionality from within template fi les.
Any new base class must derive from Microsoft.VisualStudio.TextTemplating
.TextTransformation , which is the default value for the attribute.

 If you want to inherit from a different base class, you will need to use an
 assembly directive (see the “ Assembly Directive ” section later in this chapter) to
make it available to the T4 template.

 ➤ culture : Selects a localization culture for the template to be executed within. Values should
be expressed using the standard xx - XX notation (en - US, ja - JP, and so on). The default value
is a blank string that specifi es the Invariant Culture.

 ➤ debug : Turns on Debug mode. This causes the code fi le containing the generator class to be
dumped into the temporary folder of the system. Can be set to true or false . Defaults to
 false .

 ➤ hostspecific : Indicates that the template fi le is designed to work within a specifi c host. If
set to true , a Host property is exposed from within the template. When running in Visual
Studio 2010 this property is of type Microsoft.VisualStudio.TextTemplating.VSHost
.TextTemplatingService . Defaults to false . It is beyond the scope of this book but you
can write your own host for T4 and use it to execute template fi les.

 output directive
 The output directive is used to control the fi le that is generated by the template. It contains two
properties.

 ➤ extension: The extension that will be added to the generator name to create the fi lename
of the output fi le. The contents of this property basically replace .tt in the template fi le-
name. By default, this is .cs but it may contain any sequence of characters that the underly-
ing fi le system will allow.

T4 Directives ❘ 275

http://lib.ommolketab.ir
http//lib.ommolketab.ir

276 ❘ chaPter 14 code generATion WiTh T4

encoding: Controls the encoding of the generated file. This can be the result of any of the ➤

encodings returned by System.Text.Encoding.GetEncodings(); that is, UTF-8, ASCII,
and Unicode. The default, value is Default, which makes the encoding equal to the current
ANSI code page of the system the template is being run on.

assembly directive
The assembly directive is used to give code within the template file access to classes and types
defined in other assemblies. It is similar to adding a reference to a normal .NET project. It has a
single attribute called name, which should contain one of the following items:

The filename of the assembly: The assembly will be loaded from the same directory as the ➤

T4 template.

The absolute path of the assembly: The assembly will be loaded from the exact path provided. ➤

The relative path of the assembly: The assembly will be loaded from the relative location ➤

with respect to the directory in which the T4 template is located.

The strong name of the assembly: The assembly will be loaded from the Global Assembly ➤

Cache (CAG).

import directive
The import directive is used to provide easy access to items without specifying their full namespace
qualified type name. It works in the same way as the Import statement in VB or the using
statement from C#. It has a single attribute called namespace. By default, the System namespace
is already imported for you. The following example shows a small Statement block both with and
without an import directive.

 c#

<#
 var myList = new System.Collections.Generic.List<string>();
 var myDictionary = new System.Collections.Generic.Dictionary<string,
 System.Collections.Generic.List <string>>();
#>

Code snippet WithoutImport.tt

 Vb

<#
Dim myList As New System.Collections.Generic.List(Of String)
Dim myDictionary As New System.Collections.Generic.Dictionary(Of System.String,
System.Collections.Generic.List(Of String))
#>

Code snippet WithImport.tt

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 c#

 < #@ import namespace="System.Collections.Generic" # >
 < #
 var myList = new List < string > ();
 var myDictionary = new Dictionary < string, List < string > > ();
>

Code snippet WithImport.tt

 Vb

 < #@ import namespace=”System.Collections.Generic” #>

<#
Dim myList As New List(Of String)
Dim myDictionary As New Dictionary(Of String, List(Of String))
>

Code snippet WithImport.tt

The code that benefi ts from the import and assembly directives is the code that
is executed when the T4 template is run, not the code that is contained within
the fi nal output fi le. If you want to access resources in other namespaces in the
generated output fi le, you must include using or Import statements of your own
into the generated fi le and add references to your project as normal.

 include directive
 The include directive allows you to copy the contents of another fi le directly into your template
fi le. It has a single attribute called file , which should contain a relative or absolute path to the
fi le to be included. If the other fi le contains T4 directives or blocks, they are executed as well. The
following example inserts the BSD License into a comment at the top of a generated fi le.

' Copyright (c) < #=DateTime.Now.Year# > , < #=CopyrightHolder# >
' All rights reserved.

' Redistribution and use in source and binary forms, with or without
...

Code snippet License.txt

 c#

 < #@ template debug="false" hostspecific="false" language="C#" # >
 < #@ output extension=".generated.cs" # >

< # var CopyrightHolder = "AdventureWorks Inc."; # >
/ *

T4 Directives ❘ 277

continues

http://lib.ommolketab.ir
http//lib.ommolketab.ir

278 ❘ chaPter 14 code generATion WiTh T4

(continued)
<#@ include file="License.txt" #>
*/
namespace AdventureWorks {
 // ...
}

Code snippet IncludeSample.tt

Vb

<#@ template debug="false" hostspecific="false" language="VB" #>
<#@ output extension=".vb" #>

<# Dim CopyrightHolder = "AdventureWorks Inc." #>

<#@ include file="License.txt" #>

Namespace AdventureWorks
 ' ...
End Namespace

Code snippet IncludeSample.tt

troubleshootinG

As template files get bigger and more complicated, the potential for errors grows significantly.
This is not helped by the fact that errors might occur at several main stages, and each needs
to be treated slightly differently. Remember that even though T4 runs these processes one at a
time, any might occur when a template file is executed, which occurs every time the file is saved.

When making any changes to T4 template files it is highly recommended that you take small steps to
regenerate often and immediately reverse out any change that breaks things.

design-time errors
The first place where errors might occur is when
Visual Studio attempts to read a T4 template
and use it to create the temporary .NET class.
In Figure 14-5 there is a missing hash symbol
in the opening tag for the Expression block.
The resulting template is invalid. The Error List
window at the bottom of Figure 14-5 shows
Visual Studio identifying this sort of issue quite
easily. It is even able to correctly determine the line number where the error occurs.

The other type of error that is commonly encountered at design time relates to directive issues.
In many cases when a problem arises with an attribute of a directive a warning is raised and the
default value is used. When there are no sensible defaults, such as with the import, include, and
assembly directives, an error is raised instead.

fiGure 14-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 compiling transformation errors
 The next step in the T4 pipeline where an error might occur is when the temporary .NET code fi le
containing the code generator class is compiled into an assembly. Errors that occur here typically
result from malformed code inside Expression, Statement, or Class Feature blocks. Again, Visual
Studio does a good a job of fi nding and exposing these errors but the fi le and line number references
point to the generated fi le. Each error that is found by the engine at this point is prefi xed with the
string Compiling Transformation which make them easy to identify.

 The fi rst step to fi xing these errors is to turn Debug mode on in the template directive. This forces
the engine to dump copies of the fi les that it is using to try and compile the code into the temporary
folder. When these fi les are dumped out, double - clicking the error line in the Error List window
opens the temporary fi le and you can see what is happening. Because this fi le will be a .cs or .vb
fi le Visual Studio is able to provide syntax highlighting and IntelliSense to help isolate the problem
area. Once the general issue has been discovered it is then much easier to fi nd and update the
relevant area of the template.

 One interesting exception to the way that Visual Studio handles invalid
directives is the extension attribute of the output directive. If the value supplied
is invalid in any way, a warning is raised but the generated fi le is not produced
at all. If you have other code that depends on the contents of the generated fi le,
the background compilation process will quickly fi nd a cascade of errors, which
can be overwhelming. Check to see if the fi le is being generated at all before
attempting to fi x the template by temporarily removing all the contents of the
template fi le except for the template and output directives.

 One of the other fi les generated by turning debugging on is a .cmdline fi le,
which contains arguments that are passed to csc.exe or vbc.exe when
T4 compiles the template. You can use this fi le to re - create the compilation
process. There is also a fi le with the .out extension, which contains the
command line call to the compiler and its results.

 executing transformation errors
 The fi nal step in the T4 pipeline that might generate errors is when the code generator is actually
instantiated and executed to produce the contents of the generated fi le. This stage is essentially
running arbitrary .NET code and is the most likely to encounter trouble with environmental
conditions or faulty logic. Like Compiling Transformation errors, errors found during this stage
have a prefi x of Executing Transformation, which makes them easy to spot.

 The best way of handling Executing Transformation errors is to code defensively. From within the
T4 template, if you can detect an error condition such as a fi le missing or being unable to connect
to a database, you can use the Error() method to notify the engine of the specifi c problem. These

Troubleshooting ❘ 279

http://lib.ommolketab.ir
http//lib.ommolketab.ir

280 ❘ chaPter 14 code generATion WiTh T4

errors will appear as Executing Transformation errors just like all of the others, only they’ll have a
more contextual, and hence, more useful message associated with them:

if(!File.Exists(fileName)) {
 this.Error("Cannot find file");
}

In addition to Error() there is an equivalent Warning() method to raise warnings.

If the T4 template encounters an error that is catastrophic, such as not being able to connect to the
database that it gets its data from, it is able to throw an exception to halt the execution process. The
details about the exception are gathered and included in the Error List tool window.

Generated code errors
Although not technically a part of the T4 process, the generated file can just as easily contain
compile-time or run time errors. In the case of compile-time errors, Visual Studio is simply able
to detect these as normal. For run time errors it is probably a good idea to unit test complex types
anyway, even those that have been generated.

Now that you know what to do when things go wrong, it is time to look at a larger example.

GeneratinG code assets

When you develop enterprise applications, you will frequently come across reference data that
rarely changes and is represented in code as an enumeration type. The task of keeping the data
in the database and the values of the enumerated type in sync is time-consuming and repetitive,
which makes it a perfect candidate to automate with a T4 template. The template presented in this
section connects to the AdventureWorks example database and creates an enumeration based on the
contents of the Sales.ContactType table.

 c#

<<#@ template debug=”false” hostspecific=”false” language=”C#” #>
<#@ output extension=”.generated.cs” #>

<#@ assembly name=”System.Data” #>
<#@ import namespace=”System.Data.SqlClient” #>
<#@ import namespace=”System.Text.RegularExpressions” #>

<#
var connectionString = “Data Source=.\\SQLEXPRESS; Initial Catalog=AdventureWorks;”
 + “Integrated Security=true;”;
var sqlString = “SELECT ContactTypeID, [Name] FROM [Person].[ContactType]”;
#>

// This code is generated. Please do not edit it directly
// If you need to make changes please edit ContactType.tt instead
namespace AdventureWorks {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 public enum ContactType {

<#
using(var conn = new SqlConnection(connectionString))
using(var cmd = new SqlCommand(sqlString, conn))
{
 conn.Open();

 var contactTypes = cmd.ExecuteReader();

 while(contactTypes.Read())
 {
 #>
 <#= ValidIdentifier(contactTypes[1].ToString()) #> = <#=contactTypes[0]#>,
 <#}

 conn.Close();
}
#>
 }
}

<#+
 public string ValidIdentifier(string input)
 {
 return Regex.Replace(input, @”[^a-zA-Z0-9]”, String.Empty);
 }
#>

Code snippet ContactTypes.tt

 Vb

<#@ template debug=”false” hostspecific=”false” language=”VB” #>
<#@ output extension=”.generated.vb” #>

<#@ assembly name=”System.Data” #>
<#@ import namespace=”System.Data.SqlClient” #>
<#@ import namespace=”System.Text.RegularExpressions” #>

<#
Dim ConnectionString as String = “Data Source=.\SQLEXPRESS; “ _
& “Initial Catalog=AdventureWorks; Integrated Security=true;”
Dim SqlString as String = “SELECT ContactTypeID,[Name] FROM [Person].[ContactType]”
#>

‘ This code is generated. Please do not edit it directly
‘ If you need to make changes please edit ContactType.tt instead
Namespace AdventureWorks
 Enum ContactType

<#
Using Conn As New SqlConnection(ConnectionString), _

Generating Code assets ❘ 281

continues

http://lib.ommolketab.ir
http//lib.ommolketab.ir

282 ❘ chaPter 14 code generATion WiTh T4

(continued)
 Cmd As New SqlCommand(SqlString, Conn)

 Conn.Open()

 Dim ContactTypes As SqlDataReader = Cmd.ExecuteReader()

 While ContactTypes.Read()
#>
 <#= ValidIdentifier(contactTypes(1).ToString()) #> = <#=contactTypes(0)#>
<#
 End While
 Conn.Close()
End Using
#>
 End Enum
End Namespace

<#+
 Public Function ValidIdentifier(Input as String) As String
 Return Regex.Replace(Input, “[^a-zA-Z0-9]”, String.Empty)
 End Function
#>

Code snippet ContactTypes.tt

The first section is made up of T4 directives. The first two specify the language for the template and
the extension of the output file. The third attaches an assembly to the generator (to provide access
to the System.Data.SqlClient namespace), and the final two import namespaces into the template
that the template code requires.

The next section is a T4 Statement block. It contains some variables that the template will be using.
Putting them at the top of the template file makes them easier to find later on in case they need to change.

After the variable declarations there is a T4 Text block containing some explanatory comments
along with a namespace and an enumeration declaration. These are copied verbatim into the
generated output file. It’s usually a good idea to provide a comment inside the generated file
explaining where they come from and how to edit them. This prevents nasty accidents when changes
are erased after a file is regenerated.

The bulk of the rest of the template is taken up by a Statement block. This block creates and opens a
connection to the AdventureWorks database using the variables defined in the first Statement block.
It then queries the database to retrieve the desired data with a data reader.

For each record retrieved from the database a Text block is produced. This Text block consists
of two Expression blocks separated by an equals sign. The second expression merely adds the
ID of the Contact Type to the generated output file. The first one calls a helper method called
ValidIdentifier, which is defined in a Class Feature block that creates a valid identifier for each
contact type by removing all invalid characters from the Contact Type Name.

The generated output file is shown in the following listing. The end result looks fairly simple in
comparison to the script that is used to generate it, but this is a little deceiving. The T4 template can
remain the same as rows of data are added to and removed from the ContactType table. In fact, the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

items in the database can be completely re-ordered and your code will still compile. With a little
modification this script can even be used to generate enumerated types from a number of different
tables at once.

 c#

// This code is generated. Please do not edit it directly
// If you need to make changes please edit ContactType.tt instead
namespace AdventureWorks {
 public enum ContactType {
 AccountingManager = 1,
 AssistantSalesAgent = 2,
 AssistantSalesRepresentative = 3,
 CoordinatorForeignMarkets = 4,
 ExportAdministrator = 5,
 InternationalMarketingManager = 6,
 MarketingAssistant = 7,
 MarketingManager = 8,
 MarketingRepresentative = 9,
 OrderAdministrator = 10,
 Owner = 11,
 OwnerMarketingAssistant = 12,
 ProductManager = 13,
 PurchasingAgent = 14,
 PurchasingManager = 15,
 RegionalAccountRepresentative = 16,
 SalesAgent = 17,
 SalesAssociate = 18,
 SalesManager = 19,
 SalesRepresentative = 20,
 }
}

Code snippet ContactTypes.generated.cs

 Vb

' This code is generated. Please do not edit it directly
' If you need to make changes please edit ContactType.tt instead
Namespace AdventureWorks
 Enum ContactType

 AccountingManager = 1
 AssistantSalesAgent = 2
 AssistantSalesRepresentative = 3
 CoordinatorForeignMarkets = 4
 ExportAdministrator = 5
 InternationalMarketingManager = 6
 MarketingAssistant = 7
 MarketingManager = 8
 MarketingRepresentative = 9
 OrderAdministrator = 10
 Owner = 11
 OwnerMarketingAssistant = 12

Generating Code assets ❘ 283

continues

http://lib.ommolketab.ir
http//lib.ommolketab.ir

284 ❘ chaPter 14 code generATion WiTh T4

(continued)
 ProductManager = 13
 PurchasingAgent = 14
 PurchasingManager = 15
 RegionalAccountRepresentative = 16
 SalesAgent = 17
 SalesAssociate = 18
 SalesManager = 19
 SalesRepresentative = 20
 End Enum
End Namespace

Code snippet ContactTypes.generated.vb

PreProcessed text teMPlates

Text Template Transformation is a powerful technique and it shouldn’t be restricted to a design-time
activity. Visual Studio 2010 makes it easy to take advantage of the T4 engine to create your own
text template generators to use in your own projects. These generators are called Preprocessed Text
Templates.

To create a new Preprocessed Text Template, open the Add New Item dialog, select the General
page, and select Preprocessed Text Template from the list of items. The newly created file has the
same .tt extension as normal T4 template files and contains a single T4 directive:

c#

<#@ template language="C#" #>

Vb

<#@ template language="VB" #>

Note that there is no output directive. The generated file will have the same filename as the
template file but the .tt will be replaced with .vb or .cs depending on your project language.
When this file is saved, it generates an output file like the following.

 c#

// --
// <auto-generated>
// This code was generated by a tool.
// Runtime Version: 10.0.0.0
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
// --
namespace Chapter_14
{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 using System;

 public partial class NewTemplate
 {
 // region Fields
 // region Properties
 // region Transform-time helpers

 public virtual string TransformText()
 {
 return this.GenerationEnvironment.ToString();
 }
 }
}

Code snippet NewTemplate.cs

 Vb

Imports System
'--
' < auto-generated >
' This code was generated by a tool.
' Runtime Version: 10.0.0.0
'
' Changes to this file may cause incorrect behavior and will be lost if
' the code is regenerated.
' < /auto-generated >
'--
Namespace My.Templates
 Partial Public Class NewTemplate
 ' Region "Fields"
 ' Region "Properties"
 ' Region "Transform-time helpers"
 Public Overridable Function TransformText() As String
 Return Me.GenerationEnvironment.ToString
 End Function
 End Class
End Namespace

Code snippet NewTemplate.vb

 This is very much like the interim code fi le that is produced by T4 for a normal template. This
generated class is now just a class inside the project, which means you can instantiate it, fi ll in its
properties, and call TransformText() on it.

 Just as with a normal Text Template, Visual Studio uses a Custom Tool to
generate the output fi le of a Preprocessed Text Template. Instead of using the
 TextTemplatingFileGenerator custom tool, Preprocessed Text Templates are
transformed using the TextTemplatingFilePreprocessor custom tool, which
adds the code generator class to your project instead of the results of executing
the code generator.

Preprocessed Text Templates ❘ 285

http://lib.ommolketab.ir
http//lib.ommolketab.ir

286 ❘ chaPter 14 code generATion WiTh T4

using Preprocessed text templates
To demonstrate how to use a Preprocessed Text Template within your own code, this section
presents a simple scenario. The project needs to be able to send a standard welcome letter to new
club members when they join the AdventureWorks Cycle club. The following Preprocessed Text
Template contains the basic letter that is to be produced.

 c#

<#@ template language="C#" #>
Dear <#=Member.Salutation#> <#=Member.Surname#>,

 Welcome to our Bike Club!

Regards,
The AdventureWorks Team
<#= Member.DateJoined.ToShortDateString() #>
<#+ public ClubMember Member { get; set; } #>

Code snippet WelcomeLetter.tt

 Vb

<#@ template language="VB" #>
Dear <#=Member.Salutation#> <#=Member.Surname#>,

 Welcome to our Bike Club!

Regards,
The AdventureWorks Team
<#= Member.DateJoined.ToShortDateString() #>
<#+ Public Member as ClubMember #>

Code snippet WelcomeLetter.tt

This file generates a class called WelcomeLetter and relies on the following simple data class, which
is passed into the template via its Member property.

 c#

public class ClubMember
{
 public string Salutation { get; set; }
 public string Surname { get; set; }
 public DateTime DateJoined { get; set; }
}

Code snippet ClubMember.tt

 Vb

Public Class ClubMember
 Public Surname As String

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Public Salutation As String
 Public DateJoined As Date
End Class

Code snippet ClubMember.tt

Finally, to create the letter you instantiate a WelcomeLetter object, set the Member property to a
ClubMember object, and call TransformText().

 c#

// ...
var member = new ClubMember
{
 Surname = "Fry",
 Salutation = "Mr",
 DateJoined = DateTime.Today
};

var letterGenerator = new WelcomeLetter();

letterGenerator.Member = member;

var letter = letterGenerator.TransformText();
// ...

Code snippet Program.cs

 Vb

' ...
Dim NewMember As New ClubMember
With NewMember
 .Surname = "Fry"
 .Salutation = "Mr"
 .DateJoined = Date.Today
End With

Dim LetterGenerator As New WelcomeLetter

LetterGenerator.Member = NewMember

Dim Letter = LetterGenerator.TransformText()
' ...

Code snippet Module1.vb

This can look a little awkward but WelcomeLetter is a partial class so you can change the API to be
whatever you want. Often you will find yourself making the constructor of the generator private and
create a few static methods to handle the creation and use of generator instances.

 c#

public partial class WelcomeLetter
{
 private WelcomeLetter() { }

Preprocessed Text Templates ❘ 287

continues

http://lib.ommolketab.ir
http//lib.ommolketab.ir

288 ❘ chaPter 14 code generATion WiTh T4

(continued)
 public static string Create(ClubMember member)
 {
 return new WelcomeLetter { Member = member }.TransformText();
 }
}

Code snippet WelcomeLetter.Extensions.cs

 Vb

Namespace My.Templates
 Partial Public Class WelcomeLetter
 Private Sub New()
 End Sub

 Public Shared Function Create(ByVal Member As ClubMember) As String
 Dim LetterGenerator As New WelcomeLetter()
 LetterGenerator.Member = Member
 Return LetterGenerator.TransformText()
 End Function

 End Class
End Namespace

Code snippet WelcomeLetter.Extensions.vb

The generator contains a StringBuilder , which it uses internally to build up the
input when TransformText is executed. This StringBuilder is not cleared out
when you run the TransformText method, which means that each time you run
it the results are appended to the results of the previous execution. This is why
the Create method presented creates a new WelcomeLetter object each time
instead of keeping one in a static (Shared) variable and re - using it.

 diff erences between a standard t4 template
 Aside from which aspect of the generation process is included in your project, a few other key
differences exist between a Preprocessed Text Template and a standard T4 template. First,
Preprocessed Text Templates are completely standalone classes. They do not inherit from a base
class by default and therefore do not rely on Visual Studio to execute. The TransformText()
method of the generator class does not run within a try/catch block so you will need to watch for
and handle errors yourself when executing the generator.

 Not all T4 directives will make sense in a Preprocessed Text Template, and for those that do some
attributes will no longer make much sense. Here is a quick summary.

 The template directive is still used but not all of the attributes make sense. The culture and language
attributes are fully supported. The language attribute must match that of the containing language or the
generator class cannot be compiled. The debug attribute is ignored because you can control the debug
status of the generator class by setting the project confi guration as you would with any other class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The inherits attribute is supported and has a significant impact on the generated class. If you
do not specify a base class, the generated file will be completely standalone and will contain
implementations of all of the helper functions such as Write and Error. If you do specify a base
class, it is up to the base class to specify these implementations and the generated class will rely on
those implementations to perform the generation work.

The hostspecific attribute is supported and generates a Host property on the generator class. This
property is of the Microsoft.VisualStudio.TextTemplating.ITextTemplatingEngineHost
type, which resides in the Microsoft.VisualStudio.TextTemplating assembly. It is up to you to
add a reference to this assembly to your project and to provide a member of the appropriate type
before calling the TransformText method.

The import directive works as normal. The referenced namespaces are included in the generator
code file with using statements in C# and Import statements in VB. The include directive is also
fully supported.

The output and assembly directives are ignored. To add
an assembly to the template you simply add a reference
to the project as normal. The output filename is selected
based on the template filename and the selected language.

Finally, you can set the namespace of the generator class
in the Properties window of the template file shown in
Figure 14-6. The namespace is normally based on the
project defaults and the location of the template file
within the folder structure of the project.

tiPs and tricks

Following are a few things that might help you to take full advantage of T4:

Write the code you intend to generate first for one specific case as a normal C# or VB code ➤

file. Once you are satisfied that everything is working as intended, copy the entire code file
into a .tt file. Now start slowly making the code less specific and more generic by introducing
Statement blocks and Expression blocks, factoring out Class Feature blocks as you go.

Save frequently as you make changes. As soon as a change breaks the generated code or the ➤

generator, simply reverse it and try again.

Never make changes directly to a generated file. The next time the template is saved those ➤

changes will be lost.

Make generated classes partial. This makes the generated classes extensible, allowing you to ➤

keep some parts of the class intact and regenerate the other parts. In fact this is one of the
reasons that the partial class functionality exists.

Use an extension that includes the word ➤ generated such as .generated.cs and
.generated.vb. This is a convention used by Visual Studio itself and will discourage other
users from making changes to template files.

fiGure 14-6

Tips and Tricks ❘ 289

http://lib.ommolketab.ir
http//lib.ommolketab.ir

290 ❘ chaPter 14 code generATion WiTh T4

Similarly, include a comment toward the top of the generated file stating that the file is ➤

 generated along with instructions for how to change the contents and regenerate the file.

Make T4 template execution a part of your build process. This ensures that the content of ➤

the generated files doesn’t get stale with respect to the metadata used to generate it.

If you don’t have a lot of things dependent upon the generated code produced by a normal ➤

T4 Text Template, switch the custom tool over to make the template a Preprocessed
Template while you develop it. This brings the code generator into your project and allows
you to write unit tests against it.

Don’t use T4 to generate ➤ .tt files. If you are trying to use a code generator to generate
template files, the level of complexity when things go wrong increases substantially. At this
point it might be wise to consider a different strategy for your project.

Finally, an absolutely invaluable resource for anyone getting started with T4 is ➤

http://www.olegsych.com. Oleg is a Visual C# MVP who maintains a blog with a
very large collection of articles about T4.

suMMary

Code generation can be a fantastic productivity gain for your projects and Visual Studio 2010 includes
some powerful tools for managing the process out of the box. In this chapter you have seen how to
create and use T4 templates to speed up common and generic coding tasks. Learning when and how to
apply T4 to your projects increases your productivity and makes your solutions far more flexible.

http://www.olegsych.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

15
 Project and item Templates

 what ’ s in this chaPter?

 Creating your own item templates ➤

 Creating your own project templates ➤

 Adding a wizard to your project templates ➤

 Most development teams build a set of standards that specify how they build applications.
This means that every time you start a new project or add an item to an existing project, you
have to go through a process to ensure that it conforms to the standard. Visual Studio 2010
enables you to create templates that can be reused without having to modify the standard
item templates that ship with Visual Studio 2010. This chapter describes how you can create
simple templates and then extend them with a wizard that can change how the project is
generated using the IWizard interface.

 creatinG teMPlates

 Two types of templates exist: those that create new project items and those that create entire
projects. Both types of templates essentially have the same structure, as you see later, except
that they are placed in different template folders. The project templates appear in the New
Project dialog, whereas the item templates appear in the Add New Item dialog.

 item template
 Although it is possible to build a project item template manually, it is much quicker to
create one from an existing project item and make changes as required. This section begins
by looking at an item template — in this case an About form that contains some basic
information, such as the application ’ s version number and who wrote it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

292 ❘ chaPter 15 projecT And iTem TemplATeS

To begin, create a new Windows Forms
application (using your language of choice) called
StarterProject. Instead of creating an About form
from scratch, you can customize the About Box
template that ships with Visual Studio. Right-
click the StarterProject project, select Add ➪
New Item, and add a new About Box. Customize
the default About form by deleting the logo and
first column of the TableLayoutPanel control
(by selecting the table layout panel, going to
the Properties window, selecting the Columns
property, clicking its ellipsis button (…), and
deleting column 1). The customized About form
is shown in Figure 15-1.

To make a template out of the About form,
select the Export Template item from the File menu. This starts the Export Template Wizard,
shown in Figure 15-2. If you have unsaved changes in your solution, you will be prompted to save
before continuing. The first step is to determine what type of template you want to create. In this
case, select the Item Template radio button and make sure that the project in which the About form
resides is selected in the drop-down list.

fiGure 15-1

fiGure 15-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Click Next. You will be prompted to select the item on which you want to base the template.
In this case, select the About form. The use of checkboxes is slightly misleading, because with item
templates you can select only a single item on which to base the template (selecting a second
item will deselect the item already selected). After you make your selection and click Next, the
dialog shown in Figure 15 - 3 enables you to include any assembly references that you may require.
This list is based on the list of references in the project in which that item resides. Because this is a
form, include a reference to the System.Windows.Forms library, which will be added to a project
when adding a new item of this type (if it has not already been added). Otherwise it is possible that
the project won ’ t compile if it did not have a reference to this assembly (Class Library projects don ’ t
generally reference this assembly by default).

 fiGure 15 - 3

After selecting an assembly, a warning may be displayed underneath the list
stating that the selected assembly isn’t preinstalled with Visual Studio and may
prevent a user from using your template if the assembly isn’t available on their
machine. Be aware of this issue, and only select assemblies that your item really
needs.

 The fi nal step in the Export Template Wizard is to specify some properties of the template to be
generated, such as the name, description, and icon that will appear in the Add New Item dialog.

Creating Templates ❘ 293

http://lib.ommolketab.ir
http//lib.ommolketab.ir

294 ❘ chaPter 15 projecT And iTem TemplATeS

Figure 15-4 shows the final dialog in the wizard. As you can see, there are two checkboxes, one for
displaying the output folder upon completion and one for automatically importing the new template
into Visual Studio 2010.

fiGure 15-4

By default, exported templates are created in the My Exported
Templates folder under the current user’s Documents\Visual
Studio 2010 folder. Inside this root folder are a number of folders
that contain user settings about Visual Studio 2010 (as shown in
Figure 15-5).

You will also notice the Templates folder in Figure 15-5. Visual Studio
2010 looks in this folder for additional templates to display when you
are creating new items. Two subfolders beneath the Templates folder
hold item templates and project templates, respectively. These in
turn are divided further by language. If you check the Automatically
Import the Template into Visual Studio option on the final page of
the Export Template Wizard, the new template will not only be placed
in the output folder but will also be copied to the relevant location
(depending on language and template type) within the Templates
folder. Visual Studio 2010 will automatically display this item
template the next time you display the Add New Item dialog, as
shown in Figure 15-6.

fiGure 15-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you want an item or project template to appear under an existing category (or
one of your own) in the Add New Item / New Project dialog (such as the Windows
Forms category), simply create a folder with that name and put the template into it
(under the relevant location as described for that template). The next time you open
the Add New Item / New Project dialog, the template will appear in the category
with the corresponding folder name (or as a new category if a category matching
the folder name doesn’t exist).

 Project template
 You build a project template the same way you build an item
template, but with one difference. Whereas the item template is based
on an existing item, the project template needs to be based on an
entire project. For example, you might have a simple project called
ProjectTemplateExample (as shown in Figure 15 - 7) that has a main
form, an About form, and a splash screen.

 To generate a template from this project, you follow the same steps you
took to generate an item template, except that you need to select Project Template when asked what
type of template to generate, and there is no step to select the items to be included (all items within
the project will be included in the template). After you ’ ve completed the Export Template Wizard, the
new project template will appear in the New Project dialog, shown in Figure 15 - 8.

 fiGure 15 - 6

 fiGure 15 - 7

Creating Templates ❘ 295

http://lib.ommolketab.ir
http//lib.ommolketab.ir

296 ❘ chaPter 15 projecT And iTem TemplATeS

template structure
Before examining how to build more complex templates, you need to understand what is produced
by the Export Template Wizard. If you look in the My Exported Templates folder, you will see that
all the templates are exported as a single compressed zip file. The zip file can contain any number of
files or folders, depending on whether they are templates for single files or full projects. However,
the one common element of all template zip files is that they contain a .vstemplate file. This file is
an XML document that holds the template configuration. The following listing is the .vstemplate
file that was exported as a part of your project template earlier:

<VSTemplate Version="2.0.0"
 xmlns="http://schemas.microsoft.com/developer/vstemplate/2005" Type="Project">
 <TemplateData>
 <Name>Project Template Example</Name>
 <Description>Project Template Example</Description>
 <ProjectType>CSharp</ProjectType>
 <ProjectSubType>
 </ProjectSubType>
 <SortOrder>1000</SortOrder>
 <CreateNewFolder>true</CreateNewFolder>
 <DefaultName>Project Template Example</DefaultName>
 <ProvideDefaultName>true</ProvideDefaultName>
 <LocationField>Enabled</LocationField>
 <EnableLocationBrowseButton>true</EnableLocationBrowseButton>
 <Icon>__TemplateIcon.ico</Icon>
 </TemplateData>
 <TemplateContent>
 <Project TargetFileName="ProjectTemplateExample.csproj"
 File="ProjectTemplateExample.csproj" ReplaceParameters="true">
 <ProjectItem ReplaceParameters="true" TargetFileName="AboutForm.cs">
 AboutForm.cs</ProjectItem>
 <ProjectItem ReplaceParameters="true" TargetFileName="AboutForm.Designer.cs">
 AboutForm.Designer.cs</ProjectItem>

fiGure 15-8

http://schemas.microsoft.com/developer/vstemplate/2005
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 < ProjectItem ReplaceParameters="true" TargetFileName="AboutForm.resx" >
 AboutForm.resx < /ProjectItem >
 < ProjectItem ReplaceParameters="true" TargetFileName="MainForm.cs" >
 MainForm.cs < /ProjectItem >
 < ProjectItem ReplaceParameters="true" TargetFileName="MainForm.Designer.cs" >
 MainForm.Designer.cs < /ProjectItem >
 < ProjectItem ReplaceParameters="true" ="Program.cs" > Program.cs < /ProjectItem >
 < Folder Name="Properties" TargetFolderName="Properties" >
 < ProjectItem ReplaceParameters="true"
 TargetFileName="AssemblyInfo.cs" > AssemblyInfo.cs < /ProjectItem >
 < ProjectItem ReplaceParameters="true"
 TargetFileName="Resources.resx" > Resources.resx < /ProjectItem >
 < ProjectItem ReplaceParameters="true"
 TargetFileName="Resources.Designer.cs" > Resources.Designer.cs
 < /ProjectItem >
 < ProjectItem ReplaceParameters="true"
 TargetFileName="Settings.settings" > Settings.settings < /ProjectItem >
 < ProjectItem ReplaceParameters="true"
 TargetFileName="Settings.Designer.cs" > Settings.Designer.cs < /ProjectItem >
 < /Folder >
 < ProjectItem ReplaceParameters="true" TargetFileName="SplashForm.cs" >
 SplashForm.cs < /ProjectItem >
 < ProjectItem ReplaceParameters="true"
 TargetFileName="SplashForm.Designer.cs" >
 SplashForm.Designer.cs < /ProjectItem >
 < ProjectItem ReplaceParameters="true" TargetFileName="SplashForm.resx" >
 SplashForm.resx < /ProjectItem >
 < /Project >
 < /TemplateContent >

 At the top of the fi le, the VSTemplate node contains a Type attribute that specifi es whether this is an
item template (Item), a project template (Project), or a multiple project template (ProjectGroup).
The remainder of the fi le is divided into TemplateData and TemplateContent . The TemplateData
block includes information about the template itself, such as its name and description and the icon
that will be used to represent it in the New Project dialog, whereas the TemplateContent block
defi nes the fi le structure of the template.

 In the preceding example, the content starts with a Project node, which indicates the project fi le
to use. The fi les contained in this template are listed by means of the ProjectItem nodes. Each
node contains a TargetFileName attribute that can be used to specify the name of the fi le as it will
appear in the project created from this template. In the case of an item template, the Project node
is missing and ProjectItems are contained within the TemplateContent node.

It’s possible to create templates for a solution that contains multiple projects.
These templates contain a separate .vstemplate fi le for each project in the
solution. They also have a global .vstemplate fi le, which describes the overall
template and contains references to each projects’ individual .vstemplate
fi les. Creating this fi le is a manual process, however, as Visual Studio does not
 currently have a function to export a solution template.

Creating Templates ❘ 297

http://lib.ommolketab.ir
http//lib.ommolketab.ir

298 ❘ chaPter 15 projecT And iTem TemplATeS

For more information on the structure of the .vstemplate file, see the full schema at
%programfiles%\Microsoft Visual Studio 10.0\Xml\Schemas\1033\vstemplate.xsd.

template Parameters
Both item and project templates support parameter substitution, which enables replacement
of key parameters when a project or item is created from the template. In some cases these are
automatically inserted. For example, when the About form was exported as an item template, the
class name was removed and replaced with a template parameter, as shown here:

Public Class $safeitemname$

Table 15-1 lists 14 reserved template parameters that can be used in any project.

table 15-1: Template Parameters

ParaMeter descriPtion

clrversion Current version of the common language runtime .

GUID[1-10] A GUID used to replace the project GUID in a project file .

You can specify up to ten unique GUIDs (for example, GUID1,

GUID2, and so on) .

itemname The name provided by the user in the Add New Item dialog .

machinename The current computer name (for example, computer01) .

projectname The name provided by the user in the New Project dialog .

registeredorganization The registry key value that stores the registered organization

name .

rootnamespace The root namespace of the current project . This parameter is

used to replace the namespace in an item being added to a

project .

safeitemname The name provided by the user in the Add New Item dialog,

with all unsafe characters and spaces removed .

safeprojectname The name provided by the user in the New Project dialog,

with all unsafe characters and spaces removed .

time The current time on the local computer .

userdomain The current user domain .

username The current username .

webnamespace The name of the current web site . This is used in any web

form template to guarantee unique class names .

year The current year in the format YYYY .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In addition to the reserved parameters, you can also create your own custom template parameters.
You define these by adding a <CustomParameters> section to the .vstemplate file, as shown here:

<TemplateContent>
 ...
 <CustomParameters>
 <CustomParameter Name="$timezoneName $" Value="(GMT+8:00) Perth"/>
 <CustomParameter Name="$timezoneOffset $" Value="+8"/>
 </CustomParameters>
</TemplateContent>

You can refer to this custom parameter in code as follows:

string tzName = "$timezoneName$";
string tzOffset = "$timezoneOffset$";

When a new item or project containing a custom parameter is created from a template, Visual
Studio automatically performs the template substitution on both custom and reserved parameters.

template locations
By default, custom item and project templates are stored in the user’s personal Documents\Visual
Studio 2010\Templates folder, but you can redirect this to another location (such as a shared
directory on a network so you are using the same custom templates as your colleagues) via the
Options dialog. Go to Tools ➪ Options and select the Projects and Solutions node. You can then
select a different location for the custom templates here.

extendinG teMPlates

Building templates based on existing items and projects limits what you can do. It assumes that
every project or scenario will require exactly the same items. Instead of creating multiple templates
for each different scenario (for example, one that has a main form with a black background and
another that has a main form with a white background), with a bit of user interaction you can
accommodate multiple scenarios from a single template. Therefore, this section takes the project
template created earlier and tweaks it so users can specify the background color for the main form.
In addition, you’ll build an installer for both the template and the wizard that you will create for
the user interaction.

To add user interaction to a template, you need to implement the IWizard interface in a class library
that is then signed and placed in the Global Assembly Cache (GAC) on the machine on which the
template will be executed. For this reason, to deploy a template that uses a wizard you also need
rights to deploy the wizard assembly to the GAC.

template Project setup
Before plunging in and implementing the IWizard interface, follow these steps to set up your
solution so you have all the bits and pieces in the same location, which will make it easy to make
changes, perform a build, and then run the installer:

 1 . Create a new project with the Project Template Example project template that you created
earlier in the chapter and name it ExtendedProjectTemplateExample. Make sure that this

extending Templates ❘ 299

http://lib.ommolketab.ir
http//lib.ommolketab.ir

300 ❘ chaPter 15 projecT And iTem TemplATeS

solution builds and runs successfully before proceeding. Any issues with this solution will
be harder to detect later, because the error messages that appear when a template is used are
somewhat cryptic.

 2 . Into this solution add a Class Library project, called WizardClassLibrary, in which you will
place the IWizard implementation.

 3 . Add to the WizardClassLibrary a new empty class file called MyWizard, and a blank
Windows Form called ColorPickerForm. These will be customized later.

 4 . To access the IWizard interface, add to the Class Library project EnvDTE.dll and
Microsoft.VisualStudio.TemplateWizardInterface.dll as references, both located at
%programfiles%\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies\.

 5 . Finally, you will also need to add a Setup project to
the solution. To do this, select File ➪ Add ➪ New
Project, expand the Other Project Types category,
and then highlight Setup and Deployment. Select the
Setup Wizard template and follow the prompts to
include both the Primary Output and Content Files
from WizardClassLibrary.

This should result in a solution that looks similar to what is
shown in Figure 15-9.

As shown in Figure 15-9, when you include the primary
output and content files from the Class Library project to the
installer it also adds a number of dependencies. Because
the template will only be used on a machine with Visual
Studio 2010, you don’t need any of these dependencies.
Exclude them by clicking the Exclude menu item on the right-
click context menu. Then perform the following steps to
complete the configuration of the Installer project:

 1 . When you add primary outputs and content files from projects in the solution to the
installer, they are added to the Application folder. However, you want the primary output
of the class library to be placed in the GAC, and its content files to go into the user’s Visual
Studio Templates folder. To move these files, right-click the Installer project and select
View ➪ File System from the context menu to open the File System view.

 2 . By default, the File System view contains the Application folder (which can’t be deleted), the
User’s Desktop folder, and the User’s Programs Menu folder. Remove the two user folders
by selecting Delete from the right-click context menu.

 3 . Add both the Global Assembly Cache (GAC) folder and the User’s Personal Data folder
(Documents) to the file system by right-clicking the File System on Target Machine node
and selecting these folders from the list.

 4 . Into the User’s Personal Data folder, add a Visual Studio 2010 folder (right-click and choose
Add ➪ Folder), followed by a Templates folder, followed by a ProjectTemplates folder, and

fiGure 15-9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

finally followed by Visual C# (if it is a
C# project) or Visual Basic (if it’s a VB
project). The result should look like
what is shown in Figure 15-10.

 5 . To complete the installer, move the
primary output from the Application
folder into the Global Assembly
Cache folder, and then move the
 content files from the Application folder to the ProjectTemplates folder. (Simply drag the
files between folders in the File System view.)

iwizard
Now that you’ve completed the installer, you can start work on the wizard class library. As shown
in Figure 15-9, you have a form (ColorPickerForm) and a class (MyWizard). The former is a simple
form that can be used to specify the color of the background of the main form. To this form you
will need to add a Color Dialog control, called ColorDialog1, a Panel called ColorPanel, a Button
called PickColorButton (with the text “Pick Color”), and a Button called AcceptColorButton (with
the text “Accept Color”).

Rather than use the default icon that Visual Studio uses on the form, you can select a more
appropriate icon from the Visual Studio 2010 Image Library. The Visual Studio 2010 Image
Library is a collection of standard icons, images, and animations that are used in Windows, Office,
and other Microsoft software. You can use any of these images royalty-free to ensure that your
applications are visually consistent with Microsoft software.

The Image Library is installed with Visual Studio as a
compressed file called VS2010ImageLibrary.zip. By default,
you can find this under %programfiles%\Microsoft Visual
Studio 10.0\Common7\VS2010ImageLibrary\1033\. Extract
the contents of this zip file to a more convenient location, such
as a directory under your profile.

To replace the icon on the form, first go to the Properties
window and then select the Form in the drop-down list at the
top. On the Icon property, click the ellipsis button (…) to load
the file selection dialog. Select the icon file you want to use and
click OK (for this example we’ve chosen VS2010ImageLibrary\
Objects\ico_format\WinVista\Settings.ico).

Once completed, the ColorPickerForm should look similar to
the one shown in Figure 15-11.

The following code listing can be added to this form. The main logic of this form is in the event
handler for the Pick Color button, which opens the ColorDialog that is used to select
a color.

fiGure 15-11

fiGure 15-10

extending Templates ❘ 301

http://lib.ommolketab.ir
http//lib.ommolketab.ir

302 ❘ chaPter 15 projecT And iTem TemplATeS

Vb

Public Class ColorPickerForm
 Public ReadOnly Property SelectedColor() As Drawing.Color
 Get
 Return ColorPanel.BackColor
 End Get
 End Property

 Private Sub PickColorButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles
 PickColorButton.Click
 ColorDialog1.Color = ColorPanel.BackColor
 If ColorDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then
 ColorPanel.BackColor = ColorDialog1.Color
 End If
 End Sub

 Private Sub AcceptColorButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles
 AcceptColorButton.Click
 Me.DialogResult = Windows.Forms.DialogResult.OK
 Me.Close()
 End Sub
End Class

C#

using System;
using System.Drawing;
using System.Windows.Forms;

namespace WizardClassLibrary
{
 public partial class ColorPickerForm : Form
 {
 public ColorPickerForm()
 {
 InitializeComponent();

 PickColorButton.Click += PickColorButton_Click;
 AcceptColorButton.Click += AcceptColorButton_Click;
 }

 public Color SelectedColor
 {
 get { return ColorPanel.BackColor; }
 }

 private void PickColorButton_Click(object sender, EventArgs e)
 {
 ColorDialog1.Color = ColorPanel.BackColor;

 if (ColorDialog1.ShowDialog() == DialogResult.OK)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ColorPanel.BackColor = ColorDialog1.Color;
 }
 }

 private void AcceptColorButton_Click(object sender, EventArgs e)
 {
 this.DialogResult = DialogResult.OK;
 this.Close();
 }
 }
}

The MyWizard class implements the IWizard interface, which provides a number of opportunities
for user interaction throughout the template process. Add some code to the RunStarted method,
which will be called just after the project-creation process is started. This provides the perfect
opportunity to select and apply a new background color for the main form:

Vb

Imports Microsoft.VisualStudio.TemplateWizard
Imports System.Collections.Generic
Imports System.Windows.Forms

Public Class MyWizard
 Implements IWizard

 Public Sub BeforeOpeningFile(ByVal projectItem As EnvDTE.ProjectItem) _
 Implements IWizard.BeforeOpeningFile
 End Sub

 Public Sub ProjectFinishedGenerating(ByVal project As EnvDTE.Project) _
 Implements IWizard.ProjectFinishedGenerating
 End Sub

 Public Sub ProjectItemFinishedGenerating _
 (ByVal projectItem As EnvDTE.ProjectItem) _
 Implements IWizard.ProjectItemFinishedGenerating
 End Sub

 Public Sub RunFinished() Implements IWizard.RunFinished

 End Sub

 Public Sub RunStarted(ByVal automationObject As Object, _
 ByVal replacementsDictionary As _
 Dictionary(Of String, String), _
 ByVal runKind As WizardRunKind, _
 ByVal customParams() As Object) _
 Implements IWizard.RunStarted
 Dim selector As New ColorPickerForm
 If selector.ShowDialog = DialogResult.OK Then
 Dim c As Drawing.Color = selector.SelectedColor
 Dim colorString As String = "System.Drawing.Color.FromArgb(" & _
 c.R.ToString & "," & _

extending Templates ❘ 303

continues

http://lib.ommolketab.ir
http//lib.ommolketab.ir

304 ❘ chaPter 15 projecT And iTem TemplATeS

 c.G.ToString & "," & _
 c.B.ToString & ")"
 replacementsDictionary.Add _
 ("Me.BackColor = System.Drawing.Color.Silver", _
 "Me.BackColor = " & colorString)
 End If
 End Sub

 Public Function ShouldAddProjectItem(ByVal filePath As String) As Boolean _
 Implements IWizard.ShouldAddProjectItem
 Return True
 End Function
End Class

c#

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Collections.Generic;
using Microsoft.VisualStudio.TemplateWizard;

namespace WizardClassLibrary
{
 public class MyWizard : IWizard
 {
 public void BeforeOpeningFile(EnvDTE.ProjectItem projectItem)
 {
 }

 public void ProjectFinishedGenerating(EnvDTE.Project project)
 {
 }

 public void ProjectItemFinishedGenerating(EnvDTE.ProjectItem projectItem)
 {
 }

 public void RunFinished()
 {
 }

 public void RunStarted(object automationObject, Dictionary<string, string>
 replacementsDictionary, WizardRunKind runKind, object[] customParams)
 {
 ColorPickerForm selector = new ColorPickerForm();

 if (selector.ShowDialog() == DialogResult.OK)
 {
 Color c = selector.SelectedColor;
 string colorString = "Color.FromArgb(" +
 c.R.ToString() + "," +
 c.G.ToString() + "," +
 c.B.ToString() + ")";

(continued)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 replacementsDictionary.Add
 ("this.BackColor = System.Drawing.Color.Silver",
 "this.BackColor = " + colorString);
 }
 }

 public bool ShouldAddProjectItem(string filePath)
 {
 return true;
 }
 }
}

In the RunStarted method, you prompt the user to select a new color and then use that response to
add a new entry into the replacements dictionary. In this case, you are replacing “Me.BackColor =
System.Drawing.Color.Silver” (VB) or “this.BackColor = System.Drawing.Color.Silver”
(C#) with a concatenated string made up of the RGB values of the color specified by the user. The
replacements dictionary is used when the files are created for the new project, because they will
be searched for the replacement keys. Upon any instances of these keys being found, they will be
replaced by the appropriate replacement values. In this case, you’re looking for the line specifying
that the BackColor is Silver, and replacing it with the new color supplied by the user.

The class library containing the implementation of the IWizard interface must contain a strongly
named assembly capable of being placed into the GAC. To ensure this, use the Signing tab of the
Project Properties dialog to generate a new signing key, as shown in Figure 15-12.

fiGure 15-12

After you check the Sign the Assembly checkbox, there will be no default value for the key file.
To create a new key, select <New . . .> from the drop-down list. Alternatively, you can use an
existing key file using the <Browse . . .> item in the drop-down list.

extending Templates ❘ 305

http://lib.ommolketab.ir
http//lib.ommolketab.ir

306 ❘ chaPter 15 projecT And iTem TemplATeS

Generating the extended Project template
You’re basing the template for this example on the ExtendedProjectTemplateExample project,
and you need only make minor changes in order for the wizard you just built to work correctly.
In the previous section you added an entry in the replacements dictionary, which searches for
instances where the BackColor is set to Silver. If you want the MainForm to have the BackColor
specified while using the wizard, you need to ensure that the replacement value is found.
To do this, simply set the BackColor property of the MainForm to Silver. This will add the line
“Me.BackColor = System.Drawing.Color.Silver” to the MainForm.Designer.vb file (VB) or
“this.BackColor = System.Drawing.Color.Silver” to the MainForm.Designer.cs file so that
it is found during the replacement phase.

Now you need to associate the wizard with the project template
so that it is called when creating a new project from this
template. Unfortunately this is a manual process, but you can
automate it once you’ve made these manual changes upon
subsequent rebuilds of the project. Start by exporting the
ExtendedProjectTemplateExample as a new project template as
per the previous instructions. Find the .zip file for this template
in Windows Explorer and unzip it. Take the .vstemplate
file and the icon file and put it into the folder containing the
ExtendedProjectTemplateExample project. The other files from
the unzipped template can be disregarded — you’ll note that
these are just the same files from the project folder that you will
be using in your template’s output instead, so you now have all
the files you need in the project folder. Make sure that you do not
include these files in the ExtendedProjectTemplateExample itself;
they should appear as excluded files, as shown in Figure 15-13.

You will notice the .zip file in the WizardClassLibrary project — this is the template file that
Visual Studio exported (which you want compiled into the setup project). For the moment, take
the project template .zip file that Visual Studio created and copy it into the WizardClassLibrary
project folder. Show all files for the project (as per Figure 15-13), right-click the file, and select
Include In Project. In the Properties window, set its Build Action property to Content. This is for
the installer you set up earlier — it will include the Content files from the class library in the
setup file, and these will be placed in the Visual Studio Templates folder as part of the installation
process.

To have the wizard triggered when you create a project from this template, add some additional
lines to the MyTemplate.vstemplate file:

<VSTemplate Version=“2.0.0”
 xmlns=“http://schemas.microsoft.com/developer/vstemplate/2005” Type=“Project”>
 <TemplateData>
 ...
 </TemplateData>

fiGure 15-13

http://schemas.microsoft.com/developer/vstemplate/2005%E2%80%9D
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <TemplateContent>
 ...
 </TemplateContent>
 <WizardExtension>
 <Assembly>WizardClassLibrary, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=022e960e5582ca43, Custom=null</Assembly>
 <FullClassName>WizardClassLibrary.MyWizard</FullClassName>
 </WizardExtension>
</VSTemplate>

The <WizardExtension> node added in the sample indicates the class name of the wizard and
the strong-named assembly in which it resides. You have already signed the wizard assembly,
so all you need to do is determine the PublicKeyToken by opening the assembly using Lutz
Roeder’s Reflector for .NET (available at
http://www.red-gate.com/products/

reflector/). If you haven’t already built
the WizardLibrary you will have to build
the project so you have an assembly to open
with Reflector. Once you have opened the
assembly in Reflector (go to File ➪ Open
and select the assembly) you can see the
PublicKeyToken of the assembly by selecting
it in the tree, as shown in Figure 15-14. The
PublicKeyToken value in the .vstemplate
file needs to be replaced with this value you
found using Reflector.

The last change you need to make to the ExtendedProjectTemplateExample is to add
a post-build event command that will zip this project into a project template (this
example uses 7-zip, available at www.7-zip.org, but any command-line zip utility will
work). We will make a call to the 7-zip executable, which will zip the contents of the
ExtendedProjectTemplateExample folder (recursively, but excluding the bin and obj folders) into
ExtendedProjectTemplateExample.zip, and place it into the WizardClassLibrary folder. Note
that you may need to change the path as per the location of your zip utility. Put the following
command (on one line) as a post-build event:

"C:\Program Files\7-Zip\7z.exe" a -tzip ..\..\..\WizardClassLibrary\
ExtendedProjectTemplateExample.zip ..\..*.* -r -x!bin -x!obj

You have now completed the individual projects required to create the project template
(ExtendedProjectTemplateExample), added a wizard to modify the project as it is created
(WizardClassLibrary), and built an installer to deploy your template to other machines. One last
step is to correct the solution dependency list to ensure that the ExtendedProjectTemplateExample
is rebuilt (and hence the template zip file re-created) prior to the installer being built. Because there

fiGure 15-14

extending Templates ❘ 307

http://www.red-gate.com/products/
http://www.7-zip.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

308 ❘ chaPter 15 projecT And iTem TemplATeS

is no direct dependency between the Installer project
and the ExtendedProjectTemplateExample,
you need to open the solution properties and
indicate that there is a dependency, as illustrated in
Figure 15-15.

Your solution is now complete and can be used
to install the ExtendedProjectTemplateExample
and associated IWizard implementation. Once the
solution is installed, you can create a new project
from the ExtendedProjectTemplateExample you have
just created.

starter kits

A Starter Kit is essentially the same as a template but differs somewhat in terms of intent. Whereas
project templates create the basic shell of an application, Starter Kits create an entire sample
application with documentation on how to customize it. Starter Kits will appear in the New Project
window in the same way project templates do. Starter Kits can give you a big head start on a project
(if you can find one focused toward your project type), and you can create your own to share with
others in the same way that you created the project template previously.

online teMPlates

Visual Studio 2010 integrates nicely with the online Visual Studio Gallery (http://www
.visualstudiogallery.com) enabling you to search for templates created by other developers that
they uploaded to the gallery for other developers to download and use. You can browse the gallery
and install selected templates from within Visual Studio in two ways: via the Open Project window
and from the Extension Manager.

When you open the New Project window in Visual Studio you are looking at the templates installed
on your machine; however, you can browse and search the templates available online by selecting
Online Templates from the sidebar. Visual Studio will then allow you to browse the templates
online. When you select a template it will be downloaded and installed on your machine, and a new
project will be created using it.

Visual Studio 2010 introduces a new feature called the Extension Manager (as shown in Figure 15-16),
which you can get to from Tools ➪ Extension Manager. The Extension Manager integrates the online
Visual Studio Gallery (http://www.visualstudiogallery.com) right into Visual Studio itself. It also
allows you to browse the Visual Studio Gallery and download and install templates, as well as controls
and tools.

fiGure 15-15

http://www.visualstudiogallery.com
http://www.visualstudiogallery.com
http://www.visualstudiogallery.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

suMMary

This chapter provided an overview of how to create both item and project templates with Visual
Studio 2010. Existing projects or items can be exported into templates that you can deploy to your
colleagues. Alternatively, you can build a template manually and add a user interface using the
IWizard interface. From what you learned in this chapter, you should be able to build a template
solution that can create a project template, build and integrate a wizard interface, and finally build
an installer for your template.

fiGure 15-16

summary ❘ 309

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16
 language - specifi c features

 what ’ s in this chaPter?

 Choosing the right language for the job ➤

 Working with the new C# and VB language features ➤

 Understanding and getting started with Visual F# ➤

 The .NET language ecosystem is alive and well. With literally hundreds of languages targeting
the .NET Framework (you can fi nd a fairly complete list at www.dotnetpowered.com/
languages.aspx), .NET developers have a huge language arsenal at their disposal. Because
the .NET Framework was designed with language interoperability in mind, these languages
are also able to talk to each other, allowing for a creative cross - pollination of languages across
a cross - section of programming problems. You ’ re literally able to choose the right language
tool for the job.

 This chapter explores some of the latest language paradigms within the ecosystem, each with
particular features and fl avors that make solving those tough programming problems just a
little bit easier. After a tour of some of the programming language paradigms, you learn about
some of the new language features introduced in Visual Studio 2010, including one of the
newest additions to Microsoft ’ s supported language list: a functional programming language
called F#.

 hittinG a nail with the riGht haMMer

 We need to be fl exible and diverse programmers. The programming landscape requires
elegance, effi ciency, and longevity. Gone are the days of picking one language and platform
and executing like crazy to meet the requirements of our problem domain. Different nails
sometimes require different hammers.

http://www.dotnetpowered.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

312 ❘ chaPter 16 lAnguAge-SpeciFic FeATureS

Given that hundreds of languages are available on the .NET platform, what makes them different
from each other? Truth be told, most are small evolutions of each other, and are not particularly
useful in an enterprise environment. However, it is easy to class these languages into a range of
programming paradigms.

Programming languages can be classified in various ways, but I like to take a broad-strokes
approach, putting languages into four broad categories: imperative, declarative, dynamic, and
functional. This section takes a quick look at these categories and what languages fit within them.

imperative
Your classic all-rounder — imperative languages describe how, rather than what. Imperative
languages were designed from the get-go to raise the level of abstraction of machine code. It’s
said that when Grace Hopper invented the first-ever compiler, the A-0 system, her machine code
programming colleagues complained that she would put them out of a job.

It includes languages where language statements primarily manipulate program state. Object-oriented
languages are classic state manipulators through their focus on creating and changing objects. The
C and C++ languages fit nicely in the imperative bucket, as do our favorites VB and C#.

They’re great at describing real-world scenarios through the world of the type system and
objects. They are strict — meaning the compiler does a lot of safety checking for you. Safety
checking (or type soundness) means you can’t easily change a Cow type to a Sheep type — so,
for example, if you declare that you need a Cow type in the signature of your method, the
compiler will make sure that you don’t hand that method a Sheep instead. They usually have fantastic
reuse mechanisms too — code written with polymorphism in mind can easily be abstracted away
so that other code paths, from within the same module through to entirely different projects, can
leverage the code that was written. They also benefit from being the most popular. They’re clearly a
good choice if you need a team of people working on a problem.

declarative
Declarative languages describe what, rather than how (in contrast to imperative, which describes
the how through program statements that manipulate state). Your classic well-known declarative
language is HTML. It describes the layout of a page: what font, text, and decoration are required,
and where images should be shown. Parts of another classic, SQL, are declarative — it describes what
it wants from a relational database. A recent example of a declarative language is XAML (eXtensible
Application Markup Language), which leads a long list of XML-based declarative languages.

Declarative languages are great for describing and transforming data, and as such, we’ve invoked
them from our imperative languages to retrieve and manipulate data for years.

dynamic
The dynamic category includes all languages that exhibit “dynamic” features such as late-bound
binding and invocation, REPL (Read Eval Print Loops), duck typing (non-strict typing, that is, if an
object looks like a duck and walks like a duck it must be a duck), and more.

Dynamic languages typically delay as much compilation behavior as they possibly can to run time.
Whereas your typical C# method invocation “Console.WriteLine()” would be statically checked

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and linked to at compile time, a dynamic language would delay all this to run time. Instead, it
looks up the “WriteLine()” method on the “Console” type while the program is actually running,
and if it finds it, invokes it at run time. If it does not find the method or the type, the language may
expose features for the programmer to hook up a “failure method,” so that the programmer can
catch these failures and programmatically “try something else.”

Other features include extending objects, classes, and interfaces at run time (meaning modifying
the type system on the fly); dynamic scoping (for example, a variable defined in the global scope
can be accessed by private or nested methods); and more.

Compilation methods like this have interesting side effects. If your types don’t need to be fully
defined up front (because the type system is so flexible), you can write code that will consume
strict interfaces (like COM, or other .NET assemblies, for example) and make that code highly
resilient to failure and versioning of that interface. In the C# world, if an interface you’re consuming
from an external assembly changes, you typically need a recompile (and a fix-up of your internal
code) to get it up and running again. From a dynamic language, you could hook the “method
missing” mechanism of the language, and when a particular interface has changed simply do some
“reflective” lookup on that interface and decide if you can invoke anything else. This means you can
write fantastic glue code that glues together interfaces that may not be versioned dependently.

Dynamic languages are great at rapid prototyping. Not having to define your types up front
(something you would do straightaway in C#) allows you concentrate on code to solve problems,
rather than on the type constraints of the implementation. The REPL (Read Eval Print Loop) allows
you to write prototypes line-by-line and immediately see the changes reflected in the program
instead of wasting time doing a compile-run-debug cycle.

If you’re interested in taking a look at dynamic languages on the .NET platform, you’re in
luck. Microsoft has released IronPython (www.codeplex.com/IronPython), which is a Python
implementation for the .NET Framework. The Python language is a classic example of a dynamic
language, and is wildly popular in the scientific computing, systems administration, and general
programming space. If Python doesn’t tickle your fancy, you can also download and try out
IronRuby (www.ironruby.net/), which is an implementation of the Ruby language for the .NET
Framework. Ruby is a dynamic language that’s popular in the web space, and though it’s still
relatively young, it has a huge popular following.

functional
The functional category focuses on languages that treat computation like mathematical
functions. They try really hard to avoid state manipulation, instead concentrating on the results
of functions as the building blocks for solving problems. If you’ve done any calculus before, the
theory behind functional programming might look familiar.

Because functional programming typically doesn’t manipulate state, the surface area of side effects
generated in a program is much smaller. This means it is fantastic for implementing parallel and
concurrent algorithms. The holy grail of highly concurrent systems is the avoidance of overlapping
“unintended” state manipulation. Dead-locks, race conditions, and broken invariants are classic
manifestations of not synchronizing your state manipulation code. Concurrent programming and
synchronization through threads, shared memory, and locks is incredibly hard, so why not avoid
it altogether? Because functional programming encourages the programmer to write stateless

Hitting a nail with the right Hammer ❘ 313

http://www.codeplex.com/IronPython
http://www.ironruby.net/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

314 ❘ chaPter 16 lAnguAge-SpeciFic FeATureS

algorithms, the compiler can then reason about automatic parallelism of the code. This means you
can exploit the power of multi-core processors without the heavy lifting of managing threads, locks,
and shared memory.

Functional programs are terse. There’s usually less code required to arrive at a solution than with its
imperative cousin. Less code typically means fewer bugs and less surface area to test.

what’s it all Mean?
These categories are broad by design: languages may include features that are common to one or
more of these categories. The categories should be used as a way to relate the language features that
exist in them to the particular problems that they are good at solving.

Languages like C# and VB.NET are now leveraging features from their dynamic and functional
counterparts. LINQ (Language Integrated Query) is a great example of a borrowed paradigm.
Consider the following C# 3.0 LINQ query:

 var query = from c in customers
 where c.CompanyName == "Microsoft"
 select new { c.ID, c.CompanyName };

This has a few borrowed features. The var keyword says “infer the type of the query specified,”
which looks a lot like something out of a dynamic language. The actual query itself, from c
in ..., looks and acts like the declarative language SQL, and the select new { c.ID ...
creates a new anonymous type, again something that looks fairly dynamic. The code-generated
results of these statements are particularly interesting: they’re actually not compiled into classic
IL (intermediate language); they’re instead compiled into what’s called an expression tree and then
interpreted at run time — something that’s taken right out of the dynamic language playbook.

The truth is, these categories don’t particularly matter too much for deciding which tool to use to solve
the right problem. Cross-pollination of feature sets from each category into languages is in fashion
at the moment, which is good for a programmer, whose favorite language typically picks up the best
features from each category. Currently the trend is for imperative/dynamic languages to be used by
application developers, while functional languages have excelled in solving domain-specific problems.

If you’re a .NET programmer, you have even more to smile about. Language interoperation through
the CLS (Common Language Specification) works seamlessly, meaning you can use your favorite
imperative language for the majority of the problems you’re trying to solve, then call into a functional
language for your data manipulation, or maybe some hard-core math you need to solve a problem.

a tale of two lanGuaGes

Since the creation of the .NET Framework there has been an ongoing debate as to which language
developers should use to write their applications. In a lot of cases, teams choose between C# and
VB based upon prior knowledge of either C/C++, Java, or VB6. However, this decision was made
harder by a previous divergence of the languages. In the past, the language teams within Microsoft
made additions to their languages independently, resulting in a number of features appearing in
one language and not the other. For example, VB has integrated language support for working with
XML literals, whereas C# has anonymous methods and iterators. Although these features benefited

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the users of those languages, it made it difficult for organizations to choose which language to use.
In fact, in some cases organizations ended up using a mix of languages attempting to use the best
language for the job at hand. Unfortunately, this either means that the development team needs to
be able to read and write both languages, or the team gets fragmented with some working on the C#
and some on the VB code.

With Visual Studio 2010 and the .NET Framework 4.0, a decision was made within Microsoft to
co-evolve the two primary .NET languages, C# and VB. This co-evolution would seek to minimize
the differences in capabilities between the two languages (often referred to as feature parity).
However, this isn’t an attempt to merge the two languages; in fact, it’s quite the opposite. Microsoft
has clearly indicated that each language may implement a feature in a different way to ensure it is in
line with the way developers already write and interact with the language.

In the coming sections, you learn about the language features that have been added in Visual Studio
2010. You start by looking at the features common to both languages before going through changes
to the individual languages, most of which are discussed in the context of feature parity and how
the introduced feature matches a feature already in the other language.

compiling without Pias
Visual Studio 2010 has first-class support for building both document- and application-level
add-ins for the main Office applications such as Word and Excel. As part of automating these
products, you will want to be able to call into the exposed COM interfaces. You do this by referencing
the Primary Interop Assemblies (PIAs) in order to work with the Microsoft Office Object Model.
In the past, this then introduced a deployment dependency requiring you to ensure that the PIAs not
only existed but were also the version you required. This added unnecessary size and complexity to
the deployment of your add-in.

Both VB and C# include support for deploying applications, whether they be add-ins or standalone
applications that use Office automation, without relying on the users having the PIAs installed on
their machine. In Figure 16-1 you can see that there is a new property that specifies whether the
compiler should Embed Interop Types.

fiGure 16-1

a Tale of Two languages ❘ 315

http://lib.ommolketab.ir
http//lib.ommolketab.ir

316 ❘ chaPter 16 lAnguAge - SpeciFic FeATureS

 When the application is compiled, any interop
types that are referenced are cloned from the PIAs
into the compiled application. In Figure 16 - 2 you
can see that the Microsoft.Office.Interop.
Word.Application interface as been created
within the CShaperLapAround executable.

 When this application executes, the .NET
Framework 4.0 uses a new feature called type
 equivalence to allow COM objects passed
between managed assemblies to be cast to a
corresponding type in the receiving assembly.
This effectively means that two assemblies can
both declare managed types that wrap a COM
object and for them to be deemed type equivalent
as if they both used the same type defi nition.

 fiGure 16 - 2

 Because PIA - less compilation relies on type equivalence, which is a feature of
.NET Framework 4.0, the Embed Interop Types option is available only for
projects that are compiling against the .NET Framework 4.0. With the ability for
Visual Studio 2010 to target multiple versions of the framework, it is quite easy to
accidentally create projects that are targeting an earlier version of the framework,
in which case this option would not be available.

 Generic Variance
 One of the seemingly confusing aspects of Generics is the role, or lack thereof, of inheritance. Take,
for example, the inheritance chain Tortoise, which inherits from Animal, which in turn inherits
from Object. You would assume that if you have a List of Tortoise (that is, List < Tortoise > in C#
or List(of Tortoise) in VB) that you could cast it back to a List of Animal. The following code
illustrates why this cannot be allowed:

 c#

private void InvalidGenericCast(){
 List < Tortoise > tortoiseList = new List < Tortoise > ();
 List < Animal > animalList = tortoiseList;
 animalList.Add(new Lion());
 var notATortoise = tortoiseList[0];
}

 Code snippet MainForm.cs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

Public Sub InvalidGenericCast()
 Dim tortoiseList As New List(Of Tortoise)
 Dim animalList As List(Of Animal) = tortoiseList
 animalList.Add(New Lion)
 Dim notATortoise As Tortoise = tortoiseList(0)
End Sub

Code snippet MainForm.vb

This code attempts to cast the List of Tortoise to a List of Animal. If this was allowed, a Lion
could then be added to the list, because it too inherits from Animal. This would then make the last
statement inconsistent because the List of Tortoise would no longer just contain Tortoises.

Though this illustrates a case against being able to cast between generic types, in some
circumstances casting between types is allowable. For example, the following code snippet
illustrates the List of Tortoise being cast to an IEnumerable of Animal. Because the IEnumerable
interface doesn’t permit modification of the collection, this is deemed to be a safe or allowable
conversion.

c#

private void ValidGenericCast(){
 List<Tortoise> tortoiseList = new List<Tortoise>();
 tortoiseList.Add(new Tortoise());
 IEnumerable<Animal> animalList = tortoiseList;
 var firstAnimal = animalList.First();
}

Code snippet MainForm.cs

Vb

Public Sub ValidGenericCast()
 Dim tortoiseList As New List(Of Tortoise)
 tortoiseList.Add(New Tortoise)
 Dim animalList As IEnumerable(Of Animal) = tortoiseList
 Dim firstAnimal As Animal = animalList.First()
End Sub

Code snippet MainForm.vb

The ability to convert between generic types in this way is referred to as generic variance. In
some circumstances you want to be able to narrow the type variable, such as in the preceding
example, and you want to be able to widen the type variable. These are known as covariance
and contravariance.

a Tale of Two languages ❘ 317

http://lib.ommolketab.ir
http//lib.ommolketab.ir

318 ❘ chaPter 16 lAnguAge-SpeciFic FeATureS

Covariance
In the previous example you saw how IEnumerable of Tortoise can be cast to an IEnumerable
of Animal. This is what is known as covariance and is allowable because the IEnumerable of T
interface has been updated to include the out keyword:

c#

public interface IEnumerable<out T> : IEnumerable{
 IEnumerator<T> GetEnumerator();
}

Vb

Interface IEnumerable(Of Out T) : Inherits IEnumerable
 Function GetEnumerator() As IEnumerator(Of T)
End Interface

Using the out keyword, you too can declare interfaces and delegates that have a variant type parameter.
For example, in the following code the IAnimalCreator interface allows for the type parameter to be
widened, allowing a conversion from IAnimalCreator of Lion (which MainForm implements) to
IAnimalCreator of Animal, which the DoAnimalAction method expects:

c#

public interface IAnimalCreator<out T> where T:Animal{
 T CreateAnimal();
}

public partial class MainForm : Form, IAnimalCreator<Lion>{
 public MainForm(){
 InitializeComponent();
 var animal = DoAnimalAction(this);
 MessageBox.Show(animal.GetType().Name);
 }

 private Animal DoAnimalAction(IAnimalCreator<Animal> action) {
 return action.CreateAnimal();
 }

 Lion IAnimalCreator<Lion>.CreateAnimal(){
 return new Lion();
 }
}

Code snippet MainForm.cs

Vb

Public Interface IAnimalCreator(Of Out T As Animal)
 Function CreateAnimal() As Animal
End Interface

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Public Class MainForm
 Implements IAnimalCreator(Of Lion)

 Public Sub New()

 InitializeComponent()

 Dim animal = DoAnimalAction(Me)
 MessageBox.Show(animal.GetType().Name)

 End Sub

 Public Function DoAnimalAction(ByVal action As IAnimalCreator(Of Animal)) _
 As Animal
 Return action.CreateAnimal()
 End Function

 Public Function CreateAnimal() As Animal _
 Implements IAnimalCreator(Of Lion).CreateAnimal
 Return New Lion
 End Function
End Class

Code snippet MainForm.vb

You can see in this code that the conversion is safe because the CreateAnimal method doesn’t
accept any typed parameter (that is, a type parameter going in). Instead, the type parameter defines
the type of the return, or out, value, making the interface covariant on T.

Contravariance
Cases exist where you also want to be able to widen the type parameter. This is known as
contravariance and is used by the IComparer interface. As you can imagine, an IComparer of
Animal is also an IComparer of Lion, because if you can compare any animal you should be
able to compare Lions. This conversion is allowable because the IComparer interface has been
updated to use the in keyword.

c#

public interface IComparer<in T>{
 public int Compare(T left, T right);
}

Vb

Interface IComparer(Of In T)
 Function Compare(left As T, right As T) As Integer
End Interface

Again, you can use the in keyword to build your own contravariant interfaces or delegates. Using
the Animal example again, you can define a method DoAnotherAnimalAction that will accept an
IAnimalAction of Tortoise. However, the MainForm actually implements IAnimalAction of Animal.

a Tale of Two languages ❘ 319

http://lib.ommolketab.ir
http//lib.ommolketab.ir

320 ❘ chaPter 16 lAnguAge-SpeciFic FeATureS

c#

public interface IAnimalAction<in T> where T : Animal{
 void Action(T animal);
}

public partial class MainForm : Form, IAnimalAction<Animal>{
 public MainForm(){
 InitializeComponent();
 DoAnotherAnimalAction(this);
 }

 private void DoAnotherAnimalAction(IAnimalAction<Tortoise> action){
 action.Action(new Tortoise());
 }

 void IAnimalAction<Animal>.Action(Animal animal){
 MessageBox.Show("This could be any animal.... " + animal.GetType().Name);
 }
}

Code snippet MainForm.cs

Vb

Public Interface IAnimalAction(Of In T As Animal)
 Sub Action(ByVal animal As T)
End Interface

Public Class MainForm
 Implements IAnimalCreator(Of Lion), IAnimalAction(Of Animal)

 Public Sub New()
 InitializeComponent()
 DoAnotherAnimalAction(Me)
 End Sub

 Public Sub DoAnotherAnimalAction(ByVal action As IAnimalAction(Of Tortoise))
 action.Action(New Tortoise)
 End Sub

 Public Function CreateAnimal() As Animal _
 Implements IAnimalCreator(Of Lion).CreateAnimal
 Return New Lion
 End Function

 Public Sub Action(ByVal animal As Animal) _
 Implements IAnimalAction(Of Animal).Action
 MessageBox.Show("This could be any animal.... " & animal.GetType().Name)
 End Sub
End Class

Code snippet MainForm.vb

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Looking at this example, you may be wondering why it is safe to perform the conversion between
an IAnimalAction of Animal to an IAnimalAction of Tortoise. This operation is safe because the
compiler enforces that the contravariant type parameter, T, can only be used as an input parameter.
Because a Tortoise can always be converted to an Animal, it is always safe to use a Tortoise as an
input parameter for a method that expects an Animal.

Visual basic

This release of Visual Basic (VB) includes a number of additions that bring it closer to feature parity
with C#. It also includes a couple of language-specific features that make it easier for developers to
initialize collections and arrays.

lambdas and anonymous Methods
One of the key omissions from previous versions of VB was full support for lambdas and anonymous
methods. An anonymous method is a method that is defined without a name and a lambda is
a special case whereby the expression can be either used to generate a delegate (as with most
anonymous methods) or an expression tree (discussed further in Chapter 29 on LINQ). In VB you
now have the ability to declare single and multiline anonymous methods.

The following code snippet illustrates a number of features of working with anonymous methods
in VB. In the first line an anonymous function is declared that accepts a name parameter and
returns a Boolean. Type inference is used to determine that the name parameter should be a string
and in fact in this case the As Boolean can be omitted because the return type can also be inferred.
If the inferred input type is wrong or you wish to make your code more readable you can also
specify the type of the input parameter.

Vb

Dim exp = Function(name) As Boolean
 Console.WriteLine("Hello " & name)
 Return name.length > 10
 End Function
Dim exp2 = Sub(name)
 If exp(name) Then
 Console.WriteLine(name & " is longer than 10 characters")
 End If
 End Sub
exp("Fred")
Dim names = {"Fred", "Joe", "Sandra"}
Array.ForEach(names, exp2)
Array.ForEach(names, Sub(name As String) Console.WriteLine(name))

Code snippet MainForm.vb

The second line illustrates that you can create an anonymous method with no return type, also
know as a Sub in VB. Both lines return a delegate that can be invoked by supplying a parameter,
illustrated in the next two lines. The final line illustrates how you can define an anonymous
method in line as part of a method call. Note here that the abbreviated form has been used, as the

Visual Basic ❘ 321

http://lib.ommolketab.ir
http//lib.ommolketab.ir

322 ❘ chaPter 16 lAnguAge-SpeciFic FeATureS

Sub is a single line. If your method has multiple lines, you need to use the full notation that includes
an End Sub or End Function, depending on whether it has a return value.

implicit line continuation
Where possible, the VB compiler will infer line continuation. For example, you can now write the
following with no line continuation characters:

Vb

Public Function LongMethodDeclaration(ByVal parameterOne As Integer,
 ByVal parameterTwo As Integer,
 ByVal parameterThree As Integer,
 ByVal parameterFour As Integer,
 ByVal parameterFive As Integer,
 ByVal parameterSix As Integer) As Integer
 Return parameterOne + parameterTwo + parameterThree +
 parameterFour + parameterFive + parameterSix
End Function

Code snippet MainForm.vb

In some cases, a line continuation character is still required. For example, if you wanted the
parameter list to start on a new line:

Vb

Public Function LongMethodDeclaration _
 (ByVal parameterOne As Integer,
 ByVal parameterTwo As Integer,

Implicit line continuation makes writing LINQ expressions with VB much easier, as you can break
up the expression over multiple lines without having to add the line break character each time.

automatic Properties with initial Values
When defining a class, it is good practice to use encapsulation to hide or encapsulate the
functionality of your class. The idea is that if you need to change the implementation, you can do so
without affecting other code that uses that class. As such, it is recommended that where you want to
expose a field, it should be done via a property. The property can simply be a getter/setter, or it can
contain additional functionality, for example, that raises an event when the property value changes.
This practice has resulted in large amounts of repetitive code where a property is declared along
with a backing field. Although this has been made easier with Visual Studio snippets, it still results
in code that is overly verbose.

In Visual Studio 2010, VB now not only has automatic properties — properties that automatically
implement the backing field — it also enables you to declare an initial value for the property in
the same way as you would for a field. The initial value is set by calling the property setter after
the object instance is initialized but prior to any constructor being invoked. The following code
illustrates this with the MaximumWordCount property:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

Public Property MaximumWordCount As Integer = 10
Public Sub New()
 MessageBox.Show("The maximum word count is " & MaximumWordCount)
 MessageBox.Show("The maximum word count is " & _MaximumWordCount)

Code snippet MainForm.vb

Nowhere in this code snippet is the _MaximumWordCount field declared. VB exposes the backing
field used by the automatic property by simply prepending the property name with an underscore.
Although it is not recommended, you can access the field directly from within your class because it
is declared with a scope of Private.

collection initializers and array literals
VB now has a compact notation for specifying arrays, illustrated in the following code snippet:

Vb

' Single dimension arrays
Dim a = {56, 34, 29, 12, 35, 872, 34, 12, 66} 'Integer()
Dim b = {1, 5, 3.54, 3.5} 'Double()
Dim c = {"Betty", "Frank"} 'String()
Dim d = {1, "123", New Animal} 'Object()

'Multi-dimension arrays
Dim e = {{1, 2, 3},
 {4, 5, 6}} 'non-jagged array (ie Integer(,))
Dim f = {({1, 2, 3}),
 ({4}),
 ({5, 6, 7})} 'jagged array (ie Integer()())

Code snippet MainForm.vb

Note that the type of the array is inferred from the type of each of the constituent values. As such,
the array b is an array of Double because this allows both the first two values, which are Integers,
and the remaining values to be inserted. The Object array will raise an error if Option Strict is on.

Lists and Dictionaries can also be initialized using a similar compact notation:

Vb

Private listOfNames As New List(Of String) From {"Nick", "Dave", "Mike", "Chris"}
Private cityLookup As New Dictionary(Of String, String) _
 From {{"Nick", "Sydney"},
 {"Dave", "Perth"},
 {"Mike", "Perth"},
 {"Chris", "Sydney"}}

Code snippet MainForm.vb

Visual Basic ❘ 323

http://lib.ommolketab.ir
http//lib.ommolketab.ir

324 ❘ chaPter 16 lAnguAge-SpeciFic FeATureS

The initialization of the List and Dictionary is done by invoking the Add method on the newly
created instance. You can use a similar compact syntax to add your own object types to a List by
creating an extension method, named Add, that will convert a set of input values into an instance of
your class.

Vb

Private listOfWeirdObjects As New List(Of MyListClass) From {{"Boo", 45, 67, 4.5},
 {"Foo", 29, 34, 7.4}}
Public Module Extensions
 <Extension()>
 Sub Add(ByVal list As List(Of MyListClass),
 ByVal Name As String,
 ByVal Height As Integer,
 ByVal Weight As Integer,
 ByVal Width As Double)

 list.Add(New MyListClass With {
 .Name = Name,
 .Height = Height,
 .Weight = Weight,
 .Width = Width
 })
 End Sub

End Module

Code snippet MainForm.vb

nullable optional Parameters
In the past it was not possible for nullable parameters to be optional. Now they can be, allowing
you to define methods such as the following:

Vb

Public Sub New()
 MethodWithOptionalParameters(5, parameterThree:=6)
End Sub
Public Function MethodWithOptionalParameters _
 (Optional ByVal parameterOne As Integer? = Nothing,
 Optional ByVal parameterTwo As Integer? = 0,
 Optional ByVal parameterThree As Integer? = Nothing) _
 As Integer

Code snippet MainForm.vb

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see from the code, for the optional parameters you need to define a default value. Also,
when calling the method you may need to use parameter naming (as in parameterThree:=) if you
wish to skip an optional parameter.

Visual basic PowerPacks
One of the challenges often put forward by VB6 developers is that doing tasks in .NET requires
many more steps or is more complex than it was in VB6. To encourage VB6 developers across to
the .NET Framework, VB introduced the My namespace, which provides a set of shortcut methods
to get frequently performed tasks done.
The VB team has also released the Visual
Basic PowerPacks for previous versions
of Visual Studio that add a number of
useful controls and other classes to aid
VB developers.

Visual Studio 2010 ships with the Visual
Basic PowerPacks. As you can see in
Figure 16-3, an additional tab in the
Toolbox contains a number of drawing
controls such as Line, Oval, and Rectangle.
These can be used to generate simple
graphics, such as the one on the right-hand
side of Figure 16-3.

Although the Visual Basic PowerPacks are available by default to VB developers, there is no reason
why C# developers can’t access the same controls. To use these controls in a C# project, simply add
a reference to the PowerPacks assembly and then add the controls to your Toolbox. From there you
can use them on any Windows Forms application.

c#

In this iteration of the C# language there are only a couple of new features that mainly focus around
the ability to interop with both native and dynamic languages.

late binding with dynamic lookup
Interoperability with other languages/technologies can often be quite painful, particularly with
dynamic languages where it is not always known up front what methods a class may contain. In the
past it was possible to execute these calls, but it often required a fairly in-depth understanding of
reflection, and even then required many calls to invoke a single method. The new dynamic keyword
can be used to allow methods to be late bound:

c#

public class DynamicClass{}
public class MoreDynamic : DynamicClass{

fiGure 16-3

C# ❘ 325

http://lib.ommolketab.ir
http//lib.ommolketab.ir

326 ❘ chaPter 16 lAnguAge - SpeciFic FeATureS

 public void SimpleMethod(){
 MessageBox.Show("Dynamic Invoked");
 }
}

public MainForm(){
 InitializeComponent();

 dynamic lateBound = CreateDynamic();
 lateBound.SimpleMethod();
}

public object CreateDynamic(){
 return new MoreDynamic();
}

 Code snippet MainForm.cs

 In this code example the CreateDynamic method returns a MoreDynamic object as just an object. By
declaring the lateBound object using the dynamic keyword it is possible to invoke the SimpleMethod
the same way as if the method was declared on the object. Without this keyword, the static type
checker would be invoked and a compile error would be thrown because the SimpleMethod is not
declared on object (which is returned from CreateDynamic and thus would be the inferred type of
the lateBound variable).

 One of the challenges with using the dynamic keyword is that the onus is now
fi rmly on you to make sure you get the method naming, type, and number of
parameters correct to ensure your code doesn ’ t fail at run time. The dynamic
keyword effectively blocks the static type checking at compile time, deferring it to
the point where the code is executed.

 named and optional Parameters
 Two features that have been noticeably absent from C# are the ability to defi ne optional parameters
and to specify parameters using their names. Both these features contribute to making code more
usable and more readable because they do away with unnecessary bloat (that is, specifying null for
parameters you don ’ t need/want to specify or having additional method overloads to effectively
defi ne optional parameters) and allow parameter values to be named.

 c#

public MainForm(){
 InitializeComponent();
 var output = MethodWithOptionalParameters(parameterTwo: 15);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

public int MethodWithOptionalParameters(int? parameterOne = null,
 int parameterTwo = 5){
 return (parameterOne ?? 0) + parameterTwo;
}

 Code snippet MainForm.cs

 In this code both parameters are optional: the fi rst being a nullable int with a default value of null,
the second being a normal int with a default value of 5. Parameters become optional when a default
value is specifi ed as part of the method signature. When calling a method with optional parameters,
those parameters can simply be omitted. Regardless of whether parameters are optional, you can
name each of the parameter values so that someone reading your code can easily understand what
the parameter values correspond to. This is particularly important if you are supplying a constant
value, as is the case in the preceding code snippet, where the meaning of the constant value is
not immediately obvious.

 The use of named and optional parameters is particularly useful when working with COM
interfaces. These quite often have a number of optional parameters that in the past would have had
to be specifi ed. This is no longer the case because those parameters can simply be omitted. Using
named parameter values makes it clear which parameters you are supplying.

 Calling methods using named parameters can make your code more brittle to
changes. For example, say you access a third - party control that has a method
with a single parameter called height . If the control vendor does a version
update and changes the parameter name to controlHeight , even if the method
signature didn ’ t change, your code will no longer be able to locate the height
parameter, so it will fail.

 f#

 F# (pronounced F Sharp) is a relatively new language incubated out of Microsoft Research
in Cambridge, England, by the guy that brought generics to the .NET Framework, Don
Syme. Microsoft ’ s Developer Division recently welcomed F# to the Visual Studio range of
supported languages and it ships in the box with Visual Studio 2010. F# is a multi - paradigm
functional language. This means it ’ s primarily a functional language, but supports other fl avors
of programming, such as imperative and object - oriented programming styles.

 your first f# Program
 Fire up Visual Studio 2010 and create a new F# project. As Figure 16 - 4 shows, the F#
Application template is located in the Visual F# node in the New Project dialog. Give it a
name and click OK.

f# ❘ 327

http://lib.ommolketab.ir
http//lib.ommolketab.ir

328 ❘ chaPter 16 lAnguAge - SpeciFic FeATureS

 The F# Application template simply creates an F# project with a single source fi le, Program.fs ,
which is empty except for a reference to the F# Developer Center, http://fsharp.net . If you want
to learn more about F# a great place to start is the F# Tutorial template. This creates a normal F#
project except for the main source fi le, Tutorial.fs , which contains approximately 280 lines of
documentation on how to get started with F#. Walking down this fi le and checking out what language
features are available is an interesting exercise in itself. For now, return to the Program.fs and
quickly get the canonical “ Hello World ” example up and running to see the various options available
for compilation and interactivity. Add the following code:

#light

printfn "Hello, F# World!"

 The fi rst statement, #light , is a compile fl ag to indicate that the code is written using the optional
lightweight syntax. With this syntax, whitespace indentation becomes signifi cant, reducing the need
for certain tokens such as in and ;; . The second statement simply prints out “ Hello, F# World! ”
to the console.

 fiGure 16 - 4

 If you have worked with previous versions of F# you may fi nd that your code now
throws compiler errors. F# was born out of a research project and it has only now
been converted into a commercial offering. As such, there has been a refactoring
of the language and some operations have been moved out of FSharp.Core into
supporting assemblies. For example, the print_endline command has been
moved into the FSharp.PowerPack.dll assembly. The F# Powerpack is available
for download via the F# Developer Center at http://fsharp.net .

http://fsharp.net
http://fsharp.net
http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can run an F# program in two ways. The first is to simply run the application as you would
normally (press F5 to start debugging). This compiles and runs your program as shown in Figure 16-5.

fiGure 16-5

The other way to run an F# program is to use the F# Interactive window from within Visual Studio.
This allows you to highlight and execute code from within Visual Studio, and immediately see
the result in your running program. It also
allows you to modify your running program
on the fly!

The F# Interactive window is available from
the View ➪ Other Windows ➪ F# Interactive
menu item, or by pressing the Ctrl+Alt+F key
combination, as shown in Figure 16-6.

In the Interactive window, you can start
interacting with the F# compiler through
the REPL (Read Eval Print Loop) prompt.
This means that for every line of F# you
type, it will compile and execute that line
immediately. REPLs are great if you want
to test ideas quickly and modify programs
on the fly. They allow for quick algorithm
experimentation and rapid prototyping.

However, from the REPL prompt in the
F# Interactive window, you essentially
miss out on the value that Visual Studio
delivers through IntelliSense, code snippets,
and so on. The best experience is that of
both worlds: using the Visual Studio text
editor to create your programs, and piping
that output through to the Interactive
Prompt. You can do this by hitting Alt+Enter on any
highlighted piece of F# source code. Alternatively,
you can use the right-click context menu to send
a selection to the Interative window, as shown in
Figure 16-7.

Pressing Alt+Enter, or selecting Send To Interactive,
pipes the highlighted source code straight to the
Interactive Prompt and executes it immediately, as
shown in Figure 16-8.

fiGure 16-6

fiGure 16-7

fiGure 16-8

f# ❘ 329

http://lib.ommolketab.ir
http//lib.ommolketab.ir

330 ❘ chaPter 16 lAnguAge-SpeciFic FeATureS

Figure 16-8 also shows the right-click context menu for the F# Interactive window where you can
either Cancel Evaluation (for long running operations) or Reset Session (where any prior state will
be discarded).

exploring f# language features
A primer on the F# language is beyond the scope of this book, but it’s worth exploring some of the
cooler language features that it supports. If anything, it should whet your appetite for F#, and act as
a catalyst to learn more about this great language.

A very common data type in the F# world is the list. It’s a simple collection type with expressive
operators. You can define empty lists, multi-dimensional lists, and your classic flat list. The F# list
is immutable, meaning you can’t modify it once it’s created; you can only take a copy. F# exposes a
feature called List Comprehensions to make creating, manipulating, and comprehending lists easier
and more expressive. Consider the following:

#light

let countInFives = [for x in 1 .. 20 do if x % 5 = 0 then yield x]

printf "%A" countInFives
System.Console.ReadLine()

The expression in braces does a classic “for” loop over a list that contains elements 1 through 20
(the “..” expression is shorthand for creating a new list with elements 1 through 20 in it). The “do”
is a comprehension that the “for” loop executes for each element in the list. In this case, the action
to execute is to “yield” x where the if condition “when x module 5 equals 0” is true. The braces are
shorthand for “create a new list with all returned elements in it.” And there you have it — a very
expressive way of defining a new list on the fly in one line.

F#’s Pattern Matching feature is a flexible and powerful way to create control flow. In the C# world,
we have the switch (or simply a bunch of nested “if else’s”), but we’re usually constrained to the type
of what we’re switching over. F#’s pattern matching is similar, but more flexible, allowing the test
to be over whatever types or values you specify. For example, take a look at defining a Fibonacci
function in F# using pattern matching:

let rec fibonacci x =
 match x with
 | 0 | 1 -> x
 | _ -> fibonacci (x - 1) + fibonacci (x - 2)

printfn "fibonacci 15 = %i" (fibonacci 15)

The pipe operator (|) specifies that you want to match the input to the function against an
expression on the right side of the pipe. The first says return the input of the function x when x
matches either 0 or 1. The second line says return the recursive result of a call to Fibonacci with an
input of x – 1, adding that to another recursive call where the input is x – 2. The last line writes
the result of the Fibonacci function to the console.

Pattern matching in functions has an interesting side effect — it makes dispatch and control flow over
different receiving parameter types much easier and cleaner. In the C#/VB.NET world, you would

http://lib.ommolketab.ir
http//lib.ommolketab.ir

traditionally write a series of overloads based on parameter types, but in F# this is unnecessary,
because the pattern matching syntax allows you to achieve the same thing within a single function.

Lazy evaluation is another neat language feature common to functional languages that F# also
exposes. It simply means that the compiler can schedule the evaluation of a function or an expression
only when it’s needed, rather than precomputing it up front. This means that you only have to run
code you absolutely have to — fewer cycles spent executing and less working set means more speed.

Typically, when you have an expression assigned to a variable, that expression gets immediately
executed in order to store the result in the variable. Leveraging the theory that functional
programming has no side effects, there is no need to immediately express this result (because in-
order execution is not necessary), and as a result, you should only execute when the variable result is
actually required. Take a look at a simple case:

let lazyDiv = lazy (10 / 2)
printfn "%A" lazyDiv

First, the lazy keyword is used to express a function or expression that will only be executed when
forced. The second line prints whatever is in lazyDiv to the console. If you execute this example,
what you actually get as the console output is “(unevaluated).” This is because under the hood
the input to printfn is similar to a delegate. You actually need to force, or invoke, the expression
before you’ll get a return result, as in the following example:

let lazyDiv2 = lazy (10 / 2)
let result = lazyDiv2.Force()
print_any result

The lazyDiv2.Force() function forces the execution of the lazyDiv2 expression.

This concept is very powerful when optimizing for application performance. Reducing the amount
of working set, or memory, that an application needs is extremely important in improving both
startup performance and run time performance. Lazy evaluation is also a required concept when
dealing with massive amounts of data. If you need to iterate through terabytes of data stored on
disk, you can easily write a Lazy evaluation wrapper over that data, so that you only slurp up the
data when you actually need it. The Applied Games Group in Microsoft Research has a great
write-up of using F#’s Lazy evaluation feature with exactly that scenario: http://blogs.technet
.com/apg/archive/2006/11/04/dealing-with-terabytes-with-f.aspx.

suMMary

In this chapter you learned about the different styles of programming languages and about their
relative strengths and weaknesses. Visual Studio 2010 brings together the two primary .NET
languages, C# and VB, with the goal of reaching feature parity. The co-evolution of these languages
will help reduce the cost of development teams and projects, allowing developers to more easily switch
between languages. You also learned about the newest addition to the supported Microsoft languages,
Visual F#. As the scale of problems that we seek to solve increases, so does the complexity introduced
by the need to write highly parallel applications. Visual F# can be used to tackle these problems
through the execution of parallel operations without adding to the complexity of an application.

summary ❘ 331

http://blogs.technet
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART IV

rich client applications

chaPter 17: ⊲ Windows Form Applications

chaPter 18: ⊲ Windows Presentation Foundation (WPF)

chaPter 19: ⊲ Offi ce Business Applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17
 Windows forms applications

 what ’ s in this chaPter?

 Creating a new Windows Forms application ➤

 Designing the layout of forms and controls using the Visual Studio ➤

designers and control properties

 Using container controls and control properties to ensure that your ➤

controls automatically resize when the application resizes

 Since its earliest days, Visual Studio has excelled at providing a rich visual environment for
rapidly developing Windows applications. From simple drag - and - drop procedures to place
graphical controls onto the form, to setting properties that control advanced layout and
behavior of controls, the designer built into Visual Studio 2010 provides you with immense
power without having to manually create the UI from code.

 This chapter walks you through the rich designer support and comprehensive set of
controls that are available for you to maximize your effi ciency when creating Windows
Forms applications.

 GettinG started

 The fi rst thing you need to get started is to create a new Windows Forms project. Select the
File ➪ New ➪ Project menu to create the project in a new solution. If you have an existing
solution to which you want to add a new Windows Forms project, select File ➪ Add ➪
New Project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

336 ❘ chaPter 17 WindoWS FormS ApplicATionS

Windows Forms applications can be created with either VB or C#. In both cases, the Windows
Forms Application project template is the default selection when you open the New Project dialog
box and select the Windows category, as shown in Figure 17-1.

fiGure 17-1

The New Project dialog allows you to select the .NET Framework version you are targeting. Unlike
WPF applications, Windows Forms projects have been available since version 1.0 of the .NET
Framework, and will stay in the list of available projects regardless of which version of the
.NET Framework you select. After entering an appropriate name for the project, click OK to create
the new Windows Forms Application project.

the windows forM

When you create a Windows application project, Visual Studio 2010 automatically creates a
single blank form ready for your user interface design (see Figure 17-2). You can modify the visual
design of a Windows Form in two common ways: by using the mouse to change the size or position
of the form or a control or by changing the value of the control’s properties in the Properties
window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Almost every visual control, including the Windows Form itself,
can be resized using the mouse. Resize grippers appear when the
form or control has focus in the Design view. For a Windows
Form, these are visible only on the bottom, the right side, and
the bottom-right corner. Use the mouse to grab the gripper
and drag it to the size you want. As you are resizing, the dimensions
of the form are displayed on the bottom right of the status bar.

There is a corresponding property for the dimensions and
position of Windows Forms and controls. As you may recall
from Chapter 2, the Properties window, shown on the
right-hand side of Figure 17-2, shows the current value of many
of the attributes of the form. This includes the Size property,
a compound property made up of the Height and Width. Click
the expand icon to display the individual properties for any
compound properties. You can set the dimensions of the form in
pixels by entering either an individual value in both the Height
and Width properties, or a compound Size value in the format
width, height.

The Properties window, shown in Figure 17-3, displays some of
the available properties for customizing the form’s appearance
and behavior.

fiGure 17-2

The Windows form ❘ 337

fiGure 17-3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

338 ❘ chaPter 17 WindoWS FormS ApplicATionS

Properties are displayed in one of two views: either grouped together in categories or in
alphabetical order. The view is controlled by the first two icons in the toolbar of the Properties
window. The following two icons toggle the attribute list between displaying Properties and
Events.

Three categories cover most of the properties that affect the overall look and feel of a form:
Appearance, Layout, and Window Style. Many of the properties in these categories are also
available on Windows controls.

appearance Properties
The Appearance category covers the colors, fonts, and form border style. Many Windows Forms
applications leave most of these properties as their defaults. The Text property is one that you will
typically change, because it controls what is displayed in the form’s caption bar.

If the form’s purpose differs from the normal behavior, you may need a fixed-size window or a
special border, as is commonly seen in tool windows. The FormBorderStyle property controls how
this aspect of your form’s appearance is handled.

layout Properties
In addition to the Size properties discussed earlier, the Layout category contains the MaximumSize
and MinimumSize properties, which control how small or large a window can be resized to. The
StartPosition and Location properties can be used to control where the form is displayed in
the screen. The WindowState property can be used to initially display the form minimized,
maximized, or normally according to its default size.

window style Properties
The Window Style category includes properties that determine what is shown in the
Windows Form’s caption bar, including the maximize and minimize boxes, help button,
and form icon. The ShowInTaskbar property determines whether the form is listed in the
Windows taskbar. Other notable properties in this category include the TopMost property,
which is used to ensure that the form always appears on top of other windows, even when it
does not have focus, and the Opacity property, which can be used to make a form
semi-transparent.

forM desiGn Preferences

You can modify some Visual Studio IDE settings that will simplify your user interface design phase.
In the Options dialog (shown in Figure 17-4) of Visual Studio 2010, two pages of preferences deal
with the Windows Forms Designer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

fiGure 17-4

 The main settings that affect your design are the layout settings. By default, Visual Studio 2010
uses a layout mode called SnapLines. Rather than position visible components on the form via an
invisible grid, SnapLines helps you position them based on the context of surrounding controls and
the form ’ s own borders. You see how to use this new mode in a moment, but if you prefer the older
style of form design that originated in Visual Basic 6 and was used in the fi rst two versions of Visual
Studio .NET, you can change the LayoutMode property to SnapToGrid .

 The SnapToGrid layout mode is still used even if the LayoutMode is set to
SnapLines. SnapLines only becomes active when you are positioning a control
relative to another control. At other times, SnapToGrid will be active and allow
you to position the control on the grid vertex.

 The GridSize property is used when positioning and sizing controls on the form. As you move
controls around the form, they snap to specifi c points based on the values you enter here. Most
of the time, you ’ ll fi nd a grid of 8 × 8 (the default) too large for fi ne - tuning, so changing this to
something such as 4 × 4 might be more appropriate.

Both SnapToGrid and SnapLines are aids for designing user interfaces using the
mouse. Once the control has been roughly positioned, you can use the keyboard
to fi ne tune control positions by “ nudging ” the control with the arrow keys.

 ShowGrid displays a network of dots on your form ’ s design surface when you ’ re in SnapToGrid
mode so you can more easily see where the controls will be positioned when you move them. You
will need to close the designer and reopen it to see any changes to this setting. Finally, setting the

 form Design Preferences ❘ 339

http://lib.ommolketab.ir
http//lib.ommolketab.ir

340 ❘ chaPter 17 WindoWS FormS ApplicATionS

 SnapToGrid property to False deactivates the layout aids while in SnapToGrid mode and results in
pure free - form form design.

 While you ’ re looking at this page of options, you may want to change the Automatically Open
Smart Tags value to False. The default setting of True pops open the smart tag task list associated
with any control you add to the form, which can be distracting during your initial form design
phase. Smart tags are discussed later in this chapter.

 The other page of preferences that you can customize for the Windows Forms Designer is the Data
UI Customization section (see Figure 17 - 5). This is used to automatically bind various controls to
data types when connecting to a database.

fiGure 17-5

 As you can see in the screenshot, the String data type is associated with fi ve commonly used
controls, with the TextBox control set as the default. Whenever a database fi eld that is defi ned as a
 String data type is added to your form, Visual Studio automatically generates a TextBox control to
contain the value.

 The other controls marked as associated with the data type (ComboBox, Label, LinkLabel, and
ListBox) can be optionally used when editing the data source and style.

 It ’ s worth reviewing the default controls associated with each data type at this
time and making sure you ’ re happy with the types chosen. For instance, all
 DateTime data type variables will automatically be represented with a DateTime
Picker control, but you may want it to be bound to a MonthCalendar.

 Working with data bound controls is discussed further in Chapter 27.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 adding and Positioning Controls ❘ 341

 addinG and PositioninG controls

 You can add two types of controls to a Windows Form: graphical components that actually
reside on the form itself, and components that do not have a specifi c visual interface displaying on
the form.

 You can add graphical controls to your form in one of two ways. The fi rst method is to locate the
control you want to add in the Toolbox and double - click its entry. Visual Studio 2010 will place it in
a default location on the form — the fi rst control will be placed adjacent to the top and left borders
of the form, with subsequent controls placed down and to the right.

 If the Toolbox is closed, it won ’ t be automatically displayed next time the
Windows Forms designer is opened. You can display it again by selecting View
 ➪ Toolbox from the menu.

 The second method is to click and drag the entry on the list onto the form. As you drag over
available space on the form, the mouse cursor changes to show you where the control will be
positioned. This enables you to directly position the control where you want it, rather than fi rst
adding it to the form and then moving it to the desired location. Either way, once the control is on
the form, you can move it as many times as you like, so it doesn ’ t really matter how you get the
control onto the form ’ s design surface.

 There is actually a third method to add controls to a form — copy and paste a
control or set of controls from another form. If you paste multiple controls at
once, the relative positioning and layout of the controls to each other will be
preserved. Any property settings will also be preserved, although the control
names may be changed because they must be unique.

 When you design your form layouts in SnapLines mode (see the previous section), a variety of
guidelines are displayed as you move controls around in the form layout. These guidelines are
recommended “ best practice ” positioning and sizing markers, so
you can easily position controls in context to each other and the
edge of the form.

 Figure 17 - 6 shows a Button control being moved toward the top -
 left corner of the form. As it gets near the recommended position,
the control snaps to the exact recommended distance from the top
and left borders, and small blue guidelines are displayed. fiGure 17-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

342 ❘ chaPter 17 WindoWS FormS ApplicATionS

These guidelines work for both positioning and sizing a control, enabling you to snap to
any of the four borders of the form — but they’re just the tip of the SnapLines iceberg. When
additional components are present on the form, many more guidelines will begin to appear as you
move a control around.

In Figure 17-7, you can see a second Button control being moved.
The guideline on the left is the same as previously discussed,
indicating the ideal distance from the left border of the form.
However, now three additional guidelines are displayed. Two blue
vertical lines appear on either side of the control, confirming that
the control is aligned with both the left and right sides of the other
Button control already on the form (this is expected because the
buttons are the same width). The other vertical line indicates
the ideal gap between two buttons.

Vertically aligning text controls
One problem with alignment of controls is that the vertical alignment of the text displayed
within a TextBox is different compared to a Label. The problem is that the text within each
control is at a different vertical distance from the top border of the control. If you simply align
these different controls according to their borders, the text contained within these controls would
not be aligned.

As shown in Figure 17-8, an additional guideline is available
when lining up controls that have text aspects to them. In
this example, the Telephone label is being lined up with
the textbox containing the actual Telephone value. A line,
colored magenta by default, appears and snaps the control
in place. You can still align the label to the top or bottom
borders of the textbox by shifting it slightly and snapping
it to their guidelines, but this new guideline takes the often
painful guesswork out of lining up text.

Note that the other guidelines show how the label is horizontally aligned with the Label controls
above it, and it is positioned the recommended distance from the textbox.

automatic Positioning of Multiple controls
Visual Studio 2010 gives you additional tools to automatically format the appearance of your
controls once they are positioned approximately where you want them. The Format menu, shown
in Figure 17-9, is normally only accessible when you’re in the Design view of a form. From here you
can have the IDE automatically align, resize, and position groups of controls, as well as set the order
of the controls in the event that they overlap each other. These commands are also available via the
design toolbar and keyboard shortcuts.

fiGure 17-7

fiGure 17-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 adding and Positioning Controls ❘ 343

 The form displayed in Figure 17 - 9 contains several TextBox controls, all with differing widths. This
looks messy and should be cleaned up by setting them all to the same width as the widest control.
The Format menu provides you with the capability to automatically resize the controls to the same
width, using the Make Same Size ➪ Width command.

 The commands in the Make Same Size menu use the fi rst control selected as the
template for the dimensions. You can fi rst select the control to use as the template,
and then add to the selection by holding down the Ctrl key and clicking each of
the other controls. Alternatively, once all controls are the same size, you can
simply ensure they are still selected and resize the group at the same time with the
mouse.

 You can perform automatic alignment of multiple controls in the same way. First, select the
item whose border should be used as a base, and then select all of the other elements that should
be aligned with it. Next, select Format ➪ Align and choose which alignment should be performed.
In this example, the Label controls have all been positioned with their right edges aligned.
This could have been done using the guidelines, but often it ’ s easier to use this mass alignment
option.

 Two other handy functions are the horizontal and vertical spacing commands. These automatically
adjust the spacing between a set of controls according to the particular option you have selected.

fiGure 17-9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

344 ❘ chaPter 17 WindoWS FormS ApplicATionS

 tab order and layering controls
 Many users fi nd it faster to use the keyboard rather than the mouse when working with an
application, particularly those that require a large amount of data entry. Therefore it is essential
that the cursor moves from one fi eld to the next in the expected manner when the user presses the
Tab key.

 By default, the tab order is the same as the order in which controls were added to the form.
Beginning at zero, each control is given a value in the TabIndex property. The lower the TabIndex ,
the earlier the control is in the tab order.

 If you set the TabStop property to False, the control will be skipped over when
the Tab key is pressed and there will be no way for a user to set its focus without
using the mouse.

Some controls can never be given the focus, such as a Label. These controls
still have a TabIndex property; however, they are skipped when the Tab key is
pressed.

 Visual Studio provides a handy feature to view and
adjust the tab order of every control on a form. If you
select View ➪ Tab Order from the menu, the TabIndex
values are displayed in the designer for each control,
as shown in Figure 17 - 10. In this example the TabIndex
values assigned to the controls are not in order, which
would cause the focus to jump all over the form as the Tab
key is pressed.

 You can click each control in order to establish a new tab
order. Once you have fi nished, press the Esc key to hide the
tab order from the designer.

 If more than one control on a form has the same TabIndex , the z - order is used to determine
which control is next in the tab order. The z - order is the layering of controls on a form along the
form ’ s z - axis (depth) and is generally only relevant if controls must be layered on top of each other.
The z - order of a control can be modifi ed using the Bring to Front and Send to Back commands
under the Format ➪ Order menu.

 locking control design
 Once you ’ re happy with your form design you will want to start applying changes to the
various controls and their properties. However, in the process of selecting controls on the form,
you may inadvertently move a control from its desired position, particularly if you ’ re not
using either of the snap layout methods or if you have many controls that are being aligned with
each other.

fiGure 17-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 adding and Positioning Controls ❘ 345

 Fortunately, Visual Studio 2010 provides a solution in
the form of the Lock Controls command, available
in the Format menu. When controls are locked, you can
select them to change their properties, but you cannot
use the mouse to move or resize them, or the form itself.
The location of the controls can still be changed via the
Properties grid.

 Figure 17 - 11 shows how small padlock icons are displayed
on controls that are selected while the Lock Controls feature
is active.

 You can also lock controls on an individual basis by setting the Locked property
of the control to True in the Properties window.

 setting control Properties
 You set the properties on controls using the Properties window, just as you would for a form ’ s
settings. In addition to simple text value properties, Visual Studio 2010 has a number of property
editor types, which aid you in setting the values effi ciently by restricting them to a particular subset
appropriate to the type of property.

 Many advanced properties have a set of subordinate properties that can be individually accessed by
expanding the entry in the Properties window. Figure 17 - 12 (left) displays the Properties window for
a Label, with the Font property expanded to show the individual properties available.

fiGure 17-11

fiGure 17-12

 Many properties also provide extended editors, as is the case for Font properties. In Figure 17 - 12
(right), the extended editor button in the Font property has been selected, causing the Font dialog
to appear.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

346 ❘ chaPter 17 WindoWS FormS ApplicATionS

 Some of these extended editors invoke full - blown wizards, such as the Data Connection property
on some data - bound components, whereas others have custom - built inline property editors. An
example of this is the Dock property, for which you can choose a visual representation of how you
want the property docked to the containing component or form.

 service - based components
 As mentioned earlier in this chapter, two
kinds of components can be added to a Windows
Form — those with visual aspects to them and those
without. Service - based components such as timers and
dialogs, or extender controls such as tooltip and error
provider components, can all be used to enhance your
application.

 Rather than place these components on the form,
when you double - click one in the Toolbox, or drag
and drop it onto the design surface, Visual Studio
2010 creates a tray area below the Design view of the
form and puts the new instance of the component type
there, as shown in Figure 17 - 13.

 To edit the properties of one of these controls, locate its entry in the tray area and open the
Properties window.

 In the same way that you can create your own custom visual controls by
inheriting from System.Windows.Forms.Control , you can create non - visual
service components by inheriting from System.ComponentModel.Component . In
fact System.ComponentModel.Component is the base class for System.Windows.
Forms.Control .

 smart tag tasks
 Smart tag technology was introduced in Microsoft Offi ce. It provides inline shortcuts to
a small selection of actions you can perform on a particular element. In Microsoft Word, this
might be a word or phrase, and in Microsoft Excel it could be a spreadsheet cell. Visual Studio
2010 supports the concept of design - time smart tags for a number of the controls available to you as
a developer.

 Whenever a selected control has a smart tag available, a small right - pointing arrow is displayed on
the top - right corner of the control itself. Clicking this smart tag indicator opens up a Tasks menu
associated with that particular control.

 Figure 17 - 14 shows the tasks for a newly added DataGridView control. The various actions that
can be taken usually mirror properties available to you in the Properties window (such as the

fiGure 17-13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Multiline option for a TextBox control),
but sometimes they provide quick access
to more advanced settings for
the component.

The Edit Columns and Add
Column commands shown in Figure 17-14
are not listed in the DataGridView’s
Properties list, and the Data Source and
Enable settings directly correlate to individual
properties (for example, Enable Adding
is equivalent to the AllowUserToAddRows
property).

container controls

Several controls, known as container controls, are designed specifically to help you with
your form’s layout and appearance. Rather than have their own appearance, they hold other
controls within their bounds. Once a container houses a set of controls, you no longer need to
move the child controls individually, but instead just move the container. Using a combination
of Dock and Anchor values, you can have whole sections of your form’s layout automatically
redesign themselves at run time in response to the resizing of the form and the container controls
that hold them.

Panel and splitcontainer
The Panel control is used to group components that are associated with each other. When placed
on a form, it can be sized and positioned anywhere within the form’s design surface. Because it’s
a container control, clicking within its boundaries selects anything inside it. In order to move it,
Visual Studio 2010 places a move icon at the top-left corner of the control. Clicking and dragging
this icon enables you to reposition the Panel.

The SplitContainer control (shown in Figure 17-15)
automatically creates two Panel controls when added to a
form (or another container control). It divides the space into
two sections, each of which you can control individually.
At run time, users can resize the two spaces by dragging the
splitter bar that divides them. SplitContainers can be either
vertical (as in Figure 17-15) or horizontal, and they can be
contained with other SplitContainer controls to form
a complex layout that can then be easily customized by the
end user without your needing to write any code.

fiGure 17-14

Container Controls ❘ 347

fiGure 17-15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

348 ❘ chaPter 17 WindoWS FormS ApplicATionS

 Sometimes it ’ s hard to select the actual container control when it contains other
components, such as in the case of the SplitContainer housing the two Panel
controls. To gain direct access to the SplitContainer control itself, you can either
locate it in the drop - down list in the Properties window, or right - click one of the
Panel controls and choose the Select command that corresponds to the
SplitContainer. This context menu contains a Select command for every
container control in the hierarchy of containers, right up to the form itself.

 flowlayoutPanel
 The FlowLayoutPanel control enables you to create form designs with a behavior similar to web
browsers. Rather than explicitly position each control within this particular container control,
Visual Studio simply sets each component you add to the next available space. By default, the
controls will fl ow left to right, and then top to bottom, but you can use the FlowDirection property
to reverse this order in any confi guration depending on the requirements of your application.

 Figure 17 - 16 displays the same form with six button controls housed within a FlowLayoutPanel
container. The FlowLayoutPanel ’ s Dock property was set to fi ll the entire form ’ s design surface,
so as the form is resized, the container is also automatically sized. As the form gets wider and there
is available space, the controls begin to be realigned to fl ow left to right before descending down
the form.

fiGure 17-16

 tablelayoutPanel
 An alternative to the previously discussed container controls is the TableLayoutPanel container.
This control works much like a table in Microsoft Word or in a typical web browser, with each cell
acting as an individual container for a single control.

 You cannot add multiple controls within a single cell directly. You can, however,
place another container control, such as a Panel, within the cell, and then place
the required components within that child container.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Placing a control directly into a cell automatically positions the control to the top-left corner of the
table cell. You can use the Dock property to override this behavior and position it as required. This
property is discussed further later in this chapter.

The TableLayoutPanel container enables you to easily create a structured, formal layout in your
form with advanced features, such as the capability to automatically grow by adding more rows as
additional child controls are added.

Figure 17-17 shows a form with a TableLayoutPanel added to the design surface. The smart
tag tasks were then opened and the Edit Rows and Columns command executed. As a result,
the Column and Row Styles dialog is displayed so you can adjust the individual formatting
options for each column and row. The dialog displays several tips for designing table layouts in
your forms, including spanning multiple rows and columns and how to align controls within a
cell. You can change the way the cells are sized here as well as add or remove additional columns
and rows.

fiGure 17-17

dockinG and anchorinG controls

It’s not enough to design layouts that are nicely aligned according to the design-time dimensions.
At run time, a user will likely resize the form, and ideally the controls on your form will resize
automatically to fill the modified space. The control properties that have the most impact on this
are Dock and Anchor. Figure 17-18 shows how the controls on a Windows Form will properly resize
once you have set the correct Dock and Anchor property values.

Docking and anchoring Controls ❘ 349

http://lib.ommolketab.ir
http//lib.ommolketab.ir

350 ❘ chaPter 17 WindoWS FormS ApplicATionS

The Dock property controls which borders of the control are bound to the container. For example,
in Figure 17-18 (left), the TreeView control Dock property has been set to Fill to fill the left panel
of a SplitContainer, effectively docking it to all four borders. Therefore, no matter how large or
small the left-hand side of the SplitContainer is made, the TreeView control will always resize itself
to fill the available space.

The Anchor property defines the edges of the container to which the control is bound. In Figure
17-18 (left), the two button controls have been anchored to the bottom-right of the form. When the
form is resized, as shown in 17-18 (right), the button controls maintain the same distance between
to the bottom-right of the form. Similarly, the TextBox control has been anchored to the left and
right, which means that it will auto-grow or auto-shrink as the form is resized.

suMMary

In this chapter you received a good understanding of how Visual Studio can help you to quickly
design the layout of Windows Forms applications. The various controls and their properties enable
you to quickly and easily create complex layouts that can respond to user interaction in a large
variety of ways. In later chapters you learn about the specifics of designing the user interfaces for
other application platforms, including Office Add-Ins, WPF, Web, and Silverlight applications.

fiGure 17-18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18
 Windows Presentation
foundation (WPf)

 what ’ s in this chaPter?

 Learning the basics of XAML ➤

 Creating a WPF application ➤

 Styling your WPF application ➤

 Hosting WPF content in a Windows Forms project ➤

 Hosting Windows Forms Content in a WPF project ➤

 Using the WPF Visualizer ➤

 When starting a new Windows client application in Visual Studio you have two major
technologies to choose from — a standard Windows Forms – based application, or a Windows
Presentation Foundation (WPF) – based application. Both are essentially a different API for
managing the presentation layer for your application. WPF is extremely powerful and fl exible,
and was designed to overcome many of the shortcomings and limitations of Windows Forms.
In many ways you could consider WPF a successor to Windows Forms. However, WPF ’ s
power and fl exibility comes with a price in the form of a rather steep learning curve because it
does things quite differently than Windows Forms.

 This chapter guides you through the process of creating a basic WPF application in Visual
Studio 2010. It ’ s beyond the scope of this book to cover the WPF framework in any great
detail — it would take an entire book on its own to do so. Instead, what you will see is
an overview of Visual Studio 2010 ’ s capabilities to help you rapidly build user interfaces
using XAML.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

352 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

what is wPf?

Windows Presentation Foundation is a presentation framework for Windows. But what makes
WPF unique, and why should you consider using it over Windows Forms? Whereas Windows
Forms uses the raster-based GDI/GDI+ as its rendering engine, WPF instead contains its own
vector-based rendering engine, so it essentially isn’t creating windows and controls in the standard
Windows manner and look. WPF has taken a radical departure from the way things are done
in Windows Forms. In Windows Forms you generally define the user interface using the visual
designer, and in doing so it automatically creates the code (in the language your project is targeting)
in a .designer file to define that user interface — so essentially your user interface is defined and
driven in C# or VB code. However, user interfaces in WPF are actually defined in an XML-based
markup language called Extensible Application Markup Language (generally referred to as XAML,
pronounced “zammel”) specifically designed for this purpose by Microsoft. XAML is the underlying
technology to WPF that gives it its power and flexibility, enabling the design of much richer user
experiences and more unique user interfaces than was possible in Windows Forms. Regardless
of which language your project targets, the XAML defining the user interface will be the same.
Consequently, along with the new capabilities of the user interface controls there have been a number
of new supporting concepts on the code side of things, such as the introduction of dependency
properties (properties that can accept an expression that must be resolved as their value — which is
required in many binding scenarios to support XAML’s advanced binding capabilities). However,
you will find that the code-behind in a WPF application is much the same as a standard Windows
Forms application — the XAML side of things is where you need to do most of your learning.

When developing WPF applications, you need to think differently than the way you think when
developing Windows Forms applications. A core part of your new thought processes should be to take
full advantage of XAML’s advanced binding capabilities, with the code-behind no longer acting as
the controller for the user interface but serving it instead. Instead of the code “pushing” data into the
user interface and telling it what to do, the user interface should ask the code what it should do, and
request (that is, “pull”) data from it. It’s a subtle difference, but it greatly changes the way in which the
presentation layer of your application will be defined. Think of it as having a user interface that is now
in charge. The code can (and should) act as a decision manager, but no longer provides the muscle.

This “new thinking” has also led to new design patterns for how the code and the user interface
elements interact, such as the popular Model-View-ViewModel (MVVM) pattern, which enables
much better unit testing of the code serving the user interface and maintains a clean separation
between the designer and developer elements of the project. This results in changing the way you
write the code-behind, and ultimately changes the way you design your application. This clear
separation supports the designer/developer workflow, enabling a designer to work in Expression
Blend on the same part of the project as the developer (working in Visual Studio) without clashing.

By taking advantage of the flexibility of XAML, WPF enables you to design unique user interfaces
and user experiences. At the heart of this is WPF’s styling and templating functionality that
separates the look of controls from their behavior. This enables you to alter the appearance of
controls easily by simply defining an alternate “style” on that particular use without having to
modify the control itself.

Ultimately you could say that WPF uses a much better way of defining user interfaces than Windows
Forms does, through its use of XAML to define user interfaces, along with a number of additional
supporting concepts thrown in. The bad news is that the flexibility and power of XAML comes with

http://lib.ommolketab.ir
http//lib.ommolketab.ir

a corresponding steep learning curve that will take some time to climb, even for the experienced
developer. If you are a productive developer in Windows Forms, WPF will no doubt create
considerable frustration for you while you get your head around its concepts, and it really requires
a change in your developer mindset to truly get a grasp on it and how things hold together. Many
simple tasks will initially seem a whole lot harder than they should be, and would have been were
you to implement the same functionality or feature in Windows Forms. However, if you can make it
through this period you will start to see the benefi ts and appreciate the new possibilities that WPF
and XAML provide. Because Silverlight shares a lot conceptually with WPF (both being XAML
based, with Silverlight essentially being a subset of WPF), by learning and understanding WPF you
are also learning and understanding how to develop Silverlight applications.

 If you ’ ve looked at earlier versions of WPF (those that shipped in the .NET
Framework 3.0 and 3.5 versions) you may have noticed that text rendered in
WPF often took on a rather blurry appearance instead of being crisp and sharp,
generating numerous complaints from the developer community. Fortunately in
the .NET Framework 4.0 the text rendering has been vastly improved, and if this
has held you back from developing WPF applications previously it is probably
time to take another look. Microsoft has demonstrated its faith in WPF by
rewriting Visual Studio ’ s code editor in WPF for the 2010 version to take
advantage of its power and fl exibility.

 GettinG started with wPf

 When you open the New Project dialog you see a number of built - in project templates for WPF that
ship with Visual Studio 2010: WPF Application, WPF Browser Application, WPF Custom Control
Library, and WPF User Control Library, as shown in Figure 18 - 1.

 fiGure 18 - 1

Getting started with WPf ❘ 353

http://lib.ommolketab.ir
http//lib.ommolketab.ir

354 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

You will notice that these projects are for the most part a direct parallel to the Windows Forms
equivalent. The exception is the WPF Browser Application, which generates an XBAP file that uses
the browser as the container for your rich client application (in much the same way as Silverlight
does, except an XBAP application targets the full .NET Framework, which must be installed on the
client machine).

For this example you create a project using the WPF Application template, but most of the features
of Visual Studio 2010 discussed herein apply equally to the other project types. The project
structure generated should look similar to Figure 18-2.

fiGure 18-2

Here you can see that the project structure consists of App.xaml and MainWindow.xaml, each with
a corresponding code-behind file (.cs or .vb), which you can view if you expand out the relevant
project items. At this stage the App.xaml contains an Application XAML element, which has a
StartupUri attribute used to define which XAML file will be your initial XAML file to load (by
default MainWindow.xaml). For those familiar with Windows Forms, this is the equivalent of the
startup form. So if you were to change the name of MainWindow.xaml and its corresponding class to
something more meaningful, you would need to make the following changes:

Change the filename of the ➤ .xaml file. The code-behind file will automatically be renamed
accordingly.

Change the class name in the code-behind file, along with its constructor, and change ➤

the value of the x:Class attribute of the Window element in the .xaml file to reference the
new name of the class (fully qualified with its namespace). Note that the last two steps are

http://lib.ommolketab.ir
http//lib.ommolketab.ir

automatically performed if you change the class name in the code - behind fi le fi rst and use the
smart tag that appears after doing so to rename the object in all the locations that reference it.

 Finally, change the ➤ StartupUri attribute of the Application element in App.xaml to point
toward the new name of the .xaml fi le (because it is your startup object).

 As you can see, a few more changes need to be made when renaming a fi le in a WPF project than
you would have to do in a standard Windows Forms project, however it ’ s reasonably straightforward
when you know what you are doing (and using the smart tag reduces the number of steps required).

 Working around the Visual Studio layout of Figure 18 - 2, you can see that the familiar Toolbox
tool window attached to the left side of the screen has been populated with WPF controls that
are similar to what you would be used to when building a Windows Forms application. Below
this window, still on the left side, is the Document Outline tool window. As with both Windows
Forms and Web Applications this gives you a hierarchical view of the elements on the current
window. Selecting any of these nodes in this window highlights the appropriate control in the
main editor window, making it easier to navigate more complex documents. An interesting
feature of the Document Outline when working with WPF is that as you hover over an item
you get a mini - preview of the control. This helps you identify that you are selecting the correct
control.

 If the Document Outline tool window is not visible it may be collapsed against
one of the edges of Visual Studio. Alternatively, you may need to force it to be
displayed by selecting it from the View ➪ Other Windows menu.

 On the right side of Figure 18 - 2 is the Properties tool window. You may note that it has a very
similar layout and behavior to the Windows Forms designer Properties tool window. However, this
window in the WPF designer has additional features for editing WPF windows and controls. Finally,
in the middle of the screen is the main editor/preview space, which is currently split to show both
the visual layout of the window (above) and the XAML code that defi nes it (below).

 xaMl fundamentals
 If you have some familiarity working with XML (or to some extent HTML), you should fi nd the
syntax of XAML relatively straightforward because it is XML based. XAML can have only a
single root level node, and elements are nested within each other to defi ne the layout and content
of the user interface. Every XAML element maps to a .NET class, and the attribute names map to
properties/events on that class. Note that element and attribute names are case sensitive.

 Take a look at the default XAML fi le created for the MainWindow class:

 < Window x:Class="Chapter18Sample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300" >
 < Grid >

 < /Grid >
 < /Window >

Getting started with WPf ❘ 355

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://lib.ommolketab.ir
http//lib.ommolketab.ir

356 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

Here you have Window as your root node, and a Grid element within it. To make sense of it, think of
it in terms of “your window contains a grid.” The root node maps to its corresponding code-behind
class via the x:Class attribute, and also contains some namespace prefix declarations (discussed
shortly) and some attributes used to set the value of properties (Title, Height, and Width) of the
Window class. The value of all attributes (regardless of type) should be enclosed within quotes.

You’ll note two namespace prefixes defined on the root node, both declared using xmlns (the XML
attribute used for declaring namespaces). You could consider XAML namespace prefix declarations
to be somewhat like the using/Imports statements at the top of a class in C#/VB, but not quite.
These declarations assign a unique prefix to the namespaces used within the XAML file, with the
prefix used to qualify that namespace when referring to a class within it (that is, specify the location
of the class). Prefixes reduce the verbosity of XAML by letting you use that prefix rather than
including the whole namespace when referring to a class within it in your XAML file. The prefix is
defined immediately following the colon after xmlns. The first definition actually doesn’t specify
a prefix because it is defining your default namespace (the WPF namespace). However, the second
namespace defines x as its prefix (the XAML namespace). Both definitions map to URIs rather than
specific namespaces — these are consolidated namespaces (that is, they cover multiple namespaces),
and hence reference the unique URI that is used to define that consolidation. However, you don’t need
to worry about this concept — leave these definitions as they are and simply add your own definitions
following them. When adding your own namespace definitions they will almost always begin with
clr-namespace and reference a CLR namespace and the assembly that contains it. For example:

 xmlns:wpf="clr-namespace:Microsoft.Windows.Controls;assemblty=WPFToolkit"

Prefixes can be anything of your choosing, but it is best to make them short yet meaningful.
Namespaces are generally defined on the root node in the XAML file. This is not necessary because
a namespace prefix can be defined at any level in a XAML file, but it is generally a standard practice
to keep them together on the root node for maintainability purposes.

If you want to refer to a control in the code-behind or by binding it to another control in the XAML
file (such as ElementName binding) you will need to give your control a name. Many controls
implement the Name property for this purpose, but you may also find that controls are assigned a name
using the x:Name attribute. This is defined in the XAML namespace (hence the x: prefix) and can be
applied to any control. If the Name property is implemented (which it will be in most cases because it
is defined on the base classes that most controls inherit from), it simply maps to this property anyway
and they serve the same purpose. For example:

<Button x:Name="OKButton" Content="OK" />

is the same as:

<Button Name="OKButton" Content="OK" />

Either way is technically valid (although in Silverlight most controls don’t support the Name
attribute and you must use the x:Name attribute instead). Once one of these properties is set, a
field is generated (in the automatically generated code that you won’t see) that you can use to
refer to that control.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the wPf controls
WPF contains a rich set of controls to use in your user interfaces, roughly comparable to the standard
controls for Windows Forms. If you looked at previous versions of WPF you may have noticed a
number of controls (such as the Calendar, DatePicker, DataGrid, and so on), which are included in
the standard controls for Windows Forms but were not included in the standard controls for WPF.
Instead you had to turn to the free WPF Toolkit hosted on CodePlex to obtain these controls. This
toolkit was developed by Microsoft over time to help fill this hole in the original WPF release by
providing some of the missing controls. With WPF 4.0, however, you will find many of the controls
within the WPF Toolkit are now included within WPF’s standard controls, providing a reasonably
complete set of controls “out of the box.” Of course you can still use third-party controls where the
standard set doesn’t suffice, but now you have a reasonable base to work from.

Although the controls set for WPF is somewhat comparable to that of Windows Forms, you will
note that their properties are quite different to their counterparts. For example, there is no longer a
Text property on many controls, although you will find a Content property instead. The Content
property is used to assign content to the control (hence its name). You can for the most part treat
this as you would the Text property for a Windows Forms control and simply assign some text
to this property to be rendered. However, the Content property can in fact accept any WPF
element, allowing almost limitless ability to customize the layout of a control without necessarily
having to create your own custom control — a very powerful feature for designing complex user
interfaces. You may also note that many controls don’t have properties to accomplish what was
pretty straightforward in Windows Forms, and you may find this somewhat confusing. For example,
there is no Image property on the WPF Button control to assign an image to a button as there is
in Windows Forms. This may initially make you think WPF is very limited in its capabilities, but
you would be mistaken because this is where the Content property comes into its own. Because
the Content property can have any WPF control assigned to it to define the content of its control
you can assign a StackPanel (discussed in the next section) containing both an Image control and
a TextBlock control to achieve the same effect. Though this may initially appear to be more work
than it would be to achieve the same outcome in Windows Forms, it does enable you to easily lay
out the content of the button in whatever form you choose (rather than how the control chooses to
implement the layout), and demonstrates the incredible flexibility of WPF and XAML. The XAML
for the button in Figure 18-3 is as follows:

<Button HorizontalAlignment="Left" VerticalAlignment="Top" Width="100" Height="30">
 <Button.Content>
 <StackPanel Orientation="Horizontal">
 <Image Source="/Chapter18Sample;component/Images/save.png" Width="16"
 Height="16" />
 <TextBlock Margin="5,0,0,0" Text="Save" VerticalAlignment="Center" />
 </StackPanel>
 </Button.Content>
</Button>

Other notable property name changes from Windows Forms include the IsEnabled property (which
was simply Enabled in Windows Forms) and the Visibility property (which was
Visible in Windows Forms). Like IsEnabled, you will notice that most Boolean
properties are now prefixed with Is (for example, IsTabStop, IsHitTestVisible, fiGure 18-3

Getting started with WPf ❘ 357

http://lib.ommolketab.ir
http//lib.ommolketab.ir

358 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

and so on), conforming to a standard naming scheme. The Visibility property, however, is no
longer a Boolean value — instead it is an enumeration that can have the value Visible, Hidden,
or Collapsed.

 Keep an eye on the WPF Toolkit at http://wpf.codeplex.com because new
controls for WPF will continue to be developed and hosted there that you may
fi nd useful.

 the wPf layout controls
 Windows Forms development used absolute placement for controls on its surface (that is, each
control had its x and y coordinates explicitly set), although over time the TableLayoutPanel and
FlowLayoutPanel controls were added, in which you could place controls to provide a more
advanced means of laying out the controls on your form. However, the concepts around positioning
controls in WPF are slightly different than how controls are positioned in Windows Forms. Along
with controls that provide a specifi c function (for example, buttons, textboxes, and so on), WPF
also has a number of controls that are used specifi cally for defi ning the layout of your user interface.

 Layout controls are invisible controls that handle the positioning of controls upon their surface. In
WPF there isn ’ t a default surface for positioning controls as such — the surface you are working
with is determined by the layout controls further up the hierarchy, with a layout control generally
used as the element directly below the root node of each XAML fi le to defi ne the default layout
method for that XAML fi le. The most important layout controls in WPF are the Grid, the Canvas,
and the StackPanel, so this section takes a look at each of those. For example, in the default XAML
fi le created for the MainWindow class provided earlier, the Grid element was the element directly
below the Window root node, and thus would act as the default layout surface for that window.
Of course you could change this to any layout control in order to suit your requirements, and use
additional layout controls within it if necessary to create additional surfaces that change the way
their containing controls are positioned.

 The next section looks at how to layout your forms using the designer surface, but look at the
XAML to use these controls fi rst.

 In WPF, if you want to place controls in your form using absolute coordinates (similar to the default
in Windows Forms) you would use the Canvas control as a “ surface ” to place the controls on.
Defi ning a Canvas control in XAML is very straightforward:

 < Canvas >

 < /Canvas >

 To place a control (for example, a TextBox control) within this surface using given X and Y
coordinates (relative to the location of the top - left corner of the canvas) we need to introduce the
concept of attached properties within XAML. The TextBox control doesn ’ t actually have properties
to defi ne its location, because its positioning within the layout control it is contained within is
totally dependent on the type of control. So correspondingly, the properties that the TextBox
control requires in order to specify its position within the layout control must come from the layout

http://wpf.codeplex.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

control itself (because it will be handling the positioning of the controls within it). This is where
attached properties come in. In a nutshell, attached properties are properties that are assigned a
value on a control, but the property is actually defined on and belongs to another control higher
up in the hierarchy. When using the property, the name of the property is qualified by the name of
the control that the property is actually defined on, followed by a period, and then the name of the
property on that control you are using (for example, Canvas.Left). By setting that value on another
control that is hosted within it (such as your textbox), the Canvas control is actually storing that
value, and will manage that textbox’s position using that value. For example, this is the XAML
required to place the textbox at coordinates 15, 10 using the Left and Top properties defined on the
Canvas control:

<Canvas>
 <TextBox Text="Hello" Canvas.Left="15" Canvas.Top="10" />
</Canvas>

While absolute placement is the default for controls in Windows Forms, best practice in WPF is
to actually use the Grid control for laying out controls. The Canvas control should be used only
sparsely and where necessary, because the Grid control is actually far more powerful for defining
form layouts and is a better choice in most scenarios. One of the big benefits of the Grid control
is that its contents can automatically resize when its own size is changed. So you can easily design
a form that automatically sizes to fill all of the area available to it — that is, the size and location
of the controls within it are determined dynamically. The Grid control allows you to divide its
area into regions (cells) into which you can place controls. These cells are created by defining
a set of rows and columns on the grid, and are defined as values on the RowDefinitions and
ColumnDefinitions properties on the grid. The intersections between rows and columns become
the cells that you can place controls within.

To support defining rows and columns, you need to know how to define complex values in XAML.
Up until now you have been assigning simple values to controls, which map to either .NET primitive
data types, the name of an enumeration value, or have a type converter to convert the string
value to its corresponding object. These simple properties had their values applied as attributes
within the control definition element. However, complex values cannot be assigned this way because
they map to objects (which require the value of multiple properties on the object to be assigned),
and must be defined using property element syntax instead. Because the RowDefinitions and
ColumnDefinitions properties of the Grid control are collections, they take complex values that
need to be defined with property element syntax. For example, here is a grid that has two rows and
three columns defined using property element syntax:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="150" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
</Grid>

Getting started with WPf ❘ 359

http://lib.ommolketab.ir
http//lib.ommolketab.ir

360 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

Note how in order to set the RowDefinitions property using property element syntax you need
to create a child element of the Grid to define it. Qualifying it by adding Grid before the property
name indicates that the property belongs to a control higher in the hierarchy (as with attached
properties), and making the property an element in XAML indicates you are assigning a complex
value to the specified property on the Grid control.

The RowDefinitions property accepts a collection of RowDefinitions so you are instantiating
a number of RowDefinition objects that are then populating that collection. Correspondingly,
the ColumnDefinitions property is being assigned a collection of ColumnDefinition objects.
To demonstrate that ColumnDefinition (like RowDefinition) is actually an object, the Width
property of the ColumnDefinition object has been set on the first two column definitions.

To place a control within a given cell you again make use of attached properties, this time telling the
container grid which column and row it should be placed in:

<CheckBox Grid.Column="0" Grid.Row="1" Content="A check box" IsChecked="True" />

The StackPanel is another important container control for laying out controls. It stacks the controls
contained within it either horizontally or vertically (depending on the value of its Orientation
property). For example, if you had two buttons defined within the same grid cell (without a
StackPanel) the grid would position the second button directly over the first. However, if you put the
buttons within a StackPanel control it would control the position of the two buttons within the cell
and lay them out next to one another.

<StackPanel Orientation="Horizontal">
 <Button Content="OK" Height="23" Width="75" />
 <Button Content="Cancel" Height="23" Width="75" Margin="10,0,0,0" />
</StackPanel>

the wPf desiGner and xaMl editor

The WPF designer and XAML editor have had a
number of improvements since Visual Studio 2008,
including stability improvements (the Visual Studio
2008 WPF designer was notoriously unstable), and
most notably the designer now supports drag
and drop binding.

The WPF designer is similar in layout to Windows
Form’s designer, but supports a number of unique
features. To take a closer look at some of these,
Figure 18-4 isolates this window so you can see in
more detail the various components.

First you will notice that the window is split into
a visual designer at the top and a code window at
the bottom. If you prefer the other way around
you can simply click the up/down arrows between

fiGure 18-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the Design and XAML tabs. In Figure 18 - 4 the second icon on the right side is highlighted to
indicate that the screen is being split horizontally. Selecting the icon to its left instead splits the
screen vertically.

 You will probably fi nd that working in split mode is the best option when
working with the WPF designer because you are likely to fi nd yourself directly
modifying the XAML regularly but want the ease of use of the designer for
general tasks.

 If you prefer not to work in split screen mode, you can
double - click either the Design or XAML tab. This
makes the relevant tab fi ll the entire editor window
as shown in Figure 18 - 5, and you can click the tabs
to switch between each view. To return to split screen
mode you just need to click the Expand Pane icon,
which is the right - most icon on the splitter bar.

 In the designer you ’ ll note the zoom control in the visual
designer portion of the editor space. The zoom control
allows you to easily zoom in or out on the window or
control being edited, which can be extremely handy
when making small fi ddly adjustments or to get an
overview of the whole XAML layout. In this case the
screen is zoomed out to 90 percent. There is a mark
where 100 percent is on the zoom scale and the button
at the bottom of the zoom control allows you to easily
size the XAML layout so that it expands (or contracts) to fi t the designer surface.

 The last thing worth noting is the cookie - crumb tracker that is at the bottom of the visual designer
window, to the right of the Design and XAML tabs. In this case it only has a single Window element,
but you will see that as you add more elements to the window this feature becomes quite useful in
determining and navigating the control hierarchy for the selected control.

 working with the xaMl editor
 Working with the XAML editor is somewhat similar to working
with the HTML editor in Visual Studio. Numerous IntelliSense
improvements have been made in this editor since Visual Studio
2008, making writing XAML directly very quick and easy.

 One neat feature with the XAML editor is the ability to easily
navigate to an event handler once it has been assigned to a control.
Simply right - click the event handler assignment in XAML and select
the Navigate to Event Handler item from the popup menu, as shown
in Figure 18 - 6.

 fiGure 18 - 5

 fiGure 18 - 6

The WPf Designer and XaMl editor ❘ 361

http://lib.ommolketab.ir
http//lib.ommolketab.ir

362 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

 working with the wPf designer
 Although it is important to familiarize yourself with writing XAML in the XAML editor, VS2010
also has a very good designer for WPF, comparable to the Windows Forms designer, and in some
respects even better. This section takes a look at some of the features of the WPF designer.

 Figure 18 - 7 shows some of the snap lines,
guides, and glyphs that are added when you
select, move, and resize a control.

 Note the glyph that appears on the left of
the window toward its bottom - left corner
in the fi rst image in Figure 18 - 7. Clicking
it allows you to easily switch between the window having a fi xed width/height, and having it
automatically size to fi t its contents. When you click the glyph, the glyph will change (indicating
what sizing mode it is in), and the SizeToContent property on the window is set accordingly.
Clicking the glyph again changes the window back to having a fi xed width/height. This option
appears only on the root node.

 fiGure 18 - 7

 If you are wondering why the size of the window doesn ’ t change in the designer
when you click the glyph for it to size to content, the Height and Width
properties of the window are replaced with “ designer ” height/width properties
that retain these values for use by the WPF designer so that the SizeToContent
property doesn ’ t interfere while designing the form. These properties are then
switched back to the standard Height and Width properties if you return to
fi xed - size mode.

 The second image in Figure 18 - 7 demonstrates the snap lines that appear when you move a control
around the form (or resize it). These snap lines are similar to those in the Windows Forms designer,
and help you align controls to a standard margin within their container control, or easily align a
control to other controls. Hold down ALT while you move a control if you don ’ t want these snap
lines to appear and your control to snap to them.

 The third image in Figure 18 - 7 demonstrates the rulers that appear when you are resizing a control.
This feature allows you to easily see the new dimensions of a control as you resize it in order to help
you adjust it to a particular size.

 You ’ ll note that the third image in Figure 18 - 7 also contains some anchor points (that is, the two
arrows pointing from the left and top of the button to the corresponding edges of its container grid).
These arrows indicate that the button has a margin applied to it, dictating the placement of the
button within its grid cell. Currently these arrows indicate that the button has a top and left margin
applied, effectively “ anchoring ” its top and left sides to the top and left of the grid containing it.
However, it is easy to swap the top anchor so that the button is anchored by its bottom edge, and
swap the left anchor so that the button is anchored by its right edge instead. Simply click the top
anchor arrow to have the button anchored by its bottom edge, and click the left anchor arrow to
have the button anchored by its right edge. The anchor arrows swap position, and you can simply

http://lib.ommolketab.ir
http//lib.ommolketab.ir

click them again to return them back to their original anchor points. You can also anchor both sides
(that is, left/right or top/bottom) of a control such that it stretches as the grid cell it is hosted within
is resized. For example, if the left side of the textbox is anchored to the grid cell you can also anchor
its right side by clicking the small circle to the right of the textbox. To remove the anchor from just
one side, click the anchor arrow on that side to remove it.

 As previously mentioned, the most important control for laying out your form is the Grid control.
Take a look at the some of the special support that the WPF designer has for working with this
control. By default your MainWindow.xaml fi le was created with a single grid element without any
rows or columns defi ned. Before you commence adding elements you might want to defi ne some rows
and columns, which can be used to control the layout of the controls within the form. To do this, start
by selecting the grid by clicking in the blank area in the middle of the window, selecting the relevant
node from the Document Outline tool window, or placing the cursor within the corresponding grid
element in the XAML fi le itself (when in split view).

 When the grid element is selected, a border appears
around the top and left edges of the grid, highlighting
both the actual area occupied by the grid and the relative
sizing of each of the rows and columns, as shown in
Figure 18 - 8. This fi gure currently shows a grid with two
rows and two columns.

 You can add additional rows or columns by simply
clicking at a location within the border. Once added, the
row or column markers can be selected and dragged to get the correct sizing. You will notice when
you are initially placing the markers that there is no information about the size of the new row/column
displayed, which is unfortunate; however, these will appear once the marker has been created.

 When you move the cursor over the size display for a row
or column, three options appear across the top of the
grid, as shown in Figure 18 - 9.

 These options allow you to easily specify that the size
of the row/column should be fi xed (#), a weighted
proportion (*), or determined by its contents (Auto).

 fiGure 18 - 8

 fiGure 18 - 9

 Weighted proportion is a similar concept to specifying a percentage of the space
available (compared to other columns). After fi xed and auto - sized columns/rows
have been allocated space, columns/rows with weighted proportions will divide
up the remaining available space. This division will be equal, unless you prefi x
the asterisk with a numeric multiplier. For example, say you have a grid with a
width of 1000 (pixels) and two columns. If both have * as their specifi ed width,
they each will have a width of 500 pixels. However, if one has a width of * , and
the other has a width of 3* then the 1000 pixels will divided into 250 pixel
 “ chunks, ” with one chunk allocated to the fi rst column (thus having a width of
250 pixels), and three chunks will be allocated to the second column (thus having
a width of 750 pixels).

The WPf Designer and XaMl editor ❘ 363

http://lib.ommolketab.ir
http//lib.ommolketab.ir

364 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

 To delete a row or column, click the row or column and drag it outside of the grid area. It will be
removed and the controls in the surrounding cells will be updated accordingly.

 When you create a control by dragging and dropping it on a grid cell, remember
to “ dock ” it to the left and top edges of the grid cell (by dragging it until it snaps
into that position). Otherwise a margin will be defi ned on the control to position
it within the grid cell, which is probably not the behavior you will want.

 the Properties tool window
 When you ’ ve placed a control on your form you don ’ t have to
return to the XAML editor to set its property values and assign
event handlers. Like Windows Forms, WPF has a Properties
window, although you will note that there are quite a few
differences in WPF ’ s implementation as shown in Figure 18 - 10.

 The Properties window has had a huge makeover in terms of
functionality from Visual Studio 2008. The Visual Studio 2008
version was very limited in its capabilities, requiring developers to
modify the XAML directly in many cases. However, it has been
vastly improved in Visual Studio 2010, reducing the need for this.

 The Properties tool window for Windows Forms development
allows you to select a control to set the properties for via a drop -
 down control selector above the properties/events list. However,
you will note that this drop - down is missing in WPF ’ s Properties window. Instead you must select
the control on the designer, via the Document Outline tool window, or by placing the cursor within
the defi nition of a control in XAML view. A thumbnail preview of the selected control (and any
controls it contains) will be displayed in the top left - hand corner of the window, and the qualifi ed
type of the control will be displayed next to it.

 fiGure 18 - 10

 The Properties window can be used while working in both the XAML editor and
the designer. However, if you want to use it from the XAML editor the designer
must have been loaded (you may need to switch to designer view and back if you
have opened the fi le straight into the XAML editor), and if you have invalid
XAML you may fi nd you will need to fi x the errors fi rst.

 The Name property for the control is not within the property list, but has a dedicated textbox above
the property list. Note that if the control doesn ’ t already have a name it will assign the value to
its Name property (rather than x:Name). However, if the x:Name attribute is defi ned on the control
element and you update its name from the Properties window it will continue to use and update
that attribute.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Controls can have many properties or events, and navigating
through the properties/events lists in Windows Forms to find
the one you are after can be a chore. To make finding a specific
property easier for developers the WPF Properties window has a
search function that dynamically filters the properties list based on
what you type into the textbox. Your search string doesn’t need to
be the start of the property/event name, but retains the property/
event in the list if any part of its name contains the search string.
Unfortunately this search function doesn’t support camel case
searching.

The property list in the WPF designer (like for Windows Forms)
can be displayed in either a Categorized or Alphabetical order.
You’ll note that none of the properties that are objects (such as
Margin) can be expanded to show/edit their properties (which
they do for Windows Forms). However, if the list is displayed in
the Categorized order you will observe a new and unique feature
of WPF’s property window: category editors. For example, if you
select a Button control and browse down to the Text category you
will find that it has a special editor for the properties in the Text
category to make setting these values a better experience, as shown
in Figure 18-11.

Various attached properties available to a control also appear in
the property list, as shown in Figure 18-12.

You may have noticed that each property name has a small
icon to its right. This is a new feature in Visual Studio 2010
called property markers, which indicate what the source for that
property’s value is. Placing your mouse cursor over an icon will
show a tooltip describing what it means. The icon will change
based on where the value is to be sourced from. Figure 18-13
demonstrates these various icons, which are described below:

A light gray icon indicates that the property has no value assigned to it and will use its ➤

default value.

A black diamond icon indicates that the property has a local value assigned to it (that is, has ➤

been given a specific value).

A yellow cylinder icon indicates that the property has a data binding expression assigned ➤

to it (discussed later in this chapter).

A paintbrush (with green paint) icon indicates that the property has a resource assigned ➤

to it.

A purple tree hierarchy icon indicates that the property is inheriting its value from another ➤

control further up the hierarchy.

fiGure 18-11

fiGure 18-12

fiGure 18-13

The WPf Designer and XaMl editor ❘ 365

http://lib.ommolketab.ir
http//lib.ommolketab.ir

366 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

Clicking a property marker icon displays a popup menu providing some
advanced options for assigning the value of that property, as shown in
Figure 18-14.

The Reset Value option simply returns the value of the property back
to its default value (by deleting the attribute that assigns the value in
the XAML).

The Apply Data Binding option provides a popup editor
to select various binding options to create a data binding
expression for that value. WPF supports numerous binding
options, and these and this window are described further in
the next section.

The Apply Resource option enables you to select a resource
that you’ve created (or is defined by WPF) and assign it as
the value of the selected property. Resources are essentially
reusable objects and values, similar in concept to constants in
code. For example, Figure 18-15 shows the popup window that
appears when you select this option.

The resources are all the resources available to this property (that is, within scope and of the same
type), grouped by their resource dictionary. Note the icon in the top right-hand corner of the popup
window. Clicking this icon also groups the resources by which XAML file they originate from. This
option can be toggled on and off.

Figure 18-15 shows a resource of the same type as this property (BlueVioletBrushKey) that is
defined within the current XAML file (under the Local grouping). Because this is a property of type
SolidColorBrush, the window is displaying all the color brush resources predefined in WPF that you
could also choose from.

Returning to the other options in the menu shown in Figure 18-14, the Extract Value to
Resource option takes the value of that property and turns it into a resource. The resource is
created as a resource of the root node in the XAML file such that it can be reused throughout
the file by the unique key you give it. The value of the property is automatically updated to
use this resource. For example, using this option on the Background property of a control that
has a value of #FF8888B7 defines the following resource in Window.Resources with the name
BlueVioletBrushKey:

<SolidColorBrush x:Key="BlueVioletBrushKey">#FF8888B7</SolidColorBrush>

The control will reference this resource as such:

Background="{StaticResource BlueVioletBrushKey}"

You can then apply this resource to other controls using the same means in XAML, or you can
apply it by selecting the control and the property to apply it to, and using the Apply Resource option
on the property marker menu described previously.

fiGure 18-14

fiGure 18-15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 In the designer you will fi nd that (as with Windows Forms)
double - clicking a control automatically creates an event
handler for that control ’ s default event in the code - behind.
You can also create event handlers for any of the control ’ s
events using the Properties window as you would in
Windows Forms. Clicking the lightning icon in the Properties
window takes you to the Events view, as shown in
Figure 18 - 16. This shows a list of events that the control
can raise, and you can double - click the event to
automatically create the appropriate event handler in the
code - behind.

 fiGure 18 - 16

 For VB.NET developers, double - clicking the Button control or creating the
event via the Properties window wires up the event using the Handles syntax.
Therefore, the event handler is not assigned to the event as an attribute.
If you use this method to handle the event you won ’ t see the event handler
defi ned in the XAML for the control, and thus you won ’ t be able to use the
Navigate to Event Handler menu (from Figure 18 - 6) when in the XAML editor
to navigate to it.

 data binding features
 Data binding is a very important concept in WPF, and is one of its core strengths. Data binding
syntax can be a bit confusing initially, but Visual Studio 2010 makes creating data bound forms
very easy in the designer. Visual Studio 2010 helps with data binding in two ways: with the Apply
Data Binding option on a property in the Properties tool window, and the drag and drop data
binding support from the Data Sources window. This section looks at these two options in turn.

 In WPF you can bind to objects (which also includes datasets, ADO.NET Entity Framework
entities, and so on), resources, and even properties on other controls. So there are very rich binding
capabilities in WPF and you can bind a property
to almost anything you want to. Hand - coding
these complex binding expressions in XAML can
be quite daunting, but the Apply Data Binding
editor enables you to build these expressions via
a point - and - click interface.

 To bind a property on a control fi rst select the
control in the designer and fi nd the property you
want to bind in the Properties window. Click the
property marker icon and select the Apply Data
Binding option. Figure 18 - 17 shows the window
that appears. fiGure 18 - 17

The WPf Designer and XaMl editor ❘ 367

http://lib.ommolketab.ir
http//lib.ommolketab.ir

368 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

This window contains a number of steps (similar to a wizard) that help you create a binding -
Source, Path, Converter, and Options in an accordion style layout. Click on a header to open the
corresponding step.

Generally when you open the window, you will be presented with the Source step that will
allow you to select the binding source (in other words, the source of the data to which you
will be binding). Note that this step may be automatically skipped and show the Path selection
step instead (as shown in Figure 18-18) if there is already a data context set on the control
(or further up the hierarchy). If you want to use one of the other types of bindings (such as
ElementName), simply select the header of the Source step to change the preselected binding
source. Then you can follow through selecting the options for your binding (select an option
then move onto the next pane).

In the example shown in Figure 18-17, you have a Grid control further up the hierarchy to which
has been assigned a CollectionViewSource resource (which points to a ViewModel object as the data
source) to its DataContext property. The DataContext property’s value is inherited by the controls
further down the hierarchy, so when applying a data binding to a text box within that grid you
can specify that the binding source is the text box’s DataContext property (which is shown as
having a List assigned to it). Once you have
selected your binding source, you can move on
to the Path step.

The Path step enables you to select the path
on the binding source from which the value
to be bound is located. For example, in
Figure 18-18 the Company property (which is
on the ViewModel that the binding source is
bound to) has been selected.

If that property itself is an object, you can
drill down and select the property on that to
bind to (and so on). As can be seen in
Figure 18-18, the company property (a string)
has a Length property that we could bind to if
we wished.

Double-click your final selection in your
binding to close the editor. If required you
can select a converter to use (see Figure 18-19)
that will transform the bound value before
assigning it to the selected property, and
transform it again before a value is set back on
the bound property (a very powerful feature in
WPF data binding).

fiGure 18-18

fiGure 18-19

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Various other binding options can also be set
from the Options section as shown in
Figure 18 - 20.

 As you can see, this binding expression builder
makes creating the binding expression much
easier, without requiring you to learn the data
binding syntax. This is a good way to learn the
data binding syntax, because you can then see
the expression produced in the XAML.

 Now look at the drag and drop data binding
features of Visual Studio 2010. The fi rst step is
to create something to bind to. This can be an object, a dataset, or an ADO.NET Entity Framework
entity, among many other binding targets. For the purposes of this example you will create an object
to bind to. Create a new class in your project called ContactViewModel, and create a number of
properties on it such as FirstName, LastName, Company, Phone, Fax, Mobile, and Email (all strings).

 fiGure 18 - 20

 The name of your object is called ContactViewModel because it is acting as your
ViewModel object, which pertains to the Model - View - ViewModel (MVVM) design
pattern mentioned earlier. This design pattern will not be fully fl eshed out in this
example, however, in order to reduce its complexity and save potential confusion.

 Now compile your project (this is important or otherwise the class won ’ t
appear in the next step). Return to the designer of your form and select
Add New Data Source from the Data menu. Select Object as your data
source type, click Next, and select the ContactViewModel class from the
tree (you will need to expand the nodes to fi nd it within the namespace
hierarchy). Click the Finish button and the Data Sources tool window
appears with the ContactViewModel object listed and its properties below,
as shown in Figure 18 - 21.

 Now you are set to drag and drop either the whole object or individual
properties onto the form, which will create one or more controls to
display its data. By default a DataGrid control will be created to display
the data, but if you select the ContactViewModel item, it will show a
button that when clicked displays a drop - down menu (as shown in
Figure 18 - 22) allowing you to select between DataGrid, List,
and Details.

 The DataGrid option creates a DataGrid control, which has a column for each property of ➤

the object.

 The List option creates a List control with a data template containing fi elds for each of the ➤

properties.

The WPf Designer and XaMl editor ❘ 369

 fiGure 18 - 21

 fiGure 18 - 22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

370 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

 The Details option creates a Grid control with two columns: one for labels and one for ➤

fi elds. A row will be created for each property on the object, with a Label control displaying
the fi eld name (with spaces intelligently inserted before capital letters) in the fi rst column,
and a fi eld (whose type depends on the data type of the property) in the second column.

 A resource is created in the Resources property of the Window, which points to the
ContactViewModel object that can then be used as the data context or items source of the control(s)
binding to the object. This can be deleted at a later stage if you want to set the data source from the
code - behind. The control(s) will also have the required data binding expressions assigned. The type
of control(s) that will be created on the form to display the data will depend
on your selection on the ContactViewModel item.

 The type of control created for each property will have a default based upon
the data type of the property, but like the ContactViewModel item you can
select the property to show a button that when clicked displays a drop - down
menu allowing you to select a different control type (as shown in
Figure 18 - 23). If the type of control isn ’ t in the list (such as if you want to
use a third - party control), you can use the Customize option to add it to the
list for the corresponding data type. If you don ’ t want a fi eld created for that
property, select None from the menu.

 For this example you will create a details form, so select Details on
the ContactViewModel item in the Data Sources window. You can
change the control generated for each property if you want, but for
now leave each as a textbox and have each property generated in the
details form. Now select the ContactViewModel item from the Data
Sources window and drop it onto your form. A grid will be created
along with a fi eld for each property as shown in Figure 18 - 24.

 Unfortunately there is no way in the Data Sources window to defi ne
the order of the fi elds in the form, so you will need to reorder the
controls in the grid manually (either via the designer or by modifying
the XAML directly).

 When you look at the XAML generated you will see that this drag
and drop data binding feature will save you a lot of work and make the process of generating forms
a lot faster and easier.

 fiGure 18 - 24

 fiGure 18 - 23

 If you write user/custom controls that expose properties that may be assigned
a data binding expression you will need to make these dependency properties .
Dependency properties are a special WPF/Silverlight concept whose value can
accept an expression that needs to be resolved (such as data binding expression).
Dependency properties need to be defi ned differently than standard properties.
The discussion of these is beyond the scope of this chapter, but essentially only
properties that have been defi ned as dependency properties can be assigned a
data binding expression.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

stylinG your aPPlication

Up until now, your application has looked very plain — in fact it could be considered much plainer
than if you had designed it in Windows Forms. The great thing about WPF, however, is that the
visual appearance of the controls is easy to modify, allowing you to completely change the way
they look. You can store commonly used changes to specific controls as styles (a collection of
property values for a control which is stored as a resource that can be defined once and applied
to multiple controls), or you can completely redefine the XAML for a control by creating a new
control template for it. These resources can be defined in the Resources property of any control in
your layout along with a key, which can then be used by any controls further down the hierarchy
that refer to it by that key. For example, if you wanted to define a resource available for use by
any control within your MainWindow XAML file you could define it in Window.Resources.
Or if you wanted to be able to use it throughout the entire application you could define it in the
Application.Resources property on the Application element in App.xaml.

Taking it one step further, you could define multiple control templates/styles in a resource dictionary
and use this as a theme. This theme could be applied across your application to automatically style
the controls in your user interface and provide a unique and consistent look for your application.
This is what this section looks at. Rather than creating your own themes you will actually be
using the themes available from the WPF Themes project on CodePlex: http://www.codeplex
.com/wpfthemes.

These themes were initially designed (most by Microsoft) for use
in Silverlight applications, but have been converted (where it was
necessary) so they can be used in WPF applications. Use one of these
themes to create a completely different look for your application.

Start by creating a new application and adding some different
controls on the form, as shown in Figure 18-25.

As you can see this looks fairly bland, so try applying a theme and
seeing how you can easily change its look completely. When you
download the WPF Themes project you will see that it contains a solution with two projects: one
providing the themes, and a demonstration project that uses them. You will use the themes slightly
differently, however. Run the sample application and find a theme that you like. For the purposes of
demonstration choose the Shiny Blue theme. In the WPF.Themes project under the ShinyBlue folder
you will find a Theme.xaml file. Copy this into the root of your own project (making sure to include
it in your project in Visual Studio).

Open up App.xaml and add the following XAML code to Application.Resources:

<ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Theme.xaml"/>
 </ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

This XAML code simply merges the resources from the theme file into your application resources,
which will apply the resources application-wide and override the default styling of the controls in
your project with the corresponding ones defined in the theme file.

fiGure 18-25

styling Your application ❘ 371

http://www.codeplex
http://lib.ommolketab.ir
http//lib.ommolketab.ir

372 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

 One last change to make is to set the background style for your
window(s) to use the style from the theme fi le (because this isn ’ t
automatically assigned). In your Window element add the following
attribute:

Background="{StaticResource WindowBackgroundBrush}"

 Now run your project and you will fi nd the controls in your form
look completely different, as shown in Figure 18 - 26.

 To change the theme to a different one you can simply replace the Theme.xaml fi le with another one
from the WPF.Themes project and recompile your project.

 If you plan to extensively modify the styles and control templates for your
application you may fi nd it much easier to do so in Expression Blend — a tool
specifi cally designed for graphics designers who are working with XAML.
Expression Blend is much better suited to designing graphics and animations
in XAML, and provides a much better designer for doing so than Visual
Studio (which is focused more toward developers). Expression Blend can open
up Visual Studio solutions and can also view/edit code and compile projects,
although it is really best suited to design - related tasks. This integration of Visual
Studio and Expression Blend helps to support the designer/developer workfl ow.
Both these tools can have the same solution/project open at the same time (even
on the same machine), enabling you to quickly switch between them when
necessary. If a fi le is open in one when you save a change to a fi le in the other a
notifi cation dialog appears asking if you want to reload the fi le. To easily open
a solution in Expression Blend from Visual Studio, right - click a XAML fi le and
select the Open in Expression Blend option.

 fiGure 18 - 26

 windows forMs interoPerability

 Up until now you have seen how you can build a WPF application, however the likelihood is that
you already have a signifi cant code base in Windows Forms and are unlikely to immediately migrate
it all to WPF. You may have a signifi cant investment in that code base and not want to rewrite it all
for technology ’ s sake. To ease this migration path, Microsoft has enabled WPF and Windows Forms
to work together within the same application. Bi - directional interoperability is supported by both
WPF and Windows Forms applications, with WPF controls able to be hosted in a Windows Forms
application, and Windows Forms controls able to be hosted in a WPF application. This section
looks at how to implement each of these scenarios.

 hosting a wPf control in windows forms
 To begin with, create a new project in your solution to create the WPF control in. This control (for
the purpose of demonstration) will be a simple username and password entry control. From the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Add New Project dialog (see Figure 18-27), select the WPF User Control Library project template.
This will already include the XAML and code-behind files necessary for a WPF user control. If you
examine the XAML of the control you will see that it is essentially the same as the original XAML
for the window you started with at the beginning of the chapter except that the root XAML element
is UserControl instead of Window.

fiGure 18-27

Rename the control to UserLoginControl, and add a grid,
two text blocks, and two textboxes to it as demonstrated in
Figure 18-28.

In the code-behind add some simple properties to expose the
contents of the textboxes publicly (getters and setters):

Vb

Public Property UserName As String
 Get
 Return txtUserName.Text
 End Get
 Set(ByVal value As String)
 txtUserName.Text = value
 End Set
End Property

Public Property Password As String
 Get
 Return txtPassword.Text
 End Get

Windows forms interoperability ❘ 373

fiGure 18-28

http://lib.ommolketab.ir
http//lib.ommolketab.ir

374 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

 Set(ByVal value As String)
 txtPassword.Text = value
 End Set
End Property

c#

public string Username
{
 get { return txtUserName.Text; }
 set { txtUserName.Text = value; }
}

public string Password
{
 get { return txtPassword.Text; }
 set { txtPassword.Text = value; }
}

Now that you have your WPF control, build the project and create a new Windows Forms project
to host it in. Create the project and add a reference to your WPF project that contains the control
(using the Add Reference menu item when right-clicking the References in the project).

Open up the form that will host the WPF control in the designer. Because the WPF control library
you built is in the same solution, your UserLoginControl control will appear in the Toolbox and can
simply be dragged and dropped onto the form to be used. This automatically adds an ElementHost
control (which can host WPF controls) and references the control as its content.

However, if you need to do this manually the process is as follows. In the Toolbox there is a WPF
Interoperability tab, under which there is a single item called the ElementHost. Drag and drop this onto
the form, as shown in Figure 18-29, and you will
see that there is a smart tag that prompts you to
select the WPF control that you want to host.
Note that if the control doesn’t appear in the
drop-down you may need to build your solution.

The control will be loaded into the ElementHost
control and automatically given a name to refer
to it in code (which can be changed via the
HostedContentName property).

hosting a windows forms control in wPf
Now take a look at the opposite scenario — hosting a Windows Forms control in a WPF
application. Create a new project using the Class Library project template called Chapter 18
WinFormsControlLibrary. Delete the Class1 class, and add a new User Control item to the project
and call it UserLoginControl.

Open this item in the designer and add two text blocks and two
textboxes to it as demonstrated in Figure 18-30.

In the code-behind add some simple properties to expose the contents of
the textboxes publicly (getters and setters):

fiGure 18-29

fiGure 18-30

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

Public Property UserName As String
 Get
 Return txtUserName.Text
 End Get
 Set(ByVal value As String)
 txtUserName.Text = value
 End Set
End Property

Public Property Password As String
 Get
 Return txtPassword.Text
 End Get
 Set(ByVal value As String)
 txtPassword.Text = value
 End Set
End Property

c#

public string Username
{
 get { return txtUserName.Text; }
 set { txtUserName.Text = value; }
}

public string Password
{
 get { return txtPassword.Text; }
 set { txtPassword.Text = value; }
}

Now that you have your Windows Forms control, build the project and create a new WPF project to
host it in. Create the project and add a reference to your Windows Forms project that contains the
control (using the Add Reference menu item when right-clicking the References in the project).

Open up the form that will host the Windows Forms control in the designer. Select the
WindowsFormsHost control from the Toolbox and drag and drop it onto your form. Unfortunately
at this point the designer can’t help you and you need to change to the XAML editor. You need to
add a namespace prefix definition on the root element:

xmlsn:wfapp="clr-namespace:Chapter18WinFormsControlLibrary;
assembly=Chapter18WinFormsControlLibrary"

And you can then modify the WindowsFormsHost element to host
your control, which when run will render the control as shown in
Figure 18-31.

<WindowsFormsHost x:Name="windowsFormsHost">
 <wfapp:UserLoginControl x:Name="userLoginDetails" />
</WindowsFormsHost>

fiGure 18-31

Windows forms interoperability ❘ 375

http://lib.ommolketab.ir
http//lib.ommolketab.ir

376 ❘ chaPter 18 WindoWS preSenTATion FoundATion (WpF)

debuGGinG with the wPf Visualizer

Identifying problems in your XAML/visual tree at runtime can be difficult, but fortunately a
new feature called the WPF Visualizer has been added to VS2010 to help you debug your WPF
application’s visual tree. For example, an element may not be visible when it should be, may not
appear where it should, or may not be styled correctly. The WPF Visualizer can help you track down
these sorts of problems by enabling you to view the visual tree, view the values of the properties for
a selected element, and view where properties are getting their styling from.

In order to open the WPF Visualizer, you must first be in break mode. Using the Autos, Local, or
Watch tool window, find a variable that contains a reference to an element in the XAML document
to debug. You can then click the little magnifying glass icon next to a WPF user interface element
listed in the tool window to open the visualizer (as shown in Figure 18-32). Alternatively you can
place your mouse cursor over a variable that references a WPF user interface element (to display the
DataTip popup) and click the magnifying glass icon there.

fiGure 18-32

fiGure 18-33

The WPF Visualizer is shown in Figure 18-33. On the left side of the window you can see the visual
tree for the current XAML document and the rendering of the selected element in this tree below it.
On the right side is a list of all the properties of the selected element in the tree, their current values,
and other information associated with each property.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because a visual tree can contain thousands of items, finding the one you are after by traversing the
tree can be difficult. If you know the name or type of the element you are looking for, you can enter
this into the search text box above the tree and navigate through the matching entries using the
Next and Prev buttons. You can also filter the property list by entering a part of the property name,
value, style, or type that you are searching for.

Unfortunately there’s no means to edit a property value or modify the property tree, but inspecting
the elements in the visual tree and their property values (and the source of the values) should help
you track down problems in your XAML much more easily than in previous versions of Visual
Studio.

suMMary

In this chapter you have seen how you can work with Visual Studio 2010 to build applications
with WPF. You’ve learned some of the most important concepts of XAML, how to use the unique
features of the WPF designer, looked at styling an application, and used the interoperability
capabilities between WPF and Windows Forms.

summary ❘ 377

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

19
 offi ce Business applications

 what ’ s in this chaPter?

 Exploring the diff erent ways to extend Microsoft Offi ce ➤

 Creating a Microsoft Word document customization ➤

 Creating a Microsoft Outlook add - in ➤

 Launching and debugging an Offi ce application ➤

 Packaging and deploying an Offi ce application ➤

 Microsoft Offi ce applications have always been extensible via add - ins and various automation
techniques. Even Visual Basic for Applications (VBA), which was widely known for various
limitations in accessing system fi les, had the capability to write applications that used an
instance of an Offi ce application to achieve certain tasks, such as Word ’ s spell - checking
feature.

 When Visual Studio .NET was released in 2002, Microsoft soon followed with the fi rst release
of Visual Studio Tools for Offi ce (known by the abbreviation VSTO, pronounced visto).
This initial version of VSTO didn ’ t really produce anything new except for an easier way of
creating application projects that would use Microsoft Word or Microsoft Excel. However,
subsequent versions of VSTO quickly evolved and became more powerful, allowing you to
build more functional applications that ran on the Offi ce platform.

 The latest version of VSTO was shipped as part of Visual Studio 2010. It provides several
enhancements over the previous version, including support for Offi ce 2010, expanded support
for the Ribbon user interface, and improved packaging and deployment functionality.

 This chapter begins with a look at the types of applications you can build with VSTO.
It then guides you through the process of creating a document - level customization to a
Word document, including a custom Actions Pane. Following this, the chapter provides a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

380 ❘ chaPter 19 oFFice buSineSS ApplicATionS

walkthrough, showing how to create an Outlook add-in complete with an Outlook Form region.
Finally, the chapter provides some important information regarding the debugging and deployment
of Office applications.

choosinG an office ProJect tyPe

As you would expect, the types of applications you can create using VSTO under Visual Studio has
been updated since the previous version. You now have the ability to create applications that target
the new Microsoft Office 2010 applications, as well as Microsoft Office 2007 applications.

As with the previous version, add-in applications can be created for almost every product in the
Office suite including Excel, InfoPath, Outlook, PowerPoint, Project, Visio, and Word. In the case of
Excel and Word, these solutions can either be attached to a single document or be loaded every time
that application is launched.

You can create a new Office application by selecting File ➪ New ➪ Project. Select your preferred
language (Visual Basic or Visual C#), and then select the Office project category, as shown in
Figure 19-1.

fiGure 19-1

Two types of project templates are available for Office applications: document-level customizations
and application-level add-ins.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

document-level customizations
A document-level customization is a solution that is based on a single document. To load the
customization, an end user must open a specific document. Events in the document, such as loading
the document or clicking buttons and menu items, can invoke event handler methods in the attached
assembly. Document-level customizations can also be included with an Office template, which
ensures that the customization is included when you create a new document from that template.

Visual Studio 2010 allows you to create document-level customizations for the following types of
documents:

Microsoft Excel Workbook ➤

Microsoft Excel Template ➤

Microsoft Word Document ➤

Microsoft Word Template ➤

Using a document-level customization, you can modify the user interface of Word or Excel to
provide a unique solution for your end users. For example, you can add new controls to the Office
Ribbon or display a customized Actions Pane window.

Microsoft Word and Microsoft Excel also include a technology called smart tags, which enable
developers to track the user’s input and recognize when text in a specific format has been entered.
Your solution can use this technology by providing feedback or even actions that the user could take
in response to certain recognized terms, such as a phone number or address.

Visual Studio also includes a set of custom controls that are specific to Microsoft Word. Called
content controls, they are optimized for both data entry and print. You see content controls in
action later in this chapter.

application-level add-ins
Unlike a document-level customization, an application-level add-in is always loaded regardless of
the document that is currently open. In fact, application-level add-ins will run even if the application
is running with no documents open.

Earlier versions of VSTO had significant limitations when it came to application-level add-ins.
For example, you could only create add-ins for Microsoft Outlook, and even then you could not
customize much of the user interface.

Fortunately, in Visual Studio 2010 such restrictions do not exist, and you can create application-level
add-ins for almost every product in the Microsoft Office suite, including Excel, InfoPath, Outlook,
PowerPoint, Project, Visio, and Word. This applies equally to version 2007 and version 2010 of
Office. You can create the same UI enhancements as you can with a document-level customization,
such as adding new controls to the Office Ribbon.

You can also create a custom Task Pane as part of your add-in. Task Panes are very similar to the
Action Panes that are available in document-level customization projects. However, custom Task
Panes are associated with the application, not a specific document, and as such can be created only
within an application-level add-in.

Choosing an office Project Type ❘ 381

http://lib.ommolketab.ir
http//lib.ommolketab.ir

382 ❘ chaPter 19 oFFice buSineSS ApplicATionS

 An Actions Pane, on the other hand, is a specifi c type of Task Pane that is customizable and is
attached to a specifi c Word document or Excel workbook. You cannot create an Actions Pane in an
application - level add - in.

 Also included in Visual Studio 2010 is the ability to create custom Outlook form regions in Outlook
add - in projects. Form regions are the screens that are displayed when an Outlook item is opened,
such as a Contact or Appointment. You can either extend the existing form regions or create a
completely custom Outlook form. Later in this chapter you walk through the creation of an Outlook
2010 add - in that includes a custom Outlook form region.

 creatinG a docuMent - leVel custoMization

 This section walks through the creation of a Word document customization. This demonstrates how to
create a document - level customization complete with Word Content Controls and a custom Actions Pane.

 This example uses the Employee warning notice that is available under the Forms, Employment
category. When you download a template from the Offi ce Online web site using Internet Explorer,
you are prompted to save it to the default templates location. Once saved, Microsoft Word then
opens with a new document based on the template. Save this new document to a convenient folder
on your computer as a Word Template in the Open XML format (.dotx), as shown in Figure 19 - 2 .

 The example in this section uses Word 2010, which you must have installed
locally in order to debug the project. If you only have Word 2007 installed, you
can still follow the instructions and create a document - level customization using
the Word 2007 project template. Any differences between Word 2010 and Word
2007 have been noted in the instructions.

 your first Vsto Project
 When you create a document - level customization with Visual Studio 2010, you can either create the
document from scratch or jump - start the design by using an existing document or template. A great
source of templates, particularly for business - related forms, is the free templates available from
Microsoft Offi ce Online at http://office.microsoft.com/templates/ .

 All of the templates available for download from the Offi ce Online web site
are provided in the older Word 97 - 2003 format (.dot). Unfortunately, some
features, such as the Word Content Controls, are only available for documents
that are saved with the newer Open XML format (.dotx). Therefore, you will
need to ensure that the template is in the latest format if you wish to use all the
available features.

http://office.microsoft.com/templates/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

fiGure 19-2

Next, launch Visual Studio 2010 and select File ➪ New ➪ Project. Filter the project types by
selecting your preferred language (C# or Visual Basic) followed by Office, and then choose a new
Word 2010 Template. You are presented with a screen that prompts you to create a new document
or copy an existing one. Select the option to copy an existing document and then navigate to and
select the document template you saved earlier. When you click OK, the project is created and the
document opens in the Designer as shown in Figure 19-3.

fiGure 19-3

Creating a Document-level Customization ❘ 383

http://lib.ommolketab.ir
http//lib.ommolketab.ir

384 ❘ chaPter 19 oFFice buSineSS ApplicATionS

 A few things are worth pointing out in Figure 19 - 3 . First, you ’ ll notice that along the top of the
Designer is the Offi ce Ribbon. This is the very same Ribbon that is displayed in Word, and you can use
it to modify the layout and design of the Word document. Second, in the Solution Explorer to the right,
the fi le that is currently open is called ThisDocument.cs (or ThisDocument.vb if you are using Visual
Basic). You can right - click this fi le and select either View Designer to display the design surface for the
document, currently shown in Figure 19 - 3 , or View Code to open the source code behind this document
in the code editor. Finally, in the Toolbox to the left, there is a tab group called Word Controls, which
contains a set of controls that allow you to build rich user interfaces for data input and display.

 To customize this form, fi rst drag four PlainTextContentControl controls onto the design surface for
the Employee Name, Employee ID, Job Title, and Manager. Rename these controls to txtEmpName ,
 txtEmpID , txtJobTitle , and txtManager , respectively.

 Next, drag a DatePickerContentControl for the Date fi eld, and rename it to be dtDate . Then drag a
DropDownListContentControl next to the Department fi eld, and rename it ddDept .

 Following this, drag a RichTextContentControl into the Details section of the document, and place
it under the Description of Infraction label.

 Finally, to clean up the document a little, remove
the sections titled Type of Warning and Type
of Offense, and all of the text that is below the
RichTextContentControl you added. Once you
have done this, your form should look similar to
what is shown in Figure 19 - 4 .

 Before you run this project you will need to
populate the Department drop - down list.
Although you can do this declaratively via the
Properties fi eld, for this exercise you will perform
it programmatically. Right - click the ThisDocument
fi le in the Solution Explorer and select View Code
to display the managed code that is behind this
document. Two methods will be predefi ned: a function that is run during startup when the document
is opened, and a function that is run during shutdown when the document is closed.

 Add the following code for the ThisDocument_Startup method to populate the Department
drop - down list:

 c#

private void ThisDocument_Startup(object sender, System.EventArgs e)
{
 ddDept.PlaceholderText = "Select your department";
 ddDept.DropDownListEntries.Add("Finance", "Finance", 0);

 VSTO requires access to Visual Basic for Applications (VBA) even though
the projects do not use VBA. Therefore, the fi rst time you create an Offi ce
application you are prompted to enable access to VBA. You must grant this
access even if you work exclusively in C#.

 fiGure 19 - 4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ddDept.DropDownListEntries.Add("HR", "HR", 1);
 ddDept.DropDownListEntries.Add("IT", "IT", 2);
 ddDept.DropDownListEntries.Add("Marketing", "Marketing", 3);
 ddDept.DropDownListEntries.Add("Operations", "Operations", 4);
}

Code Snippet ThisDocument.cs

Vb

Private Sub ThisDocument_Startup() Handles Me.Startup
 ddDept.PlaceholderText = "Select your department"
 ddDept.DropDownListEntries.Add("Finance", "Finance", 0)
 ddDept.DropDownListEntries.Add("HR", "HR", 1)
 ddDept.DropDownListEntries.Add("IT", "IT", 2)
 ddDept.DropDownListEntries.Add("Marketing", "Marketing", 3)
 ddDept.DropDownListEntries.Add("Operations", "Operations", 4)
End Sub

Code Snippet ThisDocument.vb

You can now run the project in Debug mode by pressing F5. This compiles the project and opens the
document in Microsoft Word. You can test out entering data in the various fields to obtain a feel for
how they behave.

Protecting the document design
While you have the document open you may notice that in addition to entering text in the control
fields that you added, you can also edit the surrounding text and even delete some of the controls.
This is obviously not ideal in this scenario. Fortunately, Office and VSTO provide a way to prevent
the document from undesirable editing. For this, you will need to show the Developer tab.

For Word 2010, click the File tab and then click the Options button. In the Word Options dialog
window, select Customize Ribbon and then check the box next to Developer under the Main
Tabs list.

For Word 2007, click the Office button and then click the Word Options button on the bottom of the
screen. In the Word Options dialog window, check the box next to the Show Developer Tab in the
Ribbon option.

When you stop debugging and return to Visual Studio, you will see a new tab on the toolbar above
the Ribbon, as shown in Figure 19-5. This provides some useful functions for Office development-
related tasks.

fiGure 19-5

Creating a Document-level Customization ❘ 385

http://lib.ommolketab.ir
http//lib.ommolketab.ir

386 ❘ chaPter 19 oFFice buSineSS ApplicATionS

 To prevent the document from being edited, you must perform a couple of steps. First, ensure that
the Designer is open and then press Ctrl+A to select everything in the document (text and controls).
On the Developer tab click Group ➪ Group. This allows you to treat everything on the document as
a single entity, and easily apply properties to all elements in one step.

 With this new group selected, open the Properties window and set the LockContentControl property
to True . Now when you run the project you will fi nd that the standard text on the document cannot
be edited or deleted, and you can only input data into the content controls that you have added.

 adding an actions Pane
 The fi nal customization you will add to this document is an Actions Pane window. An Actions Pane is
typically docked to one side of a window in Word, and can be used to display related information or
provide access to additional information. For example, on an employee leave request form you could
add an Actions Pane that retrieved and displayed the current employees ’ available leave balance.

 An Actions Pane, or custom Task Pane in the case of application - level add - ins, is
nothing more than a standard user control. In the case of an Actions Pane, Visual
Studio has included an item template; under the covers, however, this does little
more than add a standard user control to the project with the Offi ce namespace
imported. For application - level add - ins there is no custom Task Panes item
template, so you can simply add a standard user control to the project.

 To add an Actions Pane to this document customization, right - click the project in the Solution
Explorer and select Add ➪ New Item. Select Actions Pane Control, provide it with a meaningful
name, and click Add. The Actions Pane will open in a new designer window. You are simply going
to add a button that retrieves the username of the current user and adds it to the document. Drag a
button control onto the form and rename it btnGetName . Then double - click the control to register
an event handler and add the following code for the button click event:

 c#

private void btnGetName_Click(object sender, EventArgs e)
{
 var myIdent = System.Security.Principal.WindowsIdentity.GetCurrent();
 Globals.ThisDocument.txtEmpName.Text = myIdent.Name;
}

 Code Snippet GetUserName.cs

 Vb

Private Sub btnGetName_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnGetName.Click

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Dim myIdent = System.Security.Principal.WindowsIdentity.GetCurrent()
 Globals.ThisDocument.txtEmpName.Text = myIdent.Name
End Sub

Code Snippet GetUserName.vb

The Actions Pane components are not added automatically to the document because you may want
to show different Actions Panes, depending on the context users find themselves in when editing
the document. However, if you have a single Actions Pane component and simply want to add it
immediately when the document is opened, add the component to the ActionsPane.Controls
collection of the document at startup, as demonstrated in the following code:

c#

private void ThisDocument_Startup(object sender, System.EventArgs e)
{
 this.ActionsPane.Controls.Add(new NameOfActionsPaneControl());
}

Code Snippet ThisDocument.cs

Vb

Private Sub ThisDocument_Startup() Handles Me.Startup
 Me.ActionsPane.Controls.Add(new NameOfActionsPaneControl())
End Sub

Code Snippet ThisDocument.vb

For application-level add-ins, add the user control to the CustomTaskPanes collection.

The next time you run the project, it will display the document in Word with the Actions Pane
window shown during startup, as shown in Figure 19-6.

fiGure 19-6

Creating a Document-level Customization ❘ 387

http://lib.ommolketab.ir
http//lib.ommolketab.ir

388 ❘ chaPter 19 oFFice buSineSS ApplicATionS

 creatinG an aPPlication add - in

 This section walks through the creation of an add - in to Microsoft Outlook 2010. This will
demonstrate how to create an application - level add - in that includes a custom Outlook form region
for a Contact item.

 Never develop Outlook add - ins using your production e - mail account! There ’ s
too much risk that you will accidentally do something that you will regret later,
such as deleting all of the e - mail in your Inbox. With Outlook, you can create
a separate mail profi le; one for your normal mailbox and one for your test
mailbox.

 some outlook concepts
 Before creating an Outlook add - in, it is worth understanding some basic concepts that are specifi c
to Outlook development. Though there is a reasonable degree of overlap, Outlook has always had a
slightly different programming model from the rest of the products in the Offi ce suite.

 The Outlook object model is a heavily collection - based API. The Application class is the highest -
 level class and represents the Outlook application. This can be directly accessed from code as a
property of the add - in; this.Application in C# or Me.Application in Visual Basic. With the
 Application class you can access classes that represent the Explorer and Inspector windows.

 An Explorer window in Outlook is the main window that is displayed when Outlook is fi rst opened
and displays the contents of a folder, such as the Inbox or Calendar. Figure 19 - 7 (left) shows
the Calendar in the Explorer window. The Explorer class represents this window, and includes
properties, methods, and events that can be used to access the window and respond to actions.

 fiGure 19 - 7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 An Inspector window displays an individual item such as an e - mail message, contact, or
appointment. Figure 19 - 7 (right) shows an Inspector window displaying an appointment item. The
 Inspector class includes properties and methods to access the window, and events that can be
handled when certain actions occur within the window. Outlook form regions are hosted within
Inspector windows.

 The Application class also contains a Session object, which represents everything to do with the
current Outlook session. This object provides you with access to the available address lists, mail
stores, folders, items, and other Outlook objects. A mail folder, such as the Inbox or Calendar,
is represented by a MAPIFolder class and contains a collection of items. Within Outlook, every
item has a message class property that determines how it is presented within the application. For
example, an e - mail message has a message class of IPM.Note and an appointment has a message
class of IPM.Appointment .

 creating an outlook form region
 Now that you understand the basics of the Outlook object model, you can create your fi rst Outlook
add - in. In Visual Studio 2010, select File ➪ New ➪ Project. Filter the project types by selecting
Visual C# followed by Offi ce, and then choose a new Outlook 2010 Add - in project.

 If you only have Outlook 2007 installed, select the Outlook 2010 Add - In
project instead.

 Unlike a document - level customization, an application - level add - in is inherently code - based. In the
case of a Word or Excel add - in, there may not even be a document open when the application is fi rst
launched. An Outlook add - in follows a similar philosophy; when you fi rst create an Outlook add - in
project, it will consist of a single nonvisual class called ThisAddIn.cs (or ThisAddIn.vb). You can
add code here that performs some actions during startup or shutdown.

 To customize the actual user interface of Outlook you can add an Outlook form region. This is a
user control that is hosted in an Outlook Inspector window when an item of a certain message class
is displayed.

 To add a new Outlook form region, right - click the project in the Solution Explorer and select
Add ➪ New Item. From the list of available items select Outlook Form Region, provide it with a
meaningful name, and click Add. Visual Studio then opens the New Outlook Form Region Wizard
that will obtain some basic properties needed to create the new item.

 The fi rst step of the wizard asks you to either design a new form or import an Outlook Form
Storage (.ofs) fi le, which is a form designed in Outlook. Select Design a New Form Region and
click Next.

Creating an application add - in ❘ 389

http://lib.ommolketab.ir
http//lib.ommolketab.ir

390 ❘ chaPter 19 oFFice buSineSS ApplicATionS

The second step in the wizard allows you to select
what type of form region to create. The wizard
provides a handy visual representation of each type
of form region, as shown in Figure 19-8. Select the
Separate option and click Next.

The next step in the wizard allows you to enter a
friendly name for the form region, and, depending
on the type of form region you’ve chosen, a title and
description. This step also allows you to choose the
display mode for the form region. Compose mode is
displayed when an item is first being created, such as
when you create a new e-mail message. Read mode
is displayed when you subsequently open an e-mail
message that has already been sent or received.
Ensure that both of these checkboxes are ticked,
enter Custom Details as the name, and click Next.

The final step in the wizard allows you to choose
what message classes will display the form region.
You can select from any of the standard message
classes, such as mail message or appointment, or
specify a custom message class. Select the Contact
message class as shown in Figure 19-9 and click
Finish to close the wizard.

Once the wizard exits, the new form region will be
created and opened in the Designer. As mentioned
earlier, an Outlook form region, like an Actions
Pane and a Task Pane, is simply a user control.
However, unlike an Actions Pane, it contains an
embedded manifest that defines how the form
region appears in Outlook. To access the manifest,
ensure that the form is selected in the Designer
and open the Properties window. This will show
a property called Manifest, under which you can set various properties to how it appears. This
property can also be accessed through code at run time.

In this scenario you will use the Outlook form
region to display some additional useful information
about a Contact. The layout of an Outlook form
region is created in the same way as any other user
control. Drag four Label controls and four textbox
controls onto the design surface and align them
as shown in Figure 19-10. Rename the textbox
controls txtPartner, txtChildren, txtHobbies,
and txtProfession, and change the text on the
labels to match these fields.

fiGure 19-8

fiGure 19-9

fiGure 19-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ContactItem class contains a surprisingly large number of properties that are not obviously
displayed in a standard Contact form in Outlook. In fact, with well over 100 contact-specific fields,
there is a high chance that any custom property you want to display for a contact is already defined.
In this case, the fields displayed on this form (spouse/partner, children, hobbies, and profession) are
available as existing properties. You can also store a custom property on the item by adding an item
to the UserProperties collection.

The code behind the form region will already have stubs for the FormRegionShowing and
FormRegionClosed event handlers. Add the following code to those properties to access the current
Contact item and retrieve and save these custom properties:

c#

private void CustomFormRegion_FormRegionShowing(object sender, System.EventArgs e)
{
 var myContact = (Outlook.ContactItem)this.OutlookItem;
 this.txtPartner.Text = myContact.Spouse;
 this.txtChildren.Text = myContact.Children;
 this.txtHobbies.Text = myContact.Hobby;
 this.txtProfession.Text = myContact.Profession;
}
private void CustomFormRegion_FormRegionClosed(object sender, System.EventArgs e)
{
 var myContact = (Outlook.ContactItem)this.OutlookItem;
 myContact.Spouse = this.txtPartner.Text;
 myContact.Children = this.txtChildren.Text;
 myContact.Hobby = this.txtHobbies.Text;
 myContact.Profession = this.txtProfession.Text;
}

Code Snippet CustomFormRegion.cs

Vb

Private Sub CustomFormRegion_FormRegionShowing(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.FormRegionShowing
 Dim myContact = CType(Me.OutlookItem, Outlook.ContactItem)
 myContact.Spouse = Me.txtPartner.Text
 myContact.Children = Me.txtChildren.Text
 myContact.Hobby = Me.txtHobbies.Text
 myContact.Profession = Me.txtProfession.Text
End Sub
Private Sub CustomFormRegion_FormRegionClosed(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.FormRegionClosed
 Dim myContact = CType(Me.OutlookItem, Outlook.ContactItem)
 myContact.Spouse = Me.txtPartner.Text
 myContact.Children = Me.txtChildren.Text
 myContact.Hobby = Me.txtHobbies.Text
 myContact.Profession = Me.txtProfession.Text
End Sub

Code Snippet CustomFormRegion.vb

Creating an application add-in ❘ 391

http://lib.ommolketab.ir
http//lib.ommolketab.ir

392 ❘ chaPter 19 oFFice buSineSS ApplicATionS

Press F5 to build and run the add-in in Debug mode. If the solution compiled correctly, Outlook
will open with your add-in registered. Open the Contacts folder and create a new Contact item.
To view your custom Outlook form region, click the Custom Details button in the Show tab
group of the Office Ribbon. Figure 19-11 shows how the Outlook form region should appear in
the Contact Inspector window.

fiGure 19-11

debuGGinG office aPPlications

You can debug Office applications by using much the same process as you would with any other
Windows application. All the standard Visual Studio debugger features, such as the ability to insert
breakpoints and watch variables, are available when debugging Office applications.

The VSTO run time, which is responsible for loading add-ins into their host applications, can
display any errors that occur during startup in a message box or write them to a log file. By default,
these options are disabled, and they can be enabled through environment variables.

To display any errors in a message box, create an environment variable called
VSTO_SUPPRESSDISPLAYALERTS and assign it a value of 0. Setting this environment variable to 1,
or deleting it altogether, will prevent the errors from being displayed.

To write the errors to a log file, create an environment variable called VSTO_LOGALERTS and assign
it a value of 1. The VSTO run time will create a log file called <manifestname>.manifest.log
in the same folder as the application manifest. Setting the environment variable to 0, or deleting it
altogether, will stop errors from being logged.

unregistering an add-in
When an application-level add-in is compiled in Visual Studio 2010, it automatically registers the
add-in to the host application. Visual Studio will not automatically unregister the add-in from
your application unless you run Build ➪ Clean Solution. Therefore, you may find your add-in will

http://lib.ommolketab.ir
http//lib.ommolketab.ir

continue to be loaded every time you launch the application. Rather than reopen the solution in
Visual Studio, you can unregister the add-in directly from Office.

To unregister the application you will need to open the Add-Ins window. Under Outlook 2010,
select File ➪ Options ➪ Add-ins to bring up the window shown in Figure 19-12. For Outlook
2007, select Tools ➪ Trust Center from the menu and click Add-ins. For all the other Microsoft
Office applications, open the File or Office menu and click the Options button on the bottom of
the menu screen.

fiGure 19-12

If it is registered and loaded, your application
will be listed under the Active Application
Add-ins list. Select COM Add-ins from the
drop-down list at the bottom of the window
and click the Go button. This brings up the
COM Add-Ins window shown in Figure 19-13
that will allow you to remove your add-in from
the application.

You can also disable your add-in by clearing the checkbox next to the add-in name in this window.

fiGure 19-13

Debugging office applications ❘ 393

http://lib.ommolketab.ir
http//lib.ommolketab.ir

394 ❘ chaPter 19 oFFice buSineSS ApplicATionS

disabled add-ins
When developing Office applications, you will inevitably do something that will generate an
unhandled exception and cause your add-in to crash. If your add-in happens to crash when it is
being loaded, the Office application will disable it. This is called soft disabling.

A soft-disabled add-in will not be loaded and will appear in the Trust Center (see Figure 19-12) under
the Inactive Application Add-ins list. Visual Studio 2010 will automatically re-enable a soft-disabled
add-in when it is recompiled. You can also use the COM Add-Ins window that was displayed earlier
in Figure 19-13 to re-enable the add-in by ticking the checkbox next to the add-in name.

An add-in will be flagged to be hard disabled
when it causes the host application to crash,
or when you stop the debugger, while the
constructor or the Startup event handler is
executing. The next time the Office application
is launched, you will be presented with a dialog
box similar to the one shown in Figure 19-14. If
you select Yes the add-in will be hard disabled.

When an add-in is hard disabled it cannot be
re-enabled from Visual Studio. If you attempt to debug a hard-disabled add-in, you will be
presented with a warning message that the add-in has been added to the Disabled Items list and
will not be loaded.

To remove the application from the Disabled Items list, start the Office application and open the Add-
Ins window that was shown earlier in Figure 19-12 (File ➪ Options ➪ Add-ins from Outlook 2010,
or Tools ➪ Trust Center from Outlook 2007).
Select Disabled Items from the drop-down list
at the bottom of the window and click the
Go button. This displays the Disabled Items
window shown in Figure 19-15. Select your
add-in and click Enable to remove it from this
list. You must restart the application for this
to take effect.

dePloyinG office aPPlications

The two main ways to deploy Office applications are either using a traditional MSI setup project or
using the support for ClickOnce deployment that is built into Visual Studio 2010.

In earlier versions of VSTO, configuring code access security was a manual process. Although
VSTO hides much of the implementation details from you, in the background it still needs to invoke
COM+ code to communicate with Office. Because the Common Language Runtime (CLR) cannot
enforce code access security for non-managed code, the CLR requires any applications that invoke
COM+ components to have full trust to execute.

fiGure 19-14

fiGure 19-15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Fortunately, the ClickOnce support for Office applications that is built into Visual Studio 2010
automatically deploys with full trust. As with other ClickOnce applications, each time it is invoked
it automatically checks for updates.

When an Office application is deployed it must be packaged with the required prerequisites. For
Office applications, the following prerequisites are required:

Windows Installer 3.1 ➤

.NET Framework 4, .NET Framework 4 Client Profile, or .NET Framework 3.5 ➤

Visual Studio 2010 Tools for Office run time ➤

If you are using version 3.5 of the .NET Framework you will also need to package the Microsoft
Office primary interop assemblies (PIAs). A PIA is an assembly that contains type definitions of
types implemented with COM. The PIAs for Office 2007 and Office 2010 are shipped with Visual
Studio Tools for Office, and are automatically included as references when the project is created. In
Figure 19-16 (left), you can see a reference to Microsoft.Office.Interop.Outlook, which is the
PIA for Outlook 2010.

fiGure 19-16

You do not need to deploy the PIAs with your application if you are using .NET Framework 4
because of a new feature called Type Equivalence. When Type Equivalence is enabled, Visual Studio
will embed the referenced PIA as a new namespace within the target assembly. CLR then ensures
that these types are considered equivalent when the application is executed.

Deploying office applications ❘ 395

http://lib.ommolketab.ir
http//lib.ommolketab.ir

396 ❘ chaPter 19 oFFice buSineSS ApplicATionS

Type Equivalence is enabled for individual references by setting the Embed Interop Types property
to True, as shown in Figure 19-16 (right). Rather than include the entire interop assembly, Visual
Studio will only embed those portions of the interop assemblies that an application actually uses.
This results in smaller and simpler deployment packages.

More information on ClickOnce and MSI setup projects is available in Chapter 48.

suMMary

This chapter introduced you to the major features in Visual Studio Tools for Office. It is now very
easy to build feature-rich applications using Microsoft Office applications because the development
tools are fully integrated into Visual Studio 2010. You can create .NET solutions that customize
the appearance of the Office user interface with your own components at both the application level
and the document level. This enables you to have unprecedented control over how end users interact
with all of the products in the Microsoft Office suite.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PART V

web applications

 chaPter 20: ⊲ ASP .NET Web Forms

 chaPter 21: ⊲ ASP .NET MVC

 chaPter 22: ⊲ Silverlight

 chaPter 23: ⊲ Dynamic Data

 chaPter 24: ⊲ SharePoint

 chaPter 25: ⊲ Windows Azure

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20
 asP.neT Web forms

 what ’ s in this chaPter?

 The diff erences between Web Site and Web Application projects ➤

 Using the HTML and CSS design tools to control the layout of your ➤

web pages

 Easily generating highly functional web applications with the server - ➤

 side web controls

 Adding rich client - side interactions to your web pages with ➤

JavaScript and ASP .NET AJAX

 When Microsoft released the fi rst version of ASP.NET , one of the most talked - about features
was the capability to create a full - blown web application in the same way as you would create
a Windows application. The abstractions provided by ASP.NET coupled with the rich tooling
support in Visual Studio allowed programmers to quickly develop feature - rich applications
that ran over the Web in a wholly integrated way.

 ASP.NET version 2.0, which was released in 2005, was a major upgrade that included new
features such as a provider model for everything from menu navigation to user authentication,
more than 50 new server controls, a web portal framework, and built - in web site
administration, to name but a few. These enhancements made it even easier to build complex
web applications in less time.

 Most of the new features in the latest version of ASP.NET and Visual Studio have focused
on improving the client - side development experience. These include enhancements to the
HTML Designer and CSS editing tools, better IntelliSense support for JavaScript, HTML and
JavaScript snippets, and new project templates.

 In this chapter you learn how to create ASP.NET Web Applications in Visual Studio 2010,
as well as look at many of the features and components that Microsoft has included to make
your web development life a little (and in some cases a lot) easier.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

400 ❘ chaPter 20 ASp.neT Web FormS

web aPPlication Vs . web site ProJects

With the release of Visual Studio 2005, a radically new type of project was introduced — the Web
Site project. Much of the rationale behind the move to a new project type was based on the premise
that web sites, and web developers for that matter, are fundamentally different from other types
of applications (and developers), and would therefore benefit from a different model. Although
Microsoft did a good job extolling the virtues of this new project type, many developers found it
difficult to work with, and clearly expressed their displeasure to Microsoft.

Fortunately, Microsoft listened to this feedback, and a short while later released a free add-on
download to Visual Studio that provided support for a new Web Application project type. It was
also included with Service Pack 1 of Visual Studio 2005.

The major differences between the two project types are fairly significant. The most fundamental
change is that a Web Site project does not contain a Visual Studio project file (.csproj or .vbproj),
whereas a Web Application project does. As a result, there is no central file that contains a list of
all the files in a Web Site project. Instead, the Visual Studio solution file contains a reference to the
root folder of the Web Site project, and the content and layout are directly inferred from its files and
subfolders. If you copy a new file into a subfolder of a Web Site project using Windows Explorer,
then that file, by definition, belongs to the project. In a Web Application project you must explicitly
add all files to the project from within Visual Studio.

The other major difference is in the way the projects are compiled. Web Application projects are
compiled in much the same way as any other project under Visual Studio. The code is compiled into
a single assembly that is stored in the \bin directory of the web application. As with all other Visual
Studio projects, you can control the build through the property pages, name the output assembly,
and add pre- and post-build action rules.

On the contrary, in a Web Site project all the classes that aren’t code-behind-a-page or user control
are compiled into one common assembly. Pages and user controls are then compiled dynamically as
needed into a set of separate assemblies.

The big advantage of more granular assemblies is that the entire web site does not need to be rebuilt
every time a page is changed. Instead, only those assemblies that have changes (or have a down-
level dependency) are recompiled, which can save a significant amount of time, depending on your
preferred method of development.

Microsoft has pledged that it will continue to support both the Web Site and Web Application
project types in all future versions of Visual Studio.

So which project type should you use? The official position from Microsoft is “it depends,” which
is certainly a pragmatic, although not particularly useful, position to take. All scenarios are
different, and you should always carefully weigh each alternative in the context of your requirements and
environment. However, the anecdotal evidence that has emerged from the .NET developer community
over the past few years, and the experience of the authors, is that in most cases the Web Application project
type is the best choice.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 creatinG web ProJects

 In addition to the standard ASP.NET Web Application and Web Site projects, Visual Studio 2010
provides support and templates for several specialized web application scenarios. These include web
services, WCF services, server control libraries, and reporting applications. However, before we
discuss these you should understand how to create the standard project types.

 creating a web site Project
 As mentioned previously, creating a Web Site project in Visual Studio 2010 is slightly different from
creating a regular Windows - type project. With normal Windows applications and services, you
pick the type of project, name the solution, and click OK. Each language has its own set of project
templates and you have no real options when you create the project. Web Site project development
is different because you can create the development project in different locations, from the local fi le
system to a variety of FTP and HTTP locations that are defi ned in your system setup, including the
local Internet Information Services (IIS) server or remote FTP folders.

 Because of this major difference in creating these projects, Microsoft has separated out the Web Site
project templates into their own command and dialog. Selecting New Web Site from the File ➪ New
submenu displays the New Web Site dialog, where you can choose the type of project template you
want to use (see Figure 20 - 1).

 Unless you are developing a very large web project with hundreds of pages,
it is actually not too diffi cult to migrate from a Web Site project to a Web
Application project and vice versa. So don ’ t get too hung up on this decision.
Pick one project type and migrate it later if you run into diffi culties.

 fiGure 20 - 1

Creating Web Projects ❘ 401

http://lib.ommolketab.ir
http//lib.ommolketab.ir

402 ❘ chaPter 20 ASp.neT Web FormS

 Most likely, you ’ ll select the ASP.NET Web Site project template. This creates a web site populated
with a starter web application that will ensure you your initial application is structured in a logical
manner. The template will create a project that demonstrates how to use a master page, menus, the
account management controls, CSS, and the jQuery JavaScript library.

 In addition to the ASP.NET Web Site project template, there is an Empty Web Site project template
that creates nothing more than an empty folder and a reference in a solution fi le. The remaining
templates, which are for the most part variations on the Web Site template, are discussed later in
this chapter. Regardless of which type of web project you ’ re creating, the lower section of the dialog
enables you to choose where to create the project.

 By default, Visual Studio expects you to develop the web site or service locally, using the normal fi le
system. The default location is under the My Documents/Visual Studio 2010/WebSites folder for
the current user, but you can change this by overtyping the value, selecting an alternative location
from the drop - down list, or clicking the Browse button.

 The Location drop - down list also contains HTTP and FTP as options. Selecting HTTP or FTP
changes the value in the fi lename textbox to a blank http:// or ftp:// prefi x ready for you to type
in the destination URL. You can either type in a valid location or click the Browse button to change
the intended location of the project.

 The Choose Location dialog (shown in
Figure 20 - 2) is shown when you click the
Browse button and enables you to specify
where the project should be stored. Note that
this isn ’ t necessarily where the project will be
deployed, because you can specify a different
destination for that when you ’ re ready to
ship, so don ’ t expect that you are specifying
the ultimate destination here.

 The File System option enables you to browse
through the folder structure known to the
system, including the My Network Places
folders, and gives you the option to create
subfolders where you need them. This is the
easiest way of specifying where you want
the web project fi les, and the way that
makes the fi les easiest to locate later.

 Although you can specify where to create the project fi les, by default the solution
fi le is created in a new folder under the My Documents/Visual Studio 2010/
Projects folder for the current user. You can move the solution fi le to a folder
of your choice without affecting the projects.

 fiGure 20 - 2

http://or
ftp://prefi
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 If you are using a local IIS server to debug your Web Site project, you can select the File System
option and browse to your wwwroot folder to create the web site. However, a much better option
is to use the local IIS location type and drill down to your preferred location under the Default
Web Site folders. This interface enables you to browse virtual directory entries that point to web
sites that are not physically located within the wwwroot folder structure, but are actually aliases to
elsewhere in the fi le system or network. You can create your application in a new Web Application
folder or create a new virtual directory entry in which you browse to the physical fi le location and
specify an alias to appear in the web site list.

 The FTP site location type is shown in Figure 20-2 , which gives you the option to log in to a remote
FTP site anonymously or with a specifi ed user. When you click Open, Visual Studio saves the FTP
settings for when you create the project, so be aware that it won ’ t test whether the settings are
correct until it attempts to create the project fi les and save them to the specifi ed destination.

 You can save your project fi les to any FTP server to which you have access, even
if that FTP site doesn ’ t have .NET installed. However, you will not be able to run
the fi les without .NET, so you will only be able to use such a site as a fi le store.

 The last location type is a remote site, which enables you to connect to a remote server that has
FrontPage extensions installed on it. If you have such a site, you can simply specify where you
want the new project to be saved, and Visual Studio 2010 will confi rm that it can create the folder
through the FrontPage extensions.

 Once you ’ ve chosen the intended location for your project, clicking OK tells Visual Studio 2010 to
create the project fi les and store them in the desired location. After the web application has fi nished
initializing, Visual Studio opens the Default.aspx page and populates the Toolbox with the
components available to you for web development.

 The Web Site project has only a small subset of the project confi guration options available under the
property pages of other project types, as shown in Figure 20 - 3. To access these options, right - click
the project and select Property Pages.

 fiGure 20 - 3

Creating Web Projects ❘ 403

http://lib.ommolketab.ir
http//lib.ommolketab.ir

404 ❘ chaPter 20 ASp.neT Web FormS

The References property page, shown in Figure 20-3, enables you to define references to external
assemblies or web services. If you add a binary reference to an assembly that is not in the Global
Assembly Cache (GAC), the assembly is copied to the \bin folder of your web project along
with a .refresh file, which is a small text file that contains the path to the original location of
the assembly. Every time the web site is built, Visual Studio compares the current version of the
assembly in the \bin folder with the version in the original location and, if necessary, updates it.
If you have a large number of external references, this can slow the compile time considerably.
Therefore, it is recommended that you delete the associated .refresh file for any assembly
references that are unlikely to change frequently.

The Build, Accessibility, and Start Options property pages provide some control over how the web
site is built and launched during debugging. The accessibility validation options are discussed later
in this chapter and the rest of the settings on those property pages are reasonably self-explanatory.

The MSBuild Options property page provides a couple of interesting advanced options for web
applications. If you uncheck the Allow This Precompiled Site to be Updatable option, all the content
of the .aspx and .ascx pages is compiled into the assembly along with the code-behind. This can
be useful if you want to protect the user interface of a web site from being modified. Finally, the
Use Fixed Naming and Single Page Assemblies option specifies that each page be compiled into a
separate assembly rather than the default, which is an assembly per folder.

The Silverlight Applications property page allows you to add or reference a Silverlight project that
can be embedded into the web site. This is discussed in more detail in Chapter 22.

creating a web application Project
Creating a Web Application project with Visual Studio 2010 is much the same as creating any other
project type. Select File ➪ New ➪ Project and you are presented with the New Project dialog box,
shown in Figure 20-4. By filtering the project types by language and then by the Web category, you
are given a selection of templates that is partially similar to those available for Web Site projects.

fiGure 20-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The notable difference in available project templates is that the reporting template is not available
as a Web Application project. However, the Web Application project type includes templates for
creating several different types of server controls.

Once you click OK your new Web Application project will be created with a few more items than
the Web Site projects. It includes an AssemblyInfo file, a References folder, and a My Project item
under the Visual Basic or Properties node under C#.

You can view the project properties pages for a Web Application project by double-clicking the
Properties or My Project item. The property pages include an additional Web page, as shown in
Figure 20-5.

fiGure 20-5

The options on the Web page are all related to debugging an ASP.NET web application and are
covered in Chapter 42, “Debugging Web Applications,” and Chapter 43, “Advanced Debugging
Techniques.”

Creating Web Projects ❘ 405

http://lib.ommolketab.ir
http//lib.ommolketab.ir

406 ❘ chaPter 20 ASp.neT Web FormS

other web Projects
In addition to the standard ASP.NET Web Site and Web Application project templates are templates
that provide solutions for more specific scenarios:

 ➤ ASP.NET MVC 2 Web Application: This creates a web application using the Model-View-
Controller (MVC) architecture. This is only available as a Web Application project and is
discussed in Chapter 21.

 ➤ ASP.NET Web Service: This creates a default Web service called Sevice.asmx, which con-
tains a sample Web method. This is only available as a Web Application project when the
target is .NET Framework 3.5 or earlier.

 ➤ ASP.NET Reports Web Site: This creates an ASP.NET web site with a report (.rdlc) and a
ReportViewer control bound to the report. This is only available as a Web Site project and is
explained in Chapter 30.

 ➤ ASP.NET Crystal Reports Web Site: This creates an ASP.NET web site with a sample
Crystal Report. This is only available as a Web Site project.

 ➤ ASP.NET Server Control: Server controls include standard elements such as buttons and
textboxes, and also special-purpose controls such as a calendar, menus, and tree view
 control. This template is only available as a Web Application project.

 ➤ ASP.NET AJAX Server Control: This contains the ASP.NET web server controls that enable
you to add AJAX functionality to an ASP.NET web page. This is only available as a Web
Application project.

 ➤ ASP.NET AJAX Server Control Extender: ASP.NET AJAX extender controls improve the
client-side behavior and capabilities of standard ASP.NET web server controls. This is only
available as a Web Application project.

 ➤ Dynamic Data Web Site and Web Application: Dynamic Data provides a quick way to
build data-bound web applications that use either LINQ to SQL or Entity Framework.
These are available for both Web Site and Web Application projects, and are covered in
Chapter 23.

From time to time, Microsoft releases additional project templates as a separate download. For
example, in Visual Studio 2008 the ASP.NET MVC and Silverlight 2.0 project types were released
in this manner.

starter kits, community Projects, and open-source applications
One of the best ways to learn any new development technology is to review a sample
application. The Microsoft ASP.NET web site contains a list of starter kits and community
projects at http://www.asp.net/community/projects. These web applications are excellent
reference implementations for demonstrating best practices and good use of ASP.NET
components and design.

http://www.asp.net/community/projects
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Unfortunately, many of the starter kits have not been maintained and are still running on older
versions of the .NET Framework. However, they are still very useful because they demonstrate
a wide range of advanced ASP.NET technologies and techniques including multiple CSS themes,
master-detail pages, and user management.

The Microsoft ASP.NET site also contains a list of popular open-source projects that have
been built on ASP.NET. One of the more comprehensive projects is the DinnerNow.net sample
application, available at http://www.dinnernow.net/. Although it is categorized as an open-
source application, it is really a reference implementation of many of the latest technologies
from Microsoft.

The DinnerNow.net application is a fictitious marketplace where customers can order food from local
restaurants for delivery to their homes or offices. In addition to the latest ASP.NET components,
it demonstrates the use of IIS7, ASP.NET AJAX Extensions, LINQ, Windows Communication
Foundation, Windows Workflow Foundation, Windows Presentation Foundation, Windows
Powershell, and the .NET Compact Framework.

Another great place to find a large number of excellent open-source examples is CodePlex,
Microsoft’s open-source project-hosting web site. Located at http://www.codeplex.com/,
CodePlex is a veritable wellspring of the good, the bad, and the ugly in Microsoft open-source
applications.

desiGninG web forMs

One of the strongest features in Visual Studio 2010 for web developers is the visual design of
web applications. The HTML Designer allows you to change the positioning, padding, and
margins in Design view, using visual layout tools. It also provides a split view that enables you
to simultaneously work on the design and markup of a web form. Finally, Visual Studio 2010
supports rich CSS editing tools for designing the layout and styling of web content.

the htMl designer
The HTML Designer in Visual Studio is one of the main reasons it’s so easy to develop ASP.NET
applications. Because it understands how to render HTML elements as well as server-side ASP.NET
controls, you can simply drag and drop components from the Toolbox onto the HTML Designer
surface to quickly build up a web user interface. You can also quickly toggle between viewing the
HTML markup and the visual design of a web page or user control.

The modifications made to the View menu of the IDE are a great example of what Visual Studio
does to contextually provide you with useful features depending on what you’re doing. When you’re
editing a web page in Design view, additional menu commands become available for adjusting how
the design surface appears (see Figure 20-6).

Designing Web forms ❘ 407

http://w
http://www.codeplex.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

408 ❘ chaPter 20 ASp.neT Web FormS

The three submenus at the top of the View menu — Ruler and Grid, Visual Aids, and Formatting
Marks — provide you with a whole bunch of useful tools to assist with the overall layout of controls
and HTML elements on a web page.

For example, when the Show option is toggled on the Visual Aids submenu, it draws gray borders
around all container controls and HTML tags such as <table> and <div> so you can easily see
where each component resides on the form. It also provides color-coded shading to indicate the
margins and padding around HTML elements and server controls. Likewise, on the Formatting
Marks submenu you can toggle options to display HTML tag names, line breaks, spaces, and much
more. The impact of these options in the HTML Designer can be seen in action in Figure 20-6.

The HTML Designer also supports a split view, shown in Figure 20-7, which shows your HTML
markup and visual design at the same time. You activate this view by opening a page in design mode
and clicking the Split button on the bottom left of the HTML Designer window.

fiGure 20-6

fiGure 20-7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 When you select a control or HTML element on the design surface, the HTML Designer highlights
it in the HTML markup. Likewise, if you move the cursor to a new location in the markup, it
highlights the corresponding element or control on the design surface.

 If you make a change to anything on the
design surface, that change is immediately
refl ected in the HTML markup. However,
changes to the markup are not always shown in the HTML Designer right away. Instead, you are
presented with an information bar at the top of the Design view stating that it is out of sync with
the Source view (see Figure 20 - 8). You can either click the information bar or press Ctrl+Shift+Y to
synchronize the views. Saving your changes to the fi le also synchronizes it.

 fiGure 20 - 8

 If you have a widescreen monitor you can orient the split view vertically to take
advantage of your screen resolution. Select Tools ➪ Options and then click the
HTML Designer node in the TreeView. You can use a number of settings here
to confi gure how the HTML Designer behaves, including an option called Split
Views Vertically.

 Another feature worth pointing out in the HTML Designer is the tag navigator breadcrumb that
appears at the bottom of the design window. This feature, which is also in the Silverlight and
WPF Designers, displays the hierarchy of the current element or control and all its ancestors.
The breadcrumb displays the type of the control or element and the ID or CSS class if it has been
defi ned. If the tag path is too long to fi t in the width of the HTML
Designer window, the list is truncated and a couple of arrow
buttons are displayed so you can scroll through the tag path.

 The tag navigator breadcrumb displays the path only from the
current element to its top - level parent. It does not list any elements
outside that path. If you want to see the hierarchy of all the
elements in the current document you should use the Document
Outline window, shown in Figure 20 - 9. Select View ➪ Other
Windows ➪ Document Outline to display the window. When
you select an element or control in the Document Outline, it is
highlighted in the Design and Source views of the HTML Designer.
However, selecting an element in the HTML Designer does not
highlight it in the Document Outline window.

 Positioning controls and htMl elements
 One of the trickier parts of building web pages is the positioning of HTML elements. Several
attributes can be set that control how an element is positioned, including whether it is using a relative
or absolute position, the fl oat setting, the z - index, and the padding and margin widths.

 fiGure 20 - 9

Designing Web forms ❘ 409

http://lib.ommolketab.ir
http//lib.ommolketab.ir

410 ❘ chaPter 20 ASp.neT Web FormS

 Fortunately, you don ’ t need to learn the exact syntax and
names of all of these attributes and manually type them
into the markup. As with most things in Visual Studio, the
IDE is there to assist with the specifi cs. Begin by selecting
the control or element that you want to position in Design
view. Then choose Format ➪ Position from the menu to
bring up the Position window shown in Figure 20 - 10.

 After you click OK, the wrapping and positioning style
you have chosen and any values you have entered for
location and size are saved to a style attribute on the
HTML element.

 If an element has relative or absolute positioning, you
will be able to reposition it in the Design view. Beware,
though, of how you drag elements around the HTML
Designer, because you may be doing something you
didn ’ t intend! Whenever you select an element or control
in Design view, a white tag appears at the top - left corner of the element. This displays the type of
element, as well as the ID and class name if they are defi ned.

 If you want to reposition an element with relative or absolute positioning, drag it to the new position
using the white control tag. If you drag the element using the control itself, it does not modify the
HTML positioning, but instead moves it to a new line of code in the source.

 Figure 20-11 shows a button that has relative positioning and has been repositioned. The actual
location of the element in the normal fl ow of the document is shown with an empty blue rectangle.
However, this control has been repositioned 45px down
and 225px to the right of its original position. The actual
control is shown in its new position, and blue horizontal
and vertical guidelines are displayed, which indicate that
the control is relatively positioned. The guidelines and
original position of the element are shown only while
it is selected.

 fiGure 20 - 10

 fiGure 20 - 11

 If a control uses absolute positioning, the positioning container is highlighted,
and two additional guidelines are displayed that extend from the bottom and
right of the control to the edge of the container.

 The fi nal layout technique discussed here is setting the padding and margins of an HTML element.
Many web developers are initially confused about the difference between these display attributes —
 which is not helped by the fact that different browsers render elements with these attributes differently.
Though not all HTML elements display a border, you can generally think of padding as the space
inside the border, and of margins as the space outside.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you look very closely within the HTML
Designer, you may notice some gray lines
extending a short way horizontally and
vertically from all four corners of a control.
These are only visible when the element is
selected in the Design view. These are called
margin handles and they allow you to set the
width of the margins. Hover the mouse over
the handle until it changes to a resize cursor,
and then drag it to increase or decrease the
margin width (see Figure 20-12).

Finally, within the HTML Designer you can set the padding around an element. If you select an element
and then hold down the Shift key, the margin handles become padding handles. Keeping the Shift key
pressed, you can drag the handles to increase or decrease the padding width. When you release the Shift
key they revert to margin handles again. Figure 20-12 shows how an HTML image element looks in the
HTML Designer when the margin and padding widths have been set on all four sides.

At first, this means of setting the margins and padding can feel counterintuitive, because it does not
behave very consistently. To increase the top and left margins you must drag the handlers into the
element, and to increase the top and left padding you must drag the handlers away. However, just
to confuse things, dragging the bottom and right handlers away from the element increases both
margin and padding widths.

Once you have your HTML layout and positioning the way you want them, you can follow good
practices by using the new CSS tools to move the layout off the page and into an external style sheet.
These tools are discussed in the section after next.

formatting controls and htMl elements
In addition to the Position dialog window discussed in the previous section, Visual Studio 2010
provides a toolbar and a range of additional dialog windows that enable you to edit the formatting
of controls and HTML elements on a web page.

The Formatting toolbar, shown in Figure 20-13, provides easy access to most of the formatting
options. The leftmost drop-down list lets you control how the formatting options are applied
and includes options for inline styling or new CSS rules. The next drop-down list includes all
the common HTML elements that can be applied to text, including the <h1> through <h6> headers,
, , and <blockquote>.

fiGure 20-12

fiGure 20-13

Most of the other formatting dialog windows are listed as entries on the Format menu. These
include windows for setting the foreground and background colors, font, alignment, bullets,
and numbering. These dialog windows are similar to those available in any word processor or
WYSIWYG interface and their uses are immediately obvious.

Designing Web forms ❘ 411

http://lib.ommolketab.ir
http//lib.ommolketab.ir

412 ❘ chaPter 20 ASp.neT Web FormS

The Insert Table dialog window, shown in Figure 20-14, provides a way for you to easily define the
layout and design of a new HTML table. Open it by positioning the cursor on the design surface
where you want the new table to be placed and selecting Table ➪ Insert Table.

One final and quite useful feature on the Insert Table and Font dialog windows is under the color
selector. In addition to the list of Standard Colors, there is also the Document Colors list, shown in
Figure 20-15. This lists all the colors that have been applied in some way or another to the current page,
for example as foreground, background, or border colors. This saves you from having to remember
custom RGB values for the color scheme that you have chosen to apply to a page.

fiGure 20-14 fiGure 20-15

css tools
Once upon a time, the HTML within a typical web page consisted of a mishmash of both content
and presentation markup. Web pages made liberal use of HTML tags that defined how the content
should be rendered, such as , <center>, and <big>. Nowadays, designs of this nature are
frowned upon — best practice dictates that HTML documents should specify only the content of
the web page, wrapped in semantic tags such as <h1>, , and <div>. Elements requiring special
presentation rules should be assigned a class attribute, and all style information should be stored
in external CSS.

Visual Studio 2010 has several features that provide a rich CSS editing experience in an integrated
fashion. As you saw in the previous section, you can do much of the work of designing the layout
and styling the content in Design view. This is supplemented by the Manage Styles window, the
Apply Styles window, and the CSS Properties window, which are all accessible from the View menu
when the HTML Designer is open.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The Manage Styles window lists all the CSS styles that are internal,
inline, or in an external CSS fi le linked through to the current page.
The objective of this tool window is to provide you with an overall
view of the CSS rules for a particular page, and to enable you to edit
and manage those CSS classes.

 All the styles are listed in a TreeView with the style sheet forming the
top - level nodes, as shown in Figure 20 - 16. The styles are listed in
the order in which they appear in the style sheet fi le, and you can drag
and drop to rearrange the styles, or even move styles from one style
sheet to another.

 When you hover over a style the tooltip shows the CSS properties
in that style, as shown in Figure 20 - 16. The Options menu
drop - down enables you to fi lter the list of styles to show only those
that are applicable to elements on the current page or, if you
have an element selected in the HTML Designer, only those that
are relevant to the selected element. fiGure 20 - 16

 The Manage Styles window uses a set of icons to provide further visual information about the
type of each style. The icons next to the style names have different colors: a red dot indicates an
ID - based style, a green dot a class - based style, a blue dot an element - based style, and a yellow
dot an inline style.

 A circle around a dot indicates that the style is
used on the current page. For example, in Figure
20 - 16 you can quickly see that the title - box CSS
class is used on the active web page, whereas the
 img - box class is not. Finally, the @ symbol is used
to indicate an imported external CSS.

 When you right - click a style in the Manage Styles
window you are given the option to create a new
style from scratch, create a new style based on the
selected style, or modify the selected style. Any
of these three options launch the Modify Style dialog
box, shown in Figure 20 - 17. This dialog provides an
intuitive way to defi ne or modify a CSS style. Style
properties are grouped into familiar categories, such
as Font, Border, and Position, and a useful preview is
displayed toward the bottom of the window.

 The selected style preview, which is at the bottom of the Manage Styles window,
is generally not what will actually be displayed in the web browser. This is
because the preview does not take into account any CSS inheritance rules that
might cause the properties of the style to be overridden.

Designing Web forms ❘ 413

 fiGure 20 - 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

414 ❘ chaPter 20 ASp.neT Web FormS

The second of the CSS windows is the Apply Styles window. Though
this has a fair degree of overlap with the Manage Styles window, its
purpose is to enable you to easily apply styles to elements on the
web page. Select View ➪ Apply Styles to open the window, shown in
Figure 20-18. As in the Manage Styles window, all the available
styles are listed in the window and you can filter the list to show
only the styles that are applicable to the current page or the
currently selected element. The window uses the same icons to
indicate whether the style is ID-based, class-based, element-based,
or inline. You can also hover over a style to display all the properties
in the CSS rule.

However, the Apply Styles window displays a much more visually
accurate representation of the style than the Manage Styles window.
It includes the font color and weight, background colors or images,
borders, and even text alignment.

When you select an HTML element in the Designer, the styles applied
to that element are surrounded by a blue border in the Apply Styles
window. This can be seen in Figure 20-18, where the .phone style
is active for the selected element. When you hover the mouse over
any of the styles a drop-down button appears over it, providing access to a context menu. This menu
has options for applying that style to the selected element or, if the style has already been applied, for
removing it. Simply clicking the style also applies it to the current HTML element.

The third of the new CSS windows in Visual
Studio 2010 is the CSS Properties window,
shown in Figure 20-19. This displays a
property grid with all the styles used by the
HTML element that is currently selected in
the HTML Designer. In addition, the window
gives you a comprehensive list of all of the
available CSS properties. This enables you to
add properties to an existing style, modify
properties that you have already set, and
create new inline styles.

Rather than display the details of an
individual style, as was the case with the
Apply Styles and Manage Styles windows,
the CSS Properties window instead shows
a cumulative view of all the styles applicable to the current element, taking into account the order
of precedence for the styles. At the top of the CSS Properties window is the Applied Rules section,
which lists the CSS styles in the order in which they are applied. Styles that are lower on this list
override the styles above them.

fiGure 20-19

fiGure 20-18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Selecting a style in the Applied Rules section shows all the CSS properties for that style in the lower
property grid. In Figure 20-19 (left) the .site-nav a CSS rule has been selected, which has a
definition for the color, font-size, font-weight, text-decoration, and text-transform CSS
properties. You can edit these properties or define new ones directly in this property grid.

The CSS Properties window also has a Summary button, which displays all the CSS properties
applicable to the current element. This is shown in Figure 20-19 (right). CSS properties that have
been overridden are shown with a red strikethrough, and hovering the mouse over the property
displays a tooltip with the reason for the override.

Visual Studio 2010 also includes a Target Rule selector on the Formatting toolbar, shown in
Figure 20-20, which enables you to control where style changes you made using the formatting
toolbars and dialog windows are saved. These include the Formatting toolbar and the dialog
windows under the Format menu, such as Font, Paragraph, Bullets and Numbering, Borders and
Shading, and Position.

fiGure 20-20

The Target Rule selector has two modes: Automatic and Manual. In Automatic mode Visual Studio
automatically chooses where the new style is applied. In Manual mode you have full control over
where the resulting CSS properties are created. Visual Studio 2010 defaults to Manual mode, and
any changes to this mode are remembered for the current user.

The Target Rule selector is populated with a list of styles that have already been applied to the
currently selected element. Inline styles are displayed with an entry that reads <inline style>.
Styles defined inline in the current page have (Current Page) appended, and styles defined in an
external style sheet have the filename appended.

Finally, in Visual Studio 2010 there is now IntelliSense support for CSS in both the CSS editor
and HTML editor. The CSS editor, which is opened by default when you double-click a CSS file,
provides IntelliSense prompts for all the
CSS attributes and valid values, as shown
in Figure 20-21. After the CSS styles are
defined, the HTML editor subsequently
detects and displays a list of valid CSS class
names available on the web page when you
add the class attribute to a HTML element.

Designing Web forms ❘ 415

fiGure 20-21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

416 ❘ chaPter 20 ASp.neT Web FormS

Validation tools
Web browsers are remarkably good at hiding badly formed HTML code from end users. Invalid
syntax that would cause a fatal error if it were in an XML document, such as out-of-order or
missing closing tags, will often render fine in your favorite web browser. However, if you view that
same malformed HTML code in a different browser, it may look totally different. This is one good
reason to ensure that your HTML code is standards-compliant.

The first step to validating your standards compliance is to
set the target schema for validation. You can do this from the
HTML Source Editing toolbar shown in Figure 20-22.

Your HTML markup will be validated against the selected
schema. Validation works like a background spell-checker,
examining the markup as it is entered and adding wavy green lines under the elements or attributes
that are not valid based on the current schema. As shown in Figure 20-23, when you hover over an
element marked as invalid a tooltip appears showing the reason for the validation failure. A warning
entry is also created in the Error List window.

fiGure 20-22

fiGure 20-23

Schema validation will go a long way toward helping your web pages render the same across
different browsers. However, it does not ensure that your site is accessible to everyone. There may
be a fairly large group of people with some sort of physical impairment who find it extremely
difficult to access your site due to the way the HTML markup has been coded.

The World Health Organization has estimated that about 314 million people worldwide are visually
impaired (World Health Organization, 2009). In the United States alone, more than 21 million
people have reported experiencing significant vision loss (National Center for Health Statistics,
2006). That’s a large body of people by anyone’s estimate, especially given that it doesn’t include
those with other physical impairments.

In addition to reducing the size of your potential user base, if you do not take accessibilities into
account you may run the risk of being on the wrong side of a lawsuit. A number of countries have
introduced legislation that requires web sites and other forms of communication to be accessible to
people with disabilities.

Fortunately, Visual Studio 2010 includes an accessibility-validation tool that checks HTML
markups for compliance with accessibility guidelines. The Web Content Accessibility Checker,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

launched from Tools ➪ Check Accessibility, enables you to check an individual page for compliance
against several accessibility guidelines, including Web Content Accessibility Guidelines (WCAG)
version 1.0 and the Americans with Disabilities Act Section 508 Guidelines, commonly referred to
as Section 508.

 Select the guidelines to check for compliance and click Validate to begin. Once the web page has
been checked, any issues are displayed as errors or warnings in the Error List window, as shown in

Figure 20 - 24.

 fiGure 20 - 24

 web controls

 When ASP.NET version 1.0 was fi rst released, a whole new way of building web applications was
enabled for Microsoft developers. Instead of using HTML elements mingled with a server - side
scripting language, as was the case with languages such as classic ASP, JSP, and Perl, ASP.NET
introduced the concept of feature - rich controls for web pages that acted in ways similar to their
Windows counterparts.

 Web controls such as button and textbox components have familiar properties such as Text , Left ,
and Width , along with just as recognizable methods and events such as Click and TextChanged . In
addition to these, ASP.NET 1.0 provided a limited set of web - specifi c components, some dealing with
data - based information, such as the DataGrid control, and others providing common web tasks, such
as an ErrorProvider to give feedback to users about problems with information they entered into a
web form.

 Subsequent versions of ASP.NET introduced well over 50 web server controls including navigation
components, user authentication, web parts, and improved data controls. Third - party vendors
have also released numerous server controls and components that provide even more advanced
functionality.

 Previous versions of the ASP.NET web controls rendered markup that generally
did not conform to HTML or accessibility standards. Fortunately, for the most
part, this has been fi xed in ASP.NET version 4.0.

Web Controls ❘ 417

http://lib.ommolketab.ir
http//lib.ommolketab.ir

418 ❘ chaPter 20 ASp.neT Web FormS

Unfortunately, we don’t have room in this book to explore all the server controls available to
web applications in much detail. In fact, many of the components, such as TextBox, Button, and
Checkbox, are simply the web equivalents of the basic user interface controls that you may well
be very familiar with already. However, it will be useful to provide an overview of some
of the more specialized and functional server controls that reside in the ASP.NET web
developers’ toolkit.

navigation components
ASP.NET includes a simple way to add site-wide navigation to your web applications with the
sitemap provider and associated controls. In order to implement sitemap functionality into your
projects, you must manually create the site data, by default in a file called Web.sitemap, and keep it
up to date as you add or remove web pages from the site. Sitemap files can be used as a data source
for a number of web controls, including SiteMapPath, which automatically keeps track of where you
are in the site hierarchy, as well as the Menu and TreeView controls, which can present a custom
subset of the sitemap information.

Once you have your site hierarchy defined in a Web
.sitemap file, the easiest way to use it is to drag
and drop a SiteMapPath control onto your web
page design surface (see Figure 20-25). This control
automatically binds to the default sitemap provider,
as specified in the Web.config file, to generate the
nodes for display.

Though the SiteMapPath control displays
only the breadcrumb trail leading directly
to the currently viewed page, at times
you will want to display a list of pages
in your site. The ASP.NET Menu control
can be used to do this, and has modes for
both horizontal and vertical viewing of
the information. Likewise, the TreeView
control can be bound to a sitemap and used
to render a hierarchical menu of pages in
a web site. Figure 20-26 shows a web page
with a SiteMapPath, Menu, and TreeView
that have each been formatted with one of
the built-in styles.

user authentication
Perhaps the most significant additions to the web components in ASP.NET version 2.0 were the new
user authentication and login components. Using these components, you can quickly and easily

fiGure 20-25

fiGure 20-26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

create the user-based parts of your web application without having to worry about how to format
them or what controls are necessary.

Every web application has a default data source added to its ASP.NET configuration when it is first
created. The data source is a SQL Server Express database with a default name pointing to a local
file system location. This data source is used as the default location for your user authentication
processing, storing information about users and their current settings.

The benefit of having this automated data store generated for each web site is that Visual Studio can
have an array of user-bound web components that can automatically save user information without
your needing to write any code.

Before you can sign in as a user on a particular site, you first need to create a user account. Initially,
you can do that in the administration and configuration of ASP.NET, which is discussed later in this
chapter, but you may also want to allow visitors to the site to create their own user accounts. The
CreateUserWizard component does just that. It consists of two wizard pages with information about
creating an account, and indicates when account creation is successful.

Once users have created their accounts they need to be able to log in to the
site, and the Login control fills this need. Adding the Login component to
your page creates a small form containing User Name and Password fields,
along with the option to remember the login credentials, and a Log In
button (see Figure 20-27).

The trick to getting this to work straightaway is to edit your Web.config file and change the
authentication to Forms. The default authentication type is Windows, and without the change
the web site authenticates you as a Windows user because that’s how you are currently logged in.
Obviously, some web applications require Windows authentication, but for a simple web site that
you plan to deploy on the Internet, this is the only change you need to make in order for the Login
control to work properly.

You can also use several controls that will detect whether the user has logged on, and display
different information to an authenticated user as opposed to an anonymous user. The LoginStatus
control is a simple bi-state component that displays one set of content when the site detects that
a user is currently logged in, and a different set of content when there is no logged-in user. The
LoginName component is also simple; it just returns the name of the logged-in user.

There are also controls that allow end users to manage their own passwords. The ChangePassword
component works in conjunction with the other automatic user-based components to enable users
to change their passwords. However, sometimes users forget their passwords, which is where the
PasswordRecovery control comes into play. This component, shown in Figure 20-28, has three
views: UserName, Question, and Success.
The idea is that users first enter their
username so the application can determine
and display the security question, and then
wait for an answer. If the answer is correct,
the component moves to the Success page
and sends an e-mail to the registered e-mail
address.

fiGure 20-27

fiGure 20-28

Web Controls ❘ 419

http://lib.ommolketab.ir
http//lib.ommolketab.ir

420 ❘ chaPter 20 ASp.neT Web FormS

 The last component in the Login group on the Toolbox is the LoginView object. LoginView enables
you to create whole sections on your web page that are visible only under certain conditions related
to who is (or isn ’ t) logged in. By default, you have two views: the AnonymousTemplate, which is
used when no user is logged in, and the LoggedInTemplate, used when any user is logged in. Both
templates have an editable area that is initially completely empty.

 However, because you can defi ne specialized roles and assign
users to these roles, you can also create templates for each
role you have defi ned in your site (see Figure 20 - 29). The Edit
RoleGroups command on the smart - tag Tasks list associated
with LoginView displays the typical collection editor and enables
you to build role groups that can contain one or multiple roles.
When the site detects that the user logs in with a certain role, the
display area of the LoginView component is populated with that
particular template ’ s content.

 fiGure 20 - 29

 See the “ ASP.NET Web Site Administration ” section later in this chapter for
information on how to create and manage roles.

 What ’ s amazing about all of these controls is that with only a couple of manual property changes
and a few extra entries in the Web.config fi le, you can build a complete user - authentication system
into your web application. In fact, as you ’ ll see in the “ ASP.NET Web Site Administration ” section
later in this chapter, you can edit all these settings without needing to edit the Web.config fi le
directly. Now that ’ s effi cient coding!

 data components
 Data components were introduced to Microsoft
web developers with the fi rst version of
Visual Studio .NET and have evolved to be even
more powerful with each subsequent release
of Visual Studio. Each data control has a
smart - tag Tasks list associated with it that
enables you to edit the individual templates
for each part of the displayable area. For
example, the DataList has seven templates
in all, which can be individually customized
(see Figure 20 - 30).

 Data source Controls
 The data source control architecture in ASP.NET provides a really simple way for UI controls to bind
to data. The data source controls that were released with ASP.NET 2.0 include SqlDataSource and
AccessDataSource for binding to SQL Server or Access databases, ObjectDataSource for binding

 fiGure 20 - 30

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to a generic class, XmlDataSource for binding to XML files, and SiteMapDataSource for the site
navigation tree for the web application.

ASP.NET 3.5 shipped with a LinqDataSource control that enables you to directly bind UI controls
to data sources using Language Integrated Query (LINQ). The EntityDataSource control, released
with ASP.NET 3.5 SP1, supports data binding using the ADO.NET Entity Framework. These controls
provide you with a designer-driven approach that automatically generates most of the code necessary
for interacting with the data.

All data source controls operate in a similar way. For the purposes of this discussion, the remainder
of this section uses the LinqDataSource as an example.

Before you can use LinqDataSource, you must already have a DataContext class created. The
data context wraps a database connection in order to provide object lifecycle services. Chapter 28
explains how to create a new DataContext class in your application.

You can then create a LinqDataSource control instance by dragging it from the Toolbox onto the
design surface. To configure the control, launch the Configure Data Source Wizard under the smart
tag for the control. Select the data context class, and then choose the data selection details you want
to use. Figure 20-31 shows the screen within the Configure Data Source Wizard that enables you to
choose the tables and columns to generate a LINQ to SQL query. It is then a simple matter to bind
this data source to a UI server control, such as the ListView control, in order to provide read-only
access to your data.

fiGure 20-31

Web Controls ❘ 421

http://lib.ommolketab.ir
http//lib.ommolketab.ir

422 ❘ chaPter 20 ASp.neT Web FormS

You can easily take advantage of more advanced data access functionality supported by LINQ,
such as allowing inserts, updates, and deletes, by setting the EnableInsert, EnableUpdate, and
EnableDelete properties on LinqDataSource to true. You can do this either programmatically in
code or through the property grid.

You can find more information on LINQ in Chapter 28.

Data View Controls
Once you have specified a data source it is a simple matter to use one of the data view controls to
display this data. ASP.NET ships with eight built-in web controls that render data in different ways
including Chart, DataList, DetailsView, FormView, GridView, ListView, and Repeater. The Chart
control is used to render data graphically using visualizations such as a bar chart or line chart and is
discussed in Chapter 30.

A common complaint about the ASP.NET server controls is that developers have very little control
over the HTML markup they generate. This is especially true of many of the data view controls
such as GridView, which always uses an HTML table to format the data it outputs, even though in
some situations an ordered list would be more suitable.

The ListView control provides a good solution to the shortcomings of other data controls in this
area. Instead of surrounding the rendered markup with superfluous <table> or elements, it
enables you to specify the exact HTML output that is rendered. The HTML markup is defined in
the 11 templates that ListView supports:

AlternatingItemTemplate ➤

EditItemTemplate ➤

EmptyDataTemplate ➤

EmptyItemTemplate ➤

GroupSeparatorTemplate ➤

GroupTemplate ➤

InsertItemTemplate ➤

ItemSeparatorTemplate ➤

ItemTemplate ➤

LayoutTemplate ➤

SelectedItemTemplate ➤

The two most useful templates are LayoutTemplate and ItemTemplate. LayoutTemplate specifies the
HTML markup that surrounds the output, and ItemTemplate specifies the HTML used to format
each record that is bound to the ListView.

When you add a ListView control to the design surface, you can bind it to a data source and
then open the Configure ListView dialog box shown in Figure 20-32, via smart-tag actions. This
provides a code-generation tool that automatically produces HTML code based on a small number
of predefined layouts and styles.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Data Helper Controls
 The DataPager control is used to split the data that is displayed by a UI control into multiple pages,
which is necessary when you ’ re working with very large data sets. It natively supports paging via either
a NumericPagerField object, which lets users select a page number, or a NextPreviousPagerField object,
which lets users navigate to the next or previous page. As with the ListView control, you can also write
your own custom HTML markup for paging by using the TemplatePagerField object.

 Finally, the QueryExtender control, new to ASP.NET version 4.0, provides a way to fi lter data
from an EntityDataSource or LinqDataSource in a declarative manner. It is particularly useful for
searching scenarios.

 web Parts
 Another excellent feature in ASP.NET is the ability to create Web Parts controls and pages. These
allow certain pages on your site to be divided into chunks that either you or your users can move
around, and show and hide, to create a unique viewing experience. Web Parts for ASP.NET are
loosely based on custom web controls but owe their inclusion in ASP.NET to the huge popularity of
Web Parts in SharePoint Portals.

 fiGure 20 - 32

 Because you have total control over the HTML markup, the Confi gure ListView
dialog box does not even attempt to parse any existing markup. Instead, if you
reopen the window it simply shows the default layout settings.

Web Controls ❘ 423

http://lib.ommolketab.ir
http//lib.ommolketab.ir

424 ❘ chaPter 20 ASp.neT Web FormS

With a Web Parts page, you first create a WebPartManager component
that sits on the page to look after any areas of the page design that are
defined as parts. You then use WebPartZone containers to set where you
want customizable content on the page, and then finally place the actual
content into the WebPartZone container.

Though these two components are the core of Web Parts, you need only look
at the WebParts group in the Toolbox to discover a whole array of additional
components (see Figure 20-33). You use these additional components to
enable your users to customize their experience of your web site.

Unfortunately, there is not enough space in this book to cover the
ASP.NET web controls in any further detail. If you want to learn more,
we recommend you check out the massive Professional ASP.NET 4 in C#
and VB by Bill Evjen, Scott Hanselman, and Devin Rader.

Master PaGes

A very useful feature of web development in Visual Studio is the ability to create master pages that
define sections that can be customized. This enables you to define a single page design that contains
the common elements that should be shared across your entire site, specify areas that can house
individualized content, and inherit it for each of the pages on the site.

To add a master page to your Web Application project, use the Add New Item command from the
web site menu or from the context menu in the Solution Explorer. This displays the Add New Item
dialog, shown in Figure 20-34, which contains a large number of item templates that can be added
to a web application. You’ll notice that besides Web Forms (.aspx) pages and Web User Controls,
you can also add plain HTML files, style sheets, and other web-related file types. To add a master
page, select the Master Page template, choose a name for the file, and click Add.

fiGure 20-33

fiGure 20-34

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When a master page is added to your web site, it starts out as a minimal web page template with
two empty ContentPlaceHolder components — one in the body of the web page and one in the
head. This is where the detail information can be placed for each individual page. You can create the
master page as you would any other web form page, complete with ASP.NET and HTML elements,
CSSs, and theming.

If your design requires additional areas for detail information, you can either drag a new
ContentPlaceHolder control from the Toolbox onto the page, or switch to Source view and add the
following tags where you need the additional area:

<asp:ContentPlaceHolder id=“aUniqueid” runat="server">
</asp:ContentPlaceHolder>

Once the design of your master page has been finalized, you can use it for the detail pages for new
web forms in your project.

Unfortunately, the process to add a form
that uses a master page is slightly different
depending on whether you are using a
Web Application or Web Site project. For
a Web Application project, rather than adding
a new Web Form you should add a new Web
Form using Master Page. This displays the
Select a Master Page dialog box shown in
Figure 20-35. In a Web Site project, the Add
New Item window contains a checkbox
titled Select Master Page. If you check this,
the Select a Master Page dialog is displayed.

Select the master page to be applied to the
detail page and click OK. The new web form page that is added to the project will include one or
more Content controls, which map to the ContentPlaceHolder controls on the master page.

It doesn’t take long to see the benefits of master pages and understand why they have become a very
popular feature. However, it is even more useful to create nested master pages.

Working with nested master pages is not much different from working with normal master pages.
To add one, select Nested Master Page from the Add New Item window. You are prompted to select
the parent master page via the Select a Master Page window that was shown in Figure 20-35. When
you subsequently add a new content web page, any nested master pages are also shown in the Select
a Master Page window.

rich client-side deVeloPMent

In the past couple of years the software industry has seen a fundamental shift toward emphasizing
the importance of the end user experience in application development. Nowhere has that been
more apparent than in the development of web applications. Fueled by technologies such as AJAX
and an increased appreciation of JavaScript, we are now expected to provide web applications that
approach the richness of their desktop equivalents.

fiGure 20-35

rich Client-side Development ❘ 425

http://lib.ommolketab.ir
http//lib.ommolketab.ir

426 ❘ chaPter 20 ASp.neT Web FormS

Microsoft has certainly recognized this and includes a range of tools and functionality in Visual
Studio 2010 that support the creation of rich client-side interactions. There is integrated debugging
and IntelliSense support for JavaScript. ASP.NET AJAX is shipped with Visual Studio 2010, and
there is support in the IDE for AJAX Control Extenders. These tools make it much easier for you to
design, build, and debug client-side code that provides a much richer user experience.

developing with Javascript
Writing JavaScript client code has long had a reputation for being difficult, even though the
language itself is quite simple. Because JavaScript is a dynamic, loosely typed programming
language — very different from the strong typing enforced by Visual Basic and C# — JavaScript’s
reputation is even worse in some .NET developer circles.

Thus, one of the most useful features of Visual
Studio for web developers is IntelliSense support
for JavaScript. You will notice the IntelliSense
beginning immediately as you start typing, with
prompts for native JavaScript functions and
keywords such as var, alert, and eval.

Furthermore, the JavaScript IntelliSense in
Visual Studio 2010 automatically evaluates
and infers variable types to provide more
accurate IntelliSense prompts. For example,
in Figure 20-36 you can see that IntelliSense
has determined that optSelected is an
HTML object, because a call to the document
.getElementByID function will return that type.

In addition to displaying IntelliSense within
web forms, Visual Studio also supports
IntelliSense in external JavaScript files. It also provides IntelliSense help for referenced script files
and libraries, such as the Microsoft AJAX library.

Microsoft has extended the XML commenting system in Visual Studio to recognize comments on
JavaScript functions. IntelliSense detects these XML code comments and displays the summary,
parameters, and return type information for the function.

A couple of limitations could prevent the JavaScript IntelliSense from displaying information in
certain circumstances, including:

A syntax or other error in an external referenced script file. ➤

Invoking a browser-specific function or object. Most web browsers provide a set of objects ➤

that is proprietary to that browser. You can still use these objects, and in fact many popular
JavaScript frameworks do; however, you won’t get IntelliSense support for them.

Referencing files that are outside the current project. ➤

fiGure 20-36

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Visual Studio constantly monitors changes to files in the project and updates the IntelliSense as they
happen. If for some reason you find that Visual Studio isn’t displaying the latest information, you
can force it to update the IntelliSense by selecting Edit ➪ IntelliSense ➪ Update JScript IntelliSense.

One new feature in the latest version of ASP.NET is the ClientIDMode property that has been
added to web server controls. In previous versions, the value that was generated for the id attribute
on generated HTML controls made it difficult to reference these controls in JavaScript. The
ClientIDMode property fixes this by defining two new modes (Static and Predictable) for
generating these ids in a simpler and more predictable way.

The updated JavaScript IntelliSense support, combined with the improved client-side debugging and
better control over client IDs, significantly reduces the difficulty of developing JavaScript code with
Visual Studio 2010.

working with asP .net aJax
The ASP.NET AJAX framework provides web developers with a familiar server-control
programming approach for building rich client-side AJAX interactions.

ASP.NET AJAX includes both server-side and client-side components. A set of server controls,
including the popular UpdatePanel and UpdateProgess controls, can be added to web forms to
enable asynchronous partial-page updates without your needing to make changes to any existing
code on the page. The client-side Microsoft AJAX Library is a JavaScript framework that can be
used in any web application, such as PHP on Apache, and not just ASP.NET or IIS.

The following walkthrough demonstrates how to enhance an existing web page by adding the
ASP.NET AJAX UpdatePanel control to perform a partial-page update. In this scenario we have
a very simple web form with a DropDownList server control, which has an AutoPostBack to the
server enabled. The web form handles the DropDownList.SelectedIndexChanged event and saves
the value that was selected in the DropDownList to a TextBox server control on the page. The code
listing for this page is as follows:

ajaxsampleform .aspx

<%@ Page Language=”vb” AutoEventWireup=”false”
 CodeBehind=”AjaxSampleForm.aspx.vb”
 Inherits=”ASPNetWebApp.AjaxSampleForm” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title>ASP.NET AJAX Sample</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 Select an option:
 <asp:DropDownList ID=”DropDownList1” runat=”server” AutoPostBack=”True”>
 <asp:ListItem Text=”Option 1” Value=”Option 1” />
 <asp:ListItem Text=”Option 2” Value=”Option 2” />
 <asp:ListItem Text=”Option 3” Value=”Option 3” />

rich Client-side Development ❘ 427

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd%E2%80%9D
http://www.w3.org/1999/xhtml%E2%80%9D
http://lib.ommolketab.ir
http//lib.ommolketab.ir

428 ❘ chaPter 20 ASp.neT Web FormS

 </asp:DropDownList>

 Option selected:
 <asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>
 </div>
 </form>
</body>
</html>

ajaxsampleform .aspx .vb

Public Partial Class AjaxSampleForm
 Inherits System.Web.UI.Page
 Protected Sub DropDownList1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles DropDownList1.SelectedIndexChanged
 System.Threading.Thread.Sleep(2000)
 Me.TextBox1.Text = Me.DropDownList1.SelectedValue
 End Sub
End Class

Notice that in the DropDownList1_SelectedIndexChanged method we have added a statement to
sleep for two seconds. This will exaggerate the server processing time, thereby making it easier to see
the effect of the changes we will make. When you run this page and change an option in the drop-down
list, the whole page will be refreshed in the browser.

The first AJAX control that you need to add to your web page is a ScriptManager. This is a
nonvisual control that’s central to ASP.NET AJAX and is responsible for tasks such as sending script
libraries and files to the client and generating any required client proxy classes. You can have only
one ScriptManager control per ASP.NET web page, which can pose a problem when you’re using
master pages and user controls. In that case, you should add the ScriptManager to the topmost
parent page, and a ScriptManagerProxy control to all child pages.

After you add the ScriptManager control, you can add any other ASP.NET AJAX controls. In this
case, add an UpdatePanel control to the web page, as shown in the following listing. Notice that
TextBox1 is now contained within the new UpdatePanel control.

<%@ Page Language=”vb” AutoEventWireup=”false”
 CodeBehind=”AjaxSampleForm.aspx.vb”
 Inherits=”ASPNetWebApp.AjaxSampleForm” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title>ASP.NET AJAX Sample</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”></asp:ScriptManager>
 <div>
 Select an option:
 <asp:DropDownList ID=”DropDownList1” runat=”server” AutoPostBack=”True”>
 <asp:ListItem Text=”Option 1” Value=”Option 1” />
 <asp:ListItem Text=”Option 2” Value=”Option 2” />

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd%E2%80%9D
http://www.w3.org/1999/xhtml%E2%80%9D
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <asp:ListItem Text=”Option 3” Value=”Option 3” />
 </asp:DropDownList>

 Option selected:
 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>
 <ContentTemplate>
 <asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID=”DropDownList1”
 EventName=”SelectedIndexChanged” />
 </Triggers>
 </asp:UpdatePanel>
 </div>
 </form>
</body>
</html>

The web page now uses AJAX to provide a partial-page update. When you now run this page and
change an option in the drop-down list, the whole page is no longer refreshed. Instead, just the text
within the textbox is updated. In fact, if you run this page you will notice that AJAX is too good at
just updating part of the page. There is no feedback and if you didn’t know any better you would
think that nothing is happening. This is where the UpdateProgress control becomes useful. You can
place an UpdateProgress control on the page, and when an AJAX request is invoked the HTML
within the ProgressTemplate section of the control is rendered. The following listing shows an
example of an UpdateProgress control for our web form:

<asp:UpdateProgress ID=”UpdateProgress1” runat="server">
 <ProgressTemplate>
 Loading.
 </ProgressTemplate>
</asp:UpdateProgress>

The final server control in ASP.NET AJAX that hasn’t been mentioned is the Timer control, which
enables you to perform asynchronous or synchronous client-side postbacks at a defined interval.
This can be useful for scenarios such as checking with the server to see if a value has changed.

Once you have added some basic AJAX functionality to your web application, you can further
improve the client user experience by adding one or more elements from the AJAX Control Toolkit,
which is discussed in the following section.

using aJax control extenders
AJAX Control Extenders provide a way to add AJAX functionality
to a standard ASP.NET server control. The best-known set of control
extenders is the AJAX Control Toolkit, a free open-source library of
client behaviors that includes almost 40 control extenders. These either
provide enhancements to existing ASP.NET web controls or provide
completely new rich-client UI elements. Figure 20-37 shows a Calendar
Extender that has been attached to a TextBox control.

fiGure 20-37

rich Client-side Development ❘ 429

http://lib.ommolketab.ir
http//lib.ommolketab.ir

430 ❘ chaPter 20 ASp.neT Web FormS

 The ASP.NET AJAX Control Toolkit is available for download via a link from http://
ajaxcontroltoolkit.codeplex.com . The binary version of the download includes an assembly
called AjaxControlToolkit.dll . Copy this to a directory where you won ’ t accidentally delete it.

 To add the controls to the Visual Studio Control Toolbox, you should fi rst create a new tab to house
them. Right - click anywhere in the Toolbox window, choose Add Tab, and then rename the new
tab something meaningful, such as AJAX Control Toolkit. Next, right - click in the new tab and
select Choose Items. Click the Browse button and locate the AjaxControlToolkit.dll to add the
AJAX controls to the list of available .NET Framework Components. Click OK and the tab will be
populated with all the controls in the AJAX Control Toolkit.

 Visual Studio 2010 provides designer support for any
AJAX Control Extenders, including the AJAX Control
Toolkit. Once you have added the controls to the Toolbox,
Visual Studio adds an entry to the smart - tag Tasks
list of any web controls with extenders, as shown
in Figure 20 - 38.

 When you select the Add Extender task it launches the Extender Wizard, shown in Figure 20 - 39.
Choose an extender from the list and click OK to add it to your web form. In most cases, the Extender
Wizard will also automatically add a reference to the AJAX Control Toolkit library. However, if it
does not you can manually add a binary reference to the AjaxControlToolkit.dll assembly.

 fiGure 20 - 38

 Because the Extender Controls are built on top of ASP.NET AJAX, you will need
to ensure that a ScriptManager control is on your web form.

 fiGure 20 - 39

http://ajaxcontroltoolkit.codeplex.com
http://ajaxcontroltoolkit.codeplex.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 As shown in Figure 20 - 40, Visual Studio 2010 includes all the
properties for the control extender in the property grid, under
the control to which the extender is attached.

 Because the AJAX Control Toolkit is open source, you can
customize or further enhance any of the control extenders it
includes. Visual Studio 2010 also ships with C# and Visual Basic
project templates to create your own AJAX Control Extenders
and ASP.NET AJAX Controls. This makes it easy to build rich
web applications with UI functionality that can be easily reused
across your web pages and projects.

 asP .net web site adMinistration

 Although running your web application with default behavior
will work in most situations, sometimes you ’ ll need to manage
the application settings beyond simply setting the properties of
components and page items. The Web Site Administration Tool
provides you with a web - based confi guration application that
enables you to defi ne various security - related settings, such as
users and roles, as well as application - wide settings that can
come in handy, such as a default error page, and global SMTP e - mail settings that are used by
various components, such as the PasswordRecovery control.

 To start the Administration Tool, use the Project ➪ ASP.NET Confi guration menu command for
Web Application projects, or Website ➪ ASP.NET Confi guration for Web Site projects. When the
tool is launched, Visual Studio 2010 instantiates a temporary web server on a unique port and
opens a web browser to the Administration Tool home page for the application you ’ re currently
administering.

 You can determine whether the web server
is active by looking in the notifi cation area
of your taskbar and fi nding the development
server icon connected to the port that Visual
Studio 2010 allocated when it was started up.
You can stop an active web server by
right - clicking its icon in the notifi cation area
and selecting Show Details. When the server
information is displayed (see Figure 20 - 41),
click the Stop button to stop the specifi c
instance of the development web server.

 fiGure 20 - 40

 fiGure 20 - 41

 Note that stopping an active web server won ’ t affect any other development
servers that are currently running.

asP.neT Web site administration ❘ 431

http://lib.ommolketab.ir
http//lib.ommolketab.ir

432 ❘ chaPter 20 ASp.neT Web FormS

When the Administration Tool is displayed in your web browser, it shows the application name,
accompanied by the name of the current Windows-based authenticated user. The tool has three
main sections: security for the creation and maintenance of users, roles, and authentication;
application configuration to control application-specific key-value pairs, SMTP settings, and debug
configurations; and provider configuration to control the way the user administration data is stored
for the site.

security
The security section of the tool provides you with a summary of the users and roles defined in the
site, and the authentication mode. You can change individual settings from this summary page by
clicking their associated links, or use the Security Setup Wizard to step through each section of the
security settings in turn.

The authentication mode is controlled by the access method page (shown in the wizard in
Figure 20-42). If you choose From the Internet, the tool sets the authentication mode to Forms,
whereas the From a Local Area Network option results in an authentication mode of Windows.

The most useful part of this tool is the ability it gives you to add and edit roles. In the wizard you’ll
first need to enable role management by checking the Enable Roles for this Web Site option. Once
roles are active you can define them either through the wizard or from the summary page. Each role
is defined by a single string value, and it’s up to you to control how that role will be used in your
web application (with the exception of access rules, which are discussed in a moment).

The next step in the wizard is to create user accounts. The information on this page is a replication
of the CreateUserAccount component, and enables you to create an initial user who can serve as
administrator for your web site.

fiGure 20-42

http://lib.ommolketab.ir
http//lib.ommolketab.ir

asP.neT Web site administration ❘ 433

The access rules page (shown in Figure 20-43) enables you to restrict access to certain parts of your
site to a specific role or user, or to grant access only when any user is logged in. As Figure 20-43
shows, by default there is a single rule (which is actually implicitly defined and inherited from
the server) that defines full access to the entire site for all users.

Web site processing will look at the rules in the order in which they are defined, stopping at the first
rule that applies to the particular context. For example, if you define first a rule that allows access
to the Admin folder for anyone belonging to the Administrator’s role, and then define a subsequent
rule that denies access to the same folder for all users, it will effectively block access to the Admin
folder for all users who do not belong to the Administrator’s role.

Once you have users, roles, and rules defined in your site, you can then start applying the access by
clicking the Manage Users link from the summary security page. This presents you with a list of all
users defined in the system. Click the Edit User or Edit Roles link to specify the roles to which each
user belongs.

This information can be used to customize the content in your web pages with the LoginView
component discussed earlier in this chapter.

fiGure 20-43

application settings
The application section of the Web Site Administration Tool enables you to define and edit
application-specific settings in the form of key-value pairs, as well as to configure SMTP e-mail
settings, including the default SMTP mail server and sender’s e-mail address.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

434 ❘ chaPter 20 ASp.neT Web FormS

You can also specify what level of debugging you want to perform on the application, and customize
the tracing information being kept as you run the application.

asP .net configuration in iis
If you have already deployed an ASP.NET application to a production server, you can edit
the configuration settings directly within Internet Information Services (IIS), located in the
Administrative Tools section of the Control Panel. When ASP.NET is installed on a machine, you’ll
find that each web site (including virtual directories) will have a set of configuration tools in IIS
under the property pages, as shown in Figure 20-44.

The tools included in IIS enable you to manage all the settings you saw earlier, including the
creation and management of users, roles, application settings, and SMTP settings. You are also
given access to more powerful administration tools that enable you to configure advanced settings
such as the .NET compilation behavior, .NET trust level, and session state configuration. These
tools enable you to maintain a web application running on any IIS server without needing to resort
to editing the Web.config configuration file.

fiGure 20-44

suMMary

In this chapter you learned how to create ASP.NET applications using the Web Site and Web
Application projects. The improvements to the HTML Designer and the new CSS tools in Visual
Studio 2010 provide you with great power over the layout and visual design of web pages. The vast

http://lib.ommolketab.ir
http//lib.ommolketab.ir

number of web controls included in ASP.NET enables you to quickly put together highly functional
web pages. Through the judicious use of JavaScript, ASP.NET AJAX, and control extenders in the
AJAX Control Toolkit, you can provide a very rich user experience in your web applications.

Of course, there’s much more to web development than we covered here. Chapters 21 and 22
continue the discussion on building rich web applications by exploring the latest web technologies
from Microsoft: ASP.NET MVC and Silverlight. Chapter 42 provides detailed information about
the tools and techniques available for effective debugging of web applications. Finally, Chapter 49
walks you through the deployment options for web applications. If you are looking for more
information after this, you should check out Professional ASP.NET 4 in C# and VB by Bill Evjen,
Scott Hanselman, and Devin Rader. Weighing in at over 1,600 pages, this is the best and most
comprehensive resource available to web developers who are building applications on the latest
version of ASP.NET.

summary ❘ 435

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

21
 asP.neT MVC

 what ’ s in this chaPter?

 Understanding the Model - View - Controller design pattern ➤

 Developing ASP .NET MVC applications ➤

 Designing URL routes ➤

 Validating user input ➤

 Customizing the ASP .NET MVC View templates ➤

 Integrating with jQuery ➤

 When Microsoft introduced the fi rst version of the .NET Framework in 2002 it added a new
abstraction for the development of web applications called ASP.NET Web Forms. Where
traditional Active Server Pages (ASP) had up until this point operated like simple templates
containing a mix of HTML markup and server - side code, Web Forms was designed to bring
the web application development experience closer to the desktop application programming
model. This model involves dragging components from a toolbox onto a design surface and
then confi guring those components by setting property values and writing code to handle
specifi c events.

 Although Web Forms has been and continues to be very successful, it is not without criticism.
Without strong discipline it is easy for business logic and data - access concerns to creep into
the user interface, making it hard to test without sitting in front of a browser. It heavily
abstracts away the stateless request/response nature of the Web, which can make it frustrating
to debug. It relies heavily on controls rendering their own HTML markup, which can make it
diffi cult to control the fi nal output of each page.

 In 2004, the release of a simple open source framework for building web applications
called Ruby on Rails heralded a renewed interest in an architectural pattern called
Model - View - Controller (MVC). The MVC pattern divides the parts of a user interface
into three classifi cations with very well - defi ned roles. This makes applications easier to test,
evolve, and maintain.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

438 ❘ chaPter 21 ASp.neT mVc

 Microsoft fi rst announced the ASP.NET MVC framework at an ALT.NET conference in late 2007.
This framework allows you to build applications based on the MVC architecture while taking
advantage of the .NET framework ’ s extensive set of libraries and language options. ASP.NET
MVC has been developed in a very open manner with many of its features shaped by community
feedback. In fact, in April 2009 the entire source code for the framework was release as open source
under the Ms - PL license.

 Microsoft has been very careful to state that ASP.NET MVC is not a
replacement for Web Forms. It is simply an alternative way of building web
applications that some people will fi nd preferable. Microsoft has made it very
clear that it will continue to support both ASP.NET Web Forms and ASP.NET
MVC into the future.

 Model View controller

 If you have never heard of it before you might be surprised to learn that this “ new ” Model - View -
 Controller architectural pattern was fi rst described in 1979 by Trygve Reenskaug, a researcher
working on an implementation of SmallTalk.

 In the MVC architecture, applications are separated into the following components:

 ➤ Model: The model consists of classes that implement domain - specifi c logic for the application.
Although the MVC architecture does not concern itself with the specifi cs of the data access
layer, it is understood that the model should encapsulate any data access code. Generally, the
model will call separate data access classes responsible for retrieving and storing information
in a database.

 ➤ View: The views are classes that take the model and render it into a format where the user
can interact with it.

 ➤ Controller: The controller is responsible for bringing everything together. A controller
processes and responds to events, such as a user clicking a button. The controller maps these
events onto the model and invokes the appropriate view.

 These descriptions aren ’ t really helpful until you understand how they interact together. The request
life cycle of an ASP.NET MVC application normally consists of the following:

 1 . The user performs an action that triggers an event, such as entering a URL or clicking a
button. This generates a request to the controller.

 2 . The controller receives the request and invokes the relevant action on the model. Often this
will cause a change in the model ’ s state, although not always.

 3 . The controller retrieves any necessary data from the model and invokes the appropriate
view, passing it the data from the model.

 4 . The view renders the data and sends it back to the user.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The most important thing to note here is that both the view and controller depend on the model.
However, the model has no dependencies, which is one of the key benefi ts of the architecture. This
separation is what provides better testability and makes it easier to manage complexity.

 Different MVC framework implementations have minor variations in the
preceding life cycle. For example, in some cases the view will query the model
for the current state, instead of receiving it from the controller.

 Now that you understand the Model - View - Controller architectural pattern, you can begin to apply
this newfound knowledge to building your fi rst ASP.NET MVC application.

 GettinG started with asP .net MVc

 This section details the creation of a new ASP
.NET MVC application and describes some of
the standard components. To create a new MVC
application, go to File ➪ New Project and select
ASP.NET MVC 2.0 Application from the Web
section. Once you give a name to the project and
select OK, Visual Studio asks if it should create
a unit test project for the application as shown
in Figure 21 - 1. Although this is not required it is
highly recommended because improved testability
is one of the key advantages of using the MVC
framework. You can always add a test project
later on if you want.

 Visual Studio 2010 is able to create test projects for MVC applications using a
number of unit testing frameworks. The default choice (shown in Figure 21 - 1) is
to use the built - in unit testing tools in Visual Studio. If you prefer to use a
different unit testing technology, see the vendor for instructions on how to add
to this list.

 When an ASP.NET MVC application is fi rst created, it generates a number of fi les and folders.
In actual fact, the MVC application that is generated from the project template is a complete
application that can be run immediately.

 The folder structure that is automatically generated by Visual Studio is shown in Figure 21 - 2 and
includes the following folders:

 ➤ Content: A location to store static content fi les such as CSS fi les and images.

 ➤ Controllers: Contains the Controller fi les. Two sample controllers called HomeController
and AccountController are created by the project template.

Getting started with asP.neT MVC ❘ 439

 fiGure 21 - 1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

440 ❘ chaPter 21 ASp.neT mVc

 ➤ Models: Contains model files. This is also a good place to store
any data access classes that are encapsulated by the model. The
MVC project template does not create an example model.

 ➤ Scripts: Contains JavaScript files. By default, this folder
contains script files for JQuery and Microsoft AJAX along
with some helper scripts to integrate with MVC.

 ➤ Views: Contains the view files. The MVC project template
creates a number of folders and files in the Views folder.
The Home subfolder contains two example view files that
are invoked by the HomeController. The Shared subfolder
contains a master page that is used by these views.

Visual Studio also creates a Default.aspx file, which is simply a
placeholder that is needed to ensure IIS loads the MVC application
correctly. There is also a Global.asax file, which is used to configure
the routing rules (more on that later).

Finally, if you elected to create a test project this will be created
with a Controllers folder that contains two unit test stubs for the
HomeController and AccountController, respectively.

Although it doesn’t do much yet, you can run the MVC application by pressing F5. When it opens
in Internet Explorer it will first render the Index view with a link that allows you to navigate to the
About view. Neither of these views is particularly interesting, because they just render static content.

choosinG a Model

In the previous section it was noted that the MVC
project template does not create a sample model for you.
In fact, the application is capable of running without a
model altogether. While in practice your applications
are likely to have a full model, MVC provides no
guidance as to which technology you should use.
This gives you a great deal of flexibility.

The model part of your application is an abstraction of
the business capabilities that the application provides.
If you are building an application to process orders or
organize a leave schedule, your model should express
these concepts. This is not always easy. It is frequently
tempting to allow some of these details to creep in the
View-controller part of your application.

The examples in this chapter use a simple LINQ to SQL
model based on a subset of the AdventureWorksDB
sample database as shown in Figure 21-3. You
can download this sample database from http://
msftdbprodsamples.codeplex.com/.

fiGure 21-2

fiGure 21-3

http://msftdbprodsamples.codeplex.com/
http://msftdbprodsamples.codeplex.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The next section explains how you can build your own controller, followed by some interesting
views that render a dynamic user interface.

 controllers and action Methods

 A controller is a class that responds to some user action. Usually, this response involves updating
the model in some way and then organizing for a view to present content back to the user. Each
controller is capable of listening for and responding to a number of user actions. Each of these is
represented in the code by a normal method referred to as an action method.

 Begin by right - clicking the Controllers folder
in the Solution Explorer and selecting Add ➪
Controller to display the Add Controller dialog
shown in Figure 21 - 4. This simple dialog allows
you to select a name for your new controller.
By convention, the MVC framework requires
that all controller classes have names that end
in “ Controller, ” so this part is already fi lled in
for you. There is also a checkbox allowing you
to add some simple functionality. We ’ ll ignore
this for now and come back to it later. Give the new controller a name of ProductsController and
click Add.

 fiGure 21 - 4

 You can quickly add a controller to your project by using the Ctrl+M, Ctrl+C
shortcut as well.

 New controller classes inherit from the System.Web.Mvc.Controller base class, which performs
all of the hefty lifting in terms of determining the relevant method to call for an action and mapping
of URL and POST parameter values. This means that you can concentrate on the implementation
details of your actions, which typically involves invoking a method on a model class and then
selecting a view to render.

 A newly created controller class will be populated with a default action method called Index . You
can add a new action simply by adding a public method to the class. If a method is public, it will be
visible as an action on the controller. You can stop a public method from being exposed as an action
by adding the System.Web.Mvc.NonAction attribute to the method. The following listing contains
the controller class with the default action that simply renders the Index view, and a public method
that is not visible as an action:

 c#

public class ProductsController : Controller
{
 //
 // GET: /Products/

 public ActionResult Index()

Controllers and action Methods ❘ 441

http://lib.ommolketab.ir
http//lib.ommolketab.ir

442 ❘ chaPter 21 ASp.neT mVc

 {
 return View();
 }

 [NonAction]
 public void NotAnAction()
 {
 // This method is not exposed as an action.
 }
}

 Vb

Public Class ProductsController
 Inherits System.Web.Mvc.Controller

 '
 ' GET: /Products/

 Function Index() As ActionResult
 Return View()
 End Function

 < NonAction() >
 Sub NotAnAction()
 ' This method is not exposed as an action.
 End Sub

End Class

 The comment that appears above the Index method is a convention that
indicates how the action is triggered. Each action method is placed at a URL
that is a combination of the controller name and the action method name
formatted like /controller/action. The comment has no control over this
convention but is used to indicate where you can expect to fi nd this action
method. In this case it is saying that the index action is triggered by executing an
HTTP GET request against the URL /Products/. This is just the name of the
controller because an action named Index is assumed if one is not explicitly
stated by the URL. This convention is revisited in the section on routing.

 The result of the Index method is an object that derives from the System.Web.Mvc.ActionResult
abstract class. This object is responsible for determining what happens after the action method
returns. A number of standard classes inherit from ActionResult that allow you to perform a
number of standard tasks, including redirection to another URL, generating some simple content in
a number of different formats, or in this case, rendering a view.

 The View method on the Controller base class is a simple method that creates and
confi gures a System.Web.Mvc.ViewResult object. This object is responsible for
selecting a view and passing it any information that it needs to render its contents.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It is important to note that Index is just a normal .NET method and ProductsController is
just a normal .NET class. There is nothing special about either of them. This means that you can
easily instantiate a ProductsController in a test harness, call its Index method, and then make
assertions about the ActionResult object it returns.

Before moving on, update the Index method to retrieve a list of Products and pass them onto the
view, as shown in the following code listing:

c#

public ActionResult Index()
{
 List<Product> products;

 using (var db = new ProductsDataContext())
 {
 products = db.Products.ToList();
 }

 return View(products);
}

Code snippet Controllers\ProductsController.cs

Vb

Function Index() As ActionResult
 Dim products As New List(Of Product)

 Using db As New ProductsDataContext
 products = db.Products.ToList()
 End Using

 Return View(products)
End Function

Code snippet Controllers\ProductsController.vb

Now that you have created a model and a controller all that is needed is to create the view to display
the UI.

renderinG a ui with Views

In the previous section you created an action method that gathers the complete list of products and
then passes that list to a view. Each view belongs to a single controller and is stored in a subfolder
in the Views folder, which is named after the controller that owns it. Additionally, there is a Shared
folder, which contains a number of shared views that are accessible from a number of controllers.
When the view engine is looking for a view it checks the controller-specific area first and then
checks in the shared area.

rendering a Ui with Views ❘ 443

http://lib.ommolketab.ir
http//lib.ommolketab.ir

444 ❘ chaPter 21 ASp.neT mVc

 Each view looks very similar to a standard ASP.NET Web Forms Page or Control having either an
 .aspx or .ascx extension. They contain a mix of HTML markup and code blocks. They can even
have master pages and render some standard controls. However, a number of important differences
exist that need to be highlighted.

 First, a view doesn ’ t have a code - behind page. As such, there is nowhere to add event handlers for
any controls that the view renders, including those that normally happen behind the scenes. Instead,
it is expected that a controller will respond to user events and that the view will expose ways for
the user to trigger action methods. Second, instead of inheriting from System.Web.Page , a view
inherits from System.Web.Mvc.ViewPage . This base class exposes a number of useful properties
and methods that can be used to help render the
HTML output. One of these properties contains
a dictionary of objects that were passed into the
view from the controller. Finally, in the markup
you will notice that there is no form control with a
 runat= ” server ” attribute. No server form means
that there is no View State emitted with the page.
The majority of the ASP.NET server controls must
be placed inside a server form. Some controls such
a Literal or Repeater control will work fi ne outside
a form; however, if you try to use a Button or
DropDownList control, your page will throw an
exception at run time.

 You can create a View in a number of ways, but the
easiest is to right - click the title of the action method
and select Add View, which brings up the Add View
dialog shown in Figure 21 - 5. fiGure 21 - 5

 You can specify the full path to a view as the view name if you need to refer to a
view that is not in the normal view engine search areas.

 You can use the shortcut Ctrl+M, Ctrl+V when the cursor is inside an action
method to open the Add View dialog as well.

 This dialog contains a number of options. By default, the name is set to match the name of the
action method. If you change this, you need to change the call to View to include the view name as
a parameter. Check the box to create a strongly typed view and then choose Models.Product from
the View Data Class drop - down. If you don ’ t see the Product class straight away you might need to
build the application before adding the view.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Finally, change the View Content drop - down to List. This tells Visual Studio to generate a list page
for Product objects. When you click Add, the view should be generated and opened in the main
editor window. It will look like this:

 c#

 < %@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage < IEnumerable < CSProductsMVC.Models.Product > > " % >

 < asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server" >
 Index
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Index</h2>

 <table>
 <tr>
 <th></th>
 <th>ProductID</th>
 <th>Name</th>
 <th>ProductNumber</th>
 <th>MakeFlag</th>
 <th>FinishedGoodsFlag</th>
 <th>Color</th>
 <th>SafetyStockLevel</th>
 <th>ReorderPoint</th>
 <th>StandardCost</th>
 <th>ListPrice</th>
 <th>Size</th>
 <th>SizeUnitMeasureCode</th>
 <th>WeightUnitMeasureCode</th>
 <th>Weight</th>
 <th>DaysToManufacture</th>
 <th>ProductLine</th>
 <th>Class</th>
 <th>Style</th>
 <th>ProductSubcategoryID</th>
 <th>ProductModelID</th>
 <th>SellStartDate</th>
 <th>SellEndDate</th>
 <th>DiscontinuedDate</th>

 If you do not opt to create a strongly typed view, it will contain a dictionary of
objects that will need to be converted back into their real types before you can
use them. It is recommended to always use strongly typed views. If you require
your views to be weakly typed and you are using C#, you should create a strongly
typed view of the new dynamic type and pass it ExpandoObject instances.

rendering a Ui with Views ❘ 445

http://lib.ommolketab.ir
http//lib.ommolketab.ir

446 ❘ chaPter 21 ASp.neT mVc

 <th>rowguid</th>
 <th>ModifiedDate</th>
 </tr>

 <% foreach (var item in Model) { %>

 <tr>
 <td>
 <%= Html.ActionLink(“Edit”, “Edit”, new { id=item.ProductID }) %> |
 <%= Html.ActionLink(“Details”, “Details”, new
 { id=item.ProductID })%>
 </td>
 <td><%= Html.Encode(item.ProductID) %></td>
 <td><%= Html.Encode(item.Name) %></td>
 <td><%= Html.Encode(item.ProductNumber) %></td>
 <td><%= Html.Encode(item.MakeFlag) %></td>
 <td><%= Html.Encode(item.FinishedGoodsFlag) %></td>
 <td><%= Html.Encode(item.Color) %></td>
 <td><%= Html.Encode(item.SafetyStockLevel) %></td>
 <td><%= Html.Encode(item.ReorderPoint) %></td>
 <td><%= Html.Encode(String.Format(“{0:F}”, item.StandardCost)) %></td>
 <td><%= Html.Encode(String.Format(“{0:F}”, item.ListPrice)) %></td>
 <td><%= Html.Encode(item.Size) %></td>
 <td><%= Html.Encode(item.SizeUnitMeasureCode) %></td>
 <td><%= Html.Encode(item.WeightUnitMeasureCode) %></td>
 <td><%= Html.Encode(String.Format(“{0:F}”, item.Weight)) %></td>
 <td><%= Html.Encode(item.DaysToManufacture) %></td>
 <td><%= Html.Encode(item.ProductLine) %></td>
 <td><%= Html.Encode(item.Class) %></td>
 <td><%= Html.Encode(item.Style) %></td>
 <td><%= Html.Encode(item.ProductSubcategoryID) %></td>
 <td><%= Html.Encode(item.ProductModelID) %></td>
 <td><%= Html.Encode(String.Format(“{0:g}”, item.SellStartDate)) %></td>
 <td><%= Html.Encode(String.Format(“{0:g}”, item.SellEndDate)) %></td>
 <td><%= Html.Encode(String.Format(“{0:g}”,
 item.DiscontinuedDate)) %></td>
 <td><%= Html.Encode(item.rowguid) %></td>
 <td><%= Html.Encode(String.Format(“{0:g}”, item.ModifiedDate)) %></td>
 </tr>

 <% } %>

 </table>

 <p>
 <%= Html.ActionLink(“Create New”, “Create”) %>
 </p>

</asp:Content>

Code snippet Views\Products\Index.aspx

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

<%@ Page Title=”” Language=”VB” MasterPageFile=”~/Views/Shared/Site.Master”
Inherits=”System.Web.Mvc.ViewPage(Of IEnumerable (Of ProductsMVC.Product))” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>
 Index
</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <h2>Index</h2>

 <p>
 <%=Html.ActionLink(“Create New”, “Create”)%>
 </p>

 <table>
 <tr>
 <th></th>
 <th>ProductID</th>
 <th>Name</th>
 <th>ProductNumber</th>
 <th>MakeFlag</th>
 <th>FinishedGoodsFlag</th>
 <th>Color</th>
 <th>SafetyStockLevel</th>
 <th>ReorderPoint</th>
 <th>StandardCost</th>
 <th>ListPrice</th>
 <th>Size</th>
 <th>SizeUnitMeasureCode</th>
 <th>WeightUnitMeasureCode</th>
 <th>Weight</th>
 <th>DaysToManufacture</th>
 <th>ProductLine</th>
 <th>Class</th>
 <th>Style</th>
 <th>ProductSubcategoryID</th>
 <th>ProductModelID</th>
 <th>SellStartDate</th>
 <th>SellEndDate</th>
 <th>DiscontinuedDate</th>
 <th>rowguid</th>
 <th>ModifiedDate</th>
 </tr>

 <% For Each item In Model%>

 <tr>
 <td>
 <%=Html.ActionLink(“Edit”, “Edit”, New With
 {.id = item.ProductID})%> |

rendering a Ui with Views ❘ 447

http://lib.ommolketab.ir
http//lib.ommolketab.ir

448 ❘ chaPter 21 ASp.neT mVc

 <%=Html.ActionLink(“Details”, “Details”, New With
 {.id = item.ProductID})%>
 </td>
 <td><%= Html.Encode(item.ProductID) %></td>
 <td><%= Html.Encode(item.Name) %></td>
 <td><%= Html.Encode(item.ProductNumber) %></td>
 <td><%= Html.Encode(item.MakeFlag) %></td>
 <td><%= Html.Encode(item.FinishedGoodsFlag) %></td>
 <td><%= Html.Encode(item.Color) %></td>
 <td><%= Html.Encode(item.SafetyStockLevel) %></td>
 <td><%= Html.Encode(item.ReorderPoint) %></td>
 <td><%= Html.Encode(String.Format(“{0:F}”, item.StandardCost)) %></td>
 <td><%= Html.Encode(String.Format(“{0:F}”, item.ListPrice)) %></td>
 <td><%= Html.Encode(item.Size) %></td>
 <td><%= Html.Encode(item.SizeUnitMeasureCode) %></td>
 <td><%= Html.Encode(item.WeightUnitMeasureCode) %></td>
 <td><%= Html.Encode(String.Format(“{0:F}”, item.Weight)) %></td>
 <td><%= Html.Encode(item.DaysToManufacture) %></td>
 <td><%= Html.Encode(item.ProductLine) %></td>
 <td><%= Html.Encode(item.Class) %></td>
 <td><%= Html.Encode(item.Style) %></td>
 <td><%= Html.Encode(item.ProductSubcategoryID) %></td>
 <td><%= Html.Encode(item.ProductModelID) %></td>
 <td><%= Html.Encode(String.Format(“{0:g}”, item.SellStartDate)) %></td>
 <td><%= Html.Encode(String.Format(“{0:g}”, item.SellEndDate)) %></td>
 <td><%= Html.Encode(String.Format(“{0:g}”,
 item.DiscontinuedDate)) %></td>
 <td><%= Html.Encode(item.rowguid) %></td>
 <td><%= Html.Encode(String.Format(“{0:g}”, item.ModifiedDate)) %></td>
 </tr>

 <% Next%>

 </table>

</asp:Content>

Code snippet Views\Products\Index.aspx

This view presents the list of Products in a simple table. The bulk of the work is done by a for each
loop, which iterates over the list of products and renders an HTML table row for each one.

c#

<% foreach (var item in Model) { %>

 <tr>
 <!-- ... -->
 <td><%= Html.Encode(item.ProductID) %></td>
 <td><%= Html.Encode(item.Name) %></td>
 <!-- ... -->
 </tr>

 <% } %>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Vb

 < % For Each item In Model% >

 <tr>
 <!-- ... -->
 <td><%= Html.Encode(item.ProductID) %></td>
 <td><%= Html.Encode(item.Name) %></td>
 <!-- ... -->

 </tr>

 <% Next%>

 Visual Studio is able to infer the type of model because you created a strongly
typed view. In the page directive you can see that this view doesn ’ t inherit from
 System.Web.Mvc.Page . Instead, it inherits from the generic version, which
states that the model will be an IEnumerable collection of Product objects. This
in turn exposes a Model property with that type. Note that you can still pass the
wrong type of item to the view from the controller. In the case of a strongly
typed view this will result in a run time exception.

 Each of the properties of the products is HTML encoded before it is rendered using the Encode
method on the Html helper property. This prevents common issues with malicious code injected
into the application masquerading as valid user data. ASP.NET MVC is able to take advantage of
the new < %: … % > markup, which uses a colon in the place of the equals sign in ASP.NET 4 to more
easily perform this encoding. Here is the same snippet again taking advantage of this technique:

 c#

 <% foreach (var item in Model) { %>

 <tr>
 <!-- ... -->
 <td><%: item.ProductID %></td>
 <td><%: item.Name %></td>
 <!-- ... -->
 </tr>

 <% } %>

 Vb

 <% For Each item In Model%>

 <tr>
 <!-- ... -->
 <td><%: item.ProductID %></td>
 <td><%: item.Name %></td>

rendering a Ui with Views ❘ 449

http://lib.ommolketab.ir
http//lib.ommolketab.ir

450 ❘ chaPter 21 ASp.neT mVc

 <!-- ... -->

 </tr>

 <% Next%>

In addition to the Encode method there is one other Html helper method being used by this view.
This is the ActionLink helper. This method will emit a standard HTML anchor tag designed to
trigger the specified action. Two forms are in use here. The simplest of these is the one designed to
create a new Product record:

c#

<p>
 <%= Html.ActionLink(“Create New”, “Create”) %>
</p>

Vb

<p>
 <%=Html.ActionLink(“Create New”, “Create”)%>
</p>

The first parameter is the text that will be rendered inside the anchor tag. This is the text that will
be presented to the user. The second parameter is the name of the action to trigger. Because no
controller has been specified the current controller is assumed.

The more complex use of ActionLink is used to render the edit and delete links for each product.

c#

<td>
 <%= Html.ActionLink(“Edit”, “Edit”, new { id=item.ProductID }) %> |
 <%= Html.ActionLink(“Details”, “Details”, new { id=item.ProductID })%>
</td>

Vb

<td>
 <%=Html.ActionLink(“Edit”, “Edit”, New With {.id = item.ProductID})%> |
 <%=Html.ActionLink(“Details”, “Details”, New With {.id = item.ProductID})%>
</td>

The first two parameters are the same as before and represent the link text and the action name,
respectively. The third parameter is an anonymous object that contains data to be passed to the
action method when it is called.

When you run the application and enter /products/ in your address bar you will be presented with
the page displayed in Figure 21-6. Trying to click any of the links will cause a run time exception
because the target action does not yet exist.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 adVanced MVc

 This section provides an overview for some of the more advanced features of ASP.NET MVC.

 routing
 As you were navigating around the MVC site in your web browser you might have noticed that the
URLs are quite different from a normal ASP.NET web site. They do not contain fi le extensions
and they do not match up with the underlying folder structure. These URLs are mapped to action
methods and controllers with a set of classes that belong to the routing engine, which is located in
the System.Web.Routing assembly.

 fiGure 21 - 6

 Once you have a view and a controller you can use the shortcut Ctrl+M, Ctrl+G
to toggle between the two.

 The routing engine was originally developed as a part of the ASP.NET MVC
project but was released as a standalone library before MVC shipped. Although
it is not described in this book it is possible to use the routing engine with ASP.
NET Web Forms projects.

advanced MVC ❘ 451

http://lib.ommolketab.ir
http//lib.ommolketab.ir

452 ❘ chaPter 21 ASp.neT mVc

In the previous example you created a simple list view for products. This list view was based on the
standard List template, which renders the following snippet for each Product in the database being
displayed:

c#

<td>
 <%= Html.ActionLink(“Edit”, “Edit”, new { id=item.ProductID }) %> |
 <%= Html.ActionLink(“Details”, “Details”, new { id=item.ProductID })%>
</td>

Vb

<td>
 <%=Html.ActionLink(“Edit”, “Edit”, New With {.id = item.ProductID})%> |
 <%=Html.ActionLink(“Details”, “Details”, New With {.id = item.ProductID})%>
</td>

If you examine the generated HTML markup of the final page you should see that this becomes the
following:

htMl

<td>
 Edit |
 Details
</td>

These URLs are made up of three parts:

“Products” is the name of the controller. There is a corresponding ➤ ProductsController in
the project.

“Edit” and “Details” are the names of action methods on the controller. The ➤

ProductsController will have methods called Edit and Details.

“2” is a parameter that is called “id.” ➤

Each of these components is defined in a route, which is set up in the Global.asax.cs file (or the
Global.asax.vb file for VB) in a method called RegisterRoutes. When the application first starts
it calls this method and passes in the System.Web.Routing.RouteTable.Routes static collection.
This collection contains all of the routes for the entire application.

c#

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" }
);

}

Code snippet Global.asax.cs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

Shared Sub RegisterRoutes(ByVal routes As RouteCollection)
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}")

 routes.MapRoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With {.controller = "Home", .action = "Index", .id = ""} _
)

End Sub

Code snippet Global.asax.vb

The first method call tells the routing engine that it should ignore all requests for .axd files. When
an incoming URL matches this route the engine will completely ignore it and allow other parts of the
application to handle it. This method can be very handy if you want to integrate Web Forms and MVC
into a single application. All you need to do is ask the routing engine to ignore .aspx and .asmx files.

The second method call defines a new Route and adds it to the collection. This overload of MapRoute
method takes three parameters. The first parameter is a name, which can be used as a handle to this
route later on. The second parameter is a URL template. This parameter can have normal text along
with special tokens inside of braces. These tokens will be used as placeholders that are filled in when
the route matches a URL. Some tokens are reserved and will be used by the MVC routing engine
to select a controller and execute the correct action. The final parameter is a dictionary of default
values. You can see that this “Default” route matches any URL in the form /controller/action/id
where the default controller is “Home,” the default action is “Index,” and the “id” parameter defaults
to an empty string.

When a new HTTP request comes in, each route in the RouteCollection tries to match the URL
against its URL template in the order that they are added. The first route that is able to do so fills
in any default values that haven’t been supplied. Once these values have all been collected then a
Controller is created and an action method is called.

Routes are also used to generate URLs inside of views. When a helper needs a URL it will consult each
route (in order again) to see if it is able to build a URL for the specified controller, action, and parameter
values. The first route to match will generate the correct URL. If a route encounters a parameter value
that it doesn’t know about, it becomes a query string parameter in the generated URL.

The following snippet declares a new route for an online store that allows for two parameters: a
category and a subcategory. Assuming that this MVC application has been deployed to the root of a
web server, requests for the URL http://servername/Shop/Accessories/Helmets will go to the
“List” action on the “Products” controller with the parameters Category set to “Accessories” and
Subcategory set to “Helmets.”

c#

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(

advanced MVC ❘ 453

http://servername/Shop/Accessories/Helmets
http://lib.ommolketab.ir
http//lib.ommolketab.ir

454 ❘ chaPter 21 ASp.neT mVc

 "ProductsDisplay",
 "Shop/{category}/{subcategory}",
 new {
 controller = "Products",
 action = "List",
 category = "",
 subcategory = ""
 }
);

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" }
);
}

 Code snippet Global.asax.cs

 Vb

Shared Sub RegisterRoutes(ByVal routes As RouteCollection)
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}")

 routes.MapRoute(_
 "ProductsDisplay", _
 "Shop/{category}/{subcategory}", _
 New With { _
 .controller = "Products", .action = "List", _
 .category = "", .subcategory = "" _
 })

 routes.MapRoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With {.controller = "Home", .action = "Index", .id = ""} _
)

End Sub

 Code snippet Global.asax.vb

 Once a Route in a RouteCollection matches the URL no other Route gets
the opportunity. Because of this, the order in which Routes are added to the
 RouteCollection can be quite important. If the previous snippet had placed
the new route after the Default one, it would never get to match an incoming
request because a request for /Shop/Accessories/Helmets would be looking for
an Accessories action method on a ShopController with an “ id ” of “ Helmets. ”
Because there isn ’ t a ShopController the whole request will fail. If your application
is not going to the expected controller action method for a URL, you might want to
add a more specifi c Route to the RouteCollection before the more general ones or
remove the more general ones altogether while you fi gure out the problem.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finally, you can also add constraints to the Route that will prevent it from matching a URL unless
some other condition is met. This can be a good idea if your parameters are going to be converted
into complex data types such as date times later on and require a very specific format. The most
basic kind of restraint is a string, which is interpreted as a regular expression that a parameter must
match for the route to take effect. The following route definition uses this technique to ensure that
the zipCode parameter is exactly five digits:

c#

routes.MapRoute(
 "StoreFinder",
 "Stores/Find/{zipCode}",
 new { controller = "StoreFinder", action = "list" },
 new { zipCode = @"^\d{5}$" }
);

Vb

routes.MapRoute(_
 "StoreFinder", _
 "Stores/Find/{zipCode}", _
 New With {.controller = "StoreFinder", .action = "list"}, _
 New With {.zipCode = "^\d{5}$"} _
)

The other type of constraint is a class that implements IRouteConstraint. This interface defines
a single method Match that returns a Boolean value indicating whether the incoming request
satisfies the constraint. There is one implementation of IRouteConstraint out of the box called
HttpMethodConstraint. This constraint can be used to ensure that the correct HTTP method, such
as GET, POST, HEAD, or DELETE is used. The following route only accepts HTTP POST requests:

c#

routes.MapRoute(
 "PostOnlyRoute",
 "Post/{action}",
 new { controller = "Post" },
 new { post = new HttpMethodConstraint("POST") }
);

Vb

routes.MapRoute(
 "PostOnlyRoute", _
 "Post/{action}", _
 New With {.controller = "Post"}, _
 New With {.post = New HttpMethodConstraint("POST")} _
)

The URL routing classes are very powerful and flexible, and allow you to easily create “pretty”
URLs. This can aid users navigating around your site and even improve your site’s ranking with
search engines.

advanced MVC ❘ 455

http://lib.ommolketab.ir
http//lib.ommolketab.ir

456 ❘ chaPter 21 ASp.neT mVc

 action Method Parameters
 All of the action methods in previous examples do not accept any input from outside of the
application to perform their tasks; they rely entirely on the state of the model. In real - world
applications this is an unlikely scenario. The ASP.NET MVC framework makes it very easy to
parameterize action methods from a variety of sources.

 As mentioned in the previous section, the “ Default ” route exposes an “ id ” parameter, which
defaults to an empty string. To access the value of the “ id ” parameter from within the action
method you can just add it to the signature of the method itself as the following snippet shows:

 c#

public ActionResult Details(int id)
{
 using (var db = new ProductsDataContext())
 {
 var product = db.Products.SingleOrDefault(x = > x.ProductID == id);

 if (product == null)
 return View("NotFound");

 return View(product);
 }
}

 Code snippet Controllers\ProductsController.cs

 Vb

Public Function Details(ByVal id As Integer) As ActionResult
 Using db As New ProductsDataContext
 Dim product = db.Products.FirstOrDefault(Function(p As Product)
 p.ProductID = id)

 Return View(product)
 End Using
End Function

 Code snippet Controllers\ProductsController.vb

 When the MVC framework executes the Details action method it will search through the parameters
that have been extracted from the URL by the matching route. These parameters are matched up
with the parameters on the action method by name and then passed in when the method is called.
As the details method shows, the framework is even able to convert the type of the parameter on the
fl y. Action methods can also retrieve parameters from the query string portion of the URL and from
HTTP POST data using the same technique.

 If the conversion cannot be made for any reason, an exception is thrown.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Additionally, an action method can accept a parameter of the FormValues type that will aggregate
all of the HTTP POST data into a single parameter. If the data in the FormValues collection
represents the properties of an object, you can simply add a parameter of that type and a new
instance will be created when the action method is called. The Create action, shown in the
following snippet, uses this to construct a new instance of the Product class and then save it:

 c#

public ActionResult Create()
{
 return View();
}

[HttpPost]
public ActionResult Create([Bind(Exclude="ProductId")]Product product)
{
 if (!ModelState.IsValid)
 return View();

 using (var db = new ProductsDataContext())
 {
 db.Products.InsertOnSubmit(product);
 db.SubmitChanges();
 }
 return RedirectToAction("List");
}

 Code snippet Controllers\ProductsController.cs

 Vb

 < HttpPost() >
Function Create(< Bind(Exclude:="id") > ByVal product As Product)

 If (Not ModelState.IsValid) Then
 Return View()
 End If

 Using db As New ProductsDataContext
 db.Products.InsertOnSubmit(product)
 db.SubmitChanges()
 End Using
 Return RedirectToAction("List")
End Function

 Code snippet Controllers\ProductsController.vb

 There are two Create action methods here. The fi rst one simply renders the “ Create ”
view. The second one is marked up with an HttpPostAttribute , which means that
it will only be selected if the HTTP request uses the POST verb. This is a common
practice in designing ASP.NET MVC web sites. In addition to HttpPostAttribute
there are also corresponding attributes for the GET , PUT , and DELETE verbs.

advanced MVC ❘ 457

http://lib.ommolketab.ir
http//lib.ommolketab.ir

458 ❘ chaPter 21 ASp.neT mVc

Model Binders
The process of creating the new Product instance is the responsibility of a model binder. The model
binder matches properties in the HTTP POST data with properties on the type that it is attempting to
create. This works in this example because the template that was used to generate the “Create” view
renders the HTML INPUT fields with the correct name as this snippet of the rendered HTML shows:

htMl

<p>
 <label for=”ProductID”>ProductID:</label>
 <input id=”ProductID” name=”ProductID” type=”text” value=”” />
</p>
<p>
 <label for=”Name”>Name:</label>
 <input id=”Name” name=”Name” type=”text” value=”” />
</p>

A number of ways exist to control the behavior of a model binder including the BindAttribute,
which is used in the Create method shown previously. This attribute is used to include or exclude
certain properties and to specify a prefix for the HTTP POST values. This can be very useful if
multiple objects in the POST collection need to be bound.

Model binders can also be used from within the action method to update existing instances of
your model classes using the UpdateModel and TryUpdateModel methods. The chief difference is
that TryUpdateModel will return a Boolean value indicating whether or not it was able to build a
successful model and UpdateModel will just throw an exception if it can’t. The Edit action method
shows this technique:

c#

[HttpPost]
public ActionResult Edit(int id, FormCollection formValues)
{
 using (var db = new ProductsDataContext())
 {
 var product = db.Products.SingleOrDefault(x => x.ProductID == id);

 if (TryUpdateModel(product))
 {
 db.SubmitChanges();
 return RedirectToAction("Index");
 }
 return View(product);
 }
}

Code snippet Controllers\ProductsController.cs

Vb

<HttpPost()>
Function Edit(ByVal id As Integer, ByVal formValues As FormCollection)
 Using db As New ProductsDataContext

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Dim product = db.Products.FirstOrDefault(Function(p As Product)
 p.ProductID = id)

 If TryUpdateModel(product) Then
 db.SubmitChanges()
 Return RedirectToAction("Index")
 End If
 Return View(product)
 End Using
End Function

Code snippet Controllers\ProductsController.vb

areas
An area is a self-contained part of an MVC
application that manages its own models,
controllers, and views. You can even define
routes specific to an area. To create a new area,
select Add ➪ Area from the project context
menu in the Solution Explorer. The Add Area
dialog, shown in Figure 21-7,
prompts you to provide a name for your area.

After you click Add, many new files are added to your project to
support the area. Figure 21-8 shows a project with two areas added
to it named Shop and Blog, respectively.

In addition to having its own controllers and views, each area has
a class called AreaNameAreaRegistration that inherits from the
abstract base class AreaRegistration. This class contains an
abstract property for the name of your area and an abstract method
for integrating your area with the rest of the application. The
default implementation registers the standard routes.

c#

public class BlogAreaRegistration : AreaRegistration
{
 public override string AreaName
 {
 get
 {
 return "Blog";
 }
 }

 public override void RegisterArea(AreaRegistrationContext context)
 {
 context.MapRoute(
 "Blog_default",
 "Blog/{controller}/{action}/{id}",

fiGure 21-7

fiGure 21-8

advanced MVC ❘ 459

http://lib.ommolketab.ir
http//lib.ommolketab.ir

460 ❘ chaPter 21 ASp.neT mVc

 new { action = "Index", id = "" }
);
 }
}

 Code snippet Areas\Blog\BlogAreaRegistration.cs

 Vb

Public Class BlogAreaRegistration
 Inherits AreaRegistration

 Public Overrides ReadOnly Property AreaName() As String
 Get
 Return "Blog"
 End Get
 End Property

 Public Overrides Sub RegisterArea(ByVal context As AreaRegistrationContext)
 context.MapRoute(_
 "Blog_default", _
 "Blog/{controller}/{action}/{id}", _
 New With {.action = "Index", .id = ""} _
)
 End Sub
End Class

 Code snippet Areas\Blog\BlogAreaRegistration.vb

 The RegisterArea method of the BlogAreaRegistration class defi nes a route
in which every URL is prefi xed with /Blog/ by convention. This can be useful
while debugging routes but is not necessary as long as area routes do not clash
with any other routes.

 In order to link to a controller which is inside another area, you need to use an overload of
 Html.ActionLink that accepts a routeValues parameter. The object you provide for this parameter
must include an area property set to the name of the area which contains the controller you are
linking to.

 c#

 < %= Html.ActionLink("Blog", "Index", new { area = "Blog" }) % >

 Vb

 < %= Html.ActionLink("Blog", "Index", New With {.area = "Blog"})% >

 One issue that is frequently encountered when adding area support to a project is that the controller
factory becomes confused when multiple controllers have the same name. To avoid this issue you
can limit the namespaces that a route will use to search for a controller to satisfy any request. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

following code snippet limits the namespaces for the global routes to MvcApplication.Controllers ,
which will not match any of the area controllers.

 c#

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" },
 null,
 new[] { "MvcApplication.Controllers" }
);

 Code snippet Global.asax.cs

 Vb

routes.MapRoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With {.controller = "Home", .action = "Index", .id = ""}, _
 Nothing, _
 New String() {"MvcApplication.Controllers"} _
)

 Code snippet Global.asax.vb

 The AreaRegistrationContext automatically includes the area namespace
when you use it to specify routes so you should only need to supply namespaces
to the global routes.

 Validation
 In addition to just creating or updating it, a model
binder is able to decide whether the model instance
that it operating on is valid. The results of this
decision are found in the ModelState property.
Model binders can pick up some simple validation
errors by default, usually with regard to incorrect
types. Figure 21 - 9 shows the result of attempting to
save a Product when the form is empty. Most of
these validation errors are based on the fact that
these properties are non - nullable value types and
require a value.

 The user interface for this error report is provided
by the Html.ValidationSummary call, which is
made on the view. This helper method examines the
 ModelState and if it fi nds any errors it renders them
as a list along with a header message. fiGure 21 - 9

advanced MVC ❘ 461

http://lib.ommolketab.ir
http//lib.ommolketab.ir

462 ❘ chaPter 21 ASp.neT mVc

You can add additional validation hints to the properties of the model class by marking them up with
using the attributes in the System.ComponentModel.DataAnnotations assembly. Because the Product
class is created by LINQ to SQL you should not update it directly. The LINQ to SQL generated classes
are defined as partial so you can extend them but there is no easy way to attach metadata to the
generated properties this way. Instead, you need to create a metadata proxy class with the properties
you want to mark up, provide them with the correct data annotation attributes, and then mark up the
partial class with a MetadataTypeAttribute identifying the proxy class. The following code snippet
shows this technique being used to provide some validation metadata to the Product class:

c#

[MetadataType(typeof(ProductValidationMetadata))]
public partial class Product
{
}

public class ProductValidationMetadata
{
 [Required, StringLength(256)]
 public string Name { get; set; }

 [Range(0, 100)]
 public int DaysToManufacture { get; set; }
}

Code snippet Models\Product.cs

Vb

Imports System.ComponentModel.DataAnnotations

<MetadataType(GetType(ProductMetaData))>
Partial Public Class Product

End Class

Public Class ProductMetaData
 <Required(), StringLength(256)>
 Property Name As String

 <Range(0, 100)>
 Property DaysToManufacture As Integer
End Class

Code snippet Models\Product.vb

Now, attempting to create a new Product with no name
and a negative “Days to Manufacture” produces the errors
shown in Figure 21-10.

fiGure 21-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Partial Views
 At times you have large areas of user interface markup that you would like to reuse. In the ASP.NET
MVC framework a re - usable section of view is called a partial view. Partial views act very similar to
views except that they have an .ascx extension and inherit from System.Web.Mvc.ViewUserControl .
To create a partial view, check the Create a Partial View checkbox on the same Add View dialog that
you use to create other views.

 To render a partial view you can use the Html.RenderPartial method. The most common
overload of this method accepts a view name and a model object. Just as with a normal view, a
partial view can be either controller - specifi c or shared. Once the partial view has been rendered,
its HTML markup is inserted into the main view. This code snippet renders a “ Form ” partial for
the current model:

 c#

 < % Html.RenderPartial("Form", Model); % >

 Vb

 < % Html.RenderPartial("Form", Model) % >

 You might notice that along with the error report at the top of the page, for each
fi eld which has a validation error, the textbox is colored red and has an asterisk
after it. The fi rst effect is caused by the Html.TextBox helper, which accepts the
value of the property that it is attached to. If it encounters an error in the model
state for its attached property, it adds an input - validation - error CSS class to
the rendered INPUT control. The default stylesheet defi nes the red background.
The second effect is caused by the Html.ValidationMessage helper. This helper
is also associated with a property and renders the contents of its second
parameter if it detects that its attached property has an error associated with it.

 You can call a partial view directly from an action using the normal View
method. If you do this, only the HTML rendered by the partial view will be
included in the HTTP response. This can be very useful if you are returning
data to jQuery.

 custom View templates
 When you use the Add View dialog to add items to your project, Visual Studio 2010 is actually
executing a T4 template, which determines the code that will be generated. The View Content
drop - down determines which template will be run. If you want to edit them you can fi nd them
in the C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE\ItemTemplates\
language\Web\MVC\v2\CodeTemplates\AddView folder where language is either “ CSharp ”
or “ VisualBasic. ”

advanced MVC ❘ 463

http://lib.ommolketab.ir
http//lib.ommolketab.ir

464 ❘ chaPter 21 ASp.neT mVc

Editing these files directly will make the change across all MVC projects on the local machine, but
you cannot use this technique to create project-specific templates. It is also very hard to version
control these files effectively with the rest of your application. You can get around both of these
issues by creating a CodeTemplates\AddView folder under the root of your project and copying the
T4 templates into it as shown in Figure 21-11 When the Add View dialog is populating the View
Content drop-down list it will use these templates instead of the global ones.

Additionally, you can create your own templates by adding T4 template files into this folder. Figure 21-11
shows the template file MyViewTemplate.tt and Figure 21-12 shows “MyViewTemplate” showing up in
the drop-down list.

fiGure 21-12fiGure 21-11

Custom templates can be host specific and the Host is of type MvcTextTemplateHost, which
contains all of the properties defined by the Add View dialog. See Chapter 14, “Code Generation
with T4,” for more information about creating T4 templates.

dynamic data templates
Dynamic Data is a feature of ASP.NET Web Forms that allows you to render UI based on metadata
associated with the model. Although ASP.NET MVC does not integrate directly with Dynamic
Data, a number of new features in ASP.NET MVC 2.0 are similar in spirit. Templates in ASP.NET
MVC 2.0 are able to render parts of your model in different ways, whether they are small and
simple such as a single string property or large and complex like the whole product class. The
templates are exposed by Html helper methods. There are templates for display and templates for
editing purposes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Display Templates
The Details view that is created by the Add View dialog contains code to render each property. Here
is the markup for just two of these properties:

c#

<p>
 ProductID:
 <%= Html.Encode(Model.ProductID) %>
</p>
<p>
 Name:
 <%= Html.Encode(Model.Name) %>
</p>

Vb

<p>
 ProductID:
 <%= Html.Encode(Model.ProductID) %>
</p>
<p>
 Name:
 <%= Html.Encode(Model.Name) %>
</p>

With the new templates feature you can change this to the following:

c#

<p>
 <%= Html.LabelFor(x => x.ProductID) %>
 <%= Html.DisplayFor(x => x.ProductID) %>
</p>
<p>
 <%= Html.LabelFor(x => x.Name) %>
 <%= Html.DisplayFor(x => x.Name) %>
</p>

Vb

<p>
 <%: Html.LabelFor(Function(x As ProductsMVC.Product) x.ProductID)%>
 <%: Html.DisplayFor(Function(x As ProductsMVC.Product) x.ProductID) %>
</p>
<p>
 <%: Html.LabelFor(Function(x As ProductsMVC.Product) x.Name)%>
 <%: Html.DisplayFor(Function(x As ProductsMVC.Product) x.Name) %>
</p>

This has a number of immediate advantages. First, the label is no longer hard coded into the view.
Because the label is now strongly typed it will be updated if you refactor your model class. In
addition to this you can apply a System.ComponentModel.DisplayName attribute to your model

advanced MVC ❘ 465

http://lib.ommolketab.ir
http//lib.ommolketab.ir

466 ❘ chaPter 21 ASp.neT mVc

(or to a model metadata proxy) to change the text that is displayed to the user. This helps to ensure
consistency across the entire application. The following code snippet shows the Product metadata
proxy with a couple of DisplayNameAttributes and Figure 21-13 shows the rendered result:

c#

public class ProductValidationMetadata
{
 [DisplayName("ID")]
 public int ProductID { get; set; }

 [Required, StringLength(256)]
 [DisplayName("Product Name")]
 public string Name { get; set; }

 [Range(0, 100)]
 public int DaysToManufacture { get; set; }
}

Vb

Public Class ProductMetaData
 <DisplayName("ID")>
 Property ProductID As Integer

 <Required(), StringLength(256)> _
 <DisplayName("Product Name")>
 Property Name As String

 <Range(0, 100)>
 Property DaysToManufacture As Integer
End Class

The DisplayFor helper is also providing a lot of hidden flexibility. It is selecting a template based
on the type of the property that it is displays. You can override each of these type-specific views by
creating a partial view named after the type in the Shared\DisplayTemplates folder. Figure 21-14
shows a String template and Figure 21-15 shows the output result.

fiGure 21-13 fiGure 21-14 fiGure 21-15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 c#

 < %@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" % >

STRING START
 < %= Html.Encode(ViewData.TemplateInfo.FormattedModelValue) % >
STRING END

 Vb

 < %@ Control Language="VB" Inherits="System.Web.Mvc.ViewUserControl" % >

STRING START
 < %= Html.Encode(ViewData.TemplateInfo.FormattedModelValue) % >
STRING END

 You can also create controller - specifi c templates by putting them inside a
 DisplayTemplates subfolder of the controller - specifi c Views folder.

 Although the display template is selected based on the type of the property by default you can
override this by either supplying the name of the template to the DisplayFor helper or applying a
 System.ComponentModel.DataAnnotations.UIHintAttribute to the property. This attribute
takes a string that identifi es the type of template to use. When the framework needs to render the
display for the property it tries to fi nd the display template described by the UI Hint. If one is not
found it looks for a type - specifi c template. If a template still hasn ’ t been found, the default behavior
is executed.

 If you are simply applying LabelFor and DisplayFor for every property on your model, you can
use the Html.DisplayForModel helper method. This method renders a label and a display template
for each property on the model class. You can prevent a property from being displayed by this helper
by annotating it with a System.ComponentModel.DataAnnotations.ScaffoldColumnAttribute
passing it the value false .

 If you want to change the way the DisplayForModel is rendered, you can create
a type - specifi c template for it. If you want to change the way it renders generally,
create an Object display template.

 A number of built - in display templates are available that you can use out of the box. Be aware that if
you want to customize the behavior of one of these you will need to re - create it from scratch.

 ➤ String: No real surprises, just renders the string contents itself. This template does HTML
encode the property value, though.

 ➤ Html: The same as string but without the HTML encoding. This is the rawest form of
display that you can have. Be very careful using this template because it is a vector for
malicious code injection such as Cross Site Scripting Attacks (XSS).

advanced MVC ❘ 467

http://lib.ommolketab.ir
http//lib.ommolketab.ir

468 ❘ chaPter 21 ASp.neT mVc

 ➤ EmailAddress: Renders an e - mail address as a mailto: link.

 ➤ Url: Renders a URL as an HTML anchor.

 ➤ HiddenInput: Does not render the property at all unless the ViewData.ModelMetaData
.HideSurroundingHtml property is false .

 ➤ Decimal: Renders the property to two decimal places.

 ➤ Boolean: Renders a read - only checkbox for non - nullable values and a read - only drop - down
list with True, False, and Not Set options for nullable properties.

 ➤ Object: Renders complex objects and null values.

 edit Templates
 It probably comes as no surprise that there are corresponding EditorFor and EditorForModel
Html helpers that handle the way properties and objects are rendered for edit purposes. Editor
templates can be overridden by supplying partial views in the EditTemplates folder. Edit templates
are able to use the same UI hint system that display templates use. Just as with display templates,
you can use a number of built - in editor templates out of the box:

 ➤ String: Renders a standard textbox, initially populated with the value if provided and
named after the property. This ensures that it will be used correctly by the model binder to
rebuild the object on the other side.

 ➤ Password: The same as string but renders an HTML PASSWORD input instead of a textbox.

 ➤ MultilineText: Creates a multi - line textbox. There is no way to specify the number of rows
and columns for this textbox here. It is assumed that you will use CSS to do that.

 ➤ HiddenInput: Similar to the display template, renders an HTML HIDDEN input.

 ➤ Decimal: Similar to the display template but renders a textbox to edit the value.

 ➤ Boolean: If the property type is non - nullable this renders a checkbox control. If this
template is applied to a nullable property it renders a drop - down list containing the same
three items as the display template.

 ➤ Object: Renders complex editors.

 Brad Wilson has a good, multi - part, in - depth tutorial on ASP.NET MVC 2.0
Templates on his blog starting at http://bradwilson.typepad.com/
blog/2009/10/aspnet-mvc-2-templates-part-1-introduction.html .

 jquery
 jQuery is an open-source JavaScript framework that is included by default with the ASP.NET MVC
framework. The basic element of jQuery is the function $() . This function can be passed a JavaScript
DOM element or a string describing elements via a CSS selector. The $() function returns a jQuery

http://bradwilson.typepad.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

object that exposes a number of functions that affect the elements contained. Most of these functions
also return the same jQuery object so these function calls can be chained together. As an example,
the following snippet selects all of the H2 tags and adds the word “section” to the end of each one:

Javascript

$("h2").append(" section");

To make use of jQuery you need to create a reference to the jQuery library found in the /Scripts
folder by adding the following to the head section of your page:

htMl

<script type="text/javascript" src="/Scripts/jquery-1.3.2.js"></script>

It is possible to use jQuery to make an HTTP request by using the $.get and $.post methods.
These methods accept a URL and can optionally have a callback function to provide the results to. The
following view renders the time inside two div tags called server and client, respectively. There is also
a button called update, which when clicked makes a GET request to the /time URL. When it receives
the results it updates the value displayed in the client div but not the server one. In addition to this it
uses the slideUp and slideDown functions to animate the client time in the UI.

c#

<%@ Page Language=”C#” Inherits=”System.Web.Mvc.ViewPage<System.String>” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Index</title>
 <script type=”text/javascript” src=”/Scripts/jquery-1.3.2.js”></script>
 <script type=”text/javascript”>
 $(document).ready(function () {
 $(‘#updater’).click(UpdateNow);
 });

 function UpdateNow() {
 $.get(‘/time’, function (data) {
 $(‘#clientTime’).slideUp(‘fast’, function () {
 $(‘#clientTime’).empty().append(data).slideDown();
 });
 });
 }
 </script>
</head>
<body>
 <div>
 <h2>
 Server</h2>
 <div id=”serverTime”>
 <%:Model %></div>
 <h2>
 Client</h2>

advanced MVC ❘ 469

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd%E2%80%9D
http://www.w3.org/1999/xhtml%E2%80%9D
http://lib.ommolketab.ir
http//lib.ommolketab.ir

470 ❘ chaPter 21 ASp.neT mVc

 <div id=”clientTime”>
 <%:Model %></div>
 <input type=”button” value=”Update” id=”updater” />
 </div>
</body>
</html>

Code snippet Views\Time\Index.aspx

Here is the action method that controls the previous view. It uses the IsAjaxRequest extension
method to determine if the request has come from jQuery. If it has, it returns just the time as a
string, otherwise it returns the full view.

c#

public ActionResult Index()
{
 var now = DateTime.Now.ToLongTimeString();
 if (Request.IsAjaxRequest())
 return Content(now);
 return View(now as object);
}

Code snippet Controllers\Time.cs

Vb

Function Index() As ActionResult
 Dim timeNow = Now.ToString()
 If Request.IsAjaxRequest() Then
 Return Content(timeNow)
 End If
 Return View(CType(timeNow, Object))
End Function

Code snippet Controllers\Time.vb

jQuery is a rich client-side programming tool with an extremely active community and a large
number of plug-ins. For more information about jQuery including a comprehensive set of tutorials
and demos see http://jquery.com.

suMMary

The ASP.NET MVC framework makes it easy to build highly testable, loosely coupled web
applications that embrace the nature of HTTP. The 2.0 release has a lot of productivity gains
including Templates and Visual Studio integration. For more information about ASP.NET MVC, see
http://asp.net/mvc.

http://jquery.com
http://asp.net/mvc
http://lib.ommolketab.ir
http//lib.ommolketab.ir

22
 silverlight

 what ’ s in this chaPter?

 Creating your First Silverlight application ➤

 Using the Navigation Framework ➤

 Theming your Silverlight application ➤

 Running a Silverlight application outside of the browser ➤

 Although it ’ s a rather new technology, Silverlight has been getting a lot of traction from within
Microsoft and the developer community due to its huge potential as a development platform. New
major versions are released very regularly (there were only nine months between the version 2 and
version 3 releases), demonstrating that it is progressing fast. At the time of writing Silverlight had
reached version 4, which is already showing a lot of maturity for a reasonably young technology.

 Previously, it was quite a chore to confi gure Visual Studio 2008 for Silverlight development,
requiring Service Pack 1 along with the Silverlight Tools to be installed just to get started.
Visual Studio 2010 comes already confi gured for Silverlight development “ out of the box, ”
making it very easy to get started. Also, Visual Studio 2008 had no designer for Silverlight
user interfaces (initially there was a preview view but this was later abandoned), requiring
developers to write the XAML and run their application to view the results, or use Expression
Blend if they had access to it (which did have a designer). This has been vastly improved in
Visual Studio 2010, with a very capable designer now available making it much easier for
developers to create user interfaces in Silverlight.

 Because Silverlight is effectively a subset of Windows Presentation Foundation (WPF) you
will fi nd that many of the Visual Studio features for WPF detailed in Chapter 18 also apply
to Silverlight, and thus aren ’ t repeated here. Of course, Silverlight has no Windows Forms
interoperability (due to it running in a sandboxed environment and not using the full .NET
Framework), but the other Visual Studio features detailed for WPF development can also be
used when developing Silverlight applications. This chapter takes you through the features of
Visual Studio that are specifi c to Silverlight and don ’ t apply to WPF.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

472 ❘ chaPter 22 SilVerlighT

what is silVerliGht?

When starting Silverlight development you will notice its similarity to WPF. Both technologies
revolve around their use of XAML for defining the presentation layer, and are very similar to
develop with. However, they do differ greatly in how they are each intended to be used. Silverlight
could essentially be considered a trimmed-down version of WPF, designed to be deployed via the
Web and run in a web browser — what is generally called a Rich Internet Application (RIA). WPF,
on the other hand, is for developing rich client (desktop) applications. It could be pointed out that
WPF applications can be compiled to an XBAP (XAML Browser Application) and deployed and
run in the same manner as Silverlight applications, but these require the .NET Framework to be
installed on the client machine and can only be run on Windows — neither of which is true for
Silverlight applications.

One of the great benefits of Silverlight is that it doesn’t require the .NET Framework to be installed
on the client machine (which can be quite a sizable download if it isn’t installed). Instead, the
Silverlight run time is just a small download (about 5 MB), and installs itself as a browser plug-in.
If the user navigates to a web page that has Silverlight content but the client machine doesn’t have
the Silverlight run time installed, the user is prompted to download and install it. The install
happens automatically once the user agrees to it, and the Silverlight application opens when the
install completes. With such a small download size for the run time, the Silverlight plug-in can be
installed and running the Silverlight application in under two minutes. This makes it very easy to
deploy your application. Though not as prevalent as Adobe Flash, Silverlight is rapidly expanding its
install base and eventually it’s expected that its install base will come close to that of Flash.

One of the advantages Silverlight applications (and RIA applications in general) have over ASP.NET
applications is that they allow you to write rich applications that run solely on the client, and
communicate with the server only when necessary (generally to send or request data). Essentially,
you can write web applications in much the same way as you write desktop applications. This
includes the ability to write C# or VB.NET code that runs on the client — enabling you to reuse
your existing codebase and not have to learn new languages (such as JavaScript).

Another great benefit of Silverlight is that Silverlight applications will run in all the major web
browsers, and most excitingly will also run on Mac as well as Windows, enabling you to build
cross-browser and cross-platform applications very easily. Support for Linux is being provided by
Moonlight (developed by the Mono team at Novell), although its development is running somewhat
behind the versions delivered by Microsoft. This means that Silverlight can be the ideal way to write
Web-deployed cross-platform applications. Silverlight applications render exactly the same across
different web browsers, removing the pain of regular web development where each browser can
render your application differently.

The downsides of Silverlight are that it only includes a subset of the .NET Framework in order
to minimize the size of the run time download, and that the applications are run in a sandboxed
environment — preventing access to the client machine (a good thing for security, but reduces the
uses of the technology). There are tradeoffs to be made when choosing between WPF and Silverlight,
and if you choose Silverlight you should be prepared to make these sacrifices to obtain the benefits.

Ultimately, you could say that Silverlight applications are a cross between rich client and web
applications, bringing the best of both worlds together.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

GettinG started with silVerliGht

Visual Studio 2010 already comes configured with the main components you need for Silverlight
development. Silverlight is supported out of the box with Visual Studio 2010, but if a new version
of Silverlight has been released that you want to target you will need to download the SDK for that
version. The best place to check if a new SDK has been released and download any required (or
related) components is http://www.silverlight.net/getstarted.

Create a new project and select the Silverlight category (see Figure 22-1). You will find a number
of project templates for Silverlight to start your project.

fiGure 22-1

The Silverlight application project template is essentially a blank slate, providing a basic project
to start with (best if you are creating a simple gadget). The Silverlight Navigation Application
project template, however, provides you with a
much better structure if you are planning to build
an application with more than one screen/view,
providing a user interface framework for your
application and some sample views. The Silverlight
Class Library project template generates exactly
the same output as a standard Class Library
project template, but targets the Silverlight run
time instead of the full .NET Framework.

Use the Silverlight Navigation Application template
for your sample project because it gives you a good
base to work from. When you create the project
you are presented with the template wizard screen
shown in Figure 22-2 to configure the project.

fiGure 22-2

Getting started with silverlight ❘ 473

http://www.silverlight.net/getstarted
http://lib.ommolketab.ir
http//lib.ommolketab.ir

474 ❘ chaPter 22 SilVerlighT

 Most of the options in this window are dedicated to confi guring the web project that will be
generated in the same solution as the Silverlight project. Designed primarily to be accessed via a web
browser, Silverlight applications need to be hosted by a web page. Therefore, you also need a separate
web project with a page that can act as the host for the Silverlight application in the browser.

 So that the wizard generates a web project to host the Silverlight application, select the Host the
Silverlight application in a new Web site option. If you are adding a Silverlight project to a solution
with an existing web project that will host the application, you can uncheck this option and manually
confi gure the project link in the project properties (for the Silverlight application). A default name for the
web project will already be set in the New Web Project Name textbox, but you can change this if you
want. The fi nal option for confi guring the web project is to select its type. The options you have are:

 ASP.NET Web Application Project ➤

ASP.NET Web Site Project ➤

ASP.NET MVC Web Project ➤

 Which of these web project types you choose to use is up to you, and has no impact on the Silverlight
project at all. The sample application uses the Web Application Project, but how you intend to develop
the web site that will host the application will ultimately determine the appropriate web project type.

 In the Options group are some options that pertain to the Silverlight application itself. The Silverlight
Version drop - down list allows you to choose the Silverlight version you want to target. The versions
available in this list will depend on the individual Silverlight SDKs you have installed, defaulting to
the latest version available. Because RIA Services are discussed in Chapter 35 , disregard the Enable
WCF RIA Services option for now and leave it unchecked for the sample application.

 You can change the properties in the Options group at a later point in time via
the project properties pages for the Silverlight project (see Figure 22 - 4).

 Let ’ s take a tour through the structure of the solution that has been
generated (shown in Figure 22 - 3). As was previously noted you have
two projects: the Silverlight project and a separate web project to host
the compiled Silverlight application. The web project is the startup
project in the solution because it ’ s really this that is opening in the
browser and then loading the Silverlight application.

 The web project is linked to the Silverlight project such that once the
Silverlight application is compiled its output (that is, the .xap fi le) is
automatically copied into the web project (into the ClientBin folder),
where it can be accessed by the web browser. If you haven ’ t already
done so, compile the solution and you will see the .xap fi le appear
under the ClientBin folder.

 The web project includes two different pages that can be used to
host the Silverlight application: a standard HTML page and an
ASPX page. Both will do exactly the same thing, so it ’ s up to
you which one you use and you can delete the other.

 fiGure 22 - 3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Looking at the Silverlight project now, you will see an App.xaml file and a MainPage.xaml file —
very similar to the initial structure of a WPF project. The MainPage.xaml file will fill the browser
window, show a header at the top with buttons to navigate around the application, and host different
“views” inside the Frame control that it contains. So you could think of MainPage.xaml as being the
shell for the content in your application.

The project template includes two default content views: a Home view and an About view. Modifying
and adding new views is covered in the next section. This folder also contains ErrorWindow.xaml,
which inherits from ChildWindow (essentially a modal dialog control in Silverlight) and pops up when
an unhandled exception occurs (the unhandled exception event is handled in the code-behind for
App.xaml and displays this control).

The Assets folder contains Styles.xaml, which comprises the theme styles used by the application.
This is discussed in the “Theming” section in this chapter.

Now take a look at what options are available in the project properties pages of the Silverlight project.
The property page unique to Silverlight applications is the Silverlight page that is shown in Figure 22-4.

fiGure 22-4

A number of options are of particular interest here. The Xap file name option allows you to set the
name of the .xap file that your Silverlight project and all its references (library and control assemblies,
and so on) will be compiled into. A .xap file is simply a zip file with a different extension, and opening
it in a zip file manager enables you to view its contents. If your project is simple (that is, was created
using the Silverlight Application project template and doesn’t reference any control libraries), it will
probably only contain your project’s assembly and a manifest file. However, if you reference other
assemblies in your project (such as if you use the DataGrid control that exists in the System.Windows.
Controls.Data.dll assembly) you will find that your .xap file blows out in size very quickly (because
these are also included in the .xap file). This would mean that each time you make a minor change to

Getting started with silverlight ❘ 475

http://lib.ommolketab.ir
http//lib.ommolketab.ir

476 ❘ chaPter 22 SilVerlighT

your project and deploy it that the users will be re - downloading the assemblies (such as the assembly
containing the DataGrid) that haven ’ t changed simply because they are included again in the .xap fi le.
Fortunately, there is a way to improve this scenario, and that ’ s to use application library caching. This
is very easy to turn on, simply requiring the Reduce XAP size by using application library caching
option to be checked. The next time the project is compiled the referenced assemblies will be separated
out into different fi les and downloaded separately from the application ’ s .xap fi le.

 One caveat is that for assemblies to be cached they must have an extension map XML fi le, which
is included in the .xap fi le and points to the zip fi le containing the assembly. Most controls from
Microsoft will already have one of these, so you should not have to worry about this issue. Now
when you compile your project again, take a look at the ClientBin folder under the web project.
You will fi nd one or more .zip fi les — one for each external assembly referenced by your Silverlight
project, which isn ’ t included in the core Silverlight run time. Your .xap fi le will also be much smaller
because it will no longer contain these assemblies. The fi rst time the user runs your application all
the required pieces will be downloaded. Then when you update your project and compile it only the
 .xap fi le will need to be downloaded again. The benefi ts of this include less bandwidth being used for
both the server and the client (updates will be much smaller to download), and updates will be much
quicker, meaning less time for the users to wait before they can continue to use your application.

 fiGure 22 - 5

 Unfortunately, application library caching cannot be used in applications that
are confi gured to run in Out Of Browser mode (detailed later in this chapter),
because Out Of Browser mode requires all the assemblies to be in the . xap fi le.
If you attempt to set both options, a message box appears stating as such.

 Now let ’ s return to see how the Silverlight project and the web project are linked together. This
project link is managed by the web project, and can be confi gured from its project properties page.
Open the properties for this project and select the Silverlight Applications tab to see the Silverlight
projects currently linked to the web project (Figure 22 - 5).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You will most likely only need to use this property page if the web project needs to host multiple
Silverlight applications, or you have added a Silverlight project to a solution already containing a web
project and you need to link the two. Project links can only be added or removed (not modified), so
you will generally find you will use this property page only when a Silverlight project has been added
or removed from the solution.

This property page displays the existing links in the list that this web project has to Silverlight projects
in the solution. You have three options here: you can add another link to a Silverlight project, you can
remove a project link, or you can change a project link (although this change option is not what you
might initially expect, as discussed shortly).

Click the Add button to link another Silverlight
project to the web project. Figure 22-6 shows
the window used to configure the new link.

You have two choices when adding a link to
a Silverlight project. The first is to link to a
Silverlight project already in the solution, where
you can simply select a project from the drop-
down list to link to. You also have the choice
to create a new Silverlight project and have it
automatically link to the current web project.
Unfortunately, you don’t have the ability to
select the project template to use, so it will only
generate a new project based upon the Silverlight
Application project template, somewhat limiting
its use.

The Destination Folder option enables you to
specify the folder underneath the web project
that this Silverlight project will be copied to when it has been compiled. The test pages that are
generated (if selected to be created) to host the Silverlight application will point to this location.

If the Copy to configuration specific folders option is set, the Silverlight application will not be
copied directly under the specified destination folder, but an additional folder will be created
underneath it with the name of the current configuration (Debug, Release, and so on)? and the
Silverlight application will be copied under it instead. Note that when this setting is turned on, the
test pages will still point to the destination folder, not the subfolder with the name of the current
configuration which will now be where the Silverlight application is located. If you want to use
this option you will need to manually update the test pages to point to the path as per the current
configuration, and update this each time you switch between configurations. By default, this option
is not set, and it is probably best not to use it unless necessary.

Selecting the Add a test page that references the control option adds both an HTML page and an
ASPX page to the web project, already configured to host the output of the Silverlight project being
linked (you can delete the one you don’t want to use).

The Enable Silverlight debugging option turns on the ability to debug your Silverlight application
(that is, stop on breakpoints, step through code, and so on). The downside to enabling this option is

fiGure 22-6

Getting started with silverlight ❘ 477

http://lib.ommolketab.ir
http//lib.ommolketab.ir

478 ❘ chaPter 22 SilVerlighT

that it disables JavaScript debugging for the web project, because enabling debugging for both at the
same time is not possible.

Returning to the list of linked Silverlight projects (Figure 22-5), the Remove button removes a link
as you’d expect, but the Change button probably won’t do what you’d initially assume it would. This
button is used simply to toggle between using
and not using configuration-specific folders
(described earlier).

Now that you have learned the structure of
the project you can try running it. You can
see that the Silverlight Navigation Application
project template gives you a good starting
point for your application and can form the
basis of your application framework (as shown
in Figure 22-7).

naViGation fraMework

Because you have used the Silverlight Navigation Application project template for your project
you should take a quick look at Silverlight’s Navigation Framework. The Navigation Framework
was introduced in Silverlight 3, and makes it easy to create an application with multiple views
and navigate between them. MainPage.xaml contains a Frame control (a part of the Navigation
Framework), which is used to host the individual views when they are required to be shown.

Views must inherit from the Page control in order to be hosted in the frame. If you take a look at
Home.xaml you will notice that the root element is navigation:Page instead of UserControl. To
create a new view, right-click the Views folder and select Add ➪ New Item. Select the Silverlight
Page item template, give it a name (such as Test.xaml), and click OK. Add content to the view as
required.

Each view needs a URI to point to it, and this URI will be used when you want to navigate to that
view. You may want to set up a mapping from a chosen URI to the path (within the project) of
its corresponding view file. These mappings are defined on the UriMapper property of the Frame
control (in MainPage.xaml). These mappings allow wildcards, and a wildcard mapping has already
been created that allows you to simply use the name of the XAML file (without the .xaml on the
end). It will look for a XAML file with that name with a .xaml extension in the Views folder. This
means you don’t need to set up a mapping if you want to navigate to your Test.xaml file using
/Test as the URI.

Now you need to add a button that allows you to navigate to the new view. In MainPage.xaml you
will find some HyperlinkButton controls (named Link1 and Link2). Copy one of these and paste
it as a new line below it (you may want to create another divider element by copying the existing
one too). Change the NavigateUri to one that maps to your view (in this case it will be /Test), give
the control a new name, and set the text to display on the button (in the Content property).

Now run the project. The new button will appear in the header area of the application, and clicking
it navigates to the new view.

fiGure 22-7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 theMinG

 Like WPF, Silverlight has extensive styling and theming capabilities, although their styling models are
implemented slightly differently from one another. Silverlight introduced the Visual State Manager
(VSM), a feature that WPF did not originally have (until WPF 4), which enables a control contract to
be explicitly defi ned for the boundary between the control ’ s behavior (that is, the code) and its look
(that is, the XAML). This permits a strict separation to be maintained between the two. This contract
defi nes a model for control templates called the Parts and States model, which consists of parts, states,
transitions, and state groups. Further discussion of this is beyond the scope of this chapter, however
the VSM in Silverlight manages this model. This is considered a much better way of managing
styles than WPF ’ s original method of using triggers, and thus the VSM has been incorporated into
WPF 4. However, until Silverlight 4, Silverlight did not support implicit styling (unlike WPF, which
did), where it could be specifi ed that all controls of a given type should use a particular style (making
applying a theme to your project somewhat diffi cult). To make theming easier, Microsoft created the
ImplicitStyleManager control, which shipped in the Silverlight Toolkit control library. Silverlight 4
fi nally introduced implicit styling, making the ImplicitStyleManager control somewhat redundant, but
you ’ ll still use it here to demonstrate theming that works across all versions of Silverlight.

 Note how the bookmark on the URL (the part after the # in the URL in the
address bar of the browser) changes as you navigate between pages. You can also
use the browser ’ s Back and Next buttons to navigate backward and forward
through the history of which views were previously navigated to. It also enables
deep linking, such that views have a unique URL that can automatically be
opened to. The Navigation Framework provides all of this functionality.

 You can download the free Silverlight Toolkit from CodePlex here: http://
silverlight.codeplex.com . It also contains numerous useful controls that
aren ’ t included in the Silverlight SDK (such as charts, tab control, TreeView,
and so on).

 So despite their differences, WPF and Silverlight both have controls in their respective toolkit
projects that enable similar styling and theming behavior between the two.

 Now take a look at applying a different theme to your project in order to completely change the
way the controls look. Silverlight has the same themes available as demonstrated in Chapter 18
(in fact, the themes were originally developed for Silverlight and ported to WPF), and can be found
in the Silverlight Toolkit. You will call these control themes to separate them from the application
themes that are discussed shortly.

 You have a couple of ways to use these control themes. One is to take one of the XAML theming
fi les from the Silverlight Toolkit, copy it into your project ’ s root folder, and include it in your

Theming ❘ 479

http://silverlight.codeplex.com
http://silverlight.codeplex.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

480 ❘ chaPter 22 SilVerlighT

project (setting its Build Action to Content at the same time). For this example you will use the
 System.Windows.Controls.Theming.ExpressionDark.xaml theme fi le. Now add a reference
to the System.Windows.Controls.Theming.Toolkit.dll from the Silverlight Toolkit (which
enables you to use the ImplicitStyleManager control). Unfortunately, you can ’ t specify the theme
at the application level because the ImplicitStyleManager control has some limitations imposed by
Silverlight, therefore in the root element of all of the views to be themed you will need to add the
following namespace prefi x and property value defi nitions:

xmlsn:theming="clr-namespace:System.Windows.Controls.Theming; assembly=
System.Windows.Controls.Theming.Toolkit"

theming:ImplicitStyleManager.ResourceDictionaryUri=
"System.Windows.Controls.Theming.ExpressionDark.xaml"
theming:ImplicitStyleManager.ApplyMode="OneTime"

 Now when you compile and run your project you will fi nd all the controls in the views that have had
their themes set are now using the themes from the specifi ed theme fi le.

 You may fi nd that the project doesn ’ t compile due to missing references that the
theme fi le is using. Because the theme fi le has styles for many different controls,
it is referencing the assemblies that contain those controls. You can either add
a reference to the required assemblies, or if you don ’ t want to use them, you
can remove the styles for those controls (and their related namespace prefi x
defi nitions) from the theme fi le.

 If you create your project using the Silverlight Navigation Application template or the Silverlight
Business Application template you can also take advantage of some alternative application themes that
have been created to give your application a whole new look. You can fi nd the application theme styles
in the Styles.xaml fi le under the Assets folder in your Silverlight project. The App.xaml fi le merges
the styles from this fi le into its own if your project is based on the Silverlight Navigation Application
project template. MainPage.xaml uses the styles that have been defi ned in Styles.xaml to specify its
layout and look. Therefore, all you need to do is replace this fi le with one with the same styles defi ned
but with different values in order to completely change the way the application looks. A number of
alternative application theme fi les for projects
based upon the Silverlight Navigation Application
project template have been created by Microsoft
and the community, and can be downloaded from
 http://gallery.expression.microsoft.com
(look in the Themes category). For example,
simply replacing the Styles.xaml fi le for the
project shown in Figure 22 - 7 with the theme fi le
from the gallery called “ Frosted Cinnamon Toast ”
completely changes the way it looks, as shown in
Figure 22 - 8. fiGure 22 - 8

http://gallery.expression.microsoft.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

enablinG runninG out of browser

Though Silverlight was initially designed as a browser-based plug-in, Silverlight 3 introduced the
ability to run a Silverlight application outside the browser as if it were a standard application,
and it was no longer necessary to run your Silverlight application within a browser. In fact, you
don’t even need to be online to run a Silverlight application once it has been installed to run in
Out-Of-Browser mode. Out-Of-Browser applications are delivered initially via the browser, and
can then be installed on the machine (if enabled by the developer). This install process can be
initiated from the right-click menu or from code — the only criteria being that the install process
must be user initiated (so random applications can’t install themselves on users’ machines without
their approval).

By default, your Silverlight application will
not be configured for Out-Of-Browser mode,
and you must explicitly enable this in your
application for the feature to be available.
The easiest way to enable this is in the project
properties for the Silverlight application, as
was shown in Figure 22-4. When you put a
check in the Enable Running the Application
Out of the Browser option the Out-of-Browser
Settings button becomes enabled, and clicking
this button pops up the window shown in
Figure 22-9.

This window enables you to configure various
options for when the application is running
in Out-Of-Browser mode. Most of the options
are fairly self-explanatory. You can set the
window title and its starting dimensions
(the window is resizable). You can also
configure the start menu/desktop shortcuts,
set the text for the shortcut (the shortcut
name), set the text that will appear when the
mouse hovers over the icon (the application
description), and set the various-sized icons to
use for the shortcut. These icons must be PNG
files that have already been added as files in your Silverlight project. Select the appropriate image
for each icon size. If you leave any of these icons blank, it simply uses the default Out-Of-Browser
icon for that icon size instead. The two checkboxes at the bottom enable you to set whether
Out-Of-Browser mode should use GPU acceleration (for Silverlight applications running inside
the browser this setting is set on the Silverlight plug-in itself), and the Show install menu checkbox
specifies whether the user should have the option to install the application via the right-click menu
(otherwise, the install process must be initiated from code).

fiGure 22-9

enabling running out of Browser ❘ 481

http://lib.ommolketab.ir
http//lib.ommolketab.ir

482 ❘ chaPter 22 SilVerlighT

 Once you ’ ve confi gured the Out - Of - Browser settings
you can now run the project and try it out. When your
application is running, right - click anywhere on your
application and select the Install XXXX onto your
computer option as shown in Figure 22 - 10 to
initiate the install process (where XXXX is the
name of the application).

 The window shown in Figure 22 - 11 appears
with options for the user to select which types of
shortcuts to the application should be set up.

 This installs the application locally (under the
user ’ s profi le), confi gures the selected desktop/
start menu shortcuts, and automatically starts the
application in Out - Of - Browser mode.

 Note that your Silverlight application is still sandboxed when running outside
the browser and will have no more access to the user ’ s computer than it did
while running inside the browser. So although it may appear to be running as
if it were a standard application, it ’ s still restricted by the same security model
as when it ’ s running inside the browser. However, Silverlight 4 introduced the
ability for Out - Of - Browser applications to obtain elevated trust privileges,
including COM automation and local fi le access.

 fiGure 22 - 10

 fiGure 22 - 11

 To uninstall the application, simply right - click it and select the Remove this
Application option.

 Of course, you will need to update your application at some point in time and have the existing
instances that were installed updated accordingly. Luckily, this is very easy to do, but does require some
code. This code could be used anywhere in your application, but you ’ ll put it in the code - behind for the
 App.xaml fi le, and start the update available check as soon as the application has started as follows:

 Vb

Private Sub Application_Startup(ByVal o As Object, ByVal e As StartupEventArgs) _
 Handles Me.Startup
 Me.RootVisual = New MainPage()

 If Application.Current.IsRunningOutOfBrowser Then

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Application.Current.CheckAndDownloadUpdateAsync()
 End If
End Sub

Private Sub App_CheckAndDownloadUpdateCompleted(ByVal sender As Object, _
 ByVal e As _
 System.Windows.CheckAndDownloadUpdateCompletedEventArgs) _
 Handles Me.CheckAndDownloadUpdateCompleted
 If e.UpdateAvailable Then
 MessageBox.Show("A new version of this application is available and " &
 "has been downloaded. Please close the application and " &
 "restart it to use the new version.",
 "Application Update Found", MessageBoxButton.OK)
 End If
End Sub

c#

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new Page();

 if (Application.Current.IsRunningOutOfBrowser)
 {
 Application.Current.CheckAndDownloadUpdateCompleted +=
 Current_CheckAndDownloadUpdateCompleted;
 Application.Current.CheckAndDownloadUpdateAsync();
 }
}

private void Current_CheckAndDownloadUpdateCompleted(object sender,
 CheckAndDownloadUpdateCompletedEventArgs e)
{
 if (e.UpdateAvailable)
 {
 MessageBox.Show("A new version of this application is available and " +
 "has been downloaded. Please close the application and restart " +
 "it to use the new version.", "Application Update Found",
 MessageBoxButton.OK);
 }
}

As you can see, if the application is running in Out-Of-Browser mode you check to see if there
are any updates. This asynchronously goes back to the URL that the application was installed
from and checks if there is a new version (during which the application continues to load and
run). If so it automatically downloads it. Whether or not an update was found, it raises the
CheckAndDownloadUpdateCompleted event once the check (and potential download of a new
version) is complete. Then you just need to see if an update had been found, and notify the user if
so. The update is automatically installed the next time the application is run, so in order to start
using the new version the user will need to close the application and reopen it again.

To test the update process, start by including the update check code in your application. Run
the application and install it using the method described earlier. Close both it and the instance

enabling running out of Browser ❘ 483

http://lib.ommolketab.ir
http//lib.ommolketab.ir

484 ❘ chaPter 22 SilVerlighT

that was running in the browser and return to Visual Studio. Make a change to the application
(one that allows you spot the difference if it is updated correctly) and recompile it. Now run the
previously installed version (from the Start menu or desktop icon). The application starts, and
shortly afterwards the message box appears stating that the new version has been downloaded and
to restart the application. When you reopen the application again you should see that you are indeed
now running the new version.

suMMary

In this chapter you have seen how you can work with Visual Studio 2010 to build applications with
Silverlight, and run them both within and outside the browser. To learn about one of the many
means of communicating between the client and the server and transferring data see Chapter 35,
“WCF RIA Services.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

23
 Dynamic Data

 what ’ s in this chaPter?

 Creating a data - driven web application without writing any code ➤

using Dynamic Data ’ s scaff olding functionality

 Customizing the data model and presentation layer of a Dynamic ➤

Data application

 Adding Dynamic Data features to an existing web application ➤

 Most developers spend an inordinately large amount of their time writing code that deals with
data. In fact, this is so fundamental to what many of us do on a daily basis that an acronym
has appeared to describe this type of code — CRUD . CRUD stands for Create , Read , Update ,
 Delete , which are the four basic functions that can be performed on data.

 For example, consider a simple application to maintain a Tasks or To Do list. At the very least
the application must provide the following functionality:

 ➤ Create: Create a new task and save it in the database.

 ➤ Read: Retrieve a list of tasks from the database and display them to the user. Retrieve
and display all the properties of an individual task.

 ➤ Update: Modify the properties of an existing task and save the changes to the
database.

 ➤ Delete: Delete a task from the database that is no longer required.

 ASP.NET Dynamic Data is a framework that takes away the need to write much of this low -
 level CRUD code. Dynamic Data can discover the data model and automatically generate a
fully functioning, data - driven web site at run time. This allows developers to focus instead on
writing rock - solid business logic, enhancing the user experience, or performing some other
high - value programming task.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

486 ❘ chaPter 23 dynAmic dATA

 This chapter demonstrates how to use Dynamic Data scaffolding to create a data - driven web
application with little or no code. You also learn how fl exible Dynamic Data is by customizing
the data model and web pages.

 Although Dynamic Data is somewhat synonymous with scaffolding and building a data - driven
web application from scratch, at the end of this chapter you will see that you can get a number of
benefi ts by adding Dynamic Data functionality to your existing web application.

 creatinG a dynaMic data web aPPlication

 Before you can create and run a Dynamic Data web application you will need a database. The
examples in this chapter use the SQL Server 2008 AdventureWorksLT database, which you can
download from the CodePlex web site at http://msftdbprodsamples.codeplex.com/ .

 Once you ’ ve downloaded your database, open Visual Studio and select File ➪ New ➪ Project. In the
Web project category of both Visual Basic and C# you will see two project templates for Dynamic
Data that refl ect the two major data access options supported by Microsoft. The fi rst, LINQ to SQL,
is provided by the aptly named Dynamic Data Linq to SQL Web Application template. The second
template, Dynamic Data Entities Web Application, supports the ADO.NET Entity Framework.

 less is More: scaffoldinG and conVention oVer confiGuration

 Scaffolding is the name for the mechanism that ASP.NET Dynamic Data uses to
dynamically generate web pages based on the underlying database. The generated pages
include all of the functionality you would expect in any decent data - driven application
including paging and sorting. In addition to the benefi ts of freeing developers from
writing low - level data access code, scaffolding provides built - in data validation based on
the database schema and full support for foreign keys and relationships between tables.

 Scaffolding was popularized by the Ruby on Rails web development framework.
Along with scaffolding, ASP.NET Dynamic Data includes several other principles
and practices that are clearly inspired by Ruby on Rails. One such principle is
 Convention over Confi guration , which means that certain things are implicitly
assumed through a standard convention. For example, at run time, Dynamic Data
will detect the fi le List.aspx under the folder called Products and use it to render
a custom web page for the Product database table. Because the folder name is the
same (pluralized) name as the database table, there is no need to explicitly tell
Dynamic Data that this fi le exists, or that it is associated with the Product table.

 Less code means fewer places for mistakes.

 If you prefer working with Web Site projects instead of Web Application projects
you can still use Dynamic Data. Under the New Web Site dialog you will fi nd
two equivalent templates for creating a new LINQ to SQL or Entities Dynamic
Data Web Site project.

http://msftdbprodsamples.codeplex.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Select the Dynamic Data Linq to SQL Web Application
project and click OK. When the new project is created it will
generate a large number of fi les and folders, as shown in
Figure 23 - 1. Most of these fi les are templates that can be
modifi ed to customize the user interface. These are located
under the DynamicData root folder and are discussed later
in this chapter.

 The project template will also create a standard web form,
 Default.aspx , as the start page for the web application.
As with the standard ASP.NET Web Application project,
the application encourages best practices by making use
of the master page feature and an external CSS fi le, and
includes the JQuery JavaScript library. See Chapter 20 for
further information on any of these features.

 adding a data Model
 Once you have created your new project you will need to
specify the database and create a new data model. Right -
click the App_Data folder and select Add Existing Item,
then browse to the AdventureWorksLT2008_Data.mdf fi le
you downloaded earlier and click Add.

 linq to sql Versus the ado .net entity fraMework

 LINQ to SQL and the ADO.NET Entity Framework are the two main data access
options that are currently being promoted by Microsoft. Both have their pros
and cons, and both work perfectly well for many of the more common scenarios.

 LINQ to SQL works only with Microsoft SQL Server database, and only supports
a direct mapping of a single database table to a single .NET class. Because LINQ
to SQL is so tightly coupled to SQL Server, it is known to generate very effi cient
T - SQL code.

 On the other hand, the ADO.NET Entity Framework allows for a data model that
is different from the underlying database schema. You can map multiple database
tables to a single .NET class, or a single database table to multiple .NET classes.
The Entity Framework also supports a number of different databases including
Oracle, MySQL, and DB2.

 You can fi nd out more about LINQ to SQL in Chapter 28 and the ADO.NET
Entity Framework in Chapter 29 .

fiGure 23-1

Creating a Dynamic Data Web application ❘ 487

http://lib.ommolketab.ir
http//lib.ommolketab.ir

488 ❘ chaPter 23 dynAmic dATA

The next step is to create the data model. Right-click the project in the Solution Explorer and
select Add ➪ New Item. Select the LINQ to SQL Classes item from the Data category and name it
AdventureWorksDM.dbml. If you had chosen to create an Entities Dynamic Data project earlier you
would select the ADO.NET Entity Data Model instead.

After you click Add, the new item will open in the Object Relational Designer. Double-click the
AdventureWorksLT database file you added earlier to open it in the Server Explorer and then
expand the Tables node. Select all tables, except the first two, and drag them onto the Designer.
This populates the LINQ to SQL data model as shown in Figure 23-2.

fiGure 23-2

Finally, you’ll need to register your data model with Dynamic Data and enable scaffolding.
Open the Global.asax.cs (or Global.asax.vb if you are using Visual Basic) and locate
the following line of code. Uncomment this line and change the YourDataContextType to
AdventureWorksDMDataContext. Lastly, change the ScaffoldAllTables property to true.

c#

DefaultModel.RegisterContext(typeof(AdventureWorksDMDataContext),
 new ContextConfiguration()
 { ScaffoldAllTables = true });

Code snippet Global.asax.cs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

DefaultModel.RegisterContext(GetType(AdventureWorksDMDataContext), _
 New ContextConfiguration() _
 With {.ScaffoldAllTables = True})

Code snippet Global.asax.vb

That is all you need to do to get a data-driven web application with full CRUD support up
and running.

exploring a dynamic data application
When you run the application, it opens with the home page, Default.aspx, which displays a list
of hyperlinks for all the tables you added to the data model (see Figure 23-3). Note that the names
listed on this page are pluralized versions of the table name.

fiGure 23-3

When you click one of these links, you are taken to the List.aspx page, shown in Figure 23-4,
for the selected table. This page, along with the Details.aspx page for an individual record,
represents the “Read” function of your CRUD application and includes support for paging and
filtering of the records by foreign key. This page also displays links to view details, edit, or delete a
record. Any foreign keys are displayed as links to a details page for that foreign key record.

Creating a Dynamic Data Web application ❘ 489

http://lib.ommolketab.ir
http//lib.ommolketab.ir

490 ❘ chaPter 23 dynAmic dATA

 The “ Update ” CRUD function is accessed by clicking the Edit link against a record. This displays
the Edit.aspx page, as shown in Figure 23 - 5. You will notice that the textboxes are different
widths — this is determined based on the length of the database fi eld. This page also includes a
number of ASP.NET validation controls, based on database fi eld information. For example, the
ProductNumber fi eld has a RequiredFieldValidator because the underlying database fi eld is
not nullable. Likewise, the Weight fi eld uses a CompareValidator to ensure that the value
entered is a decimal.

 Foreign keys are also handled by drop - down selectors. For example, in Figure 23 - 5 the
ProductCategory and ProductModel fi elds are foreign keys. Tables that use the selected table as
a foreign key are displayed as hyperlinks. This can be seen in the SalesOrderDetails fi eld in
Figure 23 - 5.

fiGure 23-4

 You may notice that some database fi elds are missing from the web page, such
as ProductID and ThumbNailPhoto. By default, Dynamic Data will not
scaffold Identity columns, binary columns, or computed columns. This can be
overridden, as you will fi nd out later in this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

custoMizinG the data Model

While scaffolding an entire database makes for an impressive demo, it is unlikely that you would
actually want to expose every table and field in your database to end users. Fortunately, Dynamic
Data has been designed to handle this scenario, and many others, by customizing the data model.

scaffolding individual tables
Before you begin customizing the data model you should disable automatic scaffolding of all tables.
Open the Global.asax.cs file and change the ScaffoldAllTables property to false.

The next step is to selectively enable scaffolding for individual tables. Begin by adding a new class
file to the project called Product.cs. This class must be a partial class, because Product is already
defined in the LINQ to SQL data model. To enable scaffolding for the Product table, decorate
the class with the ScaffoldTable attribute. Once completed, the class should look similar to the
following code:

fiGure 23-5

Customizing the Data Model ❘ 491

http://lib.ommolketab.ir
http//lib.ommolketab.ir

492 ❘ chaPter 23 dynAmic dATA

 c#

using System.ComponentModel.DataAnnotations;

namespace DynDataWebApp
{
 [ScaffoldTable(true)]
 public partial class Product
 {
 }
}

 Code snippet Product.cs

 Vb

Imports System.ComponentModel.DataAnnotations

 < ScaffoldTable(True) > _
Partial Public Class Product
End Class

 Code snippet Product.vb

 If you run the application now only the Product table will be listed and editable.

 You can achieve the same result by leaving the ScaffoldAllTables property to
 true and selectively hiding tables by decorating their corresponding classes with
the ScaffoldTable attribute set to false .

 customizing individual data fields
 In many cases you will want certain fi elds in a table to be either read only or hidden. This is
particularly useful if the table contains sensitive data such as credit card information.

 For example, when you edit a record in the Products table, it displays a link to the SalesOrderDetails
table. This link is disabled because the SalesOrderDetails table has not been enabled for scaffolding.
Therefore displaying this fi eld provides the user with no useful information. Also the Modifi edDate
fi eld, while useful for end users to know, is not something that you would typically want them to
edit directly. Therefore it would be better to display this fi eld as read only and allow the database
to modify it with an Update trigger.

 These requirements are supported by Dynamic Data by adding a metadata class to your data model
class. In the Product.cs fi le add a new class to the bottom of the fi le called ProductMetadata .
This class can be associated by applying the MetadataType attribute to the Product class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the ProductMetadata class, create public fields with the same name as each data field that you
want to customize. Because Dynamic Data will read the type of this field from the data model class
rather than the metadata class, you can use object as the type for these fields.

Add the ScaffoldColumn attribute to the SalesOrderDetails field and set it to false to hide the
field. To make the ModifiedDate field read only, decorate it with an Editable attribute that is set
to false.

The following code shows these changes:

c#

namespace DynDataWebApp
{
 [ScaffoldTable(true)]
 [MetadataType(typeof(ProductMetadata))]
 public partial class Product
 {
 }
 public class ProductMetadata
 {
 [ScaffoldColumn(false)]
 public object SalesOrderDetails;

 [Editable(false)]
 public object ModifiedDate;
 }
}

Code snippet Product.cs

Vb

<ScaffoldTable(True)> _
<MetadataType(GetType(ProductMetadata))> _
Partial Public Class Product
End Class
Public Class ProductMetadata
 <ScaffoldColumn(False)> _
 Public SalesOrderDetails As Object

 <Editable(False)> _
 Public ModifiedDate As Object
End Class

Code snippet Product.vb

Figure 23-6 shows the results of these changes in action. On the left is the original edit screen for
the Product table. On the right is the new edit screen after the data model has been customized.

Customizing the Data Model ❘ 493

http://lib.ommolketab.ir
http//lib.ommolketab.ir

494 ❘ chaPter 23 dynAmic dATA

adding custom Validation rules
As mentioned earlier in this chapter, Dynamic Data includes some built-in support for validation
rules that are inferred from the underlying database schema. For example, if a field in a database
table is marked as not nullable, a RequiredFieldValidator will be added to the Update page.

However, in some cases there are business rules about the format of data that isn’t supported by the
built-in validation rules. For example, in the Product table, the values saved in the ProductNumber
field all follow a specific format that begins with two uppercase letters followed by a hyphen.
This format can be enforced by decorating the ProductNumber field with a RegularExpression
attribute, as shown in the following code:

c#

[ScaffoldTable(true)]
[MetadataType(typeof(ProductMetadata))]
public partial class Product
{
}

public class ProductMetadata

fiGure 23-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{
 [RegularExpression(“^[A-Z]{2}-[A-Z0-9]{4}(-[A-Z0-9]{1,2})?$”,
 ErrorMessage=”Product Number must be a valid format”)]
 public object ProductNumber;
}

Code snippet Product.cs

Vb

<ScaffoldTable(True)> _
<MetadataType(GetType(ProductMetadata))> _
Partial Public Class Product
End Class

Public Class ProductMetadata
 <RegularExpression(“^[A-Z]{2}-[A-Z0-9]{4}(-[A-Z0-9]{1,2})?$”, _
 ErrorMessage:=”Product Number must be a valid format”)> _
 Public ProductNumber As Object
End Class

Code snippet Product.vb

There is also a Range attribute, which is useful for specifying the minimum and maximum allowed
values for a numeric field. Finally, you can apply the Required or StringLength attributes if
you want to enforce these constraints on a field in the data model without specifying them in the
underlying database.

Although useful, the attribute-based validations don’t support all scenarios. For example, a user
could attempt to enter a date for the Product SellEndDate that is earlier than the SellStartDate
value. Due to a database constraint on this field, this would result in a runtime exception rather
than a validation error, which is presented to the user.

For each field that is in the data model, LINQ to SQL defines two methods that are called during an
edit — the OnFieldNameChanging method, which is called just before the field is changed, and the
OnFieldNameChanged method, which is called just after. To handle complex validation rules, you
can complete the appropriate partial method declaration in the data model.

The following code shows a validation rule that ensures a value entered for the Product SellEndDate
field is not earlier than the SellStartDate:

c#

[ScaffoldTable(true)]
[MetadataType(typeof(ProductMetadata))]
public partial class Product
{
 partial void OnSellEndDateChanging(DateTime? value)
 {
 if (value.HasValue && value.Value < this._SellStartDate)

Customizing the Data Model ❘ 495

http://lib.ommolketab.ir
http//lib.ommolketab.ir

496 ❘ chaPter 23 dynAmic dATA

 {
 throw new ValidationException(
 “Sell End Date must be later than Sell Start Date”);
 }
 }
}

Code snippet Product.cs

Vb

<ScaffoldTable(True)> _
<MetadataType(GetType(ProductMetadata))> _
Partial Public Class Product
 Private Sub OnSellEndDateChanging(ByVal value As Nullable(Of DateTime))
 If value.HasValue AndAlso value.Value < Me._SellStartDate Then
 Throw New ValidationException(_
 “Sell End Date must be later than Sell Start Date”)
 End If
 End Sub
End Class

Code snippet Product.vb

Figure 23-7 shows how this custom validation
rule is enforced by Dynamic Data.

customizing the display format
The default way that some of the data types
are formatted is less than ideal. For example,
the Product StandardCost and ListPrice fields,
which use the SQL money data type, are
displayed as numbers to four decimal places.
Also, the Product SellStartDate and SellEndDate
fields, which have a SQL datetime data type,
are formatted showing both the date and time,
even though the time portion is not really useful
information.

The display format of these fields can be
customized in two ways: globally for a specific
data type by customizing the field template; or
on an individual field basis by customizing the
data model. Field template customization is
discussed later in this chapter.

First, to specify how the fields will be formatted in the user interface, decorate the corresponding
property in the data model with the DisplayFormat attribute. This attribute has a DataFormatString

fiGure 23-7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

property that accepts a .NET format string. The attribute also includes a number of additional parameters
to control rendering including the HtmlEncode parameter, which indicates whether the fi eld should
be HTML encoded, and the NullDisplayText attribute, which sets the text to be displayed when the
fi eld ’ s value is null. The following code shows how the DisplayFormat attribute can be applied:

 c#

[DisplayFormat(DataFormatString="{0:C}")]
public object ListPrice;

[DisplayFormat(DataFormatString="{0:MMM d, yyyy}",
 NullDisplayText="Not Specified")]
public object SellEndDate;

 Code snippet Product.cs

 Vb

 < Display(Name:="List Price") > _
 < DisplayFormat(DataFormatString:="{0:C}") > _
Public ListPrice As Object

 < Display(Name:="Sell End Date") > _
 < DisplayFormat(DataFormatString:="{0:MMM d, yyyy}",
 NullDisplayText:="Not Specified") > _
Public SellEndDate As Object

 Code snippet Product.vb

 By default, the display format will only be applied to the Read view. To apply
this formatting to the Edit view set the ApplyFormatInEditMode property to
 true on the DisplayFormat attribute.

 Second, it ’ s unlikely that you ’ ll want to use the database fi eld names in the user interface. It
would be much better to provide descriptive names for all of your fi elds. You can use the Display
attribute to control how the fi eld labels are rendered. This attribute accepts a number of parameters,
including Name , to specify the actual label and Order to control the order in which fi elds should be
listed. In the following code, the ProductNumber fi eld has been given a display name of “ Product
Code ” and an order value of 1 to ensure it is always displayed as the fi rst fi eld:

 c#

[Display(Name="Product Code", Order=1)]
public object ProductNumber;

 Code snippet Product.cs

Customizing the Data Model ❘ 497

http://lib.ommolketab.ir
http//lib.ommolketab.ir

498 ❘ chaPter 23 dynAmic dATA

Vb

<Display(Name:="Product Code", Order:=1)> _
Public ProductNumber As Object

Code snippet Product.vb

Figure 23-8 shows how these display formatting changes are rendered by Dynamic Data.

fiGure 23-8

custoMizinG the Presentation

Chances are the way that Dynamic Data renders a web site by default will not be exactly what
you require. The previous section demonstrated how many aspects of the data model could be
customized to control how the database tables and fields are rendered. However, limitations exist as
to what can be achieved simply by customizing the data model. Fortunately, Dynamic Data uses a
rich template system that is fully customizable and allows you complete control over the UI.

The Dynamic Data template files are stored under a number of subfolders in the DynamicData
folder, which is in the root of the web application. Following the Convention over Configuration
principle, these template files do not need to be manually registered with Dynamic Data. Instead,
each different type of template should be stored in a specific folder and the framework will use the
location, as well as the template filename, to determine when to load it at run time.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Page templates
Page templates are used to provide the default rendering of a database table. The master page
templates are stored in the DynamicData\PageTemplates folder. Dynamic Data ships with the
following five page templates for viewing and editing data:

 ➤ Details.aspx: Renders a read-only view of an existing entry from a table.

 ➤ Edit.aspx: Displays an editable view of an existing entry from a table.

 ➤ Insert.aspx: Displays a view that allows users to add a new entry to a table.

 ➤ List.aspx: Renders an entire table using a grid view with support for paging and sorting.

 ➤ ListDetails.aspx: Used when Dynamic Data is configured with the combined-page mode,
where the Detail, Edit, Insert, and List tasks are performed by the same page. This mode
can be enabled by following the comment instructions in the Global.asax file.

You can edit any of these default page templates if there are changes that you would like to affect
all tables by default. You can also override the default page templates by creating a set of custom
templates for a table. Custom pages templates are stored under the DynamicData\CustomPages
folder.

In the AdventureWorksLT database, the SalesOrderHeader table is a good candidate for a custom
page template. Before creating the template, you will need to enable scaffolding for this table. Create
a new data model partial class for the SalesOrderHeader table and enable scaffolding as shown in
the following listing:

c#

using System.ComponentModel.DataAnnotations;

namespace DynDataWebApp
{
 [ScaffoldTable(true)]
 public partial class SalesOrderHeader
 {
 }
}

Code snippet SalesOrderHeader.cs

Vb

Imports System.ComponentModel.DataAnnotations

<ScaffoldTable(True)> _
Partial Public Class SalesOrderHeader
End Class

Code snippet SalesOrderHeader.vb

Customizing the Presentation ❘ 499

http://lib.ommolketab.ir
http//lib.ommolketab.ir

500 ❘ chaPter 23 dynAmic dATA

 Next, create a subfolder called SalesOrderHeaders under the DynamicData\CustomPages folder.
This folder will contain the custom templates for the SalesOrderHeader table. Copy the existing
 List.aspx template from the DynamicData\PageTemplates folder to the DynamicData\
CustomPages\SalesOrderHeaders folder.

 The folder name for custom page templates should generally be named with the
plural form of the table name. The exception to this is if the data model is using
the ADO.NET Entity Framework version 3.5, or if the default option Pluralize
or Singularize Generated Object Names has been changed. In this case the folder
name should have the same name as the table.

 Because the template was copied, and therefore a duplicate class was created, your application will
no longer compile. The easiest way to fi x this is to change the namespace to any unique value in
both the markup and code - behind fi les of the new template, as shown in the following code:

 c#

 < %@ Page Language="C#" MasterPageFile="~/Site.master" CodeBehind="List.aspx.cs"
 Inherits="DynDataWebApp._SalesOrderHeaders.List" % >

 Code snippet DynamicData\CustomPages\SalesOrderHeaders\List.aspx

namespace DynDataWebApp._SalesOrderHeaders
{
 public partial class List : System.Web.UI.Page
 {
 // Code snipped
 }
}

 Code snippet DynamicData\CustomPages\SalesOrderHeaders\List.aspx.cs

 Vb

< %@ Page Language="VB" MasterPageFile="~/Site.master" CodeBehind="List.aspx.vb"
 Inherits="DynDataWebApp._SalesOrderHeader.List" % >

 Code snippet DynamicData\CustomPages\SalesOrderHeaders\List.aspx

Namespace _SalesOrderHeader
 Class List
 Inherits Page
 ’ Code Snipped
 End Class
End Namespace

 Code snippet DynamicData\CustomPages\SalesOrderHeaders\List.aspx.vb

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can now customize the template in whatever manner you wish. For example, you may want to
reduce the number of columns that appear in the List view, while still ensuring that all data fields
appear in the Insert and Edit views. This degree of customization is only possible by creating a
table-specific page template.

Make this change by locating the GridView control in List.aspx. Disable the automatic rendering of
all data fields by adding the property AutoGenerateColumns=”False”. Then, manually specify the fields
that you want to display by adding a set of DynamicField controls as shown in the following code:

<asp:GridView ID=”GridView1” runat="server" DataSourceID=”GridDataSource”
 EnablePersistedSelection="True" AllowPaging="True"
 AllowSorting="True" CssClass="DDGridView"
 AutoGenerateColumns="False" RowStyle-CssClass="td"
 HeaderStyle-CssClass="th" CellPadding="6">
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <asp:DynamicHyperLink runat="server" Text="Details" />
 </ItemTemplate>
 </asp:TemplateField>
 <asp:DynamicField DataField=”AccountNumber” HeaderText=”Account No” />
 <asp:DynamicField DataField=”PurchaseOrderNumber” HeaderText=”PO Number” />
 <asp:DynamicField DataField=”OrderDate” DataFormatString=”{0:d-MMM-yyyy}”
 HeaderText=”Order Date” />
 <asp:DynamicField DataField=”ShipDate” DataFormatString=”{0:d-MMM-yyyy}”
 HeaderText=”Ship Date” />
 <asp:DynamicField DataField=”SubTotal” DataFormatString=”{0:c}”
 HeaderText=”Sub Total” />
 <asp:DynamicField DataField=”TaxAmt” DataFormatString=”{0:c}”
 HeaderText=”Tax Amount” />
 <asp:DynamicField DataField=”Freight” DataFormatString=”{0:c}”
 HeaderText=”Freight” />
 </Columns>

 <HeaderStyle CssClass=”th” />

 <PagerStyle CssClass=”DDFooter”/>
 <PagerTemplate>
 <asp:GridViewPager runat=”server” />
 </PagerTemplate>
 <EmptyDataTemplate>
 There are currently no items in this table.
 </EmptyDataTemplate>
 <RowStyle CssClass=”td” />
</asp:GridView>

Code snippet DynamicData\CustomPages\SalesOrderHeaders\List.aspx

Figure 23-9 shows the customized List view of the SalesOrderHeader table with this reduced set
of columns.

Customizing the Presentation ❘ 501

http://lib.ommolketab.ir
http//lib.ommolketab.ir

502 ❘ chaPter 23 dynAmic dATA

field templates
Field templates are used to render the user interface for individual data fields. There are both view
and edit field templates. The field templates are named according to the name of the data type,
with the suffix _Edit for the edit view. For example, the view template for a Text field is called
Text.ascx, and renders the field using an ASP.NET
Literal control. The corresponding edit template is called
Text_Edit.ascx, and it renders the field using an ASP.NET
TextBox control. The edit template also contains several
validation controls, which are enabled as required and handle
any validation exceptions thrown by the data model.

Dynamic Data ships with a large number of field templates,
as shown in Figure 23-10. As with page templates, you can
customize the default field templates or create new ones. All
field templates, including any new templates that you create,
are stored in the DynamicData\FieldTemplates folder.

Several date fields in the SalesOrderHeader table of the
AdventureWorksLT database are rendered with both the date
and time, even though the time portion is not relevant.

The DateTime field template in Dynamic Data displays a
simple TextBox control for its Edit view. If the data field only
requires the date to be entered, and not the time, it would be
nice to display a Calendar control instead of a TextBox.

fiGure 23-9

fiGure 23-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Begin by creating a copy of the DateTime.ascx template and renaming it to DateCalendar.ascx.
Then open both the markup file and the code-behind file for DateCalendar.ascx and rename the
class from DateTimeField to DateCalendarField as shown in the following code:

c#

<%@ Control Language="C#" CodeBehind="DateCalendar.ascx.cs"
 Inherits="DynDataWebApp.DateCalendarField" %>

Code snippet DynamicData\FieldTemplates\DateCalendar.ascx

namespace DynDataWebApp
{
 public partial class DateCalendarField : FieldTemplateUserControl
 {
 // Code snipped
 }
}

Code snippet DynamicData\FieldTemplates\DateCalendar.ascx.cs

Vb

<%@ Control Language="VB" CodeBehind="DateCalendar.ascx.vb"
 Inherits="DynDataWebApp.DateCalendarField" %>

Code snippet DynamicData\FieldTemplates\DateCalendar.ascx

Class DateCalendarField
 Inherits FieldTemplateUserControl
 ’ Code Snipped
End Class

Code snippet DynamicData\FieldTemplates\DateCalendar.ascx.vb

Next, create a copy of the DateTime_Edit.ascx template and rename it to DateCalendar_Edit
.ascx. As before, open both the markup file and the code-behind file for DateCalendar_Edit.ascx
and rename the class from DateTime_EditField to DateCalendar_EditField. The following code
shows how it should look once renamed:

c#

<%@ Control Language="C#" CodeBehind="DateCalendar_Edit.ascx.cs"
 Inherits="DynDataWebApp.DateCalendar_EditField" %>

Code snippet DynamicData\FieldTemplates\DateCalendar_Edit.ascx

namespace DynDataWebApp
{
 public partial class DateCalendar_EditField : FieldTemplateUserControl

Customizing the Presentation ❘ 503

http://lib.ommolketab.ir
http//lib.ommolketab.ir

504 ❘ chaPter 23 dynAmic dATA

 {
 // Code snipped
 }
}

Code snippet DynamicData\FieldTemplates\DateCalendar_Edit.ascx.cs

Vb

<%@ Control Language="VB" CodeBehind="DateCalendar_Edit.ascx.vb"
 Inherits="DynDataWebApp.DateCalendar_EditField" %>

Code snippet DynamicData\FieldTemplates\DateCalendar.ascx

Class DateCalendar_EditField
 Inherits FieldTemplateUserControl
 ’ Code Snipped
End Class

Code snippet DynamicData\FieldTemplates\DateCalendar.ascx.vb

At this point you could replace the TextBox control in the DateCalendar_Edit.ascx file with a
standard Calendar web server control. However, this would require a number of changes in the
code-behind file to get it working with this new type of control. A far easier solution is to use
the Calendar control from the AJAX Control Toolkit. This is a Control Extender, which means
it attaches to an existing TextBox on a web page and provides new client-side functionality.
You can find more information about Control Extenders and the AJAX Control Toolkit in
Chapter 20.

You can download the AJAX Control Toolkit from http://ajaxcontroltoolkit.codeplex.com/.
Follow the instructions in Chapter 20 to add the controls in the AJAX Control Toolkit to the
Visual Studio Toolbox. Once this has been done, add a CalendarExtender control onto the
DateCalendar_Edit.ascx template. Then set the TargetControlID property and Format
property as shown in the following code:

<cc1:CalendarExtender ID=”CalendarExtender1” TargetControlID=”TextBox1”
 Format="d-MMM-yyyy" runat="server">
</cc1:CalendarExtender>

Code snippet DynamicData\FieldTemplates\DateCalendar_Edit.ascx

The final step is to associate some fields in the data model with the new field templates. In this
example, the OrderDate, ShipDate, and DueDate fields from the SalesOrderHeader table should be
associated. Modify the SalesOrderHeader partial class and create a metadata class, as described
earlier in the chapter. The UIHint attribute is used to associate the specified fields with the custom
field template, as shown in the following code:

http://ajaxcontroltoolkit.codeplex.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

namespace DynDataWebApp
{
 [ScaffoldTable(true)]
 [MetadataType(typeof(SalesOrderHeaderMetadata))]
 public partial class SalesOrderHeader
 {
 }
 public class SalesOrderHeaderMetadata
 {
 [DisplayFormat(DataFormatString = “{0:dd-MMM-yyyy}”,
 ApplyFormatInEditMode = true)]
 [UIHint(“DateCalendar”)]
 public object OrderDate;

 [DisplayFormat(DataFormatString = “{0:dd-MMM-yyyy}”,
 ApplyFormatInEditMode = true)]
 [UIHint("DateCalendar")]
 public object DueDate;

 [DisplayFormat(DataFormatString = "{0:dd-MMM-yyyy}",
 ApplyFormatInEditMode = true)]
 [UIHint("DateCalendar")]
 public object ShipDate;
 }
}

Code snippet SalesOrderHeader.cs

Vb

<ScaffoldTable(True)> _
<MetadataType(GetType(SalesOrderHeaderMetadata))> _
Partial Public Class SalesOrderHeader
End Class
Public Class SalesOrderHeaderMetadata
 <DisplayFormat(DataFormatString:="{0:dd-MMM-yyyy}",
 ApplyFormatInEditMode:=True)> _
 <UIHint("DateCalendar")> _
 Public OrderDate As Object

 <DisplayFormat(DataFormatString:="{0:dd-MMM-yyyy}",
 ApplyFormatInEditMode:=True)> _
 <UIHint("DateCalendar")> _
 Public DueDate As Object

 <DisplayFormat(DataFormatString:="{0:dd-MMM-yyyy}",
 ApplyFormatInEditMode:=True)> _
 <UIHint("DateCalendar")> _
 Public ShipDate As Object
End Class

Code snippet SalesOrderHeader.vb

Customizing the Presentation ❘ 505

http://lib.ommolketab.ir
http//lib.ommolketab.ir

506 ❘ chaPter 23 dynAmic dATA

Figure 23-11 shows the custom field template in the Edit view of an entry in the SalesOrderHeader
table.

fiGure 23-11

entity templates
Entity templates are used to render the user interface for an individual entry from a table. The default
entity templates are stored in the DynamicData\EntityTemplates folder, and include templates to
create, edit, and display a record. These templates work with the default page templates, and render
the UI using a two-column HTML table; label in the left column, data field in the right.

Customizing the existing entity templates affects all tables. You can also create a new custom entity
template for a specific table. This allows you to provide a completely different layout when editing
an entry from a database table compared to when the entry is simply viewed.

To create a new entity template, right-click the DynamicData\EntityTemplate folder and select
Add ➪ New Item. Choose a new Web User Control and name it SalesOrderHeaders.ascx.

The default templates use an EntityTemplate control, which is more or less equivalent to a Repeater
web server control. This control dynamically generates all of the fields for this table from the data
model. In this case, instead of using an EntityTemplate control, you can manually specify the fields
to be displayed. The following code lists a custom markup for the entity template that displays a
subset of the data:

<tr>
 <td class="DDLightHeader">
 <asp:Label ID=”Label1” runat="server" Text="Customer" />
 </td>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <td>
 Acct No:
 <asp:DynamicControl ID=”DynamicControl1” runat="server"
 DataField="AccountNumber" />

 PO No:
 <asp:DynamicControl ID=”DynamicControl2” runat="server"
 DataField="PurchaseOrderNumber" />
 </td>
</tr>
<tr>
 <td class="DDLightHeader">
 <asp:Label ID=”Label2” runat="server" Text="Dates" />
 </td>
 <td>
 Ordered:
 <asp:DynamicControl ID=”DynamicControl3” runat="server"
 DataField="OrderDate" />

 Due:
 <asp:DynamicControl ID=”DynamicControl4” runat="server"
 DataField="DueDate" />

 Shipped:
 <asp:DynamicControl ID=”DynamicControl5” runat="server"
 DataField="ShipDate" />
 </td>
</tr>
<tr>
 <td class="DDLightHeader">
 <asp:Label ID=”Label3” runat="server" Text="Amount" />
 </td>
 <td>
 Sub Total:
 <asp:DynamicControl ID=”DynamicControl6” runat="server"
 DataField="SubTotal" DataFormatString="{0:c}" />

 Tax:
 <asp:DynamicControl ID=”DynamicControl7” runat="server"
 DataField="TaxAmt" DataFormatString="{0:c}" />

 Freight:
 <asp:DynamicControl ID=”DynamicControl8” runat="server"
 DataField="Freight" DataFormatString="{0:c}" />
 </td>
</tr>

Code snippet DynamicData\EntityTemplates\SalesOrderHeader.ascx

Finally, change the web user control to inherit from System.Web.DynamicData.EntityTemplate
UserControl instead of System.Web.UI.UserControl:

Customizing the Presentation ❘ 507

http://lib.ommolketab.ir
http//lib.ommolketab.ir

508 ❘ chaPter 23 dynAmic dATA

c#

public partial class SalesOrderHeaders :
 System.Web.DynamicData.EntityTemplateUserControl

Code snippet DynamicData\EntityTemplates\SalesOrderHeader.ascx.cs

Vb

Public Class SalesOrderHeaders
 Inherits System.Web.DynamicData.EntityTemplateUserControl

Code snippet DynamicData\EntityTemplates\SalesOrderHeader.ascx.vb

You can now build and run the project to test the new entity template. Figure 23-12 shows the
default entity template (left) and the new customized template (right) for the SalesOrderHeader
table. The Edit and Insert views are unchanged, because the read-only Details template was the only
template that was customized.

fiGure 23-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 filter templates
 Filter templates are used to display a control that fi lters the rows that are displayed for a table.
Dynamic Data ships with three fi lter templates, stored in the DynamicData\Filters folder.
These fi lters have self - explanatory names — the Boolean fi lter is used for Boolean data types, the
 Enumeration fi lter is used when the data type is mapped to an enum, and the ForeignKey fi lter is
used for foreign key relationships.

 Figure 23 - 13 shows the four fi lter templates that are rendered by default for the SalesOrderHeader
table. The fi rst fi lter, OnlineOrderFlag, is a Boolean fi lter and only contains three options — All,
True, and False. The remaining three fi lters are generated from foreign keys, and each has a large
number of entries.

fiGure 23-13

 You may have noticed that the values displayed in the Customer drop - down list
are simply the customer ’ s title (Mr, Mrs, and so on), which are next to useless.
To select the fi eld that is displayed for foreign keys, Dynamic Data fi nds the fi rst
fi eld on the table with a string type. This can be overridden to any other fi eld on
the table by decorating the data model class with a DisplayColumn attribute.
However, in the case of the Customer table what you really want is to display a
string containing a number of fi elds (FirstName, LastName). To do this, simply
override the ToString method of the Customer data model class.

 Unfortunately, drop - down lists are only useful if they contain fewer than a couple of hundred
entries. Anything more than this and the rendering of the web page will slow down and the list will
be diffi cult to navigate. As the number of customers in the database grows to thousands, or more,

Customizing the Presentation ❘ 509

http://lib.ommolketab.ir
http//lib.ommolketab.ir

510 ❘ chaPter 23 dynAmic dATA

the use of a drop - down list for the Address, Address1, and Customer foreign keys will render this
page unusable.

 If you wanted to keep these fi lters, you could do something advanced such as customize the default
ForeignKey fi lter with a search control that performed a server callback and displayed a list of valid
entries that matched the search, all within an AJAX request of course! However, such an exercise
is well beyond the scope of this book, so instead you can learn how to control which fi elds are
rendered as fi lters.

 The remainder of this section assumes you have created a custom page template
for the SalesOrderDetail table, as described earlier in this chapter.

 Open the custom List.aspx template for the SalesOrderHeader table from DynamicData\
CustomPages\SalesOrderHeaders . Locate the QueryableFilterRepeater control on this page. This
control is used to dynamically generate the list of fi lters. Delete this control, and in its place add a
DynamicFilter control as shown in the following code. The DataField property must be set to the
correct data fi eld for the fi lter, and the FilterUIHint property should be set to the correct fi lter
template.

Online Order:
 < asp:DynamicFilter ID=”OnlineOrderFilter” runat="server"
 DataField="OnlineOrderFlag" FilterUIHint="Boolean"
 OnFilterChanged="DynamicFilter_FilterChanged" >
 < /asp:DynamicFilter >

 Code snippet DynamicData\CustomPages\SalesOrderHeader\List.aspx

 Next, locate the QueryExtender control toward the bottom of the page. This control is used to
 “ wire up ” the DynamicFilter control to the data source, so that the correct query will be used when
the fi lter changes. Modify the ControlID property to match the name of the DynamicFilter control
you just added, as shown in the following code:

 < asp:QueryExtender TargetControlID=”GridDataSource” ID=”GridQueryExtender”
 runat="server" >
 < asp:DynamicFilterExpression ControlID=”OnlineOrderFilter” / >
 < /asp:QueryExtender >

 Code snippet DynamicData\CustomPages\SalesOrderHeader\List.aspx

 Finally, you will need to remove some code that was only required by the QueryableFilterRepeater
control. Open the code - behind fi le (List.aspx.cs or List.aspx.vb) and remove the Label_PreRender
method. When you save the changes and run the project, you will see only a single fi lter displayed for the
SalesOrderHeader table, as shown in Figure 23 - 14.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

enablinG dynaMic data for existinG ProJects

Dynamic Data is undoubtedly a very powerful way to create a new data-driven web application
from scratch. However, with the version of Dynamic Data that ships with Visual Studio 2010, you
can use some of the features of Dynamic Data in an existing Web Application or Web Site project.

The EnableDynamicData extension method has been introduced to enable this functionality.
This method can be called on any class that implements the System.Web.UI.INamingContainer
interface. This includes the Repeater, DataGrid, DataList, CheckBoxList, ChangePassword,
LoginView, Menu, SiteMapNodeItem, and RadioButtonList controls.

Adding this functionality to an existing web control does not require the application to be using
LINQ to SQL or the Entity Framework. In fact, the application could be using any data access
option including plain old ADO.NET. This is because the Dynamic Data functionality that is
enabled in this way does not include any of the scaffolding functionality. Instead, it enables both
field templates and the validation and display attributes that were described earlier in this chapter.

For example, to enable Dynamic Data on a GridView control, call the EnableDynamicData
extension method as shown in the following code:

c#

GridView1.EnableDynamicData(typeof(Product));

Vb

GridView1.EnableDynamicData(GetType(Product))

You can now create a Product class with public properties that match the data displayed
in GridView1. Each of these properties can be decorated with attributes from the System
.ComponentModel.DataAnnotations namespace, such as Required, StringLength,

fiGure 23-14

enabling Dynamic Data for existing Projects ❘ 511

http://lib.ommolketab.ir
http//lib.ommolketab.ir

512 ❘ chaPter 23 dynAmic dATA

RegularExpression, or DisplayFormat. ASP.NET will interpret these attributes at run time and
automatically apply the relevant validations and formatting.

This allows any application to leverage Dynamic Data without making any significant changes to
the application.

suMMary

In this chapter you learned how to use ASP.NET Dynamic Data to create a data-driven web
application with little or no code. More importantly, you also learned how flexible Dynamic Data is
by customizing the data model and web pages.

By freeing developers from needing to write reams of low-level data access code, Dynamic Data
allows for faster development time, and lets your developers build features that add more value to
end users.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24
 sharePoint

 what ’ s in this chaPter?

 Setting up a development environment for SharePoint ➤

 Developing custom SharePoint components such as Web Parts, ➤

lists, and workfl ows

 Debugging and testing SharePoint projects ➤

 Packaging and deploying SharePoint components ➤

 Over the past couple of years the level of interest — and number of deployments — in
Microsoft SharePoint has reached the point where SharePoint is now one of Microsoft ’ s fastest
growing product lines.

 SharePoint is really a collection of related products and technologies that broadly service the
areas of document and content management, web - based collaboration, and search. SharePoint
is also a very fl exible application hosting platform, which allows you to develop and deploy
everything from individual Web Parts to full - blown web applications.

 Although it can be used to host web sites for anonymous external visitors, SharePoint is much
more ideally suited for web sites that involve registered users , particularly those that service
the needs of employees within an organization. SharePoint provides much of the low - level
integration code that is often required in these environments including built - in authentication
and authorization, integration with Microsoft Offi ce, access to external data, provisioning of
sites, and collaborative workfl ow.

 This chapter runs through the SharePoint development tools in Visual Studio 2010, and
demonstrates how to build, debug, and deploy SharePoint solutions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

514 ❘ chaPter 24 ShArepoinT

 PreParinG the deVeloPMent enVironMent

 One of the common complaints about previous versions of SharePoint has been the requirement to
use Windows Server for the local development environment. This is because SharePoint 2007 and
earlier could only run on a server operating system and you needed to have SharePoint running
locally to perform any debugging and integration testing.

 Fortunately, this has been addressed in SharePoint 2010. In addition to Windows Server 2008,
you can install SharePoint on either Windows 7 or Windows Vista (Service Pack 1 or later).
Unfortunately, you will need some reasonably powerful hardware for your local development
machine. SharePoint 2010 requires a 64-bit operating system and a recommended 4GB of RAM for
SharePoint Foundation and 6GB to 8GB of RAM for SharePoint Server.

 In addition to using Visual Studio 2010, you can create SharePoint solutions
using the free SharePoint Designer 2010. SharePoint Designer provides a very
different implementation approach by presenting the elements of a SharePoint
solution in a high - level logical way that hides many of the underlying
implementation details. It also includes some excellent WYSIWYG tools to
browse and edit components in existing SharePoint sites. As such, SharePoint
Designer is often considered the tool of choice for non - developers (IT
Professionals and end - users). However, it is still useful to developers as certain
development and confi guration tasks, such as building page layouts and master
pages, are much easier to perform using SharePoint Designer. Typically, you ’ ll
fi nd more experienced SharePoint developers using both tools to provision their
solutions.

 sharePoint serVer Versus sharePoint foundation

 SharePoint 2010 comes in two editions: SharePoint Server and SharePoint
Foundation. SharePoint Foundation was called Windows SharePoint Services
(WSS) in previous versions and is the free version that is targeted at smaller
organizations or deployments. It includes support for Web Parts and web - based
applications, document management, and web collaboration functionality such as
blogs, wikis, calendars, and discussions.

 SharePoint Server, on the other hand, is aimed at large enterprises and advanced
deployment scenarios. It has a cost for the server product itself as well as requiring
a client access license (CAL) for each user. SharePoint Server includes all the features
of SharePoint Foundation as well as providing multiple SharePoint sites, enhanced
navigation, indexed search, access to backend data, personalization, and Single Sign On.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 installing the Prerequisites

 SharePoint 2010 was in Beta at the time of writing, and as such, some of the
instructions may have changed in the fi nal release. If any important changes are
required, you will be able to fi nd corrections and updated instructions at www
.wrox.com . Just search for this book by the ISBN number 978-0-470 - 54865-3,
and look for Chapter 24 under errata.

 The installation of SharePoint is quite straightforward if you are targeting Windows Server. The
setup ships with a Prerequisite Installer tool (PrerequisiteInstaller.exe), which checks and
installs the required prerequisites. However, at the time of writing with SharePoint 2010 Beta 2,
this tool does not run on Windows 7 or Windows Vista. If you are installing SharePoint 2010 onto
one of these client operating systems you must install and confi gure a large number of prerequisites
manually.

 Regardless of which operating system you are using, you must fi rst install the WCF Hotfi x for
Microsoft Windows. You can download it from the following links:

 For Windows Vista or Windows Server 2008: ➤

 http://go.microsoft.com/fwlink/?linkID=160770

 For Windows 7 or Windows Server 2008 R2: ➤

 http://go.microsoft.com/fwlink/?LinkID=166231

 The following instructions assume that your copy of SharePoint is in the form of
a self - extracting executable called SharePoint.exe for SharePoint Foundation
or OfficeServer.exe for SharePoint Server. If instead you are installing from a
CD/DVD of SharePoint you can skip the following step, because the contents and
folder structure on the disc will be the same as the extracted fi les.

 It is recommended that unless you are building a solution that requires the advanced
features of SharePoint Server, you should take advantage of the lower system
requirements and install SharePoint Foundation on your development machine.
Since SharePoint Server is built on top of SharePoint Foundation, anything that can
run under SharePoint Foundation will also run under SharePoint Server.

Preparing the Development environment ❘ 515

http://go.microsoft.com/fwlink/?linkID=160770
http://go.microsoft.com/fwlink/?LinkID=166231
http://lib.ommolketab.ir
http//lib.ommolketab.ir

516 ❘ chaPter 24 ShArepoinT

Begin by creating a folder for the installation files, for example c:\SharePoint, and copy the
setup executable to this folder. Next, extract the installation files by running the following from a
command prompt (for SharePoint Foundation):

c:\SharePoint\SharePoint.exe /extract:c:\SharePoint

For SharePoint Server, replace SharePoint.exe with OfficeServer.exe.

If you are installing SharePoint on Windows Server you can now run the Prerequisite Installer
tool (PrerequisiteInstaller.exe) and then proceed to the next section (“Installing SharePoint
2010”). Otherwise, if you are targeting Windows Vista or Windows 7, you must manually install the
prerequisites as described in the remainder of this section.

The following prerequisites are required for Windows Vista only:

 ➤ .NET Framework 3.5 SP1: If you have installed Visual Studio 2010 this will already be
installed. Available via professionalvisualstudio.com/link/1024A.

 ➤ Windows PowerShell 2.0: Available via professionalvisualstudio.com/link/1024B.

 ➤ Windows Installer 4.5 Redistributable: Available via professionalvisualstudio
.com/link/1024C.

The following prerequisites are required for Windows 7 and Windows Vista:

 ➤ Microsoft FilterPack 2.0: This is shipped with the SharePoint installation files. Run the
installer package at c:\SharePoint\PrerequisiteInstallerFiles\FilterPack\
FilterPack.msi.

 ➤ Microsoft Sync Framework: If you have installed Visual Studio 2010 this will already be
installed. Available via professionalvisualstudio.com/link/1024D.

 ➤ SQL Server 2008 Native Client: If you have installed Visual Studio 2010 this will already
be installed. Available via professionalvisualstudio.com/link/1024E.

 ➤ Windows Identity Foundation Runtime: Formerly known as codename “Geneva”
Framework. Available via professionalvisualstudio.com/link/1024F.

 ➤ ADO.NET Data Services: Select the run time only. Available via professionalvisualstudio
.com/link/1024G.

 ➤ Chart Controls: This is not required for SharePoint Foundation. Available via
professionalvisualstudio.com/link/1024H.

 ➤ Microsoft ADOMD.NET: This is not required for SharePoint Foundation. Available via
professionalvisualstudio.com/link/1024I.

The final step is to enable all of the required Windows Features. Figure 24-1 lists the features that
must be enabled using the Programs and Features Control Panel item. You can also download
a batch script that will automatically enable these features from professionalvisualstudio
.com/link/1024J.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

installing sharePoint 2010
Now that the prerequisites have been installed you
can install either SharePoint Foundation or SharePoint
Server. If you are installing on Windows Server you can
simply launch the installer, setup.exe. However, if you
are installing to Windows 7 or Windows Vista you will
see the error shown in Figure 24-2 if you try to run the
installer.

To remove this limitation, you will need to edit the
configuration file, config.xml, which is located in
the c:\SharePoint\files\Setup folder. Add the following line to the <configuration> tag:

<Setting Id=”AllowWindowsClientInstall” Value=”True”/>

Once you have saved the configuration file, run setup.exe. Follow the instructions on the installer
and select the Standalone installation (Install single server standalone using default settings). After
the installer has completed, you will be prompted to run the SharePoint Products Configuration
Wizard. Once the wizard has completed, the default SharePoint site will open in a new browser
window, as shown in Figure 24-3.

fiGure 24-1

fiGure 24-2

Preparing the Development environment ❘ 517

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

518 ❘ chaPter 24 ShArepoinT

 exPlorinG sharePoint 2010

 The fi rst time you peak under the covers at SharePoint it can be somewhat overwhelming. One
reason for this is because so much of the terminology used by SharePoint is unfamiliar to web
developers, even those who know ASP.NET inside out. Before you begin developing a SharePoint
solution it ’ s helpful to understand the meaning of SharePoint components such as content types,
Features, event receivers, lists, workfl ows, and Web Parts.

 The Server Explorer in Visual Studio 2010 has been enhanced to provide the ability to explore a
SharePoint site and browse through its components. To connect to a SharePoint site, or develop and
debug a SharePoint solution, you must run Visual Studio with administrator rights. Right - click the
Visual Studio 2010 shortcut and select Run as Administrator.

fiGure 24-3

 To always launch Visual Studio 2010 with administrator rights, right - click the
shortcut and select Properties, and then select the Compatibility tab and check
the Run This Program as an Administrator checkbox.

 Open the Server Explorer by selecting View ➪ Server Explorer. You can only connect to SharePoint
if you have installed SharePoint locally. By default, a connection to the local SharePoint installation
is automatically listed under the SharePoint Connections node. You can add a connection to a
remote server by right - clicking the SharePoint Connections node and selecting Add Connection.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you select a SharePoint component in the Server Explorer, the properties of that component
will be listed in the Properties window. The Server Explorer provides read-only access to SharePoint.
Figure 24-4 shows the Server Explorer and the properties for a SharePoint site.

fiGure 24-4

Now that you’ve seen how to connect to and browse a SharePoint site, it’s worth spending some
time understanding some of the main concepts used in SharePoint.

Content types provide a way to define distinct types of
SharePoint content, such as a document or an announcement.
A content type has a set of fields associated with it that define
the metadata of the content. For example, the Document
content type shown in Figure 24-5 has fields such as the title
and the date the document was last modified. A content type
has properties that define settings such as the template to
use for displaying, editing, or creating a new instance of that
content type.

Features are a collection of resources that describe a logical set
of functionality. For example, SharePoint ships with Features
such as discussion lists, document libraries, and survey lists.
Features contain templates, pages, list definitions, event
receivers, and workflows. A Feature can also include resources
such as images, JavaScript files, or CSS files.

Features also contain event receivers, which are event handlers
that are invoked when a Feature is activated, deactivated, installed,
uninstalled, or upgraded. Event receivers can also be created for other SharePoint items such as lists or
SharePoint sites.

Lists are fundamental to SharePoint and are used almost everywhere. Features such as surveys, issues,
and document libraries are all built upon lists. A list definition specifies the fields, forms, views

exploring sharePoint 2010 ❘ 519

fiGure 24-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

520 ❘ chaPter 24 ShArepoinT

(.aspx pages), and content types associated with the list. A concrete implementation of a list
definition is called a list instance.

Workflows under SharePoint 2010 are used to automate business processes. SharePoint workflows
are actually built upon the same workflow engine (Windows Workflow Foundation) that ships with
.NET v3.5. Workflows can be associated with a particular SharePoint site, list, or content type.

Finally, Web Parts are web server controls that are hosted on a Web Part page in SharePoint. Users
can personalize a Web Part page and choose to display one or more Web Parts on that page. Web
Parts can display anything as simple as a static label that provides some content for a web page,
through to a complete data entry form for submitting line of business data.

creatinG a sharePoint ProJect

Now that you have some background on the main concepts behind SharePoint development, you
can create your first SharePoint solution. In Visual Studio 2010 select File ➪ New ➪ Project. Filter
the project types by selecting Visual C# or Visual Basic followed by SharePoint, and then 2010. The
available SharePoint project types will be displayed, as shown in Figure 24-6.

fiGure 24-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 A number of SharePoint project templates
ship with Visual Studio 2010. Most of the
SharePoint components that can be created
with these project templates can also be created
as individual items in an existing SharePoint
solution. For this reason, select a new Empty
SharePoint Project.

 When you click OK, Visual Studio launches the
SharePoint Customization Wizard, shown in
Figure 24 - 7. You will be prompted to specify the
site and a security level for debugging. Because it
is not possible to debug SharePoint sites running
on remote computers you will only be able
to select a local SharePoint site. You must also
select the trust level that the SharePoint solution
will be deployed with during debugging. Select Deploy as a Farm Solution and click Finish.

fiGure 24-7

 Sandboxed solutions run in a partially trusted environment with access to a
limited subset of functionality. The sandbox environment monitors a range
of performance - related measures including CPU execution time, memory
consumption, and database query time. In addition, sandbox solutions cannot
be activated unless they pass a validation process. This provides SharePoint
administrators with the confi dence that a rogue component won ’ t impact the rest
of the SharePoint environment.

 When the SharePoint project is created you will notice two unique nodes listed in the Solution
Explorer. These nodes are found in every SharePoint project and cannot be deleted, moved, or
renamed.

 The Features node can contain one or more SharePoint features. As mentioned in the previous
section, a Feature is a collection of resources that describe a logical set of functionality. Any time
you add a new item, such as a visual Web Part or a content type, it is added to a Feature under the
Features node. Depending on the scope of the item, it will either be added to an existing Feature or
a new Feature will be created. Features are discussed in the “ Working with Features ” section later
in this chapter.

 The Package node contains a single fi le that serves as the deployment mechanism for a SharePoint
project. A package has a .wsp extension and is logically equivalent to an installer fi le. The package
contains a set of Features, site defi nitions, and additional assemblies that are deployed to a
SharePoint site. Packages are discussed in the “ Packaging and Deployment ” section later in this
chapter.

Creating a sharePoint Project ❘ 521

http://lib.ommolketab.ir
http//lib.ommolketab.ir

522 ❘ chaPter 24 ShArepoinT

 To add a SharePoint component to this solution, right - click the project in the Solution Explorer and
select Add ➪ New Item. As you can see in Figure 24 - 8, Visual Studio ships with templates for a
large number of SharePoint components. Select a new Application Page item, enter MyPage.aspx as
the name, and click OK.

fiGure 24-8

 An application page is one of the two types of ASP.NET web pages that are found in SharePoint
sites. Most of the pages that end users interact with in SharePoint are actually content pages . Visual
Studio does not include a template for content pages. Instead, content pages are created and edited
by tools such as the SharePoint Designer or using the SharePoint Foundation object model. Content
pages can be added to a SharePoint page library, and they can also host dynamic Web Parts.

 The SharePoint Foundation 2010 object model consists of over 70 namespaces
and provides an API that allows you to perform most administrative and user -
 tasks programmatically. The bulk of the classes are contained in the Microsoft
.SharePoint.dll and Microsoft.SharePoint.Client.dll assemblies.
These classes can only be used to work with a local SharePoint Foundation or
SharePoint Server environment.

 Although application pages cannot do many of the things that content pages can, they do have much
better support for custom application code. For this reason, application pages are often used for
non - user administration functions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When the application page is added to the project it is not added to the root of the project. Instead,
it is placed into a subfolder with the same name as your project, under a new folder called Layouts.
The Layouts folder cannot be changed, but you can rename the subfolder at any time.

The Layouts folder is an example of a SharePoint Mapped
Folder. A SharePoint Mapped Folder is essentially a shortcut
to a standard SharePoint folder, and saves you from having to
specify the full path to the folder in your SharePoint solution.
You can add additional Mapped Folders to your project by
right-clicking the project and selecting Add ➪ SharePoint
Mapped Folder. The dialog box with all of the available
SharePoint folders will be displayed, as shown in Figure 24-9.

Application pages are rendered using a SharePoint master
page at run time and as such contain several ASP.NET
Content controls as placeholders for different regions on the
master page. You can add static content, standard HTML
controls, and ASP.NET web controls onto an application
page in addition to editing the code behind the page.

As with any other project type, press F5 to build and run
the project in Debug mode. Visual Studio will automatically
package and deploy the application page to the local
SharePoint installation and then open the browser at
the SharePoint site home page. You must manually navigate to the application page at http://
ServerName/_layouts/ProjectName/MyPage.aspx to view it (see Figure 24-10). You can debug
the application page in the same way you would debug any other ASP.NET web form.

fiGure 24-10

fiGure 24-9

Creating a sharePoint Project ❘ 523

http://ServerName/_layouts/ProjectName/MyPage.aspx
http://ServerName/_layouts/ProjectName/MyPage.aspx
http://lib.ommolketab.ir
http//lib.ommolketab.ir

524 ❘ chaPter 24 ShArepoinT

 buildinG custoM sharePoint coMPonents

 This section walks you through the development activities associated with some of the more
common SharePoint components.

 developing web Parts
 Two types of Web Parts can be created in Visual Studio 2010: ASP.NET Web Parts (also known as
Visual Web Parts) and SharePoint - based Web Parts.

 ASP.NET Web Parts, which are new to SharePoint 2010, inherit from System.Web.UI.WebControls
.WebParts .WebPart and can be used outside of SharePoint in any ASP.NET web application that
implements the ASP.NET Web Parts functionality. However, ASP.NET Web Parts cannot be used in a
sandboxed solution. Visual Studio 2010 includes a designer for ASP.NET Web Parts.

 SharePoint - based Web Parts are a legacy control and inherit from the Microsoft.SharePoint
.WebPartPages.WebPart class. SharePoint - based Web Parts can only be used in SharePoint sites.
There is no designer support for SharePoint - based Web Parts in Visual Studio 2010. Instead,
you must build up the design in code by overriding the CreateChildControls() or Render()
methods.

 ASP.NET Web Parts are recommended for new Web Part development. To create a new ASP.NET
Web Part right - click the project in the Solution Explorer and select Add ➪ New Item. Select the
Visual Web Part template, enter MyWebPart as the name, and click Add.

 Several fi les are added to the project when a new Web Part is created. MyWebPart.cs (or MyWebPart.vb
if you are using VB) is the entry point for the Web Part and the class that is instantiated when the Web
Part is loaded at run time. Elements.xml and MyWebPart.webpart are XML - based manifest fi les that
provide metadata to SharePoint about the Web Part. Finally, MyWebPartUserControl.ascx is the .NET
user control that provides the UI for the Web Part. This is where you should customize the layout and
add web control and code - behind as required.

 Once you have designed your Web Part and added the necessary logic, build and run the project.
Visual Studio will automatically package and deploy the Web Part to the local SharePoint site.
You can add the Web Part to an existing page in SharePoint by selecting Site Actions ➪ Edit
Page. Click the tab labeled Insert on the Ribbon and then click Web Part to view the list of
available Web Parts. Your Web Part will be listed under the Custom category by default, as
shown in Figure 24 - 11.

 You can change the category that your Web Part appears under by editing the
 Elements.xml fi le.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

creating content types and lists
Content types and lists are two of the fundamental building blocks of SharePoint and are used to
implement many of the features that are provided out-of-the-box.

Create a new custom content type by right-clicking the project in the Solution Explorer and
selecting Add ➪ New Item. Select the Content Type template, enter MyContentType as the name,
and click Add. In the SharePoint Customization Wizard choose Task as the base content type to
inherit from and click Finish. Visual Studio will create the custom content type, which is simply an
XML-based definition of the content type in the Elements.xml file.

Next, create a custom field that can be used by the new content type. From the Add New Item
dialog, select a new Empty Element, enter Owner as the name, and click Add. Add the following line
of XML to the Elements.xml file that was created, within the <Elements> node:

<Field ID=”{3BA8B2E2-4BEA-4305-ACD2-9511C5E45738}”
 Type="User"
 Name="Owner"
 DisplayName="Task Owner">
</Field>

fiGure 24-11

Building Custom sharePoint Components ❘ 525

http://lib.ommolketab.ir
http//lib.ommolketab.ir

526 ❘ chaPter 24 ShArepoinT

 Now go back to the Elements.xml fi le for MyContentType . Add the following line of XML under
the < FieldRefs > node so that the Owner custom fi eld is available to the new content type:

 < FieldRef ID=”{3BA8B2E2-4BEA-4305-ACD2-9511C5E45738}” Name="Owner"/ >

 Next, create a new SharePoint list defi nition for this content type. From the Add New Item dialog,
select a new List Defi nition From Content Type, specify MyCustomTasksList as the name, and click
Add. Visual Studio will display the SharePoint Customization Wizard, as shown in Figure 24 - 12.
Enter a display name, and then ensure that the custom content type that you created earlier is selected
in the drop - down. Also confi rm that the checkbox to add a list instance is checked.

 Finally, you ’ ll need to customize the list instance so that a useful title is displayed. By default, the title
of list instance is ProjectName - ListInstanceName . Open the Elements.xml fi le under the list
instance, ListInstance1, and edit the Title attribute in the XML. Save the fi le and press F5 to build
and run the project.

 When the SharePoint site opens, you will see a new list in the left - hand column of the Home page.
Click the list and then click the Items tab in the Ribbon. Click the New Item button to display the
New Item dialog shown in Figure 24 - 13. Note the new custom fi eld is shown at the bottom of
the dialog.

 Each custom fi eld that you create must have a unique ID. You can generate a
new GUID within Visual Studio by selecting Tools ➪ Create GUID.

fiGure 24-12 fiGure 24-13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 adding event receivers
 Event receivers can be added to many different SharePoint types, including lists, items in a list,
workfl ows, Features, and SharePoint site administrative tasks. This walkthrough adds a new event
receiver to the custom list that was created in the previous section.

 Begin by selecting a new Event Receiver from
the Add New Item dialog. When you click
Add, the SharePoint Customization Wizard is
displayed, as shown in Figure 24 - 14. Select List
Item Events Task as the type of event receiver
and the custom task list as the event source.
Tick the checkbox next to the An item was
added event and click Finish.

 Visual Studio will create the new event receiver
as a class that inherits from the Microsoft
.SharePoint.SPItemEventReceiver base
class. The ItemAdded method will be over-
ridden. Modify this by adding the following
code that sets the Due Date of a new task to
5 days from the Start Date:

 c#

public override void ItemAdded(SPItemEventProperties properties)
{
 var startDate = DateTime.Parse(properties.ListItem["Start Date"].ToString());
 properties.ListItem["Due Date"] = startDate.AddDays(5);
 properties.ListItem.Update();
 base.ItemAdded(properties);
}

 Code snippet MyEventReceiver.cs

 Vb

Public Overrides Sub ItemAdded(ByVal properties As SPItemEventProperties)
 Dim startDate = DateTime.Parse(properties.ListItem("Start Date").ToString())
 properties.ListItem("Due Date") = startDate.AddDays(5)
 properties.ListItem.Update()
 MyBase.ItemAdded(properties)
End Sub

 Code snippet MyEventReceiver.vb

fiGure 24-14

 You can customize many aspects of the list, including which fi elds should be
displayed in the default view, by modifying the list defi nition Schema.xml fi le.

Building Custom sharePoint Components ❘ 527

http://lib.ommolketab.ir
http//lib.ommolketab.ir

528 ❘ chaPter 24 ShArepoinT

You may be prompted with a deployment conflict,
shown in Figure 24-15, when you try to build and
run the project. Check the option so that you are
not prompted more than once and click Resolve
Automatically.

Now when you add a new task to the custom tasks
list the Due Date will be automatically set when
the item is saved.

creating sharePoint workflows
Visual Studio 2010 includes support for two types
of SharePoint workflows: a sequential workflow
and a state machine workflow.

A sequential workflow represents the workflow as a set of steps that are executed in order. For
example, a document is submitted that generates an e-mail to an approver. The approver opens the
document in SharePoint and either approves or
rejects it. If approved, the document is published.
If rejected, an e-mail is sent back to the submitter
with the details of why it was rejected.

A state machine workflow represents the workflow
as a set of states, transitions, and actions. You
define the start state for the workflow and it will
transition to a new state based on an event. For
example, you may have states such as Document
Created and Document Published, and events
that control the transition to these states such as
Document Submitted and Document Approved.

To create a new SharePoint workflow right-click the
project in the Solution Explorer and select Add ➪
New Item. Select the Sequential Workflow template,
enter MyWorkflow as the name, and click Add.

Visual Studio will launch the SharePoint
Customization Wizard. On the first screen enter a
meaningful name for the workflow and ensure the
type of workflow template to create is set to List
Workflow, as shown in Figure 24-16.

On the next screen, specify the automatic
workflow association that should be created when
a debug session is started. The default options,
shown in Figure 24-17, will associate the workflow
with the Shared Documents document library.
Leave the defaults and click Next.

fiGure 24-16

fiGure 24-17

fiGure 24-15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final step in the SharePoint Customization
Wizard is to specify how the workflow is started.
Leave the defaults (manually started as well as
when an item is created) and click Finish. Visual
Studio will create the workflow and open it in the
Workflow Designer, as shown in Figure 24-18.

Because workflows in SharePoint are built on the
Windows Workflow engine, we won’t spend time in
this chapter exploring how you can customize the
workflow. Instead, refer to Chapter 32 for a detailed
look at Windows Workflow. One thing to note
though: SharePoint 2010 workflows only run on
version 3.5 of Windows Workflow.

You can test your workflow by running it against
the local SharePoint installation. When you run the
solution, Visual Studio will automatically package
and deploy the workflow with the associations
that were specified earlier. When you add a new document to the Shared Documents library the
workflow will be invoked. You can debug the workflow by setting breakpoints in the code-behind
and stepping through the execution in the same way you would any other Visual Studio project.

workinG with features

Features are primarily targeted at SharePoint
Administrators and provide them with a way to
manage related items. Every time you create an
item in a SharePoint project it is added to a Feature.

Features are stored under the Features node in
your SharePoint project. Visual Studio includes a
Feature Designer (shown in Figure 24-19), which
is displayed when you double-click a Feature.

The Feature Designer allows you to set a title and
description for the Feature that will be displayed
in SharePoint. You can also set the scope of the
Feature to an entire server farm, all web sites in a
site collection, a specific web site, or all web sites
in a web application.

You can choose to include or exclude certain
items in a Feature with the Feature Designer. For
example, in Figure 24-19, all SharePoint items in
the project except for MyWorkflow have been included in the Feature. If you have more than one
Feature in a project, you can also set dependencies that ensure one Feature cannot be activated
unless another Feature has been.

fiGure 24-18

fiGure 24-19

Working with features ❘ 529

http://lib.ommolketab.ir
http//lib.ommolketab.ir

530 ❘ chaPter 24 ShArepoinT

In SharePoint, Administrators can activate or deactivate Features using the Manage Site Features
or Site Collection Features administration screens under Site Actions ➪ Site Settings (see
Figure 24-20).

fiGure 24-20

PackaGinG and dePloyMent

SharePoint provides a custom packaging format called Windows SharePoint Package (WSP). WSP
files can contain Features, site definitions, templates and application pages, and additional required
assemblies. WSP files are created in the bin/debug or bin/release folder when you build a
SharePoint solution with Visual Studio. The WSP file can then be installed on a remote SharePoint
server by an administrator.

When you create a SharePoint project, a package definition file is also created in the project under
the Packages node. The package definition file describes what should go into the WSP file. Visual
Studio includes a Package Designer and Packaging Explorer tool window to assist with building
packages. If you double-click the package file it opens the file with these design tools. Figure 24-21
shows a package file that includes an application page and a single Feature.

When you press F5 in a SharePoint project, Visual Studio is saving you a whole lot of time by
automatically deploying all of the items in your project to the local SharePoint installation. The
deployment steps are specified under a SharePoint-specific project property page, shown in
Figure 24-22. To display this property page, right-click the project in the Solution Explorer and
select Properties.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

fiGure 24-21

fiGure 24-22

Packaging and Deployment ❘ 531

http://lib.ommolketab.ir
http//lib.ommolketab.ir

532 ❘ chaPter 24 ShArepoinT

You can specify a command-line program or script to run before and after Visual Studio deploys
the solution to the local SharePoint installation. The actual deployment steps are specified as a
deployment configuration. Double-click the configuration in the Edit Configurations list to display
the list of deployment steps. Figure 24-23 shows the default deployment configuration.

fiGure 24-23

Finally, you can right-click a project in the Solution Explorer and select Retract to remove the
SharePoint components from the local SharePoint installation.

suMMary

In this chapter you learned how to build solutions for Microsoft SharePoint 2010. The development
tools in Visual Studio 2010 allow you to easily develop Web Parts, workflows, custom lists, and
complete web applications that run under SharePoint’s rich hosting environment.

This chapter has just scratched the surface of what is possible with SharePoint 2010 development.
If you are interested in diving deeper into this topic, visit the SharePoint Developer Center
at http://msdn.microsoft.com/sharepoint, the SharePoint Dev Wiki at http://www
.sharepointdevwiki.com, or pick up a copy of Professional SharePoint 2010 Development
by Tom Rizzo, Reza Alirezaei, Jeff Fried, and Paul Swider.

http://msdn.microsoft.com/sharepoint
http://www
http://lib.ommolketab.ir
http//lib.ommolketab.ir

25
 Windows azure

 what ’ s in this chaPter?

 Understanding Windows Azure ➤

 Building, testing, and deploying applications using Windows Azure ➤

 Storing data in Windows Azure tables, blobs, and queues ➤

 Using SQL Azure from your application ➤

 Understanding the AppFabric ➤

 Over the past couple of years, the adoption of cloud computing has really taken off with
Google, Amazon, and a host of other providers entering the market. Microsoft ’ s approach
mirrors their own approach to desktop, mobile, and server computing, in so far as they are
offering a development platform on top of which both ISVs and Microsoft itself can build
great software. Without going into a formal defi nition of Cloud Computing, it is important to
recognize that you might choose to run your application in the cloud for a number of reasons.
These include the need for high availability, the ability to scale to meet the demand for your
application, and of course, cost reduction.

 This chapter is broken into three sections that cover the Windows Azure Platform, SQL
Azure, and the AppFabric. The Windows Azure Platform hosts your web application, allowing
you to dynamically vary the number of concurrent instances running. It also provides storage
services in the form of tables, blobs, and queues. SQL Azure provides a true database service
hosted in the cloud. Finally, you can use the AppFabric to authenticate users, control access to
your application and services, and simplify the process of exposing services from within your
organization.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

534 ❘ chaPter 25 WindoWS Azure

the windows azure PlatforM

As with most Microsoft technologies, getting started with the Windows Azure platform is as easy as
creating a new application, building it, and then running it. You will notice that there is a new node
in the New Project dialog entitled Cloud Service, which has a single project template, also called
Cloud Service, as shown in Figure 25-1.

fiGure 25-1

After selecting the Cloud Service project template you are prompted to add one or more Roles to
your application. An Azure project can be broken into different Roles based on the type of work
they are going to do and whether they accept user input. Simply put, Web Roles can accept user
input via an inbound connection (for example, http on port 80), whereas Worker Roles cannot. A
typical scenario would consist of a Web Role that is used to accept data. This may be a web site
or a web service of some description. The Web Role would hand off the data, for example, via a
queue, to a Worker Role, which would then
carry out any processing that is to be done.
This separation means that the two tiers can
be scaled out independently, improving the
elasticity of the application.

In Figure 25-2, both an ASP.NET Web
Role and a Worker Role have been added to
the cloud services solution by selecting the
role and clicking the right arrow button.
Clicking the edit symbol on the selected
role allows you to rename the role before
clicking OK to complete the creation of
your application. fiGure 25-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Windows azure Platform ❘ 535

As you can see in Figure 25-3, the application created consists of
a project for each role selected (CloudFront and CloudWorker,
respectively) and an additional project, FirstCloudApplication, that
defines the list of roles and other information about your Azure
application.

The CloudFront project is essentially just an ASP.NET web application
project. In fact, if you right-click this project and select Set as Startup
Project you can run this project as with any normal ASP.NET project.
On the other hand, the CloudWorker project is simply a class library
with a single class, WorkerRole, which contains the entry point for the
worker.

To run your Azure application, make sure the FirstCloudApplication
project is set as the Startup Project and then press F5 to start
debugging. If this is your first time running an Azure application you
will notice a dialog appears that initializes the Development Storage.
This process takes a minute or two to complete; once done you will
notice that two icons have been added to the Windows taskbar.
The first allows you to control the Development Storage services, a set of three local services that
mirror the table, blob, and queue storage available in the Azure platform. The second allows you to
monitor the Development Fabric, a local replica of the Azure hosting environment in which you can
run, debug, and test your application.

After the Development Storage has been initialized you should notice that the Default.aspx page of the
CloudFront project launches within the browser. Although you will only see a single browser instance,
in fact, multiple instances of the web role are all running in what’s called the Development Fabric.

the development fabric
In the FirstCloudApplication project are two files that define attributes about your Azure
application. The first, ServiceDefinition.csdef, defines the structure and attributes of the roles
that make up your application. For example, if one of your roles needs to write to the file system you
can stipulate a LocalStorage property, giving the role restricted access to a small amount of disk
space in which to read and write temporary files. This file also defines any settings that the roles will
require at run time. Defining settings is a great way to make your roles more adaptable at run time
without having to rebuild and publish them.

The second file is the ServiceConfiguration.cscfg file, which defines the run time configuration
of the roles. This includes the number of instances of each role that should be running, as well as
any settings that you have defined in the ServiceDefinition file. If you modify values in this
configuration file, for example, changing the count attribute of the Instances element to 4 for
both roles, and re-run your application, it will run with the new configuration values in the local
Development Fabric.

If you right-click the Development Fabric icon in the Windows taskbar and select Show
Development Fabric UI, you will see a hierarchical representation of the running applications within
the Development Fabric, as shown in Figure 25-4. As you drill down into the deployments you can
see the FirstCloudApplication and then the two roles, CloudFront and CloudWorker.

fiGure 25-3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

536 ❘ chaPter 25 WindoWS Azure

Within each of the roles you can see the number of running (green dot) instances, which in Figure 25-4
is 4. In the right pane you can see the log output for each of the running instances. Clicking the title
bar on any of the instances toggles that instance to display in the full pane. The icon in the top-right
corner of each instance indicates the logging level. You can adjust this by right-clicking the title and
selecting the desired value from the Logging Level menu item.

table, blob, and queue storage
So far you have a web role with no content and a worker role that doesn’t do anything. You can
add content to the web role by simply adding controls to the Default.aspx page in the same way
that you would for a normal web application. Start by adding a textbox called JobDetailsText and a
button called SubmitJob. Double-click the button to bring up the code-behind file.

You can pass data between web and worker roles by writing to table (structured data), blob (single
binary objects), or queue (messages) storage. You work with this storage within the Azure platform
via its REST interface. However, as .NET developers this is not a pleasant or efficient coding
experience. Luckily, the Azure team has put together a wrapper for this functionality that makes it
easy for your application to use Windows Azure storage. If you look at the references for both the
Web and Worker Role projects, you will see a reference for Microsoft.WindowsAzure.Storage.dll,
which contains the wrapper classes and methods that you can use from your application.

In the code-behind file for the Default.aspx page, enter the following code, which obtains a queue
reference and then adds a simple message. Note that you may need to add using statements to your
code file where necessary.

c#

protected void SubmitJob_Click(object sender, EventArgs e){
 // read account configuration settings
 var storageAccount = CloudStorageAccount.
 FromConfigurationSetting("DataConnectionString");

fiGure 25-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Windows azure Platform ❘ 537

 // create queue to communicate with worker role
 var queueStorage = storageAccount.CreateCloudQueueClient();
 var queue = queueStorage.GetQueueReference("sample");
 queue.CreateIfNotExist();
 queue.AddMessage(new CloudQueueMessage(this.JobDetailsText.Text));
}

Code snippet Default.aspx.cs

Vb

Protected Sub SubmitJob_Click(ByVal sender As Object,
 ByVal e As EventArgs) Handles SubmitJob.Click
 ’ read account configuration settings
 Dim storageAccount = CloudStorageAccount.
 FromConfigurationSetting("DataConnectionString")

 ’ create queue to communicate with worker role
 Dim queueStorage = storageAccount.CreateCloudQueueClient()
 Dim queue = queueStorage.GetQueueReference("sample")
 queue.CreateIfNotExist()
 queue.AddMessage(New CloudQueueMessage(Me.JobDetailsText.Text))
End Sub

Code snippet Default.aspx.vb

This code takes the value supplied in the JobDetailsText textbox and adds it to the queue, wrapped
in as a message.

You also need to update the worker role to pop messages off the queue and carry out the appropriate
actions. The following code retrieves the next message on the queue, and simply writes the response
out to the log, before deleting the message off the queue. If you don’t delete the message from the
queue it is pushed back onto the queue after a configurable timeout, so as to ensure all messages are
handled at least once even if a worker role dies mid-processing.

c#

private CloudQueue queue;
public override bool OnStart(){
 DiagnosticMonitor.Start("DiagnosticsConnectionString");

 Microsoft.WindowsAzure.CloudStorageAccount.
 SetConfigurationSettingPublisher((configName, configSetter) =>{
 configSetter(Microsoft.WindowsAzure.ServiceRuntime.RoleEnvironment.
 GetConfigurationSettingValue(configName));
 });

 Trace.TraceInformation("Worker entry point called");

 // read account configuration settings
 var storageAccount = CloudStorageAccount.
 FromConfigurationSetting("DataConnectionString");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

538 ❘ chaPter 25 WindoWS Azure

 // create queue to communicate with web role
 var queueStorage = storageAccount.CreateCloudQueueClient();
 var queue = queueStorage.GetQueueReference("sample");
 queue.CreateIfNotExist();
 return base.OnStart();
}

public override void Run(){
 Trace.TraceInformation("CloudWorker entry point called");
 while (true){
 try{
 // Pop the next message off the queue
 CloudQueueMessage msg = queue.GetMessage();
 if (msg != null){
 // Parse the message contents as a job detail
 string jd = msg.AsString;
 Trace.TraceInformation("Processed {0}", jd);
 // Delete the message from the queue
 queue.DeleteMessage(msg);
 }
 else{
 Thread.Sleep(10000);
 }
 Trace.TraceInformation("Working");
 }
 catch (Exception ex){
 Trace.TraceError(ex.Message);
 }
 }
}

Code snippet WorkerRole.cs

Vb

Private queue As CloudQueue
Public Overrides Function OnStart() As Boolean
 DiagnosticMonitor.Start("DiagnosticsConnectionString")

 CloudStorageAccount.SetConfigurationSettingPublisher(
 Function(configName, configSetter)
 configSetter(RoleEnvironment.
 GetConfigurationSettingValue(configName)))
 Trace.TraceInformation("Worker entry point called")

 ’ read account configuration settings
 Dim storageAccount = CloudStorageAccount.
 FromConfigurationSetting("DataConnectionString")
 ’ create queue to communicate with web role
 Dim queueStorage = storageAccount.CreateCloudQueueClient()
 queue = queueStorage.GetQueueReference("sample")
 queue.CreateIfNotExist()
 Return MyBase.OnStart()
End Function

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Windows azure Platform ❘ 539

Public Overrides Sub Run()
 Trace.TraceInformation("CloudWorker entry point called.")
 Do While (True)
 Try
 ’ Pop the next message off the queue
 Dim msg As CloudQueueMessage = queue.GetMessage()
 If (msg IsNot Nothing) Then
 ’ Parse the message contents as a job detail
 Dim jd As String = msg.AsString
 Trace.TraceInformation("Processed {0}", jd)
 ’ Delete the message from the queue
 queue.DeleteMessage(msg)
 Else
 Thread.Sleep(10000)
 End If
 Trace.TraceInformation("Working")
 Catch ex As StorageClientException
 Trace.TraceError(ex.Message)
 End Try
 Loop
End Function

Code snippet WorkerRole.vb

You will notice that this code overrides two methods, OnStart and Run. The former is used to load
configuration values and set up local variables for working with Windows Azure storage, whereas
the Run method contains an infinite while loop that continues to process messages off the queue.

Before you can run your modified roles you need to specify the location of the queue storage
that you are going to be using. Though this will eventually be an Azure storage account, during
development you need to specify the details of the local Development Storage. You do this in the
ServiceConfiguration file:

<?xml version="1.0"?>
<ServiceConfiguration serviceName="FirstCloudApplication"
xmlsn="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">
<Role name="CloudFront">
<Instances count="2" />
<ConfigurationSettings>
<Setting name="DataConnectionString" value="UseDevelopmentStorage=true" />
<Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" />
<!-- <Setting name="DeploymentConnectionString" value="DefaultEndpointsProtocol=
https;AccountName=[YOUR_ACCOUNT_NAME];AccountKey=[YOUR_ACCOUNT_KEY]" /> -->
</ConfigurationSettings>
</Role>
<Role name="CloudWorker">
<Instances count="2" />
<ConfigurationSettings>
<Setting name="DataConnectionString" value="UseDevelopmentStorage=true" />
<Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" />
</ConfigurationSettings>
</Role>
</ServiceConfiguration>

http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration
http://lib.ommolketab.ir
http//lib.ommolketab.ir

540 ❘ chaPter 25 WindoWS Azure

You will notice that for both the CloudWorker and CloudFront roles, settings for
DataConnectionString and DiagnosticsConnectionString have been defined. In this case, the
value has been set to use the development storage account. When you go to deploy to Windows
Azure, you will need to replace this with a connection string that includes the account name and key,
in the format illustrated by the DeploymentConnectionString. Before these values will be accessible
to your roles you also need to update the ServiceDefinition file to indicate which settings are
defined for each role:

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="FirstCloudApplication"
xmlsn="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition">
<WebRole name="CloudFront" enableNativeCodeExecution="false">
<InputEndpoints>
<!-- Must use port 80 for http and port 443 for https when running in the cloud -->
<InputEndpoint name="HttpIn" protocol="http" port="80" />
</InputEndpoints>
<ConfigurationSettings>
<Setting name="DataConnectionString" />
<Setting name="DiagnosticsConnectionString" />
</ConfigurationSettings>
</WebRole>
<WorkerRole name="CloudWorker" enableNativeCodeExecution="false">
<ConfigurationSettings>
<Setting name="DataConnectionString" />
<Setting name="DiagnosticsConnectionString" />
</ConfigurationSettings>
</WorkerRole>
</ServiceDefinition>

With these changes, try running your Azure application and noting that when you hit the Submit
button you will see a “Processed” message appear in one of the running instances of the worker role
in the Development Fabric UI.

application deployment
Once you have built your Azure application using the Development Fabric and Development
Storage, you will want to deploy it to the Windows Azure Platform. Before doing so you will need to
provision your Windows Azure account with both a hosting and a storage service. Start by going
to http://www.azure.com and signing in using your Live Id to your Windows Azure account. After
logging in, click on the “Go to the Windows Azure Developer portal” link. This opens the Windows
Azure portal, which looks similar to Figure 25-5.

http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition
http://www.azure.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Windows azure Platform ❘ 541

Click the project name, followed by the New Service button, and then select the type of service you
want to add. The FirstCloudApplication requires both hosting and storage so you will need to add
one of each. Once you have added a Storage Account service you should see a configuration screen
similar to Figure 25-6.

fiGure 25-5

fiGure 25-6

You will need to copy the account information and storage endpoints across into your
ServiceConfiguration file. Once you have done this you can again run your Azure application.
This time it will still run within your local Development Fabric but it will use the Azure storage
instead of the Development Storage. This is a good test to ensure your application will deploy
correctly to the cloud.

Once you have set up your hosting service account you will see a screen similar to Figure 25-7.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

542 ❘ chaPter 25 WindoWS Azure

In Figure 25-7 you can see that you in fact have two environments into which you can deploy:
Production and Staging. As with all good deployment strategies, Azure supports deploying into
Staging and then once you are comfortable, migrating that into Production.

Return to Visual Studio 2010, right-click the FirstCloudApplication project, and select Publish.
This builds your application and generates a deployment package and a configuration file. These are
displayed in a Windows Explorer dialog once completed. Return to Windows Azure and click the
Deploy button under the Staging node (in Figure 25-7). You are prompted to select the deployment
package and configuration file. Once you complete the upload you are returned to the hosting
service page where you will see that the Staging environment has been updated, as in Figure 25-8.

fiGure 25-7

fiGure 25-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Windows azure Platform ❘ 543

Unlike other ASP.NET web applications that start running as soon as they are completely deployed,
Azure applications need to be started. You do this by clicking the Run button. The screen will
refresh with all roles stating that they are initializing. Eventually, they will update to Started, at
which point all roles are ready to receive input or do work.

The last stage in this process is to promote what’s running in the Staging environment into
Production. The word “promote” is important because this transition is all handled by an intelligent
router. Because the cut over from one to the other will at some point (depending on how quickly
the router effects the change) be close to instantaneous, there should never be any time at which
someone hitting the site receives a 404 or missing page. To promote Staging into Production, select
the round rotating button situated in between the product and staging areas of the Azure portal.

tuning your application
Over time, demand for your application may vary, or you may need to adjust application settings
specified in the ServiceConfiguration file. You can do this dynamically by clicking the Configure
button (see the Staging deployment in Figure 25-8). Figure 25-9 shows the configuration screen where
you can modify the configuration XML, or upload an alternative configuration file. You should only
modify your staging deployment using this method because you don’t want to affect the running of
your Production deployment. The recommend approach is to start with identical Production and
Staging deployments, modify the Staging configuration, allow it to initialize and start, then switch that
deployment into Production. You can then modify the second deployment so that they are in sync.

fiGure 25-9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

544 ❘ chaPter 25 WindoWS Azure

This screen also allows you to export logs generated by the roles within your application to
a storage account. After copying the logs you will then need to retrieve the logs from the relevant
storage account. You can do this using the CloudDrive sample in the Azure SDK, which can be used
to map a storage account as a local drive that you can query in Powershell.

sql azure

In addition to Azure table, blob, and queue storage, the Windows Azure Platform offers true
relational data hosting in the form of SQL Azure. You can think of each SQL Azure database as
being a hosted instance of a SQL Server 2008 database that is running in high-availability mode.
This means that at any point in time there are three synchronized instances of your database. If one
of these instances fails, a new instance is immediately brought online and the data is synchronized
to ensure the availability of your data.

To create a SQL Azure database, sign into the Windows Azure portal and navigate to the SQL
Azure tab. Once there you can manage your SQL Azure accounts, where you can create and delete
databases. After creating a database you can retrieve the connection string that you need in order
to connect to the database by selecting the database and clicking the Connection String button, as
shown in Figure 25-10.

fiGure 25-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

At the time of writing you have a number of ways to interact with a SQL Azure database. Although
SQL Azure is based on SQL Server 2008, a number of limitations exist that prevent most graphical
tools, such as SQL Server Management Studio (Object Browser) and Visual Studio 2010, from
working properly. You can, however, connect a SQL Server Management Studio Query Window
to a SQL Azure database and execute T-SQL statements against your database. Some third-party
tools and Visual Studio 2010 add-ins, such as the SQL Azure Migration Wizard, the SQL Azure
Manager, and the SQL Azure Explorer, are available that can assist with working with SQL Azure.

From your application you can connect to SQL Azure using the connection string retrieved from the
Windows Azure portal page. You can use most frameworks that are based on top of ADO.NET such
as LINQ to SQL, Entity Framework, or simply plain ADO.NET to create, update, read, or delete data
in your SQL Azure database.

aPPfabric

The third component of the Windows Azure Platform is the AppFabric. This in turn is made up of the
Service Bus and the Access Control Service. In an environment where organizations are increasingly
looking to host some or all of their applications in the cloud, significant challenges are posed around
connectivity and security. The AppFabric provides a solution to allow enterprises to connect applications
and unify application security.

service bus
Though most organizations have connectivity to the Internet, connectivity between offices or with
individuals on the road is often the cause of frustration. Increasingly, companies operate behind
one or more firewall devices that not only restrict the flow of traffic but also do network address
translation. This means that computers sitting behind these devices cannot be easily addressable
from outside the company network. In addition, as the number of public IPv4 addresses dwindles,
more connections are dynamically allocated an IP address. This makes hosting an application
within the company network that is publicly accessible almost impossible.

The Service Bus allows a service to be registered at a specific publicly addressable URL via the
service registry. Requests made to this URL are directed to the service via an existing outbound
connection made by the service itself. Working with the Service Bus can be as simple as changing
your existing WCF bindings across to the new relay bindings. As part of running your service it
registers with the service registry and initiates the outbound connection required for all further
communications.

access control service
Where an organization wants to integrate multiple cloud-based applications and/or an on-premise
application there needs to be some way of controlling who (authentication) has access to particular
resources (authorization). This is the function of the Access Control Service (ACS). Though still
in its infancy, the ACS is capable of verifying a user’s identity through the validation of input
claims, performing claims translation, and the supply of output claims for specific applications. For
example, you could sign into an application providing your e-mail address and a password. These

appfabric ❘ 545

http://lib.ommolketab.ir
http//lib.ommolketab.ir

546 ❘ chaPter 25 WindoWS Azure

input claims would be used to authenticate you, as well as determine that you belong in the fancy-
hat group in application xyz that you are trying to access. The output claims may consist of your
e-mail address and the fancy-hat group. Note that because there is a previously established trust
relationship between application xyz and ACS (validated through signing of the output claims),
application xyz can trust the output claims.

suMMary

In this chapter you learned about the Windows Azure Platform and how it represents Microsoft’s
entry into the cloud computing space. Using Visual Studio 2010, you can adapt an existing, or
create a new, application or service for hosting in the cloud. The local Development Storage and
Fabric provide a great local testing solution, which means when you publish your application to
Windows Azure you can be confident that it will work without major issues.

Even if you don’t want to migrate your entire application into the cloud, you can use SQL Azure and
the AppFabric offerings to host your data, address connectivity challenges, or unify your application
security.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART VI

data

chaPter 26: ⊲ Visual Database Tools

chaPter 27: ⊲ Datasets and Data Binding

chaPter 28: ⊲ Language Integrated Queries (LINQ)

chaPter 29: ⊲ The ADO .NET Entity Framework

chaPter 30: ⊲ Reporting

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

26
 Visual Database Tools

 what ’ s in this chaPter?

 Understanding the data - oriented tool windows within ➤

Visual Studio 2010

 Creating and designing databases ➤

 Navigating your data sources ➤

 Entering and previewing data using Visual Studio 2010 ➤

 Database connectivity is essential in almost every application you create, regardless of whether
it ’ s a Windows - based program or a web site or service. When Visual Studio .NET was fi rst
introduced, it provided developers with a great set of options to navigate to the database fi les
on their fi le systems and local servers, with a Server Explorer, data controls, and data - bound
components. The underlying .NET Framework included ADO.NET , a retooled database engine
that is more suited to the way applications are built today.

 Visual Studio 2010 took those features and smoothed out the kinks, adding tools and
functionality to the IDE to give you more direct access to the data in your application. This
chapter looks at how you can create, manage, and consume data using the various tool
windows provided in Visual Studio 2010. These can be collectively referred to as the Visual
Database Tools.

 database windows in Visual studio 2010

 A number of windows specifi cally deal with databases and their components. From the
Data Sources window that shows project - related data fi les and the Data Connections
node in the Server Explorer, to the Database Diagram Editor and the visual designer for
database schemas, you ’ ll fi nd most of what you need directly within the IDE. In fact, it ’ s
unlikely that you ’ ll need to venture outside of Visual Studio to work with your data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

550 ❘ chaPter 26 ViSuAl dATAbASe ToolS

Figure 26-1 shows the Visual Studio 2010 IDE with a current database-editing session. Notice how
the windows, toolbars, and menus all update to match the particular context of editing a database
table. In the main area is the list of columns belonging to the table, a Table Designer menu has been
added, and there is a Column Properties editing region below. The normal Properties tool window
contains the properties for the current table. The next few pages take a look at each of these
windows and describe their purposes so you can use them effectively.

fiGure 26-1

server explorer
In Chapter 12, you saw how the Server Explorer can be used to navigate the components that make
up your system (or indeed the components of any server to which you can connect). One component
of this tool window that was omitted from that discussion is the Data Connections node. Through
this node, Visual Studio 2010 provides a significant subset of the functionality that is available
through other products, such as SQL Server Management Studio, for creating and modifying
databases.

Figure 26-1 shows the Server Explorer window with an active database connection
(AdventureWorksLT2009_Data.mdf) and another database that Visual Studio is not currently
connected to (CRM.mdf). The database icon displays whether or not you are actively connected
to the database, and contains a number of child nodes dealing with the typical components of a
modern database, such as Tables, Views, and Stored Procedures. Expanding these nodes lists the
specific database components along with their details. For example, the Tables node contains a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

node for the Customer table, which in turn has nodes for each of the columns, such as CustomerID,
FirstName, and LastName. Clicking these nodes enables you to quickly view the properties within
the Properties tool window. This is the default database view; you can switch to either Object Type
or Schema view by selecting Change View, followed by the view to change to, from the right-click
context menu off the database node. Each of these views simply groups the information about the
database in a different hierarchy.

To add a new database connection to the Server Explorer window, click the Connect to Database
button at the top of the Server Explorer (third icon in from the left), or right-click the Data
Connections root node and select the Add Connection command from the context menu.

If this is the first time you have added a connection, Visual Studio asks you what type of data
source you are connecting to. Visual Studio 2010 comes packaged with a number of Data Source
connectors, including Access, SQL Server, and Oracle, as well as a generic ODBC driver. It also
includes a data source connector for Microsoft SQL Server Database File and Microsoft SQL Server
Compact databases.

The Database File option was introduced in SQL Server 2005 and borrows from the easy
deployment model of its lesser cousins, Microsoft Access and MSDE. With SQL Server Database
File, you can create a flat file for an individual database. This means you don’t need to attach it to
a SQL Server instance, and it’s highly portable — you simply deliver the .mdf file containing the
database along with your application. Alternatively, using a SQL Server Compact (SSC) database
can significantly reduce the system requirements for your application. Instead of requiring an
instance of SQL Server to be installed, the SSC runtime
can be deployed alongside your application.

Once you’ve chosen the data source type to use, the
Add Connection dialog appears. Figure 26-2 shows this
dialog for a SQL Server Database File connection, with
the settings that are appropriate to that data source type.
You are taken directly to this dialog if you already have
data connections defined in Visual Studio.

The Change button takes you to the Data Sources
page, enabling you to add different types of database
connections to your Visual Studio session. Note how
easy it is to create a SQL Server Database File. Just type
or browse to the location where you want the file and
specify the database name for a new database. If you
want to connect to an existing database, use the Browse
button to locate it on the file system.

Generally, the only other task you need to perform is to
specify whether your SQL Server configuration is using
Windows or SQL Server Authentication. The default
installation of Visual Studio 2010 includes an installation of SQL Server 2005 Express, which uses
Windows Authentication as its base authentication model.

fiGure 26-2

Database Windows in Visual studio 2010 ❘ 551

http://lib.ommolketab.ir
http//lib.ommolketab.ir

552 ❘ chaPter 26 ViSuAl dATAbASe ToolS

 When you click OK, Visual Studio attempts to connect to the database. If successful, it adds it to
the Data Connections node, including the children nodes for the main data types in the database,
as discussed earlier. Alternatively, if the database doesn ’ t exist, Visual Studio prompts you asking
if it should go ahead and create it. You can also create a new database by selecting the Create New
SQL Server Database item from the right - click menu off the Data Connections node in the Server
Explorer.

 Table editing
 The easiest way to edit a table in the database is to
double - click its entry in the Server Explorer. An editing
window is then displayed in the main workspace,
consisting of two components. The top section is
where you specify each fi eld name, data type, and key
information such as length for text fi elds, and whether
the fi eld is nullable.

 Right - clicking a fi eld gives you access to a set of
commands that you can perform against that fi eld, as
shown in Figure 26 - 3 . This context menu contains the
same items as the Table Designer menu that is displayed
while you ’ re editing a table, but it is usually easier to use
the context menu because you can clearly see which fi eld
you ’ re modifying.

 The lower half of the table editing workspace contains
the Column Properties window for the currently
selected column. Unlike the grid area that simply
lists the Column Name, Data Type, and whether
the column allows nulls, the column properties area
allows you to specify all of the available properties
for the particular Data Source type.

 Figure 26 - 4 shows a sample Column Properties window
for a fi eld, CustomerID, that has been defi ned with an
identity clause that is automatically incremented by 1
for each new record added to the table.

 relationship editing
 Most databases that are likely to be used by your
.NET solutions are relational in nature, which means

 The Test Connection button displays an error message if you try to connect to
a new database. This is because it doesn ’ t exist until you click OK, so there ’ s
nothing to connect to!

 fiGure 26 - 3

 fiGure 26 - 4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

you connect tables together by defining
relationships. To create a relationship, open
one of the tables that will be part of the
relationship and click the Relationships
button on the toolbar, or use the Table
Designer ➪ Relationships menu command.
The Foreign Key Relationships dialog is
displayed (see Figure 26-5), containing
any existing relationships that are bound
to the table you selected.

Click the Add button to create a new
relationship, or select one of the existing
relationships to edit. Locate the Tables and
Columns Specification entry in the property
grid and click its associated ellipsis to set the
tables and columns that should connect to
each other. In the Tables and Columns dialog,
shown in Figure 26-6, first choose which
table contains the primary key to which
the table you selected will connect. Note that
for new relationships the Foreign key table
field is populated with the current table name
and cannot be changed.

Once you have the Primary key table, you then connect the fields in each table that should bind to
each other. You can add multiple fields to the relationship by clicking the blank row that is added as
you add the previous field. When you are satisfied with the relationship settings, click OK to save it
and return to the Foreign Key Relationships dialog.

Views
Views are predefined queries that can appear like tables to your application and can be made up of
multiple tables. Use the Data ➪ Add New ➪ View menu command or right-click the Views node in
Server Explorer and choose Add New View from the context menu.

The first task is to choose which tables, other views, functions, and synonyms will be included in
the current view. When you’ve chosen which components will be added, the View editor window is
displayed (see Figure 26-7). This editor should be familiar to anyone who has worked with a visual
database designer such as Access. The tables and other components are visible in the top area,
where you can select the fields you want included. The top area also shows connections between
any functions and tables. The View in Figure 26-7 connects three tables by linking all rows in the
Customer table with the CustomerAddress and Address tables. Figure 26-7 also shows that by
right-clicking the connector between tables you can change the type of join used. If you need to
add additional tables, right-click the design surface and select Add Table.

fiGure 26-5

fiGure 26-6

Database Windows in Visual studio 2010 ❘ 553

http://lib.ommolketab.ir
http//lib.ommolketab.ir

554 ❘ chaPter 26 ViSuAl dATAbASe ToolS

The middle area shows a tabular representation of your current selection, and adds columns for
sorting and filtering properties, and the area directly beneath the tabular representation shows the
SQL that is used to achieve the view you’ve specified. Changes can be made in any of these three
panes with the other panes being dynamically updated with the changes.

The bottom part of the view designer can be used to execute the view SQL and preview the results.
To execute this view, select Execute SQL from the right-click context menu on any of the panes, or
click the button with the same name from the View Designer toolbar.

stored Procedures and functions
To create and modify stored procedures and functions,
Visual Studio 2010 uses a text editor such as the one
shown in Figure 26-8. Since there is no IntelliSense
to help you create your procedure and function
definitions, Visual Studio doesn’t allow you to save
your code if it detects an error.

To help you write and debug your stored procedures
and functions, there are shortcuts to Insert SQL, Run
Selection, and Execute from the right-click context
menu for the text editor. Inserting SQL displays the
Query Builder shown earlier in Figure 26-7 as a modal dialog. Run Selection attempts to execute any
selected SQL statements, displaying the results in the Output window. Finally, the Execute shortcut
runs the entire stored procedure or function. If they accept input parameters, a dialog similar to

fiGure 26-7

fiGure 26-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 26-9 is displayed, in which you can
specify appropriate test values. Again, the
results are displayed in the Output window.

Database Diagrams
You can also create a visual representation of
your database tables via database diagrams. To
create a diagram, use the Data ➪ Add New ➪
Diagram menu command or right-click the Database Diagrams node in the Server Explorer and
choose Add New Diagram from the context menu.

When you create your first diagram in a database, Visual Studio may prompt you to allow it to
automatically add necessary system tables and data to the database. If you disallow this action, you
won’t be able to create diagrams at all; so it’s just a notification, rather than an optional action to take.

The initial process of creating a diagram enables you to choose which tables you want in the diagram,
but you can add tables later through the Database Diagram menu that is added to the IDE. You can
use this menu to affect the appearance of your diagram within the editor too, with zoom and page
break preview functionality as well as being able to toggle relationship names on and off.

Because database diagrams can be quite large, the IDE has an easy way of navigating around the
diagram. In the lower-right corner of the Database Diagram editor in the workspace is an icon
displaying a four-way arrow. Click this icon and a thumbnail view of the diagram appears, as
shown in Figure 26-10.

fiGure 26-9

fiGure 26-10

Database Windows in Visual studio 2010 ❘ 555

http://lib.ommolketab.ir
http//lib.ommolketab.ir

556 ❘ chaPter 26 ViSuAl dATAbASe ToolS

Just click and drag the mouse pointer around the thumbnail until you position the components you
need to view and work with in the viewable area of the IDE.

the data sources window
The Data Sources window, which typically appears in the same tool window area as the Solution
Explorer, contains any active data sources known to the project, such as datasets (as opposed to the
Data Connections in the Server Explorer, which are known to Visual Studio overall). To display
the Data Sources tool window, use the Data
➪ Show Data Sources menu command.

The Data Sources window has two main
views, depending on the active document
in the workspace area of the IDE. When
you are editing code, the Data Sources
window displays tables and fields with icons
representing their types. This aids you as you
write code because you can quickly reference
the type without having to look at the table
definition. This view is shown on the right
image of Figure 26-11.

When you’re editing a form in Design view, however, the Data Sources view changes to display the
tables and fields with icons representing their current default control types (initially set in the Data
UI Customization page of Options). The left image of Figure 26-11 shows that the text fields use
TextBox controls, whereas the ModifiedDate field uses a DateTimePicker control. The icons for the
tables indicate that all tables will be inserted as DataGridView components by default as shown in
the drop-down list.

In the next chapter you learn how to add and modify data sources, as well as use the Data Sources
window to bind your data to controls on a form. Data classes or fields can simply be dragged from
the Data Sources window onto a form in order to wire up the user interface.

editinG data

Visual Studio 2010 also has the capability to view and edit the data contained in your database
tables. To edit the information, use the Data ➪ Show Table Data menu command after you
highlight the table you want to view in the Server Explorer. You will be presented with a tabular
representation of the data in the table as
shown in Figure 26-12, enabling you to edit
it to contain whatever default or test data
you need to include. By using the buttons
at the bottom of the table, you can navigate
around the returned records and even create
new rows. As you edit information, the table
editor displays indicators next to fields that
have changed.

fiGure 26-11

fiGure 26-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can also show the diagram, criteria, and SQL panes associated with the table data you’re
editing by right-clicking anywhere in the table and choosing the appropriate command from the
Pane submenu. This can be useful for customizing the SQL statement that is being used to retrieve
the data — for example, to filter the table for specific values, or just to retrieve the first 50 rows.

PreViewinG data

You can also preview data for different data sources to ensure that the associated query will return
the information you expect. In the database schema designer, right-click the query you want to test
and choose Preview Data from the context menu. Alternatively, select Preview Data from the right-
click context menu off any data source in the Data Sources tool window.

The Preview Data dialog is displayed with the object list defaulted to the query you want to test.
Click the Preview button to view the sample data, shown in Figure 26-13. A small status bar
provides information about the total number of data rows that were returned from the query, as
well as how many columns of data were included.

If you want to change to a different query, you can do so with the Select an object to preview drop-
down list. This list contains other queries in the same data source, other data sources, and elsewhere
in your solution. If the query you’re previewing requires parameters, you can set their values in the
Parameters list in the top-right pane of the dialog. Clicking the Preview button submits the query
to the appropriate data source and displays the subsequent results in the Results area of the Preview
Data dialog box.

fiGure 26-13

Previewing Data ❘ 557

http://lib.ommolketab.ir
http//lib.ommolketab.ir

558 ❘ chaPter 26 ViSuAl dATAbASe ToolS

suMMary

With the variety of tools and windows available to you in Visual Studio 2010, you can easily create
and maintain databases without having to leave the IDE. You can manipulate data as well as
define database schemas visually using the Properties tool window in conjunction with the Schema
Designer view.

Once you have your data where you want it, Visual Studio keeps helping you by providing a set
of drag-and-drop components that can be bound to a data source. These can be as simple as a
checkbox or textbox, or as feature-rich as a DataGridView component with complete table views.
In the next chapter you learn how being able to drag whole tables or individual fields from the Data
Sources window onto a form and have Visual Studio automatically create the appropriate controls
for you is a major advantage for rapid application development.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

27
 Datasets and DataBinding

 what ’ s in this chaPter?

 Creating DataSets ➤

 Connecting visual controls to a DataSet with DataBinding ➤

 How BindingSource and BindingNavigator controls work together ➤

 Chaining BindingSources and using the DataGridView ➤

 Using Service and Object data sources ➤

 A large proportion of applications use some form of data storage. This might be in the form
of serialized objects or XML data, but for long - term storage that supports concurrent access
by a large number of users, most applications use a database. The .NET Framework includes
strong support for working with databases and other data sources. This chapter examines how
to use DataSets to build applications that work with data from a database.

 In the second part of this chapter you see how to use DataBinding to connect visual controls
to the data they are to display. You see how they interact and how you can use the designers to
control how data is displayed.

 The examples in this chapter are based on the sample AdventureWorksLT database that is
available as a download from http://professionalvisualstudio.com/link/1029A .

 datasets oVerView

 The .NET Framework DataSet is a complex object that is approximately equivalent to an
in - memory representation of a database. It contains DataTables that correlate to database
tables. These in turn contain a series of DataColumns that defi ne the composition of
each DataRow. The DataRow correlates to a row in a database table. It is also possible to

http://professionalvisualstudio.com/link/1029A
http://lib.ommolketab.ir
http//lib.ommolketab.ir

560 ❘ chaPter 27 dATASeTS And dATAbinding

establish relationships between DataTables within the DataSet in the same way that a database has
relationships between tables.

One of the ongoing challenges for the object-oriented programming paradigm is that it does
not align smoothly with the relational database model. The DataSet object goes a long way
toward bridging this gap, because it can be used to represent and work with relational data in an
object-oriented fashion. However, the biggest issue with a raw DataSet is that it is weakly typed.
Although the type of each column can be queried prior to accessing data elements, this adds
overhead and can make code very unreadable. Strongly typed DataSets combine the advantages of
a DataSet with strong typing (in other words, creating strongly typed properties for all database
fields) to ensure that data is accessed correctly at design time. This is done with the custom tool
MSDataSetGenerator, which converts an XML schema into a strongly typed DataSet, essentially
replacing a lot of run time type checking with code generated at design time. In the following code
snippet, you can see the difference between using a raw DataSet, in the first half of the snippet, and
a strongly typed DataSet, in the second half:

Vb

'Raw DataSet
Dim nontypedAwds As DataSet = RetrieveData()
Dim nontypedcustomers As DataTable = nontypedAwds.Tables("Customer")
Dim nontypedfirstcustomer As DataRow = nontypedcustomers.Rows(0)
MessageBox.Show(nontypedfirstcustomer.Item("FirstName"))

'Strongly typed DataSet
Dim awds As AdventureWorksLTDataSet = RetrieveData()
Dim customers As AdventureWorksLTDataSet.CustomerDataTable = awds.Customer
Dim firstcustomer As AdventureWorksLTDataSet.CustomerRow = customers.Rows(0)
MessageBox.Show(firstcustomer.FirstName)

Code snippet CustomersForm.vb

c#

// Raw DataSet
DataSet nontypedAwds = RetrieveData();
DataTable nontypedcustomers = nontypedAwds.Tables["Customer"];
DataRow nontypedfirstcustomer = nontypedcustomers.Rows[0];
MessageBox.Show(nontypedfirstcustomer["FirstName"].ToString());

// Strongly typed DataSet
AdventureWorksLTDataSet awds = RetrieveData();
AdventureWorksLTDataSet.CustomerDataTable customers = awds.Customer;
AdventureWorksLTDataSet.CustomerRow firstcustomer =
 customers.Rows[0] as AdventureWorksLTDataSet.CustomerRow;
MessageBox.Show(firstcustomer.FirstName);

Code snippet CustomersForm.cs

Using the raw DataSet, both the table lookup and the column name lookup are done using string
literals. As you are likely aware, string literals can be a source of much frustration and should be
used only within generated code, and preferably not at all.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 adding a data source
 You can manually create a strongly typed DataSet by creating an XSD using the XML
schema editor. To create the DataSet, you set the custom tool value for the XSD fi le to be the
MSDataSetGenerator. This will create the designer code fi le that is needed for strongly typed
access to the DataSet.

 Manually creating an XSD is diffi cult and not recommended unless you really need to; luckily in
most cases, the source of your data will be a database, in which case Visual Studio 2010 provides a
wizard that you can use to generate the necessary schema based on the structure of your database.
Through the rest of this chapter, you see how you can create data sources and how they can be
bound to the user interface. To get started, create a new project called CustomerObjects, using the
Windows Forms Application project template.

 Although this functionality is not available for ASP.NET projects, a workaround
is to perform all data access via a class library.

 To create a strongly typed DataSet from an existing database, select Add New Data Source from the
Data menu, and follow these steps:

 1 . The fi rst step in the Data Source Confi guration Wizard is to select the type of data source to
work with — a Database, Service, Object, or SharePoint data source. In this case, you want
to work with data from a database, so select the Database icon and click Next.

 2 . With the introduction of the ADO.NET Entity Framework there are now two different data
models that you can choose to represent the mapping between database data and .NET
entities, being a Dataset or an Entity Data Model. The Entity Framework is covered in
Chapter 29 . Double - click the DataSet icon to continue.

 3 . The next screen prompts you to select the database connection to use. To create a new
connection, click the New Connection button, which opens the Add Connection dialog.
The attributes displayed in this dialog are dependent on the type of database you are
connecting to. By default, the SQL Server provider is selected, which requires the Server
name, authentication mechanism (Windows or SQL Server), and Database name in order
to proceed. There is a Test Connection that you can use to ensure you have specifi ed valid
properties.

 4 . After you specify a connection, it is saved as an application setting in the application
confi guration fi le.

 When the application is later deployed, the connection string can be modifi ed to point
to the production database. This process can often take longer than expected to ensure
that various security permissions line up. Because the connection string is stored in the
confi guration fi le as a string without any schema, it is quite easy to make a mistake when
making changes to it. In Chapter 37 you learn more about connection strings and how you
can customize them for different data sources.

Datasets overview ❘ 561

http://lib.ommolketab.ir
http//lib.ommolketab.ir

562 ❘ chaPter 27 dATASeTS And dATAbinding

 5 . After specifying the connection,
the next stage is to specify the data
to be extracted. At this stage you
are presented with a list of tables,
views, stored procedures, and
functions from which you can select
what to include in the DataSet.
Figure 27 - 1 shows the fi nal stage
of the Data Source Confi guration
Wizard with a selection of columns
from the Customer table in the
AdventureWorksLT database.
Checking the Enable Local Database
Caching checkbox gives you offl ine,
or disconnected, support for working
with your data. This makes use of
Synchronization Services for ADO.NET to synchronize data between your application and
the database, and is covered in more detail in Chapter 34 .

 fiGure 27 - 1

 A little - known utility within Windows can be used to create connection strings,
even if Visual Studio is not installed. Known as the Data Link Properties dialog,
you can use it to edit Universal Data Link fi les, fi les that end in . udl. When
you need to create or test a connection string, you can simply create a new text
document, rename it to something.udl , and then double - click it. This opens the
Data Link Properties dialog, which enables you to create and test connection
strings for a variety of providers. Once you have selected the appropriate
connection, this information will be written to the UDL fi le as a connection
string, which can be retrieved by opening the same fi le in Notepad. This can be
particularly useful if you need to test security permissions and resolve other data
connectivity issues.

 You will probably want to constrain the DataSet so it doesn ’ t return all the
records for a particular table. You can do this after creating the DataSet, so for
the time being simply select the information you want to return. The editor ’ s
design makes it easier to select more information here and then delete it from the
designer, rather than create it afterwards.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 6 . Click Finish to add the new DataSet to the Data
Sources window, shown in Figure 27-2, where
you can view all the information to be retrieved
for the DataSet. Each column is identified with
an icon that varies depending on the data type
of the column. In the left image (displayed
when using a design surface) the icons represent
the default visual control that will be used
to represent the column; in the right image
(displayed when in a code window) the icons
indicate the data type.

the dataset designer
The Data Source Configuration Wizard uses
the database schema to guess the appropriate
.NET type to use for the DataTable columns.
In cases where the wizard gets information
wrong, it can be useful to edit the DataSet
without the wizard. To do this, right-click
the DataSet in the Data Sources window
and select Edit DataSet with Designer from
the context menu. Alternatively, you can
open the Data Sources window by double-
clicking the XSD file in the Solution Explorer
window. This opens the DataSet editor in the main window, as shown in the example in Figure 27-3.

Here you start to see some of the power of using strongly typed DataSets. Not only has a strongly
typed table (Customer) been added to the DataSet, you also have a CustomerTableAdapter. This
TableAdapter is used for selecting from and updating the database for the DataTable to which it is
attached. If you have multiple tables included in the DataSet, you will have a TableAdapter for each.
Although a single TableAdapter can easily handle returning information from multiple tables in the
database, it becomes difficult to update, insert, and delete records.

As you can see in Figure 27-3, the CustomerTableAdapter has been created with Fill and GetData
methods, which are called to extract data from the database. The following code shows how you
can use the Fill method to populate an existing strongly typed DataTable, perhaps within a
DataSet. Alternatively, the GetData method creates a new instance of a strongly typed DataTable:

Vb

Dim ta As New AdventureWorksLTDataSetTableAdapters.CustomerTableAdapter

'Option 1 - Create a new CustomerDataTable and use the Fill method
Dim customers1 As New AdventureWorksLTDataSet.CustomerDataTable
ta.Fill(customers1)

'Option 2 - Use the GetData method which will create a CustomerDataTable for you
Dim customers2 As AdventureWorksLTDataSet.CustomerDataTable = ta.GetData

fiGure 27-2

fiGure 27-3

Datasets overview ❘ 563

http://lib.ommolketab.ir
http//lib.ommolketab.ir

564 ❘ chaPter 27 dATASeTS And dATAbinding

In Figure 27-3, the Fill and GetData methods appear as a pair because they make use of the same
query. The Properties window can be used to configure this query. A query can return data in one
of three ways: using a text command (as the example illustrates), a stored procedure, or TableDirect
(where the contents of the table name specified in the CommandText are retrieved). This is specified
in the CommandType field. Although the CommandText can be edited directly in the Properties
window, it is difficult to see the whole query and easy to make mistakes. Clicking the ellipsis button
(at the top right of Figure 27-3) opens the Query Builder window, shown in Figure 27-4.

fiGure 27-4

The Query Builder dialog is divided into four panes. In the top pane is a diagram of the tables
involved in the query, and the selected columns. The second pane shows a list of columns related
to the query. These columns are either output columns, such as FirstName and LastName, or a
condition, such as the Title field, or both. The third pane is, of course, the SQL command that is
to be executed. The final pane includes sample data that can be retrieved by clicking the Execute
Query button. If there are parameters to the SQL statement (in this case, @Title), a dialog is
displayed, prompting for values to use when executing the statement.

To change the query, you can make changes in any of the first three panes. As you move
between panes, changes in one field are reflected in the others. You can hide any of the panes by
unchecking that pane from the Panes item of the right-click context menu. Conditions can be added
using the Filter column. These can include parameters (such as @Title), which must start with the
@ symbol.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Binding Data ❘ 565

Returning to the DataSet designer, and the
Properties window associated with the Fill
method, click the ellipsis to examine the list
of parameters. This shows the Parameters
Collection Editor, as shown in Figure 27-5.
Occasionally, the Query Builder doesn’t get
the data type correct for a parameter, and
you may need to modify it using this dialog.

Also from the Properties window for the
query, you can specify whether the Fill
and/or GetData methods are created, using
the GenerateMethods property, which has
values Fill, Get, or Both. You can also
specify the names and accessibility of
the generated methods.

bindinG data

The most common type of application is one that retrieves data from a database, displays the
data, allows changes to be made, and then persists those changes back to the database. The
middle steps that connect the in-memory data with the visual elements are referred to as
DataBinding. DataBinding often becomes the bane a of developer’s existence because it has been
difficult to get right. Most developers at some stage or another have resorted to writing their own
wrappers to ensure that data is correctly bound to the controls on the screen. Visual Studio 2010
dramatically reduces the pain of getting two-way DataBinding to work. The examples used in the
following sections again work with the AdventureWorksLT sample database. For simplicity, you’ll
work with a single Windows application, but the concepts discussed here can be extended over
multiple tiers.

In this example, you build an application to assist you in managing the customers for
AdventureWorks. To begin, you need to ensure that the AdventureWorksLTDataSet contains the
Customer and Address tables. (You can reuse the AdventureWorksDataSet from earlier by clicking
the Configure DataSet with Wizard icon in the Data Source window and editing which tables are
included in the DataSet.) With the form designer (any empty form in your project will do) and Data
Sources window open, set the mode for the Customer table to Details using the drop-down list.
Before creating the editing controls, tweak the list of columns for the Customer table. You’re not
that interested in the CustomerID, NameStyle, PasswordHash, PasswordSalt, or rowguid fields,
so set them to None (again using the drop-down list for those nodes in the Data Sources window).
ModifiedDate should be automatically set when changes are made, so this field should appear as a
label, preventing the ModifiedDate from being edited.

fiGure 27-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

566 ❘ chaPter 27 dATASeTS And dATAbinding

Now you’re ready to drag the Customer
node onto the form design surface. This will
automatically add controls for each of the
columns you have specified. It will also add
a BindingSource, a BindingNavigator,
an AdventureWorksDataSet, a
CustomerTableAdapter, a TableAdapter
Manager, and a ToolStrip to the form as
shown in Figure 27-6.

At this point you can build and run this
application and navigate through the records
using the navigation control, and you can also take
the components apart to understand how they
interact. Start with the AdventureWorksDataSet
and the CustomerTableAdapter, because
they carry out the background grunt work of
retrieving information and persisting changes
to the database. The AdventureWorksDataSet that is added to this form is actually an instance of the
AdventureWorksDataSet class that was created by the Data Source Configuration Wizard. This instance
will be used to store information for all the tables on this form. To populate the DataSet, call the Fill
method. If you open the code file for the form, you will see that the Fill command has been called from
the Click event handler of the Fill button that resides on the toolstrip.

Vb

Private Sub FillToolStripButton_Click(ByVal sender As Object,
 ByVal e As EventArgs) _
 Handles FillToolStripButton.Click
 Try
 Me.CustomerTableAdapter.Fill(Me.AdventureWorksLTDataSet.Customer,
 TitleToolStripTextBox.Text)
 Catch ex As System.Exception
 System.Windows.Forms.MessageBox.Show(ex.Message)
 End Try
End Sub

Code snippet CustomersForm.vb

c#

private void fillToolStripButton_Click(object sender, EventArgs e){
 try{
 this.customerTableAdapter.Fill(
 this.adventureWorksLTDataSet.Customer, titleToolStripTextBox.Text);
 }
 catch (System.Exception ex){
 System.Windows.Forms.MessageBox.Show(ex.Message);
 }
}

Code snippet CustomersForm.cs

fiGure 27-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Binding Data ❘ 567

As you extend this form, you’ll add a TableAdapter for each table within the AdventureWorksDataSet
that you want to work with.

bindingsource
The next item of interest is the CustomerBindingSource that was automatically added to the
non-visual part of the form designer. This control is used to wire up each of the controls on
the design surface with the relevant data item. In fact, this control is just a wrapper for the
CurrencyManager. However, using a BindingSource considerably reduces the number of event
handlers and custom code that you have to write. Unlike the AdventureWorksDataSet and the
CustomerTableAdapter — which are instances of the strongly typed classes with the same
names — the CustomerBindingSource is just an instance of the regular BindingSource class that
ships with the .NET Framework.

Take a look at the properties of the CustomerBindingSource so you can see what it does.
Figure 27-7 shows the Properties window for the CustomerBindingSource. The two items of
particular interest are the DataSource and DataMember properties. The drop-down list for the
DataSource property is expanded to illustrate the list of available data sources. The instance of
the AdventureWorksDataSet that was added to the form is listed under CustomerForm List
Instances. Selecting the AdventureWorksDataSet type under the Project Data Sources node creates
another instance on the form instead of reusing the existing DataSet. In the DataMember field, you
need to specify the table to use for DataBinding. Later, you’ll see how the DataMember field can be
used to specify a foreign key relationship so you can show linked data.

So far you have specified that the CustomerBindingSource will bind data in the Customer table of
the AdventureWorksDataSet. What remains is to bind the individual controls on the form to the
BindingSource and the appropriate column in the Customer table. To do this you need to specify
a DataBinding for each control. Figure 27-8 shows the Properties grid for the FirstNameTextBox,
with the DataBindings node expanded to show the binding for the Text property.

fiGure 27-7 fiGure 27-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

568 ❘ chaPter 27 dATASeTS And dATAbinding

From the drop-down list you can see that the Text property is being bound to the FirstName field of
the CustomerBindingSource. Because the CustomerBindingSource is bound to the Customer table,
this is actually the FirstName column in that table. If you look at the designer file for the form, you
can see that this binding is set up using a new Binding, as shown in the following snippet:

Me.FirstNameTextBox.DataBindings.Add(
 New System.Windows.Forms.Binding("Text",
 Me.CustomerBindingSource,
 "FirstName", True))

A Binding is used to ensure that two-way binding is set up between the Text field of the
FirstNameTextBox and the FirstName field of the CustomerBindingSource. The controls for
the other controls all have similar bindings between their Text properties and the appropriate fields
on the CustomerBindingSource.

When you run the current application you will notice that the Modified Date value is displayed
as in the default string representation of a date, for example, “13/10/2004.” Given the nature
of the application, it might be more useful to have it in a format similar to “Friday, 13 October
2004.” To do this you need to specify additional properties as part of the DataBinding. Select the
ModifiedDateLabel1 and in the Properties tool window, expand the DataBindings node and select
the Advanced item. This opens up the Formatting and Advanced Binding dialog as shown in Figure 27-9.

fiGure 27-9

In the lower portion of Figure 27-9 you can see that we have selected one of the predefined
formatting types, Date Time. This then presents another list of formatting options in which
“Saturday, 7 November 2009” has been selected — this is an example of how the value will be
formatted. In this dialog we have also provided a Null value, “N/A,” which will be displayed if
there is no Modified Date value for a particular row. In the following code you can see that three
additional parameters have been added to create the DataBinding for the Modified Date value:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Binding Data ❘ 569

Vb

Me.ModifiedDateLabel1.DataBindings.Add(
 New System.Windows.Forms.Binding("Text",
 Me.CustomerBindingSource,
 "ModifiedDate", True,
 System.Windows.Forms.DataSourceUpdateMode.OnValidation,
 "N/A", "D"))

The OnValidation value simply indicates that the data source will be updated when the visual
control has been validated. This is actually the default and is only specified here so that the next two
parameters can be specified. The “N/A” is the value you specified for when there was no Modified
Date value, and the “D” is actually a shortcut formatting string for the date formatting you selected.

bindingnavigator
Although the CustomerBindingNavigator component, which is an instance of the
BindingNavigator class, appears in the non-visual area of the design surface, it does have a visual
representation in the form of the navigation toolstrip that is initially docked to the top of the form.
As with regular toolstrips, this control can be docked to any edge of the form. In fact, in many ways
the BindingNavigator behaves the same way as a toolstrip in that buttons and other controls can
be added to the Items list. When the BindingNavigator is initially added to the form, a series of
buttons are added for standard data functionality, such as moving to the first or last item, moving to
the next or previous item, and adding, removing, and saving items.

What is neat about the BindingNavigator is that it
not only creates these standard controls, but also wires
them up for you. Figure 27-10 shows the Properties
window for the BindingNavigator, with the Data
and Items sections expanded. In the Data section
you can see that the associated BindingSource is
the CustomerBindingSource, which will be used
to perform all the actions implied by the various
button clicks. The Items section plays an important
role, because each property defines an action, such as
AddNewItem. The value of the property defines the
ToolStripItem to which it will be assigned — in this
case, the BindingNavigatorAddNewItem button.

Behind the scenes, when this application is run and
this button is assigned to the AddNewItem property,
the OnAddNew method is wired up to the Click event of the button. This is shown in the following
snippet, extracted using Reflector from the BindingNavigator class. The AddNewItem property
calls the WireUpButton method, passing in a delegate to the OnAddNew method:

Vb

Public Property AddNewItem As ToolStripItem
 Get
 If ((Not Me.addNewItem Is Nothing) AndAlso Me.addNewItem.IsDisposed) Then

fiGure 27-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

570 ❘ chaPter 27 dATASeTS And dATAbinding

 Me.addNewItem = Nothing
 End If
 Return Me.addNewItem
 End Get
 Set(ByVal value As ToolStripItem)
 Me.WireUpButton(Me.addNewItem, value, _
 New EventHandler(AddressOf Me.OnAddNew))
 End Set
End Property

Private Sub OnAddNew(ByVal sender As Object, ByVal e As EventArgs)
 If (Me.Validate AndAlso (Not Me.bindingSource Is Nothing)) Then
 Me.bindingSource.AddNew
 Me.RefreshItemsInternal
 End If
End Sub

Private Sub WireUpButton(ByRef oldButton As ToolStripItem, _
 ByVal newButton As ToolStripItem, _
 ByVal clickHandler As EventHandler)
 If (Not oldButton Is newButton) Then
 If (Not oldButton Is Nothing) Then
 RemoveHandler oldButton.Click, clickHandler
 End If
 If (Not newButton Is Nothing) Then
 AddHandler newButton.Click, clickHandler
 End If
 oldButton = newButton
 Me.RefreshItemsInternal
 End If
End Sub

The OnAddNew method performs a couple of important actions. First, it forces validation of the
active field, which is examined later in this chapter. Second, and the most important aspect of
the OnAddNew method, it calls the AddNew method on the BindingSource. The other properties
on the BindingNavigator also map to corresponding methods on the BindingSource, and it is
important to remember that the BindingSource, rather than the BindingNavigator, does the work
when it comes to working with the data source.

data source selections
Now that you have seen how the BindingSource works, it’s time to improve the user interface. At
the moment, the Sales Person is being displayed as a textbox, but this should actually be limited
to just the sales staff at AdventureWorks. As such, instead of a textbox, it would be much better to
have the list of staff displayed as a drop-down box from which the user can select.

Start by removing the SalesPersonTextBox from the form. Next, add a ComboBox control from
the toolbox. With the new ComboBox selected, note that a smart tag is attached to the control.
Expanding this tag and checking the Use Data Bound Items checkbox opens the Data Binding Mode
options, as shown in Figure 27-11.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Binding Data ❘ 571

You need to define four things to get the DataBinding to work properly. The first is the data source
for the list of staff the user should be able to select from. Unfortunately, the list of staff is not
contained in a database table (this may be the case if the list of staff comes from a separate system
such as Active Directory). For the purpose of this example the list staff is defined by a fixed array of
SalesPerson objects.

Vb

Public Class SalesPerson
 Public ReadOnly Property FriendlyName
 Get
 Return Name.Replace("adventure-works\", String.Empty)
 End Get
 End Property

 Public Property Name As String

 Public Shared Function Staff() As SalesPerson()
 Return {
 New SalesPerson() With {.Name = "adventure-works\pamela0"},
 New SalesPerson() With {.Name = "adventure-works\david8"},
 New SalesPerson() With {.Name = "adventure-works\jillian0"},
 New SalesPerson() With {.Name = "adventure-works\garrett1"},
 New SalesPerson() With {.Name = "adventure-works\jae0"},
 New SalesPerson() With {.Name = "adventure-works\linda3"},
 New SalesPerson() With {.Name = "adventure-works\josé1"},
 New SalesPerson() With {.Name = "adventure-works\michael9"},
 New SalesPerson() With {.Name = "adventure-works\shu0"}
 }

fiGure 27-11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

572 ❘ chaPter 27 dATASeTS And dATAbinding

 End Function
End Class

Code snippet SalesPerson.vb

c#

public class SalesPerson{
 public string FriendlyName{
 get{
 return Name.Replace(@"adventure-works\", String.Empty);
 }
 }

 public string Name { get; set; }

 public static SalesPerson[] Staff(){
 return new SalesPerson[]{
 new SalesPerson() {Name= @"adventure-works\pamela0"},
 new SalesPerson() {Name= @"adventure-works\david8"},
 new SalesPerson() {Name= @"adventure-works\jillian0"},
 new SalesPerson() {Name= @"adventure-works\garrett1"},
 new SalesPerson() {Name= @"adventure-works\jae0"},
 new SalesPerson() {Name= @"adventure-works\linda3"},
 new SalesPerson() {Name= @"adventure-works\josé1"},
 new SalesPerson() {Name= @"adventure-works\michael9"},
 new SalesPerson() {Name= @"adventure-works\shu0"}
 };
 }
}

Code snippet SalesPerson.cs

Expanding the Data Source drop-down
allows you to select from any of the existing
project data sources. Although the list of
staff, returned by the Staff method on
the SalesPerson class, is contained in the
project, it can’t yet be used as a data source.
First, you need to add a new Object data
source to your project. You can do this
directly from the Data Source drop-down by
selecting the Add Project DataSource link.
This displays the Data Source Configuration
Wizard as you saw earlier in this chapter.
However, this time you will select Object as
the type of data source. You will then have to
select which object(s) you want to include in
the data source, as shown in Figure 27-12.

fiGure 27-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Binding Data ❘ 573

When you select SalesPerson and click Finish the data source will be created and automatically
assigned to the Data Source property of the Sales Person drop-down. The Display Member and
Value Member properties correspond to which properties on the SalesPerson object you want to be
displayed and used to determine the selected item. In this case, the SalesPerson defines a read-only
property, FriendlyName (which simply removes the adventure-works prefix), which should be
displayed in the drop-down. However, the Value property needs to be set to the Name property so
that it matches the value specified in the SalesPerson field in the Customer table. Lastly, the Selected
Value property needs to be set to the SalesPerson property on the CustomerBindingSource. This is
the property that is get/set to determine the Sales Person specified for the displayed Customer.

Although you have wired up the Sales Person drop-down list, if you run what you currently have,
there would be no items in this list, because you haven’t populated the SalesPersonBindingSource.
The BindingSource object has a DataSource property, which you need to set in order to populate the
BindingSource. You can do this in the Load event of the form:

Vb

Private Sub CustomerForm_Load(ByVal sender As Object,
 ByVal e As EventArgs) Handles MyBase.Load
 Me.SalesPersonBindingSource.DataSource = SalesPerson.Staff
End SubPrivate

Code snippet CustomersForm.vb

c#

private void CustomerForm_Load(object sender, EventArgs e){
 this.salesPersonBindingSource.DataSource = SalesPerson.Staff();
}

Code snippet CustomersForm.cs

Now when you run the application, instead of having a textbox with a numeric value, you have a
convenient drop-down list from which to select the SalesPerson.

saving changes
Now that you have a usable interface, you need to add support for making changes and adding new
records. If you double-click the Save icon on the CustomerBindingNavigator toolstrip, the code
window opens with a code stub that would normally save changes to the Customer table. As you
can see in the following snippet, there are essentially three steps: the form is validated, each of the
BindingSources has been instructed to end the current edit, and then the UpdateAll method is
called on the TableAdapterManager:

Vb

Private Sub CustomerBindingNavigatorSaveItem_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) _
 Handles CustomerBindingNavigatorSaveItem.Click
 Me.Validate()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

574 ❘ chaPter 27 dATASeTS And dATAbinding

 Me.CustomerBindingSource.EndEdit()
 Me.TableAdapterManager.UpdateAll(Me.AdventureWorksLTDataSet)
End Sub

c#

private void customerBindingNavigatorSaveItem_Click(object sender, EventArgs e){
 this.Validate();
 this.customerBindingSource.EndEdit();
 this.tableAdapterManager.UpdateAll(this.adventureWorksLTDataSet);
}

This code will run without modification but it won’t update the ModifiedDate field to indicate
the Customer information has changed. You need to correct the Update method used by the
CustomerTableAdapter to automatically update the ModifiedDate field. Using the DataSet
designer, select the CustomerTableAdapter, open the Properties window, expand the
UpdateCommand node, and click the ellipsis button next to the CommandText field. This opens
the Query Builder dialog that you used earlier in this chapter. Uncheck the boxes in the Set column
for the rowguid row (because this should never be updated). In the New Value column, change
@ModifiedDate to getdate() to automatically set the modified date to the date on which the
query was executed. This should give you a query similar to the one shown in Figure 27-13.

fiGure 27-13

With this change, when you save a record the ModifiedDate will automatically be set to the
current date.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Binding Data ❘ 575

inserting new items
You now have a sample application that enables you to browse and make changes to an existing set
of individual customers. The one missing piece is the capability to create a new customer. By default,
the Add button on the BindingNavigator is automatically wired up to the AddNew method on the
BindingSource, as shown earlier in this chapter. In this case, you actually need to set some default
values on the record that is created in the Customer table. To do this, you need to write your own
logic behind the Add button.

The first step is to remove the automatic wiring by setting the AddNewItem property of the
CustomerBindingNavigator to (None), otherwise, you will end up with two records being created
every time you click the Add button. Next, double-click the Add button to create an event handler
for it. You can then modify the default event handler as follows to set initial values for the new
customer, as well as create records in the other two tables:

Vb

Private Sub BindingNavigatorAddNewItem_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles BindingNavigatorAddNewItem.Click
 Dim drv As DataRowView

 'Create record in the Customer table
 drv = TryCast(Me.CustomerBindingSource.AddNew, DataRowView)
 Dim customer = TryCast(drv.Row, AdventureWorksLTDataSet.CustomerRow)
 customer.rowguid = Guid.NewGuid
 customer.PasswordHash = String.Empty
 customer.PasswordSalt = String.Empty
 customer.ModifiedDate = Now
 customer.FirstName = "<first name>"
 customer.LastName = "<last name>"
 customer.NameStyle = False
 Me.CustomerBindingSource.EndEdit()
End Sub

c#

private void bindingNavigatorAddNewItem_Click(object sender, EventArgs e){
 DataRowView drv;

 //Create record in the Customer table
 drv = this.customerBindingSource.AddNew() as DataRowView;
 var customer = drv.Row as AdventureWorksLTDataSet.CustomerRow;
 customer.rowguid = Guid.NewGuid();
 customer.PasswordHash = String.Empty;
 customer.PasswordSalt = String.Empty;
 customer.ModifiedDate = DateTime.Now;
 customer.FirstName = "<first name>";
 customer.LastName = "<last name>";
 customer.NameStyle = false;
 this.customerBindingSource.EndEdit();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

576 ❘ chaPter 27 dATASeTS And dATAbinding

From this example, it seems that you are unnecessarily setting some of the properties — for
example, PasswordSalt and PasswordHash being equal to an empty string. This is necessary to
ensure that the new row meets the constraints established by the database. Because these fields
cannot be set by the user, you need to ensure that they are initially set to a value that can be
accepted by the database. Clearly, for a secure application, the PasswordSalt and PasswordHash
would be set to appropriate values.

Running the application with this method instead of the automatically wired event handler enables
you to create a new Customer record using the Add button. If you enter values for each of the
fields, you can save the changes.

Validation
In the previous section, you added functionality to create a new customer record. If you
don’t enter appropriate data upon creating a new record — for example, if you don’t enter a
first name — this record will be rejected when you click the Save button. The schema for the
AdventureWorksDataSet contains a number of constraints, such as FirstName can’t be null, which
are checked when you perform certain actions, such as saving or moving between records. If these
checks fail, an exception is raised. You have two options. One, you can trap these exceptions,
which is poor programming practice, because exceptions should not be used for execution control.
Alternatively, you can preempt this by validating the data prior to the schema being checked.
Earlier in the chapter, when you learned how the BindingNavigator automatically wires the
AddNew method on the BindingSource, you saw that the OnAddNew method contains a call to a
Validate method. This method propagates up and calls the Validate method on the active control,
which returns a Boolean value that determines whether the action will proceed. This pattern is used
by all the automatically wired events and should be used in the event handlers you write for the
navigation buttons.

The Validate method on the active control triggers two events — Validating and Validated —
that occur before and after the validation process, respectively. Because you want to control the
validation process, add an event handler for the Validating event. For example, you could add an
event handler for the Validating event of the FirstNameTextBox control:

Vb

Private Sub FirstNameTextBox_Validating(ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles FirstNameTextBox.Validating
 Dim firstNameTxt As TextBox = TryCast(sender, TextBox)
 If firstNameTxt Is Nothing Then Return
 e.Cancel = (firstNameTxt.Text = String.Empty)
End Sub

c#

private void firstNameTextBox_Validating(object sender, CancelEventArgs e){
 var firstNameTxt = sender as TextBox;
 if (firstNameTxt == null) return;
 e.Cancel = (firstNameTxt.Text == String.Empty);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Binding Data ❘ 577

Though this prevents users from leaving the
textbox until a value has been added, it doesn’t
give them any idea why the application prevents
them from proceeding. Luckily, the .NET
Framework includes an ErrorProvider control
that can be dragged onto the form from the
Toolbox. This control behaves in a manner similar
to the tooltip control. For each control on the
form, you can specify an Error string, which,
when set, causes an icon to appear alongside
the relevant control, with a suitable tooltip
displaying the Error string. This is illustrated
in Figure 27-14, where the Error string is set
for the FirstNameTextBox.

Clearly, you want only to set the Error string
property for the FirstNameTextBox when there is
no text. Following from the earlier example in which you added the event handler for the Validating
event, you can modify this code to include setting the Error string:

Vb

Private Sub FirstNameTextBox_Validating(ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles FirstNameTextBox.Validating
 Dim firstNameTxt As TextBox = TryCast(sender, TextBox)
 If firstNameTxt Is Nothing Then Return
 e.Cancel = (firstNameTxt.Text = String.Empty)

 If String.IsNullOrWhiteSpace(firstNameTxt.Text) Then
 Me.ErrorProvider1.SetError(firstNameTxt, "First Name must be specified")
 Else
 Me.ErrorProvider1.SetError(firstNameTxt, Nothing)
 End If
End Sub

c#

private void firstNameTextBox_Validating(object sender, CancelEventArgs e){
 var firstNameTxt = sender as TextBox;
 if (firstNameTxt == null) return;
 e.Cancel = (firstNameTxt.Text == String.Empty);

 if (String.IsNullOrEmpty(firstNameTxt.Text)){
 this.errorProvider1.SetError(firstNameTxt, "First Name must be specified");
 }
 else{
 this.errorProvider1.SetError(firstNameTxt, null);
 }
}

You can imagine that having to write event handlers that validate and set the error information for each
of the controls can be quite a lengthy process. Rather than having individual validation event handlers for

fiGure 27-14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

578 ❘ chaPter 27 dATASeTS And dATAbinding

each control, you may want to rationalize them into a single event handler that delegates the validation to
a controller class. This helps ensure your business logic isn’t intermingled within your user interface code.

customized datasets
At the moment, you have a form that displays some basic information about a customer. However,
it is missing some of her address information, namely her Main Office and/or Shipping addresses.
If you look at the structure of the AdventureWorksLT database you will notice that there is a many-
to-many relationship between the Customer and Address tables, through the CustomerAddress
linking table. The CustomerAddress has a column AddressType that indicates the type of address.
While this structure supports the concept that multiple Customers may have the same address, the
user interface you have built so far is only interested in the address information for a particular
customer. If you simply add all three of these tables to your DataSet you will not easily be able to
use data binding to wire up the user interface. As such it is worth customizing the generated DataSet
to merge the CustomerAddress and Address tables into a single entity.

Open up the DataSet designer by double-clicking the AdventureWorksLTDataSet.xsd in the
Solution Explorer. Select the AddressTableAdapter, which you should already have from earlier in
the chapter, expand out the SelectCommand property in the Properties tool window, and then click the
ellipses next to the CommandText property. This will again open up the Query Builder. Currently, you
should only have the Address table in the diagram pane. Right-click in that pane, select Add Table,
and then select the CustomerAddress table. Check all fields in the CustomerAddress table except
AddressID and then go to the Criteria pane and change the Alias for the rowguid and ModifiedDate
columns coming from the CustomerAddress table. The result should look similar to Figure 27-15.

fiGure 27-15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Binding Data ❘ 579

When you click the OK button you will be prompted to regenerate the Update and Insert
statements. The code generator can’t handle multiple table updates so will fail regardless of which
option you select. This means that you need to manually define the update, insert, and delete
statements. You can do this by defining stored procedures within the AdventureWorksLT database
and then to update the CommandType and CommandText for the relevant commands in the
AddressTableAdapter as shown in Figure 27-16.

Now that your DataSet contains both Customer and Address DataTables, the only thing missing
is the relationship connecting them. As you have customized the Address DataTable the designer
hasn’t been able to automatically create the relationship. To create a relation, right-click anywhere
on the DataSet design surface and select Add ➪ Relation. This opens the Relation dialog as shown
in Figure 27-17.

fiGure 27-17fiGure 27-16

In accordance with the way the Address DataTable has been created by combining the
CustomerAddress and Address tables, make the Customer DataTable the parent and the Address the
child. When you accept this dialog you will see a relationship line connecting the two DataTables on
the DataSet design surface.

bindingsource chains and the dataGridView
After completing the setup of the DataSet with the Customer and Address DataTables you are ready
to data bind the Address table to your user interface. So far you’ve been working with simple input
controls such as textboxes, drop-down lists, and labels, and you’ve seen how the BindingNavigator
enables you to scroll through a list of items. Sometimes it is more convenient to display a list of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

580 ❘ chaPter 27 dATASeTS And dATAbinding

items in a grid. This is where the DataGridView is useful, because it enables you to combine the
power of the BindingSource with a grid layout.

In this example, you extend the Customer Management interface by adding address information
using a DataGridView. Returning to the Data Sources window, select the Address node from under
the Customer node. From the drop-down list, select DataGridView and drag the node into an empty
area on the form. This adds the appropriate BindingSource and TableAdapter to the form, as well as
a DataGridView showing each of the columns in the Address table, as shown in Figure 27-18.

fiGure 27-18

If you recall from earlier, the CustomerBindingSource has the AdventureWorksLTDataSet as
its DataSource, with the Customer table set as the DataMember. This means that controls
that are data bound using the CustomerBindingSource are binding to a field in the Customer
table. If you look at the AddressBindingSource you will see that its DataSource is actually the
CustomerBindingSource, with its DataMember set to Customer_Address, which is the relationship
you created between the two DataTables. As you would expect, any control being data bound using
the AddressBindingSource is binding to a field in the Address table. However, the difference is that
unlike the CustomerBindingSource, which returns all Customers, the AddressBindingSource is only
populated with the Addresses that are associated with the currently selected Customer.

Unlike working with the Details layout, when you drag the DataGridView onto the form it ignores
any settings you might have specified for the individual columns. Instead, every column is added to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the grid as a simple text fi eld. To modify
the list of columns that are displayed, you
can either use the smart tag for the newly
added DataGridView or select Edit Columns
from the right - click context menu. This
will open the Edit Columns dialog
(shown in Figure 27 - 19), in which columns
can be added, removed, and reordered.

 After specifying the appropriate columns, the
fi nished application can be run, and the list of
orders will be visible for each customer in the
database.

 workinG with data
sources

 In this chapter you have been working with a strongly typed DataSet that contains a number of
rows from the Customer table, based on a Title parameter. So far the example has only had one
tier, which is the Windows Forms application itself. In this section you see how you can use Visual
Studio 2010 to build a multi - tier application.

 Start by creating two new projects, CustomerBrowser (Windows Forms Application) and
CustomerService (ASP.NET Web Service Application). Change the Application Type of the initial
project to Class Library by double - clicking the Properties node in Solution Explorer and then
changing the Application type fi eld on the Application tab.

 fiGure 27 - 19

 Because this section involves working with ASP.NET applications, it is
recommended that you run Visual Studio 2010 in Administrator mode if you
are running Windows Vista. This will allow the debugger to be attached to the
appropriate process.

 In the Web Service project, you will add a reference to the class library project. You also need
to modify the Service class fi le so it has two methods, in place of the default HelloWorld web
method:

 Vb

Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.ComponentModel
Imports CustomerObject

 < System.Web.Services.WebService(Namespace:="http://tempuri.org/") > _
 < System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1) > _
 < ToolboxItem(False) > _

Working with Data sources ❘ 581

http://tempuri.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

582 ❘ chaPter 27 dATASeTS And dATAbinding

Public Class CustomerService
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function RetrieveCustomers(ByVal Title As String) _
 As AdventureWorksLTDataSet.CustomerDataTable
 Dim ta As New AdventureWorksLTDataSetTableAdapters.CustomerTableAdapter
 Return ta.GetData(Title)
 End Function

 <WebMethod()> _
 Public Sub SaveCustomers(ByVal changes As Data.DataSet)
 Dim changesTable As Data.DataTable = changes.Tables(0)
 Dim ta As New AdventureWorksLTDataSetTableAdapters.CustomerTableAdapter
 ta.Update(changesTable.Select)
 End Sub
End

Code snippet CustomerService.asmx.vb

c#

namespace CustomerService{
 [WebService(Namespace = "http://tempuri.org/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]
 public class CustomerService : System.Web.Services.WebService{
 [WebMethod]
 public AdventureWorksLTDataSet.CustomerDataTable RetrieveCustomers
 (string title){
 var ta = new CustomerObject.AdventureWorksLTDataSetTableAdapters.
 CustomerTableAdapter();
 return ta.GetData(title);
 }

 [WebMethod()]
 public void SaveCustomers(DataSet changes){
 var changesTable = changes.Tables[0] as DataTable;
 var ta = new CustomerObject.AdventureWorksLTDataSetTableAdapters.
 CustomerTableAdapter();
 ta.Update(changesTable.Select());
 }
 }
}

Code snippet CustomerService.asmx.cs

The first web method, as the name suggests, retrieves the list of customers based on the Title
that is passed in. In this method, you create a new instance of the strongly typed TableAdapter
and return the DataTable retrieved by the GetData method. The second web method is used to
save changes to a DataTable, again using the strongly typed TableAdapter. As you will notice, the
DataSet that is passed in as a parameter to this method is not strongly typed. Unfortunately,

http://tempuri.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

the generated strongly typed DataSet doesn ’ t provide a strongly typed GetChanges method,
which will be used later to generate a DataSet containing only data that has changed. This new
DataSet is passed into the SaveCustomers method so that only changed data needs to be sent to the
web service.

 the web service data source
 These changes to the web service complete the server side of the process, but your application
still doesn ’ t have access to this data. To access the data from your application, you need to add a
data source to the application. Again, use the Add New Data Source Wizard, but this time select
Service from the Data Source Type screen. To add a Web Service Data Source you then need to
click Advanced, followed by Add Web Reference. Clicking the “ Web services in this solution ” link
displays a list of web services available in your solution. The web service that you have just been
working on should appear in this list. When you click the hyperlink for that web service, the Add
Reference button is enabled, as shown in Figure 27 - 20 .

 fiGure 27 - 20

 If an error is displayed when clicking the hyperlink you may need to build
and run the ASP.NET Web Service Application project. This starts the service
running so that the schema information can be correctly extracted by the Add
Web Reference dialog.

Working with Data sources ❘ 583

http://lib.ommolketab.ir
http//lib.ommolketab.ir

584 ❘ chaPter 27 dATASeTS And dATAbinding

Clicking the Add Reference button adds an AdventureWorksDataSet to the Data Sources window
under the CustomerService node. Expanding this node, you will see that the data source is very
similar to the data source you had in the class library.

browsing data
To actually view the data being returned via the web service, you need to add some controls to your
form. Open the form so the designer appears in the main window. In the Data Sources window, click
the Customer node and select Details from the drop-down. This indicates that when you drag the
Customer node onto the form, Visual Studio 2010 will create controls to display the details of
the Customer table (for example, the row contents), instead of the default DataGridView. Next,
select the attributes you want to display by clicking them and selecting the control type to use. When
you drag the Customer node onto the form, you should end up with the layout similar to Figure 27-21.

fiGure 27-21

In addition to adding controls for the information to be displayed and edited, a Navigator
control has also been added to the top of the form, and an AdventureWorksDataSet and a
CustomerBindingSource have been added to the non-visual area of the form.

The final stage is to wire up the Load event of the form to retrieve data from the web service, and to
add the Save button on the navigator to save changes. Right-click the save icon and select Enabled
to enable the Save button on the navigator control, and then double-click the save icon to generate
the stub event handler. Add the following code to load data and save changes via the web service
you created earlier:

Vb

Public Class CustomerForm
 Private Sub CustomerForm_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Me.Load

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Me.CustomerBindingSource.DataSource = _
 My.WebServices.CustomerService.RetrieveCustomers("%mr%")
 End Sub

 Private Sub CustomerBindingNavigatorSaveItem_Click _
 (ByVal sender As System.Object,
 ByVal e As System.EventArgs)
 Handles CustomerBindingNavigatorSaveItem.Click
 Me.CustomerBindingSource.EndEdit()
 Dim ds = CType(Me.CustomerBindingSource.DataSource, _
 CustomerService.AdventureWorksLTDataSet.CustomerDataTable)
 Dim changesTable As DataTable = ds.GetChanges()
 Dim changes As New DataSet
 changes.Tables.Add(changesTable)
 My.WebServices.CustomerService.SaveCustomers(changes)
 End Sub
End Class

Code snippet CustomersForm.vb

c#

private void CustomersForm_Load(object sender, EventArgs e){
 var service = new CustomerService.CustomerService();
 this.CustomerBindingSource.DataSource = service.RetrieveCustomers("%mr%"); ;
}

private void CustomerBindingNavigatorSaveItem_Click(object sender, EventArgs e){
 this.CustomerBindingSource.EndEdit();
 var ds = this.CustomerBindingSource.DataSource
 as CustomerService.AdventureWorksLTDataSet.CustomerDataTable;
 var changesTable = ds.GetChanges();
 var changes = new DataSet();
 changes.Tables.Add(changesTable);
 var service = new CustomerService.CustomerService();
 service.SaveCustomers(changes);
}

Code snippet CustomersForm.cs

To retrieve the list of customers from the web service, all you need to do is call the appropriate
web method — in this case, RetrieveCustomers. Pass in a parameter of %mr%, which indicates
that only customers with a Title containing the letters “mr” should be returned. The Save method
is slightly more complex, because you have to end the current edit (to make sure all changes are
saved), retrieve the DataTable, and then extract the changes as a new DataTable. Although it would
be simpler to pass a DataTable to the SaveCustomers web service, only DataSets can be specified as
parameters or return values to a web service. As such, you can create a new DataSet and add the
changed DataTable to the list of tables. The new DataSet is then passed into the SaveCustomers
method. As mentioned previously, the GetChanges method returns a raw DataTable, which is
unfortunate because it limits the strongly typed data scenario.

Working with Data sources ❘ 585

http://lib.ommolketab.ir
http//lib.ommolketab.ir

586 ❘ chaPter 27 dATASeTS And dATAbinding

This completes the chapter’s coverage of the strongly typed DataSet scenario, and provides you with
a two-tiered solution for accessing and editing data from a database via a web service interface.

suMMary

This chapter provided an introduction to working with strongly typed DataSets. Support within
Visual Studio 2010 for creating and working with strongly typed DataSets simplifies the rapid
building of applications. This is clearly the first step in the process of bridging the gap between the
object-oriented programming world and the relational world in which the data is stored.

Hopefully this chapter has given you an appreciation for how the BindingSource,
BindingNavigator, and other data controls work together to give you the ability to rapidly build
data applications. Because the new controls support working with either DataSets or your own
custom objects, they can significantly reduce the amount of time it takes you to write an application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

28
 language integrated
Queries (linQ)

 what ’ s in this chaPter?

 Querying objects with LINQ ➤

 Writing and querying XML with XLINQ ➤

 Querying and updating data with LINQ to SQL ➤

 Language Integrated Queries (LINQ) was designed to provide a common programming model
for querying data. In this chapter you see how you can take some very verbose, imperative
code and reduce it to a few declarative lines. This enables you to make your code more
descriptive rather than prescriptive; that is, describing what you want to occur, rather than
detailing how it should be done.

 Although LINQ provides an easy way to fi lter, sort, and project from an in - memory object
graph, it is more common for the data source to be either a database or a fi le type, such as
XML. In this chapter you are introduced to LINQ to XML, which makes working with XML
data dramatically simpler than with traditional methods such as using the document object
model, XSLT, or XPath. You also learn how to use LINQ to SQL to work with traditional
databases, such as SQL Server, allowing you to write LINQ statements that will query the
database, pull back the appropriate data, and populate .NET objects that you can work with.
In Chapter 29 you are introduced to the ADO.NET Entity Framework for which there is also
a LINQ provider. This means that you can combine the power of declarative queries with the
fi delity of the Entity Framework to manage your data object life cycle.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

588 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

linq ProViders

One of the key tenets of LINQ is the ability to abstract away the query syntax from the underlying
data store. LINQ sits behind the various .NET languages such as C# and VB and combines various
language features, such as extension methods, type inferences, anonymous types, and Lambda
expressions, to provide a uniform syntax for querying data.

A number of LINQ-enabled data sources come with Visual Studio 2010 and the .NET Framework
4.0: Objects, DataSets, SQL, Entities, and XML; each with its own LINQ provider that’s capable
of querying the corresponding data source. LINQ is not limited to just these data sources, and
providers are available for querying all sorts of other data sources. For example, there is a LINQ
provider for querying SharePoint. In fact, the documentation that ships with Visual Studio 2010
includes a walkthrough on creating your own LINQ provider.

In this chapter you see some of the standard LINQ operations as they apply to standard .NET
objects. You’ll then see how these same queries can be applied to both XML and SQL data sources.
As you will see, the syntax for querying the data remains constant, with only the underlying data
source changing.

old-school queries

Instead of walking through exactly what LINQ is, this
section starts with an example that demonstrates some of
the savings that these queries offer. The scenario is one in
which a researcher is investigating whether or not there is
a correlation between the length of a customer’s name and
the customer’s average order size by analyzing a collection
of customer objects. The relationship between a customer
and the orders is a simple one-to-many relationship as
shown in Figure 28-1.

In the particular query you are examining, the researchers are looking for the average Milk order
for customers with a first name greater than or equal to five characters, ordered by the first name:

c#

private void OldStyleQuery(){
 Customer[] customers = BuildCustomers();
 List<SearchResult> results = new List<SearchResult>();
 SearchForProduct matcher = new SearchForProduct() { Product = "Milk" };
 foreach (Customer c in customers){
 if (c.FirstName.Length >= 5){
 Order[] orders = Array.FindAll(c.Orders, matcher.ProductMatch);
 if (orders.Length > 0){
 SearchResult cr = new SearchResult();
 cr.Customer = c.FirstName + " " + c.LastName;
 foreach (Order o in orders){
 cr.Quantity += o.Quantity;

fiGure 28-1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 cr.Count++;
 }
 results.Add(cr);
 }
 }
 }
 results.Sort(CompareSearchResults);
 ObjectDumper.Write(results, Writer);
}

Code snippet MainForm.cs

Vb

Private Sub OldStyleQuery()
 Dim customers As Customer() = BuildCustomers()

 Dim results As New List(Of SearchResult)
 Dim matcher As New SearchForProduct() With {.Product = "Milk"}

 For Each c As Customer In customers
 If c.FirstName.Length >= 5 Then
 Dim orders As Order() = Array.FindAll(c.Orders, _
 AddressOf matcher.ProductMatch)
 If orders.Length > 0 Then
 Dim cr As New SearchResult
 cr.Customer = c.FirstName & " " & c.LastName
 For Each o As Order In orders
 cr.Quantity += o.Quantity
 cr.Count += 1
 Next
 results.Add(cr)
 End If
 End If
 Next
 results.Sort(AddressOf CompareSearchResults)

 ObjectDumper.Write(results, Writer)
End Sub

Code snippet MainForm.vb

Before we jump in and show how LINQ can improve this snippet, let’s examine how this snippet
works. The opening line calls out to a method that simply generates Customer objects. This will
be used throughout the snippets in this chapter. The main loop in this method iterates through
the array of customers searching for those customers with a first name longer than five characters.
Upon finding such a customer, you use the Array.FindAll method to retrieve all orders where the
predicate is true. Prior to the introduction of anonymous methods you couldn’t supply the predicate
function inline with the method. As a result, the usual way to do this was to create a simple class
that could hold the query variable (in this case, the product, Milk) that you were searching for,
and that had a method that accepted the type of object you were searching through, in this case an
Order. With the introduction of Lambda expressions, you can now rewrite this line:

old-school Queries ❘ 589

http://lib.ommolketab.ir
http//lib.ommolketab.ir

590 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

c#

var orders = Array.FindAll(c.Orders, order=>order.Product =="Milk");

Vb

Dim orders = Array.FindAll(c.Orders,
 Function(o As Order) o.Product = "Milk")

Here you have also taken advantage of type inferencing to determine the type of the variable orders,
which is of course still an array of orders.

Returning to the snippet, once you have located the orders you still need to iterate through them and
sum up the quantity ordered and store this, along with the name of the customer and the number of
orders. This is your search result, and as you can see you are using a SearchResult object to store
this information. For convenience, the SearchResult object also has a read-only Average property,
which simply divides the total quantity ordered by the number of orders. Because you want to
sort the customer list, you use the Sort method on the List class, passing in the address of a
comparison method. Again, using Lambda expressions, this can be rewritten as an inline statement:

c#

results.Sort((r1, r2) => string.Compare(r1.Customer, r2.Customer));

Vb

results.Sort(Function(r1 as SearchResult, r2 as SearchResult) _
 String.Compare(r1.Customer, r2.Customer))

The last part of this snippet is to print out the search
results. This is using one of the samples that ships with
Visual Studio 2010 called ObjectDumper. This is a simple
class that iterates through a collection of objects printing
out the values of the public properties. In this case the
output would look like Figure 28-2.

As you can see from this relatively simple query, the code
to do this in the past was quite prescriptive and required additional classes in order to carry out the
query logic and return the results. With the power of LINQ you can build a single expression that
clearly describes what the search results should be.

query Pieces

This section introduces you to a number of the query operations that make up the basis of LINQ. If
you have written SQL statements, these will feel familiar, although the ordering and syntax might
take a little time to get used to. You can use a number of query operations, and numerous reference
web sites provide more information on how to use them. For the moment, you will focus on those
operations necessary to improve the search query introduced at the beginning of this chapter.

fiGure 28-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 from
 Unlike SQL, where the fi rst statement is Select , in LINQ the fi rst statement is typically From .
One of the key considerations in the creation of LINQ was providing IntelliSense support
within Visual Studio 2010. If you ’ ve ever wondered why there is no IntelliSense support in SQL
Management Studio for SQL Server 2005 for writing queries, this is because to determine what
to select, you need to know where the data is coming from. By reversing the order of the statements,
LINQ is able to generate IntelliSense as soon as you start typing.

 As you can see from the tooltip in Figure 28 - 3 ,
the From statement is made up of two parts,
 < element > and < collection > . The latter is
the source collection from which you will be
extracting data, and the former is essentially
an iteration variable that can be used to refer
to the items being queried. This pair can then be repeated for each source collection.

 In this case you can see you are querying the customers collection, with an iteration variable c , and
the orders collection c.Orders using the iteration variable o . There is an implicit join between the
two source collections because of the relationship between a customer and that customer ’ s orders.
As you can imagine, this query will result in the cross - product of items in each source collection.
This will lead to the pairing of a customer with each order that this customer has.

 Note that you don ’ t have a Select statement, because you are simply going to return all elements,
but what does each result record look like? If you were to look at the tooltip for results, you
would see that it is a generic IEnumerable of an anonymous type. The anonymous type feature is
heavily used in LINQ so that you don ’ t have to create classes for every result. If you recall from
the initial code, you had to have a SearchResult class in order to capture each of the results.
Anonymous types mean that you no longer have to create a class to store the results. During
compilation, types containing the relevant properties are dynamically created, thereby giving
you a strongly typed result set along with
IntelliSense support. Though the tooltip
for results may report only that it is an
IEnumerable of an anonymous type, when
you start to use the results collection you
will see that the type has two properties,
 c and o , of type Customer and Order,
respectively. Figure 28 - 4 displays the output
of this code, showing the customer - order
pairs.

 fiGure 28 - 3

 fiGure 28 - 4

 C# actually requires a Select clause to be present in all LINQ, even if you are
returning all objects in the From clause.

Query Pieces ❘ 591

http://lib.ommolketab.ir
http//lib.ommolketab.ir

592 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

select
In the previous code snippet the result set was a collection of customer-order pairs, when in fact
what you want to return is the customer name and the order information. You can do this by using
a Select statement in a way similar to the way you would when writing a SQL statement:

c#

private void LinqQueryWithSelect(){
 var customers = BuildCustomers();
 var results = from c in customers
 from o in c.Orders
 select new{c.FirstName,
 c.LastName,o.Product,o.Quantity};
 ObjectDumper.Write(results, Writer);
}

Code snippet MainForm.cs

Vb

Private Sub LinqQueryWithSelect()
 Dim customers = BuildCustomers()

 Dim results = From c In customers, o In c.Orders
 Select c.FirstName, c.LastName, o.Product, o.Quantity

 ObjectDumper.Write(results, Writer)
End Sub

Code snippet MainForm.vb

Now when you execute this code the result set
is a collection of objects that have FirstName,
LastName, Product, and Quantity properties. This
is illustrated in the output shown in Figure 28-5.

where
So far all you have seen is how you can effectively
flatten the customer-order hierarchy into a result set
containing the appropriate properties. What you haven’t done is filter these results so that they only
return customers with a first name greater than or equal to five characters, and who are ordering
Milk. The following snippet introduces a Where statement, which restricts the source collections on
both these axes:

c#

private void LinqQueryWithWhere(){
 var customers = BuildCustomers();

 var results = from c in customers

fiGure 28-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 from o in c.Orders
 where c.FirstName.Length >= 5 &&
 o.Product == "Milk"
 select new { c.FirstName, c.LastName, o.Product, o.Quantity };

 ObjectDumper.Write(results, Writer);
}

Code snippet MainForm.cs

Vb

Private Sub LinqQueryWithWhere()
 Dim customers = BuildCustomers()

 Dim results = From c In customers, o In c.Orders
 Where c.FirstName.Length >= 5 And
 o.Product = "Milk"
 Select c.FirstName, c.LastName, o.Product, o.Quantity

 ObjectDumper.Write(results, Writer)
End Sub

Code snippet MainForm.vb

The output of this query is similar to the previous one in that it is a result set of an anonymous type
with the four properties FirstName, LastName, Product, and Quantity.

Group by
You are getting close to your initial query, except that your current query returns a list of all the
Milk orders for all the customers. For a customer who might have placed two orders for Milk, this
will result in two records in the result set. What you actually want to do is to group these orders by
customer and take an average of the quantities ordered. Not surprisingly, this is done with a Group
By statement, as shown in the following snippet:

c#

private void LinqQueryWithGroupingAndWhere(){
 var customers = BuildCustomers();

 var results = from c in customers
 from o in c.Orders
 where c.FirstName.Length >= 5 &&
 o.Product == "Milk"
 group o by c into avg
 select new { avg.Key.FirstName, avg.Key.LastName,
 avg = avg.Average(o => o.Quantity) };
 ObjectDumper.Write(results, Writer);
}

Code snippet MainForm.cs

Query Pieces ❘ 593

http://lib.ommolketab.ir
http//lib.ommolketab.ir

594 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

Vb

Private Sub LinqQueryWithGroupingAndWhere()
 Dim customers = BuildCustomers()

 Dim results = From c In customers, o In c.Orders _
 Where c.FirstName.Length >= 5 And _
 o.Product = "Milk" _
 Group By c Into avg = Average(o.Quantity) _
 Select c.FirstName, c.LastName, avg

 ObjectDumper.Write(results)
End Sub

Code snippet MainForm.vb

What is a little confusing about the Group By statement is the syntax that it uses. Essentially, what it
is saying is “group by dimension X” and place the results “Into” an alias that can be used elsewhere.
In this case the alias is avg, which will contain the average you are interested in. Because you are
grouping by the iteration variable c, you can still use this in
the Select statement, along with the Group By alias. Note
that the C# example is slightly different in that although the
grouping is still done on c, you then have to access it via
the Key property of the alias. Now when you run this you
get the output shown in Figure 28-6, which is much closer
to your initial query.

custom Projections
You still need to tidy up the output so that
you are returning a well-formatted customer
name and an appropriately named average
property, instead of the query results,
FirstName, LastName, and avg. You can do
this by customizing the properties that
are contained in the anonymous type
that is created as part of the Select statement
projection. Figure 28-7 shows how you can create
anonymous types with named properties.

This figure also illustrates that the type of the AverageMilkOrder property is indeed a Double,
which is what you would expect based on the use of the Average function. It is this strongly typed
behavior that can really assist you in the creation and use of rich LINQ statements.

order by
The last thing you have to do with the LINQ statement is to order the results. You can do this by
ordering the customers based on their FirstName property, as shown in the following snippet:

fiGure 28-6

fiGure 28-7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

private void LinqQueryWithGroupingAndWhere(){
 var customers = BuildCustomers();

 var results = from c in customers
 from o in c.Orders
 orderby c.FirstName
 where c.FirstName.Length >= 5 &&
 o.Product == "Milk"
 group o by c into avg
 select new { Name = avg.Key.FirstName + " " + avg.Key.LastName,
 AverageMilkOrder = avg.Average(o => o.Quantity) };
 ObjectDumper.Write(results, Writer);
}

Code snippet MainForm.cs

Vb

Private Sub FinalLinqQuery()
 Dim customers = BuildCustomers()

 Dim results = From c In customers, o In c.Orders
 Order By c.FirstName
 Where c.FirstName.Length >= 5 And
 o.Product = "Milk
 Group By c Into avg = Average(o.Quantity)
 Select New With {.Name = c.FirstName & " " & c.LastName,
 .AverageMilkOrder = avg}

 ObjectDumper.Write(results)
End Sub

Code snippet MainForm.vb

One thing to be aware of is how you can easily reverse the order of the query results. Here you can
do this either by supplying the keyword Descending (Ascending is the default) at the end of the
Order By statement, or by applying the Reverse transformation on the entire result set:

Order By c.FirstName Descending

or

ObjectDumper.Write(results.Reverse)

As you can see from the final query you have built up, it is much more descriptive than the initial
query. You can easily see that you are selecting the customer name and an average of the order
quantities. It is clear that you are filtering based on the length of the customer name and on
orders for Milk, and that the results are sorted by the customer’s first name. You also haven’t
needed to create any additional classes to help perform this query.

Query Pieces ❘ 595

http://lib.ommolketab.ir
http//lib.ommolketab.ir

596 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

debuGGinG and execution

One of the things you should be aware of with LINQ is that the queries are not executed until they
are used. In fact, each time you use a LINQ query you will find that the query is re-executed. This
can potentially lead to some issues in debugging and some unexpected performance issues if you are
executing the query multiple times. In the code you have seen so far, you have declared the LINQ
statement and then passed the results object to the ObjectDumper, which in turn iterates through
the query results. If you were to repeat this call to the ObjectDumper, it would again iterate
through the results.

Unfortunately, this delayed execution can mean that LINQ statements are hard to debug. If you
select the statement and insert a breakpoint, all that will happen is that the application will stop
where you have declared the LINQ statement. If you step to the next line, the results object will
simply state that it is an “In-Memory Query.” In C# the debugging story is slightly better because
you can actually set breakpoints within the LINQ statement. As you can see from Figure 28-8,
the breakpoint on the conditional statement has been hit. From the call stack you can see that
the current execution point is no longer actually in the FinalQuery method; it is in fact within the
ObjectDumper.Write method.

fiGure 28-8

If you need to force the execution of a LINQ you can call ToArray or ToList on the results
object. This will force the query to execute, returning an Array or List of the appropriate type.
You can then use this array in other queries, reducing the need for the LINQ to be executed
multiple times.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 linq to xMl

 If you have ever worked with XML in .NET, you will recall that the object model isn ’ t as easy
to work with as you would imagine. For example, to create even a single XML element you need to
have an XmlDocument :

Dim x as New XmlDocument
x.AppendChild(x.CreateElement("Customer"))

 As you will see when you start to use LINQ to query and build XML, this object model doesn ’ t
allow for the inline creation of elements. To this end, a new XML object model was created that
resides in the System.Xml.Linq assembly presented in Figure 28 - 9 .

 When setting a breakpoint within a LINQ in C# you need to place
the cursor at the point you want the breakpoint to be set and press F9 (or
use the right - click context menu to set a breakpoint), rather than clicking in
the margin. Clicking in the margin sets a breakpoint on the whole LINQ,
which is not what you want.

 fiGure 28 - 9

 As you can see from Figure 28 - 9 , there are classes that correspond to the relevant parts of an XML
document: XComment , XAttribute , and XElements . The biggest improvement is that most of the
classes can be instantiated by means of a constructor that accepts Name and Content parameters.
In the following C# code, you can see that an element called Customers has been created that
contains a single Customer element. This element, in turn, accepts an attribute, Name , and a series
of Order elements.

 c#

XElement x = new XElement("Customers",
 new XElement("Customer",
 new XAttribute("Name","Bob Jones"),

linQ to XMl ❘ 597

http://lib.ommolketab.ir
http//lib.ommolketab.ir

598 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

 new XElement("Order",
 new XAttribute("Product", "Milk"),
 new XAttribute("Quantity", 2)),
 new XElement("Order",
 new XAttribute("Product", "Bread"),
 new XAttribute("Quantity", 10)),
 new XElement("Order",
 new XAttribute("Product", "Apples"),
 new XAttribute("Quantity", 5))
)
);

 Though this code snippet is quite verbose and it ’ s hard to distinguish the actual XML data from
the surrounding .NET code, it is signifi cantly better than with the old XML object model, which
required elements to be individually created and then added to the parent node.

 While it is possible to write the same code in VB using the XElement and
XAttribute constructors, the support for XML literals (as discussed in the next
section) makes this somewhat redundant.

 Vb xMl literals
 One of the biggest innovations in the VB language is the support for XML literals. As with strings
and integers, an XML literal is treated as a fi rst - class citizen when you are writing code. The
following snippet illustrates the same XML generated by the previous C# snippet as it would appear
using an XML literal in VB:

 Vb

Dim cust = < Customers >
 < Customer Name="Bob Jones" >
 < Order Product="Milk" Quantity="2"/ >
 < Order Product="Bread" Quantity="10"/ >
 < Order Product="Apples" Quantity="5"/ >
 < /Customer >
 < /Customers >

 Not only do you have the ability to assign an XML literal
in code, you also get designer support for creating and
working with your XML. For example, when you enter
the > on a new element, it will automatically create the
closing XML tag for you. Figure 28 - 10 illustrates how
the Customers XML literal can be condensed in the same
way as other code blocks in Visual Studio 2010.

 You can also see in Figure 28 - 10 that there is an error in the XML literal being assigned to the
data variable. In this case there is no closing tag for the Customer element. Designer support is
invaluable for validating your XML literals, preventing run time errors when the XML is parsed
into XElement objects.

 fiGure 28 - 10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Paste xMl as xelement
 Unfortunately, C# doesn ’ t have native support for XML literals, which makes generating XML
a painful process, even with the new object model. Luckily, there is a time - saving add - in that
will paste an XML snippet from the clipboard into the code window as a series of XElement
objects. This can make a big difference if you have to create XML from scratch. The add - in,
PasteXmlAsLinq in the LinqSamples folder, is available in the C# samples that ship with
Visual Studio 2010. Simply open the sample in Visual Studio 2010, build the solution, navigate
to the output folder, and copy the output fi les (namely
 PasteXmlAsLinq.Addin and PasteXmlAsLinq.dll) to the
add - ins folder for Visual Studio 2010. When you restart Visual
Studio 2010 you will see a new item, Paste XML as XElement, in
the Edit menu when you are working in the code editor window,
as you can see in Figure 28 - 11 . fiGure 28 - 11

 Visual Studio 2010 looks in a variety of places, defi ned in the Options dialog
(Tools menu), for add - ins. Typically, it looks in an add - ins folder located beneath
the Visual Studio root documents directory. For example: C:\users\username\
Documents\Visual Studio 2010\Addins . If the Addins folder doesn ’ t exist,
you may need to create it.

 To work with this add - in, all you need to do is to
create the XML snippet in your favorite XML editor.
In Figure 28 - 12 we have used XML Notepad, which
is a freely available download from www.microsoft.
com , but you can also use the built - in XML editor
within Visual Studio 2010.

 Once you have created the XML snippet, copy it to
the clipboard (for example, by pressing Ctrl 1 C). Then
place your cursor at the point at which you want
to insert the snippet within Visual Studio 2010 and
select Paste XML as XElement from the Edit menu.
(Of course, if you use this option frequently you may
want to assign a shortcut key to it so that you don ’ t
have to navigate to the menu.) The code generated by
the add - in will look similar to the following:

 c#

XElement xml = new XElement("Customers",
 new XElement("Customer",
 new XAttribute("Name", "Bob Jones"),
 new XElement("Order",
 new XAttribute("Product", "Milk"),
 new XAttribute("Quantity", "2")

linQ to XMl ❘ 599

 fiGure 28 - 12

http://www.microsoft
http://lib.ommolketab.ir
http//lib.ommolketab.ir

600 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

),
 new XElement("Order",
 new XAttribute("Product", "Bread"),
 new XAttribute("Quantity", "10")
),
 new XElement("Order",
 new XAttribute("Product", "Apples"),
 new XAttribute("Quantity", "5")
)));

Code snippet MainForm.cs

creating xMl with linq
Although creating XML using the new object model is significantly quicker than previously
possible, the real power of the new object model comes when you combine it with LINQ in the
form of LINQ to XML (XLINQ). By combining the rich querying capabilities with the ability to
create complex XML in a single statement, you can now generate entire XML documents in a single
statement. Let’s continue with the same example of customers and orders. In this case you have an
array of customers, each of whom has any number of orders. What you want to do is create XML
that lists the customers and their associated orders. You’ll start by creating the customer list, and
then introduce the orders.

To begin with, create an XML literal that defines the structure you want to create:

c#

XElement customerXml = new XElement("Customers",
 new XElement("Customer",
 new XAttribute("Name", "Bob Jones")));

Vb

Dim customerXml = <Customers>
 <Customer Name="Bob Jones">
 </Customer>
 </Customers>

Although you can simplify this code by condensing the Customer element into <Customer
Name=”Bob Jones” />, you’re going to be adding the orders as child elements, so you will use a
separate closing XML element.

expression Holes
If you have multiple customers, the Customer element is going to repeat for each one, with Bob
Jones being replaced by different customer names. Before you deal with replacing the name, you
first need to get the Customer element to repeat. You do this by creating an expression hole, using a
syntax familiar to anyone who has worked with ASP:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

XElement customerXml = new XElement("Customers",
 from c in customers
 select new XElement("Customer",
 new XAttribute("Name",
 "Bob Jones")));

Vb

Dim customerXml = <Customers>
 <%= From c In customers _
 Select <Customer Name="Bob Jones">
 </Customer> %>
 </Customers>

Here you can see that in the VB code, <%= %> has been used to define the expression hole, into
which a LINQ statement has been added. This is not required in the C# syntax because the LINQ
statement just becomes an argument to the XElement constructor. The Select statement creates
a projection to an XML element for each customer in the Customers array, based on the static
value “Bob Jones”. To change this to return each of the customer names you again have to use an
expression hole. Figure 28-13 shows how Visual Studio 2010 provides rich IntelliSense support in
these expression holes.

fiGure 28-13

The following snippet uses the loop variable Name so that you can order the customers based on
their full names. This loop variable is then used to set the Name attribute of the customer node.

c#

XElement customerXml = new XElement("Customers",
 from c in customers
 let name = c.FirstName + " " + c.LastName
 orderby name
 select new XElement("Customer",
 new XAttribute("Name", name),
 from o in c.Orders
 select new XElement("Order",
 new XAttribute("Product", o.Product),
 new XAttribute("Quantity",
 o.Quantity))));

Code snippet MainForm.cs

linQ to XMl ❘ 601

http://lib.ommolketab.ir
http//lib.ommolketab.ir

602 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

Vb

Dim customerXml = <Customers>
 <%= From c In customers _
 Let Name = c.FirstName & “ “ & c.LastName _
 Order By Name _
 Select <Customer Name=<%= Name %>>
 <%= From o In c.Orders _
 Select
 <Order
 Product=<%= o.Product %>
 Quantity=<%= o.Quantity %>
 /> %>
 </Customer> %>
 </Customers>

Code snippet MainForm.vb

The other thing to notice in this snippet is that you have included the creation of the Order elements
for each customer. Although it would appear that the second, nested LINQ statement is independent
of the first, there is an implicit joining through the customer loop variable c. Hence, the second
LINQ statement is iterating through the orders for a particular customer, creating an Order element
with attributes Product and Quantity.

As you can see, the C# equivalent is slightly less easy to read but is by no means more complex.
There is no need for expression holes, because C# doesn’t support XML literals; instead, the LINQ
statement just appears nested within the XML construction. For a complex XML document this
would quickly become difficult to work with, which is one reason VB now includes XML literals as
a first-class language feature.

queryinG xMl

In addition to enabling you to easily create XML, LINQ can also be used to query XML. The
following Customers XML is used in this section to discuss the XLINQ querying capabilities:

<Customers>
 <Customer Name="Bob Jones">
 <Order Product="Milk" Quantity="2"/>
 <Order Product="Bread" Quantity="10"/>
 <Order Product="Apples" Quantity="5"/>
 </Customer>
</Customers>

The following two code snippets show the same query using VB and C#, respectively. In both cases
the customerXml variable (an XElement) is queried for all Customer elements, from which the Name
attribute is extracted. The Name attribute is then split over the space between names, and the result
is used to create a new Customer object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 c#

var results = from cust in customerXml.Elements("Customer")
 let nameBits = cust.Attribute("Name").Value.Split(' ')
 select new Customer() {FirstName = nameBits[0],
 LastName=nameBits[1] };

 Code snippet MainForm.cs

 Vb

Dim results = From cust In customerXml. < Customer >
 Let nameBits = cust.@Name.Split(" "c)
 Select New Customer() With {.FirstName = nameBits(0),
 .LastName = nameBits(1)}

 Code snippet MainForm.vb

 As you can see, the VB XML language
support extends to enabling you to
query elements using . < elementName >
and attributes using .@attributeName .
Figure 28 - 14 shows the IntelliSense for
the customerXml variable, which shows
three XML query options.

 You have seen the second and third of these options in action in the previous query to extract
attribute and element information, respectively. The third option enables you to retrieve all sub -
 elements that match the supplied element. For example, the following code retrieves all orders in the
XML document, irrespective of which customer element they belong to:

Dim allOrders = From cust In customerXml. < Order >
 Select New Order With {.Product = cust.@Product,
 .Quantity = CInt(cust.@Quantity)}

 scheMa suPPort

 Although VB enables you to query XML using elements and attributes, it doesn ’ t actually provide
any validation that you have entered the correct element and attribute names. To reduce the chance
of entering the wrong names, you can import an XML schema, which will extend the default
IntelliSense support to include the element and attribute names. You import an XML schema as you
would any other .NET namespace. First you need to add a reference to the XML schema to your
project, and then you need to add an Imports statement to the top of your code fi le.

 fiGure 28 - 14

 Unlike other import statements, an XML schema import can ’ t be added in the
Project Properties Designer, which means you need to add it to the top of any
code fi le in which you want IntelliSense support.

schema support ❘ 603

mailto:cust.@Name.Split
mailto:.@attributeName
mailto:cust.@Product
mailto:cust.@Quantity
http://lib.ommolketab.ir
http//lib.ommolketab.ir

604 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

If you are working with an existing XML file but don’t have a schema handy, manually creating an
XML schema just so you can have better IntelliSense support seems like overkill. Luckily, the VB
team has included the XML to Schema Inference Wizard in Visual Studio 2010. Once installed, this
wizard enables you to create a new XML schema based on an XML snippet or XML source file,
or from a URL that contains the XML source. In this example, you’re going to start with an XML
snippet that looks like the following:

<c:Customers xmlns:c="http://www.professionalvisualstudio.com/chapter28/customers">
 <c:Customer Name="Bob Jones">
 <c:Order Product="Milk" Quantity="2" />
 <c:Order Product="Cereal" Quantity="10" />
 </c:Customer>
 <c:Customer Name="Alastair Kelly">
 <c:Order Product="Milk" Quantity="9" />
 <c:Order Product="Bread" Quantity="7" />
 </c:Customer>
</c:Customers>

Code snippet customers.xml

Note that unlike the previous XML snippets, this one includes a namespace — this is necessary,
because the XML schema import is based on importing a namespace (rather than importing a
specific XSD file). To generate an XML schema based on this snippet, start by right-clicking your
project in the Solution Explorer and selecting Add New Item. With the XML to Schema Inference
Wizard installed, there should be an additional XML To Schema item template, as shown in
Figure 28-15.

fiGure 28-15

http://www.professionalvisualstudio.com/chapter28/customers
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Selecting this item and clicking OK prompts you to select the location of the XML from which
the schema should be generated. Select the Type or Paste XML button and paste the customers
XML snippet from earlier into the text area provided. Once you click OK, this generates the
 CustomersSchema.xsd fi le containing a schema based on the XML resources you have specifi ed.
The next step is to import this schema
into your code fi le by adding an Imports
statement to the XML namespace, as shown
in Figure 28 - 16 .

 Figure 28 - 16 also contains an alias, c , for the XML namespace, which will be used throughout the
code for referencing elements and attributes from this namespace. In your XLINQs you will now
see that when you press < or @ , the IntelliSense list will contain the relevant elements and attributes
from the imported XML schema. In Figure 28 - 17 , you can see these new additions when you
begin to query the customerXml variable. If you were in a nested XLINQ statement (for example,
querying orders for a particular customer), you would see only a subset of the schema elements (that
is, just the c:Order element).

 fiGure 28 - 16

 fiGure 28 - 17

 linq to sql

 You may be thinking that we are about to introduce you to yet another technology for doing data
access. In fact, what you will see is that everything covered in this chapter extends the existing
ADO.NET data access model. LINQ to SQL is much more than just the ability to write LINQ
statements to query information from a database. It provides an object to a relational mapping layer,
capable of tracking changes to existing objects and allowing you to add or remove objects as if they
were rows in a database.

 Let ’ s get started and look at some of the features of LINQ to SQL and the associated designers on
the way. For this section you ’ re going to use the AdventureWorksLT sample database (downloadable
from http://professionalvisualstudio.com/link/1029A). You ’ re going to end up performing
a similar query to what you ’ ve seen earlier in the chapter, which was researching customers with a
fi rst name greater than or equal to fi ve characters and the average order size for a particular
product. Earlier, the product was Milk, but because you are dealing with a bike company you will
use the “ HL Touring Seat/Saddle ” product instead.

 It is important to note that importing an XML schema doesn ’ t validate the
elements or attributes you use. All it does is improve the level of IntelliSense
available to you when you are building your XLINQ.

linQ to sQl ❘ 605

http://professionalvisualstudio.com/link/1029A
http://lib.ommolketab.ir
http//lib.ommolketab.ir

606 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

 creating the object Model
 For the purpose of this chapter you will be using a normal Visual Basic Windows Forms application
from the New Project dialog. You will also need to create a Data Connection to the AdventureWorksLT
database (covered in Chapter 27). The next step is to add new LINQ to SQL Classes item, named
 AdventureLite.dbml , from the Add New Item dialog. This will create three fi les which will be added
to your project. These are AdventureLite.dbml , which is the mapping fi le; AdventureLite.dbml
.layout , which like the class designer is used to lay out the mapping information to make it easier to
work with; and fi nally, AdventureLite.designer.vb , which contains the classes into which data is
loaded as part of LINQ to SQL.

 These items may appear as a single item, AdventureLite.dbml , if you don ’ t
have the Show All Files option enabled. Select the project and click the
appropriate button at the top of the Solution Explorer tool window.

 Unfortunately, unlike some of the other visual designers in Visual Studio 2010 that have a helpful
wizard to get you started, the LINQ to SQL designer initially appears as a blank design surface, as
you can see in the center of Figure 28 - 18 .

 fiGure 28 - 18

 On the right side of Figure 28 - 18 , you can see the properties associated with the main design area,
which actually represents a DataContext. If you were to compare LINQ with ADO.NET, a LINQ
statement equates approximately to a command, whereas a DataContext roughly equates to the
connection. It is only roughly because the DataContext actually wraps a database connection in
order to provide object life cycle services. For example, when you execute a LINQ to SQL statement
it is the DataContext that ends up executing the request to the database, creating the objects based
on the return data and then tracking those objects as they are changed or deleted.

 If you have worked with the class designer you will be at home with the LINQ to SQL designer. As
the instructions in the center of Figure 28 - 18 indicate, you can start to build your data mappings by

http://lib.ommolketab.ir
http//lib.ommolketab.ir

dragging items from the Server Explorer (or manually creating them by dragging the item from the
Toolbox). In your case you want to expand the Tables node, select the Customer, SalesOrderHeader,
SalesOrderDetail, and Product tables, and drag them onto the design surface. You will notice from
Figure 28-19 that a number of the classes and properties have been renamed to make the object
model easier to read when you are writing
LINQ statements. This is a good example
of the benefits of separating the object
model (for example, Order or OrderItem)
from the underlying data (in this case, the
SalesOrderHeader and SalesOrderDetail
tables). Because you don’t need all the
properties that are automatically created,
it is recommended that you select them in
the designer and delete them. The end result
should look like Figure 28-19.

It is also worth noting that you can modify the details
of the association between objects. Figure 28-20
shows the Properties tool window for the association
between Product and OrderItem. Here we have set the
generation of the Child Property to False because
we won’t need to track back from a Product to all
the OrderItems. We have also renamed the Parent
Property to Product to make the association more
intuitive (although note that the name in the drop-down
at the top of the Properties window uses the original
SQL Server table names).

As you can see, you can control whether properties are created that can be used to navigate
between instances of the classes. Though this might seem quite trivial, if you think about
what happens if you attempt to navigate from an Order to its associated OrderItems, you can
quickly see that there will be issues if the full object hierarchy hasn’t been loaded into memory.
For example, in this case if the OrderItems aren’t already loaded into memory, LINQ to SQL
intercepts the navigation, goes to the database, and retrieves the appropriate data in order to
populate the OrderItems.

The other property of interest in Figure 28-20 is the Participating Properties. Editing this
property launches an Association Editor window where you can customize the relationship between
two LINQ to SQL classes. You can also reach this dialog by right-clicking the association on
the design surface and selecting Edit Association. If you drag items from Server Explorer onto the
design surface, you are unlikely to need the Association Editor. However, it is particularly useful
if you are manually creating a LINQ to SQL mapping, because you can control how the object
associations align to the underlying data relationships.

fiGure 28-19

fiGure 28-20

linQ to sQl ❘ 607

http://lib.ommolketab.ir
http//lib.ommolketab.ir

608 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

querying with linq to sql
In the previous chapters you have seen enough LINQ statements to understand how to put together
a statement that filters, sorts, aggregates, and projects the relevant data. With this in mind, examine
the following LINQ to SQL snippet:

c#

public void SampleLinqToSql(){
 using (var aw = new AdventureLiteDataContext()){

 var custs = from c in aw.Customers
 from o in c.Orders
 from oi in o.OrderItems
 where c.FirstName.Length>=5 &&
 oi.Product.Name == "HL Touring Seat/Saddle"
 group oi by c into avg
 let name = avg.Key.FirstName + " " + avg.Key.LastName
 orderby name
 select new { Name = name,
 AverageOrder = avg.Average(oi => oi.Quantity) };
 foreach (var c in custs){
 MessageBox.Show(c.Name + " = " + c.AverageOrder);
 }
 }
}

Code snippet MainForm.cs

 Vb

Using aw As New AdventureLiteDataContext
 Dim custs = From c In aw.Customers, o In c.Orders, oi In o.OrderItems
 Where c.FirstName.Length >= 5 And
 oi.Product.Name = "HL Touring Seat/Saddle"
 Group By c Into avg = Average(oi.Quantity)
 Let Name = c.FirstName & " " & c.LastName
 Order By Name
 Select New With {Name, .AverageOrder = avg}

 For Each c In custs
 MessageBox.Show(c.Name & " = " & c.AverageOrder)
 Next
End Using

Code snippet MainForm.vb

The biggest difference here is that instead of the Customer and Order objects existing in memory
before the creation and execution of the LINQ statement, now all the data objects are loaded at
the point of execution of the LINQ statement. The AdventureLiteDataContext is the conduit for

http://lib.ommolketab.ir
http//lib.ommolketab.ir

opening the connection to the database, forming and executing the relevant SQL statement against
the database, and loading the return data into appropriate objects.

 You will also note that the LINQ statement has to navigate through the Customers, Orders,
OrderItems, and Product tables in order to execute the LINQ statement. Clearly, if this were to be
done as a series of SQL statements, it would be horrendously slow. Luckily, the translation of the
LINQ statement to SQL commands is done as a single unit.

 fiGure 28 - 21

 There are some exceptions to this; for example, if you call ToList in the middle
of your LINQ statement this may result in the separation into multiple SQL
statements. Though LINQ to SQL does abstract you away from having to
explicitly write SQL commands, you still need to be aware of the way your
query will be translated and how it might affect your application performance.

 To view the actual SQL that is generated, you can use the QueryVisualizer sample that ships with
Visual Studio 2010 (located in the LinqSamples folder of the CSharpSamples.zip fi le found at
 C:\Program Files\Microsoft Visual Studio 10.0\Samples\1033). Open and build this
sample and drop the generated fi le, LinqToSqlQueryVisualizer.dll , into your visualizers folder
(typically c:\Users\ < username > \Documents\Visual Studio 2010\Visualizers). When you
restart Visual Studio 2010 you will be able to make use of this visualizer to view the actual SQL
that is generated by LINQ to SQL for your LINQ statement. Figure 28 - 21 illustrates the default
data tip for the same LINQ to SQL statement in C# (VB is the same, except you don ’ t see the
generated SQL in the fi rst line of the data tip).

 After adding the visualizer you will see the magnifying glass icon in the fi rst line of the data tip.
Clicking this opens up the LINQ to SQL Debug Visualizer so that you can see the way your LINQ
to SQL statement is translated to SQL. Figure 28 - 22 illustrates this visualizer showing the way
that the query is parsed by the compiler in the top half of the screen, and the SQL statement that
is generated in the lower half of the screen. Clicking the Execute button displays the QueryResult
window (inset into Figure 28 - 22) with the output of the SQL statement. Note that you can modify
the SQL statement, allowing you to tweak it until you get the correct results set. This can quickly
help you correct any errors in your LINQ statement.

linQ to sQl ❘ 609

http://lib.ommolketab.ir
http//lib.ommolketab.ir

610 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

inserts, Updates, and Deletes
You can see from the earlier code snippet that the DataContext acts as the conduit through which
LINQ to SQL queries are processed. To get a better appreciation of what the DataContext does
behind the scenes, let’s look at inserting a new product category into the AdventureWorksLT
database. Before you can do this you will need to add the ProductCategory table to your LINQ to
SQL design surface. In this case you don’t need to modify any of the properties, so just drag the
ProductCategory table onto the design surface. Then to add a new category to your database, all
you need is the following code:

c#

using(var aw = new AdventureLiteDataContext()){
 var cat = new ProductCategory();
 cat.Name = "Extreme Bike";
 aw.ProductCategories.InsertOnSubmit(cat);
 aw.SubmitChanges();
}

Code snippet MainForm.cs

 Vb

Using aw As New AdventureLiteDataContext
 Dim cat As New ProductCategory
 cat.Name = "Extreme Bike"
 aw.ProductCategories.InsertOnSubmit(cat)
 aw.SubmitChanges()
End Using

Code snippet MainForm.vb

fiGure 28-22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This code inserts the new category into the collection of product categories held in memory by
the DataContext. When you then call SubmitChanges on the DataContext it is aware that you
have added a new product category so it will insert the appropriate records. A similar process is
used when making changes to existing items. In the following example you retrieve the product
category you just inserted using the Contains syntax. Because there is likely to be only one
match, you can use the FirstOrDefault extension method to give you just a single product
category to work with:

c#

using (var aw = new AdventureLiteDataContext()){
 var cat = (from pc in aw.ProductCategories
 where pc.Name.Contains("Extreme")
 select pc).FirstOrDefault();
 cat.Name = "Extreme Offroad Bike";
 aw.SubmitChanges();
}

Code snippet MainForm.cs

Vb

Using aw As New AdventureLiteDataContext
 Dim cat = (From pc In aw.ProductCategories
 Where pc.Name.Contains("Extreme")).FirstOrDefault
 cat.Name = "Extreme Offroad Bike"
 aw.SubmitChanges()
End Using

Code snippet MainForm.cs

Once the change to the category name has been made, you just need to call SubmitChanges on the
DataContext in order for it to issue the update on the database. Without going into too much detail
the DataContext essentially tracks changes to each property on a LINQ to SQL object so that it
knows which objects need updating when SubmitChanges is called. If you want to delete an object,
you simply need to obtain an instance of the LINQ to SQL object, in the same way as for doing
an update, and then call DeleteOnSubmit on the appropriate collection. For example, to delete a
product category you would call aw.ProductCategories.DeleteOnSubmit(categoryToDelete),
followed by aw.SubmitChanges.

stored Procedures
One of the questions frequently asked about LINQ to SQL is whether you can use your own stored
procedures in place of the run time-generated SQL. The good news is that for inserts, updates,
and deletes you can easily specify the stored procedure that should be used. You can also use
existing stored procedures for creating instances of LINQ to SQL objects. Let’s start by adding
a simple stored procedure to the AdventureWorksLT database. To do this, right-click the Stored
Procedures node under the database connection in the Server Explorer tool window and select Add

linQ to sQl ❘ 611

http://lib.ommolketab.ir
http//lib.ommolketab.ir

612 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

New Stored Procedure. This opens a code window with a new stored procedure template. In the
following code you have selected to return the fi ve fi elds that are relevant to your Customer object:

CREATE PROCEDURE dbo.GetCustomers
AS
BEGIN
 SET NOCOUNT ON
 SELECT c.CustomerID, c.FirstName, c.LastName, c.EmailAddress, c.Phone
 FROM SalesLT.Customer AS c
END;

 Once you have saved this stored procedure it will appear under the Stored Procedures node. If you
now open up the AdventureLite LINQ to SQL designer, you can drag this stored procedure across
into the right - hand pane of the design surface. In Figure 28 - 23 you can see that the return type of
the GetCustomers method is set to Auto - generated Type. This means that you will only be able
to query information in the returned object. Ideally, you would want to be able to make changes to
these objects and be able to use the DataContext to persist those changes back to the database.

 Note that you don ’ t need to align properties with the stored procedure columns,
because this mapping is automatically handled by the DataContext. This is a
double - edged sword: clearly it works when the column names map to the source
columns of the LINQ to SQL class but it may cause a run time exception if
there are missing columns or columns that don ’ t match.

 The second method, GetTypedCustomers , actually has the Return Type set as the Customer class.
To create this method you can either drag the GetCustomers stored procedure to the right pane,
and then set the Return Type to Customer , or you can drag the stored procedure onto the Customer
class in the left pane of the design surface. The latter will still create the method in the right pane,
but it will automatically specify the return type as the Customer type.

 fiGure 28 - 23

 Once you have defi ned these stored procedures as methods on the design surface, calling them is as
easy as calling the appropriate method on the DataContext:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

using (var aw = new AdventureLiteDataContext()){
 var customers = aw.GetCustomers();
 foreach (var c in customers){
 MessageBox.Show(c.FirstName);
 }
}

Code snippet MainForm.cs

Vb

Using aw As New AdventureLiteDataContext
 Dim customers = aw.GetCustomers

 For Each c In customers
 MsgBox(c.FirstName)
 Next
End Using

Code snippet MainForm.vb

Here you have seen how you can use a stored procedure to create instances of the LINQ to SQL
classes. If you instead want to update, insert, or delete objects using stored procedures, you follow
a similar process except you need to define the appropriate behavior on the LINQ to SQL class. To
begin with, create an insert stored procedure for a new product category:

CREATE PROCEDURE dbo.InsertProductCategory
 (
 @categoryName nvarchar(50),
 @categoryId int OUTPUT
)
AS
BEGIN
 INSERT INTO SalesLT.ProductCategory (Name) VALUES (@categoryName)
 SELECT @categoryId=@@identity
END;

Following the same process as before, you
need to drag this newly created stored
procedure from the Server Explorer across
into the right pane of the LINQ to SQL
design surface. Then in the Properties tool
window for the ProductCategory class,
modify the Insert property. This will open
the dialog shown in Figure 28-24. Here you
can select whether you want to use the
run time-generated code or customize
the method that is used. In Figure 28-24 the
InsertProductCategory method has been

fiGure 28-24

linQ to sQl ❘ 613

http://lib.ommolketab.ir
http//lib.ommolketab.ir

614 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

selected. Initially, the Class Properties will be unspecified, because Visual Studio 2010 wasn’t able
to guess at which properties mapped to the method arguments. It’s easy enough to align these to
the id and name properties. Now when the DataContext goes to insert a ProductCategory it will
use the stored procedure instead of the run time-generated SQL statement.

binding linq to sql objects
The important thing to remember when using DataBinding with LINQ to SQL objects is that they
are in fact normal .NET objects. This means that you can create a new object data source via the
Data Sources tool window. In the case of the examples you have seen so far, you would go through
the Add New Data Source Wizard, selecting just the Customer object. Because the Order and
OrderItem objects are accessible via the navigation properties Orders and then OrderItems, you
don’t need to explicitly add them to the Data Source window.

Once you have created the object data source (see the left side of Figure 28-25), you can then
proceed to drag the nodes onto your form to create the appropriate data components. Starting with
the Customer node, use the drop-down to specify that you want a DataGridView, then drag it onto
your form. Next, you need to specify that you want the Orders (a child node under Customer) to
appear as details and then drag this to the form as well. You will notice that you don’t get a binding
navigator for this binding source, so from the Toolbox add a BindingNavigator to your form and
set its BindingSource property to be the OrdersBindingSource that was created when you dragged
over the Orders node. Lastly, you want to display all the OrderItems in a DataGridView, so use the
drop-down to set this and then drag the node onto the form. After doing all this you should end up
with something similar to Figure 28-25. Note that we have also included a button that you will use
to load the data and we have laid the Order information out in a panel to improve the layout.

fiGure 28-25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

One of the things you will have noticed is that the columns on your OrderItems data grid don’t
match those in Figure 28-25. By default, you will get Quantity, Order, and Product columns. Clearly,
the last two columns are not going to display anything of interest, but you don’t really have an
easy way to display the Name of the product in the order with the current LINQ to SQL objects.
Luckily, there is an easy way to effectively hide the navigation from OrderItem to Product so that
the name of the product will appear as a property of OrderItem.

You do this by adding your own property to the OrderItem class. Each LINQ to SQL class is
generated as a partial class, which means that extending the class is as easy as right-clicking the
class in the LINQ to SQL designer and selecting View Code. This generates a custom code file,
in this case AdventureLite.vb (or AdventureLite.cs), and includes the partial class definition.
You can then proceed to add your own code. In the following snippet we have added the Product
property that will simplify access to the name of the product being ordered:

c#

partial class OrderItem{
 public string ProductName{
 get{
 return this.Product.Name;
 }
 }
}

Code snippet AdventureLite.cs

Vb

Partial Class OrderItem
 Public ReadOnly Property ProductName() As String
 Get
 Return Me.Product.Name
 End Get
 End Property
End Class

Code snippet AdventureLite.vb

For some reason this property, perhaps because it is added to a second code file, will not be detected
by the Data Sources tool window. However, you can still bind the Product column to this property
by manually setting the DataPropertyName field in the Edit Columns dialog for the data grid.

The last thing to do is to actually load the data when the user clicks the button. To do this you can
use the following code:

c#

private void btnLoadData_Click(object sender, EventArgs e){
 using (var aw = new AdventureLiteDataContext()){

linQ to sQl ❘ 615

http://lib.ommolketab.ir
http//lib.ommolketab.ir

616 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

 var cust = aw.Customers;
 this.customerBindingSource.DataSource = cust;
 }
}

Vb

Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click
 Using aw As New AdventureLiteDataContext
 Dim custs = From c In aw.Customers
 Me.CustomerBindingSource.DataSource = custs
 End Using
End Sub

You will notice that your application will now run, and when the user clicks the button the customer
information will be populated in the top data grid. However, no matter which customer you select,
no information will appear in the Order information area. The reason for this is that LINQ to
SQL uses lazy loading to retrieve information as it is required. Using the data visualizer you were
introduced to earlier, if you inspect the query in this code you will see that it contains only the
customer information:

SELECT [t0].[CustomerID], [t0].[FirstName], [t0].[LastName], [t0].[EmailAddress],
[t0].[Phone]
FROM [SalesLT].[Customer] AS [t0]

You have two ways to resolve this issue. The first is to force LINQ to SQL to bring back all the
Order, OrderItem, and Product data as part of the initial query. To do this, modify the button click
code to the following:

c#

private void btnLoadData_Click(object sender, EventArgs e){
 using (var aw = new AdventureLiteDataContext()){
 var loadOptions =new System.Data.Linq.DataLoadOptions();
 loadOptions.LoadWith<Customer>(c=>c.Orders);
 loadOptions.LoadWith<Order>(o=>o.OrderItems);
 loadOptions.LoadWith<OrderItem>(o=>o.Product);
 aw.LoadOptions = loadOptions;

 var cust = aw.Customers;
 this.customerBindingSource.DataSource = cust;
 }
}

Vb

Private Sub btnLoad_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnLoad.Click
 Using aw As New AdventureLiteDataContext
 Dim loadOptions As New System.Data.Linq.DataLoadOptions

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 loadOptions.LoadWith(Of Customer)(Function(c As Customer) c.Orders)
 loadOptions.LoadWith(Of Order)(Function(o As Order) o.OrderItems)
 loadOptions.LoadWith(Of OrderItem)(Function(oi As OrderItem) _
 oi.Product)
 aw.LoadOptions = loadOptions

 Dim custs = From c In aw.Customers
 Me.CustomerBindingSource.DataSource = aw.Customers
 End Using
End Sub

Essentially what this code tells the DataContext is that when it retrieves Customer objects it should
forcibly navigate to the Orders property. Similarly, the Order objects navigate to the OrderItems
property, and so on. One thing to be aware of is that this solution could perform really badly if
there are a large number of customers. In fact as the number of customers and orders increases, this
will perform progressively worse, so this is not a great solution; but it does illustrate how you can
use the LoadOptions property of the DataContext.

The other alternative is to not dispose of the DataContext. You need to remember what is happening
behind the scenes with DataBinding. When you select a customer in the data grid, this will cause the
OrderBindingSource to refresh. It tries to navigate to the Orders property on the customer. If you
have disposed of the DataContext, there is no way that the Orders property can be populated. So
the better solution to this problem is to change the code to the following:

c#

private AdventureLiteDataContext aw = new AdventureLiteDataContext();
private void btnLoadData_Click(object sender, EventArgs e){
 var cust = aw.Customers;
 this.customerBindingSource.DataSource = cust;
}

Code snippet CustomersForm.cs

Vb

Private aw As New AdventureLiteDataContext()
Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click
 Dim custs = From c In aw.Customers
 Me.CustomerBindingSource.DataSource = custs
End Sub

Code snippet CustomersForm.vb

Because the DataContext will still exist, when the binding source navigates to the various
properties, LINQ to SQL will kick in, populating these properties with data. This is much more
scalable than attempting to populate the whole customer hierarchy when the user clicks the button.

linQ to sQl ❘ 617

http://lib.ommolketab.ir
http//lib.ommolketab.ir

618 ❘ chaPter 28 lAnguAge inTegrATed QuerieS (linQ)

linqPad

While the intent behind LINQ was to make code more readable, in a lot of cases it has
made writing and debugging queries much harder. The fact that LINQ expressions are only
executed when the results are iterated can lead to confusion and unexpected results. One of
the most useful tools to have by your side when writing LINQ expressions is Joseph Albahari’s
LINQPad (www.linqpad.net). Figure 28-26 illustrates how you can use the editor in the
top-right pane to write expressions.

fiGure 28-26

In the lower-right pane you can see the output from executing the expression. You can tweak your
LINQ expression to get the correct output without having to build and run your entire application.

suMMary

In this chapter you were introduced to Language Integrated Queries (LINQ), a significant step
toward a common programming model for data access. You can see that LINQ statements help to
make your code more readable, because you don’t have to code all the details of how the data should
be iterated, the conditional statements for selecting objects, or the code for building the results set.

You were also introduced to the new XML object model, the XML language integration within VB,
how LINQ can be used to query XML documents, and how Visual Studio 2010 IntelliSense enables
a rich experience for working with XML in VB.

http://www.linqpad.net
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finally, you were introduced to LINQ to SQL and how you can use it as a basic object-relational
mapping framework. Although you are somewhat limited in being able only to map an object to a
single table, it can still dramatically simplify working with a database.

In the next chapter you see how powerful LINQ is as a technology when you combine it with
the ADO.NET Entity Framework to manage the life cycle of your objects. With much more
sophisticated mapping capabilities, this technology will dramatically change the way you will work
with data in the future.

summary ❘ 619

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

29
 The aDo.neT entity
framework

 what ’ s in this chaPter?

 Understanding the Entity Framework ➤

 Creating an Entity Framework model ➤

 Querying Entity Framework models ➤

 One of the core requirements in business applications (and many other types of applications)
is the ability to store and retrieve data in a database. However, that ’ s easier said than done,
because the relational schema of a database does not blend well with the object hierarchies
that we prefer to work with in code. To create and populate these object hierarchies required
a lot of code to be written to transfer data from a data reader into a developer - friendly object
model, which was then usually diffi cult to maintain. In fact, it was such a source of constant
frustration that many developers turned to writing code generators or various other tools
that automatically created the code to access a database based on its structure. However,
code generators usually created a 1:1 mapping between the database structure and the object
model, which was hardly ideal either, leading to a problem called “ object relational impedance
mismatch, ” where how data was stored in the database did not necessarily have a direct
relationship with how developers wanted to model the data as objects. This led to the concept
of Object Relational Mapping, where an ideal object model could be designed for working
with data in code, which could then be mapped to the schema of a database. Once the
mapping is complete, the Object Relational Mapper (ORM) framework should take over the
burden of translating between the object model and the database, leaving developers to focus
on actually solving the business problem (rather than focusing on the technological issues of
working with data).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

622 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

To many developers, ORMs are the Holy Grail for working with data in a database as objects, and
there’s no shortage of debate over the strengths and pitfalls of the various ORM tools available,
and how an ideal ORM should be designed. We won’t buy into these arguments in this chapter,
but simply look at how to use the ADO.NET Entity Framework — Microsoft’s ORM tool and
framework.

Looking through history, the .NET Framework added a number of means to access data in a
database since its inception, all under the banner of ADO.NET. First, we had low-level access
through SqlConnection (and connections for other types of databases) using means like data
readers. Then we had a higher-level means of accessing data using Typed DataSets. LINQ to SQL
appeared in the .NET Framework 3.5, providing the first built-in way to work with data as objects.

However, for a long time Microsoft did not include an ORM tool in the .NET Framework (despite
a number of earlier attempts to do so with the failed ObjectSpaces). There were already a number
of ORMs available for use with the .NET Framework, with nHibernate and LLBLGen Pro being
among the most popular. Microsoft did eventually manage to release its own, which it called the
ADO.NET Entity Framework, and shipped it with the .NET Framework 3.5 SP1.

The Entity Framework’s eventual release (despite being long awaited) was not smooth sailing
either — with controversy generated before it was even released by a vote of no confidence petition
signed by many developers, including a number of Microsoft MVPs. Indeed, it was the technology
that provided the catalyst leading to the rise of the ALT.NET movement. However, since then there
have been many improvements in the .NET Framework 4’s Entity Framework implementation in
order to reduce these perceived shortcomings.

This chapter takes you through the process of creating an Entity Framework model of a database,
and how to query and update the database via it. The Entity Framework is a huge topic, with entire
books devoted to its use. Therefore, it would be impossible to go through all its features, so this
chapter focuses on discussing some of its core features and how to get started and create a basic
entity model.

The Entity Framework model you create in this chapter will go on to be used in a number of
subsequent chapters in this book where database access is required in the samples.

what is the entity fraMework?

Essentially, the Entity Framework is an Object Relational Mapper. Object Relational Mapping
enables you to create a conceptual object model, map it to the database, and the ORM framework
will take care of translating your queries over the object model to queries in the database, returning
the data as the objects that you’ve defined in your model.

comparison with linq to sql
A common question from developers is regarding the Entity Framework’s relationship with LINQ
to SQL, and which technology they should use when creating data-centric applications. Let’s take a
look at the advantages each have over the other.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

LINQ to SQL advantages over the Entity Framework:

Easy to get started and query ➤

Entity Framework advantages over LINQ to SQL:

Enables you to build a conceptual model of the database rather than purely working with a ➤

1:1 domain model of the database as objects (such as having one object mapped to multiple
database tables, inheritance support, and defining complex properties).

Able to generate a database from your entity model. ➤

Support for databases other than just SQL Server. ➤

Support for many-to-many relationships. ➤

Lazy loading and eager loading support. ➤

Synchronization to get database updates will not lose your customizations to your model. ➤

Will continue to evolve, whereas LINQ to SQL development will from now on be minimal. ➤

entity framework concepts
Here are some of the important concepts involved in the Entity Framework and some of the terms
that are used throughout this chapter:

 ➤ Entity Model: The entity model you create using the Entity Framework consists of three
parts:

 ➤ Conceptual model: Represents the object model, including the entities, their
properties, and the associations between them.

 ➤ Store model: Represents the database structure, including the tables/views/stored
procedures, columns, foreign keys, and so on.

 ➤ Mapping: Provides the glue between the store model and the conceptual model (that
is, between the database and the object model), by mapping one to the other.

Each of these parts is maintained by the Entity Framework as XML using a domain-specific
language (DSL).

 ➤ Entity: Entities are essentially just objects (with properties) to which a database model is
mapped.

 ➤ Entity Set: An entity set is a collection of a given entity. You can think of it as an entity
being a row in a database, and an entity set being the table.

 ➤ Association: Associations define relationships between entities in your entity model, and are
conceptually the same as relationships in a database. Associations are used to traverse the
data in your entity model between entities.

 ➤ Mapping: Mapping is the core concept of ORM. It’s essentially the translation layer from a
relational schema in a database to objects in code.

What is the entity framework? ❘ 623

http://lib.ommolketab.ir
http//lib.ommolketab.ir

624 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

GettinG started

To demonstrate some of the various features in the Entity Framework, the example in this section
uses the AdventureWorksLT sample database developed by Microsoft as one of the sample databases
for SQL Server. AdventureWorksLT is a simpler version of the full AdventureWorks database, making
it somewhat easier to demonstrate the concepts of the Entity Framework without the additional
complexity that using the full database would create.

The AdventureWorksLT database is available for download from the CodePlex web site as a
database script here:
http://professionalvisualstudio.com/link/1029A

Adventure Works Cycles is a fictional bicycle sales chain, and the AdventureWorksLT database is
used to store and access its product sales data.

Follow the instructions from the CodePlex web site detailing how to install the database from the
downloaded script in a SQL Server instance (SQL Server Express Edition is sufficient) that is on or
can be accessed by your development machine.

Now move on to creating a project that contains an Entity Framework model of this database. Start
by opening the New Project dialog and creating a new project. The sample project you create in this
chapter uses the WPF project template. You’ll be displaying data in a WPF DataGrid control defined
in the MainWindow.xaml file named dgEntityFrameworkData.

Now that you have a project that will host and query an Entity Framework model, it’s time to create
that model.

creatinG an entity Model

You have two ways of going about creating an entity model. The usual means to do so is to create
the model based on the structure of an existing database; however, with the Entity Framework it
is also possible to start with a blank model and have the Entity Framework generate a database
structure from it.

The sample project uses the first method to create an entity model based on the AdventureWorksLT
database’s structure.

the entity data Model wizard
Open the Add New Item dialog for your project, navigate to the Data category, and select ADO.NET
Entity Data Model as the item template (as shown in Figure 29-1). Call it AdventureWorksLTModel
.edmx.

http://professionalvisualstudio.com/link/1029A
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This will start the Entity Data Model Wizard
that will help you get started building an Entity
Framework model.

This will show the dialog shown in Figure 29-2
that enables you to select whether you want to
automatically create a model from a database
(Generate from Database), or start with an empty
model (Empty Model).

The Empty Model option is useful when you want
to take the approach of creating your model from
scratch, and either mapping it manually to a given
database, or letting the Entity Framework create a
database based on your model.

However, as previously stated you will be creating an
entity model from the AdventureWorksLT database,
so for the purpose of this example use the Generate
from Database option, and get the wizard to help you
create the entity model from the database.

Moving onto the next step, you now need to
create a connection to the database (as shown
in Figure 29-3). You can find the most recent
database connection you’ve created in the
drop-down list, but if it’s not there (such as if
this is the first time you’ve created a connection
to this database) you will need to create a new
connection. To do so, click the New Connection
button and go through the standard procedure of
selecting the SQL Server instance, authentication
credentials, and finally, selecting the database.

fiGure 29-2

fiGure 29-1

fiGure 29-3

Creating an entity Model ❘ 625

http://lib.ommolketab.ir
http//lib.ommolketab.ir

626 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

If you are using a username and password as your authentication details, you can choose not to
include those in the connection string (containing the details required to connect to the database)
when it is saved, because this string is saved in
plain text that would enable anyone who sees it to
have access to the database. In this case you would
have to provide these credentials to the model before
querying it in order for it to create a connection
to the database. If you don’t select the checkbox
to save the connection settings in the App.config
file you will also need to pass the model the details
on how to connect to the database before you can
query it.

In the next step, the wizard uses the connection
created in the previous step to connect to the
database and retrieve its structure (that is, its tables,
views, and stored procedures), which is displayed in
a tree for you to select the elements to be included
in your model (see Figure 29-4).

Other options that can be specified on this screen include:

 ➤ Pluralize or Singularize Generated Object Names: This option (when selected) intelligently
takes the name of the table/view/stored procedure and pluralizes or singularizes the name
based on how that name is used in the model (collections will use the plural form, entities
will use the singular form, and so on).

 ➤ Include Foreign Key Columns in the Model: The previous version of the Entity Framework
did not create properties for foreign key columns in the entities — opting to create a
relationship instead. However, in numerous scenarios this was not ideal, making it messy
to do some simple tasks due to the absence of these properties. In this new version you can
now select to include them in your entities by selecting this option.

 ➤ Model Namespace: This enables you to specify the namespace in which all the classes
related to the model will be created. By default, the model will exist in its own namespace
(which defaults to the name of the model entered in the Add New Item dialog) rather than
the default namespace of the project to avoid conflict with existing classes with the same
names in the project.

Select all the tables in the database to be included in the model. Clicking the Finish button in this
screen creates an Entity Framework model that maps to the database. From here you can view the
model in the Entity Framework and adjust it as per your requirements and tidy it up as per your
tastes (or standards) to make it ideal for querying in your code.

the entity framework designer
Once the Entity Framework model has been generated, it opens in the Entity Framework designer,
as shown in Figure 29-5.

fiGure 29-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You’ll note that the designer has automatically laid out the entities that were created by the wizard,
showing the associations it has created between them.

You can move entities around on the designer surface, and the designer will automatically move the
association lines and try and keep them neatly laid out. Entities will automatically snap to a grid,
which you can view by right-clicking the designer surface and selecting Grid ➪ Show Grid from the
context menu. You can disable the snapping by right-clicking the designer surface and unchecking
Grid ➪ Snap to Grid from the context menu to have finer control over the diagram layout, but you
will find that entities line up better (and hence make the diagram neater) by leaving the snapping on.

As you move entities around (or add additional entities to) the diagram, you may find it gets a little
messy, with association lines going in all directions to avoid getting “tangled.” To get the designer
to automatically lay out the entities neatly again according to its own algorithms, you can right-click
the designer surface and select Diagram ➪ Layout Diagram from the context menu.

Entity Framework models can quickly become large and difficult to navigate in
the Entity Framework designer. Luckily, the designer has a few tools to make
navigating it a little easier. The designer enables you to zoom in and out using
the zoom buttons in its bottom-right corner (below the vertical scrollbar — see
Figure 29-6). The button sandwiched between these zoom in/out buttons zooms
to 100% when clicked.

To zoom to a predefined percentage, right-click the designer surface and select one of
the options in the Zoom menu. In this menu you will also find a Zoom to Fit option
(to fit the entire entity model within the visible portion of the designer), and a Custom option that
pops up a dialog enabling you to type a specific zoom level.

fiGure 29-5

fiGure 29-6

Creating an entity Model ❘ 627

http://lib.ommolketab.ir
http//lib.ommolketab.ir

628 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

In addition, selecting an entity in the Properties tool window (from the drop-down object selector)
automatically selects that entity in the designer and brings it into view; right-clicking the entity in
the Model Browser tool window (described shortly) and selecting the Show in Designer menu item
does the same. These make it easy to navigate to a particular entity in the designer, so you can make
any modifications as required.

You can minimize the space taken by entities
by clicking the icon in the top-right corner
of the entity. Alternatively, you can roll
up the Properties/Navigation Properties
groupings by clicking the +/– icons to their
left. Figure 29-7 shows an entity in its
normal expanded state, with the Properties/
Navigation Properties groupings rolled up
and completely rolled up.

You can expand all the collapsed entities in one go by right-clicking the designer surface and
selecting Diagram ➪ Expand All from the context menu. Alternatively, you can collapse all the
entities in the diagram by right-clicking the designer surface and selecting Diagram ➪ Collapse All
from the context menu.

A visual representation of an entity model (as provided by the Entity Framework designer) can
serve a useful purpose in the design documentation for your application. The designer provides a
means to save the model layout to an image file to help in this respect. Right-click anywhere on the
designer surface and select Diagram ➪ Export as Image from the context menu. This pops up the
Save As dialog for you to select where to save the image. Note that it defaults to saving as a bitmap
(.bmp) — if you open the Save As Type drop-down list you will find that it can also save to JPEG,
GIF, PNG, and TIFF. PNG is probably the best choice for quality and file size.

It can often be useful (especially when saving a diagram for documentation) to display the property
types against each property for an entity in the designer. You can turn this on by right-clicking
the designer surface and selecting Scalar Property Format ➪ Display Name and Type from the
context menu. You can return to displaying just the property name by selecting the Scalar Property
Format ➪ Display Name item from the right-click context menu.

As with most designers in Visual Studio, the Toolbox and Properties tool
windows are integral parts of working with the designer. The Toolbox (as
shown in Figure 29-8) contains three controls: Entity, Association, and
Inheritance. How to use these controls with the designer is covered shortly.
The Properties tool window displays the properties of the selected item(s)
in the designer (an entity, association, or inheritance), enabling you to
modify their values as required.

In addition to the Toolbox and Properties tool windows, the Entity Framework designer also
incorporates two other tool windows specific to it — the Model Browser tool window and the
Mapping Details tool window — for working with the data.

fiGure 29-7

fiGure 29-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Model Browser tool window (as shown
in Figure 29-9) enables you to browse the
hierarchy of both the conceptual entity model
of the database and its storage model. Clicking
an element in the Store model hierarchy shows
its properties in the Properties tool window;
however, these can’t be modified (because
this is an entity modeling tool, not a database
modeling tool). The only changes you can
make to the Store model is to delete tables, views, and stored procedures (which won’t modify the
underlying database). Clicking elements in the Conceptual model hierarchy also shows their properties
in the Properties tool window (which can be modified), and its mappings are displayed in the Mapping
Details tool window. Right-clicking an entity in the hierarchy and selecting the Show in Designer
menu item from the context menu brings the selected entity/association into view in the designer.

The second picture in Figure 29-9 demonstrates the searching functionality available in the Model
Browser tool window. As previously discussed, because your entity model can get quite large, it can
be difficult to find exactly what you are after. Therefore, a good search function is very important.
Type your search term in the search textbox at the top of the window and press Enter. In this
example the search term was Address, which highlighted all the names in the hierarchy (including
entities, associations, properties, and so on) that contained the search term. You’ll note that the
vertical scrollbar has the places in the hierarchy (which has been expanded) highlighted where
the search terms have been found, making it easy to see where the results were found throughout
the hierarchy. The number of results is shown just below the search textbox, next to which are an
up arrow and a down arrow to enable you to navigate through the results. When you are finished
searching you can click the cross icon next to these to return the window to normal.

The Mapping Details tool window (as shown in Figure 29-10) enables you to modify the mapping
between the conceptual model and the storage model for an entity. Selecting an entity in the
designer, the Model Browser tool window, or the Properties tool window shows the mappings in
this tool window between the properties of the entity to columns in the database. You have two
ways of mapping the properties of an entity to the database: either via tables and views, or via
functions (that is, stored procedures). On the left side of the tool window are two icons, enabling
you to swap the view between mapping to tables and views, to mapping to functions. However,
we’ll focus here just on the features of mapping entity properties to tables and views.

fiGure 29-9

fiGure 29-10

Creating an entity Model ❘ 629

http://lib.ommolketab.ir
http//lib.ommolketab.ir

630 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

 The table/view mapping has a hierarchy (under the Column column) showing the table(s) mapped to
the entity, with its columns underneath it. To these columns you can map properties on your entity
(under the Value/Property column) by clicking in the cell, opening the drop - down list that appears,
and selecting a property from the list.

 A single entity may map to more than one database table/view (bringing two or more tables/views
into a single entity, as previously discussed). To add another table/view to the hierarchy to map to
your entity, click in the bottom row where it says < Add a Table or View > and select a table/view
from the drop - down list. When you add a table to the Mapping Details tool window for mapping
to an entity, it automatically matches columns with the same name to properties on the entities and
creates a mapping between them. Delete a table from the hierarchy by selecting its row and pressing
the Delete key.

 Conditions are a powerful feature of the Entity Framework that enable you to selectively choose
which table you want to map an entity to at run time based on one or more conditions that you
specify. For example, say you have a single entity in your model called Product that maps to a table
called Products in the database. However, you have additional extended properties on your entity
that map to one of two tables based on the value of the ProductType property on the entity — if
the product is of a particular type it will map the columns to one table, if it ’ s another type it will
map the columns to the other table. You can do this by adding a condition to the table mapping. In
the Mapping Details window click in the row directly below a table to selectively map where it says
 < Add a Condition > . Open the drop - down list that appears, which will contain all the properties
on the entity. Select the property to base your condition on (in the given example it would be the
 ProductType property), select an operator, and enter a value to compare the property to. Note that
there are only two operators: equals (=) and Is. You can add additional conditions as necessary to
determine whether the table should be used as the source of the data for the given properties.

 Note that a number of advanced features are available in the Entity Framework,
but not available in the Entity Framework designer (such as working with the store
schema, annotations, referencing other models, and so on). However, these actions
can be performed by modifying the schema fi les (which are XML fi les) directly.

 creating/Modifying entities
 The Entity Data Model Wizard gave you a good starting point by building an entity model for
you. In some cases this may be good enough and you can start writing the code to query it, but you
can now take the opportunity to go through the created model and modify its design as per your
requirements.

 Because the Entity Framework is providing you with a conceptual model to design and work with,
you are no longer limited to having a 1:1 relationship between the database schema and an object
model in code, so the changes you make in the entity model won ’ t affect the database in any way.
So you may wish to delete properties from entities, change their names, and so on, and it will
have no effect on the database. In addition, because any changes you make are in the conceptual
model, updating the model from the database will not affect the conceptual model (only the
storage model), so your changes won ’ t be lost.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Changing Property names
Often you will find yourself working with databases that have tables and columns containing prefixes
or suffixes, over/under use of capitalization, or even names that no longer match their actual function.
This is where the use of an ORM like the Entity Framework can demonstrate its power, because
you can change all of these in the conceptual layer of the entity model to make the model nice to
work with in code (with more meaningful and standardized names for the entities and associations),
without needing to modify the underlying database schema. Luckily, the tables and columns in the
AdventureWorksLT database have reasonably friendly names, but if you wanted to do so it would
simply be a case of double-clicking the property in the designer (or selecting it and pressing F2), which
changes the name display to a textbox enabling you to make the change. Alternatively, you can select
the property in the designer, the Model Browser tool window, or the Properties tool window, and
update the Name property in the Properties tool window.

adding Properties to an entity
Let’s now look at the process of adding properties to an entity. Three types of properties exist:

 ➤ Scalar properties: Properties with a primitive type, such as string, integer, Boolean,
and so on.

 ➤ Complex properties: A grouping of scalar properties in a manner similar to a structure in
code. Grouping properties together in this manner can make your entity model a lot more
readable and manageable.

 ➤ Navigation properties: Used to navigate across associations. For example, the
SalesOrderHeader entity contains a navigation property called SalesOrderDetails that
enables you to navigate to a collection of the SalesOrderDetail entities related to the current
SalesOrderHeader entity. Creating an association between two entities automatically creates
the required navigation properties.

The easiest way to try this for yourself is to delete a property from an existing entity and add it
back again manually. Delete a property from an entity (select it in the designer and press the Delete
key). Now to add it back again, right-click the entity and select Add ➪ Scalar Property from the
context menu. Alternatively, a much easier and less frustrating way when you are creating a lot of
properties is to simply select a property or the Properties header and press the Insert key on your
keyboard. A new property will be added to the entity, with the name displayed in a textbox for you
to change as required.

The next step is to set the type of the property, for which you’ll have to move over to the Properties
tool window to set. The default type is string, but you can change this to the required type by
setting its Type property.

Properties that you want to designate as entity keys (that is, properties that are used to uniquely
identify the entity) need their Entity Key property set to True. The property in the designer will have
a picture of a little key added to its icon, making it easy to identify which properties are used to
uniquely identify the entity.

You can set numerous other properties on a property, including assigning a default value, a
maximum length (for strings), and whether it’s nullable. You can also assign the scope of the getter
and setter for the property (public, private, and so on), useful for, say, a property that will be

Creating an entity Model ❘ 631

http://lib.ommolketab.ir
http//lib.ommolketab.ir

632 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

mapped to a column with a calculated value in the database where you don’t want the consuming
application to attempt to set the value (by making the setter private).

The final task is to map the property to the store model. You do this as described earlier in the
chapter using the Mapping Details tool window.

Creating Complex Types
Create a complex type on the Customer entity grouping the various customer name-related properties
together in a complex type and thus making the Customer entity neater. Though you can create
a complex type from scratch, the easiest way to create a complex type is to refactor an entity by
selecting the scalar properties on the entity to be included in the complex type and having the designer
create the complex type from those properties. Follow these instructions to move the name-related
properties on the Customer entity to a complex type:

Select the name-related properties on the Customer entity (FirstName, LastName, ➤

MiddleName, NameStyle, Suffix, Title) by selecting the first property, and while holding
down the Ctrl key selecting the other properties (so they are all selected at the same time).

Right-click one of the selected properties and select the Refactor into New Complex Type ➤

menu item.

In the Model Browser will be the new complex type that it created, with its name displayed ➤

in a textbox for you to name to something more meaningful. For this example, simply call it
CustomerName.

The Entity Framework designer will have created a complex type, added the selected ➤

properties to it, removed the selected properties from the entity, and added the complex
type that it just created as a new property on the entity in their place. However, this
property will just have ComplexProperty as its name, so you will want to rename it to
something more meaningful. Select the property in the designer, press F2, and enter
Name in the textbox.

You will now find that by grouping the properties together
in this way, the entity will be easier to work with in both
the designer and in code.

Creating an entity
So far you’ve been modifying existing entities as they were
created by the Entity Data Model Wizard. However,
let’s now take a look at the process of creating an entity
from scratch and then mapping it to a table/view/stored
procedure in your storage model. Most of these aspects
have already been covered, but we’ll walk through the
required steps to get an entity configured from scratch.

You have two ways of manually creating entities.
The first is to right-click the designer surface and
select Add ➪ Entity from the context menu. That
pops up the dialog shown in Figure 29-11, which fiGure 29-11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

helps you set up the initial confi guration of the entity. When you enter a name for the entity in
the Entity Name fi eld you ’ ll notice that the Entity Set fi eld automatically updates to the plural
form of the entity name (although you can change this entity set name to something else if
required). The Base Type drop - down list enables you to select an existing entity in your entity
model that this entity will inherit from (discussed shortly). There is also a section enabling you
to specify the name and type of a property to automatically create on the entity and set as an
entity key.

 The other way of creating an entity is to drag and drop the Entity component from the Toolbox
onto the designer surface. However, you ’ ll note that it doesn ’ t bring up the dialog from the
previous method, instead opting to immediately create an entity with a default name, entity set
name, and entity key property. You will then have to use the designer to modify its confi guration
to suit your needs.

 The steps needed to fi nish confi guring the entity are as follows:

 If required, create an inheritance relationship by specifying that the entity should inherit ➤

from a base entity.

 Create the required properties on the entity, setting at least one as an entity key. ➤

 Map these properties to the storage schema (using the Mapping Details tool window). ➤

 Create any associations with other entities in the model. ➤

 Validate your model to ensure that the entity is mapped correctly. ➤

 All entities must have an entity key that can be used to uniquely identify the
entity. Entity keys are conceptually the same as a primary key in a database.

 As discussed earlier, you aren ’ t limited to mapping to a single database table/view per entity. This
is one of the benefi ts of building a conceptual model of the database — you may have related data
spread across a number of database tables, but through having a conceptual entity model layer in
the Entity Framework you are able to bring those different sources together into a single entity to
make working with the data a lot easier in code.

 Make sure you don ’ t focus too much on the structure of the database when you
are creating your entity model — the advantage of designing a conceptual model
is that it enables you to design the model based on how you plan to use it in
code. Therefore, focus on designing your entity model, and then you can look at
how it will map to the database.

Creating an entity Model ❘ 633

http://lib.ommolketab.ir
http//lib.ommolketab.ir

634 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

 creating/Modifying entity associations
 You have two ways of creating an association between
two entities. The fi rst is to right - click the header of
one of the entities and select Add ➪ Association from
the context menu. This displays the dialog shown in
Figure 29 - 12.

 This dialog includes:

 ➤ Association Name: Give the association a
name — this will become the name of the
foreign key constraint in the database if you
update the database from the model.

 ➤ Endpoints: These specify the entities at each
end of the association, the type of relationship
(one - to - one, one - to - many, and so on), and the
name of the navigation properties that it will
create on both entities to navigate from one
entity to the other over the association.

 ➤ Add foreign key properties to the entity:
This enables you to create a property on the
 “ foreign ” entity that will act as a foreign key and map to the entity key property over the
association. If you ’ ve already added the property that will form the foreign key on the
associated entity, you should uncheck this checkbox.

 The other way to create an association is to click the Association component in the Toolbox, click
one entity to form an end on the association, and then click another entity to form the other end of
the association (if it is a one - to - many relationship, select the “ one ” entity fi rst). Using this method
gives the association a default name, creates the navigation properties on both entities, and assumes
a one - to - many relationship. It will not create a foreign key property on the “ foreign ” entity. You can
then modify this association as required using the Properties tool window.

 fiGure 29 - 12

 Note that you cannot use the association component in a drag - and - drop fashion
from the Toolbox.

 Despite having created the association, you aren ’ t done yet (unless you used the fi rst method and
also selected the option to create a foreign key property for the association). Now you need to map
the property that acts as the foreign key on one entity to the entity key property on the other. The
entity whose primary key is one endpoint in the association is known, but you have to tell the Entity
Framework explicitly which property to use as the foreign key property. You can do this by selecting
the association in the designer and using the Mapping Details tool window to map the properties.

 Once this is done, you may want to defi ne a referential constraint for the association, which you can
assign by clicking the association in the designer and fi nding the Referential Constraint property in
the Properties tool window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

entity inheritance
In the same way that classes can inherit from other classes (a fundamental object-oriented concept),
so can entities inherit from other entities. You have a number of ways of specifying that one entity
should inherit from another, but the most straightforward method is to select an entity in the
designer, find its Base Type property in the Properties tool window, and select the entity from the
drop-down list that this entity should inherit from.

Validating an entity Model
At times your entity model may be invalid (such as when a property on an entity has not been
mapped to the storage model, or its type cannot be converted from/to the mapped column’s data
type in the database); however, despite having an invalid entity model your project will still compile.

You can run a check to see if your model is valid by right-clicking the designer surface and selecting
the Validate menu item from the context menu. This checks for any errors in your model and
displays them in the Error List tool window.

You can also set the Validate On Build property for the conceptual model to True (click an empty
space on the designer surface, and then you can find the property in the Properties tool window),
which will automatically validate the model each time you compile the project. However, again, an
invalid model will not stop the project from successfully compiling.

updating an entity Model with database changes
The structure of databases tends to be updated frequently throughout the development of projects, so
you need a way to update your model based on the changes in the database. To do so, right-click the
designer surface and select the Update Model
from Database menu item. This opens the
Update Wizard (as shown in Figure 29-13)
that will obtain the schema from the database,
compare it to the current storage model, and
extract the differences. These differences
are displayed in the tabs in the wizard —
the Add tab contains database objects that
aren’t in your storage model, the Refresh tab
contains database objects that are different in
the database from their corresponding storage
model objects, and the Delete tab contains
database objects that are in the storage model
but no longer in the database.

Select the items from these three tabs that
you want to add, refresh, or delete, and click
the Finish button to have your entity model
updated accordingly. fiGure 29-13

Creating an entity Model ❘ 635

http://lib.ommolketab.ir
http//lib.ommolketab.ir

636 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

 queryinG the entity Model

 Now that you ’ ve created your entity model you will no doubt want to put it to the test by querying
it, working with and modifying the data returned, and saving changes back to the database. The
Entity Framework provides a number of ways to query your entity model, including LINQ to Entities,
Entity SQL, and query builder methods. However, this chapter focuses specifi cally on querying the
model with LINQ to Entities.

 linq to entities overview
 LINQ was covered in the previous chapter, specifi cally focusing on the use of LINQ to Objects, LINQ
to SQL, and LINQ to XML; however, the Entity Framework has extended LINQ with its own
implementation called LINQ to Entities. LINQ to Entities enables you to write strongly typed LINQ
queries against your entity model, and have it return the data as objects (entities). LINQ to Entities
handles the mapping of your LINQ query against the conceptual entity model to a SQL query against
the underlying database schema. This is an extraordinarily powerful feature of the Entity Framework,
abstracting away the need to write SQL to work with data in a database.

 Getting an object context
 To connect to your entity model you need to create an instance of the object context in your entity
model. So that the object context is disposed of once you ’ re fi nished you ’ ll use a using block to
maintain the lifetime of the variable:

 Vb

Using context As New AdventureWorksLTEntities()
 'Queries go here
End Using

 c#

using (AdventureWorksLTEntities context = new AdventureWorksLTEntities())
{
 // Queries go here
}

 Note that any queries placed within the scope of the using block for the object
context aren ’ t necessarily executed while the object context is in scope. As
detailed in the “ Debugging and Execution ” section of Chapter 28, the execution
of LINQ queries is deferred until the results are iterated (i.e., the query is not run
against the database until the code needs to use its results). This means that if the
variable containing the context has gone out of scope before you are actually
using the results, the query will fail. Therefore, ensure that you have requested
the results of the query before letting the context variable go out of scope.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 If you need to specify the connection to the database (such as if you need to pass in user credentials or
use a custom connection string rather than what ’ s in the App.config fi le) you can do so by passing the
connection string to the constructor of the object context (in this case AdventureWorksLTEntities).

 crud operations
 It would be hard to argue against the most important database queries being the CRUD (Create/Read/
Update/Delete) operations. Read operations return data from the database, whereas the Create/Update/
Delete operations make changes to the database. Create some LINQ to Entities queries to demonstrate
retrieving some data from the database (as entities), modify these entities, and then save the changes
back to the database.

 While you are getting up to speed on writing LINQ to Entities queries, you may
fi nd LINQPad to be a useful tool, providing a “ scratchpad ” where you can write
queries against an entity model and have them executed immediately so you can
test your query. You can get LINQPad from http://www.linqpad.net .

 Data retrieval
 Just like SQL, LINQ to Entity queries consist of selects, where clauses, order by clauses, and group
by clauses. Take a look at some examples of these. The results of the queries can be assigned to
the ItemsSource property of the DataGrid control created earlier in the MainWindow.xaml fi le,
enabling you to visualize the results:

 Vb

dgEntityFrameworkData.ItemsSource = qry

 c#

dgEntityFrameworkData.ItemsSource = qry;

 There are actually a number of ways to query the entity model within LINQ to Entities, but
we ’ ll just focus on one method here. We ’ ll also assume that the query is between the using block
demonstrated previously, with the variable containing the instance of the object context simply
called context .

 To return the entire collection of customers in the database you can write a select query like so:

 Vb

Dim qry = From c In context.Customers
 Select c

 c#

var qry = from c in context.Customers
 select c;

Querying the entity Model ❘ 637

http://www.linqpad.net
http://lib.ommolketab.ir
http//lib.ommolketab.ir

638 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

You can filter the results with a where clause, which can even include functions/properties such as
StartsWith, Length, and so on. This example returns all the customers whose last name starts
with A:

Vb

Dim qry = From c In context.Customers
 Where c.Name.LastName.StartsWith("A")
 Select c

c#

var qry = from c in context.Customers
 where c.Name.LastName.StartsWith("A")
 select c;

You can order the results with an order by clause — in this example you are ordering the results by
the customer’s last name:

Vb

Dim qry = From c In context.Customers
 Order By c.Name.LastName Ascending
 Select c

c#

var qry = from c in context.Customers
 orderby c.Name.LastName ascending
 select c;

You can group and aggregate the results with a group by clause — in this example you are grouping
the results by the salesperson, returning the number of sales per salesperson. Note that instead of
returning a Customer entity you are requesting that LINQ to Entities returns an implicitly typed
variable containing the salesperson and his sales count:

Vb

Dim qry = From c In context.Customers
 Group c By salesperson = c.SalesPerson Into grouping = Group
 Select New With
 {
 .SalesPerson = salesperson,
 .SalesCount = grouping.Count()
 }

c#

var qry = from c in context.Customers
 group c by c.SalesPerson into grouping
 select new
 {
 SalesPerson = grouping.Key,
 SalesCount = grouping.Count()
 };

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 saving Data
 The Entity Framework employs change tracking — where you make changes to data in the model,
it will track the data that has changed, and when you request that the changes are saved back
to the database it will commit the changes to the database as a batch. This commit is via the
 SaveChanges() method on the object context:

 Vb

context.SaveChanges()

 c#

context.SaveChanges();

 A number of ways to update data exists (for different scenarios), but for purposes of simplicity this
example takes the simple straightforward approaches.

 Update Operations

 Assume you want to modify the name of a customer (with an ID of 1), which you ’ ve retrieved
like so:

 Vb

Dim qry = From c In context.Customers
 Where c.CustomerID = 1
 Select c

Dim customer As Customer = qry.FirstOrDefault()

 c#

var qry = from c in context.Customers
 where c.CustomerID == 1
 select c;

Customer customer = qry.FirstOrDefault();

 It can be very useful to monitor the SQL queries generated and executed by the
Entity Framework to ensure that the interaction between the entity model and
the database is what you ’ d expect. For example, you may fi nd that because an
association is being lazy loaded, when traversing the entity hierarchy across this
association in a loop that you are actually making repeated and excessive trips to
the database. Therefore, if you have SQL Server Standard or higher you can use
the SQL Profi ler to monitor the queries being made to the database and adjust
your LINQ queries if necessary. If you are using SQL Server Express you can
download a free open source SQL Server profi ler called SQL Express Profi ler
from http://code.google.com/p/sqlexpressprofiler/downloads/list .

Querying the entity Model ❘ 639

http://code.google.com/p/sqlexpressprofiler/downloads/list
http://lib.ommolketab.ir
http//lib.ommolketab.ir

640 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

All you need to do is modify the name properties on the customer entity you’ve retrieved, the Entity
Framework will automatically track that this customer has changed, and then call the SaveChanges()
method on the object context:

Vb

customer.Name.FirstName = "Chris"
customer.Name.LastName = "Anderson"

context.SaveChanges()

c#

customer.Name.FirstName = "Chris";
customer.Name.LastName = "Anderson";

context.SaveChanges();

Create Operations

To add a new entity to an entity set, simply create an instance of the entity, assign values to its
properties, and then save the changes:

Vb

Customer customer = new Customer()
customer.Name.FirstName = "Chris"
customer.Name.LastName = "Anderson"
customer.Name.Title = "Mr."
customer.PasswordHash = "*****"
customer.PasswordSalt = "*****"
customer.ModifiedDate = DateTime.Now
context.Customers.AddObject(customer)

context.SaveChanges()

c#

Customer customer = new Customer();
customer.Name.FirstName = "Chris";
customer.Name.LastName = "Anderson";
customer.Name.Title = "Mr.";
customer.PasswordHash = "*****";
customer.PasswordSalt = "*****";
customer.ModifiedDate = DateTime.Now;
context.Customers.AddObject(customer);

context.SaveChanges();

After the changes are saved back to the database your entity will now have the primary key that was
automatically generated for the row by the database assigned to its CustomerID property.

Delete Operations

To delete an entity, simply use the DeleteObject() method on its containing entity set:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

context.Customers.DeleteObject(customer)

c#

context.Customers.DeleteObject(customer);

navigating entity associations
Of course, working with data rarely involves the use of a single table/entity, which is where the
navigation properties used by associations are very useful indeed. A customer can have one or more
addresses, which is modeled in your entity model by the Customer entity having an association with
the CustomerAddress entity (a one-to-many relationship), which then has an association with the
Address entity (a many-to-one relationship). The navigation properties for these associations make it
very easy to obtain the addresses for a customer.

Start by using the query from earlier to return a customer entity:

Vb

Dim qry = From c In context.Customers
 Where c.CustomerID = 1
 Select c

Dim customer As Customer = qry.FirstOrDefault()

c#

var qry = from c in context.Customers
 where c.CustomerID == 1
 select c;

Customer customer = qry.FirstOrDefault();

You can enumerate and work with the addresses for the entity via the navigation properties like so:

Vb

For Each customerAddress As CustomerAddress In customer.CustomerAddresses
 Dim address As Address = customerAddress.Address
 'Do something with the address entity
Next customerAddress

c#

foreach (CustomerAddress customerAddress in customer.CustomerAddresses)
{
 Address address = customerAddress.Address;
 // Do something with the address entity
}

Note how you navigate through the CustomerAddress entity to get to the Address entity for the
customer. Because of these associations there’s no need for joins in the Entity Framework.

Querying the entity Model ❘ 641

http://lib.ommolketab.ir
http//lib.ommolketab.ir

642 ❘ chaPter 29 The Ado.neT enTiTy FrAmeWork

However, there is an issue here with what you’re doing. What is happening here is as you navigate
through the CustomerAddress entity to the Address entity is that it’s doing another database query
to get the collection of CustomerAddress entities for the customer, and then in the for loop doing yet
another database query for each CustomerAddress entity to get the corresponding Address entity!
This is known as lazy loading — where the entity model only requests data from the database when
it actually needs it. This can have some advantages in certain situations, however, in this scenario
it results in a lot of calls to the database, increasing the load on the database server, reducing the
performance of your application, and reducing your application’s scalability. If you then did this
for a number of customer entities in a loop, that would add even more strain to the system. So it’s
definitely not an ideal scenario as is.

Instead, you can request from the entity model when querying for the customer entity that it eagerly
loads its associated CustomerAddress entities and their Address entities. This will request all the data
in one database query, thus removing all the aforementioned issues, because when navigating through
these associations the entity model will now have the entities in memory and not have to go back
to the database to retrieve them. The way to request that the model does this is to use the Include
method, specifying the path (as a string) of the navigation properties (dot notation) to the associated
entities whose data you also want to retrieve from the database at the same time as the actual entities
being queried:

Vb

Dim qry = From c In context.Customers
 .Include("CustomerAddresses")
 .Include("CustomerAddresses.Address")
 Where c.CustomerID = 1
 Select c

Dim customer As Customer = qry.FirstOrDefault()

c#

var qry = from c in context.Customers
 .Include("CustomerAddresses")
 .Include("CustomerAddresses.Address")
 where c.CustomerID == 1
 select c;

Customer customer = qry.FirstOrDefault();

adVanced functionality

There’s too much functionality available in the Entity Framework to discuss in detail in this chapter,
but here’s an overview of some of the more notable advanced features available that you can
investigate further if you wish.

updating a database from an entity Model
As mentioned earlier, it’s possible with the Entity Framework to create an entity model from scratch,
and then have the Entity Framework create a database according to your model. Alternatively, you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

can start with an existing database, but then get the Entity Framework to update the structure of
your database based on the new entities/properties/associations that you’ve added to your entity
model. To update the structure of the database based on additions to your model, you can use
the Generate Database Wizard by right-clicking the designer surface and selecting the Generate
Database from Model menu item.

adding business logic to entities
Though you are fundamentally building a data model with the Entity Framework rather than
business objects, it is possible to add business logic to your entities. The entities generated by the
Entity Framework are partial classes, enabling to you extend them and add your own code. This
code may respond to various events on the entity, or it may add methods to your entity that the
client application can use to perform specific tasks or actions.

For example, you might want to have the Product entity in your AdventureWorksLT entity model
automatically assign the value of the SellEndDate property when the SellStartDate property
is set (only if the SellEndDate property does not have a value). Alternatively, you may have some
validation logic or business logic that you want to execute when the entity is being saved.

Each property on the entity has two partial methods that you can extend: a Changing method
(before the property is changed) and a Changed method (after the property is changed). You can
extend these partial methods in your partial class to respond accordingly to the value of a property
being changed.

Plain old clr objects (Poco)
One of the big complaints with the first version of the Entity Framework was that your entities had
to inherit from EntityObject (or implement a set of given interfaces), meaning that they had a
dependency on the Entity Framework — which made them unfriendly for use in projects where test-
driven development (TDD) and domain-driven design (DDD) practices were employed. In addition,
many developers wanted their classes to be persistence ignorant — that is, contain no logic or
awareness of how they were persisted.

By default, the entities generated from the Entity Model Data Wizard in the Entity Framework v4
still inherit from EntityObject, but you now have the ability to use your own classes that do not
need to inherit from EntityObject or implement any Entity Framework interfaces, and whose
design is completely under your control. These types of classes are often termed Plain Old CLR
Objects, or POCO for short.

suMMary

In this chapter you learned that the Entity Framework is an Object Relational Mapper (ORM) that
enables you to create a conceptual model of your database in order to interact with databases in
a more productive and maintainable manner. You then went on to learn how to create an entity
model, and how to write queries against it in code.

summary ❘ 643

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

30
 reporting

 what ’ s in this chaPter?

 Designing Reports ➤

 Generating Reports ➤

 Deploying Reports ➤

 One of the key components of almost every business application is reporting. Businesses
put data into the system in order to get useful information out of it, and this information is
generally in the form of reports. Numerous reporting tools and engines are available, and it
can often be hard to choose which one is best for your application or system (they tend to
work in different ways and have different pros/cons).

 Visual Studio 2010 contains a built - in report designer that saves to fi les using the RDL fi le
specifi cation — and reports built using this designer can be generated using the local report
engine, or rendered on a remote report server running SQL Server Reporting Services.

 The professional versions of Visual Studio 2010 (and higher) also come with another well -
 known reporting tool called Crystal Reports. However, this chapter specifi cally looks at
Visual Studio ’ s report designer, and how to use it to design and generate reports (using the
local report engine).

 GettinG started with rePortinG

 When you start designing reports, you will either want to add a report to an existing project
or start a completely new project (such as for a reporting application). If it is the latter, the
easiest way to get started is to create a new project using the Reports Application project
template. This creates a Windows Forms project already set up with the necessary assembly
references, a form with the Report Viewer control on it, and an empty report. Let’s look at the
former scenario and how to manually get started (which really isn ’ t much extra work).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

646 ❘ chaPter 30 reporTing

 Reports can be viewed in either a Windows Forms application or an ASP.NET application using the
Report Viewer control. There are two Report Viewer controls — one for use in web projects and
one for use in Windows Forms projects, and both are almost identical in appearance and how you
use them to render reports.

 To render reports in a WPF application, you can use the Windows Forms
interoperability feature detailed in Chapter 18 and use the Windows Forms control
(because there is no Report Viewer control in WPF). Displaying reports
in Silverlight applications is a bit harder because Silverlight has no Report
Viewer control either (nor support for printing). In this case it is probably best
to render reports to PDF, stream them through to the client using a HTTP
handler, and display them in a different browser window.

fiGure 30-1

 Now you need to add some assembly references to your project that are required for using the Report
Viewer control and the report engine. If you are working with an ASP.NET project you will need to
add a reference to Microsoft.Reporting.WebForms.dll , or if you are working with a Windows
Forms project you will need to add a reference to Microsoft.Reporting.WinForms.dll . Alternatively,
the Report Viewer control should be in your Toolbox for both project types, and dropping it onto your
report will automatically add the required assembly reference to your project.

 Now add a report defi nition fi le to your project. Add a new item to your project, and select the
Reporting subsection as shown in Figure 30 - 1 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 647

 Two items here are of interest: the Report item and the Report Wizard item. Selecting the Report
item creates an empty report defi nition fi le — essentially a blank slate that you can start working
with. Selecting the Report Wizard item creates a report defi nition fi le and automatically starts the
Report Wizard (detailed later in this chapter), which will design a report layout for you based upon
your choices. You will generally want to start your report by using the Report Wizard, and then
modify its output to suit your requirements.

 Before you get into designing the report, it is important to clarify the different parts of a reporting
system, the terms you use when you reference each, and how they hang together (because this can be
somewhat confusing initially). There are six main parts:

 Report Designer ➤

 Report Defi nition File ➤

 Data Sources ➤

 Reporting Engine ➤

 Report ➤

 Report Viewer ➤

 You use the report designer to design the report defi nition fi le (at design time), creating its structure
and specifying the various rules of how the report will be laid out. At run time, you pass the report
defi nition fi le and one or more data sources to the reporting engine . The reporting engine uses the
two to generate the report , which it then renders in the Report Viewer (or a specifi ed alternative
output format such as PDF).

 Where this can become confusing is that the Report Viewer is the local report
engine. So you are passing the report defi nition fi le and the data sources to the
Report Viewer and it then both renders and displays it. From a conceptual
perspective, however, it ’ s probably best to think of these as separate components
and it will make more sense.

 desiGninG rePorts

 Take a look now at how to go about designing a report. You will look at the manual process of
designing a report, and then later take a look at how the Report Wizard automates the design
process. For now, you will be working with an empty report that was created by adding a new item
to the project and using the Report item template. When you create this item it will immediately be
opened in the report designer as shown in Figure 30 - 2 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

648 ❘ chaPter 30 reporTing

 In the document area you have the design surface upon which you lay out the report. On the bottom
left is the Report Data tool window, which will contain the data fi elds that you can drag onto your
report. If you accidentally close this window you can open it again by using the View ➪ Report
Data menu. Above it, the Toolbox window contains the controls that can be added to the report
surface. When you are working with the design surface of a report you will note that a Report menu
is also added to the menu bar.

fiGure 30-2

 Due to the nature of the local report engine, which can ’ t query data sources itself
(as discussed shortly), there unfortunately is no way to preview the report in the
designer. This means that in order to view the output of your report you must
have already set up a form with a Report Viewer control, and have written the
code that populates the data structures and initiates the rendering process. This
can make the report design process a little painful, and it is possibly worthwhile
creating a temporary project that makes it easy to test your report. You can fi nd
the code required to do so later in this chapter.

 defi ning data sources
 Before you can design a report you need to start with a data source, because it is the data source
that will dictate a large portion of the report ’ s design. At design time the data sources won ’ t contain
any data, but the report needs the data sources for their structure.

 An important concept to understand when starting with the local report engine is that you must
pass it the data when generating the report — it doesn ’ t query the data sources itself. The upside
of this is that the data can come from a wide variety of sources; all you need to be able to do is to
query the data, and you can then manipulate it and pass it to the report engine in a structure that
it understands. The main structures you can use to populate your report that the report engine will
understand include DataSets, objects, and Entity Framework entities.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 649

fiGure 30-3

 The server report engine (SQL Server Reporting Services) can query SQL Server
databases itself (and some other various data sources via OLEDB and ODBC),
and the query to obtain the data used by the report is stored in the report defi nition
fi le. You can spot report defi nition fi les that are for use by SQL Server Reporting
Services fairly easily because they will have an .rdl extension, whereas the fi les
for use by the local report engine have an .rdlc extension (the c stands for client -
 side processing). It ’ s reasonably easy to convert reports from using the local report
engine to using SQL Server Reporting Services, because the underlying fi le formats
are based upon the same Report Defi nition Language (RDL). The reason you
might use SQL Server Reporting Services over the local report engine is to reduce
the load on your server (such as the web server), and offl oad that to a separate
server. Generating reports can be quite resource - and CPU - intensive, so you can
make your system a lot more scalable by delegating this task to another server.
SQL Server Reporting Services requires a full SQL Server license, but if you ’ re
using SQL Server Express Edition you can use a limited version of it if you install
the free SQL Server Express Edition with Advanced Services.

 You can use an Entity Framework model for the data source for your report; however, a limitation
of the local report engine is that you can ’ t join data from separate data sources (in this case entities)
in the report, which is often required in reporting (unless you have imported views from your
database into your Entity Framework model that align with the requirements for your report).
Therefore, you will need to either create a Typed DataSet or create a class to populate with the
joined data, which you can then pass to the report engine.

 As an example, you will simply be using the AdventureWorksLT Entity Framework model that you
created in Chapter 29 as the source of the data for this report. The fi rst step is to add an entity from this
model as a data source for the report. To do so, click the New menu in the Report Data tool window,
and select the Dataset menu item. This displays the Dataset Properties window shown in Figure 30 - 3 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

650 ❘ chaPter 30 reporTing

You should give the data source a meaningful name, because you will be referencing the data source
name in code when you are passing the local report engine the data to populate it with. Enter this name
in the Name textbox. Now you need to select the location of the data source from the Data Source drop-
down list. The data source will usually be in your project, so you can select it from the list.

Click the New button to add a source of data to your project (such as to create a new entity model if
it doesn’t already exist). This opens the Data Source Configuration Wizard detailed in Chapter 27.
You will assume the Entity Framework model of the AdventureWorksLT database that you created
in Chapter 29 already exists in your project, so you can skip this step and simply select the type of
entity objects that you will be passing to the report (for this example you want the Product entities)
from the Available Datasets drop-down box. Finding which item to select when dealing with
Entity Framework entities can be rather confusing initially, but the parent entity is the first part of
the item name, and the name of the actual entity you want to use in the report is in the brackets
following it. So to select the Product entity in the AdventureWorksLTEntities model you select the
AdventureWorksLTEntities (Product) item. When you select the item the list of the fields it contains
are displayed in the Fields list. This data source will now be displayed in the Report Data tool
window, and will list the fields under it that you can use in your report.

If this data source changes (such as if a new field has been added to it), right-click it and select the
Refresh item from the context menu to update it to its new structure.

reporting controls
If you take a look at the Toolbox tool window you will see that it contains
the various types of controls that you can use in your report, as shown in
Figure 30-4.

To use a control, simply drag and drop it on your report at the required
position, and then you can set its properties using the Properties tool
window. Alternatively you can select the control in the Toolbox and draw
the control on the report design surface. Another method is to right-click
anywhere on your report, select the Insert submenu, and select the control
you want to insert.

Now take a closer look at each of these controls.

Text Box
The name of the Text Box control is a little confusing because you probably immediately think of
a control that the user can enter text into (which makes little sense in a report) like the Text Box
control in Windows Forms and other platforms. This mental image is also backed up by its icon
(which shows a textbox with a caret in it), but in fact this control is only for displaying text, not
for accepting text entry. The Text Box control isn’t used just for displaying static text, but can also
contain expressions (which are evaluated when the report is being generated, such as data field
values, aggregate functions, and formulas). Expressions can be entered directly into the textbox, or
they can be created using the expression builder (discussed later in this chapter) by right-clicking the
textbox and selecting the Expression menu item.

fiGure 30-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 651

 When you drag a data fi eld onto the report, a textbox is created at that location containing a
placeholder. The placeholder has an expression behind it, which will get and display the value for
that fi eld. A placeholder is essentially a way of hiding expressions in textboxes in order to reduce
the report design ’ s complexity. You could think of it like a parameterless function, which has a
name (referred to as a label), and contains code (known as an expression). In the report designer the
textbox will display the label instead of the (potentially long and complex) expression.

 If you drag a data fi eld onto your report and it displays < < Expr > > this means
it has had to create a complex expression to refer to that fi eld (such as getting
the fi eld ’ s value in the fi rst row in the dataset), which is hidden behind the
 < < Expr > > placeholder it has created. Unless this is the behavior you are after
(such showing a value in a report header or footer), it probably should be placed
in a table, matrix, or a list in order to display the value of that fi eld for each
row in the dataset. If this is the behavior you are after, fi rst click the < < Expr > >
placeholder, then right - click, select the Placeholder Properties menu item, and
give it a meaningful name by entering one in the Label textbox.

 You can quickly create an expression to display a data fi eld value by typing the
name of the fi eld surrounded by square brackets (for example, [EmailAddress]).
This text will automatically be turned into a placeholder, with an expression
behind it to display the corresponding fi eld ’ s value.

 You can also drag a data fi eld into an existing textbox. This will create a placeholder with an
expression behind it to display the value of that fi eld in the dropped location in the textbox. You
may do this if, for example, you wanted to display the value of that fi eld inline with some static text,
or even combine the values of multiple fi elds in the one textbox.

 To create a placeholder manually, put the textbox in edit mode (where it is displaying a cursor for
you to type), then right - click and select the Create Placeholder menu item. Creating placeholders and
expressions is discussed in detail later in this chapter.

 The format of the text in the Text Box (as a whole) can be set in a number of ways. The formatting
properties for the textbox can be found in the Properties tool window, and there is also a Font tab
in the Text Box Properties window for the Text Box (right - click the textbox, and select the Text
Box Properties menu item). Another way is to use the formatting options found on the Report
Formatting toolbar. This is the easiest way, but has another side benefi t. If you select the textbox in
the designer and choose formatting options from this toolbar, it will apply those formatting options
to all its text. However, the text within a textbox doesn ’ t need to be all the same format, and
selecting text within the textbox and choosing formatting options using this toolbar will apply that
formatting to just the selected text. Of course you can use standard formatting shortcut keys too,
such as Ctrl + B for bold text, and so on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

652 ❘ chaPter 30 reporTing

When you are displaying the value of a
number or date data field you quite often
need to format it for display in the report.
If your textbox contains just an expression,
select the textbox, right-click, select the
Text Box Properties menu item, and select
the Number tab (shown in Figure 30-5).
Alternatively, if the textbox contains text
or other field values, you can format just
the value of the placeholder by selecting
the placeholder in the textbox, right-
clicking, selecting the Placeholder Properties
menu item, and selecting the Number tab.
Then select how you want the field to be
formatted from the options available. If a
standard format isn’t available, you can select
Custom from the Category list and enter
a format string, or you can even write an
expression to format the value by clicking the fx button.

line/rectangle
The Line and Rectangle controls are shapes that you can use to draw on your report. The Line
control is often used as a separator between various parts of a report. The Rectangle control is
generally used to encapsulate an area in a report. The Rectangle control is a container control,
meaning other controls can be placed on it, and when it is moved they will be moved along with it.

Table
The Table control is used to display the data in a tabular form, with fixed columns and a varying
number of rows (depending on the data being used to populate the report). In addition to the data,
tables can also display column headers, row group headers, and totals rows.

By default, each of the cells in a table is a Text Box control (and thus each cell has the same features
described for the Text Box control). However, a cell can contain any control from the Toolbox
(such as an Image control, Chart, Gauge, and so on) by simply
dragging the control from the Toolbox into the cell.

When you first drop a Table control onto your report you will see that
it contains a header row and a data row, as shown in Figure 30-6.

To display data in the table, drag a field from the appropriate data source in the Report Data
tool window and drop it on a column in the table. You’ll see that it has created a placeholder
with an expression behind it to display the value of that field in the data row, and that it has also
automatically filled in the header row for that column to give it a title. This header name is the name
of the field, but assuming the field name follows Pascal case naming rules you will find spaces have
been intelligently inserted into the name before capital letters (so the ProductNumber field will

fiGure 30-5

fiGure 30-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 653

automatically have Product Number inserted as its
header). If this header name isn ’ t suitable, you can
change it by typing a new one in its place.

 Another means of setting which fi eld should be
displayed in a column is to mouse over a cell in the data row and click the icon that appears in its
top right - hand corner. This is shown in Figure 30-7. This displays a menu from which you can select
the fi eld to display in that column.

fiGure 30-7

fiGure 30-8

 If you have multiple datasets in your report and you haven ’ t specifi ed the dataset
that is the source of data for the table, clicking this icon fi rst requires you to drill
down selecting the dataset fi rst (before the fi eld). The dataset selected will then
be set as the source of the data for the table, and the next time you click the icon
it will only display the fi elds from that dataset accordingly.

 The table will have three columns when you drop it onto a report,
but you can add additional columns by simply dragging another
fi eld from the Report Data tool window over the table such that
the insertion point drawn on the table is at its right edge (shown
in Figure 30 - 8).

 You can insert a column in the table by the same means, but positioning the insertion point at the
location where the column should be inserted. Alternatively, you can add or insert a new column
by right - clicking on a gray column handle, selecting the Insert Column submenu, and selecting the
location (Left or Right) relative to the column that is selected.

 To delete an unwanted column, right - click the gray column handle and select Delete Columns from
the menu.

 Note that tables can only contain data from a single dataset; therefore, you can ’ t
join data from multiple data sources in the one table (such as including data from
an Orders data source and a Customers data source to show each order and the
name of the customer that placed the order in the table). Therefore you will need
to do this join in the data that you have passed to populate the report with.

 You can fi nd which dataset is the source of the data for a table by selecting it and fi nding the
DataSetName property in the Properties tool window. You can change which data source it uses by
selecting an alternative one from the drop - down list.

 Often you will fi nd that you need to display aggregate values at the bottom of the table, such as in
a totals row. There are two ways to implement this. If you have a numeric fi eld that you want to
sum all the values in that column, right - click the cell (not the placeholder, but the entire cell) and
select the Add Total menu item at the bottom of the menu (this menu item will only be enabled

http://lib.ommolketab.ir
http//lib.ommolketab.ir

654 ❘ chaPter 30 reporTing

for numeric fields). A new row will be added below the
data row to display the totals, and a SUM aggregate
expression for that field will be inserted, as shown in
Figure 30-9.

Because the Add Total menu item is only enabled for
numeric fields, you may need to create the totals row manually (such as if you want a count of items
for example). Right-click the data row’s handle, and select Insert Row ➪ Outside Group - Below.
Then you can write the aggregate expression in the newly inserted row as required.

If you want to change the type of aggregate function used by the total, you will need to
modify the expression. Instead of manually making the change, a quicker way to do this is
to select the placeholder (and not the cell), right-click, select the Summarize By submenu,
and select the alternative aggregate function from the submenu.

A table can filter and sort data from the data source before displaying it. Both of these can be
configured in the Tablix Properties window (right-click the gray handle area for the table and select
the Tablix Properties menu item). The Filter tab enables you to specify filters (each consisting of an
expression, an operator, and a value). The Sorting tab enables you to specify one or more fields to
sort the data by and the sort order for each.

You may also want to group rows in a table, showing a group header between each grouping. For
example, you may want to group orders by customer, and show the customer’s name in the group
header row (which therefore doesn’t need to be displayed as a column). You can have multiple levels
of grouping, enabling complex nested hierarchies to
be created. Again, there are multiple ways to set the
grouping for a table. One is to select the table and
drag a field from the Report Data tool window onto
the Row Groups pane at the bottom of the report
designer above the (Details) entry already there.
Another way (that gives you additional options for
the grouping) is to right-click the data row’s gray
handle and select Add Group ➪ Parent Group from
the menu. This displays the Tablix Group window
shown in Figure 30-10.

Here you can select the field or an expression to group by, and there is also the option to add a
group header and/or footer row. For example, these additional options may be useful if you want to
display the value of the group field in a header above the data for a group, and totals in the footer
below it.

By default (even if you select to create a group header row or if there is a column displaying the
group field’s value) a new column will be inserted to the left of the data configured to show the value
of the group field. You can safely delete this column without affecting the grouping if this is not
the behavior you are after.

fiGure 30-9

fiGure 30-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 655

 By default there is no formatting applied to the table apart from a solid light gray border around the
cells (or technically the control in each cell). Often you will want to have a border around the
table, between columns, or even between individual cells. Or perhaps you want a line between
the table header and the data, and/or the table footer and the data.
In all of these cases the easiest way to set the borders is to select the
cells to apply a border to and use the Report Borders toolbar (as
shown in Figure 30 - 11) to set them.

 Often you will also want to set a background color for the header row (and a foreground color to
match). The easiest way to do this is to select the cells and use the Background Color/Foreground
Color buttons from the Report Formatting
toolbar to select the color to use (shown in
Figure 30 - 12).

 Matrix
 The Matrix control is used for cross - tab reports (similar to Pivot Tables in Excel). Essentially,
a Matrix control groups data in two dimensions (both rows and columns), and you use it when
you have two variables and an aggregate fi eld for each combination of the two. So, for example,
if you wanted to see the total sales per product
category in each country, this would be the perfect
control to use (see Figure 30 - 13). The variables would
be the product category and the country, and the
aggregate is the total revenue (of the products in that
category to that country). Matrices are one of the
most important and powerful controls in reporting,
because they really help enable useful information to
be extracted from raw data.

 What stands out about using the Matrix control (over the Table control) is that you don ’ t know
what columns there will be at design time. Both the number of rows and columns for the matrix
(and their headers) will be dictated by the data.

 When you add a group that has a group header row, here are some things that
may improve your report layout. First delete the column it added, and then
set the fi rst cell in the group header row to display the value of the fi eld it is
grouping by. Then select all the cells in the group header row, right - click, and
select the Merge Cells menu item to turn them into a single cell (enabling the
grouping fi eld ’ s value to stretch across the columns). You may also want to add a
border or background color to the group header row so it stands out.

fiGure 30-11

fiGure 30-12

fiGure 30-13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

656 ❘ chaPter 30 reporTing

 When you drop a Matrix control on your report you will see that it contains
both a column header and a row header that intersect on a data cell (as
shown in Figure 30 - 14), and that both the Row Groups and Column Groups
panes at the bottom of the designer have grouping entries (whereas the Table
control only had a row grouping entry).

 For this example, you will be using the example of displaying the total sales per product category
in each country described earlier. Your data source (a collection of custom objects specifi cally
created and populated as the source of data for this report) contains four fi elds: ProductCategory,
Country, Revenue, and OrderQuantity. What you need to do is drag the ProductCategory fi eld from
the Report Data tool window onto the row header (marked Rows), and the Country fi eld onto the
column header (marked Columns). Then drag the Revenue fi eld (or the OrderQuantity fi eld — either
one) onto the data cell (marked Data), and you ’ re done! Assuming the fi eld you are aggregating is
numeric, it will have automatically applied a SUM aggregate to the Revenue fi eld.

fiGure 30-14

 The matrix is closely related to the Table control, and in fact both (along with
the List control discussed shortly) are the same core control under the covers
(called a Tablix). However, they are templated as separate controls in order to
distinguish their different uses. If you were to delete the column group (and its
related rows and columns), you effectively turn the Matrix control into a table.

 The designer will have automatically inserted a header label into the top
left - hand cell, but generally you will want to delete it.

 The matrix in the report designer will now look like Figure 30 - 15 ,
and after adding some formatting you will get an output similar
to that shown previously in Figure 30 - 13 when you generate the
report.

 Like with the Table control, you can display totals, but the Matrix
control enables you to have column totals as well as row totals. When you right - click the data cell
you will fi nd that the Add Total menu item is actually a submenu (unlike the Table control), from
which you can select a Row total or a Column total.

 The Matrix control doesn ’ t limit you to having just
one aggregate per “ intersection. ” For example, you
may want to show both the total revenue and quantity
for each country/product category. Simply drag
another fi eld to aggregate (such as the OrderQuantity
fi eld) next to the Revenue fi eld in the matrix, and it too will appear for each country (as shown in
Figure 30 - 16).

fiGure 30-15

fiGure 30-16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 657

You can also extend the matrix to show additional “dimensions” by having multiple row or column
groups. Again, simply drag the additional fields to group by into the appropriate position in the row/
column grouping header area.

list
Lists are a more freeform means of displaying data
than the Table and Matrix controls, and thus provide
a lot of flexibility in the display of the data. If you
were to drop a field directly onto a report you would
find that it only displays the field’s value in the
dataset’s first row, but the List control enables you
to define a template (as shown in Figure 30-17), and
enumerates through the data source, populating and
displaying that template for each row (or group).

Being yet another form of the same base control used by the Table and Matrix controls, you will
find that the List control shares many of the same features that they have.

image
The Image control is used to display an image
in your report. The source of this image can
be from within your project (as an embedded
image resource in your project), an external
image (specified by a file system path or
URL), or from a database field (a blob). When
you drop this control on a report, a window
is displayed enabling you to set these options
(and others such as its size, border, and so on)
as shown in Figure 30-18.

The options that appear will depend on the
source you have selected for the image from
the Select the Image Source drop-down box.

If you want to show external images (for
example, from a file path) there are two
things you must note. You must add a
protocol prefix to the location you specify
(for example, file://, http://, and so on), and
you must also set the EnableExternalImages property on the LocalReport object to true because
this is not enabled by default.

reportViewer.LocalReport.EnableExternalImages = true;

subreport
The Subreport control is used as a placeholder where the contents of another report can be inserted
into this report (enabling complex reports to be created). This is discussed in detail later in this chapter.

fiGure 30-17

fiGure 30-18

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

658 ❘ chaPter 30 reporTing

Chart
Charts provide a much more visual representation
of data, enabling patterns and anomalies in the
data to be easily identified.

When you drop a Chart control onto a report
it will immediately open the Select Chart Type
window (as shown in Figure 30-19), allowing you
to select from a wide range of available chart types.

You can always change the type of chart at a later
point by right-clicking it and selecting the Change
Chart Type menu item.

Double-clicking a chart will (like other controls)
put it into edit mode (as shown in Figure 30-20),
and you will find it consists of a number of sub-
controls. Depending on the type of chart you
choose it will have different controls arranged on its
surface. All chart types, however, have a title and legend
in addition to the chart itself. You can rearrange these
components (or delete them) as you see fit.

Charts consist of categories, series, and data — each
essentially representing an axis. Categories are used to
group data, data specifies the source of the values to
display, and series add additional “dimensions” that will
be determined when the report is generated (the same
concept upon which the Matrix control works). For
simple charts you will just configure the categories and
data axes, and more complex charts will use the series axis also.

When the chart is in edit mode it displays drop zones (one for each axis) alongside the chart, upon
which you can drop the fields that each should use. For more advanced charts you can drop multiple
fields in each drop zone for multiple groupings/value displays.

Using the same source of data that you used when generating the matrix report, you will start by
generating a simple bar chart (the total sales per
product category). Drop the Chart control onto
the report, set it to be a 3-D Clustered Bar chart,
and double-click it to put it into edit mode. Drop
the ProductCategory field onto the Category
zone, and the Revenue field onto the Data zone.
Change the chart and axes titles as you see fit,
and another thing you will want to do (in order
to show a label for every product category) is to
right-click the vertical axis, select Axis Labels
from the menu, and change the Interval from
Auto to 1. Now when you generate the report
you will get an output similar to Figure 30-21.

fiGure 30-19

fiGure 30-20

fiGure 30-21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 659

 Note that currently the legend is of no real value, because in a bar chart it is designed to show the
series group values (which you aren ’ t using in this chart).

 Now generate a chart that works much like the
Matrix control, by setting the series grouping to
add an additional dimension to your previous
chart (so that it now displays the total quantity
of sales for each product category per country).
Drag the Country fi eld onto the Series zone and
run the report again. Now you will have the
total sales for each product category split out per
country, as shown in Figure 30 - 22 .

 Note how the legend now shows which bar color
represents each country, because you are now
making use of the series axis.

 Gauge
 The Gauge control is yet another means of
visually representing the data. Gauges are
generally designed to display a single value
(although some gauges can each display a
fi xed number of separate values). This can be
quite useful in displaying Key Performance
Indicators (KPIs), for example.

 When you drop a Gauge control onto a report
it immediately opens the Select Gauge Type
window, as shown in Figure 30 - 23 , allowing
you to select from a number of different
linear and radial gauge types.

fiGure 30-22

fiGure 30-23

 Note that, unlike the Chart control, you cannot change the type of gauge once it
has been created.

 For this example you will use the Radial with Mini Gauge gauge. When
you put the gauge into edit mode (by double - clicking it) it displays a drop
zone above it (as shown in Figure 30 - 24), which will have one or more fi eld
placeholders (depending on how many values the gauge can display). Your
selected gauge can display two values (one in the main gauge and one in the
mini gauge), so it will have two fi eld placeholders. When you drop a fi eld
from the Report Data window onto a fi eld placeholder, you will note that it

fiGure 30-24

http://lib.ommolketab.ir
http//lib.ommolketab.ir

660 ❘ chaPter 30 reporTing

automatically applies an aggregate because it is only displaying a single value in its related gauge.
Numeric fields will automatically have a SUM aggregate applied, and other fields will have a
COUNT aggregate applied.

Gauges have a fixed scale, and you must specify the minimum and maximum values that it will
display. The nature of the Gauge control means that it won’t automatically determine these values.
To change these values you will need to select
the scale itself (as shown in Figure 30-24),
then right-click and select Scale Properties
from the menu. This brings up the window
shown in Figure 30-25.

Your example will have expected values of
up to 1 million, so you will set that as your
maximum value. You will leave the interval
options to be automatically determined (this
will alter which scale labels are displayed),
although you can change these if the output
is not as you desire. When dealing with very
small or very large values (as you are with
this example), it may be useful to set the
value of the Multiply Scale Labels By option.
Instead of showing large numbers on the
intervals, you can set that the value labels be
multiplied by 0.00001, meaning that it will
display 1 instead of 100000, 2 instead of
200000, and so on (making for a much less
cluttered gauge). In this case it would be important to add a label to the gauge (right-click it and
select Add Label from the menu) showing the multiplier that should be used with the label values to
get the real value being represented.

You can also add one or more ranges to your gauge. For example, you might want to indicate that
a range of values is acceptable by shading an area under the scale green, and shade another area
red indicating the value should be of concern. Right-click your gauge and
select Add Range from the menu. This automatically inserts a range into
your gauge — to configure it right-click and select Range Properties from the
menu. From this window you can enter at what values the range should start
and end, and you will most likely (depending on your needs) want to change
the start and end width of the range (generally so they are the same value).
From the Fill tab you can change the color of the range to match its meaning
(generally green = good, red = bad).

The final output of your gauge is shown in Figure 30-26.

fiGure 30-25

fiGure 30-26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 661

expressions, Placeholders, and aggregates
Expressions provide the flexibility and power in your report, and are used everywhere from getting
a value from a dataset, aggregating data, transforming data, and performing calculations, through
to decision-making processes using conditional statements (IIF, and so on). Anything dynamically
inserted into the report when it is being generated is handled by an expression. You might think
of expressions as a formula that returns a value. Almost everything in a report can be controlled
by an expression, including most control properties. So far you’ve already seen the expressions
generated when you drag a field onto the report, and how the expression is “hidden” behind a
placeholder, which can be used to hide its complexity. All expressions start with an equals (=) sign
and return a single value.

Expressions can be categorized into simple expressions and complex expressions. Simple expressions
refer only to a single field, which may have an aggregate function applied. Simple expressions
will display a simplified version of the underlying expression as the label of the placeholder when
displayed in the report designer. An example of a simple expression is:

=Fields!Revenue.Value

This will display in the report designer simply as [Revenue].

Complex expressions, however, either reference multiple fields or include operators, and appear in
the report designer with <<Expr>> as their default placeholder label (although this can be changed
in the placeholder properties to something more meaningful). Complex expressions essentially use
VB for their syntax, although they still must consist of only a single line of code that returns a
value. They can, however, make calls to more complicated multiline functions if necessary, as will
be discussed in the next section. An example of a complex expression is:

=Fields!ProductCategory.Value + " sold to " + Fields!Country.Value

Now take a look at the process of creating
an expression. As previously noted, when
you drop a field onto a report it creates an
expression that returns the value of that field
from the dataset. To see this in action, drop
a table on a report and then drop a field from
the Report Data window into one of its cells.
As discussed earlier in the chapter, what is
being displayed in the cell is a placeholder
label. When you right-click the placeholder
you can select Expression from the menu to
view and edit its underlying expression. This
displays the Expression Builder window as
shown in Figure 30-27.

fiGure 30-27

http://lib.ommolketab.ir
http//lib.ommolketab.ir

662 ❘ chaPter 30 reporTing

 As its name might suggest, the Expression Builder helps you build expressions. At the top is the code
area where you can type in the expression, and below it is the category tree, category items list, and
a values list (which is only shown when values are available). The code area supports IntelliSense,
tooltips (displaying function parameters), and syntax checking (squiggly red underlines to show
errors), although unfortunately it doesn ’ t support syntax highlighting. The lower “ builder areas ”
help you build an expression, which is especially helpful when you don ’ t know the syntax or what
functionality is available. The Category tree allows you to drill down to select a category (such as
a dataset, an operator type, a function type, and so on). The Item list displays what is available
in that category, and the Values list (if values are available) displays the values for that item. For
functions and operators it will display some helpful information on the selected item (what it does
and examples of how it is used) in place of the Values list.

 You will note when you are creating a report that many properties have an fx button next to
them (in the dialog windows), or an Expression entry (in their drop - down list in the Properties
tool window). This means that those properties can have expressions assigned to determine the
value that should be applied to them, and clicking this button or selecting this item from the
drop - down list will open the Expression Builder window in which you can create an expression
to control the value of that property. This is extremely useful in conditional formatting
scenarios, such as toggling the visibility or color of a control based upon the data being
displayed.

 In conditional formatting scenarios you will fi nd the IIF function (Inline If)
very useful to choose between two values based upon the result of a given
expression (with the result being applied as the value of the property). Other
 “ program fl ow ” functions that you will fi nd useful are the Choose and Switch
functions.

 Sometimes you want to use a calculated value in multiple places in a report, and rather than
have the report recalculate the value multiple times, you ’ d like to calculate it once and reuse the
value (speeding up the generation of the report in the process). This is where variables can be
useful. Being named variables you may think that you can change their values (such as
using them in a running totals scenario), but unfortunately that isn ’ t the case. Their value
can only be set once, and then this value is used from that point on without it needing to be
recalculated.

 Running totals are actually implemented in a report using the RunningValue
function (built into the reporting engine) in an expression.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 663

 There are two types of variables: report
variables and group variables, with their
name matching their scope. The value of
report values are set in the Report ➪ Report
Properties window, in the Variables tab
shown in Figure 30 - 28 .

 The variables defi ned here will be available
anywhere in the report. A new entry will
be created when you click the Add button,
where you can give the variable a name
and a value. If it ’ s a constant value you can
specify its value there, or you can click the fx
button to create an expression that calculates
the value. This calculation will only be
performed once, and the value will be reused
on subsequent references of the variable.

 The variables that are available to an expression can be found in the Expression
Builder under the Variables category.

fiGure 30-28

 So if you ’ ve created a variable called testVar , you can use it in an expression like so:

=Variables!testVar.Value

 Another use for report variables is to defi ne constant values for use in your report, enabling you to
centrally defi ne values that are used in multiple places in your report without “ hard coding ” them in
those places.

 The other type of variable is the group variable. This works in much the same way as the report
variables, except the scope of the calculated value is just the current grouping in a Table/Matrix/List
control (and any child groupings). Its value is calculated each time the grouping changes, so if you
have a calculation to make for each grouping (whose value is reused throughout that grouping), this
is how you would implement it. To create a group variable, open the Group Properties window, go to
the Variables tab, and then create and use the variable in the same way as demonstrated for the report
variable. You can test the behavior of how the calculated value is reused and subsequently recalculated
when the group changes by creating the following expression and seeing when its output changes:

=Round(Rnd() * 100)

 custom code
 Sometimes the built - in functions of the reporting engine are not enough to suit your purposes.
When you need a complex multiline function to perform a calculation or make a decision, this

http://lib.ommolketab.ir
http//lib.ommolketab.ir

664 ❘ chaPter 30 reporTing

must be written outside the expression
builder (because expressions can only exist
on a single line). You have two ways to
achieve this: by embedding the code in the
report itself, or by referencing an external
.NET assembly that contains your custom
functions. You can set up both of these
options at the report level from the Report ➪
Report Properties menu.

 When you select the Code tab you will see
what is shown in Figure 30 - 29 (a custom
function is already entered for demonstration).

 As you can see, this is a very sparse code editor. There is no syntax highlighting, error checking, or
IntelliSense, so it isn ’ t very friendly to use. If there is an error in your code it will be caught when
the project is compiled and the compilation will fail (pointing out the cause of the error in the Error
List tool window). After you ’ ve written your functions in here (using VB as the language) you can
add a textbox to your report, open the expression builder, and call them like so:

=Code.CustomFunctionTest("Test Input")

fiGure 30-29

 Note that the IntelliSense in the expression builder doesn ’ t show the available
function names when you type Code . in the editor, nor does it show what
parameters the function takes. In addition, the only assemblies automatically
referenced for use are the System.Convert, System.Math, and Microsoft.
VisualBasic — if you need to use assemblies other than these you will need to
add references to them in the References tab, which is discussed shortly.

 Calling the function shown in Figure 30 - 29 with this expression displays the following in the
textbox:

Hello from the custom function! Your input parameter was: Test Input

 If you want to reuse the custom functions among multiple reports you are better off writing the code
in a .NET assembly, and referencing it from each report that requires its functions. You can create
a Class Library project, write the code (in either VB or C#), and then reference it in your report.
Unfortunately, you will face a few diffi culties in ensuring that the report can fi nd the assembly
and confi guring its code access security settings so that the report has the permissions to execute
its functions — so it ’ s not a completely straightforward process. However, you are about to walk
through the process required to get it working here.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 665

 Create a new project using the Class Library template called CustomReportingFunctions. Create a
class called MyFunctions , and add the following function to it:

 Vb

Public Shared Function CustomFunctionTest(ByVal testParam As String) As String
 Return "Your input parameter was: " + testParam
End Function

 c#

public static string CustomFunctionTest(string testParam)
{
 return "Your input parameter was: " + testParam;
}

 You will also need to add the following attribute to the assembly to enable it to be called by the
reporting engine. This is added to AssemblyInfo.vb for VB developers (under the My Project
folder, requiring the Show All Files option to be on in order to be seen), and to AssemblyInfo.cs
for C# developers (under the Properties folder).

 Vb

 < Assembly: System.Security.AllowPartiallyTrustedCallers >

 c#

[assembly: System.Security.AllowPartiallyTrustedCallers]

 In order for the report to fi nd the assembly, it must be installed in the Global Assembly Cache
(GAC). This means you need to give the assembly a strong name, by going to the Properties
of the custom functions assembly, opening the Signing tab, checking in the Sign the Assembly
checkbox, and choosing/creating a strong name key fi le. Now you can compile the project, and
then install the assembly in GAC by opening the Visual Studio Command Prompt, entering

gacutil -i < assembly_path >

and replacing < assembly_path > with the actual path to the compiled assembly.

 Each time you update this assembly, remember to install it into the GAC again.

 Now you can reference the assembly in the report. Open up the Report Properties window and go
to the References tab (as shown in Figure 30 - 30). Click the Add button, then click the ellipsis button

http://lib.ommolketab.ir
http//lib.ommolketab.ir

666 ❘ chaPter 30 reporTing

on the blank entry that appears. Find the
assembly (you may need to browse by file to
find it) and click OK.

Note the Add or Remove Classes area below
the Add or Remove Assemblies area. This
is used to automatically create instances of
classes in the referenced assemblies. You
made your function shared (or static as it
is referred to in C#) so you don’t need an
instance of the MyFunctions class. However,
if the function was not shared/static and you
needed a class instance you need to configure
these instances here (because a class cannot
be instantiated in an expression). To do
this, specify the class name (including its
namespace) and give it an instance name (that is, the name of the variable that you will use in your
expressions to refer to the instance of the class). The reporting engine will handle instantiating
the class, and will assign the reference to a variable with the given name so you can use it in your
expressions.

Now you are ready to reference your function in an expression, although slightly differently from
how you used the function when it was embedded in the report. You need to refer to the function by
its full namespace, class, and function name. For example:

=CustomReportingFunctions.MyFunctions.CustomFunctionTest("Test Input")

You are almost done, but not quite. The final piece of the puzzle is to specify that the assembly
should be run with full trust in the domain of the report engine. This is done when initiating the
report rendering process (which is covered later in this chapter) and requires the strong name of
the assembly.

Vb

Dim customAssemblyName As String = "CustomReportingFunctions, Version=1.0.0.0, " &
 "Culture=neutral, PublicKeyToken=b9c8e588f9750854"

Dim customAssembly As Assembly = Assembly.Load(customAssemblyName)
Dim assemblyStrongName As StrongName = CreateStrongName(customAssembly)
reportEngine.AddFullTrustModuleInSandboxAppDomain(assemblyStrongName)

c#

string customAssemblyName = "CustomReportingFunctions, Version=1.0.0.0, " +
 "Culture=neutral, PublicKeyToken=b9c8e588f9750854";

Assembly customAssembly = Assembly.Load(customAssemblyName);
StrongName assemblyStrongName = CreateStrongName(customAssembly);
reportEngine.AddFullTrustModuleInSandboxAppDomain(assemblyStrongName);

fiGure 30-30

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 667

There are two things you will note from this code. The first is that you are loading the custom assembly
from the GAC using its name (in order to obtain its strong name so you can notify the reporting engine
that it’s trusted), including its version, culture, and public key token. This string can be obtained by
copying it from where you added the assembly reference to the report in its Report Properties dialog box.

The second is the use of the GetStrongName function to return the StrongName object, the code for
which is below:

Vb

Private Shared Function CreateStrongName(ByVal assembly As Assembly) As StrongName
 Dim assemblyName As AssemblyName = assembly.GetName()

 If assemblyName Is Nothing Then
 Throw New InvalidOperationException("Could not get assembly name")
 End If

 ' Get the public key blob
 Dim publicKey As Byte() = assemblyName.GetPublicKey()

 If publicKey Is Nothing OrElse publicKey.Length = 0 Then
 Throw New InvalidOperationException("Assembly is not strongly named")
 End If

 Dim keyBlob As New StrongNamePublicKeyBlob(publicKey)

 ' Finally create the StrongName
 Return New StrongName(keyBlob, assemblyName.Name, assemblyName.Version)
End Function

Code snippet CreateStrongName.vb

c#

private static StrongName CreateStrongName(Assembly assembly)
{
 AssemblyName assemblyName = assembly.GetName();

 if (assemblyName == null)
 throw new InvalidOperationException("Could not get assembly name");

 // Get the public key blob
 byte[] publicKey = assemblyName.GetPublicKey();

 if (publicKey == null || publicKey.Length == 0)
 throw new InvalidOperationException("Assembly is not strongly named");

 StrongNamePublicKeyBlob keyBlob = new StrongNamePublicKeyBlob(publicKey);

 // Finally create the StrongName
 return new StrongName(keyBlob, assemblyName.Name, assemblyName.Version);
}

Code snippet CreateStrongName.cs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

668 ❘ chaPter 30 reporTing

 Now when you run the report you will have the same output as when you embedded the code in the
report, but in a more reusable and maintainable form.

 report layout
 Generally reports are produced in order to be printed, therefore you must consider how the
printed report will look in your report design. The fi rst thing to ensure is that the dimensions of
your report match the paper size that it will be printed on. Open the Report Properties window
via the Report ➪ Report Properties menu. The selected tab will be the Page Setup tab, from which
you can select the paper size, the margins, and the orientation of the page (portrait or landscape).

 Many reports tend to extend beyond one page, and it can be useful to show something at the
top and bottom of each page to show which company and report it belongs to, and where that
page belongs within the report (in case the pages are dropped, for example). So far you have been
dealing just with the body of the report, but you can add a page header and footer to the report
to use for these purposes. Page headers tend to be used for displaying the company logo, name,
and information about the company (like a letterhead). Page footers tend to be used to display
page numbers, the report title, and perhaps some totals for the information displayed on that page.

 Add a page header to your report via the
Report ➪ Add Page Header menu command.
This adds a page header area in the
report designer above the report body (see
Figure 30 - 31), which you can resize to your
needs, and upon which you can place various
controls such as textboxes and images. You
can even place other controls such as a Table
or Gauge, although it ’ s rare to do so. If
you drag a fi eld from the Report Data tool
window directly onto the page header you will note that it creates a complex expression (as it does
on the report body), so add a table fi rst if you want to display some totals, for example.

 Adding a page footer is much the same
process. Select the Report ➪ Add Page Footer
menu to add a page footer area in the report
designer below the body of the report
(see Figure 30 - 32).

 You can use the built - in report fi elds to
display information such as the page number,
number of pages, report name, the time the
report was generated, and so on, which can be used anywhere in your report. You can fi nd them in
the Report Data tool window, under the Built - in Fields category.

fiGure 30-31

fiGure 30-32

 The value for the Report Name fi eld is retrieved from the fi lename of the report
with the extension removed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 669

 Generally you will want to show the page numbers in the form as Page 1 of 6. However, the page
number and page count fi elds are separate, so it ’ s best to drop a textbox in the footer and drop both
fi elds in that:

Page [& PageNumber] of [& TotalPages]

 The values in the square brackets will automatically turn into placeholders with the correct
expressions behind them (the & specifi es that these are global variable references) that get the values
from the built - in fi elds. You can alternatively drag these fi elds from the Report Data tool window
into the textbox and add the static text in between.

 Be careful that you don ’ t remove the page header or footer once you ’ ve created
it (by selecting Remove Page Header or Remove Page Footer from the Report
menu) because this will delete the content of the header/footer and adding it
back again won ’ t restore its content. There is no warning displayed when you
do this, so if you do so by accident use the Undo function to restore it to its
previous state.

 One question you may now have is how to create report headers and footers (that only appear on
the fi rst/last page of the report, rather than each page). An example of a report header would be to
display the title of the report and other report information at the top of the report (on the fi rst page
only), and an example of a report footer would be to display some totals at the end of the report (on
the last page only).

 The report designer doesn ’ t support report headers/footers as special areas of the report in the same
way it does for page headers/footers because you can simply include them in the body of the report.
By putting the report header content at the top of the body of your report it will only display once,
then it will display the content (which may expand to cover multiple pages), and fi nally at the
bottom of your report you can put the report footer content. The only issue to deal with is that you
won ’ t want the page header on the fi rst page of your report (because you will only want the report
header), and you won ’ t want the page footer on the last page (because you will only want the report
footer). To do this, right - click your report header and select Header Properties from the menu. From
the General tab (which will be the one selected), uncheck the Print on First Page checkbox. The
process is much the same for the page footer: right - click your report footer, select Footer Properties
from the menu, and then uncheck the Print on Last Page checkbox.

 The fi nal thing you must consider with your report layout is where the page breaks will occur.
For example, you may want a table to appear all on the same page where possible rather than
half on one page and half on another. Or perhaps you have its data grouped, and you want each
group to start on a new page. You can do this by setting page break options on the controls that
support them (Table, Matrix, List, Rectangle, Gauge, and Chart). Each of these controls has the
PageBreak property (select the control in the report designer and fi nd the property in the Properties
tool window). This gives you the option to start a new page before it displays the control, after it
displays the control, or both before and after it displays the control. You can set KeepTogether to
true so that if the output of the control stretches across two pages it will attempt to display it all on

http://lib.ommolketab.ir
http//lib.ommolketab.ir

670 ❘ chaPter 30 reporTing

the one page by starting it on the next page instead. When you are grouping data in a table, matrix,
or list, you can also set the page break options for the group. When you view the properties of a
group (right - click the group in the Row Groups pane at the bottom of the designer and select Group
Properties from the menu) you will note a Page Breaks tab. Here you can select whether there should
be a page break between each group, and you can also select whether there should be an additional
page break before and/or after each group.

 subreports
 Subreports is a feature that enables you to insert the contents of one report into another. You can
insert the contents (excluding headers and footers) of any report into another by adding a Subreport
control to your main report and setting its ReportPath property to the path of the other report
to display in that area. By merging a number of reports into a single output report you are able
to create quite complex report structures. Other uses of subreports include creating master - detail
reports, drill - down reports, and splitting reports into predefi ned “ components ” that can be used by
multiple reports — enabling each component to be defi ned once and used multiple times. This also
has the advantage that changes can be made in a single place and automatically picked up by the
other reports (such as a standard report header with company information, used by all the reports).

 First look at a scenario where the contents of the subreport are not linked to the “ master ” report.
Create a new report, and simply put a textbox on it with some text. Now add a Subreport control to
your main report, and set the ReportName property to the fi lename of the other report (but without
the extension).

 Unfortunately the report to be used as the subreport must be located in the same
folder as the main report.

 When you run the project and view the report you will see that the contents of the subreport are
merged into the main report.

 Getting a little more complicated now, hook up a data source to the subreport and show some data
in it (in a standalone fashion from the main report). The issue now is, because the data sources
aren ’ t shared between the main report and the subreport, how do you pass the data to that report?
You do this by handling the SubreportProcessing event on the LocalReport object in the code
that confi gures the Report Viewer control (discussed in full later in this chapter). You will need to
add an event handler for this event like so:

 Vb

AddHandler reportViewer.LocalReport.SubreportProcessing, AddressOf ProcessSubreport

 c#

reportViewer.LocalReport.SubreportProcessing += ProcessSubreport;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Designing reports ❘ 671

and add a function for this event handler that adds the data to the
 SubreportProcessingEventArgs object passed in as a parameter (including the name of the
dataset), like so:

 Vb

Private Sub ProcessSubreport(ByVal sender As System.Object,
 ByVal e As SubreportProcessingEventArgs)
 e.DataSources.Add(New ReportDataSource("DataSetName", data))
End Sub

 c#

private void ProcessSubreport(object sender, SubreportProcessingEventArgs e)
{
 e.DataSources.Add(new ReportDataSource("DataSetName", data));
}

 When you run the project now the subreport will be populated with data.

 Now take a look at the slightly more complex scenario where what is displayed in the subreport is
dependent on data in the main report. Say, for example, the main report is displaying the details
of each customer, but you also want to show the orders each customer made in the last month
underneath their details using a subreport. So that the subreport knows which customer to retrieve
the order details for, you need to make use of Report Parameters.

 Note that there are a lot of overheads in implementing this scenario in this way.
There will be multiple calls to the database — one for each customer to return
their order details, which will put strain on the database server. A better, more
effi cient way for this scenario would be to return a joined customer details
 + orders dataset from the database, and use the Table control to group by
customer and display their order details. However, this scenario is just used as
an example of how to pass information from the main report to subreports.

 Create a report (which will be the main report) to display the details of each customer (in a list),
and another report (the subreport) that displays the orders that a customer has made. Under the
customer details fi elds (but still in the list), add a Subreport control that points to the subreport
you created, and hook up the code - behind as previously described. What you will note is that
when handling the SubreportProcessing event to return the order details data to the subreport,
you need to know which customer to return the data for (the subreport will be rendered for each
customer, therefore this event handler will be called to return the order details for each customer).
This is where you need to create a Report Parameter for the subreport that the main report will use
to pass the current customer ’ s ID to it.

 To add a new parameter to the subreport, go to the Report Data tool window, right - click the
Parameters folder, and select Add Parameter from the menu. Create the parameter with CustomerID
as its name, and set its data type to Integer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

672 ❘ chaPter 30 reporTing

Back on the main report, select the Subreport control in the designer, right-click and select
Subreport Properties from the menu, and go to the Parameters tab. Click the Add button, specify
CustomerID as the parameter name, and enter [CustomerID] as its value. Now each time it renders
the subreport, it will pass it the current value of the customer ID field.

The final thing to do is retrieve the value of that parameter in your ProcessSubreport event
handler, and filter the results returned accordingly, like so:

Vb

Private Sub ProcessSubreport(ByVal sender As System.Object,
 ByVal e As SubreportProcessingEventArgs)
 Dim customerID As Integer =
 Convert.ToInt32(e.Parameters("CustomerID").Values(0))
 Dim fromDate As DateTime = DateTime.Today.AddMonths(-1)

 Dim qry = From co In context.SalesOrderHeaders
 Where co.CustomerID = customerID AndAlso co.OrderDate > fromDate
 Select co

 e.DataSources.Add(New ReportDataSource("OrderData", qry))
End Sub

c#

public void ProcessSubreport(object sender, SubreportProcessingEventArgs e)
{
 int customerID = Convert.ToInt32(e.Parameters["CustomerID"].Values[0]);
 DateTime fromDate = DateTime.Today.AddMonths(-1);

 var qry = from co in context.SalesOrderHeaders
 where co.CustomerID == customerID && co.OrderDate > fromDate
 select co;

 e.DataSources.Add(new ReportDataSource("OrderData", qry));
}

the report wizard
The easiest place to start when designing a report is to make use of the Report Wizard. The Report
Wizard leads you through all the main steps to generate a report, and based upon your input will
generate the report for you that you can then customize to your needs.

The Report Wizard takes you through the following steps:

 ➤ Choosing/creating a data source: Enables you to select an existing data source or create a
new one as the source of data for the report. This step is exactly the same as was detailed
earlier in the “Defining Data Sources” section of this chapter.

 ➤ Arranging fields: Drag fields into the Values list to create a simple table, add fields in the
Row Groups list to group the rows of the table by those fields, and add fields to the Column
Groups list to group the columns by those fields (which will turn it into a matrix).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ➤ Choose the layout: Gives you the option to add subtotals and grand totals rows/columns.

 ➤ Choose a style: Allows you to choose different colors and styles used in the output. If you
want to create your own color scheme you can do so by modifying the StyleTemplates
.xml fi le in the C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE\
PrivateAssemblies\1033 folder on your machine (this path may differ on your machine
based upon where Visual Studio has been installed).

 To start the Report Wizard you will need to create a new report fi le (you cannot use the Report
Wizard on an existing fi le or after it has already been run). Add a new item to your project, and
from the Reporting subsection add a new Report Wizard item.

 The Report Wizard takes you through its series of steps to generate a basic report. Once you have
completed the steps, it generates the report and opens it in the report designer for you to modify as
required.

 This is a great place to start when learning how to design reports, and when
you become more familiar and comfortable with the process and designing more
complicated reports you will fi nd yourself using it less and less.

 renderinG rePorts

 Now that you have designed your report, it ’ s time to actually generate it by populating it with data.
This is where the Report Viewer control is used, because it contains the local engine for generating
the report from the report defi nition fi les and the data sources.

 the report Viewer controls
 There are two versions of the Report Viewer control: one for use in web applications and one for
use in Windows applications. However, the way you use them to generate and display reports is
virtually identical.

 The Windows version of the control is shown in Figure 30 - 33 .

fiGure 30-33

rendering reports ❘ 673

http://lib.ommolketab.ir
http//lib.ommolketab.ir

674 ❘ chaPter 30 reporTing

The Report Viewer contains a toolbar with various functions (such as Refresh, Export, Print, and
so on), and a view of the report (page by page). Individual functions on this toolbar can be turned
off via properties on the Report Viewer control, and each raises an event when clicked (although the
corresponding behavior is performed by the Report Viewer control automatically unless cancelled in
the event handler).

To use the Report Viewer control in your Windows Forms project, simply drop it on your form from
the Toolbox.

The web version also looks quite similar (shown in Figure 30-34), but displays the report output in a
browser.

fiGure 30-34

To use the web version of the Report Viewer control, you can drop it on a page from the Toolbox
(in the Reporting tab). This adds a namespace prefix (rsweb) for the Microsoft.ReportViewer
.WebForms assembly/namespace, and the following tag to use the Report Viewer control:

<rsweb:ReportViewer ID=”reportViewer” runat="server" />

The web version of the Report Viewer control also requires a Script Manager to be on the page. If
you don’t have one on the page already, drag this from the Toolbox (under the AJAX Extensions
tab) and onto the page.

When you display a report in the web version of the Report Viewer control you will find that it
displays a Print button on the toolbar only in Internet Explorer (IE), and not in other browsers such
as Firefox. This is because, in order to print the report from the browser, the Report Viewer needs
an ActiveX control to do the printing and ActiveX controls only work in IE. Because printing can’t
be done from other browsers the Print button won’t be displayed. When you click the Print button
in IE the first time it will ask you for permission to install the ActiveX control.

Generating the report
The process of generating a report is essentially to tell the report engine which report definition file
to use, and pass it the data (objects, entities, data tables, and so on) to populate the report with.

By default the report definition file is embedded into the assembly, although it often is best to have
it as a separate file so it can be easily updated when necessary without having to recompile the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

assembly. However, embedding it into the assembly means that there are fewer files to distribute,
and it may in some circumstances be preferable that the report definition file cannot (easily) be
tampered with. Set the Build Action on the report definition file to Embedded Resource in order for
it to be embedded in the assembly (which is the default value), or otherwise set it to be Content.

The following code is what is required to generate a report from a file-based report definition file
and populate it with some data (the data variable contains a collection of entities from the Entity
Framework model, which is used to populate the CustomerData data source in the report):

Vb

Dim reportEngine As LocalReport = reportViewer.LocalReport
reportEngine.ReportPath = "CustomerReport.rdlc"
reportEngine.DataSources.Add(New ReportDataSource("CustomerData", data))
reportViewer.RefreshReport() 'Only for Windows Report Viewer

c#

LocalReport reportEngine = reportViewer.LocalReport;
reportEngine.ReportPath = "CustomerReport.rdlc";
reportEngine.DataSources.Add(new ReportDataSource("CustomerData", data));
reportViewer.RefreshReport(); // Only for Windows Report Viewer

Here you get the existing LocalReport object from the Report Viewer control, assign values to its
properties, and then use the RefreshReport function on the Report Viewer control to start the
report engine generating the report.

If you have chosen to embed the report in your assembly, then instead of setting the ReportPath
property on the LocalReport object you will need to set the ReportEmbeddedResource property
instead. This must be the qualified resource path (which is case sensitive), including the namespace
and the extension of the report like so:

Vb

reportEngine.ReportEmbeddedResource = "Chapter30Sample.CustomerReport.rdlc"

c#

reportEngine.ReportEmbeddedResource = "Chapter30Sample.CustomerReport.rdlc";

If you have one or more subreports in your report you will also have to handle the
SubreportProcessing event of the LocalReport object as was demonstrated when discussing
the Subreport control. If you are using custom assemblies, you will need to include the code to
specify that the custom assembly is trusted. In addition, you may need to set the properties on the
LocalReport object to enable the report to use external images, hyperlinks, and so on. However,
the code provided here is the core code required to generate a report and display it in the Report
Viewer control.

rendering reports to different formats
It’s not necessary to display a report in the Report Viewer control. In some instances you may want
to generate the report and e-mail it as a PDF without any user interaction, or return a PDF’d report

rendering reports ❘ 675

http://lib.ommolketab.ir
http//lib.ommolketab.ir

676 ❘ chaPter 30 reporTing

as a result of a web service call. The Report Viewer control enables you to export the report to
various formats (Excel, PDF, Word, and so on) as an option on its toolbar, and this can also be done
via code. This is possible by creating a LocalReport object, setting the required properties, and
then using the Render function on the LocalReport object to render it to a specified format (which
is output to a stream or byte array).

The Render function has a number of overloads, but the simplest one to use is to just pass it the
output format (in this case PDF) and it will return a byte array containing the report. For example:

Vb

Dim reportOutput As Byte() = reportEngine.Render("PDF")

c#

byte[] reportOutput = reportEngine.Render("PDF");

The report engine can generate the report in a number of formats. Valid values include:

 ➤ PDF: Output to an Adobe Acrobat file

 ➤ Word:- Output to a Microsoft Word document

 ➤ Excel: Output to an Microsoft Excel spreadsheet

 ➤ Image: Output to a TIFF image file

To output to a stream (such an HTTP Response stream or a file stream) you can turn the bytes into
a stream:

Vb

Dim stream As MemoryStream = New MemoryStream(reportOutput)
stream.Seek(0, SeekOrigin.Begin)

c#

MemoryStream stream = new MemoryStream(reportOutput);
stream.Seek(0, SeekOrigin.Begin);

Alternatively, for larger reports (where this may be too memory-intensive) you can write directly to
a stream from the Render function using one of its overloads, passing in a callback function that
creates and returns the stream to write to as the value for the createStream parameter:

Vb

Private Function CreateReportFileStream(ByVal fileName As String,
 ByVal extension As String,
 ByVal encoding As Encoding,
 ByVal mimeType As String,
 ByVal willSeek As Boolean) As Stream
 Return New FileStream(fileName & "." & extension, FileMode.Create)
End Function

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

private Stream CreateReportFileStream(string fileName, string extension,
 Encoding encoding, string mimeType, bool willSeek)
{
 return new FileStream(fileName + "." + extension, FileMode.Create);
}

Then you can call the render function like so:

Vb

Dim warnings As Warning() = Nothing
reportEngine.Render("PDF", Nothing, AddressOf CreateReportFileStream, warnings)

c#

Warning[] warnings;
reportEngine.Render("PDF", null, CreateReportFileStream, out warnings);

dePloyinG rePorts

Now that you’ve designed your report you can deploy it to users as a part of your application.
However, the Report Viewer control is not a part of the .NET Framework, and thus it needs to be
installed separately. A search for “Report Viewer redistributable” on the Web should help you find
the installer for the Report Viewer assemblies.

An alternative is to simply distribute the Report Viewer assemblies that you have referenced with
your application. Note, however, that this won’t include the .cab installer for the ActiveX control
that, when using the web report viewer control in web applications, will enable reports to be printed
(in IE only). If this is a feature you require in your application then it’s best to use the Report Viewer
redistributable installer instead.

suMMary

In this chapter you’ve seen how to use Visual Studio’s report designer to design a report, populate
it with data, and display the output to the user. Unfortunately, reporting is an incredibly complex
topic, and it is impossible to cover it completely and go through every option available in one
chapter. Hopefully this has been a good introduction to the topic, however, and will guide you in
the right direction for designing your own reports.

summary ❘ 677

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PART VII

application services

chaPter 31: ⊲ Windows Communication Foundation (WCF)

chaPter 32: ⊲ Windows Workfl ow Foundation (WF)

chaPter 33: ⊲ Client Application Services

chaPter 34: ⊲ Synchronization Services

chaPter 35: ⊲ WCF RIA Services

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

31
Windows Communication
foundation (WCf)

 what ’ s in this chaPter?

 Understanding WCF services ➤

 Creating a WCF service ➤

 Confi guring WCF service endpoints ➤

 Hosting a WCF service ➤

 Consuming a WCF service ➤

 Most systems require a means to communicate between their various components — most
commonly between the server and the client. Many different technologies enable this sort
of communication, but Windows Communication Foundation (WCF) brings a unifi ed
architecture to implementing them. This chapter takes you through the architecture of
WCF services and how to create, host, and consume WCF services in your system.

 what is wcf?

 Within the .NET Framework there are a variety of ways that you can communicate
among applications, including (but not limited to) remoting, web services, and a myriad of
networking protocols. This has often frustrated application developers who not only had to
pick the appropriate technology to use, but also had to write plumbing code that would allow
their applications to use different technologies depending on where or how they would be
deployed. For example, when users are connected directly to the intranet it is probably better
for them to use a remoting or direct TCP/IP connection for their speed benefi ts. However,
these aren ’ t the ideal solution for communication when the application is outside the corporate
fi rewall, in which case a secured web service would be preferable.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

682 ❘ chaPter 31 WindoWS communicATion FoundATion (WcF)

 WCF is designed to solve this sort of problem by providing a means to build messaging applications
that are technology - agnostic, which can then be confi gured (in text - based confi guration fi les) to
what technologies each service will support and how they will be used. Therefore, you only need
to write the one service and it can support all the various communication technologies supported by
WCF. WCF is essentially a unifi ed communication layer for .NET applications.

 GettinG started

 A WCF service can be added to an existing project (such as a web application), or it can be created
as a standalone project. For the purposes of this example you will be creating a standalone service
so you can easily see how a single service can be confi gured and hosted in many communication
scenarios.

 When you open the New Project dialog and click the WCF category (under either the VB or C#
languages), you will notice a number of different WCF project types as shown in Figure 31 - 1.

 fiGure 31 - 1

 The WCF Workfl ow Service Application project template provides an easy way to expose a
Windows Workfl ow (WF) publicly, and this is discussed in Chapter 32. The Syndication Service
Library project template is used to expose data as an RSS feed. However, the project template you
will be using in the example for in this chapter is the WCF Service Library project template.

 If you look in the Web category in the New Project dialog, you will see that
there is also a WCF Service Application project template, which wasn ’ t under
the WCF category. This project template creates a WCF service that is already
confi gured to be hosted within an ASP.NET web application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 By default, a new WCF Service Library will include IService1.vb and Service1.vb (or .cs if you
are using C#), which defi ne the contract and the implementation of a basic service, respectively.
When you open these fi les you will see that they already expose some operations and data as an
example of how to expose your own operations and data yourself. This can be all cleared out until
you simply have an interface with nothing defi ned (but with the ServiceContract attribute left in
place), and a class that simply implements that interface. Or you can delete both fi les and start anew.

 When you want to add additional services to your project you will fi nd a WCF Service item template
in the Add New Item dialog that will add both an interface and a class to your project to use for the
contract and implementation of the service.

 defininG contracts

 This example project will expose some data from the Entity Framework model that you created in
Chapter 29 for the AdventureWorksLT database, and expose some operations that can be performed
on that data. The way that you do so is by creating contracts that will defi ne the operations and
the structure of the data that will be publicly exposed. Three core types of contracts exist: service
contracts , data contracts , and message contracts .

 A service contract is a group of operations, essentially detailing the capabilities of the service. ➤

 A data contract details the structure of the data being passed between the service and the client. ➤

 A message contract details the structure of the messages passed between the service and the ➤

client. This is useful when the service must conform to a given message format. This is an
advanced topic, and not required for basic services, so we won ’ t cover this type of contract in
this chapter.

 These contracts are defi ned by decorating the classes/interfaces in the service with special attributes.

 In this chapter you walk through an example of creating a WCF service exposing customer data from
the AdventureWorksLT database to client applications. To do this you will expose operations for
working with the customer data, which will expose the actual customer data itself in the database.

 For the purpose of this example you ’ ll start fresh — so delete IService1 (.vb or .cs) and
 Service1 (.vb or .cs). Add a new item to the project using the WCF Service item template,
called CustomerService. This will add two new fi les to your project — CustomerService (.vb
or .cs) and ICustomerService (.vb or .cs).

 There are two primary angles that you can take when designing services. You
can take either an implementation - fi rst approach (where you write the code fi rst
and then apply attributes to it to create the contract), or you can take a contract -
 fi rst approach (where you design the schema/WSDL fi rst and generate the code
from it). An in - depth discussion of these approaches is beyond the scope of
this chapter; however, WCF can support both approaches. The example in this
chapter follows the contract - fi rst approach.

Defi ning Contracts ❘ 683

http://lib.ommolketab.ir
http//lib.ommolketab.ir

684 ❘ chaPter 31 WindoWS communicATion FoundATion (WcF)

 creating the service contract
 Focus on defi ning the service contract fi rst. The operations you want to expose externally are:

 ➤ AddCustomer

 ➤ GetCustomer

 ➤ UpdateCustomer

 ➤ DeleteCustomer

 ➤ GetCustomerList

 You may recognize the fi rst four operations as standard CRUD (Create, Read, Update, and
Delete) operations when you are working with data. The fi nal operation will return a list of all the
customers in the database.

 Now that you know what operations are required you can defi ne your service contract.

 You may have noted from the sample implementation in the WCF project
template that all of the service attributes were defi ned in the interface. However,
creating an interface to decorate with the contract attributes is not essential — in
fact, you don ’ t need to create an interface at all, and you can decorate the class
itself with the attributes instead. However, standard practice (and best practice)
dictates that the contract should be defi ned as (and in) an interface, so you will
be following this best practice in the example.

 You will defi ne your operations in the ICustomerService interface. However, these operations will
expose data using a data class that you haven ’ t defi ned as yet — in the meantime, create a stub
data class and you can fl esh it out shortly. Add a new class to the project called CustomerData
and leave it as it is to act as your stub. Each of the operations needs to be decorated with the
 OperationContract attribute:

 Vb

 < ServiceContract([Namespace]:="http://www.professionalvisualstudio.com") >
Public Interface ICustomerService
 < OperationContract() >
 Function AddCustomer(ByVal customer As CustomerData) As Integer

 < OperationContract() >
 Function GetCustomer(ByVal customerID As Integer) As CustomerData

 < OperationContract() >
 Sub UpdateCustomer(ByVal customer As CustomerData)

 < OperationContract() >
 Sub DeleteCustomer(ByVal customerID As Integer)

 < OperationContract() >

http://www.professionalvisualstudio.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Function GetCustomerList() As List(Of CustomerData)
End Interface

c#

[ServiceContract(Namespace="http://www.professionalvisualstudio.com")]
public interface ICustomerService
{
 [OperationContract]
 int AddCustomer(CustomerData customer);

 [OperationContract]
 CustomerData GetCustomer(int customerID);

 [OperationContract]
 void UpdateCustomer(CustomerData customer);

 [OperationContract]
 void DeleteCustomer(int customerID);

 [OperationContract]
 List<CustomerData> GetCustomerList();
}

Both the ServiceContract and OperationContract attributes have a number of properties that
you can apply values to, enabling you to alter their default behavior. For example, both have a name
property (enabling you to specify the name of the service/operation as seen externally). Of particular
note is the ServiceContract’s Namespace property, which you should always explicitly specify
(as has been done in the preceding code). If a namespace has not been explicitly set, the schema
and WSDL generated for the service will use http://tempuri.org as its namespace. However, to
reduce the chance of collisions with other services it’s best to use something unique such as your
company’s URL.

Now that you’ve defined your contract you need to actually implement these operations. Open the
CustomerService class, which implements the ICustomerService interface. VB will implement
the methods automatically (you may need to press Enter after the Implements ICustomerService
for these to actually be implemented), and in C# you can use the smart tag (Ctrl+.) to have the
methods automatically implemented. The service contract is now complete and ready for the
operations to be implemented (that is, write the code that performs each operation). However, before
you do so you still need to define the properties of the data class, and at the same time you should
also define the data contract.

creating the data contract
You are returning objects containing data from some of the operations you expose in your service,
and accepting objects as parameters. Therefore, you should specify the structure of these data
objects being transferred by decorating their classes with data contract attributes.

Defining Contracts ❘ 685

http://www.professionalvisualstudio.com
http://tempuri.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

686 ❘ chaPter 31 WindoWS communicATion FoundATion (WcF)

 This example requires only one data class — the CustomerData class that you already created
(although no properties have been defi ned on it as yet), which you will now decorate with the data
contract attributes. Whereas the service contract attributes were found in the System.ServiceModel
namespace, data contract attributes are found in the System.Runtime.Serialization namespace,
so C# developers will need to start by adding a using statement for this namespace in their classes:

using System.Runtime.Serialization;

 Each data class fi rst needs to be decorated with the DataContract attribute, and then you can
decorate each property to be serialized with the DataMember attribute:

 Vb

 < DataContract([Namespace]:="http://www.professionalvisualstudio.com") >
Public Class CustomerData
 < DataMember() > Public Property CustomerID As Integer
 < DataMember() > Public Property Title As String
 < DataMember() > Public Property FirstName As String
 < DataMember() > Public Property MiddleName As String
 < DataMember() > Public Property LastName As String
 < DataMember() > Public Property Suffix As String
 < DataMember() > Public Property CompanyName As String
 < DataMember() > Public Property EmailAddress As String
 < DataMember() > Public Property Phone As String
End Class

 c#

[DataContract(Namespace="http://www.professionalvisualstudio.com")]
public class CustomerData
{
 [DataMember] public int CustomerID { get; set; }
 [DataMember] public string Title { get; set; }
 [DataMember] public string FirstName { get; set; }
 [DataMember] public string MiddleName { get; set; }
 [DataMember] public string LastName { get; set; }
 [DataMember] public string Suffix { get; set; }
 [DataMember] public string CompanyName { get; set; }
 [DataMember] public string EmailAddress { get; set; }
 [DataMember] public string Phone { get; set; }
}

 From the .NET Framework 3.5 SP1 onward it is no longer essential that you
explicitly defi ne a contract for your data classes if the classes are public and each
has a default constructor (this is referred to as having an inferred data contract
instead of a formal data contract). However, it is useful (and recommended)
to create a formal contract anyway — especially if you need to conform to a
specifi c message format in your communication, have non-.NET clients access
your service, or want to explicitly defi ne what properties in the data class
are included in the message. Because explicitly specifying the data contract is
generally recommended, this is the approach you will be taking in the example.

http://www.professionalvisualstudio.com
http://www.professionalvisualstudio.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 If you don ’ t want a property to be serialized, simply don ’ t apply the DataMember attribute to it. Like
the service contract attributes you can also set the value of each of the various properties each attribute
has. For example, the DataContract attribute enables you to set properties such as the namespace
for the class ’ s data contract (the Namespace property), and an alternative name for the class ’ s data
contract (the Name property). The DataMember attribute also has a number of properties that you
can set, such as the member ’ s name (the Name property), and whether the member must have a value
specifi ed (IsRequired).

 When defi ning your data contract you might ask why you are decorating the
data classes directly and aren ’ t defi ning the contract on an interface as you did
with the service contract (which was considered good practice). This is because
only concrete types can be serialized — interfaces cannot (and thus cannot be
specifi ed as parameter or return types in WCF calls). When an object with only
an interface specifying its type is to be deserialized, the serializer would not
know which type of concrete object it should create the object as. There is a
way around this but it ’ s beyond the scope of this chapter. Note that if you try
to create an interface and decorate it with the DataContract attribute, this will
generate a compile error.

 You must be aware of some caveats when designing your data contracts. If your data class inherits
from another class that isn ’ t decorated with the DataContract attribute, you will receive an
error when you attempt to run the service. Therefore, you must either also decorate the inherited
class with the data contract attributes, or remove the data contract attributes from the data class
(although this is not recommended) so the data contract is inferred instead.

 If you choose to have inferred data contracts and not decorate the data classes with the data
contract attributes, all public properties will be serialized. You can, however, exclude properties
from being serialized if you need to by decorating them with the IgnoreDataMember attribute.
A caveat of inferred data contracts is that the data classes must have a default constructor (that is,
one with no parameters), or have no constructors at all (in which case a default constructor will
be created for it by the compiler). If you do not have a default constructor in a data class with an
inferred contract, you will receive an error when you attempt to run the service. Note that when an
object of that type is passed in as an operation ’ s parameter, the default constructor will be called
when the object is created, and any code in that constructor will be executed.

 Although it ’ s not strictly required, it ’ s best that you keep your data contract
classes separate from your other application classes, and that you use them only
for passing data in and out of services (as data transfer objects, aka DTOs). This
way you minimize the dependencies between your application and the services
that it exposes or calls.

Defi ning Contracts ❘ 687

http://lib.ommolketab.ir
http//lib.ommolketab.ir

688 ❘ chaPter 31 WindoWS communicATion FoundATion (WcF)

confiGurinG wcf serVice endPoints

A WCF service has three main components: the Address, the Binding, and the Contract (easily
remembered by the mnemonic ABC):

The address specifies the location where the service can be found (the where) in the form of ➤

a URL.

The binding specifies the protocol and encoding used for the communication (the how). ➤

The contract details the capabilities and features of the service (the what). ➤

The configurations of each of these components combine to form an endpoint. Each combination of
these components forms a separate endpoint, although it may be easier to consider it as each service
having multiple endpoints (that is, address/binding combinations). What makes WCF so powerful is
that it abstracts these components away from the implementation of the service, enabling them to be
configured according to which technologies the service will support.

With this power, however, comes complexity, and the configuration of endpoints can become rather
complex. In particular, many different types of bindings are supported, each having a huge number
of options. However, WCF 4.0 simplifies this configuration over previous versions by providing
default endpoints, standard endpoints, default protocol mappings, default binding configurations,
and default behavior configurations — all of which ease the amount of configuration required.
Because endpoint configuration can become very complex, this chapter focuses on just the most
common requirements.

Endpoints for the service are defined in the App.config file. Though you can open the App.config file
and edit it directly, Visual Studio comes with a configuration editor tool to simplify the configuration
process. Right-click the App.config file in the Solution Explorer, and select Edit WCF Configuration
from the context menu. This opens the Microsoft Service Configuration Editor, as shown in Figure 31-2.

fiGure 31-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The fi rst step is to defi ne your service in the confi guration. From the Tasks pane, click the Create a
New Service hyperlink. This starts the New Service Element Wizard. In the service type fi eld you
can directly type the qualifi ed name of your
service (that is, include its namespace), or click
the Browse button to discover the services
available (it ’ s best to use the Browse function
because this automatically fi lls in the next step
for you). If you use this option you must have
compiled your project fi rst, and then you can
navigate down into the bin\Debug folder to fi nd
the assembly, and drill through it to display
the services within that assembly (as shown in
Figure 31 - 3). Now you have specifi ed the service
implementation, but next you need to specify
the contract, binding, and address for the
endpoint.

 If you used the Browse button in the previous
step (recommended), this next step (specifying
the service contract) will have already been
fi lled in for you (as shown in Figure 31 - 4).
Otherwise, fi ll this in now.

 The next step states that it allows you to
either create a new binding confi guration,
or use an existing binding confi guration (as
shown in Figure 31 - 5). However, the fi rst
option is probably a bit misleading, because
it doesn ’ t create a new binding confi guration
but instead helps you (via a wizard) choose
which of the default binding confi gurations
you want to use for the endpoint. Each

 The node you are most interested in is the Services node. Selecting this node displays a summary
in the Services pane of all the services that have been confi gured and their corresponding endpoints.
You will fi nd that a service is already listed here, although it is the confi guration for the default
service that was created by the project template (Service1), which no longer exists. Therefore, you
can delete this service from the confi guration and start anew (click the service and press Delete).

 fiGure 31 - 3

 fiGure 31 - 4

 If you try running the service (detailed in the next section) without properly
confi guring an endpoint for it (or have an incorrect name for the service in
the confi guration), you will receive an error stating that the WCF Service Host
cannot fi nd any service metadata. If you receive this error, ensure that the
service name (including its namespace) in the confi guration matches its name in
the actual service implementation.

Confi guring WCf service endpoints ❘ 689

http://lib.ommolketab.ir
http//lib.ommolketab.ir

690 ❘ chaPter 31 WindoWS communicATion FoundATion (WcF)

binding has a default/standard binding
configuration, but additional configurations
can be created for a binding (under the
Bindings node in the Configuration tree)
that enable you to configure exactly how
a binding behaves. The custom bindings
configuration can become rather complex,
with a myriad of options available. However,
in many cases you will find that you will
just need a default binding (unless you
actually have a specific need to change
its behavior). In this chapter, assume that
the default bindings are satisfactory for
your needs.

So the actual options you have on this screen
(in spite of the text displayed) are to either
run another part of the wizard that will help you decide which of the default binding configurations
you want (the first option), or to simply choose from a list of the existing binding configurations
(that is, both the default and custom binding configurations) if you know which one you want (the
second option).

Choosing which binding you should use really depends on your usage scenario for the service.
The wizard will help you choose a binding, with a description under each option detailing
the purpose for the option. You must remember, however, that not all clients may support the
binding you choose — therefore, you must also consider what clients will be using your service
and choose the binding accordingly. Of course, you can add additional endpoints with different
bindings to support each type of client. The most common bindings are basicHttpBinding
and wsHttpBinding — with both communicating over HTTP. The basicHttpBinding binding
is used to communicate in the same manner as the ASMX web services (which conform to
the WS-I Basic Profile 1.1). The wsHttpBinding binding implements a number of additional
specifications other than the basicHttpBinding binding (including reliability and security
specifications), and additional capabilities such as supporting transactions. However, older
.NET clients (pre-.NET Framework 3.0), non-.NET clients, mobile clients, and Silverlight
clients will not be able to access the service using this binding. For this example, choose the
wsHttpBinding binding.

The final step is to specify the address for the endpoint. You can specify the entire address to be
used by starting the address with a protocol (such as http://), or specify a relative address to
the base address (discussed shortly) by just entering a name. In this case, delete the default entry
and leave it blank — this endpoint will simply use the base address that you are about to set up.
A warning will be displayed when moving on from this step, but it can be safely ignored.

A summary is shown of the endpoint configuration, and you can finish the wizard. This wizard
has allowed you to create a single endpoint for the service, but chances are you will need
to implement multiple endpoints. You can do this easily by using the New Service Endpoint

fiGure 31-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Element Wizard to create additional endpoints. Underneath the service node that was created
will be an Endpoints node. Select this, and then click the Create a New Service Endpoint
hyperlink in the Tasks pane. This opens the wizard that will help you to create a new endpoint.

As was mentioned earlier you now need to configure a base address for the endpoint. Because you
chose to use the wsHttpBinding binding you will use a standard http URL that you will make the service
accessible by. Under the newly created service node is a Host node. Select this, and from the Host pane
that appears click the New button to add a new base address to the list (which is currently empty).
A dialog appears asking for the base address, and contains a default entry. The address you enter
here will largely depend on the binding that was selected earlier. Because you chose one of the HTTP
bindings, use http://localhost:8733/Chapter31Sample as the base address (port 8733 was
chosen at random) for this example.

Your service is now configured with the endpoints that it will support. There is another topic
related to service configuration that is worth touching upon — that of behaviors. In essence, WCF
behaviors modify the execution of a service or an endpoint. You will find that a service behavior
containing two element extensions has already been configured for the service by the project
template. If you expand the Advanced node and select the Service Behaviors node under it, you
will find a behavior has been defined containing the serviceMetadata and serviceDebug element
extensions. The serviceMetadata behavior element extension enables metadata for the service to
be published. Your service must publish metadata in order for it to be discoverable and able to be
added as a service reference for a client project (that is, create a proxy). You could set this up as
a separate endpoint with the mexHttpBinding binding, but this behavior will merge this binding
with the service without requiring it to be explicitly configured on the service itself. This makes it
easy to ensure all your services are discoverable. Clicking the serviceMetadata node in the tree will
show all its properties — ensure that the HttpGetEnabled and the HttpsGetEnabled properties are
set to True. The other behavior element is the serviceDebug behavior extension. When debugging
your service it can be useful for a help page to be displayed in the browser when you navigate to
it (essentially publishing its WSDL at the HTTP get URL). You can do this by setting both the
HttpHelpPageEnabled and HttpsHelpPageEnabled properties to True. Another useful property
to set to true while debugging is the IncludeExceptionDetailsInFaults property, enabling you to
view a stack trace of what exception occurred in the service from the client. Although this behavior
is very useful in debugging, it’s recommended that you remove it before deploying your service (for
security purposes).

hostinG wcf serVices

With these changes made you can now build and run the WCF
Service Library. Unlike a standard class library, a WCF Service
Library can be “run” because Visual Studio 2010 ships with the
WCF Service Host utility. This is an application that can be used to
host WCF services for the purpose of debugging them. Figure 31-6
shows this utility appearing in the taskbar.

fiGure 31-6

Hosting WCf services ❘ 691

http://localhost:8733/Chapter31Sample
http://lib.ommolketab.ir
http//lib.ommolketab.ir

692 ❘ chaPter 31 WindoWS communicATion FoundATion (WcF)

 As the balloon in Figure 31 - 6 indicates, clicking the balloon or the taskbar icon brings up a dialog
showing more information about the service that is running. If the service doesn ’ t start correctly,
this dialog can help you work out what is going wrong.

 fiGure 31 - 7

 If you aren ’ t running under elevated privileges, you may end up with an error
from the WCF Service Host relating to the registration of the URL you specifi ed
in the confi guration fi le. The issue is a result of security policies on the computer
that are preventing the WCF Service Host from registering the URL you have
specifi ed. If you receive this error you can resolve it by executing the following
command using an elevated permissions command prompt (that is, while
running as administrator), replacing the parameters according to the address of
the service and your Windows username.

netsh http add urlacl url=http://+:8733/Chapter31Sample
user= < username >

 This command will allow the specifi ed user to register URLs that match the
URL prefi x. Now when you try to run your WCF Service Library again it should
start successfully.

 In addition to hosting your WCF service, Visual Studio 2010 also launches the WCF Test Client
utility as you can see in Figure 31 - 7. This utility automatically detects the running services, and
provides a simple tree representation of the services and their corresponding operations.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you double-click a service operation you will see the tab on the right-hand side of the dialog
change to display the request and response values. Unlike the very basic test page for ASP.NET Web
Services, the WCF Test Client can help you simulate calls to WCF services that contain complex
types. In Figure 31-7, you can see that in the Request section each parameter is displayed, and the
customer object parameter of the AddCustomer operation has been broken down with data entry
fields for each of its properties (those that were marked with the DataMember attribute). After
setting values for each of these properties you can then invoke the operation by clicking the Invoke
button. Figure 31-8 also shows that any return value will be displayed in a similar layout in the
Response section of the tab.

fiGure 31-8

If you are trying to isolate an issue it can be useful to see exactly what information is traveling
down the wire for each service request. You can do this using third-party tools such as Fiddler,
but for a simple XML representation of what was sent and received you can simply click the
XML tab. Figure 31-9 shows the body XML for both the request and the response. You will
notice that there is additional XML due to the request and response each being wrapped in a
SOAP envelope.

Hosting WCf services ❘ 693

http://lib.ommolketab.ir
http//lib.ommolketab.ir

694 ❘ chaPter 31 WindoWS communicATion FoundATion (WcF)

This is fine while you are debugging the service, but in production you will need to properly host
your service. You have a lot of ways to host your service, and how you choose to do so really
depends on your scenario. If it’s a situation where the service is acting as a server (which clients
communicate with) and communicates via HTTP, then Internet Information Services (IIS) is
probably your best choice. If your service is being used to communicate between two applications,
your application itself can be used to host the service. Other options you may wish to consider are
hosting the service in a Windows Service, or (if the host machine is running Windows Vista/7 or
Windows Server 2008) under Windows Process Activation Services (WAS). We will take a look at
the two most common scenarios: hosting your service in IIS, and hosting it in a .NET application
(which will be a console application).

The first example shows how to host your WCF service in IIS. The first step is to set up the folder
and files required. Create a new folder (under your IIS wwwroot folder, or anywhere you choose)
with a name of your own choosing, and create another folder under this called bin. Copy the
compiled service assembly (that is, the .dll file) into this folder. Also take the App.config file
and copy it into the folder one level higher (that is, the first folder you created), and rename it to
web.config.

Now you need to create a simple text file (in the Visual Studio IDE, Notepad, or a text editor of
your choice) and call it CustomerService.svc (it can be any name, but it does require the .svc
extension). Put this line as the contents of the file:

<%@ServiceHost Service="Chapter31SampleCS.CustomerService"%>

Essentially, this specifies that IIS should host the service called Chapter31SampleCS.
CustomerService (which it expects to find in one of the assemblies in the bin folder).

fiGure 31-9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 In summary, you should have a CustomerService.svc fi le and a web.config fi le in a folder, and
the service assembly (dll) in the bin folder below it. Ensure (in the folder permissions) that the IIS
process has read access to this folder.

 Now you need to confi gure the service in IIS. Open IIS, and under the default web site add a new
application. Give it a name (such as CustomerService), and specify the folder created earlier as its
physical path. Also make sure you select to use the ASP.NET v4.0 application pool (so it will use V4
of the .NET Framework), and that should be it!

 You can then navigate to the service ’ s URL in a browser to see if it works, and use the WCF Test
Client to actually test the operations.

 If you create the project using the WCF Service Application project template, the
correct structure and required fi les will already be created for you and ready to
host under IIS.

 The other example goes through hosting the WCF service in a .NET application (known as a self - hosted
service). You can either put the service code (created previously) directly in this project, or reference
the service project you created earlier. For this example, just create a simple console application to act
as the host, and reference the existing service project. Create a new console application project in
Visual Studio called CustomerServiceHost, and add a reference to the service project. You will also
need to add a reference to the System.ServiceModel assembly. Copy the App.config fi le from the
service project into this project (so you can use the service confi guration previously set up).

 Use the following code to host the service:

 Vb

Imports System.ServiceModel
Imports Chapter31SampleVB

Module CustomerServiceHost
 Sub Main()
 Using svcHost As New ServiceHost(GetType(CustomerService))
 Try
 'Open the service, and close it again when the user presses a key
 svcHost.Open()

 Console.WriteLine("The service is running...")
 Console.ReadLine()

 'Close the ServiceHost.
 svcHost.Close()

 Catch ex As Exception
 Console.WriteLine(ex.Message)
 Console.ReadLine()
 End Try

Hosting WCf services ❘ 695

http://lib.ommolketab.ir
http//lib.ommolketab.ir

696 ❘ chaPter 31 WindoWS communicATion FoundATion (WcF)

 End Using
 End Sub
End Module

c#

using System;
using System.ServiceModel;
using Chapter31SampleCS;

namespace CustomerServiceHost
{
 class Program
 {
 static void Main(string[] args)
 {
 using (ServiceHost serviceHost =
 new ServiceHost(typeof(CustomerService)))
 {
 try
 {
 // Open the service, and close it again when the user
 // presses a key
 serviceHost.Open();

 Console.WriteLine("The service is running...");
 Console.ReadLine();

 serviceHost.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
 }
 }
 }
}

In summary, the configuration for the service is being read from the .config file (although it could
also be specified programmatically), so you just need to create a service host object (passing in the
type of the service to be hosted), and open the host. When you are done you just need to close the host
and clean up!

Now you can run the project and access the service using the URL specified in the .config file. As
you can see, very little code is required to host a WCF service.

consuMinG a wcf serVice

Now that you have successfully created your WCF service it’s time to access it within an application.
To do so add a Windows Forms project to your solution called CustomerServiceClient.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next thing is to add a reference
to the WCF service to the Windows Forms
application. Right-click the project node in
the Solution Explorer tool window and select
Add Service Reference. This opens the dialog
shown in Figure 31-10, in which you can
specify the WCF service you want to add a
reference to. As you can see, there is a very
convenient Discover button that you can use
to quickly locate services contained within
the current solution.

Select the ICustomerService node in the
Services tree, change the namespace to
CustomerServices, and click the OK button
to complete the process. The next step is to
create a form that will display/edit data from
the service. Put the code to communicate with the service in the code behind for this form. Start by
adding a using/Imports statement to the top of the code for the namespace of the service:

Vb

Imports CustomerServiceClient.CustomerServices

c#

using CustomerServiceClient.CustomerServices;

Let’s say you have a BindingSource control on your form called customerDataBindingSource, whose
DataSource property you want to set to the list of customers to be retrieved from the service. All
you need to do is create an instance of the service proxy and call the operation, and the data will be
returned.

Vb

Dim service As New CustomerService
customerDataBindingSource.DataSource = service.GetCustomerList()

c#

CustomerService service = new CustomerService();
customerDataBindingSource.DataSource = service.GetCustomerList();

You can now run this application and it will communicate with the WCF service. This example
demonstrated communicating with the WCF service synchronously (that is, the UI thread was paused
until a response had been received from the server), but this has the disadvantage of making your
application unresponsive to the user until the response from the service had been received. Though
calling the service synchronously is easy code to write, it doesn’t provide for a very nice user experience.
Fortunately, you can also call WCF services asynchronously. This allows the client to make a request to
a service, and continue on running without waiting for the response. When a response has been received,
an event will be raised that can be handled by the application from which it can act upon that response.

fiGure 31-10

Consuming a WCf service ❘ 697

http://lib.ommolketab.ir
http//lib.ommolketab.ir

698 ❘ chaPter 31 WindoWS communicATion FoundATion (WcF)

 Silverlight clients only support asynchronous service calls.

 To enable the asynchronous methods to be created on the service proxy you must specifi cally
request them by selecting the Generate Asynchronous Operations checkbox in the Confi gure Service
Reference dialog (detailed later in this section). To call the WCF service asynchronously you create
an instance of the service, handle the Completed event for the associated operation, and then call
the operation method that is suffi xed with Async :

 Vb

Dim service As New CustomerService
AddHandler service.GetCustomerListCompleted, _
 AddressOf service_GetCustomerListCompleted
service.GetCustomerListAsync()

 c#

CustomerService service = new CustomerService();
service.GetCustomerListCompleted += service_GetCustomerListCompleted;
service.GetCustomerListAsync();

 The operation call will return immediately, and the event handler specifi ed will be called when the
operation is complete. The data that has been returned from the service will be passed into the event
handler via e.Results :

 Vb

Private Sub service_GetCustomerListCompleted(ByVal sender As Object, _
 ByVal e As
GetCustomerListCompletedEventArgs)
 customerDataBindingSource.DataSource = e.Result
End Sub

 c#

private void service_GetCustomerListCompleted(object sender,

GetCustomerListCompletedEventArgs e)
{
 customerDataBindingSource.DataSource = e.Result;
}

 When you add a reference to the WCF service to your rich client application you will notice that an
 App.config fi le was added to the project (if it didn ’ t already exist). In either case, if you take a look
at this fi le you ’ ll see that it now contains a system.serviceModel element that contains bindings
and client elements. Within the bindings element you can see that there is a wsHttpBinding element
(this is the default WCF binding), which defi nes how to communicate with the WCF service. Here
you can see that the subelements override some of the default values. The Client element contains
an endpoint element. This element defi nes the Address (which in this case is a URL), a Binding
(which references the customized wsHttpBinding defi ned in the bindings element), and a Contract

http://lib.ommolketab.ir
http//lib.ommolketab.ir

(which is the CustomerServices.ICustomerService interface of the WCF service that is to be called).
Because this information is all defined in the configuration file, if any of these elements changes (for
example, the URL of the endpoint) you can just modify the configuration file instead of having to
recompile the entire application.

When you make changes to the service you will need to update the service proxy that was created by
Visual Studio when you added the service reference to your project (otherwise it will remain out of
date and not show new operations added to it, and so on). You can do this by simply right-clicking
the service reference (under the Service References node in your project) and selecting the Update
Service Reference item from the context menu.

If you right-click a service reference (under
the Service References node in your project)
you will also find a Configure Service
Reference option. This will bring up the
dialog shown in Figure 31-11 (which can also
be accessed from the Add Service Reference
dialog by clicking the Advanced button).

This dialog allows you to configure how the
service proxy is generated, with a variety
of options available. Of particular interest
is the Reuse types in referenced assemblies
option. This option (when enabled) means
that if the service reference generator finds
that a type (that is, class/object) consumed/
returned by the service is defined in an
assembly referenced by the client, the proxy
code generated will return/accept objects of
that type instead of creating a proxy class
for it. The big benefit of this is where you manage both ends of the system (both server and client)
and want to pass objects between them that have associated business logic (such as validation logic,
business rules, and so on). The usual process is to (on the client side) copy the property values from
a proxy object into a business object (when requesting data), and then copy property values from
a business object into a proxy object (to pass data back to the server). However, this option means
that you can have both the server and the client reference an assembly that contains the types to be
passed between them (with corresponding business logic code for both ends), and simply pass the
objects backward and forward between the server and the client without requiring a proxy class as
an intermediary (on the client side). This saves you from having to write a lot of property mapping
code, which becomes a maintenance burden and has a high potential to contain incorrect mappings.

suMMary

In this chapter you learned how to create a WCF service, host it, consume it, and configure it for
different purposes/uses. However, WCF isn’t the end of the story for communication layers — in
fact, a number of technologies are built on top of WCF to enhance its capabilities. These include
WCF Data Services and WCF RIA Services, with the latter detailed in Chapter 35.

fiGure 31-11

summary ❘ 699

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32
 Windows Workfl ow
foundation (Wf)

 what ’ s in this chaPter?

 Understanding Windows Workfl ow Foundation ➤

 Creating a basic workfl ow ➤

 Hosting and executing a workfl ow ➤

 Hosting the workfl ow designer in your application ➤

 Windows Workfl ow Foundation (WF) is a powerful platform for designing and running
workfl ows — a central tenet in many business applications. WF was introduced with the
.NET Framework 3.0, and has been completely redesigned and rewritten for its .NET
Framework 4.0 version to overcome some of the problems it had in its previous incarnations.
Unfortunately, this has rendered it incompatible with workfl ows created in those previous
versions, but leaving it a much more robust technology as a result. This chapter takes you
through using the WF designer, and the process of creating and running workfl ows using WF.

 what is windows workflow foundation?

 Before discussing Windows Workfl ow, you should fi rst examine exactly what workfl ow is.
A workfl ow is essentially a model of the steps that form a business process. For example, this
may incorporate document approvals, job status tracking, and so on.

 A well - designed workfl ow requires a clear separation between the steps in the business process
(the work to be done), and the business rules/logic that binds them (the fl ow).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

702 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

 Windows Workfl ow is a complete workfl ow solution, including both the design and the run time
components required to design/create and run workfl ows. These workfl ows can then be hosted in an
application, or exposed publicly as a service.

 One of the powerful features of WF is that you can host both the WF run time
and the WF designer in your application, enabling end users to reconfi gure
workfl ows themselves through the WF designer hosted in your application.

 Using WF requires you to break your business process into discrete tasks (known as activities), which
can then be declaratively connected and controlled in a confi gurable workfl ow using the WF designer.

 You can use WF in your own products, but you will also fi nd it embedded in various Microsoft
products, including Sharepoint and Windows Server AppFabric.

 why use windows workflow?

 A common question raised by those who investigate WF is regarding why should they use it, rather
than embed business logic directly in the code. It ’ s a very valid question, and whether or not you
should use it really comes down to the business problem that you are attempting to solve and the
business process you need to model. This chapter covers some of the scenarios in which it might be
appropriate to use WF, but you will fi rst look at some of the benefi ts you would gain with using it.

 One of the primary scenarios where you would achieve the most benefi ts from using WF is where
you have a business process that frequently changes (or the rules within the business process
frequently change). Alternatively, you may have an application that is deployed to different
customers, each of whom has different business processes. The business logic/rules that form
workfl ows in WF are defi ned declaratively rather than being embedded in code, which has the
advantage of enabling the workfl ow to be reconfi gured without requiring the application to be
recompiled. This, combined with the ability to host the WF designer in your own application,
enables you to design highly confi gurable applications.

 Another scenario where using WF provides a lot of advantages is where you are modeling long -
 running processes. Some workfl ows can run from seconds, to minutes, hours, days, and even years.
WF provides a framework for managing these long - running processes, enabling a workfl ow to
be persisted while waiting for an event (rather than remaining memory resident), and able to be
continued after a machine restart.

 An advantage of being able to design and visualize your workfl ows in the WF designer is that the
workfl ow diagram can be used as a form of documentation of the business process/logic. This diagram
can be exported from the WF designer as an image, and used in documentation or presentations. This
helps provide a high degree of transparency for the business process you are modeling.

 Ultimately, it ’ s not appropriate to use WF in all applications that incorporate a business process that
requires modeling. If any of the benefi ts listed previously are core requirements in your application,
you should seriously consider designing your workfl ows and activities using WF. However, if none

http://lib.ommolketab.ir
http//lib.ommolketab.ir

of the listed benefi ts are necessary (nor likely to be in the future), it ’ s really a decision you need
to make based on whether you think it will improve the development practices of your team, and
whether you believe that the imposition of such a framework will still provide more benefi ts through
its use to outweigh the potential problems that it may create (which are not unheard of).

 workflow concePts

 Before you get into the practical aspects of designing and executing workfl ows, you fi rst run
through some of the important concepts around workfl ows, and the terminology that is involved.

 activities
 An activity is a discrete unit of work; that is, it performs a task. An activity doesn ’ t have to just
perform a single task — in fact an activity can contain other activities (known as a composite
activity), which can each contain activities themselves, and so on. A workfl ow is an activity
itself, and so are control fl ow activities (discussed shortly). You can think of an activity as the
fundamental building block of workfl ows.

 Activities can have input and output arguments, which enable the fl ow of data in and out of the
activity, and can return a value. An activity can also have variables, which (like in code) store a
value that any activities the activity contains can also get/set. The activity in which a variable is
defi ned designates its scope.

 You can think of activities as being much like a method in regular code.

 WF includes a base library of predefi ned activities that cover a wide variety of tasks, which you can
use in your workfl ow. These include activities that:

 Control execution fl ow (If, DoWhile, ForEach, Switch, and so on) ➤

 Provide messaging functionality (for communicating with services) ➤

 Persist the current workfl ow instance to a database ➤

 Provide transaction support ➤

 Enable collection management (add/remove items in a collection, clear a collection, and ➤

determine whether an item exists in the collection)

 Provide error handling (try, catch, throw, rethrow) ➤

 Provide some primitive functionality (delays, variable assigning, write to console, and so on) ➤

 Of course, despite this wide range of predefi ned activities available to you, you will no doubt want
to create custom activities to suit your own requirements, especially when you have complex logic to
implement. These are written in code, will appear in the Toolbox in the WF designer, and you can
drag and drop them into your workfl ow.

Workfl ow Concepts ❘ 703

http://lib.ommolketab.ir
http//lib.ommolketab.ir

704 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

 When creating your own custom activities, you have a number of custom activity types to choose
from: Activity , CodeActivity , NativeActivity , and DynamicActivity (the custom activity
inherits from one of these base classes).

 Activities based on the Activity class are composed of other activities, and are designed visually
in the WF designer. As previously stated, workfl ows are activities themselves, so your workfl ow
is actually based on the Activity class. Activities composed in this manner can be used in other
activities too.

 An activity that is based on CodeActivity , as its name suggests, is an activity whose action(s)/logic
is defi ned in code. This code is actually a class that inherits from CodeActivity and overrides the
 Execute method in which the code to be executed should be placed.

 Activities don ’ t necessarily have to be executed synchronously, blocking the continuing execution
of the workfl ow while performing a long - running task, or waiting for an operation to complete, a
response or input to be received, or an event to be raised. You can create asynchronous activities by
inheriting from the AsyncCodeActivity class. This is much like the CodeActivity class, except
rather than having a single Execute method to be overridden, it has a BeginExecute and an
 EndExecute method instead. When an asynchronous activity is executed, it will do so on a separate
thread from the scheduler and return immediately. It can then continue to execute without blocking
the execution of the main workfl ow. The scheduler that invoked it will be notifi ed when it has
completed executing.

 Note that a workfl ow cannot be persisted or be unloaded while an asynchronous
activity is executing.

 An activity that is based on the NativeActivity class is much like one that inherits from
 CodeActivity , but whereas CodeActivity is limited to interacting with arguments and variables,
 NativeActivity has full access to all the functionality exposed by the workfl ow run time (which
passes it a NativeActivityContext object that provides it with this access). This includes the
ability to schedule and cancel child activity execution, aborting activity execution, access to activity
bookmarks, and scheduling and tracking functions.

 control flow activities
 Control fl ow activities are used to control the fl ow of activities — essentially providing the binding
between them that organizes them into a workfl ow and forming the logic/rules of the process being
modeled. Control fl ow activities are just standard activities themselves, but designed to control the
execution/fl ow of the activities it contains (by scheduling the execution of those activities).

 There are two primary types of control fl ow activities (essentially workfl ow types): Sequence and
Flowchart. A Sequence executes the activities that it contains (as its name suggests) in sequence. It ’ s
not possible to go backward and return to a previous step in a sequence; execution can only move
forward through the sequence. A Flowchart, however, enables the execution to return to a previous
step, making it more suited to decision making (that is, business) processes than sequences.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you’ve worked with previous versions of WF, you will note that there is no longer a state machine
control flow activity. There is, however, expected to be an out-of-band release of a state machine control
flow activity at some stage in the near future.

You are not limited to using a single control flow activity in a workflow — because they are
activities, you can mix and match them as required in the same workflow.

expressions
Expressions are VB code (only) that return a value, and are used in the designer to control the values
of variables and arguments. You can think of them much like formulas in, say, Excel. Expressions
are generally bound to an activity’s input arguments, used to set the value of variables, or used to
define conditions on activities (such as the If activity).

workflow run time/scheduler
The workflow run time (also known as the scheduler) is the engine that takes a workflow
definition file and executes it in the context of a host application. The host application starts a given
workflow in the workflow run time using the WorkflowInvoker, the WorkflowApplication, or the
WorkflowServiceHost classes.

The WorkflowInvoker class is used in a “hands off” approach to executing the workflow, leaving the
workflow run time to handle the entire execution of the workflow. The WorkflowApplication class is
used when requiring a “hands on” approach to executing the workflow (such as resuming a persisted
instance), enabling the execution to be controlled by the host. The WorkflowServiceHost class is
used when hosting the workflow as a service to be used by client applications.

bookmarks
A bookmark marks a place in the workflow, from which its execution can be resumed at a later
point in time. Bookmarks enable a workflow instance to be “paused” while it’s waiting for input
to be received, specifying a point from which it will be resumed when that input has been received.
A bookmark is given a name and specifies a callback function, pinpointing the activity that is
currently executing and specifying the method in the activity that should be called when the
workflow is resumed.

Creating a bookmark stops the workflow from executing, and releases the workflow thread
(although the workflow isn’t complete, but simply paused), enabling the workflow to be persisted
and unloaded. The host is then tasked with capturing the input that the workflow is waiting on, and
resuming that workflow’s instance execution again from the bookmark position (passing in any data
to the callback method received from the awaited input).

Bookmarks are particularly useful in long-running processes where the workflow is waiting for an
input to be received, that potentially may not be received for quite some time. In the meantime, it
releases the resources that it’s using (freeing them up for use by other workflows), and its state can
be persisted to disk (if required).

Workflow Concepts ❘ 705

http://lib.ommolketab.ir
http//lib.ommolketab.ir

706 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

 Persistence
 Persistence enables the current state of a workfl ow instance and its metadata (including the values of
in - scope variables, arguments, bookmark data, and so on) to be serialized and saved to a data store
(known as an instance store) by a persistence provider , to be retrieved and resumed at a later point
in time. To persist a workfl ow instance, the workfl ow execution must be idle (such as if it ’ s waiting
for input), and a bookmark must be defi ned to mark the current execution point in the workfl ow.

 Persistence is particularly important when you have long - running workfl ows, where you want to be
able to unload workfl ows that are idle and waiting for input, or if the machine/server may restart in
the times that the workfl ow is idle, or if the execution may even continue on a different server (such
as in a server farm).

 Note that the workfl ow itself is not persisted to the instance, only its state. You
need to be aware of the consequences of modifying the workfl ow while instances
are still alive and persisted, and cater accordingly.

 WF comes with a default persistence provider called SqlWorkflowInstanceStore that handles
persisting a workfl ow instance to a SQL Server database. You can also create your own custom
persistence provider by inheriting from the InstanceStore class.

 You have two ways to persist a workfl ow instance. One is to use the predefi ned Persist activity from the
Toolbox in your workfl ow, which will persist the workfl ow instance when executed by the run time.
The other option is for the host to register an event handler for the PersistableIdle event, which
is raised by the run time when the workfl ow instance is idle (but not yet complete). The host can then
choose whether or not to persist the workfl ow instance, returning a value from the PersistIdleAction
enumeration that will tell the run time what it should do.

 tracking
 WF enables you to implement tracking in your workfl ows, where various aspects of the execution
of a workfl ow can be logged for analysis. Tracking provides transparency over your workfl ow,
enabling you to see what it has done in the past and its current execution state by the workfl ow run
time emitting tracking records .

 You can specify the granularity at which the tracking records will be emitted by confi guring a
 tracking profi le , which can be defi ned either in the App.config fi le or through code. This will
enable you to specify which tracking records you want the workfl ow run time to emit. The types of
tracking records that can be emitted include workfl ow life cycle records (such as when a workfl ow
starts or fi nishes), activity life cycle records (such as when an activity is scheduled or completes, or
when an error occurs), bookmark resumption records, and custom tracking records (which you can
emit from your custom activities). These tracking records can include associated data, such as the
current values of variables and arguments.

 Where tracking records are written is determined by specifying a tracking participant . By default,
the WF run time emits tracking records to the Windows Event Log. You can create your own

http://lib.ommolketab.ir
http//lib.ommolketab.ir

tracking participants if you, for example, want to write tracking records to a different source,
such as a database.

You can also trace the execution of a workflow for troubleshooting and diagnostic purposes, which
makes use of the standard .NET trace listeners. Tracing can be configured in the App.config file.

GettinG started

Start by opening the New Project dialog and navigating to the Workflow category under your
favorite language (as shown in Figure 32-1).

fiGure 32-1

As you can see, you have four project types to choose from as follows:

 ➤ Activity Designer Library: Enables you to create and maintain a reusable library of activity
designers to customize how their corresponding activities look and behave in the WF
designer.

 ➤ Activity Library: Creates a project that enables you to create and maintain a reusable library
of activities (consisting of other activities) that you can then use in your workflows. Think
of it much like a class library but for workflows.

 ➤ Workflow Console Application: Creates an empty workflow hosted in a console application.

 ➤ WCF Workflow Service Application: Creates a workflow hosted and publicly exposed as a
WCF service.

Getting started ❘ 707

http://lib.ommolketab.ir
http//lib.ommolketab.ir

708 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

 For the sample project, you will use the simplest option to get up
and running, by using the Workfl ow Console Application project
template. As you can see from Figure 32 - 2, the project it generates is
very simple, containing Program.cs / Module1.vb and Workflow1
.xaml . The Program class (for C# developers), or Module1 module
(for VB developers), as found in any console application, contains
the entry point for the application (that is, the static/shared Main
method), which is automatically confi gured to instantiate and execute
the workfl ow. The Workflow1.xaml fi le is the fi le where you will
defi ne your workfl ow.

 fiGure 32 - 2

 You aren ’ t limited to hosting workfl ows in a console application or WCF
service — you can also host them in other platforms such as Windows Forms,
WPF, or ASP.NET applications. Add a workfl ow to an existing project using the
Add New Item dialog and selecting Activity from the Workfl ow category (there is
no Workfl ow item, because a workfl ow is essentially an activity itself, containing
other activities).

 Note that the workfl ow fi le is a XAML fi le — a fi le format you may recognize
because it is used to defi ne user interfaces in WPF and Silverlight. However, in
this case it is used to declaratively defi ne a workfl ow. You can view and edit the
underlying XAML for a workfl ow by right - clicking the fi le and selecting View
Code from the context menu.

 Before you do anything else, compile and run the application as is to see the result. You should fi nd
that a console window briefl y appears before the application automatically ends (because it is not
currently confi gured to actually do anything).

 The name Workflow1.xaml isn ’ t very meaningful, so you will no doubt want to change that to
something more appropriate. Unfortunately Visual Studio doesn ’ t help you much in this respect
(unlike with forms and classes), because changing the fi lename will not automatically change the
class created behind the scenes for the workfl ow, nor will it change any references to the class when
you change its name in the designer. For example, to rename the workfl ow and its corresponding
class to SimpleProcessWorkflow , you will need to:

 Change the name of the fi le (in the Solution Explorer). ➤

 Change the name of the corresponding class (by clicking the design surface, and assigning ➤

the name to the Name property in the Properties tool window).

 Change all existing references to the workfl ow class. In this case where you haven ’ t done ➤

anything with your project as yet, the only reference will be in the Program class (for
C# developers) or Module1 module (for VB developers), which will need to be updated

http://lib.ommolketab.ir
http//lib.ommolketab.ir

accordingly. Note that the class name will not appear in IntelliSense and will indicate an
error when you enter it, if you have not compiled the project after changing the class name
(because it’s only then that the compiler will regenerate the class).

the workflow foundation desiGner

The WF designer enables you to drop control flow activities and standard activities (from the
Toolbox) on a workflow design surface, and connect them to form the workflow. It’s much like
building a form where you drop controls from the Toolbox onto the design surface, but in this case
you are building a workflow. When you first create the project, the empty workflow is displayed in
the designer, as shown in Figure 32-3.

fiGure 32-3

At the bottom of the designer, you will note the three hyperlink buttons: Variables, Arguments, and
Imports. Clicking one of these buttons pops up a pane at the bottom of the designer that will enable
to you modify their respective configurations.

Variables can be defined for use by activities within a given scope (which is defined by a parent activity
to which the variables are attached). Add a variable by simply popping up the Variables pane (as shown
in Figure 32-4), clicking in the area that says Create Variable, and entering a name for it. You can set
the type for the variable by clicking in the Variable Type column and selecting the type from the drop-
down list. If the type that you need doesn’t appear in the list, you can click the Browse for Types item,
which will pop up a dialog enabling you to type in the qualified name of the type, or navigate through
the referenced assemblies tree to find it. Clicking in the Scope column displays a drop-down list that
will allow you to modify the scope of the variable (by selecting the activity it belongs to). This activity
and its child activities will therefore have access to the variable. Clicking in the Default column enables
you to enter an expression (in VB code) that will set the default value of the variable.

The Workflow foundation Designer ❘ 709

http://lib.ommolketab.ir
http//lib.ommolketab.ir

710 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

 The Arguments pane (as shown in Figure 32 - 5) enables you to defi ne the input and output
arguments for an activity (which enable the fl ow of data in and out of the activity). There are four
types of arguments (that is, argument directions): Input arguments, Output arguments, In/Out
arguments, and Property arguments.

 ➤ Input arguments can conceptually be considered the same as passing parameters into
methods by value in regular code.

 ➤ Output arguments can conceptually be considered the same as output parameters in
methods in regular code, whose values are set in the method and returned to the caller.

 ➤ In/Out arguments can conceptually be considered the same as passing parameters into
methods by reference in regular code.

 ➤ Property arguments can conceptually be considered the same as assigning property values
on an object in regular code.

 Add an argument by simply popping up the Arguments pane, clicking in the area that says Create
Argument, and entering a name for it. Specify the type of argument by clicking in the Direction
column and selecting a type from the drop - down list. You can set the type for the argument by
clicking in the Argument Type column and selecting the type from the drop - down list. As with
variables, you can also assign an expression to the default value of the argument (for In and
Property arguments only).

 fiGure 32 - 4

 Note that the default value column accepts expressions rather than values. If you
want to assign a value to the variable rather than an expression you will need to
enter the literal value, not simply the value itself. The literal values for numeric
values are identical, but if the variable is a string, you will need to enclose it in
double quotes. This also applies when setting the default value of arguments.

 Note that activities can also have a return value.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Imports pane (as shown in Figure 32-6) enables you to import namespaces (the same as defining
using statements in C#) for use in expressions. At the top of the panel is a combo box where you can
type a namespace to import and add to the list, or select a namespace from the drop-down list.

fiGure 32-6

fiGure 32-5

Workflows can become quite large and potentially unwieldy as they increase in complexity, but
luckily the WF designer contains a few tools to help you manage and navigate through the model.
You will find that some activities have an icon in their top-right corner, enabling you to roll them
up to just display their title (that is, collapse them), or to expand them if they are collapsed. Because
you can nest activities within activities (and so on), potentially creating rather deep and complex
hierarchies, it can be useful to hide some of this complexity by collapsing activities when you are
not actively editing them. Collapsing activities can reduce the amount of space they take in the
workflow diagram, and can also be used to hide the complexity of the hierarchy of sub-activities
contained within them. You can then expand the activities again by clicking this same icon (whose
arrows will have changed direction according to the state of the activity).

In the top-right corner of the designer, you will find an Expand All hyperlink button and a Collapse
All hyperlink button (both of which change to read Restore when clicked). It can often be useful to
“roll up” the entire workflow (using the Collapse All hyperlink button) to its top-level activities, from
which you can then drill down through specific activities by expanding them as required to follow a
specific logical path. In addition, you can also use the Expand All hyperlink button to expand all the
activities that form the workflow, enabling you to get a picture of the full extent of the workflow.

You can zoom in and out of the view of the workflow using the drop-down list in the bottom-right
side of the designer (that lists zoom percentages), and clicking the magnifying glass icon to its left
resets the view back to 100%. The icon to the right of the drop-down list will automatically select

The Workflow foundation Designer ❘ 711

http://lib.ommolketab.ir
http//lib.ommolketab.ir

712 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

a zoom level that will enable the entire workflow to be fitted within the visible area of the designer
window (without requiring you to scroll).

When you have a large workflow with activities you don’t want to collapse, with it far too big to
fit entirely in the visible area of the designer window, you can make use of the Overview window by
clicking the rightmost icon in the bottom-right side of the designer. This will pop up a window in
the designer (as shown in Figure 32-7) that enables you to pan around the workflow by clicking
and dragging the orange rectangle (representing the visible portion of the workflow in the designer)
around to display the part of the workflow that you want to currently view.

fiGure 32-7

As previously discussed, one of the advantages of using WF is that the diagram of the workflow can
be used as a form of documentation for your business process/logic/rules. It can often be useful to
place this diagram in documentation or presentations, and the way to do this is quite easy. Right-
click anywhere on the design surface. Two items appear in the context menu that you can use for
this purpose: Save as Image and Copy as Image. Selecting the Copy as Image menu item copies a
picture of the entire diagram to the clipboard, whereas the Save as Image menu item shows a dialog
box enabling you to save the diagram to your choice of a JPEG, PNG, GIF, or XPS document. You
can then paste the diagram into your document or presentation (if you copied it to the clipboard), or
import it if you had saved it to disk.

creatinG a workflow

This section walks through the process of creating a very simple workflow that demonstrates a
number of the features of WF. For this example, you will simply be writing output to the console
window and receiving input from the user, but doing so in a workflow rather than regular code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Workfl ow ❘ 713

 designing a workfl ow
 The fi rst thing you want to do is to drop a control fl ow activity onto the designer that will schedule the
execution of the activities that it contains. For this example, you will use a Sequence activity for this
purpose. You will fi nd the Sequence activity under the Control Flow category in the Toolbox. Drag
and drop it into your SimpleProcessWorkfl ow workfl ow, as demonstrated in Figure 32 - 8.

 fiGure 32 - 8

 At this point, it would be useful to give it a meaningful name — click in its header and change it to
SimpleProcessSequence. You can also simply select the activity and set its DisplayName property in
the Properties tool window.

 For this initial example, you ’ ll get the workfl ow to execute a do/while loop that will write a message to
the console fi ve times. To do this, you then need to drop a DoWhile activity into the Sequence activity
from the Control Flow category in the Toolbox. Once you ’ ve done that, you will fi nd that both the
new activity and the Sequence activity are now displaying as invalid (a red icon with an exclamation
mark appears in the right side of the headers of both activities). This is because an expression needs to
be assigned to the condition of the DoWhile activity before it can be considered valid.

 If you attempt to compile the application that has an invalid activity, it will still
compile but when you try to run it you will receive a run time error. You can,
however, see a list of all the validation errors in a workfl ow as errors in the Error
List tool window.

 Because you want to place more than one activity in the DoWhile activity, add a Sequence activity
as its child. Call this sequence WriteHelloWorldSequence.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

714 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

Now find the WriteLine activity in the Toolbox (under the Primitives category), and drag and drop that
into the WriteHelloWorldSequence activity. To make it write Hello World to the output each time it’s
executed, set its Text argument to “Hello World“ (with the argument accepting an expression and being
a string value that you are assigning, you need to assign it as a literal value by enclosing it in quotes).

So that the output can be seen more easily, drop a Delay activity (from the Primitives category in
the Toolbox) into the WriteHelloWorldSequence activity, following the WriteLine activity. The
Delay activity’s Duration argument accepts a TimeSpan type — you’ll use an expression to specify
its value as 200 milliseconds because it’s more readable than the literal value:

TimeSpan.FromMilliseconds(200)

To control the number of times this loop will execute, add a variable called Counter to the
SimpleProcessSequence activity (which will be available to all the activities in the sequence). Select
the SimpleProcessSequence activity and pop up the Variables pane. Click where it says Create
Variable, enter Counter as its name, a type of Int32, and a default value of 0.

Back in the DoWhile activity, you can now specify the following expression as its condition:

Counter < 5

The final step is to actually increment the Counter variable. Add an Assign activity (from the
Primitives category in the Toolbox) to the sequence (following the Delay activity), setting its To
argument to Counter, and its Value argument to Counter + 1.

Your simple workflow is now complete, and should look like Figure 32-9.

fiGure 32-9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Workflow ❘ 715

Now you can run your application, which
will execute the workflow with the results
shown in Figure 32-10.

writing code activities
Now create a custom activity whose work
is defined in code to get input from the
user. Add a new item to your project, select
the Code Activity item template from the
Workflow category in the Add New Item
dialog (as shown in Figure 32-11), and call it
UserInput.

fiGure 32-10

fiGure 32-11

This creates a class that inherits from System.Activities.CodeActivity, and overrides the
Execute method into which you can write the code that this activity will execute. It also includes
a sample input argument called Text (defined as a property on the class), which you can delete
because this activity won’t require any inputs (also delete the line of code in the Execute method
that retrieves its value).

This activity will obtain input from the user that other activities in the workflow can use. You can
return the value either as an output argument or as a return value. Either way is acceptable, so for
this example return the value.

To return a value, instead of inheriting from the CodeActivity class you will need to inherit from
its generic version instead (into which you pass the type that the activity will return). Change the
class to inherit from the generic CodeActivity class, passing in the type of the return value. Change
the Execute method to return a type instead of void (C# developers), or to a function that returns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

716 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

a type (VB developers). Then it’s simply a case of returning the value returned from the Console
.ReadLine() function in the Execute method:

Vb

Public NotInheritable Class UserInput
 Inherits CodeActivity(Of String)

 Protected Overrides Function Execute(ByVal context As CodeActivityContext) _
 As String
 Return Console.ReadLine()
 End Function
End Class

c#

public sealed class UserInput : CodeActivity<string>
{
 protected override string Execute(CodeActivityContext context)
 {
 return Console.ReadLine();
 }
}

If you switch back now to the workflow in the designer, you will find that
the activity is nowhere to be found in the Toolbox. However, once you
compile your project, it will appear in the Toolbox, under the category with
the same name as your project, as shown in Figure 32-12.

Drop the activity from the Toolbox into your workflow, in the main
SimpleProcessSequence sequence activity after the DoWhile activity. You
will note that there is no nice designer user interface for the activity (just a
simple block), but you could design one by creating an activity designer for
it. However a discussion of this is beyond the scope of this chapter.

When you select it, the Properties tool window will have a property called Result, in which an
expression to work with the return value of the Execute method in the activity can be specified.
What you want to do is assign the return value to a variable, which activities following it in the
sequence can use. Create a new variable in the Variables pane called UserInputValue with a type of
String. In the Properties tool window, you can now simply set UserInputValue as the expression
for the Result property, which will assign the return value from the activity to the UserInputValue
variable. You can prove this works by adding a WriteLine activity following the UserInput activity
that then writes the value of this variable back out to the console.

executing a workflow
If you inspect the Main method (the entry point of the application) in the Program.cs file (for C#
developers) or Module1.vb (for VB developers) you will find the code used to execute the workflow:

Vb

WorkflowInvoker.Invoke(New SimpleProcessWorkflow())

fiGure 32-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Workfl ow ❘ 717

 c#

WorkflowInvoker.Invoke(new SimpleProcessWorkflow());

 This is making use of the WorkflowInvoker class to invoke the workfl ow, which, as described
earlier in this chapter, has no control over the actual execution of the workfl ow other than simply
initiating its execution.

 If you want more control over the execution of a workfl ow, however (such as if you need to resume
execution from a bookmark, or persist/unload a workfl ow), you will need to turn to the
 WorkflowApplication class to invoke your workfl ow instead. Basic use of the WorkflowApplication
class to invoke a workfl ow and handle its Complete event is as follows:

 Vb

Dim syncEvent As New AutoResetEvent(False)

Dim app As New WorkflowApplication(New SimpleProcessWorkflow())

app.Completed = Function(args)
 Console.WriteLine("Workflow instance has completed!")
 Thread.Sleep(1000)
 syncEvent.Set()
 Return Nothing
 End Function

app.Run()
syncEvent.WaitOne()

 c#

AutoResetEvent syncEvent = new AutoResetEvent(false);

WorkflowApplication app = new WorkflowApplication(new SimpleProcessWorkflow());

app.Completed = (e) = >
{
 Console.WriteLine("Workflow instance has completed!");
 Thread.Sleep(1000);
 syncEvent.Set();
};

app.Run();
syncEvent.WaitOne();

 Note that you will need to add an Imports/using statement to the System
.Threading namespace at the top of the fi le for the code snippets above to work.

 This code assigns a delegate that will be run when the workfl ow has completed executing. Because
the Run method returns immediately, you will wait for the workfl ow to complete executing before
continuing (and exiting the application) using the WaitOne method on a AutoResetEvent , which is
notifi ed in the Completed handler that it can enable the thread execution to continue.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

718 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

 Executing a workfl ow via the WorkflowApplication class actually invokes it on a background
thread, with the Run method returning immediately. The host can attach event handlers to various
events raised by the WorkflowApplication class (such as when a workfl ow instance has completed, is
idle, thrown an unhandled exception, and so on), and also gains the ability to abort/cancel/terminate a
workfl ow instance, load one from a instance store, persist it, unload it, and resume from a bookmark.

 You can pass input arguments into a workfl ow, and obtain output argument values from it. Input
arguments are exposed as properties from your workfl ow class, so assign values to these before
invoking the workfl ow. Output arguments are returned in a dictionary (which is the return value of
the WorkflowInvoker.Invoke method), each having a string key with the name of the argument,
and a corresponding object value that you can cast to the appropriate type.

 As previously noted, workfl ows/activities are XAML fi les. By default, the XAML fi le is compiled
into the application (as a resource), but what if you want to take advantage of the fact that you
can reconfi gure a workfl ow without recompiling the application? In that case, you would have
to have the XAML fi le as a content fi le in your project instead, and dynamically load it into your
application from fi le. This is where the ActivityXamlServices class is useful. Load the XAML fi le
as an activity using the ActivityXamlServices class, and then invoke (that is, execute) the activity
that it returns with the WorkflowInvoker or WorkflowApplication class:

 Vb

Dim activity As Activity = ActivityXamlServices.Load("SimpleProcessWorkflow.xaml")
WorkflowInvoker.Invoke(activity)

 c#

Activity activity = ActivityXamlServices.Load("SimpleProcessWorkflow.xaml");
WorkflowInvoker.Invoke(activity);

 Although we are referring to “ events ” here, you ’ ll note from the code snippets
that they aren ’ t events at all. Instead, they are properties to which you can
assign delegates. However, for the purposes of simplifying their description we ’ ll
continue to refer to them as events.

 Loading and executing a workfl ow from a fi le becomes a little more complicated
when it uses custom activities (such as the UserInput activity), because the run
time will need a reference to the assemblies containing those custom activities so it
can use them. However, going into this further is beyond the scope of this chapter.

 debugging workfl ows
 In addition to having a rich designer support for building workfl ows, WF also includes debugging
capabilities. To defi ne a breakpoint in a workfl ow, simply select the activity and press F9, or select

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Breakpoint ➪ Insert Breakpoint from the
right - click context menu. Figure 32 - 13
demonstrates what an activity looks like
when it has a breakpoint set on it (on the
left), and how the activity is highlighted when
stepping through the workfl ow and it is the
current execution item (on the right).

 As in a normal debugging session, in a workfl ow you step through code using shortcut keys.
Pressing F10 steps through the workfl ow, and pressing F11 steps into the current activity. You can
view the values of variables currently in scope in the Locals tool window.

 Of course, your custom code activities can be debugged as normal by setting breakpoints in the
code editor and stepping through the code.

 testing workfl ows
 Having a well - defi ned testing framework is extremely important in business applications, with
it especially vital that the underlying business logic for the application is well covered with tests.
Therefore, it is essential with your workfl ow being at the core of your business logic that it
should be testable too. Luckily, this is indeed possible, and you can use your favorite unit testing
framework — going so far as to use Test Driven Development (TDD) practices if you want. As
discussed in the “ Executing a Workfl ow ” section, by using the WorkflowInvoker.Invoke method to
execute your workfl ow, you can pass input argument values into the workfl ow and obtain the resulting
output argument values (in a dictionary). Therefore, testing your workfl ow is as easy as supplying
input argument values and asserting that the corresponding output argument values are as expected.

 hostinG the workflow desiGner

 One of the benefi ts in having a declarative confi gurable workfl ow is that it can be reconfi gured at
will to support changing business requirements without the application needing to be recompiled.
This means (in theory) that an end user given the right tools (that is, the WF designer) should be
able to modify the workfl ow without requiring a developer to be involved (creating custom activities
is a different story, however). Of course it ’ s probably asking too much to have a casual end user use
the WF designer and modify a workfl ow without training — it really is a tool designed to be used
by developers. That said, with a little training, IT - savvy users (such as business analysts and so on)
could successfully take on this task.

 If this is the case, it is quite easy to host the WF designer in your own application and expose it to
the end user for modifi cation. The WF designer is a WPF component that you can host in your own
WPF applications, making it available to the users to modify a workfl ow as required. You can also
host the WF designer in Windows Forms using the WPF interoperability described in Chapter 18.
This chapter, however, will focus on hosting it natively in a WPF application.

 fiGure 32 - 13

 The coverage of this topic assumes you have some experience working with WPF
and XAML. See Chapter 18 for more information on these topics.

Hosting the Workfl ow Designer ❘ 719

http://lib.ommolketab.ir
http//lib.ommolketab.ir

720 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

Create a new WPF project, called WFDesignerHost. Add the following assembly references to the project:

System.Activities.dll ➤

System.Activities.Core.Presentation.dll ➤

System.Activities.Presentation.dll ➤

You will also need to add a reference to any assemblies that contain custom activities that you want
to be used in the workflows through your application.

The designer has three main (separate) components: the Toolbox, the Properties window, and the
designer surface. Let’s create a user interface that instantiates and displays the three of these.

Open up the MainWindow.xaml file and set the name of the Grid control to WFLayoutGrid. Also
add three columns to this Grid (you will no doubt want to define some appropriate widths for these
columns at a later point in time). Host the Toolbox in the first column, the designer surface in the
second, and the Properties window in the third. The Toolbox can be created either declaratively in
XAML or in code, but the designer surface and Properties window can only be created in code. For
the purpose of this example, you’ll create all three of these controls in code.

Open up the code behind the MainWindow.xaml file. Import the following namespaces:

Vb

Imports System.Activities
Imports System.Activities.Core.Presentation
Imports System.Activities.Presentation
Imports System.Activities.Presentation.Toolbox
Imports System.Activities.Statements
Imports System.Linq
Imports System.Reflection
Imports System.Windows
Imports System.Windows.Controls

c#

using System;
using System.Activities;
using System.Activities.Core.Presentation;
using System.Activities.Presentation;
using System.Activities.Presentation.Toolbox;
using System.Activities.Statements;
using System.Linq;
using System.Reflection;
using System.Windows;
using System.Windows.Controls;

First, you need to register the designer metadata:

Vb

Private Sub RegisterMetadata()
 Dim metaData As New DesignerMetadata()
 metaData.Register()
End Sub

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

private void RegisterMetadata()
{
 DesignerMetadata metaData = new DesignerMetadata();
 metaData.Register();
}

Now add the Toolbox to the page. You will find that the Toolbox is not automatically populated
with activities — instead you need to populate it yourself with the activities you want to make
available to the user. The following code handles this by creating an instance of the Toolbox and
adding all the activities in the same assembly as the Sequence activity to it.

Vb

Private Sub AddToolboxControl(ByVal parent As Grid, ByVal row As Integer,
 ByVal column As Integer)
 Dim toolbox As New ToolboxControl()

 Dim category As New ToolboxCategory("Activities")
 toolbox.Categories.Add(category)

 Dim query = From type In Assembly.GetAssembly(GetType(Sequence)).GetTypes()
 Where type.IsPublic AndAlso
 Not type.IsNested AndAlso
 Not type.IsAbstract AndAlso
 Not type.ContainsGenericParameters AndAlso
 (GetType(Activity).IsAssignableFrom(type) OrElse
 GetType(IActivityTemplateFactory).IsAssignableFrom(type))
 Order By type.Name
 Select New ToolboxItemWrapper(type)

 query.ToList().ForEach(Function(item)
 category.Add(item)
 Return Nothing
 End Function)

 Grid.SetRow(toolbox, row)
 Grid.SetColumn(toolbox, column)
 parent.Children.Add(toolbox)
End Sub

c#

private void AddToolboxControl(Grid parent, int row, int column)
{
 ToolboxControl toolbox = new ToolboxControl();

 ToolboxCategory category = new ToolboxCategory("Activities");
 toolbox.Categories.Add(category);

 var query = from type in Assembly.GetAssembly(typeof(Sequence)).GetTypes()
 where type.IsPublic &&

Hosting the Workflow Designer ❘ 721

http://lib.ommolketab.ir
http//lib.ommolketab.ir

722 ❘ chaPter 32 WindoWS WorkFloW FoundATion (WF)

 !type.IsNested &&
 !type.IsAbstract &&
 !type.ContainsGenericParameters &&
 (typeof(Activity).IsAssignableFrom(type) ||
 typeof(IActivityTemplateFactory).IsAssignableFrom(type))
 orderby type.Name
 select new ToolboxItemWrapper(type);

 query.ToList().ForEach(item => category.Add(item));

 Grid.SetRow(toolbox, row);
 Grid.SetColumn(toolbox, column);
 parent.Children.Add(toolbox);
}

Now you add the designer and the Properties window (both are controls returned from instantiating
the WorkflowDesigner class):

Vb

Private Sub AddDesigner(ByVal parent As Grid,
 ByVal designerRow As Integer,
 ByVal designerColumn As Integer,
 ByVal propertiesRow As Integer,
 ByVal propertiesColumn As Integer)
 Dim designer As New WorkflowDesigner()
 designer.Load(New Sequence())

 Grid.SetRow(designer.View, designerRow)
 Grid.SetColumn(designer.View, designerColumn)
 parent.Children.Add(designer.View)

 Grid.SetRow(designer.PropertyInspectorView, propertiesRow)
 Grid.SetColumn(designer.PropertyInspectorView, propertiesColumn)
 parent.Children.Add(designer.PropertyInspectorView)
End Sub

c#

private void AddDesigner(Grid parent, int designerRow, int designerColumn,
 int propertiesRow, int propertiesColumn)
{
 WorkflowDesigner designer = new WorkflowDesigner();
 designer.Load(new Sequence());

 Grid.SetRow(designer.View, designerRow);
 Grid.SetColumn(designer.View, designerColumn);
 parent.Children.Add(designer.View);

 Grid.SetRow(designer.PropertyInspectorView, propertiesRow);
 Grid.SetColumn(designer.PropertyInspectorView, propertiesColumn);
 parent.Children.Add(designer.PropertyInspectorView);
}

Now call these three functions from the window’s New method/constructor, like so:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

Public Sub New()
 InitializeComponent()

 RegisterMetadata()
 AddToolboxControl(WFLayoutGrid, 0, 0)
 AddDesigner(WFLayoutGrid, 0, 1, 0, 2)
End Sub

c#

public MainWindow()
{
 InitializeComponent();

 RegisterMetadata();
 AddToolboxControl(WFLayoutGrid, 0, 0);
 AddDesigner(WFLayoutGrid, 0, 1, 0, 2);
}

Now you can run the project and test it. Your final user interface should look something like
Figure 32-14 (which can, of course, be improved upon by spending some time styling the page).

fiGure 32-14

suMMary

In this chapter, you learned that Windows Workflow is a means of defining a business process,
which is especially useful to use when you have a business process that changes frequently or is
a long running process. You also learned how to create and run a basic workflow, and how to
host the workflow designer in your own application. Windows Workflow is quickly becoming the
standard for implementing workflows on the Microsoft platform, enabling you to reuse the skills
you have gained here to also build workflows in the various products that support it.

summary ❘ 723

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

33
 Client application services

 what ’ s in this chaPter?

 Accessing client application services ➤

 Managing application roles ➤

 Persisting user settings ➤

 Specifying a custom login dialog ➤

 A generation of applications built around services and the separation of user experience
from backend data stores has seen requirements for occasionally connected applications
emerge. Occasionally connected applications are those that continue to operate regardless of
network availability. In Chapter 34 you will learn how data can be synchronized to a local
store to allow the user to continue to work when the application is offl ine. However, this
scenario leads to discussions (often heated) about security. Because security (that is, user
authentication and role authorization) is often managed centrally, it is diffi cult to extend so
that it incorporates occasionally connected applications.

 In this chapter you become familiar with the client application services that extend ASP.NET
Application Services for use in client applications. ASP.NET Application Services is a provider -
 based model for performing user authentication, role authorization, and profi le management
that has in the past been limited to web services and web sites. In Visual Studio 2010, you can
confi gure your rich client application, either Windows Forms or WPF, to make use of these
services throughout your application to validate users, limit functionality based on what roles
users have been assigned, and save personal settings to a central location.

 client serVices

 Over the course of this chapter you are introduced to the different application services via a simple
WPF application. In this case it is an application called ClientServices, which you can create by
selecting the (C# or VB) WPF Application template from the File ➪ New ➪ Project menu item.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

726 ❘ chaPter 33 clienT ApplicATion SerViceS

 To begin using the client application services, you need to enable the checkbox on the Services tab
of the project properties designer, as shown in Figure 33 - 1 . The default authentication mode is to
use Windows authentication. This is ideal if you are building your application to work within the
confi nes of a single organization and you can assume that everyone has domain credentials. Selecting
this option ensures that those domain credentials are used to access the roles and settings services.
Alternatively, you can elect to use Forms authentication, in which case you have full control over the
mechanism that is used to authenticate users. We return to this topic later in the chapter.

fiGure 33-1

 You will notice that when you enabled the client application services, an app.config fi le was added
to your application if one did not already exist. Of particular interest is the < system.web > section,
which should look similar to the following snippet:

 < system.web >
 < membership defaultProvider="ClientAuthenticationMembershipProvider" >
 < providers >
 < add name="ClientAuthenticationMembershipProvider" type=
 "System.Web.ClientServices.Providers.ClientWindowsAuthentication

 You can also add the client application services to existing applications via the
Visual Studio 2010 project properties designer in the same way as for a new
application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

MembershipProvider, System.Web.Extensions, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" serviceUri="" connectionStringName="Default
Connection" credentialsProvider=""/>
 </providers>
 </membership>
 <roleManager defaultProvider="ClientRoleProvider" enabled="true">
 <providers>
 <add name="ClientRoleProvider"
type="System.Web.ClientServices.Providers.ClientRoleProvider, System.Web.Ext
ensions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
serviceUri="" cacheTimeout="86400" connectionStringName="DefaultConnection"/>
 </providers>
 </roleManager>
 </system.web>

Code snippet app.config

Here you can see that providers have been defined for membership and role management.
You can extend the client application services framework by building your own providers
that can talk directly to a database or to some other remote credential store such as Active
Directory. Essentially, all the project properties designer does is modify the app.config file
to use the providers that ship with the .NET Framework and define associated properties. To
implement your own providers, you need to create concrete classes that implement the abstract
methods defined in the System.Web.Security.RoleProvider, System.Web.Security
.MembershipProvider, or System.Configuration.SettingsProvider classes (depending on
which provider you are implementing).

After you define the default role and membership providers, you use the client application services
to validate the application user. To do this, you need to invoke the ValidateUser method on the
System.Web.Security.Membership class, as shown in the following snippet:

c#

using System.Web.Security;
public partial class MainWindow : Window{
 public MainWindow(){
 InitializeComponent();
 }
 private void Window_Loaded(object sender, RoutedEventArgs e){
 if (Membership.ValidateUser(null, null)){
 MessageBox.Show("User is valid");
 }
 else{
 MessageBox.Show("Unable to verify user, application exiting");
 this.Close();
 return;
 }
 }
}

Code snippet MainWindow.cs

Client services ❘ 727

http://lib.ommolketab.ir
http//lib.ommolketab.ir

728 ❘ chaPter 33 clienT ApplicATion SerViceS

 Vb

Imports System.Web.Security
Class MainWindow
 Private Sub Window_Loaded(ByVal sender As System.Object,
 yVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded
 If Membership.ValidateUser(Nothing, Nothing) Then
 MessageBox.Show("User is valid")
 Else
 MessageBox.Show("Unable to verify user, application exiting")
 Me.Close()
 Return
 End If
 End Sub
End Class

Code snippet MainWindow.vb

 Interestingly, there is no overload of the ValidateUser method that accepts no arguments;
instead, when using Windows authentication, you should use Nothing (VB) or null (C#) for the
username and password arguments. In this case, ValidateUser does little more than prime the
 CurrentPrincipal of the application to use the client application services to determine which
roles the user belongs to, and by default will return true. You see later that using this method is the
equivalent of logging the user in to the application.

 The preceding code snippet, and others throughout this chapter, may require you
to import the System.Web.Security namespace into this class fi le. You may
also need to manually add a reference to System.Web.dll in order to resolve
type references.

 The client application services include what is
often referred to as an application framework
for handling security. VB has for a long
time had its own application framework for
Windows Forms Applications that is enabled
and disabled via the Application tab on the
project properties designer. This framework
already includes limited support for handling
user authentication, but it confl icts with the
client application services. Figure 33 - 2 shows
how you can elect to use an application -
 defi ned authentication mode so that you can
use both the Windows application framework and the client application services in your application.

 Note that this setting is available only if you are developing a Windows Forms Application in VB.

fiGure 33-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

role authorization

So far, you have seen how to enable the client application services, but they haven’t really started to
add value because the user was already authenticated by the operating system when you were using
Windows authentication for the client application. What isn’t handled by the operating system is
specifying which roles a user belongs to and thus what parts or functions within an application the
user can access. Although this could be handled by the client application itself, it would be difficult to
account for all permutations of users and the system would be impractical to manage, because every time
a user was added or changed roles a new version of the application would have to be deployed. Instead,
it is preferable to have the correlations between users and roles managed on the server, allowing the
application to work with a much smaller set of roles through which to control access to functionality.

The true power of the client application services becomes apparent when you combine the client-side
application framework with the ASP.NET Application Services. To see this, you should add a new
project to your solution using the (VB or C#) ASP.NET Empty Web Application template (under the
Web node in the New Project dialog), calling it ApplicationServices.

Right-click the newly created project in Solution Explorer and select Properties to bring up the
project properties designer. Because you will be referencing this web application from other parts
of the solution, it is preferable to use a predefined port and virtual directory with the Visual
Studio Development Server. On the Web tab, set the specific port to 12345 and the virtual path to
/ApplicationServices.

ASP.NET Application Services is a provider-based model for authenticating users, managing
roles, and storing profile (a.k.a. settings) information. Each of these components can be engaged
independently, and you can either elect to use the built-in providers or create your own. To enable
the role management service for access via client application services, add the following snippet
before the <system.web> element in the web.config file in the ApplicationServices project:

<system.web.extensions>
 <scripting>
 <webServices>
 <roleService enabled="true"/>
 </webServices>
 </scripting>
</system.web.extensions>

Code snippet web.config

Because you want to perform some custom logic to determine which roles a user belongs to,
you will need to create a custom role provider, called CustomRoles, to take the place of the
default role provider. This is done by adding a new class to your project and implementing
the RoleProvider abstract class. For this role provider, you are interested only in returning a value
for the GetRolesForUser method; all other methods can be left as method stubs.

c#

public class CustomRoles: RoleProvider{
 public override string[] GetRolesForUser(string username){
 if (username.ToLower().Contains("nick")){
 return new string[] { "All Nicks" };

role authorization ❘ 729

http://lib.ommolketab.ir
http//lib.ommolketab.ir

730 ❘ chaPter 33 clienT ApplicATion SerViceS

 }
 else{
 return new string[] { };
 }
}

Code snippet CustomRoles.cs

Vb

Public Class CustomRoles
 Inherits RoleProvider

 Public Overrides Function GetRolesForUser(ByVal username As String) As String()
 If username.ToLower.Contains("nick") Then
 Return New String() {"All Nicks"}
 Else
 Return New String() {}
 End If
 End Function

Code snippet CustomRoles.vb

You now have a custom role provider and have enabled role management. The only thing missing is
the glue that lets the role management service know to use your role provider. You provide this by
adding the following roleManager node to the <system.web> element in the web.config file:

 <roleManager enabled="true" defaultProvider="CustomRoles">
 <providers>
 <add name=" CustomRoles" type="AuthenticationServices.CustomRoles"/>
 </providers>
</roleManager>

Code snippet web.config

The last thing to do is to make use of this role information in your application. You do this by first
configuring your application with the URI to use for loading role information. On the Services tab
of the ClientServices project properties (shown in Figure 33-1), enter http://localhost:12345/
ApplicationServices. Next, you need to add a call to IsUserInRole to the Window_Loaded method:

c#

private void Window_Loaded(object sender, RoutedEventArgs e){
 if (Membership.ValidateUser(null, null))
 { // Commented out for brevity.
 }
 if (Roles.IsUserInRole("All Nicks")){
 MessageBox.Show("User is a Nick, so should have Admin rights.");
 }
}

Code snippet MainWindow.cs

http://localhost:12345/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

Private Sub Window_Loaded(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded
 If Membership.ValidateUser(Nothing, Nothing) Then
 '. Commented out for brevity .
 End If
 If Roles.IsUserInRole("All Nicks") Then
 MessageBox.Show("User is a Nick, so should have Admin rights.")
 End If
End Sub

Code snippet MainWindow.vb

To see your custom role provider in action, set a breakpoint in the GetRolesForUser method.
For this breakpoint to be hit, you have to have both the client application and the web application
running in debug mode. To do this, right-click the Solution node in the Solution Explorer
window and select Properties. From the Startup Project node, select Multiple Startup Projects
and set the action of both projects to start. Now when you run the solution, you will see that the
GetRolesForUser method is called with the Windows credentials of the current user, as part of the
validation of the user.

user authentication

In some organizations it would be possible to use Windows authentication for all user validation.
Unfortunately, in many cases this is not possible, and application developers have to come up with
their own solutions for determining which users should be able to access a system. This process
is loosely referred to as forms-based authentication, because it typically requires the provision
of a username and password combination via a login form of some description. Both ASP.NET
Application Services and the client application services support forms-based authentication as an
alternative to Windows authentication.

To begin with, you will need to enable the membership management service for access by the
client application services. Adding the <authenticationService> element to the <system
.web.extensions> element in the web.config file does this. Note that we have disabled the
SSL requirement, which is clearly against all security best practices and not recommended for
production systems.

 <system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true" requireSSL="false"/>
 <roleService enabled="true"/>

Code snippet web.config

The next step is to create a custom membership provider that will determine whether a specific
username and password combination is valid for the application. To do this, add a new class,
CustomAuthentication, to the ApplicationServices application and set it to inherit from the

User authentication ❘ 731

http://lib.ommolketab.ir
http//lib.ommolketab.ir

732 ❘ chaPter 33 clienT ApplicATion SerViceS

MembershipProvider class. As with the role provider you created earlier, you are just going to
provide a minimal implementation that validates credentials by ensuring the password is the reverse
of the supplied username, and that the username is in a predefined list.

c#

public class CustomAuthentication : MembershipProvider{
 private string[] mValidUsers = { "Nick" };

 public override bool ValidateUser(string username, string password)
 {
 var reversed = new string(password.Reverse().ToArray());
 return (from user in mValidUsers
 where string.Compare(user, username, true) == 0 &&
 user == reversed
 select user).Count() > 0;
 }
 // The rest of the implementation has been omitted for brevity
}

Code snippet CustomAuthentication.cs

Vb

Public Class CustomAuthentication
 Inherits MembershipProvider
 Private mValidUsers As String() = {"Nick"}

 Public Overrides Function ValidateUser(ByVal username As String,
 ByVal password As String) As Boolean
 Dim reversed As String = New String(password.Reverse.ToArray)
 Return (From user In mValidUsers
 Where String.Compare(user, username, True) = 0 And
 user = reversed).Count > 0
 End

 'The rest of the implementation has been omitted for brevity
End Class

Code snippet CustomAuthentication.vb

As with the role provider you created, you will also need to inform the membership management
system that it should use the membership provider you have created. You do this by adding the
following snippet to the <system.web> element in the web.config file:

<membership defaultProvider="CustomAuthentication">
 <providers>
 <add name="CustomAuthentication"
 type="ApplicationServices.CustomAuthentication"/>
 </providers>
</membership>
<authentication mode="Forms"/>

Code snippet web.config

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Back on the client application, only minimal changes are required to take advantage of the changes
to the authentication system. On the Services tab of the project properties designer, select Use Forms
Authentication. This enables both the Authentication Service Location textbox and the Optional:
Credentials Provider textbox. For the time being, just specify the authentication service location as
http://localhost:12345/ApplicationServices.

Previously, using Windows authentication, you performed the call to ValidateUser to initiate the
client application services by supplying Nothing as each of the two arguments. You did this because
the user credentials could be automatically determined from the current user context in which the
application was running. Unfortunately, this is not possible for Forms authentication, so you need to
supply a username and password:

c#

private void Window_Loaded(object sender, RoutedEventArgs e){
 if (Membership.ValidateUser("Nick", "kciN")){
 MessageBox.Show("User is valid");

Code snippet MainWindow.cs

Vb

Private Sub Window_Loaded(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles Me.Loaded
 If Membership.ValidateUser("Nick", "kciN") Then
 MessageBox.Show("User is valid")

Code snippet MainWindow.vb

If you specify a breakpoint in the ValidateUser method in the ApplicationServices project, you will
see that when you run this solution the server is contacted in order to validate the user. You see later
that this information can then be cached locally to facilitate offline user validation.

settinGs

In the .NET Framework v2.0, the concept of settings with a User scope was introduced to allow
per-user information to be stored between application sessions. For example, window positioning
or theme information might have been stored as a user setting. Unfortunately, there was no way to
centrally manage this information. Meanwhile, ASP.NET Application Services had the notion of
profile information, which was essentially per-user information, tracked on a server, that could be
used by web applications. Naturally, with the introduction of the client application services, it made
sense to combine these ideas to allow settings to be saved via the Web. These settings have a scope
of User (Web).

As with the membership and role services, you need to enable the profile service for access by the
client application services. You do this by adding the <profileService> element to the <system
.web.extensions> element in the web.config file:

settings ❘ 733

http://localhost:12345/ApplicationServices
http://lib.ommolketab.ir
http//lib.ommolketab.ir

734 ❘ chaPter 33 clienT ApplicATion SerViceS

<system.web.extensions>
 <scripting>
 <webServices>
 <profileService enabled="true"
 readAccessProperties="Nickname"
 writeAccessProperties="Nickname" />
 <authenticationService enabled="true" requireSSL="false"/>

Code snippet web.config

Following the previous examples, you will build a custom profile provider that uses an in-memory
dictionary to store user nicknames. Note that this isn’t a good way to track profile information,
because it would be lost every time the web server recycled and would not scale out to multiple
web servers. Nevertheless, you need to add a new class, CustomProfile, to the ApplicationServices
project and set it to inherit from ProfileProvider.

c#

using System.Web.Profile;
using System.Configuration;
public class CustomProfile : ProfileProvider{
 private Dictionary<string, string> nicknames =
 new Dictionary<string, string>();

 public override System.Configuration.SettingsPropertyValueCollection
 GetPropertyValues(System.Configuration.SettingsContext context,
 System.Configuration.SettingsPropertyCollection collection){
 var vals = new SettingsPropertyValueCollection();
 foreach (SettingsProperty setting in collection){
 var value = new SettingsPropertyValue(setting);
 if (nicknames.ContainsKey(setting.Name)) {
 value.PropertyValue = nicknames[setting.Name];
 }
 vals.Add(value);
 }
 return vals;
 }

 public override void SetPropertyValues(SettingsContext context,
 SettingsPropertyValueCollection collection){
 foreach (SettingsPropertyValue setting in collection){
 nicknames[setting.Name] = setting.PropertyValue.ToString();
 }
 }

 // The rest of the implementation has been omitted for brevity
}

Code snippet CustomProfile.cs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vb

Imports System.Configuration

Public Class CustomProfile
 Inherits ProfileProvider
 Private nicknames As New Dictionary(Of String, String)

 Public Overrides Function GetPropertyValues(ByVal context As SettingsContext,
 ByVal collection As SettingsPropertyCollection) _
 As SettingsPropertyValueCollection
 Dim vals As New SettingsPropertyValueCollection
 For Each setting As SettingsProperty In collection
 Dim value As New SettingsPropertyValue(setting)
 If nicknames.ContainsKey(setting.Name) Then
 value.PropertyValue = nicknames.Item(setting.Name)
 End If
 vals.Add(value)
 Next
 Return vals
 End Function

 Public Overrides Sub SetPropertyValues(ByVal context As SettingsContext,
 ByVal collection As SettingsPropertyValueCollection)
 For Each setting As SettingsPropertyValue In collection
 nicknames.Item(setting.Name) = setting.PropertyValue.ToString
 Next
 End Sub

 'The rest of the implementation has been omitted for brevity
End Class

Code snippet CustomProfile.vb

The difference with the profile service is that when you specify the provider to use in the <system
.web> element in the web.config file, you also need to declare what properties can be saved via
the profile service (see the following snippet). For these properties to be accessible via the client
application services, they must have a corresponding entry in the readAccessProperties and
writeAccessProperties attributes of the <profileService> element, shown earlier.

<profile enabled="true" defaultProvider="CustomProfile">
 <providers>
 <add name="CustomProfile" type="ApplicationServices.CustomProfile"/>
 </providers>
 <properties>
 <add name="Nickname" type="string"
 readOnly="false" defaultValue="{nickname}"
 serializeAs="String" allowAnonymous="false" />
 </properties>
</profile>

Code snippet web.config

settings ❘ 735

http://lib.ommolketab.ir
http//lib.ommolketab.ir

736 ❘ chaPter 33 clienT ApplicATion SerViceS

As an aside, the easiest way to build a full profile service is to use the utility aspnet_regsql.exe
(typically found at c:\Windows\Microsoft.NET\Framework\v4.0.21006\aspnet_regsql.exe) to
populate an existing SQL Server database with the appropriate table structure. You can then use the
built-in SqlProfileProvider (SqlMembershipProvider and SqlRoleProvider for membership
and role providers, respectively) to store and retrieve profile information. To use this provider,
change the profile element you added earlier to the following:

<profile enabled="true" defaultProvider="CustomProfile">
 <providers>
 <add name="SqlProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="SqlServices"
 applicationName="SampleApplication"
 description="SqlProfileProvider for SampleApplication" />

Note that the connectionStringName attribute needs to correspond to the name of a SQL Server
connection string located in the connectionStrings section of the web.config file.

To use the custom profile provider you have created, in the client application, you need to
specify the web settings service location on the Services tab of the project properties designer.
This location should be the same as for both the role and authentication services: http://
localhost:12345/ApplicationServices.

This is where the Visual Studio 2010 support for application settings is particularly useful. If you
now go to the Settings tab of the project properties designer and click the Load Web Settings button,
you are initially prompted for credential information, because you need to be a validated user to
access the profile service. Figure 33-3 shows this dialog with the appropriate credentials supplied.

After a valid set of credentials is entered, the profile service is interrogated and a new row is added to
the settings design surface, as shown in Figure 33-4. Here you can see that the scope of this setting is
indeed User (Web) and that the default value, specified in the web.config file, has been retrieved.

fiGure 33-3 fiGure 33-4

If you take a look at the app.config file for the client application, you will notice that a new
sectionGroup has been added to the configSections element. This simply declares the class that
will be used to process the custom section that has been added to support the new user settings.

http://localhost:12345/ApplicationServices
http://localhost:12345/ApplicationServices
http://lib.ommolketab.ir
http//lib.ommolketab.ir

<configSections>
 <sectionGroup name="userSettings"
 type="System.Configuration.UserSettingsGroup, System,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" >
 <section name="ClientServices.Properties.Settings"
 type="System.Configuration.ClientSettingsSection, System,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" allowExeDefinition=
 "MachineToLocalUser" requirePermission="false" />
 </sectionGroup>
 </configSections>

Toward the end of the app.config file, you will see the custom section that has been created. As you
would expect, the name of the setting is Nickname and the value corresponds to the default value
specified in the web.config file in the ApplicationServices project.

<userSettings>
 <ClientAppServicesVB.MySettings>
 <setting name="Nickname" serializeAs="String">
 <value>{nickname}</value>
 </setting>
 </ClientAppServicesVB.MySettings>
</userSettings>

To make use of this in code you can use the same syntax as for any other setting. Here you simply
retrieve the current value, request a new value, and then save this new value:

c#

private void Window_Loaded(object sender, RoutedEventArgs e){
 // Commented out for brevity
 MessageBox.Show(My.Settings.Nickname)
 Properties.Settings.Default.Nickname = "Not the default Name";
 My.Settings.Save()

Code snippet MainWindow.cs

Vb

Private Sub Window_Loaded(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles Me.Loaded
 ' Commented out for brevity
 MessageBox.Show(My.Settings.Nickname)
 My.Settings.Nickname = InputBox("Please specify a nickname:", "Nickname")
 My.Settings.Save()

Code snippet MainWindow.vb

If you run this application again, the nickname you supplied the first time will be returned.

settings ❘ 737

http://lib.ommolketab.ir
http//lib.ommolketab.ir

738 ❘ chaPter 33 clienT ApplicATion SerViceS

loGin forM

Earlier, when you were introduced to Forms authentication, you used a hard-coded username and
password to validate the user. Although it would be possible for the application to prompt the user
for credentials before calling ValidateUser with the supplied values, there is a better way that
uses the client application services framework. Instead of calling ValidateUser with a username/
password combination, you go back to supplying Nothing as the argument values and define a
credential provider; then the client application services will call the provider to determine the set of
credentials to use.

c#

 private void Window_Loaded(object sender, RoutedEventArgs e){
 if (Membership.ValidateUser(null, null)){
 MessageBox.Show("User is valid");

Code snippet MainWindow.cs

Vb

 Private Sub Window_Loaded(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles Me.Loaded
 If Membership.ValidateUser(Nothing, Nothing) Then
 MessageBox.Show("User is valid")

Code snippet MainWindow.vb

This probably sounds more complex than it is because it is relatively easy to create a credentials
provider. Start by adding a login form to the client application. Do this by selecting the Login Form
template from the Add New Item dialog and calling it LoginForm. Unfortunately, this template is
only available for VB developers as a Windows Forms form. If you want to create a WPF version
or are working in C# you will need to add a new Window to the ClientServices project and add a
TextBox (name it UsernameTextBox), a PasswordBox (name it PasswordTextBox), and two Buttons
(name them OK and Cancel). While you have the designer open, click the OK button and change the
DialogResult property to OK.

To use this login form as a credential provider, modify it to implement the
IClientFormsAuthenticationCredentialsProvider interface. An alternative strategy
would be to have a separate class that implements this interface and then displays the
login form when the GetCredentials method is called. The following code snippet
contains the code-behind file for the LoginForm class, showing the implementation of the
IClientFormsAuthenticationCredentialsProvider interface:

c#

using System.Web.ClientServices.Providers;
public partial class LoginForm : Window,
 IClientFormsAuthenticationCredentialsProvider {
 public LoginForm(){

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 InitializeComponent();
 }

 private void OK_Click(object sender, RoutedEventArgs e){
 this.DialogResult = true;
 this.Close();
 }

 private void Cancel_Click(object sender, RoutedEventArgs e){
 this.DialogResult = false;
 this.Close();
 }

 public ClientFormsAuthenticationCredentials GetCredentials(){
 if (this.ShowDialog() ?? false) {
 return new ClientFormsAuthenticationCredentials(
 UsernameTextBox.Text,
 PasswordTextBox.
 Password,
 false);
 }
 else{
 return null;
 }
 }
}

Code Snippet LoginForm.xaml.cs

 Vb

Imports System.Web.ClientServices.Providers

Public Class LoginForm
 Implements IClientFormsAuthenticationCredentialsProvider

 Public Function GetCredentials() As ClientFormsAuthenticationCredentials _
 Implements IClientFormsAuthenticationCredentialsProvider.GetCredentials
 If Me.ShowDialog() = Forms.DialogResult.OK Then
 Return New ClientFormsAuthenticationCredentials(UsernameTextBox.Text,
 PasswordTextBox.Text,
 False)
 Else
 Return Nothing
 End If
 End Function
End Class

Code snippet LoginForm.vb

You will notice that the C# and VB code snippets are quite different. This
is because the C# uses a new WPF window, while the VB snippet uses the
Windows Form Login Form template.

login form ❘ 739

http://lib.ommolketab.ir
http//lib.ommolketab.ir

740 ❘ chaPter 33 clienT ApplicATion SerViceS

As you can see from this snippet, the GetCredentials method returns
ClientFormsAuthenticationCredentials if credentials are supplied, or Nothing (VB)/null
(C#) if Cancel is clicked. Clearly this is only one way to collect credentials information, and there
is no requirement that you prompt the user for this information. (The use of dongles or employee
identification cards are common alternatives.)

With the credentials provider created, it is just a matter of informing the client application services
that they should use it. You do this via the Optional: Credentials Provider field on the Services tab
of the project properties designer, as shown in Figure 33-5.

Now when you run the application, you are prompted to enter a username and password to access
the application. This information is then passed to the membership provider on the server to
validate the user.

fiGure 33-5

offline suPPort

In the previous steps, if you had a breakpoint
in the role provider code on the server, you
may have noticed that it hit the breakpoint
only the first time you ran the application.
The reason for this is that it is caching the role
information offline. If you click the Advanced
button on the Services tab of the project
properties designer, you will see a number of
properties that can be adjusted to control this
offline behavior, as shown in Figure 33-6. fiGure 33-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It’s the role service cache timeout that determines how frequently the server is queried for role
information. Because this timeout determines the maximum period it will take for role changes
to be propagated to a connected client, it is important that you set this property according to how
frequently you expect role information to change. Clearly, if the application is running offline, the
changes will be retrieved the next time the application goes online (assuming the cache timeout has
been exceeded while the application is offline).

Clicking the Save Password Hash checkbox means that the application doesn’t have to be online for the
user to log in. The stored password hash is used only when the application is running in offline mode,
in contrast to the role information, for which the cache is queried unless the timeout has been exceeded.

Whether the application is online or offline is a property maintained by the client application
services, because it is completely independent of actual network or server availability. Depending on
your application, it might be appropriate to link the two as shown in the following example, where
offline status is set during application startup or when the network status changes. From the project
properties designer, click the View Application Events button on the Application tab (VB), or open
App.xaml and add an event handler for the Startup event. This displays a code file in which the
following code can be inserted:

c#

using System.Net.NetworkInformation;
public partial class App : Application{
 private void Application_Startup(object sender, StartupEventArgs e){
 NetworkChange.NetworkAvailabilityChanged +=
 new NetworkAvailabilityChangedEventHandler
 (NetworkChange_NetworkAvailabilityChanged);
 this.UpdateConnectivity();
 }

 private void NetworkChange_NetworkAvailabilityChanged(object sender,
 NetworkAvailabilityEventArgs e){
 this.UpdateConnectivity();
 }

 private void UpdateConnectivity(){
 System.Web.ClientServices.ConnectivityStatus.IsOffline =
 !System.Net.NetworkInformation.NetworkInterface.GetIsNetworkAvailable();
 }
}

Code snippet Application.xaml.cs

Vb

Class Application
 Private Sub MyApplication_Startup(ByVal sender As Object,
 ByVal e As System.Windows.StartupEventArgs) Handles Me.Startup
 AddHandler System.Net.NetworkInformation.NetworkChange.
 NetworkAvailabilityChanged, _
 AddressOf MyApplication_NetworkAvailabilityChanged
 UpdateConnectivity()
 End Sub

offline support ❘ 741

http://lib.ommolketab.ir
http//lib.ommolketab.ir

742 ❘ chaPter 33 clienT ApplicATion SerViceS

 Private Sub MyApplication_NetworkAvailabilityChanged(
 ByVal sender As Object,
 ByVal e As System.Net.NetworkInformation.NetworkAvailabilityEventArgs)
 UpdateConnectivity()
 End Sub

 Private Sub UpdateConnectivity()
 System.Web.ClientServices.ConnectivityStatus.IsOffline = Not _
 My.Computer.Network.IsAvailable()
 End Sub
End Class

Code snippet Application.xaml.vb

 You should note that this is a very rudimentary way of detecting whether an application is online,
and that most applications require more complex logic to determine if they are, in fact, connected.
The other thing to consider is that when the application comes back online, you may wish to
confi rm that the user information is still up to date using the RevalidateUser method on the
 ClientFormsIdentity object (only relevant to Forms authentication):

 c#

(System.Threading.Thread.CurrentPrincipal.Identity as
 System.Web.ClientServices.ClientFormsIdentity).RevalidateUser()

 Vb

CType(System.Threading.Thread.CurrentPrincipal.Identity,
 System.Web.ClientServices.ClientFormsIdentity).RevalidateUser()

 The last property in the Advanced dialog determines where the cached credential and role
information is stored. This checkbox has been enabled because we chose to use Windows
authentication earlier in the example. If you are using Forms authentication you can clear this
checkbox. The client application services will use .clientdata fi les to store per - user data under
the Application.UserAppDataPath , which is usually something like C:\Users\Nick\AppData\
Roaming\ClientServices\1.0.0.0 (this will differ on Windows XP). Using a custom connection
string enables you to use a SQL Server Compact Edition (SSCE) database fi le to store the credentials
information. This is required for offl ine support of Windows authentication.

 Unfortunately, the designer is limited in that it doesn ’ t enable you to specify any
existing connections you may have. If you modify the app.config fi le, you can
tweak the application to use the same connection.

 This might be a blessing in disguise, because the | SQL/CE | datasource property
(which is the default) actually lets the client application services manage the
 creation and setup of the SSCE database fi le (otherwise you have to ensure that
the appropriate tables exist).

 You will notice that the fi les that are created are .spf instead of the usual .sdf
fi le extension — they are still SSCE database fi les that you can explore with
Visual Studio 2010.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

suMMary

In this chapter, you have seen how the ASP.NET Application Services can be extended for use with
client applications. With built-in support for offline functionality, the client application services
enable you to build applications that can seamlessly move between online and offline modes.
Combined with the Microsoft ADO.NET Synchronization Services, they provide the necessary
infrastructure to build quite sophisticated occasionally connected applications.

summary ❘ 743

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

34
 synchronization services

 what ’ s in this chaPter?

 What an occasionally connected application is and why you would ➤

build an application that way

 Wiring up Synchronization Services to build an occasionally ➤

connected application

 Separating Synchronization Services across multiple tiers ➤

 Performing both single and bi - directional synchronization ➤

 Application design has gone through many extremes, ranging from standalone applications
that don ’ t share data, to public web applications in which everyone connects to the same
data store. More recently, we have seen a fl urry of peer - to - peer applications in which
information is shared between nodes but no central data store exists. In the enterprise
space, key buzzwords such as Software as a Service (SaaS) and Software and Services (S + S)
highlight the transition from centralized data stores, through an era of outsourced data and
application services, toward a hybrid model where data and services are combined within a
rich application.

 One of the reasons organizations have leaned toward web applications in the past has
been the need to rationalize their data into a single central repository. Although rich client
applications can work well across a low - latency network using the same data repository,
they quickly become unusable if every action requires data to be communicated between the
client and server over a slow public network. To reduce this latency, an alternative strategy
is to synchronize a portion of the data repository to the client machine and to make local
data requests. This will not only improve performance, because all the data requests happen
locally, but it will also reduce the load on the server. In this chapter, you discover how
building applications that are only occasionally connected can help you deliver rich and
responsive applications using the Microsoft Synchronization Services for ADO.NET.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

746 ❘ chaPter 34 SynchronizATion SerViceS

occasionally connected aPPlications

An occasionally connected application is one that can continue to operate regardless of connectivity
status. You have a number of different ways to access data when the application is offline. Passive
systems simply cache data that is accessed from the server, so that when the connection is lost
at least a subset of the information is available. Unfortunately, this strategy means that a very
limited set of data is available and is really only suitable for scenarios where there is an unstable
or unreliable connection, rather than completely disconnected applications. In the latter case, an
active system that synchronizes data to the local system is required. The Microsoft Synchronization
Services for ADO.NET (Sync Services) is a synchronization framework that dramatically simplifies
the problem of synchronizing data from any server to the local system.

serVer direct

To get familiar with the Sync Services, you will use a simple database that consists of a single table
that tracks customers. You can create this using the Server Explorer within Visual Studio 2010.
Right-click the Data Connections node and select Create New SQL Server Database from the
shortcut menu. Figure 34-1 shows the Create New SQL Server Database dialog in which you can
specify a server and a name for the new database.

When you click OK, a database with the name CRM is added to the SQL Server Express instance
and a data connection is added to the Data Connections node in the Server Explorer. From the
Tables node, under the newly created data connection, select Add New Table from the right-click
shortcut menu and create columns for CustomerId (primary key), Name, Email, and Phone so that
the table matches what is shown in Figure 34-2.

fiGure 34-1 fiGure 34-2

Now that you have a simple database to work with, it’s time to create a new Windows Forms
Application. In this case the application is titled QuickCRM, and in the Solution Explorer tool
window of Figure 34-3 you can see that we have renamed Form1 to MainForm and added two
additional forms, ServerForm and LocalForm.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

fiGure 34-3

MainForm has two buttons, as shown in the editor area of Figure 34-3, and has the following code
to launch the appropriate forms:

Vb

Public Class MainForm
 Private Sub ServerButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles ServerButton.Click
 My.Forms.ServerForm.Show()
 End Sub

 Private Sub LocalButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles LocalButton.Click
 My.Forms.LocalForm.Show()
 End Sub
End Class

Code snippet MainForm.vb

c#

public partial class MainForm : Form {
 public MainForm(){
 InitializeComponent();
 }

 private void ServerButton_Click(object sender, EventArgs e){
 (new ServerForm()).ShowDialog();
 }
 private void LocalButton_Click(object sender, EventArgs e){
 (new LocalForm()).ShowDialog();
 }
}

Code snippet MainForm.cs

Before looking at how you can use Sync Services to work with local data, take a look at how
you might have built an always-connected, or server-bound, version. From the Data menu, select

server Direct ❘ 747

http://lib.ommolketab.ir
http//lib.ommolketab.ir

748 ❘ chaPter 34 SynchronizATion SerViceS

Add New Data Source and step through the Data Source Configuration Wizard, selecting the
DataSet option, followed by the CRM database created earlier, saving the connection string to
the application configuration file, and adding the Customer table to the CRMDataSet.

Open the ServerForm designer by double-
clicking it in the Solution Explorer tool
window. If the Data Sources tool window is
not already visible, select Show Data Sources
from the Data menu. Using the drop-down
on the Customer node, select Details and
then select None from the CustomerId node.
Dragging the Customer node across onto the
design surface of the ServerForm adds
the appropriate controls so that you can
locate, edit, and save records to the Customer
table of the CRM database, as shown in
Figure 34-4.

You will recall from the table definition that the CustomerId can’t be null, so you need to ensure
that any new records are created with a new ID. To do this you tap into the CurrentChanged event
on the CustomerBindingSource object. You can access this either directly in the code-behind of
the ServerForm or by selecting CustomerBindingSource and finding the CurrentChanged event
in the Properties tool window.

Vb

Private Sub CustomerBindingSource_CurrentChanged _
 (ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles CustomerBindingSource.CurrentChanged
 If Me.CustomerBindingSource.Current Is Nothing Then
 Return
 End If

 Dim c As CRMDataSet.CustomerRow = CType(CType(Me.CustomerBindingSource.Current,
 DataRowView).Row,CRMDataSet.CustomerRow)
 If c.RowState = DataRowState.Detached Then
 c.CustomerId = Guid.NewGuid
 End If
End Sub

Code snippet ServerForm.vb

c#

private void customerBindingSource_CurrentChanged(object sender, EventArgs e){
 if (this.customerBindingSource.Current == null){
 return;
 }

 var c = (this.customerBindingSource.Current as DataRowView)
 .Row as CRMDataSet.CustomerRow;

fiGure 34-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (c.RowState == DataRowState.Detached){
 c.CustomerId = Guid.NewGuid();
 }
}

Code snippet ServerForm.cs

This completes the part of the application that connects directly to the database to access the data.
You can run the application and verify that you can access data while the database is online. If the
database goes offline or the connection is lost, an exception is raised by the application when you
attempt to retrieve from the database or save new changes.

GettinG started with synchronization serVices

To get started with Sync Services you need to add a Local Database Cache item to your project. In
the past you would have done this via the Add New Item dialog. However, in Visual Studio 2010
you can do this using the same process as you
would for adding a data source that connects
to a SQL Server database. Run the Data
Source Configuration Wizard by selecting
Add New Data Source from either the Data
Sources tool window or the Data menu. Step
through the wizard specifying the connection
string and selecting the Customer table. On
what would normally be the final screen,
where you specify the name of the dataset to
be created, check the Enable Local Database
Caching box, as shown in Figure 34-5.

Now when you select Next you are presented
with a new step in the wizard that allows you
to configure the way that data is synchronized
between the server and your local database
cache. In Figure 34-6 you can see that for
each table you can toggle the synchronization
mode between Incremental and Snapshot.
The former is better for tables that contain
a large quantity of data that changes
frequently; the latter is for tables that contain
small reference sets that change infrequently
and don’t require change tracking.

The other option presented in Figure 34-6 is whether to enable SQL Server change tracking. Sync
Services relies on being able to track changes to the data in order to synchronize those changes
between the server and the client. Out of the box it supports two mechanisms for doing this. You
can either enable change tracking, in which case changes on the server are automatically tracked by
the SQL Server database, or you can configure Sync Services to track changes within your database

fiGure 34-5

fiGure 34-6

Getting started with synchronization services ❘ 749

http://lib.ommolketab.ir
http//lib.ommolketab.ir

750 ❘ chaPter 34 SynchronizATion SerViceS

tables. The former is only available with SQL Server 2008, and the latter requires additional fields,
triggers, and tables in order to provide equivalent change tracking capabilities. If you are going to be
deploying the database to SQL Server 2008, it is recommended that you enable change tracking.

When you click Finish you are prompted to confirm that you want to apply the server changes
immediately (Figure 34-7). If you’re working on a database shared by others, you may want
to review the generated scripts before allowing them to execute. For this example leave both
checkboxes checked, which will create the database scripts (including undo scripts) and add them
to your project, as well as execute them on the server database, to either enable change tracking
or to create the additional change tracking columns, triggers, and tables.

Clicking OK both persists this configuration in the form of synchronization classes and invokes a
synchronization between the server and the local data file, as shown in Figure 34-8.

fiGure 34-8fiGure 34-7

fiGure 34-9

Forcing synchronization at this point means that the newly created SQL Server Compact (SSC)
database file is populated with the correct schema and any data available on the server. The
LocalCRMDataSet is also added to your project.

If you now look at the Data Sources tool window, you will see that there is a LocalCRMDataSet
node that contains a Customer node. As you did previously, set the Customer node to Details and
the CustomerId node to None. Then drag the Customer node across onto the designer surface of the
LocalForm. The result should be a form similar to the one shown in Figure 34-9.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding these components brings the same components to the design surface and the same code
to the form as when you were connecting directly to the server. The difference here is that a
CustomerTableAdapter connects to the local database instead of the server. As before, you need
to add the code to specify the CustomerId for new records in the CurrentChanged event of the
CustomerBindingSource.

The last thing you need to add to this part of the project is a mechanism to invoke the synchronization
process. Simply add a button, SynchronizeButton, to the bottom of the LocalForm and double-click
it to generate the click-event handler. Then add the following code to trigger a synchronization.

Vb

Private Sub SynchronizeButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs)
 Handles SynchronizeButton.Click
 Dim syncAgent As New CRMCacheSyncAgent()
 Dim syncStats As Microsoft.Synchronization.Data.SyncStatistics =
 syncAgent.Synchronize()

 Me.CustomerTableAdapter.Fill(Me.LocalCRMDataSet.Customer)
End Sub

Code snippet LocalForm.vb

c#

private void SynchronizeButton_Click(object sender, EventArgs e){
 var syncAgent = new CRMCacheSyncAgent();
 var syncStats = syncAgent.Synchronize();

 this.customerTableAdapter.Fill(this.localCRMDataSet.Customer);
}

Code snippet LocalForm.cs

Pay particular attention to the next-to-last line of this snippet, in which you use the
CustomerTableAdapter to fill the Customer table. This is important: without this line the user
interface will not reflect changes in the SSC database that have been made by the synchronization
process.

synchronization serVices oVer n-tiers

So far, the entire synchronization process is conducted within the client application with a direct
connection to the server. One of the objectives of an occasionally connected application is to be
able to synchronize data over any connection, regardless of whether it is a corporate intranet or the
public Internet. Unfortunately, with the current application you need to expose your SQL Server so
that the application can connect to it. This is clearly a security vulnerability, which you can solve by
taking a more distributed approach. Sync Services has been designed with this in mind, allowing the
server components to be isolated into a service that can be called during synchronization.

synchronization services over n-Tiers ❘ 751

http://lib.ommolketab.ir
http//lib.ommolketab.ir

752 ❘ chaPter 34 SynchronizATion SerViceS

Sync Services supports separating the synchronization process so that the client application
communicates via a WCF service, instead of directly to the server database. To do this, you need to
create a WCF service that implements the four methods that makes up Sync Service, as shown in the
following IServiceCRMCacheSyncContract interface.

Vb

<ServiceContractAttribute()> _
Public Interface IServiceCRMCacheSyncContract
 <OperationContract()> _
 Function ApplyChanges(ByVal groupMetadata As SyncGroupMetadata, _
 ByVal dataSet As DataSet, _
 ByVal syncSession As SyncSession) As SyncContext
 <OperationContract()> _
 Function GetChanges(ByVal groupMetadata As SyncGroupMetadata, _
 ByVal syncSession As SyncSession) As SyncContext
 <OperationContract()> _
 Function GetSchema(ByVal tableNames As Collection(Of String), _
 ByVal syncSession As SyncSession) As SyncSchema
 <OperationContract()> _
 Function GetServerInfo(ByVal syncSession As SyncSession) As SyncServerInfo
End Interface

The WCF Service essentially acts as a remote proxy for the server provider used by Sync Service. To use
the WCF Service, you first need to add it to the client project using Add Service Reference (right-click
your project and select this option from the context menu). Then you need to set the Remote Provider
on the Sync Agent to be a new instance of the ServerSyncProviderProxy. The constructor for the
ServerSyncProviderProxy class takes a single parameter which should be the proxy class that was
generated for the WCF Service using Add Service Reference. Now, when you call Synchronize, Sync
Services will use the Remote Provider to call the methods on the WCF Service. The WCF Service will in
turn communicate with the server database carrying out the synchronization logic.

backGround synchronization

You may have noticed that when you click the synchronize button, the user interface appears to
hang until the synchronization completes. Clearly this wouldn’t be acceptable in a real-world
application, so you need to synchronize the data in the background, thereby allowing the user to
continue working. By adding a BackgroundWorker component (in the Components group in the
Toolbox) to the LocalForm, you can do this with only minimal changes to your application. The
following code illustrates how you can wire up the events of the BackgroundWorker, which has been
named bgWorker, to use the Sync Service implementation. This makes use of an additional button,
SynchronizeInBackgroundButton, that was added to the LocalForm:

Vb

Private Sub SynchronizeInBackgroundButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles SynchronizeInBackgroundButton.Click
 Me.SynchronizeButton.Enabled = False
 Me.SynchronizeInBackgroundButton.Enabled = False

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Me.bgWorker.RunWorkerAsync(New CRMCacheSyncAgent())
End Sub

Private Sub bgWorker_DoWork(ByVal sender As System.Object,
 ByVal e As System.ComponentModel.DoWorkEventArgs) _
 Handles bgWorker.DoWork
 Dim syncAgent As Microsoft.Synchronization.SyncAgent =
 TryCast(e.Argument, Microsoft.Synchronization.SyncAgent)
 If syncAgent Is Nothing Then Return
 syncAgent.Synchronize()
End Sub

Private Sub bgWorker_RunWorkerCompleted(ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _
 Handles bgWorker.RunWorkerCompleted
 Me.CustomerTableAdapter.Fill(Me.LocalCRMDataSet.Customer)

 Me.SynchronizeInBackgroundButton.Enabled = True
 Me.SynchronizeButton.Enabled = True
End Sub

Code snippet LocalForm.vb

c#

private void SynchronizeInBackgroundButton_Click(object sender, EventArgs e){
 this.SynchronizeButton.Enabled =false;
 this.SynchronizeInBackgroundButton.Enabled = false;
 this.bgWorker.RunWorkerAsync(new CRMCacheSyncAgent());
}

private void bgWorker_DoWork(object sender, DoWorkEventArgs e){
 var syncAgent = e.Argument as Microsoft.Synchronization.SyncAgent;
 if (syncAgent == null) return;
 syncAgent.Synchronize();
}

private void bgWorker_RunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e){
 this.customerTableAdapter.Fill(this.localCRMDataSet.Customer);

 this.SynchronizeInBackgroundButton.Enabled = true;
 this.SynchronizeButton.Enabled = true;
}

Code snippet LocalForm.cs

In this snippet you are not reporting any progress, but Sync Services does support quite a rich event
model that you can hook into in order to report on progress. If you want to report progress via the
BackgroundWorker component, you need to enable its WorkerReportsProgress property. The
following code illustrates how you can hook into the ApplyChanges event on the client component

Background synchronization ❘ 753

http://lib.ommolketab.ir
http//lib.ommolketab.ir

754 ❘ chaPter 34 SynchronizATion SerViceS

of Sync Services in order to report progress (in this case to a label called “SyncProgressLabel” added
to the form). Other events correspond to different points in the synchronization process.

Vb

Private Sub bgWorker_DoWork(ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.DoWorkEventArgs) _
 Handles bgWorker.DoWork
 Dim syncAgent As Microsoft.Synchronization.SyncAgent = _
 TryCast(e.Argument, Microsoft.Synchronization.SyncAgent)
 If syncAgent Is Nothing Then Return
 Dim clientProvider As _
 Microsoft.Synchronization.Data.SqlServerCe.SqlCeClientSyncProvider = _
 CType(syncAgent.LocalProvider, _
 Microsoft.Synchronization.Data.SqlServerCe.SqlCeClientSyncProvider)
 AddHandler clientProvider.SyncProgress, AddressOf SyncProgress
 syncAgent.Synchronize()
End Sub
Private Sub SyncProgress(ByVal sender As Object, _
 ByVal e As Microsoft.Synchronization.Data. SyncProgressEventArgs)
 Dim progress = 0
 If (e.GroupProgress.TotalChanges > 0) Then
 progress = (e.GroupProgress.TotalChanges -
 e.GroupProgress.TotalChangesPending) _
 * 100 / e.GroupProgress.TotalChanges
 End If
 Me.bgWorker.ReportProgress(progress, e.SyncStage.ToString())
End Sub

Private Sub bgWorker_ProgressChanged(ByVal sender As Object, _
 ByVal e As System.ComponentModel.ProgressChangedEventArgs) _
 Handles bgWorker.ProgressChanged
 Me.SyncProgressLabel.Text = e.UserState.ToString
End Sub

Code snippet LocalForm.vb

c#

private void bgWorker_DoWork(object sender, DoWorkEventArgs e){
 var syncAgent = e.Argument as Microsoft.Synchronization.SyncAgent;
 if (syncAgent == null) return;
 var clientProvider = syncAgent.LocalProvider as
 Microsoft.Synchronization.Data.SqlServerCe.SqlCeClientSyncProvider;
 clientProvider.SyncProgress += SyncProgress;

 syncAgent.Synchronize();
}

private void SyncProgress(object sender,
 Microsoft.Synchronization.Data.SyncProgressEventArgs e){
 var progress = 0;
 if(e.GroupProgress.TotalChanges>0){
 progress = (e.GroupProgress.TotalChanges -
 e.GroupProgress.TotalChangesPending)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 *100 /e.GroupProgress.TotalChanges;
 }
 this.bgWorker.ReportProgress(progress, e.SyncStage.ToString());
}

private void bgWorker_ProgressChanged(object sender, ProgressChangedEventArgs e){
 this.SyncProgressLabel.Text = e.UserState.ToString();
}

Code snippet LocalForm.cs

client chanGes

Working through the example so far, you may have been wondering why none of the changes you
have made on the client are being synchronized to the server. If you go back to Figure 34-6, you
will recall that you selected Incremental from the top drop-down, which might lead you to believe
that changes from both the client and server will be synchronized. This is not the case and it is the
wording above this control that gives it away. For whatever reason, this control only enables you to
select options pertaining to “Data to download.” To get changes to propagate in both directions,
you have to override the default behavior for each table that is going to be synchronized. Again,
right-click the CRMCache object in the Solution Explorer and select View Code. In the following
code, we have set the SyncDirection property of the CustomerSyncTable to be bidirectional. You
may also want to do this for the ServerCRMCache item so that both synchronization mechanisms
will allow changes to propagate between client and server.

Vb

Partial Public Class CRMCacheSyncAgent
 Partial Class CustomerS yncTable
 Private Sub OnInitialized()
 Me.SyncDirection = _
 Microsoft.Synchronization.Data.SyncDirection.Bidirectional
 End Sub
 End Class
End Class

CRMCache.vb

c#

partial class CRMCacheSyncAgent{
 partial class CustomerSyncTable{
 private void OnInitialized(){
 this.SyncDirection =
 Microsoft.Synchronization.Data.SyncDirection.Bidirectional;
 }
 }
}

CRMCache.cs

Client Changes ❘ 755

http://lib.ommolketab.ir
http//lib.ommolketab.ir

756 ❘ chaPter 34 SynchronizATion SerViceS

If you were synchronizing other tables, you would need to set SyncDirection on each of
the corresponding SyncTables. An alternative implementation would be to place this code in the
OnInitialized method of the SyncAgent itself, setting the SyncDirection on each sync table (for
example the CustomerSyncTable). Whichever way you choose, you still need to apply the
Bidirectional value to all tables you want to synchronize in both directions.

suMMary

In this chapter you have seen how to use the Microsoft Synchronization Services for ADO.NET to
build an occasionally connected application. While you have other considerations when building
such an application, such as how to detect network connectivity, you have seen how to perform
synchronization as a background task and how to separate the client and server components into
different application tiers. With this knowledge, you can begin to work with this new technology to
build richer applications that will continue to work regardless of where they are being used.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

35
 WCf ria services

 what ’ s in this chaPter?

 Understanding WCF RIA Services ➤

 Creating a domain service ➤

 Exposing data ➤

 Consuming WCF RIA Services in Silverlight ➤

 In Chapter 31 you saw how WCF provided a standardized means of communication in
a technology - agnostic manner. WCF RIA Services (commonly referred to as just RIA
Services) is a layer on top of WCF that provides a prescriptive pattern and framework for
designing data - driven applications that consume data from a server. WCF RIA Services
currently target Silverlight applications, but with a view to support additional presentation
technologies. This chapter looks at how to use RIA Services to create an end - to - end
Silverlight application.

 GettinG started

 RIA Services is currently most closely associated with and focused toward Silverlight for
the client platform, so you will start by creating a Silverlight project. You will fi nd
a Business Application template (as shown in Figure 35 - 1 under the Silverlight category),
which will create all the solution structure required to start with RIA Services
(a Silverlight project, an ASP.NET web application, and the RIA Services link between
the two).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

758 ❘ chaPter 35 WcF riA SerViceS

This creates a Silverlight project and an ASP.NET project —
with the structure of the ASP.NET project shown in
Figure 35-2.

The ASP.NET project already supports and implements some basic
functionality using the RIA Services pattern. You’ll note from
Figure 35-2 that there is a Services folder and a Models folder
in the project. The Services folder already contains two domain
services (AuthenticationService and UserRegistrationService) for
providing authentication and user registration operations to the
client. The Models folder contains two data classes (User and
RegistrationData) that are passed between the server and the
client. You will also find a Shared folder under the Models folder,
which has a file called User.shared.vb or User.shared.cs
that contains code to be shared between the server and the
client projects.

As demonstrated in Chapter 22, the Silverlight and the ASP.NET projects are linked together such
that the Silverlight application is copied to somewhere in the ASP.NET project when the project/
solution is compiled (configured in the project properties for the ASP.NET project). However, by
introducing RIA Services into the picture you will now have another link between the projects.
This link is configured in the project properties of the Silverlight project to select the ASP.NET
project that will be acting as the server that it will be communicating with, and from which project
the RIA Services build task will generate the code based on, as shown in Figure 35-3.

fiGure 35-1

fiGure 35-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This link will already be set up by using the Business Application project template; however, if you
have an existing Silverlight project or web application that you want to use RIA Services with
you can manually link the projects together by linking the Silverlight project to an ASP.NET
project with this option.

Now you are ready to start writing some code. The example you work through in this chapter
demonstrates some of the key concepts of the RIA Services pattern. Your aim will be to expose
customer data and operations from the server and make the data and operations accessible from
the client.

You will be using your Entity Framework model of the AdventureWorksLT database that you
created back in Chapter 29. It’s not necessary to pass entities from your model back and forth
between the server and the client, and in many cases it’s considered bad practice. The entities are
essentially a model of your data layer, which conceptually is not something that the presentation
layer should be exposed to. Whether or not you pass entities or POCO (Plain Old CLR Objects)
objects of your own design (referred to as presentation model types in RIA Services) back and
forth is a decision you will have to make, dependant on many factors. Using entities will make
development much faster, but will also be less flexible than using presentation model types. RIA
Services works just as well using presentation model types as it does with entities, despite more work
being involved in initially creating the Domain Services. Therefore, the best practice would be to use
presentation model types as the data transfer mechanism; however, we will focus on using entities in
this chapter because they provide the easiest means to get started.

fiGure 35-3

Getting started ❘ 759

http://lib.ommolketab.ir
http//lib.ommolketab.ir

760 ❘ chaPter 35 WcF riA SerViceS

 doMain serVices

 Now that you have your server and client projects connected via RIA Services, it ’ s time to
expose some data and operations from the server, which you will consume from your client at a
later point.

 Start by assuming that the Entity Framework model of the AdventureWorksLT database from
Chapter 29 has been added to your ASP.NET project (including adding the connection string that it
uses to the web.confi g fi le). If not, do so now.

 fiGure 35 - 4

 Ensure that you compile the ASP.NET project before continuing on to the
next step, otherwise the Domain Service Class Wizard will not display your
entity model in the available DataContexts/ObjectContexts drop - down list.

 To expose the customer data from your entity model you need to add a domain service to your
ASP.NET project. The best place in your project to add this service is under the Services folder.
Add a new item to this folder, and select Domain Service Class under the Web category as the item
template (as shown in Figure 35 - 4). You will be using this service to serve up customer data, so call
it CustomersService (.cs or .vb).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Clicking OK initiates the Domain Service Class
Wizard, shown in Figure 35 - 5.

 If it hasn ’ t automatically selected your Entity
Framework model for the AdventureWorksLT
database in the Available DataContexts/
ObjectContexts drop - down list, select it
now. All the entities from your entity model
will be displayed in the list. Here you can select
one or more entities that you want to expose from
your domain service. When you select an entity
the wizard creates a domain operation to return
a collection of that entity from the domain service.
If you select the Enable Editing option for an entity,
the wizard also creates Insert, Update, and Delete
domain operations for that entity on the domain
service.

 fiGure 35 - 5

 You should ensure that the Enable client access checkbox is checked. This will ensure that the
 EnableClientAccess attribute is applied to the service when it is created, which means that code
will be generated on the client by the RIA Services code generator to enable it to access the domain
service.

 You will note that there is also a Generate associated classes for metadata checkbox on the wizard.
Metadata classes enable you to add special attributes to properties on the data class being transferred
(such as how the entity should be created on the client, and data validation rules) without the need to
modify the source object (which is important when, for example, you regenerate your object ’ s code
with a code generator or an ORM). Instead, you can apply attributes to the properties in a metadata
class that correlate with the properties on the actual class, and these attributes will control how
the associated entity is created on the client, and apply other attributes (such as validation rules) to
the entity it creates on the client. You will fi nd a more thorough explanation of metadata classes in
Chapter 23 (Dynamic Data).

 It ’ s not essential to generate metadata classes for your entities, although it does provide a degree of
control over the data passed between the server and the client, so it is recommended that you create them.

 If you ’ re using POCO/presentation model types instead of Entity Framework
or LINQ - to - SQL types, you can select the < empty domain service class >
option from the Available DataContexts/ObjectContexts drop - down list and
implement the domain operations yourself.

Domain services ❘ 761

http://lib.ommolketab.ir
http//lib.ommolketab.ir

762 ❘ chaPter 35 WcF riA SerViceS

 Select the Customer entity, select the Enable Editing checkbox for it, and ensure both the Enable
client access and Generate associated classes for metadata checkboxes are selected. Clicking OK
creates the domain service and metadata classes for you.

 doMain oPerations

 Domain operations are operations on a domain service that can be called from the client. The types
of domain operations that exist in a domain service can each be considered to be a CRUD (Create,
Read, Update, Delete) operation, an invoke operation, or a custom operation.

 The names and/or the method signature of these operations are convention - based so RIA Services
can implicitly determine what type of operation it is and generate the correct corresponding
operation in the client project. If for some reason you don ’ t want to use the given conventions you
can decorate the operation (that is, the method) with an attribute to specify what type of operation
is being represented.

 Some people prefer to decorate their operations even when they follow the
naming/signature convention in order to explicitly defi ne what type of operation
is being represented.

 Let ’ s now take a look at what domain operations have been generated for you in your domain
service by the wizard, and what other types of operations you can create.

 query operations
 When you open the CustomersService (.cs or .vb) fi le you will see that the basic CRUD operations
have been implemented for your Customer entity. The default Read (aka Get or Query) operation returns
a collection of entities with the following method signature:

 Vb

Public Function GetCustomers() As IQueryable(Of Customer)

 c#

public IQueryable < Customer > GetCustomers()

 Note how the GetCustomers operation returns an IQueryable collection of the Customer entity.
This is one of the most powerful features of RIA Services, in that this feature enables you to write
a LINQ query on the client that can be used to fi lter and shape the entities that it wants returned.
This LINQ query is actually serialized and sent to the server before being executed. Where you will
see the power of this feature is when you try to implement fi ltering/paging/grouping/sorting on the
client. Instead of requiring a raft of complex operations on the server to implement these behaviors,
you only need the one simple operation that returns an IQueryable collection, and then a LINQ

http://lib.ommolketab.ir
http//lib.ommolketab.ir

query can be provided by the client to filter/shape the results on the server before returning them.
Alternatively, you can modify the Get operation and add your own parameters to it, which the
operation can use to filter and shape the results to return to the client.

insert/update/delete operations
The insert (also known as create), update, and delete operations are automatically called when you
submit a change set to the server (based on the actions taken upon the results of a query operation
on the client), and cannot be called explicitly from the client. These actions are covered later in the
chapter, but for now take a look at the operations that have been implemented for you automatically
by the Domain Service Class Wizard and how they are implemented. The operations that were
created for you have the following method signatures:

Vb

Public Sub InsertCustomer(ByVal customer As Customer)
Public Sub UpdateCustomer(ByVal currentCustomer As Customer)
Public Sub DeleteCustomer(ByVal customer As Customer)

c#

public void InsertCustomer(Customer customer)
public void UpdateCustomer(Customer currentCustomer)
public void DeleteCustomer(Customer customer)

Each of these accepts an entity of the given type, and performs the appropriate server-side action
on that entity. They each have a convention for its naming, they must not return a value, and
their method signature must accept an entity as the only parameter. The naming convention and
alternative attribute is as follows:

The method name of insert operations must start with Insert, Create, or Add. Otherwise, ➤

apply the Insert attribute to the method.

The method name of update operations must start with Update, Change, or Modify. ➤

Otherwise, apply the Update attribute to the method.

The method name of delete operations must start with Delete or Remove. Otherwise, apply ➤

the Delete attribute to the method.

other operation types
Other types of operations supported by RIA Services (but not fully detailed here) are as follows:

An invoke operation is essentially the same as a service operation in a standard WCF Service ➤

(that is, a method exposed by the service). Invoke operations are created as methods on the
domain context on the client, and are called immediately (that is, they aren’t queued until
changes are submitted to the server).

A custom operation is one that is called at any time on the client, but whose execution is ➤

deferred on the server until a changeset is submitted. Custom operations act upon entities,
and are actually created as methods on their associated entities on the client in addition to
being created as methods on the domain context that is generated for the domain service.

Domain operations ❘ 763

http://lib.ommolketab.ir
http//lib.ommolketab.ir

764 ❘ chaPter 35 WcF riA SerViceS

 consuMinG a doMain serVice in silVerliGht

 Before you look at actually consuming a domain service in
the Silverlight project, take a look at what RIA Services has
generated for you. As mentioned earlier in the chapter, RIA
Services automatically generates code in the Silverlight project
to communicate with the server. This code is generated in
a folder called Generated_Code, which is not added to the
project, but can be seen if you select the Silverlight project in
the Solution Explorer and click the Show All Files
button. Code is generated by RIA Services in fi les under
this folder (as shown in Figure 35 - 6), with the primary code
generated fi le being < web project name > .g.vb (or .cs).
For example, for the sample project, the primary code gen
fi le is Chapter35Sample.Web.g.vb (or .cs).

 You can open this fi le to inspect its contents and see what
the code generator has created for you. Of particular interest, you will note that the entities
(or presentation model classes) exposed by domain services in the web project will have a
corresponding class generated in this fi le (decorated with attributes from the metadata classes or
the classes themselves). You will also fi nd that for each domain service on the client there will be a
corresponding domain context class created, which handles communicating with the domain service
from the client. The operations exposed by a domain service will be created on the corresponding
domain context, and you call the operations on the domain context instead of attempting to
reference the domain service itself.

 fiGure 35 - 6

 Note that corresponding operations for the Insert/Update/Delete operations
on the domain service are not created on the domain context, because these
operations are managed by the changeset. Changes made to a collection of
entities retrieved from the server via a query operation are handled by the RIA
Services framework in a changeset, and when SubmitChanges is called on the
domain context, the framework will handle calling the Insert/Update/Delete
operations on the domain service as required.

 If you follow standard RIA Services naming conventions, a domain service called CustomersService
in the web project will result in a corresponding domain context in the Silverlight project called
CustomersContext.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now, attempt to populate a data grid with a list of customers retrieved from the server. You have
two primary means of doing so: either using a declarative XAML-based approach or a code-based
approach. The XAML-based approach is the easiest way to get started, so
this section will use that approach.

The easiest way to get started with the XAML-based approach is to simply
use the Data Sources window (as detailed in Chapter 18), and drag and
drop an entity exposed by a domain context from this window and onto
your page. You will find that a data source has already been created in your
project for each data context created by the RIA Services code generator (as
shown in Figure 35-7), so you don’t need to worry about creating the data
sources yourself.

For this example you will be consuming the CustomersService that exposes the Customer entities
from the Entity Framework model on the server, so drag and drop the Customer entity (from the
CustomersContext data source, that is, the selected item in Figure 35-7) onto the page. This will
create a data grid with a column for each property on the entity. Now if you look at the XAML you
can see how it ties together:

<riaControls:DomainDataSource AutoLoad="True" QueryName="GetCustomersQuery"
 Name="CustomerDomainDataSource" Height="0" Width="0">
 <riaControls:DomainDataSource.DomainContext>
 <my:CustomersContext />
 </riaControls:DomainDataSource.DomainContext>
</riaControls:DomainDataSource>

<data:DataGrid AutoGenerateColumns="False" Height="250"
 ItemsSource="{Binding ElementName=CustomerDomainDataSource, Path=Data}"
 Name="CustomerDataGrid" RowDetailsVisibilityMode="VisibleWhenSelected">
 <data:DataGrid.Columns>
 <!--This code has been removed for purposes of brevity-->
 </data:DataGrid.Columns>
</data:DataGrid>

The DomainDataSource control being used is a part of the RIA Services framework, and provides
the bridge to declaratively access the domain context in XAML. The DomainDataSource control
is specifying that it should use the CustomersContext (which corresponds to the CustomersService on
the server) as its domain context, and that the query operation that should be called on this domain
context is GetCustomersQuery. The AutoLoad property on the DomainDataSource control is set
to True, meaning this query will be called as soon as the page is loaded. Finally, the ItemsSource
property is set on the data grid, where it uses element name binding to bind to the DomainDataSource
control and use that as its source of data.

Now you can run your project, and you will find that the data grid is automatically populated with
the results of the query from the server (as shown in Figure 35-8).

fiGure 35-7

Consuming a Domain service in silverlight ❘ 765

http://lib.ommolketab.ir
http//lib.ommolketab.ir

766 ❘ chaPter 35 WcF riA SerViceS

As discussed previously, the advantage of returning an IQueryable from a domain service
operation is that RIA Services enables you to specify filtering, sorting, grouping, and paging
options — all of which will be performed on the server. This is also very easy to do in XAML
by specifying descriptors on the DomainDataSource — let’s take a look at performing each of
these in turn.

Add a textbox to the page that will automatically filter the customers by the company name, and
call it searchTextBox. Now you can add a filter descriptor to the DomainDataSource that specifies
the name of the property to filter (PropertyPath) and the operator specifying how the matching
will be done (Operator). You can then add a ControlParameter to the filter descriptor, which links
to the textbox (by providing the name of the textbox), uses the text in the textbox as the search
criteria (by providing the name of the property on the textbox to get the value from), and runs the
filter each time the text is changed (by providing the name of the event on the textbox that will
invoke the filtering when raised).

<riaControls:DomainDataSource AutoLoad=”True” QueryName=”GetCustomersQuery”
 Name=”CustomerDomainDataSource” Height=”0” Width=”0”>
 <riaControls:DomainDataSource.DomainContext>
 <my:CustomersContext />
 </riaControls:DomainDataSource.DomainContext>

 <riaControls:DomainDataSource.FilterDescriptors>
 <riaControls:FilterDescriptor PropertyPath=”CompanyName”
 Operator=”Contains”
 Value=”{Binding ElementName=searchTextBox, Path=Text}” />
 </riaControls:DomainDataSource.FilterDescriptors>
</riaControls:DomainDataSource>

Sorting is automatically handled by the data grid (click the column headers to sort by that column),
and if the results are paged it will automatically go back to the server to get the new page of results
according to the current page and sort criteria. You can, however, specify the initial sorting using
sort descriptors on the DomainDataSource, by providing the name of the property to sort on, and
the sort direction:

fiGure 35-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<riaControls:DomainDataSource AutoLoad=”True” QueryName=”GetCustomersQuery”
 Name=”CustomerDomainDataSource” Height=”0” Width=”0”>
 <riaControls:DomainDataSource.DomainContext>
 <my:CustomersContext />
 </riaControls:DomainDataSource.DomainContext>

 <riaControls:DomainDataSource.SortDescriptors>
 <riaControls:SortDescriptor PropertyPath=”CompanyName” Direction=”Ascending” />
 </riaControls:DomainDataSource.SortDescriptors>
</riaControls:DomainDataSource>

Grouping again is handled in a similar manner by providing group descriptors, and simply
providing the name of the property to group on:

<riaControls:DomainDataSource AutoLoad=”True” QueryName=”GetCustomersQuery”
 Name=”CustomerDomainDataSource” Height=”0” Width=”0”>
 <riaControls:DomainDataSource.DomainContext>
 <my:CustomersContext />
 </riaControls:DomainDataSource.DomainContext>

 <riaControls:DomainDataSource.GroupDescriptors>
 <riaControls:GroupDescriptor PropertyPath=”SalesPerson” />
 </riaControls:DomainDataSource.GroupDescriptors>
</riaControls:DomainDataSource>

Paging the data in the grid (to display, for example, 20 customers at a time) is easy with
the DataPager control. Add the control to your page, bind its Source property to the
DomainDataSource control, and provide its PageSize property with the number of items to be
displayed in the data grid:

<data:DataPager PageSize="20"
 Source="{Binding Data, ElementName=CustomerDomainDataSource}"/>

Note that the page size specifies how many items should be displayed in the grid, not how many items
should be retrieved from the server. If you just set the PageSize property the entire collection will still
be retrieved from the server and paged on the client instead. To retrieve just a single page of items
at a time and go back to the server to retrieve more items when navigating between pages, you will
need to set the LoadSize property on the DomainDataSource control. Generally, you will want to set
both properties to the same value. Now, it will retrieve and display a single page of items, and it will
request and display a new page of items from the server each time you navigate to a new page with the
DataPager control.

In the background, any changes you make to the data in the data grid (such as adding rows,
deleting rows, and updating values) will be tracked in a changeset by the RIA Services framework.
Submitting these changes back to the server is a case of calling the SubmitChanges() method on the
domain context. Add a button to the page called SubmitButton. In its Click event handler (in the
code-behind), add the following line of code:

Vb

CustomerDomainDataSource.SubmitChanges()

Consuming a Domain service in silverlight ❘ 767

http://lib.ommolketab.ir
http//lib.ommolketab.ir

768 ❘ chaPter 35 WcF riA SerViceS

 c#

CustomerDomainDataSource.SubmitChanges();

 Clicking the button will now submit any changes you ’ ve made back to the server.

 As you can see, RIA Services is an extremely powerful framework for managing data, greatly
simplifying functionality that was once complex to implement, and making it very quick and easy to
create very functional business applications.

 You can also reject any changes made using the RejectChanges() method on the
DomainDataSource control.

 The fi nal page that implements loading, fi ltering, sorting, grouping, paging, and saving the data is
shown in Figure 35 - 9.

 The DomainDataSource control makes it very easy to consume data from RIA
Services in a Silverlight application; however, at times you may wish to interact
with the domain service in code instead. This is possible by creating an instance
of the corresponding domain context and using the methods on it. However,
note that communication with the domain service is performed asynchronously,
requiring your code to be structured accordingly.

 fiGure 35 - 9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

suMMary

In this chapter you learned how WCF RIA Services can vastly simplify architecting and developing
an end-to-end data-driven Silverlight application, through its combination of prescriptive design
patterns, code generation, and feature-rich framework. RIA Services provides many more features
than described here, including decorating classes and their properties with attributes (such as
validation rules which RIA Services enforces), using metadata classes (i.e., classes associated with
the entities being passed between the server and the client that attributes can be applied to and
projected onto the associated entities such that the original entities don’t need to be modified),
sharing code between the server and the client, built-in authentication and security functionality,
and much more. However, this chapter should help you get started using RIA Services to provide a
means for communicating between your Silverlight application and the server.

summary ❘ 769

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PART VIII

confi guration and resources

chaPter 36: ⊲ Confi guration Files

chaPter 37: ⊲ Connection Strings

chaPter 38: ⊲ Resource Files

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

36
Confi guration files

 what ’ s in this chaPter?

 Understanding the .NET confi guration system ➤

 Using confi guration fi les within your application ➤

 Storing custom types in confi guration fi les ➤

 One of the challenges of building applications is adjusting the way the application functions
on the fl y without having to rebuild it. There ’ s a long history of applications using
confi guration fi les to control the way an application runs. .NET applications use a series of
XML confi guration fi les that can be adjusted to determine application behavior. This chapter
explores the structure of these confi guration fi les and demonstrates how you can store custom
information using a confi guration section handler.

 .confiG files

 The .NET Framework confi guration system consists of several confi guration fi les (discussed
in the following sections) that can be used to adjust one or more applications on a computer
system. Part of this system is an inheritance model that ensures that confi gurations can be
applied at the appropriate level. This model is such that sections defi ned in a confi guration
fi le at a lower level will override the same sections specifi ed in a fi le higher up the chain. If no
confi guration fi le defi nes a value or section, the default values are taken from the schema fi les
to which the confi guration fi les must adhere.

 Machine .confi g
 At the root of the inheritance model is the machine.config fi le (located in the systemroot \
Microsoft .NET\Framework\ versionNumber \CONFIG\ folder, or systemroot \Microsoft .NET\

http://lib.ommolketab.ir
http//lib.ommolketab.ir

774 ❘ chaPter 36 conFigurATion FileS

Framework64\ versionNumber \CONFIG\ for 64 - bit machines), which defi nes confi guration settings for
the entire system. All confi guration fi les inherit from this fi le and can override these settings.

 web .confi g
 Web applications are confi gured via the web.config fi le. This fi le can be located in a number of
locations, depending on the scope to which the settings need to be applied. To apply a confi guration
to all web applications on a machine, place the web.config fi le in the same directory as the
 machine.config fi le. In most cases the settings need to be applied at a much fi ner granularity. As
such, the web.config fi le can also be placed in any virtual directory or subdirectory to control web
applications at that level. If it is placed in the root folder for a web site, the confi guration will be
applied to all ASP.NET applications in that web site.

 A word of caution: When you are working with virtual directories that do not align with the
directory structure on the computer, it ’ s possible to have an application that has different
confi gurations depending on how it is referenced. For example, consider C:\inetpub\wwwroot\
MainApplication\Contacts\Contact.aspx , which has been set up with both MainApplication
and Contacts as virtual directories. You can reference the contact page as either:
http://localhost/MainApplication/Contacts/Contact.aspx

or:
http://localhost/Contacts/Contact.aspx

 In the fi rst case, the confi guration settings that are applied are inherited from the MainApplication
folder and may be overridden by a confi guration fi le in the Contacts folder. However, in the second
case, settings are applied only from the confi guration fi le within the Contacts folder.

 Making changes to a web.config fi le causes the ASP.NET application to be
restarted. This is quite an effective way to force a web application to fl ush its
cache and behave as if it were being accessed for the fi rst time, without having to
restart the entire server.

 app .confi g
 Windows applications can be confi gured via an application confi guration fi le, which also inherits from
 machine.config . Because the output assembly name is known only when an application is compiled,
this fi le starts off as app.config and is renamed to application .exe.config as part of the build
process. For example, an application with AccountingApplication.exe as the main executable
would have a confi guration fi le entitled AccountingApplication.exe.config . This confi guration
fi le is automatically loaded based on its name when the application is loaded. If an app.config fi les is
added to a dll, it will be renamed to assembly.dll.config during the build process.

http://localhost/MainApplication/Contacts/Contact.aspx
http://localhost/Contacts/Contact.aspx
http://lib.ommolketab.ir
http//lib.ommolketab.ir

security .config
In conjunction with the application configuration files are a number of security configuration files.
These also follow an inheritance path but across a different dimension. Instead of being application-
focused, the security configuration files are broken down into enterprise (Enterprisesec.config),
machine (Security.config), and user (Security.config). The enterprise- and machine-level files
are both stored in the same location as the machine.config file, whereas the user-level file is stored
under the user-specific application data folder.

applicationhost .config
IIS7 changes the way configuration information is stored to use a set of configuration files that
work in parallel with those for ASP.NET and the .NET Framework. Because IIS and the .NET
Framework are versioned independently, configuration information specific to the individual
technologies are held in the machine.config/web.config and the applicationHost.config
files, respectively. However, because there is an interrelationship between IIS and ASP.NET, the
applicationHost.config file does fit into the configuration file inheritance hierarchy. Because
the applicationHost.config file is specific to an instance of IIS, it fits into the inheritance
hierarchy after both the machine.config and web.config files located at the machine level (that
is, located in the systemroot\Microsoft .NET\Framework\versionNumber\CONFIG\ folder).

The applicationHost.config file can be found in the systemroot\System32\InetSrv\Config
folder, and the corresponding schema files can be found in the Schema subdirectory. There are also
administration.config and redirection.config files in this folder that are responsible for IIS
feature delegation and configuration file redirection, respectively.

confiGuration scheMa

A configuration file, whether it is a machine.config, a web.config, or an application
configuration file, needs to adhere to the same configuration schema that determines which
elements should be included. The schema is located at C:\Program Files\Microsoft Visual
Studio 10.0\Xml\Schemas\DotNetConfig.xsd (C:\Program Files (x86)\Microsoft
Visual Studio 10.0\Xml\Schemas\DotNetConfig.xsd on 64-bit machines) and is broken
down into a number of sections.

section: configurationsections
Configuration files can be customized to contain any structured XML data. In order to do this, you
must define a custom section in the configurationSections block within the configuration file.
This defines both the name of the configuration section and the class that is to be called in order to
process the section.

The configurationSections section in the machine.config file defines the handlers for each of
the standard configuration sections discussed here. You can define your own configuration sections
in your application configuration file so long as you specify which class will be used to validate and
process that section. For example, the following code snippet defines the section handler for the
ConfigurationApplication.My.MySettings configuration section, along with the corresponding

Configuration schema ❘ 775

http://lib.ommolketab.ir
http//lib.ommolketab.ir

776 ❘ chaPter 36 conFigurATion FileS

section. The schema of this section must correspond to what the System.Configuration
.ClientSettingsSection class expects, rather than the normal configuration file schema.

<configuration>
<configSections>
<section name="ConfigurationApplication.My.MySettings"
 type="System.Configuration.ClientSettingsSection,
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 requirePermission="false" />
</configSections>
.
<ConfigurationApplication.My.MySettings>
<setting name="PrimaryServer" serializeAs="String">
<value>www.builttoroam.com</value>
</setting>
</ConfigurationApplication.My.MySettings>
</configuration>

It is also possible to include configSections in a sectionGroup element that can be used to help
lay out configuration information. The preceding example can be extended as follows:

<configuration>
<configSections>
<sectionGroup name="applicationSettings"
 type="System.Configuration.ApplicationSettingsGroup,
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken= b77a5c561934e089" >
<section name="ConfigurationApplication.My.MySettings"
 type="System.Configuration.ClientSettingsSection,
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 requirePermission="false" />
<section name="ReferencedAssembly.My.MySettings"
 type="System.Configuration.ClientSettingsSection,
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 requirePermission="false" />
</sectionGroup>
</configSections>
.
<applicationSettings>
<ConfigurationApplication.My.MySettings>
<setting name="PrimaryServer" serializeAs="String">
<value>www.builttoroam.com</value>
</setting>
</ConfigurationApplication.My.MySettings>
<ReferencedAssembly.My.MySettings>
<setting name="SecondaryServer" serializeAs="String">
<value>www.peaksite.com</value>
</setting>
</ReferencedAssembly.My.MySettings>
</applicationSettings>
</configuration>

Where used, the configSections element must appear as the first child of the configuration
element.

http://www.builttoroam.com</value
http://www.builttoroam.com</value
http://www.peaksite.com</value
http://lib.ommolketab.ir
http//lib.ommolketab.ir

section: startup
The startup configuration section determines the version of the framework that is either required
(requiredRuntime) or supported (supportedRuntime) by the framework. By default, a .NET
application will attempt to execute using the same version of the framework on which it was built.
Any application being built with support for multiple versions of the framework should indicate this
with the supportedRuntime element, defining the most preferred framework version first:

<configuration>
<startup>
<supportedRuntime version="v4.0.20409"/>
<supportedRuntime version="v2.0.50727"/>
<supportedRuntime version="v1.1.4322"/>
</startup>
</configuration>

This configuration section would be used by an application that has been tested for versions 4.0,
2.0, and 1.1 of the .NET Framework. Anomalies were detected in the testing for version 1.0 of the
.NET Framework, so it has been omitted from the supportedRuntime list. The version number must
correspond exactly to the installation directory for that framework version (for example, version 4.0
of the .NET Framework typically installs to C:\WINDOWS\Microsoft.NET\Framework\v4.0.20409\).

section: runtime
Garbage collection is a feature of the .NET Framework that distinguishes it from non-managed
environments. The process of collecting and disposing of unreferenced objects is usually done in
parallel with the main application on a separate thread. This means that the user should not see
any performance issues as a result of this process being run. However, there may be circumstances
when this process should be run inline with the main application. The runtime section of the
configuration file can be used to provide limited control over how the .NET runtime engine operates.
Among other things, you can specify whether the garbage collection should be done concurrently
with the main application.

This section can also be used to specify a location in which to search for assemblies that may be
required by an application. This attribute can be useful if an application references assemblies that
are in a non-standard location. The following code illustrates the use of the codeBase attribute to
locate the ImportantAssembly.dll, as well as to dictate that garbage collection be done inline with
the main application thread:

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name="ImportantAssembly"
 publicKeyToken="32ab4ba45e0a69a1"
 culture="neutral" />
<codeBase version="2.0.0.0" href="./ImportantAssembly.dll"/>
</dependentAssembly>
</assemblyBinding>

Configuration schema ❘ 777

http://lib.ommolketab.ir
http//lib.ommolketab.ir

778 ❘ chaPter 36 conFigurATion FileS

<gcConcurrent enabled="false"/>
</runtime>
</configuration>

section: system .runtime .remoting
The remoting section of the configuration file can be used to specify information about remote
objects and channels required by the application. For example, the default HTTP channel can be
directed to listen to port 8080 by means of the following configuration snippet:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel port="8080" ref="http"/>
</channels>
</application>
</system.runtime.remoting>
</configuration>

section: system .net
Because of the current demand for more secure operating environments, organizations often use
proxies to monitor and protect traffic on their networks. This can often result in applications
not functioning correctly unless they have been configured to use the appropriate proxies. The
networking section of the configuration files can be used to adjust the proxy that an application
uses when making HTTP requests.

The .NET Framework ships with an SmtpClient class that can be used to send mail from within
an application. Obviously, doing this requires information such as the server and the credentials
to use when sending mail. Although such information can be hard-coded within an application, a
more flexible approach would be to specify it in a configuration file that can be adjusted when the
application is deployed. The following configuration snippet illustrates the use of the default proxy
(although it bypasses the proxy for local addresses and the DeveloperNews web site) and specifies
the default SMTP settings to be used by the SMTP client:

<configuration>
<system.net>
<defaultProxy>
<proxy usesystemdefaults="true"
 proxyaddress="http://192.168.200.222:3030"
 bypassonlocal="true" />
<bypasslist>
<add address="[a-z]+\.developernews\.com" />
</bypasslist>
</defaultProxy>
<mailSettings>
<smtp deliveryMethod="network">
<network host="smtp.developernews.com"
 port="25" defaultCredentials="true" />
</smtp>

http://192.168.200.222:3030
http://lib.ommolketab.ir
http//lib.ommolketab.ir

</mailSettings>
</system.net>
</configuration>

section: cryptographysettings
Although the .NET Framework contains base implementations for a number of cryptographic
algorithms, such as the hashing function, sometimes it is necessary to override these algorithms.
When this is required, the cryptographySettings section of the configuration file can be included
to remap existing algorithm names, or map new names, to another implementation class.

section: system .diagnostics
Debugging is always the hardest part of writing an application. It is made even more difficult when
the application is in production and the error cannot be replicated in the debugging environment. One
technique that is particularly important for debugging this type of error is to use trace statements:

Trace.WriteLine("The application made it this far before crashing.")

Both trace and debug statements work very similarly to events and event handlers. For the preceding
WriteLine statement to have any effect, an object must be listening for this WriteLine. This is
typically done by a TraceListener class. The framework supports a number of default trace listeners
that can be wired up to the application via the diagnostics section of the configuration file, as shown
in the following section in which an EventLog trace listener has been attached to the application:

<configuration>
<system.diagnostics>
<trace autoflush="true" indentsize="0">
<listeners>
<add name="MyEventListener"
type="System.Diagnostics.EventLogTraceListener, system,
version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
initializeData="DeveloperApplicationEventLog"/>
</listeners>
</trace>
</system.diagnostics>
</configuration>

The initializeData attribute specifies a text string to be passed into the constructor for the trace
listener. In the case of the event-log listener, this text corresponds to the name of the event log into
which trace statements will be inserted.

Other elements can also be added to the diagnostics section of the configuration file — for example,
to determine the level of trace logging to perform, which will determine how verbose the trace
messages are; or to control whether or not the debug assertion dialog is displayed for an application.

section: system .web
The system.web section of the configuration file is used to control how web applications behave.
This is the section that can have quite a deep hierarchy, because configuration settings can be

Configuration schema ❘ 779

http://lib.ommolketab.ir
http//lib.ommolketab.ir

780 ❘ chaPter 36 conFigurATion FileS

specified on a machine, web server, web site, web application, or even subfolder basis. Because this
section controls the security requirements for a web application, it is often used to restrict access to
certain areas of the web application.

webservices
Although web service applications use several configuration settings, such as authentication and
impersonation sections, the system.web section of the configuration file contains some settings
that are particular to the way that web services operate. For example, the following code snippet
enables the use of SOAP and Documentation protocols, but removes the POST and GET protocols for
the application:

<configuration>
<system.web>
<webServices>
<protocols>
<add name="HttpSoap"/>
<remove name="HttpPost"/>
<remove name="HttpGet"/>
<add name="Documentation"/>
</protocols>
</webServices>
</system.web>
</configuration>

By default, only SOAP and Documentation are enabled for web services. Quite often, for debugging
purposes, it is convenient to allow the POST protocol so that the web service can be tested via a
web browser. You should do this on an application basis by including the appropriate section in the
configuration file within the application folder.

section: compiler
The compiler section of the configuration file is used to list the compilers installed on a computer.
The following snippet shows how the VB.NET compiler is referenced in the machine.config file.
Within an application, this information can be accessed via the CodeDomProvider framework class.

<configuration>
<system.codedom>
<compilers>
<compiler language="vb;vbs;visualbasic;vbscript" extension=".vb"
type="Microsoft.VisualBasic.VBCodeProvider, System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089" />
</compilers>
</system.codedom>
</configuration>

configuration attributes
All configuration elements can specify a configSource, which is simply a redirection to a separate
file. This can be useful if a configuration file becomes unwieldy in length. The following code

http://lib.ommolketab.ir
http//lib.ommolketab.ir

snippet illustrates how a section of a configuration file can be extracted and subsequently referenced
by means of this attribute:

<!—Original Configuration File—>
<configuration>
.
<WindowsApplication1.My.MySettings>
<setting name="Button1_Text" serializeAs="String">
<value>Press Me!</value>
</setting>
</WindowsApplication1.My.MySettings>
</configuration>

<!—Reduced Configuration File using configSource—>
<configuration>
.
<WindowsApplication1.My.MySettings configSource="MySettings.Config" />
</configuration>

<!—Code from MySettings.Config—>
<WindowsApplication1.My.MySettings>
<setting name="Button1_Text" serializeAs="String">
<value>Press Me!</value>
</setting>
</WindowsApplication1.My.MySettings>

Note a couple of limitations to using a configSource:

There is no merging of configuration sections between the referenced file and the original ➤

configuration file. If you include the section in both files, a configuration error will be
generated when you attempt to run the application.

This attribute cannot be applied to configuration section groups. This can be a significant ➤

limitation, because the purpose of a section group is to group items that relate similar
configuration sections. A logical separation could see all items in a particular section group
in a separate configuration file.

If the attribute is used within a ➤ web.config file, changing the referenced configuration file
will not restart the ASP.NET application. In order for the configuration information to
be reread, you need to either manually restart the ASP.NET application or modify the
web.config file itself.

Each element within the configuration file inherits a number of attributes that can be set to control
whether or not that element can be overridden. To prevent an element, or even an entire section,
from being overridden, you can lock it. Five different locking attributes (outlined in Table 36-1) can
be used to specify any number of configuration attributes and elements that are to be locked.

Being able to lock configuration items is particularly relevant when you’re dealing with
web applications, which might contain a deep hierarchy of configuration inheritance. Windows
applications inherit only from the machine.config file, so it is unlikely that you will need to
lock items.

Configuration schema ❘ 781

http://lib.ommolketab.ir
http//lib.ommolketab.ir

782 ❘ chaPter 36 conFigurATion FileS

aPPlication settinGs

Applications frequently have settings that do not fit into the default configuration schema. The four
mechanisms for storing this information are discussed in the following sections.

using appsettings
The first technique is to use the predefined appSettings section of the configuration file. This
section can be used to store simple name-value pairs of application settings, which might be useful
for storing the name of the server, as in the following example:

<configuration>
<appSettings>
<add key="Server" value="http://www.builttoroam.com"/>
</appSettings>
</configuration>

This value can easily be accessed within code by means of the AppSettings property of the
ConfigurationManager class (which requires a reference to the System.Configuration
assembly):

Vb

Dim server As String = ConfigurationManager.AppSettings("Server")

c#

var server = ConfigurationManager.AppSettings["Server"];

table 36-1: Locking Attributes

confiGuration eleMent descriPtion

LockItem Locks the element to which this attribute is applied, including all

other attributes provided on that element and all child elements

LockAttributes Locks the comma-delimited list of attributes provided

LockAllAttributesExcept Locks all attributes except those provided in the comma-

delimited list

LockElements Locks the comma-delimited list of child elements provided

LockAllElementsExcept Locks all child elements except those provided in the comma-

delimited list

http://www.builttoroam.com"/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

application settings ❘ 783

 One of the weaknesses of this approach is that the name of the setting is specifi ed as a string, rather
than as a strongly typed property. It also assumes that the value will be a string, which is often not
the case.

 fiGure 36 - 1

 In the case of web applications, you should use the WebConfigurationManager
class instead of the ConfigurationManager class because it provides access to
additional confi guration information specifi c to ASP.NET applications.

 Adding application settings via this designer does not use the appSettings section as you might
expect. Instead, it defi nes a new section in the confi guration, as discussed earlier in the section on
the configSection element and shown in the following snippet:

 < configuration >
 ...
 < ConfigurationApplication.My.MySettings >
 < setting name="PrimaryServer" serializeAs="String" >
 < value > www.builttoroam.com < /value >
 < /setting >
 < /ConfigurationApplication.My.MySettings >
 < /configuration >

 Project settings
 Using the Settings tab of the project properties designer, you can defi ne application settings of
a variety of types. Figure 36 - 1 illustrates how the PrimaryServer setting would appear in this
designer.

http://www.builttoroam.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

784 ❘ chaPter 36 conFigurATion FileS

To access this setting in code, you can make use of the generated strongly typed access properties.

Vb

Dim primaryServer as String = My.Settings.PrimaryServer

c#

string primaryServer = Properties.Settings.Default.PrimaryServer;

dynamic Properties
The third mechanism for storing application-specific information is the use of dynamic properties.
These are typically used to dynamically set designer properties. For example, you could set the text
on a Button1 using the following configuration block:

<configuration>
...
<applicationSettings>
<ConfigurationApplication.My.MySettings>
<setting name="Button1_Text" serializeAs="String">
<value>Press Me Now!</value>
</setting>
</ConfigurationApplication.My.MySettings>
</applicationSettings>
</configuration>

You will note that the preceding code uses the same syntax as application settings defined using the
project properties designer. In fact, they are one and the same, the only difference being that in
the InitializeComponent method of the form there is a line of code that sets the button text:

Vb

Me.Button1.Size =
 Global.ConfigurationApplication.My.MySettings.Default.Button1_Size

c#

this.button1.Size =
 global::ConfigurationApplication.Properties.Settings.
 Default.Button1_Size;

When this application is deployed, the text displayed on Button1 is dynamically loaded from the
configuration file. In the following steps, for example, you set the size of a control, Button1, to be
dynamically loaded from the configuration file:

 1 . Select Button1 on the designer surface and press F4 to display the Properties window.
Locate the ApplicationSettings item within the Data category or in the alphabetic list,
as shown in Figure 36-2.

 2 . Click the ellipsis button (. . .) next to the PropertyBinding row. This opens a dialog that
lists the available properties for Button1, along with any application settings that have been
assigned, as shown in Figure 36-3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

application settings ❘ 785

 3 . Select the drop-down next to the Size property
and select New. This opens a dialog in which
you can specify a default value, a name for the
 application setting, and the scope of the setting.

 4 . Specify a name for the application setting — for
example, Button1_Size, and set the scope to
Application. You can modify the default value or
simply accept the value that has been extracted
from the current properties of Button1, as shown
in Figure 36-4.

 5 . Click OK on both dialogs. If you open the app.config file that will be available from the
Solution Explorer window, you will see a section that defines the Button1_Size setting.

custom configuration sections
Developers often want to include more structured information in the configuration file than can
be stored in the appSettings section. To solve this problem and eliminate any need for additional
configuration files, you can create a custom configuration section. The new configuration section
must be defined at the top of the configuration file via the configSection element, complete with a
reference to a class that should be used to process that portion of the configuration file.

In the past this process was fairly complex, because the class needed to implement the
IConfigurationSectionHandler interface. This exposed a simple method, Create, which was called
the first time that section was referenced in code. There was little support from the framework to
process the section, and a class implementing this interface often resorted to parsing the XML block
to determine settings.

Visual Studio 2010 provides much better support for creating custom configuration sections via the
ConfigurationSection and ConfigurationElement classes. These provide the bases for creating
classes that map to the structure of the data being stored in the configuration files. Instead of
mapping a class that processes the configuration section, you can now create a much simpler class

fiGure 36-2 fiGure 36-3

fiGure 36-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

786 ❘ chaPter 36 conFigurATion FileS

that maps to the section. When the section is referenced in code, an instance of this class is returned
with the appropriate data elements set. All the XML processing that would have been necessary in
the past is now handled by the .NET Framework.

Although this mapping makes the process of writing a custom configuration section much easier, you
may sometimes want more control over how the section is read. Two options can be used to give
you this control:

The first option is to go back to using a configuration section handler and manually process ➤

the XML file. This can be useful if the original XML representation is required. However, it
still requires that the XML file be processed.

The second strategy is to create an appropriate mapping class as an in-between measure. ➤

Instead of referencing this class directly, another class can be generated that exposes the
configuration information in the right way.

If you need to use either of these options, it might be worth taking a step back and determining
whether the configuration section structure is actually in a format suited to the data being stored.

In the following example your application requires a list of registered entities with which to work.
One type of entity is a company, and you need to be provided with both the company name and the
date on which it was registered. The XML snippet that you would like to have in the configuration
file might look like the following:

<RegisteredEntities>
<Companies>
<add CompanyName="Random Inc" RegisteredDate="31/1/2005" />
<add CompanyName="Developer Experience Inc" RegisteredDate="1/8/2004" />
</Companies>
</RegisteredEntities>

Once generated, the corresponding classes that would map to the preceding snippet might look like
the following (again, this requires a reference to the System.Configuration assembly):

Vb

Public Class RegisteredEntities
 Inherits ConfigurationSection

<ConfigurationProperty("Companies")> _
 Public ReadOnly Property Companies() As Companies
 Get
 Return CType(MyBase.Item("Companies"),Companies)
 End Get
 End Property
End Class

<ConfigurationCollectionAttribute(GetType(Company))> _
Public Class Companies
 Inherits ConfigurationElementCollection

 Protected Overrides Function CreateNewElement() As ConfigurationElement
 Return New Company

http://lib.ommolketab.ir
http//lib.ommolketab.ir

application settings ❘ 787

 End Function

 Protected Overrides Function GetElementKey _
 (ByVal element As ConfigurationElement) As Object
 Return CType(element, Company).CompanyName
 End Function

 Public Sub Add(ByVal element As Company)
 Me.BaseAdd(element)
 End Sub

End Class

Public Class Company
 Inherits ConfigurationElement

<ConfigurationProperty("CompanyName",DefaultValue:="Random Inc",
IsKey:=true, IsRequired:=true)> _
 Public Property CompanyName() As String
 Get
 Return CType(MyBase.Item("CompanyName"),String)
 End Get
 Set
 MyBase.Item("CompanyName") = value
 End Set
 End Property

<ConfigurationProperty("RegisteredDate",DefaultValue:="31/1/2005",
IsKey:=false, IsRequired:=false)> _
 Public Property RegisteredDate() As String
 Get
 Return CType(MyBase.Item("RegisteredDate"),String)
 End Get
 Set
 MyBase.Item("RegisteredDate") = value
 End Set
 End Property
End Class

Code snippet RegisteredEntities.vb

c#

class RegisteredEntities : ConfigurationSection{
 [ConfigurationProperty("Companies")]
 public Companies Companies{
 get{
 return base["Companies"] as Companies;
 }
 }
}

[ConfigurationCollection(typeof(Company))]
class Companies : ConfigurationElementCollection{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

788 ❘ chaPter 36 conFigurATion FileS

 protected override ConfigurationElement CreateNewElement(){
 return new Company();
 }

 protected override object GetElementKey
 (ConfigurationElement element){
 return (element as Company).CompanyName;
 }

 public void Add(Company element){
 BaseAdd(element);
 }
}

class Company : ConfigurationElement{
 [ConfigurationProperty("CompanyName", DefaultValue = "Random Inc",
 IsKey = true, IsRequired = true)]
 public string CompanyName{
 get{
 return base["CompanyName"] as string;
 }
 set{
 base["CompanyName"] = value;
 }
 }

 [ConfigurationProperty("RegisteredDate", DefaultValue = "31/1/2005",
 IsKey = false, IsRequired = true)]
 public string RegisteredDate{
 get{
 return base["RegisteredDate"] as string;
 }
 set{
 base["RegisteredDate"] = value;
 }
 }
}

Code snippet RegisteredEntities.cs

The code contains three classes that are required in order to correctly map the functionality of
this section. The registered entities section corresponds to the RegisteredEntities class, which
contains a single property that returns a company collection. A collection is required here because
you want to be able to support the addition of multiple companies. This functionality could be
extended to clear and/or remove companies, which might be useful if you had a web application
for which you needed to control which companies were available to different portions of the
application. Lastly, there is the Company class that maps to the individual company information
being added.

To access this section from within the code, you can simply call the appropriate section using the
configurationManager framework class:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

application settings ❘ 789

 Vb

Dim registered as RegisteredEntities= _
 ctype(configurationmanager.GetSection("RegisteredEntities"),RegisteredEntities)

 c#

var registered =
 ConfigurationManager.GetSection("RegisteredEntities") as RegisteredEntities;

 In order for the .NET confi guration system to correctly load your confi guration
fi le with the RegisteredEntities section you will also need to register this section
in the confi gSections. You can do this by adding < section name= “ Registered
Entities ” type= “ ConfigurationApplication.RegisteredEntities,

ConfigurationApplication, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=null “ / > to the confi gSections immediately before the
 < /configSections > tag.

 automation Using sCDl
 You just saw how custom confi guration sections can be written and mapped to classes. Although
this is a huge improvement over writing section handlers, it is still a fairly laborious process that is
prone to error. Furthermore, debugging the confi guration sections is nearly impossible because it ’ s
diffi cult to track what ’ s going wrong.

 As part of another project to support ASP.NET developers, a development manager for the
ASP.NET team at Microsoft recognized that the process of creating these mapping classes was
mundane and could easily be automated. To this end, he created a small application entitled SCDL
(http://blogs.msdn.com/dmitryr/archive/2005/12/07/501365.aspx) that could take a snippet
of confi guration data, such as the RegisteredEntities section discussed previously, and output
both the mapping classes and a schema fi le that represented the section supplied. Once generated,
this code can be included in the application. Furthermore, if the snippet of confi guration data is to
be included as a non - compiled fi le within the solution, it is possible to automate the generation of
the mapping classes via a pre - build batch command. If changes need to be made to the structure
of the section, they can be made in the snippet. That way, the next time the solution is built the
mapping classes will be updated automatically.

 intellisense
 Even after you get the custom confi guration sections correctly mapped, there is still no support
provided by Visual Studio 2010 for adding the custom section to the confi guration fi le. Unlike the
rest of the confi guration fi le, which has support for IntelliSense and will report validation issues,
your custom section will not be able to be validated.

 To get IntelliSense and validation for your custom confi guration section, you need to indicate
the structure of the confi guration section to Visual Studio 2010. You can do this by placing an
appropriate schema (as generated by the SCDL tool) in the XML Schemas folder, which is usually
located at C:\Program Files\Microsoft Visual Studio 10.0\Xml\Schemas\ . Unfortunately,

http://blogs.msdn.com/dmitryr/archive/2005/12/07/501365.aspx
http://lib.ommolketab.ir
http//lib.ommolketab.ir

790 ❘ chaPter 36 conFigurATion FileS

this is where it gets a little bit more complex, because it is not enough to place the file in that
folder; you also need to tell it that the schema should be included in the catalog used for parsing
configuration files. To register your schema, follow these steps:

 1 . Generate your schema file from your configuration snippet:

Scdl.exe snippet.scdl snippet.vb snippet.xsd

 2 . Copy the schema file (in this case, snippet.xsd) to the schema folder.

 3 . Create a new text file called Config.xsd and include the following lines. Note that if your
schema is called something different, you should update these lines appropriately. You may
also add additional lines to include more than one schema. Do not remove the DotNetConfig
.xsd line because that will remove validation for the standard configuration sections.

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="DotNetConfig.xsd"/>
<xs:include schemaLocation="snippet.xsd"/>
</xs:schema>

 4 . Open Catalog.xml in a text editor and replace DotNetConfig.xsd with Config.xsd.
This effectively remaps the validation, and IntelliSense, for configuration files to
use Config.xsd instead of DotNetConfig.xsd. However, because this file sources both
DotNetConfig.xsd and your schema information, you will get validation for both your
configuration section and the standard configuration sections.

user settinGs

Because configuration files are commonly used to store settings that control how an application
runs, it is often necessary to be able to dynamically change these to suit the way an individual uses
the application. Rather than having to build an entirely different framework for accessing and
saving these settings, you can simply change the scope of your settings. Figure 36-5 illustrates that
on the Settings tab of the Project Properties page you can indicate whether you want a setting to
have Application or User scope.

fiGure 36-5

http://www.w3.org/2001/XMLSchema
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In essence, by changing the scope of a setting you are making the choice as to whether you want
the setting to be read-only — in other words, it applies to the application regardless of which user is
using the application — or read-write. When you access a project setting from code you will notice
that if you try to assign a value to an Application setting you will get a compile error, whereas with
a User setting you can assign a new value. Assigning a new value to the User setting only changes
the value for that setting for the duration of that application session. If you want to persist the new
value between sessions you should call the Save method on the designer-generated Settings object,
as shown in the following code snippet:

Vb

Properties.Settings.Default.BackgroundColor = Color.Blue;
Properties.Settings.Default.Save();

Table 36-2 lists the other methods that are defined on the Settings object that may be useful when
manipulating User settings.

table 36-2: Settings Objects Methods

Method naMe functionality

Save Persists the current value of the setting .

Reload Restores the persisted value of the setting .

Reset Returns the persisted, and in-memory, value of a setting to the

default value (this is the value you define during development in

the Settings tab of the Project Properties page) . You do not need

to call Save after calling Reset .

Upgrade When versioning your application you can call Upgrade to upgrade

user settings to new values associated with your application . Note

that you may want to be discriminate on when you call this method

because you may inadvertently clear user settings .

(event) SettingChanging Event raised when a setting is about to change .

(event) PropertyChanged Event raised when a setting has changed .

(event) SettingsLoaded Event raised when settings are loaded from persisted values .

(event) SettingsSaving Event raised prior to current values being persisted .

When building an application that makes use of User-scoped settings it is important to test the
application as if you were using it for the first time. The first time you run your application there will
be no user-specific settings, which means your application will either use the values in the application
configuration file or the default values that are coded in the designer-generated file. If you have been
testing your application, the Synchronize button on the Settings tab of the Project Properties page
(shown in the top-left corner of Figure 36-5) will remove any user-specific settings that may have
been persisted during earlier executions of your application.

User settings ❘ 791

http://lib.ommolketab.ir
http//lib.ommolketab.ir

792 ❘ chaPter 36 conFigurATion FileS

referenced ProJects with settinGs

As applications grow, it is necessary to break up the logic into assemblies that are referenced by the
main application. In the past, if these referenced assemblies wanted to use an application setting, there
were a number of gotchas that made it problematic. With Visual Studio 2010, it is now possible to
share application settings among assemblies using the project properties designer. Figure 36-6 shows
the Settings tab of the project properties designer for a reference assembly. In this case the Access
Modifier drop-down has been set to Public to allow access to these settings from the main application.

fiGure 36-6

To access this property from the main application, you can again use the generated strongly typed
access properties:

Vb

ReferencedAssembly.My.MySettings.Default.SecondaryServer

c#

ReferencedAssembly.Properties.Settings.Default.SecondaryServer

A word of caution about using the project properties designer and referenced application settings:
If you examine the code-behind file for the settings designer, you will note that for each of the
settings you have defined there is a strongly typed access property, as previously discussed. What
is important is the DefaultSettingValueAttribute that is applied. This is significant because
it determines the value that will be returned by this property if the configuration file does not
have any value specified. In the following snippet, the default value of www.peaksite.com will be
returned if there is no SecondaryServer element defined in the configuration file:

Vb

Namespace My
 Partial Friend NotInheritable Class MySettings
 Inherits Global.System.Configuration.ApplicationSettingsBase
.
<Global.System.Configuration.ApplicationScopedSettingAttribute(), _
Global.System.Diagnostics.DebuggerNonUserCodeAttribute(), _
Global.System.Configuration.DefaultSettingValueAttribute("www.peaksite.com")> _
 Public ReadOnly Property SecondaryServer() As String
 Get
 Return CType(Me("SecondaryServer "),String)
 End Get
 End Property
 End Class
End Namespace

http://www.peaksite.com
http://www.peaksite.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now, you might ask why this is important when you’re dealing with referenced application settings.
It is because although the project properties designer enables you to specify that you want to allow
access to settings from another assembly, it doesn’t enable you to indicate that an application does,
in fact, reference settings from another assembly. The upshot is that when it compiles the application
it takes only the app.config file in the application project folder, rather than combining the
elements from the app.config files in the referenced assembly folder.

Unfortunately, because of the default value attribute you are unlikely to notice this until the
application is deployed and you realize that some of the settings are missing from the app.config
file. Because of this, you should make sure you manually combine these files. In this case the result
would be this:

<configuration>
.
<applicationSettings>
<ConfigurationApplication.My.MySettings>
<setting name="PrimaryServer" serializeAs="String">
<value>www.softteq.com</value>
</setting>
</ConfigurationApplication.My.MySettings>
<ReferencedAssembly.My.MySettings>
<setting name="SecondaryServer" serializeAs="String">
<value>www.peaksite.com</value>
</setting>
</ReferencedAssembly.My.MySettings>
</applicationSettings>
</configuration>

suMMary

In this chapter you have learned how configuration files can be used not only to control how your
application runs, but also to store settings that may need to be adjusted at runtime. You should now
be able to store simple name-value information, as well as more structured information, within the
configuration file.

summary ❘ 793

http://www.softteq.com</value
http://www.peaksite.com</value
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

37
 Connection strings

 what ’ s in this chaPter?

 Creating connection strings for use in your application ➤

 Working with the Visual Studio 2010 Connection dialogs to specify ➤

how to connect to a data source

 Accessing connection strings from within code ➤

 A large proportion of applications need to persist data, and the obvious candidate for
enterprise software is a relational database. The .NET Framework provides support for
working with SQL Server, SQL Server Compact Edition, Oracle, ODBC, and OLE DB
databases. Many other databases are also supported through third - party providers. To
connect to any of these databases, you need to specify a connection string that determines the
location, the database, authentication information, and other connection parameters. This
chapter explains how to create and store connection strings. In addition, you learn about
encrypting and working with connection strings in code.

 connection strinG wizard

 Connection strings are similar to XML in that, although they can be read, it is neither an
enjoyable experience nor recommended to work with them directly. Because connection
strings are strings, it is easy to introduce errors, misspell words, or even omit a parameter.
Unlike XML, which can easily be validated against a schema, connection strings are harder
to validate. The connection string wizard built into Visual Studio 2010 enables you to specify
database connections without having to manually edit the connection string itself.

 You can invoke the connection string wizard in a number of ways, as you will experience
when you start working with any of the data controls in either the Windows Form or Web
Form designers. For the purposes of illustrating the wizard, follow these steps to add a new

http://lib.ommolketab.ir
http//lib.ommolketab.ir

796 ❘ chaPter 37 connecTion STringS

data source to an existing Windows Forms
application. You’ll connect to the sample
AdventureWorksLT database, which you
will need to download from the Codeplex
web site (www.codeplex.com and search for
AdventureWorksLT).

 1 . From the Data menu within Visual
Studio 2010, select Add New Data
Source, which opens the Data Source
Configuration Wizard.

 2 . Selecting Database, followed by either
DataSet or Entity Data Model, prompts
you to specify a database connection
to use. If a connection already exists, you
can select it from the drop-down and the
associated connection string will appear in
the lower portion of the window, as shown
in Figure 37-1.

The connection string connects to the
AdventureWorksLT database using the SQL
Server Express capability of attaching a
database file. Later in this chapter you look
at the properties of a SQL Server connection
string in more detail.

 3 . To create a new connection, click the
New Connection button to open the Add
Connection dialog, in which you can specify
the properties of the connection string. Figure
37-2 shows the dialog as it would appear for a
SQL Server Database File connection. This
dialog is specific to the database source
being configured.

Notice in Figure 37-2 that only the
basic connection properties (such as the
database filename and authentication
information) are presented.

 4 . Click the Advanced button to open the
Advanced Properties window, shown in
Figure 37-3, where you can configure all
properties for a SQL Server connection.
At the bottom of this window is the
connection string being constructed.
The default values are omitted from the

fiGure 37-1

fiGure 37-2

fiGure 37-3

http://www.codeplex.comandsearchforAdventureWorksLT
http://www.codeplex.comandsearchforAdventureWorksLT
http://lib.ommolketab.ir
http//lib.ommolketab.ir

connection string. Once a value is set, it appears in the connection string and in bold in
the Properties window. The list of available properties is again based on the data source
being used.

 5 . Click OK to return to the Add Connection
window, where you can change the type of
data source by clicking the Change button.
This opens the Change Data Source
dialog, shown in Figure 37 - 4 .

 The list on the left contains all the
data sources currently registered in
the machine.config fi le. For a given
data source, such as Microsoft SQL
Server, there may be multiple data
providers — in this case, the SQL Server
and OLE DB providers.

 fiGure 37 - 4

 Selecting an alternative data source - data provider combination results in a
different Add Connection dialog, displaying parameters that are relevant to
that database connection. In most cases it is necessary to open the Advanced
Properties window to confi gure the connection itself.

 6 . After specifying the data source and connection settings using the Add Connection dialog,
return to the Data Source Confi guration Wizard. If you are creating a new connection,
you are given the option to save the connection string in the application confi guration
fi le, as shown in Figure 37 - 5 . Unless you can guarantee that the location of the database,
the authentication mode, or any other connection property will not change at a later
stage, it is a good idea to store the
connection string in the confi guration
fi le. Saving the connection string to the
confi guration fi le has the added benefi t
that the same confi guration string can
be reused throughout the application.

 If you don ’ t save the connection string
to the confi guration fi le, it is explicitly
assigned to the connection object
you are creating, which makes reuse
diffi cult. Alternatively, saving the fiGure 37 - 5

Connection string Wizard ❘ 797

http://lib.ommolketab.ir
http//lib.ommolketab.ir

798 ❘ chaPter 37 connecTion STringS

connection string in the configuration file means that other connection objects can access
the same string. If the database connection changes at a later stage, you can easily update it
in a single location.

 7 . The Data Source Configuration Wizard continues to step you through selecting which
database objects you want to be added to your data source. This is covered in more detail in
Chapter 27 on working with DataSets.

When you save a connection string to an application configuration file, it is added to the
connectionStrings configuration section, as illustrated in the following snippet from an
app.config file (the same section can exist in a web.config file for a web application):

<?xml version=“1.0” encoding=“utf-8” ?>
<configuration>
<appSettings />
<connectionStrings>
<add
 name=“Connection_Strings.Properties.Settings.
 AdventureWorksLTConnectionString”
 connectionString=“Data Source=.\SQLEXPRESS;AttachDbFilename=C:\Users\
MainUser\Downloads\SQL2008.AdventureWorksLT2008_Only_Database\AdventureWorks
LT2008_Data.mdf;Integrated Security=True;Connect Timeout=30;User Instance=Tr
ue” providerName=“System.Data.SqlClient” />
</connectionStrings>
</configuration>

The connectionStrings section of a configuration file uses the standard element collection pattern,
which allows multiple connection strings to be specified and then referenced in code. For example,
the preceding connection string can be accessed in code as follows (this assumes your project has a
reference to the System.Configuration assembly):

c#

private void OpenConnectionClick(object sender, EventArgs e){
 var sqlCon = new System.Data.SqlClient.SqlConnection();
 sqlCon.ConnectionString = ConfigurationManager.
 ConnectionStrings["AdventureWorksLTConnectionString"].ConnectionString;
 sqlCon.Open();
}

Vb

Private Sub OpenConnectionClick(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles BtnOpenConnection.Click
 Dim sqlCon As New SqlClient.SqlConnection
 sqlCon.ConnectionString = ConfigurationManager.ConnectionStrings _
 (“AdventureWorksLTConnectionString”).ConnectionString
 sqlCon.Open()
End Sub

A nice artifact of working with the connection string wizard is that it also adds strongly typed
support for accessing the connection string from within your code. This means that you can access

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the connection string using the following strongly typed methods, rather than call them using a
string constant:

 c#

Properties.Settings.Default.AdventureWorksLTConnectionString;

 Vb

My.Settings.AdventureWorksLTConnectionString

 The other advantage of saving the connection string in the confi guration fi le is that when you are
editing the project settings, the connection strings are listed alongside other settings for the project
as shown in Figure 37 - 6 . Not only can you modify the connection string directly, but you also have
a shortcut to the connection string wizard, via the ellipsis button to the right of the connection
string value, which enables you to adjust the connection properties without fear of corrupting the
connection string. Note that the ellipsis button is not visible until you click into the cell containing
the connection string value.

 fiGure 37 - 6

 You will notice in Figure 37 - 6 that the name of the connection string excludes the rather lengthy
prefi x, Connection_Strings.Properties.Settings , which is in the application confi guration fi le.
This prefi x is used to determine which connection strings should be included in both the project
properties designer and for providing strongly typed support.

 Given the inherent danger of getting data source properties wrong when
manually editing the connection strings in the confi guration fi le versus the
benefi ts of using either the Add Data Source Wizard or the project properties
designer, it is highly recommended that you avoid the manual approach
wherever possible.

Connection string Wizard ❘ 799

http://lib.ommolketab.ir
http//lib.ommolketab.ir

800 ❘ chaPter 37 connecTion STringS

sql serVer forMat

Probably the most familiar data provider is the SQL Server database provider, so Table 37-1 details
some of the common connection properties you may need to specify to connect to your database server.

connection ProPerty descriPtion

Asynchronous Processing Determines whether the connection will support asynchronous

database calls . Most applications try to deliver a responsive user

interface, so it is important for it not to freeze when retrieving

data . In the past this could only be achieved by doing the data

processing in a separate thread from the user interface . The data

access methods, such as ExecuteNonQuery, now support calls

using the Begin and End asynchronous pattern . For example,

BeginExecuteNonQuery will return immediately so the user

interface does not block while the data access is performed .

AttachDBFilename Introduced in SQL Server 2005, this property means you can

work with databases that aren’t permanently attached to a

SQL Server instance . This property is a path reference to the

primary database file that contains the database . Specifying

AttachDBFilename effectively attaches and detaches the

database when required .

Connect Timeout Determines the maximum length of time that the Open method

will block when attempting to connect to the database . This

should not be confused with the Timeout property on the

SQLCommand class, which determines the timeout for a given

command to execute .

Data Source The host name or IP address of the instance of SQL Server

that the connection will be accessing . In cases where multiple

instances exist on a given machine, or where SQL Server has

been assigned an instance name other than the default instance,

this needs to be specified as part of the Data Source field . For

example, 192.168.205.223\InstanceName .

Initial Catalog Specifies the name of the database to connect to .

Integrated Security If IntegratedSecurity is used, the Windows credentials of

the current user will be used to connect to the database server .

To provide user ID and password, this property must be set

to false . Also be aware that when working with ASP .NET

using Windows authentication without impersonation, if

IntegratedSecurity is enabled, the authenticated web user’s

credentials will be used to access the database server .

table 37-1: Some Common Connection Properties

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Each connection string property must be specified as it appears in the preceding table, but they can
be in any order in the connection string. A semicolon is used to separate each property. An example
connection string might be as follows:

Data Source=.;Initial Catalog=AdventureWorksLT;Integrated Security=True;
MultipleActiveResultSets=True

in-code construction

Although the connection string wizard in Visual Studio 2010 provides a convenient tool for writing
connection strings, it is often necessary to build one dynamically — a feat easily done with the
SqlConnectionStringBuilder class. In fact, string builder classes also exist for Oracle, ODBC,
and OLE DB, and they all derive from the generic DBConnectionStringBuilder class, which
exposes the ConnectionString property.

This example demonstrates creating a connection builder object, based on an existing connection
string, and changing the authentication mode to use the user ID and password provided by the
user before assigning the new connection string to the connection object. In addition, the example
demonstrates the use of the MultipleActiveResultSets property to retrieve multiple tables from
the database using a single command object:

c#

private void LoadDataClick(object sender, EventArgs e){
 //Update the connection string based on user settings
 var sqlbuilder = new System.Data.SqlClient.SqlConnectionStringBuilder
(Properties.Settings.Default.AdventureWorksLTConnectionString);
 if (!string.IsNullOrEmpty(this.TxtUserId.Text)){

connection ProPerty descriPtion

MultipleActiveResultSets Allows multiple result sets to be returned across a

given connection . For example, a single database

command might contain two SELECT statements . If the

MultipleActiveResultSets property is enabled, the results

of both SELECT statements will be returned and can be used to

populate a DataSet . This property is compatible only with SQL

Server 2005 and above .

Password Used for the SQL Server user account used to access the

database server .

User ID Specifies the SQL Server account used to access the database

server . Mixed-mode authentication for the SQL Server must be

enabled, and the IntegratedSecurity property must be set to

false .

in-Code Construction ❘ 801

http://lib.ommolketab.ir
http//lib.ommolketab.ir

802 ❘ chaPter 37 connecTion STringS

 sqlbuilder.IntegratedSecurity = false;
 sqlbuilder.UserID = this.TxtUserId.Text;
 sqlbuilder.Password = this.TxtPassword.Text;
 }
 sqlbuilder.MultipleActiveResultSets = true;

 //Create the connection based on the updated connection string
 var sqlCon = new System.Data.SqlClient.SqlConnection();
 sqlCon.ConnectionString = sqlbuilder.ConnectionString;

 //Set the command and create the dataset to load the data into
 var sqlcmd = new System.Data.SqlClient.SqlCommand(
 "SELECT * FROM Person.Contact;" +
 "SELECT * FROM Person.ContactType", sqlCon);

 var ds = new DataSet();
 var rds = new System.Data.SqlClient.SqlDataAdapter(sqlcmd);

 //Open connection, retrieve data, and close connection
 sqlCon.Open();
 rds.Fill(ds);
 sqlCon.Close();
}

Vb

Private Sub LoadDataClick (ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 'Update the connection string based on user settings
 Dim sqlbuilder As New SqlClient.SqlConnectionStringBuilder _
 (My.Settings.AdventureWorksLTConnectionString)
 If Not Me.TxtUserId.Text = "" Then
 sqlbuilder.IntegratedSecurity = False
 sqlbuilder.UserID = Me.TxtUserId.Text
 sqlbuilder.Password = Me.TxtPassword.Text
 End If
 sqlbuilder.MultipleActiveResultSets = True

 'Create the connection based on the updated connection string
 Dim sqlCon As New SqlClient.SqlConnection
 sqlCon.ConnectionString = sqlbuilder.ConnectionString

 'Set the command and create the dataset to load the data into
 Dim sqlcmd As New SqlClient.SqlCommand("SELECT * FROM Person.Contact;" & _
 "SELECT * FROM Person.ContactType", _
 sqlCon)

 Dim ds As New DataSet
 Dim rds As New SqlClient.SqlDataAdapter(sqlcmd)

 'Open connection, retrieve data, and close connection
 sqlCon.Open()
 rds.Fill(ds)
 sqlCon.Close()
End Sub

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The important thing to note about this code sample is that the MultipleActiveResultSets property
is enabled, which means that multiple SELECT statements can be specified in the SqlCommand object.
The SqlCommand object is then used by the SqlDataAdapter object to fill the DataSet. The DataSet
object will contain two data tables, each populated by one of the SELECT statements.

encryPtinG connection strinGs

Although best practices state that you should use Windows authentication and integrated security
wherever possible, this is not always the case; sometimes you have to resort to specifying a user
ID and password in a connection string. It is recommended that this information not be hard-
coded into your application, because it can easily be extracted from the assembly. As such, this
information needs to be either specified by the users each time they use the system, or added to
the connection string in the configuration file. The upshot of this is that you need a mechanism
for encrypting configuration sections. This walk-through shows you how to encrypt a section of a
configuration file for a web application, StagingWebsite, which has a web.config file as follows:

<?xml version=“1.0”?>
<configuration>
<connectionStrings>
<add name=“AdventureWorksLTConnectionString” connectionString=“Data Source=
.\SQLEXPRESS;AttachDbFilename=C:\Users\MainUser\Downloads\SQL2008.Adventure
WorksLT2008_Only_Database\AdventureWorksLT2008_Data.mdf;Integrated Security
=True;Connect Timeout=30;User Instance=True”
 providerName=“System.Data.SqlClient” />
</connectionStrings>
<!—
.
—>
</configuration>

Using the command prompt, execute the following commands in sequence, replacing UserName with
the name of the account that the web application will run as (for example, the AspNet account):

 1 . cd\WINDOWS\Microsoft.NET\Framework\v2.0.50739

 2 . aspnet_regiis -pa “NetFrameworkConfigurationKey” “UserName”

 3 . aspnet_regiis -pe “connectionStrings” -app “/StagingWebsite”

Executing these commands modifies the web.config file as follows (if you get an error saying
that the RSA key container was not found, you may need to execute aspnet_regiis -pc
“NetFrameworkConfigurationKey” –exp to create the key container):

<?xml version=“1.0”?>
<configuration>
<connectionStrings configProtectionProvider=“RsaProtectedConfigurationProvider”>
<EncryptedData Type=“http://www.w3.org/2001/04/xmlenc#Element”
 xmlns=“http://www.w3.org/2001/04/xmlenc#”>
<EncryptionMethod Algorithm=“http://www.w3.org/2001/04/xmlenc#tripledes-cbc” />
<KeyInfo xmlns=“http://www.w3.org/2000/09/xmldsig#”>
<EncryptedKey xmlns=“http://www.w3.org/2001/04/xmlenc#”>
<EncryptionMethod Algorithm=“http://www.w3.org/2001/04/xmlenc#rsa-1_5” />

encrypting Connection strings ❘ 803

http://www.w3.org/2001/04/xmlenc#Element%E2%80%9D
http://www.w3.org/2001/04/xmlenc#%E2%80%9D
http://www.w3.org/2001/04/xmlenc#tripledes-cbc%E2%80%9D
http://www.w3.org/2000/09/xmldsig#%E2%80%9D
http://www.w3.org/2001/04/xmlenc#%E2%80%9D
http://www.w3.org/2001/04/xmlenc#rsa-1_5%E2%80%9D
http://lib.ommolketab.ir
http//lib.ommolketab.ir

804 ❘ chaPter 37 connecTion STringS

<KeyInfo xmlns=“http://www.w3.org/2000/09/xmldsig#”>
<KeyName>Rsa Key</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>Y4Be/ND8fXTKl3r0CASBK0oaOSvbyijYCVUudf1AuQl
pU2HRsTyEpR2sVpxrOukiBhvcGyWlv4EM0AB9p3Ms8FgIA3Ou6mGORhxfO9eIUGD+M5tJSe6wn/
9op8mFV4W7YQZ4WIqLaAAu7MKVI6KKK/ANIKpV8l2NdMBT3uPOPi8=</CipherValue>
</CipherData>
</EncryptedKey>
</KeyInfo>
<CipherData>
<CipherValue>BeKnN/kQIMw9rFbck6IwX9NZA6WyOCSQlziWzCLA8Ff/JdA0W/dWIidnjae1
vgpS8ghouYn7BQocjvc0uGsGgXlPfvsLq18//1ArZDgiHVLAXjW6b+eKbE5vaf5ss6psJdCRRB0ab5xao
NAPHH/Db9UKMycWVqP0badN+qCQzYyU2cQFvK1S7Rum8VwgZ85Qt+FGExYpG06YqVR9tfWwqZmYwtW8iz
r7fijvspm/oRK4Yd+DGBRKuXxD6EN4kFgJUil7ktzOJAwWly4bVpmwzwJT9N6yig54lobhOahZDP05gtk
Lor/HwD9IKmRvO1jv</
 CipherValue>
</CipherData>
</EncryptedData>
</connectionStrings>
<!—
.
—>
</configuration>

As you can see from this example, the connection string is no longer readable in the configuration
file. The commands you executed did two things. Ignoring the first command (because it simply
changes the directory so you can access the asp_regiis executable), the second command permits
access to the key container NetFrameworkConfigurationKey for the user Nick. This key container
is the default container for the RSAProtectedConfigurationProvider, which is specified in the
machine.config file. For your application to be able to decrypt data from the configuration file, the
user that the application is running as must be able to access the key container. To determine
the identity of this user, execute the following command:

System.Security.Principal.WindowsIdentity.GetCurrent().Name

The third command encrypts the connectionStrings section of the configuration file for the web
application StagingWebsite. Other sections of the configuration file can also be encrypted using the
same command. If at some later stage you need to decrypt the configuration section, execute
the same command, but with –pd instead of –pe. For example:

aspnet_regiis -pd "connectionStrings" -app "/StagingWebsite"

suMMary

This chapter showed you how to use Visual Studio 2010 to take charge of your application and
configure it to connect to a database using a connection string. With the built-in support of the data
classes in the .NET Framework, connection strings can be dynamically created and modified so you
never have to handcraft a connection string again.

http://www.w3.org/2000/09/xmldsig#%E2%80%9D
http://lib.ommolketab.ir
http//lib.ommolketab.ir

38
 resource files

 what ’ s in this chaPter?

 Understanding what an application resource is ➤

 Defi ning and using resources within your application ➤

 Defi ning culture - specifi c resources ➤

 Extending the default resource types ➤

 Developers often overlook the humble XML resource fi le, because it is often hidden by Visual
Studio 2010 so as not to clutter the solution. Because its most common use is as a backing
fi le for forms or web pages, you can write large applications without interacting directly with
resource fi les. However, resource fi les are an important tool that you need to be able to use in
order to write applications that can be easily maintained and translated into other languages.

 The fi rst part of this chapter explains why resource fi les are important and describes the
features that enable developers to work with them. The remainder of the chapter explains how
you can use resource fi les to localize an application for different languages and cultures.

 what are resources?

 A resource is any data required by an application, whether it is a string, an icon, an image, or
even an audio clip. Resources are non - executable and support the running of the application
through the provision of data such as location, size, and other physical properties of controls.
Though most resources are strings, images, audio clips, or icons, there is no reason why a
resource could not be a more complex object that supports serialization.

 Three types of resource fi les can be compiled into an application: text, resx (XML resource
fi le), and resources (binary resource fi le) fi le formats. Whole fi les can also be embedded as

http://lib.ommolketab.ir
http//lib.ommolketab.ir

806 ❘ chaPter 38 reSource FileS

application resources where needed. Most developers who use Visual Studio 2010 will use resx files
and embedded file resources.

text file resources
Text files are the most basic sort of resource because they are limited to providing string values. In
applications for which a large number of string literals need to be managed, using a simple text file
can be the easiest way to do it because that way they are not cluttered among the other resources of
the application.

The format of strings defined in a text resource file is a name-value pair, where the name is used to
reference the resource in code, as shown in the following example:

Error_Unable_To_Connect = Unable to connect to specified server

Because each name-value pair is delimited by a new line, this character cannot be added to the
string. However, C-style escape characters can be used to insert new lines (\n) or tabs (\t) into
the text.

You can add comments to the resource file by prefixing a line with a semicolon, as shown here:

;Error message to be displayed when a connection could not be made to the server
Error_Unable_To_Connect = Unable to connect to specified server

Text resource files should be saved with the file extension of .txt or .restext. The latter is useful
when you want to distinguish text resource files from regular text files.

Although text resource files are easy to edit and update, it is harder to integrate them into your
application. As text files, they cannot be directly compiled into an application; they must instead be
converted into either resx or resources files. Do this using the Resource Generator utility, resgen.exe,
located in the \bin folder of the Windows SDK (located at C:\Program Files\Microsoft SDKs\
Windows\v7.0A\bin):

resgen StringResources.txt StringResources.resources

Include the output file — in this case, StringResources.resources — in your application to give
yourself access to those resources.

A prebuild event can be used to convert text resource files into a resources file that can be compiled
into the main application build. This will ensure that the resources files contained in the application
are always up to date. To do this, include the text resource file in the application and set the build
action property to None. Navigate to the Project Properties window for the project that contains the
text resource file and on the Compile tab select Build Events (VB) or the Build Events tab (C#). In
the prebuild events, enter the Resgen command required to compile your text resource file:

"C:\Program Files\Microsoft SDKs\Windows\v7.0A\bin\resgen.exe"
 "$(ProjectDir)StringResources.txt" "$(ProjectDir)StringResources.resources"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Building the application generates the resources file
that needs to be included within your application
with the build action property set to Embedded
Resource. Figure 38-1 illustrates how both the
text file and the resources file are included within
an application with appropriate build action
properties.

resx resource files
A much more user-friendly format for resources
is the XML resource file, commonly referred to
as a resx file. This is a simple XML data file that
contains name-value pairs of XML nodes. The
advantage of this format is that the value is not
restricted to just a string; it can be of any type that is serializable or that can be represented
as a string.

The following XML snippet shows a resource named HelloWorld, with an associated value
and comment. As you can see from the code, no information is available about the type of data
contained within the resource, because it is a string resource:

<data name="HelloWorld">
<value>Say Hello</value>
<comment>This is how we say hello</comment>
</data>

The next snippet illustrates how a more complex data type can be stored in a resource file as a string
representation. It also shows how an assembly alias can be used to reference an external assembly
that contains type information. When this resource is accessed, the type information will be used to
convert the string value to an object of this type:

<assembly alias="System.Drawing" name="System.Drawing, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
<data name="Button1.Location" type="System.Drawing.Point, System.Drawing">
<value>71, 43</value>
</data>

Although resx files can be included in an application without your having to use the Resource File
Generator (Resgen), they are still converted prior to being compiled into the application. During
the build process, resources files are generated for each resx file in the application. These are
subsequently linked into the application.

binary resources
The third resource format is the binary resource file, indicated by the .resources file extension.
Behind the scenes, Visual Studio 2010 converts all resx files into .resources files as an intermediate
step during compilation (you can see these files in the \obj\debug folder for your project), and as you

fiGure 38-1

What are resources? ❘ 807

http://lib.ommolketab.ir
http//lib.ommolketab.ir

808 ❘ chaPter 38 reSource FileS

saw earlier in this chapter, you must manually convert text resources into .resources files using
Resgen. You can also integrate other binary resources into your project by simply including the
.resources file and setting the build action to Embedded Resource.

adding resources
Visual Studio 2010 supports a rich user interface for adding and modifying resource files. It is still
possible to view the contents of a resource file within the IDE. However, unless the resource is a
string, or has a string representation, it is not possible to modify the value within the resource file.
The resource editor provides support for strings, images, icons, audio files, and more.

Double-clicking the My Project (VB) or Properties (C#) node for a project in the Solution Explorer
opens the project properties editor, from which you can select the Resources tab to open the default,
or project, resource file. For C# projects you will then need to click the presented link to create
the resource file (VB projects already have a
default resource file). When the default resource
file opens, you will see that in the top left-hand
corner of the resource editor is a drop-down
list that navigates among resources of different
types, as shown in Figure 38-2. Double-clicking
any resx file within the Solution Explorer also
brings up this resource editor.

The editor displays the resource in an appropriate format, according to its type. For example,
strings are presented in an editable textbox, whereas images are presented as thumbnails that can
be opened and edited. Adding new resources is as simple as selecting the Add Resource drop-down,
choosing the appropriate resource type, and
adding the necessary information. Once
you have added a resource, it appears in the
resource editor, as shown in Figure 38-3.

Figure 38-3 shows an additional column that
gives you the option to specify a comment
alongside your resource. Unfortunately, the
resource editor is the only place in Visual
Studio 2010 where this comment is displayed.

embedding files as resources
It is often necessary to embed an entire file in an application. You can do this by including the
file in the application and modifying the build action. Depending on the file type, when the item
is included in the application, the build action (click the file and open the Properties window) is
normally set to either Compile or None. If this is changed to Embedded Resource, the entire file
is added to the application as an embedded resource.

Alternatively, you can use the resource editor shown in Figure 38-2 to add a file resource. When
images, icons, and other files are added to an existing resource file by means of the resource editor,
they are added as a resxfileref item. The file will appear in the resources directory, but the build

fiGure 38-2

fiGure 38-3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

action will be None . When the application is built, these fi les are compiled into the resources fi le
prior to being linked into the application. In the past, the data from these fi les was pulled out and
added to the resx fi le as a binary block. This meant that, once added, the data couldn ’ t be easily
modifi ed. With the fi le reference item, the data remains in an associated fi le and can easily be
updated.

 naming resources
 Resources are named for the resource fi le to which they belong and the root namespace. For
example, if you have a resource fi le called Sample.resources in a project called MyProject, the full
resource name will be MyProject.Sample.

 This is particularly important to remember when you make a fi le an embedded resource by
changing the build action. You can access any fi le by prefi xing the fi lename with the project name.
Unlike with resource fi les, the name of the fi le retains the extension. For example, if you have a fi le
called ASimpleDataDocument.doc in a project called MyProject, it will need to be referenced as
 MyProject.ASimpleDataDocument.doc .

 Any directory structure will be ignored for the purpose of naming embedded
resources.

 accessing resources
 The method that you use to access resources depends on how they are embedded in the application.
You have already seen that you have two ways to embed resources: the fi rst is to add a fi le to the
project and set the build action to Embedded Resource ; the second is via the resource editor. To access
resources added by a change to the build action, you need to use the GetManifestResourceNames and
 GetManifestResourceStream methods. The following code retrieves the names of all the resources
in the assembly by querying the manifest. It then creates a stream for accessing the relevant
resource fi le. As discussed in the previous section, the name of the embedded resource fi le returned
by the GetManifestResourceNames method and accepted by the GetManifestResourceStream
method is in the form Root namespace .Filename .File_extension (for example, MyProject.
ASimpleDataDocument.doc).

 Vb

Dim names = Reflection.Assembly.GetExecutingAssembly.GetManifestResourceNames
Dim resources = From n In names
 Select Assembly.GetExecutingAssembly.GetManifestResourceStream(n)
For Each r In resources
 Using strm As New IO.StreamReader(r)
 MsgBox(strm.ReadToEnd)
 End Using
Next

What are resources? ❘ 809

http://lib.ommolketab.ir
http//lib.ommolketab.ir

810 ❘ chaPter 38 reSource FileS

c#

var names = Assembly.GetExecutingAssembly().GetManifestResourceNames();
var resources = from n in names
 select Assembly.GetExecutingAssembly().GetManifestResourceStream(n);
foreach (var r in resources){
 using (var strm = new StreamReader(r)){
 MessageBox.Show(strm.ReadToEnd());
 }
}

Resources added via the resource editor can be accessed in code by means of a resource manager,
which you can easily create from the name of the resource file to which they belong and a reference
to the assembly from which the resource should be extracted:

Vb

Dim res As New ResourceManager("WorkingWithResources.Resources",
 Assembly.GetExecutingAssembly)

c#

var res = new ResourceManager("WorkingWithResources.Properties.Resources",
 Assembly.GetExecutingAssembly());

Once created, resources can be extracted by means of either the GetObject or GetString function:

res.GetObject("StringResource")

For more complex resources, such as files, you may also want to use the GetStream function. All
three functions take the name of the resource as the only parameter.

designer files
The Resource Generator utility, Resgen, has a number of improvements that enable you to build
strongly typed wrapper classes for your resource files. When you add a resx file to your application,
Visual Studio 2010 automatically creates a designer file that wraps the process of creating a resource
manager and accessing the resources by name. The accessor properties are all strongly typed and
are generated by the designer to reduce the chance of invalid type conversions and references. For
example, if you have a string resource, StringResource, contained in a resource file, MyResources,
you can use the following code to access the string:

Vb

My.Resources.MyResources.MyStringResource

c#

MyResources.StringResource

You will notice that the designer-generated code is different for VB and C#. This is
because C# uses the generic ResXFileCodeGenerator custom tool whereas VB uses the
VbMyResourcesResXFileCodeGenerator custom tool to integrate the resource file into
the My namespace.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Unfortunately, Visual Studio 2010 does not automatically generate the designer file for text resource
files, because text resource files cannot be explicitly added to the application. The process of generating
a resource file from the text file can be extended to include the generation of the designer file.

A new argument has been added to Resgen that facilitates the generation of this designer file:

resgen sample.txt sample.resources /str:vb

Both of the output files need to be added to the application so that the resources are accessible.
To ensure that the resources can be correctly accessed, you must ensure that the naming used
within the designer file matches the naming of the compiled resources. You can provide additional
parameters to control the namespace, class name, and output filename:

resgen sample.txt defaultnamespace.sample.resources
 /str:vb,defaultnamespace,sample,sample.vb

In this case, the fully qualified output class would be defaultnamespace.sample, and the use
of this file would allow access to resources without an exception being raised. Once the correct
command has been determined, you can update your prebuild event to include the generation of the
designer file. This way, every time the file is modified and saved and the application is compiled,
the designer file will be re-created.

resourcinG your aPPlication

Writing an application often requires data such as images, icons, or sounds (collectively known as
resources) to enhance the appearance of the application. Furthermore, best coding practices suggest
that the use of constant strings throughout your application be avoided. In either case, you can
put together a custom solution that stores these resources in files that need to be shipped with the
application.

An alternative is to include them in a resource file that can be compiled
into your application. This way you not only have the resources in a
format that you can work with, but they are also automatically available
within your application.

In Visual Studio 2010, forms are initially represented by two files:
the generated designer file (for example, Form1.Designer.vb) and the
code-beside file (for example, Form1.vb). When a control, such as a
button, is first added to the form, a resource file (for example, Form1
.resx) is automatically created for the form. By default, this resource
file contains very little data, because most properties are hard-coded into
the designer file. This file becomes very important when localization is
turned on for the form. When this is done, via the properties grid shown
in Figure 38-4, the designer properties for the controls on the form are
persisted to the resource file. fiGure 38-4

resourcing Your application ❘ 811

http://lib.ommolketab.ir
http//lib.ommolketab.ir

812 ❘ chaPter 38 reSource FileS

The following code snippet shows the designer-generated method InitializeComponent, which
creates and sets properties on Button1. This is how the code would appear with the Localizable
property on the form set to False:

Private Sub InitializeComponent()
 Me.Button1 = New Button
 '
 'Button1
 '
 Me.Button1.Location = New Point(71, 43)
 Me.Button1.Size = New Size(185, 166)
 Me.Button1.Text = "Button1"
 Me.Button1.TabIndex = 0
 Me.Button1.Name = "Button1"
 Me.Button1.UseVisualStyleBackColor = True
 '
 'Form1
 '
 Me.Controls.Add(Me.Button1)
End Sub

Once the Localizable property of the form has been set to True, the form uses the new
ComponentResourceManager class to load and apply properties found in the associated resource
file. (This framework class is covered in more detail later in this chapter.)

Private Sub InitializeComponent()
 Dim resources As New ComponentResourceManager(GetType(Form1))
 Me.Button1 = New Button
 '
 'Button1
 '
 resources.ApplyResources(Me.Button1, "Button1")
 Me.Button1.Name = "Button1"
 Me.Button1.UseVisualStyleBackColor = True
 '
 'Form1
 '
 Me.Controls.Add(Me.Button1)
End Sub

Although the resource files generated by the forms designer can be manually edited, this is not
encouraged because changes may be overwritten the next time the file is regenerated by the designer.

When resource files are used properly, they can provide a number of benefits because they are a
convenient place to store strings, icons, images, and other data that might be referenced by an
application. The use of resource files, both for tracking form properties and for application data, is a
must for any application that needs to be translated for a foreign culture (we use the term “culture”
here because more than language can differ among countries and ethnic groups). Resource files
enable developers to provide alternative data for different cultures. When the application is run,
the .NET Framework uses the current culture information to determine which data to load, based
upon the resource fallback process (the fallback process is discussed in the section “Loading Culture

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Resource Files” later in this chapter). Common examples of information that might need to be
varied among cultures are prompts, titles, error messages, and button images.

control images
A number of Windows Forms controls
have images as properties. For example, the
PictureBox control has Image, ErrorImage, and
InitialImage properties. If you click the ellipsis
in the value column of the Properties window for
any of these properties, you see the dialog shown
in Figure 38-5, which enables you to select an
image for the specified property.

Before selecting an image, you have to decide
whether you want to store it in the resource
file associated with the current form (that is, a
Local resource) or in a project-level resource file.
The former option stores the image in a Base64-
encoded block within the actual resource file,
whereas the latter adds the image to the project and adds an appropriate reference to the selected
resource file. Clearly the latter is normally preferable, because it means that you can change the
image without having to import it again.

satellite resources

One of the big advantages of placing data in a resource file is the resulting capability to translate the
data for foreign cultures. Instead of all the languages being included in a single resource file, each
culture’s data is stored in a resource file that has a suffix defined by that culture.

cultures
Cultures are defined by a combination of two lowercase letters, which represent the language, and two
uppercase letters, which represent the country or region of the culture. These two pairs of letters are
separated by a hyphen. For example, U.S. English and Australian English are represented as en-US
and en-AU, respectively. The corresponding resource files for these cultures would be MyResource
.en-US.resx and MyResource.en-AU.resx. You can find a full list of culture identifiers at http://
msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx. If you are
curious, you can look over all the available cultures, which are returned by CultureInfo.GetCultures
(CultureTypes.AllCultures). About 220 cultures exist, and they can be classified as follows:

 ➤ Invariant culture: No language or country identifier (for example, Form1.resx). Data is
not dependent upon culture — for example, this might be the company logo, which will not
vary and is not dependent upon culture information.

 ➤ Neutral culture: Language identifier (for example, Form1.en.resx). Data is dependent upon
language alone — for example, a simple warning message that merely needs to be translated.

fiGure 38-5

satellite resources ❘ 813

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx
http://lib.ommolketab.ir
http//lib.ommolketab.ir

814 ❘ chaPter 38 reSource FileS

 ➤ Specific culture: Language and country identifier (for example, Form1.en-US.resx). Data is
dependent upon both language and country/region — for example, form layout, color, and
prompts should all be translated and adjusted for specific regions.

creating culture resources
If you are creating additional resource files for a form, it is important to ensure that the
Localizable property is set to True. You have three ways to create culture-specific resource files:

If you know the identifier of the culture for which you want to generate a resource file, you ➤

can simply save the resx file to filename.culture_identifier.resx. For example, if you were
converting the resource file Form1.resx to Australian English, you would save it as Form1.
en-AU.resx. You will notice that when you do this, Visual Studio removes the original resx
file from the solution and adds the new culture-specific resx file. To get both files to show up
nested under the Form1 node, you actually need to exclude the new resx file, refresh the
solution view (by closing and reopening the solution), and then put both files back into
the project.

Visual Studio supports a much better way to create culture-specific resource files for forms. ➤

From the Properties window for the form you can select Language. The name of this prop-
erty is slightly misleading because it adjusts not only the language, but also the country/
region of the form in designer mode. This property is initially set to (Default) and should
always be returned to this setting after you have finished generating or modifying resource
files for specific cultures. To generate the resource file for Australian English, select English
(Australia) from the Language drop-down and make the appropriate changes to the
form. Once you are comfortable with the new layout, save it and reset the Language prop-
erty to (Default).

The last way to generate culture-dependent resource files is to use ➤ WinRes.exe. Although
it’s not added to the Start menu, it is available under the Windows SDK folder (located at
C:\Program Files\Microsoft SDKs\Windows\v7.0A\bin) and is a graphical utility for
generating resource files for forms. This utility can load an existing resource file, allow
properties of all controls on the form to be modified, and then save the changes to a particu-
lar culture resource file. Before opening a form’s resource file using this utility, make sure
that the Localizable property is set to True; otherwise the file will not load properly.

loading culture resource files
At this point you might be wondering how resource files interact, and whether culture-specific
resource files have to be created and compiled at the same time as the main application. The answer
to both of these questions lies in the resource fallback process, which is the mechanism by which the
ResourceManager class loads resources.

The fallback process has three levels, based upon the current user interface culture (UI culture)
of the executing thread. This can be accessed in code via the CultureInfo.CurrentUICulture
property. Be aware that this is different from CultureInfo.CurrentCulture, which is the current
culture used in string comparisons, date formats, and so on. Unlike the current culture, which

http://lib.ommolketab.ir
http//lib.ommolketab.ir

is based upon the regional settings of the computer (which you can adjust using Control Panel ➪
Regional Settings), the default UI culture is dependent upon the Windows user interface language
pack that is currently selected. Unless you have a Windows Multilingual User Interface Pack
installed, you will not be able to modify the default UI culture for your applications.

Although you can’t change the default user interface culture, you can adjust this property in code.
A word of caution here, however: without the interface pack installed, some cultures may not
display correctly.

Thread.CurrentThread.CurrentUICulture = New CultureInfo("en-US")

Using the current user interface culture, the fallback process tries to locate resources based on a
culture match. For example, if the UI culture is en-US, the process would start off by looking for
specific culture resources that match both language (English) and country (U.S.). When no resource
can be located, the process falls back to neutral culture resources that match just the language
(English). If the fallback process still can’t locate a resource, the process falls back to invariant
culture, indicating there is no match for language or country.

satellite culture resources
So far we have mentioned only how a resource can be converted into a new culture and added to
an application. Although this method gives you control over which cultures are deployed with
your application, it would be better if you didn’t have to rebuild your entire application whenever a
culture resource needed to be modified, or when you decided to add support for a new culture.

When Visual Studio 2010 compiles culture resources, it splits the resource files into a hub-and-
spoke arrangement, using satellite assemblies to contain culture resources. At the hub is the main
assembly that would contain the invariant resources. Satellite assemblies are then created for each
culture for which a resource has been created. The naming of the satellite assembly is of the form
“MyApp.resources.dll” and it is located in a subdirectory named according to the culture under the
main output path. Although there is an implicit relationship between specific cultures and neutral
cultures (for example, between en-US and en), satellite assemblies for both types should reside in a
subdirectory under the main output path.

Another alternative is for the main assembly and/or satellite assemblies to be installed into the
Global Assembly Cache (GAC). In this case, each assembly must be strongly named so that it is
unique within the cache.

Clearly, the resource fallback process needs to accommodate assemblies both in the GAC and in
subdirectories. Hence, for each culture level (specific, neutral, and invariant) the GAC is checked
first, followed by the culture subdirectory. Finally, if no resource is found, an exception is raised.

Note that culture resource files do not have to contain all the resources defined in the default
resource file. The resource fallback process will load the resource from the default resource file if it
is not located in a more specific resource file, so it makes sense to save in the specified culture only
those resources that are different.

satellite resources ❘ 815

http://lib.ommolketab.ir
http//lib.ommolketab.ir

816 ❘ chaPter 38 reSource FileS

accessinG sPecifics

Numerous shortcuts have been built into the .NET Framework to support the most common tasks
related to accessing resources. These shortcuts include single-line image loading, cross-assembly
referencing, and the use of the ComponentResourceManager class.

bitmap and icon loading
Images and icons are two of the most common data types held in resource files. Therefore, both the
Bitmap and Icon classes in the framework support a constructor that can create an instance directly
from a resource without the need for a resource manager. For example, if you have an image,
MyImage.bmp, that you included in your project by setting the build action to Embedded Resource,
you can access the image directly using the following code:

Dim img As New Bitmap(GetType(ThisClass), "MyImage.bmp")

Here the class, ThisClass, can be any class in the root namespace of the project that contains the
embedded resource.

cross-assembly referencing
In Visual Studio 2010, you can control the accessibility level for resource files. With the Access
Modifier option in the resource editor, as shown in Figure 38-6, you can choose between keeping a
resource internal to the assembly it is defined in (Friend [VB] or Internal [C#]) or making it publicly
accessible (Public).

If you set the Access Modifier to Public, you can
then access this resource from another assembly
by prefixing the resource name with the
assembly name. For example, in the following
code the MyPerson resource is located in the
CustomResourceType assembly:

Dim p As Person = CustomResourceType.My.Resources.MyPerson

componentresourceManager
In the first example in this chapter, after localization was turned on, a ComponentResourceManager
object was used to retrieve resources associated with the form. The ComponentResourceManager
extends the base ResourceManager by providing additional functionality for retrieving and applying
component properties. Here are the original four lines required to set the properties defined for
Button1:

Me.Button1.Location = New Point(71, 43)
Me.Button1.Size = New Size(185, 166)
Me.Button1.Text = "Button1"
Me.Button1.TabIndex = 0

fiGure 38-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the ComponentResourceManager, they can be condensed into just one line:

resources.ApplyResources(Me.Button1, "Button1")

In previous versions of Visual Studio, the code generated when localization was turned on was much
more verbose. For each property, a separate call was made to the ResourceManager to retrieve it by
name, as shown in this code snippet:

Me.Button1.Location = CType(resources.GetObject("Button1.Location"), Point)
Me.Button1.Size = CType(resources.GetObject("Button1.Size"), Size)
Me.Button1.TabIndex = CType(resources.GetObject("Button1.TabIndex"), Integer)
Me.Button1.Text = resources.GetString("Button1.Text")

It is still possible to write this code because the GetObject method is still available on the
ComponentResourceManager. The issue with writing this code is that each property that is going
to be localized needs to be known at compile time. Because of this, every property on every control
was added to the resource file. This added excess properties (even when they were no different from
the default values) to the resource file. It also added huge overhead during the loading up of a form,
because each property was set via a resource property.

The ApplyResources method in the ComponentResourceManager class works in reverse. When you
specify a control name, which must be unique on a form, all resources that start with that prefix are
extracted. The full resource name is then used to determine the property to set on the control. For
example, a resource with the name Button1.Location would be extracted for the control called
Button1, and the value used to set the Location property on that control.

This process eliminates the need to have all properties specified in a resource file. It also creates the
need for culture resource files to specify additional properties that might not have been defined in
the default resource file.

You might be wondering whether any additional penalties exist in using the
ComponentResourceManager. To set a property on a control using the name of the property,
the ComponentResourceManager uses reflection to find the appropriate property. Once it has
been retrieved, it can be invoked. Each search that is done in order to set the property is relatively
expensive. However, given the reduced number of properties to be set, the tradeoff is definitely
worthwhile, because the application can easily be localized without recompilation of the main
application.

codinG resource files

In addition to the rich visual tools that Visual Studio 2010 now provides for editing resource files,
it is possible to use code to create resource files. The .NET Framework provides support for reading
and writing resource files using two interfaces: IResourceReader and IResourceWriter. Once the
resource files have been created, they need to be added to the application or manually linked so that
they can be referenced within the application.

Coding resource files ❘ 817

http://lib.ommolketab.ir
http//lib.ommolketab.ir

818 ❘ chaPter 38 reSource FileS

 ➤ IResource Reader: The reader interface ensures that resource readers have the following
methods:

 ➤ GetEnumerator: The GetEnumerator method retrieves an IDictionaryEnumerator
object that permits the developer to iterate over each of the resources in the resource file.

 ➤ Close: The Close method is used to close the resource reader and release any
associated resources.

 ➤ IResource Writer: The writer interface ensures that resource writers have the following
methods:

 ➤ AddResource: Three overloads to the AddResource method support adding
resources to the resource file. Both of the framework implementations of this
interface have either an additional overload of this method or an alternative
method for adding resources. The overloads that are part of this interface support
adding resources in a name-value pair. Each method has the resource name as the
first parameter and a value, such as a string, byte array, or object, as the second
parameter. The final implementation that takes an object as a parameter may need
to be serializable or converted to a string via a type converter.

 ➤ Close: The Close method writes resources out to the stream before closing it.

 ➤ Generate: Unlike the Close method, the Generate method simply writes the
resources out to the stream without closing it. Once this method is called, any other
method will cause an exception to be raised.

resourcereader and resourcewriter
ResourceReader and ResourceWriter are an implementation of the IResource interfaces to support
reading and writing directly to resources files. Although reading and writing to this format is the
most direct approach, because it reduces the need to use Resgen to generate the resources file, it
does limit the quality of information that can be retrieved in reading from the file. Each resource is
treated as a series of bytes where the type is unknown.

resxresourcereader and resxresourcewriter
ResxResourceReader and ResxResourceWriter are more versatile implementations of the IResource
interfaces. In addition to supporting the IResource interface, ResxResourceWriter supports an
additional overload of the AddResource method, whereby a ResxDataNode can be added. A
ResxDataNode is very similar to a dictionary entry, because it has a key (in this case, the Name
property) and a value (which you must set when the node is created). However, the difference is that
this node can support additional properties such as a comment and, as an alternative to a value, a
file reference (for example, one that indicates where an image needs to be added to a resource file).

As mentioned previously, it is possible to add a file reference to a resx file so that the file is still
editable, yet has the benefit of being compiled into the resource file by resgen.exe. The supporting
class in the framework is ResxFileRef. This can be instantiated and added as a resource via the
ResxResourceWriter. This inserts an XML node similar to the following snippet:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 < data name="Figure_11_2" type="ResXFileRef, System.Windows.Forms" >
 < value > .\Resources\CompanyLogo.tif;System.Drawing.Bitmap, System.Drawing,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a < /value >
 < /data >

 custoM resources

 Although Visual Studio provides good support for international application development using
resource fi les, at times it is not possible to get the level of control required using the default behavior.
This section delves a little deeper into how you can serialize custom objects to the resource fi le and
how you can generate designer fi les, which give you strongly typed accessor methods for resource
fi les you have created.

 Visual Studio 2010 enables you to store strings, images, icons, audio fi les, and other fi les within a
resource fi le. You can do all this using the rich user interface provided. To store a more complex
data type within a resource fi le you need to serialize it into a string representation that can be
included within the resource fi le.

 The fi rst step in adding any data type to a resource fi le is to make that data type serializable.
You can do this easily by marking the class with the Serializable attribute. Once it is
marked as serializable, you can add the object to a resource fi le using an implementation of the
IResourceWriter interface — for example, ResXResourceWriter:

 Vb

< Serializable() > _
Public Class Person
 Public Property Name As String
 Public Property Height As Integer
 Public Property Weight As Double
End Class
Dim p As New Person
p.Name = "Bob"
p.Height = 167
p.Weight = 69.5
Dim rWriter As New ResXResourceWriter("foo.resx")
rWriter.AddResource("DefaultPerson", p)
rWriter.Close()

Custom resources ❘ 819

 Resource fi les are the best means of storing static application data. Although
they are linked in to the application as part of the compilation process, their
contents can easily be extracted and made human - readable. Because of this,
however, resource fi les are not suitable for storing secure data such as passwords
and credit card information.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

820 ❘ chaPter 38 reSource FileS

c#

[Serializable()]
public class Person{
 public string Name { get; set; }
 public int Height { get; set; }
 public double Weight { get; set; }
}
var p = new Person(){
 Name = "Bob",
 Height = 167,
 Weight = 69.5};
var rWriter = new ResXResourceWriter("foo.resx");
rWriter.AddResource("DefaultPerson", p);
rWriter.Close();

However, serializing an object this way has a couple of drawbacks:

You need to use code to write out this resource file before the build process so that the ➤

resource file can be included in the application. Clearly this is an administrative nightmare,
because it is an additional stage in the build process.

Furthermore, the serialized representation of the class is a binary blob and is not human- ➤

readable. The assumption here is that what is written in the generating code is correct.
Unfortunately, this is seldom the case, and it would be easier if the content could be human-
readable within Visual Studio 2010.

A workaround for both of these issues is to define a TypeConverter for the class and use that
to represent the class as a string. This way, the resource can be edited within the Visual Studio
resource editor. TypeConverters provide a mechanism through which the framework can determine
whether it is possible to represent a class (in this case a Person class) as a different type (in this case
as a string). The first step is to create a TypeConverter using the ExpandableObjectConverter, as
follows:

Vb

Imports System.ComponentModel
Imports System.ComponentModel.Design.Serialization
Imports System.Globalization

Public Class PersonConverter
 Inherits ExpandableObjectConverter

 Public Overrides Function CanConvertFrom(ByVal context As _
 ITypeDescriptorContext, _
 ByVal t As Type) As Boolean
 If t Is GetType(String) Then Return True
 Return MyBase.CanConvertFrom(context, t)
 End Function
 Public Overrides Function ConvertFrom(_
 ByVal context As ITypeDescriptorContext, _
 ByVal info As CultureInfo, _
 ByVal value As Object) As Object
 If (TypeOf (value) Is String) Then

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Try
 If value Is Nothing Then Return New Person()
 Dim vals = CStr(value).Split(","c)
 If vals.Length <> 3 Then Return New Person()
 Return New Person With {.Name = vals(0), _
 .Height = Integer.Parse(vals(1)), _
 .Weight = Double.Parse(vals(2))}
 Catch
 Throw New ArgumentException("Can not convert '" & _
 value.ToString & _
 "' to type Person")
 End Try
 End If
 Return MyBase.ConvertFrom(context, info, value)
 End Function
 Public Overrides Function ConvertTo(ByVal context As ITypeDescriptorContext, _
 ByVal culture As CultureInfo, _
 ByVal value As Object, _
 ByVal destType As Type) As Object
 If (destType Is GetType(String) And TypeOf (value) Is Person) Then
 Dim c = TryCast(value, Person)
 Return c.Name & "," & c.Height.ToString & "," & c.Weight.ToString
 End If
 Return MyBase.ConvertTo(context, culture, value, destType)
 End Function
End Class

c#

public class PersonConverter : ExpandableObjectConverter{
 public override bool CanConvertFrom(ITypeDescriptorContext context,
 Type t){
 if (typeof(string) == t) return true;
 return base.CanConvertFrom(context, t);
 }

 public override object ConvertFrom(ITypeDescriptorContext context,
 CultureInfo culture, object value){
 if (value is string){
 try{
 if (value == null) return new Person();
 var vals = (value as string).Split(’,’);
 if (vals.Length != 3) return new Person();
 return new Person{
 Name = vals[0],
 Height = int.Parse(vals[1]),
 Weight = double.Parse(vals[2])
 };
 }
 catch (Exception){
 throw new ArgumentException("Can not convert ’" +
 value.ToString() + "’ to type Person");
 }
 }

Custom resources ❘ 821

http://lib.ommolketab.ir
http//lib.ommolketab.ir

822 ❘ chaPter 38 reSource FileS

 return null;
 }

 public override object ConvertTo(ITypeDescriptorContext context,
 CultureInfo culture, object value, Type destType){
 if (typeof(string) == destType & & value is Person){
 var c = value as Person;
 return c.Name + "," + c.Height.ToString() + "," + c.Weight.ToString();
 }
 return base.ConvertTo(context, culture, value, destType);
 }
}

 The class being represented also needs to be attributed with the TypeConverter attribute:

 Vb

< System.ComponentModel.TypeConverter(GetType(PersonConverter)) > _
 < Serializable() > _
Public Class Person
 Public Property Name As String
 Public Property Height As Integer
 Public Property Weight As Double
End Class

 c#

[System.ComponentModel.TypeConverter(typeof(PersonConverter))]
[Serializable()]
public class Person{
 public string Name { get; set; }
 public int Height { get; set; }
 public double Weight { get; set; }
}

 Now you can add this item to a resource fi le using the string representation of the class. For
example, an entry in the resx fi le might look like this:

 < assembly alias="CustomResourceType" name="CustomResourceType, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null" / >
 < data name="Manager" type="CustomResourceType.Person, CustomResourceType" >
 < value > Joe,175,69.5 < /value >
 < /data >

 Creating custom resource types is a diffi cult process, because Visual Studio 2010
doesn ’ t refresh your TypeConverter after it has been loaded the fi rst time. You
can either strongly name the assembly in which the TypeConverter is located
and increment the version number each time you change it, or you will have to
restart Visual Studio in order for the changes to take effect.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

suMMary

This chapter demonstrated how important XML resource files are in building an application that
can both access static data and be readily localized into foreign languages and cultures. The rich
user interface provided by Visual Studio 2010 enables you to easily add resources such as images,
icons, strings, audio files, and other files to an application.

The built-in support for localizing forms and generating satellite assemblies empowers developers
to write applications that can target a global market. You have also seen that the user interface
provided within Visual Studio 2010 is extensible, meaning that you can modify it to interact with
your own custom resource types.

summary ❘ 823

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PART IX

 debugging

 chaPter 39: ⊲ Using the Debugging Windows

 chaPter 40: ⊲ Debugging with Breakpoints

 chaPter 41: ⊲ DataTips, Debug Proxies, and Visualizers

 chaPter 42: ⊲ Debugging Web Applications

 chaPter 43: ⊲ Advanced Debugging Techniques

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

39
 Using the Debugging Windows

 what ’ s in this chaPter?

 Learning basic debugging concepts in Visual Studio, including ➤

breakpoints and DataTips

 Understanding the debugging windows in Visual Studio ➤

 Using and unwinding exceptions during a debug session ➤

 Debugging an application is one of the more challenging tasks developers have to tackle, but
correct use of the Visual Studio 2010 debugging windows will help you analyze the state of the
application and determine the cause of any bugs. This chapter examines the numerous windows
available in Visual Studio 2010 to support you in building and debugging applications.

 the code window

 The most important window for debugging purposes is the code window. With the capability
to set breakpoints and step through code, this window is the starting point for almost all
debugging activities. Figure 39 - 1 shows a simple snippet of code with both a breakpoint and
the current execution point visible.

 fiGure 39 - 1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

828 ❘ chaPter 39 uSing The debugging WindoWS

 breakpoints
 The fi rst stage in debugging an application is usually to identify the area that is causing the error
by setting a breakpoint and gradually stepping through the code. Setting breakpoints and working
with the current execution point are covered in more detail in the next chapter. Although you can ’ t
see the color in Figure 39 - 1, breakpoints are marked in the code window with a red dot in the
margin of the page and red highlighting of the code itself.

 When a breakpoint is encountered, the current execution point is marked with a yellow arrow in the
margin and the actual code is also highlighted in yellow. As discussed in the next chapter, this marker
can be dragged forward and backward to control the order of execution. However, this should be
done sparingly because it modifi es the behavior of the application.

 datatips
 After hitting a breakpoint, the application is paused, or is in Break mode . In this mode, you can
retrieve information about current variables simply by hovering your mouse over the variable name.
Figure 39 - 1 shows that the value of the mCustomerName variable is currently “ Dante Hicks. ” This
debugging tooltip is commonly referred to as a DataTip , and can be used to view not only the values
of simple types, such as strings and integers, but also to drill down and inspect more complex object
types, such as those made up of multiple nested classes.

 DataTips are used to both query and edit the value of a variable.

 In Chapter 41 you learn how the layout of this DataTip can be customized using type proxies and
type visualizers.

 the breakPoints window

 When debugging a complex issue, it is possible to set numerous breakpoints to isolate the problem.
Unfortunately, this has two side effects. One, the execution of the application is hampered, because
you have to continually press F5 to resume execution. Two, and more signifi cantly, the execution
of the application is slowed considerably by the presence of conditional breakpoints , which enable
you to specify an expression that is executed to determine if the application should be paused.
The more complex the breakpoint conditions are, the slower the application will run. Because
these breakpoints can be scattered through multiple source fi les, it becomes diffi cult to locate and
remove breakpoints that are no longer required.

 The Breakpoints window, shown in Figure 39 - 2, is accessible via Debug ➪ Windows ➪ Breakpoints
and provides a useful summary of all the breakpoints currently set within the application. Using this
window, breakpoints can easily be navigated to, disabled, and removed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 39-2 shows two currently active breakpoints in the Customer.cs file. The first is a regular
breakpoint with no conditions. The second has a condition whereby the application will break only
if the mAccountBalance variable has a value less than 1000. This condition is also in bold, because
the application is currently in Break mode at that breakpoint.

The Breakpoints window, like most other debugging windows, is made up of two regions: the
toolbar and the breakpoint list. Several new functions have been added to the toolbar in Visual
Studio 2010, including search, and import and export of breakpoints. These functions are explained
further in Chapter 40.

Each item in the breakpoint list is represented by a checkbox that indicates whether the breakpoint
is enabled, an icon and breakpoint descriptor, and any number of columns that show properties of
the breakpoint. The columns can be adjusted using the Columns drop-down from the toolbar. You
can set additional breakpoint properties by right-clicking the appropriate breakpoint.

the outPut window

One of the first debugging windows you will encounter when you run your application for the
first time is the Output window. By default, the Output window appears every time you build
your application, and shows the build progress. Figure 39-3 shows the successful build of a
sample solution. The final line of the Output window indicates a summary of the build, which in
this case indicates three successfully built projects. In the output there is also a summary of the
warnings and errors encountered during the build. In this case there were no errors, but there
were three warnings. Although the Output window can be useful if for some reason the build fails
unexpectedly, most of the time the errors and warnings are reported in the Error List.

fiGure 39-2

fiGure 39-3

The output Window ❘ 829

http://lib.ommolketab.ir
http//lib.ommolketab.ir

830 ❘ chaPter 39 uSing The debugging WindoWS

 fiGure 39 - 4

 The Output window has a secondary role as the standard output while the application is running. The
drop - down on the left of the toolbar can be used to toggle between output sources. Figure 39 - 3 shows
the output of the build, but as you perform other activities in Visual Studio additional entries are
created in the drop - down list. For example, when you run your application in Debug mode, Visual
Studio creates an entry called Debug, which displays any messages that either the run time or your
code has emitted using Debug.Write or Debug.WriteLine . Likewise, a Refactor entry is created to
show the results of any recent refactoring operation that was performed.

 The output from external tools such as .bat and .com fi les is normally displayed
in the Command window. The output from these tools can also be displayed in
the Output window by setting the Use Output Window option in the Tools ➪
External Tools dialog box.

 The other icons on the toolbar, in order from left to right, enable you to navigate to the source of a
build message, go to the previous message, go to the next message, clear the window contents, and
toggle word wrapping for the Output window.

 the iMMediate window

 Quite often when you are writing code or
debugging your application, you will want
to evaluate a simple expression either to test
a bit of functionality or to remind yourself
of how something works. This is where the
Immediate window (Debug ➪ Windows ➪
Immediate) comes in handy. This window
enables you to run expressions as you type
them. Figure 39 - 4 shows a number of
statements — from basic assignment and
print operations through to more advanced
object creation and manipulation.

 Figure 39 - 4 shows a new Customer object
being created in a C# project within the
Immediate window. Within a Visual Basic
project you can ’ t do explicit variable
declaration (for example, Dim x as Integer). Instead it is done implicitly using the assignment
operator.

 One of the more useful features of the Immediate window is that it can be used while you are
writing code. When you create new objects in the Immediate window at design time, it invokes the
constructor and creates an instance of that object without running the rest of your application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you invoke a method or property that contains an active breakpoint, Visual Studio changes
to Debug mode and breaks at the breakpoint. This is especially useful if you are working on a
particular method that you want to test without running the entire application.

 The Immediate window supports a limited form of IntelliSense, and you can use the arrow keys to
track back through the history of previous commands executed.

IntelliSense is only supported in the Immediate window when running in Debug
mode, not during design - time debugging.

 The Immediate window also enables you to execute Visual Studio commands. To submit a
command, you must enter a greater than symbol (>) at the start of the line. There is an extremely
large set of commands available; in fact, almost any action that can be performed within Visual
Studio is accessible as a command. Fortunately, IntelliSense makes navigating this list of available
commands a little more manageable.

 There is also a set of almost 100 predefi ned
aliases for commands. One of the more
well - known aliases is “ ? ” , which is a
shortcut for the Debug.Print command
that prints out the value of a variable.
You can see the full list of predefi ned
aliases by entering > alias , as shown in
Figure 39 - 5.

 the watch windows

 Earlier in this chapter you saw how DataTips can be used in the code window to examine the
content of a variable by hovering the mouse over a variable name. When the structure of the object
is more complex it becomes diffi cult to navigate the values using just the DataTip. Visual Studio
2010 has a series of Watch windows that can be used to display variables, providing an easy - to - use
interface for drilling down into the structure.

 quickwatch
 The QuickWatch window (Debug ➪ QuickWatch) is a modal dialog that can be launched by
right - clicking the code window. Whatever you have selected in the code window is inserted
into the Expression fi eld of the dialog, as shown in Figure 39 - 6 where a Customer object is
visible. Previous expressions you have evaluated appear in the drop - down associated with the
Expression fi eld.

 fiGure 39 - 5

The Watch Windows ❘ 831

http://lib.ommolketab.ir
http//lib.ommolketab.ir

832 ❘ chaPter 39 uSing The debugging WindoWS

fiGure 39-6

fiGure 39-7

The layout of the Value tree in the QuickWatch window is similar to the DataTip. Each row
shows the variable name, the current value, and the type of object. The value of the variable can
be adjusted by typing in the Value column.

Use the Add Watch button to add the current expression to one of the Watch windows. These are
variables to be continuously watched.

watch windows 1–4
Unlike the QuickWatch window, which is modal and shows a variable value at a particular
execution point, the Watch windows can be used to monitor a variable value as you step through
your code. Although there are four Watch windows, a single window is sufficient in most cases.
Having four separate windows means that you can have different sets of variables in the different
windows, which might be useful if you are working through a more complex issue that involves
multiple classes.

Figure 39-7 shows an Order and Customer
class in a Watch window (Debug ➪ Windows
➪ Watch 1 to Watch 4). Similar to both
the QuickWatch window and the DataTips
discussed previously, the user interface can
be used to drill down into more complex
data types.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Additional variables to be watched can be added either by typing into the Name column on an
empty line or by right-clicking the variable in the code window and selecting Add Watch from the
context menu.

autos and locals
The Autos and Locals windows are two special Watch windows in which the variables are
automatically added by the debugger. The Autos window (Debug ➪ Windows ➪ Autos) contains
variables that are used in the current, preceding, and future lines of code. Similarly, the Locals
window (Debug ➪ Windows ➪ Locals) shows all variables used in the current method. Other than
being automatically generated, these windows behave the same as the Watch windows.

the code execution windows

In addition to inspecting the contents of variables during a debugging session, it is essential that
you carefully evaluate the logic of your code to ensure that everything is executed in the order
that you expect. Visual Studio 2010 has a group of debugger windows that show exactly what was
loaded and being executed at the time you paused the program execution. This allows you to better
understand the runtime behavior of your source code and quickly track down logic errors.

call stack
As applications grow in complexity, it is quite common for the execution path to become difficult to
follow. The use of deep inheritance trees and interfaces can often obscure the execution path. This
is where the call stack is useful. Each path of execution must have a finite number of entries on the
stack (unless a cyclic pattern emerges, in which case a stack overflow is inevitable). The stack can be
viewed using the Call Stack window (Debug ➪ Windows ➪ Call Stack), shown in Figure 39-8.

fiGure 39-8

Using the Call Stack window, it is easy to navigate up the execution path to determine from where
the current executing method is being called. You can do this by clicking any of the rows in the call
stack, known as a stack frame. Other options available from the call stack, using the right-click
context menu, enable viewing the disassembler for a particular stack frame, setting breakpoints,
and varying what information is displayed.

The Code execution Windows ❘ 833

http://lib.ommolketab.ir
http//lib.ommolketab.ir

834 ❘ chaPter 39 uSing The debugging WindoWS

threads
Most applications make use of multiple threads at some point. In particular for Windows applications,
in order for the user interface to always appear responsive, it is important to run time-consuming tasks
on a thread separate from the main application. Of course, concurrent execution of threads makes
debugging more difficult, especially when the threads are accessing the same classes and methods.

Figure 39-9 shows the Threads window (Debug ➪ Windows ➪ Threads), which lists all the active
threads for a particular application. Notice that in addition to the threads created in the code,
additional background threads have been created by the debugger. For simplicity, the threads used
by this application, including the main user interface thread, have been given names so they can
easily be distinguished.

fiGure 39-9

The Threads window shows a yellow arrow next to the thread that is currently being viewed in the
code window. To navigate to another thread, simply double-click that thread to bring the current
location of that thread into view in the code window and update the call stack to reflect the new
thread.

In Break mode, all threads of an application are paused. However, when you are stepping through
your code with the debugger, the next statement to be executed may or may not be on the same
thread you are interested in. If you are only interested in the execution path of a single thread, and the
execution of other threads can be suspended, right-click the thread in the Threads window and select
Freeze from the context menu. To resume the suspended thread, select Thaw from the same menu.

Debugging multi-threaded applications is explained further in Chapter 43.

Modules
The Modules window (Debug ➪ Windows ➪ Modules), shown in Figure 39-10, displays a list
of assemblies that are referenced by the running application. Those assemblies that make up the
application will also have debugging symbols loaded, which means that they can be debugged
without dropping into the disassembler. This window is particularly useful if you want to find out
what version of an assembly is currently loaded and where it has been loaded from.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Figure 39-10 the symbols have been loaded for the DebugApp1.exe application. All the other
assemblies have been skipped, because they contain no user code and are optimized. If an
appropriate symbol file is available, it is possible to load it for an assembly via the Load Symbols
option from the right-click context menu.

Processes
Building multi-tier applications can be quite complex, and it is often necessary to have all the tiers
running. To do this, Visual Studio 2010 can start multiple projects at the same stage, enabling
true end-to-end debugging. Alternatively, you can attach to other processes to debug running
applications. Each time Visual Studio attaches to a process, that process is added to the list in the
Processes window (Debug ➪ Windows ➪ Processes). Figure 39-11 shows a solution containing two
Windows applications and a web application.

fiGure 39-10

fiGure 39-11

The toolbar at the top of the Processes window enables you to detach or terminate a process that is
currently attached, or attach to another process.

the MeMory windows

The next three windows are typically used for low-level debugging when all other alternatives have
been exhausted. Stepping into memory locations, using a disassembler, or looking at registry values
requires a lot of background knowledge and patience to analyze and make use of the information
that is presented. Only in very rare cases while developing managed code would you be required to
perform debugging at such a low level.

The Memory Windows ❘ 835

http://lib.ommolketab.ir
http//lib.ommolketab.ir

836 ❘ chaPter 39 uSing The debugging WindoWS

fiGure 39-12

fiGure 39-13

Memory windows 1–4
The four Memory windows can be used to view the raw contents of memory at a particular address.
Where the Watch, Autos, and Locals windows provide a way of looking at the content of variables,
which are stored at specific locations in memory, the Memory window shows you the big picture
of what is stored in memory.

Each of the four Memory windows (Debug
➪ Windows ➪ Memory 1 to Memory 4)
can examine different memory addresses
to simplify debugging your application.
Figure 39-12 shows an example of the
information that can be seen using this
window. The scrollbar on the right of
the window can be used to navigate forward or backward through the memory addresses to view
information contained in neighboring addresses.

disassembly
Interesting debates arise periodically over the relative performance of two different code blocks.
Occasionally this discussion devolves to talking about which MSIL instructions are used, and why
one code block is faster because it generates one fewer instruction. Clearly, if you are calling that
code block millions of times, disassembly might give your application a significant benefit. However,
more often than not, a bit of high-level refactoring saves much more time and involves much less
arguing. Figure 39-13 shows the Disassembly window (Debug ➪ Windows ➪ Disassembly) for a
LinkLabel click — the run time is about to construct a new Customer object. You can see MSIL
instructions that make up this action.

You can see from Figure 39-13 that a breakpoint has been set on the call to the constructor and that
the execution point is at this breakpoint. While still in this window you can step through the lines
of MSIL and review what instructions are being executed.

registers
Using the Disassembly window to step through MSIL instructions can become very difficult to
follow as different information is loaded, moved, and compared using a series of registers. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Registers window (Debug ➪ Windows ➪ Registers), shown in Figure 39 - 14, enables the contents of
the various registers to be monitored. Changes in a register value are highlighted in red, making it
easy to see what happens as each line is stepped through in the Disassembly window.

 fiGure 39 - 14

 fiGure 39 - 15

 intellitrace (ultiMate edition only)

 One of the more interesting new features in the Ultimate edition of Visual Studio is IntelliTrace. One
of the limitations of traditional debuggers is that they only show a snapshot of the state of the
application at a single point in time. The IntelliTrace feature of Visual Studio collects information
during the debugging session, thereby allowing you to go back to an earlier point and view the
application state at that time.

 You can think of IntelliTrace as your very own black box fl ight recorder for
debugging.

 IntelliTrace has two data collection levels. By default it collects information about diagnostic
events only, such as entering Break mode, stepping through code in the debugger, or when an
exception is thrown. You can also confi gure IntelliTrace to collect very detailed information,
such as the details of every function call, including the parameters passed to that function and
the values that were returned.

 The IntelliTrace Events window (Debug ➪
Windows ➪ IntelliTrace Events) shown in
Figure 39 - 15, enables you to navigate to past
diagnostic events. When you click a past
event, the execution point in the code window
changes from a yellow arrow to a red arrow
with a stopwatch icon. The call stack is also
updated to refl ect the historical state of the
application.

 If you have enabled the detailed data collection
level, you will be able to use the Autos and
Locals windows to inspect the contents of
variables that have been collected.

intelliTrace (Ultimate edition only) ❘ 837

http://lib.ommolketab.ir
http//lib.ommolketab.ir

838 ❘ chaPter 39 uSing The debugging WindoWS

 You can change the data collection level or disable it completely from the IntelliTrace tab in the
options menu (Tools ➪ Options). You can also confi gure IntelliTrace to exclude certain assemblies
from the data collection.

 You can expect a reasonable performance impact if you enable the detailed data
collection level. You must also ensure that you have enough free disk space to
 collect this data. The Edit and Continue functionality is also disabled for the
detailed level.

 IntelliTrace can also debug logs created by the new Visual Studio software test tools, Test and Lab
Manager. Chapter 55 provides more information on IntelliTrace.

 the Parallel debuGGinG windows

 Nowadays it is almost impossible to purchase a new computer that has a single processor. The trend
to many - core CPUs, which has been necessary due to physical limitations that have been reached in
CPU architecture, will certainly continue into the future as the primary way for hardware vendors
to release faster computers.

 Unfortunately, software that has not been written to explicitly run on multiple CPUs will not run
faster on a many - core machine. This will be a problem for many users who have been conditioned
over the past couple of decades to expect their applications to run faster when they upgrade to
newer hardware.

 The solution is to ensure that our applications can execute different code paths concurrently on
multiple CPUs. The traditional approach is to develop software using multiple threads or processes.
Unfortunately, writing and debugging multi - threaded applications is very diffi cult and error prone,
even for an experienced developer.

 Microsoft has recognized this issue, and has introduced a number of new features with Visual Studio
2010 and .NET Framework version 4.0 aimed to simplify the act of writing such software. The Task
Parallel Library (TPL) is a set of extensions to the .NET Framework to provide this functionality. The
TPL includes new language constructs, such as the Parallel.For and Parallel.ForEach loops, and
new collections that are specifi cally designed for concurrent access including ConcurrentDictionary
and ConcurrentQueue .

 In the new System.Threading.Tasks namespace are several new classes that greatly simplify the
effort involved in writing multi - threaded and asynchronous code. The Task class is very similar to a
thread; however, it is much more lightweight and therefore performs much better at run time.

 Writing parallel applications is only one part of the overall development life cycle — you also need
effective tools for debugging parallel applications. To that end Visual Studio 2010 has introduced
two new debugging windows — the Parallel Stacks window and the Parallel Tasks window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Parallel stacks
You will recall from earlier in the chapter, the Call Stacks window can be used to view the execution
path of the current line of code when debugging. One of the limitations of this window is that you
can see only a single call stack at a time. To see the call stack of other threads, you must use the
Threads window or Debug Location toolbar to switch the debugger to a different thread.

The Parallel Stacks window (Debug ➪ Windows ➪ Parallel Stacks), shown in Figure 39-16, is one
of the more useful windows for debugging multi-threaded and parallelized applications. It provides
not just a way to view multiple call stacks at once, but also provides a graphical visualization of the
code execution including showing how multiple threads are tied together and the execution paths
that they share.

fiGure 39-16

The Parallel Stacks window in Figure 39-16 shows an application that is currently executing seven
threads. The call graph is read from bottom to top. The Main thread appears in one box, and four
others threads are grouped together in another box. The reason these four threads are grouped is
because they share the same call stack (that is, each thread called FuncA, which then called FuncB,
which in turn called FuncC). After these threads executed FuncC, their code paths diverged. One
thread executed FuncD, which then called FuncE. A different thread executed FuncF, FuncG, and
then FuncH. The other two threads executed FuncI, which called FuncJ, and so on. You can see
how visualizing all of the call stacks at once provides a much better understanding on the state
of the application as a whole and what has led to this state, rather than just the history of an
individual thread.

A number of other icons are used on this screen. The execution point of the current thread is shown
with a yellow arrow. In Figure 39-16, this is against FuncE in a box on the left-hand side of the
diagram. Each box that the current thread has progressed through as part of its execution path is

The Parallel Debugging Windows ❘ 839

http://lib.ommolketab.ir
http//lib.ommolketab.ir

840 ❘ chaPter 39 uSing The debugging WindoWS

 fiGure 39 - 17

 fiGure 39 - 18

highlighted in blue. The wavy lines (also known as the cloth thread icon) shown against the call to
 FuncK in the top - right box indicates that this is the current execution point of a non - current thread.

 As shown in Figure 39 - 16, you can hover over the thread count label at the top of each box to see the
Thread ID ’ s of the applicable threads. You can also right - click any entry in a call stack to access various
functions such as navigating to the applicable line
of source code in the code editor or switching the
visualization to a different thread.

 If you are working with an application that
uses numerous threads or tasks, or has a very
deep call stack, you may fi nd that the Parallel
Stacks call graph visualization does not fi t in the
one window. In this case you can click the icon
in the bottom - right corner of the window to
display a thumbnail view, which enables you
to easily pan around the visualization. You can
see this in Figure 39 - 17.

 Parallel tasks
 At the beginning of this section of the chapter we explained the new Task Parallel Library in
.NET version 4.0, which includes the Task class found in System.Threading.Tasks and the new
 Parallel.For loops. The Parallel Tasks window (Debug ➪ Windows ➪ Parallel Tasks), shown in
Figure 39 - 18, assists you in debugging applications that use these new features by displaying a list
with the state of all the current tasks.

 The application that has been paused in Figure 39 - 18 has created four tasks, two of which are
running and two of which are in a waiting state. You can click the fl ag icon to fl ag one or more
tasks for easier tracking.

 Parallel.For , Parallel.ForEach , and the Parallel LINQ library (PLINQ)
use the System.Threading.Tasks.Task class as part of their underlying
implementation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

excePtions

Visual Studio 2010 has a sophisticated exception handler that provides you with a lot of useful
information. Figure 39-19 shows the Exception Assistant dialog that appears when an exception is
raised. In addition to providing more information, it also displays a series of actions. The Actions
list varies depending on the type of exception being thrown. In this case, the two options are to
view details of the exception or copy it to the clipboard.

fiGure 39-19

fiGure 39-20

If you select the View Detail action item from
the exception, you are presented with a modal
dialog that provides a breakdown of the
exception that was raised. Figure 39-20 shows
the attributes of the exception, including the
Stack Trace, which can be viewed in full
by clicking the down arrow to the right
of the screen.

Of course, at times exceptions are used to
control the execution path in an application.
For example, some user input may not
adhere to a particular formatting constraint,
and instead of using a Regular Expression
to determine whether it matches, a parse
operation has been attempted on the string. When this fails, it raises an exception, which can easily
be trapped without stopping the entire application.

By default, all exceptions are trapped by the debugger, because they are assumed to be exceptions
to the norm that shouldn’t have happened. In special cases, such as invalid user input, it may be
important to ignore specific types of exceptions. This can be done via the Exceptions window,
accessible from the Debug menu.

exceptions ❘ 841

http://lib.ommolketab.ir
http//lib.ommolketab.ir

842 ❘ chaPter 39 uSing The debugging WindoWS

Figure 39-21 shows the Exceptions window
(Debug ➪ Exceptions), which lists all the
exception types that exist in the .NET
Framework. Each exception has two debugging
options. The debugger can be set to break when
an exception is thrown, regardless of whether
it is handled. If the Just My Code option has
been enabled, checking the User-unhandled box
causes the debugger to break for any exception
that is not handled within a user code region.
More information on Just My Code is provided
in Chapter 41, which examines debugging attributes.

Unfortunately, the Exceptions window doesn’t pick up any custom exception types that you may
have created, but you can add them manually using the Add button in the lower-right corner of
the window. You need to ensure that you provide the full class name, including the namespace;
otherwise, the debugger will not break on handled exceptions. Clearly, unhandled exceptions will
still cause the application to crash.

customizing the exception assistant
As with a lot of the configurable parts within Visual Studio 2010, the information displayed by
the Exception Assistant is stored in an XML file (C:\Program Files\Microsoft Visual Studio
10.0\Common7\IDE\ExceptionAssistantContent\1033\DefaultContent.xml). This file can
be modified either to alter the assistant information for existing exception types or to add your
own custom exception types. If you have your own exception types, it is better practice to create
your own XML document. Simply placing it in the same directory as the DefaultContent.xml
is sufficient to register it with Visual Studio for the next time your application is debugged. An
example XML file is provided in the following code listing:

<?xml version="1.0" encoding="utf-8" ?>
<AssistantContent Version="1.0" xmlns="urn:schemas-microsoft-com:xml-msdata:
 exception-assistant-content">
 <ContentInfo>
 <ContentName>Additional Content</ContentName>
 <ContentID>urn:exception-content-microsoft-com:visual-studio-7-default-
 content</ContentID>
 <ContentFileVersion>1.0</ContentFileVersion>
 <ContentAuthor>David Gardner</ContentAuthor>
 <ContentComment>My Exception Assistant Content for Visual Studio
 </ContentComment>
 </ContentInfo>
 <Exception>
 <Type>DebugApp1.myException</Type>
 <Tip HelpID=”http://www.professionalvisualstudio.com/MyExceptionHelp.htm”>
 <Description>Silly error, you should know better...</Description>
 </Tip>
 </Exception>
</AssistantContent>

fiGure 39-21

http://www.professionalvisualstudio.com/MyExceptionHelp.htm%E2%80%9D
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 This example registers help information for the exception type myException . The HelpID attribute
is used to provide a hyperlink for more information about the exception. When this exception is
raised, the debugger displays the window shown in Figure 39 - 22.

 fiGure 39 - 22

 fiGure 39 - 23

 unwinding an exception
 In Figure 39 - 23, there is an additional item in the Actions list
of an exception helper window, which is to enable editing.
This is effectively the capability to unwind the execution of the
application to just before the exception was raised. In other
words, you can effectively debug your application without having to restart your debugging session.

 The Enable Editing option appears only if you have confi gured Visual Studio to break when an
exception is thrown, as discussed earlier in this chapter. As with many of the debugging features,
both the Exception Assistant and the capability to unwind exceptions can also be disabled via the
Debugging tab of the Options window.

 An alternative way to unwind the exception is to select the Unwind to This
Frame item from the right - click context menu off the Call Stack window after an
exception has been raised. This can be useful to check what the state of the appli-
cation was just before the exception was thrown. You can only unwind an excep-
tion if it is handled (that is, contained within a try . . . catch block). You should
also ensure that the debugger is set to break when the exception is thrown. You
can do this via the Debug ➪ Exceptions window.

 suMMary

 This chapter has described each of the debugging windows in detail so you can optimize your
debugging experience. Although the number of windows can seem somewhat overwhelming at fi rst,
they each perform an isolated task or provide access to a specifi c piece of information about the

summary ❘ 843

http://lib.ommolketab.ir
http//lib.ommolketab.ir

844 ❘ chaPter 39 uSing The debugging WindoWS

running application. As such, you will easily learn to navigate between them, returning to those that
provide the most relevant information for you.

The following chapter provides more detail about how you can customize the debugging information.
This includes changing the information displayed in the DataTip and visualizing more complex
variable information.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

40
 Debugging with Breakpoints

 what ’ s in this chaPter?

 Using breakpoints, conditional breakpoints, and tracepoints to ➤

pause code execution

 Controlling the program execution during debug by stepping ➤

through code

 Modifying your code while it is running using the Edit and Continue ➤

feature

 Long gone are the days where debugging an application involved adding superfl uous output
statements to track down where an application was failing. Visual Studio 2010 provides a
rich interactive debugging experience that includes breakpoints, tracepoints, and the Edit
and Continue feature. This chapter covers how you can use these features to debug your
application.

 breakPoints

 A breakpoint is used to pause, or break, an application at a particular point of execution. An
application that has been paused is said to be in Break mode, causing a number of the Visual
Studio 2010 windows to become active. For example, the Watch window can be used to view
variable values. Figure 40 - 1 shows a breakpoint that has been added to the constructor of the
 Customer class. The application breaks on this line if the Customer class constructor is called.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

846 ❘ chaPter 40 debugging WiTh breAkpoinTS

setting a breakpoint
Breakpoints can be set either through the Debug menu, using the Breakpoint item from the right-
click context menu, or by using the keyboard shortcut, F9. The Visual Studio 2010 code editor also
provides a shortcut for setting a breakpoint using a single mouse click in the margin.

An application can only be paused on a line of executing code. This means that a breakpoint set on
either a comment or a variable declaration will be repositioned to the next line of executable code
when the application is run.

simple Breakpoints
A breakpoint can be set on a line of code by placing the cursor on that line and enabling a
breakpoint using any of the following methods:

Selecting Toggle Breakpoint from the Debug menu. ➤

Selecting Insert Breakpoint from the Breakpoint item on the right-click context menu. ➤

Pressing F9. ➤

Clicking once in the margin of the code window with the mouse. Figure 40-1 shows the ➤

location of the mouse cursor immediately after a breakpoint has been set using the mouse.

Selecting Location from the Breakpoint item
on the right-click context menu for the line
of code with the breakpoint set displays the
File Breakpoint dialog, shown in Figure 40-2.
Here you can see that the breakpoint is set at
line 11 of the Customer.cs file. There is also
a character number, which provides for the
case in which multiple statements appear on a
single line.

function Breakpoints
Another type of breakpoint that can be set is a function breakpoint. The usual way to set a
breakpoint on a function is to select the function signature and either press F9 or use the mouse
to create a breakpoint. In the case of multiple overloads, this would require you to locate all the
overloads and add the appropriate breakpoints. Setting a function breakpoint enables you to set a
breakpoint on one or more functions by specifying the function name.

fiGure 40-1

fiGure 40-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Breakpoints ❘ 847

To set a function breakpoint, select Break
at Function from the New Breakpoint item
on the Debug menu. This loads the New
Breakpoint dialog shown in Figure 40-3,
in which you can specify the name of the
function on which to break. There is a toggle
to enable IntelliSense checking for the function
name. The recommendation is to leave this
checked, because it becomes almost impossible
to set a valid breakpoint without this support.

Unfortunately, the IntelliSense option doesn’t give you true IntelliSense as you type, unlike other
debugging windows. However, if you select the name of the function in the code window before
creating the breakpoint, the name of the function is automatically inserted into the dialog.

When setting a function breakpoint, you can
specify either the exact overload you want to
set the breakpoint on or just the function name.
In Figure 40-3, the overload with a single Guid
parameter has been selected. Notice that unlike a
full method signature, which requires a parameter
name, to select a particular function overload, you
should provide only the parameter type. If you
omit the parameter information, and there are
multiple overloads, you are prompted to select the
overloads on which to place the breakpoint, as
illustrated in Figure 40-4.

address Breakpoint
Another way to set a breakpoint is via the Call Stack window. When the application is in Break
mode, the call stack shows the current list of function calls. After selecting any line in the call stack,
a breakpoint can be set in the same way as a file breakpoint, as described earlier (toggle Breakpoint
from the Debug menu, use the F9 keyboard shortcut, or use Insert Breakpoint from the context
menu). Figure 40-5 shows a short call stack with a new breakpoint set on a control event on Form1.

fiGure 40-3

fiGure 40-4

fiGure 40-5

The call stack is generated using function addresses. As such, the breakpoint that is set is an address
breakpoint. This type of breakpoint is only useful within a single debugging session, because
function addresses are likely to change when an application is modified and rebuilt.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

848 ❘ chaPter 40 debugging WiTh breAkpoinTS

 adding break conditions
 Though breakpoints are useful for pausing an application at a given point to review variables and
watch application fl ow, if you are looking for a particular scenario it may be necessary to break only
when certain conditions are valid. Breakpoints can be tailored to search for particular conditions, to
break after a number of iterations, or even be fi ltered based on process or machine name.

 Condition
 A breakpoint condition can be specifi ed by selecting
Condition from the Breakpoint item on the right - click
context menu for the breakpoint. This brings up the
Breakpoint Condition dialog shown in Figure 40 - 6,
which accepts a Boolean expression that determines
whether the breakpoint will be hit. If the expression
evaluates to false , the application continues past the
breakpoint without breaking.

 In the case of Figure 40 - 6, which is for a breakpoint set within the Order class, the condition
specifi es that the order total must be greater than 1000. As with most debugging windows, the
Condition fi eld provides rich IntelliSense support to aid writing valid conditions. If an invalid
condition is specifi ed, the debugger throws an appropriate error message and the application will
break the fi rst time the breakpoint is reached.

 When a condition, or a hit count, as shown in the next section, is placed on a breakpoint, the
breakpoint changes appearance. The solid red dot is replaced with a red dot with a white cross.
When you move your mouse across this dot, the tooltip provides useful information about the
breakpoint condition, as illustrated in Figure 40 - 7.

 fiGure 40 - 6

 fiGure 40 - 7

 Sometimes it is more relevant to know when this condition changes status, rather than when it is
true. The Has Changed option breaks the application when the status of the condition changes.
If this option is selected, the application will not break the fi rst time the breakpoint is hit, because
there is no previous status to compare against.

 Using multiple breakpoints with complex conditions can signifi cantly slow
down the execution of your application, so it is recommended that you remove
breakpoints that are no longer relevant in order to speed up the running of your
application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Breakpoints ❘ 849

Hit Count
Though it’s perhaps not as useful as breakpoint
conditions, it is also possible to break after a particular
number of iterations through a breakpoint. To do this,
select Hit Count from the Breakpoint item on the right-
click context menu. Figure 40-8 shows the Breakpoint
Hit Count dialog, which can be used to specify when
the breakpoint should be hit.

Every time the application is run, the hit count is reset
to zero, and it can be manually reset using the Reset button. The hit count is also unique to each
breakpoint. The hit count condition is one of four options:

 ➤ Always: Disregard the hit count.

 ➤ Is equal to: Break if the hit count is equal to the value specified.

 ➤ Multiple of: Break if the hit count is a multiple of the value specified (as shown in
Figure 40-8).

 ➤ Is greater than or equal to: Break if the hit count is greater than or equal to the value
specified.

Figure 40-9 shows the Breakpoints window, which provides additional information about the
status of each of the breakpoints. In this case, the breakpoint is set to break every second time. The
current hit count is 2.

fiGure 40-8

fiGure 40-9

filter
A single solution may contain multiple applications that need to be run at the same time. This is a
common scenario when building a multi-tier application. When the application is run, the debugger
can attach to all these processes, enabling them to be debugged. By default, when a breakpoint is
reached all the processes will break. This behavior can be controlled from the Debugging (General)
node in the Options window, accessible from the Options item on the Tools menu. Unchecking the
Break All Processes When One Process Breaks checkbox enables processes to be debugged individually.

If a breakpoint is set in a class library that is used by more than one process, each process will break
when it reaches that breakpoint. Because you might be interested in debugging only one of these
processes, you can place a filter on the breakpoint that limits it to the process you are interested
in. If you are debugging applications on multiple machines, it is also possible to specify a machine
name filter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

850 ❘ chaPter 40 debugging WiTh breAkpoinTS

In fact, filtering can be useful for a multi-threaded
application for which you want to limit the breakpoints
to a particular thread. Although the breakpoint will only
be triggered when a thread matches the filter criteria,
all threads will still be paused. Figure 40-10 shows the
Breakpoint Filter dialog and the possible filter conditions.

working with breakpoints
It’s often necessary to adjust a breakpoint, because it
might be in the wrong location or no longer relevant.
In most cases it is easiest to remove the breakpoint,
but in some cases — for example, when you have a
complex breakpoint condition — it might be necessary
to adjust the existing breakpoint.

Deleting Breakpoints
To remove a breakpoint that is no longer required, select it, either in the code editor or in the
Breakpoints window, and remove it using the Toggle Breakpoint item from the Debug menu.
Alternatively, the Delete Breakpoint item from the right-click context menu or the Delete Breakpoint
icon from the Breakpoints window toolbar will remove the breakpoint.

Disabling Breakpoints
Instead of deleting a breakpoint, simply disabling the breakpoint can be useful when you have a
breakpoint condition set or you are tracking a hit count. To disable a breakpoint, select it either
in the code editor or in the Breakpoints window, and disable it using the Disable Breakpoint
item from the right-click context menu. Alternatively, you can uncheck the checkbox against the
breakpoint in the Breakpoints window. Figure 40-11 shows how a disabled breakpoint would appear
in the code window.

fiGure 40-10

fiGure 40-11

Changing Breakpoint locations
The location of a breakpoint can be modified by selecting Location from the Breakpoint item on the
right-click context menu. Depending on what type of breakpoint has been set, the dialog shows
the location of the breakpoint as either a line and character position in a file or function, or as an
address within an assembly. If the location is either a file or function position, the breakpoint can

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Breakpoints ❘ 851

be adjusted so it is in the correct location. Address breakpoints are harder to relocate, because you
need to ensure that the new address is a valid location for a breakpoint.

 labeling Breakpoints
 One new feature introduced in Visual Studio 2010 is the ability to
assign a label to a breakpoint. This is particularly useful if you want
to group a set of related breakpoints together. Once labeled, you
can search for and perform a bulk action on all breakpoints with a
specifi c label.

 To assign a label to a breakpoint, right - click the breakpoint and
choose Edit Labels. This displays the Edit Breakpoint Labels dialog,
shown in Figure 40 - 12, where you can attach one or more labels to
the breakpoint.

 After you have labeled your breakpoints you can perform bulk actions on them by opening the
Breakpoints window (Debug ➪ Windows ➪ Breakpoints). This window, shown in Figure 40 - 13,
allows you to fi lter the list by typing a label in the Search box and pressing Enter. You can then
select one of the actions from the toolbar, such as Enable or Disable All Breakpoints Matching the
Current Search Criteria.

 fiGure 40 - 12

 fiGure 40 - 13

 By default, the search will be performed across all columns that are shown in the
Breakpoint window. You can limit the search to specifi c columns by changing the
In Column drop - down from All Visible to a specifi c column.

 import and export of Breakpoints
 Another new debugging feature in Visual Studio 2010 is the import and export of breakpoints.
This feature allows you to back up and restore breakpoints, and share them among developers. This
functionality was previously impossible, because the location of breakpoints is stored in the binary
solution user options fi le (.suo), along with a whole raft of other user - specifi c information.

 Export of breakpoints is performed from the Breakpoints window (Debug ➪ Windows ➪
Breakpoints). If you only want to export a subset of your breakpoints, fi rst fi lter the list by entering
a search criteria. Once the list of breakpoints that you want to export is shown, click the button
labeled Export All Breakpoints Matching the Current Search Criteria from the toolbar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

852 ❘ chaPter 40 debugging WiTh breAkpoinTS

Import of breakpoints can also be performed from the Breakpoints window by clicking the
appropriate button on the toolbar.

tracePoints

A tracepoint differs from a breakpoint in that it triggers an additional action when it is hit. In fact,
for purposes such as applying filters, conditions, and hit counts, a tracepoint can be thought of as a
breakpoint.

Tracepoints can be compared to using either Debug or Trace statements in your code, but tracepoints
can be dynamically set as the application is being debugged and will not affect your code.

creating a tracepoint
Tracepoints can be created from either an existing
breakpoint or the Breakpoint right-click context
menu. To create a tracepoint from an existing
breakpoint, select When Hit from the Breakpoint
right-click context menu. The resulting dialog, shown
in Figure 40-14, gives you the option of printing a
message to the console window or running a macro.
Alternatively, to create a tracepoint at a new location,
select Insert Tracepoint from the Breakpoint item on
the right-click context menu. This again loads the
dialog shown in Figure 40-14 so you can customize
the tracepoint action.

Once you set a tracepoint, the code window changes the appearance of that line of code to indicate
that a tracepoint has been set. This is shown in Figure 40-15, where the tracepoint appears with a
diamond in the margin (the diamond is red, although this can’t be seen in the figure).

fiGure 40-14

fiGure 40-15

tracepoint actions
Two types of actions can be performed when a tracepoint is hit: either print a message to the console
window or run a macro. In the dialog shown in Figure 40-14, you can indicate which action should
be run when the tracepoint is hit. If both actions are unchecked, the tracepoint will fall back to
being a breakpoint.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

By default, once a tracepoint action has been indicated, the Continue Execution checkbox will be
checked so the application will not break at this point. Unchecking this option causes the application
to break at the tracepoint as if it were a breakpoint. The action defined will be performed prior to
the application breaking. The appearance of this tracepoint will be the same as that of a breakpoint,
because the visual cue indicates that the debugger will not stop at the tracepoint, rather than
indicating that there are actions associated with the tracepoint.

output Messages
As the dialog in Figure 40-14 suggests, a number of keywords can be used in conjunction with your
trace message. However, a couple of keywords are not listed by the dialog: $FILEPOS, which gives
the location of the current file, and $TICKS, which can be used as a relative time indicator.

Macros
Tracepoints can execute any Visual Studio macro, which includes macros you may have created.
Because macros can be used to modify source code, be careful which macros you execute within a
tracepoint. Modifying code while debugging an application may result in the source code being out
of sync with the running application. Visual Studio macros are discussed in Chapter 52.

execution control

After reaching a breakpoint, it is often useful to be able to step through code and review both
variable values and program execution. Visual Studio 2010 not only enables you to step through
your code, it also permits you to adjust the execution point to backtrack or even repeat operations.
The line of code that is about to be executed is highlighted and an arrow is displayed to the left, as
shown in Figure 40-16.

fiGure 40-16

stepping through code
The first step in manipulating the execution point is simply to step through code in the expected
order of execution. Three size increments can be used to step the debugger forward. It is important
to remember that when stepping through code it is actually being run, so variable values may
change as you progress through the application.

execution Control ❘ 853

http://lib.ommolketab.ir
http//lib.ommolketab.ir

854 ❘ chaPter 40 debugging WiTh breAkpoinTS

stepping over (f10)
Stepping Over is fully executing the line that currently has focus and progressing to the next line in
the current code block. If the end of the code block has been reached, Stepping Over returns to the
calling code block.

stepping into (f11)
Stepping Into behaves the same as Stepping Over when the line is a simple operator, such as a
numeric operation or a cast. When the line is more complex, Stepping Into steps through all user
code. For example, in the following code snippet, pressing F10 through the TestMethod only steps
through the lines of code within TestMethod. Pressing F11 steps through TestMethod until the
MethodA call is made, and then the debugger steps through MethodA before returning to TestMethod:

c#

public void TestMethod()
{
 int x = 5 + 5;
 MethodA();
}

private void MethodA()
{
 Console.WriteLine("Method A being executed");
}

stepping out (shift+f11)
If you step into a long method by accident, it is quite often convenient to be able to step back out
of that method without having to either step over every line in that method or setting a breakpoint
at the end of the method. Stepping Out moves the cursor out of the current method to where it was
being called. Considering the previous snippet, if you entered MethodA, pressing Shift+F11 would
immediately return the cursor to the end of TestMethod.

step filtering
One very welcome feature that was introduced with Service Pack 1 of Visual Studio 2008 is the
ability to automatically step over properties and operators. In many cases, public properties are
simply wrappers for a private member variable, and as a result there is very little to be gained from
stepping into them while debugging. This debugger option is especially useful if you are calling a
method that passes a number of properties as parameters, such as the method call listed here:

c#

printShippingLabel(cust.name, shipTo.street, shipTo.city, shipTo.state,
shipTo.zipCode);

With the Step Over Properties and Operators option enabled, the debugger steps directly into the
first line of the printShippingLabel method if you hit F11. If you need to, you can manually step
into a specific property by right-clicking the code editor window and selecting Step Into Specific.
This displays a submenu with each of the available properties listed, as shown in Figure 40-17.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Step Over Properties and Operators option is enabled by default. You can enable or disable it
during debugging by right-clicking anywhere in the code editor window and selecting it from the
context menu, or from the Options dialog window (Tools ➪ Options, then select Debugging from
the treeview on the left-hand side).

Moving the execution Point
As you become familiar with stepping in and out of functions, you will find that you are
occasionally overzealous and accidentally step over the method call you are interested in. In this
case, what you really want to do is go back and review the last action. Though you can’t actually
unwind the code and change the application back to its previous state, you can move the execution
point so the method is reevaluated.

To move the current execution point, select and drag the yellow arrow next to the current line of
execution (refer to Figure 40-16) forward or backward in the current method. Use this functionality
with care, because it can result in unintended behavior and variable values.

edit and continue

One of the most useful features of Visual Studio 2010 debugging is Edit and Continue. Both C# and
Visual Basic have support for Edit and Continue, enabling you to make changes to your application
on the fly. Whenever your application is paused, you can make changes to your code and then
resume execution. The new or modified code is dynamically added to your application, with the
changes taking immediate effect.

rude edits
At this point, you are likely wondering whether any limitations exist on the changes that you can
make. The answer is yes, and there are quite a few types of rude edits, which refer to any code change
that requires the application to be stopped and rebuilt. A full list of rude edits is available from the
Visual Studio 2010 help resource under the Edit and Continue topic, but they include the following:

Making changes to the current, or active, statement ➤

Changes to the list of global symbols — such as new types or methods — or changing the ➤

signatures of methods, events, or properties

Changes to attributes ➤

fiGure 40-17

edit and Continue ❘ 855

http://lib.ommolketab.ir
http//lib.ommolketab.ir

856 ❘ chaPter 40 debugging WiTh breAkpoinTS

stop applying changes
When changes are made to the source code while the application is paused, Visual Studio has to
integrate, or apply, the changes into the running application. Depending on the type or complexity
of the changes made, this could take some time. If you want to cancel this action, you can select
Stop Applying Code Changes from the Debug menu.

suMMary

Most developers who use Visual Studio 2010 will use breakpoints to track down issues with their
application. In this chapter, you learned how to optimize the use of breakpoints to reduce the
amount of time spent locating the issue.

The following chapter examines data tips and explains how to create debugging proxy types and
visualizers. This allows you to customize the debugging experience and reduce the time spent
wading through unnecessary lines of code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

41
 DataTips, Debug Proxies,
and Visualizers

 what ’ s in this chaPter?

 Inspecting the contents of your variables usingDataTips ➤

 Applying attributes to your classes and member variables to ➤

 customize the debugger behavior

 Creating type proxies and visualizers to represent complex variables ➤

and data types in a useful way within the debugger

 Other than writing code, debugging is likely the most time - consuming activity when writing
an application. If you consider all the time you spend stepping through code, looking at the
Watch window to see the value of a variable, or even just running the application looking for
any exceptions being raised, you will realize that this is one of the most time - consuming parts
of writing software.

 Previous chapters have focused on how you can use the various debugging windows to retrieve
information about the current status of your application, and how you can set breakpoints
and tracepoints to generate debugging information. This chapter goes beyond what is provided
out of the box, and looks at how you can customize the debugging experience to reduce the
time spent wading through unnecessary lines of code.

 Using debugging proxy types and visualizers, you can represent complex variables and
data types in a useful way within the debugger. This allows you to fi lter out unnecessary
information and zero in on the most relevant properties of an object, thereby making it easier
to determine when your application is not functioning correctly and be able to trace the source
of the issue.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

858 ❘ chaPter 41 dATATipS, debug proxieS, And ViSuAlizerS

datatiPs

You have many ways to inspect the value of variables
within Visual Studio while debugging. For many
types, the easiest way to inspect a variable is simply
hover the mouse over it, which displays the value of
the variable in a DataTip. Figure 41-1 shows a DataTip for a string property.

In addition to viewing the value of the variable, you can right-click the DataTip and perform a
number of actions. These include copying the value that is being displayed, adding the variable to
the Watch window, or even editing the current value of the variable in the case of simple types such
as strings or integers.

One new feature of Visual Studio 2010 is the introduction of pinned and floating DataTips. You
can think of these as the electronic equivalents of Post-It notes for Visual Studio. To create a pinned
DataTip, click the pin icon in the right-hand side of the DataTip. The DataTip will now stay pinned
to that line of code in the source file of the code editor and will become visible anytime a debugging
session is underway.

Figure 41-2 shows a Visual Studio workspace with two pinned DataTips for the variables
c.CustomerName and o1.Total. A menu will appear when you hover over a pinned DataTip.
Clicking the icon with double arrows will display a text input field below the DataTip where you
can enter some text. You can also click the pin icon in the menu to covert the pinned DataTip to a
floating DataTip. The DataTip for the c variable in Figure 41-2 is a floating DataTip.

fiGure 41-1

fiGure 41-2

You can drag a pinned DataTip to any line of code in the source file to which it has been pinned, but
not anywhere outside of the code editor window. Pinned DataTips will also disappear if you switch
to a different source code file. Floating DataTips, on the other hand, are always visible during a
debugging session and can be dragged to any location on your monitor.

A blue pin icon will appear in the margin of the code editor for each pinned DataTip. This icon will
still be visible once the debug session has finished; you can hover the mouse over it and the DataTip
will appear with the value during the last debug session.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 You can close an individual pinned or fl oating DataTip by clicking the x icon, or close all of them by
selecting Debug ➪ Clear All DataTips from the menu. You will also see a menu option to clear all
DataTips pinned to the current source fi le in the code editor if it contains any.

 Finally, DataTips can be imported and exported to an external XML fi le, which can be useful for
backup purposes, or sharing them among developers. This is done by selecting Import DataTips or
Export DataTips from the Debug menu.

 debuGGer attributes

 This section outlines a number of debugging attributes that can be applied to code to affect the way
the debugger steps through it. Some of the debugging attributes can also be used to customize the
appearance of your types when you hover over them in Break mode.

 The debugging attribute classes are contained within the System.Diagnostics
namespace. Rather than specify the full namespace for each attribute, the source
code examples in this chapter assume that it has been added as an import.

 debuggerbrowsable
 The fi rst attribute you can apply to fi elds and properties is the DebuggerBrowsable attribute. In
.NET Framework 2.0, this attribute was only interpreted by the C# debugger and had no effect
when applied to Visual Basic code. This limitation has been removed in newer versions of the .NET
Framework. The DebuggerBrowsable attribute takes a single parameter that determines how the
member is displayed in the variable tree. In the following code snippet, the fi eld Orders is set to
 Collapsed :

 c#

public class Customer
{
 [DebuggerBrowsable(DebuggerBrowsableState.Collapsed)]
 public List < Order > Orders;
}

 Vb

Public Class Customer
 < DebuggerBrowsable(DebuggerBrowsableState.Collapsed) > _
 Public Orders As List(Of Order)
End Class

 Figure 41 - 3 (left) shows the same snippet of code with DebuggerBrowsable initially set to
 Collapsed (or not specifi ed). Figure 41 - 3 (center) shows the same snippet with DebuggerBrowsable

Debugger attributes ❘ 859

http://lib.ommolketab.ir
http//lib.ommolketab.ir

860 ❘ chaPter 41 dATATipS, debug proxieS, And ViSuAlizerS

set to the RootHidden value, where the actual Orders item does not appear, just the contents of the
collection. Finally, in Figure 41-3 (right) the Never value is used for DebuggerBrowsable, in which
case the Orders member does not appear at all.

fiGure 41-3

debuggerdisplay
When you hover your mouse over a variable while you are in Break mode, the first thing you will
see in the tooltip is the type of object you are hovering over. In Figure 41-3, a mouse was initially
hovering over the Customer class, followed by the Order class. This information is not particularly
useful, because most of the time you have a fairly good idea about the type of object you are
dealing with. It would be better for this single line to contain more useful information about the
object. This is the case for well-known types, such as strings and integers, where the actual value is
displayed.

The DebuggerDisplay attribute can be used to change the single-line representation of the object
from the default full class name. This attribute takes a single parameter, which is a string. The
format of this string can accept member injections using the String.Format breakout syntax. For
example, the attributes applied to the Customer and Order classes might be as follows:

c#

[DebuggerDisplay("Customer {CustomerName} has {Orders.Count} orders")]
public class Customer

[DebuggerDisplay("Order made on {DateOrdered} which is worth ${Total}")]
public class Order

Vb

<DebuggerDisplay("Customer {CustomerName} has {Orders.Count} orders")> _
Public Class Customer

<DebuggerDisplay("Order made on {DateOrdered} which is worth ${Total}")> _
Public Class Order

This would give you the debugger output shown
in Figure 41-4, which indicates that customer
Michael McManus has one order, which, as you
can see from the description, was made on April 4
and is worth $120.

fiGure 41-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Looking back at the syntax for the DebuggerDisplay attribute, you can see that the output string
consists of both static text and field and property information from the object. For example, the
CustomerName property for the Customer object is referenced using the {CustomerName} syntax
within the static text.

debuggerhidden
The DebuggerHidden attribute can be added to code that you don’t want to step through when
debugging. Code marked with this attribute is stepped over and does not support breakpoints. If
this code makes a call to another method, the debugger steps into that method. Taking the following
code snippet, a breakpoint can be set in both ClickHandler and NotSoHiddenMethod:

c#

private void ClickHandler(object sender, EventArgs e)
{
 HiddenMethod();
}

[DebuggerHidden()]
public void HiddenMethod()
{
 Console.WriteLine("Can't set a breakpoint here");
 NotSoHiddenMethod();
}

public void NotSoHiddenMethod()
{
 Console.WriteLine("Can set a breakpoint here!");
}

Vb

Private Sub ClickHandler(ByVal sender As Object, ByVal e As EventArgs)
 HiddenMethod()
End Sub

<DebuggerHidden()> _
Public Sub HiddenMethod()
 Console.WriteLine("Can't set a breakpoint here")
 NotSoHiddenMethod()
End Sub

Public Sub NotSoHiddenMethod()
 Console.WriteLine("Can set a breakpoint here!")
End Sub

If you step through this code, the debugger goes from the call to HiddenMethod in the ClickHandler
method straight to NotSoHiddenMethod.
The call stack at this point is shown in
Figure 41-5, and you can see that
HiddenMethod does not appear in the stack.

fiGure 41-5

Debugger attributes ❘ 861

http://lib.ommolketab.ir
http//lib.ommolketab.ir

862 ❘ chaPter 41 dATATipS, debug proxieS, And ViSuAlizerS

 As with all of the System.Diagnostic attributes, the CLR will ignore this, so you will still see the
method call in the stack trace of any exceptions thrown at run time.

 debuggerstepthrough
 Like the DebuggerHidden attribute, when the DebuggerStepThrough attribute is applied to a piece
of code, that code is stepped over when debugging, regardless of whether this code calls other
methods.

 Similar to the DebuggerHidden attribute, breakpoints cannot be set within a block of code marked
with the DebuggerStepThrough attribute. However, if a breakpoint is set within a section of code
that is called by that code, the attributed code
will be marked as external code in the
call stack. This is illustrated in Figure 41 - 6 ,
which shows the code that was listed in
the previous section. However, in this case
 DebuggerStepThrough has been set on
 HiddenMethod instead of DebuggerHidden .

 Visual Studio 2010 supports the Just My Code option, confi gurable from the Debugging node in
the Options dialog (select Tools ➪ Options). Unchecking this option makes all code contained
within your application appear in the call
stack, as shown in Figure 41 - 7 . This includes
designer and other generated code that you
might not want to debug. Once this option
is unchecked, breakpoints can also be set in
blocks of code marked with this attribute.

 fiGure 41 - 6

 You can also right - click the call stack and select “ Show External Code ” to reveal
any hidden or designer code.

 fiGure 41 - 7

 debuggernonusercode
 The DebuggerNonUserCode attribute combines the DebuggerHidden and DebuggerStepThrough
attributes. In the default Visual Studio confi guration, code marked with this attribute appears
as external code in the call stack. As was the case with the DebuggerStepThrough attribute, you
cannot set breakpoints in blocks of code marked with this attribute. Stepping through code steps
into any code called by that block of code in the same way it does for the DebuggerHidden attribute.

 debuggerstepperboundary
 DebuggerStepperBoundary is the most obscure of all of the Debugger attributes, because it
comes into effect only under specifi c conditions. It is used to avoid a misleading debugging
experience that can occur when a context switch is made on a thread within the boundaries of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DebuggerNonUserCode attribute. It is entirely possible in this scenario that the next user-supplied
code module stepped into may not actually relate to the code that was in the process of being
debugged. To avoid this invalid debugging behavior, the DebuggerStepperBoundary attribute,
when encountered under this scenario, will escape from stepping through code and instead resume
normal execution of the code.

tyPe Proxies

So far, you have seen how you can modify the tooltip to show information that is more relevant
to debugging your application. However, the attributes discussed so far have been limited in how
they control what information is presented in the expanded tree. The DebuggerBrowsable attribute
enables you to hide particular members, but there is no way to add more fields. This is where the
DebuggerTypeProxy attribute can be used to provide you with complete control over the layout of
the tooltip.

The other scenario where a type proxy is useful is where a property of a class changes values
within the class. For example, the following snippet from the Customer class tracks the number
of times the OrderCount property has been accessed. Whenever the tooltip is accessed, the
CountAccessed property is incremented by one:

c#

public class Customer
{
 private int m_CountAccessed;
 public int OrderCount
 {
 get
 {
 m_CountAccessed++;
 return this.Orders.Count;
 }
 }

 public int CountAccessed
 {
 get
 {
 return this.m_CountAccessed;
 }
 }
}

Figure 41-8 illustrates the tooltip you want to be shown for
the Customer class. Instead of showing the full list of orders to
navigate through, it provides a summary about the number of
orders, the maximum and minimum order quantities, and a list
of the items on order.

The first line in the tooltip is the same as what you created using
the DebuggerDisplay attribute. To generate the rest of the tooltip, fiGure 41-8

Type Proxies ❘ 863

http://lib.ommolketab.ir
http//lib.ommolketab.ir

864 ❘ chaPter 41 dATATipS, debug proxieS, And ViSuAlizerS

you need to create an additional class that will act as a substitute when it comes to presenting
this information. You then need to attribute the Customer class with the DebuggerTypeProxy
attribute so the debugger knows to use that class instead of the Customer class when displaying the
tooltip. The following code snippet shows the CustomerProxy class that has been nested within
the Customer class:

c#

[DebuggerDisplay("Customer {CustomerName} has {Orders.Count} orders")]
[DebuggerTypeProxy(typeof(Customer.CustomerProxy))]
public class Customer
{
 private int m_CountAccessed;
 public int OrderCount
 {
 get
 {
 m_CountAccessed++;
 return this.Orders.Count;
 }
 }

 public int CountAccessed
 {
 get
 {
 return this.m_CountAccessed;
 }
 }

 public class CustomerProxy
 {
 public string CustomerName;
 public int NumberOfOrders;
 public decimal MaximumTotal = decimal.MinValue;
 public decimal MinimumTotal = decimal.MaxValue;

 public CustomerProxy(Customer c)
 {
 this.CustomerName = c.m_CustomerName;
 this.NumberOfOrders = c.m_Orders.Count;
 foreach (Order o in c.m_Orders)
 {
 this.MaximumTotal = Math.Max(o.Total, this.MaximumTotal);
 this.MinimumTotal = Math.Min(o.Total, this.MinimumTotal);
 }
 }
 }
}

There are very few reasons why you should create public nested classes, but a type proxy is a good
example because it needs to be public so it can be specified in the DebuggerTypeProxy attribute,
and it should be nested so it can access private members from the Customer class without using the
public accessors.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 raw View
 On occasion, you might want to ignore the proxy type. For example, this might be true if you
are consuming a third - party component that has a proxy type defi ned for it that disguises the
underlying data structure. If something is going wrong with the way the component is behaving,
you might need to review the internal contents of the component to trace the source of the issue.

 In Figure 41 - 8 , you may have noticed at the bottom of the tooltip was a node titled Raw View.
Expanding this node displays the debugger tooltip as it is normally shown, without any proxy types
or debugger display values.

 In addition, you can turn off all type proxies in Visual Studio through the Tools ➪ Options menu.
Under the Debugging node, check the box that says Show Raw Structure of Objects in Variables
Windows. Doing this prevents all type proxies and debugger displays from being shown.

 Visualizers

 This part of the chapter looks at a feature in Visual Studio 2010 that can be used to help debug
more complex data structures. Two of the most common data types programmers work with are
Strings and DataTables. Strings are often much larger than the area that can be displayed within a
tooltip, and the structure of the DataTable
object is not suitable for displaying in a
tooltip, even using a type proxy. In both of
these cases, a visualizer has been created that
enables the data to be viewed in a sensible
format.

 Once a visualizer has been created for a
particular type, a magnifying glass icon
appears in the fi rst line of the debugger
tooltip. Clicking this icon displays the
visualizer. Figure 41 - 9 shows the Text
Visualizer dialog that appears.

 Before you can start writing a visualizer, you need to add a reference to the Microsoft.
VisualStudio.DebuggerVisualizers namespace. To do this, right - click the project in the Solution
Explorer and select Add Reference from the context menu. You should also add this namespace as
an import to any classes for which you plan to create debugger visualizers.

 fiGure 41 - 9

 The version of Microsoft.VisualStudio.DebuggerVisualizers that ships
with Visual Studio 2010 is valid only for projects that target version 4.0 of the
Microsoft .NET Framework.

Visualizers ❘ 865

http://lib.ommolketab.ir
http//lib.ommolketab.ir

866 ❘ chaPter 41 dATATipS, debug proxieS, And ViSuAlizerS

A visualizer is typically made up of two parts: the class that acts as a host for the visualizer and
is referenced by the DebuggerVisualizer attribute applied to the class being visualized, and
the form that is then used to display, or visualize, the class. Figure 41-10 shows a simple form,
CustomerForm, which can be used to represent the customer information. This is just an ordinary
Windows Form with a couple of TextBox controls, a DataGridView control, and a Button. The
only unique aspect to this form is that it has been marked as Serializable, and its constructor has
been changed to accept a Customer object, from which the customer information is extracted and
displayed, as shown in the following code:

c#

[Serializable()]
public partial class CustomerForm : Form
{
 public CustomerForm(Customer c)
 {
 InitializeComponent();

 this.txtCustomerId.Text = c.CustomerId.ToString();
 this.txtCustomerName.Text = c.CustomerName;
 this.dgOrders.DataSource = c.Orders;
 }

 private void btnOk_Click(object sender, EventArgs e)
 {
 this.DialogResult = DialogResult.OK;
 this.Close();
 }
}

The next stage is to wire this form up to
be used as the visualizer for the Customer
class. You do this by creating the nested
CustomerVisualizer class, which inherits
from the DialogDebuggerVisualizer
abstract class, as shown in the following
code:

c#

[Serializable()]
[DebuggerDisplay("Customer {CustomerName} has {Orders.Count} orders")]
[DebuggerTypeProxy(typeof(Customer.CustomerProxy))]
[DebuggerVisualizer(typeof(Customer.CustomerVisualizer))]
public class Customer
{
 //...
 public class CustomerVisualizer : DialogDebuggerVisualizer
 {
 protected override void Show(
 IDialogVisualizerService windowService,
 IVisualizerObjectProvider objectProvider)

fiGure 41-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {
 Customer c = (Customer)objectProvider.GetObject();
 CustomerForm cf = new CustomerForm(c);
 windowService.ShowDialog(cf);
 }
 }
}

Unlike the type proxy, which interacts with the actual Customer object being debugged, visualizers
need to be able to serialize the class being debugged so the class can be moved from the process
being debugged to the process that is doing the debugging, and will subsequently be shown in the
visualizer. As such, both the Customer and Order classes need to be marked with the Serializable
attribute.

The Show method of the CustomerVisualizer class does three things. To display the Customer
object being debugged, first you need to get a reference to this object. You do this via the GetObject
method on the ObjectProvider object. Because the communication between the two processes is
done via a stream, this method does the heavy lifting associated with deserializing the object so you
can work with it.

Next you need to pass the Customer object to a new instance of the CustomerForm. Finally, use
the ShowDialog method on the WindowService object to display the form. It is important that you
display the form using this object because it will ensure that the form is displayed on the appropriate
UI thread.

Lastly, note that the CustomerVisualizer class is referenced in the DebuggerVisualizer attribute,
ensuring that the debugger uses this class to load the visualizer for Customer objects.

As a side note, if you write components and want to ship visualizers separately from the components
themselves, visualizers can be installed by placing the appropriate assembly into either the C:\
Program Files\Microsoft Visual Studio 10.0\Common7\Packages\Debugger\Visualizers
directory (Program Files (x86) on 64-bit Windows), or the Documents\Visual Studio 2010\
Visualizers directory.

adVanced techniques

Thus far, this chapter has covered how to display and visualize objects you are debugging. In earlier
chapters, you learned how to modify field and property values on the object being debugged via the
data tip. The missing link is being able to edit more complex data objects. The final section in this
chapter looks at how to extend your visualizer so you can save changes to the Customer object.

saving changes to your object
When you created the CustomerVisualizer, you had to retrieve the Customer object from
the communication stream using the GetObject method. This essentially gave you a clone of the
Customer object being debugged to use with the visualizer. To save any changes you make in
the CustomerVisualizer, you need to send the new Customer object back to the process being
debugged. You can do this using the ReplaceObject method on the ObjectProvider, which gives
you a CustomerVisualizer.

advanced Techniques ❘ 867

http://lib.ommolketab.ir
http//lib.ommolketab.ir

868 ❘ chaPter 41 dATATipS, debug proxieS, And ViSuAlizerS

Before you can call the ReplaceObject method you will need to make some changes to pass the
modified Customer object back to the visualizer. This has been done by saving the Customer object
to an internal variable when it is initially passed into the class, and exposing this variable via a read-
only property. This is shown in the following code:

c#

[Serializable()]
public partial class CustomerForm : Form
{
 public CustomerForm(Customer c)
 {
 InitializeComponent();

 this.txtCustomerId.Text = c.CustomerId.ToString();
 this.txtCustomerName.Text = c.CustomerName;
 this.dgOrders.DataSource = c.Orders;

 m_ModifiedCustomer = c;
 }

 private Customer m_ModifiedCustomer;
 public Customer ModifiedCustomer
 {
 get
 {
 m_ModifiedCustomer.CustomerId = new Guid(txtCustomerId.Text);
 m_ModifiedCustomer.CustomerName = txtCustomerName.Text;
 m_ModifiedCustomer.Orders = (List<Order>)dgOrders.DataSource;
 return m_ModifiedCustomer;
 }
 }

 private void btnOk_Click(object sender, EventArgs e)
 {
 this.DialogResult = DialogResult.OK;
 this.Close();
 }
}

You can now easily access the modified Customer object and save the changes back by calling the
ReplaceObject method as shown here:

c#

[Serializable()]
[DebuggerDisplay("Customer {CustomerName} has {Orders.Count} orders")]
[DebuggerTypeProxy(GetType(Customer.CustomerProxy))]
[DebuggerVisualizer(GetType(Customer.CustomerVisualizer))]
public class Customer
{
 ...

 public class CustomerVisualizer : DialogDebuggerVisualizer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {
 protected override void Show(
 IDialogVisualizerService windowService,
 IVisualizerObjectProvider objectProvider)
 {
 Customer c = (Customer)objectProvider.GetObject();
 CustomerForm cf = new CustomerForm(c);
 if (windowService.ShowDialog(cf) ==
 System.Windows.Forms.DialogResult.OK)
 objectProvider.ReplaceObject(cf.ModifiedCustomer);
 }
 }
}

 An alternate method would be to use data binding for all of the Customer fi elds
on the form with a BindingSource object. This BindingSource object could be
exposed with a public modifi er, thereby making it accessible from the visualizer
class. All that is needed then is to set the Customer object as the DataSource
of this BindingSource object by the visualizer class, and it will automatically
synchronize changes back to the original Customer object.

 suMMary

 Debugging applications is one of the most time - consuming and frustrating activities in the
development cycle. In this chapter, you learned how you can take charge of Visual Studio 2010 by
customizing the debugging experience.

 Using debugging proxy types and visualizers, you can control how information is presented to you
while you are debugging your application. This means that you can easily determine when your
application is not functioning correctly and be able to trace the source of the issue.

summary ❘ 869

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

42
 Debugging Web applications

 what ’ s in this chaPter?

 Using Visual Studio to debug both server - side ASP .NET code and ➤

client - side JavaScript running in a web browser

 Enabling and viewing ASP .NET trace logs for an individual web ➤

page or the entire application

 Confi guring Health Monitoring so that you are notifi ed as soon as a ➤

problem occurs in an ASP .NET application

 With Visual Studio 2010, debugging solutions for the Web is just as straightforward as doing the
same for Windows - based applications. You can use most of the same debugging windows already
discussed in previous chapters, as well as deal with errors through the Exception Assistant.
However, there are some differences and additional features specifi c to web applications that you
can use to target your debugging practices more closely to the web paradigm.

 In addition to the standard debugging techniques, ASP.NET also provides you with a
comprehensive tracing capability, and even the capability to perform health monitoring on
your system to ensure it is running in the manner you expect, and exposing problematic
scenarios when it doesn ’ t.

 If you are using Windows Vista or Windows 7 with UAC, and you use IIS rather
than the built - in web development server for debugging, then you must launch
Visual Studio with administrator rights. Right - click the Visual Studio 2010
shortcut and select Run as Administrator. To always launch as administrator,
right - click the shortcut and select Properties, and then select the Compatibility
tab and check the Run This Program as an Administrator checkbox.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

872 ❘ chaPter 42 debugging Web ApplicATionS

 debuGGinG serVer - side asP .net code

 Before you can perform any level of debugging in a web application, you fi rst need to ensure that
ASP.NET debugging is enabled in your web - application or web site project. For web application
projects, enable debugging options by right - clicking the project entry in the Solution Explorer and
selecting Properties. Select the Web tab option page and ensure that the ASP.NET debugger option
is checked, as illustrated in Figure 42 - 1 .

 fiGure 42 - 1

 If you want to be able to include unmanaged code, stored procedures, or Silverlight in
your debugging of the web applications, you can activate the Native Code, SQL Server, and
Silverlight debuggers here. Native code and SQL Server debugging are explained in the next
chapter and Silverlight debugging is discussed later in this chapter.

 Enabling debugging in other web application projects, such as ASP.NET Web
Service or ASP.NET MVC applications, is exactly the same as for standard
ASP.NET web applications. In fact, from a debugging perspective, there are
really no differences between any of these project types.

 Because web site projects do not have a project fi le, you must use a slightly different procedure to
enable debugging. Enable debugging in web site projects by right - clicking the project entry in the
Solution Explorer and selecting Property Pages from the context menu. When the Property Pages
dialog is displayed, navigate to the Start Options page, and ensure that the ASP.NET debugger
option is checked, as shown in Figure 42 - 2 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 As with web application projects, you can also customize how a web site project is to be started,
including not opening any specifi c page, but running the server so it listens for a request from
another application.

 In addition to enabling the ASP.NET debugger in the property pages, you must enable the compiler
debug option in the web.config fi le. Locate the compilation node within system.web and set the
 debug attribute to true . The following code shows a minimal web.config fi le with the debug
option enabled, ready for hooking the debugger to the application:

 < ?xml version="1.0"? >
 < configuration >
 < system.web >
 < compilation debug="true" targetFramework="4.0" / >
 < /system.web >
 < system.webServer >
 < modules runAllManagedModulesForAllRequests="true" / >
 < /system.webServer >
 < /configuration >

 Note that even when you activate the ASP.NET debugger in the Start Options, without setting the
 debug attribute to true you will be unable to debug the application. However, Visual Studio
will detect this discrepancy and present you with a dialog informing you that in order to debug
you will need to change the web.config fi le. It also provides an option for Visual Studio to
automatically change this attribute for you.

 fiGure 42 - 2

 You should never deploy an ASP.NET application into production with the
 debug=”true” option set within the web.config fi le. Doing so will cause your
application to run slower, use more memory, and prevent some items from
being cached.

Debugging server - side asP.neT Code ❘ 873

http://lib.ommolketab.ir
http//lib.ommolketab.ir

874 ❘ chaPter 42 debugging Web ApplicATionS

web application exceptions
By default, when your web application encounters an exception it displays the ASP.NET server error
page, as shown in Figure 42-3. Colloquially called the Yellow Screen of Death, this page displays the
exception details including the stack trace.

fiGure 42-3

The server error page is generated under both debug and normal execution. Although it is useful
to have this information during development, it is not something that you should be displaying to
your end users. Fortunately, there is an easy way to configure redirections for exceptions, including
standard HTTP errors, by editing the customErrors section in the web.config file.

Modifying the previous web.config file to include these redirection options for 403 (access denied)
and 404 (page not found) can result in a configuration similar to the following:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">
 <error statusCode="403" redirect="AccessDenied.html" />
 <error statusCode="404" redirect="PageNotFound.html" />
 </customErrors>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 </system.web>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests="true" />
 </system.webServer>
</configuration>

The mode attribute of the customErrors section defines three options for displaying a custom error
page instead of the default server error page. These are:

 ➤ On: The custom error page will always be displayed.

 ➤ Off: The server error page will always be displayed.

 ➤ RemoteOnly: The server error page will be displayed if the browser request is coming from
the local computer; otherwise, the custom error page will be displayed.

The server error page is useful in production
scenarios where you cannot run the
application in Debug mode. However, when
debugging, it is much more useful to break
execution as soon as an exception occurs. You
can do this by enabling the Break When an
Exception Is Thrown option for the Common
Language Runtime. Figure 42-4 shows how
this option is set in the Exceptions dialog
under the Debug ➪ Exceptions menu item.

Once you have enabled this option, when
an exception occurs, Visual Studio drops back into the IDE and positions the workspace so the
statement at issue is visible. Just like Windows-based applications, Visual Studio can aid you when
errors occur by displaying the Exception Assistant. As shown in Figure 42-5, web errors are fully
detailed and include information about which part of the statement is in error.

fiGure 42-4

fiGure 42-5

Debugging server-side asP.neT Code ❘ 875

http://lib.ommolketab.ir
http//lib.ommolketab.ir

876 ❘ chaPter 42 debugging Web ApplicATionS

 You can gather additional information on the error by clicking the View Detail link, which provides
you with a comprehensive exception object visualizer that you can navigate to determine the content
of the error at hand.

 edit and continue
 Edit and Continue, which enables you to modify code when the application is paused in a debug
session, is disabled by default in ASP.NET web applications. This useful feature can be enabled by
right - clicking the project entry in the Solution Explorer and selecting Properties. Under the Web
tab option page, check the Enable Edit and Continue option. This is only supported for the built - in
Visual Studio development web server.

 Web site projects do not support Edit and Continue, however, because they naturally support a very
iterative style of development; it is not such a useful feature for those projects. Edit and Continue is
explained in more detail in Chapter 40 .

 error handling
 Although debugging your applications is indeed easy with the tools Visual Studio 2010 provides, it
is always best to try to avoid error situations proactively. You can do this in web applications with
structured Try - Catch exception handling, but you will also want to make your solutions more solid
by including code to handle any errors that fall outside any Catch conditions.

 Notice we are using the term error handling and not exception handling here.
This is because it is broader than trapping program exceptions and also covers
HTML errors, such as Page Not Found and Authentication Required.

 You can catch errors on two levels — on an individual page you can intercept unexpected errors
and produce a custom - built error, or you can catch errors on an application - wide level through the
implementation of a routine to handle errors in the global.asax fi le.

 Page - level errors
 To handle an error on an individual page, you need to implement an event handler routine that
intercepts the MyBase.Error event. When this event is raised, you can then perform whatever
actions you need to take place when unexpected errors occur. A typical routine might look like this:

 c#

void Page_Error(object sender, EventArgs e)
{
 Response.Write("An unexpected error has occurred.");
 Server.ClearError();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Vb

Private Sub Page_Error(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles MyBase.Error
 Response.Write("An unexpected error has occurred.")
 Server.ClearError()
End Sub

 As discussed previously, you can also set custom redirections for standard HTTP error codes in the
 web.config fi le, so you should use this method only for errors that are not already handled and are
specifi c to the individual page.

 application - level errors
 At the web application level, you can also trap a series of errors through the global.asax fi le. By
default, Visual Studio 2010 web projects do not include this fi le, so you ’ ll fi rst need to add it to the
project through the Add New Item dialog. Select the Global Application Class item, leave the name
as global.asax , and click Add to add the fi le to your project.

 When this class is added to the project, the template includes stubs for the commonly encountered
application events, including the error event. To handle any errors that are not catered to elsewhere
in the project, add your processing code to this Application_Error routine, like so:

 c#

protected void Session_End(object sender, EventArgs e)
{
 Server.Transfer("UnexpectedError.aspx");
}

 Vb

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 Server.Transfer("UnexpectedError.aspx")
End Sub

 This sample routine simply transfers the user to an errors page that determines what to do by
interrogating the Server.GetLastError property.

 debuGGinG client - side JaVascriPt

 One of the most useful features of Visual Studio 2010 for front - end web developers is the excellent
support for debugging client - side JavaScript code. Combined with the IntelliSense support for

JavaScript, this signifi cantly eases the diffi culty of developing JavaScript code.

 JavaScript debugging works only if you are using Internet Explorer as your web
browser during the debug session.

Debugging Client - side Javascript ❘ 877

http://lib.ommolketab.ir
http//lib.ommolketab.ir

878 ❘ chaPter 42 debugging Web ApplicATionS

 setting breakpoints in Javascript code
 Setting breakpoints for JavaScript code is no different from setting any other breakpoint. Within the
editor window, any breakpoints in JavaScript code are displayed with a white circle in the center, as
shown in Figure 42 - 6 .

 fiGure 42 - 6

 JavaScript debugging will be disabled if the Silverlight debugger is enabled.

 When the debugger hits a breakpoint, it
pauses execution and displays the HTML
code that has been rendered on the client, as
shown in Figure 42 - 7 . This provides a true
debug experience, because it includes all
client - side elements such as the ViewState and
server controls rendered in HTML.

 Visual Studio 2010 also has comprehensive
watch visualizers for client - side elements.
Figure 42 - 7 demonstrates this with a tooltip
that shows the properties and methods of the
document object.

 It is also possible to set both client - side
JavaScript breakpoints and Visual Basic or C# server - side breakpoints at the same time on the
same page. This enables you to step through both server - side and client - side code in a single
debug session.

 debugging dynamically Generated Javascript
 Several scenarios exist where ASP.NET sends down to the client JavaScript that has been
dynamically generated on the server. For example, the ASP.NET AJAX controls such as the Update

 JavaScript breakpoints have the same functionality as standard breakpoints. This
includes setting conditions, hit counts, or even running a macro as part of a
tracepoint.

 fiGure 42 - 7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Panel will generate client-side JavaScript files that are actually
stored as resources in the ScriptManager control.

When you are running a web application in Debug mode, the
Visual Studio Solution Explorer shows a list of all the script
references that the page you are debugging has loaded, as shown
in Figure 42-8. Double-clicking any of the links under the Script
Documents node displays the JavaScript code and enables you to
set breakpoints within those scripts.

debugging asP .net aJax Javascript
ASP.NET AJAX provides both Debug and Release versions of its
client JavaScript libraries. The Release version is optimized for
performance and minimizes the size of the JavaScript that must be
downloaded to the client. The Debug version is more verbose and
provides additional debugging features at runtime, such as type and
argument checking.

If debugging is enabled in the web.config file, ASP.NET AJAX uses a debug version of the client
libraries. You can also enable the debug version on a per-page basis by setting ScriptMode=”Debug”
on the ScriptManager control.

ASP.NET AJAX also includes the Sys.Debug class, which can be used to add debug statements
to your client JavaScript. This class can be used to display the properties of objects at run time,
generate trace messages, or use assertions.

debuGGinG silVerliGht

Visual Studio 2010 includes a native debugger
that makes it easy to debug Silverlight applications.
When you create a new Silverlight application,
Visual Studio prompts you either to generate an
HTML test page to host the Silverlight application,
or to utilize an existing or new web project, as
shown in Figure 42-9.

In Figure 42-9, we’ve chosen to create a test page
that hosts the Silverlight application in the web
application project that is part of the existing
solution, and to enable Silverlight debugging in this
web application. If you select either of the other
two options, you will not need to perform any
additional steps to enable Silverlight debugging.

fiGure 42-8

fiGure 42-9

Debugging silverlight ❘ 879

http://lib.ommolketab.ir
http//lib.ommolketab.ir

880 ❘ chaPter 42 debugging Web ApplicATionS

You can always enable or display support for Silverlight debugging in an existing web application
project under the Web option page of the project properties.

Once the Silverlight debugger is enabled, you are able to set breakpoints in the code-behind class
files of the XAML pages. When the breakpoint is encountered during debugging, the session pauses
and displays the current line of code, as shown in Figure 42-10. You will be able to step through the
code, view the call stack, and interrogate the properties of objects, just as you would with any Web
or Windows Forms application.

The only major limitations with Silverlight debugging are that Edit and Continue are not supported
and JavaScript debugging is disabled.

fiGure 42-10

tracinG

In addition to actively debugging your web applications when things go wrong, you can also
implement ASP.NET tracing functionality to look at the information produced in an individual
page request. Using tracing enables you to add debug statements to your code that are only viewable
when viewing locally; when the web application is deployed to the remote server, users do not see
the trace information.

Trace information can include variables and simple objects to help you determine the state of the
specific request and how it was executed. Note that ASP.NET tracing is different from using
the Trace class in normal Windows applications in that its output is produced on the actual
ASP.NET web page or in a standalone trace viewer, rather than the output windows that Trace
commands use.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Page-level tracing
To implement page-level tracing, you simply need to include a trace attribute in the @Page directive
at the top of the page you want to trace. A simple ASPX page with tracing activated might look like
the following:

<%@ Page Language="C#" AutoEventWireup="true" Trace="true"
TraceMode="SortByCategory" CodeBehind="ShowTrace.aspx.cs"
Inherits="CSWebApp.ShowTrace" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Trace Example Page</title>
</head>
<body>
 <form runat="server">
 <div>Hello!</div>
 </form>
</body>
</html>

In addition, you can specify how the tracing messages associated with the page request should
appear by using the TraceMode attribute. Set this to SortByTime to output the tracing messages in
the order that they were produced, or SortByCategory to categorize them into different message
types. Figure 42-11 shows the trace output for the sample page defined in the previous code when
sorted by category.

fiGure 42-11

Tracing ❘ 881

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://lib.ommolketab.ir
http//lib.ommolketab.ir

882 ❘ chaPter 42 debugging Web ApplicATionS

application-level tracing
Application-level tracing can be enabled through the web.config file. Within the system.web
node, you need to include a trace node that contains the attribute enabled with a value of true.
When using application-level tracing, you can control how the tracing is produced through the
pageOutput attribute. When set to true, you receive the tracing information at the bottom of
every page (similar to how it appears in Figure 42-11), whereas a value of false ensures that the
tracing information never appears on the page, and is instead only accessible through the Trace
Viewer (covered later in this chapter). You can also restrict the amount of information to trace with
the requestLimit attribute. Including a trace node for the web.config file you saw earlier in this
chapter results in a configuration like the following:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">
 <error statusCode="403" redirect="AccessDenied.html" />
 <error statusCode="404" redirect="PageNotFound.html" />
 </customErrors>
 <trace enabled="true" pageOutput="false" traceMode="SortByCategory"/>
 </system.web>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests="true" />
 </system.webServer>
</configuration>
 </system.web>
</configuration>

trace output
Tracing output is voluminous. The simple Hello page defined earlier produces almost three full
printed pages of information, including the following categories of data:

 ➤ Request Details: The specific details of the current session, time of the request, what type of
request it was, and the HTTP code that is returned to the browser.

 ➤ Trace Information: A full listing of each event as it begins and then ends, including the
amount of time taken to process each event.

 ➤ Control Tree: A listing of all controls defined on the page, including the page object itself,
as well as HTML elements. Each object also has a size listed, so you can determine whether
any abnormal object sizes are affecting your application’s performance.

 ➤ Session State and Application State: These two lists show the keys and their values for the
individual session and the application overall.

 ➤ Request Cookies Collection and Response Cookies Collection: A list of any known
ASP.NET request and response cookies on the system that your application may be able
to access.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ➤ Headers Collection: A list of the HTTP headers included in the page.

 ➤ Response Headers Collection: The HTTP headers associated with the response, indicating
what type of object is being returned.

 ➤ Form Collection: A list of any forms defined in the page.

 ➤ Querystring Collection: A list of any query strings used in the page request.

 ➤ Server Variables: A list of all server variables known to the ASP.NET server and application
you’re currently executing.

As you can see, when tracing is implemented for a web page or application, you gain access to
an enormous amount of information that you can then use to determine how your application is
performing. You can see whether problems exist in the various collections in the way of missing or
extraneous data, as well as analyze the Trace Information list to determine whether there are any
abnormally long processing times for any specific events.

the trace Viewer
The Trace Viewer is a custom handler included in your web application when you have application
tracing activated. When tracing is being reported at the application level, you can navigate to this
page and view all page tracing output as it occurs. To view the Trace Viewer, browse to the
trace.axd page in the root directory of your web site.

The Trace Viewer provides a summary table of all requests made in the application, along with the
time the request was made and the HTTP status code returned in the response. It also provides a
link to detailed information for each request (which is the same information that you can see on
a page trace discussed earlier), as shown in Figure 42-12.

fiGure 42-12

Tracing ❘ 883

http://lib.ommolketab.ir
http//lib.ommolketab.ir

884 ❘ chaPter 42 debugging Web ApplicATionS

 custom trace output
 You can supplement the default trace information with your own custom - built trace messages, using
the Trace.Warn and Trace.Write methods. Both have the same set of syntactical overloads, and
the only real difference is that messages outputted using the Warn method are displayed in red text.

 The simplest form for these commands is to include a message string like so:

Trace.Warn("Encountered a potential issue")

 However, you can categorize your warnings and messages by using the second and third forms of
the methods, including a category and optionally an error object as well:

Trace.Warn("MyApp Error Category", "Encountered a potential issue", myAppException)

 health MonitorinG

 ASP.NET includes a built - in framework for generating and capturing events for the purposes of
monitoring a web application. This feature, called Health Monitoring, allows you to become more
proactive in managing your production web applications, enabling you to be notifi ed as soon as a
problem occurs.

 The Health Monitoring provides much more than just alerting you that an
exception has occurred. You can also instrument your code and generate alerts
for custom events; for example, if a user fails to log on or attempts to access a
restricted area.

 Health Monitoring is enabled through the web.config fi le. Within the system.web node you need
to include a healthMonitoring node that contains the attribute enabled with a value of true .
This node will also contain the details of which provider to use and rules for handling different
events. Extending the web.config fi le from earlier, we have created an SMTP provider and a rule
that e - mails the details of any unhandled exceptions to the webmaster. The web.config fi le has
also been modifi ed to include a reference to an SMTP server, so that the provider can send the
e - mail notifi cations.

 < ?xml version="1.0"? >
 < configuration >
 < system.web >
 < compilation debug="true" targetFramework="4.0" / >
 < customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm" >
 < error statusCode="403" redirect="AccessDenied.html" / >
 < error statusCode="404" redirect="PageNotFound.html" / >
 < /customErrors >
 < trace enabled="true" pageOutput="false" traceMode="SortByCategory"/ >
 < healthMonitoring enabled="true" >
 < providers >
 < add name="SMTPProvider"
 type="System.Web.Management.SimpleMailWebEventProvider"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 from="server@yourdomain.com"
 to="webmaster@yourdomain.com"
 subjectPrefix="Exception on WebApp:"
 bufferMode="Critical Notification"/>
 </providers>
 <rules>
 <clear />
 <add name="All Errors Default"
 eventName="All Errors"
 provider="SMTPProvider" />
 </rules>
 </healthMonitoring>
 </system.web>
 <system.net>
 <mailSettings>
 <smtp><network host="mail.yourdomain.com"/></smtp>
 </mailSettings>
 </system.net>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests="true" />
 </system.webServer>
</configuration>

Once this is in place, anytime an exception is generated and not handled, an e-mail is sent to the
specified address. This e-mail message contains a large amount of useful troubleshooting information,
including the exception details and stack trace. Figure 42-13 shows an example message.

fiGure 42-13

Health Monitoring ❘ 885

mailto:server@yourdomain.com
mailto:webmaster@yourdomain.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

886 ❘ chaPter 42 debugging Web ApplicATionS

In addition to the SMTP provider, there is also an Event Log, WMI, and SQL Server provider. Quite
complex rules can be enabled to direct the notifications to one of more of these providers. If none of
these meet your needs, you can even write your own custom provider.

suMMary

With the combination of Visual Studio 2010 and ASP.NET server-side capabilities, you have a
wide array of tools to help you look after your web solutions. These features enhance the already
impressive feature set available with normal Windows application debugging, with web-specific
features such as JavaScript and Silverlight debugging, page- and application-level error handling,
and the capability to trace code, which you can use to monitor the way pages are being executed in
your web applications without interrupting your end users.

In addition, the ASP.NET Health Monitoring framework enables you to proactively manage your
production web applications by notifying you as soon as a problem occurs.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

43
 advanced Debugging
Techniques

 what ’ s in this chaPter?

 Adding debugging actions to your code with the ➤ Debug and Trace

classes

 Learning techniques for debugging applications already running on ➤

the local or remote computer

 Debugging multi - threaded applications, SQL Server stored ➤

 procedures, and mixed - mode applications

 As you ’ ve seen throughout the last several chapters, Visual Studio 2010 comes with a great variety
of ways to debug and run through your applications, including catching errors and displaying
them to you for action before the code executes too far; a number of techniques for effectively
debugging web applications; and other features, such as breakpoints and visualizing errors.

 However, there is still more functionality to be found in Visual Studio that you can use to
customize your experience with debugging projects, databases, unmanaged code, and even the
.NET Framework itself. In this chapter you ’ ll fi nd advanced techniques for debugging your
projects regardless of language or technology.

 start actions

 Visual Studio provides several ways to launch applications at the start of a debugging session.
For most projects the default start option will be suffi cient, which in the case of a Windows
executable will launch the program directly. In the case of a web application, Visual Studio
opens the default web browser and loads the current page, or navigates to the root path of the
web application if there is no active page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

888 ❘ chaPter 43 AdVAnced debugging TechniQueS

In some scenarios you may want a different action to occur during a debugging session. For example,
you may need to always open a specific web page when the web application is started. In these
scenarios you can change the start options on the Debug or Web project property page. Figure 43-1
shows the start actions for a Windows Forms project.

fiGure 43-1

In addition to starting the project directly, you can also choose to start an external program that
presumably will subsequently call your project into the execution process. Alternatively, you can
choose to launch the default web browser on your system with a specific URL, again with the
assumption that the URL will ultimately invoke your project.

Often, applications are built with the capability to exhibit different behavior depending on command-
line arguments. If your project is of this variety and you need to test the different configurations, you
can use the Command Line Arguments textbox to specify which set of arguments is to be included in
the execution of the project. You should enter the command-line arguments in exactly the same way
you expect the end user to do so when that user is invoking your application once it has been deployed.

You can override the default directory from which the application should be executed by setting
the Working Directory option. This equates to the same setting when you edit a Windows shortcut.
In addition, you can also specify a different machine to control the debugging process of the
application by activating the Use Remote Machine option. Note that you will need to explicitly
specify the remote computer path, because it does not have an associated browse option.

The final section of the Debug page pertains to the different kinds of debugging that will be
performed during the execution of your application. By default, the only debugging process active
is the debugging of managed code inside the Visual Studio environment, but you can optionally
include native unmanaged code or SQL Server stored procedures. These debuggers are discussed
later in the chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The start actions for ASP.NET web applications are found on the Web property page for the project,
as shown in Figure 43 - 2 . The default is to launch the web site with whichever page is currently open
in the code editor or web designer. This can be changed to always use a specifi c page or URL. The
other option is to start an external program or wait for a request from an external application. This
is particularly useful when debugging a web service that is invoked by another application.

 fiGure 43 - 2

 The confi guration and platform settings are available only when you have the
Show Advanced Build Confi gurations setting activated. You can fi nd this in
the Projects and Solutions ➪ General options page and it is on by default for all
environment confi gurations except for Visual Basic programmers.

 ASP.NET web application projects can also choose from one of three web server options. The
built - in Visual Studio Development Server is the most convenient, because it does not require
installation or confi guration. Unlike IIS, the Visual Studio Development Server supports Edit
and Continue. The Custom Web Server option enables you to specify a remote web server to
debug against.

start actions ❘ 889

http://lib.ommolketab.ir
http//lib.ommolketab.ir

890 ❘ chaPter 43 AdVAnced debugging TechniQueS

debuGGinG with code

Three classes ship with the .NET Framework under the System.Diagnostics namespace that can be
used to build debugging support directly into your code — the Debug, Debugger, and Trace classes.
When used properly, these classes provide a very powerful way for you to interact with the debugger.

The functionality provided by all three of these classes is exposed through static/shared methods
and properties, which makes it easy to add them to your code.

the debugger class
The Debugger class provides programmatic access to certain debugger functions within Visual
Studio. For example, the following code snippet checks whether the application is running under a
debugger and, if not, launches one and attaches to the process:

c#

if (!Debugger.IsAttached)
{
 Debugger.Launch();
}

Vb

If Not Debugger.IsAttached() Then
 Debugger.Launch()
End If

When this code is executed while the application is running
normally outside Visual Studio, the program execution
pauses, and you are presented with a dialog box similar to
the one shown in Figure 43-3. Selecting a New Instance of
Visual Studio 2010 loads the application in Visual Studio
and continues executing the application in Debug mode.

the debug and trace classes
The Debug and Trace classes are used to output
debugging information and trace the execution path of
your application. Most of the properties and methods are
common across the two classes, which may seem redundant.
However, there is a key difference in the way these methods
are implemented and the results presented to you.

The Debug class should be used if you only need to output information while running in Debug
mode. The Trace class can be used if you want output in both the Debug and Release versions.
While you are debugging an application during development, both your tracing and debugging
output go to the Output window in Visual Studio. However, in Release mode, any Debug statements
will be suppressed by the compiler and not invoked during execution. This ensures that you can
include a large amount of debug code in your application without increasing the size or decreasing
the performance of your release code.

fiGure 43-3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 table 43 - 1: Methods for Outputting Debug Messages

 Method outPuts

 Write The text or string representation and an optional category .

 WriteIf The text and an optional category, if the condition specifi ed as an argument

evaluates to true .

 WriteLine The text followed by a carriage return and an optional category .

 WriteLineIf The text followed by a carriage return and an optional category, if the condition

specifi ed as an argument evaluates to true .

 You can also offset the output by increasing or
decreasing the indenting through the Indent and
 Unindent methods.

 You can use the Assert method on the Debug and
 Trace classes to create an assertion, which tests
a condition that was specifi ed as an argument. If
the condition evaluates to true, no action occurs.
If the condition evaluates to false, the assertion
fails. If you are running in Debug mode, your
program pauses execution, and a dialog box is
displayed, as shown in Figure 43 - 4 .

 Selecting Abort terminates the application
execution. Retry breaks at the statement and
Ignore continues execution.

 While running in Debug mode, all output from the
 Debug and Trace classes is displayed in the Output
window. However, with a Release build all trace
output is collected by a listener. A listener is simply
an object that receives trace output and writes it to an output device. An output device could be a
text fi le, Windows event log, or some other custom logging repository.

 Finally, Trace Switches are available, which allow you to enable, disable, and fi lter tracing output.
Trace Switches can be declaratively enabled within the app.config fi le for an application.

 fiGure 43 - 4

 The ability to use Trace and Debug statements in different build confi gurations
is specifi ed through compiler directives. Within Visual Studio, you can enable or
disable these directives from the project properties pages. These settings are found
on the Build property page for C# projects, and under the Advanced Compiler
Options button on the Compile property page for Visual Basic projects.

 The methods that are available to output debug messages in the Debug and Trace classes are listed
in Table 43 - 1 .

Debugging with Code ❘ 891

http://lib.ommolketab.ir
http//lib.ommolketab.ir

892 ❘ chaPter 43 AdVAnced debugging TechniQueS

 debuGGinG runninG aPPlications

 Sometimes you ’ ll need to debug an application that is running outside Visual Studio. Many reasons
exist for why you would want to do this, such as if a defect appears only when an application is
executed in production. Fortunately, Visual Studio provides a simple method for attaching and
debugging a Windows executable or web application that is actively running.

 attaching to a windows Process
 Attaching to a running Windows process is a fairly straightforward task in Visual Studio. Ideally,
you will have the original source code open in Visual Studio, in which case you will be able to debug
the process as if you had launched it in Debug mode from Visual Studio.

 fiGure 43 - 5

 If you are debugging an executable without access to the source code, the
available debugging features are limited. If the executable was built without
debug information or symbols, available features are further limited and it is
unlikely that you will gain much useful information by debugging it in this way.
Therefore, it is recommended that when you perform a release build you should
in fact perform two builds: one with and one without debug symbols. The
symbols should be archived in a safe location so that they can be accessed if you
ever need to attach to a running process or debug a memory dump.

 From the Debug menu, use the Attach to Process command. This displays the Attach to Process
dialog window (see Figure 43 - 5), from which you can browse all active processes. Locate the
application that you want to debug from the Available Processes list and click the Attach button.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Because attaching to an application requires these manual steps, it is not well suited if you are
trying to debug a problem that occurs during startup. Also, if you are debugging an application
that does not require any user input and fi nishes quickly, you may not have time to attach to it. In
both these scenarios it would be better to either launch the application in Debug mode from within
Visual Studio, or create a custom build with a Debug.Break() statement in the startup code of the
application.

 Once you ’ ve fi nished debugging an attached process, you should always cleanly detach from the
process by selecting Debug ➪ Detach All. You can also choose to end the application by selecting
Debug ➪ Terminate All.

 attaching to a web application
 Attaching to an ASP.NET web application is almost as easy as attaching to a Windows application.
However, before you attach to a web application, you must ensure that it has debugging enabled by
editing the web.config fi le for the application. Locate the Compilation node within system.web
and set the debug attribute to true . The following listing shows a minimal web.config fi le with the
Debug option set, ready for attaching the debugger to the application:

 < configuration >
 < appSettings/ >
 < connectionStrings/ >
 < system.web >
 < compilation debug="true" / >
 < /system.web >
 < /configuration >

 ASP.NET automatically detects any changes to web.config settings and applies them immediately.
Therefore, you don ’ t need to restart the computer or the IIS service for this change to take effect.
As discussed in Chapter 42 , this change can have an adverse affect on performance, so you should
never leave it enabled in production.

 Once you have enabled debugging you can attach to the web application. The process you ’ ll need to
attach to is the ASP.NET worker process, which will either be the native process within IIS (called
 w3wp.exe for IIS 6.0 or higher, or aspnet_wp.exe on older versions of IIS) or the built - in Visual
Studio 2010 development server WebDev.WebServer.exe .

 Because the IIS process normally runs under the ASPNET or NETWORK SERVICE
account, you will need to be running Visual Studio with Administrator rights to
attach the debugger to it.

 To begin debugging, select Attach to Process from the Debug menu in Visual Studio 2010. Select
the Show Processes in All Sessions checkbox if you are attaching to ASP.NET under IIS. Locate the
ASP.NET worker process from the Available Processes list and click the Attach button. As shown in
Figure 43 - 6 , you may be prompted to restart Visual Studio with elevated rights.

Debugging running applications ❘ 893

http://lib.ommolketab.ir
http//lib.ommolketab.ir

894 ❘ chaPter 43 AdVAnced debugging TechniQueS

 remote debugging
 Remote debugging enables you to attach to an application that is executing on another machine.
This can be useful for those cases where a bug is manifesting itself only on a non - programmer ’ s
computer, or if you need to debug a Windows Service or ASP.NET web application that is running
on a production server.

 Debugging a remote application is no different from debugging a local application. Once you have
attached to the remote application you can set breakpoints, watch variables, and step through code.
However, before you can attach to a remote process you must ensure that the Remote Debugging
Monitor is running on the machine to be debugged.

 The Remote Debugging Monitor, msvsmon.exe , is a small executable that is shipped with Visual
Studio 2010. By default you will fi nd the 32 - bit version installed in the directory C:\Program
Files\Microsoft Visual Studio 10.0\Common7\IDE\Remote Debugger\x86 .

 fiGure 43 - 6

 The x64 version of msvsmon.exe is not installed by default with Visual Studio
2010 unless you are running a 64 - bit version of Windows. The IA - 64 version of
 msvsmon.exe is available only with Visual Studio Team System.

 You can simply copy this folder over to the remote machine and run it locally, or create a share
and run it from a UNC path. You can also choose to install the Remote Debugging Monitor on the
remote machine by running the setup MSI fi le that is on the Visual Studio installation DVD media
under the Remote Debugger directory.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 When you launch msvsmon.exe on a remote
computer for the fi rst time, it attempts to
confi gure the Windows Firewall to open the
network ports necessary to enable remote
debugging. In some environments, such as
on a Windows Server 2003, it prompts you
to make the necessary changes as shown in
Figure 43 - 7 . On the Developer’s machine,
Visual Studio makes the necessary changes to
the Windows Firewall to enable it to connect
to a remote machine.

 Once you have started the Remote Debugging Monitor it simply listens on the network for incoming
debugging requests. By default, remote requests must be authenticated, and only users who are
Administrators have the necessary permissions to attach and debug applications. These security
settings can be changed from the Tools ➪ Options menu, as shown in Figure 43 - 8 .

 fiGure 43 - 8

 fiGure 43 - 7

 Once you have the Remote Debugging Monitor running on the remote machine, you can attach to
an application on that machine through the Debug ➪ Attach to Process menu. Enter the computer
name or IP address of the remote machine in the fi eld marked Qualifi er. Visual Studio will connect
to the Remote Debugging Monitor, authenticate you, and fi nally display the list of processes
running on the remote machine. Simply select a process to attach to and you will be able to debug as
if you had attached to a local process.

 If you enable the No Authentication mode, your machine will be vulnerable
to any user on the network. A remote user could launch applications on your
computer, access data, or perform untold mischievous or destructive actions by
using a debugger. You have been warned!

Debugging running applications ❘ 895

http://lib.ommolketab.ir
http//lib.ommolketab.ir

896 ❘ chaPter 43 AdVAnced debugging TechniQueS

 The fi rst step to enabling access to the source code is to confi gure some Debugger settings. Open the
Tools ➪ Options menu item and select the Debugging category. If you are using the Visual Basic
Profi le, you ’ ll need to select the Show All Settings option to see all these options. Ensure that the
Enable .NET Framework Source Stepping option is checked as shown in Figure 43 - 9 . When you check
this option you may be presented with two prompts; the fi rst indicates that the Enable Just My Code
option has been disabled, and the second advises that a symbol cache location default has been set.

 Secondly, navigate to the Symbols category in the Options dialog (see Figure 43 - 10) and check the
symbol cache location that was automatically added. You can modify the cache location if required,
but ensure that you have full read/write access to the target directory. If you are confi guring
these options while running in Debug mode, you also have the option to download the symbols
immediately by clicking the Load all symbols button. Otherwise, if you are not running a debug
session, the symbols applicable to the current project are downloaded as soon as you click OK.

 .net fraMework source

 One of the more interesting trends that has emerged from Microsoft in recent years is an increased
openness and even willingness to embrace open source. The ASP.NET MVC Framework, covered
in Chapter 21 , is a good example of this, because the source code for this has been released as a
buildable Visual Studio project solution.

 However, arguably more signifi cant than this has been the release of the source code for a large
number of base class libraries in the .NET Framework. Available under the read - only Microsoft
Reference License, it enables you to step into and debug the .NET Framework code as part of a
debugging session. Though you could always infer the programmer ’ s intent by using Refl ector, there
is no comparison to browsing the actual source code, including the inline documentation . The
really good news is that this documentation is quite comprehensive.

 fiGure 43 - 10 fiGure 43 - 9

 The source code is not available for every assembly that ships as part of the .NET
Framework, nor is it available for every version that has been released. For
the assemblies that are available, there has often been a delay between when the
framework was publicly released and when the source code became available. You
can fi nd the list of currently available assemblies at http://referencesource.
microsoft.com/netframework.aspx .

http://referencesource
Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You will now be able to step into and browse the .NET Framework base class libraries during
a debugging session. Set a breakpoint in your application code and run in Debug mode. When
the breakpoint is hit, open the Call Stack window (Debug ➪ Windows ➪ Call Stack) to display the
execution path. If the symbols have been loaded, the code that is available for debugging will not be
grayed out, and you will be able to double-click the entry in the Call Stack, or step into the source
code during your debug session, as shown in Figure 43-11. If this is the first time you are viewing
the code, you are prompted to accept the Microsoft Reference Library license.

fiGure 43-11

Multi-threaded and Parallelized
aPPlication debuGGinG

Multi-threaded applications have traditionally been notoriously difficult to debug properly.
Seemingly fundamental tasks, such as keeping track of which thread you are currently inspecting
and what other threads are currently executing, are some of the reasons why this task is so hard.
Fortunately, Visual Studio 2010 has improved the support available for debugging multi-threaded
applications.

Chapter 39 discussed the Threads debug window, which lists all the active threads for a particular
application. Functionality accessed through this window includes the ability to set a friendly name
for a thread. You can also set flags on individual threads, which means that you don’t have to spend
as much time trying to keep track of thread IDs.

To further improve debugging, you can now identify each thread within the source code editor
window. This is enabled from the Threads window by right-clicking any entry and selecting Show
Threads in Source. The result of this is shown in Figure 43-12, where a cloth thread icon (consisting
of a red and blue wavy line) is displayed in the gutter. The thread icon indicates that a thread,
or several threads, is stopped at this location. When you hover over the thread icon, a tooltip is
displayed that identifies which threads are stopped here. The thread names listed are the friendly
names that have been entered in the Threads window.

Multi-Threaded and Parallelized application Debugging ❘ 897

http://lib.ommolketab.ir
http//lib.ommolketab.ir

898 ❘ chaPter 43 AdVAnced debugging TechniQueS

Within the Debug Location toolbar, shown in Figure 43-13, you can navigate between threads.
When you select a different thread from the Thread drop-down list, the Call Stack is updated with
the selected thread’s execution path, and the execution point is moved to the current location in the
source code. The call graph in the Parallel Stacks window will also be updated to reflect the newly
selected current thread.

fiGure 43-13

fiGure 43-12

fiGure 43-14

You can also flag both threads and tasks from the Threads and Parallel Tasks windows. Flagging
enables you to keep track of a thread or task within a debugging session, and filter out some of the
tasks or threads you are not interested in. In Figure 43-14, we have flagged the first two tasks in
the Parallel Tasks window. By selecting the Show Only Flagged option on the toolbar of the Parallel
Stacks window, we have filtered the call graph to hide the tasks that we are not interested in.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Though debugging multi - threaded and parallelized applications is still not a trivial task, these
features do make it much easier to drill down on specifi c threads and tasks, and fi lter out the
unimportant information from the Visual Studio debugger windows.

 debuGGinG sql serVer stored Procedures

 Another very useful feature of the debugging
model found in Visual Studio 2010 is the
capability to debug stored procedures in SQL
Server databases. You ’ ll need to fi rst check
the Enable SQL Server Debugging setting
in the Debug property page of your project,
as shown in Figure 43 - 15 . Once activated,
whenever your code encounters a stored
procedure, you can debug the procedure code
inline with your own code.

 You can even include breakpoints within a
stored procedure so you can trace through
the SQL Server code without halting the
application code execution.

 Your Windows account must be a member of the sysadmin group on SQL Server in order to debug
stored procedures.

 Mixed - Mode debuGGinG

 A mixed - mode application is any application that combines managed code (Visual Basic, C#,
Managed C + + , and so on) with native code (typically C + +). Debugging a mixed - mode application
is not all that different from debugging a pure managed - code application; however, you must fi rst
confi gure the application to support native code debugging. Figure 43 - 15 , in the previous section,
shows the unmanaged code debugger enabled, along with the SQL Server debugger.

 Mixed - mode debugging has a couple of limitations that you should be aware of. First, it is only
available on Windows 2000 or higher operating systems. Also, when debugging a mixed - mode
application, you may fi nd that some operations, such as stepping through code, run very slowly.
This can be improved by unchecking the option to Enable Property Evaluation and Other Implicit
Function Calls in the Debugger option page.

 fiGure 43 - 15

 Because native call stacks and managed call stacks are different, the debugger
cannot always provide a single complete call stack for mixed code. Though rare,
it is possible that there will be some discrepancies in the call stack. You can fi nd
more information on this in the MSDN library.

Mixed-Mode Debugging ❘ 899

http://lib.ommolketab.ir
http//lib.ommolketab.ir

900 ❘ chaPter 43 AdVAnced debugging TechniQueS

 Post - MorteM debuGGinG

 Even with the most well tested of applications, it is inevitable that there will be latent bugs within
your code that will show up after the software has been released. Fortunately, it is possible to debug
many of the errors on user computers after they have occurred.

 Post - mortem debugging involves inspecting a dump of the application ’ s memory that was taken
when the error or unexpected behavior occurred. This could be when an unhandled exception is
thrown, or if the application enters a hung state, or simply if the application is exhibiting behavior
that indicates it may have a memory leak.

 In the past you would use tools such as WinDbg with the Son of Strike (SOS) extension to debug
memory dumps of .NET applications. However, WinDbg was designed for native code debugging,
and even with the additional support provided by SOS it was still diffi cult to perform tasks such as
matching the MSIL back to the source code.

 Visual Studio 2010 and .NET Framework 4.0 have introduced new functionality that makes it much
easier to debug memory dumps of .NET applications.

 Post - mortem debugging, as described here, only works for .NET version 4.0
applications and web sites. It is also much better if your application is compiled
in a debug confi guration. If not, you will not have access to a lot of very useful
information.

 Generating dump files
 You have several ways to generate dump fi les, including the Windows Task Manager, WinDbg, and
Visual Studio itself. On Windows Vista or later operating systems, the simplest method is to
right - click the process in the Windows Task Manager and select Create Dump File.

 One of the more functional tools for generating dumps is the adplus.vbs script, which is a
command - line interface to WinDbg. The adplus script and WinDbg are installed with the
Debugging Tools for Windows, which is available from http://www.microsoft.com/whdc/
DevTools/Debugging/ . You must install the version that matches the processor architecture on the
target machine (x86, x64, Itanium).

 To generate the dump fi le, open a command prompt, change directory to the install location of the
Debugging Tools, and enter the following command:

 adplus -hang -pn processname.exe

 This command attaches to the application called processname.exe in non - invasive mode, generates
the dump, and then detaches. The application will continue to run after this.

 If you are debugging a hung application, an application that is using an excessive amount of
memory, or an application that is exhibiting unexpected behavior, you should take one or more

http://www.microsoft.com/whdc/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

memory dumps at the appropriate times. It may involve a degree of trial and error to ensure that you
generate a dump that contains useful information.

If you are debugging a specific exception that is being thrown in an application, you will need to use the
-c switch to pass in a file that configures adplus to generate a dump file when that exception is thrown.

You can also use Visual Studio 2010 to generate a dump file during a debug session. To do so, pause
execution and select Debug ➪ Save Dump As.

debugging dump files
To get the most out of post-mortem debugging
you will need to configure Visual Studio to
load your symbol files. Symbol files have a
PDB extension and are generated as part of a
debug build. You will find them in the debug
output build directory; there is one for each
assembly that was built.

Under Visual Studio select Tools ➪ Options
and then select the Symbols category under
Debugging. You can specify either a URL or a
local directory as the location of your symbol
files. The public Microsoft Symbol Servers
will already be included; add your own local
symbol directories, as shown in Figure 43-16.

Now that you have generated your dump file and set up the symbols, you use Visual Studio to begin
post-mortem debugging. Select File ➪ Open ➪ File and locate the dump file. Once opened, Visual
Studio displays the dump summary page as shown in Figure 43-17.

fiGure 43-17

fiGure 43-16

Post-Mortem Debugging ❘ 901

http://lib.ommolketab.ir
http//lib.ommolketab.ir

902 ❘ chaPter 43 AdVAnced debugging TechniQueS

Click the Debug with Mixed link to load the dump and all symbols and begin debugging. This link
is only displayed if the dump is from a managed application that targets the .NET Framework 4.0;
otherwise you can only use the Debug with Native Only option.

Debugging a dump file is much the same as any other debugging session — you can display the
call stack, inspect the contents of variables, and view the threads. The one main limitation is that
because you are looking at a snapshot, and not a live application, you cannot step through the
source code.

suMMary

This chapter completes the discussion on debugging your projects and applications, offering details
about advanced debugging techniques. Visual Studio 2010 is capable of meeting a wide spectrum of
debugging scenarios, such as multi-threaded applications, stored procedures, unmanaged code, and
even the .NET Framework itself. These techniques provide you with a set of very effective debugging
options for tracking down the issues in your projects regardless of language or technology.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PART X

build and deployment

 chaPter 44: ⊲ Upgrading with Visual Studio 2010

 chaPter 45: ⊲ Build Customization

 chaPter 46: ⊲ Assembly Versioning and Signing

 chaPter 47: ⊲ Obfuscation ̧ Application Monitoring, and Management

 chaPter 48: ⊲ Packaging and Deployment

 chaPter 49: ⊲ Web Application Deployment

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

44
 Upgrading with Visual
studio 2010

 what ’ s in this chaPter?

 Taking advantage of the new IDE when working on older projects ➤

 Updating projects to use the latest runtime and libraries ➤

 Each time a new version of Visual Studio is released, there is always a delay before developers
start to use it. This is primarily due to the need to upgrade existing applications to a new
version of the .NET Framework at the same time. For example, the migration from Visual
Studio 2003 to Visual Studio 2005 required upgrading applications to version 2.0 of the .NET
Framework. Since the introduction of multi - targeting in Visual Studio 2008, you have been
able to upgrade to the latest IDE independently of moving to the .NET Framework version.
This is particularly important if you still need to target older versions of Windows for which
there is no support for the newer .NET Framework versions.

 In this chapter, you see how easy it is to migrate existing .NET applications into Visual Studio
2010. This is done it two parts: upgrading to Visual Studio 2010 and then upgrading the
.NET Framework version the application makes use of to 4.0.

 uPGradinG froM Visual studio 2008

 To begin with, let ’ s start with a solution that contains a good mix
of application types. Figure 44 - 1 shows a Visual Studio 2008
solution that contains Class Library, Unit Test, WCF Web Site, Web
Application, Windows Application, Workfl ow Application, and
WPF Application projects. The WCF Web Site, Web Application,
Unit Test, and Workfl ow Application projects all reference the
Class Library project and the Windows Application and WPF
Application projects reference the WCF Service Application project. fiGure 44 - 1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

906 ❘ chaPter 44 upgrAding WiTh ViSuAl STudio 2010

 Upgrading this solution is as simple as opening it in Visual Studio 2010. This automatically
invokes the Visual Studio Conversion Wizard, as shown in Figure 44 - 2. The wizard is relatively
straightforward, with the only option being whether or not a backup is made of the solution before
upgrading. If your solution is in source control, you can ignore this because you will be able to
revert to the checked - in version if something goes wrong with the upgrade process. If your solution
is not in source control, it is highly recommended that you allow Visual Studio to make this backup
for you so you will have a working version if something goes wrong.

 The tools required to develop Windows Mobile device applications are not
included in the initial release of Visual Studio 2010. This means that you
cannot upgrade existing device applications from Visual Studio 2008 to Visual
Studio 2010.

 fiGure 44 - 2

 The Summary screen indicates that your solution will be checked out of source control so that
changes can be made. It also indicates that in some cases there may be some framework and
reference changes made as part of the upgrade. What you can ’ t see in the screenshot is the list of
projects that will be upgraded as part of the process.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Even if the Conversion Wizard reports no errors, it is still recommended that you look through the
conversion log after the wizard closes. This log (UpgradeLog.XML, found in the solution folder)
looks similar to Figure 44 - 3 and typically lists the solution and project fi les as the only things that
have been upgraded. If you are upgrading a pre – Visual Studio 2005 solution, you may fi nd some
conversion issues, because some known breakages between the framework versions exist. Despite
being able to target multiple versions of the .NET Framework, Visual Studio 2010 is limited to
version 2.0 and above. So, if you have a solution that uses a version prior to this, the Conversion
Wizard will attempt to upgrade it.

 If you have a Web Site project in your solution, you will be prompted to upgrade
it to version 4.0 of the framework during this upgrade process. If you opt not to
make the change now, you can still change the target framework version later.

 fiGure 44 - 3

 With the multi - targeting capabilities of Visual Studio 2010, upgrading a solution does not mean
updating the version of the framework that you are developing for. So, the question is what has
been changed and what effect this might have. The answer is that there are minimal changes to both
the solution and project fi les. In the solution fi le the changes may be as subtle as the header. For
example, the following:

Microsoft Visual Studio Solution File, Format Version 10.00
Visual Studio 2008

becomes:

Microsoft Visual Studio Solution File, Format Version 11.00
Visual Studio 2010

Upgrading from Visual studio 2008 ❘ 907

http://lib.ommolketab.ir
http//lib.ommolketab.ir

908 ❘ chaPter 44 upgrAding WiTh ViSuAl STudio 2010

The changes to the project file include some additional elements and attributes. For example, the
following:

<Project
 ToolsVersion="3.5"
 DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <Configuration Condition=" ’$(Configuration)’ == ’’ ">Debug</Configuration>
 <Platform Condition=" ’$(Platform)’ == ’’ ">AnyCPU</Platform>
 <ProductVersion>9.0.30729</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{8735A946-4A21-4921-A4F9-E9645ABCF9ED}</ProjectGuid>
 <OutputType>Library</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>ClassLibrary1</RootNamespace>
 <AssemblyName>ClassLibrary1</AssemblyName>
 <TargetFrameworkVersion>v3.5</TargetFrameworkVersion>
 <FileAlignment>512</FileAlignment>
 </PropertyGroup>
 …

VS2008Solution\ClassLibrary1\ClassLibrary1.csproj

becomes:

<Project
 ToolsVersion="4.0"
 DefaultTargets="Build"
 xmlns=”http://schemas.microsoft.com/developer/msbuild/2003”>
 <PropertyGroup>
 <Configuration Condition=” ‘$(Configuration)’ == ‘’ “>Debug</Configuration>
 <Platform Condition=” ‘$(Platform)’ == ‘’ “>AnyCPU</Platform>
 <ProductVersion>9.0.30729</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{8735A946-4A21-4921-A4F9-E9645ABCF9ED}</ProjectGuid>
 <OutputType>Library</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>ClassLibrary1</RootNamespace>
 <AssemblyName>ClassLibrary1</AssemblyName>
 <TargetFrameworkVersion>v3.5</TargetFrameworkVersion>
 <FileAlignment>512</FileAlignment>
 <FileUpgradeFlags>
 </FileUpgradeFlags>
 <OldToolsVersion>3.5</OldToolsVersion>
 <UpgradeBackupLocation />
 </PropertyGroup>
 …

Upgraded\ClassLibrary1\ClassLibrary1.csproj

http://schemas.microsoft.com/developer/msbuild/2003
http://schemas.microsoft.com/developer/msbuild/2003%E2%80%9D
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you have developers working with a mix of Visual Studio 2008 and Visual
Studio 2010, you can have them all work off a common set of project fi les by
having two solution fi les, one for each version of Visual Studio. Even after
upgrading the project to Visual Studio 2010, they can still be opened in both
versions of the IDE. Unfortunately, the same is not true of MSBuild — once you
upgrade your projects, you must also upgrade your build process in order to use
MSBuild version 4.0.

 uPGradinG to . net fraMework 4 .0

 Once you have migrated your application across to Visual Studio 2010 and tidied up your build
environment, you should consider the upgrade path to .NET Framework 4.0. Unlike the upgrade to
version 2.0 of the .NET Framework, where there were a number of breaking changes, the upgrade
to version 4.0 should be relatively painless. Although you may still need to make some changes, for
the most part your existing application should be easily upgradeable.

 In most cases, upgrading your application is just a matter of changing the Target Framework project
property. Figure 44 - 4 shows the project properties dialog for a C# Class Library project. On the
Application tab there is a drop - down that lists the different target frameworks that are available for
you to select.

 For VB projects, this drop - down list is in the Advanced Compile Options
dialog box, which you can access from the Compile tab in the project properties
designer.

Upgrading to . neT framework 4.0 ❘ 909

 As soon as you select a new framework version, the dialog in Figure 44 - 5 appears. If you select
Yes, all pending changes to the project will be saved and the project will be closed, updated, and
reopened with the new target framework version. It is recommended that you immediately attempt a
rebuild to ensure that the application still compiles.

 fiGure 44 - 4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

910 ❘ chaPter 44 upgrAding WiTh ViSuAl STudio 2010

fiGure 44-5

suMMary

In this chapter, you have seen how you can upgrade existing .NET applications to Visual Studio
2010 and version 4.0 of the framework. Using the latest toolset and framework version clearly
has some advantages in performance, functionality, and usability. However, don’t overlook the
limitations that using the latest .NET Framework might impose. If your target market still uses old
operating systems, such as Windows 2000, you may want to stay on version 2.0 of the framework,
because this is supported on these platforms. Visual Studio 2010 allows you to have the best of both
worlds, only upgrading as and when you want to.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

45
 Build Customization

 what ’ s in this chaPter?

 Customizing the build environment ➤

 Performing actions at the beginning and the end of the build ➤

 Creating custom MSBuild scripts ➤

 Although you can build most of your projects using the default compilation options set up
by Visual Studio 2010, occasionally you ’ ll need to modify some aspect of the build process
to achieve what you want. This chapter looks at the various build options available to you in
both Visual Basic and C#, outlining what the different settings do so you can customize them
to suit your own requirements.

 In addition, you learn how Visual Studio 2010 uses the MSBuild engine to perform its
compilations and how you can get under the hood of the confi guration fi les that control
the compilation of your projects.

 General build oPtions

 Before you even get started on a project, you can modify some settings in the Options pages
for Visual Studio 2010. These options apply to every project and solution that you open in
the IDE, and as such can be used to customize your general experience when it comes to
compiling your projects.

 The fi rst port of call for professional Visual Basic developers should be the General page of the
Projects and Solutions group. By default, the Visual Basic development settings of the IDE hide
some of the build options from view, so the only way to show them is to activate the Show
Advanced Build Confi gurations option.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

912 ❘ chaPter 45 build cuSTomizATion

When this is active, the IDE displays the Build Configuration options in the My Project pages,
and the Build ➪ Configuration Manager menu command also becomes accessible. Other language
environments don’t need to do this, because these options are activated on startup (although you
could certainly turn them off if you didn’t want them cluttering your menus and pages).

Two other options on this page relate to building your projects. One allows Visual Studio to
automatically show the Output window
when you start a build and the other allows
Visual Studio to automatically show the Error
window if compilation errors occur during
the build process. By default, all language
configurations have both of these options
turned on.

The Build and Run options page (shown
in Figure 45-1) in the Projects and Solutions
group has many more options available
to you to customize the way your builds
take place.

It’s unclear from this page, but some of these options affect only C11 projects, so it’s worth running
through each option, what it does, and what languages it affects:

 ➤ Before Building: This tells Visual Studio how to handle changes that have been made to any
part of your project before the build process. You have four options:

 ➤ Save All Changes automatically saves any changes without prompting you. This is
perhaps the best option, because you don’t have to remember to save your work.
This is the default setting.

 ➤ Save Changes to Open Documents Only also automatically saves changes, but only
to open documents. This excludes some changes to solution and project files.

 ➤ Prompt to Save All Changes gives you the chance to save any changes before the
build commences. When the build process is started, it displays a dialog prompting
you to save the changes or not. If you decline to save the changes, the build still
continues but uses the last saved version of the file. This option can be good to use
when you want to know when you’ve made changes (perhaps inadvertently) to the
source code.

 ➤ Don’t Save Any Changes, as it suggests, doesn’t save changes to any files, open in
the editor or otherwise.

 ➤ Maximum Number of Parallel Project Builds: This controls how many simultaneous build
processes can be active at any one time (assuming the solution being compiled has multiple
projects).

 ➤ Only Build Startup Projects and Dependencies on Run: This option only builds the part of
the solution directly connected to the startup projects. This means that any projects that are
not dependencies for the startup projects are excluded from the default build process. This
option is active by default, so if you have a solution that has multiple projects called by the

fiGure 45-1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

startup projects through late - bound calls or other similar means, they will not be built
automatically. You can either deactivate this option or manually build those projects
separately.

 ➤ On Run, When Projects Are Out of Date: This option is used for C + + projects only and
gives you three options for out - of - date projects (projects that have changed since the last
build). The default is Prompt to Build, which forces the build process to occur whenever you
run the application. The Never Build option always uses the previous build of out - of - date
projects, and the Prompt to Build gives you an option to build for each out - of - date project.
Note that this only applies to the Run command, and if you force a build through the Build
menu, projects are rebuilt according to the other settings in the build confi guration and on
this Options page.

 ➤ On Run, When Build or Deployment Errors Occur: This controls the action to take when
errors occur during the build process. Despite offi cial documentation to the contrary, this
option does indeed affect the behavior of builds in Visual Basic and C#. Your options here
are the default Prompt to Launch, which displays a dialog prompting you for which action
to take; Do Not Launch, which does not start the solution and returns to design time; and
Launch Old Version, which ignores compilation errors and runs the last successful build of
the project.

 The option to launch an old version enables you to ignore errors in subordinate projects and
still run your application; but because it doesn ’ t warn you that errors occurred, you run the
risk of getting confused about what version of the project is active.

 Note that when you use the Prompt to Launch option, if you subsequently check the Do
Not Show This Dialog Again option in the prompt dialog, this setting is updated to either
Do Not Launch or Launch Old Version, depending on whether or not you to choose to
continue.

 It is recommended that you set this property to Do Not Launch because this can
improve the effi ciency with which you write and debug code — one fewer
 window to dismiss!

 ➤ For New Solutions Use the Currently Selected Project as the Startup Project: This option
is useful when you ’ re building a solution with multiple projects. When the solution is being
built, the Visual Studio build process assumes that the currently selected project is the startup
project and determines all dependencies and the starting point for execution from there.

 ➤ MSBuild Project Build Output Verbosity: Visual Studio 2010 uses the MSBuild engine for
its compilation. MSBuild produces its own set of compilation outputs, reporting on the
state of each project as it ’ s built. You have the option to control how much of this output
is reported to you:

 By default, the MSBuild verbosity is set to Minimal, which produces only a very ➤

small amount of information about each project, but you can turn it off completely
by setting this option to Quiet, or expand on the information you get by choosing
one of the more detailed verbosity settings.

General Build options ❘ 913

http://lib.ommolketab.ir
http//lib.ommolketab.ir

914 ❘ chaPter 45 build cuSTomizATion

 MSBuild output is sent to the Output window, which is accessible via View ➤ ➪ Other
Windows ➪ Output (under some environmental setups this will be View ➪ Output).
If you can ’ t see your build output, make sure you have set the Show Output From
option to Build (see Figure 45 - 2).

 fiGure 45 - 2

 ➤ MSBuild Project Log File Verbosity: When Visual Studio builds a C + + project, it generates a
text - based log fi le of MSBuild activities as well as the normal information that goes to the
Output window. The amount of information that goes into this text fi le can be controlled
independently using this option. One way to take advantage of this is to have more detailed
information go into the log fi le and leave the Output window set to Minimal, which
streamlines the normal development experience but gives you access to more detailed
information when things go wrong. If you do not want Visual Studio to produce this
separate log fi le, you can turn it off using the Projects and Solutions ➪ VC + + Project
Settings ➪ Build Logging setting.

 It ’ s also worth taking a look at the other Options pages in the Projects and Solutions category,
because they control the default Visual Basic compilation options (Option Explicit, Option Strict,
Option Compare, and Option Infer), and other C + + -specifi c options relating to build. Of note for
C + + developers is the capability to specify PATH variables for the different component types of
their projects, such as executables and include fi les, for different platform builds; and whether to
log the build output (see the preceding list).

 Manual dePendencies

 Visual Studio 2010 is able to detect inter - project dependencies between projects that reference each
other. This is then used to determine the order in which projects are built. Unfortunately, in some
circumstances Visual Studio can ’ t determine these dependencies, such as when you have custom
steps in the build process. Luckily, you can manually defi ne project dependencies to indicate how
projects are related to each other. You can access the dialog shown in Figure 45 - 3 by selecting either
the Project ➪ Project Dependencies or Project ➪ Build Order menu commands.

 Note that these menu commands are available only when you have a solution
with multiple projects in the IDE.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 You fi rst select the project that is dependent on others
from the drop - down, and then check the projects it
depends on in the bottom list. Any dependencies that are
automatically detected by Visual Studio 2010 will already
be marked in this list. The Build Order tab can be used to
confi rm the order in which the projects will be built.

 the Visual basic coMPile PaGe

 Visual Basic projects have an additional set of options that
control how the build process will occur. To access the
compile options for a specifi c project, open My Project
by double - clicking its entry in the Solution Explorer.
When the project Options page is shown, navigate to the
Compile page from the list on the left side (see Figure 45 - 4).

 fiGure 45 - 3

 fiGure 45 - 4

 The Build Output Path option controls where the executable version (application or DLL) of your
project is stored. For Visual Basic, the default setting is the bin\Debug\ or bin\Release\ directory
(depending on the current confi guration), but you can change this by browsing to the desired location.

 It is recommended that you enable the Treat All Warnings as Errors option
because this will, in most cases, encourage you to write better, less error - prone
code.

The Visual Basic Compile Page ❘ 915

http://lib.ommolketab.ir
http//lib.ommolketab.ir

916 ❘ chaPter 45 build cuSTomizATion

You should be aware of two additional sets of hidden options. The Build Events button in the lower-
right corner is available to Visual Basic developers who want to run actions or scripts before or
after the build has been performed. They are discussed in a moment. The other button is labeled
Advanced Compile Options.

advanced compiler settings
Clicking the Advanced Compile Options
button displays the Advanced Compiler
Settings dialog (see Figure 45-5) in which
you can fine-tune the build process for
the selected project, with settings divided
into two broad groups: Optimizations and
Compilation Constants.

optimizations
The settings in the Optimizations group
control how the compilation is performed to
make the build output or the build process
itself faster or to minimize the output size.
Normally, you can leave these options alone,
but if you do require tweaks to your compilation, here’s a summary of what each option does:

 ➤ Remove Integer Overflow Checks: By default, your code is checked for any instance of a
possible integer overflow, which can be a potential cause for memory leaks. Deactivating
this option removes those checks, resulting in a faster-running executable at the expense
of safety.

 ➤ Enable Optimizations: Optimizing the build may result in faster execution with the penalty
being that it takes marginally longer to build.

 ➤ DLL Base Address: This option enables you to specify the base address of the DLL in
 hexadecimal format. This option is disabled when the project type will not produce a DLL.

 ➤ Generate Debug Info: This controls when debug information will be generated into your
application output. By default, this option is set to full (for Debug configurations), which
enables you to attach the debugger to a running application. You can also turn debugging
information off completely or set the option to pdb-only (the default for Release
configurations) to only generate the PDB debugging information. The latter means that
you can still debug the application when it is started from within Visual Studio 2010
but you will only be able to see the disassembler if you try to attach to a running
application.

Compilation Constants
Compilation constants can be used to control what information is included in the build output and
even what code is compiled. The Compilation Constants options control the following:

fiGure 45-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ➤ Defi ne DEBUG Constant and Defi ne TRACE Constant: Enable debug and trace
information to be included in the compiled application based on the DEBUG and TRACE fl ags,
respectively.

 ➤ Custom Constants: If your application build process requires custom constants, you can
specify them here in the form ConstantName = “ Value ” . If you have multiple constants, they
should be delimited by commas.

 The last three options don ’ t really fall under compilation constants, but they do allow you to further
customize the way the project builds.

 ➤ Generate Serialization Assemblies: By default this option is set to Auto, which enables the
build process to determine whether serialization assemblies are needed, but you can change
it to On or Off if you want to hard - code the behavior.

 Serialization assemblies are created using the Sgen.exe command - line tool. This
tool generates an assembly that contains an XmlSerializer for serializing (and
deserializing) a specifi c type. Normally these assemblies are generated at run time
the fi rst time an XmlSerializer is used. Pre - generating them at compile time can
improve the performance of the fi rst use. Serialization assemblies are named
 TypeName .XmlSerializers.dll . See the documentation of Sgen.exe for
more info.

 ➤ Target CPU: Depending on what CPU types are known to your system, this option enables
you to optimize the build output to a specifi c platform. The default option of AnyCPU
 provides output that can be run on any CPU that supports the .NET Framework.

 ➤ Target Framework: This is the only option in this dialog that applies to all confi gurations
and is used to determine what version of the base class libraries the project is compiled
against.

 build events
 You can perform additional actions before or after the
build process by adding them to an events list. Click the
Build Events button on the My Project Compile page to
display the Build Events dialog. Figure 45 - 6 shows a post -
 build event that executes the project output after every
successful build.

 Each action you want to perform should be on a separate
line, and can be added directly into either the Pre - build
Event Command Line text area or the Post - build Event
Command Line text area, or you can use the Edit Pre -
 build and Edit Post - build buttons to access the known
predefi ned aliases that you can use in the actions. fiGure 45 - 6

The Visual Basic Compile Page ❘ 917

http://lib.ommolketab.ir
http//lib.ommolketab.ir

918 ❘ chaPter 45 build cuSTomizATion

 Shown in Figure 45 - 7, the Event Command Line dialog includes a list of macros you can use in the
creation of your actions. The current value is displayed for each macro so you know what text will
be included if you use it.

 fiGure 45 - 7

 If your pre- or post - build event actions are batch fi les, you must prefi x them with
a call statement. For example, if you want to call archive_previous_build.bat
before every build, you need to enter call archive_previous_build.bat into
the Pre - build Event Command Line text box. In addition to this, any paths that
contain spaces should be encased in double - quotes. This applies even if the path
with spaces comes from one of the built - in macros.

 In this sample, the developer has created a command line of $ (TargetDir) $ (TargetFileName) $
(TargetExt) , assuming that it would execute the built application when fi nished. However,
analyzing the values of each of the macros, it ’ s easy to see that the extension will be included twice,
which can be amended quickly by either simply removing the $ (TargetExt) macro or replacing the
entire expression with the $ (TargetPath) macro.

 At the bottom of the Build Events dialog there is an option to specify the conditions under which the
Post Build Event will be executed. The valid options are:

 ➤ Always: This option runs the Post Build Event script even if the build fails. Remember that
there is no guarantee when this event fi res that Visual Studio has produced any fi les at all,
so your post - build script should be able to handle this scenario.

 ➤ On Successful Build: This is the default option. It causes the Post Build Event script to be
run whenever the build is considered to be successful. Note that this means that it will run
even if your project is up to date (and therefore is not rebuilt).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ➤ When the Build Updates the Project Output: This option is very similar to On Successful
Build, except that it only fires the Post Build Event script when the project output files have
changed. This is a great option for keeping a local cache of archived builds of your projects
because it means you will only copy a file into the archive if it has changed since the last build.

There are no filter options for determining if the Pre-Build Event will be executed.

c# build PaGes

C# provides its own set of build options. In general, the options are the same as those available to a
Visual Basic project, but in a different location because C# programmers are more likely to tweak
the output than Visual Basic developers, who are typically more interested in rapid development
than in fine-tuning performance.

Instead of a single Compile page in the project property pages, C# has a Build page and a Build
Events page. The Build Events page acts in exactly the same way as the Build Events dialog in Visual
Basic, so refer to the previous discussion for information on that page.

As you can see in Figure 45-8, many of the options on the Build page have direct correlations to
settings found in the Compile page or in the Advanced Compiler Settings area of Visual Basic.
Some settings, such as Define DEBUG Constant and Define TRACE Constant, are identical to their
Visual Basic counterparts.

fiGure 45-8

However, some are renamed to fit in with a C-based vocabulary; for example, “Optimize code” is
equivalent to “Enable optimizations.” As with the Visual Basic compile settings, you can determine
how warnings are treated, and you can specify a warning level.

C# Build Pages ❘ 919

http://lib.ommolketab.ir
http//lib.ommolketab.ir

920 ❘ chaPter 45 build cuSTomizATion

Clicking the Advanced button on the Build page
invokes the Advanced Build Settings dialog, shown
in Figure 45-9, which includes settings that are not
accessible to Visual Basic developers. These settings
give you tight control over how the build will be
performed, including information on the internal
errors that occur during the compilation process and
what debug information is to be generated.

These settings are mostly self-explanatory, so the
following list is a quick summary of what effect each
one has on the build:

 ➤ Language Version: Specifies which version
of the C# language to use. The default is
to use the current version. In Visual Studio 2010, the other options are ISO-1 and ISO-2,
which restricts the language features to those defined in the corresponding ISO standard.

 ➤ Internal Compiler Error Reporting: If errors occur during the compilation (not compilation
errors, but errors with the compilation process itself), you can have information sent to
Microsoft so it can add it to its revision of the compiler code. The default setting is Prompt,
which asks you whether you want to send the information to Microsoft.

Other values include None, which won’t send the information; Send, to automatically send
the error information; and Queue, which adds the details to a queue to be sent later.

 ➤ Check for Arithmetic Overflow/Underflow: Checks for overflow errors that can cause
unsafe execution. Underflow errors occur when the precision of the number is too fine for
the system.

 ➤ Do Not Reference mscorlib.dll: By default, the mscorlib.dll, which defines the System
namespace, is automatically referenced in your project, but you can check this option to
build your own System namespace and associated objects.

 ➤ Debug Info: Identical to the Visual Basic Generate debug info setting.

 ➤ File Alignment: Used to set the section boundaries in the output file, and enables you to
control the internal layout of the compiled output. The values are measured in bytes.

 ➤ DLL Base Address: Identical to the Visual Basic setting of the same name.

Using these settings for your projects enables you to closely control how the build process will
perform. However, you have another option with Visual Studio 2010, which is to edit the build
scripts directly. This is made possible because Visual Studio 2010 uses MSBuild for its compilations.

Msbuild

Visual Studio 2010 uses MSBuild, which is the compilation engine Microsoft originally released
with Visual Studio 2005. It uses XML-based configuration files to identify the layout of a build
project, including all of the settings discussed earlier in this chapter, as well as what files should be
included in the actual compilation.

fiGure 45-9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In fact, since Visual Studio 2005, Visual Studio uses MSBuild configuration files as its project
definition files, in place of the old project file formats used by previous versions of Visual Studio.
This enables the MSBuild engine to be used automatically when compiling your applications within
the IDE because the same settings file is used for both your project definition in the IDE and the
build process.

how Visual studio uses Msbuild
As already mentioned, the contents of Visual Studio 2010 project files are based on the MSBuild
XML Schema and can be edited directly in Visual Studio so you can customize how the project is
loaded and compiled.

However, to edit the project file you need to effectively remove the project’s active status from the
Solution Explorer. Right-click the project you want to
edit in the Solution Explorer, and choose the Unload
Project command from the bottom of the context
menu that is displayed.

The project will be collapsed in the Solution Explorer
and marked as unavailable. In addition, any open
files that belong to the project will be closed while it
is unloaded from the solution. Right-click the project
entry again and an additional menu command will be
available to edit the project file (see Figure 45-10).

The XML-based project file will be correspondingly
opened in the XML editor of Visual Studio 2010, enabling you to collapse and expand nodes.
The following listing is a sample MSBuild project file for an empty C# project:

<?xml version="1.0" encoding="utf-8"?>
<Project
 ToolsVersion="4.0"
 DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <Configuration Condition=" ’$(Configuration)’ == ’’ ">Debug</Configuration>
 <Platform Condition=" ’$(Platform)’ == ’’ ">x86</Platform>
 <ProductVersion>8.0.30703</ProductVersion>
 <SchemaVersion>2.0</SchemaVersion>
 <ProjectGuid>{04ABE6E2-5500-467B-BB01-0BBF0258E94A}</ProjectGuid>
 <OutputType>Exe</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>ConsoleApplication</RootNamespace>
 <AssemblyName>ConsoleApplication</AssemblyName>
 <TargetFrameworkVersion>v4.0</TargetFrameworkVersion>
 <TargetFrameworkProfile>Client</TargetFrameworkProfile>
 <FileAlignment>512</FileAlignment>
 </PropertyGroup>
 <PropertyGroup Condition=" ’$(Configuration)|$(Platform)’ == ’Debug|x86’ ">
 <PlatformTarget>x86</PlatformTarget>
 <DebugSymbols>true</DebugSymbols>

fiGure 45-10

MsBuild ❘ 921

http://schemas.microsoft.com/developer/msbuild/2003
http://lib.ommolketab.ir
http//lib.ommolketab.ir

922 ❘ chaPter 45 build cuSTomizATion

 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <PropertyGroup Condition=" ’$(Configuration)|$(Platform)’ == ’Release|x86’ ">
 <PlatformTarget>x86</PlatformTarget>
 <DebugType>pdbonly</DebugType>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DefineConstants>TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="System" />
 <Reference Include="System.Core" />
 <Reference Include="System.Xml.Linq" />
 <Reference Include="System.Data.DataSetExtensions" />
 <Reference Include="Microsoft.CSharp" />
 <Reference Include="System.Data" />
 <Reference Include="System.Xml" />
 </ItemGroup>
 <ItemGroup>
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 </ItemGroup>
 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
 <!-- To modify your build process, add your task inside one of the targets
 below and uncomment it. Other similar extension points exist, see
 Microsoft.Common.targets.
 <Target Name="BeforeBuild">
 </Target>
 <Target Name="AfterBuild">
 </Target>
 -->
</Project>

ConsoleApplication\ConsoleApplication.csproj

The XML contains the information about the build. In fact, most of these nodes directly relate
to settings you saw earlier in the Compile and Build pages, but also include any Framework
namespaces that are required. The first PropertyGroup element contains project properties that
apply to all build configurations. This is followed by two conditional elements that define properties
for each of the two build configurations, Debug and Release. The remaining elements are for project
references and project-wide namespace imports.

When the project includes additional files, such as forms and user controls, each one is defined in
the project file with its own set of nodes. For example, the following listing shows the additional
XML that is included in a standard Windows Application project, identifying the Form, its designer
code file, and the additional application files required for a Windows-based application:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <ItemGroup>
 <Compile Include="Form1.cs">
 <SubType>Form</SubType>
 </Compile>
 <Compile Include="Form1.Designer.cs">
 <DependentUpon>Form1.cs</DependentUpon>
 </Compile>
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 <EmbeddedResource Include="Properties\Resources.resx">
 <Generator>ResXFileCodeGenerator</Generator>
 <LastGenOutput>Resources.Designer.cs</LastGenOutput>
 <SubType>Designer</SubType>
 </EmbeddedResource>
 <Compile Include="Properties\Resources.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Resources.resx</DependentUpon>
 </Compile>
 <None Include="Properties\Settings.settings">
 <Generator>SettingsSingleFileGenerator</Generator>
 <LastGenOutput>Settings.Designer.cs</LastGenOutput>
 </None>
 <Compile Include="Properties\Settings.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Settings.settings</DependentUpon>
 <DesignTimeSharedInput>True</DesignTimeSharedInput>
 </Compile>
 </ItemGroup>

WindowsFormsApplication\WindowsFormsApplication.csproj

You can also include additional tasks in the build process in the included Target nodes for
BeforeBuild and AfterBuild events. However, these actions will not appear in the Visual Studio
2010 Build Events dialog discussed earlier. The alternative is to use a PropertyGroup node that
includes PreBuildEvent and PostBuildEvent entries. For instance, if you wanted to execute the
application after it was successfully built, you could include the following XML block immediately
before the closing </Project> tag:

 <PropertyGroup>
 <PostBuildEvent>"$(TargetDir)$(TargetFileName)"</PostBuildEvent>
 </PropertyGroup>

Once you’ve finished editing the project file’s XML, you need to re-enable it in the solution by
right-clicking the project’s entry in the Solution Explorer and selecting the Reload Project command.
If you still have the project file open, Visual Studio asks if you want to close it to proceed.

the Msbuild schema
An extended discussion on the MSBuild engine is beyond the scope of this book. However, it’s
useful to understand the different components that make up the MSBuild project file so you can
look at and update your own projects.

MsBuild ❘ 923

http://lib.ommolketab.ir
http//lib.ommolketab.ir

924 ❘ chaPter 45 build cuSTomizATion

Four major elements form the basis of the project file: items, properties, targets, and tasks. Brought
together, you can use these four node types to create a configuration file that describes a project in
full, as shown in the previous sample C# project file.

items
Items are those elements that define inputs to the build system and project. They are defined as
children of an ItemGroup node, and the most common item is the Compile node used to inform
MSBuild that the specified file is to be included in the compilation. The following snippet from a
project file shows an Item element defined for the Form1.cs file of a WindowsApplication project:

<ItemGroup>
 <Compile Include="Form1.cs">
 <SubType>Form</SubType>
 </Compile>
</ItemGroup>

Properties
PropertyGroup nodes are used to contain any properties defined to the project. Properties are
typically key/value pairings. They can only contain a single value and are used to store the project
settings you can access in the Build and Compile pages in the IDE.

PropertyGroup nodes can be optionally included by specifying a Condition attribute, as shown in
the following sample listing:

<PropertyGroup Condition=" ’$(Configuration)|$(Platform)’ == ’Release|x86’ ">
 <DebugType>pdbonly</DebugType>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DefineConstants>TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
</PropertyGroup>

This XML defines a PropertyGroup that will only be included in the build if the project is being
built as a Release for the x86 platform. Each of the six property nodes within the PropertyGroup
uses the name of the property as the name of the node.

Targets
Target elements enable you to arrange tasks (discussed in the next section) into a sequence.
Each Target element should have a Name attribute to identify it, and it can be called directly, thus
enabling you to provide multiple entry points into the build process. The following snippet defines
a Target with a name of BeforeBuild:

<Target Name="BeforeBuild">
</Target>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Tasks
Tasks define actions that MSBuild will execute under certain conditions. You can define your own
tasks or take advantage of the many built-in tasks, such as Copy. Shown in the following snippet,
Copy can copy one or more files from one location to another:

<Target Name="CopyFiles">
 <Copy
 SourceFiles="@(MySourceFiles)"
 DestinationFolder="\\PDSERVER01\SourceBackup\"
 />
</Target>

assembly Versioning via Msbuild tasks
One aspect of most automated build systems is planning application versioning. In this section,
you see how you can customize the build process for your project so that it can accept an external
version number. This version number will be used to update the AssemblyInfo file, which will
subsequently affect the assembly version. Start by looking at the AssemblyInfo.cs file, which
typically contains assembly version information such as the following.

[Assembly: AssemblyVersion("1.0.0.0")]

CustomizedBuild\Properties\AssemblyInfo.cs

What the build customization needs to do is replace the default version number with a number
supplied as part of the build process. To do this we have elected to use a third-party MSBuild
library entitled MSBuildTasks, which is a project on Tigris (http://msbuildtasks.tigris.org/).
This includes a FileUpdate task that can be used to match on a regular expression. Before we can
use this task, we need to import the MSBuildTasks Targets file. This file is installed into the default
MSBuild extensions path by the MSBuildTasks MSI.

<Project ToolsVersion="4.0" DefaultTargets="Build"
xmlsn="http://schemas.microsoft.com/developer/msbuild/2003">
 <!-- Required Import to use MSBuild Community Tasks -->
<Import Project="$(MSBuildExtensionsPath)\MSBuildCommunityTasks\
MSBuild.Community.Tasks.Targets"/>
 <PropertyGroup>
 ...

CustomizedBuild\CustomizedBuild.csproj

Because we want to update the AssemblyInfo file before the build, we could add a call to the
FileUpdate task in the BeforeBuild target. This would make it harder to maintain and debug later
on. A much better approach is to create a new target for the FileUpdate task and then make the
BeforeBuild target depend upon it, as follows:

MsBuild ❘ 925

http://msbuildtasks.tigris.org/
http://schemas.microsoft.com/developer/msbuild/2003
http://lib.ommolketab.ir
http//lib.ommolketab.ir

926 ❘ chaPter 45 build cuSTomizATion

<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
<Target Name="BeforeBuild" DependsOnTargets="UpdateAssemblyInfo">
</Target>
<Target Name="UpdateAssemblyInfo">
 <Message Text="Build Version: $(BuildVersion)" />
 <FileUpdate Files="Properties\AssemblyInfo.cs"
 Regex="\d+\.\d+\.\d+\.\d+"
 ReplacementText="$(BuildVersion)" />
</Target>

CustomizedBuild\CustomizedBuild.csproj

You will notice here that we are using a property called $(BuildVersion), which doesn’t yet
exist. If we run MSBuild against this project now, it will replace the version numbers in our
AssemblyInfo file with a blank string. This unfortunately will not compile. We could simply
define this property with some default value like this:

 <PropertyGroup>
 <BuildVersion>0.0.0.0</BuildVersion>
 <Configuration Condition=" ’$(Configuration)’ == ’’ ">Debug</Configuration>

This will work but it means that when building our project in Visual Studio 2010 it will always have
the same version. Luckily the MSBuildTasks library has another task called Version, which will
generate a version number for us. Here is the code:

<Target Name="BeforeBuild" DependsOnTargets="GetVersion;UpdateAssemblyInfo">
</Target>
…
<Target Name="GetVersion" Condition=" $(BuildVersion) == ’’">
 <Version BuildType="Automatic" RevisionType="Automatic" Major="1" Minor="3" >
 <Output TaskParameter="Major" PropertyName="Major" />
 <Output TaskParameter="Minor" PropertyName="Minor" />
 <Output TaskParameter="Build" PropertyName="Build" />
 <Output TaskParameter="Revision" PropertyName="Revision" />
 </Version>
 <CreateProperty Value="$(Major).$(Minor).$(Build).$(Revision)">
 <Output TaskParameter="Value" PropertyName="BuildVersion" />
 </CreateProperty>
</Target>

CustomizedBuild\CustomizedBuild.csproj

The new GetVersion target will only be executed if $(BuildVersion) is not specified. It calls
into the Version task from MSBuildTasks, which sets the major version number to 1 and the
minor version number to 3 (you could, of course, configure these instead of hard-coding them).
The Build and Revision numbers are automatically generated according to a simple algorithm.
These components of the version are then put together in a CreateProperty task, which comes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

with MSBuild, to create the full $(BuildVersion) that we need. Finally, this task has been added
to the list of targets that BeforeBuild depends on.

Now when we build the project in Visual Studio 2010, we will get an automatically generated
version number as per usual. In your automated build process you can specify the version number as
an argument to the MSBuild call. For example:

MSBuild CustomizedBuild.csproj /p:BuildVersion=2.4.3154.9001

suMMary

The default build behavior can be customized with an enormous range of options in Visual Studio
2010 thanks to the power and flexibility of the MSBuild engine. Within the project file you can
include additional actions to perform both before and after the build has taken place, as well as
include additional files in the compilation.

summary ❘ 927

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

46
 assembly Versioning and
signing

 what ’ s in this chaPter?

 Versioning Assemblies ➤

 Signing an Assembly to give it a Strong Name ➤

 Managing Strongly Named Assemblies in the Global ➤

Assembly Cache

 When you create a .NET assembly, you can optionally sign it to provide it with a strong name.
An assembly without a strong name is identifi ed by its fi lename, which often is not enough
to uniquely identify it. This means that other projects that depend on your assembly cannot
be guaranteed to consume the correct version. A strongly named assembly can be uniquely
identifi ed by dependent projects and even system administrators, who can apply a security
policy to your assembly.

 In this chapter, you learn how to use Visual Studio 2010 to set the assembly version number,
and how you can use a digital signature to sign your assembly so that it can ’ t be tampered
with. This will also result in a strongly named assembly, which can be added to the Global
Assembly Cache.

 asseMbly naMinG

 Every .NET assembly, whether it is an executable or a class library, contains a manifest that
has information about the assembly ’ s identity. Primarily this includes the name and version
number of the assembly, but also includes culture and public key if it is a strongly named
assembly. This information can be easily viewed by opening an assembly in Red Gate ’ s .NET
Refl ector, as shown in Figure 46 - 1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

930 ❘ chaPter 46 ASSembly VerSioning And Signing

In Figure 46-1, the assembly AssemblyInformationApplication.exe does not have a public key.
Other assemblies, such as System.Data, have a full name such as:

System.Data, Version=2.0.0.0, Culture=neutral, PublicKeytoken=b77a5c561934e089

You specify the name of your assembly in Visual Studio 2010 via the project properties editor, as
shown in Figure 46-2. You can see in this figure the Assembly Name field on the main Application
tab and the Assembly Version in the inset, which is accessible via the Assembly Information button.

fiGure 46-1

fiGure 46-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The following snippet illustrates the AssemblyVersion and AssemblyFileVersion assembly
attributes that are used to defi ne the version and fi le version of the assembly:

Vb

‘ Version information for an assembly consists of the following four values:
‘
‘ Major Version
‘ Minor Version
‘ Build Number
‘ Revision
‘
‘ You can specify all the values or you can default the Build and Revision Numbers
‘ by using the ‘*’ as shown below:
‘ <Assembly: AssemblyVersion(“1.0.*”)>
<Assembly: AssemblyVersion(“1.0.0.0”)>
<Assembly: AssemblyFileVersion(“1.0.0.0”)>

c#

// Explanatory comments removed
[assembly: AssemblyVersion(“1.0.0.0”)]
[assembly: AssemblyFileVersion(“1.0.0.0”)]

 In case you were wondering what the difference is between the version and fi le version of an
assembly, it comes down to usage. The assembly version information is used by the .NET
Framework when resolving assembly and type information. On the other hand, the fi le version is
what is displayed in Windows Explorer when you look at the fi le properties.

 If you are using a C# project, you can fi nd the AssemblyInfo.cs fi le by
expanding the Properties item found underneath the project in Solution
Explorer. If you are using VB, you can fi nd the AssemblyInfo.vb fi le under My
Project but only once Show All Files has been checked for the project.

assembly naming ❘ 931

 The assembly properties that are presented in the inset dialog in Figure 46 - 2 all appear in the
 AssemblyInfo fi le that is added to your project by default.

 There is much debate over whether the assembly version and fi le version number
should be in sync, but essentially it is up to you. Some developers prefer keeping
them in sync because it means that they can determine the assembly version via
Windows Explorer. Alternatively, other organizations use the fi le version to
represent changes to an assembly (for example, a hotfi x or service pack), whereas
the assembly version is used for new versions of the application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

932 ❘ chaPter 46 ASSembly VerSioning And Signing

As the comments in the VB snippet explain, assembly version numbers have four components — Major,
Minor, Build, and Revision. Again, how you increment these is completely up to you. In fact, you could
even elect for Visual Studio 2010 to increment them for you by specifying an * for the build and/or
revision numbers. One fairly common strategy is to use the Major and Minor numbers to represent the
actual version of the product being worked on. Incrementing just the Minor number would perhaps
represent minor fixes and minimal new functionality (similar to a service pack), whereas the Major
number would represent new core functionality.

This leaves the Build and Revision numbers that can be used to perhaps tie into the build process.
For example, the Build number might represent the week number into development for a particular
release, whereas the Revision number might represent the most recent revision number in the source
repository. This last value then becomes very important because it can be used, in isolation, to
access the exact source code from the repository that was used to build a particular version.

Version consistency

The default project configuration doesn’t lend itself easily to having a consistent version number
across all projects within a solution. However, using the ability to include linked files in a project,
you can coerce Visual Studio 2010 into giving you version consistency. This is particularly
important if you have an automated build system that automatically increments the version number.
Instead of having to update any number of AssemblyInfo files, it can simply modify a single file and
have all projects be updated.

You need to start by creating an additional AssemblyInfo file, say GlobalAssemblyInfo.vb, in
the solution folder. To do this, right-click the Solution node and select Add New Item. The new
item will be added to a Solution Items
folder in your solution. Into this file you
need to move the AssemblyVersion and
AssemblyFileVersion attributes from the
AssemblyInfo file in your projects (you will
also need to import the System.Reflection
namespace unless you fully qualify the
attribute names).

Once you have done this, you then need to
add this file into each of your projects. You
do this via the Add Existing Item right-click
menu item for the projects in the Solution
Explorer tool window. When you have
located the GlobalAssemblyInfo.vb or
GlobalAssemblyInfo.cs file, make sure you
select the Add As Link item from the Add
drop-down, as shown in Figure 46-3.

This one GlobalAssemblyInfo file can
be used in any number of projects, the one limitation being that it is specific to VB or C#. If
you have a solution that uses a mix of VB and C# projects, you will need to have a central

fiGure 46-3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 GlobalAssemblyInfo fi le for each language — this is still better than having to maintain the
version information in a separate fi le for each project. Note that you can include other assembly
attributes in these central fi les, such as the AssemblyCopyright , AssemblyCompany , and
 AssemblyTrademark , if appropriate.

 stronGly naMed asseMblies

 A strong name consists of the parts that uniquely identify an assembly ’ s identity. This includes
the plain - text name and a version number. Added to these elements are a public key and a digital
signature. These are generated with a corresponding private key. Because of this private/public key
system coupled with a digital signature, strong names can be relied on to be completely unique.
Further, by signing your assembly you are preventing someone from maliciously tampering with
your code. .NET assemblies are relatively easy to reverse engineer, modify, and compile as a modifi ed
assembly. The hash that is created as part of the signing process changes as the assembly is
modifi ed — in effect providing a security mechanism against unauthorized modifi cations.

 Using a strong name can also ensure that the version of your assembly is the one that has been
shipped. No modifi cation can be made to it without affecting its signature and thus breaking its
compatibility with the generated strong name.

 As mentioned previously, using strong names also gives administrators the ability to explicitly
set security policy against your solutions by referring to their unique names. This can give a
corporation confi dence that once deployed, the software will run as expected because it cannot be
tampered with without affecting the signing of the strong name.

 Once you start using strong - named assemblies in your solution, you will have to
use strong - named fi les right down the chain of references, because allowing an
unsigned assembly as part of the chain would break the very security that strong -
 naming your assembly was intended to implement.

 the Global asseMbly cache

 Every computer that has the .NET Framework installed has a system - wide cache, called the Global
Assembly Cache (GAC), which can be used to store assemblies that are to be shared by multiple
applications. Assemblies that are added to the GAC are accessible from any .NET application
on the same system. This itself can be a huge saving for organizations where you have common
functionality that you want to share between applications.

 In this cache (usually stored in a folder within the Windows directory) you ’ ll fi nd the common
language run time components as well as other globally registered binary fi les that you, and anyone
else, can consume. If an assembly is only going to be used by a single application, it should be
deployed in that application ’ s folder.

The Global assembly Cache ❘ 933

http://lib.ommolketab.ir
http//lib.ommolketab.ir

934 ❘ chaPter 46 ASSembly VerSioning And Signing

 If you do decide to share the assembly between applications, you will need to know how to store
it in the GAC. Your assembly must also be strong - named. You don ’ t have a choice in the matter,
because the cache interrogates all fi les to ensure that their integrity is valid; hence, it needs the
strong - name versioning to compare against. Instructions on how to strongly name your assemblies
appear at the end of this chapter.

 Once you have a strongly named assembly you can add it to the GAC by using the gacutil.exe
command - line tool like this:

gacutil.exe /i AssemblyInformationApplication.dll

 If an assembly with the same strong name already exists, you can force a reinstall with the /f
option. To uninstall the assembly you use this command:

gacutil.exe /u AssemblyInformationApplication

 It is important to note here that adding assemblies to the GAC is not
recommended unless you really need to share assemblies between applications,
and they are too large to redistribute alongside each application.

 Gacutil.exe is a part of the Microsoft .NET Framework Software Developer
Kit (SDK) and not a part of the standard redistributable. This means that you
can only rely on it being present in development environments. For deployment
to the GAC on client machines, you should use an MSI fi le. See Chapter 48 for
more details.

 siGninG an asseMbly

 Previously, signing an assembly in Visual Studio required the generation of a strong - name key
(.snk) fi le via an external utility and then editing the assembly attributes of your application ’ s
confi guration fi le. Thankfully, Visual Studio has built - in support for signing all managed code
projects using the Signing tab in the project properties editor, as you can see from Figure 46 - 4.

 The Signing tab enables you to sign the assembly in the lower half of the page. You fi rst should
select the Sign the Assembly checkbox to indicate that you will be generating a strong name. You
will then need to select the strong - name key fi le to use when signing the assembly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Existing key files in either the older .snk paired key file format or the new .pfx format can be used.
From the drop-down list, select the Browse option to locate the file in your file system and click OK
in the dialog to save the key file to the Signing page settings.

Alternatively, you can create a new strong-named key
by selecting the New option from the drop-down list.
When you choose New, you will be able to create a new
.pfx formatted strong-named file. Figure 46-5 shows the
Create Strong Name Key dialog. You can simply choose a
filename to use for the key or you can additionally protect
the key file with a password. If you do decide to add a
password, you will be prompted to enter the password if
you build your application on any other computer the
first time. Thereafter, Visual Studio will remember
the password.

Either way, once you’ve created and selected the key file, it will be added to your project in the
Solution Explorer, enabling you to easily include it for deployment projects.

One of the main reasons you might want to sign your assemblies is to ensure that they cannot be
modified. For this reason, most organizations place a high level of security around the strong-name
key file that is used to sign their assemblies. As such, it is likely that you won’t have access to the
private key to successfully sign the assembly. When you’re in this situation, you still need to dictate
that the application be digitally signed. However, instead of providing the full strong-name key
file, which contains the public and private key information, you provide only a file containing the
public key information and select the Delay Sign Only checkbox. Later, perhaps as part of your
build process, you would need to sign the assemblies using the full key:

sn –R AssemblyInformationApplication MyOrganisationsStrongkey.snk

fiGure 46-4

fiGure 46-5

signing an assembly ❘ 935

http://lib.ommolketab.ir
http//lib.ommolketab.ir

936 ❘ chaPter 46 ASSembly VerSioning And Signing

 If you select to delay the signing of your assemblies, you won ’ t be able to debug or even run the
application, because it will fail the assembly verifi cation process that is part of the pre - execution
checks that the .NET Framework does on assemblies. Actually, this is a little inaccurate because it is
possible to register your assembly (or in fact any assembly signed with the same public key) so that
the verifi cation step will be skipped:

sn – Vr AssemblyInformationApplication.exe

 You should only ever register assemblies to skip verifi cation on development
machines. Further, you can unregister an assembly (or all assemblies signed with
the same public key) using the sn command with the – Vu parameter.

 suMMary

 Strongly naming your assembly and thus safeguarding it from improper use is now straightforward
to implement, and can be done completely from within the Visual Studio 2010 IDE. The Signing
page gives you the ability to both create and set the key fi le without having to edit the application ’ s
assembly attributes directly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

47
 obfuscation, application
Monitoring, and Management

 what ’ s in this chaPter?

 Exploring the features of Dotfuscator Software Services - ➤

Community Edition, a free post - build hardening and application

monitoring tool that ships with Visual Studio

 Understanding how obfuscation can be used to prevent your ➤

assemblies from being easily decompiled

 Using tamper defense to protect your application assemblies from ➤

unauthorized modifi cation

 Confi guring application expiry to encode a specifi c date after which ➤

your application can ’ t be executed

 Setting up usage tracking to determine what applications and ➤

 features are being used

 If you ’ ve peeked under the covers at the details of how .NET assemblies are executed, you
will have picked up on the fact that instead of compiling to machine language (and regardless
of the programming language used), all .NET source code is compiled into the Microsoft
Intermediary Language (MSIL, or just IL, for short). The IL is then just - in - time compiled when
it is required for execution. This two - stage approach has a number of signifi cant advantages,
such as allowing you to dynamically query an assembly for type and method information, using
refl ection. However, this is a double - edged sword, because this same fl exibility means that
once - hidden algorithms and business logic can easily be reverse - engineered and modifi ed, legally
or otherwise. This chapter introduces tools and techniques that will help to protect your source
code from prying eyes and monitor the execution of your applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

938 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

the Msil disasseMbler

Before looking at how you can protect your code from other people and monitor its behavior “in
the wild,” this section describes a couple of tools that can help you build better applications. The
first tool is the Microsoft .NET Framework IL Disassembler, or IL Dasm. This is included as part of
the Microsoft Windows SDK, which is installed by default with Visual Studio 2010. You can find it
under Start ➪ All Programs ➪ Microsoft Visual Studio 2010 ➪ Microsoft Windows SDK Tools ➪
IL Disassembler. In Figure 47-1, a small class library has been opened using this tool, and you can
immediately see the namespace and class information contained within this assembly.

fiGure 47-1

To compare the IL that is generated, the original source code for the MathematicalGenius class is as
follows:

c#

namespace ObfuscationSample
{
 public class MathematicalGenius
 {
 public static Int32 GenerateMagicNumber(Int32 age, Int32 height)
 {
 return (age * height) + DateTime.Now.DayOfYear;
 }
 }
}

Vb

Namespace ObfuscationSample
 Public Class MathematicalGenius
 Public Shared Function GenerateMagicNumber(ByVal age As Integer, _
 ByVal height As Integer) As Integer
 Return (age * height) + Today.DayOfWeek

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 End Function
 End Class
End Namespace

Double-clicking the GenerateMagicNumber method in IL Dasm opens up an additional window
that shows the IL for that method. Figure 47-2 shows the IL for the GenerateMagicNumber method,
which represents your super-secret, patent-pending algorithm. In actual fact, anyone who is prepared
to spend a couple of hours learning how to interpret MSIL could quickly work out that the method
simply multiplies the two int32 parameters, age and height, and then adds the current day of the
year to the result.

fiGure 47-2

For those who haven’t spent any time understanding how to read MSIL, a decompiler can convert
this IL back into one or more .NET languages.

decoMPilers

One of the most widely used decompilers is .NET Reflector from Red Gate Software (available for
download at www.red-gate.com/products/reflector/). Reflector can be used to decompile any
.NET assembly into C#, Visual Basic, Managed C11, and even Delphi. In Figure 47-3, the same
assembly you just accessed is opened using IL Dasm, in Reflector.

Decompilers ❘ 939

http://www.red-gate.com/products/reflector/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

940 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

 In the pane on the left of Figure 47 - 3, you can see the namespaces, type, and method information in a
layout similar to IL Dasm. Double - clicking a method should open the Disassembler pane on the right,
which displays the contents of that method in the language specifi ed in the toolbar. In this case, you
can see the C# code that generates the magic number, which is almost identical to the original code.

 fiGure 47 - 3

 You may have noticed in Figure 47 - 3 that some of the .NET Framework base class
library assemblies are listed, including System, System.Data, and System.Web.
Because obfuscation has not been applied to these assemblies, they can be
decompiled just as easily using Refl ector. However, Microsoft has made large
portions of the actual .NET Framework source code publicly available, which
means you can browse the original source code of these assemblies including the
inline comments. This is shown in Chapter 43 .

 If the generation of the magic number were a real secret on which your organization made
money, the ability to decompile this application would pose a signifi cant risk. This is made worse
when you add the Refl ector.FileDisassembler add - in, written by Denis Bauer (available at

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 www.denisbauer.com/NETTools/FileDisassembler.aspx). With this add - in, an entire assembly
can be decompiled into source fi les, complete with a project fi le.

 obfuscatinG your code

 So far, this chapter has highlighted the need for better protection for the logic that is embedded
in your applications. Obfuscation is the art of renaming symbols and modifying code paths in an
assembly so that the logic is unintelligible and can ’ t be easily understood if decompiled. Numerous
products can obfuscate your code, each using its own tricks to make the output less likely to
be understood. Visual Studio 2010 ships with the Community Edition of Dotfuscator Software
Services from PreEmptive Solutions, which this chapter uses as an example of how you can apply
obfuscation to your code.

 Obfuscation does not prevent your code from being decompiled; it simply
makes it more diffi cult for a programmer to understand the source code if it
is decompiled. Using obfuscation also has some consequences that need to be
considered if you need to use refl ection or strong - name your application.

 dotfuscator software services
 Although Dotfuscator can be launched from the Tools menu within Visual Studio 2010, it is a
separate product with its own licensing. The Community Edition (CE) contains only a subset of
the functionality of the commercial edition of the product, the Dotfuscator Suite. If you are serious
about trying to hide the functionality embedded in your application, you should consider upgrading.
You can fi nd more information on the commercial version of Dotfuscator at www.preemptive.
com/products/dotfuscator/compare - editions .

 Dotfuscator CE uses its own project format to keep track of which assemblies you are obfuscating
and any options that you specify. After starting Dotfuscator from the Tools menu, it opens with
a new unsaved project. Select the Input Assemblies node in the navigation tree, and then click the
button with an ellipsis (...) under the Assembly Name listing to add the .NET assemblies that you
want to obfuscate. Figure 47 - 4 shows a new Dotfuscator project into which has been added the
assembly for the application from earlier in this chapter.

 Unlike other build activities that are typically executed based on source fi les,
obfuscation is a post - build activity that works with an already compiled set
of assemblies. Dotfuscator takes an existing set of assemblies, applies the
obfuscation algorithms to the IL, and generates a set of new assemblies.

obfuscating Your Code ❘ 941

http://www.denisbauer.com/NETTools/FileDisassembler.aspx
http://www.preemptive
http://lib.ommolketab.ir
http//lib.ommolketab.ir

942 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

Without needing to adjust any other settings, you can select Build Project from the Build menu, or click
the “play” button (fourth from the left) on the toolbar, to obfuscate this application. If you have saved the
Dotfuscator project, the obfuscated assemblies will be added to a Dotfuscated folder under the folder
where the project was saved. If the project has not been saved, the output is written to c:\Dotfuscated.

If you open the generated assembly using Reflector, as shown in Figure 47-5, you will notice that the
GenerateMagicNumber method has been renamed, along with the input parameters. In addition,
the namespace hierarchy has been removed and classes have been renamed. Although this is a rather
simple example, you can see how numerous methods with similar, non-intuitive names could cause
confusion and make the source code very difficult to understand when decompiled.

fiGure 47-4

fiGure 47-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The previous example obfuscated the public method of a class, which is fi ne if the method will only
be called from assemblies obfuscated along with the one containing the class defi nition. However,
if this was a class library or API that will be referenced by other, unobfuscated applications, you
would see a list of classes that have no apparent structure, relationship, or even naming convention.
This would make working with this assembly very diffi cult. Luckily, Dotfuscator enables you to
control what is renamed during obfuscation. Before going ahead, you will need to refactor the code
slightly to pull the functionality out of the public method. If you didn ’ t do this and you excluded
this method from being renamed, your secret algorithm would not be obfuscated. By separating the
logic into another method, you can obfuscate that while keeping the public interface unchanged.
The refactored code would look like the following:

 c#

namespace ObfuscationSample
{
 public class MathematicalGenius
 {
 public static Int32 GenerateMagicNumber(Int32 age, Int32 height)
 {
 return SecretGenerateMagicNumber(age, height);
 }

 private static Int32 SecretGenerateMagicNumber(Int32 age, Int32 height)
 {
 return (age * height) + DateTime.Now.DayOfYear;
 }
 }
}

 Code Snippet MathematicalGenius.cs

 Vb

Namespace ObfuscationSample
 Public Class MathematicalGenius
 Public Shared Function GenerateMagicNumber(ByVal age As Integer, _
 ByVal height As Integer) As Integer
 Return SecretGenerateMagicNumber(age, height)
 End Function

 Private Shared Function SecretGenerateMagicNumber(ByVal age As Integer, _

 The free version of Dotfuscator only obfuscates assemblies by renaming classes,
variables, and functions. The commercial version employs several additional
methods to obfuscate assemblies, such as modifying the control fl ow of the
assembly and performing string encryption. In many cases, control fl ow will
actually trigger an unrecoverable exception inside decompilers, effectively
preventing automated decompilation.

obfuscating Your Code ❘ 943

http://lib.ommolketab.ir
http//lib.ommolketab.ir

944 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

 ByVal height As Integer) As Integer
 Return (age * height) + Today.DayOfWeek
 End Function
 End Class
End Namespace

Code Snippet MathematicalGenius.vb

After rebuilding the application, you will need to reopen the Dotfuscator project by selecting it from the
Recent Projects list. You have several different ways of selectively applying obfuscation to an assembly.
First, you can enable Library mode on specific assemblies by selecting the appropriate checkbox on the
Input Assemblies screen (see Figure 47-4). This has the effect of keeping the namespace, class name,
and all public properties and methods intact, while renaming all private methods and variables. Second,
you can manually select which elements should not be renamed from within Dotfuscator. To do this,
open the Renaming item from the navigation tree, shown in Figure 47-6.

fiGure 47-6

The Renaming dialog opens on the Exclusions tab where you can see the familiar tree view of
your assembly, with the attributes, namespaces, types, and methods listed. As the name of the tab
suggests, this tree enables you to exclude certain elements from being renamed. In Figure 47-6, the
GenerateMagicNumber method, as well as the class that it is contained in, is excluded (otherwise,
you would have ended up with something like b.GenerateMagicNumber, where b is the renamed
class). In addition to explicitly choosing which elements will be excluded, you can also define custom
rules that can include regular expressions.

After you build the Dotfuscator project, click the Results item in the navigation tree. This screen
shows the actions that Dotfuscator performed during obfuscation. The new name of each class,
property, and method is displayed as a sub-node under each renamed element in the tree. You will see
that the MathematicalGenius class and the GenerateMagicNumber method have not been renamed,
as shown in Figure 47-7.Prepared for SUSAN ROERS/ email0 Susan_Krentz@aol.com Order number0 64627890 This PDF is for the purchaser’s personal use in accordance with the Wrox Terms of

Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The SecretGenerateMagicNumber method has been renamed to a, as indicated by the sub-node
with the Dotfuscator icon.

obfuscation attributes
In the previous example you saw how to choose which types and methods to obfuscate within
Dotfuscator. Of course, if you were to start using a different obfuscating product you would have to
configure it to exclude the public members. It would be more convenient to be able to annotate your
code with attributes indicating whether a symbol should be obfuscated. You can do this by using
the Obfuscation and ObfuscationAssemblyAttribute attributes from the System.Reflection
namespace.

The default behavior in Dotfuscator is to override exclusions specified in the project with the
settings specified by any obfuscation attributes. In Figure 47-4 is a series of checkboxes for each
assembly added to the project, of which one is Honor Obfuscation Attributes. You can change the
default behavior so that any exclusions set within the project take precedence by unchecking
the Honor Obfuscation Attributes option on a per-assembly basis.

obfuscationassemblyattribute
The ObfuscationAssemblyAttribute attribute can be applied to an assembly to control whether
it should be treated as a class library or as a private assembly. The distinction is that with a class
library it is expected that other assemblies will be referencing the public types and methods
it exposes. As such, the obfuscation tool needs to ensure that these symbols are not renamed.

fiGure 47-7

obfuscating Your Code ❘ 945

http://lib.ommolketab.ir
http//lib.ommolketab.ir

946 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

Alternatively, as a private assembly, every symbol can be potentially renamed. The following is the
syntax for ObfuscationAssemblyAttribute:

c#

[assembly: ObfuscateAssemblyAttribute(false, StripAfterObfuscation=true)]

Vb

<Assembly: ObfuscateAssemblyAttribute(False, StripAfterObfuscation:=True)>

The two arguments that this attribute takes indicate whether it is a private assembly and whether
to strip the attribute off after obfuscation. The preceding snippet indicates that this is not a private
assembly, and that public symbols should not be renamed. In addition, the snippet indicates that
the obfuscation attribute should be stripped off after obfuscation — after all, the less information
available to anyone wishing to decompile the assembly, the better.

Adding this attribute to the AssemblyInfo.cs or AssemblyInfo.vb file will automatically preserve
the names of all public symbols in the ObfuscationSample application. This means that you can
remove the exclusion you created earlier for the GenerateMagicNumber method.

obfuscationattribute
The downside of the ObfuscationAssemblyAttribute attribute is that it exposes all the public
types and methods regardless of whether they existed for internal use only. On the other hand, the
ObfuscationAttribute attribute can be applied to individual types and methods, so it provides a
much finer level of control over what is obfuscated. To illustrate the use of this attribute, refactor the
example to include an additional public method, EvaluatePerson, and place the logic into another
class, HiddenGenius:

c#

namespace ObfuscationSample
{

 [System.Reflection.ObfuscationAttribute(ApplyToMembers=true, Exclude=true)]
 public class MathematicalGenius
 {
 public static Int32 GenerateMagicNumber(Int32 age, Int32 height)
 {
 return HiddenGenius.GenerateMagicNumber(age, height);
 }

 public static Boolean EvaluatePerson(Int32 age, Int32 height)
 {
 return HiddenGenius.EvaluatePerson(age, height);
 }
 }

 [System.Reflection.ObfuscationAttribute(ApplyToMembers=false, Exclude=true)]
 public class HiddenGenius
 {
 public static Int32 GenerateMagicNumber(Int32 age, Int32 height)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return (age * height) + DateTime.Now.DayOfYear;
 }

 [System.Reflection.ObfuscationAttribute(Exclude=true)]
 public static Boolean EvaluatePerson(Int32 age, Int32 height)
 {
 return GenerateMagicNumber(age, height) > 6000;
 }
 }
}

Code Snippet MathematicalGenius.cs

Vb

Namespace ObfuscationSample
 <System.Reflection.ObfuscationAttribute(ApplyToMembers:=True,Exclude:=True)> _
 Public Class MathematicalGenius
 Public Shared Function GenerateMagicNumber(ByVal age As Integer, _
 ByVal height As Integer) As Integer
 Return HiddenGenius.GenerateMagicNumber(age, height)
 End Function

 Public Shared Function EvaluatePerson(ByVal age As Integer, _
 ByVal height As Integer) As Boolean
 Return HiddenGenius.EvaluatePerson(age, height)
 End Function
 End Class

 <System.Reflection.ObfuscationAttribute(ApplyToMembers:=False,Exclude:=True)> _
 Public Class HiddenGenius
 Public Shared Function GenerateMagicNumber(ByVal age As Integer, _
 ByVal height As Integer) As Integer
 Return (age * height) + Today.DayOfWeek
 End Function

 <System.Reflection.ObfuscationAttribute(Exclude:=True)> _
 Public Shared Function EvaluatePerson(ByVal age As Integer, _
 ByVal height As Integer) As Boolean
 Return GenerateMagicNumber(age, height) > 6000
 End Function
 End Class
End Namespace

Code Snippet MathematicalGenius.vb

In this example, the MathematicalGenius class is the class that you want to expose outside of this
library. As such, you want to exclude this class and all its methods from being obfuscated. You do
this by applying the ObfuscationAttribute attribute with both the Exclude and ApplyToMembers
parameters set to True.

The second class, HiddenGenius, has mixed obfuscation. As a result of some squabbling among the
developers who wrote this class, the EvaluatePerson method needs to be exposed, but all other

obfuscating Your Code ❘ 947

http://lib.ommolketab.ir
http//lib.ommolketab.ir

948 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

methods in this class should be obfuscated. Again, the ObfuscationAttribute attribute is applied
to the class so that the class does not get obfuscated. However, this time you want the default
behavior to be such that symbols contained in the class are obfuscated, so the ApplyToMembers
parameter is set to False. In addition, the Obfuscation attribute is applied to the EvaluatePerson
method so that it will still be accessible.

words of caution
In a couple of places it is worth considering what will happen when obfuscation — or more
precisely, renaming — occurs, and how it will affect the workings of the application.

reflection
The .NET Framework provides a rich reflection model through which types can be queried and
instantiated dynamically. Unfortunately, some of the reflection methods use string lookups for
type and member names. Clearly, the use of renaming obfuscation will prevent these lookups
from working, and the only solution is not to mangle any symbols that may be invoked using
reflection. Note that control flow obfuscation does not have this particular undesirable side-effect.
Dotfuscator’s smart obfuscation feature attempts to automatically determine a limited set of
symbols to exclude based on how the application uses reflection. For example, say that you are using
the field names of an enum type. Smart obfuscation will detect the reflection call used to retrieve the
enum’s field name, and then automatically exclude the enum fields from renaming.

strongly named assemblies
One of the purposes behind giving an assembly a strong name is that it prevents the assembly from
being tampered with. Unfortunately, obfuscating relies on being able to take an existing assembly
and modify the names and code flow, before generating a new assembly. This would mean that the
assembly no longer has a valid strong name. To allow obfuscation to occur you need to delay signing
of your assembly by checking the Delay Sign Only checkbox on the Signing tab of the Project
Properties window, as shown in Figure 47-8.

fiGure 47-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

application Monitoring and Management ❘ 949

 After building the assembly, you can then obfuscate it in the normal way. The only difference is that
after obfuscating you need to sign the obfuscated assembly, which you can do manually using the
Strong Name utility, as shown in this example:

sn -R ObfuscationSample.exe ObfuscationKey.snk

 The Strong Name utility is not included in the default path, so you will either
need to run this from a Visual Studio Command Prompt (Start ➪ All Programs
 ➪ Microsoft Visual Studio 2010 ➪ Visual Studio Tools), or enter the full path to
 sn.exe .

 Debugging with Delayed signing
 As displayed on the Project Properties window, checking the Delay Sign Only box prevents the
application from being able to be run or debugged. This is because the assembly will fail the strong - name
verifi cation process. To enable debugging for an application with delayed signing, you can register the
appropriate assemblies for verifi cation skipping. This is also done using the Strong Name utility. For
example, the following code will skip verifi cation for the ObfuscationSample.exe application:

sn -Vr ObfuscationSample.exe

 Similarly, the following will reactivate verifi cation for this application:

sn -Vu ObfuscationSample.exe

 This is a pain for you to have to do every time you build an application, so you can add the
following lines to the post - build events for the application:

"$(DevEnvDir)..\..\..\Microsoft SDKs\Windows\v7.0A\bin\sn.exe" -Vr "$(TargetPath)"
"$(DevEnvDir)..\..\..\Microsoft SDKs\Windows\v7.0A\bin\sn.exe" -Vr
"$(TargetDir)$(TargetName).vshost$(TargetExt)"

 Depending on your environment, you may need to modify the post - build event
to ensure that the correct path to sn.exe is specifi ed.

 The fi rst line skips verifi cation for the compiled application. However, Visual Studio uses an
additional vshost fi le to bootstrap the application when it executes. This also needs to be registered
to skip verifi cation when launching a debugging session.

 aPPlication MonitorinG and ManaGeMent

 The version of Dotfuscator that ships with Visual Studio 2010 has a whole lot of new functionality
for adding run time monitoring and management functionality to your applications. As with
obfuscation, these new capabilities are injected into your application as a post - build step, which
means you typically don ’ t need to modify your source code in any way to take advantage of them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

950 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

The new application monitoring and management capabilities include:

 ➤ Tamper Defense: Exits your application, and optionally notifies, if it has been modified in
an unauthorized manner.

 ➤ Application Expiry: Configure an expiration date for your application, after which it will
no longer run.

 ➤ Application Usage Tracking: Instrument your code to track usage, including specific
features within your application.

To enable the new monitoring and management functionality you must enable instrumentation for
your Dotfuscator project. Select the Instrumentation item from the navigation tree and select the
Options tab. Select the Enable Instrumentation option as shown in Figure 47-9.

fiGure 47-9

Once instrumentation has been enabled, you can specify the new functionality to be injected into
your application by adding Dotfuscator attributes — either as a custom attribute within your source
code, or through the Dotfuscator UI.

tamper defense
Tamper defense provides a way for you to detect when your applications have been modified in an
unauthorized manner. Whereas obfuscation is a preventative control designed to reduce the risks
that stem from unauthorized reverse engineering, tamper defense is a detective control designed to
reduce the risks that stem from unauthorized modification of your managed assemblies. The pairing
of preventative and detective controls is a widely accepted risk management pattern, for example,
fire prevention and detection.

Tamper defense is applied on a per-method basis, and tamper detection is performed at run time
when a protected method is invoked.

To add tamper defense to your application, select the Instrumentation item from the navigation
menu and then select the Attributes tab. You will see a tree that contains the assemblies you have

http://lib.ommolketab.ir
http//lib.ommolketab.ir

application Monitoring and Management ❘ 951

added to the Dotfuscator project with a hierarchy of the
classes and methods that each assembly contains. Navigate to
the HiddenGenius.GenerateMagicNumber function,
right - click it, and select Add Attribute. This displays the list
of available Dotfuscator attributes as shown in Figure 47 - 10.

 Select the InsertTamperCheckAttribute attribute and
click OK. The attribute is added to the selected method and
the attribute properties are listed as shown in Figure 47 - 11.
Finally, select the ApplicationNotificationSinkElement
property and change the value to DefaultAction .

 fiGure 47 - 10

 fiGure 47 - 11

 You can now build the Dotfuscator project to inject the tamper defense functionality into your
application.

 To help you test the tamper defense functionality, Dotfuscator ships with a simple utility that
simulates tampering of an assembly. Called TamperTester, you can fi nd this utility in the same
directory in which Dotfuscator is installed (by default C:\Program Files\Microsoft Visual
Studio 10.0\PreEmptive Solutions\Dotfuscator Community Edition). This should be run
from the command line with the name of the assembly and the output folder as arguments:

tampertester ObfuscationSample.exe c:\tamperedapps

 Make sure you run the TamperTester utility against the assemblies that were
 generated by Dotfuscator and not the original assemblies built by Visual Studio.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

952 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

By default, your application will immediately exit if the method has been tampered with. You can
optionally configure Dotfuscator to generate a notification message to an endpoint of your choosing.
The commercial edition of Dotfuscator includes two primary extensions to the CE version; it
allows you to add a custom handler to be executed when tampering is detected supporting a custom
real-time tamper defense in lieu of the default exit behavior; and PreEmptive Solutions offers a
notification service that accepts tamper alerts and automatically notifies your organization as an
incident response.

runtime intelligence instrumentation and analytics
The term Runtime Intelligence (RI) refers to technologies and managed services for the collection,
integration, analysis, and presentation of application usage patterns and practices. In Visual
Studio 2010, Dotfuscator CE can inject RI instrumentation into your assemblies to stream session
and feature usage data to an arbitrary endpoint. The following sections describe how to use
Dotfuscator’s Runtime Intelligence instrumentation and some of the free and for-fee Runtime
Intelligence analytics options that are available.

To use Dotfuscator CE instrumentation, you must first enable it within your Dotfuscator project.
Click the Instrumentation item in the navigation tree and select the Options tab. Ensure that all the
options under Runtime Intelligence Configuration are enabled, as shown in Figure 47-12.

fiGure 47-12

Next you must add some attributes to your assemblies to ensure that they can be uniquely identified
and any instrumentation data can be accessed. Under the Attributes tab of the Instrumentation node
is the class hierarchy of any assemblies you have added to Dotfuscator. Right-click each of the
top-level nodes (the node that contains the full path to your assembly), select Add Attribute, and
add a new BusinessAttribute attribute.

Select CompanyKey from the attribute properties listing. This attribute provides a unique identifier
for your company and should be the same across all of your assemblies. You can click the button
labeled with the ellipsis to generate a new CompanyKey. Also enter a value for the CompanyName
property that will be displayed in the portal and any reports.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

application Monitoring and Management ❘ 953

Repeat this to add a new ApplicationAttribute attribute to your assemblies. The GUID property
of this attribute should contain a unique identifier that is the same across all assemblies within this
application. As with the CompanyKey property, you can generate a new value for the GUID property
by clicking the button labeled with the ellipsis. You should also enter values for the Name and
Version properties, but the ApplicationType property can be left blank.

Once you have added these attributes, your project should look similar to Figure 47-13.

fiGure 47-13

The final step is to add SetupAttribute and TeardownAttribute attributes to your application.
These attributes can be added to any method and are usually defined once each per application,
though that is not strictly necessary if your application has multiple entry and exit points.
SetupAttribute should be placed on a method that is called soon after application startup.
Likewise, the TeardownAttribute attribute must be added to a method that is called just before the
application exits. It is sometimes a good idea to create methods specifically for these attributes.

For a C# Windows Forms application, you can place the attributes on the Main method;
alternatively, you can modify the Program.cs class by adding the AppStart and AppEnd methods as
shown in the following listing:

c#

static class Program
{
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 AppStart();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

954 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

 Application.Run(new Form1());
 AppEnd();
 }

 static void AppStart()
 {
 }

 static void AppEnd()
 {
 }
 }

 Code Snippet Program.cs

 For a VB Windows Forms application, you can use the Application Events functionality provided
the Windows application framework to specify Startup and Shutdown methods as shown in the
following listing:

 Vb

Imports Microsoft.VisualBasic.ApplicationServices
Namespace My
 Partial Friend Class MyApplication
 Private Sub MyApp_Startup(ByVal sender As Object, _
 ByVal e As StartupEventArgs) _
 Handles Me.Startup

 End Sub

 Private Sub MyApp_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Shutdown
 End Sub
 End Class
End Namespace

 Code Snippet ApplicationEvents.vb

 Once you have a startup and shutdown method defi ned in your application, you can add the
 SetupAttribute and TeardownAttribute attributes. Locate your startup method in the tree,
then right - click it and select Add Attribute. Select SetupAttribute and click OK. In the attribute
properties you will need to specify a value for the CustomEndpoint property, which instructs
Dotfuscator where to send any instrumentation messages. Click the ellipsis button and select
PreEmptive ’ s Free Runtime Intelligence Services from the list.

 You shouldn ’ t collect information about application usage without asking
permission from your users, otherwise your application could be fl agged as
spyware. The SetupAttribute provides three properties to help confi gure
this — OptInSourceElement , OptInSourceName , and OptInSourceOwner .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

application Monitoring and Management ❘ 955

 Finally, add the TeardownAttribute attribute to the appropriate method and then build the
Dotfuscator project. Run the application a couple of times to generate some instrumentation
messages. You can also use the TamperTester utility described in the previous section to create a
 “ tampered ” version of the application that generates Tamper notifi cations.

 Once you have run the application a number of times, open your browser and visit http:/free.
runtimeintelligence.com . You can log on to the portal using the unique identifi er you generated
earlier for the CompanyKey property.

 The Welcome screen, which is displayed after you log on, shows the number of notifi cation messages
that are queued waiting to be loaded into the database. You may need to wait until any pending
messages are loaded before you can view any data.

 On the Application Overview menu you can view summary graphs that show data such as the
application usage over time, and the operating systems and .NET Framework versions used by your
users. The Application Scorecard report, shown in Figure 47 - 14, displays a list of all the applications
registered under this Company Key, along with key metrics about their usage.

 The Runtime Intelligence Service is a managed service provided by PreEmptive Solutions that
aggregates and manages Runtime Intelligence data generated by your application, and a web portal
that includes runtime analytics. PreEmptive Solutions offers a free and a commercial version of its
Runtime Intelligence Service.

 The free version of PreEmptive ’ s Runtime Intelligence Service is suitable only
for preliminary testing purposes because it lacks suffi cient security and does not
include any guarantees of uptime or data retention. You should transition to the
commercial version or fi nd/build an alternative for production deployment.

 fiGure 47 - 14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

956 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

Later in this chapter you see how the usage tracking can be extended to cover usage of specific
features within your application.

application expiry
The application expiry feature, also known as Shelf Life, allows you to specify an expiration date
for your application, after which it will no longer run. This can be useful in a number of scenarios,
such as when releasing beta or trial versions of software.

Application expiry requires a Shelf Life Activation Key (SLAK). This key is issued by PreEmptive,
and can be requested by visiting http://www.preemptive.com/products/shelflife.

Two attributes are available to help implement application expiry. The InsertShelfLifeAttribute
attribute enforces the expiration dates, ensuring that the application will not run after the
specified date. It can also send a notification to an arbitrary endpoint when an expired application
is executed. The InsertSignOfLifeAttribute attribute sends a notification to the Runtime
Intelligence service every time your application is executed. This allows you to find out how often an
application was executed.

Before adding the application expiry attributes, you should set up your assembly with the
BusinessAttribute, ApplicationAttribute, SetupAttribute, and TeardownAttribute
attributes, as described in the previous section on Runtime Intelligence.

It’s a good idea to add the application expiry attributes to a method that is called shortly after
the application is started. You may also want to add it to a method that is called regularly, just
in case your users leave your application running after the expiry date. In Figure 47-15, the
InsertShelfLifeAttribute and InsertSignOfLifeAttribute attributes have been added to
the Form1.InitializeComponent method. This ensures that the application expiry date will be
checked every time Form1 is invoked.

fiGure 47-15

http://www.preemptive.com/products/shelflife
http://lib.ommolketab.ir
http//lib.ommolketab.ir

application Monitoring and Management ❘ 957

Both attributes require a Shelf Life Activation Key. Once you have obtained this key from PreEmptive,
save it to your local disk and set the path to this file in the ActivationKeyFile property. Setting the
ExpirationDate property to a date in the past is a good way to test this feature.

When an application expires, the behavior is determined by two settings. First, if you have Send Shelf Life
Notification Messages checked on the Instrumentation Options tab, it will send a notification message
to the endpoint you have specified. Second, if you have set the ExpirationNotificationSinkElement
property to DefaultAction, the application will immediately exit.

The commercial edition of Dotfuscator allows you to specify a warning date and add custom
handlers that are executed when the warning date or expiration date are reached. You could use
this to deactivate specific features or display a friendly message to the users advising them that the
application has expired.

The commercial version of Dotfuscator also allows your application to obtain the shelf life information
from an external location, such as a web service or configuration file. This allows you to support other
expiration scenarios such as expiring 30 days from installation or renewing annual subscriptions.

application usage tracking
Earlier in this chapter you saw how to add the SetupAttribute and TeardownAttribute attributes
to your application. By adding these attributes your application can send notification messages, and
thereby allow you to track usage data and system environment statistics for your applications. These
attributes are also used to determine application stability, because a missing Teardown notification
indicates that the application may have crashed or a user may have gotten frustrated and simply
forced an exit.

In addition to tracking application startup and shutdown, Dotfuscator allows you to further
instrument your code to track usage of specific features within your application. With Dotfuscator
CE, you can add up to ten FeatureAttribute attributes to your methods, each one specifying the
same or a different feature. This allows you to aggregate your application’s methods into a logical,
high-level “feature” grouping that is independent of the actual class hierarchy of your code.

In Figure 47-16, you can see that a FeatureAttribute attribute has been added to the
EvaluatePerson and the GenerateMagicNumber methods of the MathematicalGenius class. These
features have been given a descriptive name, which is displayed when viewing the usage reports.
These attributes also have the FeatureEventType property set to Tick, which simply tracks that the
feature has been used.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

958 ❘ chaPter 47 obFuScATion, ApplicATion moniToring, And mAnAgemenT

In addition to Tick feature tracking, you can also track the amount of time a feature was used. In
this case you will need to add two FeatureAttribute attributes — one with the FeatureEventType
property set to Start and the other set to Stop. This generates two instrumentation messages and
allows the Runtime Intelligence analytics service to calculate feature usage duration.

The commercial edition of Dotfuscator includes:

Unlimited feature tracking ➤

Injection of the Microsoft WMI SDK for hardware and software stack detection ➤

Extensible data capture to include custom data values ➤

An SSL runtime data transmission option ➤

Runtime Intelligence data can be used to improve the development process, provide greater
visibility into application usage for IT operations, and serve as an additional data source
for business activity and performance monitoring. Microsoft’s own Customer Experience
Improvement Program (CEIP) relies on this kind of usage data (for a description of its program,
visit http://www.microsoft.com/products/ceip/).

As managed code moves beyond the desktop and the in-house server to the web client (Silverlight),
the cloud (Azure), and your mobile devices, Runtime Intelligence will likely become an increasingly
important part of your application life cycle management toolkit.

fiGure 47-16

http://www.microsoft.com/products/ceip/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

suMMary

This chapter introduced two tools, IL Dasm and Reflector, which demonstrated how easy it is to
reverse-engineer .NET assemblies and learn their inner workings. You also learned how to use
Dotfuscator Software Services to:

Protect your intellectual property using obfuscation ➤

Harden your applications against modification using tamper defense ➤

Monitor and measure application usage with Runtime Intelligence instrumentation ➤

Enforce your application’s end-of-life with shelf life ➤

summary ❘ 959

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

48
 Packaging and Deployment

 what ’ s in this chaPter?

 Creating installers for your projects ➤

 Customizing the installation process ➤

 Verifying the presence of application prerequisites ➤

 Installing Windows Services ➤

 Deploying projects over the web with ClickOnce ➤

 Updating ClickOnce projects ➤

 One area of software development that is often overlooked is how to deploy the application.
Building an installer is a simple process and can transform your application from an amateur
utility to a professional tool. This chapter looks at how you can build a Windows Installer for
any type of .NET application.

 Visual Studio 2010 also includes support for a ClickOnce deployment, which can be used to
build applications that can be dynamically updated. This is particularly important for rich
client applications that periodically need updating, because it solves the problem of how to roll
out those updates.

 windows installers

 Windows Installer has been a standard part of Windows since Windows 2000. It is the
component that manages the installation, maintenance, and removal of software packages.
Visual Studio 2010 comes with a rich user interface for building installation packages for a
variety of different applications that target the Windows Installer infrastructure. This chapter

http://lib.ommolketab.ir
http//lib.ommolketab.ir

962 ❘ chaPter 48 pAckAging And deploymenT

demonstrates building installers for desktop applications and windows services. The next chapter
contains information about packaging and deploying web applications.

 building an installer
 To build an installer with Visual Studio 2010, you need to add an additional project to the
application that you want to deploy. Figure 48 - 1 shows the available setup and deployment project
types. The Setup Project should be used for Windows Forms or service applications, and the Web
Setup Project should be used for ASP.NET web sites or web services. If you want to build an installer
that will be integrated into a larger installer, you may want to build a merge module. Alternatively,
a CAB Project can be used to create a package that can be deployed via a web browser. The Setup
Wizard steps you through the process of creating the correct project for the type of application
you ’ re deploying.

 fiGure 48 - 1

 Web Setup Projects are covered in the next chapter.

 In this case, you are going to use the Setup Wizard to create an installer for a simple C# Windows
Forms Application, CallCentre. After acknowledging the Setup Wizard splash screen, the fi rst
decision is specifying whether you want to create an installer or a redistributable package. For an
installer, you need to choose between a Windows application or a web application installer. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

basic difference is that the Windows application installer places the application in the appropriate
folder within Program Files, whereas the web application installer creates a virtual directory under
the root folder for the specifi ed web site. In the case of a redistributable package, the choice is
between a merge module, which can be integrated into a larger installer, or a CAB fi le.

 Regardless of the type of deployment project
you are creating, the next step in the Setup
Wizard is the most important because it
determines the set of fi les to be deployed.
Figure 48 - 2 shows the third screen in the
Setup Wizard, which prompts you to select
which fi les or project outputs will be included
in the deployment project. In this case,
the primary output for your CallCentre
Application has been selected, because you
want to include the main executable and any
assemblies on which this executable depends.
The Content Files item has also been selected,
which will include any fi les with the build
action set to Content. In the remaining step in
the Setup Wizard, you can choose to add fi les
that were not part of any existing project. For example, this might include release notes, licensing
information, getting started samples, or documentation and README fi les.

 fiGure 48 - 2

 A merge module is a special type of installer that contains the instructions
for installing a shared component. Once a merge module has been created, it
can be included within a number of installers providing re - use and simplifi ed
maintenance. Merge modules must be included within an installer fi le. They
cannot be installed by themselves.

 A CAB project produces a collection of .cab fi les, which contain a set of
compressed fi les. The .cab fi les can be downloaded individually or opened from
a number of disks. Typically, the contents of the .cab fi les are copied to the local
fi le system when the installer runs.

 Occasionally you may choose to deploy debug symbols with your application,
because this can aid you in diagnosing a failing application in production.
However, it is not generally deemed a good practice to do this, because you should
incorporate suffi cient logging or other diagnostic instrumentation for this purpose.

Windows installers ❘ 963

http://lib.ommolketab.ir
http//lib.ommolketab.ir

964 ❘ chaPter 48 pAckAging And deploymenT

 When a deployment project
(DeploymentInstaller) is selected, a number
of new icons appear across the top of the
Solution Explorer window, as shown in
Figure 48 - 3 . Unlike other project types,
where the project properties appear in the
main editor area, clicking the fi rst icon
(Properties) opens the Property Pages dialog,
as shown in Figure 48 - 4 . This can be used
to customize how the deployment module is
built. This dialog can also be accessed via
the Properties item on the right - click context
menu for the deployment project in the
Solution Explorer.

 By default, the Package Files property is set to “ In setup fi le, ” so all executables and associated
dependencies are placed into the .msi fi le that is created. The deployment project also creates
a Setup.exe fi le that checks for minimum requirements, such as the presence of the .NET
Framework, prior to calling the .msi fi le to install the application. Although the compression
can be adjusted to optimize for fi le size, including everything into a single distributable might be
an issue for large projects. An alternative, as shown in Figure 48 - 4 , is to package the application
into a series of CAB fi les. In this scenario, the size of the CAB fi le is limited to 100Kb, which will
aid deployment over a slow network. Another scenario where this would be useful is if you were
planning to deploy your application via CD or DVD, and your application exceeded the capacity of
a single disc.

 Once the deployment project has been created, it is added to the
Solution Explorer, as shown in Figure 48 - 3 . Although you didn ’ t
explicitly add any fi les or output from the SharedResources
class library to the deployment project, it has been added as
a detected dependency. If the dependencies are guaranteed to
exist on the target computer, they can be manually excluded
from the deployment project by selecting the Exclude item from
the right - click context menu. For example, if this were an
add - in for another application that already has a copy of the
SharedResources assembly, you could exclude that from
the dependency list. The resulting installer would be smaller,
and thus easier to deploy.

 fiGure 48 - 4

 fiGure 48 - 3

 If the dependencies between your projects vary, it may be necessary to force
a recalculation of these dependencies. You can do this by selecting Refresh
Dependencies from the right - click shortcut menu on the Detected Dependencies
node.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final property on this page is the Installation URL. If you are planning to deploy your
application via a web site, you can elect to package everything into a single file, in which case
you do not need to specify the Installation URL, because you can simply add a reference to the
Setup.exe file to the appropriate web site and a user can install the application simply by clicking
the link. Alternatively, you can package your
application into smaller units that can be
incrementally downloaded. To do this, you
must specify the Installation URL from which
they will be installed.

As just discussed, the default deployment
project creates a Setup.exe file. The
Prerequisites button opens a dialog like
the one shown in Figure 48-5, where you
can configure the behavior of this file.
You can indicate that a setup file should
not be created, in which case the application
can be installed by double-clicking the .msi
file. This, of course, removes the initial check
to ensure that the .NET Framework has been
installed.

In addition to the .NET Framework, you can also
specify that other components, such as SQL Server
Compact 3.5, need to be installed. These checks will
be carried out, and the user prompted to install any
missing components before the main installer file
is invoked. Depending on how you want to deploy
your application, having all the prerequisites in the
same location as your application may be useful and
will eliminate time spent looking for the appropriate
download.

Returning to the Solution Explorer and your
DeploymentInstaller project (and just to confuse
matters), there is an additional Properties window
for deployment projects that can be opened by
selecting the appropriate project and pressing F4.
This opens the standard Properties window, shown
in Figure 48-6, which can be used to tailor the
deployment details for the application it is installing.

The properties for the deployment project shown
on this screen configure the appearance, icons, and
behavior of the installation wizard. It is highly

fiGure 48-5

fiGure 48-6

Windows installers ❘ 965

http://lib.ommolketab.ir
http//lib.ommolketab.ir

966 ❘ chaPter 48 pAckAging And deploymenT

recommended that you adjust these properties
so your application is easily identifi able in the
Add/Remove Programs dialog, and so that
the installation looks professional rather than
half - fi nished. As you can see from Figure 48 - 7 ,
some of these properties are used to tailor the
installer dialog.

 Once the application has been installed, some of
these properties also appear in the Programs and
Features dialog (Add/Remove Programs under
Windows 7) accessible via the Control Panel,
as shown in Figure 48 - 8 . Here you can see the
AddRemoveProgramsIcon, the ProductName,
and the Manufacturer properties. You can
display more properties by right - clicking the
header bar and selecting More.

 fiGure 48 - 7

 fiGure 48 - 8

 customizing the installer
 The remaining icons at the top of the Solution Explorer are used to customize what is included
in the deployment package. In addition to the shortcut icons, these views of the deployment project
can be accessed via the View item on the right - click context menu. Start with the File System view,
which indicates where fi les will be installed on the target machine. By default, the primary output

 In order to test your installer, you can select the Install (and subsequently
Uninstall) item from the shortcut menu that is displayed when you right - click the
setup Project in the Solution Explorer. If this option is disabled, you may need to
build the setup Project fi rst.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In addition to installing files on the target machine, you can also add keys to the registry. Some
developers argue for and other developers argue against the use of the registry. Although it can
provide a convenient store for per-user configuration information, the application settings with user
scope are an alternative that makes them easier to manage. The Registry view, as shown in Figure
48-10, can be used to add registry keys and values. To add a new key, right-click the appropriate
node in the Registry tree and select Add Key from the context menu. To add a new value, select the
appropriate key in the Registry tree and select the type of value from the New item on the right-click
context menu off the right pane shown in Figure 48-10. The Name and Value can then be set using
the Properties window.

Figure 48-11 shows the File Types view of the deployment project. This view is used to add file
extensions that should be installed. For example, in this case you are installing the extension .call.
You can specify an icon for this type of file, as well as specify the executable that should be called
for this file type. In most cases this will be the primary output for your application. To add a new
file type, right-click the root node of the File Types tree and select Add File Types from the context
menu. This creates a node for the new file type and for the default action (in bold) for that file type.
For the .call extension, the default action is Open, and it can be executed by double-clicking a file
of the appropriate file type. The Open action also appears, again in bold, in the right-click context

for a Windows application is added to the Application Folder, as shown in Figure 48-9. Selecting
this node and looking at the Properties window shows that this folder has a default location of
[ProgramFilesFolder][Manufacturer]\[ProductName]. This location is made up of three
predefined installation variables: ProgramFilesFolder, Manufacturer, and ProductName, which
will be evaluated and combined during installation. As you can see in Figure 48-7, the installation
wizard allows users to change this location when they install the application.

Earlier, you saw that the CallCentre Application had a dependency on the SharedResources assembly.
In Figure 48-9 this assembly has been removed from the Application Folder and placed instead in
the Global Assembly Cache Folder. When this application is installed, the main executable will
be installed in the relevant directory under Program Files, but the SharedResources assembly
will be installed in the Global Assembly Cache so it is available to any .NET application. To
achieve this, you first need to create the new folder in the File System view by selecting the Global
Assembly Cache Folder from the Add Special Folder item on the right-click context menu. You can
install files to a number of other special folders as part of the installer. The next step is to move
the SharedResources assembly to the Global Assembly Cache by selecting the assembly in the right
pane of the File System view and changing the Folder property from Application Folder to Global
Assembly Cache Folder. Alternatively, you can drag the item from the Application Folder to the
Global Assembly Cache Folder.

fiGure 48-9

Windows installers ❘ 967

http://lib.ommolketab.ir
http//lib.ommolketab.ir

968 ❘ chaPter 48 pAckAging And deploymenT

menu for a fi le with the .call extension. You can add other actions for this fi le type by selecting
Add Action from the right - click context menu for the fi le type. An alternative action can be made
the default by selecting Set as Default from that action ’ s context menu. You can change the order in
which the actions appear in the context menu by moving the action up or down in the tree.

 fiGure 48 - 12

 fiGure 48 - 11 fiGure 48 - 10

 .NET applications can be autonomous so that their list of dependencies may only contain the .NET
Framework. However, web applications require IIS, and more complex applications may require SQL
Server to be installed. You can check for these dependencies by using a launch condition via the view
shown in Figure 48 - 12 . By default, the .NET Framework is added to this launch condition. Previously
you saw that Setup.exe also did a check for the .NET Framework and would install it if it was not
found. Launch conditions are embedded in the .msi fi le and, unlike conditions in the Setup.exe fi le,
are validated even if the .msi fi le is installed directly. The only limitation is that the launch conditions
only provide a warning message and a URL reference for more information. In the case of the .NET
framework launch condition, this message and URL are already provided for you.

 The tree in the left pane of Figure 48 - 12 is actually split into two sections. The top half of the tree is
used to specify searches to be performed on the target machine. Searches can be carried out for fi les,

 When the Setup.exe fi le checks for the .NET Framework it is limited to
searching for or installing a specifi c version. The .NET Framework launch
condition can be confi gured to detect a specifi c version as well, but if your
application is able to target multiple versions, you can instead set the Version
property of the launch condition to Any. This allows your application to be
deployed as long as there is any version of the .NET Framework installed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

for installed components or applications, and for registry values. Properties for a file search include
the search folder, version and modification dates, and file size. To search for an installed component,
you need to know the Component ID, which is embedded in the .msi file used to install the product.
This information can be retrieved using a product such as Orca, which is included in the Windows
SDK Components for Windows Installer Developers that you can download from the Microsoft web
site (www.microsoft.com/downloads/). A registry search requires properties indicating the key,
name, and value to search for. In each of these cases, the search needs to be assigned a Property
identifier. If the search is successful, the installer property with that identifier is True.

The Property identifiers assigned to searches on the target machine can be used by a launch
condition in the lower half of the tree. As you can see in Figure 48-12, there are conditions that
check for the .NET Framework, as well as a custom launch condition. The Condition property
is set to a logical AND operation across the three search results. If any of the searches fail, the
associated property identifier is replaced with False, making the whole logical expression false.
This will prevent the application from installing, and a warning message will be displayed.

Note that some other views have a Condition property for some of the tree nodes. For example,
in the File System view, each file or output has a Condition property that can be specified. If this
condition fails, the file is not installed on the target machine. In each of these cases the syntax of
the Condition property must be valid for the MsiEvaluateCondition function that is called as
part of the installation process. This function accepts standard comparison operators, such as
equals (=), not equals (<>), less than (<), and greater than (>), as well as Boolean operators NOT,
AND, OR, and XOR. There are also some predefined Windows installer properties that can be
included in the condition property. The following is a subset of the full list, which you can find in
the documentation for the Windows Installer SDK:

 ➤ ComputerName: Target computer name

 ➤ VersionNT: Version of Windows on the target computer

 ➤ VersionNT64: The same value as VersionNT but this property is only set for 64-bit operat-
ing systems

 ➤ ServicePackLevel: The service pack that has been installed

 ➤ LogonUser: The username of the current user

 ➤ AdminUser: Whether the current user has administrative privileges

 ➤ COMPANYNAME: The company name, as specified in the installation wizard

 ➤ USERNAME: The username, as specified in the installation wizard

One of the main reasons for creating an installer is to make the process
of deploying an application much smoother. To do this, you need to create
a simple user interface into which an end user can specify values. This
might be the installation directory or other parameters that are required
to configure the application. Clearly, the fewer steps in the installer the
easier the application will be to install. However, it can be better to
prompt for information during the installation than for the user to later
sit wondering why the application is not working. The User Interface
view, shown in Figure 48-13, enables you to customize the screens that
the user sees as part of the installation process.

fiGure 48-13

Windows installers ❘ 969

http://www.microsoft.com/downloads/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

970 ❘ chaPter 48 pAckAging And deploymenT

Two user interfaces are defined in this view: the standard installation and an Administrative
install (not visible). Both processes follow the same structure: Start, where you typically collect
information from the user before installing the product; Progress, used for providing a visual cue as
to the installation’s progress; and End, at which point the user is presented with a summary of the
installation. The Administrative install is typically used when a network setup is required, and can
be invoked by calling msiexec with the /a flag.

You can customize either of the installation processes by adding and/or removing dialogs from the
user interface tree. To add a new dialog, right-click any of the three stages in the installation process
and select Add Dialog from the context menu. This displays a list of the predefined dialogs from
which you can choose. Each of the dialogs has a different layout; some are used for accepting user
input and others are used to display information to the user. Input controls are allocated a property
identifier so that the value entered during the installation process can be used later in the process.
For example, a checkbox might be used to indicate whether the tools for a product should be
installed. A condition could be placed on an output in the File System view so the tools are installed
only if the checkbox is enabled.

adding custom actions
It is often necessary to perform some actions either before or after the application is installed. To
do this, you can create a custom action to be executed as part of the install or uninstall process.
Adding a custom action entails creating the code to be executed and linking the appropriate installer
event so that the code is executed. Custom actions use an event model similar to what Windows
components use to link the code that you write to the appropriate installer event. To add a custom
action to an installer event, you need to create a class that inherits from the Installer base class.
This base class exposes a number of events for which you can write event handlers. Because writing
custom installer actions is quite a common task, the Add New Item dialog includes an Installer
Class template item under the General node. The new class (added to the SharedResources project)
opens using the component designer, as shown in Figure 48-14.

fiGure 48-14

From the Events tab of the Properties window, select the installer event for which you want to add
an event handler. If no event handler exists, a new event handler will be created and opened in the
code window. The following code is automatically generated when an event handler is created.
A simple message box is inserted to notify the user that the AfterInstall event handler has
completed:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

using System.ComponentModel;
using System.Configuration.Install;
using System.Windows.Forms;

public partial class InstallerActions
{
 public InstallerActions()
 {
 InitializeComponent()
 }

 private void InstallerActions_AfterInstall(object sender, InstallEventArgs e)
 {
 MessageBox.Show("Installation process completed!");
 }
}

Code snippet SharedResources\InstallerActions.cs

Vb

Imports System.ComponentModel
Imports System.Configuration.Install
Imports System.Windows.Forms

Public Class InstallerActions

 Public Sub New()
 MyBase.New()

 InitializeComponent()
 End Sub

 Private Sub InstallerActions_AfterInstall(ByVal sender As Object, _
 ByVal e As InstallEventArgs) _
 Handles Me.AfterInstall
 MessageBox.Show("Installation process completed!")
 End Sub
End Class

Code snippet SharedResources\InstallerActions.vb

As with forms and other components, the rest of this class is stored in a designer class file where
the partial InstallerActions class inherits from the Installer class and is attributed with the
RunInstaller attribute. This combination ensures that this class is given the opportunity to
handle events raised by the installer.

The InstallerActions class you have just created was added to the SharedResources assembly.
For the events to be wired up to the InstallerActions class, the installer needs to know that there
is a class that contains custom actions. To make this association, add the SharedResources assembly

Windows installers ❘ 971

http://lib.ommolketab.ir
http//lib.ommolketab.ir

972 ❘ chaPter 48 pAckAging And deploymenT

to the Custom Actions view for the deployment project by right-clicking any of the nodes shown in
Figure 48-15 and selecting Add Custom Action from the context menu. In this case, you want to
wire up the SharedResources. In Figure 48-15, this association has been made only for the Install
action. If you want to wire up the Custom Action class for all of the actions, you need to add the
custom action to the root Custom Actions node.

fiGure 48-15

To complete this discussion, understand that it is important to be able to pass information collected
from the user during the Start phase of the installation process to the custom action. Unfortunately,
because the custom action is invoked after the installer has finished, you have to use a special
channel to pass installer properties to the custom action event handler. In the Custom Actions view
(refer to Figure 48-15), select Properties Window from the right-click context menu for the Primary
output node. The CustomActionData property is used to define name/value pairs that will be sent
through to the custom installer. For example, you might have /PhoneNumber= “+1 425 001 0001”,
in which case you can access this value in the event handler as follows:

c#

private void CustomActions_AfterInstall(object sender, InstallEventArgs e)
{
 MessageBox.Show("Number: " + this.Context.Parameters["PhoneNumber"].ToString());
}

Code snippet SharedResources\CustomActions.cs

Vb

Private Sub CustomActions_AfterInstall(ByVal sender As Object, _
 ByVal e As InstallEventArgs) _
 Handles Me.AfterInstall
 MessageBox.Show("Number: " & Me.Context.Parameters("PhoneNumber").ToString)
End Sub

Code snippet SharedResources\CustomActions.vb

Of course, hard-coded values are not a good idea and it would be better if this were a user-specified
value. To use a property defined in the installer user interface, replace the specified string with the
property identifier in square brackets. For example, /PhoneNumber=[TXTPHONENUMBER] would
include the text in the TXTPHONENUMBER textbox.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the service installer
You can create an installer for a Windows Service the same way you would create an installer
for a Windows application. However, a Windows Service installer not only needs to install the
files into the appropriate location, but it also needs to register the service so it appears in the services
list. You can do this using the ServiceInstaller and ServiceProcessInstaller components
from the System.ServiceProcess namespace (you’ll probably need to add these to the Toolbox,
because they are not visible by default). An instance of each of these components needs to be
dragged onto the designer surface of a custom installer, as shown in Figure 48-16.

fiGure 48-16

The ServiceInstaller class is used to specify the display name (the name of the service as it
will appear in the Windows services list), the service name (the name of the service class that will
be executed when the service is run), and the startup type (whether it is manually started or
automatically started when Windows starts up). For each service you want to install, you need to
create a separate instance of the ServiceInstaller class, specifying a different display and service
name. Only a single instance of the ServiceProcessInstaller class is required, which is used
to specify the account information that the service(s) will run as. In the following example, the
InstallerForService constructor specifies that the class Service1 should be installed as a service,
and that it should automatically start using the NetworkService account:

c#

[RunInstaller(true)]
public partial class InstallerForService : System.Configuration.Install.Installer
{
 const string SERVICE_DISPLAY_NAME = "My Generic Service";
 const string START_AFTER_INSTALL = "STARTAFTERINSTALL";
 const string NET_PROCESS_NAME = "Net";
 const string NET_START = "Start \"{0}\"";
 const int NET_WAIT_TIMEOUT = 5000;
 const string NET_WAIT_ERROR = "WARNING: Process took longer than " +
 "expected to start, it may need to be restarted manually";

 public InstallerForService()

Windows installers ❘ 973

http://lib.ommolketab.ir
http//lib.ommolketab.ir

974 ❘ chaPter 48 pAckAging And deploymenT

 {
 InitializeComponent();

 serviceInstaller1.DisplayName = SERVICE_DISPLAY_NAME;
 serviceInstaller1.ServiceName = typeof(Service1).ToString();
 serviceInstaller1.StartType = ServiceStartMode.Automatic;
 serviceProcessInstaller1.Account = ServiceAccount.NetworkService;
 }

 private void InstallerForService_AfterInstall(object sender, InstallEventArgs e)
 {
 var startString = Context.Parameters[START_AFTER_INSTALL];
 if (startString == "") return;
 var shouldStart = Boolean.Parse(startString);
 if (!shouldStart) return;

 var proc = Process.Start(CreateNetStartProcessInfo());

 if (!proc.WaitForExit(NET_WAIT_TIMEOUT))
 MessageBox.Show(NET_WAIT_ERROR);
 }

 private ProcessStartInfo CreateNetStartProcessInfo()
 {
 return new ProcessStartInfo(NET_PROCESS_NAME,
 String.Format(NET_START, SERVICE_DISPLAY_NAME))
 {
 WindowStyle = ProcessWindowStyle.Hidden
 };

 }
}

Code snippet Windows Service\InstallerForService.cs

Vb

Public Class InstallerForService

 Const SERVICE_DISPLAY_NAME = "My Generic Service"
 Const START_AFTER_INSTALL = "STARTAFTERINSTALL"
 Const NET_PROCESS_NAME = "Net"
 Const NET_START = "Start ""{0}"""
 Const NET_WAIT_TIMEOUT = 5000
 Const NET_WAIT_ERROR = "WARNING: Process took longer than " &
 "expected to start, it may need to be restarted manually"

 Public Sub New()
 MyBase.New()

 ’This call is required by the Component Designer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 InitializeComponent()

 ’Add initialization code after the call to InitializeComponent
 ServiceInstaller1.DisplayName = SERVICE_DISPLAY_NAME
 ServiceInstaller1.ServiceName = GetType(Service1).ToString
 ServiceInstaller1.StartType = ServiceStartMode.Automatic
 ServiceProcessInstaller1.Account = ServiceAccount.NetworkService

 End Sub

 Private Sub InstallerForService_AfterInstall(ByVal sender As System.Object,
 ByVal e As System.Configuration.Install.InstallEventArgs) _
 Handles MyBase.AfterInstall
 Dim startString = Context.Parameters(START_AFTER_INSTALL)
 If startString = "" Then Return

 Dim shouldStart = Boolean.Parse(startString)
 If Not shouldStart Then Return

 Dim proc = Process.Start(CreateNetStartProcessInfo())

 If Not proc.WaitForExit(NET_WAIT_TIMEOUT) Then
 MessageBox.Show(NET_WAIT_ERROR)
 End If

 End Sub

 Private Function CreateNetStartProcessInfo() As ProcessStartInfo
 Dim startInfo = New ProcessStartInfo(NET_PROCESS_NAME,
 String.Format(NET_START, SERVICE_DISPLAY_NAME))
 startInfo.WindowStyle = ProcessWindowStyle.Hidden
 Return startInfo
 End Function
End Class

Code snippet Windows Service\InstallerForService.vb

Also included in this listing is an event handler for the AfterInstall event that is used to start
the service on completion of the installation process. By default, even when the startup is set to
automatic, the service will not be started by the installer. However, when uninstalling the service,
the installer does attempt to stop the service.

The user interface for this deployment project includes a Checkboxes (A) dialog using the User
Interface view for the project. Refer to Figure 48-13 for a view of the default user interface. Right-
click the Start node and select Add Dialog from the context menu. Highlight the dialog titled
Checkboxes (A) from the Add Dialog window and click OK. This inserts the new dialog at the end
of the installation process. The order of the dialogs can be adjusted using the Move Up/Down items
from the right-click context menu on the nodes in the User Interface window.

Selecting Properties Window from the right-click context menu on the new dialog brings up the
Properties window. Set the property identifier for Checkbox1 to STARTAFTERINSTALL and then set
the Visible property for the remaining checkboxes to false. As discussed earlier in the chapter,

Windows installers ❘ 975

http://lib.ommolketab.ir
http//lib.ommolketab.ir

976 ❘ chaPter 48 pAckAging And deploymenT

you also needed to add /STARTAFTERINSTALL=[STARTAFTERINSTALL] to the CustomActionData
property for the assembly in the Custom Actions view of the deployment project. With this user
input you can decide whether to start the service when the installer completes.

clickonce

Using a Windows installer is a sensible approach for any application development. However, deploying
an installer to thousands of machines, and then potentially having to update them, is a daunting task.
Although management products help reduce the burden associated with application deployment,
web applications often replace rich Windows applications because they can be dynamically updated,
affecting all users of the system. ClickOnce, introduced in version 2.0 of the .NET Framework, enables
you to build self-updating Windows applications. This section shows you how to use Visual Studio
2010 to build applications that can be deployed and updated using ClickOnce.

one click to deploy
To demonstrate the functionality of ClickOnce deployment, this section uses the same application
used to build the Windows Installer, CallCentre, which simply displays an empty form. To deploy
this application using ClickOnce, select the Publish option from the right-click context menu of
the project. This opens the Publish Wizard, which guides you through the initial configuration
of ClickOnce for your project.

The first step in the Publish Wizard allows you to select a location to deploy to. You can choose to
deploy to a local web site, an FTP location, a file share, or even a local folder on your machine. Clicking
Browse opens the Open Web Site dialog, which assists you in specifying the publishing location.

The next step asks you to specify where the users are expecting to install the application from. The
default option is for users to install from a CD or DVD-ROM disc. More commonly, you will want
to install from a file share on a corporate intranet or a web site on the Internet. Note that the
location you publish to and the location the users install from can be different. This can very useful
while testing new releases.

The contents of the final step will change depending on the installation option selected. If your
application will be installed from a CD or DVD-ROM, this step asks if the application should
automatically check for updates. If this option is enabled you must provide a location for
the application to check. In the case that your users will be installing from a file share or web site,
it is assumed that the application will update from the location that it was originally installed from.
Instead, the final question relates to whether or not the application will be available offline. If the
offline option is selected, an application shortcut is added to the Start menu and the application can
be removed in the Add/Remove programs dialog in the operating system. The user will be able to
run the application even if the original installation location is no longer available. If the application
is only available online, no shortcut is created and the users have to visit the install location every
time they want to run the application.

The last screen in the wizard allows you to verify the configuration before publishing the application.
After the application has been published, you can run the Setup.exe bootstrap file that is produced
to install the application. If you are installing from a web site, you will get a default.htm file

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Clickonce ❘ 977

generated as well. This file, shown in Figure 48-17, uses some JavaScript to detect a few dependencies
and provides an Install button that launches the Setup.exe.

fiGure 48-17

Clicking the Install button at this location displays a dialog prompting you to run or save
Setup.exe. Selecting Run (or running Setup.exe from a different kind of install) shows the
Launching Application dialog, shown in Figure 48-18, while components of your application
are being retrieved from the installation location.

After information about the application has been downloaded, a security warning is launched, as
shown in Figure 48-19. In this case, the security warning is raised because, although the deployment
manifest has been signed, it has been signed with a certificate that is not known on the machine on
which it is being installed.

fiGure 48-18 fiGure 48-19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

978 ❘ chaPter 48 pAckAging And deploymenT

 Three options are available when it comes to signing the deployment manifest. By default,
Visual Studio 2010 creates a test certifi cate to sign the manifest, which has the format
 application name_TemporaryKey.pfx and is automatically added to the solution (this happens
when the application is fi rst published using the Publish Now button). Though this certifi cate can
be used during development, it is not recommended for deployment. The other alternatives are to
purchase a third - party certifi cate, from a company such as VeriSign, or to use the certifi cate server
within Windows Server to create an internal certifi cate.

 The advantage of getting a certifi cate from a well - known certifi cate authority is that it can
automatically be verifi ed by any machine. Using either the test certifi cate or an internal certifi cate
requires installation of that certifi cate in the appropriate certifi cate store. Figure 48 - 20 shows the
Signing tab of the Project Properties window, where you can see that the ClickOnce manifest is being
signed with a certifi cate that has been generated on the local computer. An existing certifi cate can be
used by selecting it from the store or from a fi le. Alternatively, another test certifi cate can be created.

 fiGure 48 - 20

 The deployment manifest of a ClickOnce application is an XML fi le that
describes the application to be deployed along with a reference to the current
version. Although it is not required, each deployment manifest can be signed
by the publisher to provide the manifest with a strong name. This prevents the
manifest from being tampered with after it is deployed.

 If you want your application to install with a known publisher, you need to add the test certifi cate
into the root certifi cate store on the machine on which you ’ re installing the product. Because this
also happens to be the deployment machine, you can do this by clicking More Details. This opens a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Clickonce ❘ 979

dialog that outlines the certificate details, including the fact that it can’t be authenticated. (If you
are using the certificate created by default by Visual Studio 2010, you will need to use the Select
from File button to re-select the generated certificate, and then use the More Details button.
There seems to be an issue here, in that the details window does not show the Install Certificate
button without this additional step.) Clicking
Install Certificate enables you to specify that
the certificate should be installed into the
Trusted Root Certification Authorities store.
This is not the default certificate store, so you
need to browse for it. Because this is a test
certificate, you can ignore the warning that is
given, but remember that you should
not use this certificate in production. Now
when you publish your application and try
to install it, you will see that the dialog has
changed, looking similar to the one shown in
Figure 48-21.

Although you have a known publisher, you
are still being warned that additional security
permissions need to be granted to this
application in order for it to execute. Clicking
the rather minimalist More Information
hyperlink opens a more informative dialog,
shown in Figure 48-22. As with the security
coding within Windows Server 2008 and
Windows 7, there are three icons: green for
positive security, red for potential security
weaknesses, and yellow for informative or
best practice guidance.

ClickOnce deployment manifests are rated
on four security dimensions. You’ve just seen
how you can specify a well-known publisher,
critical for safe installation of an application. By default, ClickOnce publishes applications as
full trust applications, giving them maximum control over the local computer. This is unusual,
because in most other cases Microsoft has adopted a security-first approach. To run with full trust,
the application requires additional security permissions, which might be exploited. The Sample
Application will be available online and offline; and though this isn’t a major security risk, it does
modify the local file system. Lastly, the location from which the application is being installed is
almost as important as the publisher in determining how dangerous the application might be. In this
case, the application was published within the local network so it is unlikely to be a security threat.

Because this application doesn’t really do anything, you can decrease the trust level that the
application requires. As shown in Figure 48-23, this application is made a partial trust application
based on the Local Intranet zone. This changes the Machine Access icon to green, leaving only the
Installation icon yellow. Unfortunately, the only way you can get this to be green would be to not
install the application, which means that it would not be available offline.

fiGure 48-21

fiGure 48-22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

980 ❘ chaPter 48 pAckAging And deploymenT

Ideally, you would like to be able to bypass the Application Install dialog and have the application
automatically be granted appropriate permissions. You can do this by adding the certificate to the
Trusted Publishers store. Even for well-known certificate authorities, in order for the application to
install automatically, the certificate needs to be added to this store. With this completed, you will
only see the progress dialog as the application is downloaded, rather than the security prompt in
Figure 48-21.

Once installed, the application can be launched either by returning to the installation URL
(Figure 48-17) or by selecting the shortcut from the newly created Start Menu folder with the same
name as the application.

one click to update
At some point in the future you might make a change to your application — for example, you might
add a button to the simple form you created previously. ClickOnce supports a powerful update
process that enables you to publish the new version of your application in the same way you did
previously, and existing versions can be upgraded the next time they are online. As long as you are
content with the current set of options, the update process is just the Publish process. When using
the Publish Wizard to update an existing application, all of the values previously used to publish the
application are preconfigured for you.

You can check the settings in the Publish tab of the Project Properties designer (Figure 48-24).
The designer shows the publish location, the installation location, and the install mode of the
application. There is also a setting for the Publish Version. This value is not shown in the Publish
Wizard, but by default this version starts at 1.0.0.0 and increments the right-most number every time
the application is published.

fiGure 48-23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Clickonce ❘ 981

Along the right are a number of buttons that bring up more advanced options, most of which are
not exposed by the wizard. The Application Updates dialog (Figure 48-25) allows you to configure
how the application updates itself. In Figure 48-25, the application will update once a month after it
has started. You can also specify a minimum required version, which will prevent older clients from
executing until they are updated.

With this change, now when you publish a new version of your application, any existing users will
be prompted to update their application to the most recent version, as shown in Figure 48-26.

fiGure 48-24

fiGure 48-25 fiGure 48-26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

982 ❘ chaPter 48 pAckAging And deploymenT

 One of the most powerful features of ClickOnce deployment is that it tracks a previous version of
the application that was installed. This means that at any stage, not only can it do a clean uninstall,
but it can also roll back to the earlier version. The application can be rolled back or uninstalled
from the Programs and Features list from the Control Panel.

 Note that for users to receive an update they do need to be able to contact the
original deployment URL when the application performs the check for a new
version (in this case when the application starts). You can also force all users to
upgrade to a particular version (that is, they won ’ t get prompted) by specifying
the minimum required version in the Application Updates dialog (Figure 49 - 25).

 suMMary

 This chapter walked you through the details of building installers for various types of applications.
Building a good - quality installer can make a signifi cant difference in how professional your
application appears. ClickOnce also offers an important alternative for those who want to deploy
their application to a large audience, and with the changes introduced with version 3.5 of the .NET
Framework, it can now be used for a much wider range of applications.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

49
 Web application Deployment

 what ’ s in this chaPter?

 Publishing Web Site and Web Application projects ➤

 Publishing database scripts with Web Applications ➤

 Copying Web Site changes to a remote server ➤

 Creating Web Application packages for deployment with the Web ➤

Deployment Tool

 Managing confi guration fi les for multiple deployment environments ➤

 Keeping machines up to date with the Web Platform Installer ➤

 Extending the Web Platform Installer to include your own ➤

applications

 In the previous chapter you saw how to deploy your Windows application using either an
installer or ClickOnce. But how do you go about deploying web applications? This chapter
walks you through deploying Web Site and Web Application projects. It also covers packaging
web applications for remote deployment with the new Web Deployment Tool and integrating
with the Web Platform Installer.

 One of the most important aspects of building your application is to think about how you will
package it so that it can be deployed. Though a large proportion of web applications are only
for internal release, where a simple copy script might be suffi cient, if you do want to make
your web application available for others to purchase and use, you really need to focus on
making the deployment process as simple as possible.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

984 ❘ chaPter 49 Web ApplicATion deploymenT

 web site dePloyMent

 Web projects created with Visual Studio 2010 fall into two broad categories: Web Application
projects and Web Site projects. This section demonstrates tools that are specifi cally for deploying
and maintaining Web Site projects.

 Publish web site
 The simplest way to deploy a web site from Visual Studio 2010 is to publish it via the Publish
Web Site item on the Build menu. Selecting this option presents you with the dialog shown in
Figure 49 - 1. It has only a few basic options that allow you to publish debugging information, allow
in - place updating of your web site, and enforce different naming policies and security requirements.

 Usually you will simply use the Target Location box to specify the location that you want to publish
to. This location can be a local instance of IIS, an FTP site, elsewhere on the fi le system, or a remote
instance of IIS. Clicking the ellipsis button next to the Target Location textbox in Figure 49 - 1
brings up a dialog to specify the details of where you want to publish to, as shown in Figure 49 - 2.

 After the release of Visual Studio 2005, Microsoft released Web Deployment
Projects as a more advanced way of managing the deployment of Web Site and
Web Application projects. When Visual Studio 2008 was released, these projects
were updated but not included in the fi nal release. At the time of writing,
Microsoft has not announced any plans to include Web Deployment Projects in
Visual Studio 2010.

 fiGure 49 - 1 fiGure 49 - 2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 copy web site
 Once a web site has been published, it is important that you have some way of updating it. One
option is to go through the process of publishing your web site again. However, this will publish the
entire web site, even if only a single fi le needs to be updated. An alternative is to use the Copy Web
Site tool, shown in Figure 49 - 3, to synchronize fi les between your development project and the
web site. You can access this tool from the right - click context menu in the Solution Explorer,
or via the web site menu.

 Here we are publishing to a private FTP account, and if this is the fi rst time we
are publishing this site we may have to defi ne this folder as an IIS application in
order for the web site to function.

 fiGure 49 - 3

 To view the existing fi les on the remote web site, you need to either select a recent connection from
the drop - down list or click the Connect button. This will open a dialog similar to Figure 49 - 2, where
you can specify how to connect to the remote web site. Once you have connected you can see which
fi les are out of sync. You can then use the right and left arrows to move fi les between your local
project and the remote web site.

Web site Deployment ❘ 985

http://lib.ommolketab.ir
http//lib.ommolketab.ir

986 ❘ chaPter 49 Web ApplicATion deploymenT

web aPPlication dePloyMent

Web application projects are quite different from Web Site projects and come with a different
set of tools for deployment. Visual Studio 2010 introduces the capability to deploy with the new
Web Deployment Tool, which is used to easily import and export IIS applications along with
their dependencies — such as IIS meta-data and databases — from the command line, IIS 7.0
management console, Powershell cmdlets, or directly from Visual Studio itself. It also provides
the ability to manage several versions of configuration data for different environments in a clean
manner without duplication.

Publishing a web application
The quickest way to deploy a Web Application
project is to simply publish it directly from Visual
Studio. Select the Publish item from the right-click
context menu in Solution Explorer to display the
Publish Web dialog shown in 49-4. If this is the first
time you have run the Publish Web dialog, Publish
Profile will be a textbox instead of a drop-down
enabling you to give the profile a meaningful name.
Each time you do a deployment you do so against
a particular profile, which encapsulates the target
environment settings. A Web Application project can
maintain a collection of profiles, which allows you
deploy the one web application to a number of target
environments and keep the settings for each separate.

Four options for Publish Method determine what
you see in the lower part of the dialog window: Web
Deploy FTP, File System, and Front-Page Server
Extensions (FPSE). The File System and Front-
Page Server Extensions options both allow you to
enter the target location for the web application to
be published. The FTP option offers the same but
also allows you to enter FTP credentials. Each of
these provides a cut down version of Figure 49-2
if you click the ellipsis on Target Location. The only other settings for these choices is whether to
simply replace any files in the target location or clear all of the files from the target location before
deployment.

The final publishing method option is Web Deploy MSDeploy.exe, also known as the Web
Deployment Tool, is designed to help administrators and developers more easily package and deploy
web application projects. It does this by packaging all of the necessary files for your application
along with all of the required meta-data to install and configure it into a single zip file. This zip
file can then be installed via the IIS7.0 interface, the command line, Powershell cmdlets, or directly
from Visual Studio itself.

fiGure 49-4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 To deploy directly to a server that is running MSDeploy, you will need:

 A service reference where MSDeploy will be listening ➤

 A site and application name used to identify the remote application ➤

 A username and password for the remote instance of MSDeploy ➤

 All of this information will be provided by your server administrator or hosting provider.

 Once you have published your web application successfully at least once, the Web One Click Publish
toolbar will become available. This toolbar, shown in Figure 49 - 5, allows you to select a publishing
profi le and click the Publish button to instantly publish your web
application. If you don ’ t see the toolbar, you can enable it by selecting
View  ➪ Toolbars  ➪ Web One Click Publish from the main menu.

 If you start the Publish process from the main menu or from the project
right - click context menu, you will get the option to examine the profi le
properties before the application is deployed. When you use the Web One Click
Publish toolbar, however, the deployment starts immediately.

 fiGure 49 - 5

 Packaging a web application
 Even if you do not have direct access to the target environment, you can still create packages that can
be managed by the Web Deployment Tool. This is as simple as selecting Create Package from the
right - click context menu of the Web Application project in the Solution Explorer window.

 By default, this generates a zip fi le along with some support material in the obj\Debug\Package\
folder. The support material includes a sample .cmd fi le along with a parameters fi le, which can be
used to install the package from the command line on the target server.

 These packages are precisely what get deployed to a remote server during an
MSDeploy Publish.

 Confi guring Web application Packages
 One important aspect of deploying and packaging web applications is confi guring what gets
deployed. You can reach the Package/Publish settings tab pictured in Figure 49 - 6 from the normal
project properties pages, or by selecting the Package/Publish Settings item in the right - click context
menu of the project in the Solution Explorer window.

Web application Deployment ❘ 987

http://lib.ommolketab.ir
http//lib.ommolketab.ir

988 ❘ chaPter 49 Web ApplicATion deploymenT

The first option to configure is which files to actually deploy. The three options are as follows:

 ➤ Only files needed to run the application will include only the files that are actually neces-
sary to running the application. This can exclude files with a build action of None. This is
the most exclusive option and is the default.

 ➤ All files in this project will include any file that appears as a part of the project in the
Solution Explorer window.

 ➤ All files in this project folder will include any file that is found in the project folder even if it
is not a part of the project. This is the least restrictive option.

You also have options to exclude generated debug files and files in the App_Data folder. To deploy
databases you should use the Package/Publish SQL options, which are discussed in the next section.

A Web Deployment Package is also able to copy IIS meta-data, but only if your project is being
developed in IIS. To configure this, go to the Web properties page and change the Servers option to
Use Local IIS Web Server.

Finally, you can opt to provide a location for the deployment package to be created and a
web site/application name to apply to the package when it is deployed to an IIS server.

Packaging sQl server Data
One common problem when deploying web applications is that they frequently rely on a database
server to store data and so the deployment process has to find a way to manage the deployment of
a database schema, and potentially data as well. Web Deployment Packages allow you to specify
database scripts to set up or update your databases, and the Web Deployment Tool manages the
process of running these scripts against a database server during the deployment process.

fiGure 49-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 To add a database to your deployment package, use the Package/Publish SQL property page for
the web project shown in Figure 49 - 7. Use the Add and Remove buttons on the right - hand side to
maintain a list of connections that are to be deployed. If you already have a set of connection
strings in the web.config fi le, you can import them directly into this list using the Import from
Web.Confi g button provided. You can also use the checkboxes to decide whether or not to include
each connection string in the deployment.

 When you use Visual Studio to extract schema information or data from an
existing SQL Server, it generates scripts suitable for deploying a brand new
database. To update an existing database, you need to create your own scripts
and add them to the package.

 fiGure 49 - 7

 When you have a connection string highlighted in the top section, the bottom section displays
deployment details relating to that connection string. The fi rst option allows you to provide a
different connection string for the deployment package.

 The next option allows you pull a schema and/or data from an existing database while creating the
deployment package. To do this, you need to simply provide a connection string and select whether
schema, data, or both should be deployed. In addition to these automatically generated database
scripts, you can add your own database scripts to the deployment. This can be useful if you are
using a tool that produces change scripts for your database.

 web .confi g transformations
 One other problem that many projects face is how to maintain different versions of application
confi guration between different environments. This problem is commonly handled by keeping
several copies of the web.config fi le around — one for each environment — and then remembering

Web application Deployment❘ 989

http://lib.ommolketab.ir
http//lib.ommolketab.ir

990 ❘ chaPter 49 Web ApplicATion deploymenT

to rename the correct version for the target environment every time the application is deployed. Even
if you make this a part of your build process, this can be problematic because any change to the
web.config file potentially needs to be replicated to each of the other environment-specific configuration
files. Visual Studio 2010 introduces a new capability called Web.config Transformation, which allows
you to have a single configuration file and then specify only the differences for each environment.

When a web application project is first created it includes a web.config file along with two config
transforms, one for each build configuration: Debug and Release. Each transform is associated
with a single configuration and appears under the web.config file in the Solution Explorer
(see Figure 49-8). To create your own configuration, select Configuration Manager from the
Configuration drop-down menu and then select New from the Active solution
configuration drop-down. Enter a name for your new configuration and
optionally select which previous configuration it should copy its values from.

Once you have a new configuration, you can add a new config transform by
selecting Add Config Transforms from the right-click context menu of the web.config file in
Solution Explorer. This automatically adds any transforms that were missing from the solution’s
Configuration collection.

The configuration transform file is a standard configuration file, but it adds a new XML namespace
for specifying transformations. This namespace contains two attributes, Transform and Locator,
which can be added to any element in the configuration file. Transform is used to specify a change
that is to be made to the original configuration file. Locator, on the other hand, is used to identify
particular nodes to apply a transformation to. Here a few examples, along with a description of
what they do. For more information, see the full reference in the MSDN Library.

<appSettings>
 <add xdt:Transform="Remove"xdt:Locator="Condition(@name=’UseMockDatabase’)"/>
</appSettings>

This locates an add node under appSettings with the name attribute set to UseMockDatabase and
removes it from the output configuration file.

<connectionStrings>
 <add name="AdventureWorks" xdt:Transform="Replace" xdt:Locator="Match(name)"
 connectionString="Data Source=UAT_DB; Initial Catalog=AdventureWorks; ~CA
 Integrated Security=true"/>
</connectionStrings>

This updates the contents the AdventureWorks connection string to point to a UAT database server.

<system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
</system.web>

This removes the debug attribute from the compilation node under system.web.

<authorization>
 <deny users="*" xdt:Transform="Insert"/>
</authorization>

This inserts a new node at the bottom of the authorization element that denies access to all users.

fiGure 49-8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

web ProJect installers

In addition to using the Web Deployment Tool, you can create a standard Windows Installer package
to manage a web application or web site deployment. To do this, you will need to create a Web Setup
Project from the Other Project Types Setup and Deployment node in the New Project dialog. This is
essentially a normal setup project that has been configured with the relevant output folder (see the File
System view) and user interface (see the User Interface view) for deploying web applications. Once
you have created the setup project, you will need to add the appropriate project outputs. The left
image of Figure 49-9 shows the Add Project Output Group dialog for adding a web site to the setup
project. Because a web site contains only content files, this is the only option available.

Alternatively, when you are using a Web Application Project, you will want to select the primary
output as well as the content files, as shown in the right image of Figure 49-9.

fiGure 49-9

One of the unique features of the Web Setup
Project is the screen that is added to the user
interface to enable the user to define the web site,
virtual directory, and application pool that will
be used by the web application being installed.
Figure 49-10 illustrates this dialog as part of the
installation process.

In older versions of Visual Studio, the web site
installation wizard would only prompt the user
to specify the name of the virtual directory
into which the application was to be installed,
and this directory would then be created in
the default web site. If multiple web sites were
hosted on the same server (often the case with
products such as SharePoint installed), this

Web Project installers ❘ 991

fiGure 49-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

992 ❘ chaPter 49 Web ApplicATion deploymenT

could result in the application being installed on the wrong web site. Being able to specify the
web site during installation reduces any post-installation administration that would have been
required in the past.

the web PlatforM installer

Web applications tend to rely on a large number of technologies and tools to function correctly
both during development and in production. Even once your environment is correctly set
up for a single application, relationships and dependencies between applications need to be
understood and managed. Finally, there are always new tools, libraries, and applications being
made available on the Internet, which you can build on when creating your own projects. As
your environment becomes more complex it can be quite a challenge to keep everything working
correctly and up to date.

The Microsoft Web Platform Installer, shown in Figure 49-11, is a simple tool designed to
manage the software that you have installed on your web servers and development machine.

fiGure 49-11

Once you have downloaded the Web Platform Installer from http://www.microsoft.com/web,
you can run it as many times as you like. It is able to detect which components you already
have on your machine and you can check and uncheck components to add and remove them,

http://www.microsoft.com/web
http://lib.ommolketab.ir
http//lib.ommolketab.ir

respectively. It is even able to take care of dependencies between components and install everything
you need.

The Web Platform Installer is able to manage components beyond just the Web Platform itself.
Also available is a collection of applications from the Microsoft Web Application Gallery found at
http://www.microsoft.com/web/gallery. These applications are filed under various categories
under the Web Applications tab. Just like the components in the Web Platform, these applications
can have their own prerequisites and the Web Platform Installer takes care of ensuring they are
installed.

If you are already packaging your web application for deployment with MSDeploy, it is ready to
be distributed using the Web Platform Installer. You can get your application added to the Web
Application Gallery by filling in a simple form on the Microsoft Web portal. Once your application
is approved, it will show up ready to be installed on any machine with the Web Platform Installer
on it.

extending the web Platform installer
As mentioned in the previous section, it is quite easy to have your application included in the Web
Application Gallery to make it available to a large audience. There are some scenarios in which
you would like to take advantage of the Web Platform Installer but do not want to make your
application publicly available. This might be because your application is being used privately within
your company or it might be because your application is not yet ready for release and you want to
test the deployment procedure.

The Web Platform Installer relies on atom feeds to ensure that the list of components and products
that it installs are always kept up to date. Each entry in these feeds corresponds to an application
or component in the user interface of the Web Platform Installer. The Web Platform and Web
Application tabs each come from different feeds at http://www.microsoft.com/web/webpi/2.0/
WebProductList.xml and http://www.microsoft.com/web/webpi/2.0/WebApplicationList
.xml, respectively. In addition to these two feeds, each installation of the Web Platform Installer can
specify additional feeds that reference more components.

Here is a sample feed for a simple timesheets web application:

<?xml version=”1.0” encoding=”utf-8”?>
<feed xmlns=”http://www.w3.org/2005/Atom”>
 <version>1.0.0</version>
 <title>AdventureWorks Product WebPI Feed</title>
 <link href=”http://www.professionalvisualstudio.com/SampleProductFeed.xml” />
 <updated>2009-11-01T16:30:00Z</updated>
 <author>
 <name>Adventure Works</name>
 <uri>http://www.professionalvisualstudio.com</uri>
 </author>
 <id>http://www.professionalvisualstudio.com/SampleProductFeed.xml</id>

 <entry>

The Web Platform installer ❘ 993

http://www.microsoft.com/web/gallery
http://www.microsoft.com/web/webpi/2.0/
http://www.microsoft.com/web/webpi/2.0/WebApplicationList
http://www.w3.org/2005/Atom%E2%80%9D
http://www.professionalvisualstudio.com/SampleProductFeed.xml%E2%80%9D
http://www.professionalvisualstudio.com</uri
http://www.professionalvisualstudio.com/SampleProductFeed.xml</id
http://lib.ommolketab.ir
http//lib.ommolketab.ir

994 ❘ chaPter 49 Web ApplicATion deploymenT

 <productId>TimeSheets</productId>
 <title>Adventure Works Timesheets</title>

 <summary>The Adventure Works corporate Timesheeting system</summary>
 <longSummary>The Adventure Works corporate Timesheeting system</longSummary>
 <productFamily>Human Resources</productFamily>

 <version>1.0.0</version>
 <images>
 <icon>c:\AdventureWorksIcon.png</icon>
 </images>
 <author>
 <name>Adventure Works IT</name>
 <uri>http://www.professionalvisualstudio.com</uri>
 </author>
 <published>2009-11-01T12:30:00Z</published>

 <discoveryHint>
 <or>
 <discoveryHint>
 <registry>
 <keyPath>HKEY_LOCAL_MACHINE\SOFTWARE\AdventureWorks\Timesheets</keyPath>
 <valueName>Version</valueName>
 <valueValue>1.0.0</valueValue>
 </registry>
 </discoveryHint>
 <discoveryHint>
 <file>
 <filePath>%ProgramFiles%\AdventureWorks\Timesheets.exe</filePath>
 </file>
 </discoveryHint>
 </or>
 </discoveryHint>

 <dependency>
 <productId>IISManagementConsole</productId>
 </dependency>

 <installers>
 <installer>
 <id>1</id>
 <languageId>en</languageId>
 <architectures>
 <x86 />
 </architectures>
 <osList>
 <os>
 <!-- the product is supported on Vista/Windows Server SP1 + -->
 <minimumVersion>
 <osMajorVersion>6</osMajorVersion>
 <osMinorVersion>0</osMinorVersion>
 <spMajorVersion>0</spMajorVersion>
 </minimumVersion>
 <osTypes>

http://www.professionalvisualstudio.com</uri
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 <Server />
 <HomePremium />
 <Ultimate />
 <Enterprise />
 <Business />
 </osTypes>
 </os>
 </osList>
 <eulaURL>http://www.professionalvisualstudio.com/eula.html</eulaURL>

 <installerFile>
 <!-- size in KBs -->
 <fileSize>1024</fileSize>
 <installerURL>http://www.professionalvisualstudio.com/Timesheets_x86.msi
 </installerURL>
 <sha1>111222FFF000BBB444555EEEAAA777888999DDDD</sha1>
 </installerFile>

 <installCommands>
 <msiInstall>
 <msi>%InstallerFile%</msi>
 </msiInstall>
 </installCommands>
 </installer>
 </installers>
 </entry>

 <tabs>
 <tab>
 <groupTab>
 <id>AdventureWorksHRTab</id>
 <name>Adventure Works Human Resources</name>
 <description>Adventure Works HR Apps</description>
 <groupingId>HRProductFamilyGrouping</groupingId>
 </groupTab>
 </tab>
 </tabs>

 <groupings>
 <grouping>
 <id>HRProductFamilyGrouping</id>
 <attribute>productFamily</attribute>
 <include>
 <item>Human Resources</item>
 </include>
 </grouping>
 </groupings>
</feed>

The first part specifies some standard information about the feed itself, including the date it was
last updated and author information. This is all useful if the feed is consumed using a normal feed
reader. Following this is a single entry node containing information about the application itself.
The Web Platform Installer is able to use the value of productId to refer to the application in other
places, including being listed as a dependency for other components.

The Web Platform installer ❘ 995

http://www.professionalvisualstudio.com/eula.html</eulaURL
http://www.professionalvisualstudio.com/Timesheets_x86.msi
http://lib.ommolketab.ir
http//lib.ommolketab.ir

996 ❘ chaPter 49 Web ApplicATion deploymenT

 The discoveryHint node is used to determine if this application is already installed. The
sample application can be detected by looking for a specifi c registry key value or by looking for
a specifi c application by name. If either one of these items is found, the Web Platform Installer
considers this application to be already installed. In addition to these two kinds of hints, you can
use an msiProductCode hint to detect applications that are installed via MSI.

 The sample timesheets application has a dependency on the IIS Management Console. Each
component that your application relies upon can be specifi ed by its productId . If it is not already
installed on the target machine, the Web Platform Installer will install it for you. In addition to
dependencies, you can specify incompatibilities for your application, which will prevent both
applications from being installed at once.

 The last component of the application entry is the installers element. There should be one
 installer element for each installer that you want to make available and they should all have
different identifi ers. Each installer can be targeted at a specifi c range of languages, operating
systems, and CPU architectures. If the target environment doesn ’ t fall into this range, the installer
will not be shown. Each installer should specify an installer fi le, which will be downloaded to a
local cache before the specifi ed installCommands are executed against it.

 An installer fi le requires a size and a SHA1 hash so that the Web Platform
Installer can verify that the fi le has been downloaded correctly. Microsoft
provides a tool called File Checksum Integrity Verifi er (fciv.exe), which can be
used to generate the hash. You can download this tool from http://download
.microsoft.com .

 The fi nal two elements relate to what is displayed in the Web Platform Installer user interface.
Each tab element adds to the list of tabs on the left. In the example, we are adding a tab based
on a grouping of products, which is defi ned below in the groupings element based on the
 productFamily attribute.

 To add this feed to a Web Platform Installer instance, click the Options link in the lower left - hand
corner to bring up the Options page. Enter the URL to the atom feed into the textbox and click
the Add Feed button. When you click OK the Web Platform Installer refreshes all of the feeds and
reloads all of the applications including the new Adventure Works timesheets application shown in
Figure 49 - 12.

http://download
http://lib.ommolketab.ir
http//lib.ommolketab.ir

suMMary

This chapter showed you how to use a number of the features of Visual Studio 2010 to package
your web applications and get them ready for deployment. The new Web Deployment Tool makes
deployment to a number of environments and machines quick and painless, and the One Click
Publish toolbar makes it easy to manage the different publishing profiles. Finally, the Web Platform
Installer provides you with an easy way to reach a large number of potential customers or to manage
your own suite of enterprise applications.

fiGure 49-12

summary ❘ 997

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PART XI

customizing and extending
Visual studio

 ⊲ chaPter 50: The Automation Model

 ⊲ chaPter 51: Add - Ins

 ⊲ chaPter 52: Macros

 ⊲ chaPter 53: Managed Extensibility Framework (MEF)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

50
 The automation Model

 what ’ s in this chaPter?

 Understanding the Visual Studio extensibility options ➤

 Working with the Visual Studio automation model ➤

 Often you will fi nd yourself performing repetitive tasks when working in Visual Studio,
and wish you could bundle all those tasks into a single automated task, streamlining your
workfl ow, decreasing your frustration at doing the same thing repeatedly, and consequently
increasing your productivity. Alternatively, perhaps you want to add functionality to
Visual Studio to share with other developers in your company (or even around the world).
Fortunately, Visual Studio has been designed to be very extensible — in fact, many features
that you may have thought were built into Visual Studio are actually extensions themselves!
This extensibility is exposed to make it very easy to add the functionality to Visual Studio
that suits your requirements. Extensibility points include automating tasks, adding new tool
windows, adding features to the code editor, adding your own menu items (including items
to the code editor ’ s context menu), creating debug visualizers, creating your own wizards,
extending existing dialogs, and even adding your own editors/designers and programming
languages! This chapter looks at the options available for extending Visual Studio, and takes a
look at the automation model used by both macros and add - ins.

 Visual studio extensibility oPtions

 Unfortunately, the extensibility story in Visual Studio is a bit murky, because a number of
different means exist to extend Visual Studio and it can be hard to determine which method
you should use for what you want to achieve. Here are the various extensibility options
available for Visual Studio, and the context in which it is most appropriate to use each:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1002 ❘ chaPter 50 The AuTomATion model

 ➤ Macros are the easiest way to automate Visual Studio, and can be thought of as a scripting
language for the IDE. Macros are best suited to quickly automating a task (such as manipulating
the text in the code editor, or automating a repeated set of tasks in the IDE). Macros are rather
limited in their capabilities, and suited only to simple automation tasks. Macros must be written
in VB — no other language is supported. Macros can be shared between developers, but require
sharing macro project files (including their source code). Chapter 52 covers how to develop
macros for Visual Studio 2010.

 ➤ Add-ins are more powerful than macros (despite both working against the Visual Studio
automation model), enabling you to also create tool windows and wizards, and integrate
other features seamlessly within the IDE itself. Add-ins are compiled projects (in your favorite
.NET language or Visual C++), enabling you to ship a binary to other developers rather than
the code itself. Chapter 51 covers how to develop add-ins for Visual Studio 2010.

 ➤ VSPackages are a part of the Visual Studio SDK (a separate download and install), and
 provide even more power than add-ins. VSPackages enable you to access the core internal
interfaces in Visual Studio, and thus are ideally suited to integrating your own editors,
designers, and programming languages into Visual Studio. Coverage of VSPackages,
 however, is beyond the scope of this book. More information of VSPackages can be found
in the book Professional Visual Studio Extensibility by Keyvan Nayyeri.

 ➤ Managed Extensibility Framework (MEF) component parts enable you to extend the
new WPF-based code editor in Visual Studio 2010 in order to change its appearance and
behavior. If you want to add features to the code editor, this is the best option for your
need. Chapter 53 covers how to develop code editor extensions for Visual Studio 2010.

The next few chapters take you through some of the various ways in which you can extend Visual
Studio, including using add-ins, macros, and the Managed Extensibility Framework (MEF).
However, we continue in this chapter by looking at the core Visual Studio 2010 automation model
that both macros and add-ins rely upon to interact with Visual Studio.

the Visual studio autoMation Model

The Visual Studio automation model, also known as Development Tools Extensibility (abbreviated
as DTE, which you will see used in the automation model), is an object model exposed by Visual
Studio that you can program against to interact with the IDE. This object model allows you to
perform many actions in Visual Studio to achieve a required behavior, handle events raised by
Visual Studio (such as when a command has been activated), and various other functions such as
displaying a custom dockable tool window within the Visual Studio IDE.

This object model is the means by which both add-ins and macros interact with the Visual Studio
IDE, so this section takes a deeper look at its structure and the functionality that it exposes.

an overview of the automation Model
The Visual Studio automation model (DTE) is a COM-based object model that has been added to
with each new version of Visual Studio, over time making it somewhat confusing and messy.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Visual studio automation Model ❘ 1003

DTE consists of various COM interfaces and their associated implementations covering the facets
of functionality in Visual Studio. Because the concrete classes mostly implement a corresponding
interface, you can expect to see lots of pair classes: an interface and its implementation. For
example, the root object is the DTE class, which implements the _DTE interface.

By their very nature, interfaces don’t support extensibility and should never be changed, because any
change in their structure breaks the structure of any class that implements the original interface. As
Visual Studio matured and new versions were released (each requiring new functionality to be added
to the existing classes in the object model), this created a problem. Microsoft couldn’t update the
existing interfaces or it would cause problems with existing add-ins, so instead it decided to create new
versions of the interfaces with each new Visual Studio version by deriving from the previous version
and adding the new requirements to it. These new interfaces were suffixed with a revision number so
they didn’t have the same name as their predecessor, thus creating the messy and unfriendly model we
have today where multiple interfaces/classes represent the same part of the object model.

For example, you can check out the Debugger, Debugger2, Debugger3, Debugger4, and
Debugger5 interfaces. The Debugger interface was a part of Visual Studio 2003 and was the
original interface. Debugger2 is an updated version of Debugger for Visual Studio 2005, Debugger3
came with Visual Studio 2008, Debugger4 came with Visual Studio 2008 SP1, and Debugger5 came
with Visual Studio 2010. The root DTE interface also has a revision called DTE2, and you will
normally use this rather than its predecessor.

What this means in practical terms is that navigating the object model hierarchy isn’t
straightforward. The model will expose the methods on the classes in the early manifestation of
the model, but you will need to cast the object to a more recent interface to access the functions it
exposes. For example, the first iteration of the Solution object didn’t provide the ability to create a
solution folder — this didn’t come until later where the AddSolutionFolder method was exposed
on the object by the Solution2 interface. So the following macro code will not work:

Public Sub AddSolutionFolder()
 DTE.Solution.AddSolutionFolder("TestFolder") ’Will not work
End Sub

but this macro code will:

Public Sub AddSolutionFolder()
 Dim solution As Solution2 = DirectCast(DTE.Solution, Solution2)
 solution.AddSolutionFolder("TestFolder")
End Sub

As you can see, this makes using the automation model difficult with it commonly necessary to cast
objects to interfaces, also creating somewhat messy code.

Because the underlying automation model is COM-based and we are using managed code to interact
with it, we need to use interop assemblies to provide the bridge between our managed code and the
COM object model. Unfortunately, like the object model itself, these are somewhat messy too. An
additional interop assembly has been added with each version of Visual Studio, so your project will
need to reference each interop assembly, from the base interop assembly up to the one released with
the lowest version of Visual Studio that your add-in or macro will support. For example, add-ins

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1004 ❘ chaPter 50 The AuTomATion model

or macros that support only Visual Studio 2010 will need to have references to your project
to EnvDTE.dll (from Visual Studio 2003), EnvDTE80.dll (from Visual Studio 2005), EnvDTE90
.dll (from Visual Studio 2008), EnvDTE90a.dll (from Visual Studio 2008 SP1), and EnvDTE100.dll
(from Visual Studio 2010).

 It ’ s worth noting that the Visual Studio SDK is now somewhat taking the place
of the Visual Studio automation model going forward, with fewer new features in
Visual Studio being added to the automation model and more focus and emphasis
being placed on using VSPackages instead (in the Visual Studio SDK). However,
despite its fl aws, the Visual Studio automation model is still very functional and
able to perform most common tasks when integrating with Visual Studio.

 Let ’ s now take a look at some of the various functional areas of Visual Studio that the automation
model exposes to us, including solutions and projects, documents and windows, commands,
debuggers, and events. All of these exist under the root DTE object (which should be cast to DTE2 to
expose the more recent revision of this object).

 Code examples are macro code, with macros discussed in detail in Chapter 52 .
Most examples output information using the Debug.Print command, which you
can view in the Output window in the Macros IDE.

 solutions and Projects
 The DTE.Solutions object enables you to automate the currently open solution, such as enumerate the
projects that it contains, create a new project in the solution (or remove a project), add a solution folder,
get/update solution confi guration and properties, get/update its build confi guration, or even open a new
solution in the Visual Studio IDE and work with that. The following code demonstrates enumerating
the projects in a solution, printing the project names and the number of project items in each project
to the Output window:

Public Sub EnumerateProjects()
 For Each project As Project In DTE.Solution.Projects
 Debug.Print(project.Name & " contains " & _
 project.ProjectItems.Count.ToString() & " project items")
 Next project
End Sub

 Note that you can also enumerate the projects in the active solution using the
 DTE.ActiveSolutionProjects collection.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Visual studio automation Model ❘ 1005

You can also automate the projects in the solution. This includes enumerating the project items in a
project, and the files it contains. You can also get/update the project’s configuration and properties,
and add or remove items from the project:

Public Sub EnumerateProjectsItems()
 Dim project As Project = DTE.Solution.Projects.Item(1) ’Get first project

 For Each projectItem As ProjectItem In project.ProjectItems
 Debug.Print(projectItem.Name)
 Next projectItem
End Sub

windows and documents
Windows in Visual Studio are either tool windows (such as the Solution Explorer, Tasks window,
and so on) or document windows (files open in the code editor or a designer). Working with all
types of windows is relatively simple.

You can enumerate through all the open windows and get details of each window as follows:

Public Sub EnumerateOpenWindows()
 ’This includes both tool windows and document windows
 For Each window As Window2 In DTE.Windows
 Debug.Print(window.Caption & " | State = " & window.WindowState.ToString())
 Next window
End Sub

Next, take a look at how to work with tool windows. Use the following code to get a reference to
a window (whether or not it’s open) and interact with the window itself (activating it, showing it,
hiding it, collapsing it, pinning it, and so on):

Public Sub ShowandDockTaskListWindow()
 Dim window As Window2 = DTE.Windows.Item(Constants.vsWindowKindTaskList)
 window.Visible = True ’Show it
 window.IsFloating = False ’Dock it
 window.AutoHides = False ’Pin it
 window.Activate()
End Sub

You can get a reference to a specific tool window (such as the Task List), and interact with its
functionality (such as adding tasks to the Task List):

Public Sub AddTaskToTaskList()
 Dim tasksWindow As TaskList = DTE.ToolWindows.TaskList
 tasksWindow.TaskItems.Add("", "", "Created by a macro")
End Sub

As you can see, working with the tool windows is fairly straightforward. Now look at how to work
with document windows. You can get a reference to the active window in the IDE like so:

Dim window As Window2 = DTE.ActiveWindow

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1006 ❘ chaPter 50 The AuTomATion model

 You can even obtain a reference to the Visual Studio IDE window itself to manipulate:

Dim window As Window2 = DTE.MainWindow

 It ’ s possible to automate the document windows in Visual Studio, including opening or closing
a document window, activating it, and getting the project item object opened in the document
window. The following example enumerates through the open document windows, printing the
fi lename and its path to the output window:

Public Sub EnumerateOpenDocuments()
 For Each document As Document In DTE.Documents
 Debug.Print(document.Name & ", Path=" & document.Path)
 Next document
End Sub

 To get a reference to the active document window, use:

Dim document As Document = DTE.ActiveDocument

 You can use the DTE.WindowConfigurations collection to manipulate the confi guration of
windows in the IDE.

 commands
 Every executable action in Visual Studio is represented by a command. For example, all menu items
execute a command when selected. Every command has a unique name, numeric ID (within its
grouping), and GUID designating its grouping. Visual Studio has thousands of commands, as you
can see by enumerating the DTE.Commands collection like so:

 Public Sub EnumerateCommands()
 For Each command As Command In DTE.Commands
 Debug.Print(command.Name & “, ID=” & command.ID & “, GUID=” & command.Guid)
 Next command
End Sub

 To perform an action in Visual Studio through your add-in or macro, you will need to get a
reference to the appropriate command and execute it. For example, say you want to comment out
the selected code in the code editor. This command is called Edit.CommentSelection , and you can
execute it using the following code:

Public Sub ExecuteCommentSelectionCommand()
 DTE.ExecuteCommand(“Edit.CommentSelection”)
End Sub

 Finding the command name for a specifi c action can be diffi cult considering the
number of commands that exist. The easiest way to fi nd the name of a command
so you can use it is to record a macro (see Chapter 52) of you performing the
action, and inspect the code the macro recorder generates.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Visual studio automation Model ❘ 1007

You can also listen for commands being executed, which are raised by Visual Studio as events that you
can handle. An event will be raised before the command is executed, and another event will be raised
after the command has completed. For example, you may want to do something particular when
text is pasted into the code editor (that is, respond to the Edit.Paste command). Handling events is
covered later in this chapter.

debugger
You can control the various functions of the Visual Studio debugger using the DTE.Debugger
automation object. This allows you to work with breakpoints, control code execution, and examine
various aspects of the application being debugged (including processes and threads).

The following code demonstrates enumerating through all the breakpoints in the current solution:

Public Sub EnumerateBreakpoints()
 For Each breakpoint As Breakpoint2 In DTE.Debugger.Breakpoints
 Debug.Print(breakpoint.Name & " | File: " & breakpoint.File & _
 " | Function: " & breakpoint.FunctionName & _
 " | Line: " & breakpoint.FileLine)
 Next breakpoint
End Sub

You can also control the execution of code when debugging an application, such as starting
debugging, terminating debugging, stepping over a line of code, running to the current cursor
position, and so on. The following code demonstrates starting the current solution in the debugger:

Public Sub RunApplicationInDebugger()
 DTE.Debugger.Go()
End Sub

events
The automation model enables you to listen for various actions in Visual Studio and respond to
them by raising events that you can handle. The events are categorized into a number of objects
according to their functional area under the DTE.Events object, including DocumentEvents,
WindowEvents, BuildEvents, SolutionEvents, ProjectsEvents, DebuggerEvents, and many
others. Chapter 51 demonstrates handling events in add-ins. In macros, the EnvironmentEvents
module that is automatically added to each macro project defines event variables that you can
create event handler methods for (using the Handles keyword). The following code captures
the DocumentOpened event on the DTE.Events.DocumentEvents object (an instance of
which has previously been created and stored in the DocumentEvents variable in the default
EnvironmentEvents module). Place it in the EnvironmentEvents module, save the module, and
close the Macros IDE:

Private Sub DocumentEvents_DocumentOpened(ByVal Document As EnvDTE.Document) _
 Handles DocumentEvents.DocumentOpened
 MsgBox("Document opened: " & Document.Name & " at " & DateTime.Now)
End Sub

This event handler will be raised whenever you open a new document in the Visual Studio IDE.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1008 ❘ chaPter 50 The AuTomATion model

suMMary

In this chapter you were introduced to the various means of extending the functionality of
Visual Studio 2010, and you then took a look at the structure and capabilities of the Visual
Studio automation model, which both add-ins and macros use to extend Visual Studio.
The following two chapters look at these two means of extending Visual Studio using this
object model.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

51
 add - ins

 what ’ s in this chaPter?

 Understanding the structure of add - ins ➤

 Creating add - ins ➤

 Testing and debugging add - ins ➤

 Deploying add - ins ➤

 As detailed in Chapter 50 , Visual Studio add - ins are components that run within Visual
Studio and extend its functionality via the Visual Studio automation model.

 This chapter takes you through the process of creating a Visual Studio add - in that integrates
with the Visual Studio IDE to display a tool window (that enables you to store some notes),
perform actions in Visual Studio (copy selected text from the code editor), and handle Visual
Studio events (capture the cut and copy command events from the code editor).

 deVeloPinG an add - in

 When you create a Visual Studio add - in project, the Add - in Wizard appears and helps you to
create the appropriate structure and base functionality in your add - in based on your input
to its questions. From there you are on your own to implement the functionality from this base
framework. You start from the base that it gives you and gradually add functionality to make
it a useful tool.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1010 ❘ chaPter 51 Add - inS

 the add - in wizard
 Start by creating a new project, using the Visual Studio Add - in project template in the Extensibility

project category (under the Other Project Type category), as shown in Figure 51 - 1.

 fiGure 51 - 1

 Clicking OK starts the Add - in Wizard. The wizard consists of seven steps (including a welcome step
and summary step). This section goes through each of these steps in the wizard and the options that
each step provides.

 There is a welcome page at the start, which gives a short description of the wizard (as shown in
Figure 51 - 2).

 In the next step of the Add - in Wizard (as shown in Figure 51 - 3) you need to choose a development
language for your add - in (because the Visual Studio Add - in project template was not under a
particular language category in the New Project dialog). You have four options — Visual C#, Visual
Basic, Visual C++/CLR, and Visual C++/ATL. Visual Studio generates the project in the language
that you choose here.

 You ’ ll note that the Extensibility category also contains a Shared Add - in project
template. This template is similar to the Visual Studio Add - in, but is used for
creating add - ins for the various applications in Microsoft Offi ce instead of
Visual Studio (although this has largely been taken over by VSTO).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now you need to choose an application host for your add-in (as shown in Figure 51-4). Two
application hosts are available for your add-ins: the Visual Studio IDE and the Visual Studio Macros
IDE (which is discussed in the next chapter). You can check or uncheck each host to select or
deselect it. Your add-in will be available to the application host(s) that you select here.

Now you can enter a name and description for your add-in (as shown in Figure 51-5). This
information is what end users see in the Add-in Manager dialog in Visual Studio for your add-in.

fiGure 51-2 fiGure 51-3

fiGure 51-4 fiGure 51-5

The next step contains the options for how your add-in will load and interact with Visual Studio.
You can check three options to include in your add-in (as shown in Figure 51-6). The first option
specifies that your add-in will have a menu item in the Tools menu that can be used to activate it.
The second option indicates that you would like to load your add-in when the Visual Studio IDE
or Visual Studio Macros IDE starts, and the third option is used to specify that your add-in doesn’t
show any modal user interfaces, and thus can be used with command-line builds.

Developing an add-in ❘ 1011

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1012 ❘ chaPter 51 Add-inS

The next step (as shown in Figure 51-7) enables you to display some information in the Visual
Studio About box for your add-in — especially useful if you are releasing your add-in as a product.

fiGure 51-6 fiGure 51-7

In the final step you will see a summary of what
you have chosen in your wizard (as shown in
Figure 51-8). At this stage, you can go back and
change your options or click the Finish button to
go ahead and generate the solution and initial code
for your add-in.

After you click the Finish button, Visual Studio
generates a solution with the required files for
creating the add-in, configured according to the
options you’ve selected for the add-in.

Project structure
Once the project has been created, you will find
the project structure, shown in Figure 51-9.

As you can see, the project consists of a Connect.cs (or Connect.vb)
file, and two files with the .AddIn extension.

The Connect.cs/Connect.vb file contains the core class that controls
the add-in. The .AddIn files are used to enable Visual Studio to
discover the add-in so it can load it. One is located in your project
folder, but you’ll note that the other is a linked file (MyNotesTool -
For Testing.AddIn), located in the My Documents\Visual Studio
2010\Addins folder of your Windows user profile. As its name suggests, this file is used so that
Visual Studio can discover your add-in during its testing and debugging. The reason the file is in
this folder is that it is one of the paths that Visual Studio looks in to discover add-in files. If you
open both files, you will find that they are identical with one exception — the Assembly node of the
linked file includes the full path to the compiled add-in assembly, whereas the other only includes

fiGure 51-8

fiGure 51-9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the name of the assembly (expecting it to be in the same folder as the .AddIn fi le). We take a closer
look at .AddIn fi les later in this chapter.

 testing your add - in
 First, check to make sure everything works OK by simply running your project. This starts a new
instance of Visual Studio 2010 in which you can test and debug the add - in. If you selected the
options in the wizard to start automatically when the IDE is started and to create a Tool menu item,
you should see a menu item at the top of the Tools menu for your add - in, with a default smiley face
icon (which you can change to your own icon), as shown in Figure 51 - 10.

 If you haven ’ t selected the add - in to load automatically with the IDE, you can start it from the Add -
 in Manager (Tools ➪ Add - in Manager) and put a check mark in the checkbox next to its name, as
shown in Figure 51 - 11.

 fiGure 51 - 10 fiGure 51 - 11

 If your add - in is not appearing in the Add - in Manager, Visual Studio is unable to
fi nd the .AddIn fi le. Go to Tools ➪ Options and select the Add - in/Macro Security
category (under the Environment category, as shown in Figure 51 - 12). Make sure
that the path where the testing .AddIn fi le is located is listed in the Add - in File
Paths list. It ’ s also possible that the environment variables used in this dialog are
not declared in your system, so check these too.

 fiGure 51 - 12

Developing an add - in ❘ 1013

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1014 ❘ chaPter 51 Add-inS

Close the debugging instance of Visual Studio to finish debugging the add-in.

the .addin file
As mentioned earlier in this chapter, there are two .AddIn files in your solution: one in the
project folder, and a linked file that has been placed in the My Documents\Visual Studio 2010\
Addins folder on your machine.

In early versions of Visual Studio, you had to register the COM component by hand for an add-in
on the machine, making deployment a little difficult (the add-in couldn’t be deployed using a simple
XCOPY). .AddIn files were designed to make the process of deploying add-ins easier. By placing
the .AddIn file in a folder that Visual Studio is configured to look in, Visual Studio will use it to
discover your add-in and load it (without worrying about the need to register the add-in). Essentially,
.AddIn files point Visual Studio to where your add-in is (which will usually be in the same path as
the .AddIn file).

.AddIn files are XML files, and in addition to pointing Visual Studio to the location of your add-in,
they also contain configuration information such as what hosts the add-in should be accessible to
(including different versions of Visual Studio), what will appear in the Add-in Manager to describe
the add-in, and startup options for the add-in.

If you open up an .AddIn file, you will find XML similar to the following:

<?xml version="1.0" encoding="UTF-16" standalone="no"?>
<Extensibility xmlns="http://schemas.microsoft.com/AutomationExtensibility">
 <HostApplication>
 <Name>Microsoft Visual Studio Macros</Name>
 <Version>10.0</Version>
 </HostApplication>
 <HostApplication>
 <Name>Microsoft Visual Studio</Name>
 <Version>10.0</Version>
 </HostApplication>
 <Addin>
 <FriendlyName>My Notes</FriendlyName>
 <Description>My Notes</Description>
 <Assembly>MyNotesTool.dll</Assembly>
 <FullClassName>MyNotesTool.Connect</FullClassName>
 <LoadBehavior>5</LoadBehavior>
 <CommandPreload>1</CommandPreload>
 <CommandLineSafe>1</CommandLineSafe>
 </Addin>
</Extensibility>

Of particular note are the HostApplication nodes, listing each host application name and its specific
version that the add-in should be accessible to. The preceding file is making the add-in available to
both Visual Studio 2010 and the Visual Studio Macros 2010 IDE. If you want to make your add-in
accessible to other versions of Visual Studio, simply add additional HostApplication nodes, with
the corresponding version number for that version of Visual Studio (Visual Studio 2008 = 9.0, Visual
Studio 2005 = 8.0). Of course you must make sure that you don’t use features specific to Visual Studio
2010, and remove references to the higher EnvDTE dlls than the lowest version you are supporting.

http://schemas.microsoft.com/AutomationExtensibility
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 the connect class
 This section looks at the structure of the core class that manages the add - in. The Connect.cs class
(or Connect.vb) manages the life cycle of the add - in, and you can fi nd a number of methods that
handle the event notifi cations from the IDTExtensibility2 and IDTCommandTarget interfaces that
are implemented by the class.

 The IDTExtensibility2 interface exposes handlers for the events raised by Visual Studio that
notifi es the add - in at each point in its life cycle. The following methods form the IDTExtensibility2
interface:

 ➤ OnConnection: Called when the add - in is being loaded by Visual Studio.

 ➤ OnStartupComplete: Called when Visual Studio has fi nished loading.

 ➤ OnAddInsUpdate: Called when the collection of add - ins in Visual Studio has changed.

 O ➤ nBeginShutdown: Called when Visual Studio is shutting down.

 ➤ OnDisconnection: Called when the add - in is being unloaded by Visual Studio.

 The IDTCommandTarget interface exposes handlers for the events of named commands used by the
add - in. The following methods form the IDTCommandTarget interface:

 ➤ Exec: Called when a command used by the add - in is called from Visual Studio (such as
when the menu item created under the Tools menu is selected). Visual Studio will pass this
method the name of the command so you can respond accordingly.

 ➤ QueryStatus: Called when the status of a command (such as whether or not it is available) is
requested by Visual Studio.

 creating a tool window
 Now that you have looked at the structure and life cycle of an add - in, it ’ s time to add some
functionality to interact with the Visual Studio IDE and implement some useful behavior. The
sample you work through in this chapter creates a dockable tool window in Visual Studio that
will enable you to place some notes while working in Visual Studio. Unfortunately, the Add - in
Wizard doesn ’ t provide options to help in creating your own tool window (which is one of the more
common requirements when writing add - ins), so you will have to do this yourself. This section takes
you through the steps to do so.

 If you are upgrading an add - in from a previous version of Visual Studio, you will
need to add another HostApplication node to the existing .AddIn fi le, with a
value of 10.0 in the Version node so that it will run under Visual Studio 2010.

 Despite Visual Studio 2010 having a complete user interface overhaul to use WPF,
unfortunately you still have to use Windows Forms for your tool windows when
creating add - ins. To use WPF for your tool windows, you will have to use
VSPackages in the Visual Studio 2010 SDK when extending Visual Studio instead.

Developing an add - in ❘ 1015

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1016 ❘ chaPter 51 Add - inS

 Add a new Windows Forms User Control item to your project, and call it NotesUserControl
(.cs or .vb). Add a RichTextBox control to the user control, name it rtbNotes , set the BorderStyle
property to None, and dock it to fi ll the area of the control.

 Now return to the Connect.cs (or .vb) fi le, and add the following method to it to simplify the
process of creating the tool window:

 Vb

Private toolWindow As Window2 = Nothing

Private Function CreateToolWindow(ByVal guid As String,
 ByVal windowTitle As String,
 ByVal classPath As String) As Object
 Dim windowObject As Object = Nothing

 Dim windows As Windows2 = DirectCast(_applicationObject.Windows, Windows2)
 Dim assemblyLocation As String = Assembly.GetCallingAssembly().Location

 toolWindow = DirectCast(windows.CreateToolWindow2(_addInInstance,
 assemblyLocation, classPath,
 windowTitle, guid,
 windowObject), Window2)

 Return windowObject
End Function

 c#

Private Window2 toolWindow = null;

private object CreateToolWindow(string guid, string windowTitle, string classPath)
{
 object windowObject = null;

 Windows2 windows = (Windows2)_applicationObject.Windows;
 string assemblyLocation = Assembly.GetCallingAssembly().Location;

 toolWindow = (Window2)windows.CreateToolWindow2(_addInInstance,
 assemblyLocation, classPath, windowTitle, guid, ref windowObject);

 return windowObject;

}

 A reference needs to be maintained to the user control at the class level because
windows of add - ins are not destroyed/cleaned up during the life cycle of the
add - in — instead they are merely hidden.

 You will create the tool window when the menu item in the Tools menu is selected. You are notifi ed
of this in the Exec method, and you ’ ll notice that the wizard already created the code to respond to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this (although it currently does nothing). Use the following code to create the tool window and have
it displayed in Visual Studio (the code to be added to the method has been bolded):

Vb

Private notesUserControl As NotesUserControl

Public Sub Exec(ByVal commandName As String,
 ByVal executeOption As vsCommandExecOption,
 ByRef varIn As Object, ByRef varOut As Object,
 ByRef handled As Boolean) Implements IDTCommandTarget.Exec
 handled = False
 If executeOption = vsCommandExecOption.vsCommandExecOptionDoDefault Then
 If commandName = "MyNotesTool.Connect.MyNotesTool" Then
 ’ An ID that uniquely identifies this tool window
 Dim windowID As String = "{fb9e4681-681d-4216-9a28-0f09f3528360}"

 ’ Create the tool window if it hasn’t already been created
 If toolWindow Is Nothing Then
 notesUserControl = DirectCast(CreateToolWindow(windowID,
 "My Notes" , "MyNotesTool.NotesUserControl"), NotesUserControl)
 End If

 ’ Make the tool window visible if it’s currently hidden
 toolWindow.Visible = True

 handled = True
 Return
 End If
 End If
End Sub

c#

private NotesUserControl notesUserControl;

public void Exec(string commandName, vsCommandExecOption executeOption,
 ref object varIn, ref object varOut, ref bool handled)
{
 handled = false;
 if (executeOption == vsCommandExecOption.vsCommandExecOptionDoDefault)
 {
 if (commandName == "MyNotesTool.Connect.MyNotesTool")
 {
 // An ID that uniquely identifies this tool window
 string windowID = "{fb9e4681-681d-4216-9a28-0f09f3528360}" ;

 // Create the tool window if it hasn’t already been created
 if (toolWindow == null)
 {
 notesUserControl = (NotesUserControl)
 CreateToolWindow(windowID, "My Notes" ,
 "MyNotesTool.NotesUserControl");

 }

Developing an add-in ❘ 1017

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1018 ❘ chaPter 51 Add - inS

 // Make the tool window visible if it ’ s currently hidden
 toolWindow.Visible = true;

 handled = true;
 return;
 }
 }
}

 As you can see from the code, it ’ s now a relatively easy process to create the window. You pass an
ID that uniquely identifi es this tool window, a window
title, and the qualifi ed name of the user control class to
the CreateToolWindow method you created earlier, and
it handles calling the extensibility model to create the
tool window in Visual Studio.

 Now, run your project and select the menu item for the
add - in under the Tools menu. The user control will
display as a tool window (as shown in Figure 51 - 13),
which you can then move around and dock to the IDE
as if it were any other tool window. fiGure 51 - 13

 Visual Studio will remember the location of the window (using its unique ID to
store and retrieve these details), so the next time you load Visual Studio the window
will appear where you last placed it (although this only works when the add - in is
not being debugged). However, for it to be displayed when Visual Studio is started,
you will have to create the tool window when the add - in is started (rather than
when its menu item is selected).

 accessing the Visual studio automation Model
 You can now add your own additional functionality to the tool window (in the user control) such
as loading and saving the text to a text fi le (if you want) as if you were programming a standard
application. However, this example doesn ’ t currently demonstrate integrating with the functionality
of Visual Studio and the events it raises, so add a feature to demonstrate this by creating a button to
take selected code from the code editor and insert it into the notes at the current caret position.

 To get to the Visual Studio object model from the user control, you ’ ll have to make the class - level
variable _applicationObject in the Connect class static and expose it publicly by wrapping it in a
property as shown in the following code:

 Vb

Private Shared _applicationObject As DTE2

Public ReadOnly Property ApplicationObject() As DTE2
 Get

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Return _applicationObject
 End Get
End Property

c#

private static DTE2 _applicationObject;

public static DTE2 ApplicationObject
{
 get { return Connect._applicationObject; }
}

Add a ToolStrip control to the user control with a button that will copy the selected text in the
code editor and insert it into the textbox when clicked. In the event handler for this button, add the
following code:

Vb

Private Sub btnCopy_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnCopy.Click
 If Not Connect.ApplicationObject.ActiveDocument Is Nothing Then
 Dim selection As TextSelection = DirectCast(
 Connect.ApplicationObject.ActiveDocument.Selection, TextSelection)

 rtbNotes.SelectedText = selection.Text
 End If
End Sub

c#

private void btnCopy_Click(object sender, EventArgs e)
{
 if (Connect.ApplicationObject.ActiveDocument != null)
 {
 TextSelection selection =
 Connect.ApplicationObject.ActiveDocument.Selection as TextSelection;

 rtbNotes.SelectedText = selection.Text;
 }
}

This will take the selected text from the active code editor document and insert it at the current
caret position in the rich textbox in the user control. Note that the code will be unformatted (that
is, no syntax coloring) when it’s put into the rich textbox. Alternatively, you can use the following
code to copy the text out of the code editor and paste it into the rich textbox, which would retain
the syntax coloring but lose the existing contents of the clipboard:

Vb

Private Sub btnCopy_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnCopy.Click
 If Not Connect.ApplicationObject.ActiveDocument Is Nothing Then

Developing an add-in ❘ 1019

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1020 ❘ chaPter 51 Add-inS

 Connect.ApplicationObject.ActiveDocument.Selection.Copy()
 rtbNotes.Paste()
 End If
End Sub

c#

private void btnCopy_Click(object sender, EventArgs e)
{
 if (Connect.ApplicationObject.ActiveDocument != null)
 {
 Connect.ApplicationObject.ActiveDocument.Selection.Copy();
 rtbNotes.Paste();
 }
}

handling Visual studio events
As a final example, handle an event raised by Visual Studio. You’ll handle the Cut and the Copy
command events (before the command is actually executed), get the selected text from the code
editor, and automatically insert it into the rich textbox.

First, you need to get a reference to the commands whose events you want to capture (the Cut and
Copy commands), and then the command events objects themselves. C# developers will also add an
event handler for the BeforeExecute event for each command.

Vb

Private WithEvents cutEvent As CommandEvents = Nothing
Private WithEvents copyEvent As CommandEvents = Nothing

Private Sub EnableAutoCopy()
 ’ Enable the event listening for the Cut and Copy commands
 Dim cmdCut As Command = Connect.ApplicationObject.Commands.Item("Edit.Cut", 0)
 Dim cmdCopy As Command = Connect.ApplicationObject.Commands.Item("Edit.Copy",
 0)

 cutEvent = Connect.ApplicationObject.Events.CommandEvents(cmdCut.Guid,
 cmdCut.ID)
 copyEvent = Connect.ApplicationObject.Events.CommandEvents(cmdCopy.Guid,
 cmdCopy.ID)
End Sub

c#

private CommandEvents cutEvent = null;
private CommandEvents copyEvent = null;

private void EnableAutoCopy()
{
 // Enable the event listening for the Cut and Copy commands
 Command cmdCut = Connect.ApplicationObject.Commands.Item("Edit.Cut", 0);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 cutEvent = Connect.ApplicationObject.Events.get_CommandEvents(cmdCut.Guid,
 cmdCut.ID);
 cutEvent.BeforeExecute += new
 _dispCommandEvents_BeforeExecuteEventHandler(OnBeforeCutCopy);

 Command cmdCopy = Connect.ApplicationObject.Commands.Item("Edit.Copy", 0);

 copyEvent = Connect.ApplicationObject.Events.get_CommandEvents(cmdCopy.Guid,
 cmdCopy.ID);
 copyEvent.BeforeExecute += new
 _dispCommandEvents_BeforeExecuteEventHandler(OnBeforeCutCopy);
}

Now you can define the event handler method that will handle the BeforeExecute event for both
commands, extracting the selected text from the code editor and inserting it into the rich textbox:

Vb

Private Sub OnBeforeCutCopy(ByVal guid As String, ByVal id As Integer,
 ByVal customIn As Object, ByVal customOut As Object,
 ByRef cancel As Boolean) _
 Handles cutEvent.BeforeExecute, copyEvent.BeforeExecute
 Dim codeWindow As TextWindow = TryCast(
 Connect.ApplicationObject.ActiveWindow.Object, EnvDTE.TextWindow)

 If Not codeWindow Is Nothing Then
 rtbNotes.SelectedText = codeWindow.Selection.Text &
 Environment.NewLine & Environment.NewLine
 End If
End Sub

c#

private void OnBeforeCutCopy(string guid, int id, object customIn,
 object customOut, ref bool cancel)
{
 TextWindow codeWindow = Connect.ApplicationObject.ActiveWindow.Object
 as EnvDTE.TextWindow;

 if (codeWindow != null)
 {
 rtbNotes.SelectedText = codeWindow.Selection.Text +
 Environment.NewLine + Environment.NewLine;
 }
}

Finally, you need to clean things up when the add-in is unloaded and release any event handlers
you have active (the CloseToolWindow method will be called from the Connect class in the
OnDisconnection method):

Vb

private void DisableAutoCopy()
{
 if (cutEvent != null)

Developing an add-in ❘ 1021

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1022 ❘ chaPter 51 Add-inS

 Marshal.ReleaseComObject(cutEvent);

 if (copyEvent != null)
 Marshal.ReleaseComObject(copyEvent);

 cutEvent = null;
 copyEvent = null;
}

public void CloseToolWindow()
{
 DisableAutoCopy();
}

c#

private void DisableAutoCopy()
{
 if (cutEvent != null)
 Marshal.ReleaseComObject(cutEvent);

 if (copyEvent != null)
 Marshal.ReleaseComObject(copyEvent);

 cutEvent = null;
 copyEvent = null;
}

public void CloseToolWindow()
{
 DisableAutoCopy();
}

dePloyinG add-ins

Despite being a COM component (which typically require registration in Windows), Visual Studio
add-ins are very easy to deploy thanks to the .AddIn file, which enables Visual Studio to discover
your add-in and use it.

As discussed earlier in the chapter, Visual Studio will look in each of the paths listed in the Options
dialog (see Figure 51-12) for files with an .AddIn extension. Therefore, when deploying your add-
in, you will need to place the .AddIn file and the add-in assembly (that is, the .dll file) into one of
these paths (typically a user profile’s My Documents\Visual Studio 2010\Addins folder), enabling
Visual Studio to discover and load your add-in when it starts up.

You can use a simple XCOPY operation to deploy your add-in to another user’s machine, but the
best way would be to create a setup program to do this for you. You could use a standard Windows
installer package (.msi), but in this instance it’s probably better to use a Visual Studio Content
Installer package. Unfortunately, it’s a manual process to create a Visual Studio Content Installer
package, but they’re very easy to create. They essentially consist of your files packed into a zip file,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

but with a .vsi extension, and a specially formatted XML file (also included in the zip file) with
a .vscontent extension that contains the details of the files to be installed (from the zip file) and
where they are to be installed to.

Start by creating an XML file in your project with the name MyNotesTool.vscontent, and add the
following content:

<VSContent xmlns="http://schemas.microsoft.com/developer/vscontent/2005">
 <Content>
 <FileName>MyNotesTool.Addin</FileName>
 <FileName>MyNotesTool.dll</FileName>
 <DisplayName>My Notes</DisplayName>
 <Description>
 Enables you to keep notes in a tool window in
 Visual Studio while you code.
 </Description>
 <FileContentType>Addin</FileContentType>
 <ContentVersion>2.0</ContentVersion>
 </Content>
</VSContent>

Now, in Windows Explorer (or your favorite zip tool), combine the MyNotesTool.AddIn file, the
MyNotesTool.dll file, and the MyNotesTool.vscontent file into a zip file, and name it
MyNotesTool.vsi (do not include the .zip extension). Now when someone double-clicks this
.vsi file, the add-in will automatically be installed and ready for them to use when they next open
Visual Studio.

suMMary

In this chapter, you were introduced to Visual Studio add-ins, and went through the process of
creating one that displayed a dockable tool window, retrieved text from the code editor, and
responded to some code editor events. Finally, you looked at the best way to deploy your add-in to
other developers.

summary ❘ 1023

http://schemas.microsoft.com/developer/vscontent/2005
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

52
 Macros

 what ’ s in this chaPter?

 Understanding macros ➤

 Creating macros ➤

 Testing and debugging macros ➤

 Deploying macros ➤

 Like add - ins, macros are another common extensibility option built into Visual Studio. As
discussed in Chapter 50 , macros have many benefi ts over add - ins (quick to create, and Visual
Studio actions can be recorded to a macro), but also many downsides (they must be written in
VB, can ’ t be compiled, and have limited abilities). It ’ s a tradeoff as to which means you use to
automate Visual Studio based upon your requirements. If you perform the same set of actions
repetitively in Visual Studio, macros are a great way to reduce these down to a single action.

 This chapter takes you through the process of recording a macro and running it again,
creating macros from scratch, and deploying macros to other developers once you ’ ve
created them.

 understandinG Macros

 A Visual Studio macro (it ’ s actually called VSMacro but is commonly known just as a macro
among developers) is code that can be run by the Visual Studio IDE to automate a task. The
code is not compiled, but is interpreted — it ’ s essentially a scripting language for Visual
Studio. A macro is implemented as a public method in a module that takes no parameters and
does not return a value. Like add - ins, macros use the Development Tools Extensibility (DTE)
API to automate the Visual Studio IDE. Macros can ’ t display any user interface elements in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1026 ❘ chaPter 52 mAcroS

Visual Studio (such as a tool window) — if you need this sort of functionality, you should consider
creating an add-in instead.

Macros exist in code modules, and these code modules are contained in macro projects. Macro
project files have a .vsmacros extension, and are much like a standard Visual Studio project file (in
concept); however, the various modules and associated files in the project are embedded into this
project file (rather than existing in their own individual files). In addition, a code module can contain
one or more macros, so you can include multiple macros in a module.

If you are a VB developer, you will have no problem coding macros, because VB is the native
language used by macros. Unfortunately, C# is not supported as a macro language, and therefore C#
developers will need to learn VB or create add-ins instead.

the Macro exPlorer tool window

Before you look at the tools for creating macros, take a look at
the Macro Explorer tool window that can help you manage and
run the macros available to you. If the tool window is not visible,
select the View ➪ Other Windows ➪ Macro Explorer menu item to
display it in the IDE.

As you can see from Figure 52-1, there is a top-level Macros node
under which macro projects live. Each macro within that project is
listed as well.

This dialog is very useful in enabling you to select and run a macro
(simply double-click the macro to run it), and edit a macro (right-
click the macro and select Edit from the context menu). When you select to edit a macro, its code
will be opened in the Macros IDE, which is discussed in the next section of this chapter.

You’ll notice that two projects are already displayed in the Macro Explorer: MyMacros and
Samples. MyMacros is the default project in which to create your macros (although you can create
additional macro projects as required). The Samples macro project consists of example macros that
you can use to help you learn how to write macros and work with the Visual Studio automation
model.

the Macros ide

As you can see in Figure 52-2, the Visual Studio Macros IDE is quite similar to the Visual Studio
IDE, despite being a completely separate program. It being a somewhat familiar user interface
should help you navigate your way around the IDE.

fiGure 52-1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Of particular note is the Project Explorer tool window (akin to the Solution Explorer tool window
in the Visual Studio IDE, on the right side of the screen). This window enables you to navigate the
various macro projects and the modules/fi les they contain. You ’ ll note that as opposed to the Macro
Explorer in the main Visual Studio IDE, which displays the available macros under each macro
project, this window displays the modules and fi les within each macro project. The Macro Explorer
hides the modules from you, and just collates all the macro functions across all the modules to be
displayed under the macro project. When you open a module, it ’ s just the same as opening a code
fi le in Visual Studio.

 fiGure 52 - 2

 The Visual Studio Macros IDE can ’ t run as a standalone program and can only
be loaded via Visual Studio.

 creatinG a Macro

 You have two ways of creating a macro: one is to start from scratch and write the code yourself, and
the other is to record a set of actions in Visual Studio using the macro recorder for later playback.
This section looks at both methods, starting with recording macros because that ’ s the easiest way to
get started creating macros.

Creating a Macro ❘ 1027

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1028 ❘ chaPter 52 mAcroS

 how to record a Macro
 If you simply want to automate a predefi ned set of actions in Visual Studio, the easiest way to
create a macro to perform those actions is to use the macro recorder to record you performing those
actions, and then play it back when required. The macro recorder will take all the actions you do in
the Visual Studio IDE while it ’ s recording and document them in code form. If necessary, you can
then tweak the code that the macro recorder generated to work exactly the way you want. This can
save you having to learn the Visual Studio automation model and manually write code against it. It ’ s
also a great way of learning how to create macros.

 To record a macro, select Tools ➪ Macros ➪ Record Temporary Macro (or press
Ctrl 1 Shift 1 R). This immediately starts the recorder, which will be recording
everything you now do in the Visual Studio IDE. A toolbar (shown in Figure 52 - 3) is
displayed, enabling you to pause, stop, cancel, or continue recording the macro.

 After performing the actions that you want to record, click the stop button in the macro recorder
toolbar (or press Ctrl 1 Shift 1 R again). Now, if you look in the
Macro Explorer you will see that a module has been created in the
MyMacros project (by default) called RecordingModule, and that
a macro called TemporaryMacro has been created (as shown
in Figure 52 - 4).

 You should now rename the macro by right - clicking it, selecting
Rename from the context menu (or simply selecting it and pressing
F2), and entering a new name in the textbox for it so it isn ’ t
overwritten the next time you try to record a macro. You can now
run the macro by double - clicking its name and testing it.

 fiGure 52 - 3

 You can change the project that the macro is recorded to by right - clicking the
project in the Macro Explorer and selecting the Set as Recording Project menu
item. However, the module that the macro is recorded to cannot be set, and will
always go into RecordingModule.

 Although the macro recorder can help a lot in creating a macro, it won ’ t capture every action you
perform in Visual Studio, and more than likely won ’ t be able to capture everything (such as all the
logic) that you want it to do. That ’ s when you will have to turn to modifying the code it outputs to
add the appropriate additional logic that you require.

 how to develop a Macro
 When you create a macro, you can choose to create a new macro project (useful if you want to
distribute this macro to other developers), or use an existing one. If you want to create a new macro
project, you will no doubt be surprised to fi nd no option to create one within the Macros IDE.

 fiGure 52 - 4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Instead, you will have to do it back in the Visual Studio IDE from either the Macro Explorer by
right - clicking the root Macros node and selecting New Macro Project from the context menu, or
using the Tools ➪ Macros ➪ New Macro Project menu item. This will show a dialog enabling you
to give the project a name, and then the project will be created along with a default module called
Module1 (which you will ideally rename to something more meaningful). Otherwise, you can simply
use one of the existing macro projects (with the MyMacros project probably being the best choice).
Then you can start adding public functions to the code module — with each becoming a macro.

 Two good ways exist to get up to speed with writing macros. The fi rst is to look
at the samples (all the macros in the Samples macro project) and how they work.
Try to fi nd one that does something similar to what you need to do and work
from that. Another good way to get started is to just use the macro recorder to
record various actions when working with Visual Studio, and then examine the
code that it generates. You can then take pieces of this code and use it in the
macro you are working on.

 You can add additional modules as required by right - clicking the macro project and selecting Add
 ➪ Add New Item from the context menu. You can also import existing code modules (such as a
pre - existing code module from a standard VB project) into your macro project by right - clicking the
macro project and selecting Add ➪ Add Existing Item from the context menu, then selecting
the module that you want to import from the dialog that is displayed. Of course, you could also
reference a .NET assembly (written in any .NET language) containing functions that you want to
use in your macro by right - clicking the References node under the macro project, selecting Add
Reference from the context menu, and then selecting the assembly in the dialog that ’ s displayed.
However, if you fi nd yourself doing this and you think that you might deploy this macro to other
developers, it is probably better to create an add - in instead of a macro.

 Let ’ s work through an example of creating a very simple macro that inserts some text at the
current cursor position in the code editor to state that the code below was modifi ed (consisting of
 // Modified by [Name] at [DateTime] , with appropriate values replacing the square bracket
placeholders).

 Because you plan to deploy this macro to other machines, you ’ ll create a separate macro project for
it called CodeNotes (right - click the Macros node in the Macro Explorer tool window and select
New Macro Project from the context menu). Rename the default module that was created under
it from Module1 to CodeModifi cationNotes (right - click the module and select Rename from the
context menu). Double - click the CodeModifi cationNotes module to open it in the Macros IDE. Add
the following function to the module (this will be the macro):

Public Sub InsertCodeModificationNote()
 Const MY_NAME As String = "Chris Anderson"
 Dim textSelection As EnvDTE.TextSelection

 textSelection = CType(DTE.ActiveDocument.Selection(), EnvDTE.TextSelection)
 textSelection.Text = "// Modified by " & MY_NAME & " at " & DateTime.Now
End Sub

Creating a Macro ❘ 1029

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1030 ❘ chaPter 52 mAcroS

Now you can debug your macro by placing the cursor within the function and pressing F5 (Run).
The Visual Studio IDE will quickly become active as the macro runs, returning to the Macros IDE
when complete. If you return to the Visual Studio IDE and look in the Macro Explorer, you will
note that the macro now appears under the module, and can be run by double-clicking its name.

runninG a Macro

You have a number of ways to run a macro once you’ve created it that we’ve already discussed. As a
recap you can:

Double-click the name of the macro in Macro Explorer. ➤

Press F5 in the Macros IDE when the cursor is inside the macro code. ➤

In addition, you can also assign keyboard
shortcuts to macros that you use regularly
to make them easier to activate and run. Go to
Tools ➪ Options and find the Keyboard node
under the Environment category. Search for
your macro by its name (enter the name into
the Show Commands Containing textbox) and
select it from the list. Select the Press Shortcut
Keys textbox, and press the key combination
that you want to use to activate the macro (as
shown in Figure 52-5). Ensure that the key
combination isn’t currently being used, or you
don’t mind overwriting it, and then click the
Assign button. Now when you press that key combination in the Visual Studio IDE the macro will run.

For long-running macros, a tape icon will appear in the bottom-right corner of the IDE, and in the
taskbar. If you right-click this icon, you can choose to stop any macros currently running.

Debugging macros is similar to debugging any other type of .NET application. You simply start
your macro project in Debug mode by pressing F5 or choosing appropriate menu items in the
Macros IDE. You also have the same debugging tools as in Visual Studio, enabling you to set
breakpoints, step through code, and view the value of a variable by putting your mouse over it.

dePloyinG Macros

Because macros can’t be compiled, when you deploy a macro you are actually deploying its source
code, which any user can view. Therefore, be sure you’re not including any sensitive code in your
macro project. You cannot deploy just a single macro — you need to deploy the entire macro
project. If you have other macros in the project that you don’t want distributed, you should first
move the macro to a new macro project and deploy that instead.

For the macros to be available to a developer automatically in Visual Studio, the macro projects
must be deployed to the My Documents\Visual Studio 2010\Projects\VSMacros80 folder in
that user’s Windows profile.

fiGure 52-5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As with add-ins, you can deploy your macro to another user’s machine using a simple XCOPY
operation, a Windows installer package (.msi), or a Visual Studio Content Installer package.
Creating a Visual Studio Content Installer package is probably your best option, and is created in
much the same way as the one demonstrated for add-ins. Let’s take a look at deploying the macro
project using a Visual Studio Content Installer package.

Create a text file called CodeNotes.vscontent in the same location as your .vsmacros file, with
the following content:

<VSContent xmlns="http://schemas.microsoft.com/developer/vscontent/2005">
 <Content>
 <FileName>CodeNotes.vsmacros</FileName>
 <DisplayName>Code Notes</DisplayName>
 <Description>A macro project to put notes in code.</Description>
 <FileContentType>Macro Project</FileContentType>
 <ContentVersion>1.0</ContentVersion>
 </Content>
</VSContent>

Now, in Windows Explorer (or your favorite zip tool), combine the CodeNotes.vsmacros and
CodeNotes.vscontent files into a zip file, and name it CodeNotes.vsi (do not include the .zip
extension). Now when someone double-clicks this .vsi file, the macro will automatically be
installed and ready to use when he or she next opens Visual Studio.

suMMary

This chapter discussed how macros can be used to automate repetitive tasks in Visual Studio by
either recording those actions or coding them against the Visual Studio automation model. You
looked at the support that Visual Studio has for macros, how to create them, run them, and finally,
deploy them to other developers.

summary ❘ 1031

http://schemas.microsoft.com/developer/vscontent/2005
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Managed extensibility
framework (Mef)

 what ’ s in this chaPter?

 Architecting extensible applications ➤

 Hosting the Managed Extensibility Framework in your applications ➤

 Understanding the Visual Studio 2010 Editor components ➤

 Extending the Visual Studio 2010 Editor ➤

 Importing Visual Studio Services ➤

 Creating loosely coupled applications that can be extended after deployment can be a diffi cult
process. You have many design decisions to make, including identifying and loading extensions
that have been deployed, and making application services available to loaded extensions. The
Managed Extensibility Framework (MEF) is an open source library created by Microsoft designed
to reduce the complexity of creating extensible applications. It allows you to expose reusable parts
of your application to plug - ins or extensions that are discovered and loaded at run time and
design your application in a very loosely coupled fashion.

 Visual Studio 2010 uses the MEF library to provide extension points for the main editor control.
It is expected that in future versions of Visual Studio, more areas will be exposed for this kind of
extension.

 This chapter is split into three sections. The fi rst section is an introduction to how MEF works
and how to use it in your own applications. The middle section describes the components of
the new Visual Studio 2010 Editor control and how they interact. The fi nal section describes the
process of extending the editor with MEF and provides a complete sample which emphasizes
certain types of comment in your code.

53

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1034 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

 GettinG started with Mef

 In this section, you create a simple application that demonstrates the manner in which most
applications will utilize the capabilities offered by MEF. The MEF library is contained within the
 System.ComponentModel.Composition assembly, which is installed in the GAC as a part of
the .NET Framework 4.0.

 The key component of MEF is the CompositionContainer , which is found in the
 System.ComponentModel.Composition.Hosting namespace. A composition container is responsible
for creating composable parts of your application, which in the default MEF implementation are
just normal .NET objects. These parts might be a core aspect of your application or they might
come from externally deployed extension assemblies that are loaded dynamically at run time.

 Each part is able to provide one or more exports that other composable parts need and may require
one or more externally provided imports that other parts provide. Imports and exports can be simple
properties or fi elds, or they can be entire classes. When you request a part from the composition
container, it will attempt to locate the part and satisfy any import dependencies it might have. Each of
these imports must be provided (exported) by other parts that the container is aware of and may have
import requirements of their own, which in turn must also be satisfi ed.

To build a bare - bones MEF application, create a new command - line project, add a reference to the
 System.ComponentModel.Composition assembly, and replace the contents of Program.cs (C#) or
 Module1.vb (VB) with the following:

 c#

using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;

namespace GettingStartedCS
{
 class Program
 {
 static void Main(string[] args)
 {
 var app = new ApplicationRoot();
 app.Run();
 }
 }

 class ApplicationRoot
 {
 public void Run()
 {

 At the time of writing, the MEF library is still in development so some
details may have changed. For the latest information about MEF, check
 http://mef.codeplex.com .

http://mef.codeplex.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Compose();
 }

 private void Compose()
 {
 var compositionContainer = new CompositionContainer();
 compositionContainer.ComposeParts(this);
 }
 }
}

 Code snippet GettingStarted\Program.cs

 Vb

Imports System.ComponentModel.Composition
Imports System.ComponentModel.Composition.Hosting

Module Module1

 Sub Main()
 Dim app As New ApplicationRoot
 app.Run()
 End Sub

End Module

Class ApplicationRoot
 Sub Run()
 Compose()
 Console.WriteLine("OK")
 End Sub

 Private Sub Compose()
 Dim compositionContainer As New CompositionContainer
 compositionContainer.ComposeParts(Me)
 End Sub
End Class

 Code snippet GettingStarted\Module1.vb

 The ComposeParts method is an extension method in the System.ComponentModel
.Composition namespace, so if you do not have this namespace included, this code
will not compile.

 All the sample does is create a CompositionContainer and then ask it to compose the Application
Root class. The ComposeParts method, satisfi es the import requirements of the parts that you provide
it. If it cannot satisfy these requirements it will throw a System.ComponentModel.Composition

Getting started with Mef ❘ 1035

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1036 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

.CompositionException. As the ApplicationRoot class has no import requirements, the
application simply writes OK to the console and ends. This is not very exciting, but it does provide a
base on which you can add functionality.

imports and exports
The previous code sample asks the container to satisfy the import requirements of the ApplicationRoot
class. Before you add an import requirement to that class, you will need an exported class to satisfy the
dependency. The ApplicationRoot class prints a status message once composition is complete. You
can delegate this responsibility to another class and then ask the composition container to provide an
instance of that class during composition.

To make a part available to the rest of your program you can export it by applying an
ExportAttribute to it. This code snippet creates a simple class and exports it:

c#

[System.ComponentModel.Composition.Export]
class StatusNotificationService
{
 public void ShowStatus(string statusText)
 {
 System.Console.WriteLine(statusText);
 }
}

Code snippet GettingStarted\StatusNotificationService.cs

Vb

<System.ComponentModel.Composition.Export()>
Public Class StatusNotificationService
 Public Sub ShowStatus(ByVal statusText As String)
 System.Console.WriteLine(statusText)
 End Sub
End Class

Code snippet GettingStarted\StatusNotificationService.vb

By adding an ExportAttribute onto the StatusNotificationService class, MEF is able to treat
it as a composable part. Note, however, that the Export attribute is just metadata and MEF is still
not aware of this part and will not use it. The simplest way to make the part available to MEF
during part composition is to provide an instance of the exported class to the ComposeParts
method. Change the Compose method of the ApplicationRoot class to instantiate an instance of the
StatusNotification class and pass it into the ComposeParts method call as a second parameter.

Finally, to specify that the ApplicationRoot class requires an instance of this part, add a property
to the ApplicationRoot class and mark it up with an ImportAttribute. Following is the full
listing for the ApplicationRoot class. There is some code added after the call to Compose in the
Run method that uses the newly imported part.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

class ApplicationRoot
{
 public void Run()
 {
 Compose();
 NotifcationService.ShowStatus("Composition Complete");
 }

 public void Compose()
 {
 var compositionContainer = new CompositionContainer();
 var statusNotificationService = new StatusNotificationService();
 compositionContainer.ComposeParts(this, statusNotificationService);
 }

 [System.ComponentModel.Composition.Import]
 public StatusNotificationService NotifcationService { get; set; }
}

Code snippet GettingStarted\Program.cs

Vb

Class ApplicationRoot
 Sub Run()
 Compose()
 NotificationService.ShowStatus("Composition Complete")
 End Sub

 Private Sub Compose()
 Dim compositionContainer As New CompositionContainer
 Dim statusNotificationService As New StatusNotificationService
 compositionContainer.ComposeParts(Me, statusNotificationService)
 End Sub

 <System.ComponentModel.Composition.Import()>
 Property NotificationService() As StatusNotificationService

End Class

Code snippet GettingStarted\Module1.vb

contracts
When the composition container is attempting to resolve dependencies during a composition, it
uses a string called a contract to match imports up to exports. By default, if no contract is supplied,
MEF will use the fully qualified type name of the exported item as the contract. You can override

Getting started with Mef ❘ 1037

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1038 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

this contract by supplying either a string or a type to the constructor of either the ImportAttribute
or the ExportAttribute . The following code snippet shows three exports that all have the same
contract:

 c#

class Settings
{
 [Export]
 public string Username;

 [Export(typeof(string))]
 public string Password;

 [Export("System.String")]
 public string Server;
}

 Code snippet GettingStarted\Settings.cs

 Vb

Public Class Settings
 < Export() >
 Dim Username As String

 < Export(GetType(String)) >
 Dim Password As String

 < Export("System.String") >
 Dim Server As String
End Class

 Code snippet GettingStarted\Settings.vb

 It is recommended to use a type for the contract, because a fully qualifi ed type
name is more likely to be unique. If you need to use string contracts, you should
come up with a way of ensuring they are all unique.

 You can specify a contract that is different than the type of the export, if required. The best reason
to do this is if the type implements an interface or inherits from an abstract base class. In the
following sample, the SaveOperation class is not aware of the concrete message sender it will use
and instead imports an abstraction: IMessageService . The CommandLineMessageService exports
itself under the contract of the IMessageService interface. In this way, the SaveOperation class
is able to take advantage of message sending without worrying about the details of how these
messages are being sent. If you wanted to change the way the application worked later, you could
implement a new IMessageService and then change which concrete type exported the contract.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c#

public interface IMessageService
{
 void SendMessage(string message);
}

[Export(typeof(IMessageService))]
public class CommandLineMessageService : IMessageService
{
 public void SendMessage(string message)
 {
 Console.WriteLine(message);
 }
}

public class SaveOperation
{
 [Import]
 public IMessageService MessageService { get; set; }

 public void DoSave()
 {
 MessageService.SendMessage("Saving...");
 // Perform the save operation
 MessageService.SendMessage("Saved");
 }
}

Code snippet GettingStarted\SaveOperation.cs

Vb

Public Interface IMessageService
 Sub SendMessage(ByVal message As String)
End Interface

<Export(GetType(IMessageService))>
Public Class CommandLineMessageService
 Implements IMessageService

 Public Sub SendMessage(ByVal message As String) _
 Implements IMessageService.SendMessage
 Console.WriteLine(message)
 End Sub
End Class

Public Class SaveOperation
 <Import()>
 Public Property MessageService As IMessageService

 Public Sub DoSave()

Getting started with Mef ❘ 1039

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1040 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

 MessageService.SendMessage("Saving...")
 ' Perform the save operation
 MessageService.SendMessage("Saved")
 End Sub
End Class

 Code snippet GettingStarted\SaveOperation.vb

 catalogs
 In the sample code so far, the only way that the CompositionContainer is made aware of parts is
by passing instances into the ComposeParts method. This means that your application will need to
know about each part added to the container, which will not work for extensions that need to be
deployed after release. It also gets a little tedious after a while.

 Locating parts is the job of a catalog , which can be provided to the CompositionContainer
constructor. If a composition container is constructed with a catalog, it will consult the catalog
whenever it needs to locate an export. MEF ships with four catalogs:

 A ➤ TypeCatalog is created with a list of part types. The parts will be instantiated as
required by the composition container to fulfi ll the import requirements during part
composition.

 An ➤ AssemblyCatalog is similar to the TypeCatalog except that it scans an entire assembly
looking for part types.

 A ➤ DirectoryCatalog scans a folder structure looking for assemblies, which can be exam-
ined for part types.

 An ➤ AggregateCatalog collects the parts from a number of other catalogs. This is useful
because the composition container constructor is only able to accept a single catalog.

 The following code sample demonstrates creating a composition container that will look for parts in
the currently executing assembly and in all of the assemblies in the /Extensions folder:

 c#

var assemblyCatalog = new AssemblyCatalog(Assembly.GetExecutingAssembly());
var directoryCatalog = new DirectoryCatalog(@".\Extensions\");

 Exporting abstractions and strings raises a potential issue. If there are many
exports with the same contract, MEF will not know which one to use to satisfy
any given import. If this is the case, you can import an enumerable collection for
a contract instead of a single instance using the ImportMany attribute. It is also
possible to attach more metadata to an export, which you can use to refi ne the
imports. See http://mef.codeplex.com for more information on this technique.

http://mef.codeplex.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

var aggregateCatalog = new AggregateCatalog(assemblyCatalog, directoryCatalog);

var compositionContainer = new CompositionContainer(aggregateCatalog);

 Vb

Dim assemblyCatalog As New AssemblyCatalog(Assembly.GetExecutingAssembly())
Dim directoryCatalog As New DirectoryCatalog(".\Extensions\")
Dim aggregateCatalog As New AggregateCatalog(assemblyCatalog, directoryCatalog)

Dim compositionContainer As New CompositionContainer(AggregateCatalog)

 advanced Mef
 MEF supports a number of advanced scenarios that can be useful to you when you are creating
host applications, or when you are creating add - ons or extensions for another host application.
These include:

 Exporting properties, fi elds, and methods ➤

 Importing fi elds, methods, and constructor arguments ➤

 Importing collections ➤

 Composition batches and recomposition ➤

 Lazy imports ➤

 Catalog fi ltering ➤

 Part lifetimes ➤

 Importing and exporting custom metadata ➤

 See the MEF Programming Guide on http://mef.codeplex.com for more information about
these topics.

 the Visual studio 2010 editor

 One of the most signifi cant changes in Visual Studio 2010 is the new code and text editor control,
which is written in managed code. This new editor uses MEF to manage its structure, which means
that it imports many predefi ned contracts. In addition to this, it exports a number of services under

You can create your own catalog by creating a new class that inherits from
ComposablePartCatalog and overriding the Parts property.

The Visual studio 2010 editor ❘ 1041

http://mef.codeplex.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1042 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

predefi ned contracts that provide access to the presentation layer and the underlying model of the
editor. The new editor is made up of four main subsystems.

 the text Model subsystem
 The Text Model subsystem is used to represent text and enable its modifi cation. It is a logical model
only, which doesn ’ t have any responsibility for displaying pixels on the screen.

 The chief component of this subsystem is the ITextBuffer , which represents a sequence of characters
that should be displayed by the editor. The ITextBuffer can be persisted to the fi le system as an
 ITextDocument , but it doesn ’ t need to be. It can be an entirely in - memory representation. To create
new ITextBuffer instances, you can use an ITextBufferFactoryService . Any number of threads
can make changes to an ITextBuffer until one of them calls the TakeThreadOwnership method.

 Whenever an ITextBuffer is changed, a new version is created. Each version is represented as an
immutable ITextSnapshot . Because these snapshots cannot change, any number of threads can
refer to them safely, even if the ITextBuffer that they refer to is still changing.

 To make a change to an ITextBuffer , you can use the CreateEdit method to create an instance of
the ITextEdit interface. ITextEdit allows you to replace a span of text in the buffer with a new
set of characters. The ITextEdit instance can be applied to the ITextBuffer by calling its Apply
method. It can be abandoned by calling either the Cancel or Dispose method. Only one ITextEdit
can be instantiated for an ITextBuffer at any given time, and if the buffer is owned by a particular
thread, only that thread can create the edits.

 All operations within a single ITextEdit occur relative to the initial state of the ITextBuffer at
the time when the edit was created. Because of this you cannot insert some text and then remove it
again within a single edit.

 When an ITextEdit is applied, new instances of ITextVersion and ITextSnapshot are created
and a Changed event is raised. The ITextVersion represents the changes between the current state
of the ITextBuffer and the previous state, whereas the ITextSnapshot is a read - only view of the
 ITextBuffer after the edit has been applied. The changes in an ITextVersion are represented
as a list of ITextChange instances which, if they are applied to a snapshot, would produce the
subsequent snapshot. This collection is always null (Nothing) for the most recent version.

 the text View subsystem
 The Text View subsystem is responsible for managing the display of text on the screen. This
includes which lines should be displayed and how text should be formatted. It is also responsible
for enhancing the text with visual adornments such as the squiggly line, which notifi es you of

The ITextBuffer interface contains Insert, Replace, and Delete convenience
methods, which just wrap up the creation and application of an ITextEdit instance.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

compilation errors. Finally, this subsystem manages the borders around the edges of the editor,
which can be enhanced with additional information.

 The main part of this subsystem is the ITextView interface. Instances of this interface are used to
represent text visually on the screen. This is used for the main editor window but also for things like
tooltip text. The ITextView keeps track of three different text buffers through its TextViewModel
property. These are:

 The data buffer, which is the actual text ➤

 The edit buffer in which text edits occur ➤

 The visual buffer, which is actually displayed ➤

 Text is formatted based on classifi ers (see “ The Classifi cation Subsystem ”) and decorated with
adornments, which come from adornment providers attached to the text view.

 The part of the text that is displayed on the screen is the view port . The view port relies on a
logical coordinate system that has (0,0) as the top left of the text. If the editor is not zoomed or
transformed in any way, each unit of distance in the view is the equivalent of a single pixel. Each
line of text that is displayed on the screen is an instance of the ITextViewLine interface. This
interface can be used to map from pixel points to characters.

 Finally, the entire editor and all adornments and margins are contained within an
 IWpfTextViewHost .

 the classifi cation subsystem
 The Classifi cation subsystem manages the recognition and formatting of different types of text. It
is also responsible for tagging text with additional metadata, which will be used by the Text View
subsystem for attaching glyphs and adornments as well as text highlighting and text outlining (such
as collapsed regions of code).

 the operations subsystem
 The Operations subsystem defi nes editor behavior and commands. It also provides the Undo
capability.

The Text View subsystem comes in two parts. One part is technology agnostic
and is found in the Microsoft.VisualStudio.Text.UI assembly. The other
part is the WPF implementation and is found in the Microsoft.VisualStudio
.Text.UI.WPF assembly. In most cases, the WPF-specifi c items contain the text
“Wpf” in the name.

The Visual studio 2010 editor ❘ 1043

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1044 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

fiGure 53-1

The Visual Studio 2010 SDK is not installed with Visual Studio 2010. You can
download a copy from http://msdn.microsoft.com/en-us/vsx/default.aspx.

 extendinG the editor

 Editor extensions are .vsix packages, which export contracts that Visual Studio components will
import. When Visual Studio loads these packages, it adds their contents to a MEF catalog, which
is then used to compose parts of the editor control. The Visual Studio Integration SDK comes
with a number of templates to get you started creating editor controls. These appear under the
Extensibility page of the New Project dialog shown in Figure 53 - 1.

 If you want to start with a clean slate, you need to use the VSIX Project template. To expose editor
extensions via this package, edit the source.extension.vsixmanifest fi le, and use the Add
Content button to add the current project as an MEF Component as in Figure 53 - 2.

http://msdn.microsoft.com/en-us/vsx/default.aspx
http://lib.ommolketab.ir
http//lib.ommolketab.ir

extending the editor ❘ 1045

Once your project is set up to contain MEF content, all you need to do is to create classes that
export known extension contracts and Visual Studio will pick them up. In addition to this, you
can import service contracts from Visual Studio that will provide you with access to the full
capabilities of the editor.

During development, editor extensions can be run and debugged in the Experimental Instance of
Visual Studio. The Experimental Instance behaves like a separate installation of Visual Studio with
its own settings and registry. It also manages a separate set of extensions. When you are ready to
deploy your extension to the normal instance of Visual Studio, you can double-click the .vsix
package, which is created as a part of the build process. This package is entirely self-contained, so
you can use it to deploy your extension to other machines as well.

editor extension Points
The Visual Studio 2010 Editor looks for a number of contracts, which it uses to extend the editor
behavior at run time. Usually you need to create at least two classes for each type of extension
that you are exposing. One class will perform the work of the extension and the other will
typically be imported by Visual Studio and asked to provide instances of your main extension
class when required.

Content Types
Each ITextBuffer is assigned a content type when it is created that identifies the type of text it
contains. Examples of content types include Text, Code, CSharp, or Basic. Content types are used
as filters for the various editor extensions that you can create by adding a ContentTypeAttribute

fiGure 53-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1046 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

to the exported extension. An example would be an IntelliSense provider that is only valid for
Xml content.

Even though content type is assigned to an ITextBuffer when it is created, it
can be changed by calling the ChangeContentType method.

 You can create your own content types by exporting a property or fi eld with the
 ContentTypeDefinition contract. Each content type can have multiple parent content types, which
are defi ned by adding a BaseDefinitionAttribute to the exported content type for each parent
type. To get a full list of content types you can import the IContentTypeRegistryService , which
maintains a list of registered content types.

A content type can be associated with a fi le extension using a
FileExtensionAttribute. Note that the fi le extension must be one that has been
registered with Visual Studio already. Search for “ProvideLanguageExtension
Attribute Class” on MSDN for more information on how to do this.

 Classifi cation Types and formats
 A classifi cation type is metadata that can be applied to any span of text. Some examples of
classifi cation types include “ keyword ” or “ comment, ” both of which inherit from the classifi cation
type “ code. ” You can create your own classifi cation types by exporting a property or fi eld of the
 ClassificationTypeDefinition class. This allows you to attach custom behavior to the text.

Classifi cation types are not the same thing as content types. Each ITextBuffer
has a single content type but may contain spans of text that have many different
classifi cations.

 Classifi cation types are attached to spans of text using an IClassifier instance. A classifi er
aggregator collects the classifi cations from a number of different classifi ers for a text buffer
and creates a unique non - overlapping set of classifi cations from that buffer. In effect, a classifi er
aggregator is a classifi er itself because it also provides classifi cations for a span of text. To
get the classifi er aggregator for a particular ITextBuffer instance of text you can import the
 IClassificationAggregatorService and call its GetClassifier method, passing in
the text buffer.

 You can defi ne a format for a specifi c classifi cation type by deriving a new class from
 ClassificationFormatDefinition and exporting it with an EditorFormatDefinition
contract. The base class contains a number of properties that you can use to change the way

http://lib.ommolketab.ir
http//lib.ommolketab.ir

extending the editor ❘ 1047

text is rendered. You associate the format defi nition with the classifi cation type by using the
 ClassificationTypeAttribute on the exported class. This attribute accepts a string that
is a comma - separated list of classifi cation types that the format applies to. You can also use
 DisplayNameAttribute and UserVisibleAttribute to show this classifi cation format in the Fonts
and Settings page of the Options dialog. You can also specify a PriorityAttribute , which will
help to determine when the format is applied.

 Margins
 A margin is a piece of UI around the edges of the main editor window. There are four predefi ned
margins names: Top, Bottom, Left, and Right, which act as containers for other margins that you
can defi ne. You could defi ne a margin that turns red when a generated fi le is opened to warn the
user that they should not edit the fi le.

 To create a margin, you need to make a new class that implements IWpfTextViewMargin , which
contains properties for the margin size as well as for the actual UIElement that draws the margin
on the screen. To register your margin with Visual Studio, you need to export a class with the
 IWpfTextViewMarginProvider contract. This interface contains a single method that should return
an instance of your IWpfTextViewMargin . In addition to the MEF export, the margin provider can
also provide the following:

 A ➤ NameAttribute , which is used to give the provider a human - readable name.

 A ➤ ContentTypeAttribute , which identifi es the content type that the margin should be
made available for.

 An ➤ OrderAttribute and a MarginContainerAttribute , which are both used to determine
where the margin should be drawn. The order is specifi ed by supplying the string name of
another margin to run either Before or After . The container identifi es which border the
margin should be displayed against (top, bottom, left, or right).

 Tags
 A tag is a piece of metadata that is applied to a specifi c span of text. Examples of tags include
 SquiggleTag , TextMarkerTag , and OutliningRegionTag . Tags are associated with spans of text
using instances of the ITagger interface. To register an ITagger , you need to create a class that
implements the ITaggerProvider interface, override the CreateTagger method, and then export
the new class with the ITaggerProvider contract. Your tagger provider should also be marked up
with the TagTypeAttribute , which identifi es the type of tag its taggers will produce.

Classifi cation is a special case of tagging provided by a ClassifactionTag.

 adornments
 An adornment is a special effect that can be applied to a span of text or to the editor surface itself.
You can defi ne your own adornments, which are just standard WPF UIElement s. Each type of
adornment gets rendered in a separate layer so that different adornment types don ’ t interfere with

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1048 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

each other. To specify a layer on which your adornment belongs, your adornment class should
export an AdornmentLayerDefinition along with a NameAttribute and an OrderAttribute.
The Order can be defined as Before or After one of four built-in adornment layers: Selection,
Outlining, Caret, and Text. When the adornment wants to display itself, it can request an instance
of the IAdornmentLayer from the IWpfTextView by name. This interface exposes methods to add
UIElements to the layer and clear all adornments out of the layer.

To create your adornment, you need to export a class with the IWpfTextViewCreationListener
contract. This class should simply instantiate a new adornment whenever a text view is created. It is
up to the adornment to wire itself up to events that it needs to use to redraw its contents. This class
can be marked up with a standard ContentTypeAttribute to filter the content types on which it
will appear. It can also include a TextViewRoleAttribute that defines for which kind of text view
it should appear. The PredefinedTextViewRoles contains a list of valid values.

Mouse Processors
Mouse processors are able to capture events from the mouse. Each mouse processor should
derive from MouseProcessorBase and override the event handlers that they want to
handle. To expose your mouse processor to Visual Studio, you must export a class under the
IMouseProcessorProvider contract. You also need to apply a ContentTypeAttribute to identify
the types of content for which the mouse processor is available.

Drop Handlers
Drop handlers customize the behavior of the Visual Studio editor when content is dropped into it.
Each drop handler should implement IDropHandler and you will need an IDropHandlerProvider
to provide your drop handler to Visual Studio. This provider class should export the
IDropHandlerProvider contract along with the following metadata:

A ➤ NameAttribute to identify your drop handler.

A ➤ DropFormatAttribute, which specifies the format of text for which this handler is valid.
Twenty-three built-in formats are supported, which are all handled in a specific order.
Check the MSDN documentation for the full list.

An ➤ OrderAttribute, which identifies where in the order of drop handlers this handler
should execute. You do this by providing Before and After components of the Order. Each
component is just a text name for the handler. The default drop handler provided by Visual
Studio is called DefaultFileDropHandler.

editor options
Editor options allow your extensions to expose settings. These settings can be imported into other
components of the system and used to alter their behavior. This type of export is used to expose the
value of your option to other components, but Visual Studio does nothing to expose these options to
the user. If you want the user to be able to manage these options, you need to create your own UI.

To create a new editor option, you must derive from one of the three abstract base classes
EditorOptionDefinition<T>, ViewOptionDefinition<T>, or WpfViewOptionDefintion<T> and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

extending the editor ❘ 1049

specify the type of the option value being created (that is, Boolean or String). These base classes
provide abstract properties for you to implement containing information about the option, including
its current value and its default value. To make the editor option available to Visual Studio, you
should export it with the EditorOptionDefinition contract.

intellisense
IntelliSense is a term that is used to describe a set of features that provide contextual information
and statement completion services. No matter what type of IntelliSense extension you are providing,
the components and the process are always the same:

A ➤ broker controls the overall process.

A ➤ session represents the sequence of events, which typically start with a user gesture trigger-
ing the presenter and end with the committal or cancellation of the selection.

A ➤ controller determines when a session should begin and end. It also decides the manner in
which the session ends.

A ➤ source provides content for the IntelliSense session and determines the best match for
display.

A ➤ presenter is responsible for displaying the content of a session.

It is recommended that you provide at least a source and a controller when defining IntelliSense
extensions. You should only provide a presenter if you want to customize the display of your
feature.

To provide an IntelliSense source, you need to create a class that implements one (or more)
of these interfaces: ICompletionSource, IQuickInfoSource, ISignatureHelpSource, or
ISmartTagSource. Each of these interfaces defines methods that provide you with the context for
the session and allow you to return the information that will be displayed.

For each of the interfaces implemented you need another class that implements the
corresponding provider interface: ICompletionSourceProvider, IQuickInfoSourceProvider,
ISignatureHelpSourceProvider, or ISmartTagSourceProvider. This provider class must be
exported using its provider interface as a contract. In addition to the export, you can specify a
NameAttribute, an OrderAttribute, and a ContentTypeAttribute.

To provide an IntelliSense controller, you need a class that implements
IIntellisenseController. This interface provides methods for the controller to attach and
detach ITextBuffers. When the controller senses an event that should begin an IntelliSense
session, it requests one from the correct type of broker: ICompletionBroker, IQuickInfoBroker,
ISignatureHelpBroker, or ISmartTagBroker. The easiest way to get access to a broker is to
import one into the controller provider (defined next) and pass it into the constructor of the
IntelliSense controller.

Finally, you need an IIntellisenseControllerProvider that is exported along with a
NameAttribute, an OrderAttribute, and a ContentTypeAttribute.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1050 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

editor services
Visual Studio exposes a large number of editor services under well-known contracts that you can
import into your extension classes. Here are a few common ones (see the MSDN documentation for
a complete list):

 ➤ IContentTypeRegistryService manages the collection of content types that are available
to be assigned to ITextBuffers. This service allows you add and remove content types, as
well as query the currently registered content types.

 ➤ ITextDocumentFactoryService provides the ability to create new documents and load
existing documents from the file system. It also has events for when ITextDocuments are
created and disposed.

 ➤ IClassifierAggregatorService contains only a single method, GetClassifier, that
returns a classifier for a given ITextBuffer. It will create and cache classifiers if they don’t
already exist.

 ➤ ITextSearchService is responsible for locating specific text within a defined region of
text. It has methods to find all instances or just find the next instance.

 ➤ IWpfKeyboardTrackingService allows you to switch the keyboard tracking over to WPF
in the editor. Normally Visual Studio performs its own keyboard tracking, so if you are
using WPF controls that listen for keyboard events they will never be detected. This service
allows you toggle the ability for WPF to have the first shot at handling keyboard events.
Keyboard events that are left unhandled by WPF will be passed to Visual Studio and
 handled as normal.

the check comment highlighter extension
This section shows the complete source code for a sample extension with explanations along the
way. In our office, whenever we come across something that doesn’t seem to be quite right we attach
a comment asking for an explanation using the special token check: followed by a few sentences
going into what aspect we think is wrong. Normally, if we encounter a piece of code with a check
comment and we can answer the query, we will try and find a way to refactor the code so that the
answer is obvious or supply a comment explaining why the code is the way it is (on the rare
occasion that the check comment exposes an error, we fix it). Using this technique, our code
becomes more maintainable over time as it gets easier to read and understand. We have tools that
allow us to extract a list of these comments from the code base, but it would be really handy if we
could highlight them within the code editor itself. The Check Comment Margin Highlighter does
just that by adding a glyph in the margin on the left (where breakpoints normally appear) for any
line that contains a comment that contains the token check:.

The code comes in two parts: a tagger and a glyph factory. Here is the complete code listing for
the tagger:

c#

using System;
using System.Collections.Generic;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

extending the editor ❘ 1051

using System.ComponentModel.Composition;

using Microsoft.VisualStudio.Text;
using Microsoft.VisualStudio.Text.Classification;
using Microsoft.VisualStudio.Text.Editor;
using Microsoft.VisualStudio.Text.Tagging;
using Microsoft.VisualStudio.Utilities;

namespace CheckCommentHighlighter
{
 class CheckCommentTag : IGlyphTag { }

 class CheckCommentTagger : ITagger<CheckCommentTag>
 {
 private readonly IClassifier _classifier;

 public CheckCommentTagger(IClassifier classifier)
 {
 _classifier = classifier;
 }

 public IEnumerable<ITagSpan<CheckCommentTag>> GetTags(
 NormalizedSnapshotSpanCollection spans)
 {
 foreach (var span in spans)
 {
 foreach (var classification in
 _classifier.GetClassificationSpans(span))
 {
 var isComment = classification.ClassificationType
 .Classification
 .ToLower()
 .Contains("comment");

 if (isComment)
 {
 var index = classification.Span.GetText()
 .ToLower().IndexOf("check:");
 if (index != -1)
 {
 var tag = new CheckCommentTag();
 var snapshotSpan = new SnapshotSpan(
 classification.Span.Start + index, 6);
 yield return new TagSpan<CheckCommentTag>(
 snapshotSpan,
 tag);
 }
 }
 }
 }
 }

 public event EventHandler<SnapshotSpanEventArgs> TagsChanged;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1052 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

 }

 [Export(typeof(ITaggerProvider))]
 [TagType(typeof(CheckCommentTag))]
 [ContentType("code")]
 class CheckCommentTaggerProvider : ITaggerProvider
 {
 [Import]
 private IClassifierAggregatorService AggregatorService;

 public ITagger<T> CreateTagger<T>(ITextBuffer buffer) where T : ITag
 {
 if(buffer == null)
 throw new ArgumentNullException("buffer");

 var classifier = AggregatorService.GetClassifier(buffer);

 return new CheckCommentTagger(classifier) as ITagger<T>;
 }
 }

}

Code snippet CheckCommentHighlighter\CheckCommentTagger.cs

Vb

Imports System.ComponentModel.Composition
Imports Microsoft.VisualStudio.Text
Imports Microsoft.VisualStudio.Text.Tagging
Imports Microsoft.VisualStudio.Text.Editor
Imports Microsoft.VisualStudio.Text.Classification
Imports Microsoft.VisualStudio.Utilities

Friend Class CheckCommentTag
 Inherits IGlyphTag

End Class

Friend Class CheckCommentTagger
 Implements ITagger(Of CheckCommentTag)

 Private m_classifier As IClassifier

 Friend Sub New(ByVal classifier As IClassifier)
 m_classifier = classifier
 End Sub

 Private Function GetTags(ByVal spans As NormalizedSnapshotSpanCollection)
 As IEnumerable(Of ITagSpan(Of CheckCommentTag))

http://lib.ommolketab.ir
http//lib.ommolketab.ir

extending the editor ❘ 1053

 Implements ITagger(Of CheckCommentTag).GetTags

 Dim Tags As New List(Of ITagSpan(Of CheckCommentTag))
 For Each span As SnapshotSpan In spans
 For Each classification As ClassificationSpan In
 m_classifier.GetClassificationSpans(span)

 If classification.ClassificationType.Classification.ToLower()
 .Contains("comment") Then

 Dim index As Integer = classification.Span.GetText().ToLower()
 .IndexOf("check:")

 If index <> -1 Then
 Dim snapshotSpan As New SnapshotSpan(classification.Span.Start
 + index, 6)

 Dim tag As New CheckCommentTag
 Tags.Add(New TagSpan(Of CheckCommentTag)(snapshotSpan, tag))
 End If
 End If
 Next classification
 Next span
 Return Tags
 End Function

 Public Event TagsChanged As EventHandler(Of SnapshotSpanEventArgs)
 Implements ITagger(Of CheckCommentTag).TagsChanged

End Class

<Export(GetType(ITaggerProvider)), ContentType("code"),
 TagType(GetType(CheckCommentTag))>
Friend Class CheckCommentTaggerProvider
 Implements ITaggerProvider

 <Import()>
 Friend AggregatorService As IClassifierAggregatorService

 Public Function CreateTagger(Of T As ITag)(ByVal buffer As ITextBuffer)
 As ITagger(Of T) Implements ITaggerProvider.CreateTagger

 If buffer Is Nothing Then
 Throw New ArgumentNullException("buffer")
 End If

 Dim Classifier = AggregatorService.GetClassifier(buffer)
 Dim tagger As New CheckCommentTagger(Classifier)

 Return TryCast(tagger, ITagger(Of T))

 End Function
End Class

Code snippet CheckCommentHighlighter\CheckCommentTagger.vb

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1054 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

Three classes are defined here. The first is the CheckCommentTag class. It inherits from IGlyphTag
but has no implementation on its own. It is purely a marker that identifies when a particular span of
text should have this glyph applied. We could have supplied some properties on the tag class to pass
information to the glyph factory later that could be used to affect the type of UIElement displayed.

The second class is the CheckCommentTagger class. This class is responsible for identifying
spans of text that should have the CheckCommentTag applied. It does this by implementing the
ITagger<CheckCommentTag> interface. This interface consists of a method called GetTags and a
TagsChanged event. GetTags takes a collection of spans and returns a collection of ITagSpans. In
this implementation, it finds all of the comments with the help of a classifier and searches for the
string check:. If it finds this string, it creates a new TagSpan<CheckCommentTag> item, which it
applies to just the span of text that covers the check: string.

The final class is CheckCommentTaggerProvider, which contains the MEF export metadata that
Visual Studio is looking for in the extension. This class is exported using the ITaggerProvider
contract, which means that Visual Studio will add it to an internal list of tagger providers to be called
upon whenever taggers are required. Two other pieces of metadata are also attached to this class. The
TagTypeAttribute specifies the type of tags that will be produced by any taggers that this provider
creates. The ContentTypeAttribute supplies a filter on the kinds of content on which this tagger
provider should be used. In this case, the attribute specifies that this tagger provider should only
be called upon when the editor contains code, which is a common base content type provided by
the editor.

The tagger provider class also has an import requirement for an IClassifierAggregatorService.
This service is used in the construction of taggers, which occurs in the CreateTagger<T>
method. This method is passed an ITextbuffer for which it is to provide a tagger. It uses
the AggregatorService to retrieve a classifier and then uses the classifier to construct the
CheckCommentTagger defined in the previous code snippet.

This code is enough to allow Visual Studio to mark up check comments as requiring a glyph, but if
you deploy the extension as it is right now you won’t see anything because there are no components
offering to draw a CheckCommentTag. For that you need a glyph factory, which is the other half of
the extension. Here is the code:

c#

using System.ComponentModel.Composition;
using System.Windows;
using System.Windows.Media;
using System.Windows.Shapes;

using Microsoft.VisualStudio.Text.Editor;
using Microsoft.VisualStudio.Text.Formatting;
using Microsoft.VisualStudio.Text.Tagging;
using Microsoft.VisualStudio.Utilities;

namespace CheckCommentHighlighter
{
 class CheckCommentGlyphFactory : IGlyphFactory
 {
 public UIElement GenerateGlyph(IWpfTextViewLine line, IGlyphTag tag)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

extending the editor ❘ 1055

 var validTag = tag as CheckCommentTag != null;
 if (!validTag)
 return null;

 return new Polygon
 {
 Fill = Brushes.LightBlue,
 Stroke = Brushes.DarkBlue,
 StrokeThickness = 2,
 Points = new PointCollection
 {
 new Point(0, 0),
 new Point(16, 8),
 new Point(0, 16)
 }
 };

 }
 }

 [Export(typeof(IGlyphFactoryProvider))]
 [TagType(typeof(CheckCommentTag))]
 [Name("CheckCommentGlyph")]
 [ContentType("code")]
 [Order(After="VSTextMarker")]
 class CheckCommentGlyphFactoryProvider : IGlyphFactoryProvider
 {
 public IGlyphFactory GetGlyphFactory(IWpfTextView view,
 IWpfTextViewMargin margin)
 {
 return new CheckCommentGlyphFactory();
 }
 }
}

Code snippet CheckCommentHighlighter\CheckCommentGlyphFactory.cs

Vb

Imports System.ComponentModel.Composition
Imports System.Windows
Imports System.Windows.Media
Imports System.Windows.Shapes

Imports Microsoft.VisualStudio.Text.Editor
Imports Microsoft.VisualStudio.Text.Formatting
Imports Microsoft.VisualStudio.Text.Tagging
Imports Microsoft.VisualStudio.Utilities

Friend Class CheckCommentGlyphFactory
 Implements IGlyphFactory

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1056 ❘ chaPter 53 mAnAged exTenSibiliTy FrAmeWork (meF)

 Public Function GenerateGlyph(ByVal line As IWpfTextViewLine,
ByVal tag As IGlyphTag) As UIElement Implements IGlyphFactory.GenerateGlyph
 If tag Is Nothing OrElse Not (TypeOf tag Is CheckCommentTag) Then
 Return Nothing
 End If

 Dim triangle As New System.Windows.Shapes.Polygon()

 With triangle
 .Fill = Brushes.LightBlue
 .Stroke = Brushes.DarkBlue
 .StrokeThickness = 2
 .Points = New PointCollection()
 With .Points
 .Add(New Point(0, 0))
 .Add(New Point(16, 8))
 .Add(New Point(0, 16))
 End With
 End With

 Return triangle
 End Function

End Class

<Export(GetType(IGlyphFactoryProvider)), Name("CheckCommentGlyph"),
Order(After:="VsTextMarker"), ContentType("code"),
TagType(GetType(CheckCommentTag))>
Friend NotInheritable Class TodoGlyphFactoryProvider
 Implements IGlyphFactoryProvider

 Public Function GetGlyphFactory(
ByVal view As Microsoft.VisualStudio.Text.Editor.IWpfTextView,
ByVal margin As Microsoft.VisualStudio.Text.Editor.IWpfTextViewMargin)
As Microsoft.VisualStudio.Text.Editor.IGlyphFactory
Implements Microsoft.VisualStudio.Text.Editor.IGlyphFactoryProvider.GetGlyphFactory
 Return New CheckCommentGlyphFactory()

 End Function
End Class

Code snippet CheckCommentHighlighter\CheckCommentGlyphFactory.vb

Just as with the code to expose the check comment tagger to Visual Studio, two classes are at
work here: one class that actually creates glyphs and another class that provides instances of this
glyph factory to Visual Studio on demand. The CheckCommentGlyphFactory is very simple. It just
checks to ensure that the tag is of the correct type and then creates the visual element that is to
be displayed. This can be any WPF UIElement. In this implementation, it is a light blue triangle
pointing to the right with a dark blue border.

The second class is the actual gateway into Visual Studio. It is exported using the
IGlyphFactoryProvider contract, associated with a specific tag and content type. It also
specifies a name that makes it easier to identify. Finally, it specifies that it should be drawn after
items in the “VSTextMarker” layer, which means it will appear to be on top of items in this

http://lib.ommolketab.ir
http//lib.ommolketab.ir

layer. The actual implementation of this class is a simple factory method for instances of the
CheckCommentGlyphFactory class.

If you run this extension it will start up in the
Experimental Instance of Visual Studio. Load a code file
and add a comment that starts with Check: and a blue
triangle appears in the margin to the left as
in Figure 53-3.

suMMary

The Managed Extensibility Framework simplifies the process of creating extensible applications by
allowing you to think of your application as a collection of composable parts, each of which exposes
exports and requires imports. Extensions can be added to your application by creating appropriate
catalogs of parts and providing them to your composition container. MEF is able to cover a much
wider range of capabilities than those covered in this chapter. Be sure to check out the MEF
Programming Guide on http://mef.codeplex.com for more information.

Visual Studio 2010 is able to create a highly extensible run time by taking advantage of MEF. It
watches extensions for known exported contracts, which it will use when composing the new WPF
Editor control, allowing you to easily extend its behavior. In addition to this, Visual Studio exports
a number of services on well-known contracts that you can import for use in your extensions. For
more information about the new Visual Studio Editor and how to extend it using MEF, consult the
Visual Studio 2010 Editor topic on MSDN, which contains many examples of extensions.

fiGure 53-3

summary ❘ 1057

http://mef.codeplex.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PART XII

Visual studio ultimate

 chaPter 54 : ⊲ Visual Studio Ultimate for Architects

 chaPter 55 : ⊲ Visual Studio Ultimate for Developers

 chaPter 56 : ⊲ Visual Studio Ultimate for Testers

 chaPter 57 : ⊲ Team Foundation Server

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

54
 Visual studio Ultimate
for architects

 what ’ s in this chaPter?

 Creating models of your solution ➤

 Enforcing application architecture ➤

 Exploring existing architectures ➤

 The VSTS Architecture edition offered four diagrams for designing distributed systems, which
were almost never used by teams in production. These four diagrams have all been dropped
in Visual Studio 2010 and all of the functionality targeted for architecture tasks is brand new.
This functionality can be split into two broad categories.

 The fi rst new feature is Modeling Projects, which allow you to create UML diagrams to build
up an application model. There is also a new diagram that can be used to determine and
enforce certain relationships between code elements in your projects.

 The other new features all revolve around navigating and understanding existing code bases.
This includes the ability to generate sequence diagrams from C# and VB methods, as well
as Dependency Graphs of various components in your solution. Finally, Visual Studio 2010
includes the new Architecture Explorer, which is used to quickly navigate your solution.

 ModelinG ProJects

 A model in software terms is an abstract representation of some process or object. You
create models to better understand and communicate to others the way different parts of the
application are intended to work. In Visual Studio 2010, you keep all of your models together
in a Modeling Project. Modeling Projects are found on their own page in the Add New Project

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1062 ❘ chaPter 54 ViSuAl STudio ulTimATe For ArchiTecTS

dialog. You can also create a new Modeling Project by adding a diagram to your solution with the
Architecture ➪ New Diagram menu option. This brings up the Add New Diagram dialog shown
in Figure 54 - 1 . At the bottom of this dialog is a drop - down list allowing you to select an existing
Modeling Project or offering to create a new one for you.

 fiGure 54 - 1

 Many of the diagrams in a Modeling Project can easily be attached to Work Items in Team
Foundation Server, which makes them a great tool for communicating with the rest of the team.

 The ability to create Modeling Projects and their associated diagrams is limited
to the Ultimate edition of Visual Studio 2010. The Premium edition includes the
ability to view Modeling Projects and diagrams already created by someone else.

 uMl diagrams
 The Unifi ed Modeling Language (UML) is an industry standard for creating diagrammatic models.
Visual Studio 2010 has the ability to create the most common UML diagrams, including Activity
Diagrams, Component Diagrams, Class Diagrams, Sequence Diagrams, and Use Case Diagrams.

 The Visual Studio 2010 UML diagrams adhere to the UML 2.0 standard.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Modeling Projects ❘ 1063

Use Case Diagrams
A Use Case Diagram (Figure 54-2) defines the
users of a system (Actors) and the tasks they
need to achieve with the system (Use Cases). As
Figure 54-2 shows, each use case can be made
up of subordinate use cases. Use Case Diagrams
are typically very high level.

Modeling Use Cases helps you to focus on the
objectives of the end users and ensure that their
needs are being met by the application that you
are providing. Additionally, it helps to identify
the boundaries of your application with respect
to the user’s needs, which is very good for
understanding the scope of what you need to build. Use Cases are typically associated with User Story
and Test Case work items within TFS.

activity Diagrams
An Activity Diagram (Figure 54-3) describes the actions and decisions that go into performing a
single task. Activity Diagrams and Use Case Diagrams are often used to show different views of the
same information. Use Cases are often better at showing the hierarchical nature of tasks that a user
performs, whereas Activity Diagrams show how each of the sub-tasks are used.

Activity begins with the small black circle and follows the arrows until they reach the circle with
the ring around it. Each rounded box is an activity and each diamond shape represents a decision
about which activity to move to next. The small fork icon in the bottom-right corner of the Search
Products activities identifies it as calling another activity.

Activity diagrams can also run activity streams in parallel as shown in Figure 54-4. This figure also
shows sending and receiving events asynchronously.

fiGure 54-2

fiGure 54-3 fiGure 54-4Prepared for SUSAN ROERS/ email0 Susan_Krentz@aol.com Order number0 64627890 This PDF is for the purchaser’s personal use in accordance with the Wrox Terms of
Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1064 ❘ chaPter 54 ViSuAl STudio ulTimATe For ArchiTecTS

 sequence Diagrams
 A Sequence Diagram (Figure 54 - 5) shows the
messages passed between different components
in a system or between systems during some
larger activity. You use a Sequence Diagram
when you want to show the fl ow of activities
from one actor to another within a system.

 Running along the top of the diagram are
boxes representing the different actors involved.
Running down from each actor is a dashed
lifeline on which hangs thicker execution
contexts that show where in the process each
actor is performing some operation. As you read
a sequence diagram, moving down a lifeline
equates to moving forward in time. Running
between the lifelines are messages being passed
back and forth between the different actors.
Messages can be synchronous (closed arrow) or
asynchronous (open arrow). Messages can be
found, which means that you don ’ t know where
they come from, or lost, which means that you
don ’ t know where they go. These commonly
appear at the boundaries of the activity being
modeled.

 An Interaction Use (Figure 54 - 6) is a piece of a
Sequence Diagram that is separated out and can
be re - used. To create an Interaction Use, select
it from the Toolbox and then drag a rectangle
over the lifelines that should be involved. Once
an Interaction Use has been created, you can
use it to generate another sequence diagram or
link it to an existing one. Double - clicking an
Interaction Use opens its diagram.

 Sometimes you need to group a few execution contexts and messages together. An example is when
you want to repeat an interaction in a loop. To do this, you need to create a Combined Fragment
(Figure 54 - 7) by selecting the elements that should be involved and selecting one of the Surround
With options.

 fiGure 54 - 6

 fiGure 54 - 5

 It is common to represent algorithms as activity diagrams.

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Modeling Projects ❘ 1065

 Component Diagrams
 A component is a single unit of functionality
that can be replaced within its environment.
Each component hides its internal structure
but publishes provided interfaces that other
components can use to access its features.
Additionally, each component can publish a set
of required interfaces that it needs to perform
its tasks. A Component Diagram (Figure 54 - 8)
shows the components in a system along with
their published and required interfaces. It also
shows how published interfaces will be matched
up with required interfaces.

 Modeling components helps you to think about the parts of your application as discrete units. This
in turn reduces the coupling in your design, making your application easier to maintain and evolve
going forward. You will typically model interactions between systems components (or between the
parts inside a component) with a Sequence Diagram. You can use a Class Diagram to model the
interfaces of a component along with the data that travels between the interfaces (parameters).

 fiGure 54 - 7

 fiGure 54 - 8

 Although they both use the same notation, UML Sequence diagrams should not
be confused with .NET Sequence diagrams. UML Sequence diagrams can only
be created within Modeling Projects and can include elements from other parts
of the model. .NET Sequence diagrams are generated from existing .NET code
and are not a part of the model.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1066 ❘ chaPter 54 ViSuAl STudio ulTimATe For ArchiTecTS

 uMl Model explorer
 Each of the UML diagrams actually present different views of the same
underlying model. To see the entire model, you can use the UML Model
Explorer (Figure 54 - 10) tool window. As you add content to your model
using the various diagrams, each element will also appear in the UML
Model Explorer.

 You can add items directly to the model using the context menu on
many of the nodes in the UML Model Explorer. You can also drag
elements from the Model Explorer directly onto the surface of many
diagrams. Doing this creates a link between the original element and
its appearance on the diagram. When you try to delete any element
from a UML diagram, you have the option to simply remove it from the
diagram or to remove it from the model altogether.

 using layer diagrams to Verify
application architecture

 A Layer Diagram (Figure 54 - 11) is a tool that helps you specify the high -
 level structure of a software solution. It is made up of different areas or
layers of your application and defi nes the relationships between them.

You can also use a Class Diagram to describe
the classes that make up components ’ parts.
Finally, you use an Activity Diagram to model
the internal processing of a component.

 Class Diagrams
 A Class Diagram (Figure 54 - 9) allows you
to model the types in your system and the
relationships between them. These are
probably the most widely used of the UML
diagram types in the industry. You can defi ne
classes, interfaces, and enumerations. Each
of these items can be related to each other by
inheritance, composition, aggregation, or just
association. Each item can have attributes and
operations defi ned on them. Finally, these items
can be grouped into packages.

 fiGure 54 - 9

 fiGure 54 - 10

 Although based on the same notation, UML Class Diagrams should not be
confused with .NET Class Diagrams. A UML Class Diagram is used to defi ne and
organize elements of the model. A .NET Class Diagram performs a similar role for
.NET code. Changing a .NET Class Diagram will alter the underlying .NET code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Modeling Projects ❘ 1067

Each layer is a logical group of classes that commonly
share a technical responsibility, such as being used for
data access or presentation.

 Once you have created a new Layer Diagram, you
can drag each layer onto the design surface and
confi gure it with a name. You can draw directed or
bidirectional dependency links between layers. A
layer depends on another layer if any of its
components have a direct reference to any of
the components in the layer it depends on. If there
is not an explicit dependency, it is assumed that no
components match this description.

 fiGure 54 - 11

 Once you have created a layer diagram you use it to discover communications between layers in
your compiled application and to verify that these links match the design. Before you do this, you
need to associate projects with each layer by dragging
them from the Solution Explorer and onto the layer
itself. As you do this, entries are added to the Layer
Explorer tool window (Figure 54 - 12) and a number
inside each layer is updated to refl ect the number of
artifacts associated with it. fiGure 54 - 12

 As is shown in Figure 54 - 11 , layers can be nested inside one another.

 You can create new layers by dragging projects from the Solution Explorer
directly onto the Layer Diagram surface.

 Once the layer diagram has assemblies associated with it, you can fi ll in any missing dependencies
by selecting Generate Dependencies from the design surface context menu. This will analyze
the associated assemblies, building the project if necessary, and fi ll in any dependencies that are
missing. Note that the tool won ’ t ever delete unused dependencies.

 When your layer diagram contains all of the layers and only the dependencies that you would
expect, you can verify that your application matches the design specifi ed by the layer diagram.
To do this, you can select Validate Architecture from the design surface context menu. The tool
will analyze your solution structure and any violations that are found will appear as build errors,
as seen in Figure 54 - 13 . Double - clicking one of these errors opens a Directed Graph showing the
relationships between the various projects.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1068 ❘ chaPter 54 ViSuAl STudio ulTimATe For ArchiTecTS

 Modeling projects have a Boolean property called ValidateArchitecture , which is used
to determine if all Layer Diagrams should be validated whenever the project is built. You can
also request that Team Foundation Build validates your architecture by adding a property called
 ValidateArchitectureOnBuild to your TfsBuild.proj fi le or Process Template and setting it
to true.

 linking to team foundation server
 Each of the elements of a diagram in a Modeling Project, as
well as the diagrams themselves, can be linked to Work Items
in Team Foundation Server. You can do this from the context
menu of the item you would like to associate and selecting
either Create Work Item or Link to Work Item. When a model
element is associated with Work Items, it will show in the
properties window for that element (Figure 54 - 14). You can
also get a list of Work Items that an element is linked to by
selecting View Work Items from the element ’ s context menu.

 exPlorinG code

 Many advanced features in Visual Studio are designed to help you understand and navigate the
structure of an existing code base. Directed Graphs give you a high - level view of the relationships
between various types of components within your project. The Architecture Explorer lets you deep
dive into different areas while still leaving a trail of breadcrumbs to help you understand where
you are. The ability to generate Sequence Diagrams lets you quickly understand how a particular
method behaves, especially as it relates to other methods and classes.

 the architecture explorer
 One of the hardest aspects of navigating a new code base is understanding where you are in
relation to everything else. The Architecture Explorer window (Figure 54 - 15) allows you to move
very quickly through the code structure with single clicks, leaving a trail that always makes it easy to
fi gure out how you got to wherever you end up. Some elements can be dragged from the Architecture
Explorer directly onto the design surfaces of many of the other diagrams in this chapter.

 fiGure 54 - 14

 fiGure 54 - 13

 Not all artifacts that can be linked to a layer diagram support validation. The
Layer Explorer window has a Supports Validation column, which can help you
determine if you have linked artifacts for which this is true.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

fiGure 54-15

exploring Code ❘ 1069

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1070 ❘ chaPter 54 ViSuAl STudio ulTimATe For ArchiTecTS

 Figure 54 - 15 shows the progression of columns, each of which contains a series of nodes. Each time
you click a node in a column, a new column opens up based on the node selected. Between each of the
columns is a collapsed Action column, which you can expand by clicking it (Figure 54 - 16). Selecting
a different action allows you to change the next step in the navigation path. In some cases, actions
actually perform some task outside of the Architecture Explorer. Double - clicking a node will often
open it in the editor window.

 fiGure 54 - 16

 You can select multiple nodes in a column to see a union of the results in the next
column.

 Each column in the Architecture Explorer can be independently fi ltered in one
of two ways. The simplest way is to type into the textbox at the top of
the column and press Enter. This fi lters the content based on the information
you entered. The other way is to use the Category and Property Filter box
(Figure 54 - 17) by clicking the small fi lter icon in the top - left of the column.
When a column is fi ltered, it will have a large fi lter icon in its background.

 The fi rst column is the Architecture, which is a special column that contains
views, each of which belongs to a domain. The Solution domain offers the
Class View, which is based on a logical view of your classes, and the Solution View, which is based
on the physical layout of your fi les. The File System domain allows you to load compiled assemblies
from disk and analyze them in the Architecture Explorer.

 The Saved DGQL Queries domain offers access to previously saved queries. These queries can be
saved as a part of your solution or they can be located in your Documents\Visual Studio 10\
ArchitectureExplorer\Queries folder. To save a query, use the Save Query to Favorites button on
the left of the Architecture Explorer.

 dependency Graphs
 When you inherit an existing code base, one of the more diffi cult tasks is trying to fi gure out the
dependencies between the different assemblies, namespaces, and classes. A Dependency Graph allows
you to visualize the dependencies between items at different levels of focus. The easiest way to create
a Dependency Graph is the Architecture ➪ Generate Dependency Graph menu. This option allows

 fiGure 54 - 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

you to create a Dependency Graph by assembly, by namespace, by class, or by some custom criteria
that you can define. Four basic options specify the way a Dependency Graph is arranged based on the
direction of arrows: top to bottom, left to right, bottom to top, and right to left. Figure 54-18 shows
an example of the Left to Right view. There is also a Quick Clusters view, which attempts to arrange
the items so that they are closest to the things they are connected to.

fiGure 54-18

fiGure 54-19

In addition to these views, there is a Dependency Matrix view (Figure 54-19), which shows a
colored square whenever the item in the row depends on the item in the column.

Visual Studio 2010 includes three analyzers for dependency graphs that can help you find potential
problems with a code base. These are enabled and disabled under the Analyzers context menu and
will update the legend to colorize any items that match criteria defined by the analyzer.

exploring Code ❘ 1071

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1072 ❘ chaPter 54 ViSuAl STudio ulTimATe For ArchiTecTS

 ➤ Circular References: These can become difficult to detect, especially as the number of
 components involved grows. This analyzer will detect strongly connected items and colorize
them.

 ➤ Show Hubs: A hub is a component that many other components depend on. These can be
difficult to change because the impact of most changes tends to ripple out through the rest
of the system.

 ➤ Unreferenced Nodes: These are nodes that no other node takes a dependency on. This can
be an issue because it might indicate that the item it represents is not used by anyone else. It
may also mean that the items that are dependent on it are not in the diagram.

Generate sequence diagram
A .NET Sequence Diagram allows you to model the
implementation of a C# or VB method. The best way to create a
.NET sequence diagram is to right-click a method signature in
the editor window and select Generate Sequence Diagram
to display the Generate Sequence Diagram dialog shown in
Figure 54-20.

Once you click the OK button, Visual Studio analyzes
your project and produces a .NET Sequence Diagram as in
Figure 54-21. You can make changes to this sequence diagram
without affecting the underlying code, so you can use this
diagram to rapidly try out different ideas about how the code
should work. fiGure 54-20

fiGure 54-21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 suMMary

 Modeling Projects provide a great way for you to communicate the design of your project clearly,
unambiguously, and effectively. You can use Use Case Diagrams, Activity Diagrams, and Sequence
Diagrams to model user requirements from a number of different perspectives. You will use
Component Diagrams, Class Diagrams, and Layer Diagrams to model the structure of your
application. The ability to verify that your application meets the architecture as designed by the
Layer Diagram can be a useful sanity check to ensure project quality standards remain high and
architectural decisions are not abandoned once the project gets underway.

 Getting up to speed with an existing code base can be very hard. Directed Graphs are an easy
way to identify the relationships between various parts of your application. The new Architecture
Explorer allows you to rapidly move through the connections between components in the system to
fi nd the items that you are looking for. Finally, the ability to generate a Sequence Diagram from an
existing method allows you to quickly grasp the fundamentals of how a method interacts with other
methods and classes within the application.

 You can add a .NET Sequence Diagram to any .NET project by using the Add
New Item dialog. If you add a Sequence Diagram this way, it will not be related
to a specifi c .NET method.

summary ❘ 1073

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

55
 Visual studio Ultimate
for Developers

 what ’ s in this chaPter?

 Analyzing code for potential problems ➤

 Profi ling applications to fi nd bottlenecks ➤

 Developing database projects ➤

 The Premium and Ultimate editions of Visual Studio 2010 have many advanced features
for developers mainly designed to improve quality and facilitate database development. The
quality tools include code metrics, static analysis, and profi ling tools. It ’ s not that you can ’ t
develop quality software with other editions or that using these tools will make sure your
software performs well. Obviously, there ’ s more to it than using a few tools, but these can be
of great help and will reduce the time invested in other tasks like code review and debugging.
The most interesting new debugging tool is called IntelliTrace, which allows you to capture
environment information associated with failed test cases.

 Chapter 26 already examined some of the tools available for working with databases in Visual
Studio 2010. This chapter looks at two main areas: SQL - CLR development, and tools to help
teams working with databases. The fi rst will aid in developing and deploying .NET code
that will be hosted inside SQL Server. The second will allow you to version schema changes,
isolating developers and allowing them to compare changes, auto - generate data, and share
their modifi cations easily with other developers or DBAs.

 code Metrics

 Code metrics serve as a reference to know how maintainable your code is. Visual Studio
2010 provides fi ve metrics for your source code, which are all shown in the Code Metrics
window (Figure 55 - 1). To open this window use the Analyze ➪ Calculate Code Metrics or

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1076 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

the Analyze ➪ Windows ➪ Code Metric Results menu. Once the window is displayed, you can
use the toolbar button in the top left to recalculate the metrics.

 For each metric except for Maintainability Index, lower numbers are considered
to be better.

 Directly from the list, you can fi lter any of the metrics to show methods that fall within a specifi ed
range, export to Excel, confi gure columns to remove metrics, or create a Team Foundation Server
work item. Export to Excel is particularly useful to generate reports using pivot tables or to work
with a fl at view of the information using fi lters and sorts. For example, if you want to look for
methods with more than 15 lines of code, fi ltering directly in the Code Metrics window will get
you a lot of namespaces and types, but you will have to expand each to see whether there are any
methods, whereas in Excel you can easily fi lter out namespaces and types and only look at methods.

 As you use the metrics to make decisions about your code, bear in mind that the actual values are not
as important as relative values. Having a rule that states “ all methods must have less than 25 lines
of code ” is not as useful as one that makes relative statements such as “ prefer shorter methods. ” You
should also consider the changing values as important, so if your average Maintainability Index is
going down it might be a sign you need to focus on making code easier to maintain.

 fiGure 55 - 1

 lines of code
 The name is self - explanatory; however, it ’ s worth mentioning that the purpose of this metric should
be only to get a clue of the complexity of the code, and must not be used to measure progress.
Clearly, a method with fi ve lines of code that calls other methods will be simpler than if you inline
all 25 lines of code in that method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

public class OrdersGenerator
{
 public void GenerateOrder(Order order)
 {
 IsUnderCreditLimit(order);
 IsCustomerBlocked(order.Customer);
 AreProductsInStock(order);
 IsCustomerBlocked(order);
 SaveOrder(order);
 }
 // remaining methods are omitted.
}

 If you compare a class with six methods, as shown in the preceding code, with a class having
the same functionality, but with all the code inlined in one method, the latter will have 25 lines.
Assuming the remaining methods have fi ve lines each, the former will be 30 lines long, although it
is simpler. You have to be careful about how to consider this metric; a longer class might be better
than a short one.

 Use the Extract Method refactoring discussed in Chapter 8 to reduce this metric.
Be sure to keep an eye on extracted methods to see if they might be better off in
a new class.

 depth of inheritance
 This metric counts the base classes; some recommendations are to have a value lower than six.
But this, like other metrics, has to be looked at with special care. It ’ s hard to give a recommended
value and it ’ s relative to which classes you are inheriting from. If you inherit from LinkLabel ,
you will have a depth of 4, but your base classes are less likely to change than if you inherit from
 ProviderXComponent and have a depth of 1. It ’ s more probable that ProviderX will change his
component and break yours, while Microsoft will take more care not to break code. But you ’ ll
probably never update ProviderX ’ s library. The point is that this metric is relative to what base
classes you have.

 class coupling
 This counts the dependencies an item has on other types except for primitives and built - in types
like Int32, Object, and String. The more dependencies you have, the harder it ’ s supposed to be to
maintain, because it would be more probable that changes on other types will cause a break in
your code. Similarly to depth of inheritance, the importance you give is relative to the dependencies
you have. A class referencing System libraries is less likely to have a break than classes referencing
other types on active development. You can see a value for this metric at each level of the hierarchy
(project, namespace, type, and member).

Code Metrics ❘ 1077

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1078 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

cyclomatic complexity
Cyclomatic Complexity is a measure of how many paths of execution there are through your code.
A method with higher cyclomatic complexity is going to be harder to understand and maintain than
one with a lower value. It is hard to find a recommended value for this metric because it depends on
the level of your team and on the team that will maintain the product. Far more important is trending
information — a steadily increasing cyclomatic complexity indicates that your code is getting harder
to understand and follow. Having said that, sometimes a complex solution is warranted.

Maintainability index
This metric is calculated using a formula that considers cyclomatic complexity, lines of code, and
the Halstead volume, which is a metric that considers the total and distinct number of operators
and operands. It will give you a range between 0 and 100, with the higher being easier to maintain
than the lower.

excluded code
Code marked with the CompilerGenerated and GeneratedCode attributes won’t be considered
in the metrics. Datasets and Web Service Proxies are examples of code marked with the
GeneratedCode attribute, but other generated code (like Windows Forms) isn’t marked and will be
considered in the metric’s results.

ManaGed code analysis tool

This is a tool based on FxCop, a Microsoft internal tool released to the public a few years ago and
finally integrated into the IDE. It allows you to perform static code analysis using a set of rules that
define the quality decisions that you want to apply to your code. You can configure which set of
rules to apply to each project from the project property page shown in Figure 55-2.

fiGure 55-2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 To use it you can right - click a project and select Run Code Analysis, or if you selected Enable Code
Analysis on Build in the project ’ s property window, you can simply compile it. The rules will be
evaluated and if there is any violation (and believe me, there will be sooner or later) you will have a
set of warnings in the Error List window.

 By default each violation will appear as a warning, but you can change this
behavior.

 If you right - click a warning and select Show Error Help, you will have a description of the rule, the
cause, steps on how to fi x violations, and suggestions on when to suppress warnings. Suppressing
warnings is done with the System.Diagnostics.CodeAnalysis.SuppressMessageAttribute ,
which can be applied to the offending member or to the assembly as a whole. You can quickly and
easily generate these attributes by selecting one of the Suppress Message menu options from the
right - click menu in the Errors window.

 More than 200 rules are conveniently organized into 11 categories, and you can add custom rules if
needed. Depending on your project, you might want to exclude some categories or some particular
rules. For example, if you don ’ t need globalization and don ’ t have plans in the future to support it,
you might exclude that category. You can even create your own sets of rules (Add New Item ➪ Code
Analysis Rule Set) if the ones provided by Microsoft don ’ t meet your needs.

 When you fi rst get started with Code Analysis tools, you should turn on all the rules and either
exclude or suppress the warnings as needed. This is an excellent way of learning best practices.
After a couple of iterations, new code written will be less prone to violate a rule. If you are starting
a new project you might want to add a check - in policy, which prevents code with Analysis warnings
from being checked in.

 Never suppress a warning unless you have a very good reason. Finding these
violations again can be quite diffi cult.

 c/c++ code analysis tool

 This tool is similar to the Managed Code Analysis Tool, but works for unmanaged code. To
activate it simply go to your C++ project ’ s properties window, look for the Code Analysis node
inside the Confi guration Properties, and select Yes for Enable Code Analysis for C/C++ on Build.
Every time you compile your project, the tool will intercept the process and attempt to analyze
each execution path.

 It will help you detect crashes that are otherwise hard to fi nd with other techniques like debugging
that are very time consuming. It ’ s able to detect memory leaks, uninitialized variables, pointer
management problems, and buffer over/under runs.

C/C++ Code analysis Tool ❘ 1079

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1080 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

 ProfilinG tools

 Profi ling tools enable you to detect and correct performance and memory issues in your projects.
You can start a profi ling session by selecting Launch Performance Wizard from the Analyze menu.
The fi rst step of the wizard asks you to select one of four profi ling methods:

 CPU Sampling reports the CPU utilization at regular intervals while your application ➤

is running. This type of profi ling is good for initial analysis or for identifying issues
specifi cally related to CPU usage.

 Instrumentation actually inserts additional lines of code into your assembly to report on ➤

the length of time each method call takes. You can use this sort of profi ling to get a detailed
look at where your application spends most of its time.

 The .NET Memory profi ler collects data about objects as they are created and as they are ➤

cleared up by the garbage collector.

 Concurrency profi ling collects information about multi - threaded applications and provides ➤

some visualizations that you can use to explore several concurrency - related issues.

 Next you need to select a project, executable, DLL, or web site to profi le. With that information, the
Performance Wizard creates a performance session and opens the Performance Explorer window.
You could also create a blank session from the Performance Explorer or from a test in the Test
Results window.

 In the Performance Explorer (Figure 55 - 3) you can change between
instrumentation and sampling. Using the combo box, you could start
the wizard again or manually create a new performance session.
Although you can instrument or sample a DLL, you need a point of
entry for your application to run when you start the session, so be sure
to include an executable, web site, or test project as a target.

 fiGure 55 - 3

 If you have high code coverage, profi ling unit test projects can give you a good
insight into which methods take the longest to execute or use the most memory.
Be wary of reacting to this information, though, because long - running
methods may be called infrequently and improving an already fast method that
is called many times will have a greater impact on overall application
performance.

 confi guring Profi ler sessions
 To confi gure your session, simply right - click and select Properties. In the General section you can
change between Sampling, Instrumentation, and Concurrency (Figure 55 - 4), and choose if you want
to activate .NET memory profi ling collection, the output for the reports, and the report names.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the Sampling section, you can select when to take samples; by default this is set to 10,000,000
clock cycles. Depending on what you want to track, you can change the sample event to page faults,
system calls, or a particular performance counter.

Enabling Tier Interaction Profiling (TIP) allows you collect information about synchronous ADO.NET
calls between your application and SQL Server. This includes the number of times each query is made
and how long each one took. If you are profiling an ASP.NET WebForms application, TIP is also able
to provide data about page request counts and generation times.

The Instrumentation section is used to specify pre- and post-instrument events, for example signing
an assembly with a strong name. These settings are set on a per-target basis. The last section in the
property page, Advanced, is also used when instrumentation is selected, and there you can specify
additional command arguments. To see a list of available options, search for VSInstr on MSDN.
VSInstr is the tool used to instrument binaries.

The remaining sections are used to specify the collection of different counters or events. CPU
Counters will let you capture additional low-level information and will be displayed as extra columns
in the different report views. These are only available for instrumentation. The Windows Counters
are system performance counters and you will be able to see the results in the Marks report view.

fiGure 55-4

Profiling Tools ❘ 1081

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1082 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

The Windows Events section will let you specify event trace providers. To see the information on
Windows events, you would need to manually get a text report using the following command:

Vsperfreport c:\<path>ReportName.vsp /calltrace /output:c:\<path>

reports
Once you are all set, you can start the application, test, or web site from the Performance Explorer.
It will run as usual, but will be collecting data. Once your application terminates, a report will be
generated. Table 55-1 shows a description of some of the report views and Figure 55-5 shows the
Summary View.

table 55-1: Some Report Views

View naMe descriPtion

Summary Shows function information . Sampling it will show functions causing the most

work and functions with the most individual work . With instrumentation it will

show the most called functions with the most individual work and functions

taking the longest . From here you can navigate to the Functions view . If Collect

 .NET Object Allocation Information is selected as shown in Figure 55-4, it will

show functions allocating the most memory and types with the most memory

allocated and most instances .

Call Tree Contains a hierarchy of the functions called . The Call Tree has a feature called

Hot Spot that will point you to child functions taking the most time .

Modules Shows information about the module sampled or instrumented .

Caller/Callee Shows you which functions a particular function called and which functions

called it .

Functions Presents a list of all the functions sampled or instrumented . Double-clicking

each function lets you navigate to the caller/callee window .

Allocations Shows the number of instances and bytes allocated of a particular type .

Additional reports can be generated using the command-line tool VSPerfReport. For more information,
consult the MSDN documentation.

Allocation and Object Lifetime are only available if you select Collect .NET Object Allocation
Information and Also Collect .NET Object Lifetime Information, respectively, in the session’s
property page. Some of the report views are different depending on the configuration. To see
a description of a particular column, simply hover over its title. You should go through the
documentation on MSDN to get a thorough description on each report.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In all the views, you can use the filter from the toolbar to get to specific information. You can add
or remove columns by right-clicking a header and sort using a particular column. Reports can
be exported to either XML or CSV and successive reports can be compared against one another,
allowing you to spot changes in your application’s performance.

stand-alone Profiler

This is a command-line tool that is useful when you need to profile an application without
installing Visual Studio on the machine — for example, in a production environment. To install this
tool, you need to execute vs_profiler.exe from the Visual Studio installation media located in
the Standalone Profiler folder. It will install the tools in the directory %ProgramFiles%\Microsoft
Visual Studio 10.0\Team Tools\Performance Tools. If you are going to use the command-line
profiler often, you could add this path to the system path.

The following commands profile an application using sampling with the default settings. The first
line enables the trace. The next command switches the profiler to use CPU Sampling and to output
a report. In this case the report will be saved in the ApplicationToProfile directory on a file named

fiGure 55-5

stand-alone Profiler ❘ 1083

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1084 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

 Report.vsp . Then you launch the application, interact with it as usual, and when you are done you
fi nally shut down the Profi ler. You can then open and inspect the generated report in Visual Studio.

C:\ApplicationToProfile > vsperfclrenv /traceon
Enabling VSPerf Trace Profiling of managed applications (excluding allocation
profiling).
 ...
C:\ApplicationToProfile > vsperfcmd -start:sample -output:Report
Microsoft (R) VSPerf Command Version 10.0.30128 x86
 ...
C:\ApplicationToProfile > vsperfcmd -launch:Application.exe
Microsoft (R) VSPerf Command Version 10.0. 30128 x86
 ...
Successfully launched process ID:4144 Application.exe
C:\ApplicationToProfile > vsperfcmd -shutdown
Microsoft (R) VSPerf Command Version 10.0. 30128 x86
 ...
Shutting down the Profile Monitor

 intellitrace

 IntelliTrace is a new tool in Visual Studio 2010 Ultimate that makes debugging your application a lot
easier. It operates like a fl ight recorder while you are in a debug session and allows you to look back
at historical values and state. In addition to this, you can save IntelliTrace sessions and load them
back up at a later time. Testers who are using Microsoft Test and Lab Manager can also collect
IntelliTrace information while they run through test cases, providing you with the exact state of the
system when a bug is reported.

 fiGure 55 - 6

 IntelliTrace currently supports C# and VB projects with experimental support
for F#. You cannot use IntelliTrace by using the Attach To Process command or
in remote debugging scenarios.

 When a debugging session is started and IntelliTrace
is enabled (Tools ➪ Options ➪ IntelliTrace) the
IntelliTrace window (Figure 55 - 6) is shown. This
window maintains a list of diagnostic events that
IntelliSense is able to detect.

 As each new diagnostic event occurs, Visual Studio adds
it to the end of the list. If you pause the execution or hit
a breakpoint, the IntelliTrace window becomes active.
If you click any of the diagnostic events, it expands to
show a little more information. This expanded view
contains a list of Related Views, which have been
updated by IntelliTrace to refl ect the state of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

application at the time of the event. You can check the
call - stack, add watches, check locals, and generally
perform any of the tasks that you would normally be
able to during a normal debugging session. When you
are ready to resume execution of the application you can
click the Return to Live Debugging button.

 IntelliTrace is able capture two types of information
during a debugging session. IntelliTrace Events are
enabled by default and include Visual Studio debugger
events such as application start and hitting breakpoints.
Throwing and catching exceptions are also IntelliTrace
events. When a tester is collecting IntelliTrace
information, the beginning and end of a test along with
any failures form contextual events that are covered
under the label of IntelliTrace Events. Finally, the
Framework itself is able to raise some diagnostic events.
You can fi nd a list of these in the IntelliTrace options.

 The other type of information, that IntelliTrace
can track is method calls along with parameter
information. To use this information, you need to turn
it on before starting the debugging session (Tools ➪
Options ➪ IntelliTrace). Once Call Information has
been activated, you can switch the IntelliTrace window over to the Show Calls View
(Figure 55 - 7), which shows each method call entry and exit along with a sublist of
events that occurred during their execution.

 When you are in an IntelliTrace session with Call Information enabled, a new border
is added to the editor window, which contains IntelliTrace navigational markers
(Figure 55 - 8). You can use these to navigate the IntelliSense information from inside
the editor. This border is a light grey during normal debugging, but turns a darker
grey when IntelliSense is activated.

 IntelliTrace fi les (.tdlog fi les) are stored in a default location on your hard drive and can be
archived and re - opened later. When you open a .tdlog fi le you see the IntelliTrace Summary view.
By double - clicking a thread or an exception, you can open the IntelliTrace session at the appropriate
point and begin debugging again.

 fiGure 55 - 7

 fiGure 55 - 8

 By default, IntelliTrace fi les are stored in the C:\ProgramData\Microsoft
Visual Studio\10.0\TraceDebugging folder. You can always check where
the fi les are stored from Tools ➪ Options ➪ IntelliTrace ➪ Advanced.

intelliTrace ❘ 1085

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1086 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

database tools

Most applications require some kind of database to store data when it is not being used. Visual
Studio 2010 Premium provides all of the capabilities that were previously introduced with the
Database edition of VSTS and adds tools that were previously only available as Power Tools.

sql-clr database Project
In the New Project dialog inside the Database node are two nodes for C# and VB SQL-CLR
Database projects. These are used to create managed classes to use inside a SQL Server. When
you create a new project of this type, you will be prompted for a connection and to enable CLR
debugging. Use CLR debugging only on development database servers and isolated from other
developers, as explained later in the “Best Practices” section.

You can add to this project some types like Aggregates, User-Defined Functions, Stored
Procedures, Triggers, User-Defined Types, and Classes. You can think of this as a normal VB/
C# project; you can add classes, references, and even web references. You can create unit tests
for your methods as explained in Chapter 11, refactor your code, and build, in the same way
you would for other library projects. However, the debugging history is a bit different, because
your code is running in an SQL Server context. First you will need to allow VS to remote debug
the code. This is needed only the first time you debug your project. However, the point of entry
for your code will be through a script that will use any of your managed objects. As you may
have noticed when you created the project, there’s already a file named Test.sql, which is used
to create and test your types.

The test scripts can grow quickly, and long script files are not easy to maintain. You can add new
test scripts and right-click to set them as Default Debug Script. This is similar to the way you would
set an ASP.NET page as the start page. You can set a breakpoint on the script or the classes you
are testing and hit F5 (or from the menu Debug ➪ Start Debugging). This will build the project,
drop the assembly from SQL Server in case it was previously deployed by Visual Studio, and then
register the assembly again with SQL Server using the Create Assembly procedure. Finally, it will
attach to the SqlServr.exe process to allow you to debug scripts and managed code. You can also
create Database Unit Tests that use your SQL objects (including SQL-CLR types) as explained in the
section on Database Unit Tests in Chapter 56.

offline database schema
There’s another type of Database Project and it’s inside the Microsoft SQL Server node, as shown
in Figure 55-9. As you can see, there are three options each for SQL Server 2005 and SQL Server
2008, but it’s basically the same project type; the difference between them is the use of a wizard
and the SQL Server version being targeted. Some options are available only from the creation of the
project using the wizard, so I suggest you start using that. These projects will let you have an offline
representation of your DB schema, so that you can version it along with your code. It will create a
file for each schema object and deploy the changes to a database.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you run the wizard for SQL Server 2008,
the first option will let you choose whether
your project will manage a single database or
a SQL Server. This is the same as choosing
either Database Project or Server Project in
Figure 55-9. The other option on this page is
to organize the files by schema or object type
(tables, views, stored procedures, and so on).
This is important because you can’t change this
option once the project is created, although you
will find yourself working on the Schema View
most of the time instead of doing it directly on
the files — from that window you can select or
deselect the filter by Schema View. However, if
you select “No” to organizing by schema inside
the types, you can still distinguish the schema
because of the prefix added to each filename.
On the other hand, if you select to organize
by schema, inside of each you will have folders
for each type. Figure 55-10 shows at the left
the Schema View filtered by schema. You could
change this option to organize all the objects by
type. The Solution Explorer (at the right) shows
two different projects where files are physically organized differently.

The database options are the next step of the wizard; if you don’t know your defaults now, don’t
be afraid to choose something and change it once you get this information from either your DBA

fiGure 55-9

fiGure 55-10

Database Tools ❘ 1087

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1088 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

or your production DB. You can select to import this configuration directly from a DB. If you can
connect to your production DB, it’s a good idea to import them at this moment. To do this, simply
go to the next step in the wizard and mark the needed checkboxes as shown in Figure 55-11.

The last step is to configure the build and deployment options. You will need more deployment
configurations, so here you will only select your development database. Keep in mind this doesn’t have
to be the same as in the previous step — here you are configuring your development database and in
the previous step, if available, you would import existing objects and configuration from a production
DB. You see the three configurations needed in more detail later, so for now you can go with the
default options. The final step will take a while, especially if you have many objects to import.

fiGure 55-11

Once the wizard finishes, you can add, edit, or delete schema objects right from the Solution
Explorer or the Schema View (View ➪ Schema View) — these will be represented as files. When
you build the project, a .sql file containing all the DML necessary to re-create your schema will be
generated and evaluated. The script can then be deployed to SQL Server. You could also choose to
deploy on every build, so your DB will always get your last changes.

When working with Source Control, this type of project becomes really useful. The scenario would be
that each developer works on his own server instance. One of them has made changes to the schema
and his .NET code and deployed them to his instance. He then tests the .NET application and it
works fine with the new database changes. Then he checks in all of his changes to the server and
another developer retrieves the changes. When the second developer deploys his database instance it

http://lib.ommolketab.ir
http//lib.ommolketab.ir

is also updated with the latest changes, and he will be running the new code changes along with the
new schema changes applied to his SQL Server instance.

 data Generation
 In addition to versioning the schema, you might want a way to generate data for testing purposes.
To do this, you need to add a Data Generation Plan. If you right - click the Offl ine Schema project
under the Add menu, you will fi nd the option for Data Generation Plan. By default, all the tables on
the schema will be selected, but you can override these settings. In the top section of Figure 55 - 12,
only the Products table is checked. The ProductModel and ProductCategory tables are automatically
added (darkened checkboxes) because of the foreign key between Products and those tables.

 fiGure 55 - 12

 Keep in mind these generation plans are only for development and testing
purposes. Don ’ t run them on production servers.

 In the plan, you can select the ratio between Related Columns; for example, in Figure 55 - 12 we are
specifying to have 10 products for each subcategory (10:1).

Database Tools ❘ 1089

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1090 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

In the Column Details window, all columns are selected except for the ProductID, which is an
identity column. You can deselect columns as long as they have either a Default value or allow nulls.
In the properties window you can specify the percentage of nulls to be generated.

For each column, you can also specify the type of generator to use. By default a generator will be
selected depending on the data type, or in case a column is a foreign key, the values will come from
the related table’s primary keys. You can use other generators. In the example in Figure 55-12, for the
Name on the Products table we used a regular expression to mix first names and last names. Another
option would be to use a Data Bound Generator. In that case, you would need to specify a connection
string and a select query to get the values to insert. You could also create a Custom Generator and
implement your own logic simply by implementing a base class and registering your assembly as a
Customer Generator. For more information see “Creating Custom Generators” on MSDN.

To run the Data Generation Plan, simply select Generate Data from the Data ➪ Data Generator
menu. Remember to run this plan only on a development or testing database.

database refactoring
Chapter 8 introduced the topic of refactoring for normal .NET code. For databases you have only
three refactoring tasks: Rename, Move Schema, and Fully-Qualify Names. You can rename tables,
columns, stored procedures, constraints, and indexes, as well as other database objects. You can also
rename the references to other servers or databases if a cross-database reference is used in the scripts.

To rename an object from the Schema View, right-click it and select Rename from the Refactor
submenu. When renaming an object, you will see a preview of the changes as shown in Figure 55-13.
In the upper pane you will see the old version, and in the lower pane you will see the new one for all
the dependencies.

fiGure 55-13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Renaming is easily done on an offline schema version, but for tables and columns it can be hard
to deploy to the database. Because the old object will be dropped and re-created, this can result in
data loss. If you have a Data Generation Plan, you can regenerate the data after the changes are
deployed, but if you need to preserve your data you should either modify the deployment script or
apply the refactoring manually. See “Protecting Data during a Renaming Operation” on MSDN for
more information.

schema compare
This tool enables you to compare schemas between databases or Database Projects. To use it, select
New Comparison from the Data ➪ Schema Compare menu. You will have to select a project or
database as Source and a project or database as Target. When you do that, you will be presented
with a window similar to the one shown in Figure 55-14. The lower pane will show both versions
of the selected object with the changes highlighted. It’s handy to use the filters from the toolbar; by
default all objects will be shown. You should select Non Skip Objects to see only the differences.

fiGure 55-14

For each DB object, you can see the action that will be applied. Then from the toolbar you can either
select Write Updates to apply all the changes or Export to Editor to get the SQL statements used for
the update in case you need to do manual changes or hand it out to your DBA.

Database Tools ❘ 1091

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1092 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

To customize the options for Schema Comparisons, go to Tools ➪ Options and to the Schema
Compare node under Database Tools. By default, Block Schema Updates if Data Loss Might Occur
is selected; this is recommended but can cause some updates to fail. You can uncheck this option,
but be sure you’re running on a test database and that you can regenerate the data. Other options
such as Ignore White Space can be useful to reduce unnecessary changes.

Remember that if you are using a Database Project, the deploy option will write the changes from
your Database Project to the database selected in the build option in the project’s properties. This
tool can be useful to see the changes or do manual tweaking.

data compare
This tool is useful for copying data from one database to another. Go to Data ➪ Data Compare ➪
New Data Comparison to start the wizard. You will need to select the Source and Target database
and the records to compare. Depending on what you want to do, you can choose between the
different Compare options, “Different Records” for updates, “Only in Source” for inserts, “Only
in Target” for deletes, and Identical Records just as a reference. Finally, you can select which tables
and columns to compare.

You will be presented with all the objects selected in the last step of the wizard, but only the objects
with differences will be selected. I recommend filtering the view to show only the Selected Records.
From there you can check/uncheck the changes you want to apply either at a table or row level.

Figure 55-15 shows the comparison results between two versions of a simple Products database.
The upper pane shows the tables and the lower pane shows the records for the selected table. The
Different Records tab in the lower pane will show side by side each Source and Target column, so
you can see where the differences are.

fiGure 55-15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 From the toolbar you can select either Write Updates or Export to Editor to manually apply
the changes.

 static analysis
 Visual Studio 2010 Premium and Ultimate include static analysis tools for databases as well as for
code. To run the static analysis tools, select Data ➪ Static Analysis ➪ Run. Currently, 14 rules are
spread across three categories to help you develop databases: Design, Naming, and Performance.

 transact - sql editor
 This editor allows you to work with Transact - SQL (T - SQL) code directly in Visual Studio. To open
it, you can double - click a .sql fi le in Solution Explorer or from the Schema View of a Database
Project. Another option is to start with a blank editor — to do this go to Data ➪ Transact - SQL
Editor and select New Query Connection. Now you can start to write your T - SQL, with nice
coloring and most of Visual Studio ’ s shortcuts and features like bookmarks and search and replace.
From the toolbar or the T - SQL Editor menu, you can validate syntax, execute your code, include
client statistics, disconnect to work offl ine, and reconnect once you need to run a query. When you
run the queries, the results can be displayed on a grid or text format or be exported to a fi le. You
can also change this behavior from the menu or toolbar.

 best Practices
 The following is a list of best practices we compiled through our work with Database Professionals
and which have worked for us on small and medium - sized projects:

 Each developer works with his own local SQL database instance, one for development and ➤

another for testing. This is necessary to isolate uncommitted and untested changes and avoid
affecting other developers working on the database at the same time. It is strictly necessary
for managed - code debugging purposes, because starting a debugging session will cause all
managed threads to stop. From the project properties for Database Projects, you can specify
the database to target for each Solution Confi guration, but SQL - CLR projects can only
target one database.

 Each developer works with two databases, one for development and one for unit testing ➤

because different data will be used for each.

 Use (local) or 127.0.0.1 for the hostname instead of, say, MikesComputer or 192.168.2.6, ➤

which would work only on one machine.

 If you are using database instances, be sure all your developers have an instance with the ➤

same name.

 The Data Compare tool is only able to work with tables in the default schema of
the database.

Database Tools ❘ 1093

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1094 ❘ chaPter 55 ViSuAl STudio ulTimATe For deVeloperS

All developers should have the same SQL Server version. Although SQL Server Express can ➤

be used for design-time validation and testing purposes, some features, like Text Indexing,
are not supported.

Clear the Block Incremental Deployment if Data Loss Might Occur checkbox in the project ➤

properties window for the Solution Configuration used for Test Databases. Because you will
have a Data Generation Plan, data will be easy to re-create after changes have been made to
the schema.

When deploying to a production database, build the Database Project and then modify the ➤

build script to manually deploy it to the server. You can lean on the Schema Comparison
tool to have a more granular view of the changes made.

suMMary

In this chapter, you saw a couple of advanced features that are part of Visual Studio 2010 Premium.
All of these target quality improvement. Code Metrics and the Analysis Tool will analyze your code
or binaries statically, collecting metrics and evaluating rules. The metrics will be useful to see how
maintainable your code is. For the analysis, you have rules for different categories that will help you
ensure that your code will perform well before it runs. On the other hand, the Profiling Tools will
evaluate your code at run time and IntelliTrace lets you explore the execution of your application
during a debugging session.

This chapter covered some of the most important features for database developers. You saw how
easy it is to develop code for SQL-CLR and how the Offline Schema Projects will help you work on
a team, versioning and merging your changes. Advanced features like refactoring and unit testing
will change the way you develop databases, and tools like Schema Compare, Data Compare, Data
Generation, and the T-SQL Editor will support the process as well.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

56
 Visual studio Ultimate
for Testers

 what ’ s in this chaPter?

 Testing web and windows applications ➤

 Identifying relationships between code and tests ➤

 Planning, executing, and coordinating testing tasks ➤

 Managing test environments ➤

 You can test an application in many ways. Chapter 11 introduced the concept of unit tests,
which are small executable pieces of code that verify a particular aspect of behavior for a
single method or class. The fi rst part of this chapter examines the advanced tools built into
Visual Studio that are available for other testing tasks, including testing web applications and
databases. You also learn how to track the relationships between tests and code.

 The 2010 release of Visual Studio also contains a new product called Test and Lab Manager.
This tool is designed for testers to interact directly with Team Foundation Servers and manage
test plans, suites, and cases. Test and Lab Manager is available with the Ultimate edition of
Visual Studio and as a part of a separate pack called Test Elements.

 autoMated tests

 An automated test is a piece of code that verifi es the behavior of your application without
any user input or control. Once the system has been asked to run an automated test, it can
be left unattended until it has completed. To create a new automated test from Visual Studio

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1096 ❘ chaPter 56 ViSuAl STudio ulTimATe For TeSTerS

 web Performance tests
 This type of automated test simulates web requests and allows you to inspect the responses and
evaluate different conditions to determine if the test passes. When you create a new Web Test,
Internet Explorer opens with the Web Test Recorder enabled, as shown in Figure 56 - 2. Navigate
to and around your site as if you were a normal user. Once done, simply click Stop. This opens the
Web Test ’ s designer shown in Figure 56 - 3. There you can customize your test, adding validation
and extraction rules, context parameters, comments, data sources, and calls to other Web Tests, or
inserting transactions. You can also specify response time goals for requests.

 You will often need to run the same set of tests against different web servers; to do this you
confi gure which server the test runs against as a context parameter. From the Web Test Designer
you can right - click the main node and select Parameterize Web Servers. Visual Studio will inspect
the URLs in each request and determine the context parameters it will need to create.

 fiGure 56 - 1

 Depending on which edition of Visual Studio you have, you might not have all of
the tests shown in Figure 56 - 1. Coded UI Tests and Database Unit Tests are only
available in the Premium and Ultimate editions. Web Tests and Load Tests are
only available in the Ultimate edition. The rest of the automated tests are available
in all three editions.

2010, use the Test ➪ New Test menu option to display the Add New Test dialog shown in
Figure 56 - 1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

fiGure 56-2

fiGure 56-3

You can link your requests using the output from one of them as input for the next; to do this, you
add extraction rules to a specific request. You can extract from fields, attributes, HTTP headers,
hidden fields, and text, or even use regular expressions. The result of an extraction will set a context
parameter, which can then be used, for example, as a form or query string parameter in further
requests. You could add a product and then search for it using the ID in another request.

automated Tests ❘ 1097

You can add form and query string parameters from the context menu of a request. By selecting
a form or query string parameter from the properties window, you can set its value to a context
parameter or bind it to a data source.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1098 ❘ chaPter 56 ViSuAl STudio ulTimATe For TeSTerS

No test framework would be complete without validations. When you record a test, a Response
URL Validation Rule is added asserting that the response URL is the same as the recorded
response URL. This is not enough for most scenarios. From the context menu at a Web Test or
request level, you can add validation rules. You can check that a form field or attribute has a certain
value or that a particular tag is included, find some text, or ascertain that the request doesn’t take
more than a specified length of time.

Double-clicking the .testrunconfig file in Solution Explorer allows you to further customize
how Web Tests are run. There you can choose the number of iterations, the browser and network
type, and whether the test engine should simulate think times. You can have many Test Run
Configurations and from the Test menu select the active one.

Web Tests, as well as any other type of test, are displayed in the Test List Editor window as you
saw in Chapter 11. From there you can run your Web Test and group it inside a particular test list.
You can also run it directly from the Web Test Designer. Once a test is run you can see its details
by double-clicking it in the Test Results window. To open this window, select Test Results from the
Test Windows menu. There you can see each request’s status, total time, and bytes. When you select
a request you will see the details of the selected request and received response, values of the context
parameters, validations and extraction rules, and a web-browser-like view displaying the web page.
An example is shown in Figure 56-4.

fiGure 56-4

If you need additional flexibility, you can code the Web Tests using .NET and the Web Testing
Framework. The best way to learn how to use the framework and start coding your test is by
generating code for a recorded Web Test. You have this option in the Web Test context menu.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 load tests
 Whereas web and load testing are meant to test functional requirements, Load Tests will run a set
of tests repeatedly so you can see how your application will perform. When you create a new Load
Test, you are presented with a wizard that guides you through the necessary steps. First, you need to
create a scenario; here you will defi ne if you want to use think times. When you recorded the Web
Tests, the time you took between each request was also recorded and can be used as the think time.
It can be edited for each Web Test request in the properties window.

 As part of the scenario, you will defi ne the load pattern; for example, a constant load of 100 users
or a load incrementing by 10 every 10 seconds until you get to 200 users. The next steps, Test,
Browser, and Network Mix, defi ne how tests will be run by virtual users, specify which browsers
will be used to run the tests, and determine the kinds of network that will be simulated. In the Test
Mix step you can add Generic, Ordered, and Web Tests.

 In the Counter Sets step, you add the computers that you want to monitor and the performance
counters you are interested in. For example, you can monitor your Database Server and IIS. In the
last step, Run Settings, you can specify the test duration or test iterations, how often samples will be
taken for performance counters, a test description, how many identical errors will be recorded, and
the validation level. We defi ned a validation level for each Validation
Rule in our Web Tests. Because evaluation of these rules can be
expensive, in Load Tests only rules with a level equal to or below
the specifi ed validation level will be evaluated.

 When you click Finish, you are presented with the Load Test Designer
as shown in Figure 56 - 5. There you can add additional scenarios,
counter sets, or new run settings.

 When you run the tests, you will see the Load Test Monitor; by
default it will show the Graphs view. In the left - side pane you have a
tree view of the counters that are being collected. You can select items
there to add them to the graphics. From the toolbar, you can change
to Summary or Tables view, export to Excel or CSV, and add analysis
notes. In the Graphs view at the bottom, you will have a legends pane
as shown in Figure 56 - 6. There you can select/deselect the counters
that you want to include in the graphs. While the test is running, the
monitor is updated on each sample interval. In the Tables view, you
can see the Requests, Errors, Pages, SQL Trace, Tests, Thresholds,
and Transactions. fiGure 56 - 5

 Although Visual Studio provides some ASP.NET - specifi c features, you can use
Web Tests for sites built using other technologies.

automated Tests ❘ 1099

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1100 ❘ chaPter 56 ViSuAl STudio ulTimATe For TeSTerS

Thresholds are particularly important. These are values for each performance counter that will allow
you to spot problems. In the graphs, you can see points where violations occurred marked with a
warning or error icon.

Test load agent
For large-scale applications, one computer might not be enough to simulate the desired load. Visual
Studio Team System 2010 Test Load Agent can distribute the work across different machines. It can
simulate approximately 1,000 users per processor. This product requires a separate installation and
requires one controller and at least one agent. To configure the environment, select Administer Test
Controller from the Test menu. There you can select a controller and add agents. Then, from the
Test Run Configuration window in the Controller and Agent node you can select to run the tests
remotely and select the configured controller.

database unit test
You already looked at unit testing in Chapter 11; this section expands the topic to databases. This
kind of test is useful to verify the functionality and design of your schema objects and can work
hand-in-hand with your Data Generation Plans and Schema Database Projects. To create a new
Database Unit Test, from the Tests menu select New Test and choose the template for Database
Unit Test, then create a new project if needed. For the first DB Unit Test in the project you will be
prompted for a database to run the tests against. You can change this later from the Database Test
Configuration option under the Test menu. It’s highly recommended to have a dedicated database
for test purposes for each developer. You can also select to deploy the project before running the
tests. This will guarantee you are always running the tests against the latest version of the schema.
Finally, you can select to use a Data Generation Plan to re-create the data for the unit tests.

To create and edit the tests, you have a designer (Figure 56-7). From there you can select the different test
methods or create new ones and add new test conditions. The conditions available are Empty ResultSet,
Execution Time, Inconclusive, Not Empty ResultSet, Row Count, and Scalar Value. When selected, you

fiGure 56-6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

can confi gure them from the properties windows — for example, to set the value for the row count.
You can also create your own test conditions. The Data Checksum and Expected Schema test conditions
that were previously released as a part of the Power Tools pack are now also available by default.

 You have two other ways to verify your tests. One is by raising errors from your T - SQL code. The
 RAISERROR function will take an error message (this will be displayed on the Test Results window in case
of failure), error severity, and error state. If error severity is above 10, it will cause the unit test to fail.

 The other way to verify tests is from your C# or VB.NET script. If you right - click your test and
select View Code, you will see it ’ s structured as a regular unit test as explained in Chapter 11 and
simply has methods that call SQL scripts. When you execute a script, you will get back in your
.NET code an ExecutionResult array; each ExecutionResult object will contain a DataSet ,
number of rows affected, and the Execution Time . Using those properties you can make your
assertions. The Execute method of the TestService also takes SqlParameters that could be
passed to your script and can be returned to your C# code for further verifi cation.

 coded ui test
 Sometimes the best way to test an application is to drive it from the outside as a user would.

 When you create a new Coded UI Test, it starts the Coded UI
Test Builder (Figure 56 - 8). Once you click the Start Recording
button, the Coded UI Test Builder tracks all of the actions that
you take with the mouse and keyboard.

 Open your application and use it to get into the state that
you ’ d like to test, then click the Generate Code button. This prompts you to name your recorded
method, which will be saved in the test project as a part of the UI Map. This map is a description of
actions and assertions that you can use to automate and test your application.

 fiGure 56 - 8

 fiGure 56 - 7

 Each test project contains a single UI Map, which all of the Coded UI Tests share.

automated Tests ❘ 1101

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1102 ❘ chaPter 56 ViSuAl STudio ulTimATe For TeSTerS

Once your application is in the desired state you can create assertions about different parts of the
user interface. To do this, drag the cross-hair icon from the Coded UI Test Builder over the part
of the UI that you want to make an assertion about. When you release the mouse button, the Add
Assertions dialog is displayed as in Figure 56-9.

fiGure 56-9

On the left is a collapsible panel showing the UI control map, which displays the hierarchy of all
controls that have been identified so far. On the right is a list of properties that the Coded UI Test
Builder has been able to identify along with their values. To make an assertion about one of these
properties, you can right-click it and select Add Assertion. Each assertion has a comparator and a
comparison value to be tested against.

Generic tests
Not every kind of test is covered in Team System. This is why Microsoft included the concept of
Generic Tests so that you can easily use custom tests, but still be able to use the rest of the features
like Test Results, Test List, Assign Work Items, and Publish Test Results.

To configure a Generic Test, you need to specify an existing program and optionally specify its
command-line arguments, additional files to deploy, and environment variables. The external application
can communicate the test result back to Team System in two ways. One is with the Error Level, where a
value of 0 indicates success and anything else is considered a failure. The other is to return an XML file
that conforms to the SummaryResult.xsd schema located in Visual Studio’s installation path. In MSDN
you can find information about this schema and how to report detailed errors using XML.

ordered test
Ordered Tests are used when you need to group tests and run them as a whole, or if tests have
dependencies on each other and need to be run in a particular order. It’s a good practice to create
atomic Unit Tests to be able to run them in isolation with repeatable results. I don’t recommend
using Ordered Tests just to deal with dependencies between Unit Tests. A good reason for creating
Ordered Tests could be to create a performance session for more than one test.

In the Ordered Test Editor you will have a list of the available tests that you can add to the Ordered
Test — the same test can be added more than once. You can also choose to continue after a failure.
When the test is run, it executes each of the selected tests in the specified order.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 relatinG code and tests

 Tests and code are heavily interconnected. Tests have no reason to exist without the code that they
verify and code that is not verifi ed by tests is potentially incorrect. Visual Studio contains two tools
designed to make the link between tests and code more explicit. Code Coverage is able to determine
which areas of your code are executed during a test run, which tells you if you need to add more
tests to your solution. Test Impact Analysis enables you to determine which tests need to be re - run
based on the areas of code that you have modifi ed.

 fiGure 56 - 10

 Both Code Coverage and Test Impact Analysis are available only for the Premium
and Ultimate editions of Visual Studio 2010.

 code coverage
 This is a very useful tool. It will instrument the code being tested to help you see which lines of code
are really being executed. First, you need to have a Test Project on your solution. To demonstrate
this, you can refer to the example described under “ Your First Test Case ” in Chapter 11. Assuming
you have already created the SubscriptionTest class and CurrentStatusTest is passing, you will
now activate Code Coverage.

 To open the Test Run properties window, you can double - click the Local.testsettings fi le in Solution
Explorer or go to the menu Test ➪ Edit Test Run Confi gurations and select your active confi guration.
The settings for Code Coverage (Figure 56 - 10) are located under the Data and Diagnostics page.

relating Code and Tests ❘ 1103

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1104 ❘ chaPter 56 ViSuAl STudio ulTimATe For TeSTerS

You need to select the assemblies to instrument. In case you are signing your assemblies, similar to
the procedure when you are profiling using instrumentation, you need to resign them.

Now, simply run your test and from the Test Results window right-click it and select Code Coverage.
Figure 56-11 shows the Code Coverage window, indicating the not-covered and covered blocks for
each assembly, namespace, type, and member. Double-clicking a member opens the code file with
the executed lines highlighted in blue (light shading in the figure) and untouched lines in red (darker
shading in the figure) as shown in Figure 56-12.

fiGure 56-11

As you can see in Figure 56-11, the
get_CurrentStatus() has 73.68 percent in
not-covered blocks. The first option is evaluated
and returned, so the remaining branches are never
being touched. This is an indication that you will
need additional test cases. This was covered in the
“Data” section in Chapter 11, where you specify a
DataSource with the additional input.

When you have code that is never touched, this can
lead you to think three things:

It is code that really isn’t used and is only getting in your way, decreasing your project’s ➤

maintainability. Solution: simply delete it.

That code isn’t being tested. Solution: create a new test. ➤

The code is so simple that there’s probably no need to test it. Think twice about this, ➤

even for simple properties or methods. The code is likely to be referenced elsewhere in
your application, in which case any errors in the code may cause issues elsewhere in your
 application. This is a good reason to write a new test case. Right-clicking the member
and selecting Find All References can help you see if this is unused code, but it won’t find
 references from data-bound properties or projects not in the solution.

It’s not necessary to take this practice to an extreme and look for 100 percent Code Coverage. In
many projects it’s not worth it, especially if you have legacy code or you didn’t start using unit
testing. What you need to keep in mind is not to let your code coverage go down. Iteration after
iteration, or better yet (if you are using continuous integration), check-in after check-in, your
percentage should increase, or at least remain constant. Most important, rather than looking at
the numbers at a test suite level, it’s useful to look at them at the code level to see if you’re missing
critical test cases.

fiGure 56-12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 test impact analysis
 It is a good idea to run all of your unit tests fairly
regularly as you develop new features and fi x
bugs to ensure you have not broken anything. Having
said that, not every test needs to be re - run each time you
make a change to the code. Once it has been enabled,
Test Impact Analysis is able to determine which tests will
be affected by changes in your code base. The Test Impact
View (Figure 56 - 13) is split into two sections. The top
section shows the list of tests that need to be re - run based
on the changes you have made to the source code. When
you select a test (or tests) in the top section, the bottom
section shows the method or methods that have changed.

 Test impact data is not kept up to date with every change that you make, because this would be
too much of a performance drain on your development environment. This data is instead refreshed
every time you build your solution and when you run tests. When test impact data is out of date, a
refresh button becomes available on the Test Impact View.

 fiGure 56 - 13

 The Test Impact View has a run button that allows you to run all of the
impacted tests.

 Visual studio test ManaGeMent

 The easiest way to manage your tests in Visual Studio is through the Test List Editor explained in
Chapter 11. There you can add the tests to lists, select the tests or lists to run, sort, group, fi lter, and
enable or disable them. To display the Test List Editor, select it from the Test Windows menu.

 Another option is to use the Test View window, which is simpler than the Test List Editor. From
there you can also run tests and fi lter tests, but can ’ t group them in test lists.

 When you run a set of tests you are presented with the Test Results window. In case it doesn ’ t
appear automatically, you can open it from the Test ➪ Windows menu. There you can sort the
tests and results and see error messages. You can select what tests to re - run; by default failing,
inconclusive, and not - executed tests will be checked, and passed tests will be unchecked. Because
the list of results can be big, you can use sorting, fi ltering, and grouping, or even change the view to
display a left pane with the Test Lists and use the same organization defi ned in the Test List Editor.

 From the Test Results window, you can export the Test Result to save a .trx fi le containing all the
details and a folder with the test output. You can simply send the fi les to someone else who can
import them from the Test Results window by selecting the .trx fi le. This person can see the same
results the tester saw and even rerun the tests to reproduce the error on his or her machine. The
latter is possible because the binaries are included with every test output.

Visual studio Test Management ❘ 1105

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1106 ❘ chaPter 56 ViSuAl STudio ulTimATe For TeSTerS

fiGure 56-14

Instead of passing Test Result files from one computer to another, it would be better to publish them
to Team Foundation Server. This option is available in the Test Results window’s toolbar. You will
be prompted to select a team project. The team project must have a build configured, as you will see
in Chapter 57 in the section “Team Foundation Build.” The benefit of publishing, besides making
the data available to other people, is that the data can also be used for reports.

test and lab ManaGer

Test and Lab Manager (Figure 56-14) is a new tool for you to plan, execute, and track your testing
activities. It integrates directly with a Team Foundation Server and enables you to create, update,
and query work items directly.

There are two UIs for Test and Lab Manager. When you first open the application it will look like
Figure 56-14. This is the Testing Center. It has four tabs along the top that relate to the basic types
of activities that the Testing Center provides for creating and running suites of tests.

testing center
When you first start Testing Center you are asked to create a new plan. All tests in Testing Center
are organized into test plans and it is recommended that you create a test plan for each releasable
version of your application. Once you have a test plan you will see the Contents View, which is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Test and lab Manager ❘ 1107

shown in Figure 56 - 14. From here you can create new tests, add existing tests, and assign testers and
confi gurations to your tests.

 Each plan has a state, which can be In Planning, In Progress, or Complete. This
information is stored in the Team Foundation Server and can be surfaced in
reports. When a plan is in progress, a percentage of how many of the planned
test cases are complete is also available.

 If you open an existing test case or create a new one you will see the Test Case window shown in
Figure 56 - 15. Each test case is made up of a number of actions, which are shown toward the bottom
of the window. Each action comes with a description of what the tester should do, along with a
description of how to verify that the action has completed successfully.

 fiGure 56 - 15

 Actions can have parameters like the one in the fourth step of Figure 56 - 16. Each parameter can
have multiple values defi ned, and there will be one iteration of the test for each value.

 To run a test case, select it on the Test tab and click the Run button. This opens the Test Runner
window (Figure 56 - 16). This window shows a list of steps and marks the progress of the tester. As
you complete each step, you can mark it as passed or failed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1108 ❘ chaPter 56 ViSuAl STudio ulTimATe For TeSTerS

 On the toolbar of the Test Runner window are buttons that allow you to attach items to the results
of this test run, including comments, screenshots, fi les, and even a whole snapshot of the system that
developers can use later to help in debugging issues. You can create bugs directly from this toolbar
as well.

 lab center
 If you click the Testing Center heading you can switch over to the Lab Center (Figure 56 - 17). The
Lab Center is used to manage the environments that you will be running tests on. This can include
information on physical and virtual environments.

 To use the features of Lab Center, you need to install a Test Controller and associate it with a project
collection in your Team Foundation Server. Once your Test Controller is available, you are able to use
the Lab Center to maintain a collection of Physical Machines, Virtual Machines and Virtual Machine
Templates. When a tester starts up a test he will be connected to one of these machines and if he spots an
error he can take a system snapshot, which will be attached to the bug report. When a developer retrieves
the bug, he can reconnect to the test machine and have it be put back into this state by the test controller.

 You can record the steps of a manual test as you go through, which allows you to
automate the process when you want to re - run the test later.

 fiGure 56 - 16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Test and lab Manager ❘ 1109

To configure the data that is collected on each machine in the environment, use the Data and
Diagnostics page on the Test Settings tab (Figure 56-18). You can collect many different kinds of
data, from mouse clicks and keyboard strokes to full video of the desktop during the test.

fiGure 56-17

fiGure 56-18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1110 ❘ chaPter 56 ViSuAl STudio ulTimATe For TeSTerS

suMMary

In this chapter you saw the different types of automated tests included in Visual Studio 2010. You
started with Web Tests, which allow you to reproduce a set of requests, and then you continued
with Load Tests, which help to simulate several users executing your tests simultaneously to stress
your application. You also looked at automating your application with Coded UI Tests, which
helps to test the ways in which your user will interact with your system. Generic Tests can be used
to wrap existing tests that are using other mechanisms, and Ordered Tests can help you run a
set of tests sequentially. You learned how to map unit tests onto the code that it tests with Code
Coverage tools and how that information is used to determine which tests need to be run when the
code changes. Finally, you looked at options to manage your tests, like grouping them in lists and
publishing the results to Team Foundation Server.

The new Test and Lab Manager is a tool that is targeted at helping testers do their jobs. By creating
test cases and organizing them into plans you can more easily manage testing tasks, and integration
with Team Foundation Server makes it easy to track progress and communicate results with the rest
of the team.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

57
 Team foundation server

 what ’ s in this chaPter?

 Managing project tasks ➤

 Visualizing source code repository changes ➤

 Creating build confi gurations ➤

 Reporting progress ➤

 Customizing process templates ➤

 Software projects are notoriously diffi cult; very few are delivered successfully on time, within
budget, and up to the desired quality levels. As software projects get larger and require larger
teams, the processes involved in managing them gets even more complicated, and not just for
the manager, but for the developers, the testers, the architects, and the customer. Over time
there have been many approaches to solving software project management problems, including
quality models like CMMI, methodologies such as RUP, or Agile Practices, Scrum, and
Continuous Integration. Clearly a tool to help support all the pieces necessary to ensure more
successful software projects should be desired.

 The most basic requirement for a software project, even for the smallest one - person project,
is to have a source control repository. For bigger ones more sophisticated features are needed,
such as labeling, shelving, branching, and merging. Project activities need to be created,
prioritized, assigned, and tracked, and at the end of the day (or better yet even before every
change is checked in to your repository) you need to ensure that everything builds and all
tests are passing. To make this process smoother and improve team communication, a way to
report to project managers or peer developers is also required.

 Team Foundation Server (TFS) 2010 allows you to do all this. In this chapter you see how
version control works, how it integrates with work item tracking, and how each change can be
checked to ensure it is working before it is checked in. You also see how project managers can

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1112 ❘ chaPter 57 TeAm FoundATion SerVer

see reports to get a better understanding of the project status and how they can work using Excel
and Project to assign work items. The team can interact using the project ’ s portal in SharePoint and
different stakeholders can get the information they need through the report server or confi gure it to
get their reports directly by e - mail.

 TFS 2010 has a few new features that make it easier to get up and running,
including reduced requirements and streamlined installation. You can even
install it on a client operating system like Windows 7.

 teaM ProJect

 To begin working with TFS you need to create a team project . A team project contains all of the
information about your project, including source code, tasks that need to be performed, instructions
for building your application, documentation, quality metrics, and planning information. Each team
project can also have its own SharePoint collaboration portal.

 In Visual Studio 2010, team projects are grouped together under team project collections . All of the
projects with a team project collection share basic infrastructure such as a data warehouse, a work
item schema, and a pool of IDs (for work items and changeset numbers). If you have logical groups
of projects within your enterprise, it is a good idea to create a team project collection for each one.

 You cannot back up and restore individual projects. This can only be done at the
project collection level.

 Process teMPlates

 When you create a new team project, you
need to select the process template , which
defi nes the way in which you intend to use
the tool. Select the one that better suits your
organization ’ s process or methodology. Out of
the box, Team Foundation Server comes with
two templates, both based on the Microsoft
Solution Framework. One fl avor is for Agile
Development and the other is for CMMI
Process Improvement. Both options are great
as starting points, but if your company has a
defi ned process it can be incorporated into TFS
or you can use a third - party process template.
Figure 57 - 1 shows the process template selection
process. The rest of this chapter uses MSF for
Agile Software Development and refers to the
CMMI version when necessary. fiGure 57 - 1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A process template creates the environment for the team project. This usually consists of defining
work item types (as you see in the section titled “Work Item Tracking”), creating default groups
and permissions, preparing a version control repository, and configuring reports and a custom
SharePoint portal with document structure and process guidance. A different process could omit
some of these or add custom tasks.

When the wizard finishes it opens the Guidance Page, which details the process used, defines the
responsibilities of the roles involved, explains the different types of work items, and provides
step-by-step guidance about specific tasks like “How to create a Vision Statement.” Figure 57-2
shows the Project Guidance and the Team Explorer windows.

You navigate to the different features of TFS through the Team Explorer tool window. It has Work
Item Queries, a convenient way to access the documents stored in the Team Portal, links to Reports,
a list of the Team Builds, and the Source Control node.

fiGure 57-2

work iteM trackinG

Team Foundation Server allows you to manage activities using work items. As you see in the
following sections, you can search for work items using work item queries and you manage them
using Visual Studio, Excel, Project, or Team System Web Access. Different types of work items are
defined by your process template.

Work item Tracking ❘ 1113

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1114 ❘ chaPter 57 TeAm FoundATion SerVer

 work item queries
 The work items shown in Figure 57 - 3 are all tasks in the selected team project. You can look for
different work items using the work item queries from Team Explorer. The template process includes
14 team queries (Figure 57 - 2) such as Active Bugs, Open Issues, or My Work Items.

 One of the most requested features leading up to TFS 2010 was hierarchical
work items. TFS now provides this capability, so you can create sub - tasks
and parent tasks. You can also create predecessor and successor links between
work items, which enables you to manage task dependencies. These new work
item links will even synchronize with Microsoft Excel and Microsoft Project
providing even greater fl exibility for managing work items.

 fiGure 57 - 3

 Most of the time those queries will be enough, but you have the option to create new ones. If you ’ re
a project administrator you can add new team queries to make them available to everyone with
access to this project. If you can modify the process template, you can add new team queries, so
projects created with the edited templates will include them. Changes in the templates don ’ t apply to
team projects already created. If you don ’ t have these permissions or you want to create a personal
query, you can do that, too.

 There is a folder of queries called Workbook Queries, which are used to support
some of the Excel workbook reports found in the Documents area.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 To create a new query, right - click the My Queries node and select New Query (Figure 57 - 4).

 Now you can visually design your query. In this case you only care about the work items of the
selected project, assigned to the current user and under Iteration 1. You specify this using the
 @me and @Project variables. You can also specify which columns you want visible in the grid and
sorting options (Figure 57 - 5). You can then run the new query to see a sub - list of the work items.

 When you notice you are creating the same queries over and over from one
project to another, you should add those to your process templates. Over time,
there will be less need to create custom queries.

 fiGure 57 - 5 fiGure 57 - 4

 In Team Foundation Server 2010, queries can take advantage of the new hierarchical work item
structure to show work items that are directly related, allowing you to see the impact of cutting
a feature or the required tasks necessary to complete a feature. You can also show query results
in a fl at list, a list of work items and their direct links, or a tree of work items. Each of these is
identifi ed by a small icon that appears next to the query in the Team Explorer. You can create folder
structures for your work item queries and each query or folder can be secured separately.

 Although a folder of work item queries can be secured, there is nothing stopping
unauthorized users from duplicating the queries for themselves.

 work item types
 In MSF for Agile Development you have six types of work items: bugs, issues, shared steps, tasks, test
cases, and user stories. Each work item has different fi elds depending on its type. For example, a bug

Work item Tracking ❘ 1115

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1116 ❘ chaPter 57 TeAm FoundATion SerVer

will have test information and a system info field, whereas a task contains effort information about
estimated, remaining, and completed hours. Contrasting it with the MSF for CMMI template, you have a
change-request work item, which doesn’t exist in the Agile version. CMMI also has a bug work item, but
in this case it is not so simple; it now requires repro steps and has other fields such as severity, priority,
probability, and estimate. All these fields are customizable either at a template or team-project level.

adding work items
The basic way of adding work items is via the Team ➪ Create Work Item menu option and selecting
the work item type you want to add. Another convenient way to add work items is through the Test
Results window (Figure 57-6).

fiGure 57-6

When you do it this way you will usually create
a bug and also create a link between it and the
selected test. You can navigate from the bug
to the test or see the test and its related work
items (Figure 57-7). If the test fails again, you
can see the work items associated with it and track it back to their related change sets, as you will see
later in the “Version Control” section. Visual Studio 2010 is able to associate IntelliTrace information
with the work item; that way the developer assigned to correct the bug can easily reproduce it.

Each work item can be related to many others with links. Team Foundation Server 2010
understands several different types of links, including Parent, Child, Predecessor, and Successor. To
add a link, click the All Links tab and click the Link To button. You can also create a new work
item directly linked to the current one with the New Linked Work Item button.

work item state
During your normal daily activity, you will be working on tasks that are described by work items
that are assigned to you. Each work item is described by a simple state machine that determines the
allowed new states for any given state. This state machine is a part of the work item definition and
is decided by the process template. Whenever a new state is selected you can provide a reason for the

fiGure 57-7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

state transition. For example, the Bug work item in MSF for Agile can go from Active to Resolved to
Closed. It can then go back to Active again with a reason of Regression or Reactivated. The reason
field allows you to differentiate between the bugs that are active because they are new and those that
are active because they have re-occurred.

excel and ProJect inteGration

Looking at, adding, or editing work items can get a bit complicated and won’t scale well when you
have hundreds of tasks. This can be problematic especially for project managers who are not used to
working inside Visual Studio. They usually prefer to work from Excel or Project. This integration is
really easy using the provided add-ins.

excel
From the Ribbon, simply click New List and choose a Team Project and Work Item Query. This will
retrieve all the information from a web service and display it in Excel. Once it’s there you can sort,
filter, edit, and publish changes back to the server, refresh the changes made by others, add links or
attachments, and choose columns to be displayed.

Another way of doing this is from Team Explorer. From a work item query’s context menu, select
Open in Microsoft Excel. This will create a new Excel worksheet with the information. Figure 57-8
shows both options and Figure 57-9 shows the results in Excel.

fiGure 57-8

excel and Project integration ❘ 1117

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1118 ❘ chaPter 57 TeAm FoundATion SerVer

The MSF for Agile template creates a number of standard work item Excel workbooks, which are
hosted on the SharePoint Portal. These are found in the Documents node under Excel Reports.

Project
There is also an add-in for Project. Similar to
when you use Excel, you can connect to a server,
choose a team project, and select a work item
query, but instead of using the entire list, you
have to choose each of the work items you
want to import to your project, as shown in
Figure 57-10.

Once your work items are imported, you can
edit each of their fields directly in Project. This
is possible thanks to the column mappings
between TFS fields and MS Project Columns.
For example, Resource Names in Project will
map to the Assigned To field in TFS. Fields
that exist only in Team System will be mapped
to Text Fields in Project; for example, Work
Item Type is mapped to Text 24. This is preconfigured in the process template.

You can add new work items, nest them in iterations or areas, assign them to people, choose a work
item type, balance workloads between resources, see project reports, and refresh the progress from
the server after each developer changes the work remaining or work item state.

Unlike the previous version of TFS, the 2010 edition does understand the notions of hierarchical work
items and successor and predecessor tasks. When the work items are loaded into Project, it is able to
take advantage of these links to create a normal Project experience. As new associations are created and
updated, Project is even able to return the updated data to TFS in a form it can understand.

Important differences still exist that make the integration a bit tricky:

In Project you can have many resources for the same activity, but TFS only accepts one ➤

entry. One approach could be to add a custom field to the work item type, but then the

fiGure 57-9

fiGure 57-10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Version Control ❘ 1119

mapping won ’ t work because you would need to have one column in Project mapped to two
fi elds in TFS. The workaround is to add the activity once for each resource.

 There ’ s no Project server/TFS integration out of the box. A couple of third - party tools are ➤

available that do this for you. The next version of Team System will include it, as well as
project management improvement across multiple projects for load balancing of resources.

 If you are going to use Project with TFS you should look at the article “ Quick
Tips and Operational Differences when Tracking Tasks using Offi ce Project
and Team Foundation ” on MSDN at http://msdn.microsoft.com/en-us/
library/dd380701(VS.100).aspx .

 Version control

 Version Control (sometimes called Source Control) is a tool that allows you to manage, share, and
retain a history of changes to your source code. To interact with the TFS version control system, you
use the Source Control Explorer window, shown in Figure 57 - 11. You can open this window from
the Team Explorer window or View ➪ Other Windows ➪ Source Control Explorer.

 fiGure 57 - 11

http://msdn.microsoft.com/en-us/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1120 ❘ chaPter 57 TeAm FoundATion SerVer

 To work with fi les on your machine, you will need a workspace that defi nes a set of mappings
between paths on your local fi le system and the remote system. You can defi ne a different local
folder for each path, but a good practice is to have only one mapping; this helps keep all the
solutions and projects relative to each other even between different team projects. To defi ne this
mapping, open the workspace combo box and select Workspace.

 Once your workspace is set up, you can get the latest version of the source code and start working
with it, add fi les, check out fi les (mark as edit) or check in (upload/persist) changes, view change
history, and compare folders.

 In previous versions of TFS, each workspace was limited to a single user on a
single machine. Visual Studio 2010 introduces the concept of a public workspace
that can be shared among multiple users on the same machine.

 working from solution explorer
 When you create a new project you have the option to add it to Source Control. Team System will
automatically bind it and add it according to the mapping previously defi ned. That ’ s why you need
to set the location to a folder inside your workspace (the local path you mapped to), as shown in
Figure 57 - 12.

 fiGure 57 - 12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Version Control ❘ 1121

 The Solution Explorer you are used to working with in Visual Studio will be the main place to
interact with your source control system. Every time you add a new fi le to the solution, it will be
added to source control; when you open a fi le and VS detects you ’ re editing it, it will be automatically
checked out for you. Once you are done working, you can simply right - click the solution and choose
Check In to persist your changes in the server. See the section “ Source Control ” in Chapter 13 for
more information on the common tasks; this chapter explains the specifi cs of Source Control as it
relates to Team Foundation Server 2010.

 Though it is common to work directly with TFS source control via the Solution
Explorer, this can have some disadvantages because it means that Visual Studio
is only able to manipulate the fi les that are referenced by your solution. If you
have other items in source control that are not part of your solution, you need
to manage these from the Source Control Explorer window.

 check out
 Files under source control are by default read - only; in TFS terms you would say the fi le is checked
in . To start editing a fi le you need to check it out. This is done for you automatically when you
modify it from VS. When the fi le is a text fi le (that is, a C#, VB, or XML fi le), the IDE will do
a shared check - out ; if it ’ s a binary fi le (that is, a Word document, SQL Server Compact Edition
Database, or another resource) an exclusive check - out will be made.

 Shared check - outs allow two or more developers to modify a fi le at the same time, whereas an
exclusive check - out prevents a second developer from checking out the fi le. You can choose to do
an exclusive check - out on a text fi le if you need to prevent anyone from modifying it. This is not a
recommended practice, and you should only use it when you really need it. A good example of this
is when you are about to update the data for a WCF reference. This sort of information is textual,
but not easy to merge because many fi les are all updated at once. By using exclusive check - outs you
can ensure that no one else is modifying the reference at the same time as you.

 If you install the TFS2010 Power Tools you can check fi les in and out directly
from Windows Explorer.

 check in
 To preserve your changes in the server, you will need to check in the edited fi les. You can select
which fi les to include in this changeset , add comments to it, associate it with work items, and add
check - in notes (Figure 57 - 13).

 Depending on the policies defi ned for the team project, you might need to associate your check - in
with a work item, run code analysis, have it pass tests, or at least successfully build the solution. To
modify a team project ’ s policies, open the Source Control Settings window (Team ➪ Team Project
Settings ➪ Source Control) and go to the Check - in Policy tab. Once the policies are defi ned, you will
get Policy Warnings (Figure 57 - 14); these can be overridden.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1122 ❘ chaPter 57 TeAm FoundATion SerVer

 fiGure 57 - 13 fiGure 57 - 14

 resolve confl icts
 Although shared check - outs allow multiple developers to work on the same fi le, this can lead to
confl icts. These can easily be resolved with the help of Visual Studio. From the Pending Changes -
Confl icts window (Figure 57 - 15) you can compare versions and look at all the changes to that fi le.
To resolve it, you can use Auto Merge and let Visual Studio merge the changes for you, undo your
local changes, discard server changes, or merge changes manually in the merge tool.

 You should check in a group of fi les related to a logical change at the same time
rather than one at a time. The set of fi les associated with a check - in along with
any notes and work item associations become a changeset . Changesets make
managing project history and merging much easier.

 fiGure 57 - 15

 When the changes were made in different parts of the fi le (for example, two different methods),
VS can automatically resolve changes, but if changes were made in the same line you have to either
choose a version or manually merge both fi les using the Merge Changes tool.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Version Control ❘ 1123

 In the Merge Changes tool (Figure 57 - 16), you will have a view of “ their ” version (that is, the server
version), your version, and a merged version. You can navigate easily between changes and confl icts.
In the case of confl icts, you can manually edit the offending lines or select a version to keep. When
all confl icts are resolved, you can accept the changes, keep the new fi le as your current version, and
proceed to check - in.

 Visual Studio will compare text to determine if changes overlap, but this will not
guarantee the resulting fi le will even compile or behave as expected. This option
is really useful, but has to be used with caution. Over time, you will have more
confi dence in choosing which fi les to auto - merge to save time and which are worth
a quick look just to be sure.

 After resolving confl icts, it is recommend that you run the automated tests again
to ensure there are no breaking changes. As you will see in the “ Team Foundation
Build ” section, this test can be run automatically in the server before each check - in,
but it ’ s best to get the feedback as early as possible.

 fiGure 57 - 16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1124 ❘ chaPter 57 TeAm FoundATion SerVer

 working offl ine
 Team Foundation Server uses HTTP and web services and can work perfectly through the Internet
and allow for collaboration of distributed teams, but in case you don ’ t have an available connection
VS will allow you to work offl ine when you try to open a bound project.

 All fi les under Source Control are read - only. When you save a fi le you will be warned and should
simply choose Overwrite. When the connection with TFS can be reestablished, you can select to go
online from Solution Explorer or by right - clicking the solution. VS will look for fi les in the solution
without the read - only attribute; if those are not in Source Control it will add them, and if they exist it
will check them out.

 Files modifi ed outside the solution won ’ t be detected and you have to manually
check them out. To make this easier, you can compare your local copy to the
latest version by right - clicking a folder in the Source Control Explorer.

 label
 Labeling a specifi c version allows you to refer to it easily. To create a label you simply right - click a
folder in Source Control Explorer that you want to mark, add additional fi les if necessary, and write
a Name and optionally a Comment (Figure 57 - 17). Similarly, you can get to a specifi c version using
the label. The perfect use for this is to release a version.

 To get a labeled version, right - click a fi le or folder in Source Control Explorer and select Get Specifi c
Version from the context menu. On the Type combo box in the Get window (Figure 57 - 18) select
Label. You can search for labels by name, team project, and owner. Once you fi nd the label, to be
sure you are getting the exact labeled version, you will probably choose to overwrite writable fi les.

 You should undo, shelve, or check - in any pending changes before getting a specifi c
version to separate the latest changes in your workspace from the labeled version.

 fiGure 57 - 17 fiGure 57 - 18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Version Control ❘ 1125

If you want to get the version in a different location, you can create a branch. You see this later
in the chapter.

history
Every change you make is persisted in the server and you can get to any specific version of a file;
a great way to do it is through the History window. Simply right-click a file in Source Control or
Solution Explorer and select View History. From there you can see how a file has evolved over time
(Figure 57-19). When you right-click any version, you can compare it to your version, open it, and
view details of the changeset (including the comments and related work items).

fiGure 57-19

fiGure 57-20

Toward the top of Figure 57-19 is a tab to switch
between Changesets and Labels. Switching to
Labels view, shown in Figure 57-20, displays a
list of all of the labels that have been applied to
the file. This can be very useful to quickly see all
of the changes made between two versions.

annotate
The annotate command enables you see when
and who edited each line of code (Figure 57-21).
From each of the changes made, you can get to
each particular changeset to see details, get that
particular version, compare it to its previous
version, locate the file in the History window, or
annotate from that version.

shelve
When you check in a file, that change is
automatically made available to others.
Sometimes you need to persist your changes
without affecting everyone — a scenario
that can happen when you need to work
from another computer and want to upload fiGure 57-21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1126 ❘ chaPter 57 TeAm FoundATion SerVer

your changes and send them somewhere else, or when you are in the middle of something and are
assigned a new task.

 Shelving persists your changes in the server. You can associate a shelveset to work items and add
comments and check - in notes, much as you would when checking in. You can optionally evaluate
check - in policies before shelving and choose to undo local changes after the shelve is done. The
latter is useful when you need to work on some other work item without the shelved changes
interfering with what you are doing. Shelving changes is also useful if you are moving to another
machine and don ’ t want to have to make the same change in both places. To get to the changes, you
can unshelve your shelveset and your fi les will be checked out again.

 Each shelveset is a read - only snapshot of the fi les at the time when it was created. Because of this,
each shelveset is not versioned and if you save a new shelveset with the same name as an existing one
it will simply overwrite it. This can be extremely handy for common tasks such a Work In Progress or
For Review.

 Shelvesets are uniquely identifi ed by a combination of their name and the name of
the user who created them, so even if you use the same naming scheme for your
shelvesets as another team member you won ’ t be able to overwrite each other ’ s work.

 Although the default behavior is for you to see the shelvesets that you have created, you can see the
shelvesets that other people have created and even retrieve them, which can be useful if you need a
colleague to review some code before it is checked in or to hand a task off to someone when it is not
in a state that is ready to be checked in.

 There is an option hidden behind the Details when unshelving a shelveset to Preserve Shelveset
on Server. If you uncheck this option the shelveset is deleted from the server as you retrieve it. You
can also delete shelvesets without retrieving them from the Unshelve dialog. It is a good idea to
clean out shelvesets regularly that you don ’ t need any more to make it easier for you to fi nd the ones
you actually use.

 branch
 A branch , in source control terms, is a parallel version of your code. This is useful for different
purposes. Here are a couple of examples:

 Hot fi xes or bugs for stable versions while working on new ones. When you release 1.0 you ➤

label all your source code and start working on 2.0. Then a critical bug is found but version
2.0 is months away from being ready. You will branch from version 1.0 (you can get to this
version using the label). Then you can fi x the bug in the new branch and release version 1.1.
Later you can merge the change made and integrate it with the main branch.

 Creating a branch from the latest version to do a big refactoring or a change you are not ➤

sure will work and thus don ’ t want to affect the main branch. If it works you can merge it
with the main branch and if it doesn ’ t you can simply delete it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Version Control ❘ 1127

 You have to choose wisely what branching strategy is better for your organization, type of product,
and process, or when you could substitute by simply labeling a version or shelving a change. Abuse
of branching can exponentially complicate source - code management. Codeplex hosts branching
guidance that provides additional scenarios (http://www.codeplex.com/TFSBranchingGuideII).

 To create a new branch, right - click the folder you want to branch from and select Branching and
Merging ➪ Branch. You will be asked which version you want to branch from and where the branch
should be saved in the source control repository.

 Branches have become fi rst class features in TFS 2010 so the tools are able to take
full advantage of them. You can mark an existing folder as a branch by supplying
the required metadata, which allows branches from previous versions to take
advantage of this as well.

 Once you have a few branches you can use the Branch Visualization (Figure 57 - 22) tool to see the
hierarchy of your branches by selecting View Hierarchy from the Branching and Merging drop -
 down in the Source Control Explorer. You can initiate merges from this tool by dragging from one
branch to a valid target branch.

 fiGure 57 - 22

 Another new tool in TFS 2010 is Changeset
Tracking, which allows you to see where
the changes in a particular changeset have
come from. It has two views: Timeline
Tracking (which is shown in Figure 57 - 23)
and Hierarchy Tracking, which shows the
hierarchy between the branches in a clearer
fashion. Just as with the Branch Visualization
view, you can initiate a merge by dragging a
changeset from one branch to another. fiGure 57 - 23

http://www.codeplex.com/TFSBranchingGuideII
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1128 ❘ chaPter 57 TeAm FoundATion SerVer

Merge
If you fix a bug or implement a feature in one branch, it would be advantageous to be able to apply
that same changeset to other branches. This is what the merge operation does. To begin a merge,
right-click the folder or file you want to merge and select Branching and Merging ➪ Merge. Once
you have selected a source and destination for the merge, you are presented with a list of changesets
that that can be applied. Select the changesets that you want and click Finish. If there are any
conflicts, you will be given the opportunity to fix them.

teaM foundation build

Team Foundation Build is a tool, part of TFS, and its responsibility is to get the latest version from
source control to a local workspace, build the projects as configured, run tests, do other tasks,
and finally report the results and leave the output in a shared folder. Each machine that is able to
build a project for you is called a build agent. TFS 2010
also introduces the concept of a build controller, which is
responsible for coordinating the activities of several build
agents. The information that each build agent needs to do
its job is called a build definition.

To create a new build definition, right-click the Builds
folder in Team Explorer and select New Build Definition
(Figure 57-24). In the General tab you need to write the
build name and optionally a description.

By default the build has to be manually queued, but in the Trigger tab you can modify this behavior.
You have five options, as shown in Figure 57-25. The new option for TFS 2010 is the Gated Check-in
option. When you have build definitions that are triggered this way, check-ins will not necessarily go
straight into source control. Instead they will be shelved (you will be prompted about this) and built
by a build agent first. If the build succeeds, the shelveset is saved into the source control repository. If
it does not, you are notified and it is up to you to retrieve the shelveset, make any required changes,
and check it in again. Using this type of build definition prevents the situation where the contents of
the source control repository do not compile, which can significantly impact the rest of the team.

fiGure 57-24

fiGure 57-25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Depending on how big your project is, how long it takes to build and run the tests, and how often
the team checks in, this option may cause some overhead. The third option, Rolling Builds, will
defi nitely help alleviate the workload, but it ’ s better to wait until you fi nd you need it.

 Confi guring the workspace will be used in complex scenarios where you have dependencies between
team projects, so the defaults in that tab might be enough. In the build defaults page, you can choose
a build controller and a shared folder to drop the output into. These will be used for triggered
builds, but for manual builds this can be overridden.

 The Process tab, shown in Figure 57 - 26, allows you to confi gure the build process. Here you must
select at least one project or solution and a confi guration (like x86|Debug or AnyCPU|Release).
The rest of the values are optional but include information allowing you to specify the location of
any automated test assemblies, whether or not to perform code analysis, if the build agent should
publish the project symbols anywhere, how to format the build number, and more.

 fiGure 57 - 26

 TFS 2010 build processes are based on a process template that is defi ned with Windows Workfl ow 4.0.
You can create your own custom process template by copying the default one and making changes
to it. A number of custom activities are related to Team Build and you can always create your own.
If you have a build defi nition from a previous version of Team Build you should use the Upgrade
Template, which only requires a path that contains the legacy TfsBuild.proj fi le.

 By default the build process templates are located in the $/TeamProjectName/
BuildProcessTemplates folder in the source control repository.

Team foundation Build ❘ 1129

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1130 ❘ chaPter 57 TeAm FoundATion SerVer

 The retention policy lets you choose how many of the builds left in the shared folder will be kept before
some are deleted. It is recommended to use the Keep All option, at least for successful builds, until you
need to reduce the number of fi les being kept around. There are two sets of settings. The ones under
Private relate to builds that form a part of a gated check - in and are not as important to keep around.

 To start a build manually, you can right - click the Builds node in the Team Explorer and select Queue
New Build. Once the build is queued you can open it by double - clicking it in the Build Explorer.
This opens the new Build Report, which has been greatly improved from the previous version. This
report, shown in Figure 57 - 27, includes information on current activity, previous build statuses and
durations, and provides links to a number of other areas and activities related to this build.

 fiGure 57 - 27

 If you want to be notifi ed of build events while you work, there is a Build
Notifi cations system tray application that is installed with Team Explorer. Once
confi gured, this application will adjust its icon based on whether any builds you
are watching are broken, building, or if everything is built successfully.

 rePortinG and business intelliGence

 TFS uses Report Server, which is part of Microsoft SQL Server, to provide useful information
for project managers, customers, and developers. Reports can be accessed directly from Team
Explorer, the reports site (http://mytfs/reports/), SharePoint, or Team System Web Access,

http://mytfs/reports/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

or they can be configured as a subscription from the Reports site to be left in a Windows file share
or sent through e-mail.

The great benefit these have is that developers can focus on their work instead of manually filling
out reports. All the information is collected during their daily work, checking out and checking in
code, fixing bugs, and relating what they are doing to work items. This way project managers and
stakeholders can get to the information they need from the reports TFS provides.

Each process template provides its own set of reports. The CMMI version provides three additional
reports and templates like Scrum for Team System from Conchango, and has reports appropriate for
the Scrum methodology like Delta Report and Burndown Charts. Again, we will focus on MSF for
Agile Development here.

Some of the reports included are Burndown and Burn Rate, Stories Progress, Build Success Over
Time, Build Quality Indicators, Test Case Readiness, Test Plan Progress, Bug Status, Bug Trends,
and Reactivations. Figure 57-28 shows how the work has been resolved over a couple of years and
how much work is left. In the report you can filter by dates, work item type, iteration, and area. You
can export to XML, CSV, TIFF, PDF, Web, and Excel.

You don’t need two years of information to get useful reports. Depending on the nature of the data
displayed, you might not see anything at the beginning. For example, the Test Failing reports will
need to have at least one test in your team build process, or to have data for the Regressions report
you need Passing tests that are now failing. Similarly, the Scenarios Details report will need you to
register at least a Scenario Work Item. After a couple of iterations of working with TFS you will
have a lot of useful metrics for free.

fiGure 57-28

reporting and Business intelligence ❘ 1131

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1132 ❘ chaPter 57 TeAm FoundATion SerVer

 teaM Portal

 Team Foundation uses SharePoint to create a portal for each team project. It has all the benefi ts of
SharePoint, but is customized for each process template. The home in each team portal will include
the most important reports, latest announcements, and useful links. TFS 2010 also includes the
ability to create custom dashboards, which can be for specifi c users or for everyone on the project.
To navigate to the project portal, right - click the team project in the Team Explorer and select Show
Project Portal.

 documents
 Depending on the process template, certain documents will be included as templates. For example,
MSF for Agile Software Development includes Word documents for creating personas and scenarios.
These documents are also available from the Team Explorer ’ s document folder.

 Process Guidance
 Inside SharePoint are documents that defi ne the process that your project adheres to. This guidance
is available to all developers on the team.

 sharePoint lists
 You can have picture libraries, discussion boards, surveys, announcements, links, events, contacts,
and custom lists. This will help improve team collaboration.

 dashboards
 Dashboards are SharePoint Web Part pages that have been preconfi gured with useful Web Parts
to give you an overview of a project ’ s status. The MSF for Agile process template defi nes two
dashboards out of the box including My Dashboard (Figure 57 - 29), which contains lists of Tasks,
Bugs, and Test Cases that are assigned to you; and Project Dashboard, which contains metrics and
information about the progress of the entire team. Using the SharePoint UI, you can copy an existing
dashboard and make changes to the web parts that are displayed.

 Microsoft has been very clear that you should not be accessing the data in the TFS
databases directly, but should instead be using the reports and tools provided. In
TFS 2010 there are new Data Warehouse Views, which have been added over the
tables in each TFS database. There is some guarantee that these views will not
change moving forward and they have been designed so you can create your own
reports.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

teaM systeM web access

This is a separate, free tool from Microsoft that integrates with TFS and allows you to do pretty
much everything you can do from VS, but in a web interface (Figure 57-30). You can create and
modify work items as well as work item queries, see the reports and documents, and initiate and
monitor builds. The only area with limited functionality is Source Control. You can see history
and changeset details, but you can’t check out/check in documents due to the web client nature.

fiGure 57-29

Team system Web access ❘ 1133

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1134 ❘ chaPter 57 TeAm FoundATion SerVer

adMinisterinG tfs

Keeping track of all of the settings, web sites, databases, and accounts that TFS requires can be
a hassle. The Team Foundation Server Administration Console (Figure 57-31) aggregates a lot of
the information about your TFS installation into one place. It also provides capabilities for many
common tasks including managing project collections and configuring build controllers and agents.

fiGure 57-30

fiGure 57-31

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 tfs autoMation and Process custoMization

 Throughout this chapter, you have seen how the process templates defi ne most of the behavior of
TFS; for example, they defi ne work item types, process guidance, and reports. To close the chapter,
we briefl y introduce how you could customize a process template or edit work item types.

 To edit either work item types or process templates, you could modify the XML that defi nes them,
but it ’ s easier to use the Process Editor, which is part of the Team Foundation Server Power Tools,
downloadable from the Microsoft site.

 work item types
 From the Tools ➪ Process Editor ➪ Work Item Types menu, you can open a work item type directly
from an existing team project and start to edit it. Working this way will cause all your changes to be
immediately propagated to all users. Another approach is to export the work item type to a fi le and
then open it for editing and fi nally import it back to a team project. All these options are located in
the same submenu.

 It is recommended that you have a team project dedicated to testing changes
before importing or editing work item types in active team projects.

 Once you are editing a work item type, either directly from a team project or from a fi le, you will
have three tabs to work with — Fields, Layout, and Workfl ow (Figure 57 - 32).

 The fi rst tab has a list of fi elds with their data types and a reference name. The reference name is
used to uniquely identify fi elds from different work item types. For example, a title for a bug and a
title for a task have the same “ System.Title ” reference name; other fi elds might have the same names
but refer to different things.

 The second tab allows you to modify the layout. You don ’ t have a visual designer here, but you can
work in a tree designer to nest groups, columns, and controls. Each control will be mapped to a fi eld
name using the reference name. There is also a Preview Form button that allows you to see what the
end product will look like.

 On the third tab you can modify the workfl ow, and from the Toolbox you can add states and
transition links. The bug shown in Figure 57 - 32 shows how it can transition between active
and resolved. If you double - click the transition, you can defi ne reasons, actions, and fi elds. The
last is used to set default values to fi elds after a transition; for example, when the bug transitions
from active to resolved, it is assigned to the person who created the bug, the Resolved By fi eld is set
to the current user, and the Resolved Date is set to the server ’ s current date.

Tfs automation and Process Customization ❘ 1135

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1136 ❘ chaPter 57 TeAm FoundATion SerVer

In the next section you see how you can include work item types on a process template.

customizing the Process template
To serve as an example for process template customization, you will modify MSF for Agile
Development. To create a local copy you need to open the Process Template Manager from the
Team ➪ Team Project Collection Settings menu and select Process Template Manager. When
the Process Template Manager dialog opens, select the desired template and click Download.
Now you can open it in the Process Template Editor from the Tool ➪ Process Editor ➪ Process
Template ➪ Open Process Template menu and select the processtemplate.XML file just
downloaded.

In the Process Template Editor window (Figure 57-33) you have a tree view to configure the
different areas of a team project. In the Work Item Tracking node you can modify the Default Work
Item List, create default work item queries, and import work item types. In Areas & Iteration you
can configure default values for these lists and specify the field and column mappings for Microsoft
Project Integration. You can specify permissions and settings under Source Control. In the Portal
node, you can add documents that will be added to Document Libraries for SharePoint, and finally
in the Reports node you can add Report Definition files.

fiGure 57-32

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although this tool can tremendously simplify the required work, you will need to edit the XML files
for several tasks. For example, there’s no way to specify a SharePoint template for the portal.

suMMary

In this chapter, you saw how Team Foundation Server can help you get the work done by integrating
the different roles involved. The project managers will be filing and monitoring work items in either
Excel or Project, while architects, developers, and testers will be working with the Visual Studio
Projects using the version control features, easily relating changes to their assigned work items.
Optionally, each change will trigger a team build that will ensure the quality standards are met. TFS
will be monitoring everything and generating metrics for reports that can be viewed through the
different interfaces like Visual Studio, Team Portal, and Team System Web Access. At the end of the
chapter, you saw how the whole process can be customized by modifying the process templates and
work item types to better suit each organization’s needs.

fiGure 57-33

summary ❘ 1137

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1139

index

$() function, 468–470
* (asterisk), unsaved changes, 11

a

abstraction, imperative languages and, 312
Access Modifier option, 816
accessibility for users, 416–417
ACS (Access Control Service), 545–546
action methods

Create, 457
parameters, 456–459

ActionLink helper, 450
Actions Pane window (VSTO), 381, 386–387
ActivationKeyFile property, 957
activities (workflow), 703–704

code, 715–719
control flow, 704–705

Flowchart, 704
Sequence, 704

Activity class, 704
Activity Diagrams (UML), 1062, 1063
Add Area dialog, 459
Add button, 575–576
Add Controller dialog, 441
Add-in Manager dialog, 1011
Add-in Wizard, 1009–1012
add-ins

Add-in Wizard, 1009–1012
COM components, 1014
Connect class, 1015
deploying, 1022–1023
disabled, 394
extensibility and, 1002
loading, 1011

project structure, 1012–1013
testing, 1013–1014
unregistering, 392–393
Visual Studio IDE, 1011
Visual Studio Macros IDE, 1011

Add Reference dialog, 21
.AddIn file, 1014
address breakpoint, 847
AddSolutionFolder method, 1003
Administrative install, 970
ADO.NET. See also Sync Services
ADO.NET Entity Framework, 621

associations, 623
creating, 634
modifying, 634
navigating, 641–642

change tracking, 639
Empty Model option, 625
entities, 623

adding properties, 631–632
business logic, 645
complex types, 632
creating, 630–633, 632–633
inheritance, 635
modifying, 630–633
property names, 631

Entity Data Model Wizard, 624–625
Entity Framework designer, 626–630
entity models, 623

creating, 624–635
CRUD operations, 637–641
database updates, 644–645
querying, 636–642
updating with database changes, 635
validation, 635

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1140

ADO.NET Entity Framework (continued)
entity sets, 623
LINQ and, 587

LINQ to Entities, 636–642
LINQ to SQL, 622–623

LINQ to SQL and, 487
mapping, 623
POCO (Plain Old CLR Objects), 645
reports, 649

adornments in text, 1047–1048
AfterInstall event handler, 970
aggregates, reports, 661–663
Agile Software Development. See MSF for Agile

Development
aliases

commands, Immediate window, 831
e (XML namespace), 605

alignment, text controls, 342
Allocation information, 1082
AmbientValue attribute, 31–32
anchoring controls, 349–350
animated window closing, 41
anonymous methods, 321–322
anonymous type feature (LINQ), 591
app.config file, 726, 774
AppFabric, 533, 545–546

authentication, 533
application add-ins, 388–392

VSTO, 388–392
Application Events, 954
Application Expiry, 950
Application Framework, 100

security, 728
application-level add-ins (Office), 381–382
application-level errors, 877
application-level tracing, 882
application monitoring and management, 949–958

application expiry, 956–957
RI (Runtime Intelligence), 952–956
Tamper defense, 950–952
usage tracking, 957–958

application pages, SharePoint, 522
Application tab (Solution Explorer), 97–98

Application Framework, 100
Assembly Information, 98–99

User Account Control, 99–100
Application Usage Tracking, 950
ApplicationAttribute attribute, 953
applicationHost.config file, 775
ApplicationRoot class, 1035

import requirements, 1036
applications. See also Windows Forms

applications
ASP.NET Dynamic Data, 489–491
composable parts, 1034
debugging

multi-threaded, 897–899
parallelized, 897–899
running remote debugging, 894–895
running Web applications, 893–894
running Windows processes, 892–893

deploying, 394–396
occasionally connected, 746
resourcing, 811–813
settings, configuration files, 782–790
themes (Silverlight), 479

ApplicationServices, 729
ApplyResources method, 817
appSettings section of configuration file,

782–783
Architecture edition. See VSTS Architecture
Architecture Explorer, 1068–1070

queries, 1070
areas (MVC), 459–461
arrays, literals, 323–324
Ascending keyword, 595
ASP (Active Server Pages), 437
ASP.NET

applications, reports, 646
configuration in IIS, 434
debugging, 872–877

Edit and Continue, 876
error handling, 876–877
web applications, 874–876

RIA Services and, 758
Web site administration, 431–434

ASP.NET AJAX
JavaScript, debugging, 879
Web Application projects, 427–429

control extenders, 429–431

aDo.neT entity framework – asP.neT aJaX

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1141

ASP.NET Application Services, 725
authentication, 729
client application services, 729
profiles, 729
role management, 729

ASP.NET Dynamic Data, 485
applications, 489–491
Convention over Configuration, 486
data fields, customizing, 492–494
data models

adding, 487–489
customizing, 491–492
display format, 496–498
scaffolding tables, 491–494
validation rules, 494–496

enabling for existing projects, 511–512
Entities Dynamic Data project, 488
metadata classes, 492
presentation, 498

entity templates, 506–508
field templates, 502–506
filter templates, 509–511
page templates, 499–502

scaffolding, 486
web applications, creating, 486–491

ASP.NET MVC, 437, 438
action methods, parameters, 456–459
areas, 459–461
Dynamic Data templates, 464

display templates, 465–468
edit templates, 468

files, 439
folders, structure, 439–440
jQuery, 468–470
model binders, 458–459
models, selecting, 440–441
partial views, 463
request life cycle, 438–439
routing, 451–455
views, custom view templates, 463–464

ASP.NET Web Forms, 399, 437
ASP.NET Web Parts, 524
assemblies

caching, XML file and, 476
GAC, 933–934

naming, 929–932
signing, 934–936
strongly named, 933

obfuscation, 948–949
versions, consistency, 932–933

assembly directive (T4), 276
Assembly Information, 98–99
AssemblyCleanup attribute, 207
AssemblyInfo file, 932–933
AssemblyInitialize attribute, 207
Assert class, 203
Assert method, 891
Association connector, 179
associations (Entity Framework), 634
asterisk (*), unsaved changes, 11
asynchronous methods, 698
attached properties, XAML, 358
attaching to Web applications, 893–894
attaching to Windows processes, 892–893
attributes

AmbientValue, 31–32
ApplicationAttribute, 953
Browseable, 28–29
Category, 30
CompilerGenerated, 1078
configuration, 780–781
DataContract, 686
DebuggerBrowsable, 859–860
DebuggerDisplay, 860–861
DebuggerHidden, 861–862
DebuggerNonUserCode, 862
DebuggerStepperBoundary, 862–863
DebuggerStepThrough, 862
DefaultValue, 30–31
Description, 29
DisplayName, 29
EnableClientAccess, 761
ExportAttribute, 1036
FeatureAttribute, 957–958
GeneratedCode, 1078
InsertShelfLifeAttribute, 956
InsertSignOfLifeAttribute, 956
InsertTamperCheckAttribute, 951
ObfuscationAssemblyAttribute, 945–946
ObfuscationAttribute, 946–948

asP.neT application services – attributes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1142

attributes (continued)
OperationContract, 684
ServiceContract, 685
SetupAttribute, 953–956
TeardownAttribute, 953–956
TestClass, 200
testing and, 200–202

ExpectedException, 204–206
Ignore, 201
Owner, 201
Priority, 201
TestCategory, 201
Timeout, 201
WorkItem, 201

TestMethod, 200
xmlns, 356

authentication, 107
AppFabric, 533
ASP.NET Application Services, 729
Forms, 726
forms-based, 731
NTLM, 113
RIA Services, 758
users, 731–733
Web controls, 418–420
Windows authentication, 726

authorization, roles, 729–731
automated tests, 1095–1096
automatic properties, 322–323
automation, T4 templates, 280–284
automation model. See DTE (Development

Tools Extensibility)
accessing, 1018–1020

Autos window, 833
Azure. See Windows Azure Platform

b

background synchronization, 752–755
BackgroundWorker, 752–755
Bauer, Denis, 940–941
BeforeExecute event, 1020
best practices for databases, 1093–1094
binary resources, 807–808
binding data, data contracts, 690

binding objects, LINQ to SQL, 614–617
BindingNavigator, 569–570
BindingSource, 567–569

chains, 579–581
BindingSource property, 614
bitmap loading, 816
block comments, 220
block selection, code editor, 60
bookmarks, 133–135

workflow, 705
Branch Visualization tool, 1127
branches in Version Control, 1126–1127
Break mode (debugging), 828, 845
Breakpoint Hit Count dialog, 849
breakpoints, 828, 845

break conditions, 848
conditional, 828
deleting, 850
disabling, 850
exporting, 851–852
filters, 849–850
hit counts, 849
importing, 851–852
JavaScript, 878
labeling, 851
location, changing, 850–851
setting

address, 847
function, 846–847
simple, 846

workflows, 718–719
Breakpoints window, 828–829

breakpoint list, 829
toolbar, 829

brokers (IntelliSense), 1049
Browseable attribute, 28–29
browsers, Silverlight, 481–484
browsing data, 584–586
Build and Run node, 49–50
Build and Run options page, 912
Build Configuration options, 912
Build Events tab (Solution Explorer), 103, 917–919
Build tab (Solution Explorer), 102–103
building first application, 9–13
builds

attributes – builds

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1143

C# build pages, 919–920
Compile page (VB), 915–919

Build Events, 917–919
compilation constants, 916–917
optimizations, 916

dependencies, manual, 914–915
general options, 911–914
MSBuild, 920–921

Items elements, 924
PropertyGroup nodes, 924
Target elements, 924
Tasks elements, 925–927
Visual Studio’s use, 921–923

parallel project builds, 912
Business Application template, 757
business logic, Entity Framework, 645

c

C#
build pages, 919–920
code snippets, 139–140

C/C++ Code Analysis tool, 1079
CAL (client access license), 514
Call Hierarchy window, 66–67
Call Stack window, 833, 839, 847
camel case searching, 82
catalogs (MEF), 1040–1041
Category attribute, 30
CEIP (Customer Experience Improvement

Program), 958
certificates

deployment and, 977–979
Trusted Root Certification Authorities, 979

Changed event, 1042
Chart control, 658–659
charts

categories, 658
data, 658
drop zones, 658
series, 658

Check Comment Margin Highlighter, 1050–1057
CheckCommentGlyphFactory class, 1056
CheckCommentTagger class, 1054
CheckCommentTaggerProvider class, 1054

class associations, 179
class coupling, code metrics, 1077
Class Designer

Class Details, 180
class diagram

creating, 176–177
entities, 178–179
exporting, 182

code generation
drag-and-drop, 182–184
IntelliSense, 184–185

drag and drop and, 177
Implement Abstract Class function, 185
layout, 181
modeling and, 175
Override Members function, 185
Properties window, 181
refactoring with, 185
Toolbox, 178

Class Details window, 180
class diagrams

creating, 176–177
entities, 178–179

connectors, 179
exporting, 182

Class Diagrams (UML), 1062, 1066
Class Feature blocks (T4), 270–272
Class View, 8, 63–64
ClassCleanup attribute, 206–207
classes
Activity, 704
ApplicationRoot, 1035
Assert, 203
CheckCommentGlyphFactory, 1056
CheckCommentTagger, 1054
CheckCommentTaggerProvider, 1054
ClassificationTypeDefinition, 1046
CodeActivity, 704, 715
CollectionAssert, 204
CommandLineMessageService, 1038
ComponentResourceManager, 812
Connect, 1015
CustomAuthentication, 731
CustomerVisualizer, 866–867
Debug, 890–891

Business application template – classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1144

classes (continued)
Debugger, 890
domain context, 764–765
DynamicActivity, 704
EventLog, 161
Installer, 172, 971
InstallerActions, 971
MembershipProvider, 732
metadata, 492
metadata proxy, 462
NativeActivity, 704
RegisteredEntities, 788
RoleProvider, 729
SaveOperation, 1038
SearchResult, 591
ServerSyncProviderProxy, 752
ServiceInstaller, 973–976
StatusNotificationService, 1036
StringAssert, 203–204
SubscriptionTest, 1103
Trace, 890–891
WorkflowApplication, 705, 717
WorkflowInvoker, 705
WorkflowServiceHost, 705

Classification subsystem, 1043
classification types (Editor), 1046–1047
ClassificationTypeDefinition class, 1046
classifier aggregators, 1046
ClassInitialize attribute, 206–207
Click event handler, 37
ClickOnce, 110

deployment, 976–980
security, 111
updating, 980–982

client application services, 725
application framework, security, 728
ASP.NET Application Services, 729
offline support, 740–742
users, validation, 727

client changes in Sync Services, 755–756
client services

authentication, 107
roles, 107
Web settings, 107

client-side development, Web Application projects,
425–431

ClientServices, creating, 725–728
clipboard, code editor, 60
Cloud Computing, 533
Cloud Service project template (Azure), 534
CloudFront project (Azure), 535
CLR (Common Language Runtime), 394
CMMI Process Improvement, MSF and, 1112
code, linking with tests, 1103–1105
code analysis, 112–113

C/C++ Code Analysis tool, 1079
Managed Code Analysis tool, 1078–1079

Code Analysis Settings, 93
Code Analysis tab (Solution Explorer), 112–113
code assets, generating, 280–284
code blocks

commenting/uncommenting, 59–60
surrounding with snippets, 141–142
Toolbox, 138

Code Contracts, 214–216, 258–260
Code Coverage, 1103–1104
Code Definition window, 66
code editor

block selection, 60
clipboard, 60
code blocks, commenting/uncommenting, 59–60
code formatting, 55–56
Find All References option, 61
floating windows, 58–59
full-screen view, 60
Go To Definition option, 61
line numbers, 57
multiline editing, 60
Navigate Backward, 57
Navigate Forward, 57
outlining, 55
reference highlighting, 57
regions, 54–55
split view, 58
tab groups, 59
tear away code windows, 58–59
threads, 897
window layout, 53–54
word wrap, 57
zooming, 57

code execution windows, Call Stack, 833
code formatting, code editor, 55–56

classes – code formatting, code editor

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1145

code generation, 263–264
drag-and-drop, 182–184
IntelliSense, 184–185

code metrics, 1075
class coupling, 1077
Cyclomatic Complexity, 1078
depth of inheritance, 1077
excluded code, 1078
lines of code, 1076–1077
maintainability index, 1078

Code Metrics window, 1075–1076
code modules, macros, 1026
code snippets

C#, 139–140
code blocks, 138–139

surrounding, 141–142
creating, 143
IDE, 137
Insert Snippet, 139–140
inserting, 139
IntelliSense, 133
predefined, 139
reviewing, 144–147
shortcuts, 140
VB, 140–141

Code Snippets Manager, 142–143
code window

Break mode, 828
DataTips, 828
debugging, 827–828

CodeActivity class, 704, 715–719
Coded UI Tests, 1101–1102
CodeRush Xpress, 137

refactoring, 149
coding resource files, 817–819
coding standards, FxCop, 254–257
coding style, StyleCop, 258
collection associations, 179
CollectionAssert class, 204
collections, initializers, 323–324
colors, editor space, 43–44
COM components

add-ins, 1014
registering, 1014

Command window, 61–62

IntelliSense, 62
CommandLineMessageService class, 1038
commands

aliases, Immediate window, 831
DTE.Commands enumeration, 1006–1007
Find in Files, 78
groups, 61
Immediate window, 831
IntelliSense, 131
listing, 47, 61
Lock Controls, 345
Replace in Files, 78
Toggle Bookmark, 133–134

commenting/uncommenting, code blocks, 59–60
comments, 1046

block, 220
inline commenting, 220
single line, 220
Task List window, 241–243
text file resources, 806
XML comments, 220–221

commit characters (IntelliSense), 123
Common Controls, 23
compile errors, 64
Compile page (VB), 915–916

Build Events, 917–919
compilation constants, 916–917
optimizations, 916

Compile tab (Solution Explorer), 100–102
compiler debug option, enabling, 873
compiler section of configuration schema, 780
CompilerGenerated attribute, 1078
compiling

decompilers, 939–941
just-in-time compiling, 937
PIAs (Primary Interop Assemblies), 315
transformation errors, 279

completion mode (IntelliSense), 124–125
complex expressions, 661
complex properties (entities), 631
Component Diagrams (UML), 1062, 1065–1066
ComponentResourceManager class, 812,

816–817
composable parts of application, 1034
ComposeParts method, 1035

code generation – ComposeParts method

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1146

composition containers, 1034
CompositionContainer, 1034
Condition property, 969
conditional breakpoints, 828
.config files
app.config file, 774
applicationHost.config file, 775
machine.config file, 773–774
security.config file, 775
web.config file, 774

configuration, help system, 85–86
configuration attributes, 780–781
configuration files, 773. See also .config files

application settings, 782–790
appSettings section, 782–783
connectionStrings section, 798
custom sections, 785–790
dynamic properties, 784–785
IntelliSense, 789–790
project settings, 783–784
referenced projects with settings, 792–793
SCDL, 789
user settings, 790–791

configuration schema
compiler section, 780
configurationSections block, 775–776
cryptographySettings section, 779
runtime block, 777–778
startup block, 777
system.diagnostics section, 779
system.net block, 778–779
system.runtime.remoting block, 778
system.web section, 779–780

configuration settings, inherited, 774
configurationSections block of configuration

schema, 775–776
Connect class, 1015
connection properties (SQL Server), 800–801
connection strings, 562

encrypting, 803–804
in-code construction, 801–803

Connection Strings Wizard, 795–801
ConnectionString property, 801
connectionStrings section of configuration

files, 798

connectors to entities, 179
container controls

composition container, 1034
FlowLayoutPanel, 348
Panel, 347–348
SplitContainer, 347–348
TableLayoutPanel, 348–349

content controls (Word), 381
content pages (SharePoint), 522
content types

Editor, 1045–1046
SharePoint, 519

ContentTypeDefinition contract, 1046
context menus, Solution Explorer, 17
contracts (MEF), 1037–1040
ContentTypeDefinition, 1046
IGlyphFactoryProvider, 1056
IMouseProcessorProvider, 1048
IWpfTextviewCreationListener, 1048

contracts (WCF), 683
data contracts, 683, 685–687
message contracts, 683
service contracts, 683, 684–685

contravariance, 317, 319–321
control flow activities (WF), 704–705

Flowchart, 704
Sequence, 704

control images, 813
control themes (Silverlight), 479
controllers, 441

classes, populating, 441
Controllers folder, 441
controllers (IntelliSense), 1049
controls

Chart, 658–659
container controls

FlowLayoutPanel, 348
Panel, 347–348
SplitContainer, 347–348
TableLayoutPanel, 348–349

detective, 950
DomainDataSource, 765
drag and drop, 650
Gauge control, 659–660
Image control, 657

composition containers – controls

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1147

Line, 652
List, 657
Matrix control, 655–657
preventative, 950
QueryableFilterRepeater, 510
QueryExtender, 510
Rectangle, 652
Report Viewer, 645, 646
Subreport control, 657
Table control, 652–655
Text Box, 650–652
web forms

formatting, 411–412
positioning, 409–411

Windows Forms
adding, 341
aligning text controls, 342
anchoring, 349–350
docking, 349–350
horizontal spacing, 343
layering, 344
locking design, 344–345
positioning multiple, 342–343
property setting, 345–346
tab order, 344
vertical spacing, 343

WPF, layout controls, 358–360
Convention over Configuration, 486
covariance, 317, 318–319
Create action method, 457
CreateToolWindow method, 1016, 1018
credentials provider, 738
cross-assembly referencing, 816
CRUD (Create, Read, Update, Delete), 485

contracts, 684
entity models, 637–641

cryptographySettings section in
configuration schema, 779

Crystal Reports, introduction, 645
CSS (cascading style sheets), web forms, 412–415
Ctrl key, temporary window, 40
Ctrl+Tab window, 40
culture resources, 813–814, 815

creating, 814
invariant cultures, 813

loading files, 814–815
neutral cultures, 813
specific cultures, 814

CurrentChanged event, 748
CurrentPrincipal, 728
CurrentStatusTest, 1103
CustomActionData property, 972
CustomAuthentication class, 731
Customer Experience Improvement Program

(CEIP), 958
CustomerBindingNavigator, 569–570
CustomerBindingSource, 567–569
CustomerTableAdapter, 563
CustomerVisualizer class, 866–867
customization, document-level, 381
CustomReportingFunctions template, 665
CVS, 246
Cyclomatic Complexity, 1078

d

dashboards (SharePoint), 1132–1133
data

browsing, 584–586
editing, 556–557
previewing, 557

data binding, 565–567
saving changes, 573–574
validation, 576–578
WPF, 367–370

Data Binding Mode options, 570–571
Data Compare, 1092–1093
Data Connections node (Server Explorer), 549
data contracts (WCF), 683, 685–687
Data Generation Plan, 1089–1090
Data Link Properties dialog, 562
data models, ASP.NET Dynamic Data, 487–489

display format, 496–498
validation rules, 494–496

data sets
customized, 578–579
Typed DataSets, 649

Data Source Configuration Wizard, 561, 650, 798
data sources, 581–586

adding, 561–563

Convention over Configuration – data sources

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1148

data sources (continued)
reports, 647

defining, 648–650
selecting, 570–573
Web Service Data Source, 583

Data Sources window, 549, 556
data types

F#, 330
resource files, 819

data view controls, 422–423
Database Diagram Editor, 549
database diagrams, 555–556
Database projects, 95
database tools

Data Compare, 1092–1093
Data Generation Plan, 1089–1090
Offline Schema project, 1086–1089
refactoring, 1090–1091
Schema Compare, 1091–1092
SQL-CLR Database projects, 1086
static analysis, 1093
Transact-SQL editor, 1093

Database Unit Tests, 1100–1101
databases

best practices, 1093–1094
SQL Azure, 544
updating, entity models, 644–645
windows, 549–556

DataColumns, 559–560
DataContract attribute, 686
DataGridView, 579–581
DataRows, 559–560
DataSet editor, 563–565
DataSet object, 560
DataSets

creating, 561–563
GeneratedCode attribute, 1078
overview, 559–560

DataTables, 559–560
DataTips, 828

floating, 858
pinned, 858
variables, 858

DDD (domain-driven design), 645
Debug class, 890–891

DEBUG constant, 102
Debug Source Files, 93
Debug tab (Solution Explorer), 103

enable debuggers, 104–105
debugger
DebuggerBrowsable attribute, 859–860
DebuggerDisplay attribute, 860–861
DebuggerHidden attribute, 861–862
DebuggerNonUserCode attribute, 862
DebuggerStepperBoundary attribute,

862–863
DebuggerStepThrough attribute, 862
DTE.Debugger, 1007

Debugger class, 890
Debugger interface, 1003
debugging

ASP.NET
Edit and Continue, 876
error handling, 876–877
web applications, 874–876

ASP.NET AJAX JavaScript, 879
Assert method, 891
Break mode, 828, 845
breakpoints, 828, 845

conditional, 828, 848–849
deleting, 850
disabling, 850
exporting, 851–852
importing, 851–852
labeling, 851
location, 850–851
setting, 846–847

Breakpoints window, 828–829
client-side JavaScript, 877–878

breakpoints, 878
with code, Debugger class, 890
code execution windows

Call Stack, 833
Modules, 834–835
Processes, 835
Threads, 834

code window, 827–828
DataTips, 828
Debug class, 890–891
delayed signing and, 949

data sources – debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1149

dynamically-generated JavaScript, 878–879
Edit and Continue, 855–856
exceptions and, 841

unwinding, 845
Exceptions window, 841
execution control, 853

stepping through code, 853–855
execution point, moving, 855
first application, 9–13
Immediate window, 830–831
IntelliTrace, 837–838, 1075
LINQ, 596–597
macros, 1030
memory windows, 835

1-4, 836
Disassembly, 836
Registers, 836–837

mixed-mode, 899
multi-threaded applications, 897–899
.NET Framework, 896–897
Output window, 829–830
Parallel Stacks window, 839–840
Parallel Tasks window, 840
parallel windows, 838–840
parallelized applications, 897–899
post-mortem

dump files debugging, 901–902
dump files generation, 900–901

Raw View, 865
rude edits, 855
running applications

remote debugging, 894–895
Web applications, 893–894
Windows processes, 892–893

saving changes to object, 867–869
server-side ASP.NET code, 872–877
SharePoint, remote computers, 521
Silverlight, 477, 879–880
start actions, 887–889
Stop Applying Changes, 855
stored procedures (SQL Server), 899
Trace class, 890–891
Trace Switches, 891
tracepoints

creating, 852

macros, 852–853
printing, 852–853

tracing, 880
application level, 882
page-level, 881

type proxies, 863–865
visualizers, 865–867
Watch windows

1-4, 832–833
Autos, 833
Locals, 833
QuickWatch, 831–832

web applications, 874–876
workflows, 718–719
WPF Visualizer, 376–377

declarative languages, 312
decompilers, 939–941
DefaultValue attribute, 30–31
DELETE HTTP method, 455
dependencies

builds, manual, 914–915
.NET applications, 968

Dependency Graphs, 1070–1072
deploying

add-ins, 1022–1023
applications, 394–396
first application, 9–13
macros, 1030–1031
reports, 677
Web applications, 983

web.config transformations, 989–990
Windows Azure applications, 540–543

deployment
certificates, 977–979
ClickOnce, 976–980
outputs included, 963

depth of inheritance, 1077
Descending keyword, 595
Description attribute, 29
design-time errors, 278–279
designer files, 810–811
designing reports, 647–648
detective controls, 950
developer types, 4
developing first application, 9–13

declarative languages – developing first application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1150

developing macros, 1028–1030
Development Fabric (Azure), 535–536
Development Tools Extensibility. See DTE

(Development Tools Extensibility)
dialogs

Add Area, 459
Add Controller, 441
Add-in Manager, 1011
Add Reference, 21
Breakpoint Hit Count, 849
Data Link Properties, 562
Exception Assistant, 841
Exceptions, 47
Find and Replace, 74
Find in Files, 78, 79
Find Symbol, 81
Foreign Key Relationships, 553
Help Library Manager, 85
New Project, 95–96, 353
Preview Data, 557
Publish Web, 986–987
Quick Find, 73
Remove Parameters, 154
Rename, 154
Reorder Parameters, 153–154
Report Properties, 667
Service Reference Settings, 22
Solution Properties, 16
Surround With, 141–142

directives, T4, 265
assembly, 276
import, 276–277
include, 277–278
output, 275–276
template, 275

directories, virtual, 774
disabled add-ins, 394
disabled users, accessibility, 416–417
disabling breakpoints, 850
Disassembly window, 836
Display Items list, Text Editor, 44
DisplayFor helper, 466
DisplayName attribute, 29
docking, 41–43

controls, 349–350

document-level customization, 381
document libraries, SharePoint, 519
Document Outline window, 364

controlling outlining, 69–70
HTML outlining, 68–69

document windows, automation, 1006
documentation. See also comments; XML

comments
GhostDoc and, 237–238
introduction, 219
Sandcastle and, 238–241

documents as templates, 1132
domain context class, 764–765
domain operations, 762

delete operations, 763
insert operations, 763
invoke operation, 763
query operations, 762–763
update operations, 763

Domain Service Class Wizard, 761
domain services

consuming, Silverlight, 764–768
RIA Services, 760–762

DomainDataSource control, 765
Dotfuscator, 941–945

RI (Runtime Intelligence), 952
tamper defense, 950–952

drag and drop
Class Designer, 177
code generation, 182–184
controls, 650

drop handlers, 1048
DTE (Development Tools Extensibility),

1002–1004
debugger, 1007
event handling, 1007
macros, 1025–1026

DTE.Commands, enumeration, 1006–1007
DTE.Debugger, 1007
DTE.Events object, 1007
DTE.Solutions object, 1004–1005
dump files

debugging, 901–902
generating, 900–901

Dynamic Data, templates, 464

developing macros – Dynamic Data, templates

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1151

display templates, 465–468
edit templates, 468

dynamic data. See also ASP.NET Dynamic Data
dynamic languages, 312–313
dynamic lookups, late binding and, 325–326
dynamic properties of configuration files, 784–785
DynamicActivity class, 704

e

Edit and Continue, 855–856
ASP.NET debugging, 876

editing, data, 556–557
Editor

adornments, 1047–1048
Check Comment Margin Highlighter,

1050–1057
Classification subsystem, 1043
classification types, 1046–1047
classifiers, 1043
content types, 1045–1046
drop handlers, 1048
extending, 1044
IntelliSense, 1049
margins, 1047
mouse processors, 1048
Operations subsystem, 1043
options, 1048–1049
services, 1050
tags, 1047
Text Model subsystem, 1042
Text View subsystem, 1042–1043

editor space, 8
colors, 43–44
fonts, 43–44
full-screen mode, 45
tracking changes, 46
visual guides, 44–45

embedding files as resources, 808–809
empty test cases, 193
Empty Web Site project template, 402
EnableClientAccess attribute, 761
EnableDynamicData method, 511–512
Encapsulate Field method of refactoring, 150–151

Encode method, 450
encryption, connection strings, 803–804
endpoints (WCF), 688–691
Entities Dynamic Data project, 488
entities in class diagrams, 178–179

connectors, 179
display style, 181

Entity Data Model Wizard, 624–625
Entity Framework designer, 626–630
entity templates, ASP.NET Dynamic Data,

506–508
enumeration
DTE.Commands, 1006–1007
projects, 1004–1005
windows, 1005–1006

Environment settings, source code repository, 248
environment settings, 6

RSS feed, 7
error handling, ASP.NET debugging, 876–877
Error List, 64
Error List window, 664
ErrorImage property, 813
errors

compile errors, 64
compiling transformation, 279
in conversion, 907
design-time, 278–279
executing transformation errors, 279–280
generated code errors, 280

event handlers
AfterInstall, 970
Click, 37
XAML editor, 361

event handling, 1020–1022
event receivers (SharePoint), 519, 527–528
EventLog class, 161
events
BeforeExecute, 1020
Changed, 1042
CurrentChanged, 748
DTE.Events object, 1007
IntelliTrace, 1085
Post Build Event, 918
SubreportProcessing, 670

dynamic data. see also asP.neT Dynamic Data – events

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1152

Excel
document-level customization, 381
Project integration, 1118–1119
smart tags, 381
work items, 1117–1118

Exception Assistant, customizing, 844–845
Exception Assistant dialog, 841
exception information, writing, 161
exceptions

debugger, 841
execution path, 841
IntelliTrace, 1085
unwinding, 845

Exceptions dialog, 47
Exceptions window, 841
excluded code, 1078
executing transformation errors, 279–280
execution control, 853

stepping through code, 853–854
step filtering, 854
Stepping Into, 854
Stepping Out, 854
Stepping Over, 854

execution point, moving, 855
ExpectedException attribute, 204–206
Experimental Instance, 1045
expiration date, 956–957
ExportAttribute attribute, 1036
exporting

breakpoints, 851–852
class diagrams, 182
composable parts and, 1034
contracts and, 1037–1040
settings, 51–52

Expression blocks (T4), 268
Expression Builder, 75–76, 662

fx button, 662
expression holes, 600–601
expressions, 705

complex, 661
Immediate window, 830–831
Lambda expressions, 589–590
reports, 661–663
simple, 661

extensibility, 1001. See also DTE (Development
Tools Extensibility)

add-ins, 1002
macros, 1002, 1025–1026
MEF (Managed Extensibility Framework),

1002, 1033
options, 1001–1002
VSPackages, 1002

extension methods, LINQ, 110
Extract Interface method of refactoring, 151–153
Extract method of refactoring, 148–150

f

F#, 327–330
data types, 330
Interactive window, 329
lazy keyword, 331
for loop, 330
Pattern Matching, 330

Feature Designer, 529–530
FeatureAttribute attribute, 957–958
Features node (SharePoint), 521
features (SharePoint), 519, 529–530
field templates, ASP.NET Dynamic Data, 502–506
file extensions, toolbar associations, 39
files. See also .config files; configuration files
.AddIn, 1014
designer files, 810–811
dump files

debugging, 901–902
generating, 900–901

embedding as resources, 808–809
find and replace, 78–79
hidden, 91
JavaScript, 129–130
project, format, 96
replace in, 80–81
text file resources, 806–807

Fill method, 564
filter templates, ASP.NET Dynamic Data,

509–511
filters

breakpoints, 849–850
step filtering, 854

FinalQuery method, 596
find and replace

in files, 78–79

excel – find and replace

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1153

Find Symbol search tool, 81
options, 77
Quick Find dialog, 73
regular expressions, 76–77
replace in files, 80–81
Replace With field, 75
wildcards, 75–76

Find and Replace dialog, 74
Find in Files command, 78
Find in Files dialog, 78, 79
Find Options, 75
Find Results windows, 79–80
Find Symbol dialog, 81
Find Symbol search tool, 81
flexibility, 311
floating code editor windows, 58–59
floating tool windows, 43
Flowchart control flow activity (WF), 704
FlowLayoutPanel control, 348
folders, 90

ASP.NET MVC, 439–440
Controllers, 441
Open Containing Folder option, 40
SharePoint Mapped Folders, 523
solution folders, 90

Font and Colors node, 43
fonts, editor space, 43–44
for loops, F#, 330
Foreign Key Relationships dialog, 553
formatting code, code editor, 55–56
forms

login, 738–740
Outlook, 389–392
SnapLines, 339
Windows Forms Designer, 338–340

Forms authentication, 726
forms-based authentication, 731
framework, versions, 19
From statement, 591
full-screen mode, editor space, 45
full-screen view, code editor, 60
function breakpoints, 846–847
functional languages, 313–314
functionality, Modeling Power Toys for Visual

Studio 2010, 187

functions
$(), 468–470
GetStrongName, 667
Implement Abstract Class, 185
Override Members, 185
refactoring functions, 185
Server Explorer window, 554–555

fx button, 662
FxCop, 245

code analysis, 254–257
Managed Code Analysis tool, 1078

G

GAC (Global Assembly Cache), 26, 933–934
installers, 967
reports, 665

gacutil.exe, 934
garbage collection, 777
Gauge control, 659–660
generated code errors, 280
GeneratedCode attribute, 1078
GenerateMagicNumber method, 939
generating reports, 674–675
Generic Tests, 1102
generic variance, 317
Generics, inheritance, 316–318
GET HTTP method, 455
Get Started tab, 34
GetCredentials method, 740
GetData method, 564
GetManifestResourceNames method,

809–810
GetManifestResourceStream method,

809–810
GetRolesForUser method, 729
GetStrongName function, 667
GetTags method, 1054
GhostDoc, 219, 237–238
GlobalAssemblyInfo file, 932–933
glyph factory, 1054
glyphs, WPF designer, 362
GroupBy statement, 593–594
Guidance and Resources tab, 34

find and replace dialog – Guidance and resources tab

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1154

h

Halstead volume, 1078
hard disabled add-ins, 394
HEAD HTTP method, 455
headers/footers in reports, 669
Health Monitoring, 884–886
Hello World, 9–13
Help Library Manager dialog, 85
help system, 83–84

configuration, 85–86
navigating, 84–85
online help system, 85
searching, 84–85
Service Unavailable message, 83

hidden files, 91
HideSolutionNode, 92
highlighting, code editor, 57
hit counts, 849
Hopper, Grace, 312
horizontal spacing, 343
HostApplication nodes, 1014
HTML Designer, 407–409
HTML elements, positioning in web

forms, 409–411
HTML outlining, 68–69
HTTP methods

DELETE, 455
GET, 455
HEAD, 455
POST, 455

i

IClassifier, 1046
IClassifierAggregatorService, 1050, 1054
IClientFormsAuthenticationCredentials

Provider interface, 738
icons

loading, 816
projects, 16

IContentTypeRegistryService, 1050
ICustomerService interface, 684
IDE (integrated development environment)

code snippets, 137

configuration, 7
Start Page, 7

IDropHandler, 1048
IDropHandlerProvider, 1048
IDTCommandTarget interface, 1015
IDTExtensibility2 interface, 1015
IGlyphFactoryProvider contract, 1056
Ignore attribute, testing, 201
IIS (Internet Information Services), 401
IL Dasm, 938–939
Image control, 657
Image Library, 301
Image property, 813
images

control images, 813
as properties, 813

IMessageService, 1038
Immediate window, 62–63, 830–831

commands, 831
IntelliSense, 63, 831

IMouseProcessorProvider contract, 1048
imperative languages, 312
Implement Abstract Class function, 185
implicit line continuation, 322
ImplicitStyleManager (Silverlight), 480
Import and Export Settings Wizard, 51–52
import directive (T4), 276–277
importing
ApplicationRoot class and, 1036
breakpoints, 851–852
composable parts and, 1034
contracts and, 1037–1040
settings, 51–52

Imports command, 603
in keyword, 319–320
include directive (T4), 277–278
inconclusive statements, 197
incremental searches, 82–83
Incremental synchronization, 749
Index method, 441

results, 442
inheritance

configuration settings, 774
depth of inheritance, 1077
entities, 635

Halstead volume – inheritance

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1155

Generics, 316–318
Inheritance connector, 179
InitialImage property, 813
InitializeComponent method, 812
inline commenting, 220
Insert Snippet, 139–140
InsertShelfLifeAttribute attribute, 956
InsertSignOfLifeAttribute attribute, 956
InsertTamperCheckAttribute attribute, 951
installation. See also Windows Installer

Administrative install, 970
licensing terms, 4
SharePoint, 517–518
variables, 967
Visual Studio 2010, 3–5

stages, 3–4
Installation URL property, 965
installation wizard, 967
Installed Templates hierarchy, 18
Installer class, 172, 971
Installer Class template, 970
InstallerActions class, 971

SharedResources assembly, 971
installers

building, 962–966
custom actions, 970–972
customization, 966–970
GAC and, 967
merge module, 962
Service Installer, 973–976
Web Application projects, 991
Web Platform Installer, 992–997

IntelliSense
brokers, 1049
C#-specific options, 132
code generation, 184–185
code snippets, 133
Command window, 62
commands, 131
commit characters, 123
configuration files, 789–790
controllers, 1049
Editor, 1049
extended, 132–133
function breakpoints, 847

Immediate window, 63, 831
IntelliSense context, 129
JavaScript, 128–130
Options, 131–132
overview, 119–120
parameter information, 127–128
presenters, 1049
Quick Info, 128
schema definitions, 133
sessions, 1049
shortcut key, 121
sources, 1049
statement completion, 132
wavy lines, 120
word/phrase completion

completion mode, 124–125
in context, 121–123
Generate From Usage, 126–127
list members, 123–124
stub completion, 125–126
suggestion mode, 124–125

XAML editor, 361
XML comments, 133, 237

IntelliTrace, 837–838, 1075, 1084
events, 1085
exceptions, 1085
IntelliTrace Events window, 837–838

Interaction Use (Sequence diagrams), 1064
Interactive window (F#), 329
interfaces
Debugger, 1003
ICustomerService, 684
IDTCommandTarget, 1015
IDTExtensibility2, 1015
IWizard, 303–305

invoke operation, 763
IResourceReader, 817–819
IResourceWriter, 817–819
IsEnabled property, 357
item templates, 291–295
items, 89
ITextBuffer, 1042, 1054
ITextDocument, 1042
ITextDocumentFactoryService, 1050
ITextEdit, 1042

inheritance connector – iTextedit

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1156

ITextSearchService, 1050
ITextSnapshot, 1042
ITextVersion, 1042
ITextView, 1043
IWizard interface, 303–305
IWpfKeyboardTrackingService, 1050
IWpfTextviewCreationListener

contract, 1048
IWpfTextViewMargin, 1047

J

JavaScript
ASP.NET AJAX, debugging, 879
debugging

breakpoints, 878
client-side, 877–878
dynamically-generated, 878–879

IntelliSense, 128–130
jQuery, 468–470
referencing files, 129–130
Web Application projects, 426–427

jQuery, 468–470
just-in-time compiling, 937

k

key files, 109–110
strong-named, 935

keyboard mapping, 47
Keyboard node, 47, 61
keyboard shortcuts, 46–48

IntelliSense, 121
Quick Find, 74

keywords, 1046
in, 319–320
Ascending, 595
Descending, 595
lazy, 331
out, 318
var, 314

KPIs (Key Performance Indicators), 659

l

Lab Center, 1108–1109
labeling breakpoints, 851
labeling versions, 1124–1125
Lambda expressions, 589–590
lambdas, 321–322
languages

declarative, 312
dynamic, 312–313
F#, 327–330
functional, 313–314
imperative, 312
.NET Framework, 311

late binding, dynamic lookup, 325–326
Latest News tab, 34
Layer Diagrams (UML Model Explorer),

1066–1068
layering controls, Windows Forms, 344
layers, adornments, 1048
layout, Class Designer, 181
Layout Diagram button, 181
layout of reports, 668–670
lazy keyword, 331
libraries, 21
licensing terms, 4
line continuation, implicit, 322
Line control, 652
line-level tracking, 46
line numbers, 45

code editor, 57
Line Numbers checkbox, 45
lines of code (code metrics), 1076–1077
links

Silverlight, 477
Start Page, 34

LINQ (Language Integrated Query), 314
anonymous type feature, 591
debugging, 596–597
expression holes, 600–601
extension methods, 110
FinalQuery method, 596
GroupBy statement, 593–594
OrderBy statement, 594–595
properties, custom, 594
providers, 588

iTextsearchservice – linQ (language integrated Query)

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1157

Select statement, 592
From statement, 591
Where statement, 592–593
XML creation, 600–602

LINQ to Entities, 636–642
LINQ to SQL, 587, 605

ADO.NET Entity Framework and, 487
ADO.NET Entity Framework comparison,

622–623
deletes, 610–611
inserts, 610–611
object binding, 614–617
object model, 606–607
querying, 608–610
stored procedures, 611–614
Stored Procedures node, 612
updates, 610–611

LINQ to XML, 587, 597–598, 600
LINQPAD, 618
List control, 657
list members, IntelliSense, 123–124
List template, 452
listing commands, 61
lists, SharePoint, 519–521
literals

array literals, 323–324
XML literals, 598

load pattern, 1099
Load Test Designer, 1099
Load Test Monitor, 1099
load tests, 1099–1100

test load agent, 1100
thresholds, 1100

local report engine, 648
Locals window, 833
Lock Controls command, 345
locking control design, Windows Forms, 344–345
login form, 738–740

as credential provider, 738–739
lookups, dynamic, late binding and, 325–326

M

machine.config file, 773–774
Macro Explorer tool window, 1026

macros
code modules, 1026
debugging, 1030
deploying, 1030–1031
developing, 1028–1030
extensibility and, 1002
long-running, 1030
overview, 1025–1026
recording, 1028
running, 1030
temporary, 1028
tracepoints, 852–853

Macros IDE, 1026–1027
maintainability index, 1078
Managed Code Analysis, 1078–1079
Managed Extensibility Framework. See MEF

(Managed Extensbility Framework)
management classes, Server Explorer, 162–164
Management Events, 164–167
manual dependencies between builds, 914–915
MapRoute method, overloading, 453
margins, 1047
master pages

SharePoint, 523
Web Application projects, 424–425

Matrix control, 655–657
MEF (Managed Extensbility Framework),

1002, 1033
advanced scenarios, 1041
catalogs, 1040–1041
CompositionContainer, 1034
contracts, 1037–1040

membership, providers, 727
membership management, enabling, 731
MembershipProvider class, 732
memory windows, 836

1-4, 836
Disassembly window, 836
Registers window, 836–837

menus, 8. See also context menus
Windows, 40

merge module, 962
merges (Version Control), 1128
message contracts (WCF), 683
message queues, 167–169

linQ to entities – message queues

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1158

messages, 64
metadata

classes, 492
text, 1043
WPF, 24

metadata proxy class, 462
method stubs, generating, 156
methods
AddSolutionFolder, 1003
ApplyResources, 817
Assert, 891
asynchronous, 698
ComposeParts, 1035
CreateToolWindow, 1016, 1018
EnableDynamicData, 511–512
Encode, 450
extension, LINQ, 110
Fill, 564
FinalQuery, 596
GenerateMagicNumber, 939
GetCredentials, 740
GetData, 564
GetManifestResourceNames, 809–810
GetManifestResourceStream, 809–810
GetRolesForUser, 729
GetTags, 1054
IDTExtensibility 2 interface, 1015
Index, 441
InitializeComponent, 812
MapRoute, 453
parameters, entering, 180
SaveChanges(), 639
Sync Services, 752
TakeThreadOwnership, 1042
TransformText(), 274
Validate, 576–577
ValidateUser, 727
Write(), 274

Microsoft Code Contracts, 258–260
Microsoft .NET Framework IL Disassembler

(IL Dasm), 938–939
Microsoft Synchronization Services for ADO.NET,

745. See also Sync Services
Microsoft Visual SourceSafe, 246

checking in/out, 250

history, 253
merging changes, 252–253
offline support, 253–254
Pending Changes, 250–251
pinning files, 253
repository, creating, 249
solution, 249–250
Solution Explorer, 250

Miscellaneous Files solution folder, 90
mixed-mode debugging, 899
model binders, 458–459

validation errors, 461
Modeling Power Toys for Visual Studio 2010, 186

functionality, 187
visualization, 186–187

Modeling Projects (Architecture edition), 1061
linking to Team Foundation Server, 1068
new diagrams, 1062

Modules window, 834–835
monitoring

applications, 949–958
Health Monitoring, 884–886

Moonlight, 472
mouse processors, 1048
MouseProcessorBase, 1048
MSBuild, 920–921
Items elements, 924
PropertyGroup nodes, 924
schema, 96
Target elements, 924
Tasks elements, 925

assembly versioning, 925–927
Visual Studio’s use, 921–923

MSDataSetGenerator, 560
MSF for Agile Development, 1112

dashboards, 1132
Word documents, 1132
work items, 1115–1116

adding, 1116
Excel, 1117–1118
state, 1116–1117

MSF (Microsoft Solution Framework)
Agile Development, 1112

work items, 1115–1116
CMMI Process Improvement, 1112

messages – Msf (Microsoft solution framework)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1159

MSIL (Microsoft Intermediary Language), 937
disassembler, 938–939

multi-threaded applications, debugging, 897–899
MVC (Model-View-Controller)

components, 438
SmallTalk, 438
URLs, 451
validation, 461–462

MVVM (Model-View-ViewModel), 352
My Extensions tab (Solution Explorer), 110
MyWizard, 301–305

n

n-tiers, Sync Services, 751–752
named parameters, 326–327
naming assemblies, 929–932

strongly named, 933
obfuscation, 948–949

naming resources, 809
NativeActivity class, 704
Navigate To search tool, 82
navigating

associations (Entity Framework), 641–642
code editor, 57
help system, 84–85
open items, 40–41

navigation components, Web controls, 418
Navigation Framework (Silverlight), 478
navigation properties (entities), 631
nested types, 187
.NET developers, Visual Basic Development

Settings option, 6
.NET Framework

applications, dependencies, 968
assemblies, projects, 90
debugging, 896–897
languages, 311
Silverlight and, 472
upgrading to, 909–910

.NET Framework IL Disassembler (IL Dasm),
938–939

.NET Reflector, 939–941
assembly information, 929–930

.NET Sequence Diagrams, generating, 1072–1073

New Project dialog, 95–96, 353
New Service Element Wizard, 689
New Service Endpoint Wizard, 690–691
nodes, 16
NotesUserControl, 1016
NTLM authentication, 113
nullable optional parameters, 324–325

o

obfuscation, 941
attributes

ObfuscationAssemblyAttribute,
945–946

ObfuscationAttribute, 946–948
delayed signing, debugging and, 949
Dotfuscator, 941–945
reflection model, 948
smart obfuscation, 948
strongly named assemblies, 948–949

ObfuscationAssemblyAttribute attribute,
945–946

ObfuscationAttribute attribute, 946–948
object binding, LINQ to SQL, 614–617
Object Browser, 64–65
Object Lifetime information, 1082
object models, LINQ to SQL, 606–607
Object Relational Designer, 488
Object Relational Mapping, 621
ObjectDumper, 596–597
objects, serializing, 820
occasionally connected applications, 746
Office

debugging applications, 392–394
deploying applications, 394–396
projects, 95

office project types, 380–382
Offline Schema project, 1086–1089
offline support, 740–742
online help, 85
Online Templates, 19
online templates, 308–309
OperationContract attribute, 684
Operations subsystem, 1043
Option Strict, 50–51

Msil (Microsoft intermediary language) – option strict

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1160

optional parameters, 326–327
nullable, 324–325

Orca, installed components, 969
OrderBy statement, 594–595
Ordered Tests, 1102
Organize Usings, 156–157
ORM (Object Relational Mapper), 621
out keyword, 318
outlining

code editor, 55
controlling, 69–70
HTML outlining, 68–69

Outlook
add-in creation, 388–392
form region creation, 389–392

output directive (T4), 275–276
output type, 97
Output window, 829–830
overloading methods, 453
Override Members function, 185
Owner attribute, testing, 201

P

Package Files property, 964
Package node (SharePoint), 521
Package/Publish SQL tab (Solution Explorer), 116
Package/Publish Web tab (Solution Explorer), 115
packaging (SharePoint), 530–532
packaging Web applications

configuring packages, 987–988
SQL Server data, 988–989

page headers, reports, 668
page-level errors, 876–877
page-level tracing, 881
page templates, ASP.NET Dynamic Data,

499–502
Panel control, 347–348
parallel debugging windows, 838–840
Parallel Stacks window, 839–840
Parallel Tasks window, 840
parallelized applications, debugging, 897–899
parameterizing web servers, 1096
parameters

action methods, 456–459

entering on method, 180
IntelliSense, 127–128
named, 326–327
optional, 326–327

nullable, 324–325
subreports, 671
templates, 298–299

partial views, MVC, 463
PasteXmlAsLinq, 599–600
Pattern Matching (F#), 330
PDB file extension, 901
Performance Explorer, 1080

Allocation information, 1082
Object Lifetime information, 1082
profiler sessions, configuring, 1080–1082
reports, 1082–1083
Windows Events section, 1082

Performance Wizard, 1080
persistence (workflow), 706
PIAs (Primary Interop Assemblies), 315, 395
pinned windows, 8
placeholders

reports, 661–663
Text Box control, 651

POCO (Plain Old CLR Objects), 645
positioning, SnapLines, 339
Post Build Event, 918
POST HTTP method, 455
post-mortem debugging, dump files

debugging, 901–902
generating, 900–901

PowerPacks (VB), 325
prebuild events, 806
predefined code snippets, 139
Preprocessed Text Templates, 284–288

compared to standard T4 template, 288–289
presentation, ASP.NET Dynamic Data, 498

entity templates, 506–508
field templates, 502–506
filter templates, 509–511
page templates, 499–502

presentation model types (RIA Services), 759
presenters (IntelliSense), 1049
preventative controls, 950
Preview Data dialog, 557

optional parameters – Preview Data dialog

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1161

previewing data, 557
printing tracepoints, 852–853
Priority attribute, testing, 201
private members, testing, 213–214
process templates (TFS), 1112–1113

customizing, 1136–1137
processes, debugging running applications,

892–893
Processes window, 835
profiles, ASP.NET Application Services, 729
profiling tools, 1080

Performance Explorer, configuring sessions,
1080–1082

Standalone Profiler, 1083–1084
TIP (Tier Interaction Profiling), 1081

Project, Excel integration, 1118–1119
Project Explorer tool window, 1027
project settings of configuration files, 783–784
projects, 89. See also web application projects;

Web Site project
default locations, 48
dependencies, 93
enumeration, 1004–1005
file formats, 96
folders, 90
icons, 16
.NET assemblies, 90
properties, 96–97

Application tab, 97–100
Build Events tab, 103
Build tab, 102–103
Code Analysis tab, 112–113
Compile tab, 100–102
Debug tab, 103–105
My Extensions tab, 110
Publish tab, 111–112
Reference Paths tab, 108–109
References tab, 105–106
Resources tab, 106–107
Security tab, 111
Services tab, 107–108
Settings tab, 108
Signing tab, 109–110

Solution Explorer, 90
startup, 16

structure, add-ins, 1012–1013
templates, 295–296

generating, 306–308
types, 94–96
Web Site, 19

promoting variable to parameter, 155
properties, 26–28
ActivationKeyFile, 957
attached, XAML, 358
automatic, 322–323
BindingSource, 614
Condition, 969
connection properties (SQL Server), 800–801
ConnectionString, 801
CustomActionData, 972
entities, 631
ErrorImage, 813
Image, 813
images as, 813
InitialImage, 813
Installation URL, 965
IsEnabled, 357
LINQ, custom, 594
Package Files, 964
projects, 96–113

Application tab, 97–100
Build Events tab, 103
Build tab, 102–103
Code Analysis tab, 112–113
Compile tab, 100–102
Debug tab, 103–105
My Extensions tab, 110
Publish tab, 111–112
Reference Paths tab, 108–109
References tab, 105–106
Resources tab, 106–107
Security tab, 111
Services tab, 107–108
Settings tab, 108
Signing tab, 109–110

solutions
Common properties, 92–93
Configuration properties, 93–94

SyncDirection, 755–756
unit testing, 211–212

previewing data – properties

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1162

properties (continued)
ValidateArchitecture, 1068
Visibility, 357
web application projects

Package/Publish SQL tab, 116
Package/Publish Web tab, 115
Silverlight Applications tab, 114–115
Web tab, 113–114

Windows Forms, 337–338
setting for controls, 345–346

WorkerReportsProgress, 752–755
WPF, 357

Properties window, 181, 211–212, 650
AmbientValue attribute, 31–32
Browsable attribute, 28–29
Category attribute, 30
DefaultValue attribute, 30–31
Description attribute, 29
DisplayName attribute, 29
WPF designer, 364–367

property element syntax, 359
property markers, 365
providers

implementing, 727
membership, 727
role management, 727

proxies
metadata proxy class, 462
type proxies, 863–865
Web Service Proxies, 1078

Publish Method, 986
Publish tab (Solution Explorer), 111–112
Publish Web dialog, 986–987
Publish Wizard, 976–977
publishing

Web applications, 986–987
Web sites, 984–985

q

queries, 588–590. See also LINQ (Language
Integrated Query)

Architecture Explorer, 1070
entity models, 636–642
LINQ to SQL, 608–610

returning data, 564
XML, 602–603

Query Builder, 564
query operations, 762–763
QueryableFilterRepeater control, 510
QueryExtender control, 510
QueryVisualizer, SQL, 609
Quick Find, starting Find action, 74
Quick Find box, 74
Quick Find dialog, 73
Quick Info (IntelliSense), 128
Quick Replace, 75
QuickCRM, 746
QuickWatch window, 831

r

Raw View, 865
Recent Projects list, 34
Recent Templates, 19
recording macros, 1028
Rectangle control, 652
Refactor!, 137
refactoring

Class Designer and, 185
CodeRush Xpress, 149
databases, 1090–1091
Encapsulate Field method, 150–151
Extract Interface method, 151–153
Extract method, 148–150
functions, 185
Generate Method Stub, 156
Organize Usings, 156–157
promote variable to parameter, 155
removing parameters, 154
renaming parameters, 154
reordering parameters, 153–154
support, 147–148

reference highlighting, code editor, 57
Reference Library Controls, 23
Reference Paths tab (Solution Explorer), 108–109
referenced projects with settings in configuration

files, 792–793
references (Solution Explorer)

adding, 21

properties – references (solution explorer)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1163

cross-assembly referencing, 816
service references, 22

References tab (Solution Explorer), 105–106
reflection model, obfuscation, 948
RegEx engine, 76
regions (code editor), 54–55
RegisteredEntities class, 788
Registers window, 836–837
Registry view, 967
regular expressions, 76–77
relationships, Server Explorer window, 552–553
Release mode, 93–94
remote debugging, 894–895
Remote Debugging Monitor, 894–895
Remove Parameters dialog, 154
Rename dialog box, 154
rendering reports to different formats, 675–677
Reorder Parameters dialog, 153–154
replace in files, 80–81
Replace in Files command, 78
Report Data window, 648
report definition file, 647

SQL Server Reporting Services, 649
report designer, 647
report engine, 647

local, 648
server report engine, 649

Report Properties dialog, 667
Report Server, 1130–1132
Report Viewer, 647

toolbar, 674
Windows, 673

Report Viewer control, 645, 646
web version, 674
Windows Forms projects, 674

Report Wizard, 647–648, 672–673
reporting, introduction, 645
Reporting projects, 95
reports, 647

aggregates, 661–663
ASP.NET applications, 646
Chart control, 658–659
custom code, 663–668
data sources, 647

defining, 648–650
deploying, 677

designing, 647–648
Entity Framework, 649
expressions, 661–663
GAC (Global Assembly Cache), 665
Gauge control, 659–660
generating, 674–675
Image control, 657
layout, 668–670

headers/footers, 669
page breaks, 669
page headers, 668

Line control, 652
List control, 657
Matrix control, 655–657
Performance Explorer, 1082–1083
placeholders, 661–663
Rectangle control, 652
rendering, to different formats, 675–677
Silverlight, 646
Subreport control, 657
subreports, 670–672
Table control, 652–655
templates, 647–648
Text Box control, 650–652
Windows Forms applications, 646
WPF applications, 646

Reports Application project template, 645
repositories for source code, 246

checking in/out, 250
creating, 249
environment settings for, 248
history, 253
merging changes, 252–253
pending changes, 250–251
plug-in settings, 248
selection tips, 246–248

Resgen, 810–811
resource files

binary formats, 805, 807–808
coding, 817–819
data types, 819
designer files, 810–811
IResourceReader, 817–819
IResourceWriter, 817–819
resx, 805, 807

Resource Generator utility, 810–811

references tab (solution explorer) – resource Generator utility

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1164

ResourceReader, 818
resources

accessing, 809–810
specifics, 816–817

adding, 808
bitmap loading, 816
ComponentResourceManager, 816–817
cross-assembly referencing, 816
custom, 819–822
designer files, 810–811
embedding files as, 808–809
icon loading, 816
naming, 809
overview, 805–806
satellite, cultures, 813–814, 815
text files, 806–807

Resources tab (Solution Explorer), 106–107
ResourceWriter, 818
resourcing applications, 811–813
Response URL Validation Rule, 1098
resx resource files, 807
ResxResourceReader, 818–819
ResxResourceWriter, 818–819
reviewing code snippets, 144–147
RI (Runtime Intelligence), 952–956
RIA (Rich Internet Application), 472
RIA Services

ASP.NET and, 758
authentication, 758
Business Application template, 757
domain operations, 762

delete operations, 763
insert operations, 763
invoke operation, 763
query operations, 762–763
update operations, 763

domain services, 760–762
introduction, 757
presentation model types, 759
Silverlight and, 757

consuming domain services, 764–768
user registration, 758

role management
ASP.NET Application Services, 729
providers, 727

RoleProvider abstract class, 729
roles, 107

authorization, 729–731
routing

MVC, 451–455
URL components, 452
URLs, views, 453

RSS feed
environment settings, 7
Latest News, 34

Ruby on Rails
MVC (Model-View-Controller), 437
scaffolding, 486

rude edits, 855
run time, workflow, 705
running macros, 1030
running Visual Studio 2010, 5–6
runtime block of configuration schema, 777–778
Runtime Intelligence Service, 955

s

SaaS (Software as a Service), 745
Sandcastle, 219, 238–241
satellite resources, cultures, 813–814, 815

creating, 814
loading files, 814–815

SaveChanges() method, 639
SaveOperation class, 1038
scaffolding, 486
scalar properties (entities), 631
SCC (Source Code Control), 246
SCDL, configuration data, 789
Schema Compare, 1091–1092
schema (XML), importing, 603–605
searches

camel case, 82
Find Options, 75
Find Symbol search tool, 81
help system, 84–85
incremental, 82–83
Navigate To search tool, 82
Quick Find, 74–75
Quick Replace, 75
regular expressions, 76–77

resourcereader – searches

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1165

wildcards, 75–76
SearchResult class, 591
security

application framework, 728
ASP.NET Web site administration, 432–433
ClickOnce, 111

Security tab (Solution Explorer), 111
security.config file, 775
Select statement, 591, 592
Sequence control flow activity (WF), 704
Sequence Diagrams (UML), 1062, 1064–1065
sequential workflows (SharePoint), 528–529
serialization, 820
Server Explorer window, 8, 550–552

Data Connections node, 159, 173–174, 549
database diagrams, 555–556
functions, 554–555
overview, 159
relationship editing, 552–553
Servers node, 159–160

Event Logs node, 160–162
management classes, 162–164
Management Events, 164–167
Message Queues, 167–169
Performance Counters, 169–172
Services, 172–173

SharePoint, 174
connections, 159

stored procedures, 554–555
Table Designer menu, 552
Views node, 553–554

server report engine, 649
ServerForm designer, 748
ServerSyncProviderProxy class, 752
service-based components in Windows Forms, 346
service contracts (WCF), 683, 684–685
Service Installer, 973–976
Service Reference Settings dialog, 22
service references, 22
Service Unavailable message (help), 83
ServiceContract attribute, 685
ServiceInstaller class, 973–976
services, Editor, 1050
Services tab (Solution Explorer), 107–108
sessions (IntelliSense), 1049

Settings object, 791
Settings tab (Solution Explorer), 108
Setup Wizard, 962
SetupAttribute attribute, 953–956
SharedResources assembly, 967
InstallerActions class, 971

SharePoint
application pages, 522
components, custom, 524–529
connecting to, 518
content pages, 522
content types, 519, 525–527
dashboards, 1132–1133
debugging, remote computers, 521
development environment, 514–518

prerequisites, 515–517
document libraries, 519
event receivers, 519, 527–528
features, 519, 529–530
Features node, 521
installation, 517–518
lists, 519, 525–527, 1132

list definitions, 519–520
list instances, 520

Mapped Folders, 523
master pages, 523
overview, 513–514
Package node, 521
packaging, 530–532
Prerequisite Installer tool, 515, 516
process guidance, 1132
projects, 95

creating, 520–523
Server Explorer, 174

SharePoint Server versus SharePoint Foundation,
514–515

Team Foundation Build, 1132–1133
templates, 521
WCF Hotfix, 515
Windows 7, 516
Windows Vista, 516
workflows

sequential, 528–529
state machine, 528–529

WSP (Windows SharePoint Package), 530–532

searchresult class – sharePoint

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1166

SharePoint-based Web Parts, 524
SharePoint Customization Wizard, 521
SharePoint Products Configuration Wizard, 517
Shelf-Life, 956–957

notification messages, 957
Shelf Life Activation Key (SLAK), 956–957
shortcuts

code snippets, 140
keyboard shortcuts, 46–48
shortcut keys, IntelliSense, 121

ShowGrid, 339
signing assemblies, 934–936

delayed, debugging and, 949
Signing tab (Solution Explorer), 109–110,

934–936
Silverlight

consuming domain services, 764–768
debugging, 477, 879–880
Destination folder, 477
ImplicitStyleManager, 480
introduction, 471
links, 477
Navigation Framework, 478–479
.NET Framework and, 472
Out-Of-Browser mode, 481–484
overview, 472
projects, 95
reports, 646
RIA Services and, 757
rich applications, 472
SDKs, 474
templates, 473

default content views, 475
themes, 479–480

application themes, 479
control themes, 479

web browsers, 472
web project, 474
WPF and, 471

Silverlight Applications tab (Solution Explorer),
114–115

Silverlight Class Library project template, 473
Silverlight Navigation Application project

template, 473
simple expressions, 661

single line comments, 220
SLAK (Shelf Life Activation Key), 956–957
.sln (solution file), contents, 91
Smart Indenting, 56
smart obfuscation, 948
smart tags

Excel, 381
Windows Forms, 346–347
Word, 381

SnapLines, 339, 341–342
Snapshot synchronization, 749
SnapToGrid, 339
Snippet Editor, 144–147
soft disabling of add-ins, 394
Solution Explorer, 8

activities, 18
Application tab, 97–98

Application Framework, 100
Assembly Information, 98–99
User Account Control, 99–100

Build Events tab, 103
Build tab, 102–103
Code Analysis tab, 112–113
Compile tab, 100–102
context menu, 17
Debug tab, 103

enable debuggers, 104–105
introduction, 15–17
Microsoft Visual SourceSafe, 250
My Extensions tab, 110
Package/Publish SQL tab, 116
Package/Publish Web tab, 115
projects, adding, 18–20
projects and, 90
Publish tab, 111–112
Reference Paths tab, 108–109
references

adding, 21
service, 22

References tab, 105–106
Resources tab, 106–107
Security tab, 111
Services tab, 107–108
Settings tab, 108
Signing tab, 109–110

sharePoint-based Web Parts – solution explorer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1167

Silverlight Applications tab, 114–115
solution folders, 90
solutions and, 90
templates, 18
tool window, 16
toolbar, 16
Track Active Item option, 49
Version Control, 1120–1121
Web tab, 113–114
XML resource files, 17

solution files, format, 91–92
solution folders, 90

Solution Explorer, 90
Solution node, visibility, 16
Solution Properties dialog, 16
solutions, 89

Common properties, 92–93
Configuration properties, 93–94
as container of related projects, 90
Solution Explorer, 90
structure, 89–91
temporary, 89

source code
accessing control, 248–253
controlling, 245–246
repositories, 246

checking in/out, 250
creating, 249
CVS, 246
environment settings for, 248
history, 253
merging changes, 252–253
Microsoft Visual SourceSafe, 246
pending changes, 250–251
plug-in settings, 248
SCC (Source Code Control), 246
selection tips, 246–248
Subversion, 246
TFS (Team Foundation Server), 246

Source Control. See Version Control
sources (IntelliSense), 1049
splash screen, 5–6
split view, code editor, 58
SplitContainer control, 347–348
SQL Azure, 533, 544–545

SQL-CLR, 1075
SQL-CLR Database projects, 1086
SQL Server

connection properties, 800–801
packaging data, 988–989
stored procedures, debugging, 899

SQL Server Reporting Services, 649
SQL (Structured Query Language). See also

LINQ to SQL
QueryVisualizer, 609

S+S (Software and Services), 745
stack frame, 833
stages of installation, 3–4
Standalone Profiler, 1083–1084
start actions, debugging, 887–889
Start Page, 7, 33–34

customizing, 34–36
links, 34
modifying, 35
opening, 34
projects

creating, 34
opening, 34

Recent Projects list, 34
tabs, 34
user controls, 36–38

Starter Kits, 308
startup block of configuration schema, 777
startup projects, 16
state machine workflows (SharePoint), 528–529
Statement blocks (T4), 268–270
statements
From, 591
GroupBy, 593–594
OrderBy, 594–595
Select, 591, 592
Where, 592–593

static analysis of databases, 1093
StatusNotificationService class, 1036
stepping through code, 853–854

execution point, moving, 855
step filtering, 854
Stepping Into, 854
Stepping Out, 854
Stepping Over, 854

solution files, format – stepping through code

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1168

stored procedures
LINQ to SQL, 611–614
Server Explorer window, 554–555
SQL Server, debugging, 899

StringAssert class, 203–204
strongly named assemblies, 933

obfuscation, 948–949
structure of solutions, 89–91
stub completion (IntelliSense), 125–126
StyleCop, 245, 258
styles, WPF, 371
SubmitChanges, 611
Subreport control, 657
SubreportProcessing event, 670
subreports, 670–672

parameters, 671
SubscriptionTest class, 1103
Subversion, 246
suggestion mode (IntelliSense), 124–125
Surround With dialog, 141–142
symbols, Find Symbol, 81
Syme, Don, 327
Sync Services, 746

background synchronization, 752–755
client changes, 755–756
forcing synchronization, 750
Incremental synchronization, 749
methods, 752
n-tiers, 751–752
Remote Provider, 752
Snapshot synchronization, 749
track changes, 749
WCF Service and, 752

SyncDirection property, 755–756
synchronization services, 745
SynchronizeButton, 751
syntax, property element syntax, 359
system.diagnostics section in configuration

schema, 779
system.net block of configuration schema,

778–779
system.runtime.remoting block of

configuration schema, 778
system.web section in configuration schema,

779–780

t

T4
Class Feature blocks, 270–272
directives, 265

assembly, 276
import, 276–277
include, 277–278
output, 275–276
template, 275

Domain Specific Languages Toolkit, 263
Expression blocks, 268
Statement blocks, 268–270
templates

automation, 280–284
creating, 264–268
Preprocessed Text Template comparison,

288–289
T-SQL, code generation, 487
tab order, Windows Forms controls, 344
TabItem tags, 35
Table control, 652–655
Table Designer menu, 550
TableAdapter, 563
TableLayoutPanel control, 348–349
tags

Editor, 1047
TabItem, 35

TakeThreadOwnership method, 1042
Tamper Defense, 950
Task List window, comments, 241–243
Task Panes (Office), 381–382
TDD (test-driven development), 645
Team Foundation Build, 1128–1130

build agents, 1128
build controllers, 1128
build definitions, 1128
Queue New Build, 1130
Rolling Builds, 1129
SharePoint, 1132–1133

dashboards, 1132–1133
lists, 1132
process guidance, 1132

Team Foundation Server. See TFS (Team
Foundation Server)

stored procedures – Team foundation server. see Tfs (Team foundation server)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1169

team projects (TFS), 1112
Team System Edition, 191
tear away code windows, 58–59
TeardownAttribute attribute, 953–956
template directive (T4), 275
templates

Business Application, 757
custom view templates (MVC), 463–464
CustomReportingFunctions, 665
documents as, 1132
Dynamic Data, 464

display templates, 465–468
edit templates, 468

extending, 299–308
file location, 49
Installed Templates hierarchy, 18
Installer Class, 970
item templates, 291–295
List, 452
locations, 299
MyWizard, 301–305
online, 308–309
Online Templates, 19
parameters, 298–299
process templates, 1112–1113
project setup, 299–301
project templates, 295–296
Recent Templates, 19
reports, 647–648
Reports Application project template, 645
SharePoint, 521
Silverlight, 473
Solution Explorer, 18
structure, 296–298
T4

automation, 280–284
creating, 264–268

VSIX Project template, 1044
WCF Workflow Service Application project, 682
Web Application projects, 406
Windows Forms applications, 336
Workflow Console Application, 708

temporary macros, 1028
temporary solutions, 89
temporary window, 40

Test and Lab Manager, 1095, 1106
Lab Center, 1108–1109
Testing Center, 1106–1108

test cases
AssemblyCleanup attribute, 207
AssemblyInitialize attribute, 207
ClassCleanup attribute, 206–207
ClassInitialize attribute, 206–207
clean up, 206–207
empty, 193
first, 192–199
inconclusive statements, 197
initialization, 206–207
large numbers, 216–217
TestClass attribute, 200
TestCleanup attribute, 206
TestContext object, 207–211
TestInitialize attribute, 206
TestMethod attribute, 200
writing, 192
writing output, 210–211

Test Controller, 1108–1109
Test Elements, Test and Lab Manager, 1095
Test Impact Analysis, 1105
Test List Editor, 216–217, 1098, 1105–1106
test load agent, 1100
Test projects, 95
Test Results window, 196, 1105
Test Run Configuration file, 198
Test Runner window, 1107–1108
test runs, 198
Test Timeouts, 199
Test View window, 211–212, 1105
Test Windows, 1105
TestCategory attribute, testing, 201
TestClass attribute, 200
TestCleanup attribute, 206
TestContext object, 207–211
testing. See also unit testing

add-ins, 1013–1014
attributes, 200–202
workflows, 719
writing output, 210–211

Testing Center (Test and Lab Manager),
1106–1108

team projects (Tfs) – Testing Center (Test and lab Manager)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1170

TestInitialize attribute, 206
TestMethod attribute, 200
tests

attributes, 200
automated, 1095–1096
Coded UI Tests, 1101–1102
Generic Tests, 1102
link with code, 1103–1105
load tests, 1099–1100
Ordered Tests, 1102
unit tests, Database Unit Tests, 1100–1101
web performance, 1096–1099

text
adornments, 1047–1048
classification types, 1046–1047
classifiers, 1043
displaying, 1042–1043
formatting, 1042–1043, 1043
margins, 1047
metadata, 1043
modification, enabling, 1042
recognition, 1043
tags, 1047
word wrapping, 45

Text Box control, 650–652
placeholders, 651

text controls, alignment, 342
Text Editor, Display Items list, 44
text file resources, 806–807

comments, 806
new lines, 806
prebuild events, 806

Text Model subsystem, 1042
Text Template Transformation, Preprocessed Text

Templates, 284–288
Text Template Transformation Toolkit. See T4
Text View subsystem, 1042–1043

classifiers, 1043
view ports, 1043

TFS (Team Foundation Server), 34, 246,
1111–1112

Administration Console, 1134
Agile Development and, 1112
automation, 1135–1137
Changeset Tracking, 1127

CMMI Process Improvement and, 1112
customization, 1135–1137
Guidance Page, 1113
linking to from Modeling Projects, 1068
Merge Changes, 1122–1123
offline work, 1124
process templates, 1112–1113

customizing, 1136–1137
Report Server, 1130–1132
Team Foundation Build, 1128–1130
team project collections, 1112
team projects, 1112
Team Web Access, 1133
Version Control, 1119–1128
Windows Workflow 4.0, 1129
Work Item Queries, 1113
work item queries, 1113–1114, 1114–1115
work items

adding, 1116
Excel, 1117–1118
state, 1116–1117
tracking, 1113–1114
types, 1115–1116, 1135–1136

workspaces, 1120
themes

Silverlight, 479–480
WPF, 371

threads, code editor window, 897
Threads window, 834
Tick feature, 958
Timeout attribute, testing, 201
TIP (Tier Interaction Profiling), 1081
Toggle Bookmark command, 133–134
tool windows, 8, 39

creating, 1015–1018
dockable, 41
floating, 43
location, 41
Macro Explorer tool window, 1026
Project Explorer, 1027
reorganizing, 70–71
Solution Explorer, 16

toolbars, 8
Breakpoints window, 829
buttons, 39

Testinitialize attribute – toolbars

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1171

customizing, 39
file associations, 39
Solution Explorer, 16
viewing, 39

Toolbox, 8
Class Designer, 178
code block storage, 138
components

adding, 25–26
arranging, 24–25

customizing appearance, 24
docking, 41

Toolbox window, 22–24
tooltips

DataTips, 828
IntelliSense, 120

TPL (Task Parallel Library), 838
Trace class, 890–891
TRACE constant, 102
Trace Switches, 891
Trace Viewer, 883
tracepoints

creating, 852
macros, 852–853
printing, 852–853

tracing, 880
application-level, 882
output, 882–883
page-level, 881

tracking changes, 46
ADO.NET Entity Framework, 639
Sync Services, 749

tracking participant (WF), 706–707
tracking profile (WF), 706–707
tracking records (WF), 706–707
tracking usage, 957–958
Transact-SQL editor, 1093
TransformText() method, 274
troubleshooting

compiling transformation errors, 279
design-time errors, 278–279
executing transformation errors, 279–280
generated code errors, 280

Trusted Root Certification Authorities, 979
Type Equivalence, 395–396

type equivalence, 316
type proxies, 863–865
type referencing, 590
TypeConverter, classes as strings, 820
Typed DataSets, 649

u

UIs (user interfaces), views, 443–451
UML diagrams (Architecture edition), 1061,

1062–1066
Activity diagrams, 1063
Class diagrams, 1066
Component diagrams, 1065–1066
Sequence diagrams, 1064–1065
Use Case diagrams, 1063

UML Model Explorer, 1066
Layer Diagrams, 1066–1068

UML (Unified Modeling Language), 1062
Undo, 1043
unit testing
AssemblyCleanup attribute, 207
AssemblyInitialize attribute, 207
Assert class, 203
attributes, 200–202
ClassCleanup attribute, 206–207
ClassInitialize attribute, 206–207
clean up, 206–207
Code Contracts, 214–216
CollectionAssert class, 204
Database Unit Tests, 1100–1101
empty test cases, 193
ExpectedException attribute, 204–206
first test case, 192–199
inconclusive statements, 197
initialization, 206–207
introduction, 191
large numbers of tests, 216–217
private members, 213–214
properties, custom, 211–212
StringAssert class, 203–204
test runs, 198
TestClass attribute, 200
TestCleanup attribute, 206
TestContext object, 207–211

Toolbox – unit testing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1172

unit testing (continued)
TestInitialize attribute, 206
TestMethod attribute, 200
writing output, 210–211

unpinned windows, 8
unsaved changes, 11
unwinding exceptions, 845
updating

ClickOnce and, 976–982
databases, entity models, 644–645

upgrading
to .NET Framework 4.0, 909–910
from Visual Studio 2008, 901–909

URIs (Uniform Resource Indicators), Silverlight
Navigation Framework, 478

URLs (Uniform Resource Locators)
MVC, 451
parts of, 452
views, 453

usage tracking, 957–958
Use Case Diagrams (UML), 1062, 1063
User Account Control settings, 99–100
user authentication, Web controls, 418–420
user controls, Start Page, 36–38
user registration, RIA Services, 758
user settings in configuration files, 790–791
users, authentication, 731–733

V

Validate method, 576–577
ValidateArchitecture property, 1068
ValidateUser method, 727

overloading, 728
validation

ASP.NET Dynamic Data, 494–496
data binding, 576–578
entity models, 635
MVC, 461–462
web forms, 416–417

var keyword, 314
variables

DataTips, 858
installation variables, 967
promoting to parameter, 155

WF designer, 709
variance

contravariance, 317, 319–321
covariance, 317, 318–319

VB (Visual Basic)
anonymous methods, 321–322
array literals, 323–324
code snippets, 140–141
collections, initializers, 323–324
Compile page, 915–916

Build Events, 917–919
compilation constants, 916–917
optimizations, 916

lambdas, 321–322
late binding, dynamic lookup, 325–326
line continuation, implicit, 322
options, 50–51
parameters

named, 326–327
optional, 326–327

nullable, 324–325
PowerPacks, 325
properties, automatic, 322–323
XML literals, 598

VBA (Visual Basic for Applications), 379
Version Control

annotating, 1125
branches, 1126–1127
check-ins, 1121–1122
check-outs

exclusive, 1121
shared, 1121

conflict resolution, 1122–1123
History window, 1125
introduction, 1119–1120
labeling versions, 1124–1125
Merge Changes, 1122–1123
merges, 1128
offline work, 1124
shelvesets, 1126
shelving, 1125–1126
Solution Explorer, 1120–1121

vertical spacing, 343
views

Class View, 63–64

unit testing – views

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1173

custom view templates (MVC), 463–464
full-screen, code editor, 60
partial views (MVC), 463
split view, code editor, 58
UIs, 443–451

virtual directories, 774
Visibility property, 357
Visual Basic Development Settings option, 6
Visual Glyphs checkbox, 45
visual guides in editor space, 44–45
Visual Studio 2008, upgrading from, 901–909
Visual Studio 2010

installation, 3–5
running, 5–6
setup, launching, 3–4

Visual Studio Content Installer package,
1022–1023

macros, 1031
Visual Studio Conversion Wizard, 906–907
Visual Studio IDE, add-ins, 1011
Visual Studio Macros IDE, add-ins, 1011
visualization, Modeling Power Toys for Visual

Studio 2010, 186–187
visualizers, 865–867
visually impaired users, 416–417
VSIX Project template, 1044
VSM (Visual State Manager), 479
VSMacro, 1025–1026
VSPackages, extensibility, 1002
VSTO (Visual Studio Tools for Office), 18

Actions Pane window, 381, 386–387
add-ins

disabled, 394
unregistering, 392–393

application-level add-ins, 381–382, 388–392
applications

debugging, 392–394
deploying, 394–396

document-level customization, 381
creating, 382–387

documents, protecting design, 385–386
Explorer window, 388
initial version, 379
Inspector window, 388
Outlook, form region creation, 389–392
Task Panes, 381–382

VSTS Architecture, 1061
Dependency Graphs, 1070–1072
Modeling Projects, 1061
.NET Sequence Diagrams, 1072–1073
UML diagrams, 1062–1066
UML Model Explorer, Layer Diagrams,

1066–1068
VSTS Premium edition, Code Analysis tab,

112–113
VSTS Ultimate edition, Code Analysis tab,

112–113

w

warnings, 64
Watch windows

1-4, 832–833
Autos window, 833
Locals window, 833
Modules window, 834–835
Processes window, 835
QuickWatch window, 831
Threads window, 834

wavy lines, IntelliSense and, 120
WCF RIA Services. See RIA Services
WCF Service Library, 683, 691–696
WCF Test Client, 692–693
WCF (Windows Communication Foundation), 22

contracts, 683
data contracts, 683, 685–687
message contracts, 683
service contracts, 683, 684–685

Hotfix, 515
overview, 681–682
project types, 682
projects, 95
services

consuming, 696–699
endpoints, 688–691
hosting, 691–696
Sync Services and, 752

WCF Workflow Service Application project
template, 682

Web Application projects
ASP.NET AJAX, 427–429

control extenders, 429–431

virtual directories – Web application projects

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1174

Web Application projects (continued)
client-side development, 425–431
creating, 404–405
installers, 991–991
JavaScript, 426–427
master pages, 424–425
output, 991
properties

Package/Publish SQL tab, 116
Package/Publish Web tab, 115
Web tab, 113–114

Silverlight Applications tab, 114–115
templates, 406

Web Application versus Web Site projects,
400–401

Web applications
debugging, 874–876
deploying, 983

web.config transformations, 989–990
packaging

configuring packages, 987–988
SQL Server data, 988–989

publishing, 986–987
Web browsers, Silverlight, 472
Web controls, 417–424

data components, 420–423
data helper controls, 423
data view controls, 422–423
navigation components, 418
user authentication, 418–420
Web Parts controls, 423–424

Web forms
controls

formatting, 411–412
positioning, 409–411

CSS tools, 412–415
HTML Designer, 407–409
HTML elements, positioning, 409–411
validation tools, 416–417

Web pages, scaffolding, 486
Web Parts, development, 524–525
Web Parts controls, 423–424
Web performance tests, 1096–1099
Web Platform Installer, 992–997
Web projects, 95

Silverlight, 474
Web servers, parameterizing, 1096
Web Service Data Source, 583
Web Service Proxies, GeneratedCode

attribute, 1078
Web settings, 107
Web Setup Project, 991
Web site administration, ASP.NET, 431–434
Web Site project, 19, 116–117

creating, 401–404
Empty Web Site project template, 402

Web sites
copying, 985
location, 984
publishing, 984–985

Web tab (Solution Explorer), 113–114
Web Test Designer, 1096
Web Test Recorder, 1096
Web Testing Framework, 1098
Web Tests

customizing, 1098
Test List Editor, 1098

web.config, transformations, 989–990
web.config file, 774
WebPartZone containers, 424
WF designer, 709–712

Arguments pane, 710
code activities, writing, 715–719
hosting, 719–722
workflow

creating, 712
designing, 713–715
executing, 716–718

WriteLine activity, 714
WF (Windows Workflow Foundation).

See also workflow
activities, code, 715–719
bookmarks, 705
expressions, 705
introduction, 701–702
library, 703
reasons for using, 702–703
tracking, 706–707
WCF and, 682

Where statement, 592–593

Web application projects – Where statement

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1175

wildcards in searches, 75–76
Windows

authentication, 726
menu, 40
projects, 95

windows
animation, 41
Breakpoints, 828–829
Call Hierarchy window, 66–67
Class Details, 180
Close All But This option, 40
Code Definition window, 66
code editor, 53–54
code execution, Call stack, 833
Code Metrics, 1075–1076
Command window, 61–62
Ctrl+Tab, 40
Data Sources, 549, 556
databases, 549–556
debugging, 827–828

Call Stack, 839
Exceptions window, 841
parallel debugging windows, 838–840
Parallel Stacks, 839–840
Parallel Tasks, 840

Document Outline window, 68–70
enumeration, 1005–1006
Error List, 664
Find Results, 79–80
Immediate window, 62–63, 830–831
IntelliTrace Events, 837–838
Macro Explorer tool window, 1026
memory windows, 836

Disassembly, 836
Registers, 836–837

memory windows, 1-4, 836
navigating open items, 40–41
Open Containing Folder option, 40
Output, 829–830
pinned, 8
Project Explorer, 1027
Properties window, 181, 211–212, 650
Report Data, 648
Server Explorer, 550–556
Solution Explorer tool window, 16

tear away code windows, 58–59
temporary, 40
Test Results, 196
Test View, 211–212
tool windows, 8, 39

creating, 1015–1018
floating, 43
reorganizing, 70–71

unpinned, 8
viewing, 39
Watch windows

Autos, 833
Locals, 833
Modules, 834–835
QuickWatch, 831
Threads, 834

Watch windows, 1-4, 832–833
Watch windows, Processes, 835

Windows 7, SharePoint, 516
Windows Azure Platform, 533

AppFabric, 545–546
application tuning, 543–544
applications, deploying, 540–543
blobs, 536–540
Cloud Service project template, 534
CloudFront project, 535
Development Fabric, 535–536
Development Storage, 535
queues, 536–540
roles, 534
SQL Azure, 544–545
tables, 536–540

Windows Forms
Appearance properties, 338
applications, 335

templates, 336
controls

adding, 341
aligning text controls, 342
anchoring, 349–350
docking, 349–350
horizontal spacing, 343
hosting in WPF, 374–375
layering, 344
locking design, 344–345

wildcards in searches – Windows forms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1176

Windows Forms (continued)
positioning multiple, 342–343
property setting, 345–346
resizing, 337
tab order, 344
vertical spacing, 343

hosting WPF controls, 372–374
interoperability, 372–375
Layout properties, 338
projects, creating, 335–336
reports, 646
service-based components, 346
smart tag tasks, 346–347
visual design, 336–337
Window Style properties, 338

Windows Forms Designer, 338–340
GridSize property, 339
SnapLines, 339

Windows Forms User Control items, 1016
Windows Installer, 961–962
Windows SDK Components for Windows

Installer Developer, Orca, 969
Windows Vista, SharePoint, 516
wizards

Add-in Wizard, 1009–1012
Connection Strings Wizard, 795–801
Data Source Configuration Wizard, 561,

650, 798
Domain Service Class Wizard, 761
Entity Data Model Wizard, 624–625
Import and Export Settings, 51–52
installation wizard, 967
New Service Element Wizard, 689
New Service Endpoint Wizard, 690–691
Performance Wizard, 1080
Publish Wizard, 976–977
Report Wizard, 647–648, 672–673
SharePoint Customization Wizard, 521
SharePoint Products Configuration Wizard, 517
Visual Studio Conversion Wizard, 906–907
XML to Schema Inference Wizard, 604

WMI (Windows Management Instrumentation),
162–163

Word
content controls, 381
document-level customization, 381

smart tags, 381
word/phrase completion (IntelliSense)

completion mode, 124–125
in context, 121–123
Generate From Usage, 126–127
list members, 123–124
stub completion, 125–126
suggestion mode, 124–125

word wrap, 45
code editor, 57

Word Wrap checkbox, 45
WorkerReportsProgress property, 752–755
Workflow Console Application project

template, 708
Workflow projects, 95
WorkflowApplication class, 705, 717
WorkflowInvoker class, 705
workflows, 701–702. See also WF (Windows

Workflow Foundation)
activities, 703–704

control flow, 704–705
bookmarks, 705
breakpoints, 718–719
creating, 712
debugging, 718–719
designing, 713–715
executing, 716–718
expressions, 705
persistence, 706
run time, 705
testing, 719
tracking, 706–707

workflows (SharePoint)
sequential, 528–529
state machine, 528–529

WorkflowServiceHost class, 705
WorkItem attribute, testing, 201
workspaces, 1120
WPF Application, 9

reports, 646
styling, 371–372

WPF designer, 35, 360–364
Apply Data Binding, 366
Apply Resource, 366
control template, 371
Document Outline window, 364

Windows forms – WPf designer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1177

glyph, 362
properties, listing, 365
Properties window, 364–367
Reset Value, 366
themes, 371

WPF Visualizer, debugging with, 376–377
WPF (Windows Presentation Foundation)

controls, 357–358
hosting in Windows Forms, 372–374
hosting Windows Forms, 374–375
layout, 358–360

data binding, 367–370
metadata, 24
New Project dialog, 353
overview, 351–353
properties, 357
Silverlight and, 471
Start Page, 34

Write() method, 274
WSP (Windows SharePoint Package), 530–532
WSS (Windows SharePoint Services), 514

x

XAML (eXtensible Application Markup Language)
editor, 360–361

control template, 371
event handlers, 361
IntelliSense, 361

XAML (eXtensible Application Markup
Language), 312

attached properties, 358
overview, 355–356
syntax, 355
WPF and, 352

XAML page, modifying Start Page, 35
Xap file, 475
XBAP file, 354
XBAP (XAML Browser Application), 472
XCOPY, deploying add-ins, 1022–1023
XElement, XML snippets as, 599–600
XML comments, 219, 220–221

adding, 221
IntelliSense, 133, 237
tags

<c>, 222
<code>, 222–223
<example>, 223–224
<exception>, 224–225
<include>, 225–226
<list>, 226–228
<para>, 228
<param>, 228–229
<paramref>, 229–230
<permission>, 230
<remarks>, 230
<returns>, 231
<see>, 232
<seealso>, 232–233
<summary>, 233
<typeparam>, 233–234
<typeparamref>, 234–235
<value>, 235

using, 235–237
XML (eXtensible Markup Language)

creating with LINQ, 600–602
expression holes, 600–601
LINQ to XML, 597–598
literals, 598
querying, 602–603
resource files

resx, 807
Solution Explorer, 18

schema, importing, 603–605
schema editor, DataSets, creating, 561–563
schema files, 96
snippets, pasting as XElement, 599–600
WCF Service Library, 693

XML to Schema Inference Wizard, 604
xmlns attribute, 356

y

yellow marks in code, 46
Yellow Screen of Death, 874

z

zooming, code editor, 57

WPf Visualizer, debugging with – zooming, code editor

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	WroxBooks

