
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Java Servlet & JSP Cookbook

By Bruce W. Perry

Publisher: O'Reilly

Pub Date: January 2004

ISBN: 0-596-00572-5

Pages: 746

With literally hundreds of examples and thousands of lines of code, the Java Servlet and JSP
Cookbook yields tips and techniques that any Java web developer who uses JavaServer Pages or
servlets will use every day, along with full-fledged solutions to significant web application
development problems that developers can insert directly into their own applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Java Servlet & JSP Cookbook

By Bruce W. Perry

Publisher: O'Reilly

Pub Date: January 2004

ISBN: 0-596-00572-5

Pages: 746

 Copyright

 Preface

 What's in the Book

 Audience

 Organization

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Acknowledgments

 Chapter 1. Writing Servlets and JSPs

 Introduction

 Recipe 1.1. Writing a Servlet

 Recipe 1.2. Writing a JSP

 Recipe 1.3. Compiling a Servlet

 Recipe 1.4. Packaging Servlets and JSPs

 Recipe 1.5. Creating the Deployment Descriptor

 Chapter 2. Deploying Servlets and JSPs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Introduction

 Recipe 2.1. Deploying an Individual Servlet on Tomcat

 Recipe 2.2. Using a Context Element in Tomcat'sserver.xml

 Recipe 2.3. Deploying an Individual Servlet on WebLogic

 Recipe 2.4. Deploying an Individual JSP on Tomcat

 Recipe 2.5. Deploying an Individual JSP on WebLogic

 Recipe 2.6. Deploying a Web Application on Tomcat

 Recipe 2.7. Deploying a Web Application on WebLogic Using Ant

 Recipe 2.8. Using the WebLogic Administration Console

 Recipe 2.9. Using WebLogic Builder to Deploy a Web Application

 Recipe 2.10. Using the weblogic.DeployerCommand-Line Tool

 Chapter 3. Naming Your Servlets

 Introduction

 Recipe 3.1. Mapping a Servlet to a Name in web.xml

 Recipe 3.2. Creating More Than One Mapping to a Servlet

 Recipe 3.3. Creating a JSP-Type URL for a Servlet

 Recipe 3.4. Mapping Static Content to a Servlet

 Recipe 3.5. Invoking a Servlet Without a web.xml Mapping

 Recipe 3.6. Mapping All Requests Within a Web Application to a Servlet

 Recipe 3.7. Mapping Requests to a Controller and Preserving Servlet Mappings

 Recipe 3.8. Creating Welcome Files for a Web Application

 Recipe 3.9. Restricting Requests for Certain Servlets

 Recipe 3.10. Giving Only the Controller Access to Certain Servlets

 Chapter 4. Using Apache Ant

 Introduction

 Recipe 4.1. Obtaining and Setting Up Ant

 Recipe 4.2. Using Ant Targets

 Recipe 4.3. Including Tomcat JAR files in the Build File Classpath

 Recipe 4.4. Compiling a Servlet with an Ant Build File

 Recipe 4.5. Creating a WAR File with Ant

 Recipe 4.6. Creating a JAR File with Ant

 Recipe 4.7. Starting a Tomcat Application with Ant

 Recipe 4.8. Stopping a Tomcat Application with Ant

 Chapter 5. Altering the Format of JSPs

 Introduction

 Recipe 5.1. Precompiling a JSP in Tomcat

 Recipe 5.2. Precompiling a JSP in WebLogic

 Recipe 5.3. Precompiling JSPs with the Precompilation Protocol

 Recipe 5.4. Mapping a JSP to Its Page Implementation Class

 Recipe 5.5. Creating a JSP from Scratch as a JSP Document

 Recipe 5.6. Generating an XML View from a JSP

 Chapter 6. Dynamically Including Contentin Servlets and JSPs

 Introduction

 Recipe 6.1. Including a Resource Each Time a Servlet Handles a Request

 Recipe 6.2. Using an External Configuration to Include a Resource in a Servlet

 Recipe 6.3. Including Resources Nested at Multiple Levels in a Servlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 6.4. Including a Resource that Seldom Changes into a JSP

 Recipe 6.5. Including Content in a JSP Each Time the JSP Handles a Request

 Recipe 6.6. Using an External Configuration File to Include a Resource in a JSP

 Recipe 6.7. Including an XML Fragment in a JSP Document

 Recipe 6.8. Including Content from Outside a Context in a JSP

 Chapter 7. Handling Web Form Data inServlets and JSPs

 Introduction

 Recipe 7.1. Handling a POST HTTP Request in a Servlet

 Recipe 7.2. Handling a POST HTTP Request in a JSP

 Recipe 7.3. Setting the Properties of a JavaBean in a JSP

 Recipe 7.4. Setting a Scoped Attribute in a JSP to the Value of a Form Parameter

 Recipe 7.5. Posting Data from a Servlet

 Recipe 7.6. Posting Data from a JSP

 Recipe 7.7. Using a Servlet to Add a Parameter to a Query String

 Recipe 7.8. Using a JSP to Add a Parameter to a Query String

 Recipe 7.9. Using a Filter to Read Parameter Values

 Chapter 8. Uploading Files

 Introduction

 Recipe 8.1. Preparing the HTML Page for File Uploads

 Recipe 8.2. Using the com.oreilly.servlet Library

 Recipe 8.3. Uploading One File at a Time

 Recipe 8.4. Uploading Multiple Files

 Recipe 8.5. Renaming Files

 Recipe 8.6. Using a JSP to Handle a File Upload

 Chapter 9. Handling Exceptions in Web Applications

 Introduction

 Recipe 9.1. Declaring Exception Handlers in web.xml

 Recipe 9.2. Creating an Exception-Handling Servlet

 Recipe 9.3. Sending an Error from a Servlet

 Recipe 9.4. Sending an Error from a JSP

 Recipe 9.5. Creating an Error-Handling JSP

 Recipe 9.6. Declaring a Special Exception-Handling JSP for Other JSPs

 Chapter 10. Reading and Setting Cookies

 Introduction

 Recipe 10.1. Setting a Cookie with a Servlet

 Recipe 10.2. Creating an Array from All of the Request's Cookies

 Recipe 10.3. Setting a Cookie with a JSP

 Recipe 10.4. Reading Cookie Values with a Servlet

 Recipe 10.5. Reading Cookie Values with a JSP

 Recipe 10.6. Altering or Removing a Cookie That Has Already Been Set

 Chapter 11. Session Tracking

 Introduction

 Recipe 11.1. Setting the Session Timeout in web.xml

 Recipe 11.2. Setting the Session Timeout in All Tomcat Web Applications

 Recipe 11.3. Setting the Session Timeout Programmatically

 Recipe 11.4. Checking if a Session Exists in an HttpServletRequest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 11.5. Tracking Session Activity in Servlets

 Recipe 11.6. Tracking Session Activity in JSPs

 Recipe 11.7. Using URL Rewriting in a JSP

 Recipe 11.8. Using URL Rewriting in a Servlet

 Recipe 11.9. Using a Listener to Track the Session Lifecycle

 Recipe 11.10. Using a Listener to Monitor Session Attributes

 Recipe 11.11. Using a Filter to Monitor Session Attributes

 Chapter 12. Integrating JavaScript with Servlets and JSPs

 Introduction

 Recipe 12.1. Including JavaScript Modules in a Servlet

 Recipe 12.2. Including JavaScript Modules in a JSP

 Recipe 12.3. Creating a New Window with JavaScript in a Servlet

 Recipe 12.4. Creating a New Window with JavaScript in a JSP

 Recipe 12.5. Using JavaScript to Validate Form Values in a Servlet

 Recipe 12.6. Using JavaScript to Validate Form Values in a JSP

 Chapter 13. Sending Non-HTML Content

 Introduction

 Recipe 13.1. Sending a PDF File

 Recipe 13.2. Sending a Word Processing File

 Recipe 13.3. Sending an XML file

 Recipe 13.4. Sending an Audio File

 Recipe 13.5. Viewing Internal Resources in a Servlet

 Chapter 14. Logging Messages from Servlets and JSPs

 Introduction

 Recipe 14.1. Logging Without Log4j

 Recipe 14.2. Setting Up Log4j

 Recipe 14.3. Using a Logger Without a Configuration File

 Recipe 14.4. Adding an Appender to the Root Logger

 Recipe 14.5. Using a Pattern with a Logger's Appender

 Recipe 14.6. Using log4j in a JSP

 Recipe 14.7. Logging Messages Using a Servlet Context Event Listener

 Recipe 14.8. Logging Messages Using a Session Event Listener

 Chapter 15. Authenticating Clients

 Introduction

 Recipe 15.1. Creating Users and Passwords with Tomcat

 Recipe 15.2. Setting Up SSL on Tomcat

 Recipe 15.3. Using BASIC Authentication

 Recipe 15.4. Using Form-Based Authentication

 Recipe 15.5. Logging Out a User

 Recipe 15.6. Using JAAS to Create a LoginModule

 Recipe 15.7. Creating the JAAS Configuration File

 Recipe 15.8. Using JAAS in a Servlet

 Recipe 15.9. Using JAAS in a JSP

 Chapter 16. Binding, Accessing, and Removing Attributes in Web Applications

 Introduction

 Recipe 16.1. Setting ServletContext Attributes in Servlets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 16.2. Setting ServletContext Attributes in JSPs

 Recipe 16.3. Accessing or Removing ServletContext Attributes in Servlets

 Recipe 16.4. Accessing or Removing ServletContext Attributes in JSPs

 Recipe 16.5. Setting Session Attributes in Servlets

 Recipe 16.6. Setting Session Attributes in JSPs

 Recipe 16.7. Accessing or Removing Session Attributes in Servlets

 Recipe 16.8. Accessing or Removing Session Attributes in JSPs

 Recipe 16.9. Setting Request Attributes in Servlets

 Recipe 16.10. Setting Request Attributes in JSPs

 Recipe 16.11. Accessing or Removing Request Attributes in Servlets

 Recipe 16.12. Accessing or Removing Request Attributes in JSPs

 Chapter 17. Embedding Multimedia in JSPs

 Introduction

 Recipe 17.1. Embedding an Applet in a JSPUsing jsp:plugin

 Recipe 17.2. Embedding an Applet in a JSP Using the HTML Converter

 Recipe 17.3. Automatically Creating HTML Template for Including Flash Files

 Recipe 17.4. Writing HTML Template to Embed a Flash File

 Recipe 17.5. Embedding Flash in a Servlet

 Recipe 17.6. Embedding a QuickTime Movie in a JSP

 Recipe 17.7. Embedding an SVG File in a JSP

 Recipe 17.8. Embedding a Background Soundtrack in a JSP

 Chapter 18. Working With the Client Request

 Introduction

 Recipe 18.1. Examining HTTP Request Headers in a Servlet

 Recipe 18.2. Examining HTTP Request Headers in a JSP

 Recipe 18.3. Using a Filter to Alter Request Headers

 Recipe 18.4. Automatically Refreshing a Servlet

 Recipe 18.5. Automatically Refreshing a JSP

 Recipe 18.6. Counting the Number of Web Application Requests

 Chapter 19. Filtering Requests and Responses

 Introduction

 Recipe 19.1. Mapping a Filter to a Servlet

 Recipe 19.2. Mapping a Filter to a JSP

 Recipe 19.3. Mapping More Than One Filter to a Servlet

 Recipe 19.4. Changing the Order in Which Filters are Applied to Servlets

 Recipe 19.5. Configuring Initialization Parameters for a Filter

 Recipe 19.6. Optionally Blocking a Request with a Filter

 Recipe 19.7. Filtering the HTTP Response

 Recipe 19.8. Using Filters with RequestDispatcher Objects

 Recipe 19.9. Checking Form Parameters with a Filter

 Recipe 19.10. Blocking IP Addresses with a Filter

 Chapter 20. Managing Email in Servlets and JSPs

 Introduction

 Recipe 20.1. Placing the Email-Related Classes on your Classpath

 Recipe 20.2. Sending Email from a Servlet

 Recipe 20.3. Sending Email from a Servlet Using a JavaBean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 20.4. Accessing Email from a Servlet

 Recipe 20.5. Accessing Email from a Servlet Using a JavaBean

 Recipe 20.6. Handling Attachments from an Email Received in a Servlet

 Recipe 20.7. Adding Attachments to an Email in a Servlet

 Recipe 20.8. Reading a Received Email's Headers from a Servlet

 Chapter 21. Accessing Databases

 Introduction

 Recipe 21.1. Accessing a Database from a Servlet Without DataSource

 Recipe 21.2. Configuring a DataSource in Tomcat

 Recipe 21.3. Using a DataSource in a Servlet with Tomcat

 Recipe 21.4. Creating a DataSource on WebLogic

 Recipe 21.5. Using a JNDI Lookup to get a DataSource from WebLogic

 Recipe 21.6. Using a DataSource from WebLogic in a JSP

 Recipe 21.7. Calling a Stored Procedure from a Servlet

 Recipe 21.8. Calling a Stored Procedure from a JSP

 Recipe 21.9. Converting a ResultSet to a Result Object

 Recipe 21.10. Executing Several SQL Statements Within a Single Transaction

 Recipe 21.11. Using Transactions with JSPs

 Recipe 21.12. Finding Information about a ResultSet

 Chapter 22. Using Custom Tag Libraries

 Introduction

 Recipe 22.1. Creating a Classic Tag Handler

 Recipe 22.2. Creating a JSP 1.2 TLD for a Classic Tag Handler

 Recipe 22.3. Creating a JSP 2.0 TLD for a Classic Tag Handler

 Recipe 22.4. Packaging a Tag Library in a Web Application

 Recipe 22.5. Packaging the Tag Library in a JAR File

 Recipe 22.6. Using the Custom Tag in a JSP

 Recipe 22.7. Handling Exceptions in a Custom Tag Class

 Recipe 22.8. Creating a Simple Tag Handler

 Recipe 22.9. Creating a TLD for a Simple Tag Handler

 Recipe 22.10. Using a Simple Tag Handler in a JSP

 Recipe 22.11. Creating a JSP Tag File

 Recipe 22.12. Packaging the JSP Tag File in a Web Application

 Recipe 22.13. Packaging the JSP Tag File in a JAR

 Recipe 22.14. Using a Custom Tag Associated with a Tag File

 Recipe 22.15. Adding a Listener Class to a Tag Library

 Chapter 23. Using the JSTL

 Introduction

 Recipe 23.1. Downloading the JSTL 1.0 and Using the JSTL Tags in JSPs

 Recipe 23.2. Downloading the Java Web Services Developer Pack

 Recipe 23.3. Using the Core JSTL Tags

 Recipe 23.4. Using the XML Core JSTL Tags

 Recipe 23.5. Using the XML Transform Tags

 Recipe 23.6. Using the Formatting JSTL Tags

 Recipe 23.7. Using A SQL JSTL Tag with a DataSource Configuration

 Recipe 23.8. Using A SQL JSTL Tag Without a DataSource Configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 23.9. Accessing Scoped Variables with the EL

 Recipe 23.10. Accessing Request Parameters with the EL

 Recipe 23.11. Using the EL to Access Request Headers

 Recipe 23.12. Using the EL to Access One Request Header

 Recipe 23.13. Accessing Cookies with the EL

 Recipe 23.14. Using the EL to Access JavaBean Properties

 Recipe 23.15. Using JSTL Functions

 Chapter 24. Internationalization

 Introduction

 Recipe 24.1. Detecting the Client Locale in a Servlet

 Recipe 24.2. Detecting the Client's Locales in a JSP

 Recipe 24.3. Creating a ResourceBundle as a Properties File

 Recipe 24.4. Creating a ResourceBundle as a Java Class

 Recipe 24.5. Using the ResourceBundle in a Servlet

 Recipe 24.6. Using the ResourceBundle in a JSP

 Recipe 24.7. Formatting Dates in a Servlet

 Recipe 24.8. Formatting Dates in a JSP

 Recipe 24.9. Formatting Currencies in a Servlet

 Recipe 24.10. Formatting Currencies in a JSP

 Recipe 24.11. Formatting Percentages in a Servlet

 Recipe 24.12. Formatting Percentages in a JSP

 Recipe 24.13. Setting the Localization Context in the Deployment Descriptor

 Chapter 25. Using JNDI and Enterprise JavaBeans

 Introduction

 Recipe 25.1. Configuring a JNDI Object in Tomcat

 Recipe 25.2. Accessing the Tomcat JNDI Resource from a Servlet

 Recipe 25.3. Accessing the Tomcat JNDI Resource from a JSP

 Recipe 25.4. Configuring a JNDI Resource in WebLogic

 Recipe 25.5. Viewing the JNDI Tree in WebLogic

 Recipe 25.6. Accessing the WebLogic JNDI Resource from a Servlet

 Recipe 25.7. Accessing the WebLogic JNDI Resource from a JSP

 Recipe 25.8. Accessing an EJB Using the WebLogic JNDI Tree

 Chapter 26. Harvesting Web Information

 Introduction

 Recipe 26.1. Parsing an HTML Page Using thejavax.swing.text Subpackages

 Recipe 26.2. Using a Servlet to Harvest Web Data

 Recipe 26.3. Creating a JavaBean as a Web Page Parser

 Recipe 26.4. Using the Web Page Parsing JavaBean in a Servlet

 Recipe 26.5. Using the Web Page Parsing JavaBean in a JSP

 Chapter 27. Using the Google and Amazon Web APIs

 Introduction

 Recipe 27.1. Getting Set Up with Google's Web API

 Recipe 27.2. Creating a JavaBean to Connect with Google

 Recipe 27.3. Using a Servlet to Connect with Google

 Recipe 27.4. Using a JSP to Connect with Google

 Recipe 27.5. Getting Set Up with Amazon's Web Services API

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 27.6. Creating a JavaBean to Connect with Amazon

 Recipe 27.7. Using a Servlet to Connect with Amazon

 Recipe 27.8. Using a JSP to Connect with Amazon

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly MediaInc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc The Cookbook series designations, Java Servlet and JSP Cookbook, the image of a
fennec fox, and related trade dress are trademarks of O'Reilly & Associates, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly Media, Inc. is independent of
Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Preface
On a historical timeline, the saga of Java as a server-side programmer's tool of choice began in early
1997 when Sun Microsystems released the "Java™ Web Server" beta and Java Servlet Developers
Kit.[1] Servlets are a type of Java class that executes on a server. Servlets dynamically handle
networked requests and responses, mostly using the Hypertext Transfer Protocol (HTTP). In June
1999, Sun introduced JavaServer Pages (JSPs), which intermingled Java code with JavaScript and
HTML template text.

[1] See Sun Microsystems Java milestones and history at: http://java.sun.com/features/2000/06/time-line.html.

JSPs, as they are now evolving (with JSP Version 2.0), are designed to encapsulate domain logic in
standard and custom tags, and separate this domain layer from the JSP component's presentation
logic. The latter concept means "the stuff that people see" when they interact with a web application,
such as HTML-related screen widgets. Ideally, a JSP uses tags to interact with databases and
encapsulate domain rules, and static or dynamically generated template text, such as XML or XHTML,
to create the visual page for the user.

During the late 1990s, I was a freelance, backend web developer using a number of different
languages. When server-side Java appeared on the scene, I greeted the news with as much relief as
joy. Designed from the bottom up as object-oriented and modular, Java represented a reassuring
alternative to the ad hoc, ill-designed, albeit well-intentioned masses of web-related code I would
often encounter when an organization brought me into the midst of a project.

Not only can you easily create your own reusable components for, say, sending email simply by
designing and uploading to your web application one or more Java classes,[2] but you have the entire
Java API at your disposal for dealing with essential, low-level items such as String-handling, file I/O,
and Math calculations. What a deal!

[2] For example, the installation of a binary Active Server Pages (ASP) component often required the scrutiny
and permission of the hosting Internet Service Provider (ISP), because a badly written or malicious ASP
component could wreak havoc on the server machine.

The other big benefit Java provides is its cross-platform nature. Web developers can design their web
applications, neatly package them in a special JAR file for web components called a Web Application
Archive file, then install the WARs on various servers hosted by different operating systems (OSes).
Java web components are not bound to a single OS or to a particular vendor's server software like
other web-related software technologies.

Jump ahead to the present. By late 2003, Java has achieved status as the granddaddy of server-side
development. Servlets and JSPs are included in the Java 2 Enterprise Edition (J2EE), a widely
accepted enterprise technology for network-based and distributed computing. Hundreds of thousands
of developers throughout the world work on the "web tier" of J2EE-based technologies, using
servlets, JSPs, and sometimes special web frameworks such as Struts.

In fact, many web developers now spend a fair amount of time getting to know various " application
servers"-like BEA WebLogic, JBoss, or IBM's WebSphere-that pull together the web tier, business or
domain objects (such as components that handle weather data or a customer's financial accounts),

http://java.sun.com/features/2000/06/time-line.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

and Enterprise Information Systems (EIS). These application servers represent the software host for
servlets and JSPs. Many web developers, including myself, spend a lot of time working on web
components that are hosted on Tomcat, a popular open source (http://www.opensource.org) servlet
engine and "reference implementation" for the new servlet and JSP APIs.[3]

[3] A reference implementation is software that is based on a commonly agreed upon specification, and is freely
available to software developers and others as a demonstration of how the specified software system is designed
to function.

The rapid maturation and well-established nature of Java has naturally led to a "cookbook" approach
for our book. This cookbook focuses on how to initiate certain web-related tasks in Java, rather than
tutoring the reader on how to use the Java language, or explaining the servlet and JSP APIs in finely
grained detail. Countless tutorial-oriented Java books still exist, however, in new or reissued form,
which attests to the popularity of Java as a web-development platform.

[Team LiB]

http://www.opensource.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

What's in the Book

In creating the recipes for this book, I tried to cover as many common and advanced web developer
tasks as I could practically fit into one book. This amounts to about 230 different recipes. Each recipe
shows how to implement a particular task using servlets, JSPs, and, in many cases, one or more
supporting Java classes.

The recipes show how to:

Authenticate web clients

Interact with databases

Send email

Handle submitted data from a web form

Read and set "cookies"

Upload files from the client

Integrate JavaScript with servlets and JSPs

Embed multimedia files like digital movies and music in JSPs and servlets

Handle web clients whose users speak different languages (internationalization)

Log messages from servlets and JSPs

Dynamically include chunks of content, as in traditional server-side include (SSI) code

Interact with Enterprise JavaBeans (EJBs) from a JSP and servlet

Use Amazon.com's and Google.com's Web Services APIs from a servlet or JSP

I have also included numerous technology-specific recipes, such as:

Using "sessions" in your Java web applications (a concept that represents the tracking of a
user's progress through a web site)

Working with "filters"

Using the open source ANT tool to build web applications

Binding Java objects to a session or web application so they can be used as information or data
containers

Creating your own custom tags for JSPs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the JavaServer Pages Standard Tag Library (JSTL), which is a large set of prebuilt tags
you can use in JSPs

In short, the book is designed to help guide Java web developers in their everyday tasks, and to
provide quick solutions to typical web-related problems.

BEA WebLogic Recipes

Because Java web developers tend to work with both Tomcat and a proprietary application server,
I've included a number of different recipes to show how to implement common tasks with BEA
WebLogic. As a practical matter, I could not cover the several other application servers that are
available, such as IBM's WebSphere, JBoss, Jetty, Oracle 9i application server, or commercial servlet
engines such as New Atlanta ServletExec and Caucho Resin. But I wanted to include recipes covering
"how the other half lives" in terms of using various vendor tools for managing everyday web-
application tasks. Solutions involving the deployment or revision of web components and deployment
descriptors using visual interfaces such as WebLogic's Administration Console or WebLogic Builder can
be quite different from those used with Tomcat.

As a result, this book includes a collection of basic WebLogic-related recipes, such as deploying web
applications on WebLogic, and using a servlet to access a WebLogic DataSource. Chapter 25 shows
how a servlet can interact with an EJB installed on WebLogic.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Audience

The recipes are mainly designed for experienced developers who design, build, deploy, and revise
Java-based web applications. This includes JSP, servlet, and JavaBean developers.

The book is also appropriate for experienced web developers who are just learning Java and
migrating from another web programming platform, such as Active Server Pages, PHP, or Perl. These
developers are usually knowledgable about the underlying mechanisms, such as sessions, cookies,
file uploads, login authentication, and handling HTTP POST requests, but may not yet know how to
implement these tasks in Java. The cookbook allows them to quickly look up a solution to a problem
that they have probably already dealt with using another language.

Java developers who need to know how to implement new servlet API 2.4 and JSP 2.0 features (such
as some of the new web.xml filter-mapping elements for request dispatchers and embedding the

Expression Language [EL] in a JSP's template text) will also find the cookbook handy.

What You Need to Know

Readers should know the basics of the Java language or be learning how to program with Java.

Chapter 1, includes brief introductions to servlets, JSPs, and deployment descriptors for readers who
are not yet up to speed on these concepts. However, since the cookbook's focus is on concise
solutions to specific problems, it does not include long tutorials on the servlet and JSP APIs. Each
recipe includes an introduction that provides enough information to get started with the various
technologies and code samples. The recipes also include numerous references to online information
resources, such as Javadoc pages and tutorials, for readers who need to explore a topic in greater
depth.

Readers will benefit from having already been introduced to various J2EE subject areas such as Java
Database Connectivity (JDBC), the Java Naming and Directory Interface (JNDI), and Enterprise
JavaBeans (I have included one recipe that involves connecting a web component with EJBs using
JNDI) .

Finally, a working knowledge of XML is also helpful, as Java web development involves XML-based
deployment descriptors and configuration files.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Organization

The book begins with three chapters that cover the nuts and bolts of writing servlets and JSPs,
deploying servlets and JSPs, naming or registering your servlets, and using the Ant tool.

I then explore several basic topics on web development, such as dynamically including content in web
pages, uploading files, handling data that has been posted from an HTML form, reading and setting
cookies, tracking sessions, and integrating JavaScript with JSPs and servlets.

Next, the book includes some more advanced recipes, such as logging messages, authenticating
clients, binding attributes, working with the client request, and creating servlet filters. Chapter 20,
and Chapter 21, cover two common and complex web-development tasks with 20 different recipes.

Chapter 22, and Chapter 23 describe custom tags and the JSTL. Chapter 24, discusses the crucial
topic of internationalizing your web applications with servlets and JSPs.

For web developers whose web components must interact with EJBs using the Java JNDI, Chapter
25, shows how to configure JNDI in both Tomcat and WebLogic, as well as how to access JNDI
objects using both servers.

The book concludes with two chapters that describe different strategies for extracting data from web
sites using Java web components. Chapter 26, has recipes on harvesting or "scraping" data from web
pages. Chapter 27, describes how to use Google's and Amazon.com's web services APIs.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, example URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user, and is used to
emphasize code in examples.

Constant width italic

Shows text that should be replaced with user-supplied values. In some cases where text is
already italicized, user-supplied values are shown in angled brackets (< >)

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

O'Reilly & Associates and the author both appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: "Java Servlet and JSP Cookbook,
by Bruce Perry. Copyright 2004 O'Reilly & Associates, Inc., 0-596-00572-5."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

O'Reilly has a web page for this book, where errata, examples, and any additional information is
listed. You can access this page at:

http://www.oreilly.com/catalog/jsvltjspckbk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about O'Reilly books, conferences, Resource Centers, and the O'Reilly Network,
see our web site at:

http://www.oreilly.com

[Team LiB]

http://www.oreilly.com/catalog/jsvltjspckbk
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Acknowledgments

One night, more than a year ago, I dispatched an email to O'Reilly with an idea for a book. At that
time, the likelihood that this casual email would eventually give rise to a published book seemed very
remote. After numerous emailed "back and forths" between me and a couple of O'Reilly Java editors,
and then several months of gentle nudging, solid editing, occasional reconceptualizations, and (of
course) writing, writing, and more writing, the seed of the book idea germinated and reached fruition.
Voilá, a cookbook is born!

The shaping of a book is always a collaboration among several people. This book probably would not
have left the launching pad without my editor Brett McLaughlin's succinct and continuous reminders
about what differentiates a cookbook from other book types. Brett is also a fine "word by word" copy
editor, and having an editorial background myself, I appreciated his efforts from the writer's side.
Also, Brett's knowledge of Java is deep, and his comments helped me avoid some awkward code
design decisions.

I am very fortunate to have Jason Hunter and Sang Shin as technical editors. They are both well-
known Java experts, and this is a much better book since they have read and commented on large
chunks of it. Their review had a really short deadline, and this is a big book. I was amazed at the
comprehensive coverage with such a short turnaround. As a technical writer, I am indebted to those
who rescue me from embarrassing mistakes!

Some of us save our family members for last in acknowledging those who help us. Maybe that is
because the last paragraph is the foundation on which the rest of the language sits, just as the family
is every writer's foundation, giving them support and shielding them from distractions as they
immerse themselves in prose and technology. This book would not have been created without the
help from my wife Stacy, daughter Rachel, and even Scott, who inspires me from the tender vantage
point of being less than one year old. I'll also repeat what I said in my AppleScript book; I thank my
parents Robert and Anne Perry for installing in me a love of writing and books.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. Writing Servlets and JSPs

Introduction

Recipe 1.1. Writing a Servlet

Recipe 1.2. Writing a JSP

Recipe 1.3. Compiling a Servlet

Recipe 1.4. Packaging Servlets and JSPs

Recipe 1.5. Creating the Deployment Descriptor
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

The purpose of this chapter is to bring relative newcomers up to speed in writing, compiling, and
packaging servlets and JSPs. If you have never developed a servlet or JSP before, or just need to
brush up on the technology to jumpstart your development, then the upcoming recipes provide
simple programming examples and an overview of the components that you require on the user
classpath to compile servlets.

Recipe 1.1 and Recipe 1.2 provide a brief introduction to servlets and JSPs, respectively. A
comprehensive description of a servlet or JSP's role in the Java 2 Platform, Enterprise Edition (J2EE),
is beyond the scope of these recipes. However, information that relates directly to J2EE technology,
such as databases and JDBC; using servlets with the Java Naming and Directory Interface (JNDI);
and using servlets with JavaMail (or email) is distributed throughout the book (and index!).

The "See Also" sections concluding each recipe provide pointers to closely related chapters, an online
tutorial managed by Sun Microsystems, and other O'Reilly books that cover these topics in depth.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 1.1 Writing a Servlet

Problem

You want to write a servlet that is part of a web application.

Solution

Create a Java class that extends javax.servlet.http.HttpServlet. Make sure to import the

classes from servlet.jar (or servlet-api.jar)-you'll need them to compile the servlet.

Discussion

A servlet is a Java class that is designed to respond with dynamic content to client requests over a
network. If you are familiar with Common Gateway Interface (CGI) programs, then servlets are a
Java technology that can replace CGI programs. Often called a web component (along with JSPs), a
servlet is executed within a runtime environment provided by a servlet container or web container
such as Jakarta Tomcat or BEA WebLogic.

A web container can be an add-on component to an HTTP server, or it can be a
standalone server such as Tomcat, which is capable of managing HTTP requests
for both static content (HTML files) as well as for servlets and JSPs.

Servlets are installed in web containers as part of web applications. These applications are collections
of web resources such as HTML pages, images, multimedia content, servlets, JavaServer Pages, XML
configuration files, Java support classes, and Java support libraries. When a web application is
deployed in a web container, the container creates and loads instances of the Java servlet class into
its Java Virtual Machine (JVM) to handle requests for the servlet.

A servlet handles each request as a separate thread. Therefore, servlet
developers have to consider whether to synchronize access to instance
variables, class variables, or shared resources such as a database connection,
depending on how these resources are used.

All servlets implement the javax.servlet.Servlet interface. Web application developers typically
write servlets that extend javax.servlet.http.HttpServlet, an abstract class that implements the
Servlet interface and is specially designed to handle HTTP requests.

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following basic sequence occurs when the web container creates a servlet instance:

The servlet container calls the servlet's init() method, which is designed to initialize
resources that the servlet might use, such as a logger (see Chapter 14). The init() method

gets called only once during the servlet's lifetime.

1.

The init() method initializes an object that implements the javax.servlet.ServletConfig

interface. This object gives the servlet access to initialization parameters declared in the
deployment descriptor (see Recipe 1.5). ServletConfig also gives the servlet access to a
javax.servlet.ServletContext object, with which the servlet can log messages, dispatch

requests to other web components, and get access to other web resources in the same
application (see Recipe 13.5).

2.

Servlet developers are not required to implement the init() method in their
HttpServlet subclasses.

The servlet container calls the servlet's service() method in response to servlet requests. In
terms of HttpServlets, service() automatically calls the appropriate HTTP method to handle
the request by calling (generally) the servlet's doGet() or doPost() methods. For example,
the servlet responds to a user sending a POST HTTP request with a doPost() method

execution.

3.

When calling the two principal HttpServlet methods, doGet() or doPost(), the servlet
container creates javax.servlet.http.HttpServletRequest and HttpServletResponse

objects and passes them in as parameters to these request handler methods.
HttpServletRequest represents the request; HttpServletResponse encapsulates the servlet's

response to the request.

4.

Example 1-1 shows the typical uses of the request and response objects. It is a
good idea to read the servlet API documentation (at
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/package-
summary.html), as many of the method names (e.g.,
request.getContextPath()) are self-explanatory.

The servlet or web container, not the developer, manages the servlet's lifecycle, or how long an
instance of the servlet exists in the JVM to handle requests. When the servlet container is set to
remove the servlet from service, it calls the servlet's destroy() method, in which the servlet

can release any resources, such as a database connection.

5.

Example 1-1 shows a typical servlet idiom for handling an HTML form. The doGet() method displays
the form itself. The doPost() method handles the submitted form data, since in doGet(), the
HTML form tag specifies the servlet's own address as the target for the form data.

The servlet (named FirstServlet) specifies that the declared class is part of the
com.jspservletcookbook package. It is important to create packages for your servlets and utility

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/package-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

classes, and then to store your classes in a directory structure beneath WEB-INF that matches these
package names.

The FirstServlet class imports the necessary classes for compiling a basic servlet, which are the
emphasized import statements in Example 1-1. The Java class extends HttpServlet. The only
defined methods are doGet() , which displays the HTML form in response to a GET HTTP request,
and doPost(), which handles the posted data.

Example 1-1. A typical HttpServlet used for handling an HTML form

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;

import java.util.Enumeration;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class FirstServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

 //use a PrintWriter to send text data to the client who has requested the
 //servlet
 java.io.PrintWriter out = response.getWriter();

 //Begin assembling the HTML content
 out.println("<html><head>");

 out.println("<title>Help Page</title></head><body>");
 out.println("<h2>Please submit your information</h2>");

 //make sure method="post" so that the servlet service method
 //calls doPost in the response to this form submit
 out.println(
 "<form method=\"post\" action =\"" + request.getContextPath() +
 "/firstservlet\" >");

 out.println("<table border=\"0\"><tr><td valign=\"top\">");
 out.println("Your first name: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"firstname\" size=\"20\">");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("</td></tr><tr><td valign=\"top\">");
 out.println("Your last name: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"lastname\" size=\"20\">");
 out.println("</td></tr><tr><td valign=\"top\">");
 out.println("Your email: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"email\" size=\"20\">");
 out.println("</td></tr><tr><td valign=\"top\">");

 out.println("<input type=\"submit\" value=\"Submit Info\"></td></tr>");
 out.println("</table></form>");
 out.println("</body></html>");

 }//doGet
 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //display the parameter names and values
 Enumeration paramNames = request.getParameterNames();

 String parName;//this will hold the name of the parameter

 boolean emptyEnum = false;

 if (! paramNames.hasMoreElements())
 emptyEnum = true;

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

 //use a PrintWriter to send text data to the client
 java.io.PrintWriter out = response.getWriter();

 //Begin assembling the HTML content
 out.println("<html><head>");
 out.println("<title>Submitted Parameters</title></head><body>");

 if (emptyEnum){
 out.println(
 "<h2>Sorry, the request does not contain any parameters</h2>");
 } else {
 out.println(
 "<h2>Here are the submitted parameter values</h2>");
 }

 while(paramNames.hasMoreElements()){

 parName = (String) paramNames.nextElement();

 out.println(
 "" + parName + " : " +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 request.getParameter(parName));

 out.println("
");

 }//while

 out.println("</body></html>");

 }// doPost
}

You might have noticed that doGet() and doPost() each throw ServletException and
IOException. The servlet throws IOException because the response.getWriter() (as well as
PrintWriter.close()) method call can throw an IOException. The doPost() and doGet()
methods can throw a ServletException to indicate that a problem occurred when handling the

request. For example, if the servlet detected a security violation or some other request problem, then
it could include the following code within doGet() or doPost():

//detects a problem that prevents proper request handling...
throw new ServletException("The servlet cannot handle this request.");

Figure 1-1 shows the output displayed by the servlet's doGet() method in a browser.

Figure 1-1. The servlet's output for doGet() method

Figure 1-2 shows the servlet's output for the doPost() method.

Figure 1-2. The servlet's output for the doPost() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 1.3 on compiling a servlet; Recipe 1.4 on packaging servlets and JSPs; Recipe 1.5 on creating
the deployment descriptor; Chapter 2 on deploying servlets and JSPs; Chapter 3 on naming servlets;
the javax.servlet.http package JavaDoc:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/package-summary.html; the J2EE tutorial
from Sun Microsystems: http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html; Jason
Hunter's Java Servlet Programming (O'Reilly).

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/package-summary.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 1.2 Writing a JSP

Problem

You want to create a JSP and include it in a web application.

Solution

Create the JSP as a text file using HTML template text as needed. Store the JSP file at the top level of the
web application.

Discussion

A JavaServer Pages (JSP) component is a type of Java servlet that is designed to fulfill the role of a user
interface for a Java web application. Web developers write JSPs as text files that combine HTML or XHTML
code, XML elements, and embedded JSP actions and commands. JSPs were originally designed around the
model of embedded server-side scripting tools such as Microsoft Corporation's ASP technology; however,
JSPs have evolved to focus on XML elements, including custom-designed elements, or custom tags , as the
principal method of generating dynamic web content.

JSP files typically have a .jsp extension, as in mypage.jsp . When a client requests the JSP page for the
first time, or if the developer precompiles the JSP (see Chapter 5), the web container translates the
textual document into a servlet.

The JSP 2.0 specification refers to the conversion of a JSP into a servlet as the
translation phase . When the JSP (now a servlet class) responds to requests, the
specification calls this stage the request phase . The resulting servlet instance is
called the page implementation object .

A JSP compiler (such as Tomcat's Jasper component) automatically converts the text-based document into
a servlet. The web container creates an instance of the servlet and makes the servlet available to handle
requests. These tasks are transparent to the developer, who never has to handle the translated servlet
source code (although they can examine the code to find out what's happening behind the scenes, which is
always instructive).

The developer focuses on the JSP's dynamic behavior and which JSP elements or custom-designed tags
she uses to generate the response. Developing the JSP as a text-based document rather than Java source
code allows a professional designer to work on the graphics, HTML, or dynamic HTML, leaving the XML tags
and dynamic content to programmers.

Example 1-2 shows a JSP that displays the current date and time. The example JSP shows how to import
and use a custom tag library, which Chapter 23 describes in great detail. The code also uses the
jsp:useBean standard action, a built-in XML element that you can use to create a new Java object for use

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the JSP page. Here are the basic steps for writing a JSP:

Open up a text editor, or a programmer's editor that offers JSP syntax highlighting.1.

If you are developing a JSP for handling HTTP requests, then input the HTML code just as you would
for an HTML file.

2.

Include any necessary JSP directives, such as the taglib directive in Example 1-2 , at the top of the
file. A directive begins with the <%@ s.

3.

Type in the standard actions or custom tags wherever they are needed.4.

Save the file with a .jsp extension in the directory you have designated for JSPs. A typical location is
the top-level directory of a web application that you are developing in your filesystem.

5.

Some JSPs are developed as XML files, or JSP documents , consisting solely of well-
formed XML elements and their attributes. The JSP 2.0 specification recommends
that you give these files a .jspx extension. See Recipe 5.5 for further details on JSP
documents.

Example 1-2. A JSP file that displays the date

<%-- use the 'taglib' directive to make the JSTL 1.0 core tags available; use the uri
"http://java.sun.com/jsp/jstl/core" for JSTL 1.1 --%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<%-- use the 'jsp:useBean' standard action to create the Date object; the object is set
as an attribute in page scope
--%>
<jsp:useBean id="date" class="java.util.Date" />

<html>
<head><title>First JSP</title></head>
<body>
<h2>Here is today's date</h2>

<c:out value="${date}" />

</body>
</html>

To view the output of this file in a browser, request the file by typing the URL into the browser location
field, as in: http://localhost:8080/home/firstJ.jsp . The name of the file is firstJ.jsp . If this is the first time
that anyone has requested the JSP, then you will notice a delay as the JSP container converts your text file
into Java source code, then compiles the source into a servlet.

http://localhost:8080/home/firstJ.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can avoid delays by precompiling the JSP. If you request the JSP with a
jsp_precompile=true parameter, Tomcat converts the JSP, but does not send back

a response. An example is http://localhost:8080/home/firstJ.jsp?
jsp_precompile=true .

Figure 1-3 shows the JSP output in a browser.

Figure 1-3. Output from the firstJ.jsp page

If you select "View Source" from the browser menu to view the page's source code, you won't see any of
the special JSP syntax: the comment characters (<%-- --%>), the taglib directive, the jsp:useBean
action, or the c:out tag. The servlet sends only the template text and the generated date string to the

client.

See Also

Recipe 5.1 -Recipe 5.3 on precompiling JSPs; Chapter 2 on deploying servlets and JSPs; Recipe 1.1 and
Recipe 1.3 on writing and compiling a servlet; Recipe 1.4 on packaging servlets and JSPs; Recipe 1.5 on
creating the deployment descriptor; the J2EE tutorial from Sun Microsystems:
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html ; Hans Bergsten's JavaServer Pages
(O'Reilly).

[Team LiB]

http://localhost:8080/home/firstJ.jsp?
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 1.3 Compiling a Servlet

Problem

You have written a servlet, and now you want to compile it into a class file.

Solution

Make sure that servlet.jar (for Tomcat 4.1.24) or servlet-api.jar (for Tomcat 5) is on your user
classpath. Use javac as you would for any other Java source file.

Discussion

At a minimum, you have to place the servlet classes on your classpath in order to compile a servlet.
These classes are located in these Java packages:

javax.servlet

javax.servlet.http

Tomcat 5 supports the servlet API 2.4; the JAR file that you need on the classpath is located at
<Tomcat-5-installation-directory>/common/lib/servlet-api.jar. Tomcat 4.1.24 uses the servlet 2.3
API. The servlet classes are located at: <Tomcat-4-installation-directory>/common/lib/servlet.jar.

For BEA WebLogic 7.0, the servlet classes and many other subpackages of the javax package (e.g.,

javax.ejb, javax.mail, javax.sql) are located at: <WebLogic-installation-
directory>/weblogic700/server/lib/weblogic.jar.

If you are using Ant to compile servlet classes, then proceed to Recipe 4.4, do
not pass Go, do not collect $200. That recipe is devoted specifically to the topic
of using Ant to compile a servlet. If you use an IDE, follow its instructions for
placing a JAR file on the classpath.

The following command line compiles a servlet in the src directory and places the compiled class,
nested within its package-related directories, in the build directory:

javac -classpath K:\tomcat5\jakarta-tomcat-5\dist\common\lib\servlet-api.jar
 -d ./build ./src/FirstServlet.java

For this command line to run successfully, you must change to the parent directory of the src

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directory.

Recipe 1.4 explains the typical directory structure, including the src directory,
for developing a web application.

If the servlet depends on any other libraries, you have to include those JAR files on your classpath as
well. I have included only the servlet-api.jar JAR file in this command line.

You also have to substitute the directory path for your own installation of Tomcat for this line of the
prior command-line sequence:

K:\tomcat5\jakarta-tomcat-5\dist\common\lib\servlet-api.jar

This command line uses the built-in javac compiler that comes with the Sun Microsystems Java

Software Development Kit (JDK). For this command to work properly, you have to include the
location of the Java SDK that you are using in the PATH environment variable. For example, on a
Unix-based Mac OS X 10.2 system, the directory path /usr/bin must be included in the PATH variable.
On my Windows NT machine, the PATH includes h:\j2sdk1.4.1_01\bin.

See Also

Chapter 2 on deploying servlets and JSPs; Chapter 3 on naming servlets; Recipe 1.4 on packaging
servlets and JSPs; Recipe 1.5 on creating the deployment descriptor; the J2EE tutorial from Sun
Microsystems: http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html; Jason Hunter's
Java Servlet Programming (O'Reilly).

[Team LiB]

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 1.4 Packaging Servlets and JSPs

Problem

You want to set up a directory structure for packaging and creating a Web ARchive (WAR) file for
servlets and JSPs.

Solution

Set up a directory structure in your filesystem, then use the jar tool or Ant to create the WAR.

Discussion

Except in the rarest of circumstances, you'll usually develop a servlet or JSP as part of a web
application. It is relatively easy to set up a directory structure on your filesystem to hold web-
application components, which include HTML files, servlets, JSPs, graphics, JAR libraries, possibly
movies and sound files, as well as XML configuration files (such as the deployment descriptor; see
Recipe 1.5).

The simplest organization for this structure is to create the exact layout of a web application on your
filesystem, then use the jar tool to create a WAR file.

A WAR file is like a ZIP archive. You deploy your web application into a web
container by deploying the WAR. See Chapter 2 for recipes about various
deployment scenarios.

The web application structure involving the WEB-INF subdirectory is standard to all Java web
applications and specified by the servlet API specification (in the section named Web Applications.
Here is what this directory structure looks like, given a top-level directory name of myapp:

/myapp
 /images
 /WEB-INF
 /classes
 /lib

The servlet specification specifies a WEB-INF subdirectory and two child directories, classes and lib.
The WEB-INF subdirectory contains the application's deployment descriptor, named web.xml. The JSP
files and HTML live in the top-level directory (myapp). Servlet classes, JavaBean classes, and any
other utility classes are located in the WEB-INF/classes directory, in a structure that matches their

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package name. If you have a fully qualified class name of com.myorg.MyServlet, then this servlet

class must be located in WEB-INF/classes/com/myorg/MyServlet.class.

The WEB-INF/lib directory contains any JAR libraries that your web application requires, such as
database drivers, the log4j.jar, and the required JARs for using the JavaServer Pages Standard Tag
Library (see Chapter 23).

Once you are ready to test the application in WAR format, change to the top-level directory. Type the
following command, naming the WAR file after the top-level directory of your application. These
command-line phrases work on both Windows and Unix systems (I used them with Windows NT 4
and Mac OS X 10.2):

jar cvf myapp.war .

Don't forget the final dot (.) character, which specifies to the jar tool to include the current

directory's contents and its subdirectories in the WAR file. This command creates the myapp.war file
in the current directory.

The WAR name becomes the application name and context path for your web
application. For example, myapp.war is typically associated with a context path
of /myapp when you deploy the application to a web container.

If you want to view the contents of the WAR at the command line, type this:

jar tvf alpine-final.war

If the WAR file is very large and you want to view its contents one page at a time, use this command:

jar tvf alpine-final.war |more

Here is example output from this command:

H:\classes\webservices\finalproj\dist>jar tvf alpine-final.war
 0 Mon Nov 18 14:10:36 EST 2002 META-INF/
 48 Mon Nov 18 14:10:36 EST 2002 META-INF/MANIFEST.MF
 555 Tue Nov 05 17:08:16 EST 2002 request.jsp
 914 Mon Nov 18 08:53:00 EST 2002 response.jsp
 0 Mon Nov 18 14:10:36 EST 2002 WEB-INF/
 0 Mon Nov 18 14:10:36 EST 2002 WEB-INF/classes/
 0 Tue Nov 05 11:09:34 EST 2002 WEB-INF/classes/com/
 0 Tue Nov 05 11:09:34 EST 2002 WEB-INF/classes/com/parkerriver/
 CONTINUED...

Many development teams are using Ant to compile and create WAR files for their servlets and JSPs.
Recipe 2.6 describes using Ant for developing and updating web applications.

I jumpstart your progress toward that recipe by showing the kind of directory structure you might
use for a comprehensive web application, one that contains numerous servlets, JSPs, static HTML
files, as well as various graphics and multimedia components. When using Ant to build a WAR file
from this kind of directory structure, you can filter out the directories that you do not want to include
in the final WAR, such as the top-level src, dist, and meta directories.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myapp
 /build
 /dist
 /lib
 /meta
 /src
 /web
 /images
 /multimedia
 /WEB-INF
 /classes
 /lib
 /tlds
 /jspf

The WEB-INF/tlds and WEB-INF/jspf optional directories may contain Tag
Library Descriptor files and JSP fragments (chunks of JSPs that are designed to
be included in other JSPs, such as server-side includes), respectively.

See Also

Chapter 2 on deploying servlets and JSPs; Chapter 3 on naming servlets; The deployment sections of
Tomcat: The Definitive Guide, by Brittain and Darwin (O'Reilly); the J2EE tutorial from Sun
Microsystems: http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html.

[Team LiB]

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 1.5 Creating the Deployment Descriptor

Problem

You want to create the deployment descriptor for your application.

Solution

Name the XML file web.xml and place it in the WEB-INF directory of your web application. If you do not
have an existing example of web.xml , then cut and paste the examples given in the servlet v2.3 or
2.4 specifications and start from there.

Discussion

The deployment descriptor is a very important part of your web application. It conveys the
requirements for your web application in a concise format that is readable by most XML editors. The
web.xml file is where you:

Register and create URL mappings for your servlets

Register or specify any of the application's filters and listeners

Specify context init parameter name/value pairs

Configure error pages

Specify your application's welcome files

Configure session timeouts

Specifiy security settings that control who can request which web components

This is just a subset of the configurations that you can use with web.xml . While a number of chapters
in this book contain detailed examples of web.xml (refer to the "See Also" section), this recipe shows
simplified versions of the servlet v2.3 and v2.4 deployment descriptors.

Example 1-3 shows a simple web application with a servlet , a filter , a listener , and a session-
config element, as well as an error-page configuration. The web.xml in Example 1-3 uses the servlet

v2.3 Document Type Definition (DTD). The main difference between the deployment descriptors of 2.3
and 2.4 is that 2.3 uses a DTD and 2.4 is based on an XML schema. You'll notice that the old version of
web.xml has the DOCTYPE declaration at the top of the file, while the 2.4 version uses the namespace
attributes of the web-app element to refer to the XML schema. The XML elements of Example 1-3 have

to be in the same order as specified by the DTD.

Example 1-3. The deployment descriptor for servlet API 2.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

<web-app>

 <display-name>Servlet 2.3 deployment descriptor</display-name>

 <filter>
 <filter-name>RequestFilter</filter-name>
 <filter-class>com.jspservletcookbook.RequestFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>RequestFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <listener>
 <listener-class>com.jspservletcookbook.ReqListener</listener-class>
 </listener>

 <servlet>
 <servlet-name>MyServlet</servlet-name>
 <servlet-class>com.jspservletcookbook.MyServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name> MyServlet </servlet-name>
 <url-pattern>/myservlet</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>15</session-timeout>
 </session-config>

 <error-page>
 <error-code>404</error-code>
 <location>/err404.jsp</location>
 </error-page>

</web-app>

Example 1-3 shows the web.xml file for an application that has just one servlet, accessed at the path
<context path>/myservlet . Sessions time out in 15 minutes with this application. If a client requests a
URL that cannot be found, the web container forwards the request to the /err404.jsp page, based on
the error-page configuration. The filter named RequestFilter applies to all requests for static and

dynamic content in this context. At startup, the web container creates an instance of the listener class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

com.jspservletcookbook.ReqListener .

Everything about Example 1-4 is the same as Example 1-3 , except that the web-app element at the

top of the file refers to an XML schema with its namespace attributes. In addition, elements can appear
in arbitrary order with the servlet v2.4 deployment descriptor. For instance, if you were so inclined you
could list your servlets and mappings before your listeners and filters.

Example 1-4. A servlet v2.4 deployment descriptor

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

<!-- the rest of the file is the same as Example 1-3 after the web-app opening tag -->

</web-app>

The servlet 2.4 version of the deployment descriptor also contains definitions for
various elements that are not included in the servlet 2.3 web.xml version: jsp-
config , message-destination , message-destination-ref , and service-
ref . The syntax for these elements appears in the specifications for JSP v2.0

and J2EE v1.4.

See Also

Chapter 2 on deploying servlets and JSPs; Chapter 3 on naming servlets; Chapter 9 on configuring the
deployment descriptor for error handling; the J2EE tutorial from Sun Microsystems:
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html .

[Team LiB]

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/J2eeTutorialTOC.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 2. Deploying Servlets and JSPs

Introduction

Recipe 2.1. Deploying an Individual Servlet on Tomcat

Recipe 2.2. Using a Context Element in Tomcat'sserver.xml

Recipe 2.3. Deploying an Individual Servlet on WebLogic

Recipe 2.4. Deploying an Individual JSP on Tomcat

Recipe 2.5. Deploying an Individual JSP on WebLogic

Recipe 2.6. Deploying a Web Application on Tomcat

Recipe 2.7. Deploying a Web Application on WebLogic Using Ant

Recipe 2.8. Using the WebLogic Administration Console

Recipe 2.9. Using WebLogic Builder to Deploy a Web Application

Recipe 2.10. Using the weblogic.DeployerCommand-Line Tool
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

This chapter describes how to take servlets or Java Server Pages (JSPs) and make them available to
receive web requests on Tomcat's servlet container or BEA WebLogic Server 7.0. This discussion
begins with deploying servlets and JSPs; in other words, getting them running on Tomcat or
WebLogic, either alone or as part of a web application.

Developing and compiling a servlet or JSP within an integrated development environment (IDE) is
one thing. Having the web component respond to HTTP requests is another. This is what deployment
is all about with web-related software: placing the software into service within a web container like
Tomcat or an application server such as BEA WebLogic Server 7.0. The following recipes detail
deployment of servlets and JSPs on these web containers, first individually, and then as part of a web
application.

The wonderful open source Jakarta Ant build and automation tool is commonly used for this purpose.
It is mentioned wherever it is relevant in the following recipes, and Chapter 4 is completely devoted
to installing and using Ant.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.1 Deploying an Individual Servlet on Tomcat

Problem

You want to take a compiled servlet and install it in Tomcat to find out if it is working. You are doing a
preliminary test and do not want to take the time to build a complete web application for the servlet.

Solution

Copy and paste the class file into Tomcat's default web application (or into a web application that you have
already installed), then request it using the invoker servlet. Or use an Ant build.xml file to move the file
temporarily into the Tomcat default web application.

Discussion

Sometimes you design a servlet and are anxious to see if the servlet works. Unless the servlet depends on
other servlets or components in the application, you can test it on Tomcat by pasting the class file (including
its package-related directories) into the default Tomcat web application. By default, this application is
located at the path <Tomcat-installation-directory>/webapps/ROOT .

If the fully qualified class name of the servlet is jspservletcookbook.CookieServlet , then here is the

entire process for manually getting a single servlet going on Tomcat:

Shut down the Tomcat server by executing the shell script <tomcat-installation-
directory>/bin/shutdown or by executing a shell script your server administrator has provided. An
alternative is to "stop" the default application by requesting this URL in your browser: http://
localhost:8080/manager/stop?path=/ .

Create the jspservletcookbook directory in the <Tomcat-installation-directory>/webapps/ROOT/WEB-
INF/classes directory (make the classes directory if it does not already exist).

Paste the CookieServlet class file into the <Tomcat-installation-directory>/webapps/ROOT/WEB-

INF/classes/ jspservletcookbook directory.

Start up the Tomcat server by executing the shell script <Tomcat-installation-directory>/bin/startup
or a shell script that your server administrator has provided. An alternative is to start the default
application by requesting this URL in your browser: http:// localhost:8080/manager/start?path=/ .

Request the servlet in your browser with the URL
http://localhost:8080/servlet/jspservletcookbook.CookieServlet .

By now you are probably saying, "There must be a more elegant alternative to this slow, manual installation
of a single servlet!" You are correct, and can use Jakarta Ant to convert this manual process to an
automated one.

http:// localhost:8080/manager/start?path=/
http://localhost:8080/servlet/jspservletcookbook.CookieServlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The build.xml file in Example 2-1 accomplishes the same testing process, assuming you have downloaded
and installed Ant as described in Chapter 4 . Place this build file in a convenient directory. Create in that
directory a global.properties file that is customized according to your needs (see Example 2-2). Change to
that directory in a command-line window and type ant . Ant takes care of the rest of the tasks, including

starting and stopping Tomcat's default web application.

Example 2-1. Installing a servlet in the default web application

<project name="Cookbook" default="deploy-servlet" basedir=".">

 <taskdef name="start" classname="org.apache.catalina.ant.StartTask" />
 <taskdef name="stop" classname="org.apache.catalina.ant.StopTask" />

<!-- Load in some global properties -->

 <property file="global.properties" />
 <target name="init" description="Initializes some properties.">

 <echo message="Initializing properties."/>
 <property name="build" value=".\build" />
 <property name="src" value=".\src" />

 <!-- The context-path is just a slash character when it is the ROOT application;
 see the start and stop targets, which already include the slash as part of
 the URL pattern -->

 <property name="context-path" value="" />
 </target>

 <target name="prepare" depends="init">
 <echo message="Cleaning up the build directory."/>
 <delete dir="${build}"/>
 <mkdir dir="${build}"/>
 </target>

<!-- Set the CLASSPATH to various Tomcat .jar files -->

 <path id="classpath">
 <fileset dir="${tomcat.dir}/common/lib">
 <include name="*.jar" />
 </fileset>
 <fileset dir="${tomcat.dir}/common/endorsed">
 <include name="*.jar" />
 </fileset>
 </path>

<!-- start the default Tomcat web application -->

 <target name="start"
 description="Starts the default Web application">
 <echo message="Starting the default application...."/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <start
 url="${url}"
 username="${username}"
 password="${password}"
 path="/${context-path}"
 />
 </target>

<!-- stop the default Tomcat web application -->

 <target name="stop"
 description="Stops the default Web application">
 <echo message="Stopping the application...."/>
 <stop
 url="${url}"
 username="${username}"
 password="${password}"
 path="/${context-path}"
 />
 </target>

<!-- stop the default Tomcat web application, compile your servlet, add it to the default
Web application, then start the default web application -->

 <target name="deploy-servlet" depends="prepare"
 description=
 "Compile the specified servlet, then move it into Tomcat's default
 Web application.">

 <echo message="Stopping the default Tomcat application...."/>
 <antcall target="stop"/>
 <echo message="Compiling the servlet...."/>
 <javac srcdir="${src}" destdir="${build}">
 <include name="${compiled.servlet}.java" />
 <classpath refid="classpath"/>
 </javac>
 <echo message=
 "Copying the servlet to Tomcat ROOT web application..."/>

 <copy todir="${tomcat.webapps}/WEB-INF/classes">
 <fileset dir="${build}" />
 </copy>
 <echo message="Starting the default application...."/>
 <antcall target="start"/>
 </target>

</project>

The global.properties file that sits in the same directory as build.xml looks like Example 2-2 .

Example 2-2. global.properties file for Ant

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tomcat.webapps=k:/jakarta-tomcat-4.1.12/webapps/ROOT
tomcat.dir=k:/jakarta-tomcat-4.1.12
url=http://localhost:8080/manager
compiled.servlet=CookieServlet
username=tomcat
password=tomcat

global.properties is just a list of property-name = value pairs. In other words, each line is composed of a

string of characters that represents the property name (optionally including a period character), followed by
an "=" sign and another bunch of characters that represents the value.

Jakarta Ant's online manual is located at:
http://jakarta.apache.org/ant/manual/index.html .

Here is what build.xml does:

Defines two tasks with a taskDef element, called start and stop . These tasks will be used by the
targets start and stop later on in the build.xml file. These tasks allow you to use the Tomcat

"manager" application-deployment tool from your Ant files.

1.

Uses a property task to load in the set of properties that are defined in the global.properties file. This
means that the property name tomcat.dir is now available for use later on in the build.xml file. The
path element uses the tomcat.dir property by including its value (in the example, "k:/jakarta-

tomcat-4.1.12") as part of a classpath definition. You get the value of these imported properties by
using a reference like ${tomcat.dir} . Any time you want to give the property a different value

before executing an Ant file, you can just change the properties file by typing in a new value in a text
editor.

2.

Creates an init target that echoes a message to the console and creates three properties (build ,
src , and context-path). The values of these properties are available only after the init target has
been executed. For example, if the prepare target does not have "init" as the value of its depends
attribute, the deploy-servlet target, which depends on prepare , cannot use the property values
defined by init .

3.

Defines a target called prepare .4.

Builds a reusable classpath (with the ID "classpath") out of all of the JAR files located in a couple of
Tomcat directories.

5.

Creates the start and stop targets. These targets echo a message to the console and then call the
tasks (such as stop) that were defined with taskDef elements at the top of the build.xml file. The
start and stop targets are actually invoked by the all-in-one target deploy-servlet .

6.

Creates the deploy-servlet target. This target does all the major work inside the build.xml file.
Notice that its depends attribute has the value "prepare." This means that prior to executing the
instructions contained within the deploy-servlet target, Ant first executes the init and prepare
targets. Since the prepare target depends on the init target, deploy-servlet calls prepare , which
itself calls it own dependency, the init target. So just by launching the deploy-servlet target, you

have triggered a target chain that looks like init prepare deploy-servlet . Using an

7.

http://jakarta.apache.org/ant/manual/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

element called antcall with which a target may explicitly call another target, deploy-servlet calls
both the stop and start targets. In this way it can:

Stop the default Tomcat application.a.

Compile the servlet using the javac task. The javac task includes the servlet that is specified by
the compiled.servlet property, which is set inside the global.properties file.

b.

Copies the compiled servlet to the WEB-INF/classes directory of Tomcat's default web application. The
copy task creates this classes directory if it does not already exist.

8.

Starts the default web application so that you can request your servlet in the browser.9.

See Also

The deployment sections of Tomcat: The Definitive Guide , by Brittain and Darwin (O'Reilly); Recipe 2.2 ,
Recipe 2.4 , and Recipe 2.6 ; the Jakarta Ant online manual at:
http://jakarta.apache.org/ant/manual/index.html

[Team LiB]

http://jakarta.apache.org/ant/manual/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.2 Using a Context Element in
Tomcat'sserver.xml

Problem

You want to deploy and redeploy a servlet on Tomcat 4.1.x without restarting the Tomcat web
container.

Solution

Deploy the servlet as part of a Context element in Tomcat's server.xml file.

Discussion

You can paste a recompiled servlet class over an existing servlet class and invoke the servlet without
restarting Tomcat:

Locate the Context element for your web application or create a new Context element in the
<tomcat-installation-directory>/conf/server.xml file. Context elements must be nested within
the Host element that represents the virtual host under which your web application is running.

1.

Set the reloadable attribute of your Context element to true. This signals Tomcat to monitor

the contents of WEB-INF/classes and WEB-INF/lib for any changes. If changes are detected,
Tomcat automatically reloads the web application.

2.

The Context element in server.xml looks like this:

<Context className="org.apache.catalina.core.StandardContext"
 crossContext="false" reloadable="true"
 mapperClass="org.apache.catalina.core.StandardContextMapper"
 useNaming="true" debug="0" swallowOutput="false"
 privileged="false" displayName="Home Web App"
 wrapperClass="org.apache.catalina.core.StandardWrapper"
 docBase="h:\home" cookies="true" path="/home"
 cachingAllowed="true"
 charsetMapperClass="org.apache.catalina.util.CharsetMapper"
>

The path attribute represents the context path for the application. The docBase attribute points to

the directory that represents the top level of this web application. Most of the example's other
attributes have values that are shared by other Contexts. For example, cookies="true" indicates

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that the Context will use cookies for the session identifier, and crossContext="false" prevents the

servlets in this web application from obtaining request dispatchers for other web applications running
in the virtual host.

Setting the reloadable attribute to true incurs significant runtime overhead,

so this configuration is recommended only for web applications in development
mode.

Under this configuration, Tomcat 4.1.x displays a console message after a slight delay when you
paste a new servlet class over the old one in the web application. Here is an example of a console
message in response to a dynamic servlet reload:

WebappClassLoader: Resource '/WEB-INF/classes/com/jspservletcookbook/OracleTest.
class' was modified;
Date is now: Sun Feb 02 22:17:41 EST 2003 Was: Sun Feb 02 21:38:52 EST 2003

See Also

The deployment sections of Tomcat: The Definitive Guide, by Brittain and Darwin (O'Reilly); Recipe
2.1, Recipe 2.4, and Recipe 2.6; Jakarta Tomcat documentation for the Context element:

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/config/context.html.

[Team LiB]

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/config/context.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.3 Deploying an Individual Servlet on WebLogic

Problem

You want to take your compiled servlet and install it in BEA WebLogic Server 7.0 to find out if it is
working.

Solution

Copy and paste the class file into WebLogic's default web application (or into a web application that
you have already installed). Use the WebLogic Administration Console to alter the web.xml file and
give the servlet a sensible name with which to request it in a browser, or use an Ant build file to
move the file temporarily into the WebLogic default web application.

Discussion

WebLogic 7.0's default web application is located on the following path: <WebLogic-installation-
directory>/user_projects/<mydomain>/applications/DefaultWebApp. In the default installation of the
WebLogic 7.0 server, not much exists in the default web application but a web.xml deployment
descriptor, and some image files. To add a servlet to the default application, paste your servlet class,
including its package-related directories, into the DefaultWebApp/WEB-INF/classes directory. You
might have to create a classes directory the first time you do this. Change the web.xml file to give
the servlet a name (which is easier through the Administration Console) before redeploying the web
application as described in Recipe 2.4.

Use the Administration Console to edit the web.xml file in order to give the new servlet a registered
name and servlet-mapping element. You can also use another available tool, such as WebLogic

Builder (Recipe 2.9) or a text editor. Figure 2-1 shows the DefaultWebApp in the Administration
Console. Click on "Edit Web Application Deployment Descriptors . . . ".

Figure 2-1. WebLogic Server Administration Console

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This displays the screen shown in Figure 2-2. This screen provides an easy graphical method of
editing the web.xml file for any web application (in this case, the WebLogic default web application).

Figure 2-2. Editing the web.xml file graphically

With this graphical editor, create the servlet and servlet-mapping elements for the servlet that

you just added. Make sure to click on the "Web Descriptor" button in the left column of the Figure 2-2
window and then persist the changes that you made in the web.xml file. This action rewrites the
web.xml file, adding the new servlet and servlet-mapping elements.

Now redeploy the web application, which is just a matter of clicking a few hypertext links in the
Console. Choose the name of your web application in the left column of the Console, under the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mydomain Deployments Web Applications node of the tree navigation structure in this

lefthand column. Figure 2-3 shows the resulting window.

Figure 2-3. Using the Console to redeploy a web application

Click on the "Deploy" tab, then click the "Undeploy" button in the resulting HTML table. The web
application is now unavailable for service.

To redeploy the application, click the "Deploy" tab, then select the "Deploy" button, as shown in
Figure 2-4.

Figure 2-4. Graphically deploying a servlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the servlet that you are working on already exists in the web application, then you can also copy
and paste a new servlet class over the old one in the WEB-INF/classes directory of the web
application. The new servlet version becomes available immediately, without using the Console to
redeploy the entire web application.

You can also use an Ant file to compile the servlet and copy it into WebLogic's default web
application. The build file in Example 2-3 is very similar to the one used and described in Recipe 2.1;
it's just revised for use with WebLogic's web container instead of Tomcat's.

Example 2-3. Using an Ant file with a WebLogic servlet

<project name="Cookbook" default="deploy-servlet" basedir=".">

 <property file="wl.properties" />

 <target
 name="init"
 description="Initializes some properties.">
 <echo message="Initializing properties."/>
 <property name="build" value=".\build" />
 <property name="src" value=".\src" />
 </target>

 <target name="prepare" depends="init">
 <echo message="Cleaning up the build directory."/>
 <delete dir="${build}"/>
 <mkdir dir="${build}"/>
 </target>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <path id="classpath">
 <fileset dir="${wl.dir}\server\lib">
 <include name="*.jar" />
 </fileset>
 </path>

 <target name="deploy-servlet" depends="prepare"
 description="Compile the specified servlet, then move it into
 WL's default Web application.">

 <echo message="Compiling the servlet ${compiled.servlet}...."/>
 <javac srcdir="${src}" destdir="${build}">
 <include name="${compiled.servlet}.java" />
 <classpath refid="classpath"/>
 </javac>
 <echo message="Copying the servlet to WL default web application..."/>
 <copy todir="${wl.webapp}/WEB-INF/classes">
 <fileset dir="${build}" />
 </copy>

 </target>
</project>

This Ant build file first loads a set of properties contained in a file called wl.properties, which is located
in the same directory as the build file. The build file typically has the name build.xml; however, you
can call another build file in the same directory by using the -buildfile command-line option, as in
ant -buildfile wl_build.xml. The wl.properties file for this example is shown in Example 2-4.

Example 2-4. wl.properties for WebLogic Ant build file

wl.webapp=k:/bea/user_projects/bwpdomain/applications/DefaultWebApp
wl.dir=k:/bea/weblogic700
compiled.servlet=test

The deploy-servlet target depends on a target named prepare that is also defined in this build file.
The prepare target in turn has "init" as its depends attribute, which means that the init target
executes prior to the prepare target. So calling the deploy-servlet target creates a chain of

executing targets: init prepare deploy-servlet. In all, this is what the build file

accomplishes:

init creates a couple of properties (build and source) that point to directories.1.

The prepare target deletes and then remakes the build directory, so that you start with a clean

build.

2.

deploy-servlet compiles the servlet into the build directory, then copies it into the directory
specified by the wl.webapp property (which contains its value in the wl.properties file).

3.

The path element creates a classpath out of the JAR files found in the k:/bea/weblogic700/server/lib

directory. This directory path is how Ant resolves the phrase "${wl.dir}\server\lib," which is parsed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by attaching the value of the property wl.dir to the string "\server\lib."

See Also

Recipe 2.5, Recipe 2.7-Recipe 2.10; the deployment sections of WebLogic: The Definitive Guide, by
Mountjoy and Chugh (O'Reilly); WebLogic's Server 7.0 programmer documentation: http://e-
docs.bea.com/wls/docs70/programming.html .

[Team LiB]

http://e-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.4 Deploying an Individual JSP on Tomcat

Problem

You want to place a JSP file into a web application.

Solution

Copy the new or revised JSP file into the top-level directory of the default Tomcat web application or
of another deployed web application.

Discussion

The easiest way to test a new JSP file is to place it at the top level of Tomcat's default web
application. This application is located in the <Tomcat-installation-directory>/webapps/ROOT/
directory. Tomcat 4.1.x compiles (or recompiles, if you are pasting a new JSP file over an old one)
the JSP and display its response in a web page. You do not have to stop and start Tomcat using the
Tomcat manager application for the new JSP file to be available to your web application.

Placing a JSP file in a deployed web application will not work if the JSP depends
on application-specific resources such as servlets, custom tags, or other Java
classes, because there is no guarantee that the temporary host web application
you are using for the JSP has access to those resources.

If you have to deploy a JSP separately from its web application, you can also place a JSP file in a
deployed web application other than the Tomcat default application. This makes the JSP page
available to application users without having to stop and restart Tomcat. Remember that the JSP files
belong in the top level of the web application, which has the following directory structure:

index.html
default.jsp
anotherJsp.jsp
images/logo.jpeg
WEB-INF/classes/jspservletcookbook/myservlet.class
WEB-INF/lib/helperclasses.jar
WEB-INF/lib/utilities.jar
WEB-INF/web.xml
WEB-INF/mytags.tld

In other words, the top level of the directory contains the HTML and JSP files, as well as the WEB-INF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directory. The WEB-INF directory contains:

The web.xml deployment descriptor

The classes directory, which contains package-related directories and servlet or support classes
like JavaBeans

The lib directory, which stores any Java Archive (JAR) files containing utility or helper classes
that your web application uses

Optionally, any Tag Library Descriptor files (files with .tld suffixes)

Any optional directories for images, video files, XML files, or other web resources

See Also

The deployment sections of Tomcat: The Definitive Guide (O'Reilly); Recipe 2.1, Recipe 2.2, and
Recipe 2.6.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.5 Deploying an Individual JSP on WebLogic

Problem

You want to quickly test a JSP without deploying it as part of a new web application.

Solution

Copy and paste the JSP into the top-level directory of BEA WebLogic Server 7.0's default web
application, then request the JSP in a browser.

Discussion

A JSP file can be "hot deployed" on WebLogic 7.0's default web application without having to redeploy
the entire web application. This default web application is located at <WebLogic-installation-
directory>/user_projects/<name-of-your-domain>/applications/DefaultWebApp. If you paste your
JSP file into this directory (DefaultWebApp), it will be available to receive requests without
redeploying the default web application. If your JSP file is named newfile.jsp, then the URL for
requests to this page would be http://localhost:7001/newfile.jsp. Note the absence of a context path
or application name in the URL. If the request is for the default web application, then the JSP files
appear following the forward slash (/) after the host:port part of the URL (in other words, after the
localhost:7001/ part).

To repeat a prior caveat: placing a JSP file in a deployed web application in
order to test it will not work if the JSP depends on application-specific resources
such as servlets, custom tags, or other Java classes, because there is no
guarantee that the temporary host web application you are using for the JSP
has access to those resources.

In most cases, the JSP is already part of a web application, and several tools exist to redeploy a web
application, including Ant, BEA WebLogic Builder, and the WebLogic Administration Console.

Finally, you can also copy and paste a JSP file into another WebLogic web application. However, that
application must be deployed in exploded directory format, meaning that the application has not been
deployed in archive form (as a WAR or EAR file). Therefore, place the JSP file in the application's top-
level directory. If the application is named "newapp," this directory is named <WebLogic-installation-
directory>/user_projects/<name-of-your-domain>/applications/newapp.

See Also

http://localhost:7001/newfile.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.3; Recipe 2.7-Recipe 2.10; WebLogic's Server 7.0 programmer documentation: http://e-
docs.bea.com/wls/docs70/programming.html.

[Team LiB]

http://e-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.6 Deploying a Web Application on Tomcat

Problem

You want to deploy an entire web application on Tomcat 4.1.x.

Solution

Create a Jakarta Ant build file. Ant can automatically compile your servlet classes, create a web
application archive (.war) file, then deploy the WAR to the Tomcat 4.1.x server.

Discussion

The recommended method for the compilation and deployment of web applications is to use the Jakarta
Ant automation tool. If you change anything in the application (such as altering a servlet or JSP), then
all it takes is a single command-line execution of ant to compile, package, and redeploy the application

on Tomcat. You do not have to go to the trouble of manually recompiling a changed servlet, creating a
new WAR file, starting and stopping Tomcat, and redeploying the application.

Another method of deploying a web application on Tomcat is to place a directory containing a web
application in the required directory structure in the Tomcat webapps folder. The name of the web
application directory (such as myapp) then becomes the context path or name of the new web
application. This deployment method is not guaranteed to work with other application servers, however,
so it is an ineffective strategy for creating portable applications. In addition, since this manual method is
not automated in any manner, it is awkward to replace and keep track of any changed servlet or
JavaBean classes in these web application directories.

The end of this discussion describes how to configure Tomcat's server.xml configuration file so that a
context path points to an unpacked web application directory elsewhere on the server. As an alternative
to creating an archived application (a WAR file), Tomcat developers can use this method of deployment
during development and testing.

Using Ant for deployment

Using Ant to compile and deploy an application involves the following steps:

Choose a directory to hold the Ant build.xml file, any build.properties files, and all of the contents
of your web application.

1.

Create the directories to hold the Java servlet source files, any JSP or HTML files, Java Archive
(JAR) files for components (such as database drivers) and the web application archive file (WAR
file). One way to create this directory structure is shown in Figure 2-5 .

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-5. Web application directory structure

In this example, the src directory contains the Java source files for servlets and JavaBeans. The
web directory contains the files that reside at the top level of the web application, such as JSP and
HTML files. The meta directory holds XML deployment descriptors (at the very least, web.xml).
The build directory is where Ant compiles the Java source files. These files will end up in the WEB-
INF/classes directory of the web application. The lib directory is for any JAR files that your web
application uses, such as database drivers and/or tag libraries. Finally, the dist directory contains
the WAR file.

3.

Create the Java source code for the application and move any other related files (like JSPs and
web.xml) into their specified directories.

4.

Create any necessary property values in the build.properties file that build.xml will use during the
compilation and deployment process. These properties will be described in more detail in the
upcoming discussion.

5.

Run the build.xml file on the command line by changing to the directory containing the build.xml
file and typing ant .

6.

Example 2-5 is the build.properties file that is referenced in step 5.

The file does not have to be called build.properties ; this name is used purely by
convention. You could call it global.props , for instance.

Example 2-5. build.properties for web application deployment

tomcat.webapps=k:/jakarta-tomcat-4.1.12/webapps/
tomcat.dir=k:/jakarta-tomcat-4.1.12
url=http://localhost:8080/manager
username=tomcat
password=tomcat
manager.path=${tomcat.dir}/work/standalone/localhost/manager

Each of these properties is made available to or imported into the build.xml file by the following line
within this file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<property file="build.properties" />

This line represents a property task or XML element within the build.xml XML file. For example, the
value of the tomcat.dir property inside the Ant XML file is "k:/jakarta-tomcat-4.1.12."

Example 2-6 is the entire build.xml file. It can be used to compile Java classes, create a WAR file, and
deploy it to Tomcat-just by executing ant on the command line. The chief advantage of using Ant is

that it automates an otherwise complicated process. If you have to change or add a servlet in the web
application, for instance, you can recompile and redeploy the web application simply by running Ant.
This build.xml file is fairly complex and introduces some advanced features of Ant.

Example 2-6. An Ant build file for deploying a web application

<project name="Deploy Project" default="deploy-application">

 <taskdef name="deploy" classname="org.apache.catalina.ant.DeployTask" />
 <taskdef name="undeploy" classname="org.apache.catalina.ant.UndeployTask" />
 <property file="build.properties" />

 <path id="classpath">
 <fileset dir="${tomcat.dir}/common/lib">
 <include name="*.jar" />
 </fileset>
 <fileset dir="${tomcat.dir}/common/endorsed">
 <include name="*.jar" />
 </fileset>
 </path>

 <target name="init"
 description="Initializes some properties.">
 <echo message="Initializing properties."/>
 <property name="build" value=".\build" />
 <property name="src" value=".\src" />
 <property name="dist" value=".\dist" />
 <property name="lib" value=".\lib" />
 <property name="web" value=".\web" />
 <property name="meta" value=".\meta" />
 <property name="context-path" value="myapp" />
 </target>

 <target name="prepare" depends="init">
 <echo message="Cleaning up the build and dist directories."/>
 <delete dir="${build}"/>
 <mkdir dir="${build}"/>
 <delete dir="${dist}"/>
 <mkdir dir="${dist}"/>
 </target>

 <target name="deploy"
 description="Deploys a Web application">
 <deploy url="${url}" username="${username}" password="${password}"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 path="/${context-path}" war="file:${dist}/${context-path}.war"
 />
 </target>

 <target name="undeploy"
 description="Undeploys a Web application" if="already.deployed">
 <undeploy url="${url}" username="${username}" password="${password}"
 path="/ ${context-path}" />
 </target>

 <target name="create-war" description="creates a web application archive file">
 <war destfile="${dist}/${context-path}.war" webxml="${meta}/web.xml">
 <classes dir="${build}"/>
 <lib dir="${lib}"/>
 <fileset dir="${web}"/>
 </war>
 </target>

 <target name="deploy-application" depends="prepare"
 description="Compile the web application....">
 <echo message="Undeploying the application only if it's deployed..."/>
 <available file="${manager.path}/${context-path}.war" property="already.deployed"/>
 <antcall target="undeploy"/>
 <echo message="Compiling the application files..."/>
 <javac srcdir="${src}" destdir="${build}">
 <include name="*.java" />
 <classpath refid="classpath"/>
 </javac>
 <echo message="creating the WAR file...."/>
 <antcall target="create-war"/>
 <antcall target="deploy"/>
 </target>
</project>

The create-war target uses the war Ant task to generate the WAR file, based on certain attribute values

and nested elements. For example, the web.xml file that will be included in the WAR is specified as the
value for the war task's webxml attribute. In addition, the classes that will be included in the WAR file's

WEB-INF/classes directory are specified by this nested element of the war task:

<classes dir="${build}"/>

The nice thing about this classes element, along with the lib and fileset nested elements, is that all

of the nested directories inside the build , lib , and web directories are automatically included in the
WAR. For example, the web directory includes an images directory containing the application's various
GIF files. The images directory is included at the top level of the WAR file, along with any HTML or JSP
files that are stored in the web directory, just by including this nested element:

<fileset dir="${web}"/>

Also examine the deploy-application target, which embodies the meat of this build.xml file. As long
as you properly set the PATH environment variable to point at the Ant component, the deploy-
application target is called by default when you type ant at the command line.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, the target finds out whether the web application has already been deployed on Tomcat. This
function is included because this build file will presumably be run over and over again, not just the first
time the web application is deployed. This line uses an available task, which sets a property to the
value "true" only if the file specified in its file attribute exists:

<available file="${manager.path}/${context-path}.war"
 property="already.deployed"/>
<antcall target="undeploy"/>

If this particular file is found, it means that the Tomcat Manager application has already deployed the
WAR file, and that the already.deployed property is set to true. This allows the build.xml file to

conditionally undeploy the application, before the application is redeployed after any changes. In other
words, it undeploys the application only if the web application is already deployed (otherwise, running
the undeploy target raises an error and halts execution of the build file). The undeploy target runs only
if the already.deployed property is set to true:

<target name="undeploy"
 description="Undeploys a Web application"
 if="already.deployed">

The handy antcall task calls another target in the file, similar to calling a method. Finally, the deploy-
application target uses the javac task to compile the application's servlets into the build directory,
then uses the antcall task to create the WAR file and deploy the new or changed application to

Tomcat. The target echoes various messages to the console to help indicate to the developer what it is
doing:

<target name="deploy-application" depends="prepare"
 description="Compile the web application....">
 ...
 <echo message="Compiling the application files..."/>
 <javac srcdir="${src}" destdir="${build}">
 <include name="*.java" />
 <classpath refid="classpath"/>
 </javac>
 <echo message="creating the WAR file...."/>
 <antcall target="create-war"/>
 <antcall target="deploy"/>
</target>

As an alternative to using the prior deployment method, you can configure Tomcat to point to an
external directory that contains a valid web application. This strategy deploys the web application the
next time Tomcat is restarted. It is an acceptable strategy when the application is under development,
because you can configure Tomcat to automatically reload the application (Recipe 2.2) when a servlet is
changed, or when a JAR file is added to WEB-INF/lib . However, developers should deploy applications
as WAR files when the time comes to run the application on a production server.

Create a file that contains a Context element as this element would appear in server.xml . Give this file

a .xml extension. It is sensible to call this file the same name as the context path or application name
(for example, myapp.xml), but not required. Your file content might look like this:

<Context className="org.apache.catalina.core.StandardContext"
 crossContext="false" reloadable="true"
 mapperClass="org.apache.catalina.core.StandardContextMapper"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 useNaming="true" debug="0" swallowOutput="false"
 privileged="false"
 wrapperClass="org.apache.catalina.core.StandardWrapper"
 docBase="h:\book\cookbook\sec1\sec1_1\dist"
 cookies="true" path="/newapp" cachingAllowed="true"
 charsetMapperClass="org.apache.catalina.util.CharsetMapper">
</Context>

The reloadable attribute value of "true" configures Tomcat to monitor the classes in WEB-INF/classes

and the components in WEB-INF/lib for any changes. Tomcat automatically reloads the web application
if it detects any changes.

The value for the docBase attribute can be an absolute path to the directory that contains the web
application, or the context root. It can also be the path to a WAR file. The docBase attribute can also be
a path name relative to the appBase directory of the enclosing Host element in server.xml , such as
relative to the <Tomcat-installation-directory>/webapps directory. The path attribute declares the

context path for the new application, as in http://localhost:8080/newapp/ (where /newapp is the
context path).

Place this file in the <Tomcat-installation-directory>/webapps directory (or whichever directory is
configured as the appBase in the enclosing Host element in conf/server.xml) and restart Tomcat. This

web application can now be invoked on Tomcat.

See Also

The deployment sections of Tomcat: The Definitive Guide by Brittain and Darwin (O'Reilly); Recipe 2.1 ,
Recipe 2.2 , and Recipe 2.4 .

[Team LiB]

http://localhost:8080/newapp/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.7 Deploying a Web Application on WebLogic
Using Ant

Problem

You want to deploy a web application on WebLogic Server 7.0 using Jakarta Ant.

Solution

Create a Jakarta Ant build file. Ant can automatically compile your servlet classes, create a web-
application archive (.war) file, and then deploy the WAR to WebLogic Server 7.0.

Discussion

You can either manually cut and paste web components into the WebLogic applications directory (as
described in the sidebar), or use Ant to automate the process of compiling, generating a WAR file,
and copying the WAR to this directory. An example directory path to applications is
k:\bea\user_projects\bwpdomain\applications. This method would entail a minor edit of the build.xml
and build.properties files described in Recipe 2.6.

Manually Deploying a Web Application

When BEA WebLogic Server 7.0 is running in development mode, if a WAR file, an enterprise
archive application (EAR) file, or a directory that contains a valid web application is placed in
the applications directory, then those applications are automatically deployed and become
available on the server.

A valid web application contains a WEB-INF/web.xml deployment descriptor that does not
generate any parsing exceptions. If the directory that you place in the applications folder
does not contain a deployment descriptor, then WebLogic will not automatically deploy the
application, even if the server is running in development mode. WebLogic raises an
exception similar to this one in the console in which the server was started up:

<Unable to activate application, _appsdir_dist_dir, from source, K:\bea\user_
projects\bwpdomain\applications\dist. Reason: No J2EE deployment descriptor
found at "K:\bea\user_projects\bwpdomain\applications\dist".>

This deploy-application Ant target is edited in build.xml to deploy on WebLogic 7.0:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<target name="deploy-application" depends="prepare"
 description="Compile the web application....">
 <echo message="Compiling the application files..."/>
 <javac srcdir="${src}" destdir="${build}">
 <include name="*.java" />
 <classpath refid="classpath"/>
 </javac>
 <echo message="creating the WAR file...."/>
 <antcall target="create-war"/>
 <copy todir="${wl.applications}">
 <fileset dir="${dist}" />
 </copy>
 </target>

In addition, the build.properties file could define the wl.applications property with a value such as

"k:\bea\user_projects\bwpdomain\applications". Once the WAR file is copied to this special directory,
a WebLogic server that is started in development mode will automatically deploy it.

In the \user_project\bwpdomain directory (depending on your server domain
name) the WebLogic start script is called startWebLogic.cmd on Windows and
startWebLogic.sh on Unix. To start the server in development mode, the line in
the start script should be set STARTMODE= (the value is an empty string here)
or set STARTMODE=false. The server starts in production mode if it is set
STARTMODE=true.

See Also

Recipe 2.3; Recipe 2.8-Recipe 2.10; WebLogic's Server 7.0 programmer documentation: http://e-
docs.bea.com/wls/docs70/programming.html.

[Team LiB]

http://e-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.8 Using the WebLogic Administration Console

Problem

You want to deploy a web application using WebLogic's Administration Console.

Solution

Bring up the Administration Console in your web browser and use its graphical interface to deploy
either a WAR file or a web-application directory.

Discussion

The WebLogic Administration Console is a servlet- and browser-based tool for managing WebLogic
server resources and Java 2 Enterprise Edition (J2EE) applications. To use the Console, WebLogic
Server must be running. First, request the URL http://localhost:7001/console (or whichever your
server address and port is, as in http://<weblogic-server-address>:<port>/console). Then enter
your login name and password to gain entry to the browser-based tool. The resulting screen looks
like Figure 2-6, with a hierarchical list of choices in the lefthand column and the current screen choice
in the righthand column.

Figure 2-6. WebLogic Administration Console

In the left column, choose the name of your domain by clicking on the plus sign (+), which displays

the domain's subnodes. The subnodes of the domain include Servers, Clusters, Machines, Network

http://localhost:7001/console
http://<weblogic-server-address>:<port>/console
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Channels, Deployments, Services, and Security. Then choose the "Deployments" node, which gives
you the choice of selecting its "Web Applications" subnode. Open up the "Web Applications" node by
clicking on its plus sign. The resulting screen looks like Figure 2-7.

Figure 2-7. Web Applications node

In the Web Applications window, click the "Configure a New Web Application . . . " hyperlink. The next
screen gives you the option of uploading the Web Application Archive (WAR) or Enterprise Application
Archive (EAR) file through your browser to the server's filesystem, as shown in Figure 2-8.

Figure 2-8. Deploying a web application as a WAR or EAR file

Initiate this upload and then click on the "select" link next to the WAR file. Complete the three steps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that Figure Figure 2-9 shows: click the arrow buttons to deploy the application from the "Available
Servers" column to the "Target Servers" column, name the application (leave the name the same as
the WAR filename minus the .war suffix), then press the "Configure and Deploy" button. That is all it
takes to deploy the WAR file to the target server.

Figure 2-9. Final steps for deploying the WAR file

Now test the deployment by requesting one of the servlets in the browser, using the name that you
gave the application as the context path. An example URL is
http://localhost:7001/cookbook/cookieservlet. This URL requests a servlet that has been mapped to
the name "/cookieservlet." The web-application context path is /cookbook.

Redeploying a previously undeployed web application using the WebLogic Administration Console
involves the following steps:

Select the name of your application under the Web Applications node in the Console's lefthand
column. This shows a screen similar to Figure 2-10.

1.

Figure 2-10. Selecting a web application in the Console

http://localhost:7001/cookbook/cookieservlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Click the "Deploy" button in the righthand screen. This reactivates the application, so that it can
receive requests in the WebLogic web container.

2.

If you want to delete a web application using the WebLogic Administration Console, click on the name
of your domain in the lefthand column of the Console screen, then on the "Deployments" and "Web
Applications" nodes. Clicking the trash can icon associated with the application, as shown in Figure 2-
11, deletes the application from the WebLogic server.

Figure 2-11. Deleting a web application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Deleting a web application in this manner means that the application is no longer available to receive
requests in the WebLogic web container.

See Also

Recipe 2.3 and Recipe 2.7; Recipe 2.9 and Recipe 2.10; WebLogic's Server 7.0 programmer
documentation: http://e-docs.bea.com/wls/docs70/programming.html.

[Team LiB]

http://e-docs.bea.com/wls/docs70/programming.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.9 Using WebLogic Builder to Deploy a Web
Application

Problem

You want to use WebLogic Builder to deploy a web application.

Solution

WebLogic Builder installs with the WebLogic 7.0 Server, so you can launch the Builder application and
use its graphical tools to deploy the web application.

Discussion

WebLogic Builder is a graphical tool that installs with WebLogic Server 7. It can be used to edit
deployment descriptor files such as web.xml and weblogic.xml, as well as for deploying web
applications to a server. Using WebLogic Builder, you can open up, edit, and deploy web applications
that exist as either WAR files or in exploded directory format.

Exploded directory format is a web-application directory structure as it would
appear in your filesystem, but that is not in archived or in WAR form. To be
deployed on WebLogic as a web application, the root directory must contain the
WEB-INF/web.xml deployment descriptor and any other properly structured
application components, such as a the WEB-INF/classes directory containing
your servlets (including any package-related directories).

You can launch WebLogic Builder on Windows from either the "Start" menu or the command line. The
start script for Builder is at: <BEA_HOME>/weblogic700/server/bin/startWLBuilder.cmd (or
startWLBuilder.sh on Unix). <BEA_HOME> is the directory where WebLogic Server 7.0 is installed.

It is easy to open up and edit the deployment descriptor for a web application in WebLogic Builder.
Go to the File Open menu and navigate to the WAR file or root directory for the application.

The result is the window depicted in Figure 2-12. The navigation tree in the upper-left window lets
you configure web resources (such as servlets) and deployment descriptor elements (such as security
constraints), then save the changes to web.xml.

Figure 2-12. Opening a WAR file in WebLogic Builder

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can add or delete elements for servlets, servlet mappings, and filters, for instance. The changes
are persisted to the deployment descriptor if you make and save changes to the application from
within WebLogic Builder. You can then optionally connect to the server from the "Tools" menu, and
deploy the application.

The "Deploy Module" window indicates whether the application is already deployed. Figure 2-13
shows this window. If you have already deployed the application, you can still make deployment-
descriptor changes in Builder, then deploy the application again from the "Tools" menu. WebLogic
Builder specifically undeploys the application, then redeploys it with the changes that you included in
web.xml.

Figure 2-13. WebLogic Builder's Deploy Module window

WebLogic Builder does not show any JSP files that may be part of the web application. It will show
any servlet mappings that are associated with JSP files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 2.3, Recipe 2.7, Recipe 2.8, and Recipe 2.10; WebLogic's Server 7.0 programmer
documentation: http://e-docs.bea.com/wls/docs70/programming.html; the local WebLogic Builder
Help documentation: <BEA_HOME>\weblogic700\server\builder\index.html.

[Team LiB]

http://e-docs.bea.com/wls/docs70/programming.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 2.10 Using the weblogic.DeployerCommand-Line
Tool

Problem

You want to use the command line to deploy a web application on WebLogic Server 7.0.

Solution

Use the Java-based weblogic.Deployer command-line utility, which is installed with WebLogic Server

7.0.

Discussion

For developers or administrators who need to use the command line or shell scripts for deploying and
redeploying web applications, WebLogic Server 7.0 provides the Java-based Deployer utility. This utility

accomplishes the same tasks as using the graphical interface of the WebLogic Administration Console to
deploy or redeploy a web application. First, this recipe describes how to deploy and redeploy a web
application on the command line using the Deployer utility. Then the recipe provides an example of a
Windows batch file that invokes the Deployer utility.

The Deployer utility can initiate other tasks, such as redeploying individual web
components in a web application. The online documentation for the Deployer utility

can be found at http://e-
docs.bea.com/wls/docs70/programming/deploying.html#1094693 .

The Deployer utility is a Java-based program that requires the following JAR file on your classpath before

the program can run: <BEA_HOME>\server\lib\weblogic.jar . <BEA_HOME> represents the directory
where WebLogic Server 7.0 was installed. The following command-line script on a Windows NT 4.0
machine redeploys the cookbook.war web application on a server named bwpserver :

java -cp k:\bea\weblogic700\server\lib\weblogic.jar;
 %CLASSPATH% weblogic.Deployer
 -adminurl http://localhost:7001
 -user bwperry -name cookbook -source .\dist\cookbook.war
 -targets bwpserver -activate

This command-line invocation deploys the web application represented by the archive file cookbook.war ,
so the application is now available to receive requests with the context path /cookbook . When run on the
command line, the program prompts the user for a password if you have not included it in the script with
the -password option. The -source option specifies the location of the WAR file or web-application
directory. The -targets option specifies one or more servers on which to deploy the web application. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

final command for deploying the application is -activate .

This command-line invocation deactivates (makes unavailable) an existing web application on the server
bwpserver . It prompts for the user password first, unless you add the -password option to the command

line:

java -cp k:\bea\weblogic700\server\lib\weblogic.jar;
 %CLASSPATH% weblogic.Deployer
 -adminurl http://localhost:7001
 -user bwperry -name cookbook
 -targets bwpserver -deactivate

The -cp option specifies the classpath to use for running the Deployer Java utility, and must include the
weblogic.jar JAR file. The -adminurl switch specifies the administration server (the default value is
http://localhost:7001 , so it does not have to be included here). The -name option specifies the name of
the application to be deactivated, and the -targets option names the server where the application is

running. The following command-line invocation redeploys the same "cookbook" application:

java -cp k:\bea\weblogic700\server\lib\weblogic.jar;
 %CLASSPATH% weblogic.Deployer
 -user bwperry -name cookbook -activate

This time, the -adminurl and -targets options were omitted. The default values for these switches are

http://localhost:7001 and all current targets (if the developer is redeploying an existing application),
respectively. If the application is being deployed for the first time, the default target for the -targets

option is the administration server.

It is easier to run shell commands from a batch file, because there is less typing for complicated
command-line programs and the shell scripts can be permanently saved. Example 2-7 is the first example
rewritten as a batch file on Windows NT 4.0.

Example 2-7. Deploying an application

@echo off
set WL_HOME=K:\bea\weblogic700

set BEA_CLASSPATH=%WL_HOME%\server\lib\weblogic.jar;%CLASSPATH%

java -cp %BEA_CLASSPATH% weblogic.Deployer -adminurl http://localhost:7001 -user bwperry
-name cookbook -source .\dist\cookbook.war -targets bwpserver -activate

This batch file sets two environment variables: WL_HOME and BEA_CLASSPATH . These are used to make
sure that the classpath includes the weblogic.jar file, which contains the Deployer utility. If the script was

saved as deploy.bat , this is how it would be run on the command line:

H:\book\cookbook>deploy

The resulting console output looks like this.

Enter a password for the user "bwperry":bwpserver_1968
Operation started, waiting for notifications...
....
#TaskID Action Status Target Type Application Source

http://localhost:7001
http://localhost:7001
http://lib.ommolketab.ir
http://lib.ommolketab.ir

15 Activate Success bwpserver Server cookbook H:\book\
cookbook\.\dist\cook

See Also

Recipe 2.3 and Recipe 2.5 ; Recipe 2.7 -Recipe 2.9 ; WebLogic's Server 7.0 programmer documentation:
http://e-docs.bea.com/wls/docs70/programming.html .

[Team LiB]

http://e-docs.bea.com/wls/docs70/programming.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 3. Naming Your Servlets
Introduction

Recipe 3.1. Mapping a Servlet to a Name in web.xml

Recipe 3.2. Creating More Than One Mapping to a Servlet

Recipe 3.3. Creating a JSP-Type URL for a Servlet

Recipe 3.4. Mapping Static Content to a Servlet

Recipe 3.5. Invoking a Servlet Without a web.xml Mapping

Recipe 3.6. Mapping All Requests Within a Web Application to a Servlet

Recipe 3.7. Mapping Requests to a Controller and Preserving Servlet Mappings

Recipe 3.8. Creating Welcome Files for a Web Application

Recipe 3.9. Restricting Requests for Certain Servlets

Recipe 3.10. Giving Only the Controller Access to Certain Servlets
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

An important web application configuration task is to create the path by which your servlet is
requested by web users. This is what the user types into the address field of his browser in order to
make a request to the servlet. While this is sometimes the full name of the servlet, that convention
often results in an awkward URI. For example, a web site might have a servlet that dynamically
assembles a "Resources" page, instead of a static resources.html page. Using the full servlet name,
the request URL might be
http://www.myorganization.com/servlet/com.organization.servlets.resources.ResourceServlet. This
is quite a path to type in; it makes much more sense to map this to a servlet path, which is an alias
for the servlet. Using the servlet path, the (new) address for the dynamic page might be
http://www.myorganization.com/resources. The servlet path, in this case, is /resources.

This servlet path is also the identifier used by other servlets or JSPs that forward requests to this
particular servlet, as well as the address that an HTML form tag uses in its action attribute to launch

parameter names and values toward the servlet. The servlet specification offers an intuitive and
flexible way to map HTTP requests to servlets in the web.xml deployment descriptor.

This chapter describes how you can use the web.xml deployment descriptor to create one or more
aliases (servlet paths) to your servlet. It also discusses how to invoke the servlet with other types of
URLs, such as one that looks like a JSP page request (e.g., info.jsp) or one that looks like an HTML
page request (info.html). Recipe 3.5 also describes how to access a servlet without a mapping in
web.xml, for example, for the developer who wants to debug her servlet without modifying the
web.xml file.

Finally, Recipe 3.7, Recipe 3.9, and Recipe 3.10 show how to map all requests to one "controller"
servlet (Recipe 3.7), restrict the requests for certain servlets to authenticated users (Recipe 3.9), and
block all requests to certain servlets except those forwarded from the controller (Recipe 3.10).

[Team LiB]

http://www.myorganization.com/servlet/com.organization.servlets.resources.ResourceServlet
http://www.myorganization.com/resources
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.1 Mapping a Servlet to a Name in web.xml

Problem

You want to create an alias, or servlet path, to your servlet.

Solution

Create servlet and servlet-mapping elements in web.xml.

Discussion

Creating an alias to the servlet takes place in the deployment descriptor's servlet-mapping element.
All servlet elements must come before any of the servlet-mapping elements in the servlet 2.3
web.xml deployment descriptor. The servlet-mapping element refers to the name of the servlet
that appears in the servlet-name element, such as:

 <servlet><servlet-name>myservlet</servlet-name></servlet>

This is referred to as the servlet's registered name. The servlet-mapping then provides the name,

or URL pattern, which web application users can type into their browsers to access the servlet.
Example 3-1 shows a web.xml file with a servlet and servlet-mapping element. The registered

name in this case is "CookieServlet".

Example 3-1. servlet and servlet-mapping elements

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

<web-app>
 <servlet>
 <servlet-name>CookieServlet</servlet-name>
 <servlet-class>com.jspservletcookbook.CookieServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>CookieServlet</servlet-name>
 <url-pattern>/cookieservlet</url-pattern>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </servlet-mapping>
</web-app>

In this example, the servlet element registers the name "CookieServlet" by using the servlet-name
element. The class name is specified by the servlet-class element. The actual location of this

servlet class may be WEB-INF/classes/com/jspservletcookbook/, or inside a JAR file that resides in
WEB-INF/lib. "CookieServlet" becomes the registered name by which the servlet
com.jspservletcookbook.CookieServlet is referred to in the rest of the web.xml file.

Now create the servlet path by which the web application users will access this servlet in their web
browsers. This aliasing is accomplished with the servlet-mapping element. servlet-name identifies
the registered name by which the servlet is referred to in web.xml, and the url-pattern element
creates the URL that is used to access this servlet. The / character inside the /cookieservlet pattern

means "begin at the web-application root." For example, if the context path for the site
http://www.mysite.org is "cookbook," then the complete address for accessing the CookieServlet

servlet is http://www.mysite.org/cookbook/cookieservlet. The /cookbook part of the URL is the
context path for your web application. The servlet is then identified with the /cookieservlet pattern
within that context.

Looking at this more generally, you have the following URL for any given servlet:

http://<host>:<port>/<context path>/<servlet-path>

Most servlet containers allow for a default context, where the context path is /.

In this case, the URL is in this form:

http://<host>:<port>/<servlet-path>

For example, if you are using Tomcat 4.1.x on your local machine and have created an application
called "myapp" and a servlet URL pattern of /myservlet, the entire web address for that servlet looks
like http://localhost:8080/myapp/myservlet.

You can also access a servlet with a URL like this:

http://host:port/context path/servlet/registered-servlet-name

So if the registered servlet name was "MyServlet," then the request appears as
http://localhost:8080/myapp/servlet/MyServlet.

Some servlet engines use a different servlet path than /servlet, and others allow this path to be
changed by an administrator. You should consult the documentation for your servlet container to
ensure the correct path for your setup. What if the example servlet-mapping element appeared in
the web.xml file for the server's default web application, in which the context path is /? In this case,
users would access the CookieServlet servlet by using the address

http://www.mysite.org/cookieservlet.

http://www.mysite.org
http://www.mysite.org/cookbook/cookieservlet
http://<host>:<port>/<context path>/<servlet-path>
http://<host>:<port>/<servlet-path>
http://localhost:8080/myapp/myservlet
http://host:port/context path/servlet/registered-servlet-name
http://localhost:8080/myapp/servlet/MyServlet
http://www.mysite.org/cookieservlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The url-pattern that you create for a servlet inside of a servlet-mapping

element is case-sensitive in Tomcat and WebLogic. According to Chapter
SRV.11.1 of the servlet v2.3 specification and v2.4 proposed final draft, "The
container must use case-sensitive string comparisons for matching." If the user
requests http://www.mysite.org/cookbook/cookieSERVLET instead of
http://www.mysite.org/cookbook/cookieservlet, then the request is not
directed to the mapped servlet (CookieServlet). In Tomcat 4.1.x and

WebLogic 7.0, the request returns an HTTP 404 error code, which is the "File
not found" type error returned by a web server.

The url-pattern inside the servlet-mapping element can take on different forms, which are

discussed in the upcoming recipes.

See Also

Chapter 1 on web.xml; Recipe 3.2-Recipe 3.8; Chapter 11 of the Servlet v2.3 and 2.4 specifications
on mapping requests to servlets.

[Team LiB]

http://www.mysite.org/cookbook/cookieSERVLET
http://www.mysite.org/cookbook/cookieservlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.2 Creating More Than One Mapping to a Servlet

Problem

You want to create several names or URL patterns that web users can use to request a single servlet.

Solution

Associate the servlet element with more than one servlet-mapping element in the deployment

descriptor.

Discussion

You can create a number of servlet-mapping elements for a single servlet, as shown in Example 3-

2. A user can access this servlet by using one of two addresses:
http://www.mysite.org/cookbook/cookieservlet or http://www.mysite.org/cookbook/mycookie.

Example 3-2. Two servlet-mapping tags

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

<web-app>
 <servlet>
 <servlet-name>CookieServlet</servlet-name>
 <servlet-class>com.parkerriver.cookbook.CookieServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>CookieServlet</servlet-name>
 <url-pattern>/cookieservlet</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>CookieServlet</servlet-name>
 <url-pattern>/mycookie</url-pattern>
 </servlet-mapping>
</web-app>

Remember that the servlet-mapping elements have to appear after all of the servlet elements in

http://www.mysite.org/cookbook/cookieservlet
http://www.mysite.org/cookbook/mycookie
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the servlet 2.3 deployment descriptor.

Only exact matches to the URL pattern will work. If a user requests
/cookieservlet/ (note the final forward slash) instead of /cookieservlet, she
receives an HTTP error code instead of the servlet-generated page she was
expecting.

You can use a wildcard character (*) to extend your mapping pattern. The mappings in Example 3-3
invoke the CookieServlet for all of the URLs that begin with /cookie/, and then optionally include
any names after the forward slash. For example, CookieServlet can be invoked with a URL of
http://www.mysite.org/cookbook/cookie/you using this descriptor. This is because the url-pattern

matches any HTTP requests ending with the "/cookie/" string.

Example 3-3. Using an asterisk in the URL pattern

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>
<servlet>
 <servlet-name>CookieServlet</servlet-name>
 <servlet-class>com.jspservletcookbook.CookieServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>CookieServlet</servlet-name>
 <url-pattern>/cookie/*</url-pattern>
</servlet-mapping>

You cannot use the asterisk character as a wildcard symbol inside the servlet-
name element. The asterisk can be used only as a wildcard symbol in the url-
pattern element (as in <url-pattern>/cookie/*</url-pattern>), or in
patterns that point to all files with a certain extension or suffix (as in <url-
pattern>*.jsp</url-pattern>). The latter pattern is called an extension

mapping.

See Also

Chapter 1 on web.xml; Recipe 3.1; Recipe 3.3-Recipe 3.8; Chapter 11 of the Servlet v2.3 and 2.4
specifications on mapping requests to servlets.

[Team LiB]

http://www.mysite.org/cookbook/cookie/you
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.3 Creating a JSP-Type URL for a Servlet

Problem

You want to link a URL pattern that looks like a JSP file request to a servlet.

Solution

Create a servlet-mapping element that includes a JSP-style URL pattern.

Discussion

I mentioned in the previous recipes that you have a lot of latitude when creating aliases that point to
servlets. For instance, a request that appears to access a JSP file can easily be mapped to a servlet.
The deployment descriptor in Example 3-4 maps the URL pattern /info.jsp to the JspInfo servlet.

Example 3-4. Deployment descriptor example of mapping a JSP-style URL
to a servlet

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>
<web-app>
 <servlet>
 <servlet-name>JspInfo</servlet-name>
 <servlet-class>com.parkerriver.cookbook.JspInfo</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>JspInfo</servlet-name>
 <url-pattern>/info.jsp</url-pattern>
 </servlet-mapping>
</web-app>

The forward slash that begins the URL pattern /info.jsp means "begin at the root of the web
application that uses this deployment descriptor." So the entire URL for the JspInfo servlet looks like

this for the cookbook web application: http://www.mysite.org/cookbook/info.jsp.

You can also map all references to JSP pages to a single servlet, as shown in Example 3-5, which
uses a web.xml entry with an extension mapping.

http://www.mysite.org/cookbook/info.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 3-5. Mapping all JSP URLs to a single servlet

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

<web-app>
 <servlet>
 <servlet-name>JspInfo</servlet-name>
 <servlet-class>com.parkerriver.cookbook.JspInfo</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>JspInfo</servlet-name>
 <url-pattern>*.jsp</url-pattern>
 </servlet-mapping>
</web-app>

Make sure to exclude the slash (/) in the URL pattern, as an extension mapping that uses a file
extension suffix begins with an asterisk and ends with a period and the suffix itself, as in <url-
pattern>*.jsp</url-pattern>. This type of mapping may be useful if you were migrating an

application from one version that used a lot of JSP pages to a new version that relied entirely on
servlets. This takes care of users who have bookmarked many URLs that involve JSP files.

Tomcat 4.1.x includes an implicit mapping to its own JSP page compiler and
execution servlet for any request ending in .jsp. If you include a mapping such
as the one in the previous web-app fragment, then your mapping will override

Tomcat's implicit mapping.

See Also

Chapter 1 on web.xml; Recipe 3.1 and Recipe 3.2; Recipe 3.4-Recipe 3.8; Chapter 11 of the Servlet
v2.3 and 2.4 specifications on mapping requests to servlets.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.4 Mapping Static Content to a Servlet

Problem

You want requests for static content such as HTML-style URLs to request a servlet.

Solution

Use a servlet-mapping element in web.xml to map the servlet name to the static content.

Discussion

It often seems odd to the casual programmer, but you can have a servlet respond to a URL that
appears to be static content, such as an HTML file. Example 3-6 maps the servlet HtmlServlet to all

URLs ending in the .html suffix. Any request within the web application that contains this deployment
descriptor and specifies a file ending with .html is directed to HtmlServlet.

Example 3-6. Mapping static content to a servlet in web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

<web-app>
 <servlet>
 <servlet-name>HtmlServlet</servlet-name>
 <servlet-class>com.jspservletcookbook.HtmlServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>HtmlServlet</servlet-name>
 <url-pattern>*.html</url-pattern>
 </servlet-mapping>
</web-app>

The servlet-mapping element in this listing contains an extension-mapping URL pattern: it begins

with an asterisk and ends with .html. If you want to map the servlet to just one HTML file, use XML
that looks like this:

<url-pattern>myfile.html</url-pattern>.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using this pattern, only requests for the myfile.html file are directed to HtmlServlet.

Make sure that URL patterns never begin with a slash (/) when you are

creating extension mappings.

See Also

Chapter 1 on web.xml; Recipe 3.3; Recipe 3.5-Recipe 3.8; Chapter 11 of the Servlet v2.3 and 2.4
specifications on mapping requests to servlets.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.5 Invoking a Servlet Without a web.xml Mapping

Problem

You want to request a servlet that does not have a servlet-mapping element in the web.xml

deployment descriptor.

Solution

Use an invoker-style URL of the form
http://www.mysite.org/mywebapp/servlet/com.jspservletcookbook.MyServlet.

Discussion

Some servlets may not have a path mapping in the web application's deployment descriptor. So how
can a user request this servlet? What name and URL do they use?

Tomcat and other servlet containers provide a method for invoking servlets that are not mapped in
web.xml. You can use a URL of the following form:

 http://www.mysite.org/mywebapp/servlet/<fully qualified class name of servlet>

A servlet with the class and package name of jspservletcookbook.MyServlet is invoked as

http://www.mysite.org/mywebapp/servlet/jspservletcookbook.MyServlet. Ensure that the path
segment following the name of your web application is /servlet/ and not /servlets/. If the servlet is
stored in the default web application (generally at the top level of the servlet container), the URL for
invoking it is http:// www.mysite.org/servlet/jspservletcookbook.MyServlet.

The web.xml file located in <Tomcat_install_directory>/conf includes this definition and mapping for
the invoker servlet:

<servlet>
 <servlet-name>invoker</servlet-name>
 <servlet-class>org.apache.catalina.servlets.InvokerServlet</servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>0</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>

<servlet-mapping>

http://www.mysite.org/mywebapp/servlet/com.jspservletcookbook.MyServlet
http://www.mysite.org/mywebapp/servlet/<fully qualified class name of servlet>
http://www.mysite.org/mywebapp/servlet/jspservletcookbook.MyServlet
http:// www.mysite.org/servlet/jspservletcookbook.MyServlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <servlet-name>invoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
</servlet-mapping>

The invoker servlet can also be used to invoke the servlets that are registered in web.xml. These
URLs look like http://www.mysite.org/cookbook/servlet/<RegisteredServletName>. For instance,
imagine you have a servlet element like this:

<servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>jspservletcookbook.MyServlet</servlet-class>
</servlet>

Consider that the web application context path is /cookbook. If the Tomcat invoker servlet is enabled
in this application, then this servlet can be invoked with its registered name at
http://www.mysite.org/cookbook/servlet/myservlet.

In Tomcat 4.1.x, the invoker servlet mapping may be commented out inside of
the <tomcat-installation-directory>/conf/web.xml file. The purpose of thus
disabling the invoker is to ensure that servlets can be invoked using only the
paths specified by the servlet-mapping elements in web.xml.

If a servlet is requested using the form http://www.mysite.org/myapp/servlet/<fully-qualified-
classname>, rather than using the servlet's registered name, any initialization parameters provided
for that servlet in the web.xml file are not available. Example 3-7 shows a registered servlet with init
parameters.

Example 3-7. A registered servlet with init parameters

<servlet>
 <servlet-name>Weather</servlet-name>
 <servlet-class>home.Weather</servlet-class>
 <init-param>
 <param-name>region</param-name>
 <param-value>New England</param-value>
 </init-param>
</servlet>

Because it is the registered name of the servlet that has the region parameter assigned to it, only a
request for that registered name (or a servlet path mapped to that name) triggers the region

parameters. Accessing the servlet through its fully qualified name will not result in the region
parameter being passed to the Weather servlet.

See Also

Chapter 1 on web.xml; Recipe 3.1-Recipe 3.4; Recipe 3.6-Recipe 3.8; Chapter 11 of the Servlet v2.3
and 2.4 specifications on mapping requests to servlets.

http://www.mysite.org/cookbook/servlet/<RegisteredServletName>
http://www.mysite.org/cookbook/servlet/myservlet
http://www.mysite.org/myapp/servlet/<fully-qualified-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.6 Mapping All Requests Within a Web
Application to a Servlet

Problem

You want to have all web application requests go to a single controller servlet.

Solution

Use a servlet-mapping element in your deployment descriptor, with a url-pattern element of
<url-pattern>/*</url-pattern>.

Discussion

In some cases, you might want to have all requests related to the web application to go a single
servlet. This servlet controller may log requests, implement security, or examine and optionally alter
the request object before it forwards the request to another location (usually another servlet or JSP).

For the Sun Microsystems description of the Front Controller design pattern,
which is a method for using a servlet as a central processing point, see the Core
J2EE Blueprints page at
http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html.

Once again, web.xml is the place to configure a servlet to receive all web application requests.
Example 3-8 shows how to use a URL pattern to aim all requests at a controller servlet.

Example 3-8. Aiming all requests at a controller servlet

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>
<web-app>

 <servlet>
 <servlet-name>Interceptor</servlet-name>
 <servlet-class>com.jspservletcookbook.Interceptor</servlet-class>
 </servlet>

http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- The mappings for the Interceptor servlet -->
 <servlet-mapping>
 <servlet-name>Interceptor</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>Interceptor</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

</web-app>

You may also have to override any default invoker servlet with your own mapping:

<url-pattern>/servlet/*</url-pattern>

Map the servlet that you want to receive all web application requests to this URL pattern as well. If
you keep the invoker servlet the way it is, users could bypass the controller servlet by using a URL
like http://www.mysite.org/myapp/servlet/com.jspservletcookbook.CookieServlet.

In Tomcat, you can also disable the invoker servlet in the top-level web.xml file
(in <Tomcat_install_directory>/conf) by commenting out the servlet-mapping

element. This affects all other web applications running under that Tomcat
instance, however, so this decision should be made collectively among
administrators who deploy applications on that server.

You must also remove, alter, or comment out other servlet-mapping elements that allow servlet

requests to bypass the controller servlet. If a more specific mapping (such as the one in Example 3-
9) is included in web.xml, requests for the CookieServlet will bypass the Interceptor servlet.

Example 3-9. Specific mappings override mappings using wildcard
symbols

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

<web-app>

 <servlet>
 <servlet-name>Interceptor</servlet-name>
 <servlet-class>jspservletcookbook.Interceptor</servlet-class>
 </servlet>

 <servlet>
 <servlet-name>CookieServlet</servlet-name>

http://www.mysite.org/myapp/servlet/com.jspservletcookbook.CookieServlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <servlet-class>
 com.jspservletcookbook.CookieServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Interceptor</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>CookieServlet</servlet-name>
 <url-pattern>/CookieServlet</url-pattern>
 </servlet-mapping>

</web-app>

The servlet-mapping element for CookieServlet in this example would cause the servlet path of
/CookieServlet to bypass the Interceptor servlet, because the servlet path of /CookieServlet (as

part of a request that looks like http://host:port/context-path/CookieServlet) is a more exact match
to the URL pattern of /CookieServlet than it is to /*.

The requests for static content such as welcome files (e.g., index.html) are also
intercepted by the URL pattern /*. The requests for these static files will also go
to the controller servlet.

See Also

Chapter 1 on web.xml; Recipe 3.1-Recipe 3.4; Recipe 3.6-Recipe 3.8; Chapter 11 of the Servlet v2.3
and 2.4 specifications on mapping requests to servlets; the Core J2EE Blueprints page:
http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html.

[Team LiB]

http://host:port/context-path/CookieServlet
http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.7 Mapping Requests to a Controller and
Preserving Servlet Mappings

Problem

You want to map all requests to a single controller servlet, while preserving the servlet mappings for
other servlets in a secure manner.

Solution

Use security-constraint elements in web.xml to prevent web users from making requests to the

noncontroller servlets.

Discussion

What if the controller servlet that receives all requests wants to conditionally forward the request
along to another servlet for specialized processing? If all of the other servlet mappings are removed
from web.xml and the invoker-style URL pattern (/servlet/*) is mapped to the controller servlet itself,
even the controller servlet is prevented from forwarding a request to another servlet! How can you
get around these restrictions?

A solution is to retain the individual servlet mappings in web.xml. Then you can use security-
constraint elements to prevent web users from making requests to these noncontroller servlets.

When the controller servlet wants to forward a request to another servlet, it uses an object that
implements the javax.servlet.RequestDispatcher interface. RequestDispatchers are not
restricted from forwarding requests (using the RequestDispatcher.forward(request, response)
method) to URL patterns that are specified by security-constraint elements. Example 3-10 shows
a servlet named Controller that uses a RequestDispatcher to forward a request to another

servlet.

Recipe 3.9 describes how to protect servlets from receiving any web-user requests with the
security-constraint element, so I won't repeat that information here.

Example 3-10. Using RequestDispatcher to forward a request

import javax.servlet.*;
import javax.servlet.http.*;

public class Controller extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws ServletException, java.io.IOException {

 RequestDispatcher dispatcher = null;
 String param = request.getParameter("go");

 if (param == null)
 throw new ServletException("Missing parameter in Controller.");
 else if (param.equals("weather"))
 dispatcher = request.getRequestDispatcher("/weather");
 else if (param.equals("maps"))
 dispatcher = request.getRequestDispatcher("/maps");
 else
 throw new ServletException(
 "Improper parameter passed to Controller.");

 //if we get this far, dispatch the request to the correct URL
 if (dispatcher != null)
 dispatcher.forward(request,response);
 else
 throw new ServletException(
 "Controller received a null dispatcher from request object.");
 }
}

The servlet checks the go parameter for its value. A request to this servlet might look like:

http://localhost:8080/home?go=weather

In this example, the Controller servlet is mapped to receive all web requests to the "home" web
application. In other words, the controller's servlet-mapping in web.xml has a url-pattern of /*.

Based on the go parameter value, Controller creates a RequestDispatcher object with a different
specified URL for forwarding. The servlet gets a RequestDispatcher object first by calling the
request object's getRequestDispatcher(String path) method. The path parameter can be

relative to the context root of the web application, as it is here, but it cannot extend beyond the
current servlet context. Suppose the URL pattern /weather is mapped to the registered servlet name
"Weather":

<servlet-mapping>
 <servlet-name>Weather</servlet-name>
 <url-pattern>/weather</url-pattern>
</servlet-mapping>

In this case, the path passed to the getRequestDispatcher() method looks like
getRequestDispatcher("/weather"). If the go parameter is either wrong or missing, the
Controller throws a ServletException with an appropriate message. The Weather servlet, though,
cannot be accessed by web users directly because it is restricted by a security-constraint
element-but the RequestDispatcher.forward(request,response) method is not limited by these

constraints.

You can also use the javax.servlet.ServletContext.getNamedDispatcher(String name) method
to get a RequestDispatcher object for forwarding. Using this method, you do not have to include
any servlet-mapping elements for the target servlet. The getNamedDispatcher() method takes

http://localhost:8080/home?go=weather
http://lib.ommolketab.ir
http://lib.ommolketab.ir

as its parameter the registered name of the servlet in web.xml. Example 3-11 shows the prior servlet
example altered to use getNamedDispatcher("Weather"), using the weather servlet's registered

name instead.

Example 3-11. Using getNamedDispatcher() to forward a request

import javax.servlet.*;
import javax.servlet.http.*;

public class Controller extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 RequestDispatcher dispatcher = null;
 String param = request.getParameter("go");

 if (param == null)
 throw new
 ServletException("Missing parameter in Controller.");
 else if (param.equals("weather"))
 dispatcher = getServletContext().
 getNamedDispatcher("Weather");
 else if (param.equals("maps"))
 dispatcher = getServletContext().
 getNamedDispatcher("Maps");
 else
 throw new ServletException(
 "Improper parameter passed to Controller.");

 /*check for a null dispatcher, then
 dispatch the request to the correct URL*/
 if (dispatcher != null)
 dispatcher.forward(request,response);
 else
 throw new ServletException(
 "Controller received a null dispatcher.");
 }
}

The doGet() method has been changed to use a RequestDispatcher received from the
ServletContext.getNamedDispatcher(String registered-servlet-name) method. Instead of a
servlet path, the dispatcher object uses that servlet's registered name ("Weather") from web.xml,

as in:

<servlet>
 <servlet-name>Weather</servlet-name>
 <servlet-class>com.jspservletcookbook.Weather
 </servlet-class>
</servlet>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the ServletContext returns a null dispatcher because someone left out the necessary XML
element in web.xml, then doGet() throws a ServletException explaining that the dispatcher
object is null.

An alternate strategy is to use a listener to check the request before it finds its
way to a servlet. Chapter 19 describes how to use a listener to examine an
HTTP request.

See Also

Chapter 1 on web.xml; Recipe 3.1-Recipe 3.5; Recipe 3.8; Chapter 19 on using a listener to examine
the request; Chapter 11 of the Servlet v2.3 and 2.4 specifications on mapping requests to servlets;
the Core J2EE Blueprints page:
http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html

[Team LiB]

http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.8 Creating Welcome Files for a Web Application

Problem

You want to configure one or more welcome files for a web application.

Solution

Use a welcome-file-list element in your deployment descriptor.

Discussion

A welcome file is a tradition as old as the hypertextual Internet. Many sites have homepages or other
welcome files that are designed to be the entry page or front door for their web sites. These pages
usually have names like index.html, welcome.html, or default.html. You can configure your web
application to direct requests toward these pages by adding a welcome-file-list element to your

web application's deployment descriptor. Set up a welcome file list in web.xml in the manner
demonstrated by Example 3-12. The welcome-file-list element must come after any servlet and
servlet-mapping elements, and precede any error-page or taglib elements in the servlet 2.3

deployment descriptor.

Example 3-12. Setting up welcome files in web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

<web-app>

<!-- Define servlets and servlet-mappings here -->

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>default.jsp</welcome-file>
 </welcome-file-list>

</web-app>

Whenever the servlet container encounters a URL for a web application that specifies only a directory,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

not a particular filename or servlet, then it looks for a welcome-file-list element in the

application's deployment descriptor. The servlet v2.3 specification calls these kinds of URLs valid
partial requests. The servlet container attaches any welcome filenames that it finds in web.xml to the
request (in the order that they appear in web.xml) and returns those files to the client.

For example, let's say Tomcat receives a request for http://www.mysite.org/cookbook/. Also imagine
that the web.xml file for the cookbook web application contains the welcome-file-list shown in

Example 3-12. Tomcat then returns http://www.mysite.org/cookbook/index.html if that file exists; if
it does not, Tomcat looks for the default.jsp file in the cookbook directory and returns that file
instead.

The servlet container initiates this search in response to any directory-style URL that it receives (such
as http://www.mysite.org/cookbook/bookinfo/). In other words, as long as an index.html or
default.jsp (or whichever filenames you choose) exists in a web application's root directory, and the
web developer has properly configured the welcome-file-list element, then those files are invoked

by default in response to directory-style requests.

See Also

Chapter 1 on web.xml; Recipe 3.1-Recipe 3.6; Recipe 3.9; Chapter 11 of the Servlet v2.3 and 2.4
specifications on mapping requests to servlets.

[Team LiB]

http://www.mysite.org/cookbook/
http://www.mysite.org/cookbook/index.html
http://www.mysite.org/cookbook/bookinfo/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.9 Restricting Requests for Certain Servlets

Problem

You want to allow only authenticated users to request certain servlets.

Solution

Use the security-constraint element in the web.xml deployment descriptor.

Discussion

Some web applications contain servlets that should not be invoked directly by web users, because
they handle sensitive data and may have special jobs (such as administering the server or web
application). For example, you could design a servlet that is accessed only by server administrators.
How do you protect these servlets from being invoked improperly or by unauthorized users?

In the latter case, you can use declarative security, or container-managed security. This strategy
involves configuring the web.xml deployment descriptor with your application's security information,
thereby decoupling security information from your servlet's code. Any security changes for a web
application can then be made in the XML configuration files (or via the WebLogic Server 7.0
Administration Console) without messing with the servlet's source code. The security configuration is
then loaded and implemented by the servlet container.

You can also use programmatic security , which involves including security-related code within
servlets, such as checking the HttpServletRequest object to see if a user is authorized to use a

certain web resource.

For Tomcat, using the security-constraint element in web.xml requires creating a username and

password in the XML file located at <Tomcat-installation-directory>/conf/tomcat-users.xml. This is an
XML file in which you define internal users and passwords. It might look like Example 3-13.

Example 3-13. A tomcat-users.xml file

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager"/>
 <role rolename="tomcat"/>
 <role rolename="developer"/>
 <user username="tomcat" password="tomcat" roles="tomcat,manager"/>
 <user username="bruce" password="bruce1957"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 roles="tomcat,manager,developer"/>
 <user username="stacy" password="stacy1986" roles="tomcat"/>
</tomcat-users>

This XML fragment includes a tomcat-users root element containing one or more role and user

elements, depending on how many users are defined for the web applications handled by that
instance of Tomcat. This tomcat-users.xml configuration file is accessible by all of the contained web
applications.

You then create security-constraint, login-config, and security-role elements inside of the

web application's deployment descriptor, or web.xml.

If you are not using the servlet v2.4 deployment descriptor, the security-
related elements have to appear in this order and follow most of the other
elements that can appear in web.xml, or your deployment descriptor will not be
a valid XML file. Specifically, the only elements that can come after security-
role are env-entry, ejb-ref, and ejb-local-ref.

The security-constraint element looks like Example 3-14, given that the protected URL pattern in
this case is <url-pattern>/CookieServlet</url-pattern>.

Example 3-14. The security-constraint element

<security-constraint>
 <web-resource-collection>
 <web-resource-name>CookieInfo</web-resource-name>
 <url-pattern>/CookieServlet</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>This applies only to the
 "developer" security role</description>
 <role-name>developer</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
</security-constraint>

The security-constraint element must contain one or more web-resource-collection elements.
The web-resource-collection element describes which web resources in the web application are

protected by the specified security constraint. In other words, a request over the Internet for a web
resource, such as a servlet, triggers any security constraint that has been mapped to the resource. In
this example, the security constraint protects any request that fits the URL pattern, <web-
application-root-directory>/CookieServlet. The http-method elements specify the HTTP methods that
this security constraint covers. In the example, a GET or POST request for /CookieServlet triggers the
configured security mechanism. If you do not include any http-method elements under the
security-constraint element, the constraint will apply to any HTTP method (such as PUT or
DELETE, in addition to GET and POST).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The objects that implement the javax.servlet.RequestDispatcher interface

may forward HTTP requests from one servlet to a protected servlet without
triggering these security constraints.

The auth-constraint element is designed to describe the security roles that permit access to the

web component. A security role is a name that represents the security privileges a user or group of
users have in relation to a particular resource, such as a servlet. Examples of security roles are
admin, manager, or developer. In the case of the tomcat-users.xml file, users are assigned to roles.
Within the security-constraint element example, only users that are mapped to the developer
role in the tomcat-users.xml file have access to CookieServlet.

How does a web application authenticate a user in the first place? For instance, how can the web
application find out the requester's username and password, and thereby determine if he can be
given access to the servlet? In container-managed security, this is what the login-config element is
used for. This element appears after the security-constraint element in the web.xml file. Both

elements might look like Example 3-15 in a web application's deployment descriptor.

Example 3-15. Using login-config with a security-constraint element

<security-constraint>
 <web-resource-collection>
 <web-resource-name>CookieInfo</web-resource-name>
 <url-pattern>/CookieServlet</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>This applies only to the
 "developer" security role</description>
 <role-name>developer</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>
<security-role>
 <role-name>developer</role-name>
</security-role>

The login-config element specifies the authentication method that is used to authenticate any user
requests for protected web resources. Protected web resources are those specified by a web-
resource-collection element, inside the security-constraint element. In the example, BASIC

authentication is used for any requests that match the URL pattern /CookieServlet. BASIC is a
familiar form of web authentication in which the browser presents the user with a dialog window for
entering the username and password. Tomcat compares the given name and password with the user

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information configured in the tomcat-users.xml file, and then uses the web application's security-
constraint configuration to determine whether the user can access the protected servlet.

The auth-method child element of login-config can also be given the values
FORM, CLIENT-CERT, or DIGEST.

One more ingredient is necessary to complete this servlet security configuration: the security-role

element. Example 3-15 creates a security role named developer. The developer value also appears in
the security-constraint child element auth-constraint. This means that only users who are

mapped to the security role developer are able to access web resources which are protected by the
security constraint (i.e., that are identified by a web-resource-collection child element of
security-constraint). In other words, this authentication method is actually a two-step process:

Check if the provided username and password are correct.1.

Determine if the user is mapped to the specified security role. For example, the user might
provide a correct username and password, but she may not be mapped to the specified security
role. In this case, she is prevented from accessing the specified web resource.

2.

The users are mapped to security roles in Tomcat in the previously mentioned tomcat-users.xml file.
Here is an example of what a user element might look like in the tomcat-users.xml file:

<username="bwperry" password="bruce2002"
 roles="developer,standard,manager" />

This user is assigned three different roles: developer, standard, and manager. The Tomcat servlet
container uses these XML elements in the tomcat-users.xml file to determine whether certain
username/password combinations have been assigned particular roles. Figure 3-1 is designed to
unravel these confusing cross-references. Just think of a security role as a way to further refine a
group of application users, or group them in terms of their user privileges.

Figure 3-1. Using a security constraint element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The security configuration depicted by Example 3-15s XML text can be used with WebLogic 7.0, but
the WebLogic-specific configuration file is called weblogic.xml.

The weblogic.xml file accompanies the web.xml deployment descriptor inside
your web application's WEB-INF directory.

Example 3-16 shows the XML within the weblogic.xml deployment descriptor.

Example 3-16. Security role in weblogic.xml

<!-- weblogic.xml security role mapping -->
<security-role-assignment>
 <role-name>developer</role-name>
 <principal-name>bwperry</principal-name>
</security-role-assignment>

In WebLogic 7.0, you can also establish users, groups, and security roles that are global to a
particular WebLogic server through the Administrative Console.

This recipe described how to restrict the requests for certain servlets. The next recipe shows one way
to prevent all requests except those forwarded from a controller servlet from reaching other servlets.

See Also

Chapter 1 on web.xml; Recipe 3.1-Recipe 3.8; Chapter 11 of the Servlet v2.3 and 2.4 specifications
on mapping requests to servlets; the Core J2EE Blueprints page:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html

[Team LiB]

http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 3.10 Giving Only the Controller Access to Certain
Servlets

Problem

You want to set up the web application so that only a controller servlet has access to certain servlets.

Solution

Create a security-role that does not have any users mapped to it, then specify in the security-
constraint element the servlets that you want to preserve for the controller.

Discussion

This recipe shows how you can create a security-constraint element that forbids any requests

from reaching specified URL patterns.

The servlets mapped to those URL patterns are forwarded requests only from one or more controller
servlets that use an object that implements the javax.servlet.RequestDispatcher interface.

Recipe 3.7 includes an example controller servlet that forwards a request to another servlet using a
RequestDispatcher. Example 3-17 shows how you can set up the security-constraint element

for an example servlet with the registered name "Weather".

Example 3-17. A security-constraint that allows only
RequestDispatcher.forward-related requests

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd">
<web-app>
<!-- configure the Weather servlet;
 it receives requests from a
 controller servlet -->
 <servlet>
 <servlet-name>Weather</servlet-name>
 <servlet-class>
 com.jspservletcookbook.Weather
 </servlet-class>
 </servlet>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <servlet-mapping>
 <servlet-name>Weather</servlet-name>
 <url-pattern>/weatherurl-pattern>
 </servlet-mapping>

<!-- this element prevents the Weather servlet
 from directly receiving requests from users,
 because no users are mapped to the 'nullrole' role-->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Weather
 </web-resource-name>
 <url-pattern>/weather</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>nullrole</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE
 </transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
 <security-role>
 <role-name>nullrole</role-name>
 </security-role>
</web-app>

The next step in protecting the Weather servlet is to make sure that the tomcat-users.xml file does
not map any users to the "nullrole" security role. The security-role element looks like this:

<security-role>
 <role-name>nullrole</role-name>
</security-role>

Here is what a typical <Tomcat-installation-directory>/conf/tomcat-users.xml file looks like:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager"/>
 <role rolename="tomcat"/>
 <role rolename="developer"/>
 <user username="tomcat" password="tomcat" roles="tomcat,manager"/>
 <user username="bruce" password="bruce1957"
 roles="tomcat,manager,developer"/>
</tomcat-users>

In web applications configured in the manner of Example 3-17, any direct request to the URL pattern

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/weather receives a response in the category of "HTTP Status 403-Access to the requested resource
has been denied." However, a controller servlet can still use the
RequestDispatcher.forward(request,response) method to forward a request to the /weather

URL for processing. Recipe 3.7 and Example 3-10 show a servlet that uses this forward method, so I
won't repeat that code here.

Make sure to configure friendly error pages for the users who make requests to
restricted servlets. Chapter 9 describes how to designate error pages for certain
HTTP response codes in the web application's deployment descriptor. You may
want to provide automatic refreshes after a specified interval from the error
page to the controller or any login pages.

See Also

Chapter 1 on web.xml; Recipe 3.1-Recipe 3.9; Chapter 11 of the Servlet v2.3 and 2.4 specifications
on mapping requests to servlets; the Core J2EE Blueprints page:
http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html.

[Team LiB]

http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 4. Using Apache Ant

Introduction

Recipe 4.1. Obtaining and Setting Up Ant

Recipe 4.2. Using Ant Targets

Recipe 4.3. Including Tomcat JAR files in the Build File Classpath

Recipe 4.4. Compiling a Servlet with an Ant Build File

Recipe 4.5. Creating a WAR File with Ant

Recipe 4.6. Creating a JAR File with Ant

Recipe 4.7. Starting a Tomcat Application with Ant

Recipe 4.8. Stopping a Tomcat Application with Ant
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Apache Ant (http://ant.apache.org/) is a Java- and XML-based automation tool that is available as
open source software from the Apache Software Foundation. Ant began its life as part of the Tomcat
code base. The tool's first official release as a standalone software product was in July 2000,
according to the Ant FAQ (http://ant.apache.org/faq.html). The original creator of both Ant and
Tomcat is James Duncan Davidson.

Ant has evolved into the build tool of choice for automating Java software projects, which means
building these projects from beginning to end. This includes compiling Java classes, creating JAR or
WAR files, and initiating filesystem-related tasks such as creating directories and moving or copying
files. All of these tasks are controlled by the Ant build file for a specific project.

An Ant build file is an XML file that is launched from the command line and executes Java classes
behind the scenes. Ant is also extensible; you can customize this tool to suit your own purposes. In
addition, Ant is cross-platform and very portable, since it is based on XML and Java. Once web
developers become familiar with this handy and powerful tool, they find that it greatly eases the task
of compiling, packaging, and inevitably altering and redeploying their web applications.

This chapter first describes how to download Ant and set it up on your system, and then explains Ant
targets and tasks for those who are new to Ant. The rest of you can merrily move on to other recipes
describing how to create a classpath that includes the necessary Tomcat JAR files, create WAR and
JAR files, and use Ant to execute Tomcat's Manager application.

[Team LiB]

http://ant.apache.org
http://ant.apache.org/faq.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 4.1 Obtaining and Setting Up Ant

Problem

You want to download and set up Apache Ant on your computer.

Solution

Point your browser to http://ant.apache.org/, download the binary or source distribution of Ant, then
follow the instructions given in this recipe and on the Ant support site.

Discussion

The binary distribution of Apache Ant can be downloaded from
http://ant.apache.org/bindownload.cgi. You can also download the source distribution, which contains
the Java source files for Ant, from http://ant.apache.org/srcdownload.cgi. You must have the Java
Software Development Kit (SDK) installed.

Ant v1.5.3 will be the last release that supports JDK 1.1. Ant v1.5.1 can run
with JDK 1.1, although some tasks work only on JDK 1.2.

To use Ant, you must have a Java API for XML Processing (JAXP)-compliant XML parser available on
your classpath. The binary Ant distribution includes the Apache Xerces2 XML parser. If you opt for a
different JAXP-compliant parser, you should remove xercesImpl.jar and xmlParserAPIs.jar from Ant's
top-level /lib directory (as in jakarta-ant-1.5.1/lib) and put the JAR file(s) for the alternative parser
into Ant's /lib directory. You can also add them directly to your user classpath.

The user classpath is the classpath represented by the CLASSPATH environment

variable on your machine. This classpath overrides the default value for the
user classpath (., or the current directory). The java command-line tool's -cp
or -classpath switches override the CLASSPATH environment variable. The
user classpath can also be set by a JAR file specified by the java tool's -jar

switch. This designation in turn overrides the other ways of specifying a
classpath. The bottom line is that it is easier to place your parser of choice in
the jakarta-ant-1.5.1/lib directory instead of fooling around with these
classpath issues.

http://ant.apache.org/
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/srcdownload.cgi
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The complete installation directions for Ant and links to related Web pages are at
http://ant.apache.org/manual/index.html.

Take the following steps to get Ant running on your machine:

Unpack the compressed file (in ZIP or TAR format) containing the Ant tool. With Ant v1.5.1,
unpacking the distribution file creates a directory called jakarta-ant-1.5.1.

1.

Set the ANT_HOME environment variable to the directory where you installed Ant. On Unix, this

can be accomplished by typing a command-line phrase:

2.

export ANT_HOME=/usr/local/jakarta-ant-1.5.1

On Windows type:

set ANT_HOME=h:\jakarta-ant-1.5.1

Add the <Ant-installation-directory>/bin directory to your PATH environment variable. This
allows the developer to change to any working directory with a build.xml file and type ant to

run this file (read the next recipe for a description of executing a build.xml file). The <Ant-
installation-directory>/bin directory contains the scripts which launch the Java classes that form
the basis of Ant.

3.

Optionally, set the JAVA_HOME environment variable to the directory where your JDK is installed.
You might as well set the JAVA_HOME environment variable, because the scripts that are

provided with Ant in its /bin directory can then automatically add the required JDK-related
classes when you want to use the javac or rmic tasks. Tasks are XML elements that do certain
jobs in Ant files, such as war (to create Web Archive files) and javac (to compile Java classes

with Ant).

4.

Test your installation by typing ant -version. If everything goes well, this command produces

a return value like this:

5.

K:\>ant -version
Apache Ant version 1.5.1 compiled on October 2 2002

See Also

Recipe 4.2 on using Ant targets; Recipe 4.3 on including Tomcat JAR files in the Ant classpath; Recipe
4.4 on compiling a servlet with Ant; Recipe 4.5 on creating a WAR file with Ant; Recipe 4.6 on using
Ant to create JAR files; Recipe 4.7 and Recipe 4.8 on starting and stopping Tomcat with Ant; Recipe
2.1 and Recipe 2.6 on deploying web applications using Ant; the Apache Ant manual:
http://ant.apache.org/manual/index.html; the Apache Ant Project: http://ant.apache.org.

[Team LiB]

http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/index.html
http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 4.2 Using Ant Targets

Problem

You want to create target elements for developing web applications with an Ant build file.

Solution

Create one or more target elements as child elements of a project element. Make sure the
targets have the required name attribute and value.

Discussion

An Ant build file is an XML file-in other words, a plaintext file that includes elements and attributes.
Example 4-1 shows an Ant file that echoes a message to the console. As mentioned in the
introduction, Ant files execute Java code behind the scenes. The way you control the desired actions
of your build file is by arranging one or more target elements inside the project root element.

Example 4-1. An Ant build file that echoes a console message

<project name="Cookbook" default="echo-message" basedir=".">
 <target name="echo-message"
 description="Echoing a message to the console">
 <echo message="Hello from the first Ant file"/>
 </target>
</project>

Ant files have one project root element, which must have a default attribute and value. The
default attribute specifies the target that runs if no other targets are identified on the command
line. The name and basedir attributes are optional. The name attribute, as you might have guessed,
gives the project element a descriptive name. The basedir attribute specifies the directory by

which paths that are referred to in the file are calculated. Its default value is the directory containing
the build file.

What are targets? They are groups of tasks, represented in Ant by a target element. Targets group
one or more tasks (which are in turn represented by a task element) into logical and named units of

control, similar to Java methods.

Tasks include actions that compile Java files (the javac task), copy files from one location to another
(copy), and create JAR or WAR files (aptly named jar and war). For instance, the echo-message
target in Example 4-1 calls the echo task.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The target's name in Example 4-1 is echo-message, which is just a name that I created for it. A
target's description attribute is optional, as are three other attributes: depends, if, and unless.
I'll explain the purpose of depends shortly; the if and unless attributes allow the conditional

execution of targets.

As long as Ant is properly set up on your computer, here is what the command-line sequence for
executing this example build.xml file might look like:

H:\book\cookbook\sec1\sec1_3>ant
Buildfile: build.xml

echo-message:
 [echo] Hello from the first Ant file.

BUILD SUCCESSFUL
Total time: 3 seconds

First, the XML file with the project root element is saved with the filename build.xml. Then the user
changes to the directory that contains this file and types ant, without any options. Ant then looks for

a file called build.xml in the current directory and runs the project's default target (in Example 4-1,
the echo-message target).

You can give the build file a name other than build.xml, but then you need to
run Ant with the -buildfile option:

ant -buildfile dev.xml

Most build files involve several targets that execute in a certain sequence to initiate Java
development tasks. Example 4-2 demonstrates the depends attribute. This example shows how to

execute several targets in a specified sequence.

Example 4-2. Using the depends target attribute to launch a sequence of
targets

<project name="Cookbook" default="echo-message" basedir=".">

 <target name="init">
 <property name="name" value="Bruce Perry"/>
 </target>

 <target name="show-props" depends="init">
 <echo message=
 "The 'name' property value is: ${name}"/>
 <echo message=
 "OS name and version is: ${os.name} ${os.version} "/>
 <echo message=
 "Your Java home is: ${java.home} "/>
 </target>

 <target name="echo-message" depends="show-props">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <echo message=
 "Hello from the first Ant file in directory: ${basedir}"/>
 </target>

</project>

This time, instead of just one target, the project element has several nested targets. The echo-
message target is still the default target, but its behavior has changed due to the value of its depends

attribute. This optional attribute specifies the name of one or more Ant targets that must be executed
prior to the current target. In other words, the echo-message target specifies, "I depend on the
show-props target, so execute it before me." The show-props target, however, also has a depends
attribute that indicates a reliance on the init target. As a result, this build file establishes a

sequence for executing its targets: init show-props echo-message.

The result of running the prior build file at the command line is shown here:

H:\book\cookbook\sec1\sec1_3>ant
Buildfile: build.xml

init:

show-props:
 [echo] The 'name' property value is: Bruce Perry
 [echo] OS name and version is: Windows NT 4.0
 [echo] Your Java home is: h:\jdk1.3.1_02\jre

echo-message:
 [echo] Hello from the first Ant file in directory:
 H:\book\cookbook\sec1\sec1_3

BUILD SUCCESSFUL
Total time: 2 seconds

Here is what this build file accomplishes:

The init target first creates a name property that contains the value "Bruce Perry". The target
uses the property task to accomplish this. Recall that tasks do the real work in Ant; targets are

simply grouping elements that call one or more tasks.

1.

The show-props target then echoes the values of the name property (created by the init
target) and three built-in properties: os.name, os.version, and java.home.

2.

The echo-message target issues its message to the console and returns the value of the
basedir property. All of the targets use the echo task to deliver their messages.

3.

Note that the name property would not be set if the init target was never executed. If the show-
props target is defined as seen here, there will be problems:

<target name="show-props">
 . . . </target>

However, it is properly defined as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<target name="show-props" depends="init">
 . . . </target>

Without the depends attribute, the init target would never be executed, because the build file's

execution sequence would look like show-props echo-message. The name property would never

be given a value.

Ant build files are usually much more complex than these examples, which is more of a testament to
Ant's power than evidence of poor design. Chapter 2 shows how to deploy individual servlets and web
applications with more extensive Ant files.

See Also

Recipe 4.1 on downloading and setting up Ant; Recipe 4.3 on including Tomcat JAR files in the Ant
classpath; Recipe 4.4 on compiling a servlet with Ant; Recipe 4.5 on creating a JAR file with Ant;
Recipe 4.7 and Recipe 4.8 on starting and stopping Tomcat with Ant; Recipe 2.1 and Recipe 2.6 on
deploying web applications using Ant; the Ant manual section on the property task:
http://ant.apache.org/manual/CoreTasks/property.html; the Ant manual segment on targets:

http://ant.apache.org/manual/using.html#targets; the Apache Ant manual index page:
http://ant.apache.org/manual/index.html; the Apache Ant Project: http://ant.apache.org .

[Team LiB]

http://ant.apache.org/manual/CoreTasks/property.html
http://ant.apache.org/manual/using.html#targets
http://ant.apache.org/manual/index.html
http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 4.3 Including Tomcat JAR files in the Build File
Classpath

Problem

You want to establish an Ant classpath that includes various Tomcat JAR files.

Solution

Use a path-like structure to define the classpath, then refer to this classpath whenever you need it.
Specify the directories where the necessary JAR files are located with an external properties file.

Discussion

Before you can compile a servlet using Ant, you must ensure that the servlet API classes are
available on the classpath that the Ant build file is using for compilation. For example, the <Tomcat-
installation-directory>/common/lib directory contains servlet.jar, which includes the necessary
classes for compiling a servlet. In addition, you might want to include the mail.jar component from
the same directory to compile a servlet that uses the JavaMail API. A different directory-<Tomcat-
installation-directory>/common/endorsed-includes the xmlParserAPIs.jar file, which you might
specify on the classpath to use the associated SAX and DOM XML programming classes.

Example 4-3 defines a classpath using a path XML element. A compile-servlet target further down

in the XML file then uses the defined classpath to compile a servlet.

Example 4-3. Defining a classpath including Tomcat JAR files

<project name="Cookbook" default="compile-servlet" basedir=".">

 <!-- include compiled-servlet and tomcat-dir properties -->
 <property file="global.properties" />

<path id="servlet-classpath">
 <fileset dir="${tomcat.dir}/common/lib">
 <include name="*.jar" />
 </fileset>
 <fileset dir="${tomcat.dir}/common/endorsed">
 <include name="*.jar" />
 </fileset>
</path>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<target name="compile-servlet">
 <echo message="Compiling the servlet...."/>
 <javac srcdir="${src}" destdir="${build}">
 <include name="${compiled.servlet}.java" />
 <classpath refid="servlet-classpath "/>
 </javac>
</target>

</project>

Using the path element, the classpath can be defined similarly to an instance variable of a Java class,

and its value can then be used throughout the build file. The advantage of this approach is that the
classpath may be very complex, but it has to be defined only once. Whenever there is a need for a
classpath in an Ant file, the classpath element and its refid attribute can be used to pull in the

defined classpath. In Example 4-3, the path element is given a unique ID, "servlet-classpath." The
developer creates this name to uniquely identify the path-like structure.

Another core type of Ant task is a fileset. filesets are elements that represent groups of files.
The two nested filesets in the example have dir attributes that specify two directories under the

Tomcat installation directory: ./common/lib and ./common/endorsed. These are directories that
contain many important Java libraries, such as servlet.jar and mail.jar. A fileset element's nested
include element creates a pattern (with the name attribute) that specifies the types of files to include
in each fileset. The example includes all files in the specified directories ending in ".jar".

If you wanted to further refine the types of JAR files that are included in a fileset, you could use the
fileset's nested exclude element:

<fileset dir="${tomcat.dir}/common/lib">
 <include name="*.jar" />
 <exclude name="commons*.jar"/>
</fileset>

The pattern "commons*.jar" excludes all the JAR files from the classpath that begin with the word
"commons," followed by zero or more characters and a ".jar" suffix.

The compile.servlet target in Example 4-3 echoes a message to the console, then uses the javac

task to compile a servlet.

This code from Example 4-3 makes two properties that are defined in another file available to the Ant
build file:

<property file="global.properties" />

Here is what the global.properties file looks like:

tomcat.dir=k:/jakarta-tomcat-4.1.12
compiled.servlet=MyTask
src=.\src
build=.\build

The property compiled.servlet evaluates to the name of the Java source file that is being compiled.

The tomcat.dir file is the file path to the Tomcat root directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Example 4-3, the classpath element is nested inside the javac task, as in:

<javac srcdir="${src}" destdir="${build}">
 <include name="${compiled.servlet}.java" />
 <classpath refid="servlet-classpath"/>
</javac>

The classpath element's refid attribute pulls in the classpath that was defined earlier in the build
file (including all the Tomcat JARs in ./common/lib and ./common/endorsed). The value of the refid
attribute is the id of the path element ("servlet-classpath"). In other words, the path element in
Example 4-3 represents a classpath; the element's id or name is "servlet-classpath."

If it is necessary to add more classes or JARs to the classpath that you are defining in an Ant file,
then add another nested fileset to the path element. Example 4-4 adds all of the contents of the

build directory to the classpath defined by Example 4-3 (along with the Tomcat-related JARs) by
adding a third nested fileset.

Example 4-4. Nesting three filesets in a path structure

<path id="servlet-classpath">

 <fileset dir="${tomcat.dir}/common/lib">
 <include name="*.jar" />
 </fileset>

 <fileset dir="${tomcat.dir}/common/endorsed">
 <include name="*.jar" />
 </fileset>

 <fileset dir="./build"/>

</path>

An idiom that often appears in path-related patterns is ** , which means zero
or more directories. For example, the following fileset tag includes all of the
files contained in any nested images folders (src is a property name pointing to
the source directory of this fileset), no matter how deeply they are nested:

<fileset dir="${src}">
 <include name="**/images/*"/>
</fileset>

See Also

Recipe 4.1 on downloading and setting up Ant; Recipe 4.2 on writing Ant targets; Recipe 4.4 on
compiling a servlet with Ant; Recipe 4.5 on creating a WAR file with Ant; Recipe 4.6 on using Ant to
create JAR files; Recipe 4.7 and Recipe 4.8 on starting and stopping Tomcat with Ant; Recipe 2.1 and
Recipe 2.6 on deploying web applications using Ant; the Ant manual section on the property task:
http://ant.apache.org/manual/CoreTasks/property.html; the Ant manual segment on targets:

http://ant.apache.org/manual/using.html#targets; the Apache Ant manual index page:

http://ant.apache.org/manual/CoreTasks/property.html
http://ant.apache.org/manual/using.html#targets
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://ant.apache.org/manual/index.html; the Apache Ant Project: http://ant.apache.org.

[Team LiB]

http://ant.apache.org/manual/index.html
http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 4.4 Compiling a Servlet with an Ant Build File

Problem

You want to set up a simple build file that you can use to compile individual servlets, without
hardcoding servlet names.

Solution

Design a build file so that the name of the Java class to compile can be set from an external
properties file or from the command line.

Discussion

If you are not using an IDE to develop and compile your servlets, an Ant build file can automate the
compiling of your source files. In order to make this build file reusable, you should design it to get the
name of the file from an external properties file or from the command line.

Ant's advantages come to the fore when it is used to automate all of the aspects of building,
archiving, and deploying a web application. However, you can also use Ant as a kind of batch
processor. In this recipe, I use Ant to dynamically choose a Java file to compile.

The build.xml file in Example 4-5 imports a couple of properties from a build.properties file, including
the name of the servlet to be compiled. One way to choose a different Java file to compile is to
change the value of the compiled.servlet property in this file, without touching the build file:

tomcat.dir=/users/bruceper/java/jakarta-tomcat-4.1.12
compiled.servlet=MyServlet

To run Example 4-5, change to the directory where the build.xml file is located and type ant without

any options.

If you are running an Ant build file with a different name, then launch it with
this command line:

ant -buildfile ant_compiler.xml

First, this file imports the tomcat.dir and compiled.servlet properties from a build.properties file.
This file is located in the same directory as the build file. The tomcat.dir property is used to create a

classpath composed of the JAR files in two directories that are a part of Tomcat's directory tree (see
Recipe 4.2).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-5. Compiling a servlet with an Ant build file

<project name="servlet compiler" default="compile" basedir=".">

 <property file="build.properties" />

 <path id="servlet-classpath">

 <fileset dir="${tomcat.dir}/common/lib">
 <include name="*.jar" />
 </fileset>

 <fileset dir="${tomcat.dir}/common/endorsed">
 <include name="*.jar" />
 </fileset>

 </path>

 <target name="init"
 description="Initializes some properties.">
 <echo message="Initializing properties."/>
 <property name="build" value="./build" />
 <property name="src" value="./src" />

 </target>

 <target name="prepare" depends="init">
 <echo message="Cleaning up the build directory."/>
 <delete dir="${build}"/>
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="prepare"
 description="Compile the servlet">
 <echo message="Compiling the Java file "/>
 <echo message="${compiled.servlet}.java..."/>
 <javac srcdir="${src}" destdir="${build}">
 <include name="${compiled.servlet}.java" />
 <classpath refid="servlet-classpath "/>
 </javac>
 </target>
</project>

The init target creates two properties representing the source (src) and destination (build)

directories of the target servlet. The Java file waiting to be compiled is located in an src directory. A
typical build file also has an init target that initializes several more properties. Since the compile
target has a depends attribute that specifies the prepare target, and the prepare target depends on

init, then the build sequence looks like init prepare compile.

The prepare target just cleans up the build directory to ensure that the build directory contains the

latest compiled classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The compile target uses the javac task to actually compile the Java file. javac has attributes that

specify the source and destination directories of the Java file(s) that it will attempt to compile.
Example 4-5 uses the src and build properties to provide values for these attributes. Two nested
elements of the javac task compile the specified servlet file and provide the classpath that the javac

task uses (see Recipe 4.2).

Here is the console output after running this build file (with some editing for readability):

init:
 [echo] Initializing properties.

prepare:
 [echo] Cleaning up the build directory.
 [delete] Deleting directory
 /Users/bruceper/books/cookbook/sec1/sec1_3/build
 [mkdir] Created dir:
 /Users/bruceper/books/cookbook/sec1/sec1_3/build

compile:
 [echo] Compiling the Java file MyServlet.java...
 [javac] Compiling 1 source file to
 /Users/bruceper/books/cookbook/sec1/sec1_3/build

BUILD SUCCESSFUL
Total time: 6 seconds

Using the command line to declare the target servlet

What if you want to change the servlet that you are compiling, but are not inclined to type the new
Java filename into the build.properties file? Running the build.xml Ant file from the command line in
the following manner will override the imported compiled.servlet property:

ant -Dcompiled.servlet=AnotherServlet

AnotherServlet.java is the filename in this example of the Java file that awaits compilation in the src
directory. This fragment of output shows that any properties passed in from the command line
override properties of the same name created within or imported into the build file:

compile:
 [echo] Compiling the Java file AnotherServlet.java...
 [javac] Compiling 1 source file to
 /Users/bruceper/books/cookbook/sec1/sec1_3/build

The javac task compiles only only the java files in the src directory that do not have a corresponding

class file, or in cases where the class file is older than its corresponding .java file. As always, check
the Ant manual to find out about all the different variations and attributes of javac:

http://ant.apache.org/manual/CoreTasks/javac.html.

http://ant.apache.org/manual/CoreTasks/javac.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want to copy the compiled servlet class to a web application directory,
you could add a deploy-servlet target that uses the copy Ant task:

<target name="deploy-servlet" depends="compile">
 <echo message=
 "Copying the servlet to Tomcat web app"/>
 <copy todir="${tomcat.webapps}/WEB-INF/classes">
 <fileset dir="${build}" />
 </copy>
</target>

The copy task takes its nested fileset, which represents the contents of the
directory named by the build property value, and copies these class files to the

WEB-INF/classes directory of Tomcat's default web application.

See Also

Recipe 4.1 on downloading and setting up Ant; Recipe 4.2 on writing Ant targets; Recipe 4.3 on
creating a classpath for an Ant file; Recipe 4.5 on creating a WAR file with Ant; Recipe 4.6 on using
Ant to create JAR files; Recipe 4.7 and Recipe 4.8 on starting and stopping Tomcat with Ant; Recipe
2.1 and Recipe 2.6 on deploying web applications using Ant; the Ant manual section on the property
task: http://ant.apache.org/manual/CoreTasks/property.html; the Ant manual segment on targets:

http://ant.apache.org/manual/using.html#targets; the Apache Ant manual index page:
http://ant.apache.org/manual/index.html; the Apache Ant Project, http://ant.apache.org.

[Team LiB]

http://ant.apache.org/manual/CoreTasks/property.html
http://ant.apache.org/manual/using.html#targets
http://ant.apache.org/manual/index.html
http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 4.5 Creating a WAR File with Ant

Problem

You want to use Ant to create a Web ARchive (WAR) file.

Solution

Use the Ant war task.

Discussion

A WAR file is a web application archive that contains servlet classes, JSP files, HTML files, image
directories, JAR files, XML configuration files, and other resources that a web application depends on.
The WAR is deployed on a web container like Tomcat in order to make the web application available
to the container's users. Ant includes a war task that makes it easy to generate a WAR from a

directory structure that contains the necessary web application files.

Example 4-6 is a standalone build file that creates a WAR file. It could easily comprise one target in a
complex build file that compiles Java files, creates the WAR, and deploys the application (see Recipe
2.6).

This example creates a build sequence of init prepare create-war. The init target

creates several properties that refer to directories, such as the build directory containing the servlet
class files. The context-path property provides the context path for the web application, and in this

case, the name of the WAR file (myapp.war).

You execute this build file from a command prompt whose working directory is the web application's
root or top-level directory.

Example 4-6. An Ant file using the war task

<project name="war-task" default="create-war" basedir=".">

 <target name="init"
 description="Initializes some properties.">

 <echo message="Initializing properties."/>

 <property name="build" value=".\build" />
 <property name="src" value=".\src" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <property name="dist" value=".\dist" />
 <property name="lib" value=".\lib" />
 <property name="web" value=".\web" />
 <property name="meta" value=".\meta" />
 <property name="context-path" value="myapp" />

 </target>

 <target name="prepare" depends="init">

 <echo message=
 "Cleaning up the build and dist directories."/>

 <delete dir="${build}"/>
 <mkdir dir="${build}"/>
 <delete dir="${dist}"/>
 <mkdir dir="${dist}"/>

 </target>

 <target name="create-war" description=
 "creates a web application archive file"
 depends="prepare">

 <war destfile="${dist}/${context-path}.war"
 webxml="${meta}/web.xml">

 <classes dir="${build}"/>
 <lib dir="${lib}"/>
 <fileset dir="${web}"/>
 </war>
 </target>

 </project>

If the build file was called war-task.xml, then the Ant file is executed with this command line:

ant -buildfile war-task.xml

The create-war target calls the war task.

The war task's destfile attribute is required; it specifies the location of the resulting WAR file.
Example 4-6 creates the WAR in the dist directory. The webxml attribute specifies the location of the

web application's deployment descriptor. This web application's web.xml file (in this example) is
located in the meta directory.

The example war task has three nested elements: classes , lib, and fileset. The dir attribute of
the classes element points to the directory that contains the Java classes that are located in the
WEB-INF/classes directory. The war task automatically creates the WEB-INF/classes directory in the

WAR file. This task also reproduces all the package-related directories in the build directory when it
creates WEB-INF/classes. In other words, if the build directory includes a com/jspservletcookbook
directory structure, then the WAR will have the same structure in WEB-INF/classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The lib element grabs and stores any JAR files that will be located in the WAR file's WEB-INF/lib
directory. Finally, the fileset nested element, in this case, pulls in all the static files and any nested

image directories that are contained in /web and places them at the top level of the WAR's directory
tree. Here is what the output of this build file looks like (with some editing for readability):

init:
 [echo] Initializing properties.

prepare:
 [echo] Cleaning up the build and dist directories.
 [delete] Deleting directory
 /Users/bruceper/books/cookbook/build
 [mkdir] Created dir:
 /Users/bruceper/books/cookbook/build
 [delete] Deleting directory
 /Users/bruceper/books/cookbook/dist
 [mkdir] Created dir:
 /Users/bruceper/books/cookbook/dist

create-war:
 [war] Building war:
 /Users/bruceper/books/cookbook/dist/myapp.war

The war task has numerous other optional attributes that are explained in the Ant manual at

http://ant.apache.org/manual/CoreTasks/war.html.

See Also

Recipe 4.1 on downloading and setting up Ant; Recipe 4.2 on writing Ant targets; Recipe 4.3 on
creating a classpath for an Ant file; Recipe 4.4 on compiling a servlet with Ant; Recipe 4.6 on using
Ant to create JAR files; Recipe 4.7 and Recipe 4.8 on starting and stopping Tomcat with Ant; Recipe
2.1 and Recipe 2.6 on deploying web applications using Ant; the Ant manual section on the property
task: http://ant.apache.org/manual/CoreTasks/property.html; the Ant manual segment on targets:

http://ant.apache.org/manual/using.html#targets; the Apache Ant manual index page:
http://ant.apache.org/manual/index.html; the Apache Ant Project: http://ant.apache.org.

[Team LiB]

http://ant.apache.org/manual/CoreTasks/war.html
http://ant.apache.org/manual/CoreTasks/property.html
http://ant.apache.org/manual/using.html#targets
http://ant.apache.org/manual/index.html
http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 4.6 Creating a JAR File with Ant

Problem

You want to create a JAR file with Ant.

Solution

Use the built-in jar task.

Discussion

The jar task automates the creation of JAR files. Like the war task for WARs, the jar task allows you

to automate the command-line phrases you would have to type in for creating JARs. In this way,
build files using the jar task are somewhat like shell scripts or batch files for creating JARs. The Sun

Microsystems JAR file specification can be found at
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html.

In web applications, JAR files are used to contain separate code libraries that the web application
depends on, such as a database driver. They are located in a web application's WEB-INF/lib directory.
Example 4-7 shows an Ant target that uses the jar task to create a JAR, and then copies the JAR file

to the lib directory of a web application. These actions precede the archiving of the web application
into a WAR file, which can be included in the same build file to automate everything at once (see
Recipe 4.5 on creating WAR files).

Example 4-7. Creating a JAR file with Ant

<project name="jar-task" default="create-jar" basedir=".">

 <target name="init"
 description="Initializes some properties.">

 <echo message="Initializing properties."/>

 <property name="dist" value="dist" />
 <property name="web" value="web" />
 <property name="meta" value="meta" />
 <property name="jar-name" value="myutils" />

 </target>

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <target name="prepare" depends="init">

 <echo message=
 "Cleaning up the build and dist directories."/>

 <delete dir="${dist}"/>
 <mkdir dir="${dist}"/>

 </target>

 <target name="create-jar"
 description="creates a JAR archive file"
 depends="prepare">

 <jar destfile="${dist}/${jar-name}.jar"
 basedir="../../"
 includes="**/*.class **/${web}/*.html">

 <fileset dir="../../images"/>

 </jar>

 </target>

 </project>

This build file contains three targets in the build sequence init prepare create-jar. These

targets create some properties and clean up a directory called dist that contains the resultant JAR
file. The create-jar target calls the jar task, which looks like:

<jar destfile="${dist}/${jar-name}.jar" basedir="../../"
 includes="**/*.class **/${web}/*.html">

 <fileset dir="../../images"/>

</jar>

The destfile attribute of the jar element specifies the location and name of the JAR file after it is
created. I used a property called jar-name here, so that the user can run this Ant file from the

command line and feed a new JAR filename into the build file if need be, as in:

ant -Djar-name=mynewjar.jar

Remember that any properties specified with the -D switch override the

properties of the same name defined inside the build file.

The basedir attribute of the jar task identifies the top-level directory of files that will be included in
the JAR. In the example, the pattern ../../ means "go up two directories from the basedir of this

project"; in other words, go up two directories from where the Ant build file is located.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The includes attribute has two space-separated patterns (you can also separate them with a

comma). The patterns further refine the types of files that will be included in the JAR file. The first
pattern specifies the inclusion of all the files ending with the .class suffix that are located in zero or
more directories beneath the basedir location. This JAR, as a result, contains all of the Java class

files in all directories nested beneath the base directory; the JAR reproduces any nested directories
that it finds with the class files. The other pattern (**/${web}/*.html) takes all directories nested

beneath the base directory called web and includes any files that end with .html in the JAR. Once
again, the nested directories will be included with the JAR and the HTML files.

Finally, a fileset element nested within the jar task grabs all the contents of the ../../images folder

and includes them in the JAR, but it does not include the images folder itself. A way to include the
images folder and its contents at the top level of the JAR is to change the jar task to:

<jar destfile="${dist}/${jar-name}.jar" basedir="../../"
 includes="**/*.class **/${web}/*.html **/images/*.gif"/>

This task adds a third pattern to the includes attribute (**/images/*.gif), which grabs all the GIF
files contained by any images directories that are nested in the base directory (the value of the jar
element's basedir attribute). An images directory will be included in the JAR if one is found.

The ** pattern is often used in Ant elements; it means "zero or more

directories."

Manifest

The jar task creates a META-INF/MANIFEST.MF file for the JAR if the jar task's manifest attribute

does not appear. The default manifest looks like this:

Manifest-Version: 1.0
Created-By: Apache Ant 1.5.1

If you want to specify the location of your own manifest file for reasons such as signing a JAR file or
specifying the file that contains the main() method in an executable JAR, use the jar task's
manifest attribute. This optional attribute can be either the file location of the manifest or the name
of another JAR that has been added by using a nested fileset element. If it is a JAR, the task looks

in that JAR for the META-INF/MANIFEST.MF manifest.

See Also

Recipe 4.1 on downloading and setting up Ant; Recipe 4.2 on writing Ant targets; Recipe 4.3 on
creating a classpath for an Ant file; Recipe 4.4 on compiling a servlet with Ant; Recipe 4.7 and Recipe
4.8 on starting and stopping Tomcat with Ant; Recipe 2.1 and Recipe 2.6 on deploying web
applications using Ant; the Ant manual section on the property task:
http://ant.apache.org/manual/CoreTasks/property.html; the Ant manual segment on targets:

http://ant.apache.org/manual/using.html#targets; the Apache Ant manual index page:
http://ant.apache.org/manual/index.html; the Apache Ant Project: http://ant.apache.org.

http://ant.apache.org/manual/CoreTasks/property.html
http://ant.apache.org/manual/using.html#targets
http://ant.apache.org/manual/index.html
http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 4.7 Starting a Tomcat Application with Ant

Problem

You want to start a web application on Tomcat using an Ant file.

Solution

Use the Tomcat-supplied StartTask task so that Ant can manage Tomcat.

Discussion

The Tomcat servlet and JSP container includes a built-in web application called "Manager" that you
can use to start, stop, deploy, and initiate other administrative tasks with web applications. Tomcat
makes this application available from the /manager context path.

Tomcat Version 4 (and later) includes Java classes that allow developers to use the Manager
application from their Ant build files. The advantage of using the Manager application from Ant is that
you do not have to configure the conf/server.xml file to make the web application dynamically
reloadable (see Recipe 2.2). In addition, you can start or stop a single web application without
disrupting other Tomcat applications.

The Manager documentation is found online at
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/printer/manager-howto.html

Take these steps to start Tomcat from Ant:

Make sure you have the necessary JAR file required to use the Ant task for starting Tomcat:

<Ant-installation-directory>/lib/catalina-ant.jar. Copy this JAR from the <Tomcat-installation-
directory>/server/lib directory to your <Ant-installation-directory>/lib directory (otherwise
known as ANT_HOME/lib).

1.

Make sure the Tomcat user database includes a username that is linked to the manager role.
Only administrative users should be authorized to start and stop web applications using the
Manager tool. The conf/tomcat-users.xml file maps users and passwords to roles. A user has to
be mapped to the manager role to be able to use the Manager tool. Here is an example of one
of these user mappings in tomcat-users.xml:

2.

3.

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/printer/manager-howto.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<user username="doug" password= "_1968dgw" roles="manager,dbadmin"/>

Use the taskdef element in the Ant file to define the custom task and give it a name. Example
4-8 gives the task the name start, which is used by the target that is responsible for starting

Tomcat.

3.

Run the Ant file at the command line by changing to its directory and typing ant.4.

Example 4-8 shows the taskdef element that defines the start task, followed by the target that

starts the specified Tomcat application.

Example 4-8. Starting Tomcat using an Ant file

<project name="My Project" default="start-tomcat" basedir=".">

<taskdef name="start" classname="org.apache.catalina.ant.StartTask" />

<!-- import properties specifying username, password, url, and context-path -->
<property file="global.properties" />

<target name="start-tomcat"
 description="Starts the Web application">
 <echo message="Starting the default application ${ context-path}..."/>

 <start
 url="${url}"
 username="${username}"
 password="${password}"
 path="/${context-path}" />
</target>

</project>

The start task has four attributes that Example 4-8 sets using a global.properties file. This is a text
file containing four name/value pairs, which are imported into the Ant file using the property task:

<property file="global.properties" />

The global.properties file is located in the same directory as the Ant build file. Here are the contents
of the global.properties file:

url=http://localhost:8080/manager
username=bruce
password=bruce1957
context-path=home

The url property specifies the Tomcat Manager URL, the username and password identify the user
who is mapped in the Tomcat user database to the manager role, the context-path property

specifies the context path of the web application you are starting, and the Ant file itself specifies the
opening slash (/) character for the context path.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another way to pass properties to an Ant file is on the command line:

ant -Dusername=bruce -Dpassword=bruce1957
-Durl=http://localhost:8080/manager
-Dcontext-path=home

Properties added on the command line override those specified by the
property task.

Launch this Ant file by changing to its directory at the command line and typing ant or ant -

buildfile buildfile-name. Here is the command-line output:

H:\book\cookbook\code\chap4>ant -buildfile start.xml
Buildfile: start.xml

start-tomcat:
 [echo] Starting the default application home...
 [start] OK - Started application at context path /home

BUILD SUCCESSFUL
Total time: 4 seconds

If an application is stopped, it is unavailable to web users (see Recipe 4.8). When the application is
started again, it can receive requests normally.

The Tomcat manager application can initiate many other common
administrative tasks such as deploying applications (see Recipe 2.6).

See Also

The Tomcat Manager application description: http://jakarta.apache.org/tomcat/tomcat-4.1-
doc/manager-howto.html; Recipe 4.1 on downloading and setting up Ant; Recipe 4.2 on writing Ant
targets; Recipe 4.3 on creating a classpath for an Ant file; Recipe 4.4 on compiling a servlet with Ant;
Recipe 4.5 and Recipe 4.6 on creating WAR and JAR files; Recipe 4.8 on stopping Tomcat with Ant;
Recipe 2.1 and Recipe 2.6 on deploying web applications using Ant; the Ant manual section on the
property task: http://ant.apache.org/manual/CoreTasks/property.html; the Ant manual segment on
targets: http://ant.apache.org/manual/using.html#targets; the Apache Ant manual index page:

http://ant.apache.org/manual/index.html; the Apache Ant Project: http://ant.apache.org.

[Team LiB]

http://jakarta.apache.org/tomcat/tomcat-4.1-
http://ant.apache.org/manual/CoreTasks/property.html
http://ant.apache.org/manual/using.html#targets
http://ant.apache.org/manual/index.html
http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 4.8 Stopping a Tomcat Application with Ant

Problem

You want to use Ant to stop a specific Tomcat web application.

Solution

Define a task in the Ant file using a taskdef element and the Java class
org.apache.catalina.ant.StopTask.

Discussion

During development, you might need to stop a Tomcat web application so that you can add new
servlets or deployment-descriptor entries, and then restart the application, allowing the changes to
take effect. In the absence of a conf/server.xml configuration to make the application dynamically
reloadable (see Recipe 2.2), you can use an Ant target to stop a particular web application without
disrupting the other running web applications. This is the opposite of starting an application (Recipe
4.7); the application is taken out of service until you start it again.

The org.apache.catalina.ant.StopTask class provides a connection between Ant and the Tomcat

Manager application. Manager is a built-in web application (at context path /manager) that you can
use to administer other Tomcat web applications.

Implement the same four steps discussed in Recipe 4.7 to use this stop task:

Make sure you have the necessary JAR file required to use the Ant task for stopping Tomcat:
<Ant-installation-directory>/lib/catalina-ant.jar. Copy this JAR from the <Tomcat-installation-
directory>/server/lib directory to your <Ant-installation-directory>/lib directory (otherwise
known as ANT_HOME/lib).

1.

Make sure the Tomcat user database includes a username that is linked to the manager role
(see step 2 of Recipe 4.7 if you need more details).

2.

Example 4-9 uses a taskdef element to give the task the name stop, which is used by the

target that is responsible for stopping Tomcat.

3.

Run the Ant file at the command line by changing to its directory and typing ant or ant -

buildfile buildfile-name.

4.

Example 4-9. Using Ant to stop a web application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<project name="My Project" default="stop-tomcat" basedir=".">

<taskdef name="stop" classname="org.apache.catalina.ant.StopTask" />

<!-- import properties specifying username, password, url, and context-path -->
<property file="global.properties" />

<target name="stop-tomcat"
 description="Stops the Web application">

 <echo message="Stopping the application ${context-path}..."/>

 <stop
 url="${url}"
 username="${username}"
 password="${password}"
 path="/${context-path}" />

</target>

</project>

The taskdef defines a task for this build file called stop. The defined task is then used in the build

file:

<stop url="${url}" username="${username}" password="${password}"
 path="/${context-path}" />

Example 4-9 gets its property values from a property task that imports global.properties (the

property file is located in the same directory as the Ant build file). The properties represent:

The username and password of a user who is mapped to the manager role in conf/tomcat-
users.xml

The URL to the Manager application, as in http://localhost:8080/manager

The context path for the web application that you are stopping

The Tomcat manager application can initiate many other common
administrative tasks such as deploying applications (see Recipe 2.6).

See Also

The Tomcat Manager application description: http://jakarta.apache.org/tomcat/tomcat-4.1-
doc/manager-howto.html; Recipe 4.1 on downloading and setting up Ant; Recipe 4.2 on writing Ant
targets; Recipe 4.3 on creating a classpath for an Ant file; Recipe 4.4 on compiling a servlet with Ant;
Recipe 4.5 and Recipe 4.6 on creating WAR and JAR files; Recipe 4.7 on starting Tomcat with Ant;

http://localhost:8080/manager
http://jakarta.apache.org/tomcat/tomcat-4.1-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.1 and Recipe 2.6 on deploying web applications using Ant; the Ant manual section on the
property task: http://ant.apache.org/manual/CoreTasks/property.html; the Ant manual segment on
targets: http://ant.apache.org/manual/using.html#targets; the Apache Ant manual index page:

http://ant.apache.org/manual/index.html; the Apache Ant Project: http://ant.apache.org.

[Team LiB]

http://ant.apache.org/manual/CoreTasks/property.html
http://ant.apache.org/manual/using.html#targets
http://ant.apache.org/manual/index.html
http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 5. Altering the Format of JSPs

Introduction

Recipe 5.1. Precompiling a JSP in Tomcat

Recipe 5.2. Precompiling a JSP in WebLogic

Recipe 5.3. Precompiling JSPs with the Precompilation Protocol

Recipe 5.4. Mapping a JSP to Its Page Implementation Class

Recipe 5.5. Creating a JSP from Scratch as a JSP Document

Recipe 5.6. Generating an XML View from a JSP
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

This chapter covers two means of working with JSPs that fall slightly outside the norm. The first
method precompiles JSPs and turns them into servlet source code. The second develops JSPs as XML
documents.

Precompiling JSPs

Precompiling a JSP involves using a server-provided command-line tool to convert the JSP page into
a servlet class file. A JSP is converted into a servlet, often called a JavaServer Page implementation
class , before it handles any HTTP requests. The JSP specification refers to the stage by which the JSP
container converts JSP page syntax into a servlet as the translation phase. In Tomcat, if you want to
examine what the JSP page implementation class looks like after this conversion, go to this directory:

Tomcat-install-directory/work/Standalone/name-of-host/name-of-web-app

name-of-host could be localhost, or any other hostname that refers to the server Tomcat is installed

on. The name of the web application is also the name of the context; this is usually something like
examples, ROOT, or storefront.

The indicated directory contains .java files, such as default_jsp.java. These are the Java source files
that are compiled into class files, and then executed as servlets to respond to requests.

The reasons why a JSP developer may want to precompile a JSP page include:

Avoiding the perceptible delay caused when a JSP is first requested from the web container,
during which the JSP compiler converts the JSP's source code into a servlet.

1.

Allowing the developer to examine the Java source code for the JSP page implementation class,
and optionally work on the code with their servlet IDE's sourcecode editor.

2.

In both Tomcat and WebLogic, a command-line tool can be used to precompile a JSP. Recipe 5.4
covers the mapping in web.xml of a JSP page to its servlet implementation class.

JSPs as XML Documents

The later recipes in this chapter describe creating JSPs as XML files. Both the JSP specifications v1.2
and 2.0 describe the generation and use of JSPs as pure XML documents. This means that rather
than create JSPs in typical JSP page syntax, they are instead coded as well-formed XML documents.
According to the JSP specification, a JSP document is a namespace-aware XML document. The JSP
container differentiates JSP documents from traditional JSP pages in at least one of three ways.

A jsp-property-group element in web.xml specifies a JSP document with the is-xml child1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element. (The jsp-property-group element is one of the JSP configuration elements that the

JSP 2.0 specification has proposed adding to web.xml.)

1.

The file has a .jspx extension.2.

The JSP page has a root element of jsp:root .3.

Recipe 5.5 shows what these files look like.

The JSP specification describes an XML view as a description of a JSP page in XML form. An XML view
is generated by the JSP container during the translation phase. A subclass of
javax.servlet.jsp.tagext.TagLibraryValidator can use the XML view to parse a JSP in order to

validate that custom tags have been used correctly, before the container finally converts the JSP into
its page implementation class (a servlet). Recipe 5.6 shows how to generate XML views for a JSP,
and how to save the resulting XML files.

JSPs can be created as XML files for the following reasons, among others:

Web containers can accept JSP documents in web applications, meaning that the web
application can contain XML files instead of the pages in traditional JSP syntax. JSP documents
can thus be integrated with other XML content, such as XHTML files, Scalable Vector Graphics
(SVG), and the XML files that are part of web services transactions.

You can use XML editors to work with JSP documents.

You can use other XML technologies with JSP documents, such as XSLT, Simple Object Access
Protocol (SOAP), SAX, and DOM.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 5.1 Precompiling a JSP in Tomcat

Problem

You want to convert JSPs into servlets using Tomcat 4.1.x.

Solution

Use the JspC command-line tool found in <Tomcat-installation>/bin.

Discussion

Using the JspC command-line tool is the first step in precompiling Tomcat JSPs. This tool is offered in
the form of a shell script-jspc.sh on Unix systems and jspc.bat on Windows-and creates the Java
source files for the JSP page implementation classes with which it is supplied. The resultant .java files
still have to be compiled into servlet class files, using javac or another Java compiler. Since
precompiling JSPs is a two-step process, I recommend a batch file for convenience. However, let's
first examine how to use the JspC utility.

The Windows shell script for running JspC (<Tomcat-install-directory>/bin/jspc.bat) requires that a
JASPER_HOME environment variable be set to the Tomcat installation directory. Set this environment

variable with the following command line:

set JASPER_HOME=k:\jakarta-tomcat-4.1.12

Run the JspC utility by changing to the %JASPER_HOME%\bin directory and typing the following
command (specify your own directory paths and issue the command on one line):

jspc -d H:\book\cookbook -webinc H:\book\cookbook\map.xml
 -webapp h:\book\cookbook\dist

The -d switch specifies the directory where you would like the source files to be generated, and the -
webinc switch specifies the name of an automatically generated file where JspC will create the
servlet and servlet-mapping elements for the servlet files. If you compile a JSP page that is called

precomp.jsp, the mappings would look like Example 5-1.

Example 5-1. Servlet mapping for a precompiled JSP

<servlet>
 <servlet-name>org.apache.jsp.precomp_jsp</servlet-name>
 <servlet-class>org.apache.jsp.precomp_jsp</servlet-class>
</servlet>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<servlet-mapping>
 <servlet-name>org.apache.jsp.precomp_jsp</servlet-name>
 <url-pattern>/precomp.jsp</url-pattern>
</servlet-mapping>

You can then cut and paste these servlet and servlet-mapping elements into the web.xml

deployment descriptor for your web application.

The -webapp switch specifies a web-application directory, which must in turn have a /WEB-INF

subdirectory containing your application's web.xml file. JspC finds all of the .jsp files at the top level
of this web-application directory and translates them into servlet source files, along with any JSPs in
nested subdirectories. The resulting .java files are placed in the directory specified with the -d switch.
Unlike -webinc, the -webxml switch creates an entire web.xml file that includes the new servlets and

servlet mappings. Several other JspC options are described here:
http://cvs.apache.org/viewcvs/~checkout~/jakarta-tomcat-4.0/jasper/doc/jspc.html.

You'll then need to compile the generated source files. I recommend using a batch file to take care of
both steps at once. The Windows batch file in Example 5-2 generates the source files and uses the
javac tool to compile the servlets.

Example 5-2. Using a batch file to precompile JSPs with Tomcat

@echo off
jspc -d H:\book\cookbook\classes -webinc H:\book\cookbook\map.xml -webapp h:\book\
cookbook\dist
set PRECLASSPATH=%CATALINA_HOME%\common\lib\servlet.jar;
 %CATALINA_HOME%\common\lib\jasper-runtime.jar;%CLASSPATH%

javac -classpath %PRECLASSPATH% -d ./classes *.java

Save this file in a text file with a name like precomp.bat. Change to the directory containing the batch
file and type precomp. This batch file runs the JspC command on all .jsp files existing beneath the
h:\book\cookbook\dist web-application directory. Using the -webinc switch, the command creates an
XML fragment of servlet and servlet-mapping elements as shown earlier in this recipe. If there are

no problems, the compiled files will be stored in the h:\book\cookbook\classes directory.

The code then creates a PRECLASSPATH environment variable that includes the servlet.jar and jasper-
runtime.jar components, along with any directories or JARs that are part of the existing CLASSPATH

environment variable. The servlet.jar component is necessary to import these Java packages during
compilation:

javax.servlet

javax.servlet.http

javax.servlet.jsp

Adding the jasper-runtime.jar is necessary to import the org.apache.jasper.runtime package. On
Windows, you may have to set a JASPER_HOME environment variable to the Tomcat installation

directory before this batch file runs properly.

Example 5-3 shows a Unix shell script that accomplishes the same task. This script executes the

http://cvs.apache.org/viewcvs/~checkout~/jakarta-tomcat-4.0/jasper/doc/jspc.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

jspc.sh file in Tomcat's /bin directory, precompiling all of the JSP files that the JspC tool finds in the
current working directory. The script stores the resulting .java files in the ./classes directory.

Example 5-3. A shell script for precompiling JSP files

#!/bin/sh
$CATALINA_HOME/bin/jspc.sh -d ./classes -webinc ./map.xml -webapp ./;
PRECLASSPATH=$CATALINA_HOME/common/lib/servlet.jar:$CATALINA_HOME/common/lib/jasper-
runtime.jar;
export PRECLASSPATH;
javac -classpath $PRECLASSPATH -d ./classes ./classes/*.java

See Also

Recipe 5.3 on the precompilation protocol; Recipe 5.4 on mapping the compiled JSP(s) in web.xml;
the JSP precompilation section of JavaServer Pages by Hans Bergsten (O'Reilly); Chapter JSP.11.4 of
the JSP 2.0 specification.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 5.2 Precompiling a JSP in WebLogic

Problem

You want to precompile a JSP in WebLogic.

Solution

Use the weblogic.jspc Java utility that installs with WebLogic Server 7.0.

Discussion

WebLogic Server 7.0 installs with its own Java utility for precompiling JSPs: weblogic.jspc . This utility is
part of the JAR file that can be found at this location: <WebLogic-install-
directory>/weblogic700/server/lib/weblogic.jar . When you precompile JSPs using weblogic.jspc , it places
the class files in the specified destination directory. Example 5-4 shows a simple batch file on Windows NT
that precompiles an example.jsp JSP page into its servlet implementation class.

Example 5-4. Precompiling a JSP with weblogic.jspc

@echo off
set WLCLASSPATH=k:\bea\weblogic700\server\lib\weblogic.jar;%CLASSPATH%
java -cp %WLCLASSPATH% weblogic.jspc -d .\classes example.jsp

The second line of Example 5-4 sets an environment variable, WLCLASSPATH . This variable prepends a
reference to weblogic.jar to the existing CLASSPATH variable. The next line of the example uses this
combined classpath to run weblogic.jspc . The -d switch tells the program where to store the resulting class

files, in this case, in the classes directory beneath the directory containing the batch file and example.jsp .
This program generates a Java class file named jsp_servlet._ _example.class (including the package name).
If you do not specify a package for the compiled servlet, jsp_servlet is used as the default package name

(see Example 5-6). Example 5-5 shows a shell script that is written on Mac OS X for precompiling a JSP
with WebLogic.

Example 5-5. Precompiling JSPs with weblogic.jspc and a shell script

#!/bin/sh
WLCLASSPATH=/Users/bruceper/java/weblogic_jar/weblogic.jar:$CLASSPATH;
export WLCLASSPATH;
java -cp $WLCLASSPATH weblogic.jspc
 -d /Users/bruceper/books/cookbook/code/chap5/classes newfile.jsp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

weblogic.jspc is different from Tomcat's JspC utility in that it compiles a file in JSP
page syntax into the servlet class file in a single operation. Using Tomcat's JspC from
the command line requires the use of a compiler, such as javac , to compile the .java
files generated by JspC into class files. This second compilation step when using JspC
is handled automatically when using weblogic.jspc .

The Windows batch file in Example 5-6 specifies a jspservletcookbook package for all the JSP pages found
in the web application specified by the -webapp switch.

Example 5-6. Using weblogic.jspc to precompile all JSP pages in a web
application

@echo off
set WLCLASSPATH=k:\bea\weblogic700\server\lib\weblogic.jar;%CLASSPATH%
java -cp %WLCLASSPATH% weblogic.jspc -d .\classes -package jspservletcookbook -compileAll
-webapp h:/home

Example 5-7 shows a Unix shell script that does the same thing.

Example 5-7. Precompiling all JSP pages in a web application with a shell
script

#!/bin/sh
WLCLASSPATH=/Users/bruceper/java/weblogic_jar/weblogic.jar:$CLASSPATH;
export WLCLASSPATH;
java -cp $WLCLASSPATH weblogic.jspc -d /Users/bruceper/books/cookbook/code/chap5/classes
-package jspservletcookbook -compileAll -webapp /Users/bruceper/books/cookbook/code/chap5

Note this portion of the instruction in the example:

-compileAll -webapp h:/home

The -compileAll switch, along with an argument to -webapp , tells weblogic.jspc to precompile all the JSP

files found in the web application configured in the h:\home directory, including any JSP files nested in
subdirectories. This web application is in exploded directory format (not archived into a WAR file). In
Example 5-6 , the compiled classes are stored in the \classes\jspservletcookbook directory path.

See Also

Recipe 5.3 on the precompilation protocol; Recipe 5.4 on mapping the compiled JSP(s) in web.xml ; the JSP
precompilation section of JavaServer Pages by Hans Bergsten (O'Reilly); Chapter JSP.11.4 of the JSP 2.0
specification.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 5.3 Precompiling JSPs with the Precompilation
Protocol

Problem

You want to use the "precompilation protocol" that is part of the JSP specification to precompile one
or more JSP files.

Solution

Send a request to the JSP container that includes a jsp_precompile parameter.

Discussion

The JSP 1.2 and 2.0 specifications require compliant JSP containers to support the use of the
jsp_precompile request parameter. This parameter suggests that the container precompile the

requested JSP. Here is how it works in Tomcat:

Request the JSP that you want precompiled with the jsp_precompile parameter added to the

URL, as in http://localhost:8080/home/url_rewrite.jsp?jsp_precompile=true.

The JSP container is not supposed to execute the JSP page; it just precompiles it. The result of
the request, if you were making it in a web browser, is a blank page.

1.

If the JSP file in JSP page syntax has not yet been compiled, or if the JSP file has been changed
and has a later modification date than any existing page implementation class, Tomcat creates
a new Java source and class file for the JSP in the <Tomcat-install-directory>/work directory. If
the JSP file is named url_rewrite.jsp, Tomcat calls the Java source and class files
url_rewrite_jsp.java and url_rewrite_jsp.class.

Supplying the request parameter jsp_precompile (without the "=true" part) is the same as
requesting jsp_precompile =true in the URL.

2.

The precompilation protocol in Tomcat will both create the .java file and compile
that file into the JSP page implementation class. Using the JspC tool as
described in Recipe 5.1 will generate only a .java file.

This protocol is best used with an automated tool that can make HTTP requests, such as the Jakarta

http://localhost:8080/home/url_rewrite.jsp?jsp_precompile=true
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Commons HttpClient component. Using such a tool allows you to automate the precompilation of

dozens of JSPs by sending several HTTP requests from a single Java program.

See Also

Recipe 5.1 on using Tomcat's JspC utility; Recipe 5.2 on precompiling with WebLogic Server; Recipe
5.4 on mapping the compiled JSPs in web.xml; Chapter 7 on sending HTTP requests from a servlet or
a JSP; the Jakarta Commons HttpClient homepage at

http://jakarta.apache.org/commons/httpclient/; The JSP precompilation section of JavaServer Pages
by Hans Bergsten (O'Reilly); Chapter JSP.11.4 of the JSP 2.0 specification.

[Team LiB]

http://jakarta.apache.org/commons/httpclient/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 5.4 Mapping a JSP to Its Page Implementation
Class

Problem

You have already precompiled a JSP and want to specify a mapping to the JSP page implementation
class in your deployment descriptor.

Solution

Cut and paste the servlet and servlet-mapping elements generated automatically by JspC into

web.xml. Create the proper package-related directories in the WEB-INF/classes directory of your web
application, then place the precompiled JSPs into that directory.

Discussion

Precompiling JSPs allows you to remove the JSP page syntax files from your web application and just
use the resulting servlet class files. You can then use the servlet-mapping element in web.xml to

map a JSP-style URL (e.g., default.jsp) to the compiled servlet class. Here is how to accomplish this
task:

Precompile the JSP(s) as described in Recipe 5.1 or Recipe 5.2, including the compilation of Java
source files into class files using javac or another compiler tool.

1.

Cut and paste the servlet and servlet-mapping elements generated automatically by JspC

into your deployment descriptor (if you are using Tomcat), or add those elements manually to
web.xml (if you are using WebLogic or another container).

2.

Make sure the servlet-mapping's url-pattern element points to a JSP-style filename, such as

default.jsp, or an extension mapping such as *.jsp.

3.

Place the class or classes, including the package-related directories, in WEB-INF/classes, or
inside of a JAR file that is stored in WEB-INF/lib.

4.

When the web users request the URL specified by the servlet-mapping for that JSP page

implementation class, the web container will now direct that request to the mapped servlet class.

Example 5-8 shows a servlet configuration for a precompiled JSP.

Example 5-8. A web.xml entry for a precompiled JSP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<servlet>
 <servlet-name>org.apache.jsp.precomp_jsp</servlet-name>
 <servlet-class>org.apache.jsp.precomp_jsp</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>org.apache.jsp.precomp_jsp</servlet-name>
 <url-pattern>/precomp.jsp</url-pattern>
</servlet-mapping>

The directory structure for this class in your web application should be something like: /WEB-
INF/classes/org/apache/jsp/precomp_jsp.class. If the context path for your web application is /home,
users can request this JSP's implementation class (a servlet, behind the scenes) with a URL similar to
http://localhost:8080/home/precomp.jsp.

See Also

Recipe 5.1-Recipe 5.3; Chapter JSP.11.4 of the JSP 2.0 specification.

[Team LiB]

http://localhost:8080/home/precomp.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 5.5 Creating a JSP from Scratch as a JSP
Document

Problem

You want to create a JSP document in an XML editor's tool.

Solution

Open up your XML editor of choice and create the JSP using only XML elements.

Discussion

A JSP document is a namespace-aware, well-formed XML file that contains JSP standard actions
(such as jsp:include and jsp:useBean), custom actions (such as JSTL custom tags), and the XML

equivalents of JSP directives. Table 5-1 specifies the XML equivalents for common JSP directives.
Write the JSP document in an XML editor, preferably one where you can check its well-formedness.
The JSP document has to be a well-formed XML document to be eligible for placement into a JSP
container and execution.

Table 5-1. XML equivalents for JSP directives

Directive Example JSP document equivalent

<page>
<%@ page
import="java.util.Date" %>

<jsp:directive.page import="java.util.Date" />

<include>
<%@ include
file="footer.html" %>

<jsp:directive.include file="footer.html" />

<taglib>
<%@ taglib uri="WEB-
INF/tlds/xml_gen.tld"
prefix="t" %>

<jsp:root jsp:id="0"
xmlns:jsp="http://java.sun.com/JSP/Page"
version="2.0" xmlns:t="urn:jsptld:/WEB-
INF/tlds/xml_gen.tld">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In JSP 1.2, the only way to identify a JSP page as XML is by having a jsp:root

element as the root. However, JSP 2.0 offers several new options-the JSP 2.0
specification states that a JSP document can also be distinguished from a JSP in
non-XML syntax by a jsp-property-group element in the deployment
descriptor, a .jspx file extension, or a jsp:root root element.

This recipe shows a simple JSP page and its XML equivalent, then repeats the comparison with the
addition of a custom tag and a runtime expression for a JSP element attribute. Example 5-9 is a
simple file in JSP page syntax showing the web server's local time.

Example 5-9. A simple JSP page-syntax file

<%@page contentType="text/html"%>
<%@page import="java.util.Date"%>
<html>
 <head><title>Welcome to the Web</title></head>
 <body>
 <h2>Welcome to the Web</h2>
 The server's local time is <%=new Date() %>.
 </body>
</html>

This JSP has two page directives and a JSP expression that displays a date and time string on the
browser page. Figure 5-1 shows the execution of this page in a browser.

Figure 5-1. Simple JSP before XML conversion

This page can be converted into a JSP document by cutting and pasting the code into an XML editor
and replacing non-XML constructs with XML elements. Example 5-10 is the JSP document equivalent
of Example 5-9.

Example 5-10. A simple JSP document as well-formed XML

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
 <jsp:directive.page contentType="text/html"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <jsp:directive.page import="java.util.Date"/>
 <html>
 <head><title>Welcome to the Web</title></head>
 <body>
 <h2>Welcome to the Web</h2>
 The server's local time is <jsp:expression>new Date()</jsp:expression>.
 </body>
 </html>
</jsp:root>

Example 5-10 has jsp:directive.page elements instead of traditional JSP directives, which are not
valid XML elements because of the <%@ syntax. Anything in a JSP page that uses <%-style delimiters

cannot be used to distinguish JSP elements, because then the JSP document will not pass an XML
well-formedness test.

Example 5-11 is a more complex JSP page with a taglib directive that specifies the core tag library

from JSTL 1.0; the page also uses Expression Language (EL) code. Further, the page has a
jsp:useBean element that sets a java.util.Date variable dateString to page scope.

Example 5-11. A JSP page presenting a complex XML conversion

<%@page contentType="text/html"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
 <head><title>Welcome to the Web</title></head>
 <body>
 <h2>Welcome to the Web</h2>
 Hello, <c:out value="${param.firstName} ${param.lastName}"/>

 <jsp:useBean id="dateString" class="java.util.Date"/>
 The time is <c:out value="${dateString}" />.

 The value of 10 + 24 + 35 = <c:out value="${10 + 24 + 35}" />
 </body>
</html>

Example 5-12 is the same JSP page converted to a JSP document.

Example 5-12. Referring to tag libraries (taglibs) in a JSP document

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jstl/core" version="2.0">
 <jsp:directive.page contentType="text/html"/>
 <html>
 <head><title>Welcome to the Web</title></head>
 <body>
 <h2>Welcome to the Web</h2>
 <jsp:text>Hello </jsp:text>
 <c:out value="${param.firstName} ${param.lastName}"/>
</br>
</br>
 <jsp:useBean id="dateString" class="java.util.Date"/>
 <jsp:text>The time is </jsp:text><c:out value="${dateString}" />.

</br>
</br>
 <jsp:text>The value of 10 + 24 + 35 = </jsp:text>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <c:out value="${10 + 24 + 35}" />
 </body>
 </html>
</jsp:root>

In a JSP document, any tag libraries can be included as namespace attributes, such as in the
jsp:root element, as shown here:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jstl/core" version="2.0">

The jsp:text element can be used to contain any template data in the JSP document. You can use
the JSP standard actions such as jsp:useBean and custom tags like c:out with the same syntax

used in a JSP page.

Figure 5-2 shows the browser output of the JSP document in Example 5-12. This page was requested
by using this URL: http://localhost:8080/home/example_xml2.jsp?
firstName=Bruce&lastName=Perry.

Figure 5-2. Output from Example 5-11

Here is what the HTML source code looks like, if you chose "View Source" from the browser
menu (with some carriage returns added for readability):

<html><head><title>Welcome to the Web</title></head>
<body>
<h2>Welcome to the Web</h2>
Hello Bruce Perry

The time is Mon Feb 10 16:20:05 EST 2003.

The value of 10 + 24 + 35 = 69
</body></html>

See Also

Recipe 5.6 on generating an XML view from a JSP; Chapter JSP.6 (JSP documents) of the JSP 2.0
specification; Chapter JSP.10 (XML views) of the JSP 2.0 specification.

http://localhost:8080/home/example_xml2.jsp?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 5.6 Generating an XML View from a JSP

Problem

You want to automatically generate an XML view from a JSP page.

Solution

Create a custom tag and a TagLibraryValidator class, from which you can output the XML view of a JSP

to a file.

Discussion

An XML view is an XML form of a JSP page that the JSP container generates during the translation phase, an
intermediary stage before the container converts the JSP to its page implementation class (a servlet). A
TagLibraryValidator class can use the XML view to validate the use of custom tags in the JSP prior to the

JSP's conversion to a servlet. An XML view is very similar to a JSP document, which is an XML form of a JSP
page that JSP developers can write and add to their web applications. The differences between the two XML
files according to the JSP specification v2.0 are:

An XML view expands any include directives that a JSP document contains into their corresponding

JSP fragments.

An XML view provides each XML element with a jsp:id attribute.

An XML view adds a jsp:root element as the root element of the document if the document does not
already have a jsp:root element.

An XML view adds a jsp:directive.page element and pageEncoding attribute if they do not already
exist, and sets the value of pageEncoding to "UTF-8".

An XML view adds a jsp:directive.page element and contentType attribute if they do not already
exist, and sets the value of contentType according to Chapter JSP.4.2, "Response Character

Encoding," of the JSP 2.0 specification (e.g., "text/xml" for a JSP document).

Java developers can add subclasses of javax.servlet.jsp.tagext.TagLibraryValidator to their web

applications as tools for validating the application's use of custom tags. The JSP container (Jasper is the
name of the Tomcat JSP container) makes available to the TagLibraryValidato r an XML view of a JSP

page for the purpose of parsing XML elements in the page and validating whether or not they have been
used correctly.

It is useful to examine the XML view of a JSP page in order to debug a TagLibraryValidator class that you

are using in a custom tag library, or to open up your JSP in an XML editor and evaluate its syntax from an
XML perspective. Here is a nice way (okay, a bit of a hack!) to automatically generate a file representing the
XML view of a JSP page. This recipe uses a javax.servlet.jsp.tagext.PageData object, which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

automatically returns the XML view of a JSP page as a java.io.InputStream . Here is how it works:

Create a class that extends javax.servlet.jsp.tagext.TagLibraryValidator . These classes are

used to validate the use of custom tags, and are explained in more detail in Chapter 23 .

1.

Override the TagLibraryValidator.validate(String prefix , String uri , PageData page)
method to write the XML view information from the PageData parameter to a file.

2.

Create a simple custom tag by extending javax.servlet.jsp.tagext.TagSupport . This tag "marks"

a JSP page so that its XML view can be output to a file. The tag includes a "filename" attribute from
which your validator class will get the filename for the XML view. The tag looks like this:

3.

<t:toxml filename="myxml_view" />

Create a Tag Library Descriptor (TLD) file for this tag library, specifying the TagLibraryValidator

class you created as the validator for this library:

4.

<validator>
 <validator-class>
 com.jspservletcookbook.ToXmlValidator
 </validator-class>
 <description>
 Saves XML views of JSP pages to the
 specified directory.
 </description>
</validator>

Place both the TagLibraryValidator and the TagSupport classes in the WEB-INF/classes directory of

the web application, or inside a JAR file that is stored in WEB-INF/lib (the examples in this recipe
assume this format, rather than placing the classes in a JAR).

5.

Place the TLD file in the WEB-INF/tlds directory.6.

Add a taglib element referring to your tags and TLD to the WEB-INF/web.xml deployment descriptor.7.

The taglib element in web.xm l is not needed with JSP Version 1.2 and 2.0, since the
JSP container automatically searches WEB-INF , as well as the META-INF directory of
your application's JAR files, for any file that ends with the extension .tld .

Create a properties file containing the directory path that you want to use for the automatically
generated XML view. Store this properties file in WEB-INF/classes using the appropriate package
names. This properties file is used to avoid the hardcoding of an absolute directory in the validator
class's code.

8.

Use the custom tag in the JSP file(s) for which you want the XML views generated as files.9.

First, Example 5-13 shows the XML view-related custom tag in a JSP file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.

Example 5-13. Generating the XML view of a JSP page

<%@ taglib uri="/toxml_view" prefix="t" %>
<html>
<head>
 <title>Test tld</title>
</head>
<body bgcolor="#ffffff">

Hello, this page is using the toxml tag to look at its XML View.
<t:toxml filename="my_xmlview"/>

</body>
</html>

The t:toxml tag is an empty element that signals the validator class to generate a file containing an XML

view. The file will be named my_xmlview.xml (the validator class adds the .xml extension). The tag
otherwise has no effect on the appearance or behavior of this JSP. The following fragment of the
deployment descriptor shows the taglib element specifying the URI that is used in Example 5-11 s taglib
directive. The taglib element in the deployment descriptor also specifies the location of the TLD file (WEB-

INF/tlds/xml_gen.tld):

<taglib>
 <taglib-uri>/toxml_view</taglib-uri>
 <taglib-location>/WEB-INF/tlds/xml_gen.tld</taglib-location>
</taglib>

Example 5-14 shows the TLD file for this tag library, which specifies the validator class and the simple
custom tag (a marker) used in Example 5-11 . I am not going to show the code for the toxml tag, since it
does not contain any code of interest, beyond the fact that it has one String member variable called
filename . The sole purpose of the tag's use is to put the validator class to work. The JSP container creates

one validator instance for each tag library that includes a validator class.

Example 5-14. The TLD file for the XML view custom tag

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>Validator test</short-name>
 <description>Validator test</description>

 <validator>
 <validator-class>
 com.jspservletcookbook.ToXmlValidator
 </validator-class>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <description>
 Saves XML views of JSP pages to the specified
 directory.
 </description>
 </validator>

 <tag>
 <name>toxml</name>
 <tag-class>com.jspservletcookbook.ToXml</tag-class>
 <body-content>EMPTY</body-content>
 <description>
 This tag demonstrates the production of JSP XML view files.
 </description>
 <attribute>
 <name>filename</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 <description>
 This attribute provides the filename.</description>
 </attribute>
 </tag>
</taglib>

The com.jspservletcookbook.ToXmlValidator class, the library's validator, executes its validate
method when a JSP page using the toxml tag is loaded. How does the validator class know where to save
the files representing the JSP's XML view? The com.jspservletcookbook.ToXmlValidator class derives

the directory path for saving its generated files from the properties file shown below. This allows any
deployer of the custom tag to change the directory for the saved XML views, without touching the validator
class's source code. The properties file is located in the same directory as the validator class. The path to
this properties file is WEB-INF/classes/com/jspservletcookbook/validator.properties :

directory=h:/home/xmlviews

The filename is provided by the tag itself, as in:

<t:toxml filename="my_xmlview" />

The entire file path for the XML view looks like: h:/home/xmlviews/my_xmlview.xml .

The validator class adds the .xml extension when it creates the XML view file. The
validator first extracts the filename from the toxml tag by using a SAX parser to
parse the input stream from the javax.servlet.jsp.tagext.PageData object.

You now have all of the pieces together except for the all-important validator class, which is shown in
Example 5-15 . The validate method reads the directory property value using a
java.util.ResourceBundle object . The validate method gets the filename by using the helper class that
Example 5-16 shows. The validate method then generates the XML view of the JSP page by using the
java.io.InputStream returned from PageData.getInputStream() .

Example 5-15. A validator class for generating XML view files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.jspservletcookbook;

import javax.servlet.jsp.tagext.TagLibraryValidator;
import javax.servlet.jsp.tagext.ValidationMessage;
import javax.servlet.jsp.tagext.PageData;
import java.io.*;
import java.util.ResourceBundle;
import java.util.MissingResourceException;
import java.util.Date;

public class ToXmlValidator extends TagLibraryValidator {

 /** Creates new ToXmlValidator */
 public ToXmlValidator() {
 }

 public ValidationMessage[] validate(java.lang.String prefix,
 java.lang.String uri,PageData page){

 ValidationMessage[] vam = null;
 try{

 ResourceBundle bundle =
 ResourceBundle.getBundle("com.jspservletcookbook.validator");
 String directory = bundle.getString("directory");
 String fileName = getFilename(page);

 //throw an Exception if the directory is invalid
 if (directory == null)
 throw new Exception(
 "Received a null directory for the XML view file.");
 //throw an Exception if the filename is invalid
 if (fileName == null)
 throw new IOException(
 "Received a null filename for the XML view file.");
 File file = new File(directory + "/" + fileName + ".xml");
 FileWriter writer = new FileWriter(file);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(page.getInputStream()));
 String line = "";
 //write the XML view to the specified file
 while ((line = in.readLine()) != null){
 writer.write(line);
 }

 in.close();
 writer.close();

 } catch (IOException io){

 //return a validation message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ValidationMessage vmsg = new
 ValidationMessage(null,io.getMessage());
 vam = new ValidationMessage[1];
 vam[0] = vmsg;
 return vam;

 } catch (MissingResourceException mre){
 //return a validation message
 ValidationMessage vmsg = new
 ValidationMessage(null,mre.getMessage());
 vam = new ValidationMessage[1];
 vam[0] = vmsg;
 return vam;
 } catch (Exception e){
 //return a validation message
 ValidationMessage vmsg = new
 ValidationMessage(null,e.getMessage());
 vam = new ValidationMessage[1];
 vam[0] = vmsg;
 return vam;
 }

 //return empty array
 vam = new ValidationMessage[0];
 return vam;
 }

 private String getFilename(PageData page) throws Exception {
 try{
 ValidateHandler handler = new ValidateHandler();
 return handler.getFilename(page);
 } catch (Exception e){
 throw e; }
 }
}

Example 5-16 shows the ValidateHandler helper class that our validator uses to get the filename from the
custom tag. The ValidateHandler makes a first pass through the XML view (before it is written to a file) to
extract the filename that the user has added with the toxml element's filename attribute. The
ValidateHandler does all the work behind the scenes to parse the XML so that the validator class can get

the filename with a simple method call:

ValidateHandler handler = new ValidateHandler();
return handler.getFilename(page);

The ValidateHandler uses the Java API for XML processing (JAXP) and the Simple API for XML (SAX) to
parse the XML provided by javax.servlet.jsp.tagext.PageData.getInputStream() . You have to place
the ValidateHandler class inside of the WEB-INF/classes directory (or inside of a JAR file in WEB-INF/lib)
so that your web application (the ToXmlValidator class) can find it. You can use any component you want

to provide the SAX functionality that a web application needs. If you choose to use JAXP, and your web
container is not yet bundled with the necessary JAXP components, then add the following JAR files to your
WEB-INF/lib directory for a complete JAXP installation: jaxp-api.jar , dom.jar , sax.jar , xalan.jar ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xercesImpl.jar , and xsltc.jar . You can download these components as part of the Java Web Services
Developer Pack (http://java.sun.com/webservices/webservicespack.html), and the JAXP libraries are
included as part of Java 1.4.x.

Example 5-16. A DefaultHandler that grabs the filename from the custom tag
attribute

import org.xml.sax.Attributes;
import org.xml.sax.SAXParseException;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

import java.io.IOException;

import javax.servlet.jsp.tagext.PageData;

public class ValidateHandler extends DefaultHandler {

private String fileName = "";

public void startElement(String nameSpaceuri,
 String sname, String qname, Attributes attrs){

 for(int i=0; i<attrs.getLength();i++)
 if("filename".equals(attrs.getLocalName(i)))
 this.fileName=attrs.getValue(i);
}

public String getFilename(PageData page)
 throws FactoryConfigurationError, ParserConfigurationException,
 SAXException, IOException {
 try{
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 SAXParser saxparser = factory.newSAXParser();
 saxparser.parse(page.getInputStream(),this);
 } catch (FactoryConfigurationError fe){
 throw fe;
 } catch (ParserConfigurationException pce){
 throw pce;
 } catch(SAXException se){
 throw se;
 } catch(java.io.IOException io){
 throw io;
 } finally {
 return this.fileName; }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void error(SAXParseException e)
 throws SAXParseException
{
throw e;
}
}

Example 5-17 shows the XML view generated from the JSP page of Example 5-13 (with some carriage
returns added). It might be ugly, but now you know what an XML view looks like! The HTML code is all
treated as template data, enclosed in a jsp:text element and CDATA sections. The two XML elements,
jsp:root and t:toxml , are given sequential ID numbers as part of their jsp:id attributes in the XML
view. The TagLibraryValidator class can use these IDs to provide finely grained XML-related messages

involving the validated JSP page.

Example 5-17. The XML view of Example 5-13

<jsp:root jsp:id="0" xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2"
xmlns:t="/toxml_view">
 <jsp:text><![CDATA[]]></jsp:text>
 <jsp:text><![CDATA[<html>]]></jsp:text>
 <jsp:text><![CDATA[<head>]]></jsp:text>
 <jsp:text><![CDATA[<title>Test tld]]></jsp:text>
 <jsp:text><![CDATA[</title>]]></jsp:text>
 <jsp:text><![CDATA[</head>]]></jsp:text>
 <jsp:text><![CDATA[<body bgcolor="#ffffff">Hello, this page is using the toxml tag to
 look at its XML View.]]></jsp:text>
 <t:toxml jsp:id="1" filename="my_xmlview"/>
 <jsp:text><![CDATA[]]></jsp:text>
 <jsp:text><![CDATA[</body>]]></jsp:text>
 <jsp:text><![CDATA[</html>]]></jsp:text>
</jsp:root>

See Also

Recipe 5.5 on creating a JSP from scratch as a JSP document; Chapter JSP.6 (JSP documents) of the JSP
2.0 specification; Chapter JSP.10 (XML views) of the JSP 2.0 specification.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 6. Dynamically Including Contentin
Servlets and JSPs

Introduction

Recipe 6.1. Including a Resource Each Time a Servlet Handles a Request

Recipe 6.2. Using an External Configuration to Include a Resource in a Servlet

Recipe 6.3. Including Resources Nested at Multiple Levels in a Servlet

Recipe 6.4. Including a Resource that Seldom Changes into a JSP

Recipe 6.5. Including Content in a JSP Each Time the JSP Handles a Request

Recipe 6.6. Using an External Configuration File to Include a Resource in a JSP

Recipe 6.7. Including an XML Fragment in a JSP Document

Recipe 6.8. Including Content from Outside a Context in a JSP
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Servlets and JSPs often include fragments of information that are common to an organization, such
as logos, copyrights, trademarks, or navigation bars. The web application uses the include
mechanisms to import the information wherever it is needed, since it is easier to change content in
one place then to maintain it in every piece of code where it is used. Some of this information is static
and either never or rarely changes, such as an organization's logo. In other cases, the information is
more dynamic and changes often and unpredictably, such as a textual greeting that must be localized
for each user. In both cases, you want to ensure that the servlet or JSP can evolve independently of
its included content, and that the implementation of the servlet or JSP properly updates its included
content as necessary.

This chapter recommends recipes for including content in both servlets and JSPs under several
conditions:

When the included information is refreshed every time a user makes a request.

When the included information involves two or more nested levels-for example, when an
included file in turn includes another piece of information, and so on.

When you want to use the deployment descriptor to update the item that a servlet includes,
which is a handy, less error-prone way of including content when the content is configurable
and changes rather often.

When you want to import resources into a JSP from outside the web application.

Recipe 6.1 describes how to import a resource each time the servlet handles a request.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 6.1 Including a Resource Each Time a Servlet
Handles a Request

Problem

You want to include information from an external file in a servlet each time the servlet handles a
request.

Solution

Use the javax.servlet.RequestDispatcher.include(request,response) method in the doGet()

method of the servlet that includes the external file.

Discussion

Including the content in the javax.servlet.http.HttpServlet's doGet() method initiates the
include mechanism whenever the web container receives a GET request for the servlet.

When using this design, implement the servlet's doPost() method to call
doGet(request,response).

Example 6-1 shows a servlet that imports a copyright template in the doGet() method using the
javax.servlet.RequestDispatcher.include() method.

Example 6-1. Including content in the HttpServlet's init() method

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class IncludeServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Include Servlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Welcome To Our Universe</h1>");
 out.println("Imagine the rest of the page here.

");
 //Include the copyright information
 RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/copyright");
 dispatcher.include(request, response);

 out.println("</body>");
 out.println("</html>");
 }//doGet
}

Example 6-1 gets a RequestDispatcher object by calling the
javax.servlet.ServletRequest.getRequestDispatcher() method . The parameter to the
getRequestDispatcher() method in this case is the servlet path to the resource that the include
servlet imports: /copyright. This path is mapped in web.xml to the Copyright servlet, which is

shown in Example 6-2.

Example 6-2. The imported Copyright servlet

public class Copyright extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 java.io.PrintWriter out = response.getWriter();
 out.println("Copyright© 2003-2004 EmbraceAndExtend Corp.");

 }
}

The Copyright servlet outputs a line of text that includes the character entity code for the copyright

symbol (©), so that the copyright symbol is displayed correctly in the resulting HTML. When the
importing servlet calls the include() method, the copyright text is inserted in the method call's

code location.

A servlet can import an HTML page, as well as the output of a JSP page or
servlet. If you are importing HTML fragments in this manner, make sure that
the imported text does not break your HTML page, such as by repeating HTML
tags or failing to close certain tags.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-1 shows the page generated by the IncludeServlet in a browser.

Figure 6-1. The IncludeServlet's page in a browser

Recipe 6.2 describes how to configure the imported resource in an external configuration file, such as
web.xml.

Jason Hunter, who provided a technical review of this book, points out that
many people are using an offline build process to pregenerate static (e.g.,
HTML) files when a lot of the site's web content uses includes, such as
importing headers and footers into most of the web site's pages. In most cases,
the server can handle the requests for static files much more efficiently than
requests for dynamic pages (such as a JSP that includes other resources). See
Chapter 3, Servlet Best Practices, in the book Java Enterprise Best Practices
(O'Reilly).

See Also

Recipe 6.2 and Recipe 6.3 on including resources in servlets; Recipe 6.4-Recipe 6.7 on using
jsp:include, the include directive, as well as including resources into JSP documents or XML files;

Chapter SRV.14.2.5 of the Servlet 2.4 specification; Chapter JSP.5.4 on of the JSP 2.0 specification
on jsp:include; Chapter JSP.1.10.3 of the JSP 2.0 specification on the include directive.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 6.2 Using an External Configuration to Include a
Resource in a Servlet

Problem

You want to use an external configuration file (such as web.xml) to configure the resource that is
included in a servlet.

Solution

Use init parameters with the including servlet to allow the external configuration of the include
mechanism, then include the resource with the
javax.servlet.RequestDispatcher.include(request,response) method.

Discussion

You may want to periodically change the resource that a servlet includes, without changing and
recompiling the servlet code. You can make these changes by altering the servlet's init parameters in
web.xml . Using this strategy, either the included resource's file location itself or the method of retrieving
the resource (such as from a database) can change. You can ensure that the servlet imports the correct
resource by altering the content of the param-value element. Example 6-3 shows a servlet that is

configured to include a file named privacy.jspf . This represents a standard privacy statement for the web
application.

Example 6-3. Specifying an included resource by using the servlet's init-
param element

<servlet>
 <servlet-name>PrivacyServlet</servlet-name>
 <servlet-class>com.jspservletcookbook.IncludeServlet</servlet-class>
 <init-param>
 <param-name>included-resource</param-name>
 <param-value>privacy.jspf</param-value>
 <init-param>
</servlet>

Example 6-4 shows the doGet() method of the PrivacyServlet. This method gets the value of the
included-resource init parameter (privacy.jspf), then includes the JSP segment.

Example 6-4. Including a resource specified by an init parameter

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Include Servlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Welcome To Our Universe</h1>");
 out.println("Imagine the rest of the page here.

");
 //Include the privacy information based on an init-param value
 String includeRes = (String) getInitParameter(
 "included-resource");
 //get a RequestDispatcher object based on the init-param value
 RequestDispatcher dispatcher = request.
 getRequestDispatcher(includeRes);
 dispatcher.include(request, response);
 out.println("</body>");
 out.println("</html>");

 }

Example 6-4 gets a RequestDispatcher representing the configured init-param value with this code:

//the includeRes variable holds the init-param value "privacy.jspf"
RequestDispatcher dispatcher = request.getRequestDispatcher(includeRes);

Then the dispatcher.include(request,response) method is replaced by the output of the privacy.jspf
file. Example 6-5 shows the JSP segment that the PrivacyServlet includes. The JSP's content has some

HTML tags that fit into the HTML represented by the including page.

Example 6-5. A JSP segment included in a servlet with a RequestDispatcher

<%@page errorPage="/error.jsp"%>
<p>Parker River Net Solutions Privacy Policy</p>
<p>Any personal information you provide to us regarding Web- or software-development
services or shareware software, such as your name, address, telephone number, and e-mail
address, will not be released, sold, or rented to any entities or individuals outside
of Parker River Net Solutions.</p>

Included segments or pages cannot set or change response headers, so any
attempts to set the content type in an included servlet or JSP as in:

<%@ page contentType="text/xml" %>

are ignored.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All the included JSP does is specify an error page composed of some formatting-related HTML tags and
text. Figure 6-2 shows the browser page for the PrivacyServlet .

Figure 6-2. A web page with an included JSP segment

You may also want to augment Example 6-4 to provide a default resource for
inclusion in the servlet, just in case the deployment descriptor (web.xml)
mistakenly omits an init parameter for the servlet. The method getInitParameter
returns null in the event of this omission. You could test for this null condition

and then provide a default value for the included statement.

See Also

Recipe 6.3 on including resources that have nested includes; Recipe 6.4 -Recipe 6.8 on including
resources in JSPs; Chapter SRV.14.2.5 of the Servlet Recipe 2.4 specification; Chapter JSP.1.10.3 of the
JSP 2.0 specification on including files in JSPs.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 6.3 Including Resources Nested at Multiple Levels
in a Servlet

Problem

You want to include resources in a servlet that already include servlets, JSPs, or HTML.

Solution

Use the javax.servlet.RequestDispatcher.include(request,response) method to include the

top-level file. Make sure that error pages are properly configured in web.xml, just in case an
exception is thrown in a deep-nested, imported file.

Discussion

Even though it does not represent the best architectural decision, it is possible for a servlet to include
a resource that itself includes another resource, resulting in a number of inclusions taking place
beneath the surface. Imagine the Russian dolls that fit inside each other. You unscrew the top half of
the dolls, only to find smaller replicas of the dolls nested inside the outer ones. It is not outlandish to
think of very complex web pages using HTML frame and table tags, containing headers and footers,
with these segments of the page containing other specialized content using an include mechanism.
One of the included files nested several levels deep could throw an exception or corrupt the chain of
inclusions in some manner. Although there is no foolproof way to defend against this occurrence, for
the purposes of debugging, make sure that the web application has an error page configured so that
it can display information about the resource that ran into include problems.

This recipe provides an example of a servlet that has three levels of included resources. The outer
servlet includes another servlet named Level2, which includes a JSP level3.jsp, which completes the
picture by including the inner servlet, Level4. Figure 6-3 shows the browser display when a user
requests the com.jspservletcookbook.MultipleInc servlet.

Figure 6-3. Three included files in one web page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-6 shows the servlet code. This servlet is responsible for the first level of text ("Hello from
Level 1"), then each of the included resources contributes content to the response.

Example 6-6. The outer included servlet

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class MultipleInc extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Multiple Includes</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Hello from Level 1</h1>");
 out.println("This text is displayed at Level 1.");
 RequestDispatcher dispatcher = request.
 getRequestDispatcher("/level2");
 dispatcher.include(request, response);
 out.println("</body>");
 out.println("</html>");

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The code:

RequestDispatcher dispatcher = request.getRequestDispatcher("/level2");
 dispatcher.include(request, response);

includes the output of the servlet that is mapped to the servlet path /level2, which Example 6-7
shows (just the doGet method).

Example 6-7. The first inner included servlet

public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

 java.io.PrintWriter out = response.getWriter();
 out.println("<h2>Hello from Level 2</h2>");
 out.println("This text is included at Level 2.");
 //Include the JSP file named "level3.jsp"
 try{

 RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/level3.jsp");
 dispatcher.include(request, response);
 } catch (Exception se){

 String context_path = (String) request.getAttribute(
 "javax.servlet.include.context_path");

 String servlet_path = (String) request.getAttribute(
 "javax.servlet.include.servlet_path");

 String errMessage = new StringBuffer(
 "Exception raised during Level2 servlet include:
").
 append("Context path: "+context_path+"
").
 append("Servlet path: "+servlet_path).toString();
 throw new ServletException(errMessage);
 }
 }

Example 6-7 writes more text to the response, then includes a level3.jsp, like the outer servlet, using
a javax.servlet.RequestDispatcher object to initiate including the JSP. The Level2 servlet does
some other stuff with a try/catch block and request attributes, in order to demonstrate the

handling of exceptions that may be thrown during include operations.

According to the JSP API specification, included resources have access to five request attributes:

javax.servlet.include.request_uri

javax.servlet.include.context_path

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.servlet.include.servlet_path

javax.servlet.include.path_info

javax.servlet.include.query_string

In the catch block, the Level2 servlet gets the value of two of these request attributes with:

String context_path =
 (String) request.getAttribute("javax.servlet.include.context_path");

String servlet_path =
 (String) request.getAttribute("javax.servlet.include.servlet_path");

In the catch block, the Level2 servlet then throws a new ServletException with the attribute

values as part of the exception message. An error page configured for the web application displays
information about the exception that was generated by the include operation.

The error-page configuration in web.xml looks like:

<error-page>
 <exception-type>
 javax.servlet.ServletException
 </exception-type>
 <location>/error</location>
</error-page>

where "/error" is mapped to a servlet that displays exception-related
information.

In Example 6-7, the context path was empty and the servlet path was /level2. Figure 6-4 shows a
browser displaying the error page. The servlet generating the exception is specified as the top-level
servlet (MultipleInc) because this was the code that originated the include mechanism which
resulted in the ServletException.

Figure 6-4. Displaying exception information caused during an include
operation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-8 shows the JSP file (level3.jsp) that the first inner servlet imports. The level3.jsp file
represents the second level of included content.

The included servlets do not call the java.io.PrintWriter.close() method,

because that action would prevent the response that follows the outer servlet's
include code from being sent to the client. The outer servlet (MultipleInc in
Example 6-6) finally calls PrintWriter.close() when it is finished including

the nested resources.

Example 6-8. The included level3.jsp JSP file

<%@page errorPage="/error"%>
<h3>Hello from Level 3</h3>
This text is included at Level 3.
<jsp:include page="/level4"/>

Finally, the JSP file uses the jsp:include standard action to import the text returned from a servlet
that is mapped to the /level4 path. The Level4 servlet does the same thing as the other of the
recipe's servlets-it writes character data to the PrintWriter object-so I have not shown its source

code. The reason I included was to demonstrate how several different resource types can be nested
in a chain of included files. The outer servlet includes servlet two, which includes a JSP file, which in
turn includes the text returned from a third servlet. The first included servlet enclosed its own include
code in a try block to catch any exceptions raised by including a JSP file.

See Also

Recipe 6.1 on using the RequestDispatcher include mechanism; Recipe 6.2 on determining an
included resource with an configuration file; Recipe 6.4-Recipe 6.8 on including resources in JSPs;
Chapter SRV.14.2.5 of the Servlet Recipe 2.4 proposed final specification; Chapter JSP.1.10.3 of the
JSP 2.0 specification on including files in JSPs; Chapter 9 on specifying errors pages in web
applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 6.4 Including a Resource that Seldom Changes
into a JSP

Problem

You want to include a resource that does not change very much (such as a page fragment that
represents a header or footer) in a JSP.

Solution

Use the include directive in the including JSP page, and give the included JSP segment a .jspf

extension.

Discussion

JSP pages are often composites of page fragments that represent navigation bars, headers (page
elements that appear at the top of a web page), footers (elements that appear at the bottom of a
web page), and the main body content. Since pages in a web application or a site may all use the
same navigation bar, this file is maintained in one place and used by all of the web components that
require it. If you are going to import a JSP segment that is a static or unchanging resource, use the
include directive in the JSP, as in:

<%@ include file="/WEB-INF/jspf/navbar.jspf" %>

If you are using a JSP document (see Chapter 5) or XML syntax for the JSP, use this form of the
include directive:

<jsp:directive.include file="/WEB-INF/jspf/navbar.jspf" />

If the value of the file attribute begins with a "/" character, then it is a context-relative path,

meaning that it is relative to the web application containing the JSP that uses this directive. If the JSP
includes the latter directive, then this file path means "begin at the web application root and include
the /WEB-INF/jspf/navbar.jspf file."

A file attribute value in include that does not begin with a "/" character is a page-relative path,
which is relative to the JSP page that is using the include directive. The following include directive

attempts to include a file inside of the segments directory, which has the same parent directory as
the including JSP:

<%@ include file="segments/navbar.jspf" %>

The include directive includes the text or code of the included segment during the translation phase,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

when the JSP is converted into a servlet. The include mechanism is a more efficient way of importing
the text or code that you would otherwise type into a JSP prior to its conversion to a servlet, such as
HTML tags or taglib directives. Example 6-9 shows how to use the include directive to import a
segment of taglib directives into a JSP.

The difference between the include directive and the jsp:include standard
action is that the include directive imports the actual text or bytes of the
included segment, whereas the jsp:include standard action sends a request

to the included page and then includes the dynamic response to that request.
See Recipe 6.5.

Example 6-9. Including a JSP segment into a JSP page at translation time

<%@page contentType="text/html"%>
<%@ include file="/WEB-INF/jspf/taglib-inc.jspf" %>
<html>
<head>
<title>Main Content</title>
</head>
<body>
<h1>Here is the main content</h1>
This web application is using the following Servlet API:
<c:out value="${pageContext.servletContext.majorVersion}"/>.<c:out value=
 "${pageContext.servletContext.minorVersion}"/>

 <jsp:useBean id="timeValues" class="java.util.Date"/>
 <c:set target="${timeValues}" value=
 "${pageContext.session.creationTime}" property="time"/>

 The session creation time:
 <fmt:formatDate value="${timeValues}" type="both" dateStyle=
 "medium" />

The toXml tag will create an XML view of this page.
<t:toXml filename="include-xmlview"/>
</body>
</html>

The second line of Example 6-9 includes a JSP segment named taglib-inc.jspf. This segment includes
the taglib directives responsible for making available the JSTL and custom tag used in the page.

Example 6-10 shows the taglib-inc.jspf page.

Example 6-10. A JSP segment containing taglib directives

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="/toxml_view" prefix="t" %>

The include directive includes these three taglib directives just as if you had typed them in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

yourself, then the JSP container converts the enclosing JSP into a servlet. The three taglib directives

enable the use of the following tags in Example 6-9:

c:out

c:set

fmt:formatDate

t:toXml

The JSP 2.0 specification recommends that you give incomplete JSP code that is
designed to be included in other files a .jspf extension, which used to mean
"JSP fragment." The 2.0 specification, however, now refers to these fragments
as "JSP segments" in order to avoid confusing these files with the
javax.servlet.jsp.tagext.JspFragment interface. This interface is part of

the tag extension API.

Figure 6-5 shows what the JSP looks like in a browser window.

Figure 6-5. A JSP with an included JSP segment of taglib directives

This page displays the Servlet API used by the web container, the
javax.servlet.http.HttpSession creation time (formatted using the fmt:formatDate JSTL tag),

and the custom tag that is described in Recipe 5.6. This tag generates an XML view of the containing
page and saves a new XML file named according to its filename attribute. It was included to show a
method of including a few different types of taglibs.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.5 on using the jsp:include standard action; Recipe 6.7 on including JSP segments in XML

files; Recipe 6.8 on including content from outside of a JSP's context; Chapter JSP.1.10.3 of the JSP
2.0 specification on including files in JSPs; Chapter 23 on the JSTL tags.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 6.5 Including Content in a JSP Each Time the JSP
Handles a Request

Problem

You want to include content in a JSP each time it receives a request, rather than when the JSP is
converted to a servlet.

Solution

Use the jsp:include standard action.

Discussion

The jsp:include action includes a resource in a JSP each time it receives a request, which makes
jsp:include more of a dynamic include mechanism than the include directive (see Recipe 6.4).
Using jsp:include , the included JSP segments have access to the including page's request , session
, and application implicit objects, and to any attributes these objects contain. Use the jsp:include

action in each location of the file where you need to import resources such as JSP segments from the
same web application.

The import custom action, which is part of the core JSTL, can import resources

from other web applications or from other locations on the Internet. See Recipe
6.8 .

Example 6-10 shows a JSP page that receives submitted form information from another page in the
web application. The receiving page uses jsp:include to include header and footer page segments at

the top and bottom of the page.

Just to show that the included segments have access to the same request and session information as
their parent page, the header segment displays the person's submitted name, which is stored in fname
and lname request parameters, in the form of a greeting-related title HTML tag. The footer page

element displays the session ID along with the user's submitted first and last name. First, Figure 6-6
shows an HTML page with a simple submission form for the user's first name, last name, and email
address.

Figure 6-6. An HTML form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assume that this form page includes embedded JavaScript to check the validity of the entered
information. When the user clicks the Submit button, the form information is submitted with the
following HTML tag to /solutions.jsp :

<form method=post action="/solutions.jsp">

Example 6-11 shows the solutions.jsp page, which includes two JSP segments: header.jspf and
footer.jspf . The header.jspf contains the contents of a head HTML tag, and places the user's submitted
name in its nested title tag. The footer.jspf page-for the sake of demonstration-echoes the user's
name and shows his session ID, which it obtains from the implicit session JSP object. The JSP 2.0

specification recommends that you keep these files in WEB-INF/jspf .

Example 6-11. Including two page segments and displaying submitted
form values

<%@page contentType="text/html"%>
<html>

<jsp:include page="/WEB-INF/jspf/header.jspf" />

<body bgcolor="white">
<table width="660" border="0" summary="A two-column table in which resides a logo and
navigation bar">
 <tr><td valign="top">
 Organization image goes here...<p>
 <u>Main</u>
 </td>
 <td align="right" valign="top">
 Navbar goes here...
 </td></tr><tr><td valign="top" align="center" colspan="2">

 <table border="0" summary=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "A nested table for aligning body content">
 <tr><td><h2>Thanks for registering at this site</h2></td></tr>
 <tr><td>Here is the info you submitted:</td></tr>

 <tr><td>Name:

 <%= request.getParameter("fname") %>
 <%= request.getParameter("lname") %></td></tr>

 <tr><td>Email:

 <%= request.getParameter("eaddress") %>

</td></tr></table>

 </td></tr><tr><td></td></tr>
 </table>

<table width="660" border="0" summary=
 "A table containing a footer navigation bar.">

<tr><td valign="top" align="center">

<jsp:include page="/WEB-INF/jspf/footer.jsp" />

</td></tr>
</table>
</body>
</html>

Example 6-12 shows the header.jspf JSP segment.

Example 6-12. A JSP header segment included with jsp:include

<HEAD>
 <META name="author" content=
 "Bruce W. Perry, author@jspservletcookbook.com">
 <META name="keywords" content=
 "Java, JSP, servlets, databases, MySQL, Oracle, web development">
 <TITLE>Parker River: Thanks For Visiting
 <%= request.getParameter("fname") %>
 <%= request.getParameter("lname") %>
 </TITLE>
</HEAD>

All this segment does is include the user's name in the title tag. Example 6-13 shows the imported

footer.jspf segment. This segment also writes the user's name to the displayed output and adds the
session ID, after checking whether the javax.servlet.http.HttpSession object is null , and before
it calls the HttpSession.getId() method.

Example 6-13. A JSP footer segment included with jsp:include

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Thanks for visiting
 <%= request.getParameter("fname") %>
 <%= request.getParameter("lname") %>

Session ID:
 <% if (request.getSession() != null) {%>
 <%= request.getSession().getId() %>
 <% } else {%>
 Unknown
 <% } %>

Main | Services |
 Site Map |
 Resources |
 Contact Us|
 Privacy

Figure 6-7 shows the solutions.jsp page in a web browser.

Figure 6-7. The included header and footer segments displayed in a web
browser

Using jsp:include , changes to included files are reflected immediately in the

including pages. On the other hand, if you make changes to a page that is
included using the include directive, those changes are not reflected in the

including page until you modify that page and force the JSP container to
recompile it.

See Also

Recipe 6.4 on the include directive; Recipe 6.7 on including JSP segments in XML files; Recipe 6.8 on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

including content from outside of a JSP's context; Chapter JSP.1.10.3 of the JSP 2.0 specification on
including files in JSPs; Chapter 23 on the JSTL tags.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 6.6 Using an External Configuration File to Include
a Resource in a JSP

Problem

You want to include a file dynamically in a JSP, based on a value derived from a configuration file.

Solution

Use the jsp:include standard action. Provide the value in an external properties file or as a

configuration parameter in the deployment descriptor.

Discussion

Using an external configuration to specify an include file for a JSP allows you to change the name
and/or path to the included file without touching the JSP's code. In addition, when using jsp:include

the JSP does not have to be recompiled to reflect any changes in the included file-the web resource is
included by the JSP each time it handles a request. If you change the file pointed to by the
configuration file, the response from the included resource is added to the including JSP's response
during the next request.

The difference between a jsp:include standard action and include directive is
that the include directive includes the bytes or contents of the imported file

before the JSP is compiled (during the translation phase for the JSP). If the
included segment changes, the updates will not be reflected in the JSP until the
JSP itself is modified, which causes a JSP container (such as Tomcat's Jasper JSP
container) to recompile the JSP.

Example 6-14 shows a JSP that uses an external properties file to specify the file to include.

Example 6-14. Using java.util.ResourceBundle.getBundle() to fetch an
externally configured file

<%@page contentType="text/html"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>

<% java.util.ResourceBundle bundle =
 java.util.ResourceBundle.getBundle("com.jspservletcookbook.include");
 String segment = bundle.getString("external-include");%>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<jsp:include page="<%=segment %>"/>

<body>
<h2>Welcome to our Portal Home <c:out value="${param.fname}" /> <c:out value="${param.
lname}" /></h2>
<jsp:useBean id="dateString" class="java.util.Date"/>
The time is <c:out value="${dateString}" />.

</body>
</html>

Example 6-14 includes a JSP segment that is found at the path specified by the external-include

property. This property is written in a simple text file called include.properties , with content that looks
like this:

external-include=WEB-INF/jspf/header_tag.jsp

The include.properties file is stored in WEB-INF/classes/com/jspservletcookbook .
When your servlet or JSP attempts to access a list of property values by calling the
static method
java.util.ReseourceBundle.getBundle("com.jspservletcookbook.include") ,
getBundle automatically replaces the period "." characters with "/" and appends
".properties" to the end of the String (making the search look like

"com/jspservletcookbook/include.properties" in our example).

The example code saves the property value in a String variable segment with the following code:

String segment = bundle.getString("external-include");

Then the value of the segment variable, which is a filepath, specifies the file for the JSP to include:
WEB-INF/jspf/header_tag.jsp . This is accomplished with the JSP expression- <%=segment %> -in the
page attribute value for jsp:include :

<jsp:include page="<%=segment %>"/>

When the JSP page is executed, the included file's response is included in the part of the page where
the jsp:include standard action occurs. Example 6-15 shows the content of the included file,

header_tag.jsp .

Example 6-15. The content of the header_tag.jsp segment

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<HEAD>
 <META name="author" content=
 "Bruce W. Perry, author@jspservletcookbook.com">
 <META name="keywords" content=
 "Java, JSP, servlets, databases, MySQL, Oracle, web development">
 <TITLE>Parker River: Thanks For Visiting
 <c:out value="${param.fname}"/>
 <c:out value="${param.lname}"/>
 </TITLE>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</HEAD>

This is a complete HEAD HTML tag, including two nested META tags and a TITLE tag. If you requested

the including JSP page at http://localhost:8080/home/externalInclude.jsp?fname=Mister&lname=Bean
, the returned content from this JSP segment-the actual text that the JSP container substitutes for the
jsp:include tag in the output-looks like Example 6-16 .

Example 6-16. The output when jsp:include is used

<HEAD>
 <META name="author" content=
 "Bruce W. Perry, author@jspservletcookbook.com">
 <META name="keywords" content=
 "Java, JSP, servlets, databases, MySQL, Oracle, web development">
 <TITLE>Parker River: Thanks For Visiting
 Mister
 Bean
 </TITLE>
</HEAD>

The included segment processes the request parameters fname and lname from the query string:

fname=Mister&lname=Bean

and includes their values in the TITLE tag. Figure 6-8 shows what the externalInclude.jsp page looks

like in a browser.

Figure 6-8. Browser view of JSP that uses jsp:include to include another
JSP segment

http://localhost:8080/home/externalInclude.jsp?fname=Mister&lname=Bean
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, the included segment uses the proper taglib directive so that
the c:out JSTL 1.0 tags can be used. If you are using JSTL 1.1, then the uri
attribute value is http://java.sun.com/jsp/jstl/core :

<%@ taglib
 uri="http://java.sun.com/jstl/core"
 prefix="c" %>

You can also pass parameters for the included segment to process, in the
manner of:

<jsp:include page="<%=segment %>">
 <jsp:param name="role" value="comedian"/>
</jsp:include>

If you want to use a context parameter in the web application's deployment descriptor instead to
provide a path for the included file, add a context-param element to web.xml (as shown in Example 6-

17).

Example 6-17. A context-param element provides an included file path

<context-param>
 <param-name>external-include</param-name>
 <param-value>WEB-INF/jspf/header_tag.jsp</param-value>
</context-param>

Then get the value of the context parameter in the including JSP:

<jsp:include page="<%=application.getInitParameter("external-include")%>"/>

The JSP then inserts the file path WEB-INF/jspf/header_tag.jsp as the value for the jsp:include page

attribute.

See Also

Recipe 6.4 on the include directive; Recipe 6.7 on including JSP segments in XML files; Recipe 6.8 on

including content from outside of a JSP's context; Chapter JSP.1.10.3 of the JSP 2.0 specification on
including files in JSPs; Chapter 23 on the JSTL tags; this web page for how the getBundle method
returns certain types of ResourceBundles :

http://java.sun.com/j2se/1.4.1/docs/api/java/util/ResourceBundle.html#getBundle (java.lang.String,
java.util.Locale, java.lang.ClassLoader) .

[Team LiB]

http://java.sun.com/jsp/jstl/core
http://java.sun.com/j2se/1.4.1/docs/api/java/util/ResourceBundle.html#getBundle
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 6.7 Including an XML Fragment in a JSP
Document

Problem

You want to include a fragment of an XML file inside of a JSP document, or include a JSP page in XML
syntax.

Solution

Use the jsp:include standard action for the includes that you want to occur with each request of
the JSP. Use the jsp:directive.include element if the include action should occur during the

translation phase.

Discussion

Because a JSP document is a well-formed XML file, both of the mechanisms that you can use to
include JSP segments are XML elements: jsp:include and jsp:directive.include. A JSP

document is a JSP page in XML syntax, in which all of the code is well-formed XML; in other words,
the entire page consists of XML elements, attributes, and the body content of some XML elements.
You then take the JSP document and place it in the root of your web application (or wherever you
make your JSP pages available; the root is the usual place), and the JSP container translates the XML
file into a servlet. One reason for using JSP documents is to integrate the JSPs with other XML
technologies, such as XHTML, SVG, or SOAP. Recipe 5.5 describes JSP documents in more detail.
Example 6-18 shows a JSP document version of Example 6-14, using jsp:include to include a file

that is located at the path WEB-INF/jspf/header_tag.jspf.

Example 6-18. A JSP document using jsp:include to include a file

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns="http://www.w3.org/1999/xhtml" version="2.0">

 <jsp:directive.page contentType="text/html"/>
 <html>

 <jsp:include page="WEB-INF/jspf/header_tag.jspf" />

 <body>
 <h2>Welcome to our Portal <c:out value="

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ${param.fname}" /><jsp:text> </jsp:text>
 <c:out value="${param.lname}" /></h2>
 <jsp:useBean id="dateString" class="java.util.Date"/>
 <jsp:text>The time is </jsp:text> <c:out value="${dateString}" />.

 </body>
 </html>
</jsp:root>

In Example 6-18, the JSP page includes the text that is returned by header_tag.jspf. Using
jsp:include, the included file does not have to be well-formed XML itself, as long as it returns text

that is well-formed XML and fits correctly into the JSP document.

The JSP 2.0 specification recommends that JSP segments that you include in
JSP pages or JSP documents be given a .jspf extension. In addition, one way to
differentiate JSP documents from conventional JSP pages is to give the JSP
documents a .jspx extension (when using the Servlet 2.4 version of web.xml).
Tomcat 4.1.x will compile and execute as JSP pages the files with these
extensions if you add these servlet-mapping elements to conf/web.xml:

<servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>*.jspf</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>*.jspx</url-pattern>
</servlet-mapping>

Example 6-19 shows the included file header_tag.jspf. It has its own taglib directive so that the
JSTL-related tags inside the TITLE tags produce the proper output from the request parameters
fname and lname. The comment at the bottom of Example 6-18 shows the text that is returned from
this JSP segment, using jsp:include, when the enclosing JSP page is requested from

http://localhost:8080/home/x617.jspx?fname=Bruce&lname=Perry.

Example 6-19. The included file header_tag.jspf

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<HEAD>
 <META name="author" content=
 "Bruce W. Perry, author@jspservletcookbook.com"/>
 <META name="keywords" content=
 "Java, JSP, servlets, databases, MySQL, Oracle, web development"/>
 <TITLE>Parker River: Thanks For Visiting
 <c:out value="${param.fname}"/> <c:out value="${param.lname}"/>
 </TITLE>
</HEAD>
<!-- source text returned from header_tag.jspf

<HEAD>

http://localhost:8080/home/x617.jspx?fname=Bruce&lname=Perry
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <META name="author" content=
 "Bruce W. Perry, author@jspservletcookbook.com"/>
 <META name="keywords" content=
 "Java, JSP, servlets, databases, MySQL, Oracle, web development"/>
 <TITLE>Parker River: Thanks For Visiting
 Bruce Perry
 </TITLE>
</HEAD> -->

Figure 6-9 shows what the complete document looks like in a browser.

Figure 6-9. A JSP document displayed in a browser

You can also use the jsp:directive.include element, which includes the content before the JSP
document is converted into a servlet, rather than at runtime as with jsp:include. To convert
Example 6-17 to use an include directive, replace the jsp:include element with:

<jsp:directive.include file="WEB-INF/jspf/header_tag.jspf" />

The included content cannot have any non-XML syntax forms, such as a JSP taglib directive,

because the included code is included verbatim into the JSP document when it is converted into a
servlet.

An alternative approach is to use CDATA sections in the XML to attempt to
preserve the words and symbols that would otherwise cause the XML file to fail
the well-formed test. The CDATA sections look like <![CDATA[...]]>.

You would have to remove the tag-lib directive from the top of Example 6-19 for the JSP to compile
correctly using jsp:directive.include. In addition, the c:out tags inside of the included segment
would then be dependent on the inclusion in the enclosing JSP document of an xmlns attribute to

make the core JSTL elements available, as in the top of Example 6-18.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A rule of thumb to use with the two include mechanisms is that if the included
segment will change frequently and the enclosing JSP page must immediately
reflect those changes, use jsp:include . If the included segment is relatively
static and unchanging, use jsp:directive.include.

See Also

Recipe 6.4 on the include directive; Recipe 6.5 on the jsp:include standard action; Recipe 6.8 on

including content from outside of a JSP's context; Chapter JSP.1.10.3 of the JSP 2.0 specification on
including files in JSPs; Chapter 23 on the JSTL tags.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 6.8 Including Content from Outside a Context in a
JSP

Problem

You want to include a JSP segment from outside the including file's context.

Solution

Use the c:import JSTL core tag.

Discussion

The c:import tag gives JSP page authors much flexibility in pulling in resources from inside and
outside their web application. The c:import tag allows a page to import web resources:

From outside JSP's web container, using an absolute URL (such as http://java.sun.com/api).

From another context in the same web container. For example, your domain may include a
central repository of included content at http://www.mydomain.com/warehouse. A JSP page
that is installed in a context named /customer could import a resource from the /warehouse
context by using: <c:import url="/catalog_header.jspf" context="/warehouse" />

From the same context, similar to using jsp:include.

This recipe includes examples of importing resources from outside the importing JSP's context.
Example 6-19 imports a JSP segment header_tag.jsp from the /dbproj context. The url attribute
specifies the resource to include; the context attribute declares the context from which the JSP
imports the resource. To use the c:import tag, the JSP has to include a taglib directive such as:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

Example 6-20 includes a group of taglibs by inserting the taglib-inc.jspf JSP segment in the second

line.

Example 6-20. Using the c:import tag to import an external URL

<%@page contentType="text/html"%>
<%@ include file="/WEB-INF/jspf/taglib-inc.jspf" %>
 <html>

http://java.sun.com/api)
http://www.mydomain.com/warehouse
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <c:import url="/header_tag.jspf" context="/dbproj" />

 <body>
 <h2>Welcome to our Portal <c:out value="
 ${param.fname}" /> <c:out value="${param.lname}" />
 </h2>
 <jsp:useBean id="dateString" class="java.util.Date"/>
 The time is <c:out value="${dateString}" />.

 </body>
 </html>

The c:import tag inserts the text generated by /dbproj/header_tag.jsp in the part of the code where
the c:import tag is located. The /dbproj context path represents a different web application or

context than the importing JSP. The top of the importing page now looks like the following text, since
this is the HTML that the imported file produces:

<html>
<HEAD>
 <META name="author" content=
 "Bruce W. Perry, author@jspservletcookbook.com"/>
 <META name="keywords" content=
 "Java, JSP, servlets, databases, MySQL, Oracle, web development"/>
 <TITLE>Parker River: Thanks For Visiting
 Mister Bean
 </TITLE>
</HEAD>
<body>
<!-- page continues from here... -->

Using Tomcat, the context element in conf/server.xml has to include this
attribute/value pair or the JSP that uses c:import will raise an exception if it

attempts to import resources from another context:

crossContext="true" <!--"false" by default-->

Example 6-21 imports a description of the HTTP/1.1 protocol, Request For Comments (RFC) 2068.

The example declares its content type as "text/plain," so that the browser does not try to display the
text file as HTML, which can be unreadable with plaintext files. Then Example 6-21 uses a taglib
directive so that the JSP can use the c:import tag. The c:import tag specifies the location of the

imported text file as an absolute URL: http://www.ietf.org/rfc/rfc2068.txt.

Example 6-21. Using c:import to import a text resource whose address is
an absolute URL

<%@page contentType="text/plain"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
 <c:import url="http://www.ietf.org/rfc/rfc2068.txt" />

http://www.ietf.org/rfc/rfc2068.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If a JSP uses c:import to access a forbidden resource (which will cause the
receiving server to respond with a HTTP status code 403), the c:import tag

throw ans exception and the JSP compilation will fail.

You can also include parameters with c:import using nested c:param tags. Example 6-22 imports a
file header_tag.jspf, and makes available two request parameters for that file to process: fname and
lname. The taglib directive at the top of Example 6-22 allows the use of the c:import and c:param

tags later on in the code.

Example 6-22. Including parameter values using c:param

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
<c:import url="WEB-INF/jspf/header_tag.jspf" >
 <c:param name="fname" value="Mister"/>
 <c:param name="lname" value="Bean"/>
</c:import>
<body>
<h2>The rest of the page goes here ...</h2>
</body>
</html>

The header_tag.jspf file takes the values of the two parameters and adds them to the TITLE tag's

greeting. Example 6-23 shows the HTML that results from this import action.

Example 6-23. Request parameter values are reflected in the HTML
output

<html>
<HEAD>
 <META name="author" content=
 "Bruce W. Perry, author@jspservletcookbook.com"/>
 <META name="keywords" content=
 "Java, JSP, servlets, databases, MySQL, Oracle, web development"/>
 <TITLE>Parker River: Thanks For Visiting
 Mister Bean
 </TITLE>
</HEAD>
<body>
<h2>The rest of the page goes here ...</h2>
</body>
</html>

See Also

Recipe 6.1-Recipe 6.3 on including resources in servlets; Recipe 6.4-Recipe 6.7 on using
jsp:include, the include directive, and including resources in JSP documents or XML files; Chapter
23 on Using the JSTL 1.0; Chapter JSP.5.4 of the JSP 2.0 specificationon jsp:include; Chapter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JSP.1.10.3 of the JSP 2.0 specification on the include directive.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Handling Web Form Data
inServlets and JSPs

Introduction

Recipe 7.1. Handling a POST HTTP Request in a Servlet

Recipe 7.2. Handling a POST HTTP Request in a JSP

Recipe 7.3. Setting the Properties of a JavaBean in a JSP

Recipe 7.4. Setting a Scoped Attribute in a JSP to the Value of a Form Parameter

Recipe 7.5. Posting Data from a Servlet

Recipe 7.6. Posting Data from a JSP

Recipe 7.7. Using a Servlet to Add a Parameter to a Query String

Recipe 7.8. Using a JSP to Add a Parameter to a Query String

Recipe 7.9. Using a Filter to Read Parameter Values
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Every web developer is familiar with the scenario in which a client fills out an HTML form and then
submits the inserted information to a server-side program for processing. Some of these programs
use the HTTP request method POST to deliver the data to the server-side program. The POST method

sends the data to the server in the body of the request, rather than as a query string appended to a
URL (as in the GET method). For example, consider the HTML form tag in Example 7-1.

Example 7-1. HTML form tag set up for posting data

<form method=POST action="/project/controller">

User Name: <input type="text" name="username"
size="20">

Department: <input type="text" name="department"
size="15">

Email: <input type="text" name="email"
size="15">

<input type="submit" value="Submit">

</form>

When the client submits this form information, the top of the client's request text looks like this:

POST /project/controller HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/msword,
application/vnd.ms-powerpoint, application/vnd.ms-excel, application/pdf, */*
Referer: http://localhost:8080/project/login.jsp
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded

Beneath this text, after a few more headers, the body of the request carries the submitted data:

username=Bruce+W+Perry&password=bw_p1968

JSPs and servlets make parsing the POST data quite transparent for the developer. This is the topic of

the next few recipes. We then discuss how to use servlets and JSPs to post data so that they
essentially play the role of client, instead of acting as a server-side program.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 7.1 Handling a POST HTTP Request in a Servlet

Problem

You want to process data that is part of a POST request.

Solution

Use the ServletRequest.getParameter(String name) , getParameterMap() , getParameterNames(
) , or getParameterValues(String name) methods in the servlet's doPost method.

Discussion

The service method of a servlet calls the servlet's doPost method when a client sends a POST HTTP

request. The servlet developer then has four different methods she can call to gain access to the posted
data, which makes it pretty easy to process these requests. Just in case a client application uses a GET

method to send the servlet its data as a query string, the servlet should also call:

doPost(request,response);

in the servlet's doGet() method. Example 7-2 demonstrates handling POST data with the oft-used
getParameter(String name) method, as well as with the getParameterMap() method, which returns
a java.util.Map . The map contains parameter keys and values. The getParameterNames() method
returns a java.util.Enumeration of the parameter names. You can iterate through this Enumeration
and pass the values to getParameter(String name) . Another ServletRequest method,
getParameterValues(String name) , returns a String array of all the posted values for that
parameter name (if there is only one value, the returned array contains one String). Figure 7-1 shows
the browser display of the PostHandler servlet after a user has submitted the form in Example 7-1 .

Figure 7-1. Servlet displays name/value pairs from posted form input

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 7-2. Using the ServletRequest.getParameter and
getParameterMap methods to handle posted data

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Map;
import java.util.Iterator;
import java.util.Map.Entry;

public class PostHandler extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException, java.io.IOException {

/* Use the ServletRequest.getParameter(String name), getParameterMap(),
getParameterNames(), or getParameterValues() methods in the servlet's doPost method*/

 String name = request.getParameter("username");
 String depart = request.getParameter("department");
 String email = request.getParameter("email");

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Welcome</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Your Identity</h1>");

 out.println(
 "Your name is: " + ((name == null || name.equals("")) ?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "Unknown" : name));

 out.println("

");

 out.println(
 "Your department is: " + ((depart == null || depart.equals("")) ?
 "Unknown" : depart));

 out.println("

");

 out.println(
 "Your email address is: " + ((email == null ||
 email.equals("")) ? "Unknown" : email));

 out.println("<h2>Using ServletRequest.getParameterMap</h2>");

 Map param_map = request.getParameterMap();

 if (param_map == null)
 throw new ServletException(
 "getParameterMap returned null in: " +
 getClass().getName());

 //iterate through the java.util.Map and display posted parameter
 //values
 //the keys of the Map.Entry objects are type String; the values are
 //type String[],
 //or String array

 Iterator iterator = param_map.entrySet().iterator();
 while(iterator.hasNext()){
 Map.Entry me = (Map.Entry)iterator.next();
 out.println(me.getKey() + ": ");
 String[] arr = (String[]) me.getValue();

 for(int i=0;i<arr.length;i++){
 out.println(arr[i]);
 //print commas after multiple values,
 //except for the last one
 if (i > 0 && i != arr.length-1)
 out.println(", ");
 }//end for

 out.println("

");
 }//end while

 out.println("</body>");
 out.println("</html>");

 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws ServletException, java.io.IOException {

 doPost(request,response);
 }
}

Getting the value of a parameter is as simple as using request.getParameter(parametername) .

Then you can test for the failure to return a valid value with code from Example 7-2 :

out.println("Your name is: " +
 ((name == null || name.equals("")) ? "Unknown" : name));

If the name variable is an empty String or null , then the servlet prints "Unknown"; otherwise, it prints
the name value. There are several design patterns you can use for validating form input, including client-

side JavaScript and special validation JavaBeans.

Handling the java.util.Map type is more involved and entails more code. The servlet gets the
parameter map by calling the ServletRequest method:

Map param_map = request.getParameterMap()

Then the code gets a java.util.Iterator from the java.util.Set returned from Map.entrySet() .
The Set contains Map.Entry objects, which are key/value pairs representing the parameter name and

value. The servlet uses the iterator to cycle through the parameter names and values:

Iterator iterator = param_map.entrySet().iterator();

while(iterator.hasNext()){

 Map.Entry me = (Map.Entry)iterator.next();
 out.println(me.getKey() + ": ");

 // The returned value is a String array
 String[] arr = (String[]) me.getValue();

 for(int i=0;i<arr.length;i++){

 out.println(arr[i]);

 //print commas after multiple values,
 //except for the last one
 if (i > 0 && i != arr.length-1)
 out.println(", ");

 }//end for

 out.println("

");
}//end while

If this looks too elaborate for processing posted data, then reserve getParameterMap() for
applications that are designed to deal with them, such as a validator bean that takes a Map as a

constructor or method parameter. In addition, Recipe 7.2 shows a JSP that uses JSTL to conveniently
process a parameter map.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 7.2 on handling a POST request in a JSP; Recipe 7.5 on posting data from a servlet; Recipe 7.7
on using a servlet to add a parameter to a query string; the ServletRequest API docs at

http://java.sun.com/j2ee/1.4/docs/api/index.html .

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 7.2 Handling a POST HTTP Request in a JSP

Problem

You want to have a JSP handle the data posted from a form or client application.

Solution

Use the JSTL c:forEach tag to iterate over the parameter names and values.

Discussion

The JSTL makes it very easy to process input data from a POST method. The JSP in Example 7-3 uses
only template text and JSTL tags to display posted information. The c:forEach tag iterates over the
posted data using the implicit JSTL object param. The param object contains java.util.Map.Entry

types, which each hold a key/value pair. The key and value correspond to the name of a submitted
parameter and its value, such as "department=Development." Using the Expression Language (EL),
the syntax "${map_entry.key}" or "${map_entry.value}" is the equivalent of calling the
Map.Entry.getKey() and getValue() methods. The return values of these method calls are fed to
the c:out JSTL tag for display in the HTML page. Figure 7-2 shows what the browser page looks like
if the form submitted to the JSP is the one detailed in Example 7-1. With your taglib, use a uri
value of http://java.sun.com/jsp/jstl/core for JSTL 1.1.

Example 7-3. Iterating posted data with the JSTL

<%@page contentType="text/html"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
<head><title>Post Data Viewer</title></head>
<body>
<h2>Here is your posted data</h2>

<c:forEach var="map_entry" items="${param}">
 <c:out value="${map_entry.key}" />:
 <c:out value="${map_entry.value}" />

</c:forEach>

</body>
</html>

Make sure to include the taglib directive when you are using the JSTL tags. The taglib in Example

http://java.sun.com/jsp/jstl/core
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7-3 takes care of any of the custom tags with the "c" prefix, as in c:forEach.

Chapter 23 explains how to install the JSTL in your web application, make
different custom tags, and use the EL.

Figure 7-2. A JSP displaying posted name/value pairs

If you want to get the values of parameters without using a c:forEach tag, then use the code

fragment in Example 7-4. This code displays the values of parameters when the parameter names
are known by the developer (which is usually the case).

Example 7-4. Displaying individual parameter values using c:out

<h2>Here is your posted data</h2>
User name:: <c:out value="${param.username}"/>

Department:: <c:out value="${param.department}"/>
Email:: <c:out value="${param.email}"/>

Substituting this code into the JSP produces the same results as those shown Figure 7-2.

The JSP 2.0 specification is designed to allow the use of the EL in template
text-in other words, without the c:out JSTL tag.

See Also

Recipe 7.2 on handling a POST request in a JSP; Recipe 7.3 on setting the properties of a JavaBean to

form input; Recipe 7.4 on setting a scoped attribute to the value of a parameter; Recipe 7.6 on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

posting data from a JSP; Chapter 23 on using the JSTL.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 7.3 Setting the Properties of a JavaBean in a JSP

Problem

You want to set a JavaBean's properties to the values entered in a form.

Solution

Use the jsp:setProperty standard action, with its property attribute set to "*" and its class

attribute set to the fully qualified class name of the JavaBean.

Discussion

The jsp:setProperty standard action has a built-in method for automatically mapping the values

submitted in a form to a JavaBean's fields or variables. The names of the submitted parameters have
to correspond to the names of the JavaBean's setter methods. Example 7-5 shows a setBean.jsp
page that receives data from an HTML form:

<form method=post action="http://localhost:8080/home/setBean.jsp">

The JSP first instantiates an object of the type com.jspservletcookbook.UserBean using
jsp:useBean. Then it sets the properties of the bean using jsp:setProperty. The name attribute of
jsp:setProperty matches the id attribute of jsp:useBean. The property attribute of
jsp:setProperty is simply set to "*".

Example 7-5. beanSet.jsp JSP that sets the UserBean's properties with
form input

<%@page contentType="text/html"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="userB" class="com.jspservletcookbook.UserBean" >

<jsp:setProperty name="userB" property="*" />

</jsp:useBean>
<html>
<head><title>Post Data Viewer</title></head>
<body>
<h2>Here is your posted data</h2>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 User name:
 <c:out value="${userB.username}" />

 Department:
 <c:out value="${userB.department}" />

 Email:
 <c:out value="${userB.email}" />

</body>
</html>

Example 7-5 uses the c:out element of the JSTL to display the bean's various values in a browser
page. The value attribute of c:out uses the EL to acquire a property value, as in "${userB.email}".
This syntax is the equivalent of calling the UserBean's getEmail() method. Example 7-6 shows
the UserBean, which uses the JavaBean naming conventions to ensure that its properties can be

properly set and accessed. Figure 7-3 shows the browser display of the values.

Figure 7-3. Displaying form input via a JavaBean

The jsp:setProperty action, as used in this recipe, sets the JavaBean's

properties by using introspection to line up parameter names with the bean's
setter methods. If the bean has a field named "Username," then the parameter
name must be exactly "Username" and the setter method must be exactly
"setUsername(String name)" (if the bean's field is a String). Watch out, it's

case-sensitive!

Example 7-6. Encapsulating the posted data in a JavaBean

package com.jspservletcookbook;

public class UserBean implements java.io.Serializable{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String username;
String email;
String department;

public UserBean(){}

public void setUsername(String _username){

 if(_username != null && _username.length() > 0)
 username = _username;
 else
 username = "Unknown";
}

public String getUsername(){

 if(username != null)
 return username;
 else
 return "Unknown";}

public void setEmail(String _email){

 if(_email != null && _email.length() > 0)
 email = _email;
 else
 email = "Unknown";
}

public String getEmail(){

 if(_email != null)
 return email;
 else
 return "Unknown";}

public void setDepartment(String _department){

 if(_department != null && _department.length() > 0)
 department = _department;
 else
 department = "Unknown";
}

public String getDepartment(){

 if(department != null)
 return department;
 else
 return "Unknown"; }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.4 shows how to use a bean to validate form input, then set a scoped attribute to the input.

See Also

Recipe 7.2 on handling a POST request in a JSP; Recipe 7.4 on setting a scoped attribute to the value

of a parameter; Recipe 7.6 on posting data from a JSP; Chapter 23 on using the JSTL.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 7.4 Setting a Scoped Attribute in a JSP to the
Value of a Form Parameter

Problem

You want to set a request-, session-, or application-scoped attribute to a value that a client has
submitted as part of form input.

Solution

Use the jsp:useBean and jsp:setProperty standard actions to set a JavaBean's property to the
submitted value. Then use the c:set JSTL custom tag to set the attribute to the validated value.

Discussion

Some web applications may validate form input such as an email/password combination, then set a
request-, session-, or application-scoped attribute to the validated value. An efficient way to handle
important data that a user submits is to use a JavaBean whose purpose is to validate the submission
against some business rule or external resource, such as a database. If the submission is valid, then
the application creates a session attribute, for instance, with the value. If the submission is invalid,
then a boolean variable in the JavaBean is set to false. The JSP to which the form input is sent can

check this value before it handles the data as valid.

Example 7-7 shows a ClientValidator bean that has three fields: email, password, and valid.

This bean is used by a JSP to validate form input before the JSP sets request-scoped attributes to the
submitted values.

Example 7-7. The ClientValidator bean

package com.jspservletcookbook;

public class ClientValidator implements java.io.Serializable{

String email;
String password;
boolean valid;

public ClientValidator(){

 this.valid=false;}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public boolean isValid(){

 /* Use a Data Access Object to validate the email and password.
 If the validation does not fail, then set this.valid to true*/

 this.valid=true;
 return valid;

}

public void setEmail(String _email){

 if(_email != null && _email.length() > 0)
 email = _email;
 else
 email = "Unknown";
}

public String getEmail(){

 return email;
}

public void setPassword(String _password){

 if(_password != null && _password.length() > 0)

 password = _password;

 else

 password = "Unknown";
}

public String getPassword(){

 return password; }

}

Example 7-8 is the JSP that uses ClientValidator. The JSP first uses jsp:useBean to create an

instance of the bean. Then it sets the fields or properties of the bean to the values that have been
posted to the JSP, which are "email" and "password". If the isValid bean property is true, which is

tested with this JSTL code:

<c:if test="${isValid}">

then the JSP sets two request-scoped attributes. The attributes are now available to a page that is
forwarded this request. Session attributes are accessible from servlets and JSPs that are associated
with the same session (see Chapter 11). The application scope encompasses the context or web
application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want to set session- or application-scoped attributes, change the code in
Example 7-8 to:

<c:set var="email" value="${chk.email}"
 scope="session" />
<c:set var="password" value="${chk.password}"
 scope="session" />

or:

<c:set var="email" value="${chk.email}"
 scope="application" />
<c:set var="password" value="${chk.password}"
 scope="application" />

Example 7-8. validChk.jsp page that uses a validator bean to check form
input data

<%@page contentType="text/html"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="chk" class="com.jspservletcookbook.ClientValidator" >

<jsp:setProperty name="chk" property="*" />

</jsp:useBean>
<%-- get valid property from ClientValidator bean --%>

<c:set var="isValid" value="${chk.valid}" />

<c:if test="${isValid}">

 <c:set var="email" value="${chk.email}" scope="request" />
 <c:set var="password" value="${chk.password}" scope="request" />

</c:if>
<html>
<head><title>Client Checker</title></head>
<body>
<h2>Welcome</h2>

 Email:
 <c:out value="${email}" />

 Password:
 <c:out value="${password}" />

</body>
</html>

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.2 on handling a POST request in a JSP; Recipe 7.3 on setting the properties of a JavaBean to

form input; Recipe 7.6 on posting data from a JSP; Chapter 23 on using the JSTL.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 7.5 Posting Data from a Servlet

Problem

You want to send parameters and their values as a POST request from a servlet.

Solution

Use the Jakarta Commons HttpClient component and its PostMethod class to automate the posting of

data to other programs.

Discussion

The Jakarta Commons HttpClient is a component that allows the developer to mimic the features of a
web browser in his Java code, such as sending GET and POST HTTP requests, as well as using HTTPS for
secure sockets. As the homepage describes this useful component, HttpClient "provides an efficient,

up-to-date, and feature-rich package implementing the client side of the most recent HTTP standards
and recommendations" (http://jakarta.apache.org/commons/httpclient/). HttpClient is offered under

the Apache Software License.

This recipe describes using HttpClient to post data to another server-side program using the POST
HTTP method. First, download the HttpClient distribution from the Jakarta site

(http://jakarta.apache.org/commons/httpclient/downloads.html). Then unpack the distribution and
place the JAR file that it contains in the WEB-INF/lib directory of your web application. At this writing,
the JAR for Release 2.0 Alpha 3 was commons-httpclient-2.0-alpha2.jar . Once you have taken care of
this installation, your servlets and beans can use the HttpClient classes.

Example 7-9 is a servlet that posts data to a JSP: http://localhost:8080/home/viewPost.jsp . Example
7-3 shows the viewPost.jsp file. Note the classes from the org.apache.commons.httpclient package

that the servlet has to import at the top of the code.

Example 7-9. A servlet that posts data to a JSP using HttpClient

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.HttpStatus;
import org.apache.commons.httpclient.methods.PostMethod;
import org.apache.commons.httpclient.NameValuePair;

public class ClientPost extends HttpServlet {

http://localhost:8080/home/viewPost.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException {

 HttpClient httpClient = new HttpClient();

 PostMethod postMethod = new PostMethod(
 "http://localhost:8080/home/viewPost.jsp");

 NameValuePair[] postData = {
 new NameValuePair("username", "devgal"),
 new NameValuePair("department", "development"),
 new NameValuePair("email", "devgal@yahoo.com")
 };

 //the 2.0 beta1 version has a
 //PostMethod.setRequestBody(NameValuePair[])
 //method, as addParameters is deprecated

 postMethod.addParameters(postData);

 httpClient.executeMethod(postMethod);

 //display the response to the POST method
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 //A "200 OK" HTTP Status Code

 if (postMethod.getStatusCode() == HttpStatus.SC_OK) {

 out.println(postMethod.getResponseBodyAsString());

 } else {

 out.println("The POST action raised an error: " + postMethod.getStatusLine());

 }
 //release the connection used by the method
 postMethod.releaseConnection();

 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException {

 doPost(request,response);
}
}

The code sends three name/value pairs to the JSP (named username , department , and email), which
will handle the posted data. HttpClient handles the returned text from the POST method so that you

can display it in the same servlet. If you expect to receive large amounts of text as return values from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the POST , then consider using the HttpMethodBase.getResponseBodyAsStream() method instead of
getResponseBodyAsString() . The getResponseBodyAsStream() method returns a
java.io.InputStream . Example 7-9 is derived from sample code provided at the HttpClient web site.

Figure 7-4 shows the web browser display after requesting the ClientPost servlet.

Figure 7-4. Displaying the returned text after posting data from a servlet

See Also

Recipe 7.1 on handling a POST request in a servlet; Recipe 7.7 on using a servlet to add a parameter to
a query string; the Jakarta Commons HttpClient page: http://jakarta.apache.org/commons/httpclient

.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 7.6 Posting Data from a JSP

Problem

You want to send parameters and their values as an HTTP POST request from a JSP.

Solution

The easiest way to post data from a JSP is to do it the old fashioned way: use the HTML form tag and

a Submit button. If you have to send the data dynamically (as in not relying on a user to press a
form button), use a JavaBean that encapsulates the HttpClient code discussed in Recipe 7.5.

Discussion

The simplest way to initiate a POST method in a JSP is to set up the HTML template text as shown in

Example 7-1: provide an HTML form tag that the user fills out and submits. Since Example 7-1
already shows a typical HTML form, I'l use this space to show a JavaBean that allows a JSP to
dynamically post data to another server-side process.

Example 7-10 shows a jspPost.jsp page that uses a PostBean utility class to send a set of

parameters/values to another JSP. The receiving JSP, viewPost.jsp, processes the parameters that
the PostBean object sends it, then returns some text for the JSP in Example 7-10 to display. The JSP
passes the parameters that it wants to post as a java.util.Map to the PostBean class. The
PostBean url property is the destination for the posted data (the address that you would otherwise
place in the action attribute of a form HTML tag). The code:

<jsp:setProperty name="postBean" property="parameters" value="<%= request.
getParameterMap()%>" />

gets a Map of the parameters that were passed to the jspPost.jsp page with the
HttpServletRequest.getParameterMap() method, then passes that Map to the PostBean class to

be reposted.

Example 7-10. A JSP that posts parameters and values dynamically

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<%-- create an instance of the PostBean class if once does not exist --%>
<jsp:useBean id="postBean" class="com.jspservletcookbook.PostBean" />

<%-- set the PostBean parameters property to a Map type --%>
<jsp:setProperty name="postBean" property="parameters" value="<%= request.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getParameterMap()%>" />

<jsp:setProperty name="postBean" property="url" value="http://localhost:8080/home/
viewPost.jsp" />

<%-- Post the parameters and display the returned text --%>
<jsp:getProperty name="postBean" property="post"/>

Example 7-11 shows the PostBean class that the JSP page uses to post data. This bean uses the
Jakarta Commons HttpClient component to send an HTTP POST request. The sending action
happens in the PostBean.getPost() method, which sends off the parameters and returns the text

result from the receiving servlet (in this example, it's viewPost.jsp). Because the bean method is
called getPost(), using the JavaBean naming conventions for methods that return property values,

we can call the method in the JSP with:

<jsp:getProperty name="postBean" property="post"/>

The latter code is then replaced with the String return value.

Example 7-11. A data-posting JavaBean for use by a JSP or servlet

package com.jspservletcookbook;

import java.util.Map;
import java.util.Iterator;
import java.util.Map.Entry;

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.HttpStatus;
import org.apache.commons.httpclient.methods.PostMethod;
import org.apache.commons.httpclient.NameValuePair;
import org.apache.commons.httpclient.HttpException;

public class PostBean implements java.io.Serializable {

private Map parameters;
private String url;

public PostBean(){
}

public void setParameters(Map param){

 if (param != null)
 parameters = param;
}

public Map getParameters(){

 return parameters;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void setUrl(String url){

 if (url != null && !(url.equals("")))
 this.url=url;
}

public String getUrl(){

 return url;
}

public String getPost() throws java.io.IOException,HttpException{

 if (url == null || url.equals("") || parameters == null)
 throw new IllegalStateException(
 "Invalid url or parameters in PostBean.getPost method.");

 String returnData = "";

 HttpClient httpClient = new HttpClient();

 PostMethod postMethod = new PostMethod(url);

 //convert the Map passed into the bean to a NameValuePair[] type
 NameValuePair[] postData = getParams(parameters);

 //the 2.0 beta1 version has a
 //PostMethod.setRequestBody(NameValuePair[])
 //method, as addParameters is deprecated

 postMethod.addParameters(postData);

 httpClient.executeMethod(postMethod);

 //A "200 OK" HTTP Status Code
 if (postMethod.getStatusCode() == HttpStatus.SC_OK) {

 returnData= postMethod.getResponseBodyAsString();

 } else {

 returnData= "The POST action raised an error: " +
 postMethod.getStatusLine();
 }

 //release the connection used by the method
 postMethod.releaseConnection();

 return returnData;

}//end getPost

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private NameValuePair[] getParams(Map map){

 NameValuePair[] pairs = new NameValuePair[map.size()];

 //Use an Iterator to put name/value pairs from the Map
 //into the array
 Iterator iter = map.entrySet().iterator();

 int i = 0;

 while (iter.hasNext()){

 Map.Entry me = (Map.Entry) iter.next();

 //Map.Entry.getValue() returns a String[] array type
 pairs[i] = new NameValuePair(
 (String)me.getKey(),((String[]) me.getValue())[0]);
 i++;
 }
 return pairs;
 }//end getParams

}

The displayed results looks exactly like Figure 7-5, which also uses viewPost.jsp to show the
name/value pairs that were fed to the JSP. Again, if you have to use a JSP to dynamically mimic an
HTML form, it is a good idea to delegate the mechanics of posting data to a JavaBean so that the JSP
remains a presentation component and the bean can be reused elsewhere.

Figure 7-5. Displaying parameters added from a forwarding JSP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 7.2 on handling a POST request in a JSP; Recipe 7.3 on setting the properties of a JavaBean to

form input; Recipe 7.8 on using a JSP to add a parameter to a query string.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 7.7 Using a Servlet to Add a Parameter to a Query
String

Problem

You want to use a servlet to add one or more parameters to a query string, then forward the request
to its final destination.

Solution

Use the HttpServletRequest API to get the existing query string. Then append any new parameters
to the query string and use a javax.servlet.RequestDispatcher to forward the request.

Discussion

The servlet in Example 7-12 simply takes any existing query string and appends the parameters that
it has to add to this String. Then it sends the now extended (or new) query string on its merry way
with a call to RequestDispatcher.forward .

Example 7-12. Adding a parameter to a query string with a servlet

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class QueryModifier extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //returns null if the URL does not contain a query string
 String querystr = request.getQueryString();

 if (querystr != null){

 querystr = querystr +
 "&inspector-name=Jen&inspector-email=Jenniferq@yahoo.com";

 } else {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 querystr = "inspector-name=Jen&inspector-email=Jenniferq@yahoo.com";}

 RequestDispatcher dispatcher =
 request.getRequestDispatcher("/viewPost.jsp?"+querystr);

 dispatcher.forward(request,response);
}

public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException {

 doGet(request,response);

 }

}

The HttpServletRequest.getQueryString() method returns the query

string without the opening "?", as in:

first=Bruce&last=Perry&zipcode=01922

If you want to get the request URL right up to the query string but not include
the "?", use HttpServletRequest.getRequestURL() , which returns a
java.lang.StringBuffer type.

See Also

Recipe 7.1 on handling a POST request in a servlet; Recipe 7.5 on posting data from a servlet.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 7.8 Using a JSP to Add a Parameter to a Query
String

Problem

You want to use a JSP to add one or more parameters to a query string, then forward the request to
its destination.

Solution

Use the jsp:forward and jsp:param standard actions.

Discussion

Adding one or more parameters and forwarding to another component is as easy as four lines in a
JSP. The jsp:forward action adds any jsp:params to existing parameters when it forwards this text

to the processing component, as shown in Example 7-13.

Example 7-13. Adding parameters and forwarding in a JSP

<jsp:forward page="/viewPost.jsp" >
 <jsp:param name="inspector-name" value="Jen"/>
<jsp:param name="inspector-email" value="jenniferq@yahoo.com"/>
</jsp:forward>

If this JSP is requested with the following URL:

http://localhost:8080/home/addParam.jsp?first=Bruce&last=Perry&zip=01922

then the three original parameters (first, last, and zip) are preserved when the jsp:forward
action adds two additional parameters (inspector-name, inspector-email) and forwards the page.

In the example, the page is processed by the viewPost.jsp page shown in Example 7-3. Requesting
addParam.jsp in a browser forwards the request, and a total of five parameters to the viewPost.jsp
page. Figure 7-5 shows the result in a browser.

See Also

Recipe 7.2 on handling a POST request in a JSP; Recipe 7.3 on setting the properties of a JavaBean to

form input; Recipe 7.6 on posting data from a JSP.

http://localhost:8080/home/addParam.jsp?first=Bruce&last=Perry&zip=01922
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 7.9 Using a Filter to Read Parameter Values

Problem

You want to use a filter to intercept form input and read it.

Solution

Use the various getParameter methods of the ServletRequest API to take a look at parameter

values in a filter.

Discussion

When you develop a filter for a servlet, your filter class has to implement the javax.servlet.Filter
interface. This means that your Filter class has to implement the doFilter(request,response)
and destroy() methods of that interface. The doFilter method contains the hook to the filtered
servlet's parameter values. The doFilter's ServletRequest parameter has the getParameter,
getParameterMap, getParameterNames, and getParameterValues methods which allow the filter to

peek at a servlet's parameters and values.

First, you have to map the Filter you have designed to the servlet. This chunk of web.xml maps a
Filter object to a servlet named Viewer.

<!-- any context-param elements go here -->
<filter>
 <filter-name>ParamSnoop</filter-name>
 <filter-class>com.jspservletcookbook.ParamSnoop</filter-class>
</filter>

<filter-mapping>
 <filter-name>ParamSnoop</filter-name>
 <servlet-name>Viewer</servlet-name>
</filter-mapping>
<!-- web.xml continues -->

Place the filter class in the WEB-INF/classes directory of your web application, or inside a JAR file that
is placed in WEB-INF/lib. The servlet container creates an instance when the container starts up of
each filter that is declared in web.xml. The container then executes the filter (calls its doFilter
method) when a user requests any of the servlets the filter is mapped to. So the ParamSnoop filter
can inspect a request made to the Viewer servlet before the servlet processes the request.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Only one instance per filter declaration in the deployment descriptor is
instantiated per Java virtual machine of the container," according to the Servlet
v2.4 specification, Chapter SRV.6.2.1.

Example 7-14 gets access to the parameters in the intercepted request by calling
ServletRequest.getParameterMap() . However, you are free to use other ServletRequest API

methods to look at parameters, such as getParameterStringName. The getParameterMap()
method returns a java.util.Map of parameter names and values, which you extract from the Map
using a java.util.Iterator and its next() method.

The call Map.entrySet() returns a java.util.Set, from which you obtain an
Iterator by calling Set.iterator(). The objects returned from the
Iterator.next() method in this case are Map.Entry objects that hold

key/value pairs, relating to the parameter names and values.

Example 7-14 also shows how to pull the key/value pairs out of the map and log the values using the
ServletContext.log() method.

Example 7-14. Snooping on parameter values with a servlet

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

import java.util.Map;
import java.util.Iterator;
import java.util.Map.Entry;

public class ParamSnoop implements Filter {

 private FilterConfig config;

 /** Creates new ParamSnoop */
 public ParamSnoop() {
 }

 public void init(FilterConfig filterConfig) throws ServletException{

 this.config = filterConfig;
 }

 public void doFilter(
 ServletRequest request, ServletResponse response, FilterChain chain)
 throws java.io.IOException, ServletException {

 Map paramMap = request.getParameterMap();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ServletContext context = config.getServletContext();

 /* use the ServletContext.log method to log
 param names/values */
 context.log("doFilter called in: " + config.getFilterName() +
 " on " + (new java.util.Date()));

 context.log("Snooping the parameters in request: " +
 ((HttpServletRequest) request).getRequestURI());

 Iterator iter = paramMap.entrySet().iterator();
 while (iter.hasNext()){

 Map.Entry me = (Map.Entry) iter.next();
 context.log((String)me.getKey() + ": " +
 ((String[]) me.getValue())[0]);
 }
 //continue the request, response to next filter or servlet
 //destination
 chain.doFilter(request,response);
 }

 public void destroy(){
 /*called before the Filter instance is removed
 from service by the web container*/
 }
}

The only reason we used the ServletContext.log() method was to display the inspection of

parameters by the filter. Here is an example of the Tomcat log in <Tomcat-installation-
directory>/logs showing the two parameters that were stored in the servlet request (last, first).

In other words, the web browser request was http://localhost:8080/home/viewer?
first=Bruce&last=Perry.

2003-04-13 17:13:33 doFilter called in: ParamSnoop on Sun Apr 13 17:13:33 EDT 2003
2003-04-13 17:13:33 Snooping the parameters in request: /home/viewer
2003-04-13 17:13:33 last: Perry
2003-04-13 17:13:33 first: Bruce

See Also

Recipe 7.1 on handling a POST request in a servlet; Recipe 7.7 on using a servlet to add a parameter

to a query string; Chapter 19 on filtering requests and responses; Chapter SRV.6 on Filters in the
Servlet 2.4 specification.

[Team LiB]

http://localhost:8080/home/viewer?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Uploading Files
Introduction

Recipe 8.1. Preparing the HTML Page for File Uploads

Recipe 8.2. Using the com.oreilly.servlet Library

Recipe 8.3. Uploading One File at a Time

Recipe 8.4. Uploading Multiple Files

Recipe 8.5. Renaming Files

Recipe 8.6. Using a JSP to Handle a File Upload
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Web sites use the HTML form tag to allow users to submit files from their own filesystem for
processing on the server. The form tag enables the uploading action with a nested input element
that has a type attribute set to "file". The form and input tag is specified using the syntax described

in Recipe 8.1.

The HTTP request for file uploading uses a content type of "multipart/form-data". The HTTP message
that the user sends to the server by clicking the web page's Submit button contains descriptive
headers and the body of each uploaded file. Each of the uploaded files is separated by a specified
boundary pattern (see the Content-Type header value in Example 8-1). Example 8-1 shows an

abbreviated view of a "multipart/form-data" type request including the uploading of three very small
files. To make this example more compact, I have removed some of the values from the Accept

request header.

Example 8-1. An HTTP request message with three uploaded files

POST /home/upload.jsp HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg ...
Referer: http://localhost:8080/home/interact.html
Accept-Language: en-us
Content-Type: multipart/form-data; boundary=---------------------------7d33c11c6018e
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Host: localhost:9000
Content-Length: 541
Connection: Keep-Alive
Cache-Control: no-cache
Cookie: JSESSIONID=7F6154184FFF3D1AE345E1F2FFF1A22E

-----------------------------7d33c11c6018e
Content-Disposition: form-data; name="file1"; filename="H:\home\file1.txt"
Content-Type: text/plain

This is file 1.
-----------------------------7d33c11c6018e
Content-Disposition: form-data; name="file2"; filename="H:\home\file2.txt"
Content-Type: text/plain

This is file 2.
-----------------------------7d33c11c6018e
Content-Disposition: form-data; name="file3"; filename="H:\home\file3.txt"
Content-Type: text/plain

This is file 3.
-----------------------------7d33c11c6018e--

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The HTTP request delineates each uploaded file with a boundary pattern:

-----------------------------7d33c11c6018e.

Each of the files has a Content-Disposition and Content-Type header. The simple text files that

Example 8-1 uploads to the server have only one line each to give you a clear snapshot of what this
type of HTTP request looks like. For more details on the file-uploading mechanism itself, see RFC
1867: http://www.ietf.org/rfc/rfc1867.txt.

[Team LiB]

http://www.ietf.org/rfc/rfc1867.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 8.1 Preparing the HTML Page for File Uploads

Problem

You want to set up an HTML page to allow the user to specify a file from his filesystem to upload to
the server.

Solution

Use the HTML form tag with its enctype attribute set to "multipart/form-data". Use an input tag
nested in the form tag with a type attribute of "file".

Discussion

The HTML for file uploading involves a few "must haves." The form tag specifies the servlet (or other
server-side component) that is handling the file upload in its action attribute. The method attribute
must be POST (not GET) for the file upload action to work. The form tag's enctype attribute must be

"multipart/form-data".

The widget with which the user enters the file to upload is an input tag with a type of "file", and
looks like a text field. The name attribute uniquely names the particular input tag, which becomes

important when the HTML specifies the uploading of more than one file (see the note at the end of
this recipe). Without any additional intervention, the server saves the uploaded file with its original
filename. The accept attribute is designed to limit the file types that the user can choose for

uploading, such as to the "application/pdf" MIME type, but this attribute has poor support among
browsers.

When displaying the HTML in Example 8-2, browsers automatically show a Browse button. When the
form client selects the button, the browser displays a typical filesystem navigation window with which
the user can select the file.

Example 8-2. Simple HTML for file uploading

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
 <title>Please Choose The File</title>
</head>
<body bgcolor="#ffffff">
<table border="0"><tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<form action="/home/servlet/com.jspservletcookbook.UploadServlet" method="post"
enctype="multipart/form-data">

<td valign="top">Please choose your document:
</td>

<td> <input type="file" name="file1">

</td></tr>

<tr><td><input type="submit" value="Upload File"></td></tr>
</form>

</table>
</body>
</html>

After selection, the text field displays the full path to the selected file. Figure 8-1 shows this HTML
page in a web browser.

Figure 8-1. HTML page for uploading a file to a servlet

Figure 8-1 shows the input field after the user has already chosen the file. The browser then
automatically fills in the text field with the complete file path.

To allow the uploading of multiple files, include more than one input tag with
different values for the name attribute. The browser associates a Browse button

with each of them.

See Also

Recipe 8.4 on using the com.oreilly.servlet library for file uploading; Recipe 8.5 on handling a

single file upload; Recipe 8.6 on handling multiple file uploads; Recipe 8.5 on controlling file naming;
Recipe 8.6 on using a JSP to handle file uploads; the homepage for com.oreilly.servlet:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://www.servlets.com/cos/index.html; the RFC 1867 document on form-based file uploads:
http://www.ietf.org/rfc/rfc1867.txt.

[Team LiB]

http://www.servlets.com/cos/index.html
http://www.ietf.org/rfc/rfc1867.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 8.2 Using the com.oreilly.servlet Library

Problem

You want to use the com.oreilly.servlet classes that O'Reilly author Jason Hunter has developed

to handle file uploads.

Of course, this isn't much of a problem, as Jason's library takes most of the
work out of uploading and accepting files. I use Jason's library here (with his
permission, of course) because it handles file uploads nicely, and there's no
good reason to reinvent a perfectly good wheel.

Solution

Download the distribution ZIP file from http://www.servlets.com/cos/index.html. Add the cos.jar file,
which is part of the distribution to the WEB-INF/lib directory of your web application. Make sure that
you adhere to the software license when using the library.

Discussion

A JAR file named cos.jar includes the com.oreilly.servlet and com.oreilly.servlet.multipart

packages. These packages include several classes, such as all of the Java classes that begin with
"Multipart," which can be used to handle file uploading in a servlet.

The cos.jar archive also contains many other interesting and useful classes to
use with servlets, but the following recipes focus on file uploads.

Download the latest ZIP file containing the distribution from http://www.servlets.com/cos/index.html.
The contents of the ZIP file include cos.jar, which you need to add to the WEB-INF/lib directory of
your web application. In your servlet, you then import the classes that you want to use:

import com.oreilly.servlet.MultipartRequest;
import com.oreilly.servlet.multipart.FileRenamePolicy;

Before you have integrated these classes into your code, make sure that you have read the
accompanying software license for this code: http://www.servlets.com/cos/license.html.

http://www.servlets.com/cos/index.html
http://www.servlets.com/cos/index.html
http://www.servlets.com/cos/license.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rest of the recipes in this chapter assume that you have cos.jar and the
classes it contains available in your web application. If you don't take steps to
make these classes available, none of the examples in this chapter will function
properly.

See Also

Recipe 8.1 on preparing the HTML for a file upload; Recipe 8.5 on handling a single file upload; Recipe
8.6 on handling multiple file uploads in a servlet; Recipe 8.5 on controlling file naming; Recipe 8.6 on
using a JSP to handle file uploads; the homepage for com.oreilly.servlet:

http://www.servlets.com/cos/index.html; the RFC 1867 document on form-based file uploads:
http://www.ietf.org/rfc/rfc1867.txt.

[Team LiB]

http://www.servlets.com/cos/index.html
http://www.ietf.org/rfc/rfc1867.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 8.3 Uploading One File at a Time

Problem

You want to create a component that can receive a client file upload and store the file in a local
directory.

Solution

Create a servlet that uses the com.oreilly.servlet.MultipartRequest class from Jason Hunter's

cos.jar archive.

Discussion

The MultipartRequest class includes several overloaded constructors. The one used in Example 8-3
takes the javax.servlet.http.HttpServletRequest object, the path to the directory where you

want to save uploaded files, and the size limit for the file as parameters. In Example 8-3, if the client
uploads a file that exceeds 5 MB, then the UploadServlet throws a java.io.IOException. You can
allow this exception to be managed by an error-page element in web.xml for IOExceptions, as
Example 8-3 does, or use a try/catch block in the upload servlet to deal with errors.

See Chapter 9 for how to declare error pages for the web application.

With MultipartRequest, as soon as the code instantiates the object, the object is handling the file

upload; in other words, you do not have to call a method to commence managing the upload.

The servlet in Example 8-3 initiates the file upload and then displays the name of the uploaded file(s).

Example 8-3. A servlet that uses the MultipartRequest class

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

import com.oreilly.servlet.MultipartRequest;
import java.util.Enumeration;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class UploadServlet extends HttpServlet {

 private String webTempPath;

 public void init()
 webTempPath = getServletContext().getRealPath("/") + "data";
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //file limit size of 5 MB
 MultipartRequest mpr = new MultipartRequest(
 request,webTempPath,5 * 1024 * 1024);
 Enumeration enum = mpr.getFileNames();

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet upload</title>");
 out.println("</head>");
 out.println("<body>");

 for (int i = 1; enum.hasMoreElements();i++)
 out.println("The name of uploaded file " + i +
 " is: " + mpr.getFilesystemName((String) enum.nextElement())
 + "

");

 out.println("</body>");
 out.println("</html>");

 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 throw new ServletException("GET method used with " +
 getClass().getName()+": POST method required.");
 }
}

The code generates the path to the save directory by calling
javax.servlet.ServletContext.getRealPath("/") to get an absolute pathname to the root of the

web application (as in h:\home\). Then the code adds the name of the directory where the file will be
saved (data).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This directory name could also be added using an external configuration such as
a context-param element in web.xml. See Recipe 8.6 for details.

The method MultipartRequest.getFilesystemName(StringName) returns the filename from the

client's filesystem. The file can be saved on the server end with its original filename, or you can use a
different MultipartRequest constructor that takes as a parameter a FileRenamePolicy object. This

constructor looks like:

MultipartRequest(javax.servlet.http.HttpServletRequest request,
 java.lang.String saveDirectory, int maxPostSize,
 FileRenamePolicy policy)

There are a few versions of the MultipartRequest constructor with the FileRenamePolicy

parameter, which is used to rename uploaded files (see Recipe 8.5). Example 8-3 also throws a
ServletException if the UploadServlet is requested with a GET method, which is not allowed with

file uploads.

See Also

Recipe 8.1 on preparing the HTML for a file upload; Recipe 8.4 on downloading and using the
com.oreilly.servlet library; Recipe 8.6 on handling multiple file uploads in a servlet; Recipe 8.5 on

controlling file naming during file uploads; Recipe 8.6 on using a JSP to handle file uploads; the
homepage for com.oreilly.servlet: http://www.servlets.com/cos/index.html; the RFC 1867

document on form-based file uploads: http://www.ietf.org/rfc/rfc1867.txt.

[Team LiB]

http://www.servlets.com/cos/index.html
http://www.ietf.org/rfc/rfc1867.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 8.4 Uploading Multiple Files

Problem

You want to upload more than one file at a time from a client, and handle each file as it is uploaded.

Solution

Use the MultipartParser from Jason Hunter's cos.jar archive.

Discussion

The MultipartParser class allows the servlet to handle each file part sequentially as the server

receives a multipart HTTP request.

You can also use the MultipartRequest class to handle multiple files. However,
the MultipartParser allows you to handle each part (such as by saving it to a

database) during the parsing of a multiple-file upload.

In addition, the file's content type, size, and name can be read as the servlet handles the request.
The servlet can also make basic checks using this class, such as counting how many files were
uploaded and verifying whether the user uploaded a file for each of the available form input fields.

The HTML file from Recipe 8.5 has been altered to allow the upload of three different files from the
user's filesystem, as shown in Figure 8-2 .

Figure 8-2. An HTML form for uploading three files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This HTML form is created by including three input tags with type="file ", as in:

<input type="file" name="file1">

<input type="file" name="file2">

<input type="file" name="file3">

Example 8-4 handles the multiple file uploads by importing three classes from the cos.jar archive. The
MultipartParser class restricts the size of file uploads to 5 MB in Example 8-4 ; however, you can

set this constructor parameter to another value to allow smaller or larger file sizes, or leave the
accepted file size at the 1 MB default.

You can view the Javadoc for this class at
http://www.servlets.com/cos/javadoc/com/oreilly/servlet/multipart/MultipartParser.html .

The MultipartParser object throws a java.io.IOException if any of the file uploads exceed the
size limit. Calling the MultipartParser.readNextPart() method returns a Part type, or null if the
incoming stream does not contain any more parts. A Part can be either a FilePart or a ParamPart ,
depending on the content it includes. The ParamPart covers the other parameters that an HTML form
might include, such as "username". The FilePart has several methods that provide information

about the uploaded file, such as its content type and the filename. The
FilePart.writeTo(java.io.File dir) method saves the file to the specified directory and returns
the file size as a long type. The FilePart can also write to an OutputStream , as in
writeTo(java.io.OutputStream out) .

Example 8-4. A servlet handling multiple file uploads

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

http://www.servlets.com/cos/javadoc/com/oreilly/servlet/multipart/MultipartParser.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

import com.oreilly.servlet.multipart.MultipartParser;
import com.oreilly.servlet.multipart.Part;
import com.oreilly.servlet.multipart.FilePart;

public class ParserServlet extends HttpServlet {

 private String fileSavePath;

 public void init(){

 // save uploaded files to a 'data' directory in the web app

 fileSavePath = getServletContext().getRealPath("/") + "data";

 }
 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>File uploads</title>");
 out.println("</head>");
 out.println("<body>");

 out.println("<h2>Here is information about any uploaded files</h2>");

 try{

 // file limit size of 5 MB
 MultipartParser parser = new MultipartParser(
 request,5 * 1024 * 1024);

 Part _part = null;

 while ((_part = parser.readNextPart()) != null) {

 if (_part.isFile()) {

 // get some info about the file
 FilePart fPart = (FilePart) _part;
 String name = fPart.getFileName();

 if (name != null) {

 long fileSize = fPart.writeTo(
 new java.io.File(fileSavePath));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("The user's file path for the file: " +
 fPart.getFilePath() + "
");

 out.println("The content type of the file: " +
 fPart.getContentType()+ "
");

 out.println("The file size: " +fileSize+ " bytes

");

 //commence with another file, if there is one

 } else {

 out.println(
 "The user did not upload a file for this part.");

 }

 } else if (_part.isParam()) {
 // do something else if it is a non-file-type parameter,
 //such as a username
 }

 }// end while

 out.println("</body>");
 out.println("</html>");

 } catch (java.io.IOException ioe){

 //an error-page in the deployment descriptor is
 //mapped to the java.io.IOException
 throw new java.io.IOException(
 "IOException occurred in: " + getClass().getName());
 }
 }//doPost

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 throw new ServletException(
 "GET method used with " + getClass().getName()+
 ": POST method required.");
 }
}

Figure 8-3 shows the descriptive page that the servlet displays about each uploaded file.

Figure 8-3. A servlet displays information about uploaded files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 8.1 on preparing the HTML for a file upload; Recipe 8.4 on downloading and using the
com.oreilly.servlet library; Recipe 8.5 on handling a single file upload in a servlet; Recipe 8.5 on

controlling file naming; Recipe 8.6 on using a JSP to handle file uploads; the homepage for
com.oreilly.servlet : http://www.servlets.com/cos/index.html ; the RFC 1867 document on form-

based file uploads: http://www.ietf.org/rfc/rfc1867.txt .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 8.5 Renaming Files

Problem

You want to rename the uploaded files according to a standard policy or to avoid conflicts with
existing files that have the same name.

Solution

Create a class that implements the com.oreilly.servlet.multipart.FileRenamePolicy interface,
or use the DefaultFileRenamePolicy class. Then use that class as a parameter in the constructor
for the com.oreilly.servlet.MultipartRequest class.

Discussion

The com.oreilly.servlet.multipart package contains a FileRenamePolicy interface that can be

used when you want to implement a particular file-renaming policy with file uploads.

The DefaultFileRenamePolicy class renames an uploaded file whose name conflicts with an existing

file by adding a number to the uploaded filename. For example, if index.txt already exists, then the
DefaultFileRenamePolicy class renames the uploaded file index1.txt; and if a second file is

uploaded with the same name it will be renamed index2.txt, and so on.

If you want to implement your own renaming policy, then create your own class that implements the
FileRenamePolicy interface, then implement the class's rename(java.io.File file) method to

initiate the renaming action.

This code sample shows a MultipartRequest constructor from Example 8-3. This time, the
constructor adds a DefaultFileRenamePolicy object as a constructor parameter:

MultipartRequest mpr = new MultipartRequest(
 request,webTempPath,(5 * 1024 * 1024),new DefaultFileRenamePolicy());

Make sure to include the following import statements in the servlet class:

import com.oreilly.servlet.MultipartRequest;
import com.oreilly.servlet.multipart.DefaultFileRenamePolicy;

As mentioned before, you can implement the FileRenamePolicy interface yourself and create a
custom file-renaming mechanism. Example 8-5 shows a MyFileRenamePolicy class that renames

each uploaded file by appending a timestamp to the end of its name. The simple timestamp is
calculated as:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// seconds since Jan 1, 1970, 00:00:00
new java.util.Date().getTime() / 1000

The code renames the file by appending the String (representing a series of numbers) to the

filename minus its extension, and then appending the extension at the end (if the filename originally
had an extension).

Example 8-5. Renaming uploaded files with your own Java class

package com.jspservletcookbook;

import java.io.File;
import java.util.Date;

import com.oreilly.servlet.multipart.FileRenamePolicy;

public class MyFileRenamePolicy implements FileRenamePolicy {

 //implement the rename(File f) method to satisfy the
 // FileRenamePolicy interface contract
 public File rename(File f){

 //Get the parent directory path as in h:/home/user or /home/user
 String parentDir = f.getParent();

 //Get filename without its path location, such as 'index.txt'
 String fname = f.getName();

 //Get the extension if the file has one
 String fileExt = "";
 int i = -1;
 if((i = fname.indexOf(".")) != -1){

 fileExt = fname.substring(i);
 fname = fname.substring(0,i);
 }

 //add the timestamp
 fname = fname + (""+(new Date().getTime() / 1000));

 //piece together the filename
 fname = parentDir + System.getProperty(
 "file.separator") + fname + fileExt;

 File temp = new File(fname);

 return temp;
 }

}

Given that your new class is called com.jspservletcookbook.MyFileRenamePolicy and implements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the FileRenamePolicy interface, the constructor for the MultipartRequest would now look like this:

MultipartRequest mpr = new MultipartRequest(
 request,webTempPath,(5 * 1024 * 1024),
 new com.jspservletcookbook.MyFileRenamePolicy());

Store your new class in the WEB-INF/classes directory of the web application using the same
directory structure as the class's package name (as in WEB-
INF/classes/com/jspservletcookbook/MyFileRenamePolicy.class).

In general, the com.oreilly.servlet package also includes the
MultipartFilter class. According to an article that Jason has written

(http://www.servlets.com/soapbox/filters.html), "The MultipartFilter works by
watching incoming requests and when it detects a file upload request (with the
content type multipart/form-data), the filter wraps the request object with a
special request wrapper that knows how to parse the special content type
format."

See Also

Recipe 8.1 on preparing HTML for a file upload; Recipe 8.4 on downloading and using the
com.oreilly.servlet library; Recipe 8.3 and Recipe 8.6 on handling single- and multiple-file

uploads in a servlet; Recipe 8.6 on using a JSP to handle file uploads; the homepage for
com.oreilly.servlet: http://www.servlets.com/cos/index.html; the RFC 1867 document on form-

based file uploads: http://www.ietf.org/rfc/rfc1867.txt.

[Team LiB]

http://www.servlets.com/soapbox/filters.html
http://www.servlets.com/cos/index.html
http://www.ietf.org/rfc/rfc1867.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 8.6 Using a JSP to Handle a File Upload

Problem

You want to use a JSP to handle a file upload.

Solution

Create a JavaBean that wraps the functionality of the com.oreilly.servlet.MultipartRequest
class from Jason Hunter's cos.jar library. Then use the jsp:useBean standard action in a JSP to

create an instance of this bean for handling the file uploads.

Discussion

This recipe describes a JavaBean that uses the com.oreilly.servlet.MultipartRequest class to
manage file uploads. First, I'll show the bean that wraps the functionality of the MultipartRequest

class, then the JSP that uses the bean to upload a file.

Example 8-6 shows the UploadBean used by the JSP in Example 8-7.

Example 8-6. A file-uploading JavaBean

package com.jspservletcookbook;

import java.util.Enumeration;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.ServletRequest;

import com.oreilly.servlet.MultipartRequest;
import com.oreilly.servlet.multipart.DefaultFileRenamePolicy;

public class UploadBean {

 private String webTempPath;
 private HttpServletRequest req;
 private String dir;

public UploadBean() {}

 public void setDir(String dirName) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (dirName == null || dirName.equals(""))
 throw new IllegalArgumentException(
 "invalid value passed to " + getClass().getName()+".setDir");

 webTempPath = dirName;

 }

 public void setReq(ServletRequest request) {

 if (request != null && request instanceof HttpServletRequest){

 req = (HttpServletRequest) request;

 } else {

 throw new IllegalArgumentException(
 "Invalid value passed to " + getClass().getName()+".setReq");
 }

 }

 public String getUploadedFiles() throws java.io.IOException{

 //file limit size of 5 MB
 MultipartRequest mpr = new MultipartRequest(
 req,webTempPath,5 * 1024 * 1024,new DefaultFileRenamePolicy());

 Enumeration enum = mpr.getFileNames();

 StringBuffer buff = new StringBuffer("");

 for (int i = 1; enum.hasMoreElements();i++){

 buff.append("The name of uploaded file ").append(i).
 append(" is: ").
 append(mpr.getFilesystemName((String)enum.nextElement())).
 append("

");
 }//for

 //return the String
 return buff.toString();

 } // getUploadedFiles

}

This code imports the classes it needs to handle the uploaded files with the MultipartRequest class.
The DefaultFileRenamePolicy class is used in the MultipartRequest constructor to handle

conflicts between the names of uploaded files and any existing files with the same name. When these
naming conflicts occur, the DefaultFileRenamePolicy class automatically adds a number to the end

of the uploaded file, as in index1.txt if the uploaded file was named index.txt.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 8-6 uses the JavaBean naming conventions for its methods, as in setDir() and
getUploadedFiles(), which allow the methods to be called using the jsp:getProperty and
jsp:setProperty standard actions. Example 8-7 shows the use of both of these actions and the JSP

that handles the file upload and display information about the uploaded files.

The JSP uses the UploadBean, the class I just defined. The JSP instantiates the bean using the
jsp:useBean standard action, sets the directory name where the uploaded file will be saved with
jsp:setProperty, then uses jsp:getProperty to save the file(s) to the specified directory.

Example 8-7. A JSP that uploads files and displays information about
them

<jsp:useBean id="uploader" class="com.jspservletcookbook.UploadBean" />

<jsp:setProperty name="uploader" property="dir"
 value="<%=application.getInitParameter(\"save-dir\")%>" />

<jsp:setProperty name="uploader" property="req" value="<%= request %>" />

<html>
<head><title>file uploads</title></head>
<body>
<h2>Here is information about the uploaded files</h2>

<jsp:getProperty name="uploader" property="uploadedFiles" />

</body>
</html>

The JSP in Example 8-7 creates an instance of the UploadBean with this code:

<jsp:useBean id="uploader" class="com.jspservletcookbook.UploadBean" />

The com.jspservletcookbook.UploadBean class must be placed in the web

application's WEB-INF/classes directory (inside of WEB-
INF/classes/com/jspservlet/cookbook), or in a JAR file inside of WEB-INF/lib.

The JSP then passes the HttpServletRequest object to the bean with this code:

<jsp:setProperty name="uploader" property="req" value="<%= request %>" />

Under JSP 2.0, you can pass along the request value with this code:

<jsp:setProperty name="uploader" property= "req" value="${pageContext.request}" />

The JSP 2.0 specification allows the use of EL syntax in the jsp:setProperty
value attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The bean needs the request object to pass into the MultipartRequest constructor, which does all

the file-uploading work. The JSP also specifies the directory where uploaded files are saved:

<jsp:setProperty name="uploader" property="dir"
 value="<%=application.getInitParameter(\"save-dir\")%>" />

The expression application.getInitParameter(\"save-dir\") returns the value of the context
parameter save-dir, which is the path to the directory where the uploaded files are saved. Here is

what this web.xml element looks like:

<!-- beginning of deployment descriptor -->
<context-param>
 <param-name>save-dir</param-name>
 <param-value>h:\home\data</param-value>
</context-param>
<!-- deployment descriptor continues -->

The final step is to call the bean's getUploadedFiles() method. The JSP accomplishes this task
using the jsp:getProperty standard action, as in:

<jsp:getProperty name="uploader" property="uploadedFiles" />

The JSP can call the bean's method in this manner, as though the JSP was
fetching a bean property, because I named the method with the standard "get"
prefix: getUploadedFiles(). Tricky!

Figure 8-4 shows the resulting web page after the user has submitted the HTML form.

Figure 8-4. A JSP that handles file uploads

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To use this JSP to handle a file upload, you have to specify it in an HTML form tag's action attribute,

as in:

<form action="http://localhost:9000/home/upload.jsp" method="post"
enctype="multipart/form-data">

See Also

Recipe 8.1 on preparing the HTML for a file upload; Recipe 8.4 on downloading and using the
com.oreilly.servlet library; Recipe 8.3 and Recipe 8.6 on handling single- and multiple-file

uploads in a servlet; Recipe 8.5 on controlling file renaming as files are uploaded; the homepage for
com.oreilly.servlet: http://www.servlets.com/cos/index.html; the RFC 1867 document on form-

based file uploads: http://www.ietf.org/rfc/rfc1867.txt.

[Team LiB]

http://www.servlets.com/cos/index.html
http://www.ietf.org/rfc/rfc1867.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 9. Handling Exceptions in Web
Applications

Introduction

Recipe 9.1. Declaring Exception Handlers in web.xml

Recipe 9.2. Creating an Exception-Handling Servlet

Recipe 9.3. Sending an Error from a Servlet

Recipe 9.4. Sending an Error from a JSP

Recipe 9.5. Creating an Error-Handling JSP

Recipe 9.6. Declaring a Special Exception-Handling JSP for Other JSPs
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Web applications can sometimes show a number of errors that you don't want users to see. If a user
who expects to be served an information-rich page is instead greeted with an ugly and
incomprehensible announcement of an "HTTP Status 500" in her web browser, you can bet this visit
to the site will be her last! All web sites handle unexpected HTTP status codes (such as the "404 Not
Found" or "403 Forbidden") with a friendly and informative error message, but you'll want to hide
these messages from your users. Tools to handle both Java runtime exceptions and these
unanticipated HTTP status codes are available to developers, and the recipes in this chapter show you
how to use them effectively.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 9.1 Declaring Exception Handlers in web.xml

Problem

You want to display certain servlets or JSPs when a web component throws a Java exception or
generates unexpected server response codes.

Solution

Use the error-page element in web.xml to specify the invocation of servlets or JSPs in response to

certain exceptions or HTTP status codes.

Discussion

A Java web developer should handle these types of unexpected occurrences within his web
application:

The " 404 Not Found" server response code, which indicates that the user has made a mistake
when typing in the URL, or requested a page that no longer exists.

The " 500 Internal Server Error" that can be raised by a servlet when it calls sendError(500)
on the HttpServletResponse object.

Runtime exceptions that are thrown by the web application and not caught by the filter, servlet,
or JSP.

You configure the handling of exceptions and server response codes with the error-page element in
the deployment descriptor. The error-page element in web.xml comes after any servlet , servlet-
mapping , session-config , mime-mapping , and welcome-file-list elements, as well as before
any taglib , resource-env-ref , resource-ref , or security-constraint elements. The error-
page element includes a mapping between the status code or exception type, as well as the path to a

web resource. This resource, which should be a servlet, JSP, or HTML file, should inform the user
about what happened and provide links to other parts of the web site, depending on the nature of the
error.

Example 9-1 shows a deployment descriptor for servlet API 2.3 that configures error pages.

Example 9-1. Configuring error pages in web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<web-app>
<!-- top of deployment descriptor, such as filter, servlet, servlet-mapping, session-
config, welcome-file elements -->

<servlet>
 <servlet-name>Error404</servlet-name>
 <servlet-class>com.jspservletcookbook.Error404</servlet-class>
</servlet>

<servlet>
 <servlet-name>Error403</servlet-name>
 <servlet-class>com.jspservletcookbook.Error403</servlet-class>
</servlet>

<servlet>
 <servlet-name>ErrorIo</servlet-name>
 <servlet-class>com.jspservletcookbook.ErrorIo</servlet-class>
</servlet>

<servlet>
 <servlet-name>ErrorServlet</servlet-name>
 <servlet-class>com.jspservletcookbook.ErrorServlet</servlet-class>
</servlet>

<servlet>
 <servlet-name>ErrorGen</servlet-name>
 <servlet-class>com.jspservletcookbook.ErrorGen</servlet-class>
</servlet>

<!-- servlet mappings -->

<servlet-mapping>
 <servlet-name>Error404</servlet-name>
 <url-pattern>/err404</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>Error403</servlet-name>
 <url-pattern>/err403</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>ErrorIo</servlet-name>
 <url-pattern>/errIo</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>ErrorServlet</servlet-name>
 <url-pattern>/errServ</url-pattern>
</servlet-mapping>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<servlet-mapping>
 <servlet-name>ErrorGen</servlet-name>
 <url-pattern>/errGen</url-pattern>
</servlet-mapping>

<!-- error-code related error pages -->
<!-- Not Found -->
<error-page>
 <error-code>404</error-code>
 <location>/err404</location>
</error-page>
<!-- Forbidden -->
<error-page>
 <error-code>403</error-code>
 <location>/err403</location>
</error-page>

<!-- exception-type related error pages -->

<error-page>
 <exception-type>javax.servlet.ServletException</exception-type >
 <location>/errServ</location>
</error-page>

<error-page>
 <exception-type>java.io.IOException</exception-type >
 <location>/errIo</location>
</error-page>

<! -- all other types -->
<error-page>
 <exception-type>java.lang.Throwable</exception-type >
 <location>/errGen</location>
</error-page>

<!-- web.xml continues; tag-lib, resource-ref, security-constraint elements, etc. -->

</web-app>

When a servlet throws an exception, the web container searches the configurations in web.xml that
use the exception-type element for a match with the thrown exception type. In Example 9-1 , if the
web application throws a ServletException , then the web container invokes the /errServ servlet.

The web container invokes the closest match in the class hierarchy. For example, if a servlet throws
an IOException , the container invokes the /errIo servlet that is mapped to the thrown exception
type, not the component mapped to java.lang.Throwable -even though IOException is in the
same class hierarchy as Throwable . If this application throws an IllegalStateException , the
container invokes the / errGen servlet (which is mapped to Throwable), because there is no specific
error page mapping for IllegalStateException .

In the event of an HTTP response code of 403 or 404, the container invokes the web components or
HTML pages mapped with the location element to those exact numbers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The web container must return a response code of 500 if an exception occurs
that is not handled by this error-page mechanism, according to the servlet API
specification.

See Also

Recipe 9.2 on creating a servlet error handler; Recipe 9.3 on sending an error from a servlet; Recipe
9.4 on sending an error from a JSP; Recipe 9.5 on using JSPs to handle errors; Recipe 9.6 on
declaring in a JSP that another JSP will handle its exceptions; Chapter 1 on the deployment
descriptor; the Java servlet specification, which covers error handling in Chapter SRV.9.9:
http://java.sun.com/products/servlet/index.html .

[Team LiB]

http://java.sun.com/products/servlet/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 9.2 Creating an Exception-Handling Servlet

Problem

You want to create a servlet that generates an error page.

Solution

Create a servlet that displays some information about the error, then map exception types and/or

error codes to the servlet in the deployment descriptor.

Discussion

An error-handling servlet has access to several request attributes that it can use to describe the
error. The error page also has access to the request and response objects associated with the page
that generated the error. For example, the java.lang.Throwable object associated with any
exceptions can be accessed with the following code:

Throwable throwable = (Throwable)
 request.getAttribute("javax.servlet.error.exception");

You can access the server response code with this code:

String status_code = ((Integer)
 request.getAttribute("javax.servlet.error.status_code")).toString();

Table 9-1 shows the request attributes that an error-handling servlet has access to.

Table 9-1. Request attributes available to servlet error pages

Request attribute Java type

javax.servlet.error.status_code java.lang.Integer

javax.servlet.error.exception_type java.lang.Class

javax.servlet.error.message java.lang.String

javax.servlet.error.exception java.lang.Throwable

javax.servlet.error.request_uri java.lang.String

Example 9-2 shows the ErrorGen servlet. The web container invokes this servlet when another
servlet or JSP throws an unhandled Throwable, according to the configuration in Example 9-1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Request attribute Java type

javax.servlet.error.servlet_name java.lang.String

Example 9-2 shows the ErrorGen servlet. The web container invokes this servlet when another
servlet or JSP throws an unhandled Throwable, according to the configuration in Example 9-1.

Example 9-2. An error-handling servlet

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class ErrorGen extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //check the servlet exception
 Throwable throwable = (Throwable)
 request.getAttribute("javax.servlet.error.exception");

 String servletName = (String)
 request.getAttribute("javax.servlet.error.servlet_name");
 if (servletName == null)
 servletName = "Unknown";

 String requestUri = (String)
 request.getAttribute("javax.servlet.error.request_uri");
 if (requestUri == null)
 requestUri = "Unknown";

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Error page</title>");
 out.println("</head>");
 out.println("<body>");

 if (throwable == null){
 out.println("<h2>The error information is not available</h2>");
 out.println("Please return to the <a href=\"" +
 response.encodeURL("http://localhost:8080/home") +
 "\">home page.");
 } else{
 out.println("<h2>Here is the error information</h2>");

 out.println(

javax.servlet.error.servlet_name java.lang.String

Example 9-2 shows the ErrorGen servlet. The web container invokes this servlet when another
servlet or JSP throws an unhandled Throwable, according to the configuration in Example 9-1.

Example 9-2. An error-handling servlet

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class ErrorGen extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //check the servlet exception
 Throwable throwable = (Throwable)
 request.getAttribute("javax.servlet.error.exception");

 String servletName = (String)
 request.getAttribute("javax.servlet.error.servlet_name");
 if (servletName == null)
 servletName = "Unknown";

 String requestUri = (String)
 request.getAttribute("javax.servlet.error.request_uri");
 if (requestUri == null)
 requestUri = "Unknown";

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Error page</title>");
 out.println("</head>");
 out.println("<body>");

 if (throwable == null){
 out.println("<h2>The error information is not available</h2>");
 out.println("Please return to the <a href=\"" +
 response.encodeURL("http://localhost:8080/home") +
 "\">home page.");
 } else{
 out.println("<h2>Here is the error information</h2>");

 out.println(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "The servlet name associated with throwing the exception: "+
 servletName + "

");

 out.println("The type of exception: " +
 throwable.getClass().getName() + "

");

 out.println("The request URI: " + requestUri + "

");
 out.println("The exception message: " + throwable.getMessage());
 }
 out.println("</body>");
 out.println("</html>");

 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 doPost(request,response);
 }
}

The servlet gets a reference to the thrown exception, then displays information such as the
exception's class name and the exception message. The request URI represents a partial path
(such as /home/errGen.jsp) to the component that threw the exception, which can be very helpful

for debugging and information purposes. Figure 9-1 shows what the browser displays when a servlet
throws an exception using Tomcat's web container.

Figure 9-1. Error page HTML displayed by an error-handling servlet

Figure 9-2 shows the error page displayed by our example servlet when a JSP in the same web
application throws a java.lang.ArithmeticException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 9-2. The error page displayed by Example 9-1 when a JSP throws
an exception

See Also

Recipe 9.1 on declaring exception handlers in the deployment descriptor; Recipe 9.3 on sending an
error from a servlet; Recipe 9.4 on sending an error from a JSP; Recipe 9.5 on using JSPs to handle
errors; Recipe 9.6 on declaring in a JSP that another JSP will handle its exceptions; Chapter 1 on the
deployment descriptor; the Java servlet specification, which covers error handling in Chapter
SRV.9.9: http://java.sun.com/products/servlet/index.html.

[Team LiB]

http://java.sun.com/products/servlet/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 9.3 Sending an Error from a Servlet

Problem

You want to use a servlet to manually send a response error to the client.

Solution

Use the javax.servlet.HttpServletResponse.sendError() method.

Discussion

The javax.servlet.http.HttpServletResponse class has two versions of the sendError() method: one
that takes an int parameter representing the HTTP response code (such as 500), and the other taking an
int parameter and a String error message. The String parameter is used to display a message to the

client if an error page is not configured for that particular response code. Example 9-3 shows the skeleton of
a servlet whose commented sections describe various scenarios for sending response codes.

Use the two-parameter method version, so that a meaningful message is displayed in
the event that the application has not configured an error page for a particular error
code.

Example 9-3. Sending a response code from a servlet

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class Sender extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

/* if the servlet tries to access a resource and finds out that the client is not
authorized to access it - "401 Unauthorized" */

 //response.sendError(401,
 // "You are not authorized to view the requested component");

 /* if the servlet tries to access a resource that is forbidden for this client and there

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is no further information on it - "403 Forbidden" */
 //response.sendError(403,
 // "You are forbidden from viewing the requested component; no
 //further information");

/* if the servlet tries to access a resource that is not found given the client's provided
URL - "404 Not Found" */
 //response.sendError(404,
 //"The server could not find the requested component");
}

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException {

 doPost(request,response);
 }
}

If an error page is configured for the error code that you specified in the sendError() method, the web

container invokes the error page mapped to that error code. If the error code does not have an error page
configured for it in web.xml , the web container generates a default HTML page containing the message you
included as the String parameter to the sendError() method, as in Figure 9-3 . The server leaves

cookies and other response headers unmodified when it returns this HTML to the client.

If you call sendError() after already committing the response to the client (such as

when the response buffer, a temporary storage location for the response data, is full
and "auto-flushed"), sendError() throws a java.lang.IllegalStateException .

You can set the buffer size with the
javax.servlet.ServletResponse.setBufferSize() method.

Figure 9-3. Server response to HttpServletResponse.sendError when there is
no error page is configured for the error code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 9.1 on declaring exception handlers in the deployment descriptor; Recipe 9.2 on developing a servlet
error handler; Recipe 9.4 on sending an error from a JSP; Recipe 9.5 on using JSPs to handle errors; Recipe
9.6 on declaring in a JSP that another JSP will handle its exceptions; Chapter 1 on the deployment
descriptor; the Java servlet specification, which covers error handling in Chapter SRV.9.9:
http://java.sun.com/products/servlet/index.html .

[Team LiB]

http://java.sun.com/products/servlet/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 9.4 Sending an Error from a JSP

Problem

You want to use a JSP to manually send a response error to a client.

Solution

Use the response implicit object and the sendError method inside a JSP scriptlet.

Discussion

If you want to send a response error from a JSP, then simply grab the response implicit object inside
a scriptlet and call sendError() on it. Make sure not to call sendError() after already flushing or

committing the response to the client, or the method will throw a
java.lang.IllegalStateException. The JSP code in Example 9-4, which could be a standalone JSP

or a fragment of a larger page, results in the display of Figure 9-3 when requested with the following
query string: "?client-unauthorized=true".

Example 9-4. Using the response implicit object to send a response error
from a JSP

<%@ taglib uri=
 "http://java.sun.com/jstl/core" prefix="c" %>

<c:if test="${param.client-unauthorized}" >

 <% response.sendError(401,
 "You are not authorized to view the requested component");
 %>

</c:if>

See Also

Recipe 9.1 on declaring exception handlers in the deployment descriptor; Recipe 9.2 on developing a
servlet error handler; Recipe 9.3 on sending an error from a servlet; Recipe 9.5 on using JSPs to
handle errors; Recipe 9.6 on declaring in a JSP that another JSP will handle its exceptions; Chapter 1
on the deployment descriptor; the Java servlet specification, which covers error handling in Chapter
SRV.9.9: http://java.sun.com/products/servlet/index.html.

http://java.sun.com/products/servlet/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 9.5 Creating an Error-Handling JSP

Problem

You want to use a JSP as your error page for both servlets and JSPs.

Solution

Create a JSP that displays information about the java.lang.Throwable reported by using the
specified request attributes, such as javax.servlet.error.exception. Use the error-page
attribute in web.xml to map certain exception types to the JSP.

Discussion

A JSP can display error information in the same manner as the servlet used in Recipe 9.2. Example 9-
5 can be used as the error page for both JSPs and servlets. This sample JSP uses the JSTL and the EL
to display the thrown exception's various characteristics, such as its fully qualified class name.

Example 9-5. Using a JSP as an error page

<%@page isErrorPage="true" %>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
<head><title>Sorry about the error</title></head>
<body>
<h2>Sorry, We Erred Handling Your Request</h2>

Here is information about the error:

The servlet name associated with throwing the exception:
<c:out value="${requestScope[\"javax.servlet.error.servlet_name\"]}" />

The type of exception:
 <c:out value=
 "${requestScope[\"javax.servlet.error.exception\"].class.name}" />

The request URI:
<c:out value="${requestScope[\"javax.servlet.error.request_uri\"]}" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The exception message:
 <c:out value=
 "${requestScope[\"javax.servlet.error.exception\"].message}" />
</body>
</html>

The error page grabs the request Uniform Resource Indicator (URI), which is the servlet path
beginning with the context path and not including any query string, with this code:

<c:out value="${requestScope[\"javax.servlet.error.request_uri\"]}" />

This passes the value of a request attribute named javax.servlet.error.request_uri to the
c:out JSTL tag, which results in the attribute value displayed in the HTML.Make sure to escape the

double quotes inside the EL phrase, as in:

"${requestScope[\"javax.servlet.error.request_uri\"]"

The code gets information about the exception from the request attributes that are automatically
created by the web container when the servlet or JSP throws an exception. For example, if you want
to add the response status code to this information, then this number is available from the request
attribute javax.servlet.error.status_code.

See Table 9-1 for the complete list of these attributes.

In addition, the part of Example 9-5 that gets the class name of the exception calls getClass(
).getName() on the Throwable object. Figure 9-4 shows the browser display of this error page after

a JSP named errGen.jsp generates an error.

Figure 9-4. A JSP error page displays information about a thrown
exception

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The web.xml deployment descriptor uses the following element to specify that the error page of
Example 9-5 should handle any java.io.IOExceptions:

<error-page>
 <exception-type>java.io.IOException</exception-type >
 <location>/errHandler.jsp</location>
</error-page>

Example 9-6 shows the JSP that throws the exception.

Example 9-6. A JSP that throws a java.io.IOException

<html>
<head><title>Exception Thrower</title></head>
<body>
<h2>Throw an IOException </h2>
 <% java.io.File file = new java.io.File(
 "z:" + System.getProperty("file.separator") + "temp");
 file.createNewFile();%>
</body>
</html>

See Also

Recipe 9.1 on declaring error pages in web.xml; Recipe 9.2 on creating a special exception-handling
servlet; Recipe 9.3 on sending an error from a servlet; Recipe 9.4 on sending an error from a JSP;
Recipe 9.6 on declaring in a JSP that another JSP will handle its exceptions; Chapter 23 on using the
JSTL; the JSP 2.0 specification and its Chapter JSP.1.4 on error handling:
http://java.sun.com/products/jsp/.

http://java.sun.com/products/jsp/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 9.6 Declaring a Special Exception-Handling JSP
for Other JSPs

Problem

You want to declare inside of a JSP that another or external JSP will handle any thrown errors.

Solution

Set the page directive attribute errorPage to the special JSP error page's path in the web
application. The JSP error page itself has its page directive attribute isErrorPage set to "true".

Discussion

The JSP specification allows a JSP author to declare at the top of the page that a special error-
handling JSP will handle any exceptions thrown by the page that they are authoring. This design
allows the encapsulation of error handling inside a specially designed JSP.

If you want to specifically target a JSP error page within JSP code, set the page directive's errorPage

attribute to the target error page's location in the web application. Example 9-7 shows a JSP with a
page directive declaring errHandler.jsp as its error page.

This page directive declaration overrides any matching error-page
configurations in web.xml. If this JSP throws an java.io.IOException and
web.xml has an exception-type attribute for that exception, the web
container invokes the error page specified by the page directive instead of any

URI specified in the web.xml configuration.

Example 9-7. A JSP that specifies another JSP as its error page

<%@page errorPage="/errHandler.jsp" %>
<html>
<head><title>Exception Thrower</title></head>
<body>
<h2>Throw an IOException </h2>
 <%
 java.io.File file = new java.io.File("z:" + System.getProperty("file.separator") +
 "temp");
 file.createNewFile(); %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</body>
</html>

The error page has access to an exception implicit object that represents the java.lang.Throwable

object associated with the error.

Example 9-8 uses the JSTL and the EL to show information about the exception. See Chapter 23 if

you have not yet been introduced to the JSTL or the EL.

Example 9-8. A JSP error page named errHandler.jsp

<%@page isErrorPage="true" %>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
<head><title>Sorry about the error</title></head>
<body>
<h2>Sorry, We Erred Handling Your Request</h2>
Here is information about the error:

The servlet name associated with throwing the exception:
<%-- JSP 2.0 usage only!
<c:out value="${pageContext.errorData.servletName}" /> --%>

The type of exception:
 <c:out value="${pageContext.exception.class.name}" />

The request URI:
<%-- JSP 2.0 usage only!
<c:out value="${pageContext.errorData.requestURI}" /> --%>

The exception message:
 <c:out value="${pageContext.exception.message}" />
 </body>
</html>

Figure 9-5 shows the errHandler.jsp page displayed in a browser, after the JSP in Example 9-7 has
thrown a java.io.IOException while trying to create a file on a phantom disk. The commented-out
sections of Example 9-8 show the use of the javax.servlet.jsp.ErrorData class, which allows you

to use the EL to get more information about the error. For example, you can get the request URI (as
in /home/errGen.jsp) of the offending JSP with this syntax:

 ${pageContext.errorData.requestURI}

However, this usage fails in a JSP 1.2 container such as Tomcat 4.1.12, because it was introduced in
JSP 2.0. This is why there is an empty space in the browser page after "The request URI:."

Figure 9-5. A JSP error page using the page directive attributes
errorPage and isErrorPage

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also use this syntax to get access to the java.lang.Throwable object

in the error page:

<c:out value="${requestScope[
 \"javax.servlet.jsp.jspException\"]}" />

See Also

Recipe 9.1 on declaring error pages in web.xml; Recipe 9.2 on creating a special exception-handling
servlet; Recipe 9.3 on sending an error from a servlet; Recipe 9.4 on sending an error from a JSP;
Recipe 9.5 on using JSPs to handle errors; Chapter 23 on using the JSTL; Chapter JSP.1.4 of the JSP
2.0 specification on error handling: http://java.sun.com/products/jsp/.

[Team LiB]

http://java.sun.com/products/jsp/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 10. Reading and Setting Cookies
Introduction

Recipe 10.1. Setting a Cookie with a Servlet

Recipe 10.2. Creating an Array from All of the Request's Cookies

Recipe 10.3. Setting a Cookie with a JSP

Recipe 10.4. Reading Cookie Values with a Servlet

Recipe 10.5. Reading Cookie Values with a JSP

Recipe 10.6. Altering or Removing a Cookie That Has Already Been Set
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

In a typical visit to a web site, a user sends multiple requests for resources to a web server. If a web
page contains many images (and most do!), then requesting the single web page involves one HTTP
request for the HTML code and other template text (such as headlines and phrases), followed by
separate requests for each image the web page contains. Future requests for the same page often
return versions of these text and images that are cached on the client's computer for the sake of
efficiency, depending on whether the fetched resources permit caching. At any rate, the server views
each HTTP request for these web resources as separate and discrete from the other requests.
Without the use of additional protocols, the server does not have a mechanism for managing client
state, such as the progress of a web user through a questionnaire or storefront. Being able to
logically relate one or more web requests as a single user session is where cookies come in.

A cookie is a small piece of information on a user's computer that a web server can use to identify
that user the next time he visits the site. When a user initially visits the cookie-enabled site, the
server responds with an extra response header that looks like:

Set-Cookie: mycookie=1051565332678; Domain=.myorg.com;
Expires=Tue, 29-Apr-2003 07:42:12 GMT

Consequently, when the user visits the same site, his browser sends an extra request header that
contains the cookie associated with that web location. Here is what the request headers look like
when the client returns to the site that previously set the cookie; since the servlet container is
Tomcat 4.1.12, the Cookie request header also includes a name/value pair for the session-related
cookie (JSESSIONID):

GET /home/cookie HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/msword,
application/vnd.ms-powerpoint, application/vnd.ms-excel, application/pdf, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Host: localhost:9000
Connection: Keep-Alive
Cookie: JSESSIONID=F80F0F571FDE4873CFF3FF0B842D4938; mycookie=1051610231064

A cookie contains a name and a value; the cookie can also have several other optional
attribute/value pairs, which are separated by semicolons:

Domain

Specifies the domain to which this cookie will be sent in future requests, as in
Domain=.jspservletcookbook.com. The default value of this optional attribute is the hostname
of the domain that has sent the Set-Cookie header.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Path

Further delineates the part of the web site that, when requested, is sent the cookie by the
client. Most cookies give this attribute a value of /. For example, if only the customer context
path should receive the cookie, then the Set-Cookie header would include the path=/customer

attribute/value pair. The client would not send the cookie value when making any requests to
the domain that do not include the /customer context path.

Expires

Specifies the maximum amount of time the user's browser should keep the cookie. This
attribute is a date string representing a future date. If Expires specifies a past date, then the
cookie is deleted. The Java Cookie API manages this attribute by calling the Cookie object's
setMaxAge() method (see Recipe 10.1).

Version

An optional value of 0 for Netscape's preliminary specification and 1 for the RFC 2109

document.

Secure

True if the cookie can be sent only over a secure connection such as HTTPS.

Comment

May have as a value a description of the cookie's purpose.

A browser is expected to support 20 cookies for each web server, 300 cookies
total, and may limit cookie size to 4 KB each, according to the
javax.servlet.http.Cookie API documentation. The cookie name and value

combine to represent the 4-KB limit, according to the Netscape preliminary
specification. A typical cookie is far less than 4 KB in size.

The user can also disable cookies, so that his browser does not save any of the cookies in a web-
server response. For example, in Netscape 7.1, the menu combination Edit Preferences
Privacy & Security Cookies allows you to prevent the acceptance of cookies by choosing the
"Disable cookies" radio button. In this case, the web developer uses "URL rewriting" for any clients
that have disabled cookies (see Recipe 11.7 and Recipe 11.8).

The Java servlet API abstracts a cookie as an object of type javax.servlet.http.Cookie. The

recipes in this chapter show how to create new cookies, as well as read or alter existing cookies, with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

both servlets and JSPs.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 10.1 Setting a Cookie with a Servlet

Problem

You want to set a cookie using a servlet.

Solution

Create the javax.servlet.http.Cookie object in a servlet, then set the cookie on a user's machine
with the javax.servlet.http.HttpServletResponse.addCookie(Cookie cookie) method.

Discussion

Inside the servlet, create the Cookie by instantiating a new Cookie and calling its setter (or mutator)
methods. The Cookie constructor includes the name and value for the cookie:

Cookie cookie = new Cookie("mycookie","the1cookie");

Example 10-1 creates a cookie and sets its path attribute (as in: cookie.setPath(String path)) to

the name of the context path (as in /home). With this path setting, the client will not send the cookie
to the server unless the client requests resources within the specified context path. The code uses
HttpServletRequest.getContextPath() to provide the value for the cookie's path attribute.

Example 10-1. A servlet that sets a cookie and displays some cookie
information

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class CookieServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 Cookie cookie = null;
 //Get an array of Cookies associated with this domain
 Cookie[] cookies = request.getCookies();
 boolean newCookie = false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //Get the 'mycookie' Cookie if it exists
 if (cookies != null){
 for (int i = 0; i < cookies.length; i++){
 if (cookies[i].getName().equals("mycookie")){
 cookie = cookies[i];
 }
 }//end for
 }//end if

 if (cookie == null){
 newCookie=true;

 //Get the cookie's Max-Age from a context-param element
 //If the 'cookie-age' param is not set properly
 //then set the cookie to a default of -1, 'never expires'
 int maxAge;
 try{
 maxAge = new Integer(
 getServletContext().getInitParameter(
 "cookie-age")).intValue();
 } catch (Exception e) {

 maxAge = -1;
 }//try

 //Create the Cookie object

 cookie = new Cookie("mycookie",""+getNextCookieValue());
 cookie.setPath(request.getContextPath());
 cookie.setMaxAge(maxAge);
 response.addCookie(cookie);

 }//end if
 // get some info about the cookie
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Cookie info</title>");
 out.println("</head>");
 out.println("<body>");

 out.println(
 "<h2> Information about the cookie named \"mycookie\"</h2>");

 out.println("Cookie value: "+cookie.getValue()+"
");
 if (newCookie){
 out.println("Cookie Max-Age: "+cookie.getMaxAge()+"
");
 out.println("Cookie Path: "+cookie.getPath()+"
");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("</body>");
 out.println("</html>");
 }
 private long getNextCookieValue(){

 //returns the number of milleseconds since Jan 1, 1970
 return new java.util.Date().getTime();

 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 doGet(request,response);
 }
}

Example 10-1 uses Cookie.setMaxAge(int age) to specify when the cookie will expire or be deleted

by the browser. The method parameter represents the maximum number of seconds that the cookie
will live on the user's machine after it is created. The example code gets the value for this method
from a context-param element in web.xml, which allows a web developer to configure or optionally
change this value in the deployment descriptor. Here is an example of a context-param element that

provides a value for a cookie's age:

<context-param>
 <param-name>cookie-age</param-name>
 <param-value>31536000</param-value>
</context-param>

For example, if you wanted the cookie to linger for one year (365 x 24 x 60 x 60 seconds), you could
use this code:

cookie.setMaxAge(31536000);

Users can delete a cookie from their machine, regardless of the maximum age
that you have created for it. Some browsers provide a window into a user's
cookies, with features that allow the user to remove one or more cookies. Don't
assume that because you set a maximum age, the cookie will always be
available on users' machines.

Example 10-1 also checks for the existence of a cookie of the same name that the code plans to give
the new cookie (mycookie). If the user has not already sent the mycookie cookie, then the servlet
sets a new cookie and displays some of the cookie's values afterward.

Figure 10-1 shows the servlet output.

Figure 10-1. A servlet shows information about a new cookie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The cookie value is arbitrarily set to a String showing a large number, just to demonstrate how to

provide the value for a cookie. As many cookies need unique values, you could use a method
whereby the user's email address or unique database ID is encoded and then used as the cookie
value.

See Also

Recipe 10.3 on setting a cookie with a JSP; Recipe 10.4 on using a servlet to read cookies; Recipe
10.5 on reading cookie values with a JSP; Recipe 10.6 on altering or removing an existing cookie; the
RFC 2109 document dealing with cookies: ftp://ftp.rfc-editor.org/in-notes/rfc2109.txt; Netscape's
preliminary specification for cookies: http://wp.netscape.com/newsref/std/cookie_spec.html; the
Java Cookie API: http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html.

[Team LiB]

http://wp.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 10.2 Creating an Array from All of the Request's
Cookies

Problem

You want to store all of the cookies contained by a client's request in a Cookie array.

Solution

Use the HttpServletRequest.getCookies() method, which returns an array of
javax.servlet.http.Cookie objects.

Discussion

To create an array of Cookies representing all of the cookies included in a request, use the
HttpServletRequest.getCookies() method. You can then access the name and value of a cookie
by calling the Cookie class's getName() and getValue() methods.

The code for accessing an array of Cookies looks like Example 10-2.

Example 10-2. Creating a Cookie array

//servlet's doGet method

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 Cookie cookie = null;

 //Get an array of Cookies associated with this domain
 Cookie[] cookies = request.getCookies();

 //Check for a null value, then do something with any Cookies
 if (cookies != null){ //read each Cookie value
 }
//rest of the servlet

Once a cookie has already been created, the next time the user sends the cookie as a request
header, the only information you can extract from the Cookie object is its name and value. You will

not be able to derive the cookie's maximum age from the request header, because all the header will

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contain is the Cookie object: header name, then the name and value of the cookie.

See Also

Recipe 10.1 on setting a cookie with a servlet; Recipe 10.3 on setting a cookie with a JSP; Recipe
10.4 on using a servlet to read cookies; Recipe 10.5 on reading cookie values with a JSP; Recipe 10.6
on altering or removing an existing cookie; the RFC 2109 document dealing with cookies:
ftp://ftp.rfc-editor.org/in-notes/rfc2109.txt; Netscape's preliminary specification for cookies:
http://wp.netscape.com/newsref/std/cookie_spec.html; the Java Cookie API:
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html.

[Team LiB]

http://wp.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 10.3 Setting a Cookie with a JSP

Problem

You want to use a JSP to set a cookie on a client.

Solution

Wrap a JavaBean around the servlet API for creating cookies. Then use the bean in the JSP with the
jsp:useBean standard action.

Discussion

A JSP can use a JavaBean to create the cookie and set the cookie on the client. Example 10-3 creates an
instance of a JavaBean of type com.jspservletcookbook.CookieBean using the jsp:useBean standard

action. Then the JSP sets a few bean properties. The bean will pass through the property values to the
cookie that it is generating for the JSP. The JSP uses jsp:setProperty to set the following cookie

properties:

The cookie name (bakedcookie in the code).

The maximum number of seconds the browser will hold on to the cookie (roughly one year in
Example 10-2). This number is converted to a readable future date for the cookie's Expires

attribute.

The path on the server associated with this cookie. Once the JSP has sent this cookie to the client,
the client will return the associated cookie only in the request headers for requests that contain the
specified context path (such as /home). For example, if the cookie is set by the JSP file to
/home/cookieSet.jsp , only requests for resources in /home will include a Cookie header.

Example 10-3. A JSP that sends a cookie to a client

<jsp:useBean id="cookieBean" class="com.jspservletcookbook.CookieBean" />
<jsp:setProperty name="cookieBean" property="name" value="bakedcookie" />
<%-- set 'Expires' attribute to about one year from now --%>
<jsp:setProperty name="cookieBean" property="maxAge" value=
 "<%= (365*24*60*60) %>" />
<jsp:setProperty name="cookieBean" property="path" value="<%= request.getContextPath()
%>" />
<jsp:setProperty name="cookieBean" property="cookieHeader" value="<%= response %>" />
<html>
<head><title>Cookie Maker</title></head>
<body>
<h2>Here is information about the new cookie</h2>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name: <jsp:getProperty name="cookieBean" property="name" />

Value: <jsp:getProperty name="cookieBean" property="value" />

Path: <jsp:getProperty name="cookieBean" property="path" />
</body>
</html>

The JSP passes along the HttpServletResponse object to its wrapper bean, so that the bean can call
response.addCookie(Cookie cookie) to send the client the new cookie. The response object is passed
to the bean using this code (see the setCookieHeader() method in Example 10-4):

<jsp:setProperty name="cookieBean" property="cookieHeader" value=
 "<%= response %>" />

The bottom of the JSP displays some of the new cookie's values. Figure 10-2 shows the JSP's output in a
web browser. Repeatedly requesting the JSP will overwrite the existing cookie with a new one.

Figure 10-2. A JSP shows information about a new cookie

Example 10-4 shows the code for the CookieBean itself, which is rather lengthy due to all the getter and

setter methods.

This JavaBean class must be placed in the WEB-INF/classes directory of the web
application (including a directory structure that matches the bean's package name)
so that the web container can load the class. The bean could also be archived in a
JAR file that is placed in WEB-INF/lib ; however, the JAR would still have to contain
a directory structure that matches the bean's package name.

You can set the cookie value in the JSP (which is not done in Example 10-3) by calling the bean's
setValue(String value) method via jsp:setProperty :

<jsp:setProperty name="cookieBean" property="value" value="newvalue" />

The bean has to import the Cookie and HttpServletResponse classes, because it uses them to make the

new cookie, then send the cookie to the client. Example 10-4 wraps its own methods around some of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cookie class methods, such as setValue() and setMaxAge() .

Example 10-4. A JavaBean for making cookies

package com.jspservletcookbook;

import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.Cookie;

public class CookieBean {

 private Cookie cookie = null;

public CookieBean(){}

//set the cookie name
public void setName(String name){

 if (name == null || (name.equals("")))
 throw new IllegalArgumentException(
 "Invalid cookie name set in: "+getClass().getName());

 cookie = new Cookie(name,""+new java.util.Date().getTime());
}

//set the cookie value
public void setValue(String value){

 if (value == null || (value.equals("")))
 throw new IllegalArgumentException(
 "Invalid cookie value set in: "+getClass().getName());

 if (cookie != null)
 cookie.setValue(value);
}

public void setMaxAge(int maxAge){

 if (cookie != null)
 cookie.setMaxAge(maxAge);
}

public void setPath(String path){

 if (path == null || (path.equals("")))
 throw new IllegalArgumentException(
 "Invalid cookie path set in: "+getClass().getName());

 if (cookie != null)
 cookie.setPath(path);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void setCookieHeader(HttpServletResponse response){

 if (response == null)
 throw new IllegalArgumentException(
 "Invalid HttpServletResponse set in: "+getClass().getName());
 if (cookie != null)
 response.addCookie(cookie);
}

public String getName(){

 if (cookie != null)
 return cookie.getName();
 else
 return "unavailable";

}

public String getValue(){

 if (cookie != null)
 return cookie.getValue();
 else
 return "unavailable";

}

public String getPath(){

 if (cookie != null)
 return cookie.getPath();
 else
 return "unavailable";

}
}

If the JSP fails to use jsp:setProperty to call the bean's setCookieHeader(HttpServletResponse
response) method, then the cookie is created but never included in the response headers sent to the
client. In this design, you allow the user to set some optional cookie attributes (such as Path) before she

explicitly sends the cookie as part of the response.

See Also

Recipe 10.1 on setting a cookie with a servlet; Recipe 10.2 on creating an array from all of the request's

cookies; Recipe 10.4 on using a servlet to read cookies; Recipe 10.5 on reading cookie values with a JSP;
Recipe 10.6 on altering or removing an existing cookie; the RFC 2109 document dealing with cookies:
ftp://ftp.rfc-editor.org/in-notes/rfc2109.txt ; Netscape's preliminary specification for cookies:
http://wp.netscape.com/newsref/std/cookie_spec.html ; the Java Cookie API:
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html .

http://wp.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 10.4 Reading Cookie Values with a Servlet

Problem

You want to read cookie values from a client using a servlet.

Solution

Create a Java array of javax.servlet.http.Cookie objects by calling the
HttpServletRequest.getCookies() method. Then cycle through the array, accessing each cookie

and value as needed.

Discussion

The web user will send cookies to a web site only if the user originally received Set-Cookie headers
from that domain. In addition, if the cookie was set with a Path attribute specifying a context path,

then the servlet can access the cookie only if the servlet is also associated with the context path. As a
result, always test the return value of the request.getCookies() method (which returns an array
of Cookie objects) to see if it is null, indicating that the user has not sent any cookies, before

operating upon it.

Example 10-5 displays the value of any found cookies in a web browser. The CookieReader class
uses the javax.servlet.http.Cookie.getName() and getValue() methods in order to display

this information.

Example 10-5. A cookie-reading servlet

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class CookieReader extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 Cookie cookie = null;
 //Get an array of Cookies associated with this domain
 Cookie[] cookies = request.getCookies();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 boolean hasCookies = false;

 //if cookies contains an array and not a null value,
 //then we can display information about the cookies.
 if (cookies != null)
 hasCookies = true;

 // display the name/value of each cookie
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Cookie information</title>");
 out.println("</head>");
 out.println("<body>");
 if (hasCookies){
 out.println(
 "<h2> The name and value of each found cookie</h2>");

 for (int i = 0; i < cookies.length; i++){
 cookie = cookies[i];
 out.println(
 "Name of cookie #"+(i + 1)+": "+cookie.getName()+"
");
 out.println(
 "Value of cookie #"+(i + 1)+": "+
 cookie.getValue()+"

");
 }//for

 } else {
 out.println(
 "<h2> This request did not include any cookies</h2>");
 }
 out.println("</body>");
 out.println("</html>");}

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 doGet(request,response);
 }
}

The javax.servlet.http.Cookie class is an abstraction of a cookie that has getter and setter

methods for a cookie's attributes, such as its name, value, path, and secure attributes. However,
when you retrieve a cookie, you can only get its name and value, because this is the only information
that the client includes in the request header. The Cookie request header looks like:

Cookie: JSESSIONID=F80F0F571FDE4873CFF3FF0B842D4938; mycookie=1051610231064

For example, calling Cookie.getPath() on a retrieved cookie will return null, even if the cookie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

was originally set with a valid path attribute, such as /mypath. You can only access these values in
the servlet or JSP that creates the cookie object in the first place (see Recipe 10.1 and Recipe 10.3).

Figure 10-3 shows how a web browser displays this servlet's output.

Figure 10-3. A servlet displays cookie information

See Also

Recipe 10.1 on setting a cookie with a servlet; Recipe 10.2 on creating an array from all of the

request's cookies; Recipe 10.3 on setting a cookie with a JSP; Recipe 10.5 on reading cookie values
with a JSP; Recipe 10.6 on altering or removing an existing cookie; the RFC 2109 document dealing
with cookies: ftp://ftp.rfc-editor.org/in-notes/rfc2109.txt; Netscape's preliminary specification for
cookies: http://wp.netscape.com/newsref/std/cookie_spec.html; the Java Cookie API:
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html.

[Team LiB]

http://wp.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 10.5 Reading Cookie Values with a JSP

Problem

You want to read cookie values with a JSP.

Solution

Use the JSTL and its cookie implicit object to display the name and value of any cookies found in the

request.

Discussion

The JSTL and its EL have a cookie implicit object (a variable that is automatically available to JSP or

EL code) that you can use in JSPs to display any cookie names and values. For more information on
the JSTL and EL, see Chapter 23.

You can access the cookie implicit object in JSP code this way:

${cookie}

This implicit object evaluates to a java.util.Map type whose values you can iterate over with the
c:forEach JSTL tag. Each iteration of c:forEach returns a java.util.Map.Entry, which

encapsulates a key/value pair. The key is the name of the cookie; the value is a
javax.servlet.http.Cookie object.

Example 10-6 uses this code to retrieve a Cookie object from the Map of available cookies:

<c:forEach var="cookieVal" items="${cookie}">

The var attribute of c:forEach contains a Map.Entry object whose key is the cookie name; the
value is the Cookie object. The code uses c:out tags to display the cookie names and values in the

JSP. This odd syntax displays the value of each cookie:

<c:out value="${cookieVal.value.value}" />

The code cookieVal.value evaluates to the javax.servlet.http.Cookie object. The full phrase
${cookieVal.value.value} is the equivalent of calling Cookie.getValue().

Example 10-6. A JSP that reads cookie names and values

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<html>
<body>
<%-- check whether the request contains any cookies --%>
<c:choose>
 <c:when test="${empty cookie}" >
 <h2>We did not find any cookies in the request</h2>
 </c:when>
<c:otherwise>

<h2>The name and value of each found cookie</h2>

<c:forEach var="cookieVal" items="${cookie}">
Cookie name: <c:out value="${cookieVal.key}" />

Cookie value: <c:out value=
 "${cookieVal.value.value}" />

</c:forEach>
</c:otherwise>
</c:choose>

</body>
</html>

Figure 10-4 shows the JSP displaying the available cookie information.

Figure 10-4. Output of the cookieReader.jsp page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Make sure to include the taglib directive for the JSTL core library at the top of

your JSP, so that you can use the JSTL tags to view any cookie values:

<%@ taglib uri=
"http://java.sun.com/jstl/core" prefix="c" %>

Use uri=http://java.sun.com/jsp/jstl/core when using JSTL 1.1

See Also

Recipe 10.1 on setting a cookie with a servlet; Recipe 10.2 on creating an array from all of the

request's cookies; Recipe 10.3 on setting a cookie with a JSP; Recipe 10.4 on using a servlet to read
cookies; Recipe 10.6 on altering or removing an existing cookie; the RFC 2109 document dealing with
cookies: ftp://ftp.rfc-editor.org/in-notes/rfc2109.txt; Netscape's preliminary specification for cookies:
http://wp.netscape.com/newsref/std/cookie_spec.html; The Java Cookie API:
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html.

[Team LiB]

http://wp.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 10.6 Altering or Removing a Cookie That Has
Already Been Set

Problem

You want to overwrite or remove an existing cookie.

Solution

Send a cookie with the same name and path as an existing cookie to overwrite the existing cookie. To
delete a cookie, send a cookie with the same name and path but set the Expires attribute to a date in

the past.

Discussion

You can overwrite a cookie and optionally provide different values for its attributes (such as the cookie
value) by including a cookie in a response header that has the same name and path as an existing
cookie. For example, imagine a servlet has set a cookie on the client with the following response
header:

Set-Cookie: newcookie=1051642031398; Expires=Wed, 28-Apr-2004 18:47:11 GMT; Path=/home

This cookie can be overwritten on the client by changing its cookie value, but not the name and path:

Set-Cookie: newcookie=A1lnew; Expires=Wed, 28-Apr-2004 18:52:50 GMT; Path=/home

This response header will replace newcookie with a cookie of the same name. The new version has a
new value (A1lnew) and an Expires attribute value.

Deleting a Cookie

You can delete a cookie by sending a response header to the client with the same cookie name and
Path value, but with an Expires attribute value that represents a date in the past. With Java's Cookie
API, you simply call the javax.servlet.http.Cookie.setMaxAge() method with an argument value
of 0 . Example 10-7 is the JSP of Recipe 10.2 . This time the JSP is deleting mycookie by setting the
maxAge property to 0 using jsp:setProperty .

Example 10-7. Deleting an existing cookie

<jsp:useBean id="cookieBean" class="com.jspservletcookbook.CookieBean" />
<jsp:setProperty name="cookieBean" property="name" value="mycookie" />
<%-- delete the cookie by calling Cookie.setMaxAge(0) --%>
<jsp:setProperty name="cookieBean" property="maxAge" value="0" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<jsp:setProperty name="cookieBean" property="value" value="finished" />
<jsp:setProperty name="cookieBean" property="path" value=
 "<%= request.getContextPath() %>" />
<jsp:setProperty name="cookieBean" property="cookieHeader" value=
 "<%= response %>" />
<%-- rest of JSP continues --%>

Cookies can be deleted only by a Set-Cookie response header emanating from the same domain that
created the cookie, with the same cookie name and Path attribute. Here is what the response header

from the deleting JSP looks like:

HTTP/1.1 200 OK
Content-Type: text/html;charset=ISO-8859-1
Set-Cookie: mycookie=finished; Expires=Thu, 01-Jan-1970 00:00:10 GMT; Path=/home
Transfer-Encoding: chunked
Date: Tue, 29 Apr 2003 19:18:59 GMT
Server: Apache Coyote/1.0

Note that the Expires attribute value is a date in the past. As a result, the client will no longer send

the mycookie cookie in its request headers when it makes a request to the same domain at the /home
context path. However, it may send other cookies (with different names) that were created during
prior visits to the same domain and context path.

The browser user can delete a cookie from his machine anytime he wants, so
always plan accordingly.

See Also

Recipe 10.1 on setting a cookie with a servlet; Recipe 10.2 on creating an array from all of the

request's cookies; Recipe 10.3 on setting a cookie with a JSP; Recipe 10.4 on using a servlet to read
cookies; Recipe 10.5 on reading cookie values with a JSP; the RFC 2109 document dealing with
cookies: ftp://ftp.rfc-editor.org/in-notes/rfc2109.txt ; Netscape's preliminary specification for cookies:
http://wp.netscape.com/newsref/std/cookie_spec.html ; the Java Cookie API:
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html .

[Team LiB]

http://wp.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/Cookie.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 11. Session Tracking

Introduction

Recipe 11.1. Setting the Session Timeout in web.xml

Recipe 11.2. Setting the Session Timeout in All Tomcat Web Applications

Recipe 11.3. Setting the Session Timeout Programmatically

Recipe 11.4. Checking if a Session Exists in an HttpServletRequest

Recipe 11.5. Tracking Session Activity in Servlets

Recipe 11.6. Tracking Session Activity in JSPs

Recipe 11.7. Using URL Rewriting in a JSP

Recipe 11.8. Using URL Rewriting in a Servlet

Recipe 11.9. Using a Listener to Track the Session Lifecycle

Recipe 11.10. Using a Listener to Monitor Session Attributes

Recipe 11.11. Using a Filter to Monitor Session Attributes
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

This chapter describes how to monitor sessions in servlets and JSPs. A session represents an
interaction between a web user and a web application. The Hypertext Transfer Protocol (HTTP) is a
stateless protocol, meaning that it is not designed to maintain state, or the progress of a single user
as she interacts with a web server by exchanging HTTP requests and responses. Each request for a
JSP or servlet, at least from the HTTP server's point of view, is considered separate from other
requests and not associated with the same user. Many web applications, however, need to follow a
user's progress step by step throughout the application, to keep track of her purchased items and/or
preferences.

For example, when a user buys books at Amazon.com, the web site monitors what is added to or
removed from the customer's shopping cart and uses this information during the checkout and
payment process. In addition, Amazon.com shows users which books they have looked at during
their current session. Sequential visits by a single user to an e-commerce site like this are considered
parts of one session.

Web applications commonly use cookies in order to implement sessions. All servlet containers have to
support the use of cookies to track sessions, according to the Servlet v2.3 and 2.4 specifications. A
cookie is a small piece of information that is stored by the client web browser in response to a
response header issued by the web server. Cookies are described in more detail in Chapter 10, but
since they are central to the session concept, I include a brief overview of their use in session
tracking here.

When a user requests a page from a web server, the server responds with a collection of name/value
pairs called response headers, along with the HTML response. These headers may include one labeled
Set-Cookie, which requests that the client store some state information locally. The only required
element of the Set-Cookie HTTP response header is the cookie name and value. The cookie may

include other pieces of information separated by semicolons. The cookie that Java web containers set
in order to implement session tracking looks like jsessionid=cookie-value, where cookie-value is

usually a long numeric string of bytes using hexadecimal notation. According to the servlet
specification v2.3, this cookie's name must be JSESSIONID. Some web containers generate the name

in lowercase, however, like Tomcat. A typical session-related cookie looks like the following:

jsessionid=3CAF7CD0A0BFF5076B390CCD24FD8F0D

The cookie value represents the session ID. This ID uniquely identifies the user for the period when
he is making requests to the web server. For example, if 10 users are interacting with the web
application at the same time, the web server assigns them 10 unique session IDs. Additionally, if a
person sits down at his PC and connects with the web application using Internet Explorer, then moves
over to a connected laptop and opens up Safari to the same web application, those browsers will be
associated with two different session IDs. The web server does not have any way of knowing that the
same person is interacting with the web application from two different browsers at the same time,
particularly if he is connecting from behind a proxy server. However, as long as the user works with a
single browser and that user's session has not yet timed out, a web server can track that user's
actions, and associate them as one session.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Disabled Cookies

What if the user blocks cookies? Web browsers typically allow the disabling of cookies in the user
preferences. Servers may also use the Secure Sockets Layer (SSL), which has a built-in session-
tracking mechanism. In addition, URL rewriting is a common fallback method of session tracking. URL
rewriting involves adding the session ID as a path parameter to the URL when linking from one page
to the next, so that the next page has access (without cookies) to the session ID. These URLs look
like this:

/home/default.jsp;jsessionid=3CAF7CD0A0BFF5076B390CCD24FD8F0D

As most page requests in everyday web use are not made using SSL, you should code your session
tracking-related web components to accommodate URL rewriting.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.1 Setting the Session Timeout in web.xml

Problem

You want to configure a timeout period for the web application in the deployment descriptor.

Solution

Create a session-config element in web.xml .

Discussion

The length of time that a session lasts before the server invalidates the session and unbinds any of its
objects is an important component of your web application. In Tomcat 4.1.x, the default timeout period
for a session is 30 minutes. If any requests that are associated with the session have been inactive for
that period, the session times out. If the user decides to return to the web application after 30 minutes,
using the same browser, then a new session is created for him. Example 11-1 shows how to set your
own timeout period for sessions.

Example 11-1. Configuring the session timeout

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

<web-app>

<!-- filter, listener, servlet, and servlet-mapping elements precede session-config -->

 <session-config>
 <session-timeout>15</session-timeout>
 </session-config>

</web-app>

Place one nested session-timeout element within the session-config . The timeout is expressed as

minutes, and overrides the default timeout (which is 30 minutes in Tomcat, for example). However, the
HttpSession.getMaxInactiveInterval() method in a servlet returns the timeout period for that
session in seconds ; if your session is configured in web.xml for 15 minutes, getMaxInactiveInterval(
) returns 900 .

Another way to configure a timeout value for a servlet is to use the init-param element in web.xml , as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in Example 11-2 .

Example 11-2. Adding an init-param to a servlet to set a session timeout
interval

<servlet>
 <servlet-name>Cart</servlet-name>
 <servlet-class>com.jspservletcookbook.TimeoutSession</servlet-class>
 <init-param>
 <param-name>timeout</param-name>
 <param-value>600</param-value>
 </init-param>
</servlet>

The servlet element in this web application's web.xml file has a nested init-param , which creates a
parameter called timeout . The Cart servlet takes the parameter value (600 seconds, equivalent to 10
minutes) and passes it to the session.setMaxInactiveInterval(int seconds) method. Example 11-
3 shows the doGet() method of the servlet, which sets the session timeout variable to the configured

parameter value.

Example 11-3. Using init parameters to set a servlet's session timeout

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 HttpSession session = request.getSession();

 //initially set to default timeout interval
 int _default = session.getMaxInactiveInterval();

 int timeout = _default;

 try{

 timeout = new Integer(getInitParameter("timeout")).intValue();

 } catch(NumberFormatException nfe){

 //report any problems with the configured value in web.xml
 log("Problem with configuring session timeout in: " +
 getClass().getName()) ;
 }//try

 //now set the session to the configured timeout period
 if(timeout != _default && timeout > -2)
 session.setMaxInactiveInterval(timeout);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Cart Servlet</title>");
 out.println("</head>");
 out.println("<body>");

 out.println("The timeout interval is: " +
 session.getMaxInactiveInterval());

 out.println("</body>");
 out.println("</html>");

}

Figure 11-1 shows the result of running this servlet in a browser window.

Figure 11-1. Dynamically changing the session timeout

The session timeout is changed only if the configured value is different than the initial value, and if the
value is greater than -2:

if(timeout != _default && timeout > -2)
 session.setMaxInactiveInterval(timeout);

A timeout interval can be set to -1 , which is defined by the Servlet v2.4 specification as a session that

never expires.

This behavior may not be implemented consistently from server to server.

As mentioned before, sessions are implemented the majority of the time as cookies. Chapter 10 includes
recipes describing the handling of cookies in JSPs and servlets.

See Also

Recipe 11.2 and Recipe 11.3 on configuring the session timeout in Tomcat web applications; Chapter 1
on web.xml ; Chapter 7 of the Servlet v2.3 and 2.4 specifications on sessions; the session-tracking
sections of Java Servlet Programming by Jason Hunter (O'Reilly) and JavaServer Pages by Hans
Bergsten (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.2 Setting the Session Timeout in All Tomcat
Web Applications

Problem

You want to configure a session timeout period for all of the web applications that are running within
an instance of Tomcat.

Solution

Set the session timeout within the session-config element in <Tomcat-installation-

directory>/conf/web.xml.

Discussion

You can set the session timeout for all web applications by configuring Tomcat's default conf/web.xml
file. If the deployment descriptor for a particular web application does not have a session-config

element, then the application uses the value set in conf/web.xml as the default session timeout. The
content of the session-timeout element (nested within session-config) represents the time in

minutes until an inactive session expires.

Example 11-4 shows the session-config element in the default web.xml file for Tomcat 4.1.x, with

the accompanying XML comment.

Example 11-4. The session-config element inside of the default Tomcat
web.xml file

<!--=================== Default Session Configuration ================-->
<!-- You can set the default session timeout (in minutes) for all newly-->
<!-- created sessions by modifying the value below.-->

 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>

On application deployment, Tomcat processes its default web.xml file, followed by the deployment
descriptors for each web application. Your own session-config element overrides the one specified

in conf/web.xml. It is usually a better idea to configure sessions for each web application individually,
particularly if they are designed to be portable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 11.1 on configuring the session timeout; Recipe 11.3 on setting the session timeout
programmatically; Recipe 11.4 on checking the validity of a session; Chapter 1 on web.xml; Chapter
7 of the Servlet v2.3 and 2.4 specifications on sessions; the session-tracking sections of Java Servlet
Programming by Jason Hunter (O'Reilly) and JavaServer Pages by Hans Bergsten (O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.3 Setting the Session Timeout
Programmatically

Problem

You want to set a session timeout in your servlet code.

Solution

Use the HttpServletRequest object's getSession() method to get a reference to the
HttpSession object. Then change the timeout period programmatically by using the

HttpSession.setMaxInactiveInterval(int seconds) method.

Discussion

The HttpSession.setMaxInactiveInterval(int seconds) method sets the timeout for a session

individually, so that only the particular session object being operated upon is affected. Other servlets
that do session tracking in the web application still use the session-timeout value in web.xml or, in
the absence of this element, the server's default session-timeout value. Example 11-5 checks the

timeout period for a session, then resets that timeout period to 20 minutes.

Example 11-5. Resetting a default timeout period

package com.jspservletcookbook;

import java.util.Date;
import java.text.DateFormat;

import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleSession extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HttpSession session = request.getSession();

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Simple Session Tracker</title>");
 out.println("</head>");
 out.println("<body>");

 out.println("<h2>Session Info</h2>");

 out.println("session ID: " + session.getId() + "

");

 out.println("The SESSION TIMEOUT period is " +
 session.getMaxInactiveInterval() + " seconds.

");

 out.println("Now changing it to 20 minutes.

");

 session.setMaxInactiveInterval(20 * 60);

 out.println("The SESSION TIMEOUT period is now " +
 session.getMaxInactiveInterval() + " seconds.");

 out.println("</body>");
 out.println("</html>");

 }
}

Figure 11-2 shows the result of requesting this servlet in a web browser.

Figure 11-2. Getting session-timeout info

This servlet gets the HttpSession object with the HttpServletRequest class's getSession()

method.

Whatever the servlet's default timeout period is, say, 30 minutes, Example 11-5 changes the
accessed session's timeout to 20 minutes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

session.setMaxInactiveInterval(20 * 60);

Remember, this method alters the default session-timeout interval only for the session associated
with the users who request this servlet. Why would some users get a different timeout interval than
others? Perhaps web-user testing at your organization has indicated that a session timeout of five
minutes is more appropriate for your shopping cart-related servlets, whereas some chart- or map-
creation servlets require the default timeout of 30 minutes or more, since their users might linger
over the complex images in their browsers for a long period.

In most web applications, the session timeout is set (or altered) in the deployment descriptor, and
you will not have to dynamically change the timeout in the servlet code.

See Also

Recipe 11.1 on configuring the session timeout; Recipe 11.2 on setting the session timeout in all
Tomcat applications; Recipe 11.4 on checking the validity of a session; Chapter 1 on web.xml;
Chapter 7 of the Servlet v2.3 and v2.4 specifications on sessions; the session-tracking sections of
Java Servlet Programming by Jason Hunter (O'Reilly) and JavaServer Pages by Hans Bergsten
(O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.4 Checking if a Session Exists in an
HttpServletRequest

Problem

You want to check if a web application user has a valid session.

Solution

Use the HttpServletRequest object's getSession(false) method to find out whether the
HttpSession object is null.

Discussion

Some web components are designed to monitor if a session is valid, then optionally redirect or
forward the user to another web component based on the validity of the session. For example,
imagine that a user makes a request to a component that expects to find a custom object stored in
the session object, such as a "shopping cart." You want to check if the session is valid; however, you
do not want to create a new session for the request if the session is not valid, because another web
component farther back in the chain of application components is responsible for creating new
sessions and populating them with shopping cart items. The user may have entered the web
application at Step 3 instead of Step 1. In this case, if the session is invalid, the request is forwarded
to another access point in the application (such as a login screen).

If you call the HttpServletRequest object's getSession(false) method and the method returns
false, then the user does not have a valid session and the request object has not created a new

session for her.

Either HttpServletRequest.getSession(true) or getSession() will

attempt to create a new session.

Example 11-6 is a servlet that checks a user's session, then redirects the user to another web
component if the session object is null.

Example 11-6. Checking if a session is valid or not

import javax.servlet.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.servlet.http.*;

public class SessionCheck extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException {

 HttpSession session = request.getSession(false);

 if (session == null){
 response.sendRedirect("/myproj/login.jsp");
 } else {
 response.sendRedirect("/myproj/menu.jsp");
 }
 }
}

If the session in Example 11-6 is null, the servlet redirects the request to the login.jsp page at the

context path /myproj. If the session object is valid, the request is redirected to the /myproj/menu.jsp
component.

The HttpServletResponse.sendRedirect(String location) method sends

the client an HTTP response that looks like this:

HTTP/1.1 302 Moved Temporarily
Location:
http://localhost:9000/dbproj/login.jsp
Content-Type: text/html;charset=ISO-8859-1
...

The client then sends another request for the URL specified in the location
header of the HTTP response.

See Also

Recipe 11.1 and Recipe 11.3 on configuring the session timeout; Chapter 1 on web.xml; Chapter 7 of
the Servlet v2.3 and 2.4 specifications on sessions; the session-tracking sections of Java Servlet
Programming by Jason Hunter (O'Reilly) and JavaServer Pages by Hans Bergsten (O'Reilly).

[Team LiB]

http://localhost:9000/dbproj/login.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.5 Tracking Session Activity in Servlets

Problem

You want to use a servlet to track the creation time and last-accessed time for a session.

Solution

Use the HttpServletRequest object's getSession() method to get a reference to the
HttpSession object. Then call the HttpSession.getCreationTime() and
HttpSession.getLastAccessedTime() methods on that object.

Discussion

This recipe describes how to use the HttpSession API to find out the creation time and the last-

accessed time for a session. How would a web application use this information? For one, you might
want to monitor the pattern of request activity in a web application by comparing the session creation
time, the last-accessed time, and the current time. For example, the difference between the creation
time and the current time (measured in seconds) would indicate how long the web application had
been tracking a particular user's session.

The method HttpSession.getLastAccessedTime() returns the time (as a long datatype) of the

last time the user made a request associated with a particular session.

A servlet that calls getLastAccessedTime() represents the most current

request associated with the session. In other words, the time at which the user
requests the servlet that calls getLastAccessedTime() becomes the last

accessed time.

Example 11-7 displays the current time, as well as the session's creation and last- accessed times.

The HttpServletRequest.getSession() method associates a new session

with the request if one does not already exist. The
HttpServletRequest.getSession(false) method returns null if a session is
not associated with the request and it will not create a new HttpSession for

the user. See Recipe 11.4.

Example 11-7. Calling HttpSession methods in a servlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

import java.util.Date;
import java.text.DateFormat;
import java.util.Enumeration;

public class SessionDisplay extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 HttpSession session = request.getSession();

 Date creationTime = new Date(session.getCreationTime());

 Date lastAccessed = new Date(session.getLastAccessedTime());

 Date now = new Date();

 DateFormat formatter =
 DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
 DateFormat.MEDIUM);

 out.println("<html>");
 out.println("<head>");

 out.println(
 "<title>Displaying the Session Creation and "+
 "Last-Accessed Time</title>");

 out.println("</head>");
 out.println("<body>");
 out.println("<h2>Session Creation and Last-Accessed Time</h2>");
 out.println(
 "The time and date now is: " + formatter.format(now) +
 "

");

 out.println("The session creation time: "+
 "HttpSession.getCreationTime(): " +
 formatter.format(creationTime) + "

");

 out.println("The last time the session was accessed: " +
 HttpSession.getLastAccessedTime(): " +
 formatter.format(lastAccessed));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("</body>");
 out.println("</html>");
 }//doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 doGet(request,response);
 }//doPost
}

An example of a browser display for this servlet is shown in Figure 11-3.

Figure 11-3. Finding out a session's creation and last-accessed times

As in the prior recipe, this example uses a java.text.DateFormat object to format Date Strings for
browser display. The date-related HttpSession methods getCreationTime() and
getLastAccessedTime() return long datatypes, from which java.util.Date objects can be

created:

Date creationTime = new Date(session.getCreationTime());

The session's creation time can then be displayed using the DateFormat's format(Date _date)

method.

The next recipe shows how a JSP can track session activity.

See Also

Recipe 11.5 and Recipe 11.8; Chapter 1 on web.xml; Chapter 7 of the Servlet v2.3 and 2.4
specifications on sessions; the javax.servlet.http.HttpSession API at

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html; the session-
tracking sections of Java Servlet Programming by Jason Hunter (O'Reilly) and JavaServer Pages by
Hans Bergsten (O'Reilly).

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.6 Tracking Session Activity in JSPs

Problem

You want to find out a session's creation time and last-accessed time using JSPs.

Solution

Use the JSTL to get access to the JSP's associated HttpSession object. Then call the
HttpSession.getCreationTime() and HttpSession.getLastAccessedTime() methods on that

object.

Discussion

It is very easy to keep track of session activity in a JSP; you just use slightly different methods and
tools compared to those used with a servlet. Example 11-8 uses the out custom action from the JSTL

1.0 to display information about the current session. Chapter 24 describes the JSTL and its
associated EL in more detail.

Example 11-8. Tracking sessions using the JSTL

<%@page contentType="text/html"%>

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
 <head><title>View Session JSP </title></head>
 <body>
 <h2>Session Info From A JSP</h2>

 The session id: <c:out value="${pageContext.session.id}"/>

 The session creation time as a long value:
 <c:out value="${pageContext.session.creationTime}"/>

 The last accessed time as a long value:
 <c:out value="${pageContext.session.lastAccessedTime}"/>

 </body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This JSP uses a taglib directive to make the custom actions that are part of the core tag library
available. By convention, the uri attribute for the core tags is http://java.sun.com/jstl/core, and the
prefix is c (you can create your own prefix in the taglib directive). With JSTL 1.1, the uri value is
http://java.sun.com/jsp/jstl/core. The JSP then uses the out tag from the JSTL's core tag library to
display the current session ID (the return value of HttpSession.getId()), the session's creation
time as a long type, and the session's last-accessed time. Figure 11-4 shows a browser display of

these values.

Figure 11-4. Showing session info in a JSP

The out element writes the value of its value attribute to the JSP's response stream. However, it is

the EL that does the fetching of the value. For example, the following EL expression gets the value of
the session's creation time:

${pageContext.session.creationTime}

The pageContext reference is one of the implicit objects that can be accessed

from the EL. This is equivalent to the implicit JSP scripting object of the same
name.

The way the creation time is accessed is different than a method call; you use the dot (.) operator to
get the pageContext's session property, then in turn use the dot operator to access the session
object's creationTime property. So the whole phrase looks like this:

pageContext.session.creationTime.

Finally, in the EL, all variable and property values are dereferenced (to get their values) by
bracketing them in ${ } characters.

The JSP gets the other session values in the same way. For example, the session's last-accessed time
(the long type return value from the method HttpSession.getLastAccessedTime()) is returned

using this syntax:

${pageContext.session.lastAccessedTime}

Example 11-8 displays the last-accessed time for a session as a large, unfriendly number. Naturally,

http://java.sun.com/jstl/core
http://java.sun.com/jsp/jstl/core
http://lib.ommolketab.ir
http://lib.ommolketab.ir

this value is more understandable displayed as a date. Example 11-9 shows how to use the JSTL's
custom formatting actions to format a date string.

Example 11-9. Formatting the session creation time and last-accessed
time with the JSTL

<%@page contentType="text/html"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

<html>
 <head><title>View Session JSP </title></head>
 <body>

 <h2>Session Info From A JSP</h2>

 The session ID: <c:out value="${pageContext.session.id}"/>

 <h3>Session date values formatted as Dates</h3>

 <jsp:useBean id="timeValues" class="java.util.Date"/>

 <c:set target="${timeValues}" value=
 "${pageContext.session.creationTime}" property="time"/>

 The creation time: <fmt:formatDate value="${timeValues}" type="both"
 dateStyle="medium" />

 <c:set target="${timeValues}" value=
 "${pageContext.session.lastAccessedTime}" property="time"/>

 The last accessed time: <fmt:formatDate value="${timeValues}" type=
 "both" dateStyle="short" />

 </body>
</html>

Figure 11-5 shows the browser display for this JSP.

Figure 11-5. Session date/times formatted using the JSTL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This JSP takes two date-related session values: the date/time when the session was created and the
last date/time when a request associated with this session was made to the web application. It
displays their values in the browser. As mentioned previously, these values are returned from the
HttpSession object as long Java types. You have to create a Date object with its time property set
to these long values. Then use the JSTL formatting custom actions to create readable Strings from
the dates. First, make the formatting tag library available to the JSP with this taglib directive:

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

The java.util.Date object that will be used to create dates out of long values is generated using a
JSP standard action called jsp:useBean. Here is the example's syntax:

<jsp:useBean id="timeValues" class="java.util.Date"/>

This line creates a new Date object and stores the object in a variable called timeValues, making it
available through the EL with the syntax ${timeValues}. The JSP then uses the set custom action to
set a time property in the Date object:

<c:set target="${timeValues}" value="${pageContext.session.creationTime}"
 property="time"/>

The value of set's target attribute is the JavaBean whose property you are setting. The property
name is specified by the set element's property attribute. The value this expression sets the time
property to is the long type returned from this JSTL expression:

${pageContext.session.creationTime}

In other words, using the custom action this way is the equivalent of calling the
java.util.Date.setTime(long secs) method on the timeValues Date object. This time value is

actually set and displayed twice, to represent the creation time and last-accessed time of the session.
Example 11-10 is the code chunk that does the setting and displaying, including the fmt:formatDate

custom action.

Example 11-10. Displaying a session's creation time and last-accessed
time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<c:set target="${timeValues}" value="${pageContext.session.creationTime}"
 property="time"/>

The creation time: <fmt:formatDate value="${timeValues}" type="both"
 dateStyle="medium" />

<c:set target="${timeValues}"value=
 "${pageContext.session.lastAccessedTime}" property="time"/>

The last accessed time: <fmt:formatDate value="${timeValues}" type="both"
 dateStyle="short" />

The formatDate element is one of the JSTL's formatting actions, which are described in Chapter 24.
The way the formatDate action works in this example is that the following code is replaced by the

formatted date value, as in "Jan 21, 2003 1:57:39 PM":

<fmt:formatDate value="${timeValues}" type="both" dateStyle="short" />

In order to display their differences, Example 11-10 gives two different values (medium and short)
for the dateStyle attribute.

See Also

Recipe 11.4 on checking the validity of a session; Chapter 1 on web.xml; Chapter 7 of the Servlet
v2.3 and 2.4 specifications on sessions; the javax.servlet.http.HttpSession API at

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html; the session-
tracking sections of Java Servlet Programming by Jason Hunter (O'Reilly) and JavaServer Pages by
Hans Bergsten (O'Reilly).

[Team LiB]

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.7 Using URL Rewriting in a JSP

Problem

You want to make sure that URL rewriting is used in a JSP, in case any users disable cookies in their
browsers.

Solution

Use the url custom action in the JSTL to create URLs that automatically include the session ID as a

parameter.

Discussion

It is possible that some users of a web application will configure their browsers to disable cookies.
Since cookies are the default basis for session tracking with JSPs, how will disabling cookies affect
these users' experience with the web application? I recommend designing all session-tracking JSPs to
accommodate URL rewriting, so that the cookie-averse users do not crash and burn in your web
application.

One solution to this problem is to use the url custom action that is part of the JSTL.

The url element automatically inserts the session ID as a parameter with URLs that will be used in
href, form, and frameset tags, for instance. This allows the pages that these links point to, such as

servlets or JSPs, to track sessions without using cookies.

One of the nice things about using the url element like this is that it adds the session ID as a

parameter to the URL when necessary, without the JSP author's intervention. Example 11-11 shows
how to use url.

Example 11-11. Using the url core tag to rewrite URLs

<%@page contentType="text/html"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
 <head><title>URL Rewriter</title></head>
 <body>
 <h1>This page will use URL rewriting if necessary</h2>

 <c:url value="/default.jsp" var="goToDefault" escapeXml="false"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Go to the default.jsp page <a href="<c:out value="${goToDefault}"/>">here.

 </body>
</html>

This example uses a taglib directive to make the JSTL's core tag library available. This directive

looks like this:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

The url element of this tag library creates a URL representing the web component default.jsp located
on the top level of the web application. The URL is stored in a goToDefault variable using the url
element's var attribute. The escapeXml attribute is set to false (it is true by default) to prevent

characters such as ampersands and angle brackets from being converted to their character entity
codes in the URL. The url element looks like this:

<c:url value="/default.jsp" var="goToDefault" escapeXml="false"/>

The URL created by the custom action is then used as the value for an href attribute in the following

manner:

<a href="<c:out value="${goToDefault}"/>">here

This code uses the out custom action and an EL expression (${goToDefault}) to create the

hyperlink. After the page is requested, the returned HTML looks like this if cookies are disabled in the
browser:

here

You may notice two differences between the URL that was created here:

<c:url value="/default.jsp" var="goToDefault" escapeXml="false"/>

and the URL that was generated from the out custom action:

/home/default.jsp;jsessionid=3CAF7CD0A0BFF5076B390CCD24FD8F0D

First, the url custom action has automatically added the context path (/home in the example) as a

prefix to /default.jsp. Second, the session ID was added to the URL as a path parameter named
jsessionid, so that the link destination can access the session ID associated with this user and

undertake session tracking.

A path parameter begins with a semicolon and a name/value pair, as in
;jsessionid=3CAF7CD0A0B.

The URL that the JSP creates by using the out element may also have additional parameters.

Example 11-12 is the same as the first recipe example, except that parameters have been added to
the URL inside the url custom action.

Example 11-12. Adding parameters using the url custom action

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@page contentType="text/html"%>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
 <head><title>JSP Page</title></head>
 <body>
 <h1>This page will use URL rewriting if necessary</h2>

 <c:url value="/default.jsp?n=${param.first}&l=${param.last}"
 var="goToDefault" />

 Go to the default.jsp page <a href="<c:out value="${goToDefault}"
 escapeXml="false" />">here.

 </body>
</html>

The URL now looks like this:

/default.jsp?n=${param.first}&l=${param.last}

This URL uses embedded EL syntax to access two request parameters, called first and last. If code
uses the EL to access a parameter named first, for instance, then it uses the param EL implicit
object, followed by the dot operator, and the name of the parameter, as in ${param.first}.

Suppose the example JSP is requested in the following manner:

http://localhost:8080/home/url_rewrite.jsp?first=Bruce&last=Perry

The url element's value attribute resolves to this code:

<c:url value="/default.jsp?n=Bruce&l=Perry" var="goToDefault" />

The out custom action further along in the example JSP has its escapeXml attribute set to false. If
escapeXml is left with its default value (true) and the ampersand character (&) is replaced with its
character entity code (&), the query string in the URL looks like this when the JSP is executed:

here

To prevent this outcome when generating linked URLs with the out element, make sure to set out's
escapeXml attribute to false.

Table 11-1. Special characters and entity codes

Character Entity code

< <

> >

http://localhost:8080/home/url_rewrite.jsp?first=Bruce&last=Perry
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Entity code

& &

' '

" "

Make sure to use relative URLs of the form /default.jsp when using URL
rewriting with the url element. URL rewriting will not take place if an absolute
URL is used in url's value attribute, as in

http://www.mysite.com/home/default.jsp.

See Also

Recipe 11.6 on tracking session activity in JSPs; Recipe 11.8 on using URL rewriting in a servlet; the
JSP Configuration section of the JSP v2.0 specification; Chapter 23 on the JSTL; the session-tracking
sections of JavaServer Pages by Hans Bergsten (O'Reilly).

[Team LiB]

& &

' '

" "

Make sure to use relative URLs of the form /default.jsp when using URL
rewriting with the url element. URL rewriting will not take place if an absolute
URL is used in url's value attribute, as in

http://www.mysite.com/home/default.jsp.

See Also

Recipe 11.6 on tracking session activity in JSPs; Recipe 11.8 on using URL rewriting in a servlet; the
JSP Configuration section of the JSP v2.0 specification; Chapter 23 on the JSTL; the session-tracking
sections of JavaServer Pages by Hans Bergsten (O'Reilly).

[Team LiB]

http://www.mysite.com/home/default.jsp
http://www.mysite.com/home/default.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.8 Using URL Rewriting in a Servlet

Problem

You want to create a servlet that uses URL rewriting if the user has disabled cookies in his browser.

Solution

Use the HttpServletResponse.encodeURL(String url) method to encode all URLs that are used to

link with other pages.

Discussion

The javax.servlet.HttpServletResponse class includes a nifty method that will encode a URL with

the current session ID, in the event that the user making the servlet request has disabled cookies.

In fact, if you use the HttpServletResponse.encodeURL(String url) method to encode the URLs that

are used in a servlet, this method takes care of URL rewriting if necessary, and you won't have to worry
about whether cookies are enabled in users' browsers. You must conscientiously encode every URL link
involved with the servlet when using this method. Example 11-13 is a servlet version of the example
used in Recipe 11.6 .

Example 11-13. Using URL rewriting in a servlet

import javax.servlet.*;
import javax.servlet.http.*;

public class UrlRewrite extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 String contextPath = request.getContextPath();

 String encodedUrl = response.encodeURL(contextPath +
 "/default.jsp");

 out.println("<html>");
 out.println("<head>");
 out.println("<title>URL Rewriter</title>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("</head>");
 out.println("<body>");
 out.println(
 "<h1>This page will use URL rewriting if necessary</h2>");

 out.println("Go to the default.jsp page <a href=\"" + encodedUrl +
 "\">here.");

 out.println("</body>");
 out.println("</html>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 doGet(request,response);
 }
}

In the page that is sent to the browser with cookies disabled, the URL looks like:
/home/default.jsp;jsessionid=3CAF7CD0A0BFF5076B390CCD24FD8F0D .

One of the differences between using encodeURL and the JSP solution in Recipe 11.7 (which
used the url custom action from the JSTL) is that the custom action in JSTL 1.0 will

automatically prepend the context path to the URL. If the context path was /home , and the
URL was /default.jsp , then the rewritten URL would look like
/home/default.jsp;jsessionid=3CAF7CD0A0BFF5076B390CCD24FD8F0D . Automatically
adding the context path in this manner to the URL is a separate operation compared with
URL rewriting; it is not performed by the encodeURL method. If you want to duplicate this
operation with a servlet, add the context path to the URL before calling the encodeURL

method, as in:

String contextPath =request.getContextPath();
 String encodedUrl = response.encodeURL(contextPath + "/default.jsp")

You can also use the related HttpServletResponse.encodeRedirectURL(String url) method to

initiate URL rewriting with calls to HttpServletResponse.sendRedirect(String url) . The servlet
doGet() method in Example 11-14 uses encodeRedirectURL to ensure that the destination URLs have

access to the session ID of the redirected user.

Example 11-14. Using encodeRedirectURL in a servlet doGet method

public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, java.io.IOException {

 //redirect the user depending on the value of the go param
 String destination = request.getParameter("go");
 String contextPath = request.getContextPath();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if(destination == null || destination.equals(""))
 throw new ServletException(
 "Missing or invalid 'go' parameter in " +
 getClass().getName());

 if(destination.equals("weather")){
 //ensure URL rewriting
 response.sendRedirect(
 response.encodeRedirectURL(
 contextPath + "/weather"));}

 if(destination.equals("maps")){
 //ensure URL rewriting
 response.sendRedirect(
 response.encodeRedirectURL(
 contextPath + "/maps"));}
 }

The response.sendRedirect(String url) method redirects the request to the destination
represented by its url parameter. The server sends an HTTP status message to the client:

HTTP/1.1 302 Moved Temporarily

Additionally, a Location response header is sent along that provides the client with the new URL for the

requested file. If necessary, the response.encodeRedirectURL(String url) method adds the

session ID to the redirect destination of this URL. The example gets the name of a servlet from the value
of the request's go parameter:

String destination = request.getParameter("go");

The servlet throws a ServletException if the parameter is either missing or is an empty String . If the
go parameter is valid, the servlet redirects the request to one of two servlets, with paths of /weather or

/maps (the context path in the example is /home). If implemented properly on the server, the following
code adds the session ID to the URL if the requester's cookies are disabled, so the destination servlet
can initiate session tracking:

response.sendRedirect(response.encodeRedirectURL(contextPath + "/weather"));

See Also

Recipe 11.4 on checking the validity of a session; Recipe 11.7 on using URL rewriting in a JSP; Chapter 1
on web.xml ; Chapter 7 of the Servlet v2.3 and 2.4 specifications on sessions; the
javax.servlet.http.HttpSession API at

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html ; the session-
tracking sections of Java Servlet Programming by Jason Hunter (O'Reilly) and JavaServer Pages by
Hans Bergsten (O'Reilly).

[Team LiB]

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.9 Using a Listener to Track the Session
Lifecycle

Problem

You want an object that implements the HttpSessionListener interface to respond when a session

is created or destroyed.

Solution

Create a listener class that implements the HttpSessionListener interface, and register the class in

your deployment descriptor.

Discussion

The servlet API provides the javax.servlet.http.HttpSessionListener interface for use in

responding to session creation or destruction. A class that implements this interface can perform
custom behavior on either (or both) of these two events. Here is the process for creating and
declaring a session listener for your web application:

Create a class that implements the HttpSessionListener interface. This interface defines two
methods: sessionCreated() and sessionDestroyed(), each of which accept a single
HttpSessionEvent parameter.

1.

Make sure the implementing class has a zero-argument constructor.2.

Place the compiled class in the WEB-INF/classes directory of your web application (including any
of its package-related directories); or store the class in a JAR located in the WEB-INF/lib
directory.

3.

Declare the listener in the web.xml deployment descriptor.4.

Restart the web container (if necessary), which will instantiate your listener class and register it
as a listener for all new sessions and session invalidations in the web application.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.

Objects that are bound to sessions should implement the
HttpSessionBindingListener interface. This listener does not have to be

configured in the deployment descriptor, but the bound objects must implement
HttpSessionBindingListener, as well as the valueBound(), valueUnbound(
), and init() methods. The HttpSessionActivationListener is designed

for sessions that migrate between Java Virtual Machines (JVMs). Objects that
are bound to these sessions must implement
HttpSessionActivationListener and its two methods:
sessionDidActivate() and sessionWillActivate().

Here is the web.xml entry for our example listener class:

<listener>
 <listener-class>com.jspservletcookbook.SessionListen</listener-class>
</listener>

The HttpSessionListener class in Example 11-15 keeps a count of live sessions in the web

application and writes a message to the console whenever a session is created or destroyed. It would
be better to log messages using a component such as log4j, which I'll discuss in Chapter 14.

Example 11-15. Keeping track of session activity with a listener class

package com.jspservletcookbook;

import java.util.Date;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionListen implements HttpSessionListener {

 private int sessionCount;

 public SessionListen() {
 this.sessionCount = 0;
 }

 public void sessionCreated(HttpSessionEvent se){

 HttpSession session = se.getSession();

 session.setMaxInactiveInterval(60);

 //increment the session count
 sessionCount++;

 String id = session.getId();

 Date now = new Date();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String message = new StringBuffer(
 "New Session created on ").
 append(now.toString()).append("\nID: ").
 append(id).append("\n").append("There are now ").
 append(""+sessionCount).append(
 " live sessions in the application."). toString();

 System.out.println(message);
 }

 public void sessionDestroyed(HttpSessionEvent se){

 HttpSession session = se.getSession();

 String id = session.getId();

 --sessionCount;//decrement the session count variable

 String message = new StringBuffer("Session destroyed" +
 "\nValue of destroyed session ID is").
 append(""+id).append("\n").append(
 "There are now ").append(""+sessionCount).append(
 " live sessions in the application.").toString();

 System.out.println(message);
 }
}

Each listener must have a zero-argument constructor. The SessionListen class has one instance
variable, an int that keeps track of the number of sessions. In the sessionCreated() method, the
code gets access to the new session by calling the HttpSessionEvent.getSession() method. The

session's timeout is then reset to 60 seconds, so the creating and destroying can be observed in the
console without a lot of delay.

An HttpSessionListener class is notified only of requests to pages that create
new sessions, such as with the request.getSession() method. This listener

is also notified if a servlet or JSP invalidates an existing session, an event that
will trigger the class's sessionDestroyed() method. If a servlet or JSP is

accessed, but does not do session tracking, then the listener is not notified of
those activities; the same is true when the session is further accessed through
the web application after it is created, unless it is explicitly invalidated.

Similar messaging and access to the HttpSession object takes place in the sessionDestroyed()

method. The resulting console in Figure 11-6 shows that you can get information about the
HttpSession object in both of the listener's methods.

Figure 11-6. Notifications of session creation and invalidation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the HttpSessionListener interface, it is possible to create classes that monitor how many

sessions are created during a certain period of time, and how long it takes before they are left idle
and timeout.

See Also

Chapter 14 on using listeners to log messages; Recipe 11.4 on checking the validity of a session;
Chapter 1 on web.xml; Chapter 7 of the Servlet v2.3 and 2.4 specifications on sessions; the
javax.servlet.http.HttpSession API at

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html.

[Team LiB]

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.10 Using a Listener to Monitor Session
Attributes

Problem

You want a listener class to be notified when a session attribute is added, removed, or replaced.

Solution

Create a Java class that implements the HttpSessionAttributeListener interface. Register this

class using the web application's deployment descriptor.

Discussion

The HttpSessionAttributeListener interface has three methods: attributeAdded() ,
attributeRemoved(), and attributeReplaced(); all have a parameter of the type
HttpSessionBindingEvent. This listener is notified when the session sets, removes, or changes an

attribute. Therefore, the method calls in the web application that cause an
HttpSessionAttributeListener notification are:

HttpSession.setAttribute(String name,Object value).

HttpSession.removeAttribute(String name).

A call to HttpSession.setAttribute() when an attribute of the same name is already bound

to the session. The original attribute is replaced, triggering a call to the
attributeReplaced(HttpSessionBindingEvent event) method.

Example 11-16 displays a message to the console when a session object is bound, including the value
of the object (which is a String in this simple example). Messages are also displayed when the

attribute is removed or replaced. To make this listener available to the application:

Give the class a zero-argument constructor.1.

Add the class to the web application's WEB-INF/classes or lib directory (when it's in a JAR).2.

Declare the listener in the deployment descriptor.3.

Restart the web container (if necessary) so it can instantiate the listener.4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Example 11-16. Listening for session object binding or unbinding

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class SessionAttribListen implements HttpSessionAttributeListener {

 //Creates new SessionAttribListen
 public SessionAttribListen() {

 System.out.println(getClass().getName());
 }

 public void attributeAdded(HttpSessionBindingEvent se) {

 HttpSession session = se.getSession();

 String id = session.getId();

 String name = se.getName();

 String value = (String) se.getValue();

 String source = se.getSource().getClass().getName();

 String message = new StringBuffer(
 "Attribute bound to session in ").append(source).
 append("\nThe attribute name: ").append(name).
 append("\n").append("The attribute value:").
 append(value).append("\n").
 append("The session ID: ").
 append(id).toString();

 System.out.println(message);
 }

 public void attributeRemoved(HttpSessionBindingEvent se) {

 HttpSession session = se.getSession();

 String id = session.getId();

 String name = se.getName();

 if(name == null)
 name = "Unknown";

 String value = (String) se.getValue();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String source = se.getSource().getClass().getName();

 String message = new StringBuffer(
 "Attribute unbound from session in ").append(source).
 append("\nThe attribute name: ").append(name).
 append("\n").append("The attribute value: ").
 append(value).append("\n").append(
 "The session ID: ").append(id).toString();

 System.out.println(message);
 }

 public void attributeReplaced(HttpSessionBindingEvent se) {

 String source = se.getSource().getClass().getName();

 String message = new StringBuffer(
 "Attribute replaced in session ").
 append(source).toString();

 System.out.println(message);
 }
}

When attributes are added, replaced, and removed from a session in the web application, this class
prints information about the attribute and the session to the web container's console. The
HttpSession type that binds the attribute can be accessed by calling the HttpSessionBindingEvent
class's getSession() method. In all three of the listener's methods, you can get the ID of the

session associated with the attribute, as well as the attribute's name and value. Inside the listener
class's constructor is a line of code that prints the listener class name to the console when it is
instantiated:

System.out.println(getClass().getName());

This message indicates to the developer that the listener is properly referenced in web.xml, and that
the web container has created an instance of the listener. Finally, this listener class prints a message
to the console about the session class that is the source of the event. The listener uses the
java.util.EventObject.getSource() method (which is inherited by the
HttpSessionBindingEvent object) to get a reference to the source of the session-binding event:

String source = se.getSource().getClass().getName();

The se variable is the HttpSessionBindingEvent object. Here is the information that is printed to

the Tomcat console:

Attribute bound to session in org.apache.catalina.session.StandardSession
The attribute name: session-attribute
The attribute value: Hello
The session ID: 9ED2C34964778265A34F7AB0DEA4B884
Attribute replaced in session org.apache.catalina.session.StandardSession
Attribute unbound from session in org.apache.catalina.session.StandardSession
The attribute name: session-attribute
The attribute value: Hello there.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The session ID: 9ED2C34964778265A34F7AB0DEA4B884

The listener allows you to get the session ID, as well as the name and value of the session attribute,
during the attribute's removal from the session. The HttpSessionBindingEvent.getValue()
method returns the value of the attribute as a java.lang.Object. Therefore, if you want access to
the attribute in the listener, then you would have to cast the Object type to its appropriate type

during its addition, removal, or replacement. For example, imagine that you have stored a
java.util.Map in a session. You want to check the Map contents in the listener's attributeRemoved
method. If the variable be is of type HttpSessionBindingEvent, then this code checks the return
type of be.getValue():

java.util.Map map = null;

Object value = null;

if((value = be.getValue()) instanceof java.util.Map){

 map = (java.util.Map) value;
 System.out.println("HashMap value: " + map.get("key"));

}

This method returns the value of the session-bound object that's being removed. If the return type is
a Map, the local variable value is cast to a java.util.Map, then the get() method is called on that
Map (given that the Map instance contains a key called "key").

See Also

Chapter 14 on using listeners to log messages; Recipe 11.4 on checking the validity of a session;
Recipe 11.9 on using a listener to track session lifecycle; Chapter 1 on web.xml; Chapter 7 of the
Servlet v2.3 and 2.4 specifications on sessions; the javax.servlet.http.HttpSession API at

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html.

[Team LiB]

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 11.11 Using a Filter to Monitor Session Attributes

Problem

You want to use a filter to check a session attribute prior to the request reaching a servlet.

Solution

Create a Java class that implements javax.servlet.Filter , write session-related code in the
class's doFilter() method, then configure the filter in your deployment descriptor.

Discussion

Filters, as their name suggests, are semipermeable barriers through which requests to your web
application must pass before they reach servlets, JSPs, or even static content. Filters are technically
Java classes that implement the javax.servlet.Filter interface. A filter can have a look at the
ServletRequest and ServletResponse objects before these objects find their way to a servlet's
service methods (which include service() , doGet() , and doPost()). Filters can initiate

authentication, logging, encryption, database actions, caching, and just about any other task that
passes through request and response objects.

Filters are configured in web.xml . In Example 11-18 , a filter checks a logged-in HttpSession
attribute, and logs its activities by calling the ServletContext object's log() method. This filter is
mapped to a servlet registered in web.xml as MyServlet . Any requests to the MyServlet servlet
cause the SessionFilter.doFilter() method to be called. Example 11-17 shows the relevant

entries in web.xml .

Example 11-17. Configuring a filter in web.xml

<!-- the beginning of web.xml goes here -->

<filter>
 <filter-name>SessionFilter</filter-name>
 <filter-class>com.jspservletcookbook.SessionFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>SessionFilter</filter-name>
 <servlet-name>MyServlet</servlet-name>
</filter-mapping>
<!-- more filters or listener classes added here -->

<servlet>
 <servlet-name>MyServlet</servlet-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <servlet-class>com.jspservletcookbook.MyServlet</servlet-class>
</servlet>

<!-- deployment descriptor continues ...-->

The filter element specifies the filter's registered name and its fully qualified Java class. You

package the filter class with the rest of the web application by placing the class in WEB-INF/classes or
in a JAR file in WEB-INF/lib . The filter-mapping element maps the filter to the servlet registered in
the deployment descriptor as MyServlet . Filters can also be mapped to URL patterns (Chapter 20

explains this syntax in detail). Example 11-18 is the source code for
com.jspservletcookbook.SessionFilter .

Example 11-18. A filter that snoops on session information

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class SessionFilter implements Filter {

 private FilterConfig config;

 //Creates new SessionFilter
 public SessionFilter() {}

 public void init(FilterConfig filterConfig) throws ServletException{

 System.out.println("Instance created of "+getClass().getName());
 this.config = filterConfig;
 }

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws java.io.IOException, ServletException {

 HttpSession session = ((HttpServletRequest) request).getSession();

 ServletContext context = config.getServletContext();

 /* use the ServletContext.log method to log
 filter messages */
 context.log("doFilter called in: " + config.getFilterName() +
 " on " + (new java.util.Date()));

 // log the session ID
 context.log("session ID: " + session.getId());

 // Find out whether the logged-in session attribute is set
 String logged = (String) session.getAttribute("logged-in");
 if (logged == null)
 session.setAttribute("logged-in","no");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //log a message about the log-in status
 context.log("log-in status: "+
 (String)session.getAttribute("logged-in"));

 context.log("");

 chain.doFilter(request,response);
 }

 public void destroy(){
 /*called before the Filter instance is removed
 from service by the web container*/
 }
}

Every filter has to have a zero-argument constructor, just like listener classes.

The init() method displays a console message when its instance is created by the web container.
The javax.servlet.FilterConfig object is used to get the ServletContext object for this filter (by
calling FilterConfig.getServletContext()). The ServletContext.log() method is used to log

messages from the filter. These messages can then be read in the server logs. In Tomcat, look in the
<Tomcat-install-directory>/logs directory for log files with names such as localhost_home_log.2003-
01-24.txt . Here is an example of the log entries for this filter:

2003-01-24 11:56:09 doFilter called in: SessionFilter on Fri Jan 24 11:56:09 EST 2003
2003-01-24 11:56:09 session ID: E04DE93D9B88A974ED2350BCF7945F34
2003-01-24 11:56:09 log-in status: no

The filter gets access to the session with this code:

HttpSession session = ((HttpServletRequest) request).getSession();

Since the doFilter() method has a ServletRequest parameter type, and not a
HttpServletRequest type, the request parameter has to be cast to the latter type so that the code
can call the request.getSession() method.

Beware of doing this blindly in environments where you are not positive that all
servlets are HttpServlet s. If you aren't sure, a simple class check before

casting can solve this problem.

Once the filter has access to the session object, it looks for a certain session attribute (logged-in).
If session.getAttribute("logged-in") returns null , this attribute is added to the session with

the value "no". The code then calls chain.doFilter(request ,response) inside of the filter's
doFilter() method.

This method call on the FilterChain object ensures that the request and response are passed along

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the next filter on the chain, or, in the absence of any more mapped filters, to the targeted web
resource. Example 11-19 shows the doGet() method of the MyServlet servlet that the filter in

Example 11-18 is mapped to.

Example 11-19. doGet method of a servlet to which a filter is mapped

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 HttpSession session = request.getSession();

 String logged = (String) session.getAttribute("logged-in");

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Filter Servlet</title>");
 out.println("</head>");
 out.println("<body>");

 out.println("<h2>Session Logged in Info</h2>");

 out.println("logged in : " + logged+ "

");

 out.println("</body>");
 out.println("</html>");

 }

This servlet checks the logged-in session attribute and displays its value, as shown in Figure 11-7 .

A filter is mapped to a servlet's registered name like this:

<filter-mapping>
 <filter-name>SessionFilter</filter-name>
 <servlet-name>MyServlet</servlet-name>
</filter-mapping>

The requests for this servlet will not pass through the mapped filter first,
however, if the servlet is requested with an "invoker"-style URL of the form
http://localhost:8080/servlet/com.jspservletcookbook.MyServlet . If this causes
problems for the web application, consider disabling or overriding the URL
mapping of /servlet/* in your web application. Recipe 3.6 describes how to do
this.

Figure 11-7. Checking a session object after a filter has altered it

http://localhost:8080/servlet/com.jspservletcookbook.MyServlet
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A filter can take a number of actions with a session object before it reaches a servlet or JSP that does
session tracking, such as add, remove, or change session attributes. It can also alter the session's
timeout period (with the HttpSession.setMaxInactiveInterval(int seconds) method) based on

an attribute of the session or request.

See Also

Chapter 19 on using filters; Recipe 11.4 on checking the validity of a session; Chapter 1 on web.xml ;
Chapter 7 of the Servlet v2.3 and 2.4 specifications on sessions; the
javax.servlet.http.HttpSession API at

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html ; Chapter 1 on
web.xml ; Chapter 6 of the Servlet v 2.3 and 2.4 specifications on filtering.

[Team LiB]

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 12. Integrating JavaScript with
Servlets and JSPs

Introduction

Recipe 12.1. Including JavaScript Modules in a Servlet

Recipe 12.2. Including JavaScript Modules in a JSP

Recipe 12.3. Creating a New Window with JavaScript in a Servlet

Recipe 12.4. Creating a New Window with JavaScript in a JSP

Recipe 12.5. Using JavaScript to Validate Form Values in a Servlet

Recipe 12.6. Using JavaScript to Validate Form Values in a JSP
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

JavaScript is a scripting system for web pages, standalone applications, and servers. Netscape
Corporation invented JavaScript, which has become such a popular and useful programming tool that
all major browsers now support it. Unlike the Java code shown in this book, JavaScript is mainly
executed in the web browser as a client-side scripting system, rather than on the server.

Most busy web sites use JavaScript for dynamic behavior, such as validating form input or creating
new browser windows (much to the chagrin of users, who are often overwhelmed by irresponsible
and dynamically generated pop ups!). Just choose "View Source" from the browser menu bar for a
typical web page, and often the first text items you'll see displayed are endless lines of JavaScript.
JavaScript is used for advanced tasks such as controlling or animating browser shapes (dynamic
HTML), creating flying objects, and initializing the behavior of embedded videos.

Developers converting static web pages to JSPs or servlets may have to integrate existing JavaScript
code into their Java source code. This is what the upcoming recipes are all about.

JavaScript guides are available from http://devedge.netscape.com/.

[Team LiB]

http://devedge.netscape.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 12.1 Including JavaScript Modules in a Servlet

Problem

You want to import a module or file containing JavaScript code so that the JavaScript can be included
in the servlet's HTML output.

Solution

Use the javax.servlet.RequestDispatch.include() method to import the needed JavaScript into

your page.

Discussion

An efficient method for handling JavaScript throughout a web project is to store the JavaScript code in
separate files or modules. Servlets that require the JavaScript functions can then import the
JavaScript modules. You would not store your Java class files willy-nilly all over the computer's
filesystem without an organization that mirrors the code's purpose. Nor should you organize your
JavaScript in anything but well-defined modules.

The JavaScript is included in the servlet's HTML output with script tags and executed in the browser

when needed. Example 12-1 shows a module of JavaScript code named functions.js . This module is
stored in the web application's WEB-INF/javascript directory.

A sensible place to store JavaScript modules is in their own directory, so that
they are easy to locate and do not clutter up the top-level directory of the web
application. The JavaScript directory can be a sub-directory of WEB-INF , as in
this recipe.

Example 12-1. A JavaScript module

<script language="JavaScript">

function CheckEmail(email)
{
 var firstchunk,indx,secondchunk

 if (email == ""){
 alert("Please make sure you have entered a valid " +
 "email before submitting the info.")

 return false

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 //get the zero-based index of the "@" character
 indx = email.indexOf("@")

 //if the string does not contain an @, then return false
 if (indx == -1){

 alert("Please make sure you have entered a valid " +
 "email before submitting the info.")

 return false
 }

 //if the first part of email is < two chars and thye second part is < seven chars
 //(arbitrary but workable criteria), reject the input address

 firstchunk = email.substr(0,indx) //up to but not including the "@"

 //start at char following the "@" and include up to end of email addr
 secondchunk = email.substr(indx + 1)

 //if the part following the "@" does not include a period "." then
 //also return false

 if ((firstchunk.length < 2) || (secondchunk.length < 7) ||
 (secondchunk.indexOf(".") == -1)){

 alert("Please make sure you have entered a valid " +
 "email before submitting the info.")

 return false
}

 //the email was okay; at least it had a @, more than one username chars,
 //more than six chars after the "@", and the substring after the "@"
 // contained a "." char

 return true

}//CheckEmail

function CreateWindow(uri) {

 var newWin =
 window.open(uri,'newwin1',
 'width=500,height=400,resizable,' +
 'scrollable,scrollbars=yes');
 newWin.focus();

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</script>

The module in Example 12-1 contains a script block with two JavaScript function definitions. The
function CheckEmail ensures that the email address a user has typed into an HTML form contains at
least an @ character, two characters preceding the @ and seven characters after that character, and
that the characters after the @ contain a period character (.). The CreateWindow function creates a

new browser window with the supplied URI.

Example 12-2 shows a servlet that imports this JavaScript file using the
javax.servlet.RequestDispatcher.include() method.

Example 12-2. A servlet includes a JavaScript file

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class ModuleServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response) throws
 ServletException, java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html><head>");

 RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/WEB-INF/javascript/functions.js");

 dispatcher.include(request, response);

 out.println("<title>Client Forms</title></head><body>");
 out.println("<h2>Enter Your Name and Email</h2>");

 out.println("<form action=
 \"/home/displayHeaders.jsp\" name=\"entryForm\" onSubmit=
 \" return CheckEmail(this.email.value)\">");

 out.println("<table border=\"0\"><tr><td valign=\"top\">");
 out.println(
 "First and last name: </td> <td valign=\"top\"><input type=
 \"text\" name=\"name\" size=\"20\"></td></tr>");

 out.println("<tr><td valign=\"top\">");
 out.println("Email: </td>
 <td valign=\"top\"><input type=\"text\" name=
 \"email\" size=\"20\"></td>");
 out.println("<tr><td valign=\"top\"><input type=
 \"submit\" value=\"Submit\" ></td>");
 out.println("</tr></table></form>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("</body></html>");

 } //doGet
}

The servlet in Example 12-2 uses a RequestDispatcher to include the code contained in functions.js
within the HTML head tag generated by the servlet. The generated page includes an HTML form tag.
When the page user clicks the Submit button, the form tag's onSubmit event handler checks the
email address that the user typed into the form using the imported JavaScript CheckEmail function.
This function returns false , which cancels the form submission if the email address does not meet

the simple criteria specified by the function.

Figure 12-1 shows what the web page looks like when the user has entered an email address into the
form.

Figure 12-1. A servlet generates a web page containing JavaScript

Users can also use the built-in src attribute of the HTML script tag to import a

JavaScript module, as in:

<script src="functions.js">

See Also

The Netscape DevEdge site at http://devedge.netscape.com/ ; Recipe 12.2 , Recipe 12.4 , and Recipe
12.6 on using JavaScript with JSPs; Recipe 12.3 on using JavaScript with servlets for creating new
browser windows; Recipe 12.5 on validating form values with a servlet and JavaScript; Recipe 18.3
on using a filter with HTTP requests.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 12.2 Including JavaScript Modules in a JSP

Problem

You want to include a module or file containing JavaScript code within a JSP page's output.

Solution

Use the c:import JSTL core tag.

Discussion

The previous recipe described how to include a file containing JavaScript (Example 12-1) into a servlet's
HTML input. It is very easy to accomplish the same task in a JSP, such as by using the importMod.jsp file
shown in Example 12-3 . This JSP uses the JSTL core tag c:import to include a file named functions.js .
The functions.js module contains a script tag with two JavaScript function definitions (Example 12-1 in
Recipe 12.1). The HTML generated by the JSP shows that the c:import action positioned the script tag
within the JSP's head tag. The JSP generates the HTML form shown previously in Figure 12-1 .

Example 12-3. Using the JSTL c:import tag to import JavaScript

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
<head>

<c:import url="/WEB-INF/javascript/functions.js" />

<title>Client Forms</title></head><body>

<h2>Enter Your Name and Email</h2>

<form action="/home/displayHeaders.jsp" name="entryForm"
 onSubmit="return CheckEmail(this.email.value)">

<table border="0"><tr><td valign="top">

First and last name: </td> <td valign="top"><input type="text" name="name" size="20"></
td></tr>

<tr><td valign="top">
Email: </td> <td valign="top"><input type="text" name="email" size="20"></td></tr>

<tr><td valign="top"><input type="submit" value="Submit"></td>
</tr></table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</form>
</body></html>

When the user submits the HTML form, her action is intercepted by the form tag's onSubmit event

handler, which does a basic syntax check on the email address the user typed into the form. The form
submit, targeted to a /home/ displayHeaders.jsp page, is cancelled if the submitted email address has the
wrong syntax.

The JavaScript code this.email.value returns the String that the user typed
into the text field named email . The keyword this refers to the form object,
which contains the event handler onSubmit . The JavaScript code is a parameter of

this event handler.

See Also

The Netscape DevEdge site at http://devedge.netscape.com/ ; Recipe 12.4 on using JavaScript to create
a new window in a JSP; Recipe 12.6 on using JavaScript to validate form input in a JSP; Recipe 12.3 on
using JavaScript with servlets for creating new browser windows; Recipe 12.5 on validating form values
with a servlet and JavaScript; Recipe 18.3 on using a filter with HTTP requests.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 12.3 Creating a New Window with JavaScript in a
Servlet

Problem

You want a servlet to contain JavaScript that can generate a new browser window.

Solution

Use a javax.servlet.RequestDispatcher to include the JavaScript function in the servlet. The
JavaScript function calls the JavaScript window object's open method.

Discussion

This recipe uses the same imported module as the first two recipes, but this time the servlet uses the
second function definition (CreateWindow) rather than the first. Example 12-4 generates an HTML

button widget. When the user clicks the button, JavaScript generates a small window (sometimes
referred to as a windoid , or pop up). The servlet dynamically retrieves the URL for loading into the
new window from a servlet init parameter, which is something you cannot do with a static HTML

page.

Example 12-4. A servlet that loads JavaScript for creating a window

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class WindowServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response) throws
 ServletException, java.io.IOException {

 //URL for the pop-up window is configured
 String url = getInitParameter("popup-url");

 //just in case the initParameter is misconfigured

 if (url == null || url.equals(""))
 url = "/displayHeaders.jsp";

 //add the context path as a prefix to the URL, as in /home
 url = request.getContextPath() + url;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html><head>");

 RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/WEB-INF/javascript/functions.js");

 dispatcher.include(request, response);

 out.println("<title>Help Page</title></head><body>");
 out.println("<h2>Cookie Info</h2>");

 out.println("<form action =\"\" onSubmit=\" return false\">");
 out.println("<table border=\"0\"><tr><td valign=\"top\">");

 out.println(
 "Click on the button to get more info on cookies: </td>");

 out.println("<td valign=\"top\">");

 out.println("<input type=\"button\" name=\"button1\" " +
 "value=\"More Info\" onClick=\"CreateWindow('" + url +
 "')\"></td></tr>");

 out.println("</table></form>");

 out.println("</body></html>");
 } //end doGet
}

This servlet assumes some configuration steps have been taken in the application's deployment
descriptor. This configuration includes an init-param that specifies the URL for loading into the new
window. The url variable is the CreateWindow function's parameter (see Example 12-1 for a

definition of the JavaScript functions). The servlet generates the HTML and dynamically provides the
URL for loading into the new window. Here is the HTML button definition in the servlet's output:

<input type="button" name="button1" value="More Info"
 onClick="CreateWindow('home/cookieReader.jsp')">

If the application is dynamically reloadable (the web container monitors the
deployment descriptor for any changes and reloads the context if the file is
altered), then the developer can change the value of the servlet init-param in

the deployment descriptor. The servlet pop-up window then loads the new URL
without recompiling the servlet or stopping the server.

Here is the configuration for this servlet in web.xml :

<servlet>
 <servlet-name>windowservlet</servlet-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <servlet-class>com.jspservletcookbook.WindowServlet</servlet-class>
 <init-param>
 <param-name>popup-url</param-name>
 <param-value>/cookieReader.jsp</param-value>
 </init-param>
</servlet>

The servlet loads the definition for the JavaScript function CreateWindow with this code:

RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/WEB-INF/javascript/functions.js");

In the HTML code the servlet generates, the script tag containing the JavaScript code appears within
the HTML head tag. When the user clicks the form button on the servlet-generated web page, a new
window is created and the URL specified by the init-param element in web.xml (cookieReader.jsp)

is loaded. Figure 12-2 shows the servlet output. Figure 12-3 shows the pop-up window.

Figure 12-2. A servlet that creates a pop-up window

Figure 12-3. The new window loads a URL value from a servlet init-param

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Netscape DevEdge site at http://devedge.netscape.com/ ; Recipe 12.2 , Recipe 12.4 , and Recipe
12.6 on using JavaScript with JSPs; Recipe 12.5 on validating form values with a servlet and
JavaScript; Recipe 18.3 on using a filter with HTTP requests.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 12.4 Creating a New Window with JavaScript in a
JSP

Problem

You want to use JavaScript in a JSP to create a new browser window.

Solution

Use the c:import JSTL tag to import the JavaScript code into the JSP. Then use the initParam JSTL

implicit object to dynamically provide the URL for a JavaScript-generated window.

Discussion

The JSP in Example 12-5 (windowJ.jsp) uses the JSTL's c:import core tag to import the JavaScript

function definition for creating a new window. The JSP then calls the JavaScript function
(CreateWindow) in the onClick event handler for a web page button. The CreateWindow function
loads the URL specified in its parameter into the new browser window. Example 12-5 uses the c:out

core tag and EL syntax to dynamically acquire the URL for the JavaScript window from a context
parameter. The c:out tag looks like this:

<c:out value=
"${pageContext.request.contextPath}${initParam[\"jsp-url\"]}"/>

The value attribute specifies two EL expressions. The first one provides the JSP's context path, while
the second gives the value of the context-param element jsp-url. The full URL specified by these

concatenated EL expressions is /home/cookieReader.jsp.

Example 12-5. Using the JSTL to import JavaScript into a JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
<head>

<c:import url="/WEB-INF/javascript/functions.js" />

<title>Help Page</title></head><body>
<h2>Cookie Info</h2>

<form action ="" onSubmit=" return false">
<table border="0"><tr><td valign="top">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Click on the button to get more info on cookies: </td>
<td valign="top">

<input type="button" name="button1" value=
 "More Info" onClick=
"CreateWindow('<c:out value=
 "${pageContext.request.contextPath}${initParam[\"jsp-url\"]}"/>')">

</td></tr>
</table></form>
</body></html>

This JSP uses the following context-param element in web.xml:

<context-param>
 <param-name>jsp-url</param-name>
 <param-value>/cookieReader.jsp</param-value>
</context-param>

The EL implicit object initParam evaluates to a java.util.Map containing the names and values of
any context-param elements configured for the web application. An implicit object is a variable that

the JSTL automatically makes available to your JSP code.

Example 12-5 uses the EL syntax initParam[\"jsp-url\"], as opposed to
initParam.jsp-url, in order to return the intended value in Tomcat 5 (alpha

version as of this writing). The code's purpose is to escape the hyphen
character (-) in "jsp-url."

See Also

The Netscape DevEdge site at http://devedge.netscape.com/; Recipe 12.2 and Recipe 12.6 on using
JavaScript with JSPs to import JavaScript and validate form input; Recipe 12.3 on creating new
browser windows with servlets and JavaScript; Recipe 12.5 on validating form values with a servlet
and JavaScript; Recipe 18.3 on using a filter with HTTP requests.

[Team LiB]

http://devedge.netscape.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 12.5 Using JavaScript to Validate Form Values in a
Servlet

Problem

You want to validate form input values using JavaScript in a JSP.

Solution

Use a javax.servlet.RequestDispatcher to include the validating JavaScript in the servlet. Then
call the validating JavaScript function in the form's onSubmit event handler.

Discussion

Example 12-6 is a JavaScript module named validate.js. This file should be located in WEB-
INF/javascript/validate.js. The file contains a script tag that contains one function definition:
validate. This JavaScript function iterates through the form elements (such as input tags whose
type attribute is text-in other words, text form fields) to determine if any of them have been left
blank. The parameter for the validate function is a form object.

If the user has left the fields empty, this function displays an alert window and then cancels the form
submit. A more realistic validation function might involve a greater degree of complex business logic,
but I am keeping this example simple in order to demonstrate the mechanics of including the function
in a servlet.

Example 12-6. A JavaScript module named validate.js for validating form
input

<script language="JavaScript">
function validate(form1)
{
 for (i = 0; i < form1.length; i++){
 if((form1.elements[i].value == "")){
 alert("You must provide a value for the field named: " +
 form1.elements[i].name)
 return false

 }
 }
 return true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}
</script>

The servlet in Example 12-7 includes the validate.js file using a RequestDispatcher. The
RequestDispatcher positions the JavaScript script tag within an HTML head tag in the servlet's
output. The servlet page's form tag has an attribute that is composed of the context path (the return
value of request.getContextPath()) concatenated with the /displayHeaders.jsp JSP file. If the

form fields are filled out properly, the browser submits the form to the JSP page
(/home/displayHeaders.jsp).

Finally, the form's onSubmit event handler calls the included JavaScript function validate, passing in
the this JavaScript keyword. The this parameter evaluates to the form object. If the user fails to fill
out the name and email fields, the validate function cancels the browser's submission of the form
by returning false.

Example 12-7. Importing JavaScript in a servlet to validate form values

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class FormServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html><head>");

 RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/WEB-INF/javascript/validate.js");

 dispatcher.include(request, response);

 out.println("<title>Help Page</title></head><body>");
 out.println("<h2>Please submit your information</h2>");

 out.println(
 "<form action =\"" + request.getContextPath() +
 "/displayHeaders.jsp\" onSubmit=\" return validate(this)\">");

 out.println("<table border=\"0\"><tr><td valign=\"top\">");
 out.println("Your name: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"username\" size=\"20\">");
 out.println("</td></tr><tr><td valign=\"top\">");
 out.println("Your email: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"email\" size=\"20\">");
 out.println("</td></tr><tr><td valign=\"top\">");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println(
 "<input type=\"submit\" value=\"Submit Info\"></td></tr>");

 out.println("</table></form>");
 out.println("</body></html>");

 } //doGet
}

Figure 12-4 shows the browser page containing the form. Figure 12-5 shows the alert window
generated by the JavaScript function.

Figure 12-4. The servlet output for an HTML form

Figure 12-5. The included JavaScript validate function produces an alert
window

Another option for validating form input is to use a filter to check parameter values, and then return
the user to the form page or a new page if the input contains an error. Developers might prefer this
option because a filter allows you to use Java code to parse the parameter values and gives you a
great deal of control over the customization of the response page, in the case of a form input error.
Recipe 18.3 describes how to use a filter with a servlet to deal with client requests.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Netscape DevEdge site at http://devedge.netscape.com/; Recipe 12.2 and Recipe 12.6 on using
JavaScript with JSPs to import JavaScript and validate form input; Recipe 12.3 on creating new
browser windows with servlets and JavaScript; Recipe 12.5 on validating form values with a servlet
and JavaScript; Recipe 18.3 on using a filter with HTTP requests.

[Team LiB]

http://devedge.netscape.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 12.6 Using JavaScript to Validate Form Values in a
JSP

Problem

You want to import JavaScript into a JSP to validate HTML form values.

Solution

Use the c:import JSTL core tag to import the JavaScript function definitions. Then validate the HTML
form input by using the form tag's onSubmit event handler.

Discussion

The JSP in Example 12-8 uses the JSTL core tag c:import to include the contents of the /WEB-

INF/javascript/validate.js file. See Example 12-6 for the contents of validate.js, which is a definition
for the function validate. This function determines whether the user has left any form fields blank.

The rest of the JSP is straightforward: the onSubmit event handler calls the validate function and
passes in the form object (represented by the JavaScript keyword this) as a parameter. By
returning false, the validate function cancels the form submit if it finds any blank fields.

Example 12-8. A JSP uses JavaScript to validate HTML form input

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head>

<c:import url="/WEB-INF/javascript/validate.js" />

<title>Help Page</title></head><body>
<h2>Please submit your information</h2>

<form action ="/home/displayHeaders.jsp" onSubmit=" return validate(this)">

<table border="0"><tr><td valign="top">

Your name: </td> <td valign="top">
<input type="text" name="username" size="20">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</td></tr><tr><td valign="top">
Your email: </td> <td valign="top">
<input type="text" name="email" size="20">
</td></tr>

<tr><td valign="top">
<input type="submit" value="Submit Info"></td></tr>

</table></form>
</body></html>

Figure 12-4 shows the web page containing the form. Figure 12-5 depicts the alert window that
would be displayed if the user leaves one or more text fields blank when submitting the form.

See Also

The Netscape DevEdge site at http://devedge.netscape.com/; Recipe 12.2 and Recipe 12.4 on using
JavaScript with JSPs to import JavaScript function definitions and create new browser windows;
Recipe 12.3 on creating new browser windows with servlets and JavaScript; Recipe 12.5 on validating
form values with a servlet and JavaScript; Recipe 18.3 on using a filter with HTTP requests.

[Team LiB]

http://devedge.netscape.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 13. Sending Non-HTML Content
Introduction

Recipe 13.1. Sending a PDF File

Recipe 13.2. Sending a Word Processing File

Recipe 13.3. Sending an XML file

Recipe 13.4. Sending an Audio File

Recipe 13.5. Viewing Internal Resources in a Servlet
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Most web sites offer a smorgasbord of media types to their users. Typical web content these days
includes Portable Document Format (PDF) files, word-processing documents, audio files, movies, and
Extensible Markup Language (XML). In some cases, these alternative file types are stored in
databases as binary data, or streams of unencoded bytes. Web developers cannot always provide
their users with straightforward hyperlinks to these files for downloading. The user chooses a link or
enters a URL in the browser's location field, and a servlet or some other web component downloads
the binary data to the client. The client in most cases saves the data as a file, for use later in
document viewers and other applications.

The following recipes describe how to initiate this download method. In a typical scenario, the servlet
sets up a download whereby the browser prompts the user with a "Save As" dialog allowing him to
save the files on his own filesystem. These strategies, however, do not guarantee 100-percent
consistent behavior among web browsers. Some browsers allow the user to precisely configure how
he wants to handle handle certain file types (such as a PDF document). For example, Opera 5 gives
the user all kinds of options for dealing with downloads, such as opening up an external helper
application, displaying a file using a plug-in, or immediately downloading a file to a specified folder
without first opening up a "Save As" window.

Test how your web application works in various browsers, in response to
different browser configurations, as well as on different platforms, so that you
are aware of the different browser responses elicited by the servlet.

The alternative to these strategies is simply providing a link to a PDF file-for instance-if the data
exists as a file. This method, however, also places a great deal of the responsibility on the client
browser, and the user who configures the browser, for managing the media type. While advanced
users may like this approach, it is rarely sufficient for less-experienced users.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 13.1 Sending a PDF File

Problem

You want to send binary data representing a PDF file to a user.

Solution

Use a servlet and a java.io.BufferedInputStream to read the bytes from the file. Send the file
content to the user with a javax.servlet.ServletOutputStream retrieved from the
javax.servlet.http.HttpServletResponse object.

Discussion

PDF files are ubiquitous on the Web, as most users are equipped with the Adobe Reader application
that reads them. Example 13-1 takes a filename from a query string that is part of the request to the
servlet, and responds with binary data that represents the PDF file. The servlet identifies the file that
it sends to the client as the MIME type application/pdf by using the Content-Type response header.

Multipurpose Internet Mail Extensions (MIME) designate the media types of
various data that are sent as email or as part of HTTP responses on the Web. A
MIME type has a top-level type and a sub-type separated by a forward-slash
character, as in text/html, application/pdf, or audio/mpeg. The Content-Type

response header is the method the server response uses to convey the
intended type and format of the data that the server sends to a network client
such as a web browser. See the following Request For Comments (RFC)
technical documents on MIME for more information: ftp://ftp.rfc-editor.org/in-
notes/rfc2045.txt and ftp://ftp.rfc-editor.org/in-notes/rfc2046.txt.

Table 13-1 shows several MIME types that web developers may encounter.

Table 13-1. Some common MIME types

File MIME type Extension

XML text/xml .xml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File MIME type Extension

HTML text/html .html

Plaintext file text/plain .txt

PDF application/pdf .pdf

Graphics Interchange Format (GIF)
image

image/gif .gif

JPEG image image/jpeg .jpeg

PNG image image/x-png .png

MP3 music file audio/mpeg .mp3

Shockwave Flash animation
application/futuresplash or application/x-
shockwave-flash

.swf

Microsoft Word document application/msword .doc

Excel worksheet application/vnd.ms-excel .xls

PowerPoint document application/vnd.ms-powerpoint .ppt

The request to the servlet looks like this:

http://localhost:8080/home/sendpdf?file=chapter5

Example 13-1 checks to see if the request parameter file is valid and then adds the file extension

.pdf to the filename if it does not already have that suffix. This is the filename the HTTP response
recommends to the browser (it will appear as the default filename in any displayed "Save As"
windows).

Jason Hunter in Java Enterprise Best Practices (O'Reilly) points out that it is
often useful to include the intended filename (for the "Save As" dialog box the
browser produces) directly in the URL as extra path info. The browser detects
that name as the requested resource and may specify the name in the "Save
As" dialog window. An example URL in this case looks like:

http://localhost:8080/home/chapter5.pdf?file=ch5

Example 13-1. Sending a PDF file as binary data

package com.jspservletcookbook;

import java.io.FileInputStream;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

HTML text/html .html

Plaintext file text/plain .txt

PDF application/pdf .pdf

Graphics Interchange Format (GIF)
image

image/gif .gif

JPEG image image/jpeg .jpeg

PNG image image/x-png .png

MP3 music file audio/mpeg .mp3

Shockwave Flash animation
application/futuresplash or application/x-
shockwave-flash

.swf

Microsoft Word document application/msword .doc

Excel worksheet application/vnd.ms-excel .xls

PowerPoint document application/vnd.ms-powerpoint .ppt

The request to the servlet looks like this:

http://localhost:8080/home/sendpdf?file=chapter5

Example 13-1 checks to see if the request parameter file is valid and then adds the file extension

.pdf to the filename if it does not already have that suffix. This is the filename the HTTP response
recommends to the browser (it will appear as the default filename in any displayed "Save As"
windows).

Jason Hunter in Java Enterprise Best Practices (O'Reilly) points out that it is
often useful to include the intended filename (for the "Save As" dialog box the
browser produces) directly in the URL as extra path info. The browser detects
that name as the requested resource and may specify the name in the "Save
As" dialog window. An example URL in this case looks like:

http://localhost:8080/home/chapter5.pdf?file=ch5

Example 13-1. Sending a PDF file as binary data

package com.jspservletcookbook;

import java.io.FileInputStream;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

http://localhost:8080/home/sendpdf?file=chapter5
http://localhost:8080/home/chapter5.pdf?file=ch5
http://localhost:8080/home/sendpdf?file=chapter5
http://localhost:8080/home/chapter5.pdf?file=ch5
http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class SendPdf extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 //get the filename from the "file" parameter
 String fileName = (String) request.getParameter("file");
 if (fileName == null || fileName.equals(""))
 throw new ServletException(
 "Invalid or non-existent file parameter in SendPdf servlet.");

 // add the .pdf suffix if it doesn't already exist
 if (fileName.indexOf(".pdf") == -1)
 fileName = fileName + ".pdf";

 //where are PDFs kept?
 String pdfDir = getServletContext().getInitParameter("pdf-dir");
 if (pdfDir == null || pdfDir.equals(""))
 throw new ServletException(
 "Invalid or non-existent 'pdfDir' context-param.");

 ServletOutputStream stream = null;
 BufferedInputStream buf = null;
 try{

 stream = response.getOutputStream();
 File pdf = new File(pdfDir + "/" + fileName);

 //set response headers
 response.setContentType("application/pdf");

 response.addHeader(
 "Content-Disposition","attachment; filename="+fileName);

 response.setContentLength((int) pdf.length());

 FileInputStream input = new FileInputStream(pdf);
 buf = new BufferedInputStream(input);
 int readBytes = 0;

 //read from the file; write to the ServletOutputStream
 while((readBytes = buf.read()) != -1)
 stream.write(readBytes);

 } catch (IOException ioe){

 throw new ServletException(ioe.getMessage());

 } finally {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //close the input/output streams
 if (stream != null)
 stream.close();
 if (buf != null)
 buf.close();
 }

 } //end doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 doGet(request,response);
 }
}

Example 13-1 gets the directory where the PDF files are stored from a context-param element in the

deployment descriptor:

<context-param>
 <param-name>pdf-dir</param-name>
 <param-value>h:/book/distribute</param-value>
</context-param>

Remember that the context-param elements appear before the filter,
filter-mapping, listener, and servlet elements in the web.xml version for

servlet API 2.3.

The code then gets the ServletOutputStream from the HttpServletResponse object. The binary

data representing the PDF is written to this stream:

stream = response.getOutputStream();

The servlet does not use a java.io.PrintWriter as in response.getWriter(), because a
PrintWriter is designed for returning character data, such as HTML, that the browser displays on

the computer screen. Example 13-1 adds the response headers that help prevent the browsers from
trying to display the bytes as content in the browser window:

response.setContentType("application/pdf");
response.addHeader(
 "Content-Disposition","attachment; filename="+fileName);
response.setContentLength((int) pdf.length());

The Content-Disposition header field signals the client to treat the received content as an

attachment, not as characters to be displayed in the browser. This optional response header also
provides a recommended filename, which the browser may include as the default filename in any
"Save As" windows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See RFC 2183 at ftp://ftp.rfc-editor.org/in-notes/rfc2183.txt for background
information on the Content-Disposition header.

The client browser can use the Content-Length header value (provided with
response.setContentLength()) to indicate to the user the download progress with a widget that

shows a horizontal bar steadily filling with color. The servlet also uses a
java.io.BufferedInputStream to buffer the input from the file in a byte[] array, which speeds up

the transfer of data from the server to the client.

See Recipe 13.5 for an example of using a java.net.URLConnection (as
opposed to a FileInputStream) to get an input stream associated with a web
resource. A URLConnection is useful when you want to obtain binary data from

a PDF file that is available only as a web address beginning with "http://".

The code closes the ServletOutputStream and the BufferedInputStream in a finally block to
release any system resources used by these objects. The code within the finally block executes

regardless of whether the code throws an exception.

Internet Explorer 5.5 usually raises an exception that is displayed in the
Tomcat log file when a request is made to this recipe's servlet. The logged
exception does not disrupt the application, nor does it appear when the servlet
is requested by Opera 5, or by Internet Explorer 5.2 and the Safari Macintosh
browsers. The exception message includes the text "Connection reset by peer:
socket write error." This message has raised speculation on various servlet-
related mailing lists that the IE client browser on Windows has caused the
exception by severing the connection with Tomcat after the data transfer.
Nobody has yet devised a definitive solution to this apparently harmless
exception, beyond suggesting that the servlet container's logging mechanism
be configured to ignore exceptions of this type.

See Also

Recipe 13.2-Recipe 13.4 on sending Word, XML, and MP3 files as binary data; Recipe 13.5 on getting
an input stream representing a web resource such as web.xml; RFC technical documents on MIME:
ftp://ftp.rfc-editor.org/in-notes/rfc2045.txt and ftp://ftp.rfc-editor.org/in-notes/rfc2046.txt.; RFC
2183 at ftp://ftp.rfc-editor.org/in-notes/rfc2183.txt for background information on the Content-
Disposition header; the Media Types section of the HTTP Pocket Reference by Clinton Long

(O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 13.2 Sending a Word Processing File

Problem

You want to send a Microsoft Word file as binary data.

Solution

Use the same servlet setup as described in Recipe 13.1, but include a different file extension and a
Content-Type of application/msword.

Discussion

You might have some Microsoft Word documents that you want to distribute as binary data from a
servlet. Example 13-2 uses the same basic structure as Example 13-1, with a few changes to adapt
the servlet for sending Microsoft Word documents. These include accessing a different context-
param element (you could keep all files for download in the same directory, however), and using a
different MIME type as the parameter for the setContentType() method, as in
response.setContentType("application/msword").

Example 13-2. Sending a Word file as binary data

package com.jspservletcookbook;

import java.io.FileInputStream;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

public class SendWord extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 //get the filename from the "file" parameter
 String fileName = (String) request.getParameter("file");
 if (fileName == null || fileName.equals(""))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throw new ServletException(
 "Invalid or non-existent file parameter in SendWord.");

 // add the .doc suffix if it doesn't already exist
 if (fileName.indexOf(".doc") == -1)
 fileName = fileName + ".doc";

 //where are Word files kept?
 String wordDir = getServletContext().getInitParameter("word-dir");
 if (wordDir == null || wordDir.equals(""))
 throw new ServletException(
 "Invalid or non-existent wordDir context-param.");

 ServletOutputStream stream = null;
 BufferedInputStream buf = null;
 try{

 stream = response.getOutputStream();
 File doc = new File(wordDir + "/" + fileName);

 //set response headers
 response.setContentType("application/msword");

 response.addHeader(
 "Content-Disposition","attachment; filename="+fileName);

 response.setContentLength((int) doc.length());

 FileInputStream input = new FileInputStream(doc);
 buf = new BufferedInputStream(input);
 int readBytes = 0;

 //read from the file; write to the ServletOutputStream
 while((readBytes = buf.read()) != -1)
 stream.write(readBytes);

 } catch (IOException ioe){

 throw new ServletException(ioe.getMessage());

 } finally {

 //close the input/output streams
 if(stream != null)
 stream.close();
 if(buf != null)
 buf.close();
 }

 } //end doGet

 public void doPost(HttpServletRequest request,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HttpServletResponse response) throws ServletException,
 IOException {

 doGet(request,response);
 }
}

The ServletOutputStream (the information sent as the servlet response) and the
BufferedInputStream (from which the servlet gets the file to send) are both closed in the finally

block to make sure any system resources they use are released. See the end of the discussion in
Recipe 13.1 for a further description of this code, including the warning at the end of that recipe
about the Internet Explorer-related exception.

See Also

Recipe 13.1 on sending a PDF file; Recipe 13.3 and Recipe 13.4 on sending XML and MP3 files as
binary data; Recipe 13.5 on getting an input stream representing a web resource such as web.xml;
RFC technical documents on MIME: ftp://ftp.rfc-editor.org/in-notes/rfc2045.txt and ftp://ftp.rfc-
editor.org/in-notes/rfc2046.txt; RFC 2183 at ftp://ftp.rfc-editor.org/in-notes/rfc2183.txt for
background information on the Content-Disposition header; the Media Types section of the HTTP

Pocket Reference by Clinton Wong (O'Reilly); Chapter 1 introducing the development of a servlet.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 13.3 Sending an XML file

Problem

You want to send an XML file as binary data from a servlet.

Solution

Use the javax.servlet.ServletOutputStream obtained from the
javax.servlet.http.HttpServletResponse object to send the XML file as binary data to the client.

Discussion

This recipe describes how to send an XML file as binary data from a ServletOutputStream, so that

the user can handle the file as downloaded XML. Example 13-3 obtains the bytes that represent the
XML as a BufferedInputStream wrapped around a FileInputStream. The code is very similar to

Example 13-1 in Recipe 13.1, except that it uses a MIME type of text/XML.

In a popular form of converting XML into a readable format, you could convert
the XML content to HTML or another form using Extensible Stylesheet Language
Transformations (XSLT). If the intent is to use XSLT for generating the content
in a browser, leave out the Content-Disposition response header, because

this header is designed to handle the XML as a downloaded file that will be
saved in the user's filesystem. See Chapter 23 on using the x:transform JSTL

tag.

Example 13-3. Sending an XML file with a servlet

package com.jspservletcookbook;

import java.io.FileInputStream;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

public class SendXml extends HttpServlet {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 //get the filename from the "file" parameter
 String fileName = (String) request.getParameter("file");
 if (fileName == null || fileName.equals(""))
 throw new ServletException(
 "Invalid or non-existent file parameter in SendXml servlet.");

 // add the .xml suffix if it doesn't already exist
 if (fileName.indexOf(".xml") == -1)
 fileName = fileName + ".xml";

 //where are XML files kept?
 String xmlDir = getServletContext().getInitParameter("xml-dir");
 if (xmlDir == null || xmlDir.equals(""))
 throw new ServletException(
 "Invalid or non-existent xmlDir context-param.");

 ServletOutputStream stream = null;
 BufferedInputStream buf = null;

 try{

 stream = response.getOutputStream();
 File xml = new File(xmlDir + "/" + fileName);

 //set response headers
 response.setContentType("text/xml");

 response.addHeader(
 "Content-Disposition","attachment; filename="+fileName);

 response.setContentLength((int) xml.length());

 FileInputStream input = new FileInputStream(xml);
 buf = new BufferedInputStream(input);
 int readBytes = 0;

 //read from the file; write to the ServletOutputStream
 while((readBytes = buf.read()) != -1)
 stream.write(readBytes);

 } catch (IOException ioe){

 throw new ServletException(ioe.getMessage());

 } finally {

 //close the input/output streams
 if(stream != null)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 stream.close();

 if(buf != null)
 buf.close();

 }//finally

 } //end doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 doGet(request,response);
 }
}

For the context-param to work correctly in this code, you have to include in web.xml an element

that looks like:

<context-param>
 <param-name>xml-dir</param-name>
 <param-value>h:/home/xml</param-value>
</context-param>

See Chapter 1 if you need an introduction or refresher for the deployment
descriptor web.xml.

The discussion in Recipe 13.1 describes the basic mechanics of this code, so I don't repeat that
information here. See the note at the end of Recipe 13.1 about the Internet Explorer-related
exception that you may experience with servlets of this type.

See Also

Recipe 13.1 on sending a PDF file; Recipe 13.2 on sending a Microsoft Word file as binary data;
Recipe 13.4 on sending MP3 files as binary data; Recipe 13.5 on getting an input stream representing
a web resource such as web.xml; the RFC technical documents on MIME: ftp://ftp.rfc-editor.org/in-
notes/rfc2045.txt and ftp://ftp.rfc-editor.org/in-notes/rfc2046.txt; RFC 2183 at ftp://ftp.rfc-
editor.org/in-notes/rfc2183.txt for background information on the Content-Disposition header; the

Media Types section of the HTTP Pocket Reference by Clinton Wong (O'Reilly); Chapter 1 introducing
the development of a servlet; a tutorial on java.sun.com on XSLT:
http://java.sun.com/webservices/docs/1.1/tutorial/doc/JAXPXSLT.html#wp68287.

[Team LiB]

http://java.sun.com/webservices/docs/1.1/tutorial/doc/JAXPXSLT.html#wp68287
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 13.4 Sending an Audio File

Problem

You want to send an audio file such as an MPEG layer 3 (MP3) media type.

Solution

Use a java.io.BufferedInputStream to fetch the audio data, and the
javax.servlet.ServletOutputStream from the javax.servlet.http.HttpServletResponse

object to send the data to the client.

Discussion

The code in Example 13-4 uses the same approach as the prior recipes, except for the MIME type,
which is specified as audio/mpeg.

Web browsers associate a number of other MIME types for MP3 files, including
audio/x-mpeg, audio/mp3, and audio/x-mp3.

The user requests a filename in the URL, as in:

http://localhost:8080/home/sendmp3?file=song_name

The deployment descriptor (web.xml) maps the servlet path /sendmp3 to the servlet class of
Example 13-4: com.jspservletcookbook.SendMp3. If the requested file does not already have the
.mp3 suffix, then the code adds that file extension. A context-param element in the deployment

descriptor specifies the directory where the audio files are kept:

<context-param>
 <param-name>mp3-dir</param-name>
 <param-value>h:/home/mp3s</param-value>
</context-param>

Example 13-4 uses this directory name, plus the filename, as the constructor parameter to create a
new java.io.File object, which is the source for a java.io.FileInputStream. A
BufferedInputStream buffers the bytes from the song file, which the ServletOutputStream

response reads.

http://localhost:8080/home/sendmp3?file=song_name
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 13-4. Sending an MP3 file

package com.jspservletcookbook;

import java.io.FileInputStream;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

public class SendMp3 extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {

 //get the filename from the "file" parameter
 String fileName = (String) request.getParameter("file");
 if (fileName == null || fileName.equals(""))
 throw new ServletException(
 "Invalid or non-existent file parameter in SendMp3 servlet.");

 // add the .mp3 suffix if it doesn't already exist
 if (fileName.indexOf(".mp3") == -1)
 fileName = fileName + ".mp3";

 //where are MP3 files kept?
 String mp3Dir = getServletContext().getInitParameter("mp3-dir");

 if (mp3Dir == null || mp3Dir.equals(""))
 throw new ServletException(
 "Invalid or non-existent mp3-Dir context-param.");

 ServletOutputStream stream = null;
 BufferedInputStream buf = null;
 try{

 stream = response.getOutputStream();
 File mp3 = new File(mp3Dir + "/" + fileName);

 //set response headers
 response.setContentType("audio/mpeg");

 response.addHeader(
 "Content-Disposition","attachment; filename="+fileName);

 response.setContentLength((int) mp3.length());

 FileInputStream input = new FileInputStream(mp3);
 buf = new BufferedInputStream(input);
 int readBytes = 0;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //read from the file; write to the ServletOutputStream
 while((readBytes = buf.read()) != -1)
 stream.write(readBytes);

 } catch (IOException ioe){

 throw new ServletException(ioe.getMessage());

 } finally {

 //close the input/output streams
 if(stream != null)
 stream.close();

 if(buf != null)
 buf.close();

 }

 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {

 doGet(request,response);
 }
}

Review Recipe 13.1 for a further explanation of this code, including the warning at the end of the
"Discussion" section about logged exceptions that may occur with Internet Explorer.

See Also

Recipe 13.1 on MIME types and sending a PDF file as binary data; Recipe 13.2 and Recipe 13.3 on
sending Word and XML files, respectively, as binary data; Recipe 13.5 on receiving an input stream
representing a web resource such as web.xml; the RFC technical documents on MIME: ftp://ftp.rfc-
editor.org/in-notes/rfc2045.txt and ftp://ftp.rfc-editor.org/in-notes/rfc2046.txt; RFC 2183 at
ftp://ftp.rfc-editor.org/in-notes/rfc2183.txt for background information on the Content-Disposition

header; the Media Types section of the HTTP Pocket Reference by Clinton Wong (O'Reilly); Chapter 1
introducing the development of a servlet.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 13.5 Viewing Internal Resources in a Servlet

Problem

You want to use a servlet to fetch internal resources from a web application for viewing by
authenticated users.

Solution

Use the javax.servlet.ServletContext.getResource(String path) method to generate the

input stream from the web resource.

Discussion

A servlet could be used while a web application is in development to provide a view of the
deployment descriptor. Web developers often have to double-check web.xml for the values of
context-param elements, a servlet's registered name, and other information. Wouldn't it be nice to

just request a servlet in the browser to view web.xml?

Example 13-5 opens up web.xml using the ServletContext.getResource() method, which returns
a java.net.URL object representing the deployment descriptor at the path WEB-INF/web.xml.

The code opens a connection to the XML file by calling the URL object's openConnection() method,
which returns a java.net.URLConnection object. Then the code buffers the input stream to the
resource by wrapping it in a BufferedInputStream:

buf = new BufferedInputStream(urlConn.getInputStream());

The urlConn variable refers to a URLConnection.

If the browser is not savvy about displaying XML files in a readable fashion
(Netscape 7.1 and Internet Explorer can display these files properly), you can
use XSLT to convert the XML into HTML before it is sent to the browser.

Example 13-5. Displaying the deployment descriptor via a servlet

package com.jspservletcookbook;

import java.io.BufferedInputStream;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.PrintWriter;
import java.io.IOException;

import java.net.URL;
import java.net.URLConnection;
import java.net.MalformedURLException;

import javax.servlet.*;
import javax.servlet.http.*;

public class ResourceServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 //get web.xml for display by a servlet
 String file = "/WEB-INF/web.xml";

 URL url = null;
 URLConnection urlConn = null;
 PrintWriter out = null;
 BufferedInputStream buf = null;

 try{

 out = response.getWriter();

 //access a web resource within the same web application
 // as a URL object
 url = getServletContext().getResource(file);

 //set response header
 response.setContentType("text/xml");

 urlConn = url.openConnection();

 //establish connection with URL representing web.xml
 urlConn.connect();

 buf = new BufferedInputStream(urlConn.getInputStream());
 int readBytes = 0;

 //read from the file; write to the PrintWriter
 while((readBytes = buf.read()) != -1)
 out.write(readBytes);

 } catch (MalformedURLException mue){

 throw new ServletException(mue.getMessage());

 } catch (IOException ioe){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throw new ServletException(ioe.getMessage());

 } finally {

 //close the input/output streams
 if(out != null)
 out.close();

 if(buf != null)
 buf.close();

 }

 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 doGet(request,response);
 }
}

This servlet is designed for developers; if just anyone has a chance to study the
deployment descriptor, it will compromise the web application's security.
Therefore, you should remove the servlet from production versions of the web
application, or use authentication to allow only authorized users to view the
servlet's output (see Chapter 15 for details).

The code uses a PrintWriter to write the bytes received from the input stream, because the servlet

intends to display the response as characters (instead of offering the response to the client as a
downloaded resource). The ServletContext.getResource(String path) method takes a path that
beings with the / character. The path is interpreted as beginning at the context root, or top-level

directory, of the web application. Therefore, the servlet obtains web.xml with the following code:

String file = "/WEB-INF/web.xml";
...
url = getServletContext().getResource(file);

The ServletContext.getResouce() method returns null if it is unable to
return a valid resource representing the path parameter.

See Also

Recipe 13.1-Recipe 13.4 on sending PDF, Word, XML, and audio files, respectively, as binary data;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the RFC technical documents on MIME: ftp://ftp.rfc-editor.org/in-notes/rfc2045.txt and ftp://ftp.rfc-
editor.org/in-notes/rfc2046.txt; RFC 2183 at ftp://ftp.rfc-editor.org/in-notes/rfc2183.txt for
background information on the Content-Disposition header; the Media Types section of the HTTP

Pocket Reference by Clinton Wong (O'Reilly); Chapter 1 introducing the development of a servlet.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 14. Logging Messages from
Servlets and JSPs

Introduction

Recipe 14.1. Logging Without Log4j

Recipe 14.2. Setting Up Log4j

Recipe 14.3. Using a Logger Without a Configuration File

Recipe 14.4. Adding an Appender to the Root Logger

Recipe 14.5. Using a Pattern with a Logger's Appender

Recipe 14.6. Using log4j in a JSP

Recipe 14.7. Logging Messages Using a Servlet Context Event Listener

Recipe 14.8. Logging Messages Using a Session Event Listener
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Logging involves sending messages from your application and displaying this information in a variety
of ways for web developers and administrators. The messages can be delivered to a console, or they
can be stored persistently in files or databases. Logging may be used only for sending debug-related
information while a web application is being developed, or these messages may provide information
from an application in production, including data about warnings and fatal errors.

This chapter describes a very powerful open source logging tool called log4j. This is a Java ARchive
(JAR) file (log4j-1.2.8.jar) that you can add to your web application by placing it in your WEB-INF/lib
directory. This makes it available for use in any servlets or beans that you want to send logging
messages from. This section provides only a brief introduction to log4j, because its power does entail
some complexity.

log4j involves three main concepts: loggers, appenders, and layouts. log4j uses an external
configuration file, similar to a deployment descriptor, to configure these three logging elements. The
upcoming recipes provide some examples of these configuration files, which are mostly simple text
files involving a list of name/value pairs. The power of using external files is that you can change the
properties in these text files to alter a logger (for instance, modify the format of its messages)
instead of recompiling the servlet code.

For the changes to take effect, you may require a reload of the servlet or other
component that initializes the logging system for the application.

Loggers

A logger is the entity that a servlet uses to log messages. To use one, import the log4j classes into
the servlet, create an instance of a logger (specifically an org.apache.log4j.Logger), then call the

logger's methods. The methods are named after the logging level of the message. For example, to
log an informational message (an INFO level) you would call:

logger.info("HttpServlet init method called.");

log4j has five different levels of log categories: DEBUG, INFO, WARN, ERROR, and FATAL. The log
categories are organized in ascending order beginning with DEBUG-a logger configured for INFO-level
logging logs only INFO, WARN, ERROR, and FATAL messages (but not DEBUG-level messages, because in
this hierarchy DEBUG is beneath INFO and the other levels). Here is a brief description of the purpose

of each level:

DEBUG involves logging messages while initially developing and debugging an application.

INFO helps you monitor the progress of an application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WARN designates potentially harmful situations.

ERROR represents an error that the application can likely recover from.

FATAL suggests errors that will cause an application to abort.

Every logger is configured with a level (such as DEBUG) in the log4j properties or configuration file

(see Recipe 14.4). log4j also associates the messages that you log with a specified level, which
makes it easy to use because the method names are the same as the level names. The logger does
not send these messages unless the logger's level is equal to or greater than the level represented by
the method call (as in logger.debug(Object message)).

For example, let's say you configure the logger with a level of DEBUG, then develop a servlet with a

number of logger.debug(Object message) calls.

Later, you can change the configuration file and give the logger an INFO level. Changing the
configuration in this manner "turns off" DEBUG-level logging in that servlet, so that these logging

messages no longer show up in the log files, database, or other logging repository. This is because
DEBUG is not equal to or greater than INFO in the hierarchy of logging categories.

Similarly, you can turn back on DEBUG-level logging in the prior example by simply switching the
logger's configuration back from INFO to DEBUG. As a result, the debug-level messages will no longer

be filtered out.

Programmers writing software with several DEBUG-level method calls can easily switch into WARN- or
ERROR-level debugging once the application moves into its next stage of development, or goes into

production.

Appenders

log4j is also very powerful in terms of the different ways you can log messages. You can use log4j to
log messages to a console, a file, a rolling file (which automatically creates a backup file when a log
file reaches a specified size), a database, an email server, and several other types of log repositories.
log4j calls each of these logging mechanisms an appender. Recipe 14.4 introduces the configuration
file in which you can describe appenders.

Layouts

What does the actual logged message look like? What information does it include? log4j shines in this
area too. You can specify numerous different layouts for the messages using the log4j configuration
file. log4j lets you specify very complex (or simple) layouts using conversion patterns, which are
somewhat similar to regular expressions. To achieve the most basic layout, you can specify an
org.apache.log4j.SimpleLayout. With this format, the log contains the level name, followed by a
dash (-) and the actual message:

INFO - HttpServlet init method called.

Using an org.apache.log4j.PatternLayout is more powerful, and Recipe 14.5 provides some

examples of different layouts for logging messages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 14.1 Logging Without Log4j

Problem

You want to put a message in the server logs.

Solution

Call the ServletContext.log() method inside the servlet.

Discussion

If you just want to log a message in the servlet container's log file and do not need the power of
log4j, use the ServletContext.log() method. Example 14-1 shows the two versions of the log()
method. One takes the String message as a parameter, and the other has two parameters: a
String message and a Throwable. The servlet log will contain the stack trace of the Throwable if
you use this log() form.

Example 14-1. A servlet uses the ServletContext.log() method

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class ContextLog extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 String yourMessage = request.getParameter("mine");
 //Call the two ServletContext.log methods
 ServletContext context = getServletContext();

 if (yourMessage == null || yourMessage.equals(""))
 //log version with Throwable parameter
 context.log("No message received:",
 new IllegalStateException("Missing parameter"));
 else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 context.log("Here is the visitor's message: " + yourMessage);

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 //logging servlets probably want to display more HTML
 out.println(
 "<html><head><title>ServletContext logging</title></head><body>");
 out.println("<h2>Messages sent</h2>");
 out.println("</body></html>");
 } //doGet
}

The ServletContext logs its text messages to the servlet container's log file. With Tomcat these logs

are found in <Tomcat-installation-directory>/logs. Below is the output of Example 14-1 and the
second form of ServletContext.log(), which prints the message and the Throwable's stack trace

(only the first two levels of the method stack are shown). You can see that the log includes the date
and time of the logging activity, and the message text:

2003-05-08 14:42:43 No message received:
java.lang.IllegalStateException: Missing parameter
 at com.jspservletcookbook.ContextLog.doGet(Unknown Source)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:740)
...

The single-parameter form of the log() method simply displays the date, time, and text of the
message, as in the first line of the prior log sample. Each log() method call places the message on

a new line in the server log file.

See Also

Recipe 14.2-Recipe 14.8 on using log4j to design your own custom logging mechanism; Chapter
SRV.3 of the servlet API on the servlet context; links to the latest servlet specification:
http://java.sun.com/products/servlet/index.html.

[Team LiB]

http://java.sun.com/products/servlet/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 14.2 Setting Up Log4j

Problem

You want to set up log4j for use in your web application.

Solution

Download the log4j distribution from the Apache Jakarta project and place the accompanying log4j-
1.2.8.jar file (the name will be different for different log4j versions) in the WEB-INF/lib directory of
your web application.

Discussion

The log4j package is available for use under the Apache Software License, which is included with the
distribution. Here are the steps for setting up log4j for your web application:

Go to the log4j web site and download the distribution in ZIP (Windows) or gzipped (Unix-based
systems) format: http://jakarta.apache.org/log4j/docs/download.html. The downloaded file will
be named something like jakarta-log4j-1.2.8.zip or jakarta-log4j-1.2.8.tar.gz.

1.

Unpack the distribution, which creates a directory jakarta-log4j-1.2.8 (for Version 1.2.8 of
log4j). Inside the dist directory of this top-level directory is the log4j-1.2.8.jar file. Copy this
JAR file into the WEB-INF/lib directory of your web application(s).

2.

Create a log4j properties file and place it in the web application's WEB-INF/classes directory.
This is typically a text file with name/value pairs for configuring log4j elements such as loggers,
appenders, and layouts. Recipe 14.4 includes an example of this file.

3.

In the servlets or beans where you will use a logger, include the proper import statements.

Example 14-2 is a skeletal servlet showing the classes that you might typically use.

4.

Example 14-2. Importing log4j-related packages

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

import javax.servlet.*;
import javax.servlet.http.*;

public class LoggerSkel extends HttpServlet {

http://jakarta.apache.org/log4j/docs/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private Logger log;

 public void init(){

 //log4j will find the log4j.properties file
 //in WEB-INF/classes
 log = Logger.getLogger(LoggerSkel.class);

 //Just an example of using the logger
 log.debug("Instance created of: " + getClass().getName());

 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //do logging here if necessary

 } //doGet

}

As long as log4j-1.2.8.jar is located in WEB-INF/lib, your servlet can use the necessary classes from
the org.apache.log4j.* packages.

See Also

Recipe 14.3-Recipe 14.8 on using log4j to design your own custom logging mechanism; the log4j
download site: http://jakarta.apache.org/log4j/docs/download.html; the log4j project documentation
page: http://jakarta.apache.org/log4j/docs/documentation.html.

[Team LiB]

http://jakarta.apache.org/log4j/docs/download.html
http://jakarta.apache.org/log4j/docs/documentation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 14.3 Using a Logger Without a Configuration File

Problem

You want to use a logger in a servlet without setting up your own configuration file.

Solution

Create the logger in the servlet and use the org.apache.log4j.BasicConfigurator class to configure

the logger.

Discussion

log4j allows the configuration of a logger without a provided configuration or properties file. Example 14-
3 is a servlet that instantiates a logger in its init() method, which the servlet container calls when the
servlet instance is created. The static BasicConfigurator.configure() method creates a
ConsoleAppender ; in other words, the logger will log its messages to the console using a default format.

Example 14-3. A servlet uses BasicConfigurator to configure a logger

package com.jspservletcookbook;

import org.apache.log4j.Logger;
import org.apache.log4j.BasicConfigurator;

import javax.servlet.*;
import javax.servlet.http.*;

public class LoggerNconfig extends HttpServlet {

private Logger log = null;

 public void init(){

 //use the root logger
 log = Logger.getRootLogger();

 //this logger will log to the console with a default message format
 BasicConfigurator.configure();

 }

 public void doGet(HttpServletRequest request,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //display a DEBUG level message
 log.debug("Sending a DEBUG message");

 // display an INFO level message
 log.info("Sending an INFO message");

 //better display some HTML
 response.setContentType("text/html");

 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Servlet logging</title></head><body>");
 out.println("<h2>Hello from a Logger with no Config file</h2>");

 //This logger's parent is the root logger
 out.println(
 "Your logger name is: " + log.getName()+"
");
 out.println(
 "Your logger parent is: " + log.getParent().getName()+"
");

 out.println("</body></html>");

 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 doGet(request,response);
 }
}

Example 14-4 shows an example message from the servlet. The message is based on a default format
that includes the thread name (Thread-5), the level name (DEBUG), the logger name
(com.jspservletcookbook.LoggerNconfig), and the actual message ("Sending a DEBUG message").

Recipe 14.5 shows how to create a format pattern for logging messages, so that you can customize the
type of information that the logger sends.

Example 14-4. Example of a logged message using BasicConfigurator

4061660 [Thread-5] DEBUG com.jspservletcookbook.LoggerNconfig - Sending a DEBUG message
4061660 [Thread-5] INFO com.jspservletcookbook.LoggerNconfig - Sending an INFO message

Here is the pattern used for the layout associated with BasicConfigurator :

%-4r [%t] %-5p %c %x - %m%n

See Recipe 14.5 for details on the org.apache.log4j.PatternLayout class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 14.2 on downloading and setting up log4j ; Recipe 14.4 -Recipe 14.8 on using log4j to design your
own custom logging mechanism; the log4j download site:
http://jakarta.apache.org/log4j/docs/download.html ; the log4j Javadoc page:
http://jakarta.apache.org/log4j/docs/api/index.html ; the log4j project documentation page:
http://jakarta.apache.org/log4j/docs/documentation.html .

[Team LiB]

http://jakarta.apache.org/log4j/docs/download.html
http://jakarta.apache.org/log4j/docs/api/index.html
http://jakarta.apache.org/log4j/docs/documentation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 14.4 Adding an Appender to the Root Logger

Problem

You want to configure an appender or logging destination for the root logger.

Solution

Create a configuration file called log4j.properties and place it in the WEB-INF/classes directory of
your web application.

Discussion

Now our discussion moves on to the log4j configuration file, where developers can customize loggers,
appenders, and layouts. Here are the steps for using this recipe's examples:

Create a properties file named log4j.properties (its contents look like Example 14-5).1.

Place the properties file in the WEB-INF/classes directory of the web application.2.

Import this class into your servlet: org.apache.log4j.Logger.3.

In the servlet, get a reference to the root logger with the static Logger.getRootLogger()

method, and start logging.

4.

Example 14-5 configures the root logger, a kind of "super logger" for your application, with a DEBUG

level. The root logger uses an appender named cons. This appender is of a type
org.apache.log4j.ConsoleAppender, meaning that it sends its log messages to the console.

Example 14-5. The log4j.properties file for creating a root logger
appender

log4j.rootLogger=DEBUG, cons

log4j.appender.cons=org.apache.log4j.ConsoleAppender

log4j.appender.cons.layout=org.apache.log4j.SimpleLayout

The third line of the log4j.properties file states that the logger will use a SimpleLayout , which logs
the level name (DEBUG), a dash (-), and the message itself. Example 14-6 shows the servlet that is

using the logger. log4j will find the log4j.properties file automatically in WEB-INF/classes because the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

servlet has not otherwise configured the logger with a call to BasicConfigurator.configure(), as

shown in Recipe 14.3.

Example 14-6. Using the root logger configured with the log4j.properties
file

package com.jspservletcookbook;

import org.apache.log4j.Logger;

import javax.servlet.*;
import javax.servlet.http.*;

public class LoggerWconfig extends HttpServlet {

 private Logger log = null;

 public void init(){

 //The root logger will get its configuration from
 //WEB-INF/classes/log4j.properties
 log = Logger.getRootLogger();

 log.info("LoggerWconfig started.");
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //display a DEBUG-level message
 log.debug("Sending a DEBUG message");

 // display an INFO-level message
 log.info("Sending an INFO message");

 //better display some HTML
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Servlet logging</title></head><body>");

 out.println(
 "<h2>Hello from a Logger with a log4j.properties file</h2>");

 out.println("Your logger name is: " + log.getName()+"
");

 out.println("</body></html>");
 } //end doGet

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 14-6 logs an INFO message in the servlet's init() method, then logs two messages in the
servlet's doGet() service method. The logger logs all of these messages to the console because this

is how the log4j.properties file configures the root logger's appender. This is what the console output
looks like:

INFO - LoggerWconfig started.
DEBUG - Sending a DEBUG message
INFO - Sending an INFO message

Figure 14-1 shows the servlet's output in a web browser.

Figure 14-1. The logger displays its name in a servlet

See Also

Recipe 14.2 on downloading and setting up log4j; Recipe 14.3 on using a log4j logger without a
properties file; Recipe 14.5-Recipe 14.8 on using log4j to design your own custom logging
mechanism; the log4j download site: http://jakarta.apache.org/log4j/docs/download.html; the log4j
Javadoc page: http://jakarta.apache.org/log4j/docs/api/index.html; the log4j project documentation
page: http://jakarta.apache.org/log4j/docs/documentation.html.

[Team LiB]

http://jakarta.apache.org/log4j/docs/download.html
http://jakarta.apache.org/log4j/docs/api/index.html
http://jakarta.apache.org/log4j/docs/documentation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 14.5 Using a Pattern with a Logger's Appender

Problem

You want to create your own logger for a servlet and give the logger an appender.

Solution

Include the appender configuration in the log4j.properties file.

Discussion

This recipe creates a new logger, which brings us to the discussion of log4j's inheritance structure.
The root logger is the "super logger" that all logger's inherit from, similar to java.lang.Object in

Java's object oriented programming setup. Example 14-7 creates a new logger named
com.jspservletcookbook, which inherits the root logger's level (DEBUG) and console appender
(named cons). Example 14-7 also creates an appender for the com.jspservletcookbook logger.

Place this log4j.properties file in the WEB-INF/classes directory.

Example 14-7. The configuration for a logger named
com.jspservletcookbook

log4j.rootLogger=DEBUG, cons
log4j.logger.com.jspservletcookbook=, myAppender

#the root logger's appender
log4j.appender.cons=org.apache.log4j.ConsoleAppender

#the com.jspservletcookbook logger's appender
log4j.appender.myAppender=org.apache.log4j.RollingFileAppender

log4j.appender.myAppender.File=h:/home/example.log

log4j.appender.myAppender.MaxBackupIndex=1

log4j.appender.myAppender.MaxFileSize=1MB

#the root logger's layout
log4j.appender.cons.layout=org.apache.log4j.SimpleLayout

#the com.jspservletcookbook logger's layout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

log4j.appender.myAppender.layout=org.apache.log4j.PatternLayout

log4j.appender.myAppender.layout.ConversionPattern=%-5p Logger:%c{1}
Date: %d{ISO8601} - %m%n

You probably noticed the similarity between package names and the name of the new logger in
Example 14-7: com.jspservletcookbook. log4j uses a naming scheme based on Java's. Here's the

basic rundown on this scheme:

All loggers inherit from the root logger.

All loggers whose name contains a prefix that matches a configured logger's name (such as
com.jspservletcookbook) also inherit from that configured logger. Therefore, a logger named
com.jspservletcookbook.LoggerWconfig derives its characteristics from the
com.jspservletcookbook logger.

In Example 14-7, the com.jspservletcookbook logger specifies that it will use an appender named
myAppender. The myAppender appender is a rolling file appender, which is a log file that automatically

creates a backup file when the original log reaches a certain size. The appender is based on the Java
class org.apache.log4j.RollingFileAppender, which is among the set of classes that log4j uses.

If you look at the Javadoc for that class, then you see that it has a bunch of methods that look like
getXXX(), where XXX is one of the logger's properties. You set these properties of the appender in
the configuration file by giving each property a value. To set the myAppender appender's File

property, the syntax is:

log4j.appender.myAppender.File=h:/home/example.log

This configuration element specifies the file location where the appender will log its messages. When
this file reaches its MaxFileSize of 1 MB, log4j renames the file example.log.1 and creates a new
example.log to receive log messages. The MaxBackupIndex means that log4j will create only one

backup file.

The Javadoc for RollingFileAppender can be found at:

http://jakarta.apache.org/log4j/docs/api/org/apache/log4j/RollingFileAppender.html.

Example 14-7 also specifies a layout for the com.jspservletcookbook logger, and a rather elaborate

one at that:

log4j.appender.myAppender.layout=org.apache.log4j.PatternLayout

log4j.appender.myAppender.layout.ConversionPattern=%-5p Logger:%c{1} Date:
%d{ISO8601} - %m%n

The first line specifies that the myAppender layout will use an org.apache.log4j.PatternLayout,
which is based on the conversion pattern of the printf function in C, according to the
PatternLayout Javadoc. This pattern language combines literal text and conversion specifiers to
generate a formatted log message. The conversion specifiers are letters (like c) that have special

meanings as placeholders. For example, the letters may represent dates or logger names.

http://jakarta.apache.org/log4j/docs/api/org/apache/log4j/RollingFileAppender.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The % character precedes the conversion pattern symbols. For example, consider the following

pattern:

Logger:%c{1}

This translates to "the literal text `Logger:' followed by the logger's name." The number 1 in curly
braces ({1}) following the %c characters is a precision specifier, which means "display just one

segment of the name beginning from the righthand side." If the logger is
com.jspservletcookbook.LoggerServlet, then the %c{1} pattern displays "LoggerServlet" in the
log text. This is because the c conversion specifier is a placeholder for the logger name.

The letter m displays the log message itself, the letter n produces the platform-specific line separator,
and the letter d represents the date. The entire string %d{ISO8601} is a log4j date formatter, which

displays the date in detailed form. See
http://jakarta.apache.org/log4j/docs/api/org/apache/log4j/helpers/ISO8601DateFormat.html.

Example 14.8 shows a servlet that uses a logger that inherits its characteristics from two configured
loggers: the root logger and the com.jspservletcookbook logger.

Example 14-8. A servlet uses a descendant logger

package com.jspservletcookbook;

import org.apache.log4j.Logger;

import javax.servlet.*;
import javax.servlet.http.*;

public class LoggerNewConfig extends HttpServlet {

private Logger log = null;

 public void init(){

 //the logger's name is the same as the class name:
 //com.jspservletcookbook.LoggerNewConfig
 log = Logger.getLogger(LoggerNewConfig.class);

 log.info("LoggerNewConfig started.");
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //display a DEBUG-level message
 log.debug("Sending a DEBUG message");

 // display an INFO-level message
 log.info("Sending an INFO message");

http://jakarta.apache.org/log4j/docs/api/org/apache/log4j/helpers/ISO8601DateFormat.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //better display some HTML
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Servlet logging</title></head><body>");

 out.println(
 "<h2>Hello from a Logger with its own configuration in the "+
 log4j.properties file</h2>");

 out.println("Your logger name is: " + log.getName()+"
");

 out.println(
 "Your logger parent is: " + log.getParent().getName()+"
");

 out.println("</body></html>");
 } //end doGet
}

The static org.apache.log4j.Logger.getLogger(Class className) method creates a logger
named after the class in Example 14.8 (com.jspservletcookbook.LoggerNewConfig). Therefore,

this new logger inherits the appender that the properties file in Example 14-7 set up for the logger
com.jspservletcookbook, because the new logger's name has com.jspservletcookbook as a
prefix. In fact, any other logger created in classes that are part of the com.jspservletcookbook

package inherits these properties, as long as the developer keeps naming her loggers after the Java
class in which they are created.

Here is an example of what the entire pattern the configuration file of Example 14-7 created
generates in the log file:

INFO Logger:LoggerNewConfig Date: 2003-07-10 17:16:22,713 - LoggerNewConfig started
DEBUG Logger:LoggerNewConfig Date: 2003-07-10 17:16:34,530 - Sending a DEBUG message
INFO Logger:LoggerNewConfig Date: 2003-07-10 17:16:34,530 - Sending an INFO message

Visit http://jakarta.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html for more details
on pattern layouts.

Because of the inheritance structure established by the log4j configuration file,
the servlet in Example 14-8 also logs its messages to the console.

See Also

Recipe 14.2 on downloading and setting up log4j; Recipe 14.3 on using a log4j logger without a
properties file; Recipe 14.4 on adding an appender to the root logger; Recipe 14.6 on using loggers in
JSPs; Recipe 14.7 and Recipe 14.8 on using log4j with application event listeners; the log4j download
site: http://jakarta.apache.org/log4j/docs/download.html; the log4j Javadoc page:
http://jakarta.apache.org/log4j/docs/api/index.html; the log4j project documentation page:
http://jakarta.apache.org/log4j/docs/documentation.html.

http://jakarta.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html
http://jakarta.apache.org/log4j/docs/download.html
http://jakarta.apache.org/log4j/docs/api/index.html
http://jakarta.apache.org/log4j/docs/documentation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 14.6 Using log4j in a JSP

Problem

You want to include logging statements in a JSP.

Solution

Design a custom tag that uses log4j to initiate logging messages.

Discussion

A custom tag is an XML element that you invent or design for use in a JSP. In other words, the JSP
container does not provide the custom actions; the web developer himself designs the Java classes that
provide the tag functionality. A custom tag or action can be used to implement log4j logging
functionality in JSPs.

In this recipe, I show:

A Java class that provides the tag handler for a custom tag named cbck:log .

A Tag Library Descriptor (TLD) that provides the web application with information about the tag.

A JSP page that uses the cbck:log tag.

Example 14-9 shows the Java class LoggerTag on which the cbck:log tag is based. Each custom action
is actually driven behind the scenes by one or more Java classes. In this case, LoggerTag is like a

JavaBean that wraps the log4j classes, which we import at the top of the tag class.

Custom JSP actions are a complex topic, so I explain this tag by focusing mainly on its log4j features.
See Chapter 22 to help fill in the missing spaces in your own knowledge about custom tag development.

Example 14-9. A custom tag that uses log4j

package com.jspservletcookbook;

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

import java.lang.reflect.Method;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class LoggerTag extends BodyTagSupport {

 private Logger log = null;
 private String configFile = null;
 private String level = null;
 private static final String[] LEVELS =
 { "debug","info","warn","error","fatal"};

 public void setConfigFile(String fileName){

 this.configFile = fileName;

 }

 public void setLevel(String level){

 this.level = level;

 }

 public int doEndTag() throws JspException {

 String realPath = pageContext.getServletContext().getRealPath("/");
 String fileSep = System.getProperty("file.separator");

 if (realPath != null && (!realPath.endsWith(fileSep))){
 realPath = realPath + fileSep;}

 //configure the logger if the user provides this optional attribute
 if (configFile != null)
 PropertyConfigurator.configure(realPath +
 "WEB-INF/classes/" + configFile);

 //throw an exception if the tag user provides an invalid level,
 //something other than DEBUG, INFO, WARN, ERROR, or FATAL

 level = level.toLowerCase();

 if (! contains(level))
 throw new JspException(
 "The value given for the level attribute is invalid.");

 //The logger has the same name as the class:
 //com.jspservletcookbook.LoggerTag. Therefore, it inherits its
 //appenders from a logger defined in the config file:
 //com.jspservletcookbook
 log = Logger.getLogger(LoggerTag.class);

 String message = getBodyContent().getString().trim();
 Method method = null;

 try{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 method = log.getClass().
 getMethod(level,new Class[]{ Object.class });

 method.invoke(log,new String[]{message});

 } catch (Exception e){}

 return EVAL_PAGE;
 } // doEndTag

 public void release(){

 //release resources used by instance variables
 log = null;
 configFile = null;
 level = null;

 }// release

 private boolean contains(String str){

 for (int i = 0; i < LEVELS.length; i++){

 if(LEVELS[i].equals(str))
 return true;
 }
 return false;
 }// contains
}

The LoggerTag extends the javax.servlet.jsp.tagext.BodyTagSupport class , which is designed for

custom actions that process body content, or the text that may appear between opening and closing
tags.

The tag attributes, a required attribute named level and the configFile optional attribute, are

handled like JavaBean properties: with "setter" methods (e.g., public void setLevel(String level
)). The doEndTag() method does most of the important work for the tag:

It attempts to configure the logger if the user has provided a configuration filename in the
configFile attribute.

1.

It checks if the level is valid (one of DEBUG , INFO , WARN , ERROR , or FATAL).2.

It logs the message.3.

Example 14-10 shows the TLD, which conveys tag specifics to the JSP container, such as whether an
attribute is required or optional. The tag library associated with this TLD describes only the cbck:log

tag. The TLD files must be located in WEB-INF or a subdirectory thereof, or inside of the META-INF
directory of a JAR that is placed in WEB-INF/lib .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 14-10. The TLD for the custom logger tag

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>

 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>cbck</short-name>
 <uri>jspservletcookbook.com.tags</uri>
 <description>Cookbook custom tags</description>

 <tag>
 <name>log</name>
 <tag-class>com.jspservletcookbook.LoggerTag</tag-class>
 <body-content>JSP</body-content>
 <description>This tag uses log4j to log a message.</description>

 <attribute>
 <name>configFile</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 <description>
 This attribute provides any configuration filename for the
 logger. The file must be located in
 WEB-INF/classes.
 </description>
 </attribute>

 <attribute>
 <name>level</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 <description>This attribute provides the level for the log request.
 </description>
 </attribute>

 </tag>
</taglib>

Example 14-11 shows the logger.jsp page and how the custom action can be used.

Example 14-11. A JSP uses a log custom action to access log4j

<%@page contentType="text/html"%>
<%@ taglib uri="jspservletcookbook.com.tags" prefix="cbck" %>
<html>
<head><title>A logging JSP</title></head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<body>
<h2>Here is the logging statement</h2>

<cbck:log level="debug">
Debug message from logger.jsp
</cbck:log>

Debug message from logger.jsp
</body>
</html>

First, the page uses the taglib directive to declare the tag library that contains our custom action.

Example 14-10 shows the TLD file, an XML file that describes the properties of a tag library's various
tags. Chapter 22 describes TLDs in more detail.

The cbck:log custom action allows a developer to log a message from the JSP by nesting the message
text within the cbck:log tag (i.e., the body content of the tag is the log message). The cbck part of the
tag is the prefix that the taglib directive declared. The log part is the name of the tag. The tag allows
the developer to declare the logging level with the custom action's level attribute.

Typically, a component such as an initialization servlet initializes the log4j logging
system when the web application starts up. The custom action described here
does not have to initialize log4j itself. However, I've included an optional
configFile attribute that permits me to specify the name of a log4j configuration

file, which will configure the logger's level, appender(s), and layout.

For this tag, assume that you want to decide which logging level to use, and thus pass in a value for the
level attribute. The tag class does not know whether the message will request a logging level of DEBUG
, INFO , WARN , ERROR , or FATAL . Since the logger's methods in log4j use the same name as the levels,
we can dynamically call the proper method based on the value of the level attribute. This is the

purpose of the code:

method = log.getClass().
 getMethod(level,new Class[]{ Object.class });

method.invoke(log,new String[]{message});

We get a java.lang.reflect.Method object that is named either DEBUG , INFO , WARN , ERROR , or
FATAL , and then invoke that method calling method.invoke , passing in the log message from the JSP

page.

A configuration filename is not required for this tag, so how does log4j know how and where to log the
message? This tag assumes that a servlet has already initialized the log4j system for the web
application, which is typical for the use of log4j in a web environment. The configuration file is the one
described by Recipe 14.4 and shown in Example 14-5 .

You can also use a servlet as an log4j -initialization servlet, similar to Example 14-
6 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

That configuration file created a logging mechanism that sends messages to the console and a file, so
that is where the custom tag's messages go. For example, running logger.jsp displays a message on the
console:

DEBUG - Debug message from logger.jsp

The tag's logger writes the following message in the file example.log :

DEBUG Logger:LoggerTag Date: 2003-05-12 12:53:13,750 - Debug message from logger.jsp

If you want to include your own configuration file, you can include a configFile attribute when using

the custom tag. The tag will configure the logger using that file instead of any previously initialized one:

if (configFile != null)
 PropertyConfigurator.configure(
 pageContext.getServletContext().getRealPath("/") +
 "WEB-INF/classes/" + configFile);

The PropertyConfigurator.configure() method allows you to specify the

name of a log4j properties file when you initialize the logging system, if the
filename is different than log4j.properties . The
PropertyConfigurator.configure() method (in log4j Version 1.2.8) does not

throw an exception that can be caught in the tag class. You could check for the
existence of the configFile value (representing the path to a file in the web
application) explicitly in the code using the java.io API, and then throw an
exception if the configFile attribute declares an invalid filename.

See Also

Recipe 14.2 on downloading and setting up log4j ; Recipe 14.3 on using a log4j logger without a
properties file; Recipe 14.4 on adding an appender to the root logger; Recipe 14.5 on using a pattern
layout with a logger's appender; Recipe 14.7 and Recipe 14.8 on using log4j with application event
listeners; the log4j download site: http://jakarta.apache.org/log4j/docs/download.html ; the log4j
Javadoc page: http://jakarta.apache.org/log4j/docs/api/index.html ; the log4j project documentation
page: http://jakarta.apache.org/log4j/docs/documentation.html .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 14.7 Logging Messages Using a Servlet Context
Event Listener

Problem

You want to log messages using log4j when a servlet context is created and shut down.

Solution

Use log4j and a servlet context event listener.

Discussion

The servlet API includes a listener interface named javax.servlet . ServletContextListener that

you can use to notify a specific Java class when a servlet context is created or shut down. This
notified class may want to log the servlet context creation or shut down or store an object attribute in
the servlet context, actions that the Java class (the listener) takes when it receives its notification.

The servlet context listener is an application event listener, a category that also includes session
event listeners (see Chapter 11 or Recipe 14.8) and request event listeners. For example, the
session event listener receives notifications when the servlet container creates new HTTP session
objects in order to track a user's progress through a web application. The servlet container notifies
the request event listener when a user makes a web application request, so that a listener can take
some kind of action-such as logging the user's IP address.

A javax.servlet.ServletContext is used to store attributes or access context parameters that are
common to a web application, get RequestDispatcher objects for forwarding or including files (see

Chapter 6), or get information such as an absolute pathname associated with a web resource. Every
web application has one associated servlet context.

There is one servlet context instance per web application (per Java Virtual
Machine (JVM), in the case of distributed web applications) according to the
ServletContext Javadoc:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html .

log4j is a good choice for generating custom-designed log messages from a class that implements the
ServletContextListener interface. Example 14-12 shows the ContextLogger class, which uses

log4j to send messages in its two methods.

Example 14-12. A servlet context event listener that sends log messages

package com.jspservletcookbook;

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

import javax.servlet.*;
import javax.servlet.http.*;

public class ContextLogger implements ServletContextListener {

 private Logger log;

 public ContextLogger(){}

 public void contextDestroyed(ServletContextEvent sce) {

 String name = sce.getServletContext().getServletContextName();

 //log request of the INFO level
 log.info("ServletContext shut down: " + (name == null ? "" : name));

 //do other necessary work, like clean up any left-over resources
 //used by the web app
 }

 public void contextInitialized(ServletContextEvent sce) {

 ServletContext context = sce.getServletContext();

 String realPath = context.getRealPath("/");
 String fileSep = System.getProperty("file.separator");

 //Make sure the real path ends with a file separator character ('/')
 if (realPath != null && (! realPath.endsWith(fileSep))){
 realPath = realPath + fileSep;}

 //Initialize logger here; the log4j properties filename is specified
 //by a context parameter named "logger-config"

 PropertyConfigurator.configure(realPath +
 "WEB-INF/classes/" + context.getInitParameter("logger-config"));

 log = Logger.getLogger(ContextLogger.class);

 String name = context.getServletContextName();

 //log request about servlet context being initialized
 log.info("ServletContext ready: " + (name == null ? "" : name));

 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Give this class a no-args constructor, place it in WEB-INF/classes or in a JAR located in WEB-INF/lib ,
and register it in web.xml :

<listener>
 <listener-class>
 com.jspservletcookbook.ContextLogger
 </listener-class>
</listener>

The ServletContextListener tracks the lifecycle of a servlet context with two methods:
contextInitialized() and contextDestroyed() . The servlet container calls the first method

when the servlet context is created and the web application is ready to receive its first request. The
container notifies the listener class and calls the contextDestroyed() method when the servlet

context is about to be shut down, such as when a web application is stopped prior to being reloaded.

Tomcat 4.1.24 initializes the servlet context listener prior to creating servlet instances, even if the
application configures the servlet to be preloaded. Example 14-12 initializes the log4j system in the
contextInitialized() method.

The deployment descriptor can instruct the servlet container to load a servlet
instance and call its init() method at startup by including a load-on-
startup element nested in the servlet element, as in:

<servlet>
 <servlet-name>logger</servlet-name>
 <servlet-class>
 com.jspservletcookbook.LoggerServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

The value of load-on-startup is an integer indicating the order in which the

container loads the servlet.

In the contextInitialized() method, the listener configures log4j using the file specified by a
context-param element in web.xml :

<context-param>
 <param-name>logger-config</param-name>
 <param-value>servletLog.properties</param-value>
</context-param>

This log4j configuration file (servletLog.properties) is located in the WEB-INF/classes directory. The
listener then logs its messages to the console and to a file when the web application starts up or is
shut down. Example 14-13 shows the configuration file the listener uses for log4j .

Example 14-13. Log4j configuration file used by the servlet context
listener

log4j.rootLogger=DEBUG, cons
log4j.logger.com.jspservletcookbook=, myAppender

http://lib.ommolketab.ir
http://lib.ommolketab.ir

log4j.appender.cons=org.apache.log4j.ConsoleAppender

#configure the 'myAppender' appender

log4j.appender.myAppender=org.apache.log4j.RollingFileAppender
log4j.appender.myAppender.File=h:/home/example.log
log4j.appender.myAppender.MaxBackupIndex=1
log4j.appender.myAppender.MaxFileSize=1MB

log4j.appender.cons.layout=org.apache.log4j.SimpleLayout
log4j.appender.myAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.myAppender.layout.ConversionPattern=
%-5p Logger:%c{1} Date: %d{ISO8601} - %m%n

The listener gets a logger with this code:

log = Logger.getLogger(ContextLogger.class);

This names the logger after the class com.jspservletcookbook.ContextLogger . Therefore, in the

log4j naming scheme, the listener's logger inherits the appender that Example 14-13 defines for the
logger com.jspservletcokbook . This is because the configuration does not define a logger for
com.jspservletcookbook.ContextLogger ; consequently, the listener's logger inherits the next
defined logger available: com.jspservletcookbook . The com.jspservletcookbook logger has a

console appender and a file appender.

As a result, the servlet context listener sends its log messages to the console and the
h:/home/example.log file. Example 14-13 has different layouts for the console and file appenders.
The listener's console messages look like this:

INFO - ServletContext shut down: The home web application
INFO - ServletContext ready: The home web application

The log file messages have a different format:

INFO Logger:ContextLogger Date: 2003-05-12 16:45:20,398 - ServletContext shut down:
The home web application
INFO Logger:ContextLogger Date: 2003-05-12 16:45:20,999 - ServletContext ready: The
home web application

The format of these messages consists of the name of the logging level (e.g., INFO), the logger

name, the date of the log request, and the message itself.

See Also

Recipe 14.2 on downloading and setting up log4j ; Recipe 14.3 on using a log4j logger without a
properties file; Recipe 14.4 on adding an appender to the root logger; Recipe 14.5 on using a pattern
layout with a logger's appender; Recipe 14.6 on using a logger with a JSP; Recipe 14.8 on using log4j
with session event listeners; the log4j download site:
http://jakarta.apache.org/log4j/docs/download.html ; the log4j Javadoc page:
http://jakarta.apache.org/log4j/docs/api/index.html ; the log4j project documentation page:
http://jakarta.apache.org/log4j/docs/documentation.html .

http://jakarta.apache.org/log4j/docs/download.html
http://jakarta.apache.org/log4j/docs/api/index.html
http://jakarta.apache.org/log4j/docs/documentation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 14.8 Logging Messages Using a Session Event
Listener

Problem

You want to log messages in a custom-designed manner from a session event listener.

Solution

Design a session event listener that uses a log4j logging mechanism.

Discussion

The servlet container notifies a session event listener class when it creates a new HttpSession, as

well as when it is about to invalidate or expire a session. Web applications use sessions to track a
user's progress through the web application, typically by identifying him with a cookie named
JSESSIONID. See Chapter 10 for more information on cookies, and Chapter 11 for detailed coverage

of sessions.

Example 14-14 implements the javax.servlet.http.HttpSessionListener interface and the
interface's two methods: sessionCreated() and sessionDestroyed(). The code logs messages
relating to new sessions in sessionCreated() and relating to invalidated sessions in
sessionDestroyed().

Example 14-14. Using log4j in a session event listener

package com.jspservletcookbook;

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

import javax.servlet.*;
import javax.servlet.http.*;

public class SessionLogger implements HttpSessionListener
{

 private Logger log;

 public SessionLogger(){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /*
 The loggers are typically initialized by a special initialization
 listener or servlet. If this is not the case, then initialize the
 logger here:

 java.util.ResourceBundle bundle =
 java.util.ResourceBundle.getBundle(
 "com.jspservletcookbook.global");

 PropertyConfigurator.configure(bundle.getString(
 "log-configure-path"));
 */

 log = Logger.getLogger(SessionLogger.class);

 }

 public void sessionCreated(HttpSessionEvent se) {

 //log request of the INFO level
 log.info("HttpSession created: " + se.getSession().getId());

 }

 public void sessionDestroyed(HttpSessionEvent se) {

 //log request about sessions that are invalidated
 log.info("HttpSession invalidated: " + se.getSession().getId());

 }
}

Give this class a no-args constructor, place it in WEB-INF/classes or in a JAR located in WEB-INF/lib,
and register it in web.xml:

<listener>
 <listener-class>
 com.jspservletcookbook.SessionLogger
 </listener-class>
</listener>

The SessionLogger class gets a logger in its constructor; it depends on the application already

having initialized the log4j logging mechanism in a servlet or in the servlet context listener (as in
Recipe 14.4).

A web application can configure its log4j mechanism using a special initialization
servlet or listener, so the other classes or beans that do logging do not have to
handle the log4j configuration stage. You can initialize the log4j logging
mechanism using a servlet such as the one shown in Recipe 14.6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The commented-out code in the constructor shows another way that this listener class could
configure its own logger in the event that the application has not yet configured the logging
mechanism.

Here is the message logged to the Tomcat console after the first request to a servlet or JSP that
participates in session tracking:

INFO - HttpSession created: A65481C53B92F869BD18961D635BBF52

When the session is invalidated, the console text is:

INFO - HttpSession invalidated: A65481C53B92F869BD18961D635BBF52

Like the listener described in Recipe 14.7, the session listener's logger inherits the logging
destinations or appenders from the com.jspservletcookbook logger. The configuration file of

Example 14-13 shows how this logger is set up to send messages to both the console and an
example.log file. The log file's appender layout is specified using a PatternLayout, which is a

different layout than the one used with the console appender. Here is example text from this log
when the servlet container invalidates a session:

INFO Logger:SessionLogger Date: 2003-05-12 20:41:05,367 - HttpSession invalidated:
A65481C53B92F869BD18961D635BBF52

See Also

Recipe 14.2 on downloading and setting up log4j; Recipe 14.3 on using a log4j logger without a
properties file; Recipe 14.4 on adding an appender to the root logger; Recipe 14.5 on using a pattern
layout with a logger's appender; Recipe 14.6 on using a logger with a JSP; Recipe 14.8 on using log4j
with session event listeners; the log4j download site:
http://jakarta.apache.org/log4j/docs/download.html; the log4j Javadoc page:
http://jakarta.apache.org/log4j/docs/api/index.html; the log4j project documentation page:
http://jakarta.apache.org/log4j/docs/documentation.html.

[Team LiB]

http://jakarta.apache.org/log4j/docs/download.html
http://jakarta.apache.org/log4j/docs/api/index.html
http://jakarta.apache.org/log4j/docs/documentation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 15. Authenticating Clients
Introduction

Recipe 15.1. Creating Users and Passwords with Tomcat

Recipe 15.2. Setting Up SSL on Tomcat

Recipe 15.3. Using BASIC Authentication

Recipe 15.4. Using Form-Based Authentication

Recipe 15.5. Logging Out a User

Recipe 15.6. Using JAAS to Create a LoginModule

Recipe 15.7. Creating the JAAS Configuration File

Recipe 15.8. Using JAAS in a Servlet

Recipe 15.9. Using JAAS in a JSP
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Because of the increase in digital commerce and a corresponding rise in the need to transfer and
store sensitive data (such as credit card numbers and financial accounts), security is of paramount
importance to Java web applications.

This chapter's recipes cover tasks that involve authentication, which is designed to answer the
question "are you who you say you are?" Authentication usually involves an interaction between a
client or user and server-side code for the purpose of checking a username and password (and
sometimes a digital certificate, biometric data, or other evidence) against stored information, such as
a user database.

The recipes describe how to set up Secure Sockets Layer (SSL), as well as use BASIC- and form-
based authentication with Apache Tomcat. The later recipes describe how to use a powerful security
framework called Java Authentication and Authorization Service (JAAS) with servlets and JSPs.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 15.1 Creating Users and Passwords with Tomcat

Problem

You want to create usernames and passwords for authenticating requests for certain web
components.

Solution

Add the usernames, passwords, and roles to the tomcat-users.xml file.

Discussion

A very easy method of authenticating users with Tomcat involves creating usernames, passwords,
and roles in the tomcat-users.xml file. This file is stored in <Tomcat-installation-directory>/conf.

Everyone is familiar with usernames and passwords, but what are roles? Roles are logical ways to
describe groups of users who have similar responsibilities, such as manager or databaseAdmin.
Example 15-1 shows a tomcat-users.xml file that creates two roles and two users with two aptly
named XML elements: role and user.

Example 15-1. The tomcat-users XML file

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>
 <role rolename="dbadmin"/>
 <role rolename="manager"/>
 <user username="BruceP" password="bwperry" roles="dbadmin,manager"/>
 <user username="JillH" password="jhayward" roles="manager"/>
</tomcat-users>

In Example 15-1, the user BruceP is associated with two roles (dbadmin and manager), while user
JillH is associated only with the manager role. Tomcat uses this file when authenticating users with

BASIC and form-based authentication, as described in Recipe 15.3 and Recipe 15.4.

See Also

The Tomcat documentation and Recipe 15.2 on setting up SSL for use with authentication:
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html; Recipe 3.9 on restricting requests

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

for certain servlets; Recipe 15.3 on using BASIC authentication; Recipe 15.4 on using form-based
authentication; Recipe 15.5 on logging out a user; Recipe 15.6-Recipe 15.9 on using JAAS.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 15.2 Setting Up SSL on Tomcat

Problem

You want to set up SSL on Tomcat so that you can transmit usernames and passwords in encrypted
form.

Solution

Create a digital certificate for the Tomcat server using the $JAVA_HOME\bin\keytool utility, then
uncomment the SSL Connector element in conf/server.xml.

Discussion

When transferring usernames and passwords over HTTP, you should set up SSL on Tomcat or
whichever application server you are using. This protocol ensures that the names and passwords are
in encrypted form as they travel across the network, and thus protected from theft and malicious use
by hackers and other intruders.

Setting up SSL on Tomcat 4 is a two-step process:

Use the keytool utility to create a keystore file encapsulating a digital certificate used by the

server for secure connections.

1.

Uncomment the SSL Connector element in Tomcat's conf/server.xml file, and alter its

attributes if necessary.

2.

The keytool utility is located in the bin subdirectory of the directory where you have installed the

JSDK. The following command line creates a single self-signed digital certificate for the Tomcat server
within a keystore file named .keystore. This file is created in the home directory of the user running
the command.

%JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA

The Unix version of this command is:

$JAVA_HOME\bin\keytool -genkey -alias tomcat -keyalg RSA

For this command to succeed, the JAVA_HOME environment variable must be set

to the directory where the Java 2 SDK is installed, such as h:\j2sdk1.4.1_01.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 15-2 shows the console output resulting from executing the keytool command. The
keytool will request some information about you and your organization, but you can accept the

default values by pressing Enter. This information is incorporated into the server's certificate and
presented to the user (via her web browser) when she requests any components with a URL that
starts with https://.

In setting up SSL for Tomcat, you must use the same password for both the keystore and the
certificate that is stored in the keystore.

The default password used in Tomcat is "changeit":
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html.

Example 15-2. The console output resulting from using the keytool utility

Enter keystore password: changeit
What is your first and last name?
 [Unknown]: Bruce Perry
What is the name of your organizational unit?
 [Unknown]:
What is the name of your organization?
 [Unknown]:
What is the name of your City or Locality?
 [Unknown]:
What is the name of your State or Province?
 [Unknown]:
What is the two-letter country code for this unit?
 [Unknown]:
Is CN=Bruce Perry, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown correct?
 [no]: yes

Enter key password for <tomcat>
 (RETURN if same as keystore password):

Finally, uncomment the SSL Connector element in the conf/server.xml file (shown in Figure 15-3) by
removing the comment characters around it (<!-- -->). Then restart Tomcat.

Example 15-3. The Connector element inside server.xml

<!-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->

<Connector className=
 "org.apache.coyote.tomcat4.CoyoteConnector" port=
 "8443" minProcessors="5" maxProcessors="75" enableLookups=
 "true" acceptCount="100" debug="0" scheme="https" secure="true"
 useURIValidationHack="false" disableUploadTimeout="true">

https://
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Factory className=
 "org.apache.coyote.tomcat4.CoyoteServerSocketFactory" clientAuth=
 "false" protocol="TLS" />

</Connector>

The Connector uses a different port number (8443) than that used by insecure HTTP connections (in

Tomcat, it's usually 8080). After you have restarted Tomcat, you can now make a secure connection
to a web component in the home application with a URL that looks like this:

https://localhost:8443/home/sqlJsp.jsp

Don't forget the https (as opposed to http) part in setting up these web links!

See Also

The Tomcat documentation on setting up SSL for use with authentication:
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html; Recipe 15.1 on creating
usernames and passwords in Tomcat; Recipe 15.3 on using BASIC authentication; Recipe 15.4 on
using form-based authentication; Recipe 15.5 on logging out a user; Recipe 15.6-Recipe 15.9 on
using the JAAS.

[Team LiB]

https://localhost:8443/home/sqlJsp.jsp
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 15.3 Using BASIC Authentication

Problem

You want to use BASIC authentication with web components in a Tomcat web application.

Solution

Use the security-constraint, login-config, and security-role elements in the deployment

descriptor to protect one or more URLs.

Discussion

BASIC authentication is a security method that has been used with web resources for several years,
and all popular browsers support it. This method of authentication involves the transfer of usernames
and passwords over a network encoded with the Base64 content-encoding mechanism. Base64 is
easy to decode and therefore not very secure. The solution is to combine BASIC authentication with
SSL, which will further encrypt the data as it is transferred across the network (see Recipe 15.2).

Here is how setting up BASIC authentication works with web applications that you have installed on
Tomcat:

Set up usernames, passwords, and roles in the conf/tomcat-users.xml file described in Recipe
15.1.

1.

Create a security-constraint element in the deployment descriptor (web.xml), specifying the

web resources for which you are requiring authentication.

2.

Include a login-config in web.xml; this element has a nested auth-method element that

contains the text "BASIC".

3.

When the user requests any of the protected resources, the server sends along
a response header that looks like this:

WWW-Authenticate: BASIC Realm="MyRealm"

You are probably familiar with what happens next: the browser displays a standard dialog window
requesting the client to provide a username and password (Figure 15-1). If the username and
password are incorrect, the browser will either give the user another chance to log in by redisplaying
the dialog window, or simply send back a server status code "401: Unauthorized" type of response.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The usernames and passwords in the conf/tomcat-users.xml file are case-
sensitive. The user has to type them into the dialog window using upper- and
lowercase letters exactly as they appear in conf/tomcat-users.xml.

Example 15-4 shows the web.xml elements that are designed to initiate BASIC authentication for the
URL pattern /sqlJsp.jsp.

Example 15-4. A security-constraint initiates authentication with a JSP
file

<!-- Beginning of web.xml deployment descriptor -->

<security-constraint>

 <web-resource-collection>

 <web-resource-name>JSP database component</web-resource-name>

 <url-pattern>/sqlJsp.jsp</url-pattern>

 <http-method>GET</http-method>
 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>
 <role-name>dbadmin</role-name>
 </auth-constraint>

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>

</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<security-role>
 <role-name>dbadmin</role-name>
</security-role>

<!-- Rest of web.xml deployment descriptor -->

The security-constraint element in Example 15-4 contains a web-resource-collection element.

This element specifies the following constraints that apply to any requests for /sqlJsp.jsp:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The constraints apply to any GET or POST requests (as specified by the http-method elements).

The auth-constraint element nested inside security-constraint contains the role-name

dbadmin. Therefore, the requestor must enter the proper username and password (as specified
in the tomcat-users.xml file) and be associated with the dbadmin role. Only those who have the
dbadmin role can gain access to the protected web resource, even if they enter a proper
username and password.

Figure 15-1 shows the dialog box that Netscape 7.1 produces when Tomcat is using BASIC
authentication. The URL is used is https://localhost:8443/home/sqlJsp.jsp.

Figure 15-1. A browser dialog window requests a name and password

Notice that the URL uses a secure connection to request the JSP: an HTTPS protocol and port 8443
on Tomcat.

Figure 15-2 shows a browser window after a client has failed authentication.

Figure 15-2. A server status code 401 page as viewed in the web browser

https://localhost:8443/home/sqlJsp.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The Tomcat documentation and Recipe 15.2 on setting up SSL for use with authentication:
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html; Recipe 3.9 on restricting requests
for certain servlets; Recipe 15.5 on logging out a user; Recipe 15.6-Recipe 15.9 on using JAAS.

[Team LiB]

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 15.4 Using Form-Based Authentication

Problem

You want to design your own form to receive the user's name and password during BASIC authentication.

Solution

Use the login-config element in the deployment descriptor and give its nested auth-method element a

value of "FORM".

Discussion

The servlet API offers an alternative to using plain-vanilla BASIC authentication: form-based authentication
. This method allows you to design your own form for receiving the user's name and password, as well as
specifying the informative page that the servers send to the client if the user's authentication fails. This
gives you the ability to provide a much more friendly and customized user interface for applications
involving BASIC authentication.

The form-based method should still be combined with SSL and the HTTPS protocol so
that the names and passwords are encrypted as they travel through the network.

Example 15-5 shows the form-based setup for the web application's deployment descriptor. It differs from
Recipe 15.3 s setup in one area: the login-config element, which is emphasized in the following code

sample.

Example 15-5. The web.xml elements designed for form-based authentication

<!-- Beginning of web.xml deployment descriptor -->

<security-constraint>
 <web-resource-collection>
 <web-resource-name>JSP database component</web-resource-name>
 <url-pattern>/sqlJsp.jsp</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>dbadmin</role-name>
 </auth-constraint>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>

</security-constraint>

<login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/login.html</form-login-page>
 <form-error-page>/loginError.jsp</form-error-page>

 </form-login-config>

</login-config>

<security-role>
 <role-name>dbadmin</role-name>
</security-role>

<!-- Rest of web.xml deployment descriptor -->

The auth-method element includes the text "FORM". The form-login-config element specifies the login

(/login.html) and authentication failure page (/loginError.html) that your application uses. The forward
slash (/) preceding the filenames means to navigate to the page from the web application's root directory.

Almost by magic, if a user requests a protected resource in your application, the server sends him the
login.html page (in this example) instead of initiating the typical behavior in which the browser displays its
own dialog window. If the name and password the user enters turns out to be incorrect, the server routes
his request to the loginError.html page.

Example 15-6 shows the login.html page, for reference.

Example 15-6. The login form

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
 <title>Welcome</title>
</head>

<body bgcolor="#ffffff">
<h2>Please Login to the Application</h2>

<form method="POST" action="j_security_check">

<table border="0"><tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<td>Enter the username: </td><td>

<input type="text" name="j_username" size="15">

</td>
</tr>
<tr>
<td>Enter the password: </td><td>

<input type="password" name="j_password" size="15">

</td>
</tr>
<tr>
<td> <input type="submit" value="Submit"> </td>
</tr>
</table>

</form>

</body>
</html>

Figure 15-3 shows what this form looks like in a web browser.

Figure 15-3. A form for use with form-based authentication

With form-based authentication, the form tag's action attribute must have the value "j_security_check".

The input elements for the username and password must specify the values "j_user_name" and
"j_password", respectively, for their name attributes.

Figure 15-4 shows the HTML page that the server sends the user if her authentication fails.

Figure 15-4. Form-based authentication allows the inclusion of your own

http://lib.ommolketab.ir
http://lib.ommolketab.ir

login-failure page

Example 15-7 shows the source for this page. The form-based approach is more predictable and friendlier
than the various browsers' methods for dealing with BASIC authentication.

Example 15-7. The server displays the loginError.jsp page when
authentication fails

<html>
<head>
 <title>Login Error</title>
</head>
<body bgcolor="#ffffff">
<h2>We Apologize, A Login Error Occurred</h2>
Please click here for another try.
<%-- Or, dynamically list hyperlinks to your protected resources here, perhaps by getting
them from a database or configuration file, instead of hard-coding a link into the error
page. --%>

</body>
</html>

See Also

The Tomcat documentation and Recipe 15.2 on setting up SSL for use with authentication:
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html ; Recipe 3.9 on restricting requests for
certain servlets; Recipe 15.5 on logging out a user; Recipe 15.6 -Recipe 15.9 on using JAAS.

[Team LiB]

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 15.5 Logging Out a User

Problem

You want to log out a user in a system that uses form-based authentication.

Solution

Call invalidate() on the user's HttpSession object.

Discussion

Invalidating a user's HttpSession object will log the user out in an application that uses form-based
authentication. Naturally, this code involves calling HttpSession.invalidate(). Example 15-8

displays some information about a logged-in user, then logs him out by invalidating his session. The
next time this user requests a protected resource, the web application will send him to the configured
login page, because he has been logged out of the application.

Example 15-8. Logging out a user

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class LogoutServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)throws ServletException,
 java.io.IOException {

 HttpSession session = request.getSession();
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Authenticated User Info</title></head><body>");
 out.println("<h2>Logging out a user</h2>");
 out.println("request.getRemoteUser() returns: ");
 //get the logged-in user's name
 String remUser = request.getRemoteUser();
 //Is the request.getRemoteUser() return value null? If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //so, then the user is not authenticated
 out.println(remUser == null ? "Not authenticated." : remUser);
 out.println("
");
 out.println("request.isUserInRole(\"dbadmin\") returns: ");
 //Find out whether the user is in the dbadmin role
 boolean isInRole = request.isUserInRole("dbadmin");
 out.println(isInRole);
 out.println("
");
 //log out the user by invalidating the HttpSession
 session.invalidate();
 out.println("</body></html>");

 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 doGet(request,response);

 } //doPost

} //LogoutServlet

A logged-in user who requests this servlet sees the output in Figure 15-5. The servlet displays the
return values of HttpServletRequest.getRemoteUser() (the username) and
HttpServletRequest.isUserInRole() . The latter method returns a boolean value indicating
whether the user is associated with the role specified by the method's String parameter.

Figure 15-5. A servlet shows some user-related information before
logging out the user

The servlet then invalidates the user's session to log her out. Rerequesting the servlet produces the
output shown in Figure 15-6.

Figure 15-6. The servlet's output indicates a logged-out user

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The Tomcat documentation and Recipe 15.2 on setting up SSL for use with authentication:
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html; Recipe 3.9 on restricting requests
for certain servlets; Recipe 15.6-Recipe 15.9 on using JAAS.

[Team LiB]

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/ssl-howto.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 15.6 Using JAAS to Create a LoginModule

Problem

You want to use the Java Authentication and Authorization Service (JAAS) to create an authentication
module that a servlet or JSP can use.

Solution

Create a javax.security.auth.spi.LoginModule class for your application, then store the class

under WEB-INF/classes or WEB-INF/lib (in a JAR file).

Discussion

The JAAS is a security API that can be used to create standalone, pluggable authentication or
authorization tools for Java applications. Pluggable means that the JAAS security code is not bound to
a particular application; it is stored in a JAR file and can be dropped or plugged into web applications
and other types of Java programs.

JAAS is a Java version of a framework named Pluggable Authentication Module
(PAM). Here's a link to a paper on that very topic:
http://java.sun.com/security/jaas/doc/pam.html.

For the sake of clarity, Recipe 15.5-Recipe 15.7 describe a simple example of JAAS authentication
that requires two classes, and one servlet that uses the JAAS API. In our examples, these classes are
stored in WEB-INF/classes. However, many organizations have a complex security architecture that
calls for a more extensive authentication and authorization model, and thus more Java code and
objects. In these cases, you'll want to create a separate package name for your JAAS code, archive it
in a JAR file, and place it in WEB-INF/lib for web applications to use.

Take the following steps to use JAAS for authenticating web clients:

Make sure you have installed the JAAS packages for use with a web application. JAAS has been
integrated into the Java 2 1.4 SDK, so you can use JAAS if Tomcat or your application server is
using this version of Java. See the following web site if you are using Java 1.3, which requires
you to download and install JAAS as a Java extension:
http://java.sun.com/products/jaas/index-10.html.

1.

Create a LoginModule class to handle the authentication. This class must be stored in WEB-2.

3.

http://java.sun.com/security/jaas/doc/pam.html
http://java.sun.com/products/jaas/index-10.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

INF/classes or in a JAR file placed in WEB-INF/lib.

2.

Create a CallbackHandler class that deals with interaction with the client to get its username
and password. Store this class with your LoginModule.

3.

Create a JAAS configuration file that specifies which LoginModule(s) you are using for

authentication. Place the configuration file in a location where the JAAS-related code can read it
(see the description of the configuration file in Recipe 15.7).

4.

Include a LoginContext object in servlet code and call its login() method.5.

Authentication checks whether a user or client has a particular identity, which is
typically one of a set of usernames and passwords. JAAS can also be used for
authorization, which specifies the extent of access to data a user has once she
is successfully authenticated. This recipe focuses solely on authentication.

In order to make clearer a rather complex matter, I have broken these steps up into three recipes:

This recipe describes steps 1-3.

Recipe 15.6 shows how to create the JAAS configuration file.

Recipe 15.7 uses the JAAS authentication classes in a servlet.

Example 15-9 shows a class that implements the javax.security.auth.spi.LoginModule

interface. It performs most of the work in identifying clients, and uses packages that are part of the
JAAS API (emphasized with bold in the code sample). You have to make this class available to the
servlet engine by placing it in WEB-INF/classes or in a JAR file stored in WEB-INF/lib.

Example 15-9. The LoginModule for web authentication

package com.jspservletcookbook;

import java.util.Map;
import java.sql.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.security.auth.spi.LoginModule;
import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;

import javax.sql.*;

public class DataSourceLoginModule implements LoginModule {

 //These instance variables will be initialized by the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //initialize() method
 CallbackHandler handler;
 Subject subject;
 Map sharedState;
 Map options;

 private boolean loginPassed = false;

 public DataSourceLoginModule(){}//no-arguments constructor

 public void initialize(Subject subject, CallbackHandler handler,
 Map sharedState, Map options){

 this.subject = subject;
 this.handler = handler;
 this.sharedState = sharedState;
 this.options = options;

 }

 public boolean login() throws LoginException {

 String name = "";
 String pass = "";

 Context env = null;
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 DataSource pool = null;

 boolean passed = false;

 try{

 //Create the CallBack array to pass to the
 //CallbackHandler.handle() method
 Callback[] callbacks = new Callback[2];

 //Don't use null arguments with the NameCallback constructor!
 callbacks[0] = new NameCallback("Username:");

 //Don't use null arguments with PasswordCallback!
 callbacks[1] = new PasswordCallback("Password:", false);

 handler.handle(callbacks);

 //Get the username and password from the CallBacks
 NameCallback nameCall = (NameCallback) callbacks[0];

 name = nameCall.getName();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PasswordCallback passCall = (PasswordCallback) callbacks[1];

 pass = new String (passCall.getPassword());

 //Look up our DataSource so that we can check the username and
 //password
 env = (Context) new InitialContext().lookup("java:comp/env");

 pool = (DataSource) env.lookup("jdbc/oracle-8i-athletes");

 if (pool == null)
 throw new LoginException(
 "Initializing the DataSource failed.");

 //The SQL for checking a name and password in a table named
 //athlete
 String sql = "select * from athlete where name='"+name+"'";

 String sqlpass = "select * from athlete where passwrd='"+pass+"'";

 //Get a Connection from the connection pool
 conn = pool.getConnection();

 stmt = conn.createStatement();

 //Check the username
 rs = stmt.executeQuery(sql);

 //If the ResultSet has rows, then the username was
 //correct and next() returns true
 passed = rs.next();

 rs.close();

 if (! passed){

 loginPassed = false;
 throw new FailedLoginException(
 "The username was not successfully authenticated");

 }

 //Check the password
 rs = stmt.executeQuery(sqlpass);

 passed = rs.next();

 if (! passed){

 loginPassed = false;
 throw new FailedLoginException(
 "The password was not successfully authenticated");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else {

 loginPassed = true;
 return true;

 }

 } catch (Exception e){

 throw new LoginException(e.getMessage());

 } finally {

 try{

 //close the Statement
 stmt.close();

 //Return the Connection to the pool
 conn.close();

 } catch (SQLException sqle){ }

 } //finally

 } //login

 public boolean commit() throws LoginException {

 //We're not doing anything special here, since this class
 //represents a simple example of login authentication with JAAS.
 //Just return what login() returned.
 return loginPassed;
 }

 public boolean abort() throws LoginException {

 //Reset state
 boolean bool = loginPassed;
 loginPassed = false;

 return bool;
 }

 public boolean logout() throws LoginException {

 //Reset state
 loginPassed = false;
 return true;

 } //logout

http://lib.ommolketab.ir
http://lib.ommolketab.ir

} //DataSourceLoginModule

A class that implements LoginModule has to implement the interface's five declared methods:
initialize() , login(), commit(), abort(), and logout(). login() initiates the main task

of checking the username and password and determining whether to successfully authenticate the
client. Since this is a simple example, the DataSourceLoginModule focuses on the login() method.

The other methods in Example 15-9 simply reset the object's state so that it can perform another
authentication, although a more complex login process involves other tasks, such as setting up
authorization-related objects for the authenticated user.

JAAS is a quite comprehensive framework. Refer to Sun Microsystems'
documentation (http://java.sun.com/products/jaas/) for guidance in developing
more advanced JAAS programs than those described in this recipe.

JAAS separates the responsibility for interacting with the client (such as getting the username and
password) and performing authentication into CallbackHandlers and LoginModules, respectively.
The LoginModule in Example 15-9 uses a CallbackHandler to get the username and password,

then checks this information by accessing a table from an Oracle 8i database. The module uses a
JNDI lookup to get access to the database, which Chapter 21 explains in detail.

Basically, the LoginModule borrows a Connection from a database-connection pool, uses SQL
SELECT statements to check the client's name and password, then returns the Connection to the

shared pool by closing it.

The CallbackHandler in Example 15-10 gets the client's username and password from HTTP request
parameters. The class's constructor includes a ServletRequest argument, from which the class can
derive request parameters by calling ServletRequest 's getParameter() method. This process will

become much clearer when you see how the servlet (see Example 15-11 in Recipe 15.7) uses these
classes to perform the authentication.

Example 15-10. A CallbackHandler for use in web authentication

package com.jspservletcookbook;

import javax.security.auth.callback.*;
import javax.servlet.ServletRequest;

public class WebCallbackHandler implements CallbackHandler {

 private String userName;
 private String password;

 public WebCallbackHandler(ServletRequest request){

 userName = request.getParameter("userName");
 password = request.getParameter("password");

 }

http://java.sun.com/products/jaas/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void handle(Callback[] callbacks) throws java.io.IOException,
 UnsupportedCallbackException {

 //Add the username and password from the request parameters to
 //the Callbacks
 for (int i = 0; i < callbacks.length; i++){

 if (callbacks[i] instanceof NameCallback){

 NameCallback nameCall = (NameCallback) callbacks[i];

 nameCall.setName(userName);

 } else if (callbacks[i] instanceof PasswordCallback){

 PasswordCallback passCall = (PasswordCallback) callbacks[i];

 passCall.setPassword(password.toCharArray());

 } else{

 throw new UnsupportedCallbackException (callbacks[i],
 "The CallBacks are unrecognized in class: "+getClass().
 getName());

 }

 } //for
 } //handle

}

Just to summarize how the LoginModule and CallbackHandler fit together before you move on to
the next two recipes, one of the LoginContext's constructors takes a CallbackHandler as its second

parameter, as in the following code:

WebCallbackHandler webcallback = new WebCallbackHandler(request);
LoginContext lcontext = null;

 try{

 lcontext = new LoginContext("WebLogin",webcallback);
 } catch (LoginException le) { //respond to exception...}

Recipe 15.7 shows how to create a JAAS configuration file, which specifies the LoginModule(s) that

certain applications will use during authentication.

See Also

Sun Microsystems' JAAS developer's guide:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html; a list of JAAS

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

tutorials and sample programs:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html; the Javadoc relating to
JAAS configuration files:
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html; Recipe 15.9
on using JAAS with a JSP.

[Team LiB]

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 15.7 Creating the JAAS Configuration File

Problem

You want to create the JAAS configuration file.

Solution

Create the configuration file, then specify the configuration's location on your filesystem in the
${java.home}/jre/lib/security/java.security file.

Discussion

Using JAAS also involves writing a configuration file to identify the LoginModule(s) that a particular

application will use. The configuration file in Example 15-11 specifies an application named
"WebLogin."

Example 15-11. A JAAS configuration file

WebLogin {
 com.jspservletcookbook.DataSourceLoginModule requisite;
};

Although only one module is specified in this recipe, one of the powerful features of the JAAS security
design is to use multiple LoginModules or layers in order to authenticate users. A user might have to

be authenticated in several ways before she gains access to web components and data (e.g., first her
irises are scanned, then she must specify a username and password).

The configuration file specifies:

The fully qualified class name of the LoginModule(s).

A "Flag" value, which is just a constant expression such as "required" or "requisite." The
example uses "requisite." Table 15-1 describes the different Flag values.

One or more "options" (Example 15-11 does not identify any options). The options represent a
space-separated list of name/value pairs, such as debug="true" (you can use any name/value
pairing you want). The options allow the configuration file to pass properties and values to the
underlying LoginModule.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 15-1. Flag values for JAAS configuration files

Flag
name

Description

Required

The LoginModule is required to succeed, and overall authentication fails if a
LoginModule marked "required" fails. However, if a failure occurs, authentication still
continues down the LoginModule list.

Requisite

The LoginModule is required to succeed, and runtime control returns to the application
(rather than continuing with any other listed LoginModules) if authentication failure

occurs.

Sufficient

If the LoginModule succeeds, control returns to the application and does not continue
with any other listed LoginModules. If an authentication failure occurs, authentication
continues with any other LoginModule. In other words, the failure of this LoginModule

does not automatically lead to the failure of overall authentication, as in "required" or
"requisite."

Optional
Success is not required with this LoginModule. If authentication success or failure
occurs, authentication continues with any other listed LoginModules.

The basic structure of the configuration file looks like this:

ApplicationName{

 ModuleName Flag Options;
 ModuleName Flag Options;
 ModuleName Flag Options;
};

AnotherApplication{

 ModuleName Flag Options;
 ModuleName Flag Options;
};

Again, you do not have to use multiple LoginModules.

See this Javadoc page for more details on configuration:
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html.

How does the JAAS implementation find the configuration file? The directory
${java.home}/jre/lib/security contains a file named java.security. This is a "properties" or "policy"
file in Java security parlance-a text file containing name/value pairs. The following line of text
provides the location of the JAAS configuration file for the authentication servlet of Example 15-11:

login.config.url.1=file:h:/home/.java.login.config

http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have other JAAS configuration files that you want to combine with this one, use syntax similar
to login.config.url.2=file:h:/home/.my.config (note the incremented number 2), placed within

the java.security file.

You can use any filenaming convention; the configuration filename does not
have to begin with a period.

A single JAAS configuration file can specify the LoginModule(s) for multiple application names. Recipe
15.8 shows a servlet that uses the LoginModule described in Recipe 15.5.

See Also

Sun Microsystems' JAAS developer's guide:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html; a list of JAAS
tutorials and sample programs:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html; the Javadoc relating to
JAAS configuration files:
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html; Recipe 15.8
on using JAAS with a servlet; Recipe 15.9 on using JAAS with a JSP.

[Team LiB]

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 15.8 Using JAAS in a Servlet

Problem

You want to authenticate servlet clients with JAAS.

Solution

Create a JavaBean that wraps the functionality of the JAAS API classes that you have included in your
web application.

Discussion

Using JAAS in a servlet requires that you have a LoginModule installed in your web application, either

in WEB-INF/classes or stored in a JAR file in WEB-INF/lib.

Example 15-12 shows a servlet named LoginServlet that implements JAAS authentication. This
servlet uses the CallbackHandler described in Recipe 15.5. This CallbackHandler must also be

placed in WEB-INF/classes or included in a JAR stored in WEB-INF/lib. A browser request for this
servlet looks like:

http://localhost:8080/home/servlet/com.jspservletcookbookLoginServlet?
userName=Bruce%20W%20Perry&password=bwp1968

Use a POST request from an HTML form in conjunction with SSL (Recipe 15.2) if you want to use the

much more secure strategy of keeping usernames and passwords out of visible URLs.

Example 15-12. A servlet for authenticating and logging in clients

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import javax.security.auth.callback.CallbackHandler;

public class LoginServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)

http://localhost:8080/home/servlet/com.jspservletcookbookLoginServlet?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws ServletException, java.io.IOException {

 //The CallbackHandler gets the username and password from
 //request parameters in the URL; therefore, the ServletRequest is
 //passed to the CallbackHandler constructor
 WebCallbackHandler webcallback = new WebCallbackHandler(request);

 LoginContext lcontext = null;

 boolean loginSuccess = true;

 try{

 lcontext = new LoginContext("WebLogin",webcallback);

 //this method throws a LoginException
 //if authentication is unsuccessful
 lcontext.login();

 } catch (LoginException lge){

 loginSuccess = false;

 }

 response.setContentType("text/html");

 java.io.PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Thanks for logging in</title>"+
 "</head><body>");

 out.println("<h2>Your logged in status</h2>");

 out.println(""+ (loginSuccess ? "Logged in" :
 "Failed Login"));

 out.println("</body></html>");

 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 doGet(request,response);

 } //doPost

} //LoginServlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This servlet:

Creates a WebCallbackHandler (Example 15-10) and passes the ServletRequest into the
constructor (from where the CallbackHandler gets the client's name and password).

1.

Creates a LoginContext object with two constructor parameters: the name of the login

application (from our configuration file in Recipe 15.6, "WebLogin") and the
WebCallbackHandler object.

2.

Calls the LoginContext 's login() method, which beneath the surface calls the
DataSourceLoginModule 's login() method (from Example 15-9), in order to perform

authentication.

3.

Figure 15-7 shows the web browser output when an attempted login using this servlet succeeds.

Figure 15-7. The LoginServlet signals success

See Also

Recipe 15.6 on creating a JAAS LoginModule; Recipe 15.7 on creating the JAAS configuration file;

Chapter 21 on accessing databases with servlets; Sun Microsystems' JAAS developer's guide:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html; a list of JAAS
tutorials and sample programs:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html; the Javadoc relating to
JAAS configuration files:
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html; Recipe 15.9
on using JAAS with a JSP.

[Team LiB]

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 15.9 Using JAAS in a JSP

Problem

You want to use a JSP and JAAS to authenticate clients.

Solution

Create a JavaBean that wraps the functionality of the JAAS API classes that you have included in your
web application.

Discussion

Recipe 15.5 -Recipe 15.7 cover the JAAS basics, so this recipe focuses on adapting a JSP to the JAAS
security API.

The JSP in this recipe uses a JavaBean to perform the login.

The JavaBean in Example 15-13 has two properties (in the form of instance variables): a
ServletRequest and a boolean value indicating whether the name and password have passed the
login test. The bean passes the ServletRequest to the WebCallbackHandler constructor; the
WebCallbackHandler ultimately extracts the username and password from request parameters.

Example 15-13. A JavaBean uses the JAAS API to perform authentication

package com.jspservletcookbook;

import javax.servlet.ServletRequest;

import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

public class LoginBean {

 //private bean instance variables or properties
 private ServletRequest req;
 boolean loginSuccess;

 public LoginBean(){ }//bean's no-args constructor

 public boolean getLoginSuccess() throws LoginException {

 //the ServletRequest property has to be set before this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //method is called, because that's where we get the
 //username and password from

 if (req == null)
 throw new IllegalStateException(
 "The ServletRequest cannot be null in getLogin()");

 WebCallbackHandler webcallback = new WebCallbackHandler(req);

 try{

 LoginContext lcontext = new LoginContext(
 "WebLogin",webcallback);

 //Call the LoginContext's login() method; if it doesn't
 //throw an exception, the method returns true
 lcontext.login();

 return true;

 } catch (LoginException lge){

 //login failed because the LoginContext.login() method
 //threw a LoginException
 return false;

 }

 } //getLoginSuccess

 public void setReq(ServletRequest request) {

 if (request == null)
 throw new IllegalArgumentException(
 "ServletRequest argument was null in: "+
 getClass().getName());

 this.req = request;

 } //setReq

} // LoginBean

The bean depends on its ServletRequest property being set properly before the getLoginSuccess(
) method is called. This method performs the login by using the familiar LoginContext class and its
login() method (that is, familiar if you read Recipe 15.5 !).

The Java object using the bean knows that the login succeeded or failed based on the boolean return
value of the getLoginSuccess() method. The object using the bean in this case is a servlet instance

originating from the JSP in Example 15-14 .

The JSP includes the jsp:useBean standard action to create an instance of the LoginBean (in a

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variable named jaasBean). Then the code uses JSTL tags to:

Set the bean's ServletRequest property (named req) to the current request (using c:set).1.

Find out whether the login succeeded by using the EL syntax to call the bean's
getLoginSuccess() method.

2.

This recipe combines many Java-related technologies. See Chapter 23 for a
description of the JSTL and its associated EL syntax.

Example 15-14. A JSP that logs in users using the JAAS API and a
JavaBean

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Authenticating JSP</title></head>
<body>
<h2>Here is your login status...</h2>

<jsp:useBean id="jaasBean" class="com.jspservletcookbook.LoginBean" />

<%-- The bean's 'req' property is set using the 'request' property of the Expression
Language's pageContext implicit object --%>

<c:set target="${jaasBean}" value="${pageContext.request}"
property="req"/>

<c:choose>

 <c:when test="${jaasBean.loginSuccess}">
 Logged in successfully.
 </c:when>

 <c:otherwise>
 Login failed.
 </c:otherwise>

</c:choose>

</body>
</html>

The LoginBean has a getLoginSuccess() method that returns false if the login fails, and true if it

succeeds. With the EL, you can call any of a bean's accessor methods with the terminology:

bean name.bean property name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The bean property name part represents the actual property name, not the name of the method,

even though the end result of using this syntax is that the accessor method associated with that
property gets called. Therefore, Example 15-14 gets the return value of the getLoginSuccess()

method by using:

${jaasBean.loginSuccess}

If this expression returns true , the JSP displays the text "Logged in successfully." Otherwise, it

shows "Login failed."

Figure 15-8 shows the JSP's browser display when a login fails.

Figure 15-8. A JSP signals a login failure

See Also

Recipe 15.6 on creating a JAAS LoginModule ; Recipe 15.7 on creating the JAAS configuration file;

Recipe 15.8 on using JAAS with a servlet; Chapter 23 on the JSTL; Sun Microsystems' JAAS
developer's guide: http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASLMDevGuide.html ;
a list of JAAS tutorials and sample programs:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html ; the Javadoc relating to
JAAS configuration files:
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html .

[Team LiB]

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/j2se/1.4.1/docs/api/javax/security/auth/login/Configuration.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 16. Binding, Accessing, and
Removing Attributes in Web Applications

Introduction

Recipe 16.1. Setting ServletContext Attributes in Servlets

Recipe 16.2. Setting ServletContext Attributes in JSPs

Recipe 16.3. Accessing or Removing ServletContext Attributes in Servlets

Recipe 16.4. Accessing or Removing ServletContext Attributes in JSPs

Recipe 16.5. Setting Session Attributes in Servlets

Recipe 16.6. Setting Session Attributes in JSPs

Recipe 16.7. Accessing or Removing Session Attributes in Servlets

Recipe 16.8. Accessing or Removing Session Attributes in JSPs

Recipe 16.9. Setting Request Attributes in Servlets

Recipe 16.10. Setting Request Attributes in JSPs

Recipe 16.11. Accessing or Removing Request Attributes in Servlets

Recipe 16.12. Accessing or Removing Request Attributes in JSPs
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

An attribute is a Java object that servlet code can bind, or store, in a certain scope, such as a
ServletContext, a session, or a request. The object can temporarily store and share a small piece of

data in a way that is not otherwise available to servlet developers. Then, when the application no
longer has use for the object, your code can remove, or unbind it, and the web container makes the
object available for garbage collection.

This chapter describes how to work with attributes in all three scopes: ServletContext, session, and

request. If you need to make an object available to all of the servlets and JSPs in a context, then you
can bind the object to a ServletContext. If the application calls for an object such as a "shopping

cart" to be bound to a session (see Chapter 11), you can set the object as a session attribute. Finally,
if the application requires two servlets that communicate via a RequestDispatcher to share an

object, then the servlets can use an object attribute bound to a request scope.

Since sessions and requests are associated with numerous users in a busy web
application, developers have to pay attention to the size and resource use of
any objects that are bound as attributes to requests or sessions.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.1 Setting ServletContext Attributes in Servlets

Problem

You want to make an object available to all servlets in a context or web application.

Solution

Bind an object to the ServletContext using the javax.servlet.ServletContext.setAttribute()

method.

Discussion

A ServletContext attribute is available to all servlets and JSPs in a context or web application. Here
are the steps to bind an object to a ServletContext :

Create the Java class that you want to bind to a ServletContext .1.

Place the class in the WEB-INF/classes directory, including the necessary package-related
directories. You can also store the class in a JAR file in WEB-INF/lib .

2.

Create a servlet that binds the object to the ServletContext using the
javax.servlet.ServletContext.setAttribute() method.

3.

Access the object using ServletContext.getAttribute() in (other) servlets whenever it is

needed.

4.

I'll first show the object that this recipe binds to the ServletContext . The recipe then demonstrates
a servlet that stores the object attribute in the ServletContext . Example 16-1 shows a simple
object wrapped around a java.util.Map type. Use the Map to store a characteristic of each request
made to the web application. In this example, each Map key is the IP address of the client making the
request. Each Map value is the date it requested the servlet.

Example 16-1. The object that a servlet binds to the ServletContext

package com.jspservletcookbook;

import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

public class ContextObject {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private Map map;

 public ContextObject(){

 map = Collections.synchronizedMap(new HashMap());
 }

 public void put(Object key, Object value){

 if (key == null || value == null)
 throw new IllegalArgumentException(
 "Invalid parameters passed to ContextObject.put");

 map.put(key,value);
 }

 public String getValues(){

 StringBuffer buf = new StringBuffer("");
 Set set = map.keySet();

 //you have to explicitly synchronize when an Iterator is used
 synchronized(map) {

 Iterator i = set.iterator();

 while (i.hasNext())
 buf.append((String) i.next() + "
");
 }//synchronized

 return buf.toString();

}

 public String toString(){

 return getClass().getName() + "[" +map+ "]";

 }//toString

}

The ContextObject class has methods to add keys and values to the Map (put(Object key , Object

value)) as well as to output the Map 's current key values (getValues()). The Map is
synchronized, which is essentially thread-safe; it is created in the ContextObject 's constructor in the

following manner:

map = Collections.synchronizedMap(new HashMap());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you generate a Map using the static
java.util.Collections.synchronizedMap() method, only one thread at a
time can call the Map 's methods. This is important with ServletContext

attributes that may be accessed by several servlets and/or multiple threads at
the same time.

Example 16-2 shows the skeleton of the ContextBinder servlet that binds an instance of the
ContextObject class in Example 16-1 to the ServletContext .

Example 16-2. A servlet binds an object to the ServletContext

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class ContextBinder extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response) throws
 ServletException, java.io.IOException {

 //bind an object to the ServletContext
 getServletContext().setAttribute(
 "com.jspservletcookbook.ContextObject", new ContextObject());

 //display some HTML
 ...
 } //end doGet
}

The servlet method getServletContext() returns a javax.servlet.ServletContext instance.
You then call that instance's setAttribute() method with the String attribute name and the

bound object as parameters. As a convention, you should consider naming attributes after their fully
qualified class name-in this case, "com.jspservletcookbook.ContextObject."

See Also

Recipe 16.2 on setting ServletContext attributes in JSPs; Recipe 16.3 on accessing or removing a
ServletContext attribute; Recipe 16.5 -Recipe 16.8 on handling session attributes in servlets and

JSPs; Recipe 16.9 -Recipe 16.12 on handling request attributes in servlets and JSPs; Recipe 14.5 on
using a ServletContext event listener; the Javadoc for
javax.servlet.ServletContextAttributeListener :

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html .

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.2 Setting ServletContext Attributes in JSPs

Problem

You want to store an object attribute in the ServletContext using a JSP.

Solution

Use the JSTL c:set tag to bind an object to application scope. The JSTL uses the application
implicit object to represent the ServletContext, which is also the scope used for the object

attributes discussed in the previous recipe.

Discussion

JSP developers can use the JSTL core tags and the jsp:useBean standard action to implement the

same functionality as the servlet in Recipe 16.1. Like the program in that recipe, the upcoming JSP
stores in the ServletContext an object attribute that contains a java.util.Map type. The Map

stores key/value pairs that are accessed by other servlets or JSPs in the same context.

Here are the steps to bind an attribute to the ServletContext using a JSP:

Create the Java class that you will instantiate and bind to the ServletContext.1.

Place the Java class in the WEB-INF/classes directory, including any package-related directories
(if the class is named com.jspservletcookbook.ContextObject then place the class in WEB-

INF/classes/com/jspservletcookbook), or in WEB-INF/lib if the class is stored in a JAR file.

2.

Create the JSP that will bind the object attribute to the ServletContext. Store the JSP in the

web application's top-level directory.

3.

If the web container does not already provide the JSTL-related components, include them in
WEB-INF/lib (see Chapter 23) so that the JSP can use these tag libraries.

4.

First I show the object attribute that the JSP binds to the ServletContext. Example 16-3 is the
same Java class as Example 16-1, except for the getMap() method, which returns the Map type that
this object uses to store information. I added this method to make the Map available to the c:set

core tag (see Example 16-4). Because the two code samples are exactly the same except for the
getMap() method, Example 16-3 has been abbreviated to show just the creation of the

synchronized map and its getter method (see Example 16-1 for the other parts of the class).

Example 16-3. The object attribute bound to the ServletContext by a JSP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.jspservletcookbook;

import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

public class ContextObject {

 private Map map;

 public ContextObject(){

 map = Collections.synchronizedMap(new HashMap());
 }

 public Map getMap(){

 return map;

 }
// see Example 16-1 for the other parts of the class
}

Example 16-4 does the work of creating an instance of the object attribute and then binding the
attribute to the ServletContext. The code creates the ContextObj instance (which is stored in the
ServletContext) with the jsp:useBean standard action. Then the c:set JSTL core tag stores this
object in application scope, which is an alias for the ServletContext. The ContextObj class stores
information with a Map type that it contains. This code in Example 16-4 stores data in the
ServletContext attribute:

<c:set target=
 "${applicationScope[\"com.jspservletcookbook.ContextObject\"].map}"
 value="${date}" property="${pageContext.request.remoteAddr}"/>

The value of the target attribute has the effect of calling getMap() on the ContextObj object. The
code then creates a new key-value pair in the Map, consisting of the remote IP address of the client

making the request (the key) and the current date (the value). I chose this information at random to
demonstrate how to store pieces of data in a ServletContext attribute using the JSTL and JSPs.

Your own code may store data of practical value to your application such as a customer's unique ID
and the item that he is purchasing.

Example 16-4. The contextBind.jsp file

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Context binding JSP</title></head>
<body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h2>Here is the bound ContextObject</h2>

//create an instance of ContextObject; store it as a Page scoped attribute
<jsp:useBean id="contextObj" class=
 "com.jspservletcookbook.ContextObject" />

//create an instance of Date; store it as a Page scoped attribute
<jsp:useBean id="date" class="java.util.Date" />

//bind the object to the ServletContext represented by the
//'application' implicit object
<c:set var=
 "com.jspservletcookbook.ContextObject" value="${contextObj}" scope=
 "application" />

//create a new key/value pair in the bound object's Map
<c:set target=
 "${applicationScope[\"com.jspservletcookbook.ContextObject\"].map}"
 value="${date}" property="${pageContext.request.remoteAddr}"/>

</body>
</html>

After looking at this code, you may wonder why the ContextObject variable is effectively named
twice, once by jsp:useBean when it creates the object (giving the object an id or name
contextObj) and again by c:set when it binds the object to the ServletContext (and creating the
name com.jspservletcookbook.ContextObject).

By convention, you should name the attribute after its fully qualified class name. However, you
cannot use this format with jsp:useBean, because this action creates a Java variable in the
underlying servlet. The Java variable is named contextObj.

The JSP container creates a servlet behind the scenes to implement each JSP
page.

You cannot include period (.) characters when naming Java variables, so the code renames the object
in c:set's var attribute when the object is bound to the ServletContext.

See Also

Chapter 23 on using the JSTL; Recipe 16.1 on setting ServletContext attributes in servlets; Recipe
16.4 on accessing or removing a ServletContext attribute in a JSP; Recipe 16.5-Recipe 16.8 on

handling session attributes in servlets and JSPs; Recipe 16.9-Recipe 16.12 on handling request
attributes in servlets and JSPs; Recipe 14.5 on using a ServletContext event listener; the Javadoc
for javax.servlet.ServletContextAttributeListener:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.3 Accessing or Removing ServletContext
Attributes in Servlets

Problem

You want to access a ServletContext attribute to work with it in code, or completely remove it.

Solution

Use the ServletContext.getAttribute(String attributeName) method to access the attribute.
Use the ServletContext.removeAttribute(String attributeName) method to remove the
attribute from the ServletContext.

Discussion

The code in Example 16-5 gets the ServletContext attribute and stores it in a local variable. Then
the code adds a new key/value to the attribute (which contains a java.util.Map type for storing the

keys and values). Later, the servlet prints out a list of the attribute's keys, which are IP addresses
associated with requests to the servlet.

Example 16-5. Accessing a ServletContext attribute in a servlet

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class ContextAccessor extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //get a ServletContext attribute
 ContextObject contextObj = (ContextObject)
 getServletContext().getAttribute(
 "com.jspservletcookbook.ContextObject");

 if (contextObj != null)
 contextObj.put(request.getRemoteAddr(),""+

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new java.util.Date());

 //display the context attribute values
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Context Attribute</title></head><body>");

 if (contextObj != null){
 out.println("<h2>ServletContext Attribute Values</h2>");
 out.println(contextObj.getValues());
 } else {
 out.println("<h2>ServletContext Attribute is Null</h2>");
 }
 out.println("</body></html>");
 } //end doGet
}

Example 16-1 in Recipe 16.1 shows the ContextObject source code. Here, the ContextObject put(
) method passes its key and value parameters to the Map method of the same name, except that the
ContextObject put() method does not allow null values for either its keys or values.

If you want to remove the same attribute that was bound by this recipe, call the
ServletContext.removeAttribute() method with the attribute name as a parameter:

getServletContext().removeAttribute(
 "com.jspservletcookbook.ContextObject");

After the attribute removal code executes, any further calls to ServletContext.getAttribute()
using the same attribute name will return null.

See Also

Recipe 16.1 and Recipe 16.2 on setting ServletContext attributes in servlets and JSPs; Recipe 16.5-

Recipe 16.8 on handling session attributes in servlets and JSPs; Recipe 16.9-Recipe 16.12 on
handling request attributes in servlets and JSPs; Recipe 14.5 on using a ServletContext event
listener; the Javadoc for javax.servlet.ServletContextAttributeListener:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html.

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.4 Accessing or Removing ServletContext
Attributes in JSPs

Problem

You want to access or remove a ServletContext attribute in a JSP.

Solution

Use the c:out JSTL core tag to display the value of an attribute and the c:remove tag to remove the
attribute from the ServletContext.

Discussion

By now you are probably familiar with the object attribute that the previous recipes stored in the
ServletContext under the name com.jspservletcookbook.ContextObject. If you are not, Recipe

16.1 and Recipe 16.2 show the source code for this class and how it is bound as an attribute to a
servlet and a JSP. This recipe shows the JSTL tags that you can use in JSP code to access this
attribute and optionally remove or unbind it.

Example 16-6 includes the taglib directive that is required for using JSTL 1.0 tags in a JSP. The
c:out tag then accesses the ServletContext attribute in the tag's value attribute. The tag gets the
value of the ServletContext attribute by using the applicationScope JSTL implicit object, which is
a java.util.Map type.

Example 16-6. Accessing an application attribute in a JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
//HTML or other presentation code here...
<c:out value=
 "${applicationScope[\"com.jspservletcookbook.ContextObject\"].values}"
 escapeXml="false" />

An implicit object is an object that the JSTL automatically makes available to
the developer. You use the term applicationScope within ${...} characters,
and this term evaluates to a java.util.Map of any object attributes that are
bound to the ServletContext.

The code:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

${applicationScope[\"com.jspservletcookbook.ContextObject\"].values}

uses EL syntax to access the ServletContext attribute named
com.jspservletcookbook.ContextObject and get its values property, which effectively calls the
getValues() method on the ContextObject object. This method displays all the keys of the Map
contained by ContextObject, separated by an HTML line break (
). The attribute
escapeXml="false" prevents the < and > characters in
 from being escaped (and being replaced
by < and >, respectively), which would prevent its proper display in a web browser.

If I wanted to make the ContextObject more universal, I could include a

JavaBean property allowing the user of the class to set the line separator, so
that the output of the getValues() method could be used in different

contexts, not just HTML.

Figure 16-1 shows the result of accessing a JSP that uses this code in a browser.

Figure 16-1. Accessing a ServletContext bound attribute in a JSP

To remove the attribute from the ServletContext, use the c:remove JSTL tag. This tag removes the

named variable from the specified scope:

<c:remove var=
 "com.jspservletcookbook.ContextObject" scope="application" />

application is an alias for the ServletContext. After a JSP that contains this tag is executed, any
further attempts to access a ServletContext attribute of the same name will return null.

See Also

Chapter 23 on using the JSTL; Recipe 16.1 and Recipe 16.2 on setting ServletContext attributes in
servlets and JSPs; Recipe 16.3 on accessing or removing ServletContext attributes in servlets;

Recipe 16.5-Recipe 16.8 on handling session attributes in servlets and JSPs; Recipe 16.9-Recipe

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.12 on handling request attributes in servlets and JSPs; Recipe 14.5 on using a ServletContext
event listener; the Javadoc for javax.servlet.ServletContextAttributeListener:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html.

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.5 Setting Session Attributes in Servlets

Problem

You want to store an object attribute in a session.

Solution

Use the javax.servlet.http.HttpSession class's setAttribute() method.

Discussion

The mechanism for placing object attributes in sessions is very similar to storing objects in the
ServletContext , which Recipe 16.1 described. The difference lies in the scope of the objects; in other

words, which users and how many concurrent users can access the bound objects.

A session represents the interaction of a user with a web site. The sequence of web pages or components
that a single user requests from a web site represents a single session (detailed in Chapter 11). Therefore,
when you store an object instance in a session attribute, every user who participates in sessions interacts
with his own instance of that object attribute. With ServletContext attributes, however, all of the

application's users interact with the same attribute instance, since each web application has only one
ServletContext and each context is associated with one attribute instance.

A distributed web application has one ServletContext instance per Java virtual
machine (JVM). Instead of using the ServletContext to store information globally
for the application, the ServletContext Javadoc makes brief mention of using a

database instead, to ensure that servlets in a distributed application are accessing
the same data. See the ServletContext Javadoc at:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html .

A shopping cart storing a user's item choices is an example of an object that web developers typically store
as a session attribute. Example 16-7 shows a fragment of servlet code for storing an object in a session.

Example 16-7. Storing an object attribute in a session

<!-- this code appears in the servlet's doGet or doPost method, whichever is appropriate -
->

//Create a session if one does not exist yet
HttpSession session = request.getSession();

//bind an object attribute in the session

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

if (session != null)
session.setAttribute(
 "com.jspservletcookbook.ContextObject", new ContextObject());

Gain access to a session in a servlet by using the javax.servlet.http.HttpServletRequest object's
getSession() method. Then call HttpSession.setAttribute() , passing in the name of the attribute
and an instance of the object attribute. The code in Example 16-7 uses the same ContextObject that
Example 16-1 showed (Recipe 16.1). The ContextObject uses a synchronized java.util.Map type to

handle multiple threads that might be using the attribute concurrently.

Pay attention to the possibility of multiple threads accessing a session object
attribute. According to the servlet specification v2.4 (Chapter SRV.7.7.1), "Multiple
servlets executing request threads may have active access to a single session object
at the same time. The developer has the responsibility for synchronizing access to
session resources as appropriate."

See Also

Recipe 16.1 -Recipe 16.4 on handling ServletContext attributes in servlets and JSPs; Recipe 16.7 on

accessing or removing session attributes in servlets; Recipe 16.6 and Recipe 16.8 on handling session
attributes in JSPs; Recipe 16.9 -Recipe 16.12 on handling request attributes in servlets and JSPs; Recipe
14.6 on using a session event listener; the Javadoc for
javax.servlet.http.HttpSessionAttributeListener :

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html .

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.6 Setting Session Attributes in JSPs

Problem

You want to bind an object to a session in a JSP.

Solution

Use the jsp:useBean and c:set tags to create an instance of an object and assign it as an attribute

to the session.

Discussion

The JSTL core tags and the jsp:useBean standard action can be used to manage session attributes

in JSPs. Example 16-8 binds an object attribute to a session, displays a value from the object, and
then shows the session ID of the client who requested the JSP. The bound object is the
ContextObject that I have used throughout this chapter as the stored attribute. It contains a
java.util.Map type for storing the IP addresses of users who request the JSP (see Example 16-1

and the accompanying description of the code).

Example 16-8. Setting a session attribute in a JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
<head><title>Context binding JSP</title></head>
<body>
<h2>Here are the values from the bound ContextObject</h2>
<%-- Create instances of the ContextObject and Date classes --%>
<jsp:useBean id="contextObj" class=
 "com.jspservletcookbook.ContextObject" />

<jsp:useBean id="date" class="java.util.Date" />

<%-- Bind the object attribute to the session scope--%>
<c:set var=
 "com.jspservletcookbook.ContextObject" value="${contextObj}" scope=
 "session" />

<%-- Put a value in the object, then display the value--%>
<c:set target=
 "${sessionScope[\"com.jspservletcookbook.ContextObject\"].map}" value=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "${date}" property="${pageContext.request.remoteAddr}"/>

<c:out value="${sessionScope[\"com.jspservletcookbook.ContextObject\"].
 values}" escapeXml="false" />

<h2>Here is the session ID</h2>
<c:out value="${pageContext.session.id}" />
</body>
</html>

This code from Example 16-8 binds the object to the session:

<c:set var=
 "com.jspservletcookbook.ContextObject" value="${contextObj}" scope=
 "session" />

The only difference between Example 16-8 and the JSP of Recipe 16.2, which binds the object to the
ServletContext, is the value of the scope attribute in the c:set tag (session in this case). In
similar fashion, the c:set tag sets a value in the session attribute by referring to the sessionScope

implicit variable:

<c:set target=
 "${sessionScope[\"com.jspservletcookbook.ContextObject\"].map}" value=
 "${date}" property="${pageContext.request.remoteAddr}"/>

The EL mechanism automatically makes available the sessionScope implicit variable, which
represents a java.util.Map type that stores any object variables in session scope.

If you have an attribute name that does not include period characters in it, you
can provide the attribute name without any further context, and the EL will
search the page , request, session, and application scopes for an attribute

of that name. For example, the following EL syntax returns a session object
attribute named contextObj without using an implicit variable (or null if that

session attribute does not exist) to further qualify the name:

${contextObj}

See Also

Chapter 23 on using the JSTL; Recipe 16.1-Recipe 16.4 on handling ServletContext attributes in

servlets and JSPs; Recipe 16.7 on accessing or removing session attributes in servlets; Recipe 16.8
on accessing or removing session attributes in JSPs; Recipe 16.9-Recipe 16.12 on handling request
attributes in servlets and JSPs; Recipe 14.6 on using a session event listener; the Javadoc for
javax.servlet.http.HttpSessionAttributeListener:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html.

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.7 Accessing or Removing Session Attributes in
Servlets

Problem

You want to access or remove a session attribute in a servlet.

Solution

Use the javax.servlet.http.HttpSession.getAttribute(String attributeName) method to access

the attribute. Use the removeAttribute(String attributeName) method to remove the attribute from

the session.

Discussion

To access a session attribute, you must first bind the attribute to a session, as in Recipe 16.5 . The object
attribute is now available to the user associated with that session. Example 16-9 accesses an attribute
named com.jspservletcookbook.ContextObject . The example just shows the code relating to accessing
an attribute from the session. Example 16-5 in Recipe 16.3 shows the entire servlet and doGet() method

for accessing an object attribute.

The HttpSession.getAttribute() method returns an Object type, so the return

value has to be cast to the appropriate type before calling any methods on it.

Example 16-9. Gaining access to the session attribute in a servlet

package com.jspservletcookbook;
...
<!-- this code appears in the servlet's doGet or doPost method, whichever is appropriate.
The ContextObject class is stored in WEB-INF/classes/com/jspservletcookbook/ -->

//Create a session if one does not exist yet
HttpSession session = request.getSession();

//This local variable will hold the object attribute
ContextObject contextObj = null;

//get access to an object attribute in the session
if (session != null)
 contextObj = (ContextObject) session.getAttribute(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "com.jspservletcookbook.ContextObject");

//ensure the contextObj is not null before calling any methods
if (contextObj != null)
 out.println(contextObj.getValues());

<!-- rest of servlet class and doGet or doPost method goes here -->

You must take these steps before accessing a session attribute:

Compile the class of the object that will be stored in the session.1.

Place this class in WEB-INF/classes or in WEB-INF/lib if it's stored in a JAR file.2.

Make sure a servlet, JSP, or other web component sets the attribute to the session with the
HttpSession.setAttribute() method.

3.

Removing the session attribute from a servlet

To remove an attribute, call HttpSession.removeAttribute() with the name of the attribute. Use the

following code in a servlet to remove the attribute this chapter has been working with:

HttpSession session = request.getSession();
<!-- HttpSession.removeAttribute will have no effect if an attribute of that name
does not exist -->

if (session != null)
 session.removeAttribute("com.jspservletcookbook.ContextObject");

Now the attribute is no longer available in the session associated with the user that requested the servlet.
The session attribute is still available in other sessions where it may be stored (albeit in the form of a
different instance). Each user is associated with a specific session, and each session can carry its own
instance of the object attribute.

When you remove the attribute from the ServletContext , on the other hand, it is
no longer available to any users, because there is only one ServletContext for each

nondistributed web application.

See Also

Recipe 16.1 -Recipe 16.4 on handling ServletContext attributes in servlets and JSPs; Recipe 16.5 on

setting session attributes in servlets; Recipe 16.6 on setting session attributes in JSPs; Recipe 16.8 on
accessing or removing session attributes in JSPs; Recipe 16.9 -Recipe 16.12 on handling request attributes
in servlets and JSPs; Recipe 14.6 on using a session event listener; the Javadoc for
javax.servlet.http.HttpSessionAttributeListener :

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html .

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.8 Accessing or Removing Session Attributes in
JSPs

Problem

You want to access or remove a session attribute in a JSP.

Solution

Use the c:out JSTL core tag to display the value of an attribute and the c:remove tag to remove the

attribute from the session.

Discussion

Here are the steps to access or remove a session-scoped variable with the JSTL and a JSP:

Make sure that your web application is able to use the JSTL (i.e., you have the proper JAR files
such as jstl.jar and standard.jar in your WEB-INF/lib directory; see Chapter 23 for instructions).

1.

Include the taglib directive, which makes the JSTL core tags available to the JSP (see the

upcoming code).

2.

Make sure the object attribute is bound to the session in the first place, either by the same JSP
that accesses the attribute, or by another web component (such as a servlet).

3.

The code in this recipe shows how to reference a session-scoped variable, as opposed to a
ServletContext attribute (shown in Recipe 16.4). This code uses the sessionScope implicit object

of the EL, which is an automatically available variable in EL format that contains any session-scoped
object attributes. This code represents a portion of a JSP that displays the values contained in an
attribute named com.jspservletcookbook.ContextObject.

Example 16-4 in Recipe 16.2 shows a complete JSP that accesses object
attributes. Recipe 16.2 accesses a ServletContext attribute in a JSP, rather

than a session-scoped attribute.

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
//HTML or other presentation code here...
<c:out value=
 "${sessionScope[\"com.jspservletcookbook.ContextObject\"].values} "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 escapeXml="false" />

The escapeXml="false" part of the c:out tag tells the tag to leave characters
that are part of the tag's output such as < and > unescaped (in other words, do
not convert them to character entities such as < and >).

This JSP code removes a session-scoped variable using the c:remove core tag:

<c:remove var=
 "com.jspservletcookbook.ContextObject" scope="session" />

The object attribute is no longer available for the individual session associated with the user that
requested this JSP. In other words, the c:remove tag does not remove all session attributes of the

specified name, just the session attribute(s) associated with any user who requests the JSP
containing the c:remove tag.

See Also

Chapter 23 on using the JSTL; Recipe 16.1-Recipe 16.4 on handling ServletContext attributes in

servlets and JSPs; Recipe 16.5 on setting session attributes in servlets; Recipe 16.6 on setting
session attributes in JSPs; Recipe 16.7 on accessing or removing session attributes in servlets;
Recipe 16.9-Recipe 16.12 on handling request attributes in servlets and JSPs; Recipe 14.6 on using a
session event listener; the Javadoc for javax.servlet.http.HttpSessionAttributeListener:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html.

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.9 Setting Request Attributes in Servlets

Problem

You want to use a servlet to store an attribute in a request.

Solution

Use the javax.servlet.ServletRequest.setAttribute() method.

Discussion

The ServletRequest.setAttribute() method is often used in code that dynamically forwards
requests or includes content with a javax.servlet.RequestDispatcher.

Web applications that use RequestDispatchers to share requests between web components can

communicate between these components using request attributes. Both the recipient of the
RequestDispatcher.forward() method and the included file or page involved with the
RequestDispatcher.include() method have access to the original or enclosing request.

Therefore, these web components can also access any object attributes that are stored in those
requests.

The servlet in Example 16-10 creates an instance of a ContextObject, stores some information in
the object by calling its put() method, and then places the object in the HttpServletRequest

under the name "com.jspservletcookbook.ContextObject." The servlet then uses a
RequestDispatcher to forward the request (including the attribute) and response to the servlet path

/displayAttr. The web component mapped to that servlet path now has access to the previously
created request attribute.

Example 16-10. Binding an object to a request

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class RequestBinder extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //bind an object to the request
 ContextObject contextObj = new ContextObject();

 contextObj.put(request.getRemoteAddr(), ""+new java.util.Date());

 request.setAttribute(
 "com.jspservletcookbook.ContextObject",contextObj);

 //use RequestDispatcher to forward request to another servlet
 // mapped to the servlet path '/displayAttr'
 RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/displayAttr");

 dispatcher.forward(request,response);

 } //doGet

}

Example 16-11 shows the servlet that receives the forwarded request. The RequestDisplay servlet

is mapped in web.xml to the /displayAttr servlet path. This servlet gets the request attribute from the
HttpServletRequest object by calling getAttribute() with the attribute name:
com.jspservletcookbook.ContextObject. Since the return value of getAttribute() is typed to
Object, the code must cast the result to ContextObject.

Example 16-11. The target of RequestDispatcher.forward has access to
the request attribute

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class RequestDisplay extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, java.io.IOException {

 ContextObject obj = (ContextObject) request.getAttribute(
 "com.jspservletcookbook.RequestObject");

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Request Attribute</title></head><body>");
 out.println("<h2>Request attribute values</h2>");

 //display the keys of the java.util.Map stored in the request object
 //attribute
 if (obj != null)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println(obj.getValues());

 out.println("</body></html>");

} //end doGet

}

Make sure to check whether the ServletRequest.getAttribute() return value is null before
calling any of the object attribute's methods. The getAttribute() method returns null if the

request does not contain an attribute of the specified name.

See Also

Recipe 16.1-Recipe 16.4 on handling ServletContext attributes in servlets and JSPs; Recipe 16.5-

Recipe 16.8 on handling session attributes in servlets and JSPs; Recipe 16.10 on setting request
attributes in JSPs; Recipe 16.11 and Recipe 16.12 on accessing or removing request attributes in
servlets and JSPs; the Javadoc for javax.servlet. ServletRequestAttributeListener:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html.

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.10 Setting Request Attributes in JSPs

Problem

You want to set a request attribute using a JSP.

Solution

Use the JSTL core tags and the jsp:useBean standard action to create an instance of an object and

bind it to the request.

Discussion

The JSP in Example 16-12 stores a com.jspservletcookbook.ContextObject in the request scope
by first creating an instance of that object with jsp:useBean. As in Recipe 16.2 and Recipe 16.6, the
code uses the c:set tag to bind the object to the request, but this time gives its scope attribute a
value of request.

You should store the classes for the objects that JSPs use as request attributes
in WEB-INF/classes, or in WEB-INF/lib if the class is part of a JAR file.

The JSP in Example 16-12 is exactly like the JSP code shown in Recipe 16.2 and Recipe 16.6, except
this time the code uses the requestScope implicit object to fetch the request attribute and give it a
new property and value. The requestScope is used in EL syntax (see Chapter 23) to access request

attributes.

Example 16-12. Setting a request attribute and forwarding the request in
a JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="contextObj" class=
 "com.jspservletcookbook.ContextObject" />

<jsp:useBean id="date" class="java.util.Date" />
<c:set var="com.jspservletcookbook.ContextObject" value=
 "${contextObj}" scope="request" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<c:set target=
 "${requestScope[\"com.jspservletcookbook.ContextObject\"].map}" value=
 "${date}" property="${pageContext.request.remoteAddr}"/>

<jsp:forward page="/displayAttr" />

After setting the request attribute and giving it some values, the JSP forwards the request to the
servlet path /displayAttr. The servlet or JSP mapped to that path has access to the new request
attribute.

See Also

Chapter 23 on using the JSTL; Recipe 16.1-Recipe 16.4 on handling ServletContext attributes in

servlets and JSPs; Recipe 16.5-Recipe 16.8 on handling session attributes in servlets and JSPs;
Recipe 16.11 and Recipe 16.12 on accessing or removing request attributes in servlets and JSPs; the
Javadoc for javax.servlet. ServletRequestAttributeListener:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html.

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.11 Accessing or Removing Request Attributes
in Servlets

Problem

You want a servlet to access or remove a request attribute.

Solution

Use the javax.servlet.ServletRequest.getAttribute() and
javax.servlet.ServletRequest.removeAttribute() methods, including the name of the

attribute as the method parameter.

Discussion

Example 16-13 is derived from the doGet() method of Example 16-11 in Recipe 16.9 (refer to that

class if you need to review the complete code of a servlet handling request attributes). Example 16-
13 gets an object attribute from the HttpServletRequest object, which is the doGet() method's

first parameter.

The servlet container creates an HttpServletRequest object and passes it as
the first parameter to all of the HttpServlet's service methods, including
doGet() and doPost().

Example 16-13 calls one of the attribute's methods, then removes the request attribute.

Example 16-13. A servlet accesses and removes a request attribute

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException {

 ContextObject obj = (ContextObject) request.getAttribute(
 "com.jspservletcookbook.ContextObject");

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Request Attribute</title></head><body>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //display the attribute's Map keys
 out.println("<h2>Request attribute values</h2>");

 if (obj != null)
 out.println(obj.getValues());

 //This method call may not be necessary as request attributes
 //persist only as long as the request is being handled,
 //according to the ServletRequest API documentation.
 request.removeAttribute("com.jspservletcookbook.ContextObject");

 out.println("</body></html>");

} //doGet

If the attribute does not exist in the request (because it was not bound to the request in the first
place), ServletRequest.getAttribute() returns null. Make sure the servlet code checks for a
null value before it calls the object's methods. In addition, the ServletRequest.getAttribute()
method returns an Object type, so ensure that the servlet code casts the return value to the proper

type before calling the expected type's methods.

See Also

Recipe 16.1-Recipe 16.4 on handling ServletContext attributes in servlets and JSPs; Recipe 16.5-

Recipe 16.8 on handling session attributes in servlets and JSPs; Recipe 16.12 on accessing or
removing request attributes in JSPs; Chapter 6 on including content in servlets and JSPs; the Javadoc
for javax.servlet. ServletRequestAttributeListener:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html.

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 16.12 Accessing or Removing Request Attributes
in JSPs

Problem

You want to use a JSP to access or remove a request attribute.

Solution

Use the JSTL core tags c:out and c:remove to access and optionally remove the attribute.

Discussion

Example 16-14 accesses an object attribute that is bound to the HttpServletRequest . The JSP
accesses this attribute by using EL syntax inside the c:out JSTL tag.

Example 16-12 in Recipe 16.10 forwards a request attribute to a servlet using
the jsp:forward standard action. The JSP in that example can forward its

request attribute to the JSP in Example 16-14 by using the code:

<jsp:forward page="/requestDisplay.jsp" />

The code:

"${requestScope[\"com.jspservletcookbook.ContextObject\"].
 values}"

uses the requestScope JSTL implicit object. This variable, which the JSTL automatically makes
available to EL-related code, is a java.util.Map type containing any attributes bound to the request

scope. The code then displays the values the attribute contains by accessing the object attribute's
values property (see Recipe 16.1 for a discussion of the object used for storing an attribute in

various scopes throughout this chapter).

Example 16-14. Accessing and removing a request attribute with the JSTL

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Request reading JSP</title></head>
<body>
<h2>Here are the values from the bound RequestObject</h2>

<c:out value=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "${requestScope[\"com.jspservletcookbook.ContextObject\"].
 values}" escapeXml="false" />

<%-- c:remove may not be necessary as request attributes persist only as long as the
request is being handled --%>

Removing request attribute with c:remove ... <c:remove var=
 "com.jspservletcookbook.ContextObject" scope="request" />

</body>
</html>

The c:remove tag removes the attribute named in its var attribute from the specified scope. Use
scope="request " because you are removing this attribute from the JSP's request scope. Figure 16-2

shows the output of the displayRequest.jsp page in a web browser.

Figure 16-2. The browser display after accessing and removing a request
attribute in a JSP

The JSP that appears in the browser's address field, requestBind.jsp , actually
set the attribute and forwarded the request (see Recipe 16.10). When code
uses jsp:forward , the original JSP remains in the browser's address field,

even though the browser displays the output of the JSP targeted by the forward
action.

See Also

Chapter 23 on using the JSTL; Recipe 16.1 -Recipe 16.4 on handling ServletContext attributes in

servlets and JSPs; Recipe 16.5 -Recipe 16.8 on handling session attributes in servlets and JSPs;
Recipe 16.11 on accessing or removing request attributes in servlets; the Javadoc for javax.servlet
. ServletRequestAttributeListener :

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html .

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 17. Embedding Multimedia in JSPs

Introduction

Recipe 17.1. Embedding an Applet in a JSPUsing jsp:plugin

Recipe 17.2. Embedding an Applet in a JSP Using the HTML Converter

Recipe 17.3. Automatically Creating HTML Template for Including Flash Files

Recipe 17.4. Writing HTML Template to Embed a Flash File

Recipe 17.5. Embedding Flash in a Servlet

Recipe 17.6. Embedding a QuickTime Movie in a JSP

Recipe 17.7. Embedding an SVG File in a JSP

Recipe 17.8. Embedding a Background Soundtrack in a JSP
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Most web sites include some type of multimedia and interactive programs, such as digital videos,
digital audio files, Macromedia Flash movies, and Java applets. Therefore, Java web sites often
integrate this type of content with servlets and JavaServer Pages (JSPs). This chapter explains the
basics of embedding multimedia in Java web components. This process involves including the object
and embed tags in your component's HTML output.

A JSP is the preferred choice for combining multimedia with dynamic content, because you can make
the tags that you use to embed the multimedia a part of the JSP's HTML template text. However,
Recipe 17.5 also shows how to include multimedia as part of a servlet's output.

If the page containing the multimedia content does not have to include any
other type of dynamic output, just use a static HTML page instead of executing
JSPs and servlets. A static page typically requires fewer server resources to
respond to HTML page requests.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 17.1 Embedding an Applet in a JSPUsing
jsp:plugin

Problem

You want to use the jsp:plugin standard action to execute a Java applet with the Java Plug-in

software.

Solution

Use the jsp:plugin action positioned in the area of a JSP where you want the applet to appear.

Discussion

The JSP specification provides a standard action, jsp:plugin, which produces the object and embed

tags that are designed to allow browsers to load a Java applet. The action will run the applet using
Sun Microsystems's Java Plug-in or initiate the download of the Plug-in if the user has not yet
installed the Plug-in.

The Java Plug-in is designed to execute an applet using Sun Microsystems's
Java 2 Runtime Environment, rather than any Java runtime provided by the
browser. The installation of the Java JRE or Software Development Kit
automatically installs the Java Plug-in.

Use nested jsp:param elements to provide the applet with any necessary parameter and value pairs.
The jsp:param elements must be nested within a single jsp:params element.

Example 17-1 shows a JSP file that uses jsp:plugin to embed an applet named Clock.class. In this

case, the Clock.class file is located in the same directory as the JSP in Example 17-1.

This applet originates from Sun Microsystems's sample applets:
http://java.sun.com/products/plugin/1.4.1/demos/plugin/applets/Clock/example1.html

Example 17-1. Embedding a Java applet with jsp:plugin

http://java.sun.com/products/plugin/1.4.1/demos/plugin/applets/Clock/example1.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="date" class="java.util.Date" />

<html>
<head><title>A Clock in a JSP</title></head>
<body>
<h2>The time...</h2>

<jsp:plugin type="applet" code="Clock.class" codebase=
 "http://localhost:8080/home/applets" jreversion="1.4.1">

<jsp:params>
 <jsp:param name="scriptable" value="false"/>
</jsp:params>

<jsp:fallback>
Sorry, we are unable to start the Java plugin

</jsp:fallback>

</jsp:plugin>

<c:out value="${date}"/>
</body>
</html>

Users who have installed Internet Explorer for Windows depend on an HTML object tag to provide

the direction for loading the applet. In browsers that support the Netscape-style plug-in, the HTML
uses it's embed tag. The jsp:plugin standard action generates HTML that should work with both

browser types (but you still should test the resulting JSP, of course).

Example 17-2 shows the HTML tags generated by the jsp:plugin action when the Internet Explorer

5.5 and the Netscape browsers request the JSP in Example 17-1.

Example 17-2. HTML tags generated by the jsp:plugin action for loading a
Java applet

<OBJECT classid=
 clsid:8AD9C840-044E-11D1-B3E9-00805F499D93 codebase=
 "http://java.sun.com/products/plugin/1.2.2/jinstall-1_2_2-win.cab#
 Version=1,2,2,0">

<PARAM name="java_code" value="Clock.class">

<PARAM name="java_codebase" value="http://localhost:8080/home/applets">

<PARAM name="type" value="application/x-java-applet;version=1.4.1">

<PARAM name="scriptable" value="false">

<COMMENT>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<EMBED type="application/x-java-applet;version=1.4.1" pluginspage=
 "http://java.sun.com/products/plugin/" java_code=
 "Clock.class" java_codebase=
 "http://localhost:8080/home/applets" scriptable="false"/>

<NOEMBED>
Sorry, we are unable to start the Java plugin

</NOEMBED>

</COMMENT>
</OBJECT>

Figure 17-1 shows the JSP with the embedded applet.

Figure 17-1. A JSP with an embedded applet

See Also

The Java Plug-in technology page: http://java.sun.com/products/plugin/; Recipe 17.2 on embedding
an applet using the Sun Microsystems HTML Converter.

[Team LiB]

http://java.sun.com/products/plugin/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 17.2 Embedding an Applet in a JSP Using the
HTML Converter

Problem

You want to use the Java Plug-in HTML Converter tool to generate the tags for embedding an applet.

Solution

Use the HTML Converter tool within htmlconverter.jar, which is located in the lib directory of the
directory where you have the Java SDK installed.

Discussion

A busy developer can let the Java Plug-in HTML Converter tool produce the HTML tags that are
responsible for loading Java applets. The Java Plug-in is a Java-based tool that allows applets to be
run in the Sun Microsystems Java 2 runtime environment, rather than within the web browser's Java
runtime environment. The Java Plug-in is installed on your machine when you install the JRE,
including the installation of the SDK.

The HTML Converter tool will convert a specified JSP file that contains an applet HTML tag, replacing
the applet tag with a more complex tag collection that allows most browsers to load the Java applet.
The Converter leaves the rest of your JSP code untouched; it only replaces the JSP's applet tag.

Here is how to use the HTML Converter tool:

Write the JSP file, adding an applet tag. Example 17-3 shows a JSP that embeds a Clock.class

applet reference. This JSP, rather redundantly, dynamically writes a time string beneath the
applet. I included this code to show that the Converter does not change the JSP code; it just
alters the applet tag template text included with the JSP.

Example 17-3. A JSP with an applet tag

1.

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="date" class="java.util.Date" />

<html>
<head><title>A Clock in a JSP</title></head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<body>
<h2>The time...</h2>
<applet code="Clock.class" codebase="http://localhost:8080/home/applets">
</applet>

<c:out value="${date}"/>

</body>
</html>

Open a command-line window to the lib directory of your SDK installation, such as
H:\j2sdk1.4.1_01\lib.

2.

Type java -jar htmlconverter.jar -gui. This command launches the Swing version of the

HTML Converter tool. Figure 17-2 shows what the tool looks like.

3.

Figure 17-2. The HTML Converter (GUI version)

The HTML Converter can also be run from the command line. See the Java
Plug-in Developer Guide for supported options:
http://java.sun.com/j2se/1.4.1/docs/guide/plugin/.

If you want to choose a back-up folder where the tool saves the old JSP file (with the applet

tag), use the HTML Converter GUI window to choose this folder.

4.

Click the "Convert . . . " button with the JSP file specified in the top text field, and the Converter5.

http://java.sun.com/j2se/1.4.1/docs/guide/plugin
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

will overwrite the original file with additional object and embed tags.
5.

Example 17-4 shows the code that replaced the applet tag in Example 17-3 (in bold font), as well as

the code that the converter tool did not modify.

Example 17-4. The object and embed tags produced by the HTML
Converter

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="date" class="java.util.Date" />

<html>
<head><title>A Clock in a JSP</title></head>
<body>
<h2>The time...</h2>

<!--"CONVERTED_APPLET"-->
<!-- HTML CONVERTER -->
<OBJECT
 classid =
 "clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

 codebase =
 "http://java.sun.com/products/plugin/autodl/jinstall-1_4-windows-
 i586.cab#Version=1,4,0,0"
 >

 <PARAM NAME = CODE VALUE = "Clock.class" >
 <PARAM NAME = CODEBASE VALUE = "http://localhost:8080/home/applets" >
 <PARAM NAME = "type" VALUE = "application/x-java-applet;version=1.4">
 <PARAM NAME = "scriptable" VALUE = "false">

 <COMMENT>
 <EMBED
 type = "application/x-java-applet;version=1.4"
 CODE = "Clock.class"
 JAVA_CODEBASE = "http://localhost:8080/home/applets"
 scriptable = false
 pluginspage =
 "http://java.sun.com/products/plugin/index.html#download">
 <NOEMBED>

 </NOEMBED>
 </EMBED>
 </COMMENT>
</OBJECT>

<!--
<APPLET CODE = "Clock.class" JAVA_CODEBASE =
 "http://localhost:8080/home/applets">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</APPLET>
-->

<!--"END_CONVERTED_APPLET"-->

<c:out value="${date}"/>

</body>
</html>

Users may have trouble loading the applet in their browsers if they have
several installed versions of the Java Plug-in. This occurs when users steadily
upgrade their JRE or Java SDK versions, which install the corresponding version
of the Java Plug-in. The simplest solution in these cases is to uninstall the old
Java Plug-ins.

See Also

The Java Plug-in technology page: http://java.sun.com/products/plugin/; Recipe 17.1 on embedding
a Java applet using the jsp:plugin standard JSP action.

[Team LiB]

http://java.sun.com/products/plugin/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 17.3 Automatically Creating HTML Template for
Including Flash Files

Problem

You want to automatically generate the required HTML for embedding a Flash file in a web
component.

Solution

From within Macromedia Flash 6, use the "File Publish" menu command to output an HTML file
that includes the object and embed tags.

Discussion

With an .swf file open in Macromedia Flash 6, use the "File Publish" menu command to create an
HTML file. This file includes the necessary tags to embed the Flash movie you are working on in a
web component. Then cut and paste these tags and attributes into your JSP. Example 17-5 shows
the output from using this menu command with an .swf file named example.swf.

Example 17-5. Automatically generated template text from within the
Flash application

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<TITLE>example</TITLE>
</HEAD>
<BODY bgcolor="#FFFFFF">

<!-- URL's used in the movie-->
<!-- text used in the movie-->
<!--DeductionsPaycheckSDIAnnual SalaryMedicareSocial
securityESPP401k$#%FederalStateMarriedSingleactions-->

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase=
 "http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.
 cab#version=6,0,0,0"WIDTH="550" HEIGHT="400" id="example" ALIGN=""
>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <PARAM NAME=movie VALUE="example.swf">
 <PARAM NAME=quality VALUE=high> <PARAM NAME=bgcolor VALUE=#FFFFFF>

 <EMBED src="example.swf" quality=high bgcolor=#FFFFFF WIDTH="550" HEIGHT=
 "400" NAME="example" ALIGN=""
 TYPE="application/x-shockwave-flash" PLUGINSPAGE=
 "http://www.macromedia.com/go/getflashplayer">
 </EMBED>
</OBJECT>

</BODY>
</HTML>

Your JSP probably already includes the boilerplate HTML such as the body tag; therefore, you only

have to cut and paste the noncommented, emphasized code in Example 17-5.

The example.swf file resides in the same directory as the HTML file in this
example.

Example 17-6 in the next recipe shows a JSP file with the same type of Flash-related object and
embed tags as those illustrated in this recipe. Figure 17-3 shows the automatically generated HTML
file from Example 17-5.

Figure 17-3. HTML template text with an embedded Flash file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The displayed Flash movie is derived from one of the Flash samples that
accompanies the Flash 6 application: Paycheck_calculator.swf.

See Also

Macromedia technical notes page: http://www.macromedia.com/support/flash/technotes.html; an
article about alternative techniques to using the embed tag:

http://www.macromedia.com/devnet/mx/dreamweaver/articles/flash_satay.html.

[Team LiB]

http://www.macromedia.com/support/flash/technotes.html
http://www.macromedia.com/devnet/mx/dreamweaver/articles/flash_satay.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 17.4 Writing HTML Template to Embed a Flash File

Problem

You want to write the HTML template text to embed a Flash file in your JSP.

Solution

Use the object and embed tags so that the HTML is read correctly by the browsers that support

either of these tags.

Discussion

You may not have the Macromedia Flash application that can automatically generate the HTML which
is necessary to embed a Flash file (Recipe 17.4). In this case, write the required HTML template text
for embedding a Flash movie inside a JSP.

Example 17-6 shows a JSP with an embedded Flash file (the embedded file has a .swf extension). The
same concept applies to this example as to the other recipes: the object tag is for the Internet

Explorer Windows browser, which embeds the media file as an ActiveX control, not a Netscape-style
plug-in. The embed tag, nested inside the object tag, is designed to embed the Flash file in Netscape

and other browsers that support Netscape-style plug-ins.

Example 17-6 is derived from a technical note at
http://www.macromedia.com/support/flash/technotes.html.

Example 17-6. A JSP contains an embedded file

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="date" class="java.util.Date" />

<html>
<head><title>Flash in a JSP</title></head>
<body>
<h2>Enjoy the Flash Movie</h2>

<OBJECT CLASSID=
 "clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" CODEBASE=
 "http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#
 version=6,040,0" width="293" height="423"

http://www.macromedia.com/support/flash/technotes.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

>

<PARAM name="movie" VALUE="coolFlashMov.swf">

<PARAM name="quality" VALUE="high">

<PARAM name="bgcolor" VALUE="#FFFFFF">

<EMBED SRC=
 "coolFlashMov.swf" quality="high" width="293" height="423"
 bgcolor="#FFFFFF" type="application/x-shockwave-flash" PLUGINSPAGE=
 "http://www.macromedia.com/go/getflashplayer"
>

</EMBED>

</OBJECT>

<c:out value="${date}"/>

</body>
</html>

Both the embed and object tags are designed to prompt the end user to download the required

version of the Flash plug-in or ActiveX control if they do not already have it installed.

See Also

Macromedia technical notes page: http://www.macromedia.com/support/flash/technotes.html; an
article about alternative techniques to using the embed tag:

http://www.macromedia.com/devnet/mx/dreamweaver/articles/flash_satay.html.

[Team LiB]

http://www.macromedia.com/support/flash/technotes.html
http://www.macromedia.com/devnet/mx/dreamweaver/articles/flash_satay.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 17.5 Embedding Flash in a Servlet

Problem

You want to embed a Flash file in a servlet's output.

Solution

Use the javax.servlet.RequestDispatcher.include(request,response) method in the doGet()

method of the servlet that includes the necessary HTML template text.

Discussion

The servlet can include the HTML fragment that loads the Flash movie into the page by using a
RequestDispatcher. This process is similar to server-side includes in traditional Common Gateway

Interface (CGI) programs. When the servlet receives a request, it includes the text fragment
containing the Flash-related tags in its HTML output. This design separates the servlet itself from the
tags and parameters that load the Flash movie, so that each of these entities evolves independently.
For example, you can change the filename of the Flash movie or some of the object or embed

parameters without recompiling the servlet code.

Example 17-7 is a servlet that uses a RequestDispatcher to include the text shown in Example 17-

8. The text appears in a flash.txt file that is stored at the top level of the web application.

RequestDispatchers typically include the output of servlets and JSPs, not just
text fragments. See Chapter 6 for more detailed RequestDispatcher-related

recipes.

Example 17-7. A servlet uses a RequestDispatcher to include object and
embed tags

package com.jspservletcookbook;
import javax.servlet.*;
import javax.servlet.http.*;

public class FlashServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Embedded Flash content</title></head><body>");

 RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/flash.txt");

 dispatcher.include(request, response);

 out.println("</body></html>");
 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 doGet(request,response);

 }//doPost
}

Example 17-8 shows the text fragment included by the servlet in Example 17-7.

Example 17-8. An included text fragment (flash.txt) that a servlet uses to
embed Flash

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase=
 "http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#
 version=6,0,0,0" WIDTH="550" HEIGHT="400" id="example" ALIGN=""
>

 <PARAM NAME=movie VALUE="/home/example.swf">
 <PARAM NAME=quality VALUE=high>
 <PARAM NAME=bgcolor VALUE=#FFFFFF>

 <EMBED src="/home/example.swf" quality=high bgcolor=#FFFFFF WIDTH=
 "550" HEIGHT="400" NAME="example" ALIGN="" TYPE=
 "application/x-shockwave-flash" PLUGINSPAGE=
 "http://www.macromedia.com/go/getflashplayer">
 </EMBED>

</OBJECT>

The result in a web browser looks exactly like Figure 17-3.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6 on dynamically including content into servlets; Macromedia technical notes page:
http://www.macromedia.com/support/flash/technotes.html; an article about alternative techniques
to using the embed tag:

http://www.macromedia.com/devnet/mx/dreamweaver/articles/flash_satay.html.

[Team LiB]

http://www.macromedia.com/support/flash/technotes.html
http://www.macromedia.com/devnet/mx/dreamweaver/articles/flash_satay.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 17.6 Embedding a QuickTime Movie in a JSP

Problem

You want to embed a QuickTime movie in your JSP.

Solution

Use the embed tag nested inside the object tag. The object tag has to contain the CLASSID attribute

with the proper value.

Discussion

Similar to using the Java Plug-in, a JSP uses the embed tag inside of an HTML object tag to properly
load one of Apple Computer's QuickTime movies. You must include the CLASSID attribute value
exactly as Example 17-9 specifies. You also must include the same CODEBASE attribute value. If the

user has an Internet Explorer Windows browser, but has not yet installed the QuickTime ActiveX
control, the CODEBASE attribute value specifies where the user can download it.

Example 17-9. Embedding a QuickTime movie in a JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="date" class="java.util.Date" />

<html>
<head><title>QuickTime in a JSP</title></head>
<body>
<h2>Ladies and Gentlemen, The Who</h2>

<OBJECT CLASSID=
 "clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B" WIDTH="320"
 HEIGHT="256" CODEBASE="http://www.apple.com/qtactivex/qtplugin.cab">

<PARAM name="SRC" VALUE="http://www.parkerriver.com/films/who_bene2.mov">

<PARAM name="AUTOPLAY" VALUE="true">

<PARAM name="CONTROLLER" VALUE="true">

<EMBED SRC=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "http://www.parkerriver.com/films/who_bene2.mov"
 WIDTH="240" HEIGHT="196"
 AUTOPLAY="true" CONTROLLER=
 "true" PLUGINSPAGE="http://www.apple.com/quicktime/download/">

</EMBED>

</OBJECT>

<c:out value="${date}"/>

</body>
</html>

If the browser uses Netscape-style plug-ins, then the embed tag will initiate the loading of the

QuickTime movie. The JSP in Example 17-6 properly loaded the movie into the Safari web browser on
my Macintosh laptop, for instance. One of the advantages of the embed tag is that you can use a

number of proprietary attributes that the embedded object, such as QuickTime, understands.
Example 17-9 specifies that the movie should start playing as soon as the browser has loaded
enough data (AUTOPLAY="true") as well as that the browser should show the movie controls, which
lets the user stop or start the movie (CONTROLLER="true").

Figure 17-4 shows the QuickTime movie embedded in the JSP of Example 17-9.

Figure 17-4. A QuickTime movie embedded in a JSP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Apple Computer's guide on embedding QuickTime in Web pages:
http://www.apple.com/quicktime/authoring/embed.html; Recipe 17.3-Recipe 17.5 on embedding a
Flash file; Recipe 17.7 on embedding an SVG file in a JSP; Recipe 17.8 on embedding a background
soundtrack.

[Team LiB]

http://www.apple.com/quicktime/authoring/embed.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 17.7 Embedding an SVG File in a JSP

Problem

You want to display a Scalable Vector Graphics (SVG) image inside a JSP.

Solution

Use the embed HTML element to position the SVG in the JSP.

Discussion

Developers typically use the embed tag to place an SVG file in an HTML file or JSP. SVG is an XML-

based graphics technology that provides developers and designers leverage in producing and
displaying interactive graphics.

Browsers use special SVG viewer applications to handle the embedded SVG
files. Adobe System's SVG Viewer application can be downloaded from
http://www.adobe.com/svg/viewer/install/. Corel's SVG Viewer can be
downloaded from http://www.corel.com/svgviewer/.

Example 17-10 embeds an SVG file named testLogo.svg and points the user to the Adobe SVG
Viewer download site if they have not installed an SVG Viewer application.

SVG files have extensions of either .svg or (in compressed form) .svgz, even
though they are XML files.

Example 17-10. An SVG graphics file embedded in a JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<jsp:useBean id="date" class="java.util.Date" />

<html>
<head><title>SVG in a JSP</title></head>
<body>
<h2>A Scalable Vector Graphics example</h2>

http://www.adobe.com/svg/viewer/install/
http://www.corel.com/svgviewer/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<embed src=
 '<c:out value="${param.svg_source}"/>.svg' width=
 "200" height="200" type="image/svg-xml" pluginspage=
 "http://www.adobe.com/svg/viewer/install/"
>

<c:out value="${date}"/>

</body>
</html>

Example 17-10 shows how to place an SVG within other JSP code elements, such as the taglib
directive and the jsp:useBean standard action. Example 17-10 also dynamically loads an SVG based
on the request parameter named svg_source. The code uses the JSTL c:out tag and the EL's param

implicit object to output the parameter value (see Chapter 23 on the JSTL).

Figure 17-5 shows the result of requesting the JSP in Example 17-10, including the name of the SVG
file as a request parameter. The request URL looks like:

http://localhost:8080/home/svg.jsp?svg_source=testLogo

Figure 17-5. A JSP page shows an SVG graphics file

The SVG shown in Figure 17-5 is derived from Adobe Systems Inc., which creates the Adobe SVG
Viewer and an SVG-enabled graphics application, Adobe Illustrator.

http://localhost:8080/home/svg.jsp?svg_source=testLogo
http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

SVG specifications at the W3 Consortium: http://www.w3.org/Graphics/SVG/Overview.htm8;
Adobe's SVG Viewer install page: http://www.adobe.com/svg/viewer/install/; Recipes 17-3-5 on
embedding a Flash file in servlets and JSPs; Recipe 17.6 on embedding a QuickTime movie in a JSP.

[Team LiB]

http://www.w3.org/Graphics/SVG/Overview.htm8
http://www.adobe.com/svg/viewer/install/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 17.8 Embedding a Background Soundtrack in a
JSP

Problem

You want to embed an audio file in your JSP.

Solution

Use the embed tag in the JSP. Use the hidden attribute if you want to hide the audio controls;
otherwise, specify a width and height attribute for showing the audio controls.

Discussion

The embed tag is used to include an audio file with a JSP, so that when a user requests the JSP, the

browser plays music. Specifically, the browser is designed to detect the MIME type of the embedded
file, then activate a helper application such as QuickTime or RealAudio to handle the embedded file
and play the music.

Example 17-11 shows a JSP that embeds an MPEG, audio layer 3 (MP3) file. The JSP displays some
information about the artist based on a request parameter; this random information is included to
show how to combine JSP code with the embed tag. The embed tag includes width and height

attributes to show the audio controls in the web page. The controls allow the user to turn the volume
off or down if they do not want to be serenaded while surfing.

Example 17-11. A JSP with an embedded audio file

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<c:set var="artist" value="${param.artist}" />

<html>
<head><title>Choose Your Tunes</title></head>
<body>

<h2>You chose music from the artist <c:out value="${artist}" /></h2>

<embed src="ConstantCraving.mp3" width="240" height="160">
</embed>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</body>
</html>

Figure 17-6 shows the output from the JSP in Example 17-11.

Figure 17-6. Embedded song file controls in a JSP

See Also

Recipe 17.1 and Recipe 17.2 on embedding a Java applet in a JSP; Recipe 17.3-Recipe 17.5 on
embedding a Flash file in a JSP; Recipe 17.6 on embedding a QuickTime movie; Recipe 17.7 on
embedding an SVG file.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 18. Working With the Client
Request

Introduction

Recipe 18.1. Examining HTTP Request Headers in a Servlet

Recipe 18.2. Examining HTTP Request Headers in a JSP

Recipe 18.3. Using a Filter to Alter Request Headers

Recipe 18.4. Automatically Refreshing a Servlet

Recipe 18.5. Automatically Refreshing a JSP

Recipe 18.6. Counting the Number of Web Application Requests
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

A number of web applications must examine the client request before sending a response. An
example is a servlet that has to read (or sniff) the browser type (often through the User-Agent

header). Servlets or other web components read information about the request by examining HTTP
request headers. These headers are composed of header names followed by colon characters and
their values, such as Accept-Language: en. The headers precede any message body that the client

is sending to the server, such as text that has been posted from an HTML form.

Here is an example of a group of request headers sent with a request for a JSP named
contextBind.jsp:

GET /home/contextBind.jsp HTTP/1.1
User-Agent: Opera/5.02 (Windows NT 4.0; U) [en]
Host: localhost:9000
Accept: text/html, image/png, image/jpeg, image/gif, image/x-xbitmap, */*
Accept-Language: en
Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0
Cookie: mycookie=1051567248639; JSESSIONID=1D51575F3F0B17D26537338B5A29DB1D
Connection: Keep-Alive

The recipes in this chapter show how to examine request headers with servlet and JSPs, use filters to
alter requests, automatically refresh servlets and JSPs, and count the number of application requests.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 18.1 Examining HTTP Request Headers in a
Servlet

Problem

You want to examine the HTTP request headers in a servlet.

Solution

Use the javax.servlet.http.HttpServletRequest.getHeaderNames() and getHeader()

methods to access the names and values of various request headers.

Discussion

The HttpServletRequest.getHeaderNames() method returns all of the request header names for

an incoming request. You can then obtain the value of a specific header by providing the header
name to the method HttpServletRequest.getHeader() method. Example 18-1 gets an
Enumeration of header names in the servlet's doGet() method, and then displays each header and

value on its own line in the resulting HTML page.

Example 18-1. A servlet displays request headers and values

package com.jspservletcookbook;

import java.util.Enumeration;

import javax.servlet.*;
import javax.servlet.http.*;

public class RequestHeaderView extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //get an Enumeration of all the request header names
 Enumeration enum = request.getHeaderNames();

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println(
 "<html><head><title>Request Header View</title></head><body>");
 out.println("<h2>Request Headers</h2>");

 String header = null;

 //display each request header name and value
 while (enum.hasMoreElements()){
 header = (String) enum.nextElement();

 //getHeader returns null if a request header of that name does not
 //exist in the request
 out.println(""+header+""+": "+
 request.getHeader(header)+"
");
 }

 out.println("</body></html>");
 } //doGet
}

Figure 18-1 shows the RequestHeaderView servlet's output.

Figure 18-1. A servlet shows the request header names and values

See Also

Recipe 18.2 on examining request headers in a JSP; Recipe 18.3 on using a filter to wrap the request
and forward it along the filter chain; Recipe 18.6 on using a listener to track requests; Chapter 7 on
handling request parameters and JavaBean properties with servlets, JSPs, and filters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 18.2 Examining HTTP Request Headers in a JSP

Problem

You want to use a JSP to display the request headers and values.

Solution

Use the c:forEach and c:out JSTL tags to view the header names and values.

Discussion

The JSTL v1.0 makes all existing request headers available via the header implicit object. The JSTL
automatically makes this variable available to JSPs; the header object evaluates to a java.util.Map

type.

In Example 18-2, the c:forEach tag iterates over this Map and stores each header name and value
in the loop variable named by c:forEach's var attribute (in Example 18-2 it's called req). The
c:forEach var attribute is implemented as a java.util.Map.Entry type, which is a data type that
stores keys and their values. The c:out tag displays each header name by using EL format:
${req.key}. Consequently c:out displays the value with ${req.value}.

Example 18-2. Viewing the request header names and values in a JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Request Headers</title></head>
<body>
<h2>Here are the Request Header names and values</h2>

<c:forEach var="req" items="${header}">

 <c:out value=
 "${req.key}"/>: <c:out value="${req.value}"/>

</c:forEach>

</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 18-2 shows the result in a browser of requesting the displayHeaders.jsp page.

Figure 18-2. A JSP page shows request headers using JSTL tags

See Also

Chapter 23 on using the JSTL; Recipe 18.2 on examining request headers in a servlet; Recipe 18.3 on
using a filter to wrap the request and forward it along the filter chain; Recipe 18.6 on using a listener
to track requests; Chapter 7 on handling request parameters and JavaBean properties with servlets,
JSPs, and filters.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 18.3 Using a Filter to Alter Request Headers

Problem

You want to use a filter to change the request headers before a servlet or JSP receives the request.

Solution

Wrap the request in your own custom request class. Pass the request wrapper or decorator class to
the FilterChain.doFilter() method, instead of the original request destination.

Discussion

The javax.servlet.http.HttpServletRequestWrapper is a convenience class that you can extend

to provide additional functionality for an HTTP request. Here is how to alter and forward a request
using a filter:

Create a class that extends HttpServletRequestWrapper.1.

Place this class in the web application's WEB-INF/classes (including package-related directories)
directory or WEB-INF/lib if the class is part of a JAR file.

2.

Create a class that implements javax.servlet.Filter, such as Example 18-3. This class uses
your custom request wrapper class to enclose the ServletRequest parameter of the
Filter.doFilter() method.

3.

Store the filter class in WEB-INF/classes or WEB-INF/lib (if it's in a JAR).4.

Register the filter in web.xml. In this recipe, the filter is mapped to all of the requests in the web
application with the URL mapping /*.

5.

Example 18-3 shows the filter class that passes the request-wrapper class along the filter chain. The
file is named RequestFilter; the wrapper class is named ReqWrapper.

Example 18-3. A filter that wraps the HttpServletRequest

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class RequestFilter implements Filter {

 private FilterConfig config;

 /** Creates new RequestFilter */
 public RequestFilter() {}

 public void init(FilterConfig filterConfig) throws ServletException{

 this.config = filterConfig;
 }

public void doFilter(ServletRequest request,
 ServletResponse response, FilterChain chain) throws java.io.IOException,
 ServletException {

 ReqWrapper wrapper = null;
 ServletContext context = null;

 //create the request wrapper object, an instance of the
 //ReqWrapper class. The client request is passed into
 //ReqWrapper's constructor

 if (request instanceof HttpServletRequest)
 wrapper = new ReqWrapper((HttpServletRequest)request);

 //use the ServletContext.log method to log param names/values

 if (wrapper != null){
 context = config.getServletContext();

 context.log("Query: " + wrapper.getQueryString());}

 //continue the request, response to next filter or servlet
 //destination

 if (wrapper != null)
 chain.doFilter(wrapper,response);
 else
 chain.doFilter(request,response);

 }//doFilter

 public void destroy(){

 /*called before the Filter instance is removed
 from service by the web container*/
 }//destroy
}

Example 18-3 uses the servlet context to log the ReqWrapper's query string. The ReqWrapper class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

adds a parameter to the query string, but you could make this class implement whatever behavior
you need in your own application. Example 18-4 shows the filter-mapping entries in the deployment
descriptor (web.xml), which ensures that every application request passes through this filter.

Example 18-4. The filter mapping in web.xml

<filter>

 <filter-name>RequestFilter</filter-name>
 <filter-class>com.jspservletcookbook.RequestFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>RequestFilter</filter-name>
 <url-pattern>/*</url-pattern>

</filter-mapping>

The ReqWrapper is a simple example of an HttpServletRequestWrapper subclass that encapsulates
the original request. This class overrides the getQueryString()method in order to add a parameter

to the request's query string.

To access the new filter parameter, you must call getQueryString() on

the request once it reaches its destination servlet, then parse the
getQueryString() return value for individual parameters. Using the EL will
not work with request wrappers that override getQueryString():

//does not return the new parameter value
//added by the overridden getQueryString
//method
${param.filter}

The request that passes through the filter is the parameter to ReqWrapper's constructor, so the filter

(in Example 18-3) wraps the request with this code:

wrapper = new ReqWrapper((HttpServletRequest)request);

A URL sent to the application containing the query string name=Bruce displays the following text in
the server log (as a result of the ServletContext.log method):

 Query: name=Bruce&filter=com.jspservletcookbook.ReqWrapper.

Example 18-5 is the code for the ReqWrapper object.

Example 18-5. The ReqWrapper class for encapsulating the
HttpServletRequest

package com.jspservletcookbook;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.servlet.*;
import javax.servlet.http.HttpServletRequestWrapper;
import javax.servlet.http.HttpServletRequest;

public class ReqWrapper extends HttpServletRequestWrapper{

 private static final String AMP = "&";

 public ReqWrapper(HttpServletRequest request){

 super(request);
 }

 public String getQueryString(){

 String query = null;

 //get the query string from the wrapped request object
 query = ((HttpServletRequest)getRequest()).getQueryString();

 //add a 'filter' parameter to this query string with the class
 //name as the value
 if (query != null)
 return query +AMP+"filter="+getClass().getName();
 else
 return "filter="+getClass().getName();

 }//getQueryString
}

The method call chain.doFilter(wrapper,response) at the end of Example 18-3 passes the

request (wrapped in our own custom class) and response to the next filter, or to the destination
servlet or JSP if no other filters are registered.

See Also

Recipe 18.1 and Recipe 18.2 on examining request headers in a servlet and a JSP respectively;
Recipe 18.3 on using a filter to wrap the request and forward it along the filter chain; Recipe 18.6 on
using a listener to track requests; Chapter 7 on handling request parameters and JavaBean
properties with servlets, JSPs, and filters.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 18.4 Automatically Refreshing a Servlet

Problem

You want to automatically refresh a servlet-generated page at a specified interval.

Solution

Add a Refresh response header, using the javax.servlet.http.HttpServletResponse object.

Discussion

Suppose that your servlet is monitoring a Red Sox versus Yankees baseball game. You want to be
able to allow a user to follow the game almost pitch by pitch, and have your web application
constantly update the status of the game. If you add a Refresh response header to your client

response, the browser will continually refresh the page according to the specified interval.

Example 18-6 adds a response header that the web container will send to the client in the format
Refresh: 60, which means "request this page again in 60 seconds."

Example 18-6. Refreshing a servlet every 60 seconds

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class AutoServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //client browser will request the page every 60 seconds
 response.addHeader("Refresh","60");

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Client Refresh</title></head><body>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("<h2>Welcome to the Red Sox - Yankees series...</h2>");

 //More HTML or dynamic content
 out.println("</body></html>");

 } //doGet
}

There are some caveats to this approach-if the end user walks away from her desk, her browser will
blithely continue to request the page. If your servlet doesn't impose some control over this, you could
add a lot of unnecessary load to your application. One example of a solution to this problem is to
keep track of how many times the servlet has been refreshed with a session attribute (detailed in
Chapter 16). If the number of times exceeds a certain limit, you could stop adding the header to the
response. Example 18-7 shows part of a doPost() method body for keeping track of a user's

refresh count.

Example 18-7. Tracking a user's refresh count

//inside doPost (or doGet) method
HttpSession session = request.getSession();

Long times = (Long) session.getAttribute("times");

//create session attribute if it doesn't exist
if (times == null)
 session.setAttribute("times",new Long(0));

//local variable 'temp' will hold the session attribute value
long temp = 1;

//increment the attribute value to account for this request
if (times != null)
 temp = times.longValue() + 1;

if (temp < 60) //only allow 60 refreshes; about an hour's worth
 response.addHeader("Refresh","60");

//update the session attribute value
session.setAttribute("times",new Long(temp));

This code works equally well inside of a doGet() method.

See Also

Recipe 18.5 on automatically refreshing a JSP; Recipe 18.1 and Recipe 18.2 on examining request
headers in a servlet and a JSP; Recipe 18.3 on using a filter to wrap the request and forward it along

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the filter chain; Recipe 18.6 on using a listener to track requests.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 18.5 Automatically Refreshing a JSP

Problem

You want to refresh a JSP request at a specified interval.

Solution

Use a JSP scriptlet that adds a Refresh response header to the response.

Discussion

The following scriptlet code adds a Refresh header that specifies a 60-second interval for refreshing

the JSP. Place this code at the top of the JSP before any content appears:

<% response.addHeader("Refresh","60"); %>

If you want to refresh the JSP to another web component or page, use this
syntax:

<% response.addHeader("Refresh","10;
 http://localhost:8080/home/thanks.jsp"); %>

See Also

Example 18-6 in Recipe 18.4 on refreshing a servlet; Example 18-7 in Recipe 18.4 on limiting the
number of automatic refreshes of a servlet; Recipe 18.1 and Recipe 18.2 on examining request
headers in a servlet and a JSP, respectively; Recipe 18.3 on using a filter to wrap the request and
forward it along the filter chain; Recipe 18.6 on using a listener to track requests.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 18.6 Counting the Number of Web Application
Requests

Problem

You want to count the number of requests handled by a web application.

Solution

Use a javax.servlet.ServletRequestListener to be notified whenever an HTTP request is

initialized.

Discussion

A request listener is a good candidate for tracking requests, because the web container notifies the
listener of new requests by calling its requestInitialized() method. Example 18-8 keeps track of
the request count with a static class variable named reqCount . The program increments this variable
in a synchronized block within the requestInitialized() method.

The ServletContext is used to log a message about the request so that you can observe the listener

behavior. However, a busy production application that logs information about every request typically
represents an inefficient use of web container resources. This type of logging activity should be
reserved for development applications.

Example 18-8. A request listener class for counting application requests

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

public class ReqListener implements ServletRequestListener {

 private static long reqCount;

 public void requestInitialized(ServletRequestEvent sre){

 //used for logging purposes
 ServletContext context = sre.getServletContext();

 //Used to get information about a new request
 ServletRequest request = sre.getServletRequest();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //The static class variable reqCount is incremented in this block;
 //the incrementing of the variable is synchronized so that one
 // thread is not reading the variable while another increments it

 synchronized (context){

 context.log(
 "Request for "+
 (request instanceof HttpServletRequest ?
 ((HttpServletRequest) request).getRequestURI() :
 "Unknown")+ "; Count="+ ++reqCount);

 }//synchronized

}

 public void requestDestroyed(ServletRequestEvent sre){

 //Called when the servlet request is going oout of scope.

 }//requestDestroyed

}

You can access the new ServletRequest in the two ServletRequestListener
methods by calling ServletRequestEvent.getServletRequest() . You must
cast the ServletRequest return value to an HttpServletRequest to call the
latter class's methods. Example 18-8 accesses the new HttpServletRequests
in order to call those object's getRequestURI() method, which provides part

of the information the code includes in a logging message.

You must register the ServletRequestListener in web.xml :

<listener>
 <listener-class>com.jspservletcookbook.ReqListener</listener-class>
</listener>

The web container then creates an instance of the listener when it starts up. Here is an example of a
server-log entry when a request is made to the application within which the request listener is
registered:

2003-05-30 07:22:21 Request for /home/servlet/com.jspservletcookbook.SessionDisplay;
Count=2

For Tomcat, this line would be displayed in the log file found in <Tomcat-
installation-directory>/logs .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 18.1 and Recipe 18.2 on examining request headers in a servlet and a JSP; Recipe 18.3 on
using a filter to wrap the request and forward it along the filter chain; Chapter 7 on handling request
parameters and JavaBean properties with servlets, JSPs, and filters.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 19. Filtering Requests and
Responses

Introduction

Recipe 19.1. Mapping a Filter to a Servlet

Recipe 19.2. Mapping a Filter to a JSP

Recipe 19.3. Mapping More Than One Filter to a Servlet

Recipe 19.4. Changing the Order in Which Filters are Applied to Servlets

Recipe 19.5. Configuring Initialization Parameters for a Filter

Recipe 19.6. Optionally Blocking a Request with a Filter

Recipe 19.7. Filtering the HTTP Response

Recipe 19.8. Using Filters with RequestDispatcher Objects

Recipe 19.9. Checking Form Parameters with a Filter

Recipe 19.10. Blocking IP Addresses with a Filter
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Servlet filtering was introduced with the servlet API v2.3 in 2001. Filtering is a powerful technology
for servlet developers, who can use it to generate chains of Java classes that execute in sequence in
response to client requests.

Developers begin by creating one or more Java classes that implement the javax.servlet.Filter

interface. These classes can undertake a number of actions prior to a servlet's request handling,
creating a chain of actions before the request is delivered to its destination (including blocking the
request altogether). These actions include, according to the Filter API documentation:

Authentication of requests

Data encryption

Data compression

Logging

Extensible Stylesheet Language Transformation (XSLT) filtering

Image conversion

Access the Javadoc for the Filter interface at:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Filter.html.

Register a filter in the deployment descriptor, and then map the registered filter to either servlet
names or URL patterns in your application's deployment descriptor. When the web container starts up
your web application, it creates an instance of each filter that you have declared in the deployment
descriptor. The filters execute in the order that they are declared in the deployment descriptor.

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Filter.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.1 Mapping a Filter to a Servlet

Problem

You want to map or apply a filter to an individual servlet.

Solution

Use the filter and filter-mapping elements in web.xml to associate the filter with the servlet.

Discussion

The web container finds out about the filters that you want to apply to a servlet by using information in
the deployment descriptor. The filter element associates a filter name with a Java class that
implements the javax.servlet.Filter interface. The filter-mapping element then associates
individual filters with URL mappings or paths, similar to the servlet-mapping element that you have

probably used before in web.xml . Example 19-1 shows a deployment descriptor from the servlet API
v2.3 that includes the mapping of a filter named LogFilter to the servlet path /requestheaders .

Example 19-1. Mapping a filter to a servlet

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-application_2_3.dtd"
>

<web-app>

<!-- register the filter -->

<filter>
 <filter-name>LogFilter</filter-name>
 <filter-class>com.jspservletcookbook.LogFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <url-pattern>/requestheaders</url-pattern>
</filter-mapping>

<!-- register the servlet to which the filter is mapped -->

<servlet>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <servlet-name>requestheaders</servlet-name>
 <servlet-class>com.jspservletcookbook.RequestHeaderView</servlet-class>
</servlet>

<!-- Here is the URL mapping for the requestheaders servlet -->

<servlet-mapping>
 <servlet-name>requestheaders</servlet-name>
 <url-pattern>/requestheaders</url-pattern>
</servlet-mapping>

</web-app>

When a client sends a request to the servlet path /requestheaders , the web container applies the
LogFilter filter to the request. This servlet path, as in:

http://localhost:8080/home/requestheaders

is the only servlet path to which this filter is applied. As you might have guessed, the LogFilter logs

some information about the request before the request continues along to its servlet destination.
Example 19-2 shows the filter class for the LogFilter in Example 19-1 .

This filter class provides the additional benefit of showing you how to log a
message inside of a filter!

Make sure to:

Create the filter with a constructor that does not take any parameters

Give the filter class a package name

Store the filter in the WEB-INF/classes directory of the web application, including its package-
related directories

Map the filter to the servlet in web.xml , as in Example 19-1

Example 19-2. A filter that logs some information

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

public class LogFilter implements Filter {

http://localhost:8080/home/requestheaders
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private FilterConfig config;
 private Logger log;

 // Creates new LogFilter
 public LogFilter() {}

 public void init(FilterConfig filterConfig) throws ServletException{

 this.config = filterConfig;

 //load the configuration for this application's loggers using the
 // servletLog.properties file
 PropertyConfigurator.configure(config.getServletContext().
 getRealPath("/") +
 "WEB-INF/classes/servletLog.properties");

 log = Logger.getLogger(LogFilter.class);

 log.info("Logger instantiated in "+ getClass().getName());

 }//init

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws java.io.IOException, ServletException {

 HttpServletRequest req = null;

 if (log != null && (request instanceof HttpServletRequest)){

 req = (HttpServletRequest) request;
 log.info(
 "Request received from: " + req.getRemoteHost() + " for: " +
 req.getRequestURL()); }

 //pass request back down the filter chain
 chain.doFilter(request,response);
 }// doFilter

 public void destroy(){

 /*called before the Filter instance is removed
 from service by the web container*/
 log = null;
 }
}

This filter logs the remote host of the client request and the URL that the client requested. Here is an
example of the logged information:

INFO - Request received from: localhost for: http://localhost:8080/home/requestheaders

The filter uses the log4j library (see Chapter 14) from the Apache Software Foundation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since the first parameter to the filter's dofilter() method is a
javax.servlet.ServletRequest type, this parameter must be cast to an
HttpServletRequest to call methods such as
HttpServletRequest.getRemoteHost() .

See Also

Recipe 7.9 on using a filter to read request parameter values; Recipe 11.11 on using a filter to monitor
session attributes; Recipe 18.3 on using a filter to alter the request; Recipe 19.2 -Recipe 19.4 on
mapping filters to web components; Recipe 19.5 on configuring filter initialization parameters; Recipe
19.6 on blocking requests; Recipe 19.7 on filtering the HttpServletResponse ; Recipe 19.8 on using
filters with RequestDispatchers ; Recipe 19.9 on using filters to check request parameters; Recipe

19.10 on using filters to disallow requests from certain IP addresses.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.2 Mapping a Filter to a JSP

Problem

You want to have the web container apply a filter to requests for a certain JSP page.

Solution

Use the url-pattern child element of the filter-mapping element in the deployment descriptor to

map the filter to the JSP.

Discussion

Map a filter to a JSP by specifying the path to the JSP page using the filter-mapping element's
url-pattern subelement. Example 19-3 shows a web.xml configuration that maps the filter in

Example 19-2 to the requestHeaders.jsp.

Example 19-3. Mapping a filter to a JSP

<!-- top of web.xml deployment descriptor -->

<filter>
 <filter-name>LogFilter</filter-name>
 <filter-class>com.jspservletcookbook.LogFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <url-pattern>/displayHeaders.jsp</url-pattern>
</filter-mapping>

<!-- rest of deployment descriptor -->

You can create a number of filter mappings for a single filter, each with their
own type of URL pattern.

With the configuration of Example 19-3, any requests for /displayHeaders.jsp will pass through the
filter named LogFilter. Example 19-2 shows the source code for the LogFilter class. The code logs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a message about the request, before the request is passed along the filter chain to the JSP. The
logged message looks like:

INFO - Request received from: localhost for: http://localhost:8080/home/
displayHeaders.jsp

The JSP itself does not have to be configured in a special way for the filter to be applied to it. You can
apply the filter to all JSPs with this configuration:

<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
</filter-mapping>

The URL pattern *.jsp is an extension mapping that associates the LogFilter with any of the web

application's components that end with .jsp.

See Also

Recipe 7.9 on using a filter to read request parameter values; Recipe 11.11 on using a filter to
monitor session attributes; Recipe 18.3 on using a filter to alter then forward the request; Recipe
19.3 on mapping more than one filter to a servlet; Recipe 19.4 on changing the order filters are
applied to a servlet; Recipe 19.5 on configuring filter initialization parameters; Recipe 19.6 on
blocking requests; Recipe 19.7 on filtering the HttpServletResponse; Recipe 19.8 on using filters
with RequestDispatchers; Recipe 19.9 on using filters to check request parameters; Recipe 19.10

on using filters to disallow requests from certain IP addresses.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.3 Mapping More Than One Filter to a Servlet

Problem

You want requests for a servlet or JSP to pass through more than one filter.

Solution

Map each filter to the servlet or JSP using filter-mapping elements in the deployment descriptor.

The filters are applied to the servlet in the order they appear in the deployment descriptor.

Discussion

Your web application may define several different filters with a specific purpose. For instance, one
filter might log messages, while another filter authenticates users. It is straightforward to create a
filter chain that applies each filter in a specified order to a servlet. You use the filter-mapping

element to map each filter to the target servlet (or JSP). The web container then applies the filters to
the target in the order that the filter-mapping elements are defined in the deployment descriptor.

Example 19-4 configures two filters: AuthenFilter and LogFilter. The filter-mapping elements
for these filters then map the servlet name requestheaders to each of these filters. The order of the
filter-mapping elements in Example 19-4 specifies that the authentication filter (AuthenFilter)
must be applied to the servlet named requestheaders first, followed by the LogFilter.

To map a filter to a servlet name, the servlet has to be registered in web.xml. Example 19-4
registers the requestheaders servlet beneath the filter and filter-mapping elements.

Example 19-4. Mapping more than one filter to a servlet

<!-- top of web.xml deployment descriptor -->

<filter>
 <filter-name>AuthenFilter</filter-name>
 <filter-class>com.jspservletcookbook.AuthenticateFilter</filter-class>
</filter>

 <filter>
 <filter-name>LogFilter</filter-name>
 <filter-class>com.jspservletcookbook.LogFilter</filter-class>
</filter>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<filter-mapping>
 <filter-name>AuthenFilter</filter-name>
 <servlet-name>requestheaders</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <servlet-name>requestheaders</servlet-name>
</filter-mapping>

<!-- servlet definitions -->

<servlet>
 <servlet-name>requestheaders</servlet-name>
 <servlet-class>com.jspservletcookbook.RequestHeaderView</servlet-class>
</servlet>

<!-- servlet-mapping section of web.xml -->

<servlet-mapping>
 <servlet-name>requestheaders</servlet-name>
 <url-pattern>/requestheaders</url-pattern>
</servlet-mapping>

<!-- rest of deployment descriptor -->

When a user requests the requestheaders servlet using the servlet path /requestheaders, as
specified in the servlet-mapping element, the request passes through the AuthenFilter and
LogFilter before it reaches its servlet destination.

The same process applies to a filter-mapping that uses a url-pattern
element instead of a servlet-name element. The order of the filter-mapping

elements in the deployment descriptor determines the order of the filters
applied to the web components that match the url-pattern.

See Also

Recipe 7.9 on using a filter to read request parameter values; Recipe 11.11 on using a filter to
monitor session attributes; Recipe 18.3 on using a filter to alter then forward the request; Recipe
19.4 on changing the order filters are applied to a servlet; Recipe 19.5 on configuring filter init
parameters; Recipe 19.6 on blocking requests; Recipe 19.7 on filtering the HttpServletResponse;
Recipe 19.8 on using filters with RequestDispatchers; Recipe 19.9 on using filters to check request

parameters; Recipe 19.10 on using filters to disallow requests from certain IP addresses.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.4 Changing the Order in Which Filters are
Applied to Servlets

Problem

You want to change the order in which filters are applied to web components.

Solution

Change the order of filter-mapping elements in the deployment descriptor.

Discussion

The order of filter-mapping elements in web.xml determines the order in which the web container
applies the filter to the servlet. Example 19-5 reverses the order of the filter-mapping elements

that map two filters to the servlet named requestheaders, compared with Recipe 19.3. The
LogFilter is thus applied to the servlet before the AuthenFilter. Any requests for the servlet pass

through a chain: LogFilter AuthenFilter requestheaders servlet.

Example 19-5. Reversing the order of filter-mapping elements

<!-- LogFilter applies to the requestheaders servlet
before AuthenFilter -->

<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <servlet-name>requestheaders</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>AuthenFilter</filter-name>
 <servlet-name>requestheaders</servlet-name>
</filter-mapping>

See Also

Recipe 7.9 on using a filter to read request parameter values; Recipe 11.11 on using a filter to
monitor session attributes; Recipe 18.3 on using a filter to alter then forward the request; Recipe
19.1-Recipe 19.3 on mapping filters to web components; Recipe 19.5 on configuring filter init

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parameters; Recipe 19.6 on blocking requests; Recipe 19.7 on filtering the HttpServletResponse;
Recipe 19.8 on using filters with RequestDispatchers; Recipe 19.9 on using filters to check request

parameters; Recipe 19.10 on using filters to disallow requests from certain IP addresses.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.5 Configuring Initialization Parameters for a
Filter

Problem

You want to make an initialization (init) parameter available to a filter .

Solution

Use the init-param child element of the filter element to declare the initialization parameter and
its value. Inside the filter, access the init parameter by calling the FilerConfig object's
getInitParameter method.

Discussion

Example 19-6 shows a filter declared in the deployment descriptor. The filter includes an init
parameter named log-id.

Example 19-6. A filter declared in the deployment descriptor with an init
parameter

<filter>
 <filter-name>LogFilter</filter-name>
 <filter-class>com.jspservletcookbook.LogFilter</filter-class>
 <init-param>
 <param-name>log-id</param-name>
 <param-value>A102003</param-value>
 </init-param>
</filter>

Example 19-7 shows the code you would use inside the filter to access the init parameter and its
value. The code initializes the FilterConfig object in its init method, which is called once when the

web container creates an instance of the filter. The code then gets the value of the filter's init
parameter by calling:

String id = config.getInitParameter("log-id");

Make sure that the code checks whether the return value from getInitParameter is null before the

code does something with that object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 19-7. Accessing an init param value in a filter

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;

public class LogFilter implements Filter {

 private FilterConfig config;
 private Logger log;

 // Creates new LogFilter
 public LogFilter() {}

 public void init(FilterConfig filterConfig) throws ServletException{

 this.config = filterConfig;

 //load the configuration for this application's loggers
 //using the servletLog.properties file
 PropertyConfigurator.configure(config.getServletContext().
 getRealPath("/") +
 "WEB-INF/classes/servletLog.properties");

 log = Logger.getLogger(LogFilter.class);

 log.info("Logger instantiated in "+ getClass().getName());
 }

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws java.io.IOException, ServletException {

 HttpServletRequest req = null;

 String id = config.getInitParameter("log-id");

 if (id == null)
 id = "unknown";

 if (log != null && (request instanceof HttpServletRequest)){

 req = (HttpServletRequest) request;
 log.info("Log id:" + id + ": Request received from: " +
 req.getRemoteHost() + " for " + req.getRequestURL()); }

 chain.doFilter(request,response);

 }// doFilter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void destroy(){
 /*called before the Filter instance is removed
 from service by the web container*/
 log = null;
 }
}

Here is how the log output appears:

INFO - Log id:A102003: Request received from: localhost for http://localhost:8080/
home/requestheaders

You can also use the FilterConfig object's getInitParameterNames method
to get all of the init parameter names in a java.util.Enumeration object.

See Also

Recipe 7.9 on using a filter to read request parameter values; Recipe 11.11 on using a filter to
monitor session attributes; Recipe 18.3 on using a filter to alter then forward the request; Recipe
19.1-Recipe 19.4 on mapping filters to web components; Recipe 19.6 on blocking a request; Recipe
19.7 on filtering the HttpServletResponse; Recipe 19.8 on using filters with RequestDispatchers;

Recipe 19.9 on using filters to check request parameters; Recipe 19.10 on using filters to disallow
requests from certain IP addresses.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.6 Optionally Blocking a Request with a Filter

Problem

You want the option to block a request with a filter.

Solution

Do not call the FilterChain object's doFilter() method inside of the filter. Output the response to
the client inside of the filter's doFilter() method instead.

Discussion

A filter blocks a request from getting to a web component, such as a servlet, JSP, or HTML page, by
never calling FilterChain.doFilter() inside the filter's own doFilter() method.

The BlockFilter class in Example 19-8 attempts to authenticate the user based on a request

parameter. If the authentication fails, the filter uses the response object to output a response to the
client, and the request is effectively blocked from reaching the requested servlet. A filter can output
the final response to the client, not just initiate its filtering tasks.

Example 19-8. A filter optionally blocks the request and issues a
response itself

package com.jspservletcookbook;

import java.io.PrintWriter;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

public class BlockFilter implements Filter {

 private FilterConfig config;

 /** Creates new BlockFilter */
 public BlockFilter() {}

 public void init(FilterConfig filterConfig) throws ServletException{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.config = filterConfig;
 }

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {

 HttpServletRequest req = null;
 boolean authenticated = false;
 PrintWriter out = null;

 if (request instanceof HttpServletRequest){

 req = (HttpServletRequest) request;

 String user = req.getParameter("user");//get the user name

 authenticated = authenticateUser(user);//authenticate the user
 }

 if (authenticated){

 //they are authenticated, so pass along the request

 chain.doFilter(request,response);

 else {
 //have the filter send back the response

 response.setContentType("text/html");

 out = response.getWriter();

 out.println(
 "<html><head><title>Authentication Response</title>");
 out.println("</head><body>");
 out.println("<h2>Sorry your authentication attempt failed</h2>");

 out.println("</body></html>");

 }
 }// doFilter

 public void destroy(){
 /*called before the Filter instance is removed
 from service by the web container*/
 }

 private boolean authenticateUser(String userName){

 //authenticate the user using JNDI and a database, for instance
 //return false for demonstration purposes
 return false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }// authenticateUser
}

The code authenticates the user by getting the hypothetical username as a request parameter. The
name is the parameter for the filter's authenticateUser() method, which returns false to
demonstrate the filter's response to the client. The filter uses the PrintWriter from the
javax.servlet.ServletResponse object, which is a parameter to the doFilter() method. The
PrintWriter sends HTML back to the client. Figure 19-1 shows the response output in a web

browser.

Figure 19-1. The HTML page returned by a blocking filter

If you regularly use filters to send responses to a client, consider creating a
JavaBean to customize the response. Store the bean class in its package
beneath WEB-INF/classes, and use the bean inside the filter.

See Also

Recipe 7.9 on using a filter to read request parameter values; Recipe 11.11 on using a filter to
monitor session attributes; Recipe 18.3 on using a filter to alter then forward the request; Recipe
19.1-Recipe 19.4 on mapping filters to web components; Recipe 19.5 on configuring init parameters
for a filter; Recipe 19.7 on filtering the HTTP response; Recipe 19.8 on using filters with
RequestDispatchers; Recipe 19.9 on using filters to check request parameters; Recipe 19.10 on

using filters to disallow requests from certain IP addresses.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.7 Filtering the HTTP Response

Problem

You want to change the response with a filter while the client request is en route to the servlet.

Solution

Change the javax.servlet.ServletResponse inside the filter's doFilter() method by wrapping

the response with your own object. Then pass the wrapped response as a parameter into the
FilterChain.doFilter() method.

Discussion

Here are the steps for changing a response with a filter and a wrapper class:

Create a Java class that extends javax.servlet.http. HttpServletResponseWrapper.1.

Place this class, including its package-related directories, in WEB-INF/classes.2.

Use the wrapper class in the filter to wrap the response object, which is a parameter to the
filter's doFilter() method.

3.

Call the chain.doFilter() method with the wrapped response as a parameter.4.

Example 19-9 shows the Java class that we will use to wrap the response object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are just making a simple response change, you do not have to go to the
trouble of using an HttpServletResponseWrapper class. This code inside of a
filter's method adds a header to the response, then calls the chain.doFilter(
) method with the altered response:

if(response instanceof HttpServletResponse){
 //cast to HttpServletResponse to call
 //addHeader
 myHttpResponse =
 ((HttpServletResponse)response);

 myHttpResponse.addHeader("WWW-Authenticate",
 "BASIC realm=\"Admin\"");

 chain.doFilter(request,response); }

The ResponseWrapper class contains the skeleton of a new method named getWebResource. I want

to show the mechanics of wrapping the response in a filter, so have kept this wrapper class very
simple.

All the other HttpServletResponse-derived method calls are delegated to the wrapped response
object, which is the convenience of extending HttpServletResponseWrapper.

Example 19-9. An HttpServletResponseWrapper class for use in a filter

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.HttpServletResponseWrapper;
import javax.servlet.http.HttpServletResponse;

public class ResponseWrapper extends HttpServletResponseWrapper{

 public ResponseWrapper(HttpServletResponse response){

 super(response);
 }

 public String getWebResource(String resourceName){

 //Implement a method to return a String representing
 //the output of a web resource
 //See Recipe 13.5
 return "resource"; //for the compiler...

 }// getWebResource
}

Example 19-10 shows the doFilter() method inside the filter that uses this ResponseWrapper

class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The class extending HttpServletResponseWrapper must be placed beneath

WEB-INF/classes, with a directory structure that matches its package name.

Example 19-10. The doFilter() method of a filter that uses a
HttpServletResponseWrapper class

public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws java.io.IOException, ServletException {

 if(response instanceof HttpServletResponse){

 chain.doFilter(request,
 new ResponseWrapper((HttpServletResponse)response));

 } else {

 chain.doFilter(request,response);

 }
}//doFilter

The code calls the chain.doFilter() method and passes in the wrapped response as a parameter.

The web resource at the end of the chain has access to the customized response object and can call
the additional method the response wrapper class has defined. All the other method calls on the
HttpServletResponse object, such as getWriter() or getOutputStream(), are passed through

to the wrapped response object.

See Also

Recipe 7.9 on using a filter to read request parameter values; Recipe 11.11 on using a filter to
monitor session attributes; Recipe 18.3 on using a filter to alter the request; Recipe 19.1-Recipe 19.4
on mapping filters to web components; Recipe 19.5 on configuring init parameters for a filter; Recipe
19.6 on blocking a request; Recipe 19.8 on using filters with RequestDispatchers; Recipe 19.9 on

using filters to check request parameters; Recipe 19.10 on using filters to disallow requests from
certain IP addresses.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.8 Using Filters with RequestDispatcher Objects

Problem

You want to apply a filter to a servlet whose output is included in another servlet.

Solution

Use the javax.servlet.RequestDispatcher object to include the servlet's output. Configure the
filter in web.xml with a dispatcher element containing the content "INCLUDE" (servlet API v2.4 and

above only!).

Discussion

The servlet API v2.4 introduced a new twist for working with RequestDispatchers. Using the
filter-mapping element in the deployment descriptor, you can specify that the filter applies to a
servlet that is part of a RequestDispatcher include or forward action.

Example 19-11 shows a web.xml configuration for a filter.

Example 19-11. Applying a filter to a servlet using a RequestDispatcher

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

<filter>
 <filter-name>LogFilter</filter-name>
 <filter-class>com.jspservletcookbook.LogFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <url-pattern>/requestheaders</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
</filter-mapping>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The dispatcher elements in the example configuration specify that the LogFilter applies to
requests for the servlet path /requestheaders, as well as to any RequestDispatchers that include

the output of the servlet path /requestheaders.

Similarly, if you want to initiate a filter when you are using a
RequestDispatcher to forward a request to another component, use the
FORWARD value with the dispatcher element, as in:

<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <url-pattern>/requestheaders</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>FORWARD</dispatcher>
</filter-mapping>

Example 19-12 shows a servlet's doGet method that creates a RequestDispatcher specifying the

path /requestheaders. This code includes the servlet output represented by that path. Because of
Example 19-11s configuration in web.xml, however, the web container applies the LogFilter before

the servlet mapped to the /requestheaders path is executed.

Example 19-12. A servlet includes another servlet's output, triggering a
filter

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException {

 /* The output of the servlet at path "/requestheaders" will
 be included in this servlet's output, but first the request
 will pass through the LogFilter before it is sent to the
 "/requestheaders" servlet */
 RequestDispatcher dispatch = request.getRequestDispatcher(
 "/requestheaders");

 dispatch.include(request,response);

 }

Figure 19-2 illustrates the process of filters and RequestDispatchers.

Figure 19-2. A log filter intervenes between a servlet, including another
servlet's output

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Figure 19-2, a web client requests the servlet at path /home/servlet1, with /home representing
the context path. The servlet1 component uses a RequestDispatcher to include the output of
servlet2. Based on a filter-mapping element in web.xml, any requests for servlet2 involving a
RequestDispatcher include action must first pass through the log filter. This filter is configured with
a filter element in web.xml with the name "LogFilter" (Figure 19-2 does not show this

configuration; see Example 19-11).

This type of RequestDispatcher set-up is only supported by Servlet API v2.4

and above.

See Also

Chapter 6 on including content using RequestDispatchers; Recipe 7.9 on using a filter to read

request parameter values; Recipe 11.11 on using a filter to monitor session attributes; Recipe 18.3
on using a filter to alter then forward the request; Recipe 19.1-Recipe 19.4 on mapping filters to web
components; Recipe 19.5 on configuring init parameters for a filter; Recipe 19.6 on blocking a
request; Recipe 19.7 on filtering the HTTP response; Recipe 19.9 on using filters to check request
parameters; Recipe 19.10 on using filters to disallow requests from certain IP addresses.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.9 Checking Form Parameters with a Filter

Problem

You want to use a filter to check the values that a user has entered into a form.

Solution

Use the deployment descriptor to map the filter to the servlet or JSP that is the target of the form.

Discussion

Filters offer an alternative to JavaScript and other server-side languages for checking whether the
user has entered valid values into HTML form fields. The filter in this recipe initiates a basic check of
the request parameters to determine if they are null or the empty String.

Example 19-13 is a JSP that contains an HTML form. The JSP includes some embedded JSTL tags that
fill in the text fields with any correct values if the form is returned to the user for corrections. In most
cases, a user fills in the vast majority of the fields correctly, but might make a mistake in one or two
of them. You do not want to make him fill out all of the fields again.

Example 19-13. A JSP containing a form for users to fill out

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
 <title>Personal Information</title>
</head>
<body bgcolor="#ffffff">

<c:if test="${! (empty errorMsg)}">

 <c:out value="${errorMsg}"/>

</c:if>

<h2>Please enter your name and email address</h2>
<table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<form action="/home/thanks.jsp">

<tr><td valign="top">First name: </td>
<td valign="top">

 <input type="text" name="first" size="15" value=
 '<c:out value="${first}" />'>

</td>
<td valign="top">Middle initial: </td>
<td valign="top">

 <input type="text" name="middle" size="2" value=
 '<c:out value="${middle}"/>'>

</td>
</tr>
<tr>
<td valign="top">Last name: </td>
<td valign="top">

 <input type="text" name="last" size="20" value=
 '<c:out value="${last}"/>'>

</td></tr>
<tr>
<td valign="top">Your email: </td>
<td valign="top">

 <input type="text" name="email" size="20" value=
 '<c:out value="${email}"/>'>

</td></tr>

<tr><td valign="top"><input type="submit" value="Submit"> </td>
<td></td></tr>
</form>
</table>

</body>
</html>

When the user submits Example 19-13, the browser sends the form information to the URL specified
in the form tag's action attribute: a JSP page named thanks.jsp. The deployment descriptor maps

the filter in Example 19-14 to the URL thanks.jsp. The filter is designed to check the fields' values to
determine if the user left any of them blank and, if so, return the user to the form (named form.jsp).

Make sure to develop all filters with a constructor that does not take any
arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 19-14. The filter that checks parameters values

package com.jspservletcookbook;

import java.io.IOException;
import java.util.Enumeration;

import javax.servlet.*;
import javax.servlet.http.*;

public class CheckFilter implements Filter {

 private FilterConfig config;

 public CheckFilter() {}

 public void init(FilterConfig filterConfig) throws ServletException {

 this.config = filterConfig;

 }

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {

 //Get all the parameter names associated with the form fields
 Enumeration params = request.getParameterNames();
 boolean rejected = false;

 //Cycle through each one of the parameters; if any of them
 //are empty, call the 'reject' method
 while (params.hasMoreElements()){

 if (isEmpty(request.getParameter((String) params.
 nextElement()))){

 rejected = true;

 reject(request,response);

 }//if

 }//while

 //Pass the request to its intended destination, if everything
 //is okay
 if (! rejected)
 chain.doFilter(request,response);

 }// doFilter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private boolean isEmpty(String param){

 if (param == null || param.length() < 1){
 return true;
 }

 return false;
 }

 private void reject(ServletRequest request, ServletResponse response)
 throws IOException, ServletException {

 //Create an error message; store it in a request attribute
 request.setAttribute("errorMsg",
 "Please make sure to provide a valid value for all of the text "+
 "fields.");

 Enumeration params = request.getParameterNames();

 String paramN = null;

 //Create request attributes that the form-related JSP will
 //use to fill in the form fields that have already been
 //filled out correctly. Then the user does not have to fill
 //in the entire form all over again.
 while (params.hasMoreElements()){

 paramN = (String) params.nextElement();

 request.setAttribute(
 paramN, request.getParameter(paramN));

 }

 //Use a RequestDispatcher to return the user to the form in
 //order to fill in the missing values

 RequestDispatcher dispatcher = request.
 getRequestDispatcher("/form.jsp");

 dispatcher.forward(request,response);

 }//reject

 public void destroy(){
 /*called before the Filter instance is removed
 from service by the web container*/
 }

}

The Java comments in Example 19-14 explain what is going on in this filter. Basically, the user is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returned to the form, which displays an error message if any of the request parameters are empty.
Example 19-15 shows how the CheckFilter is mapped in web.xml. If the user fills in the form

correctly, his request is sent to the thanks.jsp page without interuption by the filter.

Example 19-15. The CheckFilter is registered and mapped in web.xml

<!-- start of web.xml... -->

<filter>
 <filter-name>CheckFilter</filter-name>
 <filter-class>com.jspservletcookbook.CheckFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>CheckFilter</filter-name>
 <url-pattern>/thanks.jsp</url-pattern>
</filter-mapping>

<!-- rest of web.xml... -->

Figure 19-3 shows an HTML form that was partially filled out and submitted. The filter sent the form
back to the user with a message (in a red font).

Figure 19-3. A filter forwards an error message to a JSP

See Also

Chapter 6 on including content using RequestDispatchers; Recipe 19.8 on using filters with
RequestDispatchers; Recipe 7.9 on using a filter to read request parameter values; Recipe 18.3 on

using a filter to alter then forward the request; Recipe 19.1-Recipe 19.4 on mapping filters to web

http://lib.ommolketab.ir
http://lib.ommolketab.ir

components; Recipe 19.5 on configuring init parameters for a filter; Recipe 19.6 on blocking a
request; Recipe 19.7 on filtering the HTTP response.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 19.10 Blocking IP Addresses with a Filter

Problem

You want to use a filter that checks the IP address associated with the request.

Solution

Use a filter that calls the HttpServletRequest 's getRemoteAddr() method inside the doFilter()
method and blocks the request by not calling chain.doFilter().

Discussion

A typical use of a filter in a web application is to check the request to make sure it's acceptable. Let's
say your security division has discovered that a certain range of IP addresses represent nasty
clients-you want to rebuff those folks with a "403 Forbidden" HTTP response.

Example 19-16 blocks any client IP address beginning with "192.168."

Example 19-16. A filter for blocking a certain range of IP addresses

package com.jspservletcookbook;

import java.io.IOException;
import java.util.StringTokenizer;

import javax.servlet.*;
import javax.servlet.http.*;

public class IPFilter implements Filter {

 private FilterConfig config;
 public final static String IP_RANGE = "192.168";

 public IPFilter() {}

 public void init(FilterConfig filterConfig) throws ServletException {

 this.config = filterConfig;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain) throws IOException, ServletException {

 String ip = request.getRemoteAddr();

 HttpServletResponse httpResp = null;

 if (response instanceof HttpServletResponse)
 httpResp = (HttpServletResponse) response;

 //Break up the IP address into chunks representing each byte
 StringTokenizer toke = new StringTokenizer(ip,".");

 int dots = 0;

 String byte1 = "";

 String byte2 = "";

 String client = "";

 //
 while (toke.hasMoreTokens()){

 ++dots;

 //This token is the first number series or byte
 if (dots == 1){

 byte1 = toke.nextToken();

 } else {

 //This token is the second number series or byte
 byte2 = toke.nextToken();

 break;//only interested in first two bytes
 }

 }//while

 //Piece together half of the client IP address so it can be
 // compared with the forbidden range represented by
 //IPFilter.IP_RANGE

 client = byte1+"."+byte2;

 //if the client IP fits the forbidden range...
 if (IP_RANGE.equals(client)){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 httpResp.sendError(HttpServletResponse.SC_FORBIDDEN,
 "That means goodbye forever!");

 } else {

 //Client is okay; send them on their merry way
 chain.doFilter(request,response);
 }

 }// doFilter

 public void destroy(){
 /*called before the Filter instance is removed
 from service by the web container*/
 }

}

The filter obtains the client's IP address with the ServletRequest's getRemoteAddr() method.

The filter than parses the return value to determine if the IP address falls into the "192.168" range. If
the IP address does fall into this range, then the code calls the HttpServletResponse sendError()

method with the " 403 Forbidden" type HTTP status code, as in:

httpResp.sendError(HttpServletResponse.SC_FORBIDDEN,
 "That means goodbye forever!");

This method call effectively short circuits the request by preventing the user from reaching their
original destination. If the IP address is acceptable, the code calls chain.doFilter(), which passes

the request and response objects along the filter chain. In this case, the application does not map
any other filters to thanks.jsp, so the web container invokes that JSP page.

Example 19-17 shows the mapping for this filter in web.xml. The filter is mapped to all requests with
the URL mapping "/*."

Example 19-17. The mapping of the IP-blocking filter

<filter>
 <filter-name>IPFilter</filter-name>
 <filter-class>com.jspservletcookbook.IPFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>IPFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Figure 19-4 shows the page the web browser will display if the client IP address is blocked.

Figure 19-4. A filtered out IP address receives an HTTP Status 403
message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Chapter 9 on handling errors in web applications; Recipe 19.8 on using filters with
RequestDispatchers; Recipe 18.3 on using a filter to alter then forward the request; Recipe 19.1-
Recipe 19.4 on mapping filters to web components; Recipe 19.5 on configuring init parameters for a

filter; Recipe 19.7 on filtering the HTTP response; Recipe 19.9 on checking form parameters with a
filter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 20. Managing Email in Servlets
and JSPs

Introduction

Recipe 20.1. Placing the Email-Related Classes on your Classpath

Recipe 20.2. Sending Email from a Servlet

Recipe 20.3. Sending Email from a Servlet Using a JavaBean

Recipe 20.4. Accessing Email from a Servlet

Recipe 20.5. Accessing Email from a Servlet Using a JavaBean

Recipe 20.6. Handling Attachments from an Email Received in a Servlet

Recipe 20.7. Adding Attachments to an Email in a Servlet

Recipe 20.8. Reading a Received Email's Headers from a Servlet
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

This chapter describes how to manage email in your servlets using the JavaMail and JavaBeans
Activation Framework (JAF) APIs. JavaMail provides Java classes for dealing with most aspects of
creating, sending, and accessing email. The JAF is a separate API for handling the datatypes and
Multipurpose Internet Mail Extension (MIME) types you may encounter when generating email, such
as the many different kinds of file attachments. Both of these APIs are a part of the Java 2 Enterprise
Edition (J2EE) platform.

JavaMail models an email system with classes that represent mail sessions (the javax.mail.Session
class), message stores (the javax.mail.Store class), folders (the javax.mail.Folder class, such
as the INBOX folder), email messages (javax.mail.Message), and email addresses (the
javax.mail.internet.InternetAddress class) . For example, an email message is similar to a
JavaBean, with setter methods to build the various message components (e.g., setFrom(),
setRecipients(), setSubject(), etc.).

The following recipes show how to manage basic email messaging using a single servlet, as well as
methods for separating the responsibility for emailing and handling HTTP requests into JavaBeans
and servlets.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 20.1 Placing the Email-Related Classes on your
Classpath

Problem

You want to use the javax.mail and related Java packages to handle email in a servlet.

Solution

Download the ZIP files containing the mail.jar and activation.jar archives. Add these JAR files to a
shared directory for JAR files whose contents are loaded by the web container. If this directory type is
not available, add the mail.jar and activation.jar files to the WEB-INF/lib directory of your web
application.

Discussion

If your classpath for compiling servlets already includes the JAR files made available by your web
container (such as the JAR files in Tomcat's common/lib directory), test if an email-related servlet
such as Example 20-1 compiles successfully. If the compiler reports that the packages javax.mail
and javax.mail.internet do not exist, you must add the proper JAR files to your classpath.

See Recipe 4.3 on using Ant to include Tomcat's JAR files in your classpath.

Download the mail.jar component from http://java.sun.com/products/javamail/. The downloaded file
is a ZIP archive containing the mail.jar archive. This file includes the required packages for handling
email in a servlet, such as javax.mail and javax.mail.internet.

Then download the JAF from http://java.sun.com/products/javabeans/glasgow/jaf.html. Servlets can
use these classes, as part of the javax.activation package, to handle the different data types that can
be transferred with email messages, such as file attachments.

You can handle basic file attachments using the JavaMail API alone (without
JAF), as in Recipe 20.5 and Recipe 20.6. See Recipe 20.7 for examples of how
to use some of the javax.activation classes to add file attachments to

emails.

http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Add the mail.jar and activation.jar archives to the WEB-INF/lib directory of your web application to
make the JavaMail and JAF packages available to a servlet.

See Also

The Sun Microsystems JavaMail API page: http://java.sun.com/products/javamail/; the JAF web
page: http://java.sun.com/products/javabeans/glasgow/jaf.html; Recipe 20.2 on sending email from
a servlet; Recipe 20.3 on sending email using a JavaBean; Recipe 20.4 covering how to access email
in a servlet; Recipe 20.5 on accessing email with a JavaBean; Recipe 20.6 on handling attachments
in a servlet; Recipe 20.7 on adding attachments to an email message; Recipe 20.8 on reading an
email's headers.

[Team LiB]

http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 20.2 Sending Email from a Servlet

Problem

You want to send emails from a servlet.

Solution

Import the javax.mail and javax.mail.internet packages at the top of the servlet source code.
Create a sendMessage() method (or a method with a different name) that can be called from the
servlet methods doGet() or doPost().

Discussion

The sendMessage() method in Example 20-1 uses the JavaMail API to connect with a mail server,

construct an email message, and then send that message to one or more recipients. The servlet
obtains the various components of an email-the target email address, the sender's address, the
subject field, and the email's body content-from request parameters. The servlet can handle a form
submitted by a client using a web browser.

The form tag might look like this:

<form method="POST" action=
"/home/servlet/com.jspservletcookbook.EmailServlet">

Example 20-1 calls the sendMessage() method from the service method doPost(). The
sendMessage() method parameters comprise the parts of an email: the SMTP server, the recipient
of the email (the variable to), the "from" address of the sender, the email subject, and the email's

content.

Example 20-1. A servlet sends email based on request parameter values

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Properties;

import javax.mail.*;
import javax.mail.internet.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.servlet.*;
import javax.servlet.http.*;

public class EmailServlet extends HttpServlet {

 //default value for mail server address, in case the user
 //doesn't provide one
 private final static String DEFAULT_SERVER = "mail.attbi.com";

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //obtain the values for email components from
 //request parameters
 String smtpServ = request.getParameter("smtp");
 if (smtpServ == null || smtpServ.equals(""))
 smtpServ = DEFAULT_SERVER;

 String from = request.getParameter("from");
 String to = request.getParameter("to");
 String subject = request.getParameter("subject");
 String emailContent = request.getParameter("emailContent");

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Email message sender</title></head><body>");

 try {

 sendMessage(smtpServ, to, from, subject, emailContent);

 } catch (Exception e) {

 throw new ServletException(e.getMessage());

 }

 out.println(
 "<h2>The message was sent successfully</h2>");

 out.println("</body></html>");

 } //doPost

 private void sendMessage(String smtpServer, String to, String from,
 String subject,String emailContent) throws Exception {

 Properties properties = System.getProperties();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //populate the 'Properties' object with the mail
 //server address, so that the default 'Session'
 //instance can use it.
 properties.put("mail.smtp.host", smtpServer);

 Session session = Session.getDefaultInstance(properties);
 Message mailMsg = new MimeMessage(session);//a new email message
 InternetAddress[] addresses = null;

 try {

 if (to != null) {

 //throws 'AddressException' if the 'to' email address
 //violates RFC822 syntax
 addresses = InternetAddress.parse(to, false);
 mailMsg.setRecipients(Message.RecipientType.TO, addresses);

 } else {

 throw new MessagingException(
 "The mail message requires a 'To' address.");

 }

 if (from != null) {

 mailMsg.setFrom(new InternetAddress(from));

 } else {

 throw new MessagingException(
 "The mail message requires a valid 'From' address.");

 }

 if (subject != null)
 mailMsg.setSubject(subject);

 if (emailContent != null)
 mailMsg.setText(emailContent);

 //Finally, send the mail message; throws a 'SendFailedException'
 //if any of the message's recipients have an invalid address
 Transport.send(mailMsg);

 } catch (Exception exc) {

 throw exc;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }//sendMessage

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //doGet() calls doPost()...
 doPost(request, response);

 }//doGet

}//EmailServlet

The servlet interacts with a mail server in the following manner:

The code creates a javax.mail.Session object, which contains various defaults and property
values (such as mail.smtp.host) that the other JavaMail objects will use. You can share a
single Session object in an application.

1.

The code creates a MimeMessage object (passing in the Session as a constructor parameter).2.

The servlet then populates the MimeMessage with an email's various components, such as the

"to" and "from" email addresses, the email subject, as well as the message content.

3.

The code sends the email using the javax.mail.Transport static send() method.4.

See Also

The Sun Microsystems JavaMail API page: http://java.sun.com/products/javamail/; Recipe 20.1 on
adding JavaMail-related JARs to your web application; Recipe 20.3 on sending email using a
JavaBean; Recipe 20.4 covering how to access email in a servlet; Recipe 20.5 on accessing email with
a JavaBean; Recipe 20.6 on handling attachments in a servlet; Recipe 20.7 on adding attachments to
an email message; Recipe 20.8 on reading an email's headers.

[Team LiB]

http://java.sun.com/products/javamail/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 20.3 Sending Email from a Servlet Using a JavaBean

Problem

You want to use a JavaBean or helper class to send email from a servlet.

Solution

Develop a Java class that implements a sendMessage() method (just a name I gave it) to construct an

email and send it. Store the new class in the WEB-INF/classes folder of the web application, including
the class's package-related folders.

Discussion

You may choose to separate the responsibilities of handling HTTP requests and managing email by
encapsulating these tasks in separate classes. A JavaBean that provides the essential function of
sending email fits the bill here.

Recipe 20.5 and Recipe 20.6 show JavaBeans that are used to access email and
handle attachments. A bean that does everything email-related grows fairly large
in size, so developers must make a design decision about whether to separate
these tasks into different JavaBeans (or utility classes) that can be used from
servlets.

Create the bean and store it in the WEB-INF/classes folder. Example 20-3 shows the doGet() method
of an HttpServlet using a JavaBean to send an email. Example 20-2 shows the bean class itself. The
difference between the sendMessage() method of Example 20-1 and the one in Example 20-2 is in the

way the bean receives the various email parts, such as the recipient's email address. The bean stores
these parts as properties and uses setter methods to provide the property values.

On the other hand, Example 20-1 uses request parameters and method
arguments to provide these values.

Example 20-2. A JavaBean used to send email

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.util.Properties;

import javax.mail.*;
import javax.mail.internet.*;

public class EmailBean {

 public EmailBean(){}

 //set defaults
 private final static String DEFAULT_CONTENT = "Unknown content";
 private final static String DEFAULT_SUBJECT= "Unknown subject";
 private static String DEFAULT_SERVER = null;
 private static String DEFAULT_TO = null;
 private static String DEFAULT_FROM = null;
 static{
 //set Mail defaults based on a properties file
 java.util.ResourceBundle bundle =
 java.util.ResourceBundle.
 getBundle("com.jspservletcookbook.mailDefaults");

 DEFAULT_SERVER = bundle.getString("DEFAULT_SERVER");
 DEFAULT_TO = bundle.getString("DEFAULT_TO");
 DEFAULT_FROM = bundle.getString("DEFAULT_FROM");

 }//static

 //JavaBean properties
 private String smtpHost;
 private String to;
 private String from;
 private String content;
 private String subject;

 public void sendMessage() throws Exception {

 Properties properties = System.getProperties();

 //populate the 'Properties' object with the mail
 //server address, so that the default 'Session'
 //instance can use it.
 properties.put("mail.smtp.host", smtpHost);
 Session session = Session.getDefaultInstance(properties);
 Message mailMsg = new MimeMessage(session);//a new email message
 InternetAddress[] addresses = null;

 try {

 if (to != null) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //throws 'AddressException' if the 'to' email address
 //violates RFC822 syntax
 addresses = InternetAddress.parse(to, false);
 mailMsg.setRecipients(Message.RecipientType.TO, addresses);

 } else {

 throw new MessagingException(
 "The mail message requires a 'To' address.");

 }

 if (from != null) {

 mailMsg.setFrom(new InternetAddress(from));

 } else {

 throw new MessagingException(
 "The mail message requires a valid 'From' address.");

 }

 if (subject != null)
 mailMsg.setSubject(subject);

 if (content != null)
 mailMsg.setText(content);

 //Finally, send the mail message; throws a 'SendFailedException'
 //if any of the message's recipients have an invalid address
 Transport.send(mailMsg);

 } catch (Exception exc) {

 throw exc;

 }

 }//sendMessage

 //The setter methods are all the same structure,
 //so we're just showing two

 public void setSmtpHost(String host){

 if (check(host)){
 this.smtpHost = host;
 } else {
 this.smtpHost = DEFAULT_SERVER;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }//setSmtpHost

 public void setTo(String to){

 if (check(to)){
 this.to = to;
 } else {
 this.to = DEFAULT_TO;
 }

 }//setTo

 /* -- Not shown: 'setter' methods continue with exactly the same structure for
'from', 'subject', and 'content' -- */

 private boolean check(String value){

 if(value == null || value.equals(""))
 return false;

 return true;
 }//check

}

Example 20-3 uses the java.util.ResourceBundle class to set default property values for variables

such as the name of the server. The mailDefaults.properties file is stored in WEB-
INF/classes/com/jspservletcookbook . Here is an example of the properties file's contents:

DEFAULT_SERVER=smtp.comcast.net
DEFAULT_TO=author@jspservletcookbook.com
DEFAULT_FROM=author@jspservletcookbook.com

The bean allows the setting of the various email parts with the following methods (Example 20-3 does
not show all of them): setSmtpHost() , setTo() , setFrom() , setSubject() , and setContent(
) .

The servlet in Example 20-3 creates an instance of an EmailBean , sets the various parts of the email
message, then calls the sendMessage() method. Example 20-3 shows only the doGet() method. The
servlet's doPost() method could call doGet() as in: doGet(request, response) .

Example 20-3. A servlet uses the JavaBean to send email

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Email message sender</title></head><body>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 EmailBean emailer = new EmailBean();
 emailer.setSmtpHost("mail.attbi.com");
 emailer.setTo("myfriend@yahoo.com");
 emailer.setFrom("author@jspservletcookbook.com");
 emailer.setSubject("This is not spam!");
 emailer.setContent("Please call ASAP.");

 try{
 emailer.sendMessage();
 } catch (Exception e) {throw new ServletException(e);}

 out.println("</body></html>");

} //doGet

The bean itself throws MessagingExceptions if, for instance, the "to" email address that the user

provides is in an invalid format. The bean rethrows any exceptions that it catches while building and
sending the email.

See Also

Recipe 20.4 covering how to access email in a servlet; Recipe 20.5 on accessing email with a JavaBean;
Recipe 20.6 on handling attachments in a servlet; Recipe 20.7 on adding attachments to an email
message; Recipe 20.8 on reading an email's headers.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 20.4 Accessing Email from a Servlet

Problem

You want to access and display the content of email in a servlet.

Solution

Use the JavaMail API and a method inside the servlet to handle and display the values of email
messages.

Discussion

Fetching email messages using JavaMail and a servlet is a straightforward process:

Import the javax.mail and javax.mail.internet packages at the top of the servlet source

code.

1.

Inside the servlet's mail-fetching method, create a javax.mail.Session object to handle this

mail session.

2.

Get a message store object (a javax.mail.Store) from the session to represent the POP3 mail

account.

3.

Connect to the Store using the connect(String host, String user, String password)
method of the Store object (there are overloaded versions of this method). The Store is

designed to authenticate a user and connect with a mail server.

4.

Access the INBOX folder from the message store.5.

Obtain any messages that folder contains as a Message[] type, then do whatever you want
with each message, iterating through the array.

6.

Example 20-4 fetches email messages by calling its handleMessages() method in the doGet()

service method.

Example 20-4. A servlet that fetches email messages

package com.jspservletcookbook;

import java.io.IOException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.PrintWriter;

import java.util.Properties;

import javax.mail.*;
import javax.mail.internet.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MailAccessor extends HttpServlet {

 private final static String DEFAULT_SERVER = "mail.attbi.com";

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html><head><title>Email Reader</title></head><body>");

 //This method accesses any email and displays the contents
 handleMessages(request, out);

 out.println("</body></html>");

 }//doGet

 private void handleMessages(HttpServletRequest request,
 PrintWriter out) throws IOException, ServletException {

 //Obtain user authentication information for a POP server,
 //used to access email. This information is stored in a
 //HttpSession object
 HttpSession httpSession = request.getSession();
 String user = (String) httpSession.getAttribute("user");
 String password = (String) httpSession.getAttribute("pass");
 String popAddr = (String) httpSession.getAttribute("pop");

 Store popStore = null;
 Folder folder = null;

 if (! check(popAddr))
 popAddr = MailAccessor.DEFAULT_SERVER;

 try {

 //basic check for null or empty user and password
 if ((! check(user)) || (! check(password)))
 throw new ServletException(
 "A valid username and password is required.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Properties properties = System.getProperties();
 //Obtain default 'Session' for this interaction with
 //a mail server
 Session session = Session.getDefaultInstance(properties);
 //Obtain a message store (i.e., a POP3 email account, from
 //the Session object
 popStore = session.getStore("pop3");

 //connect to the store with authentication information
 popStore.connect(popAddr, user, password);
 //Get the INBOX folder, open it, and retireve any emails
 folder = popStore.getFolder("INBOX");

 if (! folder.exists())
 throw new ServletException(
 "An 'INBOX' folder does not exist for the user.");

 folder.open(Folder.READ_ONLY);
 Message[] messages = folder.getMessages();
 int msgLen = messages.length;

 if (msgLen == 0){
 out.println(
 "<h2>The INBOX folder doesn't contain any email "+
 "messages.</h2>");}

 //for each retrieved message, use displayMessage method to
 //display the mail message
 for (int i = 0; i < msgLen; i++){

 displayMessage(messages[i], out);

 out.println("

");
 }

 } catch (Exception exc) {

 out.println(
 "<h2>Sorry, an error occurred while accessing the email" +
 " messages.</h2>");

 out.println(exc.toString());

 } finally {

 try{

 //close the folder and the store in the finally block
 //if 'true' parameter, any deleted messages will be expunged
 //from the Folder
 if (folder != null)
 folder.close(false);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (popStore != null)
 popStore.close();

 } catch (Exception e) { }
 }
 }//printMessages

 private void displayMessage(Message msg, PrintWriter out)
 throws MessagingException, IOException{

 if (msg != null && msg.getContent() instanceof String){
 if (msg.getFrom()[0] instanceof InternetAddress){
 out.println(
 "Message received from: " +
 ((InternetAddress)msg.getFrom()[0]).getAddress() +
 "
");
 }

 out.println("Message content type: " + msg.getContentType() +
 "
");
 out.println("Message body content: " +
 (String) msg.getContent());

 } else{

 out.println(
 "<h2>The received email message was not of a text " +
 "content type.</h2>");

 }//outer if

 }//displayMessage

 private boolean check(String value){

 if(value == null || value.equals(""))
 return false;

 return true;

 }//check

}

The displayMessage() method displays each message's "from" address, the message's content
type (i.e., the MIME type as in text/plain), and the email's content. You can get the String from a

typical email message that contains just headers and the text message by calling
Message.getContent() . Getting the "from" address is a little trickier:

out.println("Message received from: " +
 ((InternetAddress)msg.getFrom()[0]).getAddress() +"
");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Message.getFrom() method returns an array of javax.mail.Address objects. This code is

designed to access the first email address, since an email is typically sent by one party to its recipient
(not including those malicious spammers, of course).

The code accesses the first array member, casts the return value to a
javax.mail.InternetAddress, then calls getAddress() on that object, which returns the String

email address.

Figure 20-1 shows the servlet's return value in a browser window. Since the servlet receives its email
authentication information from session attributes, the first request targets a JSP, which sets the
session attributes. Then the JSP forwards the request to the MailAccessor servlet. The servlet

displays each received email separated by two line breaks. In other words, the information the
servlet displays about each email includes who sent the email, the mail's content type, and the
content of the message itself.

Figure 20-1. A servlet fetches and displays two email messages

See Also

Chapter 16 on setting session attributes; Chapter 25 on accessing a javax.mail.Session JNDI

object on BEA WebLogic; Sun Microsystem's JavaMail API page:
http://java.sun.com/products/javamail/; Recipe 20.1 on adding JavaMail-related JARs to your web
application; Recipe 20.2 on sending email using a servlet; Recipe 20.3 on sending email using a
JavaBean; Recipe 20.5 on accessing email with a JavaBean; Recipe 20.6 on handling attachments in
a servlet; Recipe 20.7 on adding attachments to an email message; Recipe 20.8 on reading an
email's headers.

[Team LiB]

http://java.sun.com/products/javamail/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 20.5 Accessing Email from a Servlet Using a
JavaBean

Problem

You want to use a JavaBean or helper class to access and display email messages.

Solution

Add the handleMessages() and displayMessage() methods from Example 20-4 to the JavaBean
class defined in Example 20-2. Then use the JavaBean from a servlet's doGet() or doPost()

method.

Discussion

When we last encountered the EmailBean in Example 20-2 it contained a sendMessage() method,
along with several property "setter" methods (such as setSmtpHost(String host)). If you add the
handleMessages() and displayMessage() methods from Example 20-4 to this same class, you

can use the JavaBean to both send and access email.

This code in handleMessages() from Example 20-4 needs to be changed to
include the EmailBean class name:

//static reference to a constant value
if (! check(popAddr))
 popAddr = EmailBean.DEFAULT_SERVER;

However, the EmailBean class will have grown quite large as a result of adding the two methods, so

you might create two JavaBeans-one for sending mail and another for accessing it. Example 20-5
creates and uses an instance of a special email JavaBean. You must store the bean class in the WEB-
INF/classes directory or in a JAR file in WEB-INF/lib.

Example 20-6 also shows a JavaBean that defines handleMessages() and
displayMessage() for dealing with email attachments.

Example 20-5. A servlet uses a JavaBean to access email messages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Email message sender</title></head><body>");

 EmailBean emailer = new EmailBean();
 emailer.setSmtpHost("mail.attbi.com");
 emailer.handleMessages(request,out);

 out.println("</body></html>");

}//doGet

See Also

Sun Microsystem's JavaMail API page: http://java.sun.com/products/javamail/; Recipe 20.1 on
adding JavaMail-related JARs to your web application; Recipe 20.2 on sending email from a servlet;
Recipe 20.3 on sending email using a JavaBean; Recipe 20.4 covering how to access email in a
servlet; Recipe 20.6 on handling attachments in a servlet; Recipe 20.7 on adding attachments to an
email message; Recipe 20.8 on reading an email's headers.

[Team LiB]

http://java.sun.com/products/javamail/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 20.6 Handling Attachments from an Email
Received in a Servlet

Problem

You want to read an email message and save any attachments from a servlet.

Solution

Use the JavaMail API and a special JavaBean to save the InputStream s from attached files to a

specified folder.

Discussion

Accessing email usually involves authenticating a user with a POP account, then connecting with the
mail server and downloading any email messages. Example 20-6 uses the Session , Store , Folder ,
and Message classes from the JavaMail API to download an array of Messages from a particular user's
email account. However, the servlet in Recipe 20.4 was designed to deal only with Messages whose
content was of type String (the return value of the Message.getContent() method).

If the Message 's content is of type Multipart , then the process of handling attachments mirrors the

peeling of an onion-more code is involved. Example 20-6 separates the email-related code into a
JavaBean that can be used from a servlet. The bean's displayMessage() method tests the content
of each Message . If the content is of type Multipart , then the code examines each contained
BodyPart .

Picture a Multipart message type as a container. The container's headers are

like any other email message's headers (but with different values). The
container encloses BodyPart s, which are like messages inside of messages.
Some BodyPart s represent the text message accompanying a Multipart email
message. Other BodyPart s represent the attached files, such as a Microsoft

Word file or JPEG image.

If the BodyPart 's content is a String , then the bean displays the text message. Otherwise, the
bean assumes the BodyPart is an attached file; it saves the file to a special attachments folder.
You're probably already familiar with the handleMessages() code, so you can skip to the
displayMessage() method, which deals with saving any file attachments.

Example 20-6. A JavaBean that handles attachments and delivers a
browser message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.jspservletcookbook;

import java.io.*;
import java.util.Properties;

import javax.mail.*;
import javax.mail.internet.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AttachBean {

 /* NOT SHOWN: private bean fields (or, properties); default variables;
 and the sendMessage method
 See Example 20-2 */

 public AttachBean(){}

 private void handleMessages(HttpServletRequest request,
 PrintWriter out) throws IOException, ServletException {

 /* get the user and password information for a POP
 account from an HttpSession object */

 HttpSession httpSession = request.getSession();
 String user = (String) httpSession.getAttribute("user");
 String password = (String) httpSession.getAttribute("pass");
 String popAddr = (String) httpSession.getAttribute("pop");

 Store popStore = null;
 Folder folder = null;

 if (! check(popAddr))
 popAddr = AttachBean.DEFAULT_SERVER;

 try {

 if ((! check(user)) || (! check(password)))
 throw new ServletException(
 "A valid username and password is required to check email.");

 Properties properties = System.getProperties();
 Session session = Session.getDefaultInstance(properties);
 popStore = session.getStore("pop3");
 popStore.connect(popAddr, user, password);
 folder = popStore.getFolder("INBOX");
 if (! folder.exists())
 throw new ServletException(
 "An 'INBOX' folder does not exist for the user.");

 folder.open(Folder.READ_ONLY);
 Message[] messages = folder.getMessages();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int msgLen = messages.length;
 if (msgLen == 0)
 out.println(
 "<h2>The INBOX folder does not yet contain any " +
 " email messages.</h2>");

 for (int i = 0; i < msgLen; i++){

 displayMessage(messages[i], out);
 out.println("

");

 }//for

 } catch (Exception exc) {

 out.println(
 "<h2>Sorry, an error occurred while accessing " +
 "the email messages.</h2>");

 out.println(exc.toString());

 } finally {

 try{

 if (folder != null)
 folder.close(false);

 if (popStore != null)
 popStore.close();

 } catch (Exception e) { }
 }
 }//handleMessages

 private void displayMessage(Message msg, PrintWriter out)
 throws MessagingException, IOException{

 if (msg != null){

 /* get the content of the message; the message could
 be an email without attachments, or an email
 with attachments. The method getContent() will return an
 instance of 'Multipart' if the msg has attachments */

 Object o = msg.getContent();

 if (o instanceof String){

 //just display some info about the message content
 handleStringMessage(msg,(String) o, out);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else if (o instanceof Multipart) {

 //save the attachment(s) to a folder
 Multipart mpart = (Multipart) o;
 Part part = null;
 File file = null;
 FileOutputStream stream = null;
 InputStream input = null;
 String fileName = "";

 //each Multipart is made up of 'BodyParts' that
 //are of type 'Part'
 for (int i = 0; i < mpart.getCount(); i++){

 part = mpart.getBodyPart(i);
 Object partContent = part.getContent();

 if (partContent instanceof String){
 handleStringMessage(msg,(String) partContent,
 out);

 } else {//handle as a file attachment

 fileName = part.getFileName();

 if (! check(fileName)){//default file name
 fileName = "file"+
 new java.util.Date().getTime();}

 //write the attachment's InputStream to a file
 file = new File(attachFolder +
 System.getProperty("file.separator") + fileName);
 stream = new FileOutputstream(file);
 input = part.getInputStream();
 int ch;

 while ((ch = input.read()) != -1){
 stream.write(ch);}

 input.close();
 out.println(
 "Handled attachment named: "+
 fileName+"

");
 }// if
 }//for

 }//else if instanceof multipart

 } else{

 out.println(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "<h2>The received email message returned null.</h2>");

 }// if msg != null

 }//displayMessage

 private void handleStringMessage(Part part, String emailContent,
 PrintWriter out) throws MessagingException {

 if (part instanceof Message){
 Message msg = (Message) part;
 if (msg.getFrom()[0] instanceof InternetAddress){

 out.println("Message received from: " +
 ((InternetAddress) msg.getFrom()[0]).getAddress() +
 "
");
 }

 out.println(
 "Message content type: " + msg.getContentType() +
 "
");
 out.println("Message content: " + emailContent +"
");
 }

 }

 private boolean check(String value){

 if(value == null || value.equals(""))
 return false;

 return true;

 }//check

/* NOT SHOWN: various 'setter' methods for the bean's properties
 See Example 20-2 */

}// AttachBean

Once the displayMessage() code identifies a BodyPart as an attached file, it receives the bytes
that represent the file as an InputStream . A BodyPart implements the Part interface, which defines
the method getInputStream() . The code saves the file using the InputStream and the
java.io.FileOutputStream class.

Example 20-7 shows the doGet() method of a servlet using com.jspservletcookbook.AttachBean

.

Example 20-7. A servlet's doGet() method uses a JavaBean to deal with
email attachments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Email message sender</title></head><body>");

 AttachBean emailer = new AttachBean();
 emailer.setSmtpHost("mail.attbi.com");
 emailer.setAttachFolder(getServletContext().getRealPath("/") + "attachments");
 emailer.handleMessages(request,out);

 out.println("</body></html>");

 }//doGet

Figure 20-2 shows the messages that the servlet (using the JavaBean) displays in a browser. The first
email is a simple text message without attachments. The second email contains two attachments; its
MIME type is multipart/mixed .

Figure 20-2. A servlet displays information about received attachments
and messages

See Also

Sun Microsystem's JavaMail API page: http://java.sun.com/products/javamail/ ; Recipe 20.1 on
adding JavaMail-related JARs to your web application; Recipe 20.2 on sending email from a servlet;
Recipe 20.3 on sending email using a JavaBean; Recipe 20.4 covering how to access email in a
servlet; Recipe 20.5 on accessing email with a JavaBean; Recipe 20.7 on adding attachments to an
email message; Recipe 20.8 on reading an email's headers.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 20.7 Adding Attachments to an Email in a Servlet

Problem

You want to build an email message with attachments in a servlet.

Solution

Use the JavaMail API for basic email messaging, and the the JavaBeans Activation Framework (JAF)
to generate the file attachments.

Discussion

The JAF classes provide fine-grained control over setting up a file attachment for an email message.

If you are using both the JavaMail API and the JAF, make sure to import the
packages in your servlet class:

import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;

//class definition continues

The sendMessage() method in Example 20-8 creates a new email message (specifically, a new
javax.mail.internet.MimeMessage), adds its text message, and inserts a file attachment inside the

message. The method then sends the message using the code you may have seen in Recipe 20.2 and
Recipe 20.3:

Transport.send(mailMsg);

To accomplish this, the code creates a container (a javax.mail.Multipart object) and two
javax.mail.BodyParts that make up the the container. The first BodyPart is a text message (used
usually to describe the file attachment to the user), while the second BodyPart is the file attachment
(in this case, a Microsoft Word file). Then the code sets the content of the MimeMessage to the
Multipart. In a nutshell, the MimeMessage (an email message) contains a Multipart, which itself is
composed of two BodyParts: the email's text message and an attached file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want to look at the headers of a MimeMessage that contains attachments,
call the getAllHeaders() method on the MimeMessage. See Recipe 20.8 for

details.

Example 20-8. Making email attachment in a servlets

package com.jspservletcookbook;

import java.io.*;
import java.util.Properties;

import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class EmailAttachServlet extends HttpServlet {

 //default value for mail server address, in case the user
 //doesn't provide one
 private final static String DEFAULT_SERVER = "mail.attbi.com";

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Email message sender</title></head><body>");

 String smtpServ = request.getParameter("smtp");
 if (smtpServ == null || smtpServ.equals(""))
 smtpServ = DEFAULT_SERVER;
 String from = request.getParameter("from");
 String to = request.getParameter("to");
 String subject = request.getParameter("subject");

 try {
 sendMessage(smtpServ, to, from, subject);
 } catch (Exception e) {
 throw new ServletException(e.getMessage());
 }
 out.println(
 "<H2>Your attachment has been sent.</H2>");
 out.println("</body></html>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }//doPost

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 doPost(request,response);

 }//doGet

 private void sendMessage(String smtpServ, String to, String from,
 String subject) throws Exception {

 Multipart multipart = null;
 BodyPart bpart1 = null;
 BodyPart bpart2 = null;

 Properties properties = System.getProperties();

 //populate the 'Properties' object with the mail
 //server address, so that the default 'Session'
 //instance can use it.
 properties.put("mail.smtp.host", smtpServ);

 Session session = Session.getDefaultInstance(properties);
 Message mailMsg = new MimeMessage(session);//a new email message
 InternetAddress[] addresses = null;

 try {

 if (to != null) {

 //throws 'AddressException' if the 'to' email address
 //violates RFC822 syntax
 addresses = InternetAddress.parse(to, false);

 mailMsg.setRecipients(Message.RecipientType.TO, addresses);

 } else {
 throw new MessagingException(
 "The mail message requires a 'To' address.");
 }

 if (from != null) {
 mailMsg.setFrom(new InternetAddress(from));
 } else {

 throw new MessagingException(
 "The mail message requires a valid 'From' address.");
 }

 if (subject != null)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mailMsg.setSubject(subject);

 //This email message's content is a 'Multipart' type
 //The MIME type for the message's content is 'multipart/mixed'
 multipart = new MimeMultipart();

 //The text part of this multipart email message
 bpart1 = new MimeBodyPart();

 String textPart =
 "Hello, just thought you'd be interested in this Word file.";

 // create the DataHandler object for the text part
 DataHandler data = new DataHandler(textPart, "text/plain");

 //set the text BodyPart's DataHandler
 bpart1.setDataHandler(data);

 //add the text BodyPart to the Multipart container
 multipart.addBodyPart(bpart1);

 //create the BodyPart that represents the attached Word file
 bpart2 = new MimeBodyPart();

 //create the DataHandler that points to a File
 FileDataSource fds = new FileDataSource(new File(
 "h:/book/chapters/chap1/chap1.doc"));

 //Make sure that the attached file is handled as
 //the appropriate MIME type: application/msword here
 MimetypesFileTypeMap ftm = new MimetypesFileTypeMap();

 //the syntax here is the MIME type followed by
 //space separated extensions
 ftm.addMimeTypes("application/msword doc DOC");

 fds.setFileTypeMap(ftm);
 //The DataHandler is instantiated with the
 //FileDataSource we just created
 DataHandler fileData = new DataHandler(fds);

 //the BodyPart will contain the word processing file
 bpart2.setDataHandler(fileData);

 //add the second BodyPart, the one containing the attachment, to
 //the Multipart object
 multipart.addBodyPart(bpart2);

 //finally, set the content of the MimeMessage to the
 //Multipart object
 mailMsg.setContent(multipart);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // send the mail message; throws a 'SendFailedException'
 //if any of the message's recipients have an invalid adress
 Transport.send(mailMsg);

 } catch (Exception exc) {

 throw exc;

 }//try

 }//sendMessage

}//EmailAttachServlet

The comments in Example 20-8 explain what happens when you use the javax.activation classes

to create a file attachment of the intended MIME type. The most confusing part is creating a
javax.activation.FileDataSource that points to the file that you want to attach to the email
message. The code uses the FileDataSource to instantiate the javax.activation.DataHandler,

which is responsible for the content of the file attachment.

//create the DataHandler that points to a File
FileDataSource fds = new FileDataSource(new File(
 "h:/book/chapters/chap1/chap1.doc"));

Make sure that the MimeMessage identifies the attached file as a MIME type of application/msword, so

that the user's email application can try to handle the attachment as a Microsoft Word file. Set the
FileTypeMap of the FileDataSource with the following code:

//Make sure that the attached file is handled as
//the appropriate MIME type: application/msword here
MimetypesFileTypeMap ftm = new MimetypesFileTypeMap();

//the syntax here is the MIME type followed by
//space separated extensions
ftm.addMimeTypes("application/msword doc DOC");

fds.setFileTypeMap(ftm);

A MimetypesFileTypeMap is a class that associates MIME types (like application/msword) with file

extensions such as .doc.

Make sure you associate the correct MIME type with the file that you are sending as
an attachment, since you explicitly make this association in the code. See
http://java.sun.com/j2ee/1.4/docs/api/javax/activation/MimetypesFileTypeMap.html
for further details.

Then the code performs the following steps:

Creates a DataHandler by passing this FileDataSource in as a constructor parameter.1.

2.

3.

http://java.sun.com/j2ee/1.4/docs/api/javax/activation/MimetypesFileTypeMap.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Sets the content of the BodyPart with that DataHandler.2.

Adds the BodyPart to the Multipart object (which in turn represents the content of the email

message).

3.

See Also

Sun Microsystem's JavaMail API page: http://java.sun.com/products/javamail/; the JAF web page:
http://java.sun.com/products/javabeans/glasgow/jaf.html; Recipe 20.1 on adding JavaMail-related
JARs to your web application; Recipe 20.2 on sending email from a servlet; Recipe 20.3 on sending
email using a JavaBean; Recipe 20.4 covering how to access email in a servlet; Recipe 20.5 on
accessing email with a JavaBean; Recipe 20.6 on handling attachments in a servlet; Recipe 20.8 on
reading an email's headers.

[Team LiB]

http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 20.8 Reading a Received Email's Headers from a
Servlet

Problem

You want to read the headers from an email in a servlet.

Solution

Use the JavaMail API to access each email message. Call the getAllHeaders() method of the Part
interface, then iterate through the Enumeration return value to get the name and value of each

header.

Discussion

An advanced email program, such as a spam filter, is designed to examine an email's headers, not
just its message and file attachments.

A header is composed of a name, a colon character (:), and a value. The
headers provide details about the email message, such as who sent the
message and the mail server(s) that handled the message during its network
travels. An example header is:

To: <bwperry@parkerriver.com>

The JavaMail API makes it easy to list an email's headers. The Message object has a getAllHeaders(
) method (via the Part interface that the Message class implements). This method returns a
java.util.Enumeration, holding a collection of javax.mail.Header objects. To get the header
name and value from these Header objects, just call their getName() and getValue() methods.

The Part interface also has a getHeader(String headerName) method that

you can use to obtain the value for a particular header. This method returns a
String array containing the value(s) for the header of that name.

Example 20-9 shows the same servlet from Recipe 20.4, revised to list both the message contents
and the header values. The header-related code appears in the displayMessage() method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 20-9. A servlet displays email header names and values

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;

import java.util.Properties;
import java.util.Enumeration;

import javax.mail.*;
import javax.mail.internet.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HeaderAccessor extends HttpServlet {

 private final static String DEFAULT_SERVER = "mail.attbi.com";

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html><head><title>Email Reader</title></head><body>");

 handleMessages(request, out);

 out.println("</body></html>");
 } //doGet

 private void handleMessages(HttpServletRequest request,
 PrintWriter out) throws IOException, ServletException {

 HttpSession httpSession = request.getSession();
 String user = (String) httpSession.getAttribute("user");
 String password = (String) httpSession.getAttribute("pass");
 String popAddr = (String) httpSession.getAttribute("pop");
 Store popStore = null;
 Folder folder = null;

 if (! check(popAddr))
 popAddr = HeaderAccessor.DEFAULT_SERVER;

 try {

 if ((! check(user)) || (! check(password)))
 throw new ServletException(
 "A valid username and password is required to check email.");

 Properties properties = System.getProperties();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Session session = Session.getDefaultInstance(properties);
 popStore = session.getStore("pop3");
 popStore.connect(popAddr, user, password);
 folder = popStore.getFolder("INBOX");
 if (! folder.exists())
 throw new ServletException(
 "An 'INBOX' folder does not exist for the user.");

 folder.open(Folder.READ_ONLY);
 Message[] messages = folder.getMessages();
 int msgLen = messages.length;

 if (msgLen == 0)
 out.println(
 "<h2>The INBOX folder does not yet contain any " +
 "email messages.</h2>");

 for (int i = 0; i < msgLen; i++){

 displayMessage(messages[i], out);
 out.println("

");

 }//for

 } catch (Exception exc) {

 out.println(
 "<h2>Sorry, an error occurred while accessing the " +
 "email messages.</h2>");
 out.println(exc.toString());

 } finally {

 try{

 if (folder != null)
 folder.close(false);

 if (popStore != null)
 popStore.close();

 } catch (Exception e) { }
 }
 }//handleMessages

 private void displayMessage(Message msg, PrintWriter out)
 throws MessagingException, IOException{

 if (msg != null && msg.getContent() instanceof String){

 if (msg.getFrom()[0] instanceof InternetAddress){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println(
 "Message received from: " +
 ((InternetAddress)msg.getFrom()[0]).getAddress() +"
");
 }
 out.println("Message content type: " + msg.getContentType() +
 "
");
 out.println(
 "Message body content: " + (String) msg.getContent());

 //List each of the email headers using a ul tag
 out.println("");
 Header head = null;
 Enumeration headers = msg.getAllHeaders();

 while (headers.hasMoreElements()){
 head = (Header) headers.nextElement();
 out.println(
 "" + head.getName() + ": " + head.getValue()+ "");
 }//while

 out.println("");

 } else{

 out.println(
 "<h2>The received email message was not " +
 "a text content type.</h2>");
 }

 }//displayMessage

 private boolean check(String value){

 if(value == null || value.equals(""))
 return false;

 return true;
 }
}

Figure 20-3 shows the browser display of the servlet in Example 20-9. Each of the headers is
preceded by a bullet character, followed by the header name, a colon, and the header value.

Figure 20-3. A servlet accesses an email and displays its header s

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Sun Microsystem's JavaMail API page: http://java.sun.com/products/javamail/; Recipe 20.1 on
adding JavaMail-related JARs to your web application; Recipe 20.2 on sending email from a servlet;
Recipe 20.3 on sending email using a JavaBean; Recipe 20.4 covering how to access email in a
servlet; Recipe 20.5 on accessing email with a JavaBean; Recipe 20.6 on handling attachments in a
servlet; Recipe 20.7 on adding attachments to an email message.

[Team LiB]

http://java.sun.com/products/javamail/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 21. Accessing Databases
Introduction

Recipe 21.1. Accessing a Database from a Servlet Without DataSource

Recipe 21.2. Configuring a DataSource in Tomcat

Recipe 21.3. Using a DataSource in a Servlet with Tomcat

Recipe 21.4. Creating a DataSource on WebLogic

Recipe 21.5. Using a JNDI Lookup to get a DataSource from WebLogic

Recipe 21.6. Using a DataSource from WebLogic in a JSP

Recipe 21.7. Calling a Stored Procedure from a Servlet

Recipe 21.8. Calling a Stored Procedure from a JSP

Recipe 21.9. Converting a ResultSet to a Result Object

Recipe 21.10. Executing Several SQL Statements Within a Single Transaction

Recipe 21.11. Using Transactions with JSPs

Recipe 21.12. Finding Information about a ResultSet
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

If you are a Java web developer who has never written database-related code, I have some advice
for you: don't hold your breath until you receive this type of assignment!

These recipes show you how to access a database resource by using a Java Naming and Directory
Interface (JNDI) lookup, which is the most efficient (and probably the most common) method of
accessing database resources in a portable manner. JNDI is a Java API that is designed to store
objects in a hierarchical tree structure, similar to a filesystem composed of directories, subdirectories,
and files. Servlets and JSPs can then use the methods of the JNDI API (shown by several examples in
this chapter) to obtain references from Java objects, such as JavaBeans, and use them in their
programs.

For database code, this usually means javax.sql.DataSource objects, which are factories for
database connections. The DataSources provide "connection pools," another very important web

database tool. Connection pools are groups of database connections shared by servlets, JSPs, and
other classes. Application servers such as WebLogic usually allow you to determine how many
connections are stored in the pool, which database table can be used by the server to automatically
test a connection to determine if it is fit to be returned to the shared pool, and other pool properties.

These recipes explain the basics of setting up a connection pool on both Tomcat and WebLogic.

The recipes also cover some other practical database topics, such as how to call stored procedures in
servlets and JSPs, as well as how to include more than one Structured Query Language (SQL)
statement in a transaction.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.1 Accessing a Database from a Servlet Without
DataSource

Problem

You want to access a database from a servlet without a DataSource configuration for the database.

Solution

Use the Java Database Connectivity (JDBC) API to access a java.sql.Connection object that

connects the servlet with the database.

Discussion

On occasion, developers require a quick, less elegant solution to accessing a database. This recipe
explains how to use the java.sql.DriverManager class to obtain a connection to a datasource in a

servlet. The DriverManager class communicates with a database driver, which is software that allows
Java code to interact with a particular database, such as MySQL or Oracle.

The preferred design is to use a javax.sql.Datasource to get a database

connection from a connection pool, as described in Recipe 21.2-Recipe 21.6.

Example 21-1 accomplishes this task in its doGet() service method.

Example 21-1. A servlet accesses a database using the JDBC API

package com.jspservletcookbook;

import java.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class DatabaseServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 java.io.IOException {

 String sql = "select * from athlete";

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 ResultSetMetaData rsm = null;

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Servlet Database Access</title></head><body>");

 out.println("<h2>Database info</h2>");
 out.println("<table border='1'><tr>");

 try{

 //load the database driver
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 //The JDBC URL for this Oracle database
 String url = "jdbc:oracle:thin:@192.168.0.2:1521:ORCL";

 //Create the java.sql.Connection to the database, using the
 //correct username and password
 conn = DriverManager.getConnection(url,"scott", "tiger");

 //Create a statement for executing some SQL
 stmt = conn.createStatement();

 //Execute the SQL statement
 rs = stmt.executeQuery(sql);

 //Get info about the return value in the form of
 //a ResultSetMetaData object
 rsm = rs.getMetaData();

 int colCount = rsm.getColumnCount();

 //print column names in table header cells
 for (int i = 1; i <=colCount; ++i){

 out.println("<th>" + rsm.getColumnName(i) + "</th>");

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("</tr>");

 while(rs.next()){

 out.println("<tr>");

 //print the values for each column
 for (int i = 1; i <=colCount; ++i)
 out.println("<td>" + rs.getString(i) + "</td>");

 out.println("</tr>");

 }

 } catch (Exception e){

 throw new ServletException(e.getMessage());

 } finally {

 try{

 //this will close any associated ResultSets
 if(stmt != null)
 stmt.close();

 if (conn != null)
 conn.close();

 } catch (SQLException sqle){ }

 }//finally

 out.println("</table>

");

 out.println("</body>");
 out.println("</html>");

 } //doGet
}

Here are the steps needed to run a servlet, as shown in Example 21-1:

Take the JAR file that contains your database driver, and store it either in a common server
directory, such as Tomcat's <Tomcat-root>/common/lib directory or in the WEB-INF/lib
directory of your web application.

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Change the extension of the Oracle JDBC driver (such as classes12.zip) to .jar,
so that the Java classes that it contains can be loaded properly into the JVM.

Derive the database URL from vendor literature, and the username and password for the
database from a database administrator (that might be you!) or other appropriate means. The
code will not be able to access the database without a valid username and password.

2.

The downside of this approach is that you are mixing up sensitive database security information with
servlet code. It makes more sense to adopt the strategies that the upcoming five recipes describe,
beginning with Recipe 21.2, "Configuring a DataSource in Tomcat."

Figure 21-1 shows the result of running this servlet.

Figure 21-1. A servlet that displays some database information

Chapter 23 on the JSTL shows how to use a JSP to access a database without a
DataSource configuration.

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Recipe 21.2-Recipe 21.6
on configuring and using DataSources on Tomcat and WebLogic; Recipe 21.7 and Recipe 21.8 on
calling stored procedures from servlets and JSPs; Recipe 21.9 on converting a java.sql.ResultSet
object to a javax.servlet.jsp.jstl.sql Result; Recipe 21.10 and Recipe 21.11 on using
transactions in servlets and JSPs; Recipe 21.12 on finding out information about a ResultSet.

[Team LiB]

http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.2 Configuring a DataSource in Tomcat

Problem

You want to configure a javax.sql.DataSource for use in a servlet with the Tomcat web container.

Solution

Create a resource element in Tomcat's server.xml file and an associated resource-ref element in

the web.xml deployment descriptor.

Discussion

Tomcat makes it easy to set up a connection pool so that servlets and JSPs can efficiently share
database connections. In web sites that have many simultaneous users, a connection pool improves
efficiency by sharing existing database connections, rather than creating a new connection and
tearing it down every time an application has to use the database.

Another benefit of configuring a connection pool is that you can change the database system that a
servlet or JSP is using without touching the Java code, because the database resource is configured
outside of the servlet or JSP.

Here are the steps for configuring a DataSource with Tomcat:

Create a Resource and a ResourceParams element in server.xml, or in the XML file that you

have placed in Tomcat's webapps directory. These elements describe the JNDI object you are
creating in order to provide your servlets or JSPs with a DataSource.

1.

Add a resource-ref element to web.xml, which allows the components in the associated web
application to access the configured DataSource.

2.

Example 21-2 shows the Resource and a ResourceParams elements in server.xml. This example
describes a DataSource that connects with an Oracle 8i database.

Example 21-2. The resource element in server.xml

<Resource name="jdbc/oracle-8i-athletes" scope=
 "Shareable" type="javax.sql.DataSource" auth=
 "Container" description="Home Oracle 8i Personal Edition"/>

 <ResourceParams name="jdbc/oracle-8i-athletes">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <parameter>
 <name>driverClassName</name>
 <value>oracle.jdbc.driver.OracleDriver</value>
 </parameter>

 <parameter>
 <name>url</name>
 <value>jdbc:oracle:thin:@192.168.0.2:1521:ORCL</value>
 </parameter>

 <parameter>
 <name>username</name>
 <value>scott</value>
 </parameter>

 <parameter>
 <name>password</name>
 <value>tiger</value>
 </parameter>

</ResourceParams>

Create a Resource and ResourceParams element for each database that your application uses.
Example 21-3 shows the resource-ref element associated with the Resource specified by Example

21-2.

Example 21-3. A resource-ref element specifies a DataSource in web.xml

<!-- top of web.xml file -->
<resource-ref>

 <res-ref-name>jdbc/oracle-8i-athletes</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>
<!-- rest of web.xml file -->

The JNDI path to this DataSource, which you use in a JNDI lookup (see the next recipe), is

jdbc/oracle-8i-athletes.

The servlet 2.4 API does not require the web.xml elements such as resource-
ref to appear in a specific order. The servlet 2.3 API specifies the order these

elements must appear in with a Document Type Definition (DTD). See Chapter
1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Recipe 21.3 on using a
DataSource in a servlet with Tomcat; Recipe 21.4-Recipe 21.6 on configuring and using DataSources

with servlets and JSPs on WebLogic; Recipe 21.7 and Recipe 21.8 on calling stored procedures from
servlets and JSPs; Recipe 21.9 on converting a java.sql.ResultSet object to a
javax.servlet.jsp.jstl.sql Result; Recipe 21.10 and Recipe 21.11 on using transactions in
servlets and JSPs; Recipe 21.12 on finding out information about a ResultSet.

[Team LiB]

http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.3 Using a DataSource in a Servlet with Tomcat

Problem

You want to use a DataSource that you have configured with Tomcat.

Solution

Use the JNDI API classes to obtain the DataSource, then access a database connection from that
DataSource.

Discussion

Use classes from the javax.naming package to access the configured DataSource. For example, use
a javax.naming.InitialContext object to look up a DataSource that has been bound as a JNDI

object.

The javax.naming package is a part of the Java Platform Standard Edition 1.3

and 1.4.

Example 21-4 instantiates a javax.sql.DataSource instance variable in its init() method, which

the servlet container calls when it creates a servlet instance. In Tomcat, JNDI objects are stored
under the root level specified by the "java:comp/env" string.

Example 21-4. Using a DataSource in a servlet

package com.jspservletcookbook;

import java.sql.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class DbServlet extends HttpServlet {

 DataSource pool;

 public void init() throws ServletException {

 Context env = null;

 try{

 env = (Context) new InitialContext().lookup("java:comp/env");

 //Look up a DataSource, which represents a connection pool
 pool = (DataSource) env.lookup("jdbc/oracle-8i-athletes");

 if (pool == null)
 throw new ServletException(
 "'oracle-8i-athletes' is an unknown DataSource");

 } catch (NamingException ne) {

 throw new ServletException(ne.getMessage());

 }//try

 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 String sql = "select * from athlete";

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 ResultSetMetaData rsm = null;

 //Start building the HTML page
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Typical Database Access</title></head><body>");

 out.println("<h2>Database info</h2>");
 out.println("<table border='1'><tr>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try{

 //Get a Connection from the connection pool
 conn = pool.getConnection();

 //Create a Statement object that can be used to execute
 //a SQL query
 stmt = conn.createStatement();

 //execute a simple SELECT query
 rs = stmt.executeQuery(sql);

 //Get the ResultSetMetaData object so we can dynamically
 //display the column names in the ResultSet
 rsm = rs.getMetaData();

 int colCount = rsm.getColumnCount();

 //print column names in table header cells
 for (int i = 1; i <=colCount; ++i){

 out.println("<th>" + rsm.getColumnName(i) + "</th>");
 }

 out.println("</tr>");

 //while the ResultSet has more rows...

 while(rs.next()){

 out.println("<tr>");

 //Print each column value for each row with the
 //ResultSet.getString() method
 for (int i = 1; i <=colCount; ++i)
 out.println("<td>" + rs.getString(i) + "</td>");

 out.println("</tr>");

 }//while

 } catch (Exception e){

 throw new ServletException(e.getMessage());

 } finally {

 try{

 //When a Statement object is closed, any associated
 //ResultSet is closed
 if (stmt != null)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 stmt.close();

 //VERY IMPORTANT! This code returns the Connection to the
 //pool
 if (conn != null)
 conn.close();

 } catch (SQLException sqle){ }

 }
 out.println("</table></body></html>");

 }//doGet
}

Example 21-4 gets a DataSource by using the address configured in Tomcat (Recipe 21.2;

jdbc/oracle-8i-athletes) in a JNDI lookup. This code looks like this:

env = (Context) new InitialContext().lookup("java:comp/env");

//Look up a DataSource, which represents a connection pool
pool = (DataSource) env.lookup("jdbc/oracle-8i-athletes");

The code then obtains a database connection from the connection pool by calling the DataSource
object's getConnection() method. It is very important to call the Connection object's close()
method when the servlet is finished with it, because this method call returns the shared Connection

to the pool.

Requesting the servlet of Example 21-4 in a browser creates output that looks just like Figure 21-1.

Chapter 23 on the JSTL shows how to use a JSP to access a database with a
DataSource configuration.

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Recipe 21.1 on accessing
a database from a servlet without a connection pool; Recipe 21.2 on configuring a DataSource on
Tomcat; Recipe 21.4-Recipe 21.6 on configuring and using DataSource with servlets and JSPs on

WebLogic; Recipe 21.7 and Recipe 21.8 on calling stored procedures from servlets and JSPs; Recipe
21.9 on converting a java.sql.ResultSet object to a javax.servlet.jsp.jstl.sql Result;

Recipe 21.10 and Recipe 21.11 on using transactions in servlets and JSPs; Recipe 21.12 on finding
out information about a ResultSet.

[Team LiB]

http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.4 Creating a DataSource on WebLogic

Problem

You want to create a javax.sql.DataSource on BEA WebLogic for use in your servlets.

Solution

Use the WebLogic console to configure a new connection pool, then configure a new DataSource

associated with that pool.

Discussion

Configuring a WebLogic DataSource involves the following steps:

Login to the WebLogic console, which allows you to manage the WebLogic server from a
browser. The URL for the console is typically http://<localhost:7001>/console (substitute your
host name for "localhost" and the port number that matches your own WebLogic configuration).

1.

Click on Your-domain-name Services JDBC Connnection Pools on the menu tree in

the console's lefthand column. Then click on "Configure a new JDBC Connection Pool . . . ".

2.

In the resulting window, enter a name for the connection pool, the JDBC URL (e.g.,
jdbc:oracle:thin:@192.168.0.2:1521:ORCL), the Driver class name (e.g.,
oracle.jdbc.driver.OracleDriver), as well as the username and password in the

"Properties" text field. Figure 21-2 shows a configured connection pool named "OraclePool."
Remember this name-you'll need it to configure a DataSource further along in the process.

3.

Figure 21-2. Creating a connection pool with the WebLogic console
application

http://<localhost:7001>/console
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Click on the "Create" button in this window to create the connection pool, then choose the
"Targets" tab. The resulting screen allows you to choose a server to which the connection pool
will apply. After you have chosen the server, click on the "Apply" button in the Targets screen.
The name of the new pool should appear in the lefthand menu frame.

4.

Click on Your-domain-name Services JDBC Data Sources and click on the URL
"Configure a New JDBC Data Source . . . ". Figure 21-3 shows a DataSource configuration
window that includes the DataSource name ("oracle-8i-athletes") under which WebLogic will
bind the DataSource as a JNDI object. The window also has a text field where you must enter

the name of the connection pool that you just configured: "OraclePool." Click the "Create"
button to create the new DataSource. Figure 21-3 shows the JDBC Data Sources window.

5.

Take the same steps as in step 4 with the "Targets" screen to apply this DataSource to the

appropriate server. Painless, right?

6.

Figure 21-3. Creating a DataSource with the WebLogic console
application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 21-4 shows the WebLogic JNDI tree where the DataSource that you have just created is

bound.

Figure 21-4. A view of the WebLogic JNDI tree containing the DataSource

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Chapter 2 on deploying
servlets and JSPs on WebLogic; Recipe 21.2 and Recipe 21.3 on using a DataSource on Tomcat;
Recipe 21.5 and Recipe 21.6 on using DataSources with servlets and JSPs on WebLogic.

[Team LiB]

http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.5 Using a JNDI Lookup to get a DataSource
from WebLogic

Problem

You want to use a JNDI lookup to access a WebLogic DataSource.

Solution

Use the JNDI API and the classes in the javax.naming package to get the JNDI object that you have

bound on WebLogic.

Discussion

Accessing a Connection from a WebLogic DataSource and connection pool uses similar Java code

compared with Tomcat.

Set up the connection pool and DataSource by following Recipe 21.4s instructions.1.

In the servlet code, get the DataSource by using a JNDI lookup. This involves creating an
instance of a javax.naming.InitialContext and then calling its lookup() method with the
name that you gave your DataSource (Recipe 21.4).

2.

Get a Connection from the DataSource by calling the DataSource's getConnection()
method.

3.

Example 21-5 creates an instance of an InitialContext by passing in a Hashtable that contains

some property values.

Example 21-5. A servlet that uses a WebLogic connection pool

package com.jspservletcookbook;

import java.util.Hashtable;

import java.sql.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class WeblogicDbServlet extends HttpServlet {

 DataSource pool;

 public void init() throws ServletException {

 Context env = null;

 Hashtable ht = new Hashtable();

 //Create property names/values that will be passed to
 //the InitialContext constructor

 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

 // t3://localhost:7001 is the default value
 //Add your own value if necessary:
 // ht.put(Context.PROVIDER_URL,"t3://localhost:7001");

 try {

 env = new InitialContext(ht);

 pool = (javax.sql.DataSource) env.lookup (
 "oracle-8i-athletes");

 if (pool == null)
 throw new ServletException(
 "'oracle-8i-athletes' is an unknown DataSource");

 } catch (NamingException ne) {

 throw new ServletException(ne);

 }

 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 String sql = "select * from athlete";

 Connection conn = null;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Statement stmt = null;
 ResultSet rs = null;
 ResultSetMetaData rsm = null;

 response.setContentType("text/html");

 java.io.PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Weblogic Database Access</title></head><body>");

 out.println("<h2>Database info</h2>");
 out.println("<table border='1'><tr>");

 try{

 conn = pool.getConnection();

 stmt = conn.createStatement();

 rs = stmt.executeQuery(sql);

 rsm = rs.getMetaData();

 int colCount = rsm.getColumnCount();

 //print column names
 for (int i = 1; i <=colCount; ++i){

 out.println("<th>" + rsm.getColumnName(i) + "</th>");
 }

 out.println("</tr>");

 while(rs.next()){

 out.println("<tr>");

 for (int i = 1; i <=colCount; ++i)
 out.println("<td>" + rs.getString(i) + "</td>");

 out.println("</tr>");
 }

 } catch (Exception e){

 throw new ServletException(e.getMessage());

 } finally {

 try{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (stmt != null)
 stmt.close();

 //RETURN THE CONNECTION TO THE POOL!
 if (conn != null)
 conn.close();

 } catch (SQLException sqle){ }

 }
 out.println("</table></body></html>");

 } //doGet

}

Once you have accessed a Connection from the WebLogic connection pool, the code can execute

various SQL statements in order to interact with the associated database. Always call the
Connection's close() method when you are finished with the Connection, because this method
call returns the shared Connection to the pool.

Example 21-5 cannot work without a properly configured connection pool and
DataSource, which is very easy to do with the WebLogic console (as explained

in Recipe 21.4).

The servlet output looks just like Figure 21-1, except for the different URL in the web browser's
address field (http://localhost:7001/dbServlet).

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Recipe 21.1 on accessing
a database from a servlet without a connection pool; Recipe 21.2 and Recipe 21.3 on using a
DataSource on Tomcat; Recipe 21.6 on using a DataSource with a JSP on WebLogic; Recipe 21.7

and Recipe 21.8 on calling stored procedures from servlets and JSPs; Recipe 21.9 on converting a
java.sql.ResultSet object to a javax.servlet.jsp.jstl.sql Result; Recipe 21.10 and Recipe

21.11 on using transactions in servlets and JSPs; Recipe 21.12 on finding out information about a
ResultSet.

[Team LiB]

http://localhost:7001/dbServlet
http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.6 Using a DataSource from WebLogic in a JSP

Problem

You want to use the javax.sql.DataSource that you set up on WebLogic in a JSP.

Solution

Use JSP scriptlets to access the DataSource with a JNDI lookup, then use the JDBC API in the

scriptlets to access the database.

Discussion

The JSP in Example 21-6 transplants code from a servlet inside of HTML template text. The JSP uses
scriptlets, which contain Java code within "<% %>" characters.

JSTL SQL tags are preferable to scriptlets in a JSP; however, the JSTL
implementation I use for this book's examples cannot access a DataSource

from WebLogic's JNDI implementation. See Recipe 23.6 for an example that
uses the JSTL SQL tags with a Tomcat DataSource.

Example 21-6 imports the necessary classes at the top of the code using the page directive and its
import attribute. Otherwise, this JSP accomplishes everything that the servlet of the prior recipe

does, including the display of nearly identical output in the web browser (see Figure 21-1 in Recipe
21.1).

Example 21-6. Using a JSP scriptlet to access a WebLogic DataSource

<%@ page import="java.util.Hashtable,java.sql.*,javax.naming.*,javax.sql.*" %>

<html>
<head><title>Database Query in WebLogic</title></head>
<body>
<h2>Querying a database with a JSP in WebLogic</h2>

<%
 Context env = null;

 DataSource pool = null;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Hashtable ht = new Hashtable();

 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

 ht.put(Context.PROVIDER_URL,"t3://localhost:7001");

 env = new InitialContext(ht);

 //Lookup this DataSouce at the top level of the WebLogic JNDI tree
 pool = (DataSource) env.lookup ("oracle-8i-athletes");

 String sql = "select * from athlete";

 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 ResultSetMetaData rsm = null; %>

 <table border='1'><tr>

 <%
 try{
 //get a java.sql.Connection from the pool
 conn = pool.getConnection();

 stmt = conn.createStatement();//create a java.sql.Statement

 //execute a SQL statement,generating a ResultSet
 rs = stmt.executeQuery(sql);

 rsm = rs.getMetaData();

 int colCount = rsm.getColumnCount();

 //print column names
 for (int i = 1; i <=colCount; ++i) { %>

 <th><%=rsm.getColumnName(i)%> </th>

 <% } %>

 </tr>

 <% while(rs.next()){ %>

 <tr>

 <% for (int i = 1; i <=colCount; ++i) { %>
 <td> <%= rs.getString(i) %> </td>
 <%}//for %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
 <%} //while

 } catch (Exception e) {

 throw new JspException(e.getMessage());

 } finally {

 try{

 stmt.close();
 conn.close();

 } catch (SQLException sqle){ }

 } %>

</body>
</html>

After making sure that you have properly configured the connection pool and DataSource in the

WebLogic console, view this JSP's output by copying it to WebLogic's default web application, then
request a URL in your browser that looks like this one: http://localhost:7001/sqlWeblogic.jsp.

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Chapter 2 on deploying
servlets and JSPs on WebLogic; Recipe 21.1 on accessing a database from a servlet without a
connection pool; Recipe 21.2 and Recipe 21.3 on using a DataSource on Tomcat; Recipe 21.4 and
Recipe 21.5 on using DataSources with servlets on WebLogic; Recipe 21.7 and Recipe 21.8 on calling
stored procedures from servlets and JSPs; Recipe 21.9 on converting a java.sql.ResultSet object
to a javax.servlet.jsp.jstl.sql Result; Recipe 21.10 and Recipe 21.11 on using transactions in
servlets and JSPs; Recipe 21.12 on finding out information about a ResultSet.

[Team LiB]

http://localhost:7001/sqlWeblogic.jsp
http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.7 Calling a Stored Procedure from a Servlet

Problem

You want to call a stored procedure from a servlet.

Solution

Use the java.sql.CallableStatement class inside a servlet service method, such as doGet() or
doPost().

Discussion

Database developers create stored procedures typically for SQL code that they want to execute on a
regular basis, similar to a Java developer's reason for creating a method. A stored procedure is a
piece of SQL that the database system pre-compiles under a specific name. The stored procedure
that I use in this recipe is named addEvent.

Naturally, a web developer who is using a database will want to call these stored procedures. The
java.sql.CallableStatement class encapsulates a particular stored procedure, so that you can use

these tools within JDBC code.

Table 21-1 shows the table schema for the table that addEvent uses. The table has four columns:

EVENT_ID, NAME, LOCATION, and RACEDATE.

Table 21-1. The RACEEVENT database table schema

Name Null? Type

EVENT_ID NOT NULL NUMBER

NAME NOT NULL VARCHAR2(30)

LOCATION NOT NULL VARCHAR2(30)

RACEDATE DATE

Example 21-7 shows the addEvent definition using Oracle 8i's syntax. This stored procedure takes an

event name, location, and date as arguments. It then inserts these values into a new row in the
RACEEVENT table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A piece of code called a sequence named log_seq provides the value for the

new row's EVENT_ID column. In Oracle's database system, a sequence can
keep track of a long sequence of numbers. The database developer creates the
sequence, just as they would create a stored procedure.

Example 21-7. A SQL stored procedure designed to add a row to the
EVENT table

create or replace procedure addEvent(eventname in varchar2,
 location_ in varchar2,date_ in date)

as -- need to do inserts in raceevent

begin
 insert into raceevent values(log_seq.nextval,
 eventname,location_,date_);
end;
/

If you're using a database tool such as SQL PLUS from the command line, call the addEvent

procedure in the following manner:

exec addEvent('Falmouth Triathlon','Falmouth MA','26-Jul-2003');

Example 21-8 shows how you can call addEvent in a servlet. The following servlet calls the stored
procedure from doGet() in its own addRaceEvent method. This method has a java.util.List as
an argument. The List contains the values that the code uses as arguments to call the addEvent

stored procedure.

Example 21-8. A servlet uses CallableStatement to call the stored
procedure

package com.jspservletcookbook;

import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import java.util.Iterator;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class StoredProcServlet extends HttpServlet {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataSource pool;

 public void init() throws ServletException {

 Context env = null;

 try{

 env = (Context) new InitialContext().lookup("java:comp/env");

 pool = (DataSource) env.lookup("jdbc/oracle-8i-athletes");

 if (pool == null)
 throw new ServletException(
 "'oracle-8i-athletes' is an unknown DataSource");

 } catch (NamingException ne) {

 throw new ServletException(ne);

 }
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 String eventName = request.getParameter("eName");
 String location = request.getParameter("eLocation");
 String date = request.getParameter("eDate");

 List paramList = new ArrayList();
 paramList.add(eventName);
 paramList.add(location);
 paramList.add(date);

 try{

 addRaceEvent(paramList);

 } catch (SQLException sqle){

 throw new ServletException(sqle.getMessage());

 }//try

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html><head><title>Add an Event</title></head><body>");

 out.println(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "<h2>The Event named "+ eventName +
 " has been added to the database</h2>");

 out.println("</body>");
 out.println("</html>");

 } //doGet

 public Connection getConnection(){

 Connection conn = null;

 try{

 conn = pool.getConnection();

 } catch (SQLException sqle){

 throw new ServletException(sqle.getMessage());

 } finally {

 return conn;

 }

 }

 public void addRaceEvent(List values) throws SQLException{

 if (values == null)
 throw new SQLException(
 "Invalid parameter in addRaceEvent method.");

 Connection conn = null;

 conn = getConnection();

 if (conn == null)
 throw new SQLException(
 "Invalid Connection in addRaceEvent method");

 Iterator it = values.iterator();

 CallableStatement cs = null;

 //Create an instance of the CallableStatement
 cs = conn.prepareCall("{call addEvent (?,?,?)}");

 for (int i = 1; i <= values.size(); i++)
 cs.setString(i,(String) it.next());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //Call the inherited PreparedStatement.executeUpdate() method
 cs.executeUpdate();

 // return the connection to the pool
 conn.close();

 }//addRaceEvent
}

Example 21-8 gets a Connection from a connection pool using the techniques explained in the prior
recipes. The code uses the Connection to create a CallableStatement that the example can use to

call the underlying stored procedure:

cs = conn.prepareCall("{call addEvent (?,?,?)}");

The String argument to the Connection's prepareCall method contains question marks (?) as
placeholders for the stored procedure's parameters. The code then calls the CallableStatement's
setString() method to give these placeholders values. Finally, the code calls the
CallableStatement's executeUpdate() method to execute addEvent.

If calling the stored procedure causes a database error, the addRaceEvent
method throws a SQLException.

The servlet receives values for the new row from request parameters. The following URL calls the
servlet with three parameters: eName, eLocation, and eDate:

http://localhost:8080/home/servlet/com.jspservletcookbook.
 StoredProcServlet?eName=
 Falmouth%20Triathlon&eLocation=Falmouth%20MA&eDate=26-July-2003

Figure 21-5 shows the servlet's output in a web browser.

Figure 21-5. The browser output of the StoredProcServlet

See Also

http://localhost:8080/home/servlet/com.jspservletcookbook.
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Recipe 21.1 on accessing
a database from a servlet without a connection pool; Recipe 21.2 and Recipe 21.3 on using a
DataSource on Tomcat; Recipe 21.4-Recipe 21.6 on using DataSources with servlets and JSPs on

WebLogic; Recipe 21.8 on calling a stored procedure from a JSP; Recipe 21.9 on converting a
java.sql.ResultSet object to a javax.servlet.jsp.jstl.sql Result; Recipe 21.10 and Recipe

21.11 on using transactions in servlets and JSPs; Recipe 21.12 on finding out information about a
ResultSet.

[Team LiB]

http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.8 Calling a Stored Procedure from a JSP

Problem

You want to call a stored procedure from a JSP.

Solution

Using a JSP 2.0 container, develop an Expression Language (EL) function that will call the stored
procedure for you.

Discussion

JSP 2.0 introduced functions, which are static methods that you can call inside EL statements.

See Chapter 23 if you need to familiarize yourself with the EL.

This recipe explains the steps for developing a function that calls a stored procedure:

Create the stored procedure in your database system.1.

Write the Java class that implements the function as a static or class method.2.

Define the function in a Tag Library Descriptor (TLD), which is an XML configuration file that you
incude with the web application.

3.

In the JSP itself, use the taglib directive to declare the tag library that contains the function.4.

Call the function in the JSP, using the proper prefix for your tag library. The function I use in
this recipe looks like this:

5.

<cbck:addRaceEvent("My Race", "Anytown USA", "11-Dec-2003") />

Example 21-9 shows the Java class that implements this function.

Example 21-9. The Java class that implements an EL function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.jspservletcookbook;

import java.sql.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.*;

public class StoredProcUtil {

 private static DataSource pool;
 private static Context env;

 static { //static initialization of the Context and DataSource

 try{

 env = (Context) new InitialContext().lookup("java:comp/env");

 pool = (DataSource) env.lookup("jdbc/oracle-8i-athletes");

 if (pool == null)
 throw new Exception(
 "'oracle-8i-athletes' is an unknown DataSource");

 } catch (Exception e) {

 System.out.println(e);

 }

 }//static

 /* This static method will be configured in a TLD file and provide the
 implementation for an EL function. An example use of the function is:
 <cbck:addRaceEvent("My Race","Anytown USA","11-Dec-2003") /> */

 public static void addRaceEvent(String name,String location,String date) {

 if((! check(name)) || (! check(location)) || (! check(date)))
 throw new IllegalArgumentException(
 "Invalid param values passed to addRaceEvent()");

 Connection conn = null;

 try{

 conn = pool.getConnection();

 if (conn == null)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throw new SQLException(
 "Invalid Connection in addRaceEvent method");

 CallableStatement cs = null;

 //Create an instance of the CallableStatement
 cs = conn.prepareCall("{call addEvent (?,?,?)}");

 cs.setString(1,name);
 cs.setString(2,location);
 cs.setString(3,date);

 //Call the inherited PreparedStatement.executeUpdate() method
 cs.executeUpdate();

 // return the connection to the pool
 conn.close();

 } catch (SQLException sqle) { }

 }//addRaceEvent

 private static boolean check(String value){

 if(value == null || value.equals(""))
 return false;

 return true;
 }
}

The addRaceEvent() method creates a java.sql.CallableStatement, which calls the underlying
stored procedure (addEvent). Recipe 21.7 explains this process.

The Java method that implements the function for a JSP must be defined as
static.

This Java class must be stored in your web application beneath the WEB-INF/classes directory (with a
subdirectory structure matching its package name) or in a JAR file stored in WEB-INF/lib. For
example, the Java class of Example 21-9 should be stored in WEB-
INF/classes/com/jspservletcookbook/StoredProcUtil.class.

Example 21-10 shows the TLD file that defines the EL function.

The TLD file has a .tld extension and lives in a WEB-INF subdirectory of your
web application, such as WEB-INF/tlds.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 21-10. The TLD file for configuring the EL function

<taglib xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/
 web-jsptaglibrary_2_0.xsd"
 version="2.0"
>

 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <short-name>cbck</short-name>
 <uri>jspservletcookbook.com.tags</uri>
 <description>Cookbook custom tags</description>

 <function>

 <name>addRaceEvent</name>

 <function-class>
 com.jspservletcookbook.StoredProcUtil
 </function-class>

 <function-signature>
 void addRaceEvent(java.lang.String,
 java.lang.String,java.lang.String)
 </function-signature>

 </function>

 <tag>
 <!-- define a custom tag here if you have to -->
 </tag>

</taglib>

Example 21-10 defines the function with the function tag and its name, function-class, and
function-signature attributes. Make sure to include the fully qualified class name under function-
class. The JSP container knows how to call the function by inspecting the function-signature. This

signature includes the return type ("void" in this case), the function name, and all of its parameters
specified by their fully qualified class names.

Example 21-11 is a JSP that calls our defined function. First, the taglib directive declares the tag

library and prefix ("cbck") that the function uses.

Example 21-11. A JSP uses an EL function to call a stored procedure

<%@ taglib uri="jspservletcookbook.com.tags" prefix="cbck" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<html>
<head><title>Calling a Stored procedure</title></head>
<body>
<h2>This JSP calls a stored procedure with a JSP 2.0 function</h2>

${cbck:addRaceEvent("Falmouth Triathlon","Falmouth MA","26-Jul-2003")}

</body>
</html>

Since this is a feature of the EL, the syntax encapsulates the function call within the "${ }" character
string. Next comes the prefix (cbck), a colon, and the function call itself:

${cbck:addRaceEvent("Falmouth Triathlon","Falmouth MA","26-Jul-2003")}

This process appears complicated the first time around, but once you create your first JSP 2.0
function, the rest of them will be much easier! This feature does not involve much more than creating
a static Java method, configuring the function with the proper values in an XML file, then calling the

function in a JSP. This is a nifty way to call stored procedures!

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Chapter 23 on the JSTL;
Chapter 22 on creating custom tag libraries; Recipe 21.1 on accessing a database from a servlet
without a connection pool; Recipe 21.2 and Recipe 21.3 on using a DataSource on Tomcat; Recipe
21.5 and Recipe 21.6 on using DataSources with servlets and JSPs on WebLogic; Recipe 21.7 on
calling a stored procedure from a servlet; Recipe 21.9 on converting a java.sql.ResultSet object to
a javax.servlet.jsp.jstl.sql.Result; Recipe 21.10 and Recipe 21.11 on using transactions in
servlets and JSPs; Recipe 21.12 on finding out information about a ResultSet.

[Team LiB]

http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.9 Converting a ResultSet to a Result Object

Problem

You want to convert a java.sql.ResultSet to a javax.servlet.jsp.jstl.sql.Result object so

that the object can be used with the JSTL.

Solution

Use the javax.servlet.jsp.jstl.sql.ResultSupport.toResult() method.

Discussion

The Result interface allows code to work with ResultSets in the form of Java arrays or
java.util.Maps . The JSTL tags often use arrays or Maps to iterate through values (which is why
they included the Result interface in the JSTL specification). Therefore, you might want to convert a
ResultSet to a Result , then hand the Result to a JSP that uses the JSTL tags.

Example 21-12 is a servlet that:

Creates a ResultSet by querying a database.1.

Converts the ResultSet to a Result .2.

Forwards the Result to a JSP by storing the Result as a session attribute.3.

Example 21-12. A servlet converts a ResultSet to a Result

package com.jspservletcookbook;

import java.sql.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.*;

import javax.servlet.jsp.jstl.sql.Result;
import javax.servlet.jsp.jstl.sql.ResultSupport;

import javax.servlet.*;
import javax.servlet.http.*;

public class DbServletResult extends HttpServlet {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataSource pool;

 public void init() throws ServletException {

 Context env = null;

 try{

 env = (Context) new InitialContext().lookup("java:comp/env");

 pool = (DataSource) env.lookup("jdbc/oracle-8i-athletes");

 if (pool == null)
 throw new ServletException(
 "'oracle-8i-athletes' is an unknown DataSource");

 } catch (NamingException ne) {

 throw new ServletException(ne);

 }

 }//init

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 String sql = "select * from athlete";

 try{

 //Get a Result object that represents the return value of the SQL
 //statement 'select * from athlete'
 Result jspResult = select(sql);

 HttpSession session = request.getSession();

 //store the Result in a session attribute,
 //where it can be passed to
 //a JSP and used with the JSTL tags
 session.setAttribute(
 "javax.servlet.jsp.jstl.sql.Result",jspResult);

 RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/useResult.jsp");

 dispatcher.forward(request,response);

 } catch (SQLException sqle){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throw new ServletException(sqle.getMessage());}

 } //doGet

 private Result select(String sql) throws SQLException{

 if (sql == null || sql.equals(""))
 throw new SQLException("Invalid parameter in select method");

 ResultSet rs = null;

 Connection conn = null;

 Result res = null;

 //Get a Connection from the pool
 conn = pool.getConnection();

 if (conn == null)
 throw new SQLException("Invalid Connection in select method");

 PreparedStatement stmt = conn.prepareStatement(sql);

 //Create the ResultSet
 rs = stmt.executeQuery();

 //Convert the ResultSet to a
 //Result object that can be used with JSTL tags
 res=ResultSupport.toResult(rs);

 stmt.close();//this will close any associated ResultSets

 conn.close();//return Connection to pool

 return res;//return Result object

 }//select
}

Example 21-12 imports the necessary Java classes including the Result and ResultSupport classes:

import javax.servlet.jsp.jstl.sql.Result;
import javax.servlet.jsp.jstl.sql.ResultSupport;

The select() method does the important work: creating the ResultSet , converting this object to a
Result , and returning the Result . Here is the code that performs the conversion:

res=ResultSupport.toResult(rs);

The ResultSupport class's static toResult() method takes a ResultSet as an argument and
returns a Result .

The servlet's doGet() method then creates a session attribute from the Result and uses a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RequestDispatcher to forward the request to a JSP. The JSP is named useResult.jsp .

The user initially requests the servlet in his browser, and the servlet passes the
request to the JSP. The user then sees the JSP's output in their browser.

The RequestDispatcher code looks like this:

RequestDispatcher dispatcher = request.getRequestDispatcher(
 "/useResult.jsp");
dispatcher.forward(request,response);

Example 21-13 uses the JSTL core tags (with the "c" prefix). The c:set tag gains access to the
session attribute and stores the attribute's value in a resultObj variable. The c:forEach and c:out

tags then display the database values in the JSP.

Example 21-13. The JSP that uses a Result object stored as a session
attribute

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/sql" prefix="sql" %>

<html>
<HEAD>
 <TITLE>Using a Result object</TITLE>
 </HEAD>
<body bgcolor="white">
<h2>View Database Data</h2>

<%--store a session attribute (the Result object) in a variable named 'resultObj'--%>
<c:set var="resultObj" value=
 "${sessionScope[\"javax.servlet.jsp.jstl.sql.Result\"]}" />

<table border="1" cellspacing="2">
<%-- for every row in the Result ...--%>
<c:forEach items="${resultObj.rows}" var="row">

 <%-- for every column in the row ...--%>
 <c:forEach items="${row}" var="column">

 <tr>
 <td align="right">
 <c:out value="${column.key}" />
 </td>
 <td>
 <c:out value="${column.value}" />
 </td></tr>
 </c:forEach>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</c:forEach>
 </table>
</body>
</html>

The syntax "${sessionScope[\"javax.servlet.jsp.jstl.sql.Result\"]}" is necessary,
because the session attribute name contains periods (.). Otherwise, the EL can
acccess a scoped attribute, if the attribute is named myAttribute , using this

simpler syntax:

${myAttribute}

Figure 21-6 shows how a web browser displays the JSP's output.

Figure 21-6. The JSP page output in a web browser

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html ; Chapter 23 on the JSTL;
Chapter 16 on using session attributes; Recipe 21.1 on accessing a database from a servlet without a
connection pool; Recipe 21.2 and Recipe 21.3 on using a DataSource on Tomcat; Recipe 21.5 and
Recipe 21.6 on using DataSources with servlets and JSPs on WebLogic; Recipe 21.7 and Recipe 21.8

on calling stored procedures from servlets and JSPs; Recipe 21.10 and Recipe 21.11 on using
transactions in servlets and JSPs; Recipe 21.12 on finding out information about a ResultSet .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.10 Executing Several SQL Statements Within a
Single Transaction

Problem

You want to execute more than one SQL statement within a single transaction.

Solution

Use the java.sql.Connection API and the setAutoCommit(), commit(), and rollback()

methods to create a transaction.

Discussion

Some SQL statements, such as those that update customer information in two different database
tables, are meant to be executed only as a group. If one of them does not succeed, the database is
returned to its previous state. This is the purpose of using a transaction in your Java code. A
transaction is a logical unit of database operations that can be "rolled back" or canceled as a group if
something goes wrong with one of the operations.

Once you have a database connection (an instance of java.sql.Connection), you can call various
Connection methods to create a transaction. Here are the steps for executing a transaction:

Call the Connection object's setAutoCommit() method with false as the parameter. This

turns off the default behavior for JDBC code, which is to commit each separate SQL statement
instead of automatically grouping sequential statements as a single transaction.

1.

Follow the setAutoCommit() method call with the database code that you want to treat as a

single transaction.

2.

Call the Connection's commit() method to commit the SQL statements, which writes any

database changes associated with the SQL (such as a DELETE or UPDATE statement) to the
underlying database file.

3.

In the area of Java code reserved for dealing with errors or unexpected conditions, such as a
catch block, call the Connection's rollback() method, which rolls back the SQL that was

included in the transaction.

4.

Example 21-14 is a servlet that illustrates this process.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 21-14. A servlet that uses a SQL transaction

package com.jspservletcookbook;

import java.sql.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class DbServletTrans extends HttpServlet {

 DataSource pool;

 /*Initialize the DataSource in the servlet's init() method
 which the servlet container calls once when it creates an instance of
 the servlet */
 public void init() throws ServletException {

 Context env = null;

 try{

 env = (Context) new InitialContext().lookup("java:comp/env");

 pool = (DataSource) env.lookup("jdbc/oracle-8i-athletes");

 if (pool == null)
 throw new ServletException(
 "'oracle-8i-athletes' is an unknown DataSource");

 } catch (NamingException ne) {

 throw new ServletException(ne);

 }

 }//init

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 Connection conn = null;

 Statement stmt = null;

 response.setContentType("text/html");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 java.io.PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Using transactions</title></head><body>");

 out.println(
 "<h2>These SQL statements are part of a transaction</h2>");

 out.println("CallableStatement.executeUpdate()");
 out.println("

");
 out.println("Statement.executeUpdate()");
 out.println("

");

 try{

 //Get a connection from the pool
 conn = pool.getConnection();

 //Display the default values for setAutoCommit()
 //and the isolation level

 out.println("AutoCommit before setAutoCommit(): " +
 conn.getAutoCommit() + "

");

 out.println("Transaction isolation level: ");

 //just out of curiosity, display the existing transaction
 // isolation level
 witch(conn.getTransactionIsolation()){

 case 0 : out.println("TRANSACTION_NONE

"); break;

 case 1 : out.println(
 "TRANSACTION_READ_UNCOMMITTED

"); break;

 case 2 : out.println(
 "TRANSACTION_READ_COMMITTED

"); break;

 case 4 : out.println(
 "TRANSACTION_REPEATABLE_READ

"); break;

 case 8 : out.println(
 "TRANSACTION_SERIALIZABLE

"); break;

 default: out.println("UNKNOWN

");

 }//switch

 //set Autocommit to false so that individual SQL statements will
 //not be committed until Connection.commit() is called
 conn.setAutoCommit(false);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //Transaction-related SQL begins...
 CallableStatement cs = null;

 //Create an instance of the CallableStatement
 cs = conn.prepareCall("{call addEvent (?,?,?)}");

 cs.setString(1,"Salisbury Beach 5-Miler");
 cs.setString(2,"Salisbury MA");
 cs.setString(3,"14-Aug-2003");

 //Call the inherited PreparedStatement.executeUpdate() method
 cs.executeUpdate();

 String sql = "update raceevent set racedate='13-Aug-2003' "+
 "where name='Salisbury Beach 5-Miler'";

 int res = 0;

 stmt = conn.createStatement();

 res = stmt.executeUpdate(sql);

 //commit the two SQL statements
 conn.commit();

 } catch (Exception e){

 try{

 //rollback the transaction in case of a problem
 conn.rollback();

 } catch (SQLException sqle){ }

 throw new ServletException(e.getMessage());

 } finally {

 try{

 if (stmt != null)
 stmt.close();

 if (conn != null)
 conn.close();

 } catch (SQLException sqle){ }

 }
 out.println("</table></body></html>");

 } //doGet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The doGet() method in Example 21-14 displays the default values for "auto committing" SQL

statements and the transaction isolation level (the level of database-locking that occurs as the
transactions within your Java code are initiated). For example, if your SQL statements include the
updating of database fields, can other users of the database view the new column values before your
transaction is committed? If allowed, this type of behavior is called a dirty read.

Table 21-2 shows the different types of transaction isolation levels, from the least to most restrictive
level. Two other terms need addressing before you inspect this table:

A non-repeatable read occurs when one transaction reads a row, another transaction changes
the same row, and the first transaction reads the same row and receives the different value.

A phantom read happens when one transaction obtains a result set based on a WHERE condition
and a second transaction inserts a new row that satisfies this WHERE condition. The first
transaction then evaluates the same database table again with the same WHERE condition and
retrieves the new "phantom" row.

Table 21-2. Transaction isolation levels

Transaction
isolation level

Return value of
java.sql.Connection.

getTransactionIsolation()
Definition

TRANSACTION_NONE 0
The database driver does not
support transactions.

TRANSACTION_READ_

UNCOMMITTED
1

Another transaction can see
uncommitted changes; "dirty reads"
are allowed.

TRANSACTION_READ_

COMMITTED
2

Uncommitted changes are not visible
to other transactions.

TRANSACTION_

REPEATABLE_READ
4

Uncommitted changes are not visible
to other transactions; nonrepeatable
reads are also disallowed.

TRANSACTION_

SERIALIZABLE
8

Uncommitted changes are not visible
to other transactions; nonrepeatable
reads and phantom reads are also
disallowed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Check your database vendor's specifications or literature for how the database
system you use handles transaction isolation. Use the Connection object's
getTransactionIsolation() method to find out the value associated with a

particular database driver that JDBC-related code is using. This method returns
an int. For example, a "2" return value means that the Connection is
associated with a TRANSACTION_READ_COMMITTED transaction isolation level.

Example 21-14 runs two SQL statements within a transaction: it executes a stored procedure and
initiates an UPDATE statement. Then the code calls commit() on the Connection object to commit

any database changes to the underlying data store. If this SQL code throws an exception, the
transaction is rolled back with a call to Connection's rollback() method. This method call

prevents the prior SQL statements from having any effect on the underlying database.

Figure 21-7 shows the output of the servlet in Example 21-14, as it would appear in a web browser.

Figure 21-7. A servlet with a database transaction provides browser
output

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Recipe 21.1 on accessing
a database from a servlet without a connection pool; Recipe 21.2 and Recipe 21.3 on using a
DataSource on Tomcat; Recipe 21.4-Recipe 21.6 on using DataSources with servlets and JSPs on

WebLogic; Recipe 21.7 and Recipe 21.8 on calling stored procedures from servlets and JSPs; Recipe
21.11 on using transactions in JSPs; Recipe 21.12 on finding out information about a ResultSet.

[Team LiB]

http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.11 Using Transactions with JSPs

Problem

You want to run SQL statements within.a transaction in a JSP.

Solution

Use the sql:transaction JSTL tag.

Discussion

The JSTL has a sql:transaction tag that executes any nested SQL actions (such as sql:update) in

a transaction.

The sql:transaction tag uses the same java.sql.Connection methods that

you would use in a transaction-related servlet (Recipe 21.10):
setAutoCommit(false), commit(), and rollback().

Example 21-15 uses a DataSource that is configured in web.xml, so that none of the database-
related information appears in the JSP. See Recipe 23.6 for how to configure a DataSource in the

deployment descriptor. The INSERT and SELECT SQL statements that are nested inside the
sql:transaction tag will both be rolled back if any problems arise within the transaction.

Example 21-15. A JSP executes INSERT and SELECT SQL statements in a
transaction

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/sql" prefix="sql" %>
<html>
<HEAD>
 <TITLE>Using a Transaction with a JSP</TITLE>
</HEAD>
<body bgcolor="white">
 <h2>View Athlete Data</h2>

<sql:transaction>

 <sql:update>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 insert into athlete values(2, 'Rachel Perry','rlpbwp1996',
 '24-Feb-1996','F')
 </sql:update>

 <sql:query var="resultObj">
 select * from athlete
 </sql:query>

</sql:transaction>

<table>
<c:forEach items="${resultObj.rows}" var="row">
 <c:forEach items="${row}" var="column">
 <tr>
 <td align="right">
 <c:out value="${column.key}" />
 </td>
 <td>
 <c:out value="${column.value}" />
 </td></tr>
 </c:forEach>
 </c:forEach>

</table>
</body>
</html>

After executing SQL within a transaction, the JSP displays the database table's updated values. The
content of the sql:update and sql:query tags are traditional SQL statements.

Make sure to include the proper taglib directive to ue the JSTL 1.0 sql tag
library:

<%@ taglib uri=
"http://java.sun.com/jstl/sql" prefix="sql" %>

The sql:transaction tag also has an isolation attribute in which you can specify an isolation level

for the transaction (see Recipe 21.10). Here is an example:

<sql:transaction isolation="TRANSACTION_READ_COMMITTED">

<%-- SQL statements and tags here... --%>

</sql:transaction>

Figure 21-8 shows the output of the sqlTrans.jsp file.

Figure 21-8. A JSP displays an updated database table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; Chapter 23 on the JSTL
and its sql tag library; Recipe 21.1 on accessing a database from a servlet without a connection
pool; Recipe 21.2 and Recipe 21.3 on using a DataSource on Tomcat; Recipe 21.4-Recipe 21.6 on
using DataSources with servlets and JSPs on WebLogic; Recipe 21.7 and Recipe 21.8 on calling

stored procedures from servlets and JSPs; Recipe 21.10 on using transactions in servlets; Recipe
21.12 on finding out information about a ResultSet.

[Team LiB]

http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 21.12 Finding Information about a ResultSet

Problem

You want to dynamically discover details about the rows and columns in a java.sql.ResultSet.

Solution

Use the ResultSetMetaData class obtained by calling the java.sql.ResultSet's getMetaData()

method.

Discussion

Web developers sometimes need to work with database tables that have unknown column names and
types. The java.sql package contains a very useful ResultSetMetaData interface that defines
methods designed to provide information about a java.sql.ResultSet. A ResultSet encapsulates

the rows returned by a SELECT SQL statement.

Example 21-16 shows a servlet that queries an Oracle 8i database for a ResultSet, then displays the

column names, the column index, the SQL type of the column, and the number of characters the
column requires to display its values.

Example 21-16. A servlet uses the ResultSetMetaData class

package com.jspservletcookbook;

import java.sql.*;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class DbMetaServlet extends HttpServlet {

 DataSource pool;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /*Initialize the DataSource in the servlet's init() method
 which the servlet container calls once when it creates an instance of
 the servlet */
 public void init() throws ServletException {

 Context env = null;

 try{

 env = (Context) new InitialContext().lookup("java:comp/env");

 pool = (DataSource) env.lookup("jdbc/oracle-8i-athletes");

 if (pool == null)
 throw new ServletException(
 "'oracle-8i-athletes' is an unknown DataSource");

 } catch (NamingException ne) {

 throw new ServletException(ne);

 }

 }//init

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 String sql = "select * from athlete";
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 ResultSetMetaData rsm = null;

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Discover a ResultSet</title></head><body>");

 out.println("<h2>Here is Info about the returned ResultSet</h2>");
 out.println("<table border='1'><tr>");

 try{

 //Get a connection from the pool
 conn = pool.getConnection();

 //Create a Statement with which to run some SQL
 stmt = conn.createStatement();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //Execute the SQL
 rs = stmt.executeQuery(sql);

 //Get a ResultSetMetaData object from the ResultSet
 rsm = rs.getMetaData();

 int colCount = rsm.getColumnCount();

 //print column names
 printMeta(rsm,"name",out,colCount);

 //print column index
 printMeta(rsm,"index",out,colCount);

 //print column type
 printMeta(rsm,"column type",out,colCount);

 //print column display size
 printMeta(rsm,"column display",out,colCount);

 } catch (Exception e){

 throw new ServletException(e.getMessage());

 } finally {

 try{

 stmt.close();
 conn.close();

 } catch (SQLException sqle){ }

 }
 out.println("</table></body></html>");

 } //doGet

 private void printMeta(ResultSetMetaData metaData, String type,
 java.io.PrintWriter out, int colCount) throws SQLException {

 if (metaData == null || type == null || out == null)
 throw new IllegalArgumentException(
 "Illegal args passed to printMeta()");

 out.println("<tr>");

 if (type.equals("table")){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("<td>Table name</td>");

 for (int i = 1; i <=colCount; ++i){

 out.println("<td>" + metaData.getTableName(i) + "</td>");
 }

 } else if (type.equals("name")){

 out.println("<td>Column name</td>");

 for (int i = 1; i <=colCount; ++i){

 out.println("<td>" + metaData.getColumnName(i) + "</td>");
 }

 } else if (type.equals("index")){

 out.println("<td>Column index</td>");

 for (int i = 1; i <=colCount; ++i){

 out.println("<td>" + i + "</td>");
 }

 } else if (type.equals("column type")){

 out.println("<td>Column type</td>");

 for (int i = 1; i <=colCount; ++i){

 out.println("<td>" + metaData.getColumnTypeName(i) +
 "</td>");
 }

 } else if (type.equals("column display")){

 out.println("<td>Column display size</td>");

 for (int i = 1; i <=colCount; ++i){

 out.println("<td>" + metaData.getColumnDisplaySize(i) +
 "</td>");
 }
 }

 out.println("</tr>");

 }//printMeta

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Example 21-16 uses ResultSetMetaData methods to obtain information about each of the columns
in the ResultSet. The code calls these methods inside its printMeta() method. For example, the

code:

metaData.getColumnName(1)

returns the name of the first column the table schema specifies, such as "USER_ID." Figure 21-9
shows the servlet's HTML output in a web browser.

Figure 21-9. A servlet displays meta information about a ResultSet

Use the java.sql.DatabaseMetaData interface to get a large amount of

information about the database system associated with the
java.sql.Connection the code is using. The Connection method
getMetaData() returns an object that implements the DatabaseMetaData

interface.

See Also

The JDBC specification: http://java.sun.com/products/jdbc/download.html; The ResultSetMetaData

class: http://java.sun.com/j2se/1.4.1/docs/api/java/sql/ResultSetMetaData.html; Recipe 21.1 on
accessing a database from a servlet without a connection pool; Recipe 21.2 and Recipe 21.3 on using
a DataSource on Tomcat; Recipe 21.4-Recipe 21.6 on using DataSources with servlets and JSPs on

WebLogic; Recipe 21.7 and Recipe 21.8 on calling stored procedures from servlets and JSPs; Recipe
21.10 and Recipe 21.11 on using transactions in servlets and JSPs.

[Team LiB]

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/j2se/1.4.1/docs/api/java/sql/ResultSetMetaData.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 22. Using Custom Tag Libraries
Introduction

Recipe 22.1. Creating a Classic Tag Handler

Recipe 22.2. Creating a JSP 1.2 TLD for a Classic Tag Handler

Recipe 22.3. Creating a JSP 2.0 TLD for a Classic Tag Handler

Recipe 22.4. Packaging a Tag Library in a Web Application

Recipe 22.5. Packaging the Tag Library in a JAR File

Recipe 22.6. Using the Custom Tag in a JSP

Recipe 22.7. Handling Exceptions in a Custom Tag Class

Recipe 22.8. Creating a Simple Tag Handler

Recipe 22.9. Creating a TLD for a Simple Tag Handler

Recipe 22.10. Using a Simple Tag Handler in a JSP

Recipe 22.11. Creating a JSP Tag File

Recipe 22.12. Packaging the JSP Tag File in a Web Application

Recipe 22.13. Packaging the JSP Tag File in a JAR

Recipe 22.14. Using a Custom Tag Associated with a Tag File

Recipe 22.15. Adding a Listener Class to a Tag Library
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

A very powerful feature of JavaServer Pages technology is the ability to create your own XML tags for
use in JSPs. Custom tags have been a part of the JSP specification since Version 1.1. JSP 2.0 is
dedicated to making custom tag development less complex than prior versions. JSP 2.0's introduction
of simple tag handlers and tag files, which we cover in Recipe 22.8-Recipe 22.14, are a big part of
this strategy.

Let's familiarize ourselves with a few terms before we move on to custom tag recipes. A tag is an
instance of an XML element and a member of a specified namespace. For example, the prefix for all
tags associated with this cookbook is cbck. The JSP refers to an individual tag associated with the
cbck namespace (say, the myTag tag) as follows:

<cbck:myTag>whatever this tag does...</cbck:myTag>

Tags are XML elements; therefore, their names and attributes are case sensitive. A collection of tags
that provide similar functionality or that logically collaborate with each other is called a tag library.
Developers can install one or more tag libraries in a web application.

A Java class called the tag handler provides the tag's functionality in a JSP. A custom action is a tag
that you invent for use in JSPs and that is powered behind the scenes by a tag-handler object that
the web container keeps in memory.

A classic tag handler uses the tag extension API that evolved from JSP v1.1 to 1.2. A simple tag
handler is a Java class that implements the SimpleTag interface, which JSP 2.0 introduced.

A tag file defines a custom tag in JSP syntax. It is designed to make life easier for tag developers.
The web container generates from the tag file a Java class that implements the SimpleTag interface,

and then creates an object from that class to interpret the tag's use in JSPs.

Finally, a tag library descriptor (TLD) is an XML file that provides a mapping between references to
tag libraries in JSPs (with the taglib directive) and the tag-library classes that you install in the web

application. A TLD is a configuration file, similar to a web application's deployment descriptor. The
recipes in this chapter provide examples of how to create classic tag handlers, simple tag handlers,
and tag files. The recipes also show how to package these components in web applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.1 Creating a Classic Tag Handler

Problem

You want to create a classic JSP 1.2-style tag handler for a custom action.

Solution

Create a Java class that extends one of the Tag support classes in the javax.servlet.jsp.tagext
package, such as BodyTagSupport .

Discussion

There are numerous types of custom tags you can create for JSPs, such as actions that ignore their bodies
(empty tags), actions that are nested within other custom actions, and custom tags that use their body
content. In fact, entire books have been dedicated solely to JSP custom tag development! Instead of being
exhaustive in this book, I show how to create a fairly simple classic tag that adds an image logo to a JSP
page with a text message. You can then infer details for your own programming tasks from this example.

The sample tag is designed to allow a page designer to specify an logo's image, its width and height, and a
text message to sit alongside the image.

Example 22-1 shows the classic tag handler for this custom action. This Java class extends BodyTagSupport

, since it uses the tag's nested content for the logo's text message.

Example 22-1. A classic tag handler for inserting an image and markup

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/** This tag generates a thumbnail image using the HTML img tag, next to a text message.
The user specifies the content of the message and the Heading level (i.e., <H1>-<H6>) */

public class LogoTag extends BodyTagSupport {

 //These variable represent the custom tag's attributes
 private String heading = null;
 private String image =null;
 private String width =null;
 private String height =null;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //this method assumes that attribute properties have been set.
 public int doStartTag() throws JspException{

 try {

 int h = new Integer(heading).intValue();

 if(! (h > 0 && h < 7))
 throw new JspException(
 "The 'heading' attribute value must between 1 and 6 inclusive.");

 } catch (Exception e) { throw new JspException(e.getMessage()); }

 return EVAL_BODY_BUFFERED;

 }

 public int doEndTag() throws JspException {

 JspWriter out = pageContext.getOut();

 //the 'images' directory is located in the web app's
 //root directory
 String imgDir = ((HttpServletRequest) pageContext.
 getRequest()).getContextPath() + "/images/";

 //get the text provided between the custom action's
 // start and end tags
 String message = getBodyContent().getString().trim();

 try{

 //build the HTML img tag
 out.println("<img src=\""+ imgDir + image + "\" width=\"" + width +
 "\" height=\"" + height + "\" align=\"left\">" + "<H" + heading + ">" +
 message + "</H" + heading+ ">");

 } catch (java.io.IOException io) {}

 return EVAL_PAGE;

 } //doEndTag

 //methods designed to set attribute values
 public void setHeading(String level){

 this.heading= level;

 }

 public void setImage(String name){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.image = name;

 }

 public void setWidth(String width){

 this.width = width;

 }

 public void setHeight(String height){

 this.height = height;

 }

 //the JSP container may cache and reuse tag handler objects.
 //this method releases instance variables so that the tag handler
 //can be reused afresh
 public void release(){

 heading = null;
 image =null;
 width =null;
 height =null;

 }// release
 }

Classic tag handlers are like JavaBeans. You declare the custom tag's attributes as instance variables, or
properties , and define setter methods for each attribute. If you just want to manipulate the custom tag's
body, define the doEndTag() method. When the JSP container invokes doEndTag() , developers can use

this method to evaluate the body content that the tag user has placed between the action's start and end
tags. Example 22-1 also defines the doStartTag() method to check that the tag user has included a valid
value for the header attribute (a number between one and six, inclusive, for this example code).

When the doStartTag() method is invoked, any attribute values that the user has

set are available, but the tag's body content is not.

The doEndTag() method uses the various tag attribute values to build an img and H tag that results in the

display of a simple logo in the JSP page where the tag is used. Here's an example of how a JSP would use
the action defined by this tag handler:

<%-- import the tag library with 'taglib' directive --%>
<%@ taglib uri="jspservletcookbook.com.tags" prefix="cbck" %>

<%-- JSP page continues... --%>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%-- Use the 'logo' tag --%>
<cbck:logo heading="1" image="stamp.gif" width="42" height="54">Thanks for visiting</
cbck:logo>

Figure 22-1 shows a JSP that uses the tag defined by Example 22-1 .

Figure 22-1. A JSP page uses a custom tag that displays an image and a
heading

The JSP using this tag outputs HTML that looks like this:

 <H1> Thanks for visiting</H1>

You might respond by exclaiming, "The designer can just enter these HTML tags manually, and they don't
have to deal with the custom tag's syntax!" This is absolutely true; however, the tag takes care of the
default location for the images directory, positions and aligns the image, and checks whether the attribute
level is correct. In other words, it performs a lot of routine work and removes the possibility of silly
typographical mistakes.

Also consider that this is a simple example; what if the image was a Flash file instead? A custom tag could
take care of all of the complex details for embedding the Flash in the HTML page and generating proprietary
attribute values, leaving the graphical positioning of the media file up to the tag user.

A nice rule of thumb with custom tags is this: leave automated, complex, or tedious work to the tag
handler, and reserve configurable details for the tag's attributes.

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152 ; Recipe 22.2 and Recipe 22.3 on
creating TLD files for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging tag libraries in a web
application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling exceptions in tags;
Recipe 22.8 and Recipe 22.9 on creating a simple tag handler; Recipe 22.10 on using the simple tag handler
in a JSP; Recipe 22.11 -Recipe 22.14 on using a JSP tag file; Recipe 22.15 on adding a listener class to a
tag library; the custom-tag sections of Hans Bergsten's JavaServer Pages , Third Edition (O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.2 Creating a JSP 1.2 TLD for a Classic Tag
Handler

Problem

You want to create a JSP 1.2 TLD file for one or more custom tags.

Solution

Create the XML file using the proper DOCTYPE declaration for a JSP 1.2 TLD.

Discussion

A TLD is an XML file that describes your custom tags, the tag's attributes (if any), as well as the Java
classes that provide the tag's functionality. The JSP container uses this configuration file when it
interprets custom tags that appear in JSP pages. If you are using a JSP v1.2 container, your tag
library's TLD has the DOCTYPE declaration shown in Example 22-2. This TLD describes the tag handler

of the previous recipe.

Example 22-2. The TLD file for a classic JSP 1.2 tag handler

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>cbck</short-name>

 <!-- Here is the URI you use with the 'taglib' directive in the JSP -->
 <uri>com.jspservletcookbook.tags</uri>

 <description>Cookbook custom tags</description>

 <tag>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <name>logo</name>

 <!-- make sure to use the fully qualifed class name -->
 <tag-class>com.jspservletcookbook.LogoTag</tag-class>

 <body-content>JSP</body-content>

 <description>This tag writes a logo inside the JSP.</description>

 <attribute>
 <name>heading</name>
 <!-- The logo tag requires this attribute -->
 <required>true</required>
 <!-- The attribute can take a JSP expression as a value -->
 <rtexprvalue>true</rtexprvalue>
 <description>The heading level for the logo; 1 through 6.
 </description>
 </attribute>

 <attribute>
 <name>image</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>The image name for the logo.</description>
 </attribute>

 <attribute>
 <name>width</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>The image width for the logo.</description>
 </attribute>

 <attribute>
 <name>height</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>The image height for the logo.</description>
 </attribute>

 </tag>

</taglib>

In JSP 1.2 and 2.0, a JSP container automatically searches WEB-INF, as well as the META-INF
directory of your application's JAR files, for any file that ends with the extension .tld.

Because .tld is a fixed extension, it is mandatory to give your tag library
descriptor filenames that end in .tld.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The container then uses the information it finds in the TLD to interpret custom tags that the web
application may use. For example, the container maps the uri elements it finds in the TLD to the
URIs specified by any taglib directives in JSP files. Example 22-2 specifies a uri of
com.jspservletcookbook.tags for the tag library that contains the logo tag. A taglib directive that

uses this tag library in a JSP looks like this:

<%@ taglib uri="com.jspservletcookbook.tags" prefix="cbck" %>

When the logo tag appears later on in the JSP, the JSP container knows that the tag belongs in the
tag library with the com.jspservletcookbook.tags uri value, and the container can evaluate the JSP's

tag use based on the TLD's specification of the tag class and the tag's various attributes. Based on
the TLD, the JSP container knows that the logo tag's attributes are all required, so a JSP that uses
the logo tag and omits an attribute fails to compile.

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152; Recipe 22.3 on creating a
JSP 2.0 TLD file for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging tag libraries in a web
application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling exceptions in
tags; Recipe 22.8 and Recipe 22.9 on creating a simple tag handler; Recipe 22.10 on using the
simple tag handler in a JSP; Recipe 22.11-Recipe 22.14 on using a JSP tag file; Recipe 22.15 on
adding a listener class to a tag library; the custom tag sections of Hans Bergsten's JavaServer Pages,
Third Edition (O'Reilly).

[Team LiB]

http://jcp.org/en/jsr/detail?id=152
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.3 Creating a JSP 2.0 TLD for a Classic Tag Handler

Problem

You want to create a JSP 2.0 TLD file for a tag library.

Solution

Create a tag library descriptor with the proper taglib root element, including the taglib 's various xmlns

attributes and values.

Discussion

If you are using any JSP 2.0 features with your tag library and TLD, such as a function or tag-file

element, then you must use the JSP 2.0-style TLD, as shown in Example 22-3 .

The JSP 2.0 TLD is backward compatible with elements defined in the JSP 1.2 DTD. Therefore you can use
the taglib and tag elements as they are specified in any existing JSP 1.2 TLDs when you upgrade your

TLD file to JSP 2.0. For example, the only difference between the TLD in Example 22-3 and the JSP 1.2 TLD
in Example 22-2 is the taglib start tag, which must have exactly the same content as shown here.

Example 22-3. The JSP 2.0 TLD file for our classic tag handler

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0"
>

<!-- THE REST OF THE XML CONTENT IS ALMOST EXACTLY THE SAME AS THE JSP 1.2 TLD VERSION
EXCEPT FOR <jsp-version>2.0</jsp-version> AND <body-content>scriptless</body-content>. The
"scriptless" value means that the content of the tag can only be template text (such as
HTML content), Expression Language code, or JSP action elements, but not "scripting"
elements such as the JSP code delineated by <% %> -->

 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <short-name>cbck</short-name>
 <uri>com.jspservletcookbook.tags</uri>
 <description>Cookbook custom tags</description>

 <tag>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <name>logo</name>

 <tag-class>com.jspservletcookbook.LogoTag</tag-class>

 <body-content>scriptless</body-content>

 <description>This tag writes a logo inside the JSP.</description>

 <attribute>
 <name>heading</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>
 The heading level for the logo; 1 through 6.
 </description>
 </attribute>

 <attribute>
 <name>image</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>The image name for the logo.</description>
 </attribute>

 <attribute>
 <name>width</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>The image width for the logo.</description>
 </attribute>

 <attribute>
 <name>height</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>The image height for the logo.</description>
 </attribute>

 </tag>

</taglib>

The JSP 2.0 TLD is based on an XML Schema file, rather than a DTD (the XML Schema file:
http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd).

XML Schemas allow the definers of XML documents to create more complex elements
and attributes than those allowed in DTDs. XML Schemas are also designed to be
valid XML documents themselves, which makes it easier to integrate them with XML-
based applications.

http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The taglib element in Example 22-3 has four attributes. The xmlns attribute specifies that the TLD has the

same default namespace as all J2EE deployment descriptors: http://java.sun.com/xml/ns/j2ee .

A namespace is a unique identifier that helps avoid the collision of two XML elements
of the same name. For example, the taglib element that is part of the
http://java.sun.com/xml/ns/j2ee namespace is different from a taglib element that

might be defined as part of the http://acme.com namespace. A namespace has to be
unique only within its domain (such as an Internet URL); it does not necessarily
represent an actual web document.

The xmlns:xsi attribute specifies the namespace for a set of XML elements related to XML Schema
instances . The xsi:schemaLocation attribute specifies the location of the XML Schema on which the

current XML document is based.

An XML Schema describes a related set of elements and attributes. An XML Schema
instance is an XML document that uses the previously defined XML elements and
attributes. This concept is similar to a Java class and its object instances.

Finally, the taglib element's version attribute specifies the JSP-specification version on which the tag

library is based, as in JSP 2.0.

See Also

The XML schema file for the JSP 2.0 TLD: http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd ;
Recipe 22.2 on creating a JSP 1.2 TLD file for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging tag
libraries in a web application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling
exceptions in tags; Recipe 22.8 and Recipe 22.9 on creating a simple tag handler; Recipe 22.10 on using
the simple tag handler in a JSP; Recipe 22.11 -Recipe 22.14 on using a JSP tag file ; Recipe 22.15 on
adding a listener class to a tag library; the custom tag sections of Hans Bergsten's JavaServer Pages , Third
Edition (O'Reilly).

[Team LiB]

http://java.sun.com/xml/ns/j2ee
http://acme.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.4 Packaging a Tag Library in a Web Application

Problem

You want to make your tag library available in a web application.

Solution

Place your TLD file in WEB-INF or a WEB-INF subdirectory (with the exception of WEB-INF/lib and
WEB-INF/classes). Place the tag handler class or classes in WEB-INF/classes.

Discussion

Packaging your tag library outside of a JAR file is typically a two-step process:

Store the TLD file in the WEB-INF directory or a WEB-INF subdirectory, and a JSP container
(compliant with Versions 1.2 and 2.0) automatically configures your tag library. The TLD file
must have a .tld extension. For example, if you store a mytags.tld in WEB-INF/tlds, then the
JSP container automatically finds your TLD file and configure your tag library.

1.

The JSP 2.0 specification states that TLDs should not be placed in WEB-INF/lib
or WEB-INF/classes. The JSP container will not look for the TLDs in these
locations.

Make sure the tag handler classes for your tag library have a package name (such as
com.jspservletcookbook) and are stored in WEB-INF/classes or in a JAR file in WEB-INF/lib.

2.

The next recipe shows how to package your tag library, including the TLD, in a JAR file.

See Also

The XML schema file for the JSP 2.0 TLD: http://java.sun.com/xml/ns/j2ee/web-
jsptaglibrary_2_0.xsd; Recipe 22.2 and Recipe 22.3 on creating TLD files for tag libraries; Recipe
22.5 on packaging tag libraries in a JAR file; Recipe 22.6 on using the custom tag in a JSP; Recipe
22.7 on handling exceptions in tags; Recipe 22.8 and Recipe 22.9 on creating a simple tag handler;
Recipe 22.10 on using the simple tag handler in a JSP; Recipe 22.11-Recipe 22.14 on using a JSP tag
file; Recipe 22.15 on adding a listener class to a tag library; the custom-tag sections of Hans

http://java.sun.com/xml/ns/j2ee/web-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bergsten's JavaServer Pages, Third Edition (O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.5 Packaging the Tag Library in a JAR File

Problem

You want to make your tag library available in a JAR file.

Solution

Create a JAR file that contains your tag handler class or classes in the correct directory structure
(with subdirectory names matching the package names). Place the tag library descriptor file in the
JAR's META-INF directory. Then put the JAR in the WEB-INF/lib directory of your web application.

Discussion

To make your tag library portable, store all of your tag handler classes and tag files in a JAR file.

In a JAR, store any tag files in META-INF/tags or a subdirectory of META-
INF/tags. If you don't, the JSP container will not recognize them as legitimate
tag files. See Recipe 22.11 for details.

You can generate this JAR file from a directory that contains your tag library classes, including their
package-related subdirectories. For example, the logo tag I developed in this chapter has a package
name of com.jspservletcookbook, so the relative path to this file is

com/jspservletcookbook/LogoTag.class. Include a META-INF directory at the top level of the directory
where the classes are stored (e.g., in the same directory as the one containing com). Place your tag
library descriptor file in the META-INF directory or a META-INF subdirectory.

If your library includes any tag files, place them in META-INF/tags or a subdirectory of META-
INF/tags. Change to the directory containing all these subdirectories and type the following command
line, substituting your own JAR filename for cookbooktags.jar:

jar cvf cookbooktags.jar .

Don't forget that period (.) character at the end. This tells the jar tool to include all of the files and

directories that the current directory contains in the archive.

Make sure your computer's PATH environment variable includes the path to the

bin directory of your Java SDK installation, as in h:\j2sdk1.4.1_01\bin. This
allows you to type jar at the command line to launch the Java jar tool.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To install the tag library, just take the resulting JAR file and move it into your web application's WEB-
INF/lib directory.

The JSP container (in JSP 1.2 and 2.0) automatically looks in the JAR's META-INF directory for the
TLD file-you do not have to include a taglib element in the web.xml deployment descriptor.

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152; Recipe 22.2 and Recipe 22.3
on creating TLD files for tag libraries; Recipe 22.4 on packaging a tag library in a web application
without using a JAR file; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling
exceptions in tags; Recipe 22.8 and Recipe 22.9 on creating a simple tag handler; Recipe 22.10 on
using the simple tag handler in a JSP; Recipe 22.11 and Recipe 22.14 on using a JSP tag file; Recipe
22.15 on adding a listener class to a tag library; the custom tag sections of Hans Bergsten's
JavaServer Pages, Third Edition (O'Reilly).

[Team LiB]

http://jcp.org/en/jsr/detail?id=152
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.6 Using the Custom Tag in a JSP

Problem

You want to use a custom tag that you have developed and installed.

Solution

Include a taglib directive at the top of the JSP. The taglib directive must identify the uri for your
tag library, as that uri is specified in your TLD file.

Discussion

To use the custom tags from your tag library, the JSP has to have a taglib directive, as in Example
22-4 . The uri attribute matches the uri your TLD file specifies (see Recipe 22.5). The prefix
attribute specifies the namespace for your tags. Example 22-4 specifies the prefix cbck ; therefore, the
JSP uses the logo tag from that tag library in the manner of <cbck:logo>...</cbck:logo> .

If the tag encloses body content (it's not an empty tag), make sure to close the
tag properly, as in </cbck:logo> as opposed to </logo> .

If the JSP does not use the tag as specified in the TLD (for example, if it leaves out a mandatory
attribute), the JSP will fail to compile the first time it is requested.

Example 22-4. The Logo tag used in a JSP

<%@ taglib uri="jspservletcookbook.com.tags" prefix="cbck" %>

<html>
<head><title>Mi casa es su casa</title></head>
<body>

<cbck:logo heading="<%=request.getParameter("level") %>" image="stamp.gif" width="42"
height="54">Thanks for visiting</cbck:logo>

Here's all the other stuff this page contains...
</body>
</html>

In Example 22-4 , the logo tag's heading attribute takes a runtime expression value so that the user

can dynamically set the attribute value, as in the following URL:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://localhost:8080/home/logoTest.jsp?level=1 .

Figure 22-2 shows the web browser display for this JSP.

Figure 22-2. The web browser display of a custom tag output

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152 ; Recipe 22.2 and Recipe 22.3
on creating TLD files for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging a tag library in a web
application; Recipe 22.7 on handling exceptions in tags; Recipe 22.8 and Recipe 22.9 on creating a
simple tag handler; Recipe 22.10 on using the simple tag handler in a JSP; Recipe 22.11 -Recipe 22.14
on using a JSP tag file ; Recipe 22.15 on adding a listener class to a tag library; the custom tag
sections of Hans Bergsten's JavaServer Pages , Third Edition (O'Reilly).

[Team LiB]

http://localhost:8080/home/logoTest.jsp?level=1
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.7 Handling Exceptions in a Custom Tag Class

Problem

You want your custom tag handler to deal with any exceptions thrown inside the tag.

Solution

Implement the TryCatchFinally interface in your tag handler.

Discussion

The tag extension API provides the TryCatchFinally interface, which you can implement in your tag

handler class to write code dealing with any exceptions the tag handler might throw. If the class implements
TryCatchFinally , it must include the methods doCatch() and doFinally() . In doCatch() , the code
has access to any Throwable object thrown by doStartTag() or doEndTag() , for instance. In
doFinally() , the code closes any resources the tag uses, such as a database connection.

In general, this interface allows the tag handler itself to catch and handle any exceptions that do not affect
the output of the JSP enclosing the tag. Example 22-5 uses the same code as Example 22-1 , but additional
methods are added by implementing the TryCatchFinally interface.

Example 22-5. A logo tag handler that catches any exceptions

package com.jspservletcookbook;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/** This tag generates a thumbnail image using the HTML img tag, next to a text message.
The user specifies the content of the message and the Heading level (i.e., <H1>-<H6>) */

public class LogoTag extends BodyTagSupport implements TryCatchFinally{

 private String heading = null;
 private String image =null;
 private String width =null;
 private String height =null;

 //this method assumes that attribute properties have been set.
 public int doStartTag() throws JspException{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {

 int h = new Integer(heading).intValue();

 if(! (h > 0 && h < 7))

 throw new JspException(
 "The 'heading' attribute value must between 1 and 6"+
 " inclusive.");

 } catch (Exception e) {
 throw new JspException(e.getMessage());
 }

 return EVAL_BODY_BUFFERED;

 }

 public int doEndTag() throws JspException {

 JspWriter out = pageContext.getOut();

 String imgDir = ((HttpServletRequest) pageContext.getRequest()).
 getContextPath() + "/images/";

 String message = getBodyContent().getString().trim();

 try{

 out.println("<img src=\""+ imgDir + image + "\" width=\"" +
 width + "\" height=\"" + height + "\" align=\"left\">" + "<H" +
 heading + ">" + message + "</H" + heading+ ">");

 } catch (java.io.IOException io) {}

 return EVAL_PAGE;

 } //doEndTag

 /* The next two methods have to be implemented in this class since the class implements
TryCatchFinally */

 public void doCatch(Throwable t){

 try{

 //print the exception message inside the JSP where the tag
 //appears
 pageContext.getOut().println(t.getMessage()+"
");

 } catch (java.io.IOException io) {}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public void doFinally(){

 //do nothing here, since we don't have any resources open
 //like database connections

 }

 public void setHeading(String level){

 this.heading= level;

 }

 /* THE REST OF THE SOURCE CODE FROM EXAMPLE 22-1 CONTINUES... */
}

If the tag throws an exception, then the web container invokes the doCatch() method and the tag handler

prints the exception message where the JSP would otherwise output the image produced by the tag. Our
doFinally() method does not do anything, because this code does not have any open resources such as
a FileInputStream .

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152 ; Recipe 22.2 and Recipe 22.3 on
creating TLD files for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging a tag library in a web
application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.8 and Recipe 22.9 on creating a simple
tag handler; Recipe 22.10 on using the simple tag handler in a JSP; Recipe 22.11 -Recipe 22.14 on using a
JSP tag file ; Recipe 22.15 on adding a listener class to a tag library; the custom tag sections of Hans
Bergsten's JavaServer Pages , Third Edition (O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.8 Creating a Simple Tag Handler

Problem

You want to create a JSP 2.0 simple tag handler.

Solution

Create a Java class that either implements the SimpleTag interface or extends the SimpleTagSupport

class.

Discussion

In an effort to simplify custom tag development, the JSP 2.0 specification added the
javax.servlet.jsp.tagext.SimpleTag interface and the SimpleTagSupport class. The
SimpleTagSupport class is designed to be the base class for tag handlers that implement SimpleTag .
These tag handlers have to implement just one method, doTag() .

The JSP 2.0 specification states that vendors should not cache simple tag handlers,
so developers do not have to worry about the reuse of tag handler objects and
releasing object state in their code.

Example 22-6 mimics the logo tag handler created in earlier recipes, but uses the SimpleTagSupport

class from the JSP 2.0 API instead.

Example 22-6. A simple tag handler displaying a logo

package com.jspservletcookbook;

import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

/** This tag generates a thumbnail image using an HTML img tag, aligned next to a text
message. The user specifies the content of the message and the Heading level (i.e., <H1>-
<H6>) */

public class SimpleLogoTag extends SimpleTagSupport{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private String heading = null;
 private String image =null;
 private String width =null;
 private String height =null;

 public void doTag() throws JspException, IOException{

 //JspContext provides access to the JspWriter for generating
 //text from the tag. You can also get any stored attribute values
 //using JspContext
 JspContext jspContext = getJspContext();

 //this method assumes that attribute properties have been set.
 try {

 int h = new Integer(heading).intValue();

 if(! (h > 0 && h < 7))
 throw new JspException(
 "The 'heading' attribute value must between 1 and 6"+
 " inclusive.");

 } catch (Exception e) { throw new JspException(e.getMessage()); }

 //Get a JspWriter to produce the tag's output
 JspWriter out = jspContext.getOut();

 //the value of the 'imgDir' attribute is the web app's /images
 //directory; the directory path is stored in a session attribute
 String imgDir = (String) jspContext.findAttribute("imgDir");

 if (imgDir == null || "".equals(imgDir))
 throw new JspException(
 "No attribute provided specifying the application's " +
 "image directory.");

 //display the img and H HTML tags
 out.println(new StringBuffer("<img src=\"").append(imgDir).
 append(image).append("\" width=\"").append(width).
 append("\" height=\"").append(height).append("\" align=\"left\">").
 append("<H").append(heading).append(">").toString());

 // getJspBody() returns a 'JspFragment' object; calling 'invoke()'
 //on this object with a 'null' parameter will use the JSP page's
 //JspWriter to output the tag's nested content in the JSP
 getJspBody().invoke(null);

 out.println(new StringBuffer("</H").append(heading).
 append(">").toString());

 }//doTag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //Attribute-related setter methods

 public void setHeading(String level){

 this.heading= level;

 }

 public void setImage(String name){

 this.image = name;

 }

 public void setWidth(String width){

 this.width = width;

 }

 public void setHeight(String height){

 this.height = height;

 }

}// SimpleLogoTag

This simple tag handler accesses a JspContext object by calling the SimpleTagSupport's
getJspContext() method. The code uses the JspContext to obtain the value of an attribute stored in
the session, as well as to access a JspWriter to generate the tag's output:

JspContext jspContext = getJspContext();

//further along in the code...

JspWriter out = jspContext.getOut();

//the value of the 'imgDir' attribute is the web app's images
//directory; it is stored in a session attribute
String imgDir = (String) jspContext.findAttribute("imgDir");
//code continues...

Calling the SimpleTagSupport's getJspBody() method returns a JspFragment object, which represents
a chunk of JSP code as an object. Calling this object's invoke() method with null as the parameter
directs the output of the fragment to the JspWriter available to the tag handler:

//Get the tag's body content and output it using the JspWriter
//that is available by calling JspContext.getOut()
getJspBody().invoke(null);

This code displays the content or text that the JSP developer included within the custom action's start and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end tags. The tag handler uses the tag's body content as the textual logo message. Figure 22-1 in Recipe
22.1 shows what the JSP page looks like in a web browser.

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152 ; Recipe 22.2 and Recipe 22.3 on
creating TLD files for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging a tag library in a web
application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling exceptions in tags;
Recipe 22.9 on creating a TLD for a simple tag handler; Recipe 22.10 on using the simple tag handler in a
JSP; Recipe 22.11 -Recipe 22.14 on using a JSP tag file ; Recipe 22.15 on adding a listener class to a tag
library; the custom tag sections of Hans Bergsten's JavaServer Pages , Third Edition (O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.9 Creating a TLD for a Simple Tag Handler

Problem

You want to create a TLD for a simple tag handler.

Solution

Use the JSP 2.0-style TLD for the simple tag handler.

Discussion

The simple tag handler derives from the JSP 2.0 API, so you can use the TLD version from JSP 2.0 as
well. Example 22-7 shows the taglib start tag and the various xmlns attributes that your TLD must
reproduce exactly. Then, unless you are using JSP 2.0 TLD features such as the tag-file element, you
can specify the tag element and its nested elements with the same XML syntax that you used for the

prior TLD version.

Example 22-7. A JSP 2.0 TLD file for a simple tag handler

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0"
>

<!-- THE REST OF THE XML CONTENT IS THE SAME AS THE JSP 1.2 TLD VERSION EXCEPT FOR <jsp-
version>2.0</jsp-version> -->

 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <short-name>cbck</short-name>
 <uri>com.jspservletcookbook.tags</uri>
 <description>Cookbook custom tags</description>

 <tag>

 <name>simplelogo</name>

 <tag-class>com.jspservletcookbook.SimpleLogoTag</tag-class>

 <body-content>JSP</body-content>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <description>This tag writes a logo inside the JSP.</description>

 <attribute>
 <name>heading</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>
 The heading level for the logo; 1 through 6.
 </description>
 </attribute>

 <attribute>
 <name>image</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>The image name for the logo.</description>
 </attribute>

 <attribute>
 <name>width</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>The image width for the logo.</description>
 </attribute>

 <attribute>
 <name>height</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 <description>The image height for the logo.</description>
 </attribute>

 </tag>

</taglib>

To use the simple tag handler in a web application, place the TLD in a subdirectory
of WEB-INF like WEB-INF/tlds . Or, store the TLD in a JAR file's META-INF directory
or a subdirectory thereof. Then put the JAR in the WEB-INF/lib directory.

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152 ; Recipe 22.2 -Recipe 22.3 on
creating TLD files for tag libraries; Recipe 22.4 -Recipe 22.5 on packaging a tag library in a web
application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling exceptions in tags;
Recipe 22.8 on creating a simple tag handler; Recipe 22.10 on using the simple tag handler in a JSP;
Recipe 22.11 -Recipe 22.14 on using a JSP tag file ; Recipe 22.15 on adding a listener class to a tag
library; the custom tag sections of Hans Bergsten's JavaServer Pages , Third Edition (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.10 Using a Simple Tag Handler in a JSP

Problem

You want to use a custom tag based on a simple tag handler.

Solution

Use the taglib directive in the JSP, specifying the proper uri attribute for the tag library.

Discussion

Make sure to package the tag library, the simple tag handler, and its associated TLD, as described by
Recipe 22.4 and Recipe 22.5 and the note in Recipe 22.9. Example 22-8 shows the rest of the setup
needed to use the tag in a JSP.

Simple tag handlers are designed to be easier to develop (by having only one
method that you need to implement: void doTag()). Use the associated tags

in a JSP the same way you use the tags associated with classic tag handlers.

Example 22-8. A JSP uses a tag defined by a simple tag handler

<%@ taglib uri="jspservletcookbook.com.tags" prefix="cbck" %>
<html>
<head><title>Me Casa Su Casa</title></head>
<body>

<% session.setAttribute("imgDir",(request.getContextPath() +
 "/images/")); %>

<cbck:simplelogo heading=
 "<%=request.getParameter(\"level\") %>" image=
 "stamp.gif" width="42" height="54">
 Thanks for visiting here</cbck:simplelogo>

Here's all the other stuff this page contains...
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The JSP in Example 22-8 obtains the value for the logo tag's heading attribute with a JSP

expression. The JSP page user provides the value in the URL as in:

http://localhost:8080/home/logoTest.jsp?level=1

The JSP's output looks the same as the output shown in Figure 22-1 of Recipe 22.1.

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152; Recipe 22.2 and Recipe 22.3
on creating TLD files for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging a tag library in a
web application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling exceptions in
tags; Recipe 22.8 and Recipe 22.9 on creating a simple tag handler; Recipe 22.11-Recipe 22.14 on
using a JSP tag file; Recipe 22.15 on adding a listener class to a tag library; the customtag sections
of Hans Bergsten's JavaServer Pages, Third Edition (O'Reilly).

[Team LiB]

http://localhost:8080/home/logoTest.jsp?level=1
http://jcp.org/en/jsr/detail?id=152
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.11 Creating a JSP Tag File

Problem

You want to create a custom tag in the form of a tag file.

Solution

Create the tag file using JSP syntax and with an extension of .tag or .tagx . Place the tag file in WEB-
INF/tags or in META-INF/tags inside a JAR file, or in a subdirectory of either of these directories.

Discussion

JSP 2.0 introduced tag files, which are custom tags that you write using JSP syntax. Tag files are designed to
allow developers with little or no Java experience to create simple tags using only JSP and XML elements. In
addition, tag files do not require a TLD, although you can describe a tag file in a TLD (see Recipe 22.12). If
you create the tag file, then drop it in the WEB-INF/tags directory, the JSP container compiles the file into a
tag handler class the first time its associated tag is used in a JSP.

The JSP container converts the tag file into a class that extends
javax.servlet.jsp.tagext.SimpleTagSupport . See Recipe 22.8 for more details

on that class.

Tag files have introduced a few more directives and standard actions, such as the tag and attribute
directives, as well as the jsp:doBody action. Example 22-9 shows these new syntax elements. The example
creates the same logo tag we have worked on throughout this chapter, but uses tag file format.

Recipe 22.14 shows how the resulting custom tag can be used in a JSP.

Example 22-9 uses a tag directive to specify that the tag's body content (the text that appears between the

start and end tags) is scriptless . This means that the body content contains only template text, EL code, and
JSP action elements.

If you are defining an empty tag, the body-content value is "empty." If the tag
accepts JSP code in its body, use "JSP" for this value. The fourth body-content option

is "tagdependent," meaning that the tag itself interprets the code in its body (such as
SQL statements).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since a tag file can use normal JSP syntax, Example 22-9 uses a taglib directive to use the JSTL (see

Chapter 23). Then the example defines each one of the tag's attributes.

Remember that tag and attribute are directives , so their code starts with "<%@."

Example 22-9. A tag file generates a custom tag that inserts a logo in a JSP

<%@ tag body-content="scriptless" description="Writes the HTML code for inserting a logo."
%>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<%@ attribute name="heading" required="true" rtexprvalue=
 "true" description="The heading level for the logo."%>

<%@ attribute name="image" required="true" rtexprvalue=
 "true" description="The image name for the logo."%>

<%@ attribute name="width" required="true" rtexprvalue=
 "true" description="The image width for the logo."%>

<%@ attribute name="height" required="true" rtexprvalue=
 "true" description="The image height for the logo."%>

<img src="<c:out value="${imgDir}${image}"/>" width=
 "<c:out value="${width}"/>" height="<c:out value=
 "${height}"/>" align="left">

<H<c:out value="${heading}"/>><jsp:doBody/></H<c:out value="${heading}"/>>

The attributes for the attribute directive are the same as the attributes that you use for a JSP 1.2-style

TLD file (see Recipe 22.2). Since a tag file accepts plain template text, this is how we have set up the HTML
img tag that the tag file is designed to generate.

The img tag gets the values for its own attributes using the c:out JSTL tag and the EL (see Chapter 23). For

example, the expression "${imgDir}" returns the value for a stored object attribute of the same name, which
specifies a directory that contains the image used in the logo. The expression "${image}" returns the value
of the tag's image attribute which, by this line of the code, has already been set by the user.

The jsp:doBody standard action is a nifty way to output the text between the custom action's start tag and

end tag.

The jsp:doBody action, as well as the tag , attribute , and variable (not shown in

this recipe) directives, can be used only in tag files .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152 ; Recipe 22.2 and Recipe 22.3 on
creating TLD files for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging a tag library in a web
application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling exceptions in tags;
Recipe 22.8 and Recipe 22.9 on creating a simple tag handler; Recipe 22.10 on using the simple tag handler
in a JSP; Recipe 22.12 -Recipe 22.14 on using a JSP tag file ; Recipe 22.15 on adding a listener class to a tag
library; the custom tag sections of Hans Bergsten's JavaServer Pages , Third Edition (O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.12 Packaging the JSP Tag File in a Web
Application

Problem

You want to store the tag file for use in a web application.

Solution

Place the tag file in WEB-INF/tags or in META-INF/tags inside a JAR file or in a subdirectory of either
of these directories. If you do this you do not need to describe the tag in a TLD file.

Discussion

The JSP container finds the tag file by using the tagDir attribute of the taglib directive. In other
words, the tagDir attribute provides the path to the web application directory where you stored the

tag file. Here's an example:

<%@ taglib prefix="cbck" tagdir="/WEB-INF/tags" %>

As long as you place the tag file, which has a .tag extension (or .tagx extension if the tag file is in
XML syntax) in /WEB-INF/tags, JSPs can to use the tag associated with the tag file.

The JSP has to position the taglib directive in the code before the JSP uses the

associated custom tag.

The JSP 2.0 TLD can also specify the tag file in the following manner:

<tag-file>
 <name>dbSelect</name>
 <path>/WEB-INF/tags/dbtags</path>
</tag-file>

This TLD entry specifies a tag file named dbSelect.tag, which resides in the /WEB-INF/tags/dbtags
directory. The path attribute must begin with "/META-INF/tags" if the tag file resides in a JAR, and

"/WEB-INF/tags" if the tag file is located in a Web Archive (WAR) file or in a nonarchived web
application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152; Recipe 22.2 and Recipe 22.3
on creating TLD files for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging a tag library in a
web application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling exceptions in
tags; Recipe 22.8 and Recipe 22.9 on creating a simple tag handler; Recipe 22.10 on using the
simple tag handler in a JSP; Recipe 22.13 and Recipe 22.14 on packaging a tag file and using it in a
JSP; Recipe 22.15 on adding a listener class to a tag library; the custom tag sections of Hans
Bergsten's JavaServer Pages, Third Edition (O'Reilly).

[Team LiB]

http://jcp.org/en/jsr/detail?id=152
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.13 Packaging the JSP Tag File in a JAR

Problem

You want to store the tag file in a JAR file.

Solution

Place the tag file in the JAR's META-INF/tags directory or a subdirectory thereof.

Discussion

Developers commonly distribute tag libraries as JAR files, particularly if they have designed the tag
library to be portable. For JSP 2.0-style tag libraries that are using tag files, place the tag file in
META-INF/tags or a subdirectory of META-INF/tags. The tag file must have a .tag extension, or a
.tagx extension if it's a tag file in XML syntax.

Then place the JAR file in WEB-INF/lib of any web application containing JSPs that will use the tag.

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152; Recipe 22.2 and Recipe 22.3
on creating TLD files for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging a tag library in a
web application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling exceptions in
tags; Recipe 22.8 and Recipe 22.9 on creating a simple tag handler; Recipe 22.10 on using the
simple tag handler in a JSP; Recipe 22.14 on using a tag tag file based on a tag file; Recipe 22.15 on
adding a listener class to a tag library; the custom tag sections of Hans Bergsten's JavaServer Pages,
Third Edition (O'Reilly).

[Team LiB]

http://jcp.org/en/jsr/detail?id=152
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.14 Using a Custom Tag Associated with a Tag
File

Problem

You want to use a custom tag associated with a tag file.

Solution

Use the taglib directive in the JSP, before the code that uses the tag file related tag.

Discussion

The taglib directive identifies the tag with its tagdir attribute, which is the web application path to

the tags directory. Example 22-10 uses the tag from a tag file stored at /WEB-INF/tags/logo.tag.

The tag name in the JSP is the same as the tag filename, without the .tag extension. The prefix

attribute represents the custom tag's namespace, so the entire tag is used in the JSP as "<cbck:logo
heading=...> ...tag content...</cbck:logo>."

Example 22-10. A JSP uses a tag defined in a tag file

<%@ taglib prefix="cbck" tagdir="/WEB-INF/tags" %>

<html>
<head><title>Me Casa Su Casa</title></head>
<body>

<% session.setAttribute("imgDir",(request.getContextPath() + "/images/")); %>

<cbck:logo heading="<%=request.getParameter(\"level\") %>" image=
 "stamp.gif" width="42" height="54">
Thanks for visiting here ...
</cbck:logo>

Here's all the other stuff this page contains...
</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I use the same basic logo tag throughout this chapter to illustrate the various
custom-tag syntax differences. See Recipe 22.2 for details on the logo tag

itself.

See Also

The JSP 2.0 specification web page: http://jcp.org/en/jsr/detail?id=152; Recipe 22.2 and Recipe 22.3
on creating TLD files for tag libraries; Recipe 22.4 and Recipe 22.5 on packaging a tag library in a
web application; Recipe 22.6 on using the custom tag in a JSP; Recipe 22.7 on handling exceptions in
tags; Recipe 22.8 and Recipe 22.9 on creating a simple tag handler; Recipe 22.10 on using the
simple tag handler in a JSP; Recipe 22.11-Recipe 22.13 on setting up a JSP tag file; Recipe 22.15 on
adding a listener class to a tag library; the custom tag sections of Hans Bergsten's JavaServer Pages,
Third Edition (O'Reilly).

[Team LiB]

http://jcp.org/en/jsr/detail?id=152
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 22.15 Adding a Listener Class to a Tag Library

Problem

You want to include a listener class with your tag library.

Solution

Add a listener element to your TLD file.

Discussion

The servlet API includes "application event listeners," which are special Java classes that are notified by
the web container when certain events occur, such as the creation of a new user session (see Chapter 11
). You can include listener classes with your tag libraries. For example, you might have a session-related

tag that needs to know when sessions are created or destroyed.

The listener element has exactly the same syntax as it may appear in the web.xml deployment
descriptor. Example 22-11 shows a listener element included in a JSP Version 2.0 TLD.

Example 22-11. Adding a listener element to a JSP 2.0 TLD

<!-- beginning of the TLD file. The listener element is nested in the taglib element. SEE
CHAPTER 11 OR 14 FOR LISTENER CODE EXAMPLES -->

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0"
>

 <tlib-version>1.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <short-name>cbck</short-name>
 <uri>com.jspservletcookbook.tags</uri>
 <description>Cookbook custom tags</description>

 <listener>
 <listener-class>
 com.jspservletcookbook.ReqListener
 </listener-class>
 </listener>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tag>

 <!-- declare a tag here. See Example 22-2 (Recipe 22.2), Example 22-3 (recipe
 22.3), or 22-7 (Recipe 22.9) -->

 </tag>

</taglib>

The JSP specification requires the JSP container to automatically instantiate and register the listeners that
are associated with tag libraries. A listener can be used with a tag library to track the number of requests
the web application is receiving, as shown in the ServletRequestListener in Example 18-8 (Recipe 18.6

).

JSP 1.2's TLD file uses an XML DTD. Therefore, the TLD elements must appear in a
specific sequence. The listener element is nested inside the taglib element;
listener appears after all of the other nested elements except for tag . You can
precede your tag elements with the listener element. In the JSP 2.0 TLD, on the
other hand, you can position the listener right after the taglib root element.

Store any listener classes in the same JAR file as the one containing any tag handler classes.

Make sure to specify the listener class in the listener-class element as a fully

qualified class name, or the JSP container will probably have trouble finding the
class.

See Also

Example 18-8 in Recipe 18.6 for an example of a class that implements the
javax.servlet.ServletRequestListener ; Chapter 11 and Chapter 14 for several listener-related

recipes; Recipe 22.2 on creating a JSP 1.2 TLD file; Recipe 22.3 on creating a JSP 2.0 TLD; Recipe 22.9 on
creating a TLD for a simple tag handler; the custom tag sections of Hans Bergsten's JavaServer Pages ,
Third Edition (O'Reilly).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 23. Using the JSTL
Introduction

Recipe 23.1. Downloading the JSTL 1.0 and Using the JSTL Tags in JSPs

Recipe 23.2. Downloading the Java Web Services Developer Pack

Recipe 23.3. Using the Core JSTL Tags

Recipe 23.4. Using the XML Core JSTL Tags

Recipe 23.5. Using the XML Transform Tags

Recipe 23.6. Using the Formatting JSTL Tags

Recipe 23.7. Using A SQL JSTL Tag with a DataSource Configuration

Recipe 23.8. Using A SQL JSTL Tag Without a DataSource Configuration

Recipe 23.9. Accessing Scoped Variables with the EL

Recipe 23.10. Accessing Request Parameters with the EL

Recipe 23.11. Using the EL to Access Request Headers

Recipe 23.12. Using the EL to Access One Request Header

Recipe 23.13. Accessing Cookies with the EL

Recipe 23.14. Using the EL to Access JavaBean Properties

Recipe 23.15. Using JSTL Functions
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

JavaServer Page's custom tags and tag handlers are designed to help you invent your own tags.
While this is a powerful tool for Java web developers, developing custom tags entails a steep learning
curve and can be time consuming. Luckily, some hard-working volunteer software developers have
developed a bunch of highly useful tags for you. This tag collection is called the JavaServer Pages
Standard Tag Library (JSTL). The JSTL specification arises from the Java Community Process (JSR-
052) and the Apache Jakarta Project has developed a JSTL implementation, the Standard 1.0 taglib.

The JSTL has very broad functionality. It includes tags that:

Set object attributes for web applications (c:set).1.

Output text to web pages (c:out and x:out).2.

Iterate over collections of data (c:forEach and x:forEach).3.

Format numbers, dates, and currencies using different international styles (e.g.,
fmt:formatDate, fmt:formatNumber).

4.

Transform XML (x:transform).5.

Interact with databases using SQL (e.g., sql:query, sql:update).6.

Allow you to embed function calls in JSP code and template text (e.g., fn:substring()). This

functionality is available only with JSP 2.0 and JSTL 1.1 (see Recipe 23.14).

7.

The JSTL originated a very important new JSP technology, the Expression Language (EL). This is a
scripting language based generally on JavaScript and other scripting tools that, with JSP 2.0, can be
embedded in HTML template text.

The EL was once part of JSTL 1.0 but has now migrated to the JSP specification.
The EL must be implemented with JSP 2.0 containers such as Tomcat 5.

This chapter is designed to start you quickly with the JSTL, which commonly has to be downloaded
and installed in a web application. Many web containers eventually integrate or have already
integrated a JSTL implementation with their servlet and JSP engines.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.1 Downloading the JSTL 1.0 and Using the
JSTL Tags in JSPs

Problem

You want to download and use the JSTL.

Solution

Download the JSTL distribution, in a ZIP or TAR file, from the Apache Jakarta Project.

Discussion

The Apache Jakarta Project hosts the reference implementation (RI) for the JSTL. An RI is software
that is designed to implement a particular Java technology specification in order to demonstrate how
the software is intended to function. RIs are freely available for use by software vendors and
developers. You can download the binary or source distribution of the JSTL from
http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html.

Unpack the ZIP or TAR file into the directory of your choice. This creates a jakarta-taglibs directory.

This recipe uses the Standard Taglib Version 1.0.3, an implementation of the
JSTL 1.0. However, by the time you read this, the Jakarta Taglibs site will have
introduced Standard Taglib Version 1.1, which is an implementation of the JSTL
1.1. The new version includes some new features such as functions, which are
described in Recipe 23.14.

Inside the standard-1.0.3 directory is a lib subdirectory. This directory contains a number of JAR files,
including jstl.jar and standard.jar. The jstl.jar contains the JSTL 1.0 API classes; standard.jar is a
collection of JSTL 1.0 implementation classes. Add all of the JAR files found in your JSTL distribution's
lib directory (jakarta-taglibs/standard-1.0.3/lib in the example) to WEB-INF/lib.

JSTL 1.1 only requires the installation of jstl.jar and standard.jar in /WEB-
INF/lib if you are using J2SE 1.4.2 or higher (as well as Servlet 2.4 and JSP
2.0).

Table 23-1 describes each of the JAR files found in the distribution's lib directory (courtesy of the

http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Standard Taglib 1.0 documentation).

Table 23-1. Contents of the JSTL 1.0 reference implementation lib
directory

File name Purpose

jstl.jar JSTL1.0 API classes

standard .jar JSTL1.0 implementation classes

jaxen_full.jar Xpath engine classes

jdbc2_0-stdext.jar
Java Database Connectivity (JDBC) implementation classes
(also included with J2SE 1.4)

saxpath.jar Simple API for Xpath parsing

xalan.jar
Apache Xalan Extensible StyleSheet Transformations (XSLT)
processor

dom.jar, jaxp-api.jar, sax.jar,
xercesImpl.jar

Java API for XML Processing (JAXP) 1.2 API libraries

In the JSP where you want to use the JSTL tags, use the proper taglib directive shown in Table 23-

2. For example, if you use all of the different JSTL functions (core, XML, formatting, and SQL), your
JSP contains all of the following taglib directives, preferably at the top of the JSP page (they must

appear before the tags are used).

Table 23-2. The taglib directives for different JSTL functions, version 1.0

JSTL library taglib directive

Core
<%@ taglib uri="java.sun.com/jstl/core"
prefix="c" %>

XML processing
<%@ taglib uri="java.sun.com/jstl/xml"
prefix="x" %>

Formatting data (such as dates and currencies)
for international users

<%@ taglib uri="java.sun.com/jstl/fmt"
prefix="fmt" %>

SQL and Database access
<%@ taglib uri="java.sun.com/jstl/sql"
prefix="sql" %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Java community is now working on the JSTL Version 1.1, which will require
a JSP-2.0 compatible JSP container. JSTL 1.1 will use these different uri values
in the taglib directive:

http://java.sun.com/jsp/jstl/core, so the entire taglib directive would

look like: <%@ taglib uri="java.sun.com/jsp/jstl/core" prefix="c" %>

http://java.sun.com/jsp/jstl/xml, creating a taglib directive of: <%@

taglib uri="java.sun.com/jsp/jstl/xml" prefix="x" %>

http://java.sun.com/jsp/jstl/fmt, as used in the taglib directive: <%@

taglib uri="java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

http://java.sun.com/jsp/jstl/sql, creating a taglib directive of: <%@

taglib uri="java.sun.com/jsp/jstl/sql" prefix="sql" %>

See Also

The Jakarta Project's Taglibs site: http://jakarta.apache.org/taglibs/index.html; Sun Microsystem's
JSTL information page: http://java.sun.com/products/jsp/jstl/; Recipe 23.3 on using the core tags;
Recipe 23.4 and Recipe 23.5 on using XML-related tags; Recipe 23.6 on using the formatting tags;
Recipe 23.7 and Recipe 23.8 on the JSTL's SQL features; Recipe 23.9-Recipe 23.14 on using the EL to
access scoped variables, cookies, and JavaBean properties.

[Team LiB]

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.2 Downloading the Java Web Services
Developer Pack

Problem

You want to download the Java Web Services Developer Pack (WSDP) so that you can use a JSTL 1.1
reference implementation.

Solution

Visit the Sun Microsystems Java WSDP download site at http://java.sun.com/webservices/jwsdp.

Discussion

The Java WSDP Version 1.2 contains reference implementations of the JSTL 1.1, as well as several
other web tier technologies, including the Servlet API 2.4 and JSP 2.0. The WSDP is bundled with
Tomcat 5, so once you install the WSDP you can experiment with the various technologies, including
JavaServer Faces, Java Architecture for XML Binding (JAXB), Java API for XML Processing, and Java
API for XML-based RPC (Jax-RPC).

The Java WSDP 1.2 installs on both Windows and various Unix systems, such as Solaris and Linux.
Recipe 23.15 shows how to use JSTL 1.1 functions; I use the WSDP for this recipe.

Using Tomcat 5 and the new JSTL 1.1 features such as functions and the
embedding of EL code in template text requires you to use the servlet API 2.4
version of web.xml. See Recipe 23.15 for more details on this issue.

See Also

The Sun Microsystems Java WSDP download site at: http://java.sun.com/webservices/jwsdp; Recipe
23.15 on using JSTL 1.1 functions; Sun's JSTL information page:
http://java.sun.com/products/jsp/jstl/; Recipe 23.3 on using the core tags; Recipe 23.4 and Recipe
23.5 on using XML-related tags; Recipe 23.6 on using the formatting tags; Recipe 23.7 and Recipe
23.8 on the JSTL's SQL features; Recipe 23.9-Recipe 23.14 on using the EL to access scoped
variables, cookies, and JavaBean properties.

[Team LiB]

http://java.sun.com/webservices/jwsdp
http://java.sun.com/webservices/jwsdp
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.3 Using the Core JSTL Tags

Problem

You want to use the core JSTL tags in a JSP.

Solution

Use the taglib directive with the core uri attribute value to make the tags available in the JSP.

Discussion

This recipe demonstrates several JSTL tags that you use all the time: c:set , c:out , c:forEach , and
c:if . Here are the tag summaries:

The c:set tag sets object attributes to page , request , session , or application scopes.

The c:out tag displays text literals or the values of variables or bean properties in your JSPs.

The c:forEach tag iterates over Maps , Collections , and arrays .

The c:if tag tests expressions for true or false values, then conditionally executes the code
nested in the c:if body.

Remember to use the prefix for the certain functional area of the JSTL, such as c,
followed by a colon, and the tag name, as in "c:forEach."

Example 23-1 is a helper class that I find necessary to properly return a String array of TimeZone IDs

to the JSP in Example 23-2 .

Example 23-1. A helper class to help display TimeZone IDs

package com.jspservletcookbook;

import java.util.TimeZone;

public class ZoneWrapper {

 public ZoneWrapper(){}

 public String[] getAvailableIDs(){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return TimeZone.getAvailableIDs();

 }

}

Example 23-2 shows how to use a number of the core JSTL tags. The code uses the jsp:useBean
standard action to create ZoneWrapper (Example 23-1) and java.util.Date objects for use by the

tags.

Example 23-2. Using core JSTL 1.0 tags in a JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="zone" class="com.jspservletcookbook.ZoneWrapper" />

<jsp:useBean id="date" class="java.util.Date" />

<html>
<head><title>Using the Core JSTL tags</title></head>
<body>
<h2>Here are the available Time Zone IDs on your system</h2>

<c:if test="${date.time != 0}" >

 <c:out value=
 "Phew, time has not stopped yet...

" escapeXml="false"/>

</c:if>

<%-- The variable 'zones' contains a String array of TimeZone IDs; it is stored as a
'session' object attribute. The '${zone.availableIDs}' expression is the equivalent of
calling the ZoneWrapper.getAvailableIDs() method --%>

<c:set var="zones" value="${zone.availableIDs}" scope="session" />

<c:forEach var="id" items="${zones}">

 <c:out value="${id}
" escapeXml="false" />

</c:forEach>

</body>
</html>

The c:if tag uses an EL phrase to test whether the Date object's getTime() method returns a value
that is not zero (of course it does! I'm just demonstrating how to use the c:if tag).

${date.time != 0}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The prior code represents a boolean expression that returns true if Date.getTime() is greater than
zero. If true , then the code executes the nested c:out tag, which writes a message that the client's

browser displays.

The escapeXml="false" code displays the characters

 correctly in the
HTML output by the c:out tag. See Table 23-3 .

Example 23-2 sets an object attribute to session scope. This object is a String[] type containing time
zone IDs, such as "Pacific/Tahiti." The c:forEach tag then iterates over all of these array members,
displaying each ID with the c:out tag:

<c:forEach var="id" items="${zones}">
 <c:out value="${id}
" escapeXml="false" />
</c:forEach>

The var attribute of the c:forEach tag stores the current array member as c:forEach cycles over the
collection. The c:out tag uses an EL expression to access the value of the current array member:

<c:out value="${id}
" escapeXml="false" />

If you do not give the escapeXml attribute a false value when using c:out , the character entity codes

shown in Table 23-3 will display instead of the escaped characters.

Table 23-3. The c:out tag's escaped characters

c:out value attribute character Character entity code

< <

> >

& &

` '

" "

Figure 23-1 shows a part of the JSP using the code in Example 23-2 .

Figure 23-1. A JSP using the various core tags to display time zone IDs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 6.8 on including content in a JSP with the c:url tag; the Jakarta Project's Taglibs site:

http://jakarta.apache.org/taglibs/index.html ; the Sun Microsystems JSTL information page:
http://java.sun.com/products/jsp/jstl/ ; Recipe 23.4 and Recipe 23.5 on using XML-related tags; Recipe
23.6 on using the formatting tags; Recipe 23.7 and Recipe 23.8 on the JSTL's SQL features; Recipe 23.9
-Recipe 23.14 on using the EL to access scoped variables, cookies, and JavaBean properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.4 Using the XML Core JSTL Tags

Problem

You want to use the JSTL's XML tags in a JSP.

Solution

Use the various XML tags after declaring the tag library with the proper taglib directive (uri

attribute of http://java.sun.com/jstl/xml for JSTL 1.0 or http://java.sun.com/jsp/jstl/xml for JSTL
1.1).

Discussion

Many web developers have to write programs that parse or read XML to find information, or they
have to write code that displays the encapsulated XML information in a readable format. The JSTL
XML tags are a nice tool for these tasks. Example 23-3 displays some information from an Ant
build.xml file. (See Chapter 4 on the Ant tool if you are new to Ant.) I'm using this XML file just for an
example of how to use the XML-related JSTL tags. Notice that the taglib directives at the top of the

page allow the use of the XML and core JSTL tags further along in the code.

Example 23-3. A JSP parses an ant build file

<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
<head><title>Using the Core XML tags</title></head>
<body>
<h2>Here are the target and property values from the XML file</h2>

<c:import url="http://localhost:8080/home/build.xml" var="buildXml" />

<x:parse xml="${buildXml}" var="antDoc" />

<h3>First the target names...</h3>

<x:forEach select="$antDoc/project/target" >

 <x:out select="@name"/>
 <x:if select="@depends"> : depends=<x:out select="@depends"/></x:if>

</x:forEach>

 <h3>Then property names and values...</h3>

http://java.sun.com/jstl/xml
http://java.sun.com/jsp/jstl/xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<x:forEach select="$antDoc/project/target/property" >

 <x:out select="@name"/>: value= <x:out select="@value"/>

</x:forEach>

</body>
</html>

Example 23-3 uses the c:import tag to import a build file and store it in a variable called buildXml .
The the x:parse tag then parses the imported document into a form or object that the other XML
tags can work with. The code stores the parsing result in another variable named antDoc .

The XML JSTL tags use some of the same tag names as the core library, but a different prefix ("x").
The x:forEach tag in Example 23-3 uses an XPath expression as the value of the x:forEach select

attribute.

XPath is an XML technology that is designed to search for and select portions or
"node sets" of the hierarchical tree represented by an XML document. While an
XPath tutorial is well beyond the scope of this recipe (it is like a little
programming language in itself), there are plenty of online tutorials and books
on the subject. You can start at the Sun Microsystems web services tutorial,
which includes a discussion of XPath:
http://java.sun.com/webservices/docs/1.3/tutorial/doc/ .

The x:forEach tag makes nested elements such as x:out available to any nodes grabbed by the

XPath expression. The code in Example 23-3 displays the name of each Ant target in the build.xml file
by first collecting a set of all of the target elements with this expression:

<%-- this XPath expression is the equivalent of "begin at the root 'project' element
and get all of its nested 'target' elements" --%>

<x:forEach select="$antDoc/project/target" >

Example 23-3 outputs the name of each target with this code:

<x:out select="@name"/>

The enclosing x:forEach tag establishes the context of the XPath expression in
this x:out tag.

The following code states "return true if the current node has a valid depends attribute."

<x:if select="@depends">

If that expression returns true , the nested x:out tag outputs the value of the depends attribute.

Figure 23-2 shows the result of requesting the JSP of Example 23-3 in a browser. I've converted the

http://java.sun.com/webservices/docs/1.3/tutorial/doc/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML information into a more readable format for a browser. XML mavens (meaning those who can sift
through all of these crazy acronyms!) declare that you can also use Extensible Stylesheet Language
Transformations (XSLT) for converting XML information to HTML or other readable forms. This is the
next recipe's topic.

Figure 23-2. A JSP shows the output of a parsed XML file

See Also

The Jakarta Project's Taglibs site: http://jakarta.apache.org/taglibs/index.html ; Sun Microsystem's
JSTL information page: http://java.sun.com/products/jsp/jstl/ ; Recipe 23.3 on using the core tags;
Recipe 23.5 on using the XML Transform tags; Recipe 23.6 on using the formatting tags; Recipe 23.7
and Recipe 23.8 on the JSTL's SQL features; Recipe 23.9 -Recipe 23.14 on using the EL to access
scoped variables, cookies, and JavaBean properties.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.5 Using the XML Transform Tags

Problem

You want to use the JSTL's XML and XSLT-related tags.

Solution

Use the various XML tags after declaring the tag library with the proper taglib directive (uri

attribute of http://java.sun.com/jstl/xml for JSTL 1.0 or http://java.sun.com/jsp/jstl/xml for JSTL
1.1).

Discussion

A number of web site teams may already have devised stylesheets for transforming XML into HTML.
In addition, you may want to separate most of the XML transformation responsibilities from JSPs, so
that JSPs focus only on presenting the transformed information. The JSTL provides XML-related tags
to easily integrate stylesheets into JSPs. Example 23-4 is an Extensible Stylesheet Language (XSL)
document that converts an XML file into HTML. The stylesheet provides a conversion of an Ant build
file similar to the one described in Recipe 23.3.

Example 23-4. The stylesheet for transforming an XML file

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="html"/>

<xsl:template match="/">

 <html><head><title>List of build.xml targets
 </title></head><body bgcolor="white"><h2>Build.xml targets</h2>

 <xsl:apply-templates />

 </body></html>

</xsl:template>

<xsl:template match="/project">

http://java.sun.com/jstl/xml
http://java.sun.com/jsp/jstl/xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<dl>
 <xsl:for-each select="./target">

 <dt>
 <xsl:value-of select="@name" /> </dt>

 <xsl:if test="@depends">
 <dd>depends=<xsl:value-of select="@depends" /> </dd>

 </xsl:if>

 </xsl:for-each><!--end for-each -->
</dl>

</xsl:template>

<xsl:template match="text()">
 <xsl:value-of select="normalize-space()" />
</xsl:template>

 </xsl:stylesheet>

How do you apply this XSL file to the build.xml file to produce a readable format? Example 23-5 uses
the x:transform tag to associate a stylesheet with an XML file. First, the JSP has to import both the
stylesheet of the prior example and the XML file this stylesheet transforms by using the c:import
tag. The c:import tag imports the resource specified by its url attribute and stores it in a variable
(e.g., buildXml) that the x:transform tag can access.

Example 23-5. A JSP displays the result of an XSL transformation

<%@ taglib uri="http://java.sun.com/jstl/xml" prefix="x" %>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<c:import url="http://localhost:8080/home/build.xml" var="buildXml" />

<c:import url="/WEB-INF/xslt/chap23.xsl" var="xslt" />

<x:transform xml="${buildXml}" xslt="${xslt}" />

The x:transform tag makes the transformation process very easy, once you've put together a valid
stylesheet file. The x:transform tag's xml attribute specifies the XML file that the x:transform tag

handler transforms by applying a stylesheet. The code specifies the stylesheet to use in the
transformation with the x:transform tag's xslt attribute.

The xml and xslt attributes of x:transform resolve the variables that

represent the stylesheet and the XML file by using the EL, as in:

${buildXml}

Figure 23-3 shows the result of running the JSP of Example 23-5. In short, x:transform provides

http://lib.ommolketab.ir
http://lib.ommolketab.ir

your very own XSLT processor for use in the JSP.

Figure 23-3. A JSP shows transformed XML content

See Also

The Jakarta Project's Taglibs site: http://jakarta.apache.org/taglibs/index.html; the Sun
Microsystems JSTL information page: http://java.sun.com/products/jsp/jstl/; Recipe 23.2 on using
the core tags; Recipe 23.3 on using the various XML-related tags; Recipe 23.5 on using the
formatting tags; Recipe 23.6 and Recipe 23.7 on the JSTL's SQL features; Recipe 23.9-Recipe 23.14
on using the EL to access scoped variables, request headers and parameters, cookies, and JavaBean
properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.6 Using the Formatting JSTL Tags

Problem

You want to format a date or a number using the JSTL.

Solution

Use the fmt:formatDate and fmt:formatNumber actions.

Discussion

Internationalization or "i18n" is the process by which web developers design their web sites to
accommodate visitors who use different languages.

The term " i18n" means internationalization begins with "i," is followed by 18 letters,
and ends with "n." It is designed to relieve the tedium of spelling out the word
several times.

Localization means adding specific resources to a web site to enable messages such as web page greetings
to be translated into the visitor's language. For example, you might localize a site for Japanese visitors by
adding resources that contain Japanese translations of text that appears on web pages (I cover more i18n-
related Java code in Chapter 24). Example 23-6 uses the JSTL formatting tag library to display the
current date and a large number in Swiss and U.S. styles.

Example 23-6. showing a date and a number for U.S. and Swiss audiences

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<%--include this taglib for i18n related actions --%>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

<html>
<head><title>Formatting numbers and dates</title></head>
<body>
<h2>Dates and numbers in Swiss and US style formats</h2>

<%-- create an object representing the current date --%>
<jsp:useBean id="now" class="java.util.Date"/>

<%-- set the locale to German language, Swiss country code --%>
<fmt:setLocale value="de_CH"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Swiss-style date:

<%-- output the date --%>
<fmt:formatDate type=
 "both" value="${now}" dateStyle="full" timeStyle="short" />

Swiss-style number:

<%-- output the equivalent of java.util.Date.getTime() to show how numbers are formatted
--%>
<fmt:formatNumber value="${now.time}" />

<%-- reset the locale to English language, US country code --%>
<fmt:setLocale value="en_US"/>

US-style date:

<%-- output the date --%>
<fmt:formatDate type="both" value="${now}" dateStyle=
 "full" timeStyle="short" />

US-style number:

<fmt:formatNumber value="${now.time}" />

</body>
</html>

Example 23-6 uses fmt:setLocale to set the context for formatting dates and numbers first to Swiss-

German ("de_CH"), then back to U.S. English ("en_US").

A " locale" represents a particular cultural, geographic, or political region. Locales
are typically specified by a String showing a language code followed by an

underscore "_" and the country code. See Chapter 24 for an expanded discussion of
i18n topics.

Both fmt:formateDate and fmt:formatNumber use the current locale to format their information. The
fmt:formateDate tag has several attributes that are designed to configure the date format. The both

attribute specifies whether to output only the date, the time, or both the date and time, as in Example 23-
6 . The dateStyle and timeStyle attributes have settings that derive from the java.text.DateFormat

class . Example 23-6 specifies a "full" date display that includes the day of week, the month, and the year.
The code also specifies a "short" time display (such as "8:07").

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 23-4 shows the JSP that formats dates and numbers for Swiss-German and U.S. English speakers.
There are several other formatting related JSTL tags, which the recipes of Chapter 24 cover in more detail.

Figure 23-4. The fmt:formatDate and fmt:formateNumber tags perform
translation magic in a JSP

See Also

Chapter 24 on using the JSTL's several i18n-related tags; the Jakarta Project's Taglibs site:
http://jakarta.apache.org/taglibs/index.html ; the Sun Microsystems JSTL information page:
http://java.sun.com/products/jsp/jstl/ ; Recipe 23.3 on using the core tags; Recipe 23.5 on using the XML
Transform tags; Recipe 23.7 and Recipe 23.8 on the JSTL's SQL features; Recipe 23.9 -Recipe 23.14 on
using the EL to access scoped variables, cookies, and JavaBean properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.7 Using A SQL JSTL Tag with a DataSource
Configuration

Problem

You want to interact with a relational database by configuring the javax.sql.DataSource in the

deployment descriptor.

Solution

Add a context-param element to web.xml, creating a parameter named
javax.servlet.jsp.jstl.sql.dataSource that connects with a particular database.

Discussion

The JSTL SQL tag library allows a JSP to interact with a database using custom tags. Java Database
Connectivity (JDBC) and the classes in the javax.sql package allow this technology to work. The
first step in this recipe is to configure the DataSource that the tags will use to connect with a

database.

A DataSource is a factory for java.sql.Connection objects, which represent a

socket connection with a particular database server such as MySQL or Oracle.

Example 23-7 creates a context-param element in web.xml. For the JSTL's SQL tags to
automatically receive their Connections from this setting, the param name must be
javax.servlet.jsp.jstl.sql.dataSource. The param value comprises comma-separated phrases:

[JDBC URL],[Driver name],[user],[password]

Developers commonly derive the JDBC URL and driver name from database vendor documentation
(and often from mailing lists, because debugging backend database connections with JDBC can be
tricky!). The code I show here contains an example of a JDBC URL for Oracle8i Personal Edition.

Example 23-7. An example web.xml configuration for a
javax.sql.Datasource

<!-- top of web.xml file -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<context-param>

 <param-name>javax.servlet.jsp.jstl.sql.dataSource</param-name>

 <param-value>jdbc:oracle:thin:@192.168.0.2:1521:ORCL,
 oracle.jdbc.driver.OracleDriver,scott,tiger</param-value>

</context-param>

<!-- rest of web.xml file -->

The JSTL software uses these values to generate a DataSource for its SQL tags. The advantage of
using an external setting for the DataSource is that to switch databases, you can change the value of
the context-param to the configuration representing the new database without touching the JSP
code. The JSP deals transparently with the SQL tags and DataSource object.

Now on to the JSP. Remember that the SQL tags (the ones using the "sql" prefix) use the
DataSource that we just set with the context-param element in web.xml.

Web applications always have a web.xml file in the WEB-INF directory. See
Chapter 1 if you need a further explanation.

The taglib directives at the top of Example 23-8 are required if you want to use the JSTL 1.0 core

and SQL libraries.

Example 23-8. A JSP uses JSTL sql tags to display database information

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/sql" prefix="sql" %>

<html>
<head><title>Database Query</title></head>
<body>
<h2>Querying a database from a JSTL tag</h2>

<sql:query var="athletes">
SELECT * FROM athlete
</sql:query>

<table border="1">

<c:forEach var="row" items="${athletes.rows}">

<tr>
<th>user_id</th>
<th>name</th>
<th>birthdate</th>
<th>passwrd</th>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<th>gender</th></tr>

<tr>
<td><c:out value="${row.user_id}"/></td>
<td><c:out value="${row.name}"/></td>
<td><c:out value="${row.birthdate}"/></td>
<td><c:out value="${row.passwrd}"/></td>
<td><c:out value="${row.gender}"/></td>
</tr>

</c:forEach>
</table>

</body>
</html>

The sql:query tag uses its nested content to send the SQL SELECT statement "select * from athlete"
to a database. The database connection derives from the DataSource you have already configured.
The statement is designed to "select all rows from the table named `athlete.'" The sql:query tag
saves the result set in a javax.servlet.jsp.jstl.sql.Result object, in a variable named
athletes.

Result objects are converted from java.sql.ResultSet objects. Result
objects have methods (such as getRows()) that are designed to interact with

the JSTL SQL tags.

The code:

${athletes.rows}

is an EL phrase that calls the Result object's getRows() method. This method returns a
java.util.SortedMap[] type or an array of SortedMaps. Example 23-8 uses the c:forEach tag to
iterate over this array and create an HTML table row out of each of the returned database rows.

You can use this form of code to display the column names of a result set
(`athletes' is the variable storing the result set):

<c:forEach var="col" items=
 "${athletes.columnNames}">

 <c:out value="${col}"/>

</c:forEach>

The next recipe shows how a JSP accomplishes this same task without a context-param configuring
the DataSource.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Try to stick with the strategy of setting the DataSource in web.xml, because it
represents a better software design than cluttering up a JSP with a DataSource

configuration.

Figure 23-5 shows the JSP displaying the database row information in a web browser.

Figure 23-5. Displaying database information in a JSP

See Also

Chapter 21 on working with databases; the Jakarta Project's Taglibs site:
http://jakarta.apache.org/taglibs/index.html; the Sun Microsystems JSTL information page:
http://java.sun.com/products/jsp/jstl/; Recipe 23.3 on using the core tags; Recipe 23.5 on using the
XML Transform tags; Recipe 23.6 on using the formatting tags; Recipe 23.8 on using a SQL JSTL tag
without a DataSource configuration; Recipe 23.9-Recipe 23.14 on using the EL to access scoped

variables, cookies, and JavaBean properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.8 Using A SQL JSTL Tag Without a DataSource
Configuration

Problem

You want to specify the DataSource for the JSTL SQL tags inside a JSP.

Solution

Use the sql:setDataSource tag to establish a DataSource for the other SQL tags, such as sql:query

.

Discussion

You can explicitly set the DataSource for the JSTL SQL tags in a JSP using sql:setDataSource and its
dataSource attribute. Example 23-9 creates the same DataSource as Recipe 23.6 and stores it in a
variable named dSource . The sql:query tag then specifies this DataSource with its own dataSource

attribute. The code otherwise accomplishes the same task as Example 23-8 : the JSP sends a SELECT
SQL statement to the database system, then displays the results.

Example 23-9. Using the sql:setDataSource tag

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/sql" prefix="sql" %>

<html>
<head><title>Database Query</title></head>
<body>
<h2>Querying a database from a JSTL tag</h2>

<sql:setDataSource dataSource=
"jdbc:oracle:thin:@192.168.0.2:1521:ORCL,oracle.jdbc.driver.OracleDriver,scott,tiger"
var="dSource" scope="application"/>

<sql:query var="athletes" dataSource="dSource">
SELECT * FROM athlete
</sql:query>

<table border="1">

<c:forEach var="row" items="${athletes.rows}">

<tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<th>user_id</th>
<th>name</th>
<th>birthdate</th>
<th>passwrd</th>
<th>gender</th></tr>

<tr>
<td><c:out value="${row.user_id}"/></td>
<td><c:out value="${row.name}"/></td>
<td><c:out value="${row.birthdate}"/></td>
<td><c:out value="${row.passwrd}"/></td>
<td><c:out value="${row.gender}"/></td>
</tr>

</c:forEach>
</table>

</body>
</html>

The code stores the DataSource in an application-scoped variable, so that another JSP can access the
DataSource this way:

<sql:query var="athletes" dataSource="${dSource}">
SELECT * FROM athlete
</sql:query>

The only difference between this sql:query usage and Example 23-9 is that the value of the
dataSource attribute has to be resolved using the EL; the tag has to find and get the value of an

application-scoped variable (a servlet context attribute) named "dSource."

You can also specify a DataSource in the JSTL SQL tags as a Java Naming and

Directory Interface (JNDI) string, but we will reserve discussion of that topic for
Chapter 21 , which covers using databases with servlets and JSPs.

See Also

Chapter 21 on working with databases; the Jakarta Project's Taglibs site:
http://jakarta.apache.org/taglibs/index.html ; the Sun Microsystems JSTL information page:
http://java.sun.com/products/jsp/jstl/ ; Recipe 23.3 on using the core tags; Recipe 23.4 and Recipe
23.5 on using the XML tags; Recipe 23.6 on using the formatting tags; Recipe 23.7 and Recipe 23.8 on
using the SQL JSTL tags; Recipe 23.9 -Recipe 23.14 on using the EL to access scoped variables,
cookies, and JavaBean properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.9 Accessing Scoped Variables with the EL

Problem

You want to grab and display the value of an object attribute using a JSTL custom tag.

Solution

Use the EL and the c:out tag to get the value of an attribute that has been stored in a certain scope.

Discussion

An object such as a java.util.Date, a java.lang.Integer, or an object that you design, can be

stored in four different scopes:

page, so that it's only available in the servlet or JSP where it is created

request scope, which makes the object available to any pages that interact with the JSP using
a RequestDispatcher, such as a request that is forwarded from one JSP to another

session scope stores object attributes for any servlets or JSPs that participate in the same

session (see Chapter 11)

application scope, which represents the entire servlet context for one web application

Example 23-10 uses the c:set JSTL tag to set a variable named
com.jspservletcookbook.SessionObject to session scope. Then c:out accesses and displays the

value of the variable.

Example 23-10. Accessing the value of an object stored in session scope

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Accessing a Scoped Value</title></head>
<body>
<h2>Here is the value of the Session-Scoped Attribute</h2>

<c:set var=
 "com.jspservletcookbook.SessionObject" value=
 "My object attribute.
" scope="session" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<c:out value=
 "${sessionScope[\"com.jspservletcookbook.SessionObject\"]}" escapeXml="false" />

</body>
</html>

By convention, object attributes are named after fully qualified Java classes (usually, after the Java
type of the stored object). Therefore, the attribute name has period characters (.) in it. This is the
purpose of the syntax ${sessionScope[\"com.jspservletcookbook.SessionObject\"]}. If the

attribute name does not contain periods, then you can use an EL expression consisting of just the
variable name, without the sessionScope JSTL implicit object, in order to access the object attribute:

<c:out value=
 "${SessionObject}" escapeXml="false" />

If you just include the scoped object's name, as in the prior code fragment,
then the JSTL will search the page, request, session, and application
scopes for an attribute of that name, returning null if the JSTL does not find

one.

You must use the required characters of an EL expression (the dollar sign and curly braces
surrounding the expression: "${ ... }"). Otherwise the c:out tag will just output a String literal such

as "SessionObject."

See Also

The Jakarta Project's Taglibs site: http://jakarta.apache.org/taglibs/index.html; Sun Microsystem's
JSTL information page: http://java.sun.com/products/jsp/jstl/; Recipe 23.3 on using the core tags;
Recipe 23.4 and Recipe 23.5 on using the XML tags; Recipe 23.6 on using the formatting tags; Recipe
23.7 and Recipe 23.8 on using the SQL JSTL tags; Recipe 23.10-Recipe 23.14 on using the EL to
access request parameters, cookies, and JavaBean properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.10 Accessing Request Parameters with the EL

Problem

You want to access a request parameter using the EL in a JSP.

Solution

Use the param implicit object in your JSP code.

Discussion

The JSTL provides an implicit object named param that you can use to get a request parameter.

Simply follow the term "param" with a period and the parameter name. Use this terminology with the
EL to output the value of a request parameter with the c:out tag. Example 23-11 displays a greeting

with the visitor's name. The request might look like:

http://localhost:8080/home/welcome.jsp?name=Bruce%20Perry

If the URL does not include the "name" parameter, the JSP displays the message "Hello Esteemed
Visitor."

Example 23-11. Using the JSTL in a JSP to display the result of a request
parameter

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Accessing a Scoped Value</title></head>
<body>
<h2>Hello

<c:choose>

<c:when test="${empty param.name}">
 Esteemed Visitor
 </c:when>

<c:otherwise>

<c:out value="${param.name}" />

http://localhost:8080/home/welcome.jsp?name=Bruce%20Perry
http://lib.ommolketab.ir
http://lib.ommolketab.ir

</c:otherwise>

</c:choose>

</h2>

</body>
</html>

The code tests whether the request contains a value for name by using the empty EL keyword:

<c:when test="${empty param.name}">

The c:choose , c:when, and c:otherwise tags are like if/then/else statements in Java code. If
the request parameter name does not have a value, the browser will display "Esteemed Visitor".
Otherwise, it displays the value of name.

Figure 23-6 shows a JSP displaying the message, including the parameter value.

Figure 23-6. Humble output of a JSP using the param JSTL implicit object

See Also

Chapter 18 on working with the client request; the Jakarta Project's Taglibs site:
http://jakarta.apache.org/taglibs/index.html; Sun Microsystem's JSTL information page:
http://java.sun.com/products/jsp/jstl/; Recipe 23.3 on using the core tags; Recipe 23.4 and Recipe
23.5 on using the XML tags; Recipe 23.6 on using the formatting tags; Recipe 23.7 and Recipe 23.8
on using the SQL JSTL tags; Recipe 23.11-Recipe 23.14 on using the EL to access request headers,
cookies, and JavaBean properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.11 Using the EL to Access Request Headers

Problem

You want to use the EL to access the value of various HTTP request headers.

Solution

Use the header implicit object that the EL makes available for custom tags.

Discussion

The header implicit object is a java.util.Map type that contains a request header value mapped to each

header key (which is the header name, such as "accept" or "user-agent"). Web clients (usually browsers)
send these headers or name/value pairs along with the web address of the page they are interested in.

Example 23-12 uses the c:forEach iteration tag to cycle through each of the Map's stored request
headers. The variable reqHead stores the current header/value pair. The code uses the EL to display the

header name ("${reqHead.key}") and header value ("${reqHead.value}").

Example 23-12. Using the JSTL to display request headers

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Request header display</title></head>
<body>
<h2>Here are all the Request Headers</h2>

<%-- 'header' represents a java.util.Map type holding request-header names and values --%>
<c:forEach var="reqHead" items="${header}">

 <c:out value=
 "${reqHead.key}"/>: <c:out value="${reqHead.value}"/>

</c:forEach>

</body>
</html>

Figure 23-7 shows the result of requesting this JSP in a web browser.

Figure 23-7. Displaying request headers in a JSP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Chapter 18 on working with the client request; the Jakarta Project's Taglibs site:
http://jakarta.apache.org/taglibs/index.html ; Sun Microsystem's JSTL information page:
http://java.sun.com/products/jsp/jstl/ ; Recipe 23.3 on using the core tags; Recipe 23.4 and Recipe 23.5 on
using the XML tags; Recipe 23.6 on using the formatting tags; Recipe 23.4 and Recipe 23.5 on using the
SQL JSTL tags; Recipe 23.12 -Recipe 23.14 on using the EL to access one request header, cookies, and
JavaBean properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.12 Using the EL to Access One Request Header

Problem

You want to use the EL to access the value of one particular HTTP request header.

Solution

Use the headerValues implicit object that the EL makes available for custom tags.

Discussion

The headerValues implicit object is a java.util.Map type that contains a String array (a String[]

type) for every header name. Example 23-13 displays only the value of the "user-agent" request
header, which identifies the type of browser the client is using.

Example 23-13. Using the JSTL to display request headers

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>User Agent</title></head>
<body>
<h2>Here is your user agent</h2>

<%-- 'headerValues' represents a java.util.Map type holding a String[] type for every
request header--%>

 <c:out value=
 "${headerValues[\"user-agent\"][0]}"/>

</body>
</html>

The code accesses only the first member of the String array (it is highly likely that the user-agent

request header only involves one value). The expression:

${headerValues[\"user-agent\"]}

returns the array , and the entire expression, including the "[0]" array operator, which returns the

name of the user agent, such as "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)."

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 18 on working with the client request; Recipe 23.11 on how to use the EL to access all the
available request headers; the Jakarta Project's Taglibs site:
http://jakarta.apache.org/taglibs/index.html ; the Sun Microsystems JSTL information page:
http://java.sun.com/products/jsp/jstl/ ; Recipe 23.3 on using the core tags; Recipe 23.4 and Recipe
23.5 on using the XML tags; Recipe 23.6 on using the formatting tags; Recipe 23.7 and Recipe 23.8 on
using the SQL JSTL tags; Recipe 23.10 on using the EL to access request parameters; Recipe 23.13
and Recipe 23.14 on using the EL to access cookies and JavaBean properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.13 Accessing Cookies with the EL

Problem

You want to take a look at all of the cookie names and values using EL code.

Solution

Use the cookie EL implicit object in the JSP to display any cookie names and values.

Discussion

The cookie EL implicit object is a java.util.Map type that maps cookie names (like "JSESSIONID") to
javax.servlet.Cookie objects. Since the cookies are stored in a Map , you can use the c:forEach tag
to cycle through the map and display each cookie name and value using c:out (see Example 23-14).

Make sure to include the taglib directive at the top of the JSP so the page can

use the core JSTL tags.

Example 23-14. using the EL to display each cookie name and value in a
JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Cookie display</title></head>
<body>
<h2>Here are all the Available Cookies</h2>

<%-- ${cookies.key}equals the cookie name; ${cookies.value} equals the Cookie object;
${cookies.value.value} returns the cookie value --%>

<c:forEach var="cookies" items="${cookie}">

 <c:out value="${cookies.key}"/>
 : Object=
 <c:out value="${cookies.value}"/>, value=
 <c:out value="${cookies.value.value}"/>

</c:forEach>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</body>
</html>

The c:forEach tag stores the entry in the Map for each cookie in a variable named cookies . The code

uses the EL phrase "${cookies.key}" to access the name of each cookie. You would think
"${cookies.value}" returns the value for each cookie; however, this syntax returns the Cookie object

itself. The weird syntax "${cookies.value.value}" returns the value of the cookie. Figure 23-8 shows
how the JSP displays this information.

Figure 23-8. Displaying a cookie object and value with the JSTL

See Also

Chapter 10 on reading and setting cookies; the Jakarta Project's Taglibs site:
http://jakarta.apache.org/taglibs/index.html ; the Sun Microsystems JSTL information page:
http://java.sun.com/products/jsp/jstl/ ; Recipe 23.3 on using the core tags; Recipe 23.4 and Recipe
23.5 on using the XML tags; Recipe 23.6 on using the formatting tags; Recipe 23.7 and Recipe 23.8 on
using the SQL JSTL tags; Recipe 23.9 -Recipe 23.12 on using the EL to access scoped variables,
request parameters, and request headers; Recipe 23.14 on using the EL to access JavaBean
properties.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.14 Using the EL to Access JavaBean Properties

Problem

You want to use the EL to access the properties of a JavaBean in a JSP.

Solution

Use the jsp:useBean standard action to create or access an instance of the bean, then use the EL to

access the bean properties.

Discussion

You can use the c:out JSTL core tag and the EL to display the values of JavaBean properties in a

JSP. Example 23-15 shows the skeleton of a JavaBean that is designed to handle email. I used this
bean in Chapter 20, which contains details about all of its email-sending and -accessing methods.

Example 23-15. A JavaBean that a JSP will instantiate and access

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Properties;

import javax.mail.*;
import javax.mail.internet.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class EmailBean {

 //defaults
 private final static String DEFAULT_SERVER = "smtp.comcast.net";
 private final static String DEFAULT_TO =
 "author@jspservletcookbook.com";

 private final static String DEFAULT_FROM =
 "author@jspservletcookbook.com";

 private final static String DEFAULT_CONTENT = "Unknown content";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private final static String DEFAULT_SUBJECT= "Unknown subject";

 //JavaBean properties
 private String smtpHost;
 private String to;
 private String from;
 private String content;
 private String subject;

 //no-args constructor for the bean
 public EmailBean(){}

 //configure an email message with request params and send the email
 public void sendMessage(HttpServletRequest request,
 PrintWriter out) throws IOException {

 //SEE RECIPE 20.3 AND 20.6 FOR MORE DETAILS ON THIS EMAIL BEAN
 //METHOD

 }//sendMessage

 //get email messages using a POP account
 private void handleMessages(HttpServletRequest request,
 PrintWriter out) throws IOException, ServletException {

 //SEE RECIPE 20.3 AND 20.6 FOR MORE DETAILS ON THIS EMAIL BEAN
 //METHOD

 }//handleMessages

 //display info about received email messages
 private void displayMessage(Message msg, PrintWriter out)
 throws MessagingException, IOException{

 //SEE RECIPE 20.3 AND 20.6 FOR MORE DETAILS ON THIS EMAIL BEAN

 }//displayMessage

 //getter or accessor methods

 public String getSmtpHost(){

 return (smtpHost == null || smtpHost.equals("")) ?
 EmailBean.DEFAULT_SERVER : smtpHost;

 }//getSmtpHost

 public String getTo(){

 return to;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }//getTo

 public String getFrom(){

 return from;

 }//getFrom

 public String getContent(){

 return content;

 }//getContent

 public String getSubject(){

 return subject;

 }//getSubject

 //setter or mutator methods

 public void setSmtpHost(String host){
 if (check(host)){
 this.smtpHost = host;
 } else {
 this.smtpHost = EmailBean.DEFAULT_SERVER;
 }
 }//setSmtpHost

 public void setTo(String to){
 if (check(to)){
 this.to = to;
 } else {
 this.to = EmailBean.DEFAULT_TO;
 }
 }//setTo

 public void setFrom(String from){
 if (check(from)){
 this.from = from;
 } else {
 this.from = EmailBean.DEFAULT_FROM;
 }
 }//setFrom

 public void setContent(String content){
 if (check(content)){
 this.content = content;
 } else {
 this.content = EmailBean.DEFAULT_CONTENT;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }//setContent

 public void setSubject(String subject){
 if (check(subject)){
 this.subject = subject;
 } else {
 this.subject = EmailBean.DEFAULT_SUBJECT;
 }
 }//setSubject

 private boolean check(String value){

 if(value == null || value.equals(""))
 return false;

 return true;
 }
}

Example 23-16 shows the JSP that creates an instance of this bean using the jsp:useBean standard
action. The id attribute of jsp:useBean specifies "emailer" as the bean name. This is the name the

code uses to access the bean instance's property values using the EL.

Example 23-16. Creating a JavaBean and using the JSTL to display its
property values

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="emailer" class="com.jspservletcookbook.EmailBean"/>

<jsp:setProperty name="emailer" property="*" />

<html>
<head><title>Bean property display</title></head>
<body>
<h2>Here are the EmailBean properties</h2>

SMTP host: <c:out value="${emailer.smtpHost}" />

Email recipient: <c:out value="${emailer.to}" />

Email sender: <c:out value="${emailer.from}" />

Email subject: <c:out value="${emailer.subject}" />

Email content: <c:out value="${emailer.content}" />

</body>
</html>

When the code uses an expression such as "${emailer.smtpHost}," it calls the getSmtpHost()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method of the EmailBean (the SMTP server from which you receive email, such as
"smtp.comcast.net"). The variable emailer refers to the instance of the EmailBean.

Example 23-16 set all of the EmailBean's settable properties from request

parameters of the same name. This is the purpose of the code:

<jsp:setProperty name=
 "emailer" property="*" />

Providing the c:out value attribute with this expression outputs the value of the bean's property.

Figure 23-9 shows the JSP of Example 23-16 in a web browser.

Figure 23-9. Displaying a JavaBean's properties using JSTL c:out tags

See Also

Chapter 20 on using JavaBeans to handle email; the Jakarta Project's Taglibs site:
http://jakarta.apache.org/taglibs/index.html; the Sun Microsystems JSTL information page:
http://java.sun.com/products/jsp/jstl/; Recipe 23.3 on using the core tags; Recipe 23.4 and Recipe
23.5 on using the XML tags; Recipe 23.6 on using the formatting tags; Recipe 23.7 and Recipe 23.8
on using the SQL JSTL tags; Recipe 23.9-Recipe 23.13 on using the EL to access scoped variables,
request parameters, request headers, and cookies.

[Team LiB]

http://jakarta.apache.org/taglibs/index.html
http://java.sun.com/products/jsp/jstl/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 23.15 Using JSTL Functions

Problem

You want to use the built-in functions included with JSTL 1.1.

Solution

Use the proper taglib directive (with the uri value of "http://java.sun.com/jsp/jstl/functions") and prefix
(e.g., the fn : in fn:contains) in your JSP.

Discussion

The JSTL 1.1 and its EL includes a nifty new functions library. These tags allow JSP developers to call built-
in functions to handle and return values from Strings , arrays , Maps , and Collections . The nature of
these functions will be familiar to anyone who has worked with java.lang.String and its numerous

methods (see Table 23-4). Functions represent an evolution of JSTL from involving a collection of custom
tags to giving you the ability to make function calls embedded inside template text.

Here is the setup that you need to use JSTL functions in your JSPs:

A JSP 2.0 JSP container1.

An implementation of JSTL 1.1 (I use the Java Web Services Developer Pack 1.2 in this recipe)2.

A conversion of your web.xml file to the servlet API Version 2.4 (see later on in this recipe)3.

Example 23-17 shows the new taglib uri and prefix values to use with the functions library. This JSP
uses the String "I am a test String" as input to four of the available functions: fn:length() ,
fn:contains() , fn:toUpperCase() , and fn:split() .

Example 23-17. A JSP that uses JSTL 1.1 functions

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<html>
<head><title>Using the JSTL functions</title></head>
<body>
<h2>Using various JSTL 1.1 functions</h2>

<c:set var="tempStr" value="I am a test String"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The length of the test String: ${fn:length(tempStr)}

Does the test String contain "test"? ${fn:contains(tempStr,"test")}

Putting the String into upper case using fn:toUpperCase(): ${fn:toUpperCase(tempStr)}

Splitting the String into a String array using fn:split(), and returning the array
length: ${fn:length(fn:split(tempStr," "))}

</body>
</html>

JSTL 1.1 function calls can be intermingled with template text, as in Example 23-17 . Surround the function
calls with the EL delimiters ("${...}"), and make sure to use the fn : prefix, as in

${fn:toUpperCase(tempStr)}.

Example 23-18 shows how you can change web.xml to the servlet API 2.4 version, so that the JSP 2.0
container interprets the EL functions in your code.

The major difference between JSTL 1.0 and 1.1 is that the JSP 2.0 specification has
taken over the EL responsibility. Therefore, the JSP 2.0 container, not the JSTL
libraries, now evaluates the EL syntax.

If you stick with the servlet API 2.3 deployment descriptor, then the JSP 2.0 container will not evaluate the
EL expressions and function calls. Using the old servlet 2.3 deployment descriptor "turns off" EL evaluation
by the JSP container; consequently, you cannot use the functions library or include EL syntax in template
text. This automatic disabling of EL expressions by the JSP container is designed as a way of easing the
migration of existing JSP pages to JSP 2.0. In short, a JSP that includes the JSTL 1.0 usages and is
associated with a servlet 2.3 deployment descriptor works the same under a JSP 2.0 container.

However, you may want to use the new functions! Therefore, Example 23-18 shows how to migrate to the
servlet 2.4 version of web.xml .

Example 23-18. Change web.xml to servlet API 2.4 to use JSTL 1.1 features

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4"
>

<!-- REST OF DEPLOYMENT DESCRIPTOR ELEMENTS -->

</web-app>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 23-18 alters the web-app element to include the required attributes of the servlet 2.4 deployment

descriptor (See Chapter 1). The rest of web.xml can remain as it appeared using the servlet 2.3 DTD.

Table 23-4 describes the purpose of each function that the JSTL 1.1 includes in its function library.

Table 23-4. JSTL 1.1 functions

Function name Arguments
Return

type
Purpose

fn:contains String, String boolean
Finds out whether a String (first

argument) contains a certain substring
(second argument)

fn:containsIgnoreCase String, String boolean
Finds out whether a String contains a

substring (second argument) in a case-
insensitive manner

fn:endsWith String, String boolean
Finds out whether a String (first
argument) ends with another String

(second argument)

fn:escapeXML String String
Escapes characters that could be
interpreted as XML markup, such as ">"

fn:indexOf String, String int
Returns the index or position of one
String (second argument) inside

another (first argument)

fn:join String[], String String

Joins all String[] array elements into
a String , using the specified separator

(second argument) as the character
between each array element.

fn:length

Map, array,
Collection, Iterator,
Enumeration, or
String

int
Finds out the length of the array ,
collection, or String .

fn:replace
String, String,
String

String

Replaces all instances of a String
(second argument) in an input String
(first argument) with another String

(third)

fn:split String, String String[]
Splits a String into an array, using the
specified delimiter(s) (second
argument)

fn:startsWith String, String boolean
Finds out whether a String (first
argument) starts with another String .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function name Arguments
Return

type
Purpose

fn:substring String, int, int String

Returns a substring from the input
String (first argument), from the index

second argument (inclusive) to the
index third argument (exclusive)

fn:substringAfter String, String String
Returns the part of the String after the

specified substring (second argument)

fn:substringBefore String, String String

Returns the part of the String before

the specified substring (second
argument), begining with the first
character of the first String argument.

fn:toLowerCase String String
Returns the specified String in all lower

case.

fn:toUpperCase String String
Returns the specified String in all

upper case.

fn:trim String String
Removes white space from each end of
the specified String .

Figure 23-10 shows the web browser output of a JSP that uses various members of the JSTL 1.1 functions
library.

Figure 23-10. A JSP displays the results of using some JSTL 1.1 functions

See Also

Sun Microsystem's JSTL information page: http://java.sun.com/products/jsp/jstl/ ; Recipe 23.2 on using
the core tags; Recipe 23.3 and Recipe 23.4 on using XML-related tags; Recipe 23.5 on formatting dates and
numbers; Recipe 23.6 and Recipe 23.7 on the JSTL's SQL features; Recipe 23.8 on accessing scoped
variables; Recipe 23.9 on using the EL with request parameters; Recipe 23.10 and Recipe 23.11 on using

fn:substring String, int, int String

Returns a substring from the input
String (first argument), from the index

second argument (inclusive) to the
index third argument (exclusive)

fn:substringAfter String, String String
Returns the part of the String after the

specified substring (second argument)

fn:substringBefore String, String String

Returns the part of the String before

the specified substring (second
argument), begining with the first
character of the first String argument.

fn:toLowerCase String String
Returns the specified String in all lower

case.

fn:toUpperCase String String
Returns the specified String in all

upper case.

fn:trim String String
Removes white space from each end of
the specified String .

Figure 23-10 shows the web browser output of a JSP that uses various members of the JSTL 1.1 functions
library.

Figure 23-10. A JSP displays the results of using some JSTL 1.1 functions

See Also

Sun Microsystem's JSTL information page: http://java.sun.com/products/jsp/jstl/ ; Recipe 23.2 on using
the core tags; Recipe 23.3 and Recipe 23.4 on using XML-related tags; Recipe 23.5 on formatting dates and
numbers; Recipe 23.6 and Recipe 23.7 on the JSTL's SQL features; Recipe 23.8 on accessing scoped
variables; Recipe 23.9 on using the EL with request parameters; Recipe 23.10 and Recipe 23.11 on using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the EL with request headers; Recipe 23.12 on finding out information about cookies; Recipe 23.13 on using
the EL to access JavaBean properties.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 24. Internationalization
Introduction

Recipe 24.1. Detecting the Client Locale in a Servlet

Recipe 24.2. Detecting the Client's Locales in a JSP

Recipe 24.3. Creating a ResourceBundle as a Properties File

Recipe 24.4. Creating a ResourceBundle as a Java Class

Recipe 24.5. Using the ResourceBundle in a Servlet

Recipe 24.6. Using the ResourceBundle in a JSP

Recipe 24.7. Formatting Dates in a Servlet

Recipe 24.8. Formatting Dates in a JSP

Recipe 24.9. Formatting Currencies in a Servlet

Recipe 24.10. Formatting Currencies in a JSP

Recipe 24.11. Formatting Percentages in a Servlet

Recipe 24.12. Formatting Percentages in a JSP

Recipe 24.13. Setting the Localization Context in the Deployment Descriptor
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

The audience for almost all web sites is global. Many sites have at least a subset of content that must
be adapted to the language and nationality of their visitors, so that the visitor's browser formats
numbers and dates properly and translates text into the proper language. An obvious example is a
product documentation or help web site. What if most of your customers or viewers for this product
speak a language other than English? Java provides tools that allow web developers to
internationalize their sites.

Before I show these tools, let's first explain a few terms that always appear in discussions of web site
translation.

Internationalization, or i18n in its abbreviated version, means enabling a web site or other Java
program to provide different versions of content translated into the visitor's language or
nationality. This term basically means making your site global.

1.

Localization, or l10n, means adding resources to a web site to adapt it to a particular
geographical or cultural region. An example of l10n is adding Korean language translations to a
web site. The web developers who have this responsibility are often referred to as localizers.

2.

A locale is a particular cultural or geographical region. It is usually referred to as a language
symbol followed by a country symbol (separated by an underscore character), as in "en_US" for
the English locale, "de_DE" for German speakers in Germany, or "de_CH" for Swiss-German
speakers, or "fr_CH" for people in Switzerland who speak French. A locale can also represent
just the language, as in "ja" for Japanese or "it" for Italian. Finally, locales can have a third
segment or "variant" that reflects a certain browser-type or vendor, such as "MAC" for
Macintosh. An example of a locale for English with a Windows variant is "en_US_ WIN."

3.

The language element is represented by an International Standards
Organization (ISO) language code
(http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt); the country is
encoded under ISO-3166 (http://www.chemie.fu-
berlin.de/diverse/doc/ISO_3166.html).

So how do you internationalize or localize a Java web site? This is a big subject and the topic of
several books. The following recipes provide the basics of how to create properties files (called
ResourceBundles). These files (they can also be implemented as Java classes) provide language
translations for phrases that your web pages use. A servlet can then access these resources and
provide different text versions according to the requester's locale.

The recipes in this chapter also cover how to adapt JSP pages to visitors who speak different
languages by using the JSTL tags. I begin by describing how to detect the locale of a request using a
servlet or JSP.

[Team LiB]

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.1 Detecting the Client Locale in a Servlet

Problem

You want to detect the client locale in a servlet.

Solution

Use the ServletRequest.getLocale() method.

Discussion

The locale is represented by a class in Java: java.util.Locale. The ServletRequest object can
access the client's "preferred" locale with its getLocale() method, which returns a Locale object.

The preferred locale is the user's top preference. For example, a user may
configure their browser with a Spanish language locale ("es_ES") as the
preferred one.

Java code can access the list of locales that a user configures a browser with by calling
ServletRequest's getLocales() method, which returns an Enumeration object. This object

contains the preferred and less-preferred locales.

To set the language preference(s) in Netscape 7.1, go to "Edit Preferences
 Netscape Languages." In the Macintosh Safari browser, open System

Preferences and drag your language preference(s) to the top of the list (then
restart Safari). In Internet Explorer 5.5, go to "Tools Internet Options
Languages."

Example 24-1 accesses the client's preferred locale by calling request.getLocale(). The servlet
then displays information about the locale by calling some Locale methods. Example 24-1 also
displays infomation about the less-preferred locales by using the method request.getLocales().

Example 24-1. Accessing the Locale object in a servlet

package com.jspservletcookbook;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.util.Enumeration;
import java.util.Locale;

import javax.servlet.*;
import javax.servlet.http.*;

public class LocaleDisplay extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //Get the client's Locales
 Enumeration enum = request.getLocales();
 //Get the preferred Locale
 Locale preferred = request.getLocale();
 String prefDisplay = "";
 if (preferred != null)
 prefDisplay = preferred.getDisplayName();

 //Display the preferred and any other locales
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Locale Display</title></head><body>");

 out.println("<h2>Here is your Locale info...</h2>");
 out.println("Preferred Locale: ");
 out.println(prefDisplay);
 out.println("
");
 out.println("Locale country: ");
 if (preferred != null)
 out.println(preferred.getDisplayCountry());

 out.println("
");
 out.println("Locale language: ");
 if (preferred != null)
 out.println(preferred.getDisplayLanguage());
 out.println("

");
 out.println("<h3>Lower priority Locales...</h3>");
 Locale loc = null;
 while (enum.hasMoreElements()){
 loc = (Locale)enum.nextElement();
 if (! (loc.getDisplayName().equals(prefDisplay))){
 out.println("Locale: ");
 out.println(loc.getDisplayName());
 out.println("
");
 out.println("Locale country: ");
 out.println(loc.getDisplayCountry());
 out.println("
");
 out.println("Locale language: ");
 out.println(loc.getDisplayLanguage());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("

");
 }//if
 }//while
 out.println("</body></html>");

 } //doGet

}

Figure 24-1 shows the web browser output when a visitor with a preferred locale of "en_US" requests
the servlet.

Figure 24-1. The servlet displays the preferred and less-preferred locales

This user has configured their browser with several other locales. As you can see, the method
locale.getDisplayName() is designed to return a more readable name (compared with "de_CH")

for the locale.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The com.oreilly.servlet library includes the LocaleNegotiator class, which

uses the client request to figure out the best charset, locale, and resource bundle
to use with the response. See Recipe 8.4 for tips on using the
com.oreilly.servlet library. I don't cover LocaleNegotiator in particular here,

but the Javadoc explains this class. See
http://www.servlets.com/cos/javadoc/com/oreilly/servlet/LocaleNegotiator.html.

See Also

The Javadoc describing the Locale class:

http://java.sun.com/j2se/1.4.1/docs/api/java/util/Locale.html; Recipe 24.2 on detecting the locale
using a JSP.

[Team LiB]

http://www.servlets.com/cos/javadoc/com/oreilly/servlet/LocaleNegotiator.html
http://java.sun.com/j2se/1.4.1/docs/api/java/util/Locale.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.2 Detecting the Client's Locales in a JSP

Problem

You want to find out what the request's preferred locale and less-preferred locales are and display
this information in a JSP.

Solution

Grab the preferred locale with the expression "${pageContext.request.locale}." Get access to all of
the locales with the expression "${pageContext.request.locales}."

Discussion

The JSTL tags make it easy to adapt a JSP for visitors who speak different languages. Example 24-2
uses the EL to create a variable named clientLocale that represents the request's preferred locale.

Then the JSP displays the locale's name, language, and country. Example 24-2 also displays any
information about the client's less-preferred locales.

Example 24-2. Accessing the request's locale in a JSP

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<html>
<head><title>Locale Display</title></head>
<body>
<h2>Here is your preferred locale info...</h2>

<c:set var="clientLocale" value="${pageContext.request.locale}" />
<c:set var="clientLocales" value="${pageContext.request.locales}" />

Preferred locale: ${clientLocale.displayName}

Preferred locale country: ${clientLocale.displayCountry}

Preferred locale language: ${clientLocale.displayLanguage}
<h3>Lower priority locales...</h3>
<c:forEach var="loc" items="${clientLocales}" begin="1">
 Locale: ${loc.displayName}

 Locale country: ${loc.displayCountry}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Locale language: ${loc.displayLanguage}

</c:forEach>

</body>
</html>

The expression "${pageContext.request.locale}" gets the request object from the pageContext
implicit object, then accesses the Locale object, representing the client's preferred locale, from the

request. Fairly efficient, huh? Then an expression such as "${clientLocale.displayName}" represents
the equivalent of calling the Locale object's getDisplayName() method.

The EL phrase "${pageContext.request.locales}" represents the equivalent of calling the
ServletRequest object's getLocales() method, which returns a java.util.Enumeration type. The
Enumeration contains all of the client's configured locales, begining with their preferred locale.

Example 24-2 uses an implmentation of JSTL 1.1 and JSP 2.0. Make sure to
include the proper taglib directive at the top of the JSP file, so that the JSP

can use the EL and core tags. If all this terminology is new and strange to you,
read Chapter 23 on the JSTL.

Example 24-2 iterates through each of the locales using the c:forEach tag, as in:

<c:forEach var="loc" items="${clientLocales}" begin="1">

The begin="1" attribute begins the c:forEach iteration with the second locale object, since the first

locale is the client's preferred one, and the JSP has already displayed information on that one. The
begin attribute uses "0" as the index for the first item in the Enumeration.

Figure 24-2 shows the JSP's web browser output. This output results from a visitor whose browser
specifies the locale "es_ES" as preferred.

Figure 24-2. A browser requests a locale-sensitive JSP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Chapter 23 on the JSTL; the Javadoc describing the Locale class:

http://java.sun.com/j2se/1.4.1/docs/api/java/util/Locale.html.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/util/Locale.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.3 Creating a ResourceBundle as a Properties
File

Problem

You want to store your i18n resources in your web application.

Solution

Create a text file with name/value pairs representing your i18n resources. Name the file with your
global resource name and store it beneath WEB-INF.

Discussion

Adding i18n-related resources to your web application involves creating properties files or
ResourceBundle classes (Recipe 24.4). A ResourceBundle that takes the form of a properties file is

simply a list of keys and values, produced in any text editor. The keys represents the words that you
want to be translated, and the values are the translations. These files are the resources that the web
application uses to dynamically translate text into the appropriate language.

Imagine that you are creating some resources with a global name, or basename, of
"WelcomeBundle." Example 24-3 shows the subclass of this resource for the visitors from the locale
"es_ES," or people from Spain who speak Spanish.

For example, the key "Welcome" is associated with its Spanish equivalent "Hola y recepción." Recipe
24.5 shows how a servlet would use a ResourceBundle like this to dynamically translate "Welcome"

to the visitor's language.

Example 24-3. The contents of a ResourceBundle file named
WelcomeBundle_es_ES.properties

#Spanish language resources
Welcome = Hola y recepción

These are just keys and values separated by newline characters. Comments are delineated by a hash
(#) character.

This text file has to be stored in a place where other web components can find it, similar to installing
a Java class in your web application. This is the path to the properties file, which has a fully qualified
name of i18n.WelcomeBundle_es_ES.properties. The .properties extension is an essential detail!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WEB-INF/i18n/WelcomeBundle_es_ES.properties

Centralizing the i18n resources in their own WEB-INF subdirectory in a web
application is a sensible way to organize this information and avoid clutter.

See Also

Recipe 24.4 on creating ResourceBundle as a Java class; the PropertyResourceBundle Javadoc:

http://java.sun.com/j2se/1.4.1/docs/api/java/util/PropertyResourceBundle.html.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/util/PropertyResourceBundle.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.4 Creating a ResourceBundle as a Java Class

Problem

You want to create a ResourceBundle as a Java class.

Solution

Create a class that extends java.util.ListResourceBundle.

Discussion

If your application requires more functionality than a static properties file can provide (Recipe 24.3),
you can create your ResourceBundles as Java classes: java.util.ListResourceBundle types. For

instance, a particular resource might need to select its translation information from a database.

Example 24-4 includes the same information as the properties file in the prior recipe. However, its
key/value pairs are stored in the form of a two-dimensional Object array. This class is stored in the

same place as the .properties files in WEB-INF/i18n.

Example 24-4. Storing language information in a ListResourceBundle

package com.jspservletcookbook;

import java.util.ListResourceBundle;

public class WelcomeBundle_es_ES extends ListResourceBundle {

 static final Object[][] contents = {

 {"Welcome", "Hola y recepción"}
 };

 public Object[][] getContents() {
 return contents;
 }

 }

This code snippet from a servlet shows how you could use this class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 24-5. Calling a ListResourceBundle method from a
ResourceBundle created as a Java class

<!-- inside servlet goGet() or doPost() method, for instance -->

ResourceBundle bundle = ResourceBundle.getBundle(
 "i18n.WelcomeBundle_es_ES");

//Call inherited ListResourceBundle getKeys() method
java.util.Enumeration enum = bundle.getKeys();

while (enum.hasMoreElements()){

 //Prints out key: "Welcome"
 out.println((String) enum.nextElement());
 out.println("

");

}//while

The ResourceBundle.getBundle() static method tries to find a Java class

with the fully qualified name "i18n.WelcomeBundle_es_ES" (in this example).
Failing that, it looks for a properties file of the same name (minus the
.properties extension): i18n.WelcomeBundle_es_ES.properties.

See Also

The Javadoc for ListResourceBundle:

http://java.sun.com/j2se/1.4.1/docs/api/java/util/ListResourceBundle.html; Recipe 24.3 on creating
a ResourceBundle as a properties file.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/util/ListResourceBundle.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.5 Using the ResourceBundle in a Servlet

Problem

You want a servlet to dynamically display a "Welcome" message to visitors depending on their locale.

Solution

Use the servlet to access the translated text dynamically from a ResourceBundle.

Discussion

Once you have added ResourceBundles to the web application, then servlets can use them to

dynamically display text based on the user's locale.

Remember, the web application stores ResourceBundles as .properties files

(text) or Java classes.

Example 24-6 uses a ResourceBundle with a basename of "WelcomeBundle." It is stored in WEB-

INF/i18n, so its fully qualified name is i18n.WelcomeBundle.

Example 24-6. A servlet uses a to dynamically display translated text

package com.jspservletcookbook;

import java.util.Locale;
import java.util.ResourceBundle;

import javax.servlet.*;
import javax.servlet.http.*;

public class WelcomeServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //Get the client's Locale

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Locale locale = request.getLocale();

 ResourceBundle bundle = ResourceBundle.getBundle(
 "i18n.WelcomeBundle",locale);

 String welcome = bundle.getString("Welcome");

 //Display the locale
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html><head><title>"+welcome+"</title></head><body>");

 out.println("<h2>"+welcome+"</h2>");

 out.println("Locale: ");
 out.println(locale.getLanguage()+"_"+locale.getCountry());

 out.println("</body></html>");

 } //end doGet

 // doPost method ...

}//WelcomeServlet

Here is how the application uses this resource in response to a visitor from a Spanish locale
("es_ES"):

The servlet accesses the locale as a java.util.Locale object.1.

It passes the locale into the ResourceBundle.getBundle() method, which uses the locale to
search for a ResourceBundle named i18n.WelcomeBundle_es_ES. The method forms this
search term by attaching the current request's locale name to the end of the ResourceBundle

basename. In this case, the bundle is stored as a Java class (Recipe 24.4).

2.

The bundle then displays the message by accessing the "Welcome" key, which is specified by
the ResourceBundle (Example 24-4 or Example 24-5).

3.

Sometimes the browser sends the locale information as a language code only,
as in "es" for Spanish (instead of "es_ES" with language code and country
code). If the application has only installed a resource named
WelcomeBundle_es_ES, but not WelcomeBundle_es, then the getBundle()

method defaults to a resource named WelcomeBundle (which might not be the
optimal outcome), and therefore may not display the translated text. Make
sure to include a WelcomeBundle_es resource to cover these cases.

Figure 24-3 shows the servlet's output in response to a request from a Spanish locale.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 24-3. A Spanish client requests the LocaleServlet

Figure 24-4 shows the servlet's response when it deals with a locale for which the application has not
provided a resource. In this case, the browser is set for the Japanese language, but the application
has not yet provided a resource for this locale.

Figure 24-4. A browser set for Japanese visits receives the default
message

The text that the browser displays derives from the default properties file: WelcomeBundle.properties
(notice the absence of any locale-related suffix in the filename).

See Also

Recipe 24.6 on using the ResourceBundle in a JSP; The Javadoc for ResourceBundle:

http://java.sun.com/j2se/1.4.1/docs/api/java/util/ResourceBundle.html.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/util/ResourceBundle.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.6 Using the ResourceBundle in a JSP

Problem

You want to dynamically display text in the JSP according to the locale of the request.

Solution

Use the JSTL tags from the formatting library.

Discussion

The JSTL's formatting tags make it easy to dynamically display text based on the browser's language
setting. Example 24-7 makes available the formatting and core JSTL tags with the taglib directive.
Then it uses the fmt:setBundle tag to specify the i18n resources that will be used by the page (the

localization context).

Example 24-7. Using the formatting tags to display a locale-sensitive
message in a JSP

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

<fmt:setBundle basename="i18n.WelcomeBundle" />

<html>
<head><title> <fmt:message key="Welcome" /></title></head>
<body>

<h2><fmt:message key="Welcome" /></h2>

Locale: <c:out value=
 "${pageContext.request.locale.language}" />_<c:out value=
 "${pageContext.request.locale.country}" />

</body>
</html>

Just like the servlet code in the prior recipe, the tag dynamically uses the WelcomeBundle resource

based on the request's locale. In other words, if the browser's locale is "es_ES," a Spanish locale,
then the fmt:message tags uses the keys and values from the WelcomeBundle_es_ES properties file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or Java class (however it is implemented).

If you set the localization context as a context-param element in the
deployment descriptor, the JSP does not have to use the fmt:setBundle tag.

See Recipe 24.13.

In the JSP, the code:

<fmt:message key="Welcome" />

is replaced by the value of the "Welcome" key in the chosen ResourceBundle file ("Hola y

recepción"). The result of requesting this JSP looks just like Figure 24-3 in Recipe 24.5.

See Also

Recipe 24.5 on using the ResourceBundle in a servlet; Chapter 23 on the JSTL; the Javadoc for
ResourceBundle: http://java.sun.com/j2se/1.4.1/docs/api/java/util/ResourceBundle.html.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/util/ResourceBundle.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.7 Formatting Dates in a Servlet

Problem

You want to format a date for display in a servlet based on the request's locale.

Solution

Use the java.text.DateFormat class.

Discussion

Different countries have their own ways of displaying the date and time. The DateFormat class, like
many of the classes in the java.text package, is "locale sensitive." Your code displays the date
depending on the browser's language setting. All you have to do is pass the Locale object to the
static DateFormat.getDateTimeInstance() method, as in the servlet of Example 24-8.

Example 24-8. Displaying a date String in a locale-sensitive manner

package com.jspservletcookbook;

import java.text.DateFormat;

import java.util.Date;
import java.util.Locale;
import java.util.ResourceBundle;

import javax.servlet.*;
import javax.servlet.http.*;

public class DateLocaleServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //Get the client's Locale
 Locale locale = request.getLocale();

 ResourceBundle bundle = ResourceBundle.getBundle(
 "i18n.WelcomeBundle",locale);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String welcome = bundle.getString("Welcome");

 String date = DateFormat.getDateTimeInstance(DateFormat.FULL,
 DateFormat.SHORT, locale).format(new Date());

 //Display the locale
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html><head><title>"+welcome+"</title></head><body>");

 out.println("<h2>"+bundle.getString("Hello") + " " +
 bundle.getString("and") + " " +
 welcome+"</h2>");

 out.println(date+ "

");

 out.println("Locale: ");
 out.println(locale.getLanguage()+"_"+locale.getCountry());

 out.println("</body></html>");

 } //doGet

 //implement doPost and call doGet(request, response);

}

The DateFormat.getDateTimeInstance() method includes parameters in the form of constants
(e.g., DateFormat.FULL) that allow your code to customize the date format. Example 24-8 displays

the date in a way that includes the name of the day of the week and a short form for the time. You
can experiment with these constants in order to determine how browsers display the servlet's output.
Figure 24-5 shows how the date is displayed in response to a German-language locale of "de_DE."

Figure 24-5. Displaying the date in a servlet according to the request's
locale

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The Javadoc for the DateFormat class:

http://java.sun.com/j2se/1.4.1/docs/api/java/text/DateFormat.html; Recipe 24.8 on formatting
dates in a JSP.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/text/DateFormat.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.8 Formatting Dates in a JSP

Problem

You want to display a date in a JSP that is customized for the user's locale.

Solution

Use the fmt:formatDate JSTL tag.

Discussion

The JSTL includes the "formatting" library, which allows JSP code to display dates in a locale-sensitive
manner. Example 24-9 uses the fmt:formatDate tag. The code uses the standard action
jsp:useBean to create a java.util.Date object representing the current date and time. The code
passes the date object to fmt:formatDate's value attribute. When a user requests the JSP, the
fmt:formatDate tag is replaced by text displaying the formatted date.

Example 24-9. Formatting a date using fmt:formatDate

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

<jsp:useBean id="date" class="java.util.Date" />

<html>
<head><title> <fmt:message key="Welcome" /> </title></head>
<body>

<h2> <fmt:message key="Hello" /> <fmt:message key="and" />
 <fmt:message key="Welcome" /> </h2>

<fmt:formatDate value="${date}" type="both" dateStyle=
 "full" timeStyle="short" />

Locale: <c:out value=
 "${pageContext.request.locale.language}" />_<c:out value=
 "${pageContext.request.locale.country}" />

</body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The fmt:message tags here depend on a configuration parameter, or context-
param element, in the deployment descriptor. The context-param element

specifies the i18n-related resources . See Recipe 24.13.

The element has attributes named dateStyle and timeStyle that allow the code to customize the
format of the date and time Strings.

See the Javadoc for the DateFormat class for more details:

http://java.sun.com/j2se/1.4.1/docs/api/java/text/DateFormat.html.

The output of the JSP in Example 24-9 looks just like Figure 24-5 in the prior recipe.

See Also

The Javadoc for the DateFormat class:

http://java.sun.com/j2se/1.4.1/docs/api/java/text/DateFormat.html; Chapter 23 on the JSTL; Recipe
24.7 on formatting dates in a servlet.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/text/DateFormat.html
http://java.sun.com/j2se/1.4.1/docs/api/java/text/DateFormat.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.9 Formatting Currencies in a Servlet

Problem

You want to format a currency value according to the request's locale.

Solution

Use the java.text.NumberFormat class.

Discussion

The NumberFormat class can format a number, such as a long or double type, as a percentage. This
class has a static getCurrencyInstance() method. This method can take a java.util.Locale

object as a parameter, to display the currency according to the user's language setting.

Example 24-10 is a servlet that demonstrates the locale-sensitive display of a currency, by showing
both the currency amount and the locale language and country code.

Example 24-10. Formatting a number as a percentage in a servlet

package com.jspservletcookbook;

import java.text.NumberFormat;

import java.util.Locale;
import java.util.ResourceBundle;

import javax.servlet.*;
import javax.servlet.http.*;

public class CurrLocaleServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //Get the client's Locale
 Locale locale = request.getLocale();

 ResourceBundle bundle = ResourceBundle.getBundle(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "i18n.WelcomeBundle",locale);

 String welcome = bundle.getString("Welcome");

 NumberFormat nft = NumberFormat.getCurrencyInstance(locale);

 String formattedCurr = nft.format(1000000);

 //Display the locale
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html><head><title>"+welcome+"</title></head><body>");

 out.println("<h2>"+bundle.getString("Hello") + " " +
 bundle.getString("and") + " " +
 welcome+"</h2>");

 out.println("Locale: ");
 out.println(locale.getLanguage()+"_"+locale.getCountry());

 out.println("

");

 out.println(formattedCurr);

 out.println("</body></html>");

 } //doGet

//implement doPost() to call doGet()...

}

The NumberFormat class' format() method returns a String that represents the formatted

currency. Figure 24-6 shows the servlet's output when requested by a browser where the user has
set the language setting to the locale "en_GB" (English language, Great Britain).

Figure 24-6. A British visitor sees the formatted currency display of one
million pounds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The Javadoc for the NumberFormat class:

http://java.sun.com/j2se/1.4.1/docs/api/java/text/NumberFormat.html; Recipe 24.10 on formatting
currencies in a JSP.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/text/NumberFormat.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.10 Formatting Currencies in a JSP

Problem

You want to format currency values in a JSP.

Solution

Use the JSTL tag fmt:formatNumber .

Discussion

The fmt:formatNumber tag is designed to display a currency value based on the visitor's locale. Example
24-11 first uses the taglib directive to make the JSTL 1.0 formatting library available to the JSP.

Example 24-11. formatting a number using the JSTL 1.0 tags

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<%-- the formatting library includes fmt:formatNumber --%>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

<html>
<head><title> <fmt:message key="Welcome" /></title></head>
<body>
<h2> <fmt:message key="Hello" /> <fmt:message key="and" /> <fmt:message key="Welcome" /></
h2>

Locale: <c:out value="${pageContext.request.locale.language}" />_<c:out
value="${pageContext.request.locale.country}" />

<fmt:formatNumber value="1000000" type="currency" />

</body>
</html>

The fmt:formatNumber tag is quite straightforward. The value attribute takes the number you want to
format as a currency, and the value of the type attribute must be "currency." The text representing the

formatted number then replaces the tag when a browser displays the JSP's output. The JSP in Example 24-
11 displays the same browser information as shown in Figure 24-6 of the prior recipe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Chapter 23 on the JSTL; the Javadoc for the NumberFormat class:

http://java.sun.com/j2se/1.4.1/docs/api/java/text/NumberFormat.html ; Recipe 24.9 on formatting
currencies in a servlet.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/text/NumberFormat.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.11 Formatting Percentages in a Servlet

Problem

You want to format numbers as percentages and display them in a servlet.

Solution

Use the java.txt.NumberFormat class and its static getPercentInstance() method.

Discussion

Example 24-12 uses the NumberFormat.getPercentInstance() method, with the user's locale as
an argument, to get a NumberFormat type for displaying a number as a percentage. The code in
Example 24-12 calls the NumberFormat's format() method, with a number as an argument.

The format() method displays the number 51 as "5100%"; a double type

including the decimal point, such as 0.51 produces the intended result (51%).

Example 24-12. Using NumberFormat to display a percentage in a servlet

package com.jspservletcookbook;

import java.text.NumberFormat;

import java.util.Locale;
import java.util.ResourceBundle;

import javax.servlet.*;
import javax.servlet.http.*;

public class PerLocaleServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //Get the client's Locale
 Locale locale = request.getLocale();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ResourceBundle bundle = ResourceBundle.getBundle(
 "i18n.WelcomeBundle",locale);

 String welcome = bundle.getString("Welcome");

 NumberFormat nft = NumberFormat.getPercentInstance(locale);

 String formatted = nft.format(0.51);

 //Display the locale
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println("<html><head><title>"+welcome+"</title></head><body>");

 out.println("<h2>"+bundle.getString("Hello") + " " +
 bundle.getString("and") + " " +
 welcome+"</h2>");

 out.println("Locale: ");
 out.println(locale.getLanguage()+"_"+locale.getCountry());

 out.println("

");

 out.println("NumberFormat.getPercentInstance(): "+formatted);

 out.println("</body></html>");

 } //doGet

//implement doPost() to call doGet()...

}

Figure 24-7 shows the servlet's output in a browser.

Figure 24-7. The browser displays a percentage for a certain locale

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The Javadoc for the NumberFormat class:

http://java.sun.com/j2se/1.4.1/docs/api/java/text/NumberFormat.html; Recipe 24.12 on formatting
percentages in a JSP.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/text/NumberFormat.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.12 Formatting Percentages in a JSP

Problem

You want to display a number as a percentage in a JSP.

Solution

Use the fmt:formatNumber tag.

Discussion

The JSTL's fmt:formatNumber tag can display a number the code provides in the tag's value attribute as

a percentage. The value of the type attribute must be "percent" (not "percentage"). Example 24-13 passes
the String ".51" to the value attribute. This code displays the text "51%" in the browser.

Example 24-13. Using the fmt:formatNumber tag in a JSP to display a
percentage

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

<html>
<head><title><fmt:message key="Welcome" /></title></head>
<body>
<h2><fmt:message key="Hello" /> <fmt:message key="and" /> <fmt:message key="Welcome" /></
h2>

Locale: <c:out value="${pageContext.request.locale.language}" />_<c:out
value="${pageContext.request.locale.country}" />

<fmt:formatNumber value=".51" type="percent" />

</body>
</html>

Figure 24-8 shows the JSP's output.

Figure 24-8. A JSP displays a number formatted as a percentage

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

The Javadoc for the NumberFormat class:

http://java.sun.com/j2se/1.4.1/docs/api/java/text/NumberFormat.html ; Chapter 23 on the JSTL; Recipe
24.12 on formatting percentages in a servlet.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/java/text/NumberFormat.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 24.13 Setting the Localization Context in the
Deployment Descriptor

Problem

You want to configure the localization context for the JSTL tags used by a web application.

Solution

Use a context-param element in the application's deployment descriptor.

Discussion

A localization context is a set of resources such as ResourceBundles that your web application's use

to provide locale information for a JSP. If the JSP is displaying translated text, it can use JSTL tags
(such as fmt:fmtMessage) that detect the user's locale, and then searches within the localization

context for the proper text to display.

Set the localization context with a context-param element in web.xml. The parameter name must be
javax.servlet.jsp.jstl.fmt.localizationContext. Its value is the fully qualified basename of
the ResourceBundle that you have installed in the web application. Example 24-14 shows a
context-param element that points to the ResourceBundle we have used throughout this chapter.

Add this type of element to your deployment descriptor as an alternative to using the JSTL tag
fmt:setBundle inside JSPs to specify a ResourceBundle.

Example 24-14. Setting the localization context for JSTL tags

<!-- Beginning of web.xml -->

<context-param>

 <param-name>
 javax.servlet.jsp.jstl.fmt.localizationContext
 </param-name>

 <param-value>i18n.WelcomeBundle</param-value>

</context-param>

<!-- Rest of web.xml -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Chapter 23 on the JSTL; Recipe 24.2 on detecting the client locale in a JSP; Recipe 24.6 on using a
ResourceBundle in a JSP; Recipe 24.8 on formatting dates; Recipe 24.10 on formatting currencies;

Recipe 24.12 on formatting percentages.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 25. Using JNDI and Enterprise
JavaBeans

Introduction

Recipe 25.1. Configuring a JNDI Object in Tomcat

Recipe 25.2. Accessing the Tomcat JNDI Resource from a Servlet

Recipe 25.3. Accessing the Tomcat JNDI Resource from a JSP

Recipe 25.4. Configuring a JNDI Resource in WebLogic

Recipe 25.5. Viewing the JNDI Tree in WebLogic

Recipe 25.6. Accessing the WebLogic JNDI Resource from a Servlet

Recipe 25.7. Accessing the WebLogic JNDI Resource from a JSP

Recipe 25.8. Accessing an EJB Using the WebLogic JNDI Tree
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

The Java Naming and Directory Interface (JNDI) is an API that Java developers use to access naming
and directory services. These services are technologies that Java programs use to store or bind
objects for later use, as well as search for or "look up" object references. The purpose of JNDI is to
separate the responsibility of maintaining a repository of commonly used objects from the wide
variety of Java classes that use those objects, including servlets and JSPs.

Examples of JNDI services are the Remote Method Invocation registry and the Lightweight Directory
Access Protocol (LDAP). The JNDI API, represented by the javax.naming package, provides a

common implementation for accessing objects that are bound to these services.

The javax.naming package is part of the Java 2 1.3 and 1.4 Software

Development Kits (SDKs).

Each of these technologies has a naming scheme with which "JNDI objects" can be found. The
structure of these schemes is often hierarchical; you start at the top of the JNDI tree, then work your
way down to each of the branches to find what you are looking for. Using JNDI, Java programs begin
with an "initial context," similar to the forward slash (/) from which Unix begins to describe the
location of a file. The / represents the root of a storage medium or hard disk; you can find the Users
folder at the top level of the disk by entering /Users.

In Tomcat, the initial context of its built-in JNDI implementation is the address java:comp/env- a l l
lookups start from there. Chapter 21 describes how to access a javax.sql.Datasource from a JNDI
implementation by starting at the initial context java:comp/env, and then looking up the DataSource
at the address jdbc/MyDataSource. All DataSources are stored under jdbc, so this is how Java code
accesses a DataSource named "MyDataSource." Using a filesystem analogy, the "root" folder in
Tomcat's JNDI structure is "java:comp/env" and specific DataSources are stored under the jdbc

subdirectory.

You can use JNDI to get access to any Java object, not just DataSources. This chapter describes how

to store a JavaBean using Tomcat's JNDI implementation, and then look up the bean using a servlet
or JSP. The chapter also describes how to configure a mail session (with a javax.mail.Session

object) using BEA WebLogic's JNDI implementation, and then to gain access to that mail session by
enabling a servlet or JSP to send email.

A servlet can also access Enterprise JavaBeans (EJBs) using JNDI.

An EJB is a Java class that resides in the "business tier" of the Java 2 Enterprise
Editon (J2EE) multi-tier architecture. The J2EE includes a web tier containing
our familiar servlets and JSPs, and an Enterprise Information System (EIS) tier
involving database systems. See the "See Also" section of Recipe 25.8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The servlets or JSPs may represent the presentation logic of a system that uses EJBs to access
databases and implement tasks that are specific to a business or organization. The last recipe shows
how to access an EJB from a servlet using BEA WebLogic as the application server.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 25.1 Configuring a JNDI Object in Tomcat

Problem

You want to configure a JavaBean as a JNDI object using Tomcat 4.

Solution

Create Resource and ResourceParam elements in server.xml or in the XML file that represents your
web application (located in Tomcat's webapps folder). Then add a resource-env-ref element to

web.xml.

Discussion

The JNDI object for Tomcat is set up in conf/server.xml. If you have configured a web application as
a separate XML file in Tomcat's webapps folder, then configure the JNDI resource in this XML file
instead. Example 25-1 shows the set up for binding a JavaBean as a JNDI object. The bean is named
com.jspservletcookbook.StockPriceBean.

Example 25-1. The server.xml element for configuring a JNDI object

<Resource name="bean/pricebean" type=
 "com.jspservletcookbook.StockPriceBean" auth="Container" description=
 "A web harvesting bean"/>

<ResourceParams name="bean/pricebean">

 <parameter>
 <name>factory</name>
 <value>org.apache.naming.factory.BeanFactory</value>
 </parameter>

</ResourceParams>

Example 25-1 includes a Resource element and a ResourceParams element that references the
Resource by name ("bean/pricebean"). This name is the address by which Java code accesses a

bean instance using the JNDI API.

Example 25-2 shows the resource-env-ref element that must appear in the deployment descriptor

(web.xml) in order for web application code to access the JNDI object. Store the
com.jspservletcookbook.StockPriceBean class in WEB-INF/classes or in a JAR file placed in WEB-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INF/lib.

Example 25-2. Place this element in the deployment descriptor web.xml

<!-- start of deployment descriptor -->

<resource-env-ref>

 <description>
 A factory for StockPriceBean
 </description>

 <resource-env-ref-name>
 bean/pricebean
 </resource-env-ref-name>

 <resource-env-ref-type>
 com.jspservletcookbook.StockPriceBean
 </resource-env-ref-type>

</resource-env-ref>

<!-- rest of deployment descriptor -->

Example 25-3 shows a snippet of code that uses the JNDI API, just to start you on how the
configuration fits in with JNDI-related code.

Example 25-3. Code snippet for accessing a Tomcat JNDI resource

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

//This code may appear in a servlet's init() method or perhaps
//in doGet() or doPost()

Context env = null;

StockPriceBean spbean = null;

 try{

 env = (Context) new InitialContext().lookup("java:comp/env");

 spbean = (StockPriceBean) env.lookup("bean/pricebean");

 if (spbean == null)
 throw new ServletException(
 "bean/pricebean is an unknown JNDI object");

 //close the InitialContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 env.close();

 } catch (NamingException ne) {

 //close the Context if you're not using it again
 try{ env.close(); } catch(NamingException nex) {}

 throw new ServletException(ne);
}

Example 25-3 imports the necessary classes from the javax.naming package. Then two lookups take

place to get a reference to a JavaBean that has been bound to a JNDI implementation. The first
lookup provides the initial context:

env = (Context) new InitialContext().lookup("java:comp/env");

The second lookup attempts to return a StockPriceBean object:

spbean = (StockPriceBean) env.lookup("bean/pricebean");

The code closes the InitialContext to release the object's resources, if the code is not going to use

the context again for another lookup. The next recipe uses code like this from servlets and JSPs.

See Also

Recipe 25.2 on accessing the Tomcat JNDI object from a servlet; Recipe 25.3 on accessing the
Tomcat JNDI object from a JSP; Chapter 21 on accessing DataSources with JNDI.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 25.2 Accessing the Tomcat JNDI Resource from a
Servlet

Problem

You want to access a JNDI object with a servlet using Tomcat's JNDI implementation.

Solution

Use the javax.naming classes in the servlet's init() method to look up a JNDI object. Then use
the object in a service method like doGet().

Discussion

A servlet can access a JavaBean as a JNDI registered resource after you have:

Developed the JavaBean class and stored it in WEB-INF/classes or in a JAR in WEB-INF/lib.1.

Changed the server configuration file and web.xml as described in Recipe 25.1, in order to bind
the object to the Tomcat JNDI tree.

2.

Example 25-4 creates a javax.naming.InitialContext in its init() method, then looks up a
JavaBean: com.jspservletcookbook.StockPriceBean. This bean is bound to the JNDI
implementation under the name "bean/pricebean." The init() method is called only when the

servlet container creates a servlet instance, so the servlet has access to one instance of
StockPriceBean.

Example 25-4. Using a Tomcat JNDI object from a servlet

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.servlet.*;
import javax.servlet.http.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class BeanServlet extends HttpServlet {

 private StockPriceBean spbean;

 public void init() throws ServletException {

 Context env = null;

 try{

 env = (Context) new InitialContext().lookup("java:comp/env");

 spbean = (StockPriceBean) env.lookup("bean/pricebean");

 //close the InitialContext, unless the code will use it for
 //another look up
 env.close();

 if (spbean == null)
 throw new ServletException(
 "bean/pricebean is an unknown JNDI object");

 } catch (NamingException ne) {

 try{ env.close();} catch (NamingException nex) { }

 throw new ServletException(ne);

 }//try

 }//init

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

 //use a PrintWriter to send text data to the client
 java.io.PrintWriter out = response.getWriter();

 //Begin assembling the HTML content
 out.println("<html><head>");

 out.println("<title>Stock Price Fetcher</title></head><body>");
 out.println("<h2>Please submit a valid stock symbol</h2>");

 //make sure method="POST" so that the servlet service method
 //calls doPost in the response to this form submit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println(
 "<form method=\"POST\" action =\"" + request.getContextPath() +
 "/namingbean\" >");

 out.println("<table border=\"0\"><tr><td valign=\"top\">");
 out.println("Stock symbol: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"symbol\" size=\"10\">");
 out.println("</td></tr><tr><td valign=\"top\">");

 out.println(
 "<input type=\"submit\" value=\"Submit Info\"></td></tr>");

 out.println("</table></form>");
 out.println("</body></html>");

} //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws java.io.IOException{

 String symbol;//this will hold the stock symbol

 float price = 0f;

 symbol = request.getParameter("symbol");

 boolean isValid = (symbol == null || symbol.length() < 1) ?
 false : true;

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

 //use a PrintWriter send text data to the client
 java.io.PrintWriter out = response.getWriter();

 //Begin assembling the HTML content
 out.println("<html><head>");
 out.println("<title>Latest stock value</title></head><body>");

 if ((! isValid) || spbean == null){
 out.println(
 "<h2>Sorry, the stock symbol parameter was either "+
 "empty or null</h2>");

 } else {

 out.println("<h2>Here is the latest value of "+ symbol +"</h2>");
 spbean.setSymbol(symbol);
 price = spbean.getLatestPrice();
 out.println((price==0?
 "The symbol is probably invalid." : ""+price));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 out.println("</body></html>");
 }//doPost
}//BeanServlet

Example 25-4 calls close() on the InitialContext to free up any resources this object is using,

since the code does not use it again to initiate a lookup. Then the servlet uses the bean object to
access a live stock quote in its doGet() method. The servlet first calls the bean's setter method
setSymbol() to notify the bean about which stock symbol it is looking up.

Example 25-5 shows the bean that Tomcat has stored as a JNDI object (it's the same bean used in
Example 25-4). Chapter 26 explains this bean, which "scrapes" a stock price off of a web page.
Chapter 26 covers the bean's details; the methods this chapter's servlet uses are setSymbol() and
getLatestPrice(). The bean handles all the details of downloading the stock price.

Example 25-5. The bean that is stored as a JNDI object

package com.jspservletcookbook;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URL;
import java.net.MalformedURLException;

import javax.swing.text.html.HTMLEditorKit.ParserCallback;
import javax.swing.text.MutableAttributeSet;
import javax.swing.text.html.parser.ParserDelegator;

public class StockPriceBean {

 private static final String urlBase =
 "http://finance.yahoo.com/q?d=t&s=";
 private BufferedReader webPageStream = null;
 private URL stockSite = null;
 private ParserDelegator htmlParser = null;
 private MyParserCallback callback = null;
 private String htmlText = "";
 private String symbol = "";
 private float stockVal = 0f;

 public StockPriceBean() {}//no-arguments constructor for the bean

 public void setSymbol(String symbol){
 this.symbol = symbol;
 }

 public String getSymbol(){
 return symbol;
 }

//Inner class provides the callback

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class MyParserCallback extends ParserCallback {

 private boolean lastTradeFlag = false;
 private boolean boldFlag = false;
 public MyParserCallback(){
 if (stockVal != 0)
 stockVal = 0f;
 }

 public void handleStartTag(javax.swing.text.html.HTML.Tag t,
 MutableAttributeSet a,int pos) {
 if (lastTradeFlag && (t == javax.swing.text.html.HTML.Tag.B)){
 boldFlag = true;
 }
 }//handleStartTag

 public void handleText(char[] data,int pos){
 htmlText = new String(data);
 if (htmlText.indexOf("No such ticker symbol.") != -1){
 throw new IllegalStateException(
 "Invalid ticker symbol in handleText() method.");
 } else if (htmlText.equals("Last Trade:")){
 lastTradeFlag = true;
 } else if (boldFlag){

 try{
 stockVal = new Float(htmlText).floatValue();
 } catch (NumberFormatException ne) {

 try{
 //tease out any commas in the number using NumberFormat
 java.text.NumberFormat nf = java.text.NumberFormat.
 getInstance();
 Double f = (Double) nf.parse(htmlText);
 stockVal = (float) f.doubleValue();
 } catch (java.text.ParseException pe){
 throw new IllegalStateException(
 "The extracted text " + htmlText +
 " cannot be parsed as a number!");
 }//inner try

 }//outer try
 lastTradeFlag = false;
 boldFlag = false;

 }//if
 } //handleText
}//MyParserCallback

 public float getLatestPrice() throws IOException,MalformedURLException {

 stockSite = new URL(urlBase + symbol);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 webPageStream = new BufferedReader(new InputStreamReader(stockSite.
 openStream()));
 htmlParser = new ParserDelegator();
 callback = new MyParserCallback();//ParserCallback

 synchronized(htmlParser){
 htmlParser.parse(webPageStream,callback,true);
 }//sychronized

 //reset symbol
 setSymbol("");
 return stockVal;

 }//getLatestPrice
}//StockPriceBean

The ParserDelegator.parse() method is synchronized and therefore

designed to only allow one thread at a time to parse the web page and pull out
the stock quote.

Figure 25-1 shows the web page form generated by the servlet's doGet() method. The user enters
a stock symbol into this form, then submits the form to the servlet's doPost() method.

Figure 25-1. Enter a stock symbol for a live stock price

Figure 25-2 shows the stock information that the JNDI object found for the servlet.

Figure 25-2. The servlet's doPost() method generates a live stock quote
using a JNDI object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 25.1 on configuring a JNDI object with Tomcat; Recipe 25.3 on accessing the Tomcat JNDI
object from a JSP; Chapter 21 on accessing DataSources with JNDI; Chapter 26 on harvesting web

information.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 25.3 Accessing the Tomcat JNDI Resource from a
JSP

Problem

You want to access a JNDI resource from a JSP.

Solution

Use a filter to place the object in request or session scope. Access the object in the JSP with the
c:set and c:out JSTL tags.

Discussion

A nice job for a filter is accessing a JNDI object, then placing a reference to that object in a session
for a JSP to use. See Chapter 19 for more information on filters.

Here are the steps needed to use a filter with JNDI and a JSP:

Develop and compile the filter, including a no-arguments constructor.1.

Use the JNDI API and javax.naming package in the filter to set a session attribute using the

JNDI object.

2.

Place the filter in WEB-INF/classes or in a JAR in WEB-INF/lib.3.

Add filter and filter-mapping elements to web.xml; map the filter to the JSP that will use

the JNDI object (Example 25-7).

4.

Create a JSP that uses the session attribute.5.

Example 25-6 shows the filter. The filter initializes a javax.naming.Context type in its init()
method (when the servlet container creates the filter instance). The doFilter() method grabs a

JNDI object and stores the object as a session attribute. The filter chain ends at the JSP to which the
filter is mapped; therefore, the JSP has access to the session attribute (i.e., the JNDI object).

Example 25-6. A Filter accesses a JNDI object and sets the object as a
session attribute

package com.jspservletcookbook;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.IOException;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.servlet.*;
import javax.servlet.http.*;

public class JndiTFilter implements Filter {

 private FilterConfig config;
 private Context env;

 //No-arguments constructor required for a filter; we've made it
 //explicit here, even though the compiler would have created one
 //in the absence of this or any other constructor
 public JndiTFilter() {}

 public void init(FilterConfig filterConfig) throws ServletException {

 this.config = filterConfig;
 try {
 env = (Context) new InitialContext().lookup("java:comp/env");
 env.close();
 } catch (NamingException ne) {
 try{ env.close(); } catch (NamingException nex) {}
 throw new ServletException(ne);
 }
 }

 public void doFilter(ServletRequest request,
 ServletResponse response, FilterChain chain) throws IOException,
 ServletException {

 StockPriceBean spbean = null;

 try {
 spbean = (StockPriceBean) env.lookup("bean/pricebean");
 } catch (NamingException ne) { }

 HttpServletRequest hRequest = null;
 if (request instanceof HttpServletRequest)
 hRequest = (HttpServletRequest) request;

 HttpSession hSession = hRequest.getSession();
 if (hSession != null)
 hSession.setAttribute("MyBean",spbean);

 chain.doFilter(request,response);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }// doFilter

 public void destroy(){
 /*called before the Filter instance is removed
 from service by the web container*/
 }
}//Filter

The filter's doFilter() method is called each time a client requests the JSP, so each client is

associated with a different bean instance. In other words, each session stores its own bean instance.

The JSP could then remove the session attribute (if it was not going to be used
again) to conserve server resources. See Chapter 16 for recipes on setting and
removing session attributes.

Example 25-7 shows the filter and filter-mapping elements that you can add to the deployment

descriptor. This causes the servlet container to create an instance of the filter (calling the filter's
init() method). Then the container calls the filter's doFilter() method whenever it receives a
request matching the URL(s) associated with the filter-mapping element.

Example 25-7. The filter and elements for a JNDI-related filter

<!-- start of web.xml -->

<filter>

 <filter-name>JndiTFilter</filter-name>
 <filter-class>com.jspservletcookbook.JndiTFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>JndiTFilter</filter-name>
 <url-pattern>/jndiJsp.jsp</url-pattern>

 </filter-mapping>

<!-- rest of web.xml -->

Example 25-7 maps the JndiTFilter to the web component at the URL /jndiJsp.jsp. Example 25-8

shows the JSP that uses the session attribute, called "MyBean" to display a stock quote.

Example 25-8. A JSP uses a session attribute originating as a JNDI object

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Jndi Bean</title></head>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<body>
<h2>Getting a StockPriceBean object via JNDI...</h2>

<c:set var="priceBean" value="${MyBean}"/>

<%-- set the 'symbol' property to the stock symbol --%>
<c:set target="${priceBean}" property="symbol" value="${param.symbol}"/>

<%-- get the latest price by calling getLatestPrice() on the bean object --%>
The latest price: <c:out value="${priceBean.latestPrice}" />

</body>
</html>

Figure 25-3 shows this JSP's output. Example 25-5 in Recipe 25.2 shows the code for the JavaBean
that this JSP uses.

Figure 25-3. A JSP uses a session attribute via JNDI to display a stock
price

See Also

Recipe 25.1 on configuring a JNDI object with Tomcat; Recipe 25.2 on accessing the Tomcat JNDI
object from a servlet; Chapter 21 on accessing DataSources with JNDI.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 25.4 Configuring a JNDI Resource in WebLogic

Problem

You want to bind an object to BEA WebLogic's JNDI implementation.

Solution

Use the WebLogic Administration console.

Discussion

Here are the steps needed to bind a javax.mail.Session object (which I use as an example for this

recipe) to WebLogic's JNDI implementation. The advantage of this approach is that the available
Session is already configured with elements such as its SMTP host (see Table 25-1). The Session is

"ready to go" for the code that will eventually look up and use the object.

Log in to the WebLogic Administration console, which involves using a browser URL such as
http://localhost:7001/console.

1.

Go to Your-domain-name Services Mail in the lefthand column menu.2.

Click on "Configure a new Mail Session . . . " This produces the window shown in Figure 25-4.3.

Figure 25-4. Configuring a javax.mail.Session type as a JNDI object using
the WebLogic Administration console

http://localhost:7001/console
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fill in the text fields in the resulting window. Give the Session object a JNDI name (under

"JndiName"), which is the name that the code uses to look up the object.

4.

Enter any properties for the Session by typing in the property name, an equals sign (=), and

the property value. See Table 25-1.

5.

Click the "Apply" button, then choose the "Targets" tab. The resulting screen allows you to
associate the JNDI object with one or more servers.

6.

Now the JNDI object is available to Java programs using the JNDI API and the name you bound the
object under. Recipe 25.5 shows how to view the JNDI tree graphically to verify that the object has
been bound properly.

Table 25-1. JavaMail properties set for this recipe's Session JNDI object

Property
name

Description Example

mail.host The default mail server mail.comcast.net

mail.smtp.host
Protocol-specific mail host; defaults to mail.host
value

mail.comcast.net

mail.user The username for connecting to the mail server bruceperry

mail.from The return address to use when sending mail. author@jspservletcookbook.com

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 25.6 on accessing a JNDI object with a servlet on WebLogic; Recipe 25.7 on accessing a JNDI
object with a JSP on WebLogic; Chapter 2 on on accessing a JNDI object with a JSP on WebLogic;
Chapter 2 on deploying web components with WebLogic.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 25.5 Viewing the JNDI Tree in WebLogic

Problem

You want to view the WebLogic JNDI tree in graphical form.

Solution

Right click on the server name in the WebLogic Administration console and choose "View JNDI Tree."

Discussion

After you have bound an object to JNDI using the Administration console, you can then view the JNDI
tree to see if WebLogic has bound your object as intended. Right-click on "My-domain-name

Servers Server-name" in the lefthand menu and choose "View JNDI Tree." This generates a new

browser window that looks like the one in Figure 25-5.

The new object ("MyEmail") is represented at the top of the tree as a purple dot. This is a nice
graphical way of viewing the hierarchical structure of the JNDI tree, including its subdirectories and
various objects, that are available to a WebLogic server.

Figure 25-5 shows the "MyEmail" bound object selected in the JNDI tree. Information about the
object is displayed in the righthand frame of the browser window.

Figure 25-5. A graphical display of the WebLogic JNDI tree

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 25.4 on configuring a JNDI object on WebLogic; Recipe 25.6 on accessing a JNDI object with a
servlet on WebLogic; Recipe 25.7 on accessing a JNDI object with a JSP on WebLogic; Chapter 2 on
deploying web components with WebLogic.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 25.6 Accessing the WebLogic JNDI Resource from
a Servlet

Problem

You want to access the JNDI object created and bound on WebLogic.

Solution

Use the JNDI API in the servlet to access a reference to the bound object.

Discussion

Example 25-9 is an HttpServlet that obtains a javax.mail.Session object from WebLogic's JNDI

implementation. The servlet uses this object to build an email message. The servlet initiates the JNDI
lookup in its init() method for an object bound under the name "MyEmail" (Recipe 25.4). The
servlet container calls the init() once when the container creates the servlet instance.

Example 25-9. Servlet to obtain a javax.mail.Session object from
WebLogic's JNDI implementation and build an email message

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.mail.*;
import javax.mail.internet.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class EmailJndiServlet extends HttpServlet {

 private Session mailSession;

 public void init() throws ServletException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Context env = null;

 try{

 env = (Context) new InitialContext();
 mailSession = (Session) env.lookup("MyEmail");
 if (mailSession == null)
 throw new ServletException(
 "MyEmail is an unknown JNDI object");

 //close the InitialContext
 env.close();

 } catch (NamingException ne) {
 try{ env.close();} catch (NamingException nex) { }
 throw new ServletException(ne);
 }
 }//init

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Email message sender</title></head><body>");

 String to = request.getParameter("to");
 String from = request.getParameter("from");
 String subject = request.getParameter("subject");
 String emailContent = request.getParameter("emailContent");
 try{
 sendMessage(to,from,subject,emailContent);
 } catch(Exception exc){
 throw new ServletException(exc.getMessage());
 }

 out.println(
 "<h2>The message was sent successfully</h2></body></html>");

 out.println("</body></html>");

 } //doPost

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //doGet() calls doPost()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 doPost(request,response);

 }

 private void sendMessage(String to, String from, String subject,
 String bodyContent) throws Exception {

 Message mailMsg = null;

 mailMsg = new MimeMessage(mailSession);//a new email message
 InternetAddress[] addresses = null;

 try {
 if (to != null) {

 //throws 'AddressException' if the 'to' email address
 //violates RFC822 syntax
 addresses = InternetAddress.parse(to, false);
 mailMsg.setRecipients(Message.RecipientType.TO, addresses);

 } else {
 throw new MessagingException(
 "The mail message requires a 'To' address.");
 }

 if (from != null)
 mailMsg.setFrom(from);

 if (subject != null)
 mailMsg.setSubject(subject);

 if (bodyContent != null)
 mailMsg.setText(bodyContent);

 //Finally, send the mail message; throws a 'SendFailedException'
 //if any of the message's recipients have an invalid adress
 Transport.send(mailMsg);

 } catch (Exception exc) {
 throw exc;

 }//sendMessage
}//EmailJndiServlet

The doPost() method calls the servlet's sendMessage() method, passing in the email message

parts such as the recipient and the email's content. The servlet derives this information from request
parameters that the user submits. A typical request for the servlet looks like:

http://localhost:7001/email?to=author@jspservletcookbook.com&
 from=bwperry@parkerriver.com&subject=hello&
 emailContent=A web message

http://localhost:7001/email?to=author@jspservletcookbook.com&
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A user can also POST information to the servlet with an HTML form.

The servlet's sendMessage() method uses the JNDI object in the
javax.mail.internet.MimeMessage constructor when the method creates a new email message.

Figure 25-6 shows the servlet's simple return message in a browser window.

Figure 25-6. The servlet sends the email successfully

See Also

Recipe 25.4 on configuring a JNDI object on WebLogic; Recipe 25.5 on viewing the WebLogic JNDI
tree with the Administration console; Recipe 25.7 on accessing a JNDI object with a JSP on
WebLogic; Chapter 2 on deploying web components with WebLogic.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 25.7 Accessing the WebLogic JNDI Resource from
a JSP

Problem

You want to use a WebLogic JNDI object in a JSP.

Solution

Create a filter that accesses the JNDI object and sets the object as a session attribute.

Discussion

Any sense of dejá vu comes from a few recipes ago, when you used a filter to pass a JNDI object to a
JSP on Tomcat. The only difference in this recipe is that the application server used is WebLogic and
the JNDI object is a JavaMail Session, not a JavaBean.

The filter accesses the object using the JNDI API on WebLogic. Then the filter sets the object as a
session attribute, so that the JSP can access the javax.mail.Session. Example 25-10 shows the

code for the filter that recipe uses on the WebLogic server.

Example 25-10. A filter stores a WebLogic JNDI object in a session
attribute

package com.jspservletcookbook;

import java.io.IOException;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.servlet.*;
import javax.servlet.http.*;

public class JndiFilter implements Filter {

 private FilterConfig config;
 private Context env;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public JndiFilter() {}

 public void init(FilterConfig filterConfig) throws ServletException {
 this.config = filterConfig;
 try {
 env = (Context) new InitialContext();
 } catch (NamingException ne) {
 throw new ServletException(ne);
 }
 }//init

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {

 javax.mail.Session mailSession = null;
 try {
 mailSession = (javax.mail.Session) env.lookup("MyEmail");
 } catch (NamingException ne) { }

 HttpServletRequest hRequest = null;
 if (request instanceof HttpServletRequest){
 hRequest = (HttpServletRequest) request;
 HttpSession hSession = hRequest.getSession();
 if (hSession != null)
 hSession.setAttribute("MyEmail",mailSession);

 }//if
 chain.doFilter(request,response);

 }// doFilter

 public void destroy(){
 /*called before the Filter instance is removed
 from service by the web container*/
 }
}

Example 25-11 shows the filter configuration inside the deployment descriptor. This deployment
descriptor must accompany a web application that you or another deployer has installed on WebLogic
server.

Example 25-11. A filter that accesses a JNDI object on Weblogic

<!-- start of web.xml -->

<filter>

 <filter-name>JndiFilter</filter-name>
 <filter-class>com.jspservletcookbook.JndiFilter</filter-class>

</filter>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<filter-mapping>

 <filter-name>JndiFilter</filter-name>
 <url-pattern>/jndiJsp.jsp</url-pattern>

</filter-mapping>

<!-- rest of web.xml -->

Example 25-12 shows a JSP that accesses the JNDI object. This code displays the class name of the
object, a javax.mail.Session type that Recipe 25.4 bound as a JNDI object on WebLogic. The filter
in Example 25-11 then set the object as a session attribute (not to be confused with the Session

type of the object). This attribute is available to all web components that participate in the same
session. Therefore, the c:set tag in this JSP uses the following EL code to get access to the attribute.

${MyEmail}

Then the c:out tag displays the class name of the session attribute, in order to verify that the object
is a javax.mail.Session. Recipe 25.6 gives the complete JavaMail code for sending an email.

Example 25-12. The JSP accesses the JavaMail object as a session
attribute

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Jndi Email</title></head>
<body>
<h2>Getting a javax.mail.Session object via JNDI...</h2>

<c:set var="mSession" value="${MyEmail}" />

<c:out value="${mSession.class.name}" />

</body>
</html>

Figure 25-7 shows a web browser window after a user has requested the JSP.

Figure 25-7. A JSP accesses a JNDI object via a servlet filter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Chapter 19 on filters; Chapter 23 on the JSTL; Recipe 25.4 on configuring a JNDI object with
WebLogic; Recipe 25.6 on accessing a JNDI object with a servlet on WebLogic; Chapter 2 on
deploying web components with WebLogic.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 25.8 Accessing an EJB Using the WebLogic JNDI
Tree

Problem

You want to access an Enterprise JavaBean (EJB) from a servlet on WebLogic.

Solution

Find out the EJB's JNDI name and use the javax.naming package to get a reference to the
EJBObject or remote interface so that you can call the EJB's methods.

Discussion

A servlet accesses an EJB by using a specified JNDI name. The process is therefore transparent to the
servlet developer. Any EJBs an application uses comprise the business tier of an application. The
servlets and JSPs represent the web tier within the multi-tiered distributed architecture of a typical
Java 2 Enterprise Edition (J2EE) application. All you need to know is the JNDI name associated with
the EJB in order to use the EJB in your programs.

Enterprise JavaBeans is a comprehensive topic; however, this recipe is devoted
to showing how a servlet can connect to an EJB. The "See Also" segment of this
recipe includes several links to EJB and J2EE information and books.

You should be aware of the EJB's business methods, but do not have to be an expert on the
javax.ejb package to use the EJB. Example 25-13 shows the source code for a stateless session EJB

that is managed by BEA WebLogic 7.0 application server.

A certain type of EJB, a stateless session bean encapsulates business logic that
does not require persistence or the saving of the object's state between method
calls. On the other hand, a stateful session bean (such as a shopping cart
object), must remember the object's state (such as the value of various
instance variables) between method calls, as part of a conversation with the
EJB client.

Example 25-13 provides a java.util.Map that links U.S. state names with their postal
abbreviations. The session bean includes one business method, getAbbreviation(), which receives

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a state name as a parameter and returns its postal abbreviation.

Example 25-13. The stateless session EJB

package com.jspservletcookbook;

import javax.ejb.*;

import java.util.Map;
import java.util.HashMap;

public class AbbrevBean implements SessionBean{

 private SessionContext context;
 private Map abbrevMap;

 public AbbrevBean(){ //the bean's no-arguments constructor

 //A Map containing the names of states and abbreviations
 abbrevMap = new HashMap();

 abbrevMap.put("ALABAMA","AL");
 abbrevMap.put("ALASKA","AK");
 abbrevMap.put("AMERICAN SAMOA","AS");
 abbrevMap.put("ARIZONA","AZ");
 abbrevMap.put("ARKANSAS","AR");
 abbrevMap.put("CALIFORNIA","CA");
 abbrevMap.put("COLORADO","CO");
 abbrevMap.put("CONNECTICUTT","CT");

 abbrevMap.put("DELAWARE","DE");
 abbrevMap.put("DISTRICT OF COLUMBIA","DC");
 abbrevMap.put("FEDERATED STATES OF MICRONESIA","FM");
 abbrevMap.put("FLORIDA","FL");
 abbrevMap.put("GEORGIA","GA");
 abbrevMap.put("GUAM","GU");
 abbrevMap.put("HAWAII","HI");
 abbrevMap.put("IDAHO","ID");

 abbrevMap.put("ILLINOIS","IL");
 abbrevMap.put("INDIANA","IN");
 abbrevMap.put("IOWA","IA");
 abbrevMap.put("KANSAS","KS");
 abbrevMap.put("KENTUCKY","KY");
 abbrevMap.put("LOUISIANA","LA");

 abbrevMap.put("MAINE","ME");
 abbrevMap.put("MARSHALL ISLANDS","MH");
 abbrevMap.put("MARYLAND","MD");
 abbrevMap.put("MASSACHUSETTS","MA");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 abbrevMap.put("MICHIGAN","MI");
 abbrevMap.put("MINNESOTA","MN");

 abbrevMap.put("MISSISSIPPI","MS");
 abbrevMap.put("MISSOURI","MO");
 abbrevMap.put("MONTANA","MT");
 abbrevMap.put("NEBRASKA","NE");
 abbrevMap.put("NEVADA","NV");
 abbrevMap.put("NEW HAMPSHIRE","NH");

 abbrevMap.put("NEW JERSEY","NJ");
 abbrevMap.put("NEW MEXICO","NM");
 abbrevMap.put("NEW YORK","NY");
 abbrevMap.put("NORTH CAROLINA","NC");
 abbrevMap.put("NORTH DAKOTA","ND");
 abbrevMap.put("NORTHERN MARIANA ISLANDS","MP");

 abbrevMap.put("OKLAHOMA","OK");
 abbrevMap.put("OREGON","OR");
 abbrevMap.put("PALAU","PW");
 abbrevMap.put("PENNSYLVANIA","PA");
 abbrevMap.put("PUERTO RICO","PR");
 abbrevMap.put("RHODE ISLAND","RI");
 abbrevMap.put("SOUTH CAROLINA","SC");
 abbrevMap.put("SOUTH DAKOTA","SD");

 abbrevMap.put("TENNESSEE","TN");
 abbrevMap.put("TEXAS","TX");
 abbrevMap.put("UTAH","UT");
 abbrevMap.put("VERMONT","VT");
 abbrevMap.put("VIRGIN ISLANDS","VI");
 abbrevMap.put("VIRGINIA","VA");
 abbrevMap.put("WASHINGTON","WA");
 abbrevMap.put("WEST VIRGINIA","WV");
 abbrevMap.put("WISCONSIN","WI");
 abbrevMap.put("WYOMING","WY");

 }//constructor

 public void setSessionContext(SessionContext ctx) throws
 EJBException {
 context = ctx;
 }//setSessionContext

 public Map getAbbrevMap(){
 return abbrevMap;
 }

 //The bean's business method
 public String getAbbreviation(String state){
 return (String) abbrevMap.get(state);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //javax.ejb.SessionBean method; it has to be implemented in a session
 //bean, but is not relevant to Stateless session beans.
 public void ejbActivate(){}

 //javax.ejb.SessionBean method; it has to be implemented in a Session
 //bean, but is not relevant to stateless session beans.
 public void ejbPassivate(){}

 //javax.ejb.SessionBean method;
 public void ejbRemove() {}

}

Example 25-13 could easily be implemented as an ordinary Java helper or utility class. However, I
show a simple example of an EJB so that the recipe can focus on how a servlet connects to these
objects.

EJBs have a deployment descriptor, similar to the web.xml file that web applications use. The EJB
deployment descriptor must be named ejb-jar.xml . When you package the EJB(s) before they are
deployed on an application server, include this deployment descriptor as part of the archive. The ejb-
jar.xml file describes the related EJB component(s); the application server uses this descriptive
information in order to properly deploy the EJB.

For example, the ejb-jar.xml file in Example 25-14 specifies the type of EJB (e.g., stateless session
bean) and the fully qualified class names of its related Java classes, such as its remote interface.

Example 25-14. The ejb-jar.xml file

<?xml version="1.0"?>

 <!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.
 //DTD Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/dtd/ejb-jar_2_0.dtd"
 >

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>AbbreviationEjb</ejb-name>
 <home>com.jspservletcookbook.AbbrevHome</home>
 <remote>com.jspservletcookbook.Abbrev</remote>
 <local-home>com.jspservletcookbook.AbbrevLocalHome</local-home>
 <local>com.jspservletcookbook.AbbrevLocal</local>
 <ejb-class>com.jspservletcookbook.AbbrevBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
</ejb-jar>

The package that contains this EJB, and with which the EJB is deployed on the application server, is a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAR file named myejb.jar (just a name I concocted; you do not have to use the same name).

Since this stateless session bean is deployed on BEA WebLogic Server, the JAR file must include a
vendor-specific deployment descriptor named weblogic-ejb-jar.xml. This deployment descriptor gives
the deployer the opportunity to configure several aspects of how the EJB is deployed on WebLogic,
such as the JNDI names of its home and local home interfaces.

The "home" object is an implementation of the "home" interface, and the "local
home" object is an implmentation of the local home interface. These objects are
"factories" for EJB objects, which delegate the business-method calls to the EJB
deployed in the server. A factory is a Java class that generates objects of a
different kind of Java class. In this recipe's case, the client uses JNDI to get a
reference to the home object, which creates an EJB object. The servlet (client)
then calls the EJB object's getAbbreviation() method; the EJB object is a

remote object or "stub" that delegates this method call to the original EJB
stored on the server.

You will encounter the home object's JNDI name in the servlet depicted later on in this recipe.

When you deploy an EJB on WebLogic using the Administration Console,
WebLogic automatically binds the home and local home objects within the
WebLogic JNDI tree, using the names specified by the weblogic-ejb-jar.xml
deployment descriptor.

Example 25-15 shows the weblogic-ejb-jar.xml deployment descriptor for our stateless session bean.

Example 25-15. The weblogic-ejb-jar.xml file

<!DOCTYPE weblogic-ejb-jar PUBLIC
 '-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN'
 'http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd'>

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>AbbreviationEjb</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <initial-beans-in-free-pool>1</initial-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>
 <jndi-name>AbbrevHome</jndi-name>
 <local-jndi-name>AbbrevLocalHome</local-jndi-name>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

An EJB module is a complicated package that includes bean classes, remote interfaces, and two
different deployment descriptors. Example 25-16 shows the contents of the myejb.jar file. I use the
jar tvf myejb.jar. command in a command-line window to display the contents of the specified

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAR file (it works in both Unix and Windows).

Example 25-16. The contents of the ejb-jar.xml file

H:\book\cookbook\code\chap27\src\ejbs\ejbjar>jar tvf myejb.jar

 META-INF/
 META-INF/MANIFEST.MF
 com/
 com/jspservletcookbook/
 com/jspservletcookbook/Abbrev.class
 com/jspservletcookbook/AbbrevBean.class
 com/jspservletcookbook/AbbrevHome.class
 com/jspservletcookbook/AbbrevLocal.class
 com/jspservletcookbook/AbbrevLocalHome.class

 META-INF/ejb-jar.xml
 META-INF/weblogic-ejb-jar.xml

In Example 25-16, the session bean is AbbrevBean.class, the remote interface is Abbrev.class, and
the home object (the factory for EJB objects that implement the Abbrev interface) is

AbbrevHome.class.

Finally, Example 25-17 shows the servlet that uses the session bean from Example 25-13. The code
is self-explanatory. The important thing to remember is that the servlet receivese a reference to the
AbbrevHome object from the WebLogic JNDI tree. Then the servlet, in its doGet() method, calls the
AbbrevHome object's create() method to get an instance of the session bean's remote interface (in
this example, it's an Abbrev type).

Example 25-17. A servlet that accesses the EJB on WebLogic using JNDI

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.rmi.PortableRemoteObject;

import javax.servlet.*;
import javax.servlet.http.*;

public class WebJndiServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //The request parameter looks like 'state=Massachusetts'
 String state = request.getParameter("state");
 Context env = null;
 Abbrev abbrev = null;
 AbbrevHome home = null;

 try{

 env = (Context) new InitialContext();

 //Look up the home or factory object on the WebLogic JNDI tree
 Object localH = env.lookup("AbbrevHome");

 //This method call is necessary for EJB code that uses a
 //technology called RMI-IIOP
 home = (AbbrevHome) PortableRemoteObject.narrow(localH,
 AbbrevHome.class);

 //close the InitialContext
 env.close();

 if (home == null)
 throw new ServletException(
 "AbbrevHome is an unknown JNDI object");

 //Get the remote interface by calling the home object's create()
 //method
 abbrev = (Abbrev) PortableRemoteObject.narrow(home.create(),
 Abbrev.class);

 } catch (NamingException ne) {
 try{ env.close();} catch (NamingException nex) { }
 throw new ServletException(ne);
 } catch (javax.ejb.CreateException ce) {
 throw new ServletException(ce);
 }

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

 java.io.PrintWriter out = response.getWriter();

 out.println("<html><head>");

 out.println("<title>State abbreviations</title></head><body>");
 out.println("<h2>Here is the state's abbreviation</h2>");

 //Call the EJBObject's getAbbreviation() method; the EJBObject
 //delegates this method call to the session bean. Put the request
 //parameter in all upper-case, because this is how the session bean's
 //java.util.Map stores the state names, which are the Map's keys

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (state != null)
 out.println(abbrev.getAbbreviation(state.toUpperCase()));

 try{
 //The servlet is through with the EJBObject; call its remove()
 //method
 abbrev.remove();
 } catch (javax.ejb.RemoveException re){}

 out.println("</body></html>");

 }//doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 doGet(request, response);

 }//doPost

}//WebJndiServlet

The value of the abbreviation for a state such as "Oregon" is ultimately retrieved on the server side
by calling the session bean's getAbbreviation() method. Figure 25-8 shows a web browser

window after a user has requested the servlet. The URL looks something like
http://localhost:7001/webjndi?state=Oregon. The URL pattern /webjndi is mapped in web.xml to the
servlet of Example 25-17.

Figure 25-8. An EJB-accessing servlet's web browser display

See Also

Recipe 25.4 on configuring a JNDI object with WebLogic; Recipe 25.6 on accessing a JNDI object with

http://localhost:7001/webjndi?state=Oregon
http://lib.ommolketab.ir
http://lib.ommolketab.ir

a servlet on WebLogic; Chapter 2 on deploying web components with WebLogic; a web link for the
javax.ejb API: http://java.sun.com/j2ee/1.4/docs/api/javax/ejb/package-summary.html; the

documentation page for WebLogic Server 7.0: http://edocs.bea.com/wls/docs70/index.html; a link to
J2EE tutorials, including an Enterprise JavaBean tutorial:
http://java.sun.com/j2ee/tutorial/index.html; Enterprise JavaBeans, Third Edition (O'Reilly); J2EE
Design Patterns (O'Reilly).

[Team LiB]

http://java.sun.com/j2ee/1.4/docs/api/javax/ejb/package-summary.html
http://edocs.bea.com/wls/docs70/index.html
http://java.sun.com/j2ee/tutorial/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 26. Harvesting Web Information
Introduction

Recipe 26.1. Parsing an HTML Page Using thejavax.swing.text Subpackages

Recipe 26.2. Using a Servlet to Harvest Web Data

Recipe 26.3. Creating a JavaBean as a Web Page Parser

Recipe 26.4. Using the Web Page Parsing JavaBean in a Servlet

Recipe 26.5. Using the Web Page Parsing JavaBean in a JSP
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

The Web contains information galore. Much of this information is freely available by simply surfing
over to an organization's web site and reading their pages or search results. However, it can be
difficult separating the dross from the gems. The vast majority of a web page's visual components
are typically dedicated to menus, logos, advertising banners, and fancy applets or Flash movies.
What if all you are interested in is a tiny nugget of data awash in an ocean of HTML?

The answer lies in using Java to parse a web page to extract only certain pieces of information from
it. The web terms for this task are harvesting or scraping information from a web page. Perhaps web
services (Chapter 27) will eventually replace the need to harvest web data. But until most major
sites have their web services APIs up and running, you can use Java and certain javax.swing.text

subpackages to pull specified text from web pages.

How does it work? Basically, your Java program uses HTTP to connect with a web page and pull in its
HTML text.

Parsing the HTML from web sites still involves transferring the entire web page
over the network, even if you are only interested in a fraction of its information.
This is why using web services is a much more efficient manner of sharing
specific data from a web site.

Then use Java code to parse the HTML page in order to pull from it only the piece of data you are
interested in, such as weather data or a stock quote. The following recipes show the Java classes that
you can use to harvest web information. Then the recipes show a servlet and a JSP using a JavaBean
to grab and display, as an example, a live stock quote.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 26.1 Parsing an HTML Page Using
thejavax.swing.text Subpackages

Problem

You want to use the classes the Java 2 Standard Edition (J2SE) makes available for parsing HTML.

Solution

Use the various subpackages of the javax.swing.text package to create a parser for HTML.

Discussion

The J2SE 1.3 and 1.4 versions include the necessary classes for sifting through web pages in search
of information. The Java programs these recipes use import the following classes:

javax.swing.text.html.
HTMLEditorKit.ParserCallback;
javax.swing.text.MutableAttributeSet;
javax.swing.text.html.parser.ParserDelegator;

The design pattern that these classes use to read web pages involves three main elements:

A java.net.URL object that opens up a socket or InputStream to the web page using HTTP.

The code then uses this object to read the web page.

1.

A ParserDelegator object with which the code sifts through the web page by calling this
object's parse() method.

2.

A ParserCallback object that the ParserDelegator uses to take certain actions while it is

parsing the web page's HTML text. A callback in general is an object that Java code typically
passes into another object's constructor. The enclosing object then drives the callback by
invoking the callback's methods, which the Java programmer implements according to what
they want to accomplish by parsing the HTML. The role of the callback will become clearer as
you read through these recipes.

3.

The servlet and JavaBean defined in this chapter use an inner class to implement the callback.
Example 26-1 shows the callback that extends
javax.swing.text.html.HTMLEditorKit.ParserCallback.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 26-1. A callback class for sifting through web pages

class MyParserCallback extends ParserCallback {

 //bread crumbs that lead us to the stock price
 private boolean lastTradeFlag = false;
 private boolean boldFlag = false;

 public MyParserCallback(){
 //Reset the enclosing class' stock-price instance variable
 if (stockVal != 0)
 stockVal = 0f;
 }

 //A method that the parser calls each time it confronts a start tag
 public void handleStartTag(javax.swing.text.html.HTML.Tag t,
 MutableAttributeSet a,int pos) {
 if (lastTradeFlag && (t == javax.swing.text.html.HTML.Tag.B)){
 boldFlag = true;
 }

 }//handleStartTag

 //A method that the parser calls each time it reaches nested text content
 public void handleText(char[] data,int pos){

 htmlText = new String(data);
 if (htmlText.indexOf("No such ticker symbol.") != -1){
 throw new IllegalStateException(
 "Invalid ticker symbol in handleText() method.");

 } else if (htmlText.equals("Last Trade:")){
 lastTradeFlag = true;
 } else if (boldFlag){
 try{
 stockVal = new Float(htmlText).floatValue();
 } catch (NumberFormatException ne) {
 try{
 // tease out any commas in the number using NumberFormat
 java.text.NumberFormat nf = java.text.NumberFormat.
 getInstance();
 Double f = (Double) nf.parse(htmlText);
 stockVal = (float) f.doubleValue();
 } catch (java.text.ParseException pe){
 throw new IllegalStateException(
 "The extracted text " + htmlText +
 " cannot be parsed as a number!");

 }//try
 }//try

 //Reset the inner class's instance variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lastTradeFlag = false;
 boldFlag = false;
 }//if

 } //handleText
}//MyParserCallback

A callback includes methods that represent the attainment of a certain element of a web page during
the parsing process. For example, the parser (the object that encloses the callback object) calls
handleStartTag() whenever it runs into an opening tag as it traverses the web page. Examples of
opening tags are <html>, <title>, or <body>. Therefore, when you implement the handleStartTag(
) method in the code, you can control what your program does when it finds an opening tag, such as
"prepare to grab the text that appears within the opening and closing title tag."

Example 26-1 uses a particular algorithm to search a web page for an updated stock quote, and this
is what the two methods (handleStartTag() and handleText()) accomplish in the
MyParserCallback class:

It looks for the text "Last Trade" in the handleText() callback method; if it's found, the
lastTradeFlag boolean variable is set to true. This is like "dropping a bread crumb" as the

program travels through the vast HTML of the web page.

1.

If handleStartTag() finds a b tag right after "Last Trade" is found (the lastTradeFlag flag is
true), it grabs the nested content of that b tag, because this content represents the stock

quote.

2.

The big negative of web harvesting, which web services is partly designed to
solve, is that when the web page you are parsing is changed, your program
throws exceptions and no longer pulls out the information, because its
algorithms are based on the old page structure.

Example 26-2 shows a snippet of code that uses the ParserDelegator and MyParserCallback

objects, just to give you an idea of how they fit together before we move on to the servlet and JSP.

Example 26-2. A code snippet shows the parser and callback classes at
work

//Instance variables
private ParserDelegator htmlParser = null;
private MyParserCallback callback = null;

//Initialize a BufferedReader and a URL inside of a method for connecting
//to and reading a web page
BufferedReader webPageStream = null;
URL stockSite = new URL(BASE_URL + symbol);

//Connect inside of a method
webPageStream = new BufferedReader(
 new InputStreamReader(stockSite.openStream()));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//Create the parser and callback
htmlParser = new ParserDelegator();

callback = new MyParserCallback();//ParserCallback

//Call parse(), passing in the BufferedReader and callback objects
htmlParser.parse(webPageStream,callback,true);

The parse() method of ParserDelegator is what triggers the calling of the callback's methods,
with the callback passed in as an argument to parse().

Now let's see how these classes work in a servlet, JavaBean, and JSP.

See Also

A Javadoc link for ParserDelegator:

http://java.sun.com/j2se/1.4.1/docs/api/javax/swing/text/html/parser/ParserDelegator.html;
Chapter 27 on using web services APIs to grab information from web servers.

[Team LiB]

http://java.sun.com/j2se/1.4.1/docs/api/javax/swing/text/html/parser/ParserDelegator.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 26.2 Using a Servlet to Harvest Web Data

Problem

You want to use a servlet to harvest web information.

Solution

Use the HTML parsing API classes of the Java 2 Software Development Kit (SDK).

Discussion

The last recipe introduced the relevant subpackages of the javax.swing.text package; this is where

I show how to use them in a servlet. Example 26-3 imports the necessary classes to parse an HTML
page. The servlet's doGet() method displays a form in which the user enters a stock symbol (such

as "INTC," case insensitive).

Then the doPost() method attempts to get a live stock quote for that symbol by parsing a web

page from finance.yahoo.com.

Example 26-3. Harvesting web data from a servlet

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.URL;
import java.net.MalformedURLException;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.swing.text.html.HTMLEditorKit.ParserCallback;
import javax.swing.text.MutableAttributeSet;
import javax.swing.text.html.parser.ParserDelegator;

public class HtmlParseServlet extends HttpServlet {

 private static final String BASE_URL = "http://finance.yahoo.com"+
 "/q?d=t&s=";
 private ParserDelegator htmlParser = null;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private MyParserCallback callback = null;
 private String htmlText = "";
 private boolean lastTradeFlag = false;
 private boolean boldFlag = false;
 private float stockVal = 0f;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 java.io.IOException {

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

 //use a PrintWriter to send text
 java.io.PrintWriter out = response.getWriter();

 //Begin assembling the HTML content
 out.println("<html><head>");

 out.println("<title>Stock Price Fetcher</title></head><body>");
 out.println("<h2>Please submit a valid stock symbol</h2>");

 //make sure method="post" so that the servlet service method
 //calls doPost in the response to this form submit
 out.println(
 "<form method=\"post\" action =\"" + request.getContextPath() +
 "/stockservlet\" >");

 out.println("<table border=\"0\"><tr><td valign=\"top\">");
 out.println("Stock symbol: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"symbol\" size=\"10\">");
 out.println("</td></tr><tr><td valign=\"top\">");

 out.println(
 "<input type=\"submit\" value=\"Submit Info\"></td></tr>");

 out.println("</table></form>");
 out.println("</body></html>");

 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws java.io.IOException{
 String symbol;//this will hold the stock symbol
 float price;//The stock's latest price
 symbol = request.getParameter("symbol");
 boolean isValid = (symbol == null || symbol.length() < 1) ?
 false : true;

 //set the MIME type of the response, "text/html"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();

 //Begin assembling the HTML content
 out.println("<html><head>");
 out.println("<title>Latest stock value</title></head><body>");
 if (! isValid){
 out.println(
 "<h2>Sorry, the stock symbol parameter was either empty "+
 "or null</h2>");
 } else {
 out.println("<h2>Here is the latest value of "+ symbol +"</h2>");
 price = getLatestPrice(symbol);
 out.println((price==0? "The symbol is probably invalid." :
 ""+price));
 }
 out.println("</body></html>");

 }// doPost

 private float getLatestPrice(String symbol) throws IOException,
 MalformedURLException {

 BufferedReader webPageStream = null;
 URL stockSite = new URL(BASE_URL + symbol);
 webPageStream = new BufferedReader(new InputStreamReader(stockSite.
 openStream()));
 htmlParser = new ParserDelegator();
 callback = new MyParserCallback();
 //the code is designed to make calling parse() thread-safe
 synchronized(htmlParser){
 htmlParser.parse(webPageStream,callback,true);
 }//synchronized
 return stockVal;
 }//getLatestPrice

 class MyParserCallback extends ParserCallback {

 //bread crumbs that lead us to the stock price
 private boolean lastTradeFlag = false;
 private boolean boldFlag = false;

 public MyParserCallback(){
 //Reset the enclosing class' instance variable
 if (stockVal != 0)
 stockVal = 0f;
 }

 public void handleStartTag(javax.swing.text.html.HTML.Tag t,
 MutableAttributeSet a,int pos) {
 if (lastTradeFlag && (t == javax.swing.text.html.HTML.Tag.B)){

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 boldFlag = true;
 }
 }//handleStartTag

 public void handleText(char[] data,int pos){

 htmlText = new String(data);
 if (htmlText.indexOf("No such ticker symbol.") != -1){
 throw new IllegalStateException(
 "Invalid ticker symbol in handleText() method.");
 } else if (htmlText.equals("Last Trade:")){
 lastTradeFlag = true;
 } else if (boldFlag){
 try{

 stockVal = new Float(htmlText).floatValue();
 } catch (NumberFormatException ne) {
 try{
 // tease out any commas in the number using
 //NumberFormat
 java.text.NumberFormat nf = java.text.NumberFormat.
 getInstance();
 Double f = (Double) nf.parse(htmlText);
 stockVal = (float) f.doubleValue();
 } catch (java.text.ParseException pe){
 throw new IllegalStateException(
 "The extracted text " + htmlText +
 " cannot be parsed as a number!");
 }//try
 }//try

 lastTradeFlag = false;
 boldFlag = false;
 }//if
 } //handleText
 }//MyParserCallback
}//HttpServlet

The MyParserCallback inner class defines the parsing algorithm for the servlet, which is explained in
Recipe 26.1. The getLatestPrice() method uses this callback class and an HTML parser to return a
stock quote as a float type.

The ParserDelegator object is synchronized as it calls parse(), so that only
one thread is parsing the web page and setting the value of stockVal (an

instance variable representing the stock value) at one time.

This servlet is a little too complicated for one class, as it uses servlet API and HTML parsing API
classes. A better design would separate these responsibilities into different Java classes. The
upcoming recipes create a JavaBean whose responsibility is to parse HTML for a live stock quote.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 26-1 shows the output of the servlet's doGet() method.

Figure 26-1. The user enters a stock symbol and submits the form

Figure 26-2 shows the servlet's doPost() method output in a Netscape browser.

Figure 26-2. The servlet returns the latest stock price for the symbol

See Also

Recipe 26.3 on creating a JavaBean as a web-page parser; Recipe 26.4 and Recipe 26.5 on using the
bean with a servlet and a JSP, respectively.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 26.3 Creating a JavaBean as a Web Page Parser

Problem

You want to create a JavaBean that web components can use to parse an HTML page.

Solution

Use the Java API classes for parsing HTML from the javax.swing.text subpackages. Store the

JavaBean in WEB-INF/classes or in a JAR placed inside WEB-INF/lib.

Discussion

Example 26-4 is a JavaBean whose sole purpose is to parse a web page for live stock quotes. A
servlet or JSP can use this JavaBean for its special purpose, and thus avoid the clutter of taking on
the parsing responsibility itself. All of the code, including the inner class representing a
ParserCallback, is reproduced from this chapter's earlier recipes. What's new is the setter or
mutator method for the bean's stock symbol: setSymbol(String symbol).

Example 26-4. A JavaBean for use with servlets and JSPs

package com.jspservletcookbook;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URL;
import java.net.MalformedURLException;

import javax.swing.text.html.HTMLEditorKit.ParserCallback;
import javax.swing.text.MutableAttributeSet;
import javax.swing.text.html.parser.ParserDelegator;

public class StockPriceBean {

 private static final String urlBase = "http://finance.yahoo.com/"+
 "q?d=t&s=";

 private BufferedReader webPageStream = null;

 private URL stockSite = null;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private ParserDelegator htmlParser = null;

 private MyParserCallback callback = null;

 private String htmlText = "";
 private String symbol = "";
 private float stockVal = 0f;

 public StockPriceBean() {}

 //Setter or mutator method for the stock symbol
 public void setSymbol(String symbol){
 this.symbol = symbol;
 }

 class MyParserCallback extends ParserCallback {

 //bread crumbs that lead us to the stock price
 private boolean lastTradeFlag = false;
 private boolean boldFlag = false;

 public MyParserCallback(){
 //Reset the enclosing class' instance variable
 if (stockVal != 0)
 stockVal = 0f;
 }

 public void handleStartTag(javax.swing.text.html.HTML.Tag t,
 MutableAttributeSet a,int pos) {
 if (lastTradeFlag && (t == javax.swing.text.html.HTML.Tag.B)){
 boldFlag = true;
 }

 }//handleStartTag

 public void handleText(char[] data,int pos){
 htmlText = new String(data);
 if (htmlText.indexOf("No such ticker symbol.") != -1){
 throw new IllegalStateException(
 "Invalid ticker symbol in handleText() method.");
 } else if (htmlText.equals("Last Trade:")){
 lastTradeFlag = true;
 } else if (boldFlag){
 try{

 stockVal = new Float(htmlText).floatValue();
 } catch (NumberFormatException ne) {
 try{
 // tease out any commas in the number using
 //NumberFormat
 java.text.NumberFormat nf = java.text.NumberFormat.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 getInstance();
 Double f = (Double) nf.parse(htmlText);
 stockVal = (float) f.doubleValue();
 } catch (java.text.ParseException pe){
 throw new IllegalStateException(
 "The extracted text " + htmlText +
 " cannot be parsed as a number!");
 }//try
 }//try

 lastTradeFlag = false;
 boldFlag = false;

 }//if
 } //handleText

 }//MyParserCallback

 public float getLatestPrice() throws IOException,MalformedURLException {
 stockSite = new URL(urlBase + symbol);
 webPageStream = new BufferedReader(new InputStreamReader(stockSite.
 openStream()));
 htmlParser = new ParserDelegator();
 callback = new MyParserCallback();//ParserCallback
 synchronized(htmlParser){
 htmlParser.parse(webPageStream,callback,true);
 }//synchronized
 //reset symbol
 symbol = "";
 return stockVal;
 }//getLatestPrice

}//StockPriceBean

This bean resets the symbol instance variable to the empty String when it's finished fetching the
stock quote. The MyParserCallback class resets the stockVal instance variable to 0, so that the
previously attained stock price does not linger between different thread's calls to getLatestPrice(
).

Now let's see how a servlet and JSP use the bean.

See Also

Recipe 26.4 on using this JavaBean in a servlet; Recipe 26.5 on using the bean in a JSP.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 26.4 Using the Web Page Parsing JavaBean in a
Servlet

Problem

You want to use the JavaBean for parsing HTML in a servlet.

Solution

Create an instance of the bean in the appropriate service method (e.g., doGet() or doPost()) and

call its methods.

Discussion

The JavaBean has to be available to the servlet, and therefore stored in WEB-INF/classes, including
subdirectories that match the bean's package name. The JavaBean can also be stored in a JAR inside
of WEB-INF/lib.

Since the JavaBean in Example 26-5 shares the servlet's package (com.jspservletcookbook), the

servlet class does not have to import the bean class.

If the JavaBean resides in a different package in the web application, then the
servlet has to include an import statement such as the following example:

import com.parkerriver.beans.BeanParserServlet;

The doGet() method provides an HTML form for entering a stock symbol (such as "intc"). The
doPost() method then creates an instance of the StockPriceBean, calls the bean's setSymbol()
method, and finally displays the stock price by calling the bean's getLatestPrice() method.

Example 26-5. A servlet uses a specially designed JavaBean to get a live
stock quote

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.servlet.http.*;

public class BeanParserServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

 //use a PrintWriter send text data to the client
 java.io.PrintWriter out = response.getWriter();

 //Begin assembling the HTML content
 out.println("<html><head>");
 out.println("<title>Stock Price Fetcher</title></head><body>");
 out.println("<h2>Please submit a valid stock symbol</h2>");

 //make sure method="POST" so that the servlet service method
 //calls doPost in the response to this form submit
 out.println(
 "<form method=\" POST \" action =\"" + request.getContextPath() +
 "/stockbean\" >");

 out.println("<table border=\"0\"><tr><td valign=\"top\">");
 out.println("Stock symbol: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"symbol\" size=\"10\">");
 out.println("</td></tr><tr><td valign=\"top\">");
 out.println("<input type=\"submit\" value=\"Submit Info\"></td></tr>");
 out.println("</table></form>");
 out.println("</body></html>");

 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 String symbol;//this will hold the stock symbol

 float price = 0f;

 symbol = request.getParameter("symbol");

 boolean isValid = (symbol == null || symbol.length() < 1) ?
 false : true;

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //use a PrintWriter send text data to the client
 java.io.PrintWriter out = response.getWriter();

 //Begin assembling the HTML content
 out.println("<html><head>");
 out.println("<title>Latest stock value</title></head><body>");

 if (! isValid){
 out.println(
 "<h2>Sorry, the stock symbol parameter was either empty "+
 "or null</h2>");
 } else {
 out.println("<h2>Here is the latest value of "+ symbol +"</h2>");
 StockPriceBean spbean = new StockPriceBean();
 spbean.setSymbol(symbol);
 price = spbean.getLatestPrice();
 out.println((price==0? "The symbol is probably invalid." :
 ""+price));
 }//if
 out.println("</body></html>");
 }// doPost
}//HttpServlet

The servlet's HTML form (generated by the doGet() method) and the stock price display (generated
by doPost()) has the same web browser display as the one shown in Figures Figure 26-1 and

Figure 26-2.

See Also

Recipe 26.3 on creating a JavaBean as a web page parser; Recipe 26.5 on using a web page parsing
JavaBean in a JSP.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 26.5 Using the Web Page Parsing JavaBean in a
JSP

Problem

You want to use a JavaBean and JSP to harvest information from a web page.

Solution

Use the jsp:useBean standard action to create an instance of the bean.

Discussion

The same JavaBean that prior recipes created and stored in the web application in WEB-INF/classes
can be used by a JSP. The JSP in Example 26-6 uses jsp:useBean to create an instance of the bean
named priceFetcher. If the request does not contain a symbol parameter, the JSP displays the

HTML form shown in Figure 26-1.

The JSP uses the JSTL core tags to generate this conditional behavior. These tags include c:choose,
c:when, and c:otherwise.

If the request to the JSP contains a symbol parameter, the JSP sets the priceFetcher's symbol

property to the value of this request parameter. This code is the equivalent of calling the bean's
setSymbol() method; it passes the name of the stock symbol to the bean so that it can grab a live

stock quote from the web page.

Example 26-6. A JSP uses jsp:useBean to employ a web-harvesting
JavaBean

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<jsp:useBean id="priceFetcher" class=
 "com.jspservletcookbook.StockPriceBean" />

<html>
<head><title>Price Fetch</title></head>
<body>

<c:choose>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <c:when test="${empty param.symbol}">

 <h2>Please submit a valid stock symbol</h2>

 <form method="POST" action =
 '<c:out value="${pageContext.request.contextPath}" />/priceFetch.jsp'>

 <table border="0"><tr><td valign="top">Stock symbol: </td>
 <td valign="top">
 <input type="text" name="symbol" size="10"></td></tr>
 <tr><td valign="top">
 <input type="submit" value="Submit Info"></td></tr>
 </table></form>

 </c:when>

 <c:otherwise>

 <h2>Here is the latest value of <c:out value="${param.symbol}" /></h2>

 <jsp:setProperty name="priceFetcher" property="symbol" value=
 "<%= request.getParameter(\"symbol\") %>" />

 <jsp:getProperty name="priceFetcher" property="latestPrice"/>

 </c:otherwise>

 </c:choose>

</body>
</html>

Now that the JSP has seeded the bean with the stock symbol, this code will call the bean's
getLatestPrice() method:

<jsp:getProperty name="priceFetcher" property="latestPrice"/>

The JSP's output replaces the jsp:getProperty standard action with the stock price, as long as the
stock symbol sent to the bean with jsp:setProperty was valid.

The output of the JSP in Example 26-6 looks just like the output shown in Figures Figure 26-1 and
Figure 26-2.

See Also

Chapter 23 on the JSTL; Recipe 26.4 on using a web page parsing JavaBean in a servlet.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 27. Using the Google and Amazon
Web APIs

Introduction

Recipe 27.1. Getting Set Up with Google's Web API

Recipe 27.2. Creating a JavaBean to Connect with Google

Recipe 27.3. Using a Servlet to Connect with Google

Recipe 27.4. Using a JSP to Connect with Google

Recipe 27.5. Getting Set Up with Amazon's Web Services API

Recipe 27.6. Creating a JavaBean to Connect with Amazon

Recipe 27.7. Using a Servlet to Connect with Amazon

Recipe 27.8. Using a JSP to Connect with Amazon
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Introduction

Google and Amazon.com are both early adopters in the emerging field of web services.

Google is a giant web search engine and directory. Amazon.com is a e-commerce web site that began
as an online bookstore and has since branched out into numerous products such as software and
electronics. Both sites separately offer software developers web services Application Programming
Interfaces (APIs) that give you the ability to manage Google searches using Java objects and access
Amazon's comprehensive product catalogs with your Java code.

For us Java developers, web services means making requests and receiving responses using a special
XML format. In other words, you make a request using XML elements and attributes in text form, and
receive a response in the same format. Web services typically use an XML-based protocol named
Simple Object Access Protocol (SOAP) to transfer information.

In a nutshell, SOAP represents the abstraction of an envelope, that in turn contains optional headers
and the message body. The message, composed of its outer envelope, as well as the headers and
body, is made up of XML elements that are associated with specified namespaces. The technologies
this chapter describes use HTTP to carry these XML-based SOAP messages.

I never really understood SOAP messages until I looked at some samples. Example 27-1 is part of a
SOAP response to an Amazon Web Services keyword-search request using the query "Lance
Armstrong."

The response is an XML file composed of a ProductInfo root element, which contains one or more
Details elements. Each one of these Details represents a book from Amazon's catalog (I omitted
all but one of the Details elements, just to make the sample easier to view). Only one of the

returned books is shown.

Example 27-1. A SOAP response from Amazon Web Services based on a
searchfor the terms "Lance Armstrong"

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ProductInfo PUBLIC "-//Amazon.com //DTD Amazon Product Info//EN"
 "http://xml.amazon.com/schemas/dev-lite.dtd">

<ProductInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xml.amazon.com/schemas/dev-lite.xsd">

 <Details url=
 "http://www.amazon.com/exec/obidos/ASIN/0399146113/webservices-20?
 dev-t=DCJEAVXSDVPUD%26camp=2025%26link_code=xm2">

 <Asin>0399146113</Asin>
 <ProductName>It's Not About the Bike: My Journey Back to Life

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </ProductName>
 <Catalog>Book</Catalog>
 <Authors>
 <Author>Lance Armstrong</Author>
 <Author>Sally Jenkins</Author>
 </Authors>
 <ReleaseDate>June, 2000</ReleaseDate>
 <Manufacturer>Putnam Pub Group</Manufacturer>

 <ImageUrlSmall>
 http://images.amazon.com/images/P/0399146113.01.THUMBZZZ.jpg
 </ImageUrlSmall>

 <ImageUrlMedium>
 http://images.amazon.com/images/P/0399146113.01.MZZZZZZZ.jpg
 </ImageUrlMedium>

 <ImageUrlLarge>
 http://images.amazon.com/images/P/0399146113.01.LZZZZZZZ.jpg
 </ImageUrlLarge>

 <ListPrice>$24.95</ListPrice>
 <OurPrice>$17.47</OurPrice>
 <UsedPrice>$9.99</UsedPrice>

 </Details>

</ProductInfo>

Three principal reasons for adopting SOAP-based web services are:

SOAP is standards-based, so you can use any technology that has developed a SOAP API or
toolkit, including Java, .NET, Perl, and Python. Object-oriented technologies (like Java) allow
you to build and read SOAP messages using objects, instead of having to deal with raw XML,
which can make web services gratifying to work with.

1.

Web services represent interoperability between technologies. A server that is using J2EE
technologies such as servlets and JSPs can easily exchange messages with a server running
.NET, because they speak the same language: SOAP and XML.

2.

SOAP messages can easily be exchanged between web servers without running afoul of the
limitations of firewalls, because the messages are made of up XML text and carried by HTTP (in
a very general way, just like an HTML page). Developers are embracing SOAP as an easier form
of distributed computing: it allows an object residing in the memory of one server to call
methods on one or more objects residing on distant computers by exchanging SOAP messages.

3.

A recipe introduction cannot do justice to a complicated topic such as SOAP, but there are plenty of
books and free tutorials on this topic (see this chapter's "See Also" sections for some suggestions).

Mostly in a beta stage of development, the Amazon and Google web services APIs allow a Java
program to create very useful and complex systems that interact with Amazon and Google. The
Amazon and Google web services programs are designed to familiarize developers with these new

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ways of handling requests and responses to the two popular web destinations.

The programs generally involve creating a developer's account and recieving a key, or token, that will
accompany each one of your requests to these sites. This chapter describes how to get set up with
using Amazon and Google web services, then shows you how to integrate these APIs with a servlet
and JSP.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 27.1 Getting Set Up with Google's Web API

Problem

You want to use Google's Web API to make Java-enabled searches of Google's vast web index.

Solution

Download the Google Web APIs SDK. Create a Google account and get a license key that allows the
use of Google's Web API.

Discussion

The Google Web APIs SDK includes an archive named google.jar. This file contains the classes that
your program will use to connect with Google during searches. Here are the specific steps you take to
prepare the web application for connecting with Google:

Download the zipped SDK from http://www.google.com/apis/download.html. Unpack this file
into a directory (named googleapi in Beta Version 3.0 of the Google Web APIs). This directory
contains google.jar, along with a lot of code samples and documentation.

1.

Create a Google account and get a license key, which is encoded text that looks like
"5W1ABCyzPSyI3rIa5Pt3DtXMatsdzaSGB." Your Java code uses this key when it queries
Google's index. The query will fail if it is not accompanied by a valid key.

2.

Place the google.jar file in the WEB-INF/lib directory of the web application.3.

Develop your Java classes for connecting with Google, using the com.google.soap.search

package from the google.jar file.

4.

See Also

The home for the Google Web APIs: http://www.google.com/apis/; the Google web APIs SDK:
http://www.google.com/apis/download.html.

[Team LiB]

http://www.google.com/apis/download.html
http://www.google.com/apis/
http://www.google.com/apis/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 27.2 Creating a JavaBean to Connect with Google

Problem

You want to use Google's Web APIs to make Java-enabled searches to Google's site.

Solution

Create a JavaBean so that you can use the bean in both a servlet and JSP.

Discussion

The first thing to do is get set up with a Google Web Services account, as described in Recipe 27.1 .
Now create a JavaBean that will make keyword searches of Google and return the results.

Example 27-2 first imports the package contained in googleapi.jar : com.google.soap.search .

Remember, you stored that JAR file in WEB-INF/lib . This means that the web application can find the
Java classes in that package and the GoogleBean in Example 27-2 can use it.

Example 27-2. A JavaBean that searches Google's web database

package com.jspservletcookbook;

import com.google.soap.search.*;

public class GoogleBean {

 private GoogleSearch search;
 private GoogleSearchResult googleRes;
 private final static String GOOGLE_KEY =
 "5W1BWPyzPSyI3rIa5Pt3DtXMatsniSGB";

 private String lineSep = "\n";

 //Settable bean properties
 private String query;
 private boolean filter;
 private int maxResults;
 private int startRes;
 private boolean safeSearch;
 private String restrict;
 private String langRestrict;

 public GoogleBean(){ //No-arguments constructor for the bean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 query = "";
 restrict = "";
 langRestrict = "";
 }

 public String structureResult(GoogleSearchResult res){
 //Each GoogleSearchResultElement
 GoogleSearchResultElement[] elements = res.getResultElements();
 String url ="";
 String results = "Estimated total results count: " +
 res.getEstimatedTotalResultsCount() + lineSep + lineSep;

 for (int i = 0; i < elements.length; i++){
 url = elements[i].getURL();
 results += ("Title: " + elements[i].getTitle() + lineSep +
 "URL: " + url + ""+ lineSep +
 "Summary: " + elements[i].getSummary() + lineSep +
 "Snippet: " + elements[i].getSnippet() + lineSep + lineSep);
 }
 return results;
 }

 public String getSearchResults() throws GoogleSearchFault {

 search = new GoogleSearch();
 search.setKey(GOOGLE_KEY);
 search.setFilter(filter);
 if(restrict.length() > 0)
 search.setRestrict(restrict);
 search.setQueryString(query);
 googleRes = search.doSearch();
 return structureResult(googleRes);
 }

 public void setLineSep(String lineSep){
 this.lineSep=lineSep;
 }
 public String getLineSep(){
 return lineSep;
 }
 public void setQuery(String query){
 this.query = query;
 }

 public String getQuery(){
 return query;
 }

 public void setRestrict(String query){
 this.restrict = restrict;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public String getRestrict(){
 return restrict;
 }

 public void setLangRestrict(String langRestrict){

 this.langRestrict = langRestrict;
 }

 public String getLangRestrict(){
 return langRestrict;
 }

 public void setFilter(boolean filter){
 this.filter = filter;
 }

 public boolean getFilter(){
 return filter;
 }

 public void setSafeSearch(boolean safeSearch){
 this.safeSearch = safeSearch;
 }

 public boolean getSafeSearch(){
 return safeSearch;
 }

 public void setMaxResults(int maxResults){
 this.maxResults = maxResults;
 }

 public int getMaxResults(){
 return maxResults;
 }

 public void setStartRes(int startRes){
 this.startRes = startRes;
 }

 public int getStartRes(){
 return startRes;
 }
}//GoogleBean

The interesting action in Example 27-2 occurs in the methods getSearchResults() and
structureResults() .

In getSearchResults() , the code creates a GoogleSearch object, which is then customized with
Google search options before the GoogleSearch doSearch() method is called. The GoogleSearch

object uses setter methods to design a specific google.com search. For example, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setQueryString() method provides the user's search terms. The Java objects that are using the
bean provides the search terms by calling the bean's setQuery() method.

You can set the various options for Google searches by calling the
GoogleSearch setter methods. For example, calling setFilter(true) filters

out all the results that derive from the same web host. And you can restrict the
search to specific Google subsites by calling setRestrict("mac") . See

http://www.google.com/apis/reference.html .

Every SOAP-related search of Google must call the GoogleSearch setKey() method with the proper

license key, or the search is rejected.

The structureResults() method formats the search results. Google search results are
encapsulated by a GoogleSearchResult object. This object contains an array of
GoogleSearchResultElement objects, which represent each URL that the Google search has
returned. The GoogleSearchResult getResultElements() method returns the
GoogleSearchResultElement array.

The code then iterates through the array . Each returned element (the GoogleSearchResultElement

object) has getter or accessor methods that provides information about the web-page search result:

getURL() returns the URL of the found item

getTitle() returns the title of the found HTML page

getSnippet() returns a snippet (a small, possibly ambiguous, piece of text from the web

page)

getSummary() returns a text summary of the found web page

The bean uses these methods to display the URL, title, snippet, and summary of each web page the
search returns. Figure 27-2 shows how these results are displayed.

See Also

The home for Google Web Service: http://www.google.com/apis/ ; the Google Web APIs SDK:
http://www.google.com/apis/download.html ; Recipe 27.1 on setting up your programming
environment for use with the Google Web APIs.

[Team LiB]

http://www.google.com/apis/reference.html
http://www.google.com/apis/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 27.3 Using a Servlet to Connect with Google

Problem

You want to connect to Google with a servlet and initiate a search.

Solution

Use the JavaBean described in Recipe 27.2 as a Google search utility class.

Discussion

The servlet in Example 27-3 uses the GoogleBean from Recipe 27.2 to initiate google.com searches

and display the results.

The servlet displays an HTML form in its doGet() method. The client uses this form to input Google
search parameters, and then POST the form parameters back to the same servlet. Finally, the
servlet's doPost() method creates an instance of the GoogleBean to initiate the search. In this

case, use the deployment descriptor to map any requests of the form "/googleservlet" to Example
27-3.

Example 27-3. A servlet uses a special JavaBean to search Google and
display any results

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.*;
import javax.servlet.http.*;

public class GoogleServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 response.setContentType("text/html");

 java.io.PrintWriter out = response.getWriter();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("<html><head>");
 out.println("<title>Initiate a Google Search</title></head><body>");
 out.println("<h2>Please enter your search terms</h2>");

 //Make sure method="POST" so that the servlet service method
 //calls doPost in the response to this form submit
 out.println(
 "<form method=\"POST\" action =\"" + request.getContextPath() +
 "/googleservlet\" >");

 out.println("<table border=\"0\"><tr><td valign=\"top\">");
 out.println("Search terms: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"query\" size=\"15\">");
 out.println("</td></tr><tr><td valign=\"top\">");
 out.println(
 "Restrict to Google sub-site... </td> <td valign=\"top\">");
 out.println(
 "<select name=\"restrict\"><option>unclesam</option>"+
 "<option>linux</option>option>mac</option><option>bsd</option>"+
 "</select>");
 out.println("</td></tr><tr><td valign=\"top\">");
 out.println(
 "<input type=\"submit\" value=\"Submit Info\"></td></tr>");
 out.println("</table></form>");
 out.println("</body></html>");
 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException,java.io.IOException{

 String query = request.getParameter("query");
 String restrict = request.getParameter("restrict");
 boolean isValid = (query == null || query.length() < 1) ?
 false : true;

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

 java.io.PrintWriter out = response.getWriter();

 out.println("<html><head>");
 out.println("<title>Google results</title></head><body>");

 if (! isValid){
 out.println(
 "<h2>Sorry, the query parameter was either empty or null</h2>");
 } else {
 out.println("<h2>Here are your search results</h2>");
 GoogleBean gb = new GoogleBean();
 gb.setFilter(true);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //Configure for web display
 gb.setLineSep("
");
 if (restrict != null && restrict.length() > 0)
 gb.setRestrict(restrict);
 gb.setQuery(query);
 try {
 out.println(gb.getSearchResults());
 } catch (Exception e){
 throw new ServletException(e.getMessage());
 }
 }//if
 out.println("</body></html>");

 }// doPost
}//GoogleServlet

Using the GoogleBean class in doPost() is straightforward. The code sets a few search options
(such as setFilter(true)), then calls the bean's getSearchResults() method. This method
returns a String of formatted search results, which the servlet's PrintWriter sends to the browser

for display.

Figure 27-1 shows the simple HTML form displayed in the servlet's doGet() method.

Figure 27-1. Enter keywords to search Google with a servlet

The "Restrict to Google sub-site . . . " part allows the user to choose one of none, unclesam, linux,
mac, or bsd. The user enters the search term "Lance Armstrong" in the HTML form's text field, then
presses the "Submit Info" button. Figure 27-2 shows the search results dispalyed by the servlet's
doPost() method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Google Web APIs display a maximum of 10 results per search.

Figure 27-2. A servlet using the Google Web APIs displays some search
results

See Also

The home for Google Web Service: http://www.google.com/apis/; the Google Web APIs SDK:
http://www.google.com/apis/download.html; Recipe 3.1 on mapping a servlet to a name in web.xml;
Recipe 27.1 on setting up your programming environment for use with the Google Web APIs; Recipe
27.4 on using a JSP to connect with Google web services.

http://www.google.com/apis/
http://www.google.com/apis/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 27.4 Using a JSP to Connect with Google

Problem

You want to search Google using the Google Web APIs and a JSP.

Solution

Use the jsp:useBean standard action to get access to the GoogleBean from Example 27-2, then use

this bean instance to connect with Google's web tools.

Discussion

The JSP in Example 27-4 uses the JSTL core tags to determine if the user has sent a search query
along with their request. If the query request parameter is empty, then the JSP displays a form (see
Figure 27-1). See Chapter 23 for details on the JSTL core tags.

If the request parameter is filled by a search query, the JSP uses the GoogleBean to search
google.com and display the results. The JSP uses the jsp:useBean standard action to create an

instance of the bean, which is stored in the WEB-INF/lib directory.

Example 27-4. A JSP uses a JavaBean to search google.com

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Search Google from a JSP</title></head>
<body>

<c:choose>

 <c:when test="${empty param.query}">

 <h2>Please enter your search terms...</h2>

 <%-- Display the HTML form... --%>

 <form method="POST" action ='<c:out value=
 "${pageContext.request.contextPath}" />/google.jsp'>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <table border="0">

 <tr><td valign="top">

 Search terms: </td> <td valign="top">
 <input type="text" name="query" size="15">
 </td></tr>

 <tr><td valign="top">
 Restrict to Google sub-site... </td> <td valign="top">

 <select name="restrict">
 <option selected>none</option><option>unclesam</option>
 <option>linux</option>
 <option>mac</option><option>bsd</option></select>
 </td></tr>

 <tr><td valign="top">
 <input type="submit" value="Submit Info"></td></tr>
 </table></form>

<%-- End of the HTML form... --%>

 </c:when>

 <c:otherwise>

 <%-- Create an instance of the GoogleBean --%>
 <jsp:useBean id="gBean" class="com.jspservletcookbook.GoogleBean" />

 <h2>Here are your search results</h2>

 <%-- Set the query, restrict, and lineSep properties of the GoogleBean --%>

 <jsp:setProperty name="gBean" property="query" param="query"/>
 <jsp:setProperty name="gBean" property="restrict" param="restrict"/>
 <jsp:setProperty name="gBean" property="lineSep" value="

"/>

 <%-- Now display any results of the search --%>

 <jsp:getProperty name="gBean" property="searchResults" />

 </c:otherwise>

</c:choose>

</body>
</html>

The JSP uses the jsp:setProperty standard action to the bean instance's query, restrict, and
lineSep properties. The query represents the search terms; restrict can have values of mac,
linux, bsd, or unclesam, representing various Google sub-sites, and the lineSep property determines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the line-separation characters to use when formatting the results (
 in this example).

Finally, the code uses jsp:getProperty to effectively call the GoogleBean's getSearchResults()

method, which sends a SOAP message to Google and formats the response.

See Also

The home for Google Web Service: http://www.google.com/apis/; the Google web APIs SDK:
http://www.google.com/apis/download.html; Recipe 27.1 on setting up your programming
environment for use with the Google Web APIs; Recipe 27.3 on using a servlet to connect with
Google web services.

[Team LiB]

http://www.google.com/apis/
http://www.google.com/apis/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 27.5 Getting Set Up with Amazon's Web Services
API

Problem

You want to connect to Amazon Web Services (AWS) with a servlet or JSP.

Solution

Download the Amazon Web Services SDK, acquire an Amazon developer's token, and create a Java-
SOAP package for interacting with AWS.

Discussion

The process for setting up AWS goes like this:

Download the AWS SDK at http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-
0628046. This kit.zip file includes several code samples and web services API documentation in
HTML format.

1.

Acquire a developer's token from:
http://associates.amazon.com/exec/panama/associates/join/developer/application.html/002-
2688331-0628046. Similar to the license key you use with Google's Web APIs, the free-of-
charge token comprises a series of encoded characters that must accompany each interaction
between your Java code and AWS.

2.

Develop the Java API for making SOAP requests to AWS. The end result is a JAR file containing
the classes that your servlets or JSPs use to make SOAP requests. The rest of this recipe
describes how to generate this JAR file, because it is a multistep process.

3.

Interacting with AWS using SOAP messages is one option that Amazon makes
available to developers. Another one involves encoding the web services
requests in URLs, and thereby making AWS requests via HTTP (called "XML
over HTTP"). Recipe 27-7 shows an example of this URL search (they are useful
for debugging your SOAP applications). If you store an XSLT file on the Web,
AWS uses this file to format the response to XML-over-HTTP requests. See the
SDK documentation for more details.

http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-
http://associates.amazon.com/exec/panama/associates/join/developer/application.html/002-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

SOAP with Apache Axis

The creation of a Java-SOAP API for using AWS begins with downloading an open source SOAP toolkit
named Apache Axis (http://ws.apache.org/axis/). Here are the steps involved in creating the API:

Download Axis and extract the Axis ZIP file to the directory of your choice (this creates a
directory named axis-1_1).

1.

Inside the axis-1_1/lib directory are several JAR files. Place these JAR files on your classpath
and then run a program named org.apache.axis.wsdl.WSDL2Java to generate Java source

files. These Java source files comprise the Java API you will use with AWS when you compile the
files.

2.

Download the Web Services Description Language (WSDL) file associated with the Amazon Web
Services. At this writing, the file can be found at:
http://soap.amazon.com/schemas3/AmazonWebServices.wsdl.

3.

The following command line generates the com.amazon.soap.axis package for your Java API.

The command lines in this recipe work on both Windows- and Unix-based machines. The
command line is designed to refer to the AmazonWebServices.wsdl file in the current directory.
The WSDL2Java program generates Java classes based on the XML elements described by the

WSDL XML file (XML-to-Java conversion). This allows you to work with AWS using only Java
objects, which is very nice-it's why you are enduring the initial pain of creating these Java
classes! Break up this command line into separate lines to make it more readable, but when you
actually run it, the commands must all be combined on one line:

4.

java -cp .;lib/axis.jar;lib/commons-discovery.jar;lib/commons-
 logging.jar;lib/jaxrpc.jar;lib/saaj.jar;lib/wsdl4j.jar
 org.apache.axis.wsdl.WSDL2Java AmazonWebServices.wsdl --verbose
 --package com.amazon.soap.axis

This command line generates Java source files in a directory tree that matches the specified
package name (com.amazon.soap.axis). Now you have to compile these classes with the javac

tool, as in the following command line (the current directory contains the com directory). Once
again, we break up this single-line command into separate lines just for the sake of readability
(you have to run the command line unbroken by any newline characters):

5.

javac -classpath .;lib/axis.jar;lib/commons-discovery.jar;lib/commons-
logging.jar;lib/jaxrpc.jar;lib/saaj.jar;lib/wsdl4j.jar
com/amazon/soap/axis/*.java

Now JAR up all these files. In the same directory containing the top-level com directory, this
command creates a JAR file named amazonapi.jar, which is just a name I created for it:

6.

jar cvf amazonapi.jar ./com

Take the amazonapi.jar (or whatever you've named the JAR file) and place it in WEB-INF/lib.
There's one more step left.

7.

8.

http://ws.apache.org/axis/
http://soap.amazon.com/schemas3/AmazonWebServices.wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.

Make sure that the JAR files or libraries that the com.amazon.soap.axis package depends on

are also available to the web application. The amazonapi.jar file depends on the same Axis
libraries that you added to the class path in the prior java and javac command-line sequences.
You have to add these JARs to WEB-INF/lib as well (unless your application server makes all of
these libraries generally available to web applications).

8.

Okay, now for the fun part, where your Java code gets to explore books and other stuff at Amazon
using servlets. Your servlets should use the com.amazon.soap.axis package for this purpose.

See Also

The AWS SDK http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-0628046; Apache
Axis: http://ws.apache.org/axis/; the Amazon Web Services WSDL file:
http://soap.amazon.com/schemas3/AmazonWebServices.wsdl.

[Team LiB]

http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-0628046
http://ws.apache.org/axis/
http://soap.amazon.com/schemas3/AmazonWebServices.wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 27.6 Creating a JavaBean to Connect with Amazon

Problem

You want to create a JavaBean as a type of Amazon search utility class.

Solution

Set up your Amazon API as described in Recipe 27.5, then code a JavaBean that uses the
com.amazon.soap.axis package from this API.

Discussion

The JavaBean in Example 27-5, named AmazonBean, imports the com.amazon.soap.axis package.

This package is stored in amazonapi.jar, which (generated by Recipe 27.5). Store the JAR in the web
application's WEB-INF/lib directory and the AmazonBean in WEB-INF/classes (or also in a JAR in WEB-

INF/lib).

Example 27-5 connects with Amazon in its getSearchResults() method. The AmazonBean formats
and displays the search results in structureResults(). The code comments describe what's going

on in detail.

Example 27-5. A JavaBean class that searches Amazon

package com.jspservletcookbook;

import java.net.URL;

import com.amazon.soap.axis.*;

public class AmazonBean {

 //The developer's token
 private final static String AMAZON_KEY = "DCJEAVDSXVPUD";

 //NOTE: AWS Version 3 uses "http://xml.amazon.com/xml3"
 private final static String END_POINT =
 "http://soap.amazon.com/onca/soap";

 private final static String AMAZON_TAG = "webservices-20";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private URL endpointUrl;

 private String lineSep = "\n";
 private String totalResults;
 private String keyword;
 private String page;
 private String type;
 private String mode;

 public AmazonBean(){}//no-arguments constructor required for a bean

 //an easy way to test the bean outside of a servlet
 public static void main(String[] args) throws Exception{

 AmazonBean bean = new AmazonBean();
 bean.setKeyword("Lance%20Armstrong");
 bean.setType("heavy");
 bean.setMode("books");
 bean.setPage("1");

 System.out.println(bean.getSearchResults());
 }

 //Structure the search result as a String
 public String structureResult(ProductInfo info){

 //Amazon searches return ProductInfo objects, which
 //contains array of Details object. A Details object
 //represents an individual search result
 Details[] details = info.getDetails();

 String results = "";

 //each found book includes an array of authors in its Details
 String[] authors = null;

 String usedP = null;//UsedPrice object

 String rank = null;//SalesRank object

 //for each returned search item...
 for (int i = 0; i < details.length; i++){

 if(mode != null && mode.equals("books")){
 authors = details[i].getAuthors(); }

 //Include the product name
 results +=
 ""+(i+1)+". Product name: " +
 details[i].getProductName() + lineSep;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //If they are books include each author's name
 if(mode != null && mode.equals("books")){

 for (int j = 0; j < authors.length; j++){
 results += "Author name "+(j+1)+": " + authors[j] +
 lineSep;

 }//for
 }//if

 usedP = details[i].getUsedPrice();//get the used price

 rank = details[i].getSalesRank();//get the sales rank

 results += "Sales rank: " + (rank == null ? "N/A" : rank) +
 lineSep +"List price: " + details[i].getListPrice() + lineSep +
 "Our price: " + details[i].getOurPrice() + lineSep +
 "Used price: " + (usedP == null ? "N/A" : usedP) + lineSep +
 lineSep;

 }

 return results;

 }//structureResult

 //Connect with Amazon Web Services then call structureResult()
 public String getSearchResults() throws Exception{

 endpointUrl = new URL(END_POINT);
 AmazonSearchService webService = new AmazonSearchServiceLocator();
 //Connect to the AWS endpoint
 AmazonSearchPort port = webService.getAmazonSearchPort(endpointUrl);
 KeywordRequest request = getKeywordRequest();
 //Return results of the search
 ProductInfo prodInfo = port.keywordSearchRequest(request);
 //Set totalResults with any provided results total
 setTotalResults(prodInfo.getTotalResults());
 //Make sure the book-search results are structured and displayed
 return structureResult(prodInfo);

 }//getSearchResults

 //Setter and getter methods...

 public void setLineSep(String lineSep){
 this.lineSep=lineSep;
 }

 public String getLineSep(){
 return lineSep;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //A KeywordRequest object initialized with search terms, the mode, the
 //number of pages to be returned, the type ('lite' or 'heavy'), and the
 //developer's token.
 public KeywordRequest getKeywordRequest(){
 KeywordRequest request = new KeywordRequest();
 request.setKeyword(keyword);//the search terms
 request.setMode(mode);//the mode, as in 'books'
 request.setPage(page);//the number of pages to return
 request.setType(type);//the type, 'lite' or 'heavy'
 request.setDevtag(AMAZON_KEY);//developer's token
 request.setTag(AMAZON_TAG);//the tag, 'webservices-20'
 return request;

 }

 public void setKeyword(String keyword){
 this.keyword = keyword;
 }

 public String getKeyword(){
 return keyword;
 }

 public void setMode(String mode){
 this.mode = mode;
 }

 public String getMode(){
 return mode;
 }

 public void setPage(String page){
 this.page = page;
 }

 public String getPage(){
 return page;
 }

 public void setType(String type){
 this.type = type;
 }

 public String getType(){
 return type;
 }

 public void setTotalResults(String results){
 totalResults = results;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public String getTotalResults(){
 return totalResults;
 }
}//AmazonBean

The bean has a main() method that allows you to test the bean from the command line. Here is

code from that method that creates a bean instance, searches for a book using the search terms
"Lance Armstrong," and displays some results:

AmazonBean bean = new AmazonBean();
bean.setKeyword("Lance%20Armstrong");
bean.setType("heavy");
bean.setMode("books");
bean.setPage("1");
System.out.println(bean.getSearchResults());

To run the bean from a command line, make sure include all of the necessary Axis-related libraries on
your classpath (see Recipe 27.5). The following command line runs the bean to test it. Note that this
command line includes the amazonapi.jar file generated by Recipe 27.5:

java -cp .;jaxrpc.jar;axis.jar;amazonapi.jar;commons-logging.jar;commons-discovery.
jar;saaj.jar com.jspservletcookbook.AmazonBean

If you set the type option to heavy (as opposed to lite), then the search returns
the book's sales rank at Amazon. The lite SOAP responses do not include a
value for sales rank.

See Also

The AWS SDK http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-0628046; Recipe
27.7 on using a servlet and a JavaBean to connect with AWS .

[Team LiB]

http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-0628046
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 27.7 Using a Servlet to Connect with Amazon

Problem

You want to connect with AWS using a servlet.

Solution

Use a specially designed JavaBean to peform the AWS-related tasks.

Discussion

Example 27-6 uses the same design that the Google recipes used, so you should find this servlet
code very familiar if you have worked through those examples before. The servlet generates an HTML
form in response to a GET HTTP request, which sends the Amazon search terms back to the same
servlet. The interesting action takes place in the doPost() method, where the servlet uses an
AmazonBean class (from Recipe 27.6) to connect with AWS and display any search results.

Example 27-6. A servlet uses a JavaBean to connect with AWS

package com.jspservletcookbook;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.*;
import javax.servlet.http.*;

public class AmazonServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {

 //set the MIME type of the response, "text/html"
 response.setContentType("text/html");

 java.io.PrintWriter out = response.getWriter();

 //Begin assembling the HTML content
 out.println("<html><head>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println(
 "<title>Initiate an Amazon Book Search</title></head><body>");

 out.println("<h2>Please enter your Amazon search terms</h2>");

 //Display an HTML form that sends the request back to this
 //'/amazonservlet' which will cause the calling of doPost()

 //make sure method="POST" so that the servlet service method
 //calls doPost in the response to this form submit
 out.println(
 "<form method=\"POST\" action =\"" + request.getContextPath() +
 "/amazonservlet\" >");

 out.println("<table border=\"0\"><tr><td valign=\"top\">");
 out.println("Search terms: </td> <td valign=\"top\">");
 out.println("<input type=\"text\" name=\"query\" size=\"15\">");
 out.println("</td></tr>");
 out.println("<tr><td valign=\"top\">");
 out.println(
 "<input type=\"submit\" value=\"Submit Info\"></td></tr>");
 out.println("</table></form>");
 out.println("</body></html>");

 } //doGet

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException,java.io.IOException{

 String query = request.getParameter("query");

 boolean isValid = (query == null || query.length() < 1) ?
 false : true;

 response.setContentType("text/html");

 java.io.PrintWriter out = response.getWriter();

 out.println("<html><head>");
 out.println("<title>Amazon book results</title></head><body>");

 if (! isValid){
 out.println(
 "<h2>Sorry, the query parameter was either empty or null</h2>");
 } else {
 AmazonBean amBean = new AmazonBean();
 amBean.setKeyword(query);
 amBean.setType("lite");
 amBean.setMode("books");
 amBean.setPage("1");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 amBean.setLineSep("
");
 out.println("<h2>Here are your search results</h2>");
 try {
 out.println(amBean.getSearchResults());
 } catch (Exception e){
 out.println(
 "The search terms either returned zero results "+
 "or were invalid.");
 }
 }

 out.println("</body></html>");

 }//doPost
}//AmazonServlet

To keep the code simple, limit the keyword search to books. AWS offers a comprehensive method of
searching its several catalogs, however, with the API not limited to keyword searches of books. For
example, the product modes include DVD, electronics, music, hardware, software, and toys. You can
also initiate several different search types (in addition to keywords), such as Amazon Standard Item
Number (ASIN) searches.

Figure 27-3 shows the return value of the servlet's doGet() method.

Figure 27-3. A servlet's HTML form accepts Amazon search terms

Figure 27-4 shows parts of the servlet's displayed results that are handled by the servlet's doPost(
) method.

Figure 27-4. The results of an Amazon book search

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you have downloaded and unpacked the AWS SDK, the software
documentation is located at: AmazonWebServices/API Guide/index.html.

To help debug your AWS searches and servlets, you can initiate an AWS search using a Uniform
Resource Locator (URL) in your browser. The following URL initiates a keyword seach for a book using
the terms "British Empire."

http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&
 dev-t=DCJEAVXSDVPUD&KeywordSearch=British%20Empire&mode=books&
 type=lite&page=1&f=xml

An request for this URL returns an XML file that looks similar to Example 27-1. The sales rank reads
"N/A" because the search option type=lite returns a null value for this ranking. Use type=heavy to

get a value for the Amazon sales rank.

See Also

http://xml.amazon.com/onca/xml?v=1.0&t=webservices-20&
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The AWS SDK http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-0628046; Web
Services Essentials (O'Reilly); Recipe 3.1 on mapping a servlet to a name in web.xml; Recipe 27.8 on
using a JSP and a JavaBean to connect with AWS.

[Team LiB]

http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-0628046
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Recipe 27.8 Using a JSP to Connect with Amazon

Problem

You want to connect with AWS using a JSP.

Solution

Use the jsp:useBean standard action to create an instance of the AmazonBean from Recipe 27.6. Use

this instance to manage the AWS search and results.

Discussion

This recipe uses the same strategy as the JSP in Recipe 27.4: create a JavaBean instance that
handles the AWS search and displays the search results. The jsp:useBean standard action creates
an instance of com.jspservletcookbook.AmazonBean, which is located in WEB-INF/classes.

Then the code uses jsp:setProperty to set some search options, before the JSP uses
jsp:getProperty to launch the seach. Example 27-7 uses the JSTL tag c:catch to catch any
exceptions thrown by the AmazonBean's getSearchResults() method. The variable except is of the
type Throwable, and its error message is displayed by the c:out tag if the search query is invalid.

The JSP in Example 27-7 displays the HTML form and search results shown in Figures Figure 27-3
and Figure 27-4.

This jsp:getProperty code is the equivalent of calling the AmazonBean's getSearchResults()
method, which returns a String of formatted search results.

Example 27-7. A JSP launches an AWS book search

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head><title>Search Amazon.com for a Book</title></head>
<body>

<c:choose>

 <c:when test="${empty param.keyword}">

 <h2>Please enter your Amazon search terms...</h2>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <%-- Display the HTML form... --%>

 <form method="POST" action =
 '<c:out value="${pageContext.request.contextPath}" />/amazon.jsp'>

 <%-- form and table tags... --%>
 <table border="0"><tr><td valign="top">
 Search terms: </td> <td valign="top">
 <input type="text" name="keyword" size="15">
 </td></tr><tr><td valign="top">

 <tr><td valign="top">

 <input type="submit" value="Submit Info"></td></tr>
 </table></form>
 </body></html>

 </c:when>

 <c:otherwise>

 <jsp:useBean id="aBean" class="com.jspservletcookbook.AmazonBean" />
 <jsp:setProperty name="aBean" property="keyword" param="keyword"/>
 <jsp:setProperty name="aBean" property="mode" value="books"/>
 <jsp:setProperty name="aBean" property="page" value="1"/>
 <jsp:setProperty name="aBean" property="type" value="lite"/>
 <jsp:setProperty name="aBean" property="lineSep" value="
"/>

 <h2>Here are your search results</h2>

 <c:catch var="excep">

 <%-- Now display any results of the search --%>
 <jsp:getProperty name="aBean" property="searchResults" />

 </c:catch >

 <%-- Print any error messages, such as 'Bad Request' if the search
 terms are meaningless --%>

 <c:out value="${excep.message}"/>

</c:choose>

</body>
</html>

See Also

The AWS SDK: http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-0628046; Web
Services Essentials (O'Reilly); Recipe 27.7 on using a servlet and a JavaBean to connect with AWS;

http://www.amazon.com/gp/aws/download_sdk.html/002-2688331-0628046
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 23 on using the JSTL.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Java Servlet and JSP Cookbook is a fennec fox (Fennecus zerda), also
known as the desert fox. Fennes foxes live in arid sandy regions of northern Africa, the Sahara, the
Sinai Peninsula and Arabia and are one of the tiniest members of the canine family (eight inches at
the tallest and usually less than a foot long). Their relatively huge ears and beady black eyes give
them a distinctive appearance. The fennec fox's bushy tail is characteristic of most foxes, and a thick
creamy coat camouflages them in their sandy habitat.

Fennec foxes live in burrows and are nocturnal hunters, eating plants, small rodents, birds and their
eggs, lizards, and insects. Their hearing is so acute that they can hear even the smallest of prey
walking across desert sand. These foxes often stalk their prey and pounce upon it; their vertical leap
is two feet high and they can jump four feet horizontally from a standing position, astounding feats
for an animal of such small stature. They are rapid and prolific diggers, known for "disappearing" into
sand while appearing to stand still. Some reports note that this species can dig a 20-foot-long tunnel
in one night!

The fennec fox is not listed as endangered, but is now considered rare in some areas where it was
once common. They have been hunted extensively and are sometimes taken from the wild for the
pet trade.

Philip Dangler was the production editor and copyeditor for Java Servlet and JSP Cookbook. Sarah
Sherman and Matt Hutchinson were the proofreaders. Reg Aubry and Mary Anne Weeks Mayo
provided quality control. Ellen Troutman Zaig wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from Animate Creations, Volume One. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was
converted Julie Hawks to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason
McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype
Birka, the heading font is Adobe Myriad Condensed, and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn
Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn
by Christopher Bing. This colophon was written by Philip Dangler.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

${ } EL expression delimiters

 dereferencing variable and property values

 encapsulating function call within

% in conversion patterns

<!-- -->, in Tomcat server.xml file comments

<% %>, in JSP scriptlets

<%-- --%> in JSP comments

<%@ syntax, JSP directives 2nd

* (asterisk)

 ** pattern in Ant elements, for zero or more directories 2nd

 wildcard character in URL patterns

. (dot)

 in attribute names

 specifying current directory

. (dot) operator

.jsp files

.jspx files 2nd 3rd

.swf file extension 2nd

/ (forward slash)

 /* in URL patterns

 for controller servlet 2nd

 for invoker servlet

 overriden by controller servlet

 in URL patterns 2nd

 excluding from extension mapping

401 Unauthorized HTTP status code

403 Forbidden HTTP status code

404 Not Found HTTP status code

500 Internal Server Error HTTP status code

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

abort() (LoginModule)

actions in JSPs created as XML files

activation.jar archive

ActiveX control, Flash file embedded in JSP by Internet Explorer

addCookie() (HttpServletResponse)

addresses, email 2nd

Administration console (WebLogic)

 configuring JNDI resource

 viewing JNDI tree

Adobe System's SVG Viewer application

aliases to servlets, creating in web.xml file

already.deployed property (Ant, build.xml file)

Amazon Web Services

 connecting to with a JSP

 connecting to with a servlet

 creating JavaBean to connect with

 setting up

 SOAP response to keyword search request

Ant tool

 build.xml file

 compiling and creating WAR files with

 compiling servlet classes

 compiling servlet with build file

 creating JAR files

 deploying servlet on WebLogic Server 7.0

 deploying single servlet on Tomcat

 deploying web application on Tomcat

 build.properties file (example)

 build.xml file (example)

 steps in process

 deploying web application on WebLogic Server 7.0

 global.properties file

 obtaining and setting up

 downloading binary or source distribution

 JAXP-compliant XML parser

 online manual for

 starting Tomcat application with

 stopping Tomcat application with

 targets, using

 build.xml file, executing

 executing several targets in specified sequence

 Tomcat JAR files, including in Ant classpath

 WAR files, creating

ANT_HOME environment variable

antcall element

antcall task

Apache

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Ant [See Ant tool]

 Xerces2 XML parser

Apache Jakarta Project

 log4j distribution, downloading from

 reference implementation (RI) for the JSTL

 Standard 1.0 taglib

Apache Software Foundation, Log4j library

Apache Software License

appBase directory (Tomcat, server.xml file)

appenders

 adding to root logger

 ConsoleAppender

 inheritance of

 layout specification

 rolling file appender

 using a pattern with

Apple Computer's QuickTime movies

applet tags (HTML)

applets

 embedding in JSPs with HTML Converter tool

 embedding in JSPs with jsp:plugin

 example (Sun Microsystems)

application event listeners

application implicit object 2nd

application name (web applications)

application scope 2nd

 binding an object to

application servers

 BEA WebLogic, recipes in this book for

applicationScope JSTL implicit object

ArithmeticException class

array of cookies 2nd

arrays

 GoogleSearchResultElement array

 iterating over with c:forEach tag

 of SortedMaps, iterating over

attachments, email

 adding to an email in a servlet

 handling for email received in a servlet

attribute directive 2nd

attributeAdded() (HttpSessionAttributeListener)

attributeRemoved() (HttpSessionAttributeListener)

attributeReplaced() (HttpSessionAttributeListener)

attributes

 cookies

 custom logging tag

 definition of

 JSP scoped attribute, setting to value of form papameter

 object, naming convention for

 ServletContext, setting in JSPs

 ServletContext, setting in servlets

 object that servlet binds to ServletContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 servlet that binds object to ServletContext

attribution for use of code examples

audio files

 embedding in JSPs

 sending as MP3 files

auth-constraint element (web.xml)

 roles in

auth-method element (web.xml)

 form-based authentication

 values for

authentication 2nd

 authorization vs.

 BASIC authentication, use with web applications on Tomcat

 creating usernames and passwords with Tomcat

 form-based

 logging out user

 JAAS configuration file, creating

 JAAS, using in a JSP

 JAAS, using in a servlet

 LoginModule, creating with JAAS

 SSL, setting up on Tomcat

authorization [See also JAAS]

 authentication vs.

available task (Ant, build.xml file)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

background soundtrack, embedding in a JSP

Base64 content-encoding mechanism

basedir attribute

 Ant jar task

 Ant project element

BASIC authentication

 form-based authentication, using with

 using with web applications on Tomcat

 web.xml elements for initiation of

BasicConfigurator class

batch file, for precompiling JSPs with Tomcat

BEA WebLogic [See WebLogic]

binary data

 PDF file, sending as

 word processing file, sending as

 XML file, sending as

binding objects

 listening for binding or unbinding of session objects

 Session object, to WebLogic JNDI implementation

 to the ServletContext

 with a JSP

 with a servlet

blocking filters

 IP addresses, blocking requests from

 requests, optionally blocking

body tags (HTML)

BodyPart class 2nd 3rd

BodyTagSupport class 2nd

boundary pattern separating files in HTTP upload requests

browser windows, creating with JavaScript

 in a JSP

 in a servlet

browsers

 cookies supported by

 detecting MIME type for embedded MP3 file and activating helper application to play music

 displaying XML files in readable format

 embedding Flash file in a JSP

 JavaScript in

 viewer applications for SVG files

BufferedInputStream class

build directory

 inclusion of nested directories in WAR file with Ant war task

build files (Ant)

 command-line sequence for executing

 compiling servlet with

 deploying web application (example)

 edited to deploy on WebLogic 7.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 executing several targets in specified sequence

 functions of

 importing build.properties file into

 JSP parsing, using JSTL XML tags

 names other than build.xml

 Tomcat Manager application, using from

 transforming into HTML, using XSL stylesheet

 wl.properties for WebLogic Ant file

build.properties file (Ant)

 deploying web application on WebLogic Server 7.0

build.xml file [See build files]

Builder (WebLogic)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C language, printf function

c:choose tag

c:forEach tag 2nd

 interations performed by

 iterating over map values

 iterating through a Map's stored request headers

c:if tag

 testing expressions for conditional code execution

 use in a JSP (example)

c:import tag

 importing Ant build file into JSP

 including JavaScript module in a JSP

 JavaScript module, importing into a JSP

 use by JSP to access forbidden resource

c:otherwise tag

c:out tag 2nd 3rd

 displaying a JavaBean's properties

 displaying form input via a JavaBean

 displaying individual parameter values

 escaped characters

 exception information, displaying for JSP

 passing value of request_uri attribute to

 summary of functions

 use in a JSP (example)

c:param tags, including parameter values in JSP

c:set tag

 binding an object to application scope

 setting variable to session scope

 summary of functions

c:when tag

CallableStatement class

 executeUpdate()

 servlet using to call stored procedure

CallbackHandler class 2nd 3rd

callbacks

 class for sifting through web pages

 definition of

 ParserDelegator, using with

case sensitivity

 url pattern in servlet-mapping elements

 usernames and passwords in tomcat-users.xml file

casting

 request parameters

 ServletRequest type to HttpServletRequest

Caucho Resin (servlet engine)

cbck:log (custom JSP tag) 2nd

CDATA sections in XML files, using to pass well-formed test

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CGI (Common Gateway Interface)

character entity codes 2nd

 escaped characters in c:out tag

 listing of

CheckEmail function, JavaScript

classes

 JavaServer Page implementation class

 servlet 2nd

 servlet-class element in web.xml

classes directory 2nd

 log4j.properties file

 specifying classes with Ant war task

 TLDs and

 WebLogic 7.0 server, pasting servlet class into

classes element (Ant)

classic tag handlers

 creating for a custom action

 creating JSP 1.2 TLD for

 creating JSP 2.0 TLD for

classpath element (Ant)

 nested inside the javac task

CLASSPATH environment variable, precompiling JSPs and

classpaths

 Ant classpath that includes Tomcat JAR files

 email-related classes, placing on

 in build.xml file, for JAR files in Tomcat directories

 user, represented by CLASSPATH environment variable

 WLCLASSPATH environment variable

client authentication [See authentication]

client requests

 counting for web application

 examining HTTP request headers in a JSP

 examining HTTP request headers in a servlet

 filter, using to alter request headers

 refreshing a JSP automatically

 refreshing a servlet automatically

client state

Clock class (example applet)

 reference to, embedded by JSP

close()

 InitialContext class

 PrintWriter class

closing database connections 2nd

code examples in this book, use of

Collections class, synchronizedMap()

com.oreilly.servlet library

 classes for file uploads

 LocaleNegotiator class

 MultipartFilter class

com.oreilly.servlet.multipart package

comment attribute (cookies)

comments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JSP

 uncommenting Connector element in Tomcat server.xml

commercial servlet engines

commit()

 Connection class 2nd

 LoginModule class

Common Gateway Interface (CGI)

compiling servlets 2nd [See also precompiling JSPs]

 Ant tool, using

 PATH environment variable for javac

 with Ant build file

configure() (BasicConfigurator)

configure() (PropertyConfigurator)

 specifying name of log4j.properties file

Connection class

 commit() 2nd

 getMetaData()

 getTransactionIsolation()

 listing of isolation levels

 rollback() 2nd

 setAutoCommit()

connections, database

 creating connection pool with WebLogic Console

 DataSource as factory for

 opening and closing

 servlet using WebLogic connection pool

Connector element (server.xml)

ConsoleAppender class

container-managed security

content [See also dynamically including content; static content]

 non-HTML, sending

 audio files

 PDF files

 viewing internal resources in a servlet

 word processing files

 XML files

content types

 email 2nd

 Multipart

 multipart/form-data

Content-Disposition header 2nd

Content-Length header

Content-Type header

 application/msword

 MIME types

contentType attribute (jsp

 directive.page element)

context

 default, for servlets

 including JSP file, importing content from outside

Context element (Tomcat server.xml file) 2nd

context path for web application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 path attribute of Context element (Tomcat)

context-param element (web.xml)

 cookie age, values for

 dataSource parameter that connects with a database

 internationalization resources

 JSP that opens pop-up window

 localization context, setting 2nd

 providing path for an included file in a JSP

context-relative path

contextDestroyed() (ServletContextListener)

contextInitialized (ServletContextListener)

ContextObject class (example)

controller servlet

 exclusive access to certain servlets, setting up

 mapping all requests to while preserving all servlet mappings

conversion of a JSP into a servlet

conversion patterns, layout of logged messages

conversion specifiers in pattern language

Cookie class

 getName() and getValue() 2nd

 getPath()

 getter and setter methods for attributes

 setMaxAge() 2nd

 argument value of zero

 setValue()

cookie implicit object (JSTL) 2nd

Cookie request header

cookies 2nd

 accessing with EL

 definition of

 deletion by users

 disabled by users

 name/value pair

 optional attribute/value pairs

 overwriting or removing existing cookies

 reading values with a JSP

 reading values with a servlet

 session tracking, use in

 disabled cookies

 setting with a JSP

 setting with a servlet

 storing request cookies in an array

copy task (Ant)

Copyright servlet (example)

Core J2EE Blueprints web page

Corel's SVG Viewer

cos.jar file

country codes (ISO) 2nd

create-jar target (Ant)

create-war target (Ant, build.xml file)

CreateWindow function, JavaScript

 creating new browser window in a servlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

creation time for sessions

 tracking with JSPs

 tracking with servlets

currencies, formatting for locales

 in a JSP

 in a servlet

custom actions 2nd [See also custom tags]

 JSP using to access log4j

custom tags 2nd 3rd

 associated with a tag file, using

 cbck:log tag

 logging level

 configuration file, including your own

 creating classic tag handler for

 creating JSP 1.2 TLD for classic tag handler

 creating JSP 2.0 TLD for classic tag handler

 creating TLD for a simple tag handler

 function calls embedded in template text

 handling exceptions in custom tag class

 JSP tag file, creating

 listener class, adding to tag library

 packaging a tag library in a web application

 packaging JSP tag file in a JAR

 packaging tag library in a JAR file

 simple tag handler, creating

 simple tag handler, using in a JSP

 tag file, packaging in web application

 tag that uses log4j

 TLD for custom logger tag

 using in a JSP

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

DatabaseMetaData interface

databases

 accessing from servlet without DataSource configuration

 calling stored procedure from a JSP

 configuring DataSource in Tomcat

 converting ResultSet to Result object

 creating DataSource on WebLogic

 DataSource, using in servlet with Tomcat

 executing several SQL statements in one transaction

 interacting with by configuring DataSource in web.xml

 JNDI lookup, using to access a WebLogic DataSource

 JSTL tags that interact with

 ResultSet information, finding out

 stored procedure, calling from a servlet

 transactions, using with JSPs

 WebLogic DataSource, using in a JSP

DataHandler class

DataSource

 configuration in web.xml

 configuring for servlet in Tomcat

 configuring in web.xml for SQL JSTL tags

 creating DataSource object on WebLogic

 configuration, steps in

 explicitly setting for JSTL SQL tags in a JSP

 getConnection() 2nd

 JNDI, accessing with

 using in servlet with Tomcat

 WebLogic DataSource, using in a JSP

DataSourceLoginModule 2nd

Date class, getTime()

DateFormat class 2nd

 format()

 getDateTimeInstance()

dates and times

 creation and last-accessed time for sessions

 tracking with JSPs

 tracking with servlets

 expiration for cookies

 formatting dates according to request locale

 in a JSP

 in a servlet

 formatting with JSTL tags

 current date in Swiss and U.S. style

 fmt:formatDate tag, attributes of

 JSP that displays current

 log4j date formatter

 of logging activity

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dateStyle and timeStyle attributes (fmt:formatDate)

Davidson, James Duncan

DEBUG level logging 2nd

 in root logger

declarative security

default attribute (Ant project element)

DefaultFileRenamePolicy class

 file-uploading JavaBean, use in

deleting a cookie

depends attribute (Ant target elements)

deploy-application target (Ant, build.xml file)

 edited to deploy on WebLogic 7.0

deploy-servlet target (Ant, build.xml file) 2nd

Deployer utility (WebLogic)

deploying servlets and JSPs

 deploying as part of Tomcat's Context element in server.xml file

 individual JSP, deploying on Tomcat

 individual JSP, deploying on WebLogic

 individual servlet, deploying on Tomcat

 Ant tool, using

 steps in process

 individual servlet, deploying on WebLogic Server 7.0

 Ant file, using

 editing web.xml file to register servlet

 redeploying web application

 web application, deploying on Tomcat

 Ant build file, using

 web application, deploying on WebLogic

 using Ant tool

 using WebLogic Administration Console

 using WebLogic Builder

 using weblogic.Deployer command-line utility

deployment descriptors [See also web.xml file]

 creating

 for servlet API 2.3

 servlet API 2.4

 web.xml file contents

 EJB

 vendor-specific (weblogic-ejb-jar.xml)

 J2EE, namespace of

 opening and editing in WebLogic Builder

 security-related elements in versions other than servlet v2.4

 storage in WEB-INF directory

 taglib element

 web.xml file in WEB-INF directory

description attribute (Ant target elements)

destfile attribute

 Ant jar task

 Ant war task

digital certificate, creating for Tomcat server

dir attributes

 Ant classes element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Ant fileset elements

directives, JSP

 in well-formed XML file

 XML equivalents for

directories

 ** pattern in Ant elements (zero or more directories) 2nd

 local, saving file uploads to

 URLs that specify a directory only

directory structure of web applications

 for application deployed by Ant tool

 example of

 exploded directory format

 JSP files in

dirty read

dispatcher elements (web.xml) 2nd

displayMessage()

 AttachBean class (example)

 EmailBean class (example)

 HeaderAccessor class (example)

 MailAccessor class (example)

distributed computing, SOAP as easier form of

doCatch() (TryCatchFinally)

docBase attribute (Context element, Tomcat)

Document Type Definition (DTD)

 in JSP 1.2 TLD file

 JSP 1.2

 order for elements in web.xml (servlet 2.3 API)

 XML Schema vs.

doEndTag() 2nd

doFilter()

 blocking requests

 casting request parameter

 changing servlet response

 filter using HttpServletResponseWrapper class

 FilterChain class

doFinally() (TryCatchFinally)

doGet()

 encodeRedirectURL, using in

 FirstServlet class (example)

 output displayed in browser

 HttpServlet class

 including content in

 JavaBean, using to send email

 PrivacyServlet class (example), including resource specified by init parameter

 servlet accessing database using JDBC

 servlet method to which filter is mapped

 servlet using a JavaBean to handle emal attachments

 servlet using JavaBean to send email

domain attribute (cookies)

doPost()

 FirstServlet class (example)

 output displayed in browser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HttpServlet class

 including content in

 POST HTTP requests, responding to

 tracking a user's refresh count

doStartTag() 2nd

doTag()

 simple tag handlers

download progress, showing to user

DriverManager class

DTD [See Document Type Definition]

dynamic content, combining multimedia with in JSPs

dynamically including content

 configuring included resource in external file

 external configuration file, using to include resource in a JSP

 importing a resource each time servlet handles a request

 including content from outside a context in JSP

 including content in a JSP for each request

 including XML fragment in JSP document

 resources nested at multiple levels in servlet

 exception information, displaying

 first inner included servlet

 outer including servlet

 request attributes, access by included resources

 second included servlet

 resources that seldom change, including in JSP

 server performance and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

EAR (Enterprise Application Archive) file

echo task (Ant)

EIS (Enterprise Information Systems)

ejb-jar.xml file

 contents of, displaying

EJBs (Enterprise JavaBeans)

 accessing an EJB on WebLogic from a servlet, using JNDI

 deployment descriptor (ejb-jar.xml)

 deployment descriptor, vendor-specific

 servlet (example)

 stateless session bean (example)

EL [See Expression Language]

elements, XML

 Ant tasks

 build.xml file (Ant)

 Context element (Tomcat server.xml file)

 in web.xml file for servlet API 2.3

 in web.xml file for servlet API 2.4

 order in valid XML file

email

 accessing from a servlet

 accessing from a servlet using a JavaBean

 adding attachments to an email in a servlet

 JavaBeans Activation Framework (JAF)

 JavaMail API

 placing classes related to on classpath

 reading received email headers from a servlet

 received in a servlet, handling attachments from

 sending from a servlet

 servlet interaction with mail server

 sending from a servlet using a JavaBean

 EmailBean (example)

 servlet using JavaBean to send email

 setting email parts with bean methods

email addresses, validating in form input with JavaScript

embed tags (HTML) 2nd

 automatic HTML file generation by Flash

 produced by HTML Converter

encodeRedirectURL (HttpServletResponse)

encodeURL() (HttpServletResponse)

Enterprise Application Archive (EAR) file

Enterprise Information Systems (EIS)

Enterprise JavaBeans [See EJBs]

entity codes for special characters 2nd

 c:out tag, escaped characters

 listing of

entrySet() (Map) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enumeration type

ERROR level logging

error-page configuration

 authentication failure page (/loginError.html)

 element in web.xml for IOExceptions

 in web.xml, example of

 overridden by page directive declaration

error-page element (web.xml) 2nd

 configuring error pages

ErrorData class

errorPage attribute (page directive)

escaped characters, c:out tag

escapeXml attribute (c:out tag)

EventObject class

example code from this book, use of

exception implicit object

exception-type element (web.xml)

exceptions

 in custom tag class

 handling in web applications

 creating error-handling JSP

 declaring exception handlers in web.xml

 declaring exception-handling JSP for other JSPs

 exception-handling servlet

 sending error from a JSP

 sending error from a servlet

 thrown during include operations

exclude element (Ant)

executeUpdate() (CallableStatement)

expiration for cookies

 setting

 setting with jsp:setProperty

expires attribute (cookies)

exploded directory format

Expression Language (EL)

 calling LoginBean's getLoginSuccess()

 client locales, preferred and less-preferred

 cookie implicit object

 cookies, accessing with

 creating hperlinks in URL rewriting

 creation time for sessions, fetching

 dereferencing of variable and property values

 function that calls a stored procedure

 Java class that implements function

 JSP, use in

 TLD file for configuring function

 functions

 in JSP error page

 in JSP used as error page

 in template text (JSP 2.0 specification)

 JavaBean properties, accessing with

 JSP example page, use in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JSTL and

 map entry key/value pairs

 request headers, accessing with

 value of a particular header

 request parameters, accessing 2nd

 scoped attributes, accessing

 scoped variables, accessing with

 template text, using EL expressions directly in

 URL for JavaScript window in a JSP, getting from a context parameter

Extensible Stylesheet Language (XSL)

Extensible Stylesheet Language Transformations (XSLT)

extension mapping URL patterns

 associating filter with any .jsp file

 mapping all references to JSP pages to a single servlet

 mapping static content to a servlet

external-include property

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

FATAL level logging

file extensions

 associating MIME types with

file uploads [See uploading files]

FileDataSource class

FilerConfig class

 getInitParameter()

FileRenamePolicy interface

fileset elements (Ant) 2nd

 nested within jar task

 nesting multiple in path element

filter elements (web.xml) 2nd

 init-param child element

Filter interface

 actions that filters can undertake

filter-mapping elements (web.xml) 2nd

 applying filter to a servlet using a RequestDispatcher

 changing order of

 mapping multiple filters to a servlet

 url-pattern nested element

FilterChain class

 doFilter() 2nd 3rd

FilterConfig class

 getInitParameterNames()

filtering

 blocking IP addresses with

 changing order in which filters are applied to servlets

 configuring initialization parameters for a filter

 filter configuration in web.xml file (servlet API 2.3)

 HTTP responses

 intercepting and reading form input

 JNDI object, accessing from a JSP

 setting object as session attribute

 mapping a filter to a JSP

 mapping a filter to a servlet

 filter that logs some information

 mapping multiple filters to a servlet

 monitoring session attributes

 MultipartFilter class

 optionally blocking a request with a filter

 passing JNDI object to JSP on WebLogic

 request headers, altering

 using filters with RequestDispatcher objects

 validating form input with a filter

Flash files

 embedding in a servlet

 HTML template for embedding in a JSP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 automatically generating

 writing

fmt:formatDate tag

 current locale, using to format dates and numbers

fmt:formatNumber tag

 current locale, using to format numbers

 displaying currency value for a locale

 displaying numbers as percentages

fmt:message tags

fmt:setBundle tag

fmt:setLocale tag

fn:contains()

fn:length()

fn:split()

fn:toUpperCase()

Folder class 2nd

footer segment included in JSP with jsp:include action

form tags (HTML)

 action attribute

 action, method and enctype attributes for file uploads

form-based authentication

 form for use with

 logging out user on system that uses

form-login-config element

format()

 DateFormat class

 NumberFormat class 2nd

formatting tags (JSTL)

 displaying date in JSP for user locale

 displaying text in JSP for request locale

FORWARD value (dispatcher elements)

forward() (RequestDispatcher)

forwarding requests

 controller servlet forwarding with RequestDispatcher.forward()

 with forward() (RequestDispatcher)

 with getNamedDispatcher() (ServletContext)

 initiating a filter for

 by objects implementing RequestDispatcher interface, without triggering security constraints

fragments, JSP

 included in a servlet by using RequestDispatcher

 now referred to as JSP segments

Front Controller design pattern (Sun Microsystems)

fully qualified class names

 invoking registered servlet through

 listener class in listener class element

 object attribute names and

function calls embedded in JSP code with JSTL 2nd

function tag

functions

 Expression Language, calling stored procedure

 Java class that implements function

 JSP, use in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TLD file for configuring function

 JavaScript

 JSTL

 listing of, with purpose of each

 using in JSPs

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

GET requests

 security constraints on

 servlet response to

getAllHeaders()

 Message class

 Part interface

getAttribute() (ServletContext)

getBundle() (ResourceBundle) 2nd

getConnection() (DataSource) 2nd

getContent() (Message)

getContextPath() (HttpServletRequest)

getCookies() (HttpServletRequest) 2nd

getCurrencyInstance() (NumberFormat)

getDateTimeInstance() (DateFormat)

getDisplayName() (Locale)

getFilesystemName (MultipartRequest)

getFrom() (Message)

getHeader()

 HttpServletRequest class

 Part interface

getHeaderNames() (HttpServletRequest)

getID() (HttpSession)

getInitParameter() (FilterConfig)

getInitParameterNames() (FilterConfig)

getInputStream()

 PageData class

 Part interface

getInputStream() (PageData)

getJspBody() (SimpleTagSupport)

getJspContext() (SimpleTagSupport)

getLastAccessedTime() (HttpSession)

getLocale() (ServletRequest)

getLocales()

getLoginSuccess()

 LoginBean class (example)

getMaxInactiveInterval() (HttpSession)

getMetaData()

 Connection class

 ResultSet class

getName()

 Cookie class 2nd

 Header class

getNamedDispatcher() (ServletContext)

getParameter() (ServletRequest) 2nd

 handling posted data

getParameterMap()

 HttpServletRequest class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ServletRequest class 2nd

 handling posted data

getParameterNames() (ServletRequest)

getParameterValues() (ServletRequest)

getPath() (Cookie)

getPercentInstance() (NumberFormat)

getQueryString

 HttpServletRequest class

getQueryString()

 request wrappers that override

getRealPath() (ServletContext)

getRemoteAddr() (HttpServletRequest)

getRemoteUser() (HttpServletRequest)

getRequestDispatcher() (ServletRequest)

getRequestURI() (HttpServletRequest)

getRequestURL() (HttpServletRequest)

getResultElements() (GoogleSearchResult)

getRows() (Result)

getSearchResults() 2nd

getServletContext()

getServletRequest() (ServletRequestEvent)

getSession()

 HttpServletRequest class 2nd 3rd 4th

 HttpSessionBindingEvent class

 HttpSessionEvent class

getSnippet() (GoogleSearchResultElement)

getSource() (EventObject)

getSummary() (GoogleSearchResultElement)

getTitle() (GoogleSearchResultElement)

getTransactionIsolation() (Connection) 2nd 3rd

getURL() (GoogleSearchResultElement)

getValue()

 Cookie class 2nd

 Header class

 HttpSessionBindingEvent class

global.properties file (Ant)

 example of 2nd

Google Web Services

 connecting to with a JSP

 connecting to with a servlet

 creating a JavaBean to connect with

 options for searches, setting

 setting up with

GoogleSearch class (example)

GoogleSearchResult class

GoogleSearchResultElement class

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

handleMessages()

 EmailBean class (example)

 MailAccessor class (example)

handleStartTag()

harvesting Web information

 creating JavaBean as HTML parser

 JavaBean for HTML parsing

 using in a JSP

 using in a servlet

 parsing HTML page with javax.swing.text subpackages

 callback class (example)

 using a servlet

Hashtable class

Header class

header implicit object 2nd

header segment included in JSP with jsp:include action

headers

 email, reading from a servlet

 HTTP [See request headers response headers]

headerValues implicit object

heading attribute (custom tag) 2nd

home and local home interfaces (EJB on WebLogic)

Host element (Tomcat server.xml file) 2nd

href attribute

HTML

 code for JSP that handles HTTP requests

 converting XML file into with XSL stylesheet

 error page sent to client

 file upload page, preparing

 component to receive file and store in local directory

 form tag 2nd

 onSubmit event handler

 head tag

 input tag

 JavaBean for parsing

 creating

 using in a JSP

 using in a servlet

 parsing API classes, use in servlet

 src attribute of script tag, using to import JavaScript module

 template for embedding Flash files

 generating automatically

 template for including Flash files

 writing

HTML Converter (Java Plug-in)

HTML forms

 adding parameters to query string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 using a JSP

 using a servlet

 intercepting and reading form input with a filter

 posting submitted data from a JSP

 servlet handling of

 FirstServlet class (example)

 servlet, accepting Amazon search term

 setting propertes of JavaBean to values entered in

 setting scoped attribute in a JSP to value of a form parameter

 submission to server-side program via POST method

 validating input with a filter

 filter that checks values (example)

 JSP that contains a form (example)

HTML tags

 applet tag

 embed tag 2nd

 generated with Java Plug-in HTML Converter for loading applets

 object tag 2nd

HTMLEditorKit class

HTTP

 developing JSP for handling of requests

 GET method [See GET requests]

 POST method [See POST requests]

 request headers [See request headers]

 requests for file uploading

 response headers [See response headers]

 secure connections [See Secure Sockets Layer]

 security constraints on methods

 XML-based SOAP messages on

HTTP response codes

 403 or 404, handling by web container

 500, returned by web container

 int parameter of sendError()

http-method elements

 security constraints for

HttpClient (Jakarta Commons)

 automating data posting from servlet to other programs

 downloading

 servlet using to post data to a JSP

 use in JavaBean that posts data from JSP page

https://, URLs that start with

HttpServlet class

 init(), including content in

 service()

HttpServletRequest class

 checking session existence

 getContextPath()

 getCookies() 2nd

 getHeader()

 getHeaderNames()

 getParameterMap()

 getQueryString()

https://, URLs that start with
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 getRemoteAddr()

 getRemoteUser()

 getRequestURI()

 getRequestURL()

 getSession() 2nd 3rd

 isUserInRole()

HttpServletRequest objects

HttpServletRequestWrapper class

HttpServletResponse class

 addCookie()

 encodeRedirectURL()

 encodeURL()

 Refresh response header, adding

 sendError() 2nd

 sendRedirect() 2nd

HttpServletResponse objects

HttpServletResponseWrapper class, for use with a filter (example)

HttpSession class

 getId()

 getLastAccessedTime()

 getMaxInactiveInterval()

 invalidate()

 removeAttribute()

 setAttribute()

 setMaxInactiveInterval() 2nd

HttpSessionActivationListener interface

HttpSessionAttributeListener interface

HttpSessionBindingEvent class

 getSession()

 getValue()

HttpSessionBindingListener interface

HttpSessionEvent class, getSession()

HttpSessionListener interface

 notification of session creation and destruction

 sessionCreated() and sessionDestroyed()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

i18n [See internationalization]

if/then/else statements

IllegalStateException, handling in web applications

img tag (HTML)

implicit objects 2nd 3rd

implicit objects, JSPs

 application

 exception

 pageContext 2nd

 response

 session

implicit objects, JSTL

 applicationScope

 cookie 2nd 3rd

 header 2nd

 headerValues

 initParam 2nd

 param 2nd 3rd 4th

 requestScope 2nd

 sessionScope 2nd 3rd

import custom action

include directive

 changes made to included page, reflection in including page

 in JSP document, expansion by XML view

 including seldom changing resource in a JSP

 including XML fragment in JSP document

 jsp:include action vs. 2nd

 rule of thumb for using

include element (Ant)

include mechanisms for dynamic content

 configuring included resource in external file

 external configuration file, using to include resource in a JSP

 importing a resource each time servlet handles a request

 including content from outside a context in JSP

 including content in a JSP for each request

 including XML fragment in JSP document

 resources nested at multiple levels in servlet

 exception information, displaying

 first inner included servlet

 outer including servlet

 request attributes, access by included resources

 second included servlet

 resources that seldom change, including in JSP

INCLUDE value (dispatcher elements)

include() (RequestDispatcher) 2nd

 embedding Flash in a servlet

 including JavaScript CreateWindow function in a servlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 including top-level servlet file

 servlet importing JavaScript file

 validating JavaScript, including in servlet

includes attribute (Ant jar task)

IncludeServlet class (example)

INFO level logging

inheritance structure in log4j 2nd 3rd

init target (Ant, build.xml file) 2nd

init-param element (web.xml)

 specifying including resource with

 timeout value for servlet, configuring

 URL for loading new window created by JavaScript function in a servlet

initial context

InitialContext class 2nd

 close()

 lookup() 2nd

initialization parameters

 configuring for a filter

 servlet, registered name and

initialize() (LoginModule)

initParam implicit JSTL object 2nd

input tags (HTML)

 multiple file uploads

 type, name, and accept attributes, for file uploads

InputStream, XML view of JSP page returned as 2nd

INSERT statement (SQL), executing in JSP in a transaction

internal resources from web application, viewing

internationalization 2nd

 client locale, detecting in a JSP

 client locale, detecting in a servlet

 creating ResourceBundle as a Java class

 definition of

 formatting currencies in a JSP

 formatting currencies in a servlet

 formatting dates in a JSP

 formatting dates in a servlet

 formatting percentages

 in a JSP

 in a servlet

 localization context, setting in web.xml

 ResourceBundle as properties file, creating

 ResourceBundle, using in a JSP

 ResourceBundle, using in a servlet

Internet Explorer

 embedding Flash files in web components

 HTML object tag, loading applet with

 language preference, setting (v. 5.5)

InternetAddress class 2nd

invalidate() (HttpSession)

invoke() (JspFragment)

invoker servlets

 invoking servlets registered in web.xml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 overriding to direct all requests to controller servlet

IOException class 2nd

 JSP that throws (example)

 web applications, handling in

IP addresses, blocking requests from with a filter

is-xml element

isErrorPage attribute (page directive)

ISO (International Standards Organization)

 country codes 2nd

 language codes

isolation levels for transactions

 in sql:transaction tag

isUserInRole() (HttpServletRequest)

iterating over collections of data

 c:forEach tag, iterating over array

iterating posted data with JSTL

Iterator class

 next()

iterator() (Set)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE (Java 2 Enterprise Edition)

 Core Blueprints web page

 EJB in business tier

 JavaMail and JavaBeans Activation Framework (JAF)

J2SE (Java 2 Standard Edition)

JAAS (Java Authentication and Authorization Service)

 authenticating servlet clients

 configuration file, creating

 flag values, listing of

 location of file

 LoginModule class

 CallbackHandler for

 example code

 online documentation

 using in a JSP

JAF (JavaBeans Activation Framework) 2nd

Jakarta Commons HttpClient [See HttpClient]

Jakarta Tomcat [See Tomcat]

JAR (Java ARchive) files

 creating with Ant

 for Jakarta Commons HttpClient

 including Tomcat JAR files in Ant classpath

 log4j.jar

 mail.jar and activation.jar

 packaging JSP tag file in

 packaging tag library in

 Sun Microsystems specification for

 WEB-INF/lib directory, storage in

jar task (Ant) 2nd

 basedir attribute

 destfile attribute

 fileset (nested) element

 includes attribute

 manifest file, creating

jar tool

 placing tag library in a JAR file

jar tool, creating WAR files with

Jasper (Tomcat JSP container)

jasper-runtime.jar

JASPER_HOME environment variable

Java 2 Enterprise Edition [See J2EE]

Java API for XML Processing (JAXP) 2nd 3rd

Java Authentication and Authorization Service [See JAAS]

java command-line tool, setting user classpath

Java Database Connectivity [See JDBC]

Java Development Kit (JDK)

Java Naming and Directory Interface [See JNDI]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java Plug-in

 different installed versions, causing problems loading applets

 HTML Converter,embedding applet in a JSP

Java Runtime Environment (JRE)

 applets, running in

 executing applet with Java Plug-in

Java Virtual Machine (JVM), servlets and

Java Web Services Developer Pack (WSDP)

Java Web Services Developer Pack, downloading JAXP

Java-based web applications

JAVA_HOME environment variable

 setting in Ant installation

JavaBeans

 accessing email from a servlet

 configuring as a JNDI object with Tomcat

 cookies, creating

 CookieBean (example)

 creating as web page parser

 creating to search Amazon

 creating to search Google web database

 customizing responses sent to clients

 email attachments, handling (example)

 file-uploading (example)

 Google search utility class

 JAAS API, using for authentication

 JSP data, posting dynamically to another server-side process

 JSP using to search google.com

 properties

 accessing with EL

 setting in a JSP

 sending email from a servlet

 EmailBean (example)

 servlet using JavaBean to send email

 setting of email parts with bean methods

 servlet using to connect to Amazon Web Services

 as Tomcat JNDI resource

 accessing from a servlet

 web page parser

 using in a JSP

 using in a servlet

JavaBeans Activation Framework (JAF) 2nd 3rd

javac compiler

 built-in, with Sun Microsystems JDK

javac task (Ant)

 classpath element nested inside of

 compiling application servlets into build directory

JavaMail

 fetching email messages

 listing email headers

 properties set for Session JNDI object

 Session, Store, Folder, and Message classes

JavaScript

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 creating new browser window in a JSP

 creating new browser window in a servlet

 including JavaScript modules in a JSP

 including JavaScript modules in a servlet

 validating form input in a servlet

 validating form values in a JSP

JavaServer Pages [See JSPs]

JavaServer Pages Standard Tag Library (see JSTL)

javax sub-packages for BEA WebLogic

javax.mail package

javax.mail.internet package

javax.naming package 2nd

javax.servlet.jsp.tagext package

javax.sql package

JDBC (Java Database Connectivity)

 accessing database from servlet using JDBC

 calling stored procedure from a servlet with CallableStatement

 Connection objects

 database driver and storage location 2nd

 DriverManager class

 javax.sql.DataSource object

 creating on WebLogic

 on WebLogic, using in a JSP

 SQL JSTL tag, using with

 Oracle classes12.zip driver

 ResultSet, converting to Result object

 ResultSetMetaData interface

 specification, address for downloading

 transaction API

JDK (Java Development Kit)

 version 1.1, Ant support of

JNDI (Java Naming and Directory Interface) 2nd

 configuring JNDI object in Tomcat

 configuring JNDI resource in WebLogic

 lookup, using to access WebLogic DataSource

 Tomcat JNDI resource

 accessing from a JSP

 accessing from a servlet

 using API classes to obtain DataSource

 WebLogic JNDI resource

 accessing from a a JSP

 accessing from a servlet

 WebLogic JNDI tree

 accessing an EJB with

 for a DataSource

 viewing

JRE (Java Runtime Environment)

 applets, running in

 executing applet with Java Plug-in

jsp-property-group element 2nd

jsp:directive.include element

jsp:directive.page element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 added to JSP document by XML view

jsp:doBody action 2nd

jsp:forward action

jsp:getProperty action

jsp:id attribute for XML elements in JSP document

jsp:include action

 external configuration file, using to include resource in a JSP

 immediate reflection of changes to included files

 include directive vs. 2nd

 rule of thumb for using

 including resource in JSP each time it receives request

 including XML fragment in JSP document

jsp:param action

jsp:param elements, providing embedded applets with parameter and value pairs

jsp:plugin action

 embedding applet in a JSP

 HTML tags generated for loading Java applet

jsp:root element 2nd

 added by XML view to JSP document

jsp:setProperty action

 cookie properties, setting

 cookie value, setting

 setting directory name for saving uploaded file

 setting JavaBean property to submitted form value

jsp:text element

jsp:useBean action 2nd 3rd 4th 5th

 cookie-creating bean, using in JSP

 id attribute

 instantiating file-uploading bean in a JSP

 use in setting bean property to submitted form value

jsp_precompile parameter

jspc (weblogic.jspc precompilation tool)

JspC command-line tool (Tomcat)

JspContext class

JspFragment interface

 .jspf files vs.

JSPs (JavaServer Pages)

 application servers as software hosts for

 as XML documents

 creating from scratch as JSP document

 creating JSP-type URL for a servlet

 custom XML tags [See custom tags tags]

 deploying [See deploying servlets and JSPs] 2nd [See deploying servlets and JSPs]

 fragments

 generating XML view from

 implementation class

 packaging in WAR files

 precompiled, mapping to page implementation class

 precompiling

 in Tomcat

 in WebLogic

 precompilation protocol, using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 request attributes, access by included resources

 writing

 as XML files

 basic steps in

 viewing output in browser

JspWriter class

JSTL (JavaServer Pages Standard Tag Library) 2nd

 arrays or Maps, using to iterate through values

 c:choose, c:when, and c:otherwise tags

 c:forEach tag 2nd 3rd 4th 5th

 iterating posted data with

 c:if tag 2nd

 c:import tag 2nd 3rd 4th 5th

 c:out tag 2nd 3rd 4th 5th 6th

 escaped characters

 exception information, displaying for a JSP

 summary of functions

 use in a JSP (example)

 c:param tag

 c:set tag 2nd 3rd

 summary of functions

 cookie implicit object

 cookies, accessing with EL

 core tags, using in a JSP

 current session ID, displaying

 custom tags in JSPs created as XML files

 downloading and using

 1.0 reference implementation, lib directory contents

 JSTL 1.1

 taglib directives for different JSTL 1.0 libraries

 downloading Java Web Services Developer Pack

 Expression Language (EL) [See Expression Language]

 fmt:formatDate tag

 fmt:formatNumber tag

 displaying numbers as percentages

 formatting currency value for a locale

 fmt:message tag

 fmt:setBundle tag

 fmt:setLocale tag

 formatting numbers as percentages

 formatting session creation and last-accessed times

 formatting tags

 displaying text in JSP for client locale

 functionality of

 functions, using in JSPs

 header implicit object

 in JSP error page 2nd

 JavaBean properties, accessing with EL

 JSP using Result object stored as session attribute

 localization context for tags, setting in web.xml

 request headers, accessing with EL

 value of a particular header

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 request parameters, accessing with EL

 scoped variables, accessing with EL

 session date/times formatted with

 SQL tags

 with DataSource configuration

 without DataSource configuration

 sql:query tag 2nd

 sql:setDataSource tag

 sql:transaction tag

 sql:update tag

 url custom action

 x:out tag

 x:parse tag

 x:transform tag 2nd 3rd

 XML and XSLT tags, using

 XML core tags, using in a JSP

JVM (Java Virtual Machine), servlets and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

key/value pairs (cookies)

keystore file

keytool utility

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

l10n [See localization]

language codes (ISO)

language element

language preference, setting in Netscape 7.1

last-accessed time for sessions

 tracking with JSPs

 tracking with servlets

layouts for logged messages

 in inherited appenders

 pattern used for BasicConfigurator

 PatternLayout

 SimpleLayout class, in root logger messages

lib directory 2nd

 inclusion of nested directories in WAR file with Ant war task

 JAR files, storing in

 log4j.jar file

 TLDs and

lib element (Ant)

listener element (web.xml)

listeners

 adding listener class to a tag library

 application event

 configuration in web.xml file (servlet API 2.3)

 examining HTTP requests with

 monitoring session attributes

 requests, tracking for a web application

 servlet context event listener, using in logging

 session event

 using in logging

 tracking session lifecycle

 validating form input with

ListResourceBundle class

load-on-startup element (web.xml)

local home interface (EJB on WebLogic)

locale

 definition of 2nd

 detecting for client in a JSP

 detecting for client in a server

 displaying message appropriate for using JSTL formatting tags

 formatting currency values for

 in a JSP

 in a servlet

 formatting date for display

 in a JSP

 in a servlet

 preferred

localization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 definition of

localization context

 setting in web.xml

localizers

location element (web.xml)

Location header

log() (ServletContext) 2nd 3rd 4th 5th

log4j

 Apache Log4j library

 configuration file used by servlet context listener

 session event listener that uses

 setting up

log4j.properties file

 appender configuration

 specifying different name for

LoggerTag class 2nd

logging

 appenders

 adding to rooot logger

 filter that logs some information (example)

 layouts

 log4j and servlet context event listener, using

 log4j, using in a JSP

 LogFilter (example), mapped to a servlet

 loggers

 creating your own and giving it an appender

 using without configuration file

 requests

 session event listener, using

 setting up log4j 2nd

 with servlet that uses ServletContext.log()

logging out users, application with form-based authentication

login()

 DataSourceLoginModule class 2nd

 LoginContext class 2nd

 LoginModule

login-config elements (web.xml)

 auth-method nested element

 values for

 using with security-constraint element

login.html page (example)

LoginBean class (example)

 getLoginSuccess()

LoginContext class

loginError.html page

loginError.jsp page

LoginModule class

 example code

 methods

 validating username and password against database information

logout() (LoginModule)

long datatypes returned by date-related HttpSession methods 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lookup() (InitialContext) 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Macromedia Flash [See Flash files]

mail [See email]

mail server, interaction with email-sending servlet

mail sessions 2nd

 servlet getting from WebLogic JNDI

mail.jar archive

mailDefaults.properties file

Manager application (Tomcat)

 online documentation for

 StopTask class

manifest file for JAR files

Map objects

 ContextObject class (example) 2nd

 methods adding keys and values to map

 cookie EL implicit object

 Entry subclass, getKey() and getValue()

 entrySet()

 header implicit object 2nd

 headerValues implicit object

 JSP parameters passed for posting to JavaBean

Message class

 getAllHeaders()

 getContent()

 getFrom()

message stores 2nd

MessagingException class

META-INF directory, TLDs in

method attribute (HTML form tag)

Method objects

methods (JavaBean), naming conventions for

Microsoft Word file

 as email attachment

 sending as binary data

MIME types

 application/msword

 application/pdf

 associating file extensions with

 common, listing of

 Microsoft Word document

 MP3 files

 multipart/mixed

MimeMessage class 2nd 3rd

MimetypesFileTypeMap class

modules, JavaScript

 example of

 organization and storage of

 validating form input (validate.js)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MPEG audio layer 3 (MP3)

 embedded file in a JSP

 sending audio file as

multimedia, embedding in JSPs

 embedding applet with HTML Converter tool

 embedding applet with jsp:plugin

 embedding background soundtrack in a JSP

 embedding Flash in a servlet

 embedding QuickTime movie in a JSP

 embedding SVG file in a JSP

 HTML template for embedding Flash files

 generating automatically

 writing

Multipart class

Multipart content type

multipart/form-data content type

MultipartFilter class

MultipartParser class

MultipartRequest class

 file-uploading JavaBean, use in

 servlet that uses, creating

Multipurpose Internet Mail Extensions [See MIME types]

MutableAttributeSet class

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

name attribute (Ant project element)

namespace

 definition of

 identified by prefix attribute of taglib directive

 for XML elements related to XML Schema instances

 xmlns attribute of taglib element

naming conventions, log4j

naming servlets

 creating multiple mappings to a servlet

 creating welcome files for web application

 invoking servlet without a web.xml mapping

 JSP-type URL for servlets

 mapping all requests from a web application to a servlet

 mapping all requests to controller while preserving all servlet mappings

 mapping servlet to name in web.xml

 mapping static content to a servlet

 restricting requests for certain servlets

Netscape

 disabling cookies

 JavaScript, developers' web site

 setting language preference (v. 7.1)

next() (Iterator)

non-repeatable read

nullrole security role

NumberFormat class

 format() 2nd

 getCurrencyInstance()

 getPercentInstance()

numbers, formatting with JSTL tags

 fmt:setLocale tag

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

object attributes for web applications

 setting scope with c:set tag

object tags (HTML) 2nd

 automatic HTML file generation by Flash

 produced by HTML Converter (example)

objects

 EJB, factories for

 scopes of

onSubmit event handler (HTML form tag) 2nd

open source applications

openConnection() (URL)

Oracle 8i database

 servlet that queries for a ResultSet

 stored procedure adding row to table

Oracle sequences

org.apache.jasper.runtime package

overwriting a cookie

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packages

 fully-qualified class names and

 for servlet and utility classes

page attribute (jsp:include) 2nd

page directive

 errorPage attribute

 import attribute

 isErrorPage attribute

 overriding error-page configuration

page implementation object

page relative path

page scope 2nd

pageContext implicit object 2nd

PageData class, getInputStream() 2nd

pageEncoding attribute (jsp

 directive.page element)

PAM (Pluggable Authentication Module)

param implicit object 2nd 3rd 4th

param-value element, altering to import included resource

parse() (ParserDelegator) 2nd

 synchronization of

ParserCallback

ParserDelegator class

 callbacks, using with

 parse() 2nd

 synchronization of

parsing

 HTML with javax.swing.text subpackages

 JSPs before conversion to page impelementation

 XML

 JAXP-compliant parsers

 x:parse tag

Part interface

 getAllHeaders()

 getHeader()

 getInputStream()

passwords [See also authentication]

 creating in tomcat-users.xml file

 for keystore file and digital certificate

path attribute (Context element, Tomcat)

path attribute (cookies)

 accessing values for

 setting to name of context path

path element (Ant) 2nd 3rd

 nesting three filesets in

PATH environment variable

 Ant /bin directory, adding to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 including path to the bin directory of your Java SDK installation

 for Sun JDK javac compiler

path parameter

paths

 context-relative

 cookie, setting with jsp:setProperty

 page-relative

 to save directory, for file upload servlet 2nd

 servlet

 creating for web application users

 differences among servlet engines

pattern language for converting logged message layouts

PatternLayout class 2nd

PDF (Portable Document Format) files

percentages

 formatting in a JSP

 formatting in a servlet

permissions for using code examples

phantom read

Pluggable Authentication Module (PAM)

pop-up window, creating with JavaScript function in a servlet

port numbers, used by secure vs. insecure HTTP connections

Portable Document Format (PDF) files

Portable Document Format files [See PDF files]

POST requests

 delivery of HTML form data to server-side program via

 file uploads and

 handling in a JSP

 handling in a servlet

 with ServletRequest.getParameter() and getParameterMap()

 posting data from a JSP

 posting data from a servlet to other server-side programs

 HttpClient, using to post data to a JSP

 security constraints on

PRECLASSPATH environmental variable

precompiling JSPs 2nd

 in Tomcat

 in WebLogic

 with precompilation protocol

 servlet mappings

preferred locale

prefix attribute (taglib directive)

prepare target (Ant, build.xml file) 2nd

printf function in C

PrintWriter class

 HTML page returned by blocking filter

PrivacyServlet class (example)

 doGet(), including resource specified by init parameter

 JSP fragment included by

programmatic security

project element (Ant)

 arranging target elements inside

http://lib.ommolketab.ir
http://lib.ommolketab.ir

properties

 Ant global.properties file

 loading into build.xml

 making avialable to build file

 Ant property task, importing global.properties file

 build.properties file (Ant), for web application deployment

 cookie, setting

 external file (include.properties), specifying resource to include in JSP

 jar-name property

 JavaBean

 accessing with EL

 email parts stored as

 setting in a JSP

 log4j.properties file

 mailDefaults.properties file

 passing to an Ant file

 command line, using

 property task, using

 properties file for automatically generated XML view

 tag attributes as

 wl.properties file for WebLogic Ant build

properties file, ResourceBundle as

property task (Ant) 2nd

PropertyConfigurator class

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

query strings

 adding parameter to with a servlet

 adding parameters to with a JSP

 request, adding parameter to

QuickTime movie, embedding in a JSP

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

redirecting requests (after checking session validity)

reference implementation

 for JSTL

refid attribute (Ant classpath element) 2nd

reflection, using in logging

Refresh header

 JSP that adds to the response

refreshing a JSP automatically

refreshing a servlet automatically

registered names for servlets

 filters, mapping to

 invoking registered servlets with invoker servlet

reloadable attribute (Context element, Tomcat) 2nd

Remote Method Invocation registry

removeAttribute() (HttpSession)

renaming uploaded files

 with your own Java class

request and response objects

 error page access to

request attributes

 access by error-handling servlet

 access by included resources in JSPs

 exception information from

request headers

 accessing with EL implicit object

 value of one particular header

 examining in a JSP

 examining in a servlet

 filter, using to alter

request implicit object

request parameters

 accessing with EL implicit object 2nd

 getting for CallbackHandler

request phase (JSPs)

request scope 2nd

request, ServletRequestListeners

RequestDispatcher interface 2nd

 forward() 2nd

 forwarding of HTTP requests without triggering security constraints

 forwarding requests to servlets under security constraints

 include() 2nd

 embedding Flash in a servlet

 including JavaScript CreateWindow function in a servlet

 including top-level servlet file

 including validating JavaScript module in a servlet

 servlet importing JavaScript file

 JSP fragment included in a servlet with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RequestDispatcher objects, using filters with

requestInitialized()

requests

 blocking from an IP address with a filter

 optionally blocking with a filter

requestScope implicit JSTL object 2nd

Resource elements (server.xml) 2nd 3rd

resource-env-ref element (web.xml) 2nd

resource-ref element (web.xml)

ResourceBundle objects 2nd

 creating as a Java class

 creating as a property file

 getBundle() 2nd

 localization context set in web.xml

 using in a JSP

 using in a servlet

ResourceParams elements (server.xml) 2nd 3rd

response codes, HTTP [See HTTP response codes]

response headers

 definition of

 Refresh

 JSPs, adding to

response implicit object (JSP)

responses

 customizing with a JavaBean

 filtering HTTP responses

restricting requests for certain servlets

Result interface 2nd

Result objects

 converting ResultSet to

ResultSet objects

 finding out information about

ResultSetMetaData interface

 servlet that uses

ResultSupport class

 toResult()

roles

 checking for users who request servlet

 specified in auth-constraint element

rollback() (Connection) 2nd

rolling file appender

RollingFileAppender class

root element [See jsp:root element]

root logger

 adding an appender to

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

save-dir element (web.xml)

SAX (Simple API for XML)

Scalable Vector Graphics (SVG) file, embedding in a JSP

scoped attributes

 using EL and c:out tag to get value of

scopes

 bound objects

 for stored objects

scraping information from a web page [See harvesting Web information]

script blocks (JavaScript)

scriptlets

SDK (Software Development Kit)

 Google Web APIs SDK

 PATH environment variable

secure attribute (cookies)

Secure Sockets Layer (SSL)

 built-in session tracking mechanism

 setting up on Tomcat

security

 configuring web.xml with web application security

 elements related to, in deployment descriptors not using servlet v2.4

 including security-related code in servlets

 restricting requests for certain servlets

 servlet access, restricting to controller only

security roles

 nullrole, preventing user mapping to in tomcat-users.xml

security-constraint elements (web.xml)

 auth-constraint nested element

 blocking all requests except from RequestDispatcher.forward

 example of

 initiating authentication with a JSP

 login-config element, using with

 restricting requests for certain servlets

 servlet access, restricting to controller servlet only

 specifying web resources requiring authentication

 web-resource-collection nested element

security-role elements (web.xml) 2nd 3rd

segments, JSP

select attribute (x:forEach)

SELECT statement (SQL)

 executing in JSP in a transaction

 sending to database with sql:query tag

self-signed digital certificate, creating for Tomcat

send() (Transport) 2nd

sendError() (HttpServletResponse) 2nd

sending non-HTML data

 audio files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PDF files

 viewing internal resources in a servlet

 word processing files

 XML files

sendRedirect() (HttpServletResponse) 2nd

sequences, Oracle

server response codes [See HTTP response codes]

server status code

 403 Forbidden

server.xml file (Tomcat)

 Connector element

 Context element

 Resource and ResourceParams elements

servers, application

service() (HttpServlet)

servlet API 2.3

 deployment descriptor that configures error pages

 sessions, configuration in web.xml

 web.xml file 2nd [See also web.xml file]

servlet API 2.4

 filters, using with RequestDispatchers

 web.xml file 2nd [See also web.xml file]3rd

 web.xml, use with Tomcat 5 and JSTL 1.1

servlet API documentation

servlet containers

servlet elements (web.xml)

 associating with multiple servlet-mapping elements

 generated by JspC, mapping servlets to

 load-on-startup nested element

servlet engines, commercial

Servlet interface

servlet-class element (web.xml)

servlet-mapping elements (web.xml)

 associating multiple with one servlet element

 creating alias to a servlet

 generated by JspC, mapping servlets to

 JSP-style URL pattern in

 mapping all requests from web application to a servlet

 removing or altering any elements allowing requests to bypass controller servlet

 mapping static content to a servlet

 removing or altering any that allow requests to bypass controller servlet

 servlets without, invoking

 url-pattern element

 WebLogic Server 7.0

servlet-name element (web.xml)

 * wildcard symbol, not used in

servlet.jar, inclusion in PRECLASSPATH environment variable

ServletConfig interface

ServletContext attributes

 setting in JSPs

 setting in servlets

 object that servlet binds to ServletContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 servlet that binds object to ServletContext

ServletContext class 2nd

 getAttribute()

 getRealPath()

 log() 2nd 3rd 4th 5th

 returning a null dispatcher

 setAttribute() 2nd

ServletContextListener interface

 contextInitialized() and contextDestroyed()

ServletException class 2nd

ServletOutputStream class

ServletRequest interface

 getLocale()

 getParameter()

 getParameter() and getParameterMap()

 getParameterMap()

 getRequestDispatcher()

 methods, using in servlet's doPost method

ServletRequestEvent class, getServletRequest()

ServletRequestListener class

ServletResponse class

 changing response with a filter

 setBufferSize()

servlets 2nd

 application servers as software hosts for

 compiling [See compiling servlets]

 conversion of JSPs into

 deploying [See deploying servlets and JSPs]

 deployment descriptor for servlet API 2.3

 deployment descriptor, creating

 for servlet API 2.4

 JavaServer Pages [See JSPs]

 naming [See naming servlets]

 packaging in WAR files

 writing

 FirstServlet class (example)

 lifecycle, management of

 packages, creating for

Session class 2nd 3rd 4th

 binding object to WebLogic JNDI

 servlet getting Session object from WebLogic JNDI

session event listeners

session ID

 displaying with JSTL tag

 URLs that automatically include, creating

session implicit object 2nd

session scope 2nd

 JNDI object placed in, using a filter

session-config element (web.xml) 2nd

 session timeout for all Tomcat applications

session-timeout element (web.xml)

sessionCreated() (HttpSessionListener) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sessionDestroyed() (HttpSessionListener) 2nd 3rd

sessionDidActivate() (HttpSessionActivationListener)

SessionFilter class (example)

sessions

 checking existence of in HttpServletRequest

 configuration in web.xml file for servlet API 2.3

 definition of

 invalidating to log out user

 monitoring session attributes with a filter

 monitoring session attributes with a listener

 timeout, setting

 in all Tomcat web applications

 in servlet code

 in web.xml

 tracking lifecycle with a listener

 tracking session activity in JSPs

 tracking session activity in servlets

 tracking with URL rewriting in a JSP

 tracking with URL rewriting in a servlet

sessionScope implicit JSTL object 2nd 3rd

sessionWillActivate() (HttpSessionActicationListener)

Set class, iterator()

Set-Cookie response header 2nd

setAttribute()

 HttpSession class

 ServletContext class

setAutoCommit() (Connection)

setBufferSize() (ServletResponse)

setContent()

setFrom()

setKey() (GoogleSearch setKey)

setMaxAge() (Cookie)

 calling with argument value of zero

setMaxInactiveInterval() (HttpSession) 2nd

setQuery()

setQueryString() (GoogleSearch)

setValue() (Cookie)

shell scripts

 for precompiling JSP files (on Unix)

 for precompiling all JSP pages in application (on Unix)

 Tomcat, shutting down

show-props target (Ant)

Simple API for XML (SAX)

Simple Object Access Protocol [See SOAP]

simple tag handler

 creating (JSP 2.0)

 creating a TLD for

 using in a JSP

SimpleLayout class

 messages logged by root logger

SimpleTag interface 2nd

SimpleTagSupport class 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 getJspBody()

 getJspContext()

SOAP (Simple Object Access Protocol)

 response from Amazon based on keyword search (example)

 web services based on, reasons to use

socket connection with a database server

Software Development Kit (SDK)

 Google Web APIs

 PATH environment variable

soundtrack, embedding in a JSP

SQL (Structured Query Language)

 executing several statements in one transaction

 servlet using transaction

 JSTL SQL tags 2nd

 with DataSource configuration

 SQL JSTL tag without DataSource configuration

 stored procedures

 transactions, using with JSPs

SQL PLUS database, addEvent stored procedure (example)

sql:query tag

 sending SQL SELECT statement to database

sql:setDataSource tag

sql:transaction tag

sql:update tag

src attribute (HTML script tag), importing JavaScript module into servlet

src directory

SSL [See Secure Sockets Layer]

start and stop tasks (Ant, build.xml file)

starting Tomcat from Ant

StartTask task

stateless Session bean (EJB)

 definition of

static content

 mapping to a servlet

 requests for, intercepted by controller servlet

 server performance and

static methods, Java method implementing EL function for JSP

static page for multimedia content

status codes, HTTP [See HTTP response codes]

status_code attribute

stop and start tasks (Ant, build.xml file)

stopping a Tomcat application with Ant

StopTask class

Store class 2nd 3rd

stored procedures

 calling from a JSP

 calling from a servlet

structureResults() 2nd

stylesheets (XSL), integrating into JSPs

Sun Microsystems

 Front Controller design pattern

 JAAS documentation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JAR file specification

 Java Development Kit (JDK)

 Java WSDP download site

 online tutorials

 sample applets

 web services tutorial that includes XPath

SVG file, embedding in a JSP

synchronizedMap() (Collections)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

t:toxml element

tag directive

tag files

 creating

 custom tag associated with, using

 packaging in a JAR

 packaging in a web application

tag handlers

 classic

 creating

 creating JSP 1.2 TLD for

 package name for classes

 simple

 creating

 creating TLD for

 using in a JSP

tag library

 listener class, adding to

 packaging in a JAR file

 packaging in a web application

Tag Library Descriptor (TLD) files 2nd

 adding listener element to

 configuring an EL function

 creating for simple tag handler

 creating JSP 1.2 TLD for classic tag handler

 creating JSP 2.0 TLD for classic tag handler

 custom logger tag

 custom tag information, providing

 definition of

 for XML view custom tag

 placing in tag library JAR's META-INF directory

 specifying validator for

 uri for tag library

 XML DTD, use in JSP 1.2

taglib directives 2nd

 for custom tag, identifying uri for tag library

 for different JSTL 1.0 libraries

 in included JSP segment, for use of c:out JSTL 1.0 tags

 JSP segment containing (example)

 required for use of JSTL 1.0 core and SQL libraries

 specifying core tag library from JSTL

 uri and prefix values to use with functions library

 uri attribute values in JSTL 1.1

taglib element

 version attribute

 xmlns attribute

 xmlns:xsi attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xsi:schemaLocation attribute

TagLibraryValidator class

 using XML view to validate custom tags in JSP page

tags

 custom [See also custom tags]

 custom tags in JSPs

 definition of

 including tag libraries as namespace attributes in JSP documents

 pre-built for JSPs (JSTL)

TagSupport class 2nd

target elements (Ant), grouping of tasks in

targets (Ant)

 in build.xml, displaying names of

taskdef element (Ant, build file)

 start task, defining

 stop task, defining

tasks (Ant)

 filesets

 group of, represented by target element

 property task

text files, JSPs written as

thread name in logging messages

Throwable class

Throwable objects

 accessing in JSP error page

 associated with exceptions, accessing

thrown exceptions, information about in JSP error page 2nd

timeout for sessions

 setting in all Tomcat web applications

 setting in servlet code

 setting in web.xml

timeStyle attribute (fmt:formatDate)

TimeZone IDs, helper class to display

TLD [See Tag Library Descriptor files]

tld file extension

Tomcat

 compiling servlet on

 configuring DataSource to use in servlet

 context element (conf/server.xml), for JSP content imported from outside context

 creating usernames and passwords

 DataSource, using in a servlet

 deploying individual JSP on

 deploying individual servlet on

 Ant tool, using

 steps in process

 deploying servlet as part of Context element in server.xml

 deploying web application on

 Ant build file, using

 pointing to external directory containing web application

 error page displayed by error handling servlet

 implicit mapping to its JSP compiler and execution servlet for .jsp requests

 including JAR files in Ant build file classpath

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 initial context of built-in JNDI implementation

 invoker servlet

 commenting out

 Jasper (JSP container)

 JNDI object, configuring

 JNDI resource

 accessing from a JSP

 accessing from a servlet

 JSP page implementation class, viewing

 JSTL 1.1 features, using with version 5

 log files

 precompiling JSPs in

 security-constraint element in web.xml, using

 session timeout, setting for all web applications

 SSL, setling up

 starting web application with Ant

 stopping web application with Ant

tomcat-users.xml file

 example of a typical file

 manager role, user mapping to

 nullroll security role, preventing user mapping to

 user mapping to security roles

 usernames and passwords, case-sensitivity of

 usernames, passwords, and roles for authentication

toResult() (ResultSupport) 2nd

ToXmlValidator class

transactions

 creating with Connection methods

 executing several SQL statements in single transaction

 servlet that uses transaction

 isolation levels

 using with JSPs

transforming XML, using JSTL XML and XSLT-related tags

translation phase (for JSPs) 2nd

 including JSP segment into JSP page

Transport class, send() 2nd

try/catch block, for exceptions thrown during include operations

TryCatchFinally interface

tutorials, online (Sun Microsystems)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

unbinding session objects, listening for

undeploy target (Ant, build.xml file)

Unix

 keytool utility, creating digital certificate with

 shell script for precompiling all JSP pages in application

 shell script for precompiling JSP files

Unix-based Mac OS X 10.2 system, PATH variable for javac

UPDATE statement (SQL)

uploading files

 com.oreilly.servlet classes for file uploads

 JSP, handling with

 file uploading JavaBean, creating

 JSP that uploads and displays information about

 multiple file uploads 2nd

 preparing HTML page for

 component to receive file upload and store in local directory

 renaming uploaded files

 with your own Java class

uri attribute (taglib directive)

 JSTL 1.1, different values in

URIs

 mapping uri elements in TLD as specified by taglib directive in JSP files

 request, use by JSP error page

url custom action

 adding parameters with

 encodeURL() vs.

 rewriting URLs with

URL patterns

 *.jsp is an extension mapping

 /sqlJsp.jsp, initiation of BASIC authentication for

 aiming all requests at a controller servlet

 exact matching requirement for

 JSP-type, creating for a servlet

 restricting any requests from reaching

 specified by security-constraint elements

URL rewriting 2nd

 using in a JSP

 using in a servlet

url-pattern element (web.xml)

 * wildcard character in

 case sensitivity of

 mapping all requests from web application to a servlet

 mapping filter to a JSP

URLConnection class

URLs

 connection to, opening

 external importing into JSP with c:import tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 initiating Amazon search with

 invoker-style, for servlets

 specifying a directory only

 for static content, mapping to a servlet

user classpath

user roles [See roles]

User-Agent header

users

 manager role (Tomcat)

 tomcat-users.xml file

 mapping to security roles

 usernames, passwords, and roles in

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

valid partial requests

ValidateHandler class

validating

 custom tags in JSP pages

 form input

 filter, using for

 JavaBean, using

 JavaScript, using in a JSP 2nd

 JavaScript, using in a servlet 2nd

 XML documents, specifying validator for TLD file

var attribute (c:forEach tag)

variable directive

variables (scoped), accessing with EL 2nd

variant (in locales)

version attribute

 cookies

 taglib element

viewer applications for SVG

viewing internal resources in a servlet

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

WAR (Web ARchive) files

 creating with Ant

 deploying web application as, using WebLogic Administration Console

 finding out if already deployed on Tomcat

 for servlets and JSPs

 generating with Ant war task

 opeining in WebLogic Builder to edit web.xml file

 viewing contents of

war task (Ant) 2nd

 classes, lib, and fileset (nested) elements

 destfile and webxml attributes

WARN level logging

web applications

 configuring log4j mechanism

 counting number of requests for

 creating welcome files for

 definition of

 deploying on Tomcat

 Ant build file, using

 configuring Tomcat to point to application in external directory

 deploying on WebLogic

 using Ant tool

 using WebLogic Administration Console

 using WebLogic Builder

 using weblogic.Deployer command-line utility

 deployment descriptor, creating for

 directory structure [See directory structure of web applications]

 Java-based

 mapping all requests to controller servlet

 packaging JSP tag file in

 packaging tag library in

 servlet context instance

 servlet, writing for

 starting on Tomcat using Ant file

 stopping on Tomcat using Ant file

 WAR files [See WAR files]

web browsers [See browsers]

web components

web containers 2nd [See also Tomcat]

 exception handling in

web developer tasks, recipes in this book

 implementation with BEA WebLogic

web directory, inclusion of nested directories in WAR file with Ant war task

web page for this book

web services [See also Amazon Web Services; Google Web Services] 2nd

 Amazon and Google

 Amazon, setting up

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Google Web API, setting up

 SOAP, using for information transfer

 SOAP-based, reasons to adopt

web-app element (web.xml)

 required attributes of servlet 2.4 deployment descriptor

WEB-INF directory 2nd

 contents of

WEB-INF/jspf (optional directory)

WEB-INF/tlds (optional directory)

web-resource-collection elements (web.xml)

 protected resources in security-constraint element

 specifying security restraints

web.xml file 2nd [See also servlet-mapping elements]

 BASIC authentication, initiating with JSP file

 contents of

 context parameter save-dir element

 context-param element, adding for included file in a JSP

 creating multiple mappings to a servlet

 creating with JspC utility

 DataSource, configuring in

 declaring exception handlers in

 editing for WebLogic to register a servlet

 error-page attribute, mapping exception types to a JSP

 error-page configuration

 filters

 configuring in

 mapped to the servlet path (example)

 mapping of

 mapping to a JSP

 form-based authentication, setting up

 form-checking filter registered and mapped in

 IOExceptions, element for managing

 IP blocking filter, mapping of

 jsp-property-group element 2nd

 JSP-type URL for a servlet

 listener element

 listeners [See also listeners]

 configuration in servlet API 2.3

 for servlet requests, registering

 mapping all references to JSP pages to a single servlet

 mapping servlet to a name

 preventing requests to non-controller servlets

 resource-ref element

 restricting requests for certain servlets

 servlet API 2.3

 converting to 2.4 for JSTL 1.1 features

 servlet API 2.4

 use with Tomcat 5 and JSTL 1.1

 servlet element with load-on-startup nested element

 servlet that creates pop-up window

 servlets without a mapping in

 session timeout for all Tomcat web applications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 session timeout, setting

 viewing with a servlet

webapps folder (Tomcat)

WebLogic

 creating DataSource on

 configuration, steps in

 JNDI lookup, using to access DataSource

 JNDI resource

 accessing from a JSP

 accessing from a servlet

 configuring in

 JNDI tree

 accessing an EJB with

 viewing

 precompiling JSPs in

 recipes for common tasks

 servlet classes and javax sub-packages

WebLogic Server 7.0

 deploying individual JSP on

 deploying individual servlet on

 Ant file, using

 editing web.xml to register servlet

 redeploying web application

 deploying web application on

 using Ant tool

 using WebLogic Administration Console

 using WebLogic Builder

 using weblogic.Deployer command-line utility

 security configuration in weblogic.xml

weblogic-ejb-jar.xml file

weblogic.Deployer command-line utility

weblogic.jspc utility

weblogic.xml file, security configuration in

webxml attribute (Ant war task)

welcome files for a web application

welcome-file-list element (web.xml)

wildcards in URL patterns

 overriding with specific mappings

windoid

Windows systems

 launching WebLogic Builder

 local variant for

 PATH environment variable for javac compiler (on NT)

 precompiling all JSP pages in application with weblogic.jspc

 shell script for running JspC

windows, browser [See browser windows, creating with JavaScript]

wl.applications property (Ant, build.properties file)

wl.properties file (for WebLogic Ant build file)

WLCLASSPATH environment variable

word processing files, sending

WSDP (Web Services Developer Pack)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

x:forEach tag 2nd

x:if tag

x:out tag

x:parse tag

x:transform tag

 associating a stylesheet with an XML file

 xml attribute

 xslt attribute

Xerces2 XML parser

XML

 Ant build file

 creating JSP document as XML file

 including XML fragment in a JSP document

 JSP document vs. XML view

 JSPs as XML files 2nd

 XML equivalents of JSP directives

 JSTL XML and XSLT tags, using in a JSP

 JSTL XML core tags, using in a JSP

 sending XML file as binary data

 SOAP messages on HTTP

 TLD (Tag Library Descriptor) files

 transforming (x:transform)

 web services

XML elements

 Ant tasks

 case-sensitivity in element and attribute names

 custom tags used in JSP

 namespace for elements related to XML Schema instances

 namespace, definition of

 path element, defining Ant classpath

XML parsers, JAXP-compliant

XML Schema instances

XML Schemas

 for JSP 2.0 TLD

 in servlet API 2.4 web.xml file

XML view

 automatically generating for JSP page

 generating from a JSP page

 JSP XML document vs.

xmlns attribute (taglib element)

xmlns:xsi attribute (taglib element)

XPath

xsi:schemaLocation attribute (taglib element)

XSL (Extensible Stylesheet Language)

XSLT, converting XML to readable format

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Preface
	What's in the Book
	Audience
	Organization
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Acknowledgments

	Chapter 1. Writing Servlets and JSPs
	Introduction
	Recipe 1.1 Writing a Servlet
	Recipe 1.2 Writing a JSP
	Recipe 1.3 Compiling a Servlet
	Recipe 1.4 Packaging Servlets and JSPs
	Recipe 1.5 Creating the Deployment Descriptor

	Chapter 2. Deploying Servlets and JSPs
	Introduction
	Recipe 2.1 Deploying an Individual Servlet on Tomcat
	Recipe 2.2 Using a Context Element in Tomcat'sserver.xml
	Recipe 2.3 Deploying an Individual Servlet on WebLogic
	Recipe 2.4 Deploying an Individual JSP on Tomcat
	Recipe 2.5 Deploying an Individual JSP on WebLogic
	Recipe 2.6 Deploying a Web Application on Tomcat
	Recipe 2.7 Deploying a Web Application on WebLogic Using Ant
	Recipe 2.8 Using the WebLogic Administration Console
	Recipe 2.9 Using WebLogic Builder to Deploy a Web Application
	Recipe 2.10 Using the weblogic.DeployerCommand-Line Tool

	Chapter 3. Naming Your Servlets
	Introduction
	Recipe 3.1 Mapping a Servlet to a Name in web.xml
	Recipe 3.2 Creating More Than One Mapping to a Servlet
	Recipe 3.3 Creating a JSP-Type URL for a Servlet
	Recipe 3.4 Mapping Static Content to a Servlet
	Recipe 3.5 Invoking a Servlet Without a web.xml Mapping
	Recipe 3.6 Mapping All Requests Within a Web Application to a Servlet
	Recipe 3.7 Mapping Requests to a Controller and Preserving Servlet Mappings
	Recipe 3.8 Creating Welcome Files for a Web Application
	Recipe 3.9 Restricting Requests for Certain Servlets
	Recipe 3.10 Giving Only the Controller Access to Certain Servlets

	Chapter 4. Using Apache Ant
	Introduction
	Recipe 4.1 Obtaining and Setting Up Ant
	Recipe 4.2 Using Ant Targets
	Recipe 4.3 Including Tomcat JAR files in the Build File Classpath
	Recipe 4.4 Compiling a Servlet with an Ant Build File
	Recipe 4.5 Creating a WAR File with Ant
	Recipe 4.6 Creating a JAR File with Ant
	Recipe 4.7 Starting a Tomcat Application with Ant
	Recipe 4.8 Stopping a Tomcat Application with Ant

	Chapter 5. Altering the Format of JSPs
	Introduction
	Recipe 5.1 Precompiling a JSP in Tomcat
	Recipe 5.2 Precompiling a JSP in WebLogic
	Recipe 5.3 Precompiling JSPs with the Precompilation Protocol
	Recipe 5.4 Mapping a JSP to Its Page Implementation Class
	Recipe 5.5 Creating a JSP from Scratch as a JSP Document
	Recipe 5.6 Generating an XML View from a JSP

	Chapter 6. Dynamically Including Contentin Servlets and JSPs
	Introduction
	Recipe 6.1 Including a Resource Each Time a Servlet Handles a Request
	Recipe 6.2 Using an External Configuration to Include a Resource in a Servlet
	Recipe 6.3 Including Resources Nested at Multiple Levels in a Servlet
	Recipe 6.4 Including a Resource that Seldom Changes into a JSP
	Recipe 6.5 Including Content in a JSP Each Time the JSP Handles a Request
	Recipe 6.6 Using an External Configuration File to Include a Resource in a JSP
	Recipe 6.7 Including an XML Fragment in a JSP Document
	Recipe 6.8 Including Content from Outside a Context in a JSP

	Chapter 7. Handling Web Form Data inServlets and JSPs
	Introduction
	Recipe 7.1 Handling a POST HTTP Request in a Servlet
	Recipe 7.2 Handling a POST HTTP Request in a JSP
	Recipe 7.3 Setting the Properties of a JavaBean in a JSP
	Recipe 7.4 Setting a Scoped Attribute in a JSP to the Value of a Form Parameter
	Recipe 7.5 Posting Data from a Servlet
	Recipe 7.6 Posting Data from a JSP
	Recipe 7.7 Using a Servlet to Add a Parameter to a Query String
	Recipe 7.8 Using a JSP to Add a Parameter to a Query String
	Recipe 7.9 Using a Filter to Read Parameter Values

	Chapter 8. Uploading Files
	Introduction
	Recipe 8.1 Preparing the HTML Page for File Uploads
	Recipe 8.2 Using the com.oreilly.servlet Library
	Recipe 8.3 Uploading One File at a Time
	Recipe 8.4 Uploading Multiple Files
	Recipe 8.5 Renaming Files
	Recipe 8.6 Using a JSP to Handle a File Upload

	Chapter 9. Handling Exceptions in Web Applications
	Introduction
	Recipe 9.1 Declaring Exception Handlers in web.xml
	Recipe 9.2 Creating an Exception-Handling Servlet
	Recipe 9.3 Sending an Error from a Servlet
	Recipe 9.4 Sending an Error from a JSP
	Recipe 9.5 Creating an Error-Handling JSP
	Recipe 9.6 Declaring a Special Exception-Handling JSP for Other JSPs

	Chapter 10. Reading and Setting Cookies
	Introduction
	Recipe 10.1 Setting a Cookie with a Servlet
	Recipe 10.2 Creating an Array from All of the Request's Cookies
	Recipe 10.3 Setting a Cookie with a JSP
	Recipe 10.4 Reading Cookie Values with a Servlet
	Recipe 10.5 Reading Cookie Values with a JSP
	Recipe 10.6 Altering or Removing a Cookie That Has Already Been Set

	Chapter 11. Session Tracking
	Introduction
	Recipe 11.1 Setting the Session Timeout in web.xml
	Recipe 11.2 Setting the Session Timeout in All Tomcat Web Applications
	Recipe 11.3 Setting the Session Timeout Programmatically
	Recipe 11.4 Checking if a Session Exists in an HttpServletRequest
	Recipe 11.5 Tracking Session Activity in Servlets
	Recipe 11.6 Tracking Session Activity in JSPs
	Recipe 11.7 Using URL Rewriting in a JSP
	Recipe 11.8 Using URL Rewriting in a Servlet
	Recipe 11.9 Using a Listener to Track the Session Lifecycle
	Recipe 11.10 Using a Listener to Monitor Session Attributes
	Recipe 11.11 Using a Filter to Monitor Session Attributes

	Chapter 12. Integrating JavaScript with Servlets and JSPs
	Introduction
	Recipe 12.1 Including JavaScript Modules in a Servlet
	Recipe 12.2 Including JavaScript Modules in a JSP
	Recipe 12.3 Creating a New Window with JavaScript in a Servlet
	Recipe 12.4 Creating a New Window with JavaScript in a JSP
	Recipe 12.5 Using JavaScript to Validate Form Values in a Servlet
	Recipe 12.6 Using JavaScript to Validate Form Values in a JSP

	Chapter 13. Sending Non-HTML Content
	Introduction
	Recipe 13.1 Sending a PDF File
	Recipe 13.2 Sending a Word Processing File
	Recipe 13.3 Sending an XML file
	Recipe 13.4 Sending an Audio File
	Recipe 13.5 Viewing Internal Resources in a Servlet

	Chapter 14. Logging Messages from Servlets and JSPs
	Introduction
	Recipe 14.1 Logging Without Log4j
	Recipe 14.2 Setting Up Log4j
	Recipe 14.3 Using a Logger Without a Configuration File
	Recipe 14.4 Adding an Appender to the Root Logger
	Recipe 14.5 Using a Pattern with a Logger's Appender
	Recipe 14.6 Using log4j in a JSP
	Recipe 14.7 Logging Messages Using a Servlet Context Event Listener
	Recipe 14.8 Logging Messages Using a Session Event Listener

	Chapter 15. Authenticating Clients
	Introduction
	Recipe 15.1 Creating Users and Passwords with Tomcat
	Recipe 15.2 Setting Up SSL on Tomcat
	Recipe 15.3 Using BASIC Authentication
	Recipe 15.4 Using Form-Based Authentication
	Recipe 15.5 Logging Out a User
	Recipe 15.6 Using JAAS to Create a LoginModule
	Recipe 15.7 Creating the JAAS Configuration File
	Recipe 15.8 Using JAAS in a Servlet
	Recipe 15.9 Using JAAS in a JSP

	Chapter 16. Binding, Accessing, and Removing Attributes in Web Applications
	Introduction
	Recipe 16.1 Setting ServletContext Attributes in Servlets
	Recipe 16.2 Setting ServletContext Attributes in JSPs
	Recipe 16.3 Accessing or Removing ServletContext Attributes in Servlets
	Recipe 16.4 Accessing or Removing ServletContext Attributes in JSPs
	Recipe 16.5 Setting Session Attributes in Servlets
	Recipe 16.6 Setting Session Attributes in JSPs
	Recipe 16.7 Accessing or Removing Session Attributes in Servlets
	Recipe 16.8 Accessing or Removing Session Attributes in JSPs
	Recipe 16.9 Setting Request Attributes in Servlets
	Recipe 16.10 Setting Request Attributes in JSPs
	Recipe 16.11 Accessing or Removing Request Attributes in Servlets
	Recipe 16.12 Accessing or Removing Request Attributes in JSPs

	Chapter 17. Embedding Multimedia in JSPs
	Introduction
	Recipe 17.1 Embedding an Applet in a JSPUsing jsp:plugin
	Recipe 17.2 Embedding an Applet in a JSP Using the HTML Converter
	Recipe 17.3 Automatically Creating HTML Template for Including Flash Files
	Recipe 17.4 Writing HTML Template to Embed a Flash File
	Recipe 17.5 Embedding Flash in a Servlet
	Recipe 17.6 Embedding a QuickTime Movie in a JSP
	Recipe 17.7 Embedding an SVG File in a JSP
	Recipe 17.8 Embedding a Background Soundtrack in a JSP

	Chapter 18. Working With the Client Request
	Introduction
	Recipe 18.1 Examining HTTP Request Headers in a Servlet
	Recipe 18.2 Examining HTTP Request Headers in a JSP
	Recipe 18.3 Using a Filter to Alter Request Headers
	Recipe 18.4 Automatically Refreshing a Servlet
	Recipe 18.5 Automatically Refreshing a JSP
	Recipe 18.6 Counting the Number of Web Application Requests

	Chapter 19. Filtering Requests and Responses
	Introduction
	Recipe 19.1 Mapping a Filter to a Servlet
	Recipe 19.2 Mapping a Filter to a JSP
	Recipe 19.3 Mapping More Than One Filter to a Servlet
	Recipe 19.4 Changing the Order in Which Filters are Applied to Servlets
	Recipe 19.5 Configuring Initialization Parameters for a Filter
	Recipe 19.6 Optionally Blocking a Request with a Filter
	Recipe 19.7 Filtering the HTTP Response
	Recipe 19.8 Using Filters with RequestDispatcher Objects
	Recipe 19.9 Checking Form Parameters with a Filter
	Recipe 19.10 Blocking IP Addresses with a Filter

	Chapter 20. Managing Email in Servlets and JSPs
	Introduction
	Recipe 20.1 Placing the Email-Related Classes on your Classpath
	Recipe 20.2 Sending Email from a Servlet
	Recipe 20.3 Sending Email from a Servlet Using a JavaBean
	Recipe 20.4 Accessing Email from a Servlet
	Recipe 20.5 Accessing Email from a Servlet Using a JavaBean
	Recipe 20.6 Handling Attachments from an Email Received in a Servlet
	Recipe 20.7 Adding Attachments to an Email in a Servlet
	Recipe 20.8 Reading a Received Email's Headers from a Servlet

	Chapter 21. Accessing Databases
	Introduction
	Recipe 21.1 Accessing a Database from a Servlet Without DataSource
	Recipe 21.2 Configuring a DataSource in Tomcat
	Recipe 21.3 Using a DataSource in a Servlet with Tomcat
	Recipe 21.4 Creating a DataSource on WebLogic
	Recipe 21.5 Using a JNDI Lookup to get a DataSource from WebLogic
	Recipe 21.6 Using a DataSource from WebLogic in a JSP
	Recipe 21.7 Calling a Stored Procedure from a Servlet
	Recipe 21.8 Calling a Stored Procedure from a JSP
	Recipe 21.9 Converting a ResultSet to a Result Object
	Recipe 21.10 Executing Several SQL Statements Within a Single Transaction
	Recipe 21.11 Using Transactions with JSPs
	Recipe 21.12 Finding Information about a ResultSet

	Chapter 22. Using Custom Tag Libraries
	Introduction
	Recipe 22.1 Creating a Classic Tag Handler
	Recipe 22.2 Creating a JSP 1.2 TLD for a Classic Tag Handler
	Recipe 22.3 Creating a JSP 2.0 TLD for a Classic Tag Handler
	Recipe 22.4 Packaging a Tag Library in a Web Application
	Recipe 22.5 Packaging the Tag Library in a JAR File
	Recipe 22.6 Using the Custom Tag in a JSP
	Recipe 22.7 Handling Exceptions in a Custom Tag Class
	Recipe 22.8 Creating a Simple Tag Handler
	Recipe 22.9 Creating a TLD for a Simple Tag Handler
	Recipe 22.10 Using a Simple Tag Handler in a JSP
	Recipe 22.11 Creating a JSP Tag File
	Recipe 22.12 Packaging the JSP Tag File in a Web Application
	Recipe 22.13 Packaging the JSP Tag File in a JAR
	Recipe 22.14 Using a Custom Tag Associated with a Tag File
	Recipe 22.15 Adding a Listener Class to a Tag Library

	Chapter 23. Using the JSTL
	Introduction
	Recipe 23.1 Downloading the JSTL 1.0 and Using the JSTL Tags in JSPs
	Recipe 23.2 Downloading the Java Web Services Developer Pack
	Recipe 23.3 Using the Core JSTL Tags
	Recipe 23.4 Using the XML Core JSTL Tags
	Recipe 23.5 Using the XML Transform Tags
	Recipe 23.6 Using the Formatting JSTL Tags
	Recipe 23.7 Using A SQL JSTL Tag with a DataSource Configuration
	Recipe 23.8 Using A SQL JSTL Tag Without a DataSource Configuration
	Recipe 23.9 Accessing Scoped Variables with the EL
	Recipe 23.10 Accessing Request Parameters with the EL
	Recipe 23.11 Using the EL to Access Request Headers
	Recipe 23.12 Using the EL to Access One Request Header
	Recipe 23.13 Accessing Cookies with the EL
	Recipe 23.14 Using the EL to Access JavaBean Properties
	Recipe 23.15 Using JSTL Functions

	Chapter 24. Internationalization
	Introduction
	Recipe 24.1 Detecting the Client Locale in a Servlet
	Recipe 24.2 Detecting the Client's Locales in a JSP
	Recipe 24.3 Creating a ResourceBundle as a Properties File
	Recipe 24.4 Creating a ResourceBundle as a Java Class
	Recipe 24.5 Using the ResourceBundle in a Servlet
	Recipe 24.6 Using the ResourceBundle in a JSP
	Recipe 24.7 Formatting Dates in a Servlet
	Recipe 24.8 Formatting Dates in a JSP
	Recipe 24.9 Formatting Currencies in a Servlet
	Recipe 24.10 Formatting Currencies in a JSP
	Recipe 24.11 Formatting Percentages in a Servlet
	Recipe 24.12 Formatting Percentages in a JSP
	Recipe 24.13 Setting the Localization Context in the Deployment Descriptor

	Chapter 25. Using JNDI and Enterprise JavaBeans
	Introduction
	Recipe 25.1 Configuring a JNDI Object in Tomcat
	Recipe 25.2 Accessing the Tomcat JNDI Resource from a Servlet
	Recipe 25.3 Accessing the Tomcat JNDI Resource from a JSP
	Recipe 25.4 Configuring a JNDI Resource in WebLogic
	Recipe 25.5 Viewing the JNDI Tree in WebLogic
	Recipe 25.6 Accessing the WebLogic JNDI Resource from a Servlet
	Recipe 25.7 Accessing the WebLogic JNDI Resource from a JSP
	Recipe 25.8 Accessing an EJB Using the WebLogic JNDI Tree

	Chapter 26. Harvesting Web Information
	Introduction
	Recipe 26.1 Parsing an HTML Page Using thejavax.swing.text Subpackages
	Recipe 26.2 Using a Servlet to Harvest Web Data
	Recipe 26.3 Creating a JavaBean as a Web Page Parser
	Recipe 26.4 Using the Web Page Parsing JavaBean in a Servlet
	Recipe 26.5 Using the Web Page Parsing JavaBean in a JSP

	Chapter 27. Using the Google and Amazon Web APIs
	Introduction
	Recipe 27.1 Getting Set Up with Google's Web API
	Recipe 27.2 Creating a JavaBean to Connect with Google
	Recipe 27.3 Using a Servlet to Connect with Google
	Recipe 27.4 Using a JSP to Connect with Google
	Recipe 27.5 Getting Set Up with Amazon's Web Services API
	Recipe 27.6 Creating a JavaBean to Connect with Amazon
	Recipe 27.7 Using a Servlet to Connect with Amazon
	Recipe 27.8 Using a JSP to Connect with Amazon

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X

