
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Programming .NET Security

By Adam Freeman, Allen Jones

Publisher: O'Reilly

Pub Date: June 2003

ISBN: 0-596-00442-7

Pages: 714

With the spread of web-enabled desktop clients and web-server based applications, developers can
no longer afford to treat security as an afterthought. It's one topic, in fact, that .NET forces you to
address, since Microsoft has placed security-related features at the core of the .NET Framework. Yet,
because a developer's carelessness or lack of experience can still allow a program to be used in an
unintended way, Programming .NET Security shows you how the various tools will help you write
secure applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Programming .NET Security

By Adam Freeman, Allen Jones

Publisher: O'Reilly

Pub Date: June 2003

ISBN: 0-596-00442-7

Pages: 714

 Copyright

 Dedication

 Preface

 How This Book Is Organized

 Who Should Read This Book

 Assumptions This Book Makes

 Conventions Used in This Book

 How to Contact Us

 Part I: Fundamentals

 Chapter 1. Security Fundamentals

 Section 1.1. The Need for Security

 Section 1.2. Roles in Security

 Section 1.3. Understanding Software Security

 Section 1.4. End-to-End Security

 Chapter 2. Assemblies

 Section 2.1. Assemblies Explained

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 2.2. Creating Assemblies

 Section 2.3. Shared Assemblies

 Section 2.4. Strong Names

 Section 2.5. Publisher Certificates

 Section 2.6. Decompiling Explained

 Chapter 3. Application Domains

 Section 3.1. Application Domains Explained

 Chapter 4. The Lifetime of a Secure Application

 Section 4.1. Designing a Secure .NET Application

 Section 4.2. Developing a Secure .NET Application

 Section 4.3. Security Testing a .NET Application

 Section 4.4. Deploying a .NET Application

 Section 4.5. Executing a .NET Application

 Section 4.6. Monitoring a .NET Application

 Part II: .NET Security

 Chapter 5. Introduction to Runtime Security

 Section 5.1. Runtime Security Explained

 Section 5.2. Introducing Role-Based Security

 Section 5.3. Introducing Code-Access Security

 Section 5.4. Introducing Isolated Storage

 Chapter 6. Evidence and Code Identity

 Section 6.1. Evidence Explained

 Section 6.2. Programming Evidence

 Section 6.3. Extending the .NET Framework

 Chapter 7. Permissions

 Section 7.1. Permissions Explained

 Section 7.2. Programming Code-Access Security

 Section 7.3. Extending the .NET Framework

 Chapter 8. Security Policy

 Section 8.1. Security Policy Explained

 Section 8.2. Programming Security Policy

 Section 8.3. Extending the .NET Framework

 Chapter 9. Administering Code-Access Security

 Section 9.1. Default Security Policy

 Section 9.2. Inspecting Declarative Security Statements

 Section 9.3. Using the .NET Framework Configuration Tool

 Section 9.4. Using the Code-Access Security Policy Tool

 Chapter 10. Role-Based Security

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 10.1. Role-Based Security Explained

 Section 10.2. Programming Role-Based Security

 Chapter 11. Isolated Storage

 Section 11.1. Isolated Storage Explained

 Section 11.2. Programming Isolated Storage

 Section 11.3. Administering Isolated Storage

 Part III: .NET Cryptography

 Chapter 12. Introduction to Cryptography

 Section 12.1. Cryptography Explained

 Section 12.2. Cryptography Is Key Management

 Section 12.3. Cryptographic Attacks

 Chapter 13. Hashing Algorithms

 Section 13.1. Hashing Algorithms Explained

 Section 13.2. Programming Hashing Algorithms

 Section 13.3. Keyed Hashing Algorithms Explained

 Section 13.4. Programming Keyed Hashing Algorithms

 Section 13.5. Extending the .NET Framework

 Chapter 14. Symmetric Encryption

 Section 14.1. Encryption Revisited

 Section 14.2. Symmetric Encryption Explained

 Section 14.3. Programming Symmetrical Encryption

 Section 14.4. Extending the .NET Framework

 Chapter 15. Asymmetric Encryption

 Section 15.1. Asymmetric Encryption Explained

 Section 15.2. Programming Asymmetrical Encryption

 Section 15.3. Extending the .NET Framework

 Chapter 16. Digital Signatures

 Section 16.1. Digital Signatures Explained

 Section 16.2. Programming Digital Signatures

 Section 16.3. Programming XML Signatures

 Section 16.4. Extending the .NET Framework

 Chapter 17. Cryptographic Keys

 Section 17.1. Cryptographic Keys Explained

 Section 17.2. Programming Cryptographic Keys

 Section 17.3. Extending the .NET Framework

 Part IV: .NET Application Frameworks

 Chapter 18. ASP.NET Application Security

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 18.1. ASP.NET Security Explained

 Section 18.2. Configuring the ASP.NET Worker Process Identity

 Section 18.3. Authentication

 Section 18.4. Authorization

 Section 18.5. Impersonation

 Section 18.6. ASP.NET and Code-Access Security

 Chapter 19. COM+ Security

 Section 19.1. COM+ Security Explained

 Section 19.2. Programming COM+ Security

 Section 19.3. Administering COM+ Security

 Chapter 20. The Event Log Service

 Section 20.1. The Event Log Service Explained

 Section 20.2. Programming the Event Log Service

 Part V: API Quick Reference

 Chapter 21. How to Use This Quick Reference

 Section 21.1. Finding a Quick-Reference Entry

 Section 21.2. Reading a Quick-Reference Entry

 Chapter 22. Converting from C# to VB Syntax

 Section 22.1. General Considerations

 Section 22.2. Classes

 Section 22.3. Structures

 Section 22.4. Interfaces

 Section 22.5. Class, Structure, and Interface Members

 Section 22.6. Delegates

 Section 22.7. Enumerations

 Chapter 23. The System.Security Namespace

 AllowPartiallyTrustedCallersAttribute

 CodeAccessPermission

 IEvidenceFactory

 IPermission

 ISecurityEncodable

 ISecurityPolicyEncodable

 IStackWalk

 NamedPermissionSet

 PermissionSet

 PolicyLevelType

 SecurityElement

 SecurityException

 SecurityManager

 SecurityZone

 SuppressUnmanagedCodeSecurityAttribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 UnverifiableCodeAttribute

 VerificationException

 XmlSyntaxException

 Chapter 24. The System.Security.Cryptography Namespace

 AsymmetricAlgorithm

 AsymmetricKeyExchangeDeformatter

 AsymmetricKeyExchangeFormatter

 AsymmetricSignatureDeformatter

 AsymmetricSignatureFormatter

 CipherMode

 CryptoAPITransform

 CryptoConfig

 CryptographicException

 CryptographicUnexpectedOperationException

 CryptoStream

 CryptoStreamMode

 CspParameters

 CspProviderFlags

 DeriveBytes

 DES

 DESCryptoServiceProvider

 DSA

 DSACryptoServiceProvider

 DSAParameters

 DSASignatureDeformatter

 DSASignatureFormatter

 FromBase64Transform

 FromBase64TransformMode

 HashAlgorithm

 HMACSHA1

 ICryptoTransform

 KeyedHashAlgorithm

 KeySizes

 MACTripleDES

 MaskGenerationMethod

 MD5

 MD5CryptoServiceProvider

 PaddingMode

 PasswordDeriveBytes

 PKCS1MaskGenerationMethod

 RandomNumberGenerator

 RC2

 RC2CryptoServiceProvider

 Rijndael

 RijndaelManaged

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RNGCryptoServiceProvider

 RSA

 RSACryptoServiceProvider

 RSAOAEPKeyExchangeDeformatter

 RSAOAEPKeyExchangeFormatter

 RSAParameters

 RSAPKCS1KeyExchangeDeformatter

 RSAPKCS1KeyExchangeFormatter

 RSAPKCS1SignatureDeformatter

 RSAPKCS1SignatureFormatter

 SHA1

 SHA1CryptoServiceProvider

 SHA1Managed

 SHA256

 SHA256Managed

 SHA384

 SHA384Managed

 SHA512

 SHA512Managed

 SignatureDescription

 SymmetricAlgorithm

 ToBase64Transform

 TripleDES

 TripleDESCryptoServiceProvider

 Chapter 25. The System.Security.Cryptography.X509Certificates Namespace

 X509Certificate

 X509CertificateCollection

 X509CertificateCollection.X509CertificateEnumerator

 Chapter 26. The System.Security.Cryptography.Xml Namespace

 DataObject

 DSAKeyValue

 KeyInfo

 KeyInfoClause

 KeyInfoName

 KeyInfoNode

 KeyInfoRetrievalMethod

 KeyInfoX509Data

 Reference

 RSAKeyValue

 Signature

 SignedInfo

 SignedXml

 Transform

 TransformChain

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XmlDsigBase64Transform

 XmlDsigC14NTransform

 XmlDsigC14NWithCommentsTransform

 XmlDsigEnvelopedSignatureTransform

 XmlDsigXPathTransform

 XmlDsigXsltTransform

 Chapter 27. The System.Security.Permissions Namespace

 CodeAccessSecurityAttribute

 EnvironmentPermission

 EnvironmentPermissionAccess

 EnvironmentPermissionAttribute

 FileDialogPermission

 FileDialogPermissionAccess

 FileDialogPermissionAttribute

 FileIOPermission

 FileIOPermissionAccess

 FileIOPermissionAttribute

 IsolatedStorageContainment

 IsolatedStorageFilePermission

 IsolatedStorageFilePermissionAttribute

 IsolatedStoragePermission

 IsolatedStoragePermissionAttribute

 IUnrestrictedPermission

 PermissionSetAttribute

 PermissionState

 PrincipalPermission

 PrincipalPermissionAttribute

 PublisherIdentityPermission

 PublisherIdentityPermissionAttribute

 ReflectionPermission

 ReflectionPermissionAttribute

 ReflectionPermissionFlag

 RegistryPermission

 RegistryPermissionAccess

 RegistryPermissionAttribute

 ResourcePermissionBase

 ResourcePermissionBaseEntry

 SecurityAction

 SecurityAttribute

 SecurityPermission

 SecurityPermissionAttribute

 SecurityPermissionFlag

 SiteIdentityPermission

 SiteIdentityPermissionAttribute

 StrongNameIdentityPermission

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 StrongNameIdentityPermissionAttribute

 StrongNamePublicKeyBlob

 UIPermission

 UIPermissionAttribute

 UIPermissionClipboard

 UIPermissionWindow

 UrlIdentityPermission

 UrlIdentityPermissionAttribute

 ZoneIdentityPermission

 ZoneIdentityPermissionAttribute

 Chapter 28. The System.Security.Policy Namespace

 AllMembershipCondition

 ApplicationDirectory

 ApplicationDirectoryMembershipCondition

 CodeGroup

 Evidence

 FileCodeGroup

 FirstMatchCodeGroup

 Hash

 HashMembershipCondition

 IIdentityPermissionFactory

 IMembershipCondition

 NetCodeGroup

 PermissionRequestEvidence

 PolicyException

 PolicyLevel

 PolicyStatement

 PolicyStatementAttribute

 Publisher

 PublisherMembershipCondition

 Site

 SiteMembershipCondition

 StrongName

 StrongNameMembershipCondition

 UnionCodeGroup

 Url

 UrlMembershipCondition

 Zone

 ZoneMembershipCondition

 Chapter 29. The System.Security.Principal Namespace

 GenericIdentity

 GenericPrincipal

 IIdentity

 IPrincipal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PrincipalPolicy

 WindowsAccountType

 WindowsBuiltInRole

 WindowsIdentity

 WindowsImpersonationContext

 WindowsPrincipal

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright
Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. Microsoft, the .NET logo, Visual Basic .NET, Visual Studio .NET, ADO.NET, Windows, and
Windows 2000 are registered trademarks of the Microsoft Corporation. The association between the
Smoothhound shark and the topic of .NET security is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Dedication
Dedicated with love to Jacqui. She deserves a dedication to herself for a change.

-Adam Freeman

For my wife Elena and my daughter Anya. I love you both.

-Allen Jones

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Preface
The .NET Framework is a flexible general-purpose computing platform designed to address the needs
of commercial organizations and individuals alike, and to support a variety of application models.
.NET supports recent trends that favor highly distributed systems, component-based applications,
and web-based server solutions (including XML web services). Although these trends have led to
improvements in application functionality and programmer productivity, they also require that
software consumers, producers, and service providers pay closer attention to software and system
security.

Traditionally, programmers have treated security as an afterthought; however, there is a growing
appreciation that security is a requirement, not an option, for contemporary applications and that
security should be integrated into their development. The simple fact is that you cannot ignore
security when developing a .NET application, because security is at the core of the .NET Framework
and implicit in applications that you write. You must understand how to program .NET security, if for
no other reason than to respond to the default actions of the .NET Framework, but more importantly,
to create effective and functional .NET applications that will be welcomed by their users.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

How This Book Is Organized

This book is divided into five parts. Part I discusses fundamental software security concepts. Part II
focuses on programming the security features of the .NET runtime. Part III covers the programmatic
use of the cryptography classes contained in the .NET class library. Part IV discusses the use of
security features more related to the platform on which your applications run. Finally, Part V contains
an API reference covering the security classes we discuss in this book.

Part I: Fundamentals

Chapter 1

Introduces some fundamental software security concepts that you should understand before
continuing to later chapters. Explains why there is a need for security, discusses the goal of
software security, and introduces some important topics that you should be aware of as you
begin to develop your own security programming skills.

Chapter 2

Provides an overview of the .NET assembly, which is a key component in .NET security.
Describes the structure and contents of an assembly, demonstrates how to create the different
types of assembly, and discusses protecting your assemblies from tampering and reverse
engineering.

Chapter 3

Explains the role of application domains and discusses the effect they have on application
isolation, security, and configuration.

Chapter 4

Discusses the way in which software security is integrated into the application lifetime, and
provides practical advice that will help you understand the content contained in later chapters.

Part II: .NET Security

Chapter 5

Introduces the key security features provided by the .NET runtime. Explains the purpose and
function of these security features, how they interact with each other, and their relationship
with the security provided by the underlying operating system.

Chapter 6

Explains what evidence is and where it comes from, and describes the purpose and use of the
different types of evidence, including the standard evidence classes provided with the. NET
Framework. Demonstrates how to use evidence programmatically and how to extend the
security capabilities of the .NET Framework by developing custom evidence classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7

Explains what permissions are and discusses their role in the implementation of code-access
security. Describes the mechanisms that the runtime uses to enforce code-level security, and
explains how you can use permissions to manipulate these mechanisms. Finally, this chapter
shows you how to extend code-access security by implementing your own custom permissions.

Chapter 8

Explains how the .NET runtime uses security policy to determine which permissions to grant to
an assembly or application domain. Describes the structure of security policy and explains how
the component elements interact at runtime. Explains how to manipulate security policy
programmatically, and demonstrates the use of application domain policy.

Chapter 9

Outlines the default security policy implemented by the .NET Framework, and discusses the use
of the .NET security tools to manage security policy.

Chapter 10

Explains what role-based security is and discusses the .NET Framework's implementation.
Describes the classes used to access role-based security, and demonstrates how to use them in
your programs.

Chapter 11

Describes what isolated storage is and explains where it provides benefits over existing data
storage options. Demonstrates how to use isolated storage in your own programs, as well as
how to administer and control access to it.

Part III: .NET Cryptography

Chapter 12

Provides an overview of the different aspects of cryptography and discusses some of the
dangers and limitations of which you should be aware.

Chapter 13

Examines hash codes in more depth and shows you how to create and validate hash codes
using the .NET Framework classes. Extends the .NET Framework by adding a new hashing
algorithm.

Chapter 14

Discusses how to achieve confidentiality with symmetric data encryption, and how to encrypt
and decrypt data using the .NET Framework. Shows you how to extend the .NET Framework by
adding a new symmetric encryption algorithm.

Chapter 15

Discusses asymmetric encryption, explaining what it is, how it works, and how it overcomes the
problem of exchanging secret keys. Demonstrates how to extend the .NET Framework by
adding a new asymmetric encryption algorithm.

Chapter 16

Explains what digital signatures are, how they work, and how to use them within your .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applications. Demonstrates how to extend the .NET Framework by adding support for a custom
digital signatures algorithm.

Chapter 17

Discusses the way in which the .NET Framework supports cryptographic keys. Explains the
importance of keys, and the decisions you must make in deciding how you will create them.

Part IV: .NET Applications Frameworks

Chapter 18

Introduces the features you can use to increase the security of your ASP.NET applications.
Discusses the overall issue of ASP.NET application security, and the mechanisms the .NET
Framework implements to provide authentication, authorization, and impersonation services to
ASP.NET applications.

Chapter 19

Discusses the COM+ security services, and explains how you can apply them to your COM+
components.

Chapter 20

Describes how to use the Windows Event Logging Service from your .NET applications in order
to audit Windows security events.

Part V: API Quick Reference

Part V contains a comprehensive API reference covering the following security-related namespaces of
the .NET Framework base class library:

System.Security
System.Security.Cryptography
System.Security.Cryptography.X509Certificates
System.Security.Cryptography.Xml
System.Security.Permissions
System.Security.Policy
System.Security.Principal

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Who Should Read This Book

Programming .NET Security was written for two groups of people. First, we wrote for the architects
and designers of .NET applications who must understand the capabilities and limitations of .NET
security to factor them into their designs and plans. Each chapter in Parts II, III, and IV begins with a
detailed discussion that describes the technology but does not go to the level of discussing individual
classes and methods.

Second, we wrote for all C# and Visual Basic .NET programmers who want to know how to use the
features of the .NET Framework to write more secure applications. Following a technical introduction,
each chapter in Parts II, III, and IV contains a detailed explanation of how to program the features of
the .NET Framework being discussed; numerous code samples accompany these sections to clarify
the points being made. Specifically for advanced programmers, our discussions of code-access
security and cryptography contain fully worked examples on how to extend the .NET Framework
security mechanisms.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Assumptions This Book Makes

This book is focused on .NET Framework security programming; we assume no prior exposure to the
.NET security classes, but expect the reader to have basic experience as a competent C# or Visual
Basic .NET programmer.

In Part IV of this book, we discuss the interaction of .NET application security with features and
security capabilities of the Windows platform and other external services. In these chapters, we
expect the reader to be familiar with the external technologies, and focus only on the aspect of
security programming.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Conventions Used in This Book

The following font conventions are used throughout this book:

Italic is used for:

Pathnames, filenames, and program names

Internet addresses, such as domain names and URLs

New terms where they are defined

Constant Width is used for:

Command lines and options that should be typed verbatim

Names and keywords in program examples, including method names, variable names, and class
names

Constant Width Bold is used for:

Emphasis within program code

This icon designates a note, which is an important aside to the nearby text.

This icon designates a warning relating to the nearby text.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for the book that lists errata, examples, or any additional information. You can
access this page at:

http://www.oreilly.com/catalog/prognetsec

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site:

http://www.oreilly.com

[Team LiB]

http://www.oreilly.com/catalog/prognetsec
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part I: Fundamentals
Discusses the need for security and the approaches to adopt when developing secure software.
These chapters also discuss assemblies and application domains-two fundamental building
blocks of .NET applications that play a crucial role in the creation of secure software:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. Security Fundamentals
This chapter introduces the fundamental software security concepts that you need to understand
before continuing to later chapters. We explain why there is a need for security, and the roles that
are important to the development and operation of software security policies. We also discuss the
goals of software security and introduce some important concepts that you should understand as you
develop your own security programming skills.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.1 The Need for Security

Only a few years ago, software applications tended to be isolated. Users of these applications were
required to present themselves in a known location (for example, a bank branch or office block) that
was protected by physical barriers to access such as locks, surveillance cameras, and security
guards. Attacks against such software systems were fewer than are experienced today, in part,
because gaining access to such a location presented a barrier that many found insurmountable.

The increased connectivity and prevalence of networked applications has removed the
insurmountable barrier presented by physical security, and it is not only the networked applications
themselves at risk. Increasingly, software systems control access to valuable physical resources (for
example, banking software can be used to credit or debit a customer account). Subverting or
compromising the software system may be the simplest way to gain access to the physical resource;
for example, it may be easier to break into the banking application and create fictitious transactions
than it is to crack open the bank vault.

Today, a talented 15-year-old Italian schoolboy, who would be unable to get past a company security
guard, might, for personal amusement, be able to convince a networked application that he is a 37-
year-old trusted employee from Alabama. More serious, however, is the increase in software hacking
for criminal reasons-either to steal intellectual property or, more commonly, to steal information
that can be sold to other criminals, such as lists of credit card numbers.

In short, the world has become more hostile towards software. In light of recent changes to social
and political attitudes to security, it should be no surprise that the public has an increased
expectation that software will be secure. The kinds of security that we discuss in this book can
provide some protection against the increased frequency and sophistication of attempts to subvert
applications. However, security has also become a tool to promote the sale of software, and claims of
"unbreakable" security are now commonplace. The effective use of software security has fallen
behind the ideal that is portrayed by marketing departments. Another purpose of this book is to close
the gap between the perception and the reality, and to demonstrate how you can increase the
security of your applications through the careful application of tried-and-tested technologies.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.2 Roles in Security

In a normal software development project, there are many people who influence software security.
People often look at software security from different perspectives and hope to gain different results
from its implementation; these are often at odds with the goals of others. In this section, we describe
the most common roles, and explain the motivations and goals of those who hold them. The content
of this book is aimed at the technical reader, but it is important that you appreciate the complete set
of influences that shape the need for and implementation of software security. See Chapter 4 for a
more detailed examination of some of these roles and the way they influence the life cycle of an
application.

1.2.1 The Business Sponsor

The business sponsor is responsible for commissioning a software development project, and usually
owns the problem that the application is intended to solve. The role of the business sponsor, and his
expectations of software security, varies depending on the nature of the business and the purpose of
the software.

The business sponsor typically lacks technical expertise, but controls the development budget and
may support the implementation of software security for the following reasons:

Security is a known requirement of the systems users.

Legislation dictates that the software must implement certain security measures.

Security features are necessary to compete with other products and look good on marketing
material.

Lacking formal requirements, the business sponsor will often have opinions to offer on the
importance and implementation of software security. These opinions may or may not be in line with
the real requirements of the project.

Business sponsors are often the biggest source of tension on a project when it comes to the correct
application of security. As you will see throughout this book, software security can be applied only
after a careful assessment of the application requirements; however, the business sponsor often
wants to bring the application into production as quickly as possible, and this creates a tension
between the careful application of a planned security policy and the business requirement that the
application ship quickly.

1.2.2 The Architect

The project architect is responsible for the overall design of the application, ensuring that the planned
development will meet the business and technical goals that have been specified by the business

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sponsor. The architect is ideally placed to assess the security needs of the application and to
formulate the security policy that will be implemented by the programmers.

1.2.3 The Programmer

The programmer is responsible for implementing the application design produced by the architect and
for meeting the software security goals specified in the design. The programmer must have a firm
understanding of the security features provided by the development platform in use, and must be
trusted to implement the security policy completely and without modification.

1.2.4 The Security Tester

The security tester does not perform the same role as an ordinary application tester. A normal tester
creates test scenarios that ensure that the planned functionality works as expected, by simulating the
actions of a user. By contrast, the security tester simulates the actions of a hacker, in order to
uncover behaviors that would circumvent the software security measures. Security testing is an
underrated and underemployed activity, but is vital in validating the security measures designed by
the architect and implemented by the programmer.

1.2.5 The System Administrator

The system administrator is responsible for installing, configuring, and managing the application;
these tasks require a good understanding of general security issues, and an appreciation of the
security features provided by the development platform and the application itself.

One of the most important aspects of system administration is application monitoring. Well-designed
applications provide system administrators with information about potential security breaches, and it
is the responsibility of the system administrator to monitor for such information and to formulate a
response plan in the event that the security of an application is subverted.

1.2.6 The User

The user is the final consumer of the functionality provided by the application, and is often required
to interact with its software security measures-for example, by entering a username and password
to gain access to its functionality.

The users of an application create their own tensions against the security policy; their expectations
that the software system will protect them are high, but their willingness to be constrained by
intrusive security measures is limited. For example, retail customers expect that a software system
will conceal their credit card numbers from unauthorized third parties and protect their accounts from
unauthorized changes.However, the same users will resist taking any responsibility for their own
security-for example, by remembering and specifying a PIN code when they purchase goods.

Successful security policies take into account the users' attitudes, and do not force them to accept
security demands that they cannot or will not adhere to. Unsuccessful security policies do not take

http://lib.ommolketab.ir
http://lib.ommolketab.ir

into account the needs of the user-for example, requiring users to remember long and difficult
passwords that are frequently changed. In such circumstances, users will simply write the password
down on a piece of paper and thereby negate all of the effort made during the development process.

1.2.7 The Hacker/Cracker

The final role is the cracker, more popularly known as a hacker. The hacker attempts to circumvent
or subvert software security for financial gain or perhaps to rise to a perceived intellectual challenge.
The hacker is the person whom security measures are meant to foil, but the label does not accurately
describe the range of people who will attack software security systems. Throughout this book, we
detail a number of specific security systems and explain the type of attack against which each is
intended to protect.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.3 Understanding Software Security

There are two kinds of assets that software security sets out to protect; restricted resources and
secrets. In this section, we provide an overview of these important categories, which we build on
throughout the rest of the book.

1.3.1 Restricted Resources

A restricted resource is any object, feature, or function of your application (or of any software or
hardware that your application depends on) that you do not wish to be used or accessed by
unauthorized people. This is a very broad definition, but casting our net this wide allows us to
demonstrate the common solution to a wide range of closely related issues; the following list
describes some restricted resources that you may encounter:

Disk files

The most commonly encountered restricted resource is the disk file. For example, by default,
the Windows operating system allows users to access their own files, but not the files of other
users or disk files used by the operating system itself. Users are restricted from accessing files
that they have not created.

Software functions

One of the most familiar restricted resources for you is the software function that should not be
available to all users of the application or service. For example, the accounts clerk in a bank
should not be able to authorize mortgage loans; such activities are restricted to qualified loan
officers.

Hardware resources

Software security is often used to restrict access to important hardware resources, such as a
high-quality color printer. Ordinary users are restricted to printing their documents in
monochrome, while the sales staff prints customer presentations in color.

External services

Increasingly, software security restrictions are applied to external services that have no
tangible physical attributes, but affect a company either by incurring a direct financial cost or
by distracting staff from their duties. Examples of such services are Internet access, personal
emails, and international telephone calls. Access to these services is restricted to those who
need them to do their jobs

1.3.2 Trust

In terms of software security, when we trust someone, we grant that person access to one or more
restricted resources; for example, we trust our bank loan officer to approve mortgage loans in a
responsible way and grant the officer access to the software features for loan approval.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first step in managing trust is to establish identity, which is the means that a system uses to
uniquely differentiate between users. The complexity of the identities used by an application is
influenced by the number of users that need identification; if there are small numbers of users, then
identities as simple as "Alice" and "Bob" may be sufficient to uniquely identify each person. By
contrast, providing unique identification for thousands or millions of people may require more
complex identities-for example, social security numbers.

You use authentication to ensure that you have correctly established the identity of a user. If you
wish to restrict access to a valuable resource, you cannot take a statement of identity by a user at
face value. Consider the ramifications if your bank believed a claim by you that you were "Bill Gates"
and granted you access to his deposits. The most common form of authentication requires a user to
provide a username and a password to access an application; the username represents the stated
user identity and the password is a secret known only to the user (see the next section for
information about secrets). We expect that others who might wish to assume this identity will not
know the secret password and therefore won't pass the authentication process.

Once you have authenticated and identified a user, you authorize the user to access one or more
restricted resources. The resources to which a user is granted access depend on the level of trust
granted by the application; the level of trust is typically determined by the nature of the tasks that a
user will undertake; for example, you might grant a user access to a disk file containing details of a
new product because that user is employed as a product development engineer, and the contents of
that file are required by the user to discharge her duties.

The process of establishing and authenticating an identity, and authorizing access to resources based
on that identity is illustrated in Figure 1-1. This process is at the heart of software security, and many
applications and systems that may appear to work in radically different ways implement this common
approach.

Figure 1-1. The process of granting access to restricted resources

See Chapter 5 for an introduction to the way in which .NET defines and supports restricted resources,
and Chapter 6 through Chapter 10 for detailed coverage on how to apply .NET security to your
application projects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3.3 Secrets

A secret is any data created or processed by your application that you do not wish to be publicly
known. Examples of secrets include the credit card numbers of your clients, and passwords your
users enter to authenticate their identities for your application. Secrets are the counterpart to
restricted resources. While a restricted resource often represents the ability to perform an action
(such as approving a mortgage or printing a color document), a secret typically embodies the data
the resource will process (such as the financial details of a customer or the secret marketing plan).

1.3.3.1 The lifetime of secrets

It is important to consider each type of secret that you work with and assess how long it needs to
remain a secret; for example, a customer credit card number needs to be protected only until the
card expires, after which, the information you hold on file cannot be used to purchase goods. By
contrast, some secrets must be protected forever, such as medical histories.

One mistake that is frequently made is considering the lifetime of a secret in isolation from the real
world. For example, you may choose to protect a user's secret password only until it is changed,
perhaps as part of a process where a password is valid for a fixed period. The problem that this
presents is that users will often change a password back to its original value as soon as they can,
which means that a hacker could access your application if your list of expired passwords were
allowed to become public. When you assess the lifetime of a secret, consider that the data itself may
have value if it persists outside the application.

1.3.3.2 Protecting secrets

Secrets are typically protected with cryptography, which is the subject of Part III. Cryptography uses
complex mathematical algorithms to encode secrets, and the type of algorithm used depends on the
length of time the data needs protection, which is, in turn, influenced by the lifetime of the secret.
See Chapter 12 for an introduction to cryptography, and Chapter 13 through Chapter 17 for in-depth
coverage of how the .NET Framework supports cryptographic techniques.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.4 End-to-End Security

The final concept we introduce in this chapter is end-to-end security, which is the result of
considering the wider aspects of security, beyond the resources and secrets protected by your
application. Although this book is focused on implementing software security, it is important that you
take a higher-level view, taking into account the real world and its complexity. The following sections
highlight other issues that you should consider.

1.4.1 Real-World Trust Relationships

One of the most important things to remember about security is that not everyone shares your
motivations and aspirations, and not everyone thinks the way that you think. The most carefully
defined software trust system may not reflect the actual trust that has been granted to users of an
application.

As a simple example, when we outlined the important roles that play in security, we differentiated
between the legitimate users of an application and the hackers who want to subvert it. The reality is
less clear-cut; most fraud is perpetrated by employees otherwise trusted by their company; when
you grant trust to a user, you may be providing that individual tools that will be used to defraud, and
otherwise rob, your company.

Differences in motivation are especially relevant when considering coercion; although you may feel
that the security and profitability of your application is paramount, others may not. In some
countries, it is common to rob a bank by kidnapping the branch manager's children, coercing the
manager to unlock the bank and provide access to the vaults in order to secure the freedom of his
offspring. The robbers have secured access to the protected resources with the explicit cooperation of
a trusted employee. When thinking about security, you must give consideration to motivation, both of
the potential users and the potential attackers.

1.4.2 Side Channels

A side-channel attack employs methods that have little to do with the software security measures
that protect an application. For example, looking over a person's shoulder while he types his
password circumvents any policy that may be put in place to control identity authentication; the
attacker has side-stepped the security measures and can now access the system.

Identifying potential side-channel attacks takes a lot of lateral thinking, and requires careful
evaluation of the information exposed by your security systems that attackers might be able to
exploit. Various smart-card technologies, for example, have been compromised by analyzing
variations in power consumption, electromagnetic radiation, and the amount of time taken to process
an authentication request associated with their use. Such an attack takes time and determination,
but can be profitable if the smart card is used to manage cash transactions or provides access to
expensive resources.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4.3 Physical Security

Physical security is often ignored when application software is secured. Many years of effort may go
into designing an application that carefully controls access to the contents of a warehouse, but if the
security of the warehouse itself is weak, then attackers will simply steal your goods directly rather
than attempting to subvert your application to ship goods free-of-charge.

A good example of physical security is represented by automated teller machines (ATMs). An ATM
employs physical measures to protect against tampering and outright theft, as well as the software
measures that authenticate your card and PIN number.

1.4.4 Third-Party Software

Finally, we draw your attention to third-party software, which you may rely on for the development
of your application. Examples of this kind of software include development environments (such as
Microsoft Visual Studio .NET), class libraries, and language compilers.

It is important for you to understand that by using third-party software, you are trusting the software
publisher to produce software that does not present a security risk, either in the functionality that is
provided or by the introduction of malicious features. You should also realize that when you distribute
software that depends on third-party software, you are asking your customers to grant the same
level of trust to the third parties as they do to you and your organization.

For example, you may trust Microsoft to produce safe and secure software, and you may feel
confident that Internet Explorer provides a secure environment in which to browse the World Wide
Web. However, if you look at the information provided by the "About Internet Explorer" window, you
will see that Internet Explorer 6 is built, in part, with software licenses from the following
organizations:

National Center for Supercomputing Applications at the University of Illinois at Champaign

Spyglass, Inc.

RSA Data Security, Inc.

The Independent JPEG Group

Intel Corp.

Mainsoft Corp.

When you trust Microsoft to deliver Internet Explorer without the inclusion of security-related defects
or malicious code, you also implicitly trust all of the companies listed above, some that you may not
even have heard of. Each of these companies may in turn license content or functionality from other
publishers, and the chain continues; the trust that you confer on an individual software publisher
goes far beyond what you may expect, and this is equally true for development software and class
libraries as it is for Windows applications.

When selecting third-party tools and libraries for your development projects, you must consider the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

level of trust that you assign to the software publisher and any other companies or individuals that
may have contributed to these products.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 2. Assemblies
This chapter provides an overview of the .NET assembly, which is a key component in .NET security.
We describe the structure and contents of an assembly, demonstrate how to create the different
types of assembly, and discuss how you can protect your assemblies from tampering and reverse
engineering. The information in this chapter provides a foundation essential for understanding the
more advanced topics presented in later chapters, especially those related to Code Access Security.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.1 Assemblies Explained

An assembly contains one or more .NET data types compiled into the Microsoft Intermediate
Language (MSIL); in other words, an assembly contains the code that the common language runtime
executes. The .NET Framework uses the assembly as the basic unit of deployment and versioning
and, most importantly for our purposes, as the basic security boundary. In the following chapters, we
will demonstrate how the .NET Framework uses assemblies to enforce security policy; in this section,
however, we provide a brief overview of assemblies as a foundation for more advanced topics.

Microsoft Intermediate Language

When you compile a .NET source file, the compiler converts contained data types to the
MSIL, which consists of a series of CPU-independent instructions. The .NET Framework
compiles the MSIL describing your data type into instructions for a specific CPU at
execution; this approach allows .NET applications to be deployed to different CPU
architectures without having to recompile the source code. Consult the .NET
documentation for further information about MSIL.

Each assembly consists of the following:

Assembly manifest

The assembly manifest contains metadata elements that describe the assembly, summarized
as follows:

Assembly name

A text string specifying the assembly's name
Assembly version

A string in the form a.b.c.d, where a and b are major and minor version numbers, and

c and d are revision and build numbers

Assembly culture

Information on the culture or language that the assembly supports, for example, "en-US"
for U.S. English or "fr-CA" for Canadian French

Assembly strong name

Details of the public key used to create the assembly strong name; see Section 2.4 for
further information

A list of all of the files in the assembly

Lists all of the files that comprise the assembly; as we explain later, assemblies can be
made up of more than one file

Type reference information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Provides information about the data types that are exported from this assembly for use
in other assemblies

Referenced assemblies information

Lists the details of any other assemblies that this assembly depends on
Informational attributes

A set of human-readable strings that provide additional information about an assembly,
including trademark and copyright restrictions, product and company names, and a
description of the assembly contents

Type metadata

This part of the assembly contains information about the data types contained in the MSIL code
portion of the assembly, described later.

MSIL code

The MSIL code section of the assembly contains the MSIL statements that will be executed by
the .NET Framework runtime, describing one or more .NET types.

Application resources

There are a set of resources, such as icons and sounds, that the application uses.

There are two types of assembly; each type differs in where the assembly contents are stored. The
simplest and most common type is a single-file assembly, where all of the assembly contents are
stored in a single file. As shown by Figure 2-1, the four assembly components are contained in the
file named SingleFileAssembly.dll.

Figure 2-1. A single-file assembly contains all of the assembly contents in
a single disk file

The second assembly type is a multifile assembly, where the contents of the assembly are stored in
more than one file, as illustrated by Figure 2-2.

Figure 2-2. A multifile assembly stores the assembly contents in more
than one file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In a multifile assembly, the assembly metadata and any resources are stored in one file
(MultiFileAssembly.dll in Figure 2-1), while the MSIL code is contained in one or more modules, each
of which contains one or more data types and any associated type metadata. The assembly is made
up of all three files, which must be deployed together; there is no association between the files
enforced by the filesystem-the relationship between the files is described by the file list element of
the assembly metadata.

The advantage of a multifile assembly is that each module can contain types written in a different
.NET language; in Figure 2-2, we illustrate this by including the CSharpCode.netmodule and
VBCode.netmodule files in the assembly, representing data types written in C# and Visual Basic
.NET, respectively. In the next section, we demonstrate how to create an assembly using modules
written in different languages.

Visual Studio .NET does not include support for creating modules or multifile
assemblies; you must use the command-line tools included with the .NET
Framework SDK to create multifile assemblies.

Each assembly can have one of three "flavors," depending on the intended function of the assembly,
summarized as follows:

Library assembly

A library assembly contains .NET types that are consumed by other assemblies. A library
assembly cannot be executed.

Executable assembly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An executable assembly can be executed as an application, but the types defined in the
assembly cannot be used by other assemblies.

Windows executable assembly

A Windows executable assembly is a variation of an executable assembly that is specifically for
GUI applications.

This brief overview of assemblies should provide you with enough information to understand the rest
of this chapter and the content presented in the rest of this book. Chapter 4 provides more
information about the role of assemblies in the life cycle of a .NET application.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.2 Creating Assemblies

To transform source code files into assemblies, you must use a language-specific .NET compiler. For
C# source code files, we use the C# compiler (csc.exe) and we use the Visual Basic .NET compiler
(vbc.exe) for Visual Basic .NET source files. In this section, we will demonstrate how to create single-
and multifile assemblies; we do not go into detail about how to use the .NET compilers. We begin by
defining two simple types, the first of which is as follows:

C#

public class SumNumbers {
 private int o_total;

 /// <summary>
 /// Default constructor - initializes the total to zero
 /// </summary>
 public SumNumbers() {
 // initialize the total
 o_total = 0;
 }

 /// <summary>
 /// Add a number to the total
 /// </summary>
 /// <param name="p_number">The number to add</param>
 public void AddNumber(int p_number) {
 o_total += p_number;
 }

 /// <summary>
 /// Get the total
 /// </summary>
 /// <returns>The total of all values presented to AddNumber</returns>
 public int GetTotal() {
 return o_total;
 }
}

Visual Basic .NET

Public Class SumNumbers
 Private o_total As Integer

 Public Sub New()
 ' initialize the total
 o_total = 0
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Sub AddNumber(ByVal p_number As Integer)
 o_total += p_number
 End Sub

 Public Function GetTotal() As Integer
 Return o_total
 End Function
End Class

The SumNumbers class maintains a running total of integer values using the AddNumber method; the
total value is obtained using the GetTotal method. The second type, SumArray , defines the static
member SumArrayOfIntegers , which accepts an array of integers to be added together; this class is
a consumer of SumNumbers .

C#

public class SumArray {

 /// <summary>
 /// Static method that sums together the values in
 /// an array of integers
 /// </summary>
 /// <param name="p_arr"></param>
 /// <returns></returns>
 public static int SumArrayOfIntegers(int[] p_arr) {
 // create a new instance of SumNumbers
 SumNumbers x_sum = new SumNumbers();
 // add each value in the array to the sum
 foreach (int x_int in p_arr) {
 x_sum.AddNumber(x_int);
 }
 // return the total from the sum
 return x_sum.GetTotal();
 }
}

Visual Basic .NET
Public Class SumArray

 Public Shared Function SumArrayOfIntegers(ByVal p_arr() As Integer) _
 As Integer
 ' create a new instance of the SumNumbers class
 Dim x_sum As SumNumbers = New SumNumbers
 ' add each value in the array to the sum
 Dim x_int As Integer
 For Each x_int In p_arr
 x_sum.AddNumber(x_int)
 Next
 ' return the total from the sum
 Return x_sum.GetTotal()
 End Function
End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We will save the SumNumbers type in a file named SumNumbers.cs (C#)/SumNumbers.vb (Visual
Basic .NET) and the SumArray type in a file named SumArray.cs (C#)/SumArray.vb (Visual Basic

.NET).

2.2.1 Creating a Single-File Assembly

This is the default assembly type created by the C# and Visual Basic .NET compilers. The assembly
metadata and the MSIL statements are included in a single file. The following statements demonstrate
how we create a single-file library assembly from our source files:

C#

csc /out:SingleFileAssembly.dll /target:library SumNumbers.cs SumArray.cs

Visual Basic .NET

vbc /out:SingleFileAssembly.dll /target:library SumNumbers.vb SumArray.vb

These statements create a single-file assembly named SingleFileAssembly.dll , which contains the
compiled SumNumbers and SumArray types; the /out argument allows you to specify the name of the
created file, while the /target option allows you to choose between application and library

assemblies; consult the .NET documentation for full details of the compiler options.

2.2.2 Creating a Multifile Assembly

Creating a multifile assembly is more complicated than creating a single-file assembly but does
provide additional flexibility; in this section, we demonstrate how to create an assembly that contains
modules written in different .NET languages. We start by compiling our C# implementation of the
SumNumber type into its own module:

csc /out:SumNumbers.netmodule /target:module SumNumbers.cs

This command creates a new module called SumNumbers.netmodule . The "netmodule" suffix is the
standard for module files, in the same way that "dll" is for library files. We will now compile our Visual
Basic .NET implementation of the SumArray type into a module. The SumArray class depends on the
functionality of the SumNumbers class, and we reference the SumNumbers.netmodule file with the
/addmodule argument:

vbc /out:SumArray.netmodule /target:module /addmodule:SumNumbers.netmodule \
 SumArray.vb

We have now created two modules-SumNumbers.netmodule is creating from a C# class, while
SumArray.netmodule is created from a Visual Basic .NET class. .NET modules can contain more than
one type, although each type must be defined in the same language-we have created modules
containing only one type in order to present a simple and clear example.

We can now create a multifile assembly that contains our modules by using the Assembly Linker tool
(al.exe). The following command creates a library assembly called MultiFileAssembly.dll :

al /out:MultiFileAssembly.dll /target:library SumNumbers.netmodule SumArray.netmodule

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Assembly Linker creates the DLL file, which contains only the assembly metadata and references
to the module files, each of which includes one of our example classes.

A multifile assembly consists of the metadata file (the .dll or .exe) and all of the
modules you specified to the Assembly Linker. When distributing a multifile
assembly, you must include all of the files with a netmodule suffix as well as the
metadata file.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.3 Shared Assemblies

Assemblies can be private or shared, as illustrated by Figure 2-3. Each application that uses a private
assembly has its own copy, which is stored alongside the other application components. If there are
two applications installed on the same computer, and each application relies on the same private
assembly, then there will be two copies of the assembly files installed. Each time you install a new
application that relies on the private assembly, you create new instances of the assembly files on
disk. Each assembly is independent of the others, and each application is completely self-contained.

Figure 2-3. Private and shared assemblies

By contrast, several applications can use a single instance of a shared assembly. The assembly is
placed in a common location (a shared directory or network server), and every application that
requires the assembly uses the same assembly disk files. More than one copy of a shared assembly
can be installed, and groups of applications can rely on different instances, as illustrated by Figure 2-
4.

Figure 2-4. Groups of applications relying on multiple identical private
assemblies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The .NET Framework also provides the Global Assembly Cache (GAC), which is a central repository
for shared assemblies. All applications that rely on a shared assembly stored in the GAC use the
same disk files, as illustrated by Figure 2-5; such applications do not need to be configured to find
shared assemblies in specific locations; the GAC is always available to all applications. See Section
2.5.1 for further details.

Figure 2-5. The GAC hosts shared assemblies

When we say that applications "share" an assembly, we mean that they use the
same disk file. Each application is given its own copy of the data types
contained in the assembly, and no data is shared between the applications. See
Chapter 4 for more information on the role of an assembly in an application.

The benefits of sharing an assembly are administrative-the assembly security policies and
configuration that we discuss in the following chapters are applied to a shared assembly once,
affecting all of the applications that rely on the assembly, whereas each instance of a private
assembly must be configured individually.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.4 Strong Names

Shared assemblies must have a strong name . A strong name consists of the assembly's name,
version and culture metadata, plus a cryptographic public key and a digital signature. Because it is
sufficiently unlikely that two different assemblies will have the same strong name, Microsoft considers
a strong name to be a unique identifier of an assembly. Two properties of digital signatures support
this position:

Digital signatures are associated with a hash code generated from the contents of the assembly;
this hash code acts as a "fingerprint" for the assembly contents, and it is very difficult to find
two assemblies with the same fingerprint.

1.

Cryptographic key pairs, used to create the digital signature, are created randomly.2.

The randomness of key pairs, and the uniqueness of the fingerprint provided by the digital hash code
and signature, means that a strong name, for all practical purposes, provides a unique identification
for an assembly. See Chapter 13 for details of digital hash codes and Chapter 16 for details of digital
signatures.

The chapters in the Cryptography section of this book provide information about
assessing the cryptographic meaning of words and phrases such as "unique"
and "very difficult."

The uniqueness of a strong name allows the .NET Framework to verify the contents of an assembly to
protect against tampering; the hash code generated from the assembly contents means that
changing even a single MSIL statement will invalidate the digital signature, leading the .NET
Framework to reject the assembly. This protection against tampering is a fundamental security
feature of strongly named assemblies and is a key function in the life cycle of a .NET application,
which we discuss in Chapter 4 . Strong names are a key feature of code access security, which we
discuss in Chapter 6 through Chapter 9 .

Library assemblies with strong names can be used only by fully trusted code,
unless the AllowPartiallyTrustedCallers attribute has been applied to the

assembly. See Chapter 7 for information about trusted code and the
implications for your development projects.

2.4.1 Creating a Key Pair

The first step towards creating a strong name is to generate a public and private key. The private key
is used to create the digital signature and must be kept secret; the public key is included in the
assembly as part of the strong name and is used by the .NET Framework to validate the digital
signature and to determine if the contents of an assembly have been tampered with. See Chapter 15
for information about public/private key pairs and Chapter 16 for details of digital signatures.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create a new pair of keys using the Strong Name tool (sn.exe), supplied as part of the .NET
Framework SDK. The following command illustrates how to create a new pair of keys, stored in a file
named MyKeyPair.snk :

sn -k MyKeyPair.snk

The contents of the MyKeyPair.snk file are not human-readable, but you can view the public key with
the following command:

sn -tp MyKeyPair.snk

The output is below; the public key is a sequence of hexadecimal characters. This command also
displays the public key token (marked in bold), which is a hash code of the public key, used by other
assemblies as a compact way of referencing your public key.

Microsoft (R) .NET Framework Strong Name Utility Version 1.1.4322.510
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Public key is
00240000048000009400000006020000002400005253413100040000010001004b251886d12dfd0501c03
2d9b1d36888f3ee68ecc047a56d457ac21d64a54467d7d223c5be2e99bf2ed499c16db4cee567c16d94d2
94aece0348a00025eb7d415005d887c4cee3ee26b83d9cb4b29ed7b21b0c5097f4277d260938f5e00a4cf
f90cf20befd491782b1f3a34675c3ce6c2224bdcc2e329057031937f7d4e032b7

Public key token is 060fc0167cf4a028

You can install the newly created key pair into the Windows Cryptographic Service Provider (CSP)
container, which provides a centralized store of key pairs. Installing key pairs in the CSP offers easier
administration than storing the keys in a disk file; see the Windows documentation for full details. The
following command demonstrates how to install keys into a CSP container called MyCSPContainer ;

you will see how to use this container in the following sections.

sn -i MyKeyPair.snk MyCSPContainer

It is very important that your private key remains a secret-if not, then
assemblies can be assigned strong names, which will appear to have originated
from you. And why be granted an unwarranted level of trust by system
administrators?

2.4.2 Creating an Assembly Strong Name

Before you can generate a strong name, you need to specify the assembly's version and culture
metadata; remember that a strong name consists of the assembly name, the version and culture
information, plus a public key and a digital signature.

2.4.2.1 Specifying the version and culture metadata

The simplest way to specify the version and culture metadata is to use the
System.Reflection.AssemblyVersion and System.Reflection.AssemblyCulture attributes,

applied at the assembly level. Visual Studio .NET creates a file called AssemblyInfo.cs (C#) or
AssemblyInfo.vb (Visual Basic .NET) as part of a project; this file contains attributes for all of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

configurable assembly metadata. We shall follow this convention to specify the metadata for our
example assembly (from Section 2.2) as follows; we have specified that this is Version 2.1.0 of our
assembly and that the assembly is suitable for any culture setting (see the .NET documentation for
details of version and culture configuration):

C#

using System.Reflection;
using System.Runtime.CompilerServices;

// Specify the culture and version metadata
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("2.1.0")]

Visual Basic .NET

Imports System
Imports System.Reflection
Imports System.Runtime.InteropServices

' Specify the culture and version metadata
<Assembly: AssemblyCulture("")>
<Assembly: AssemblyVersion("2.1.0")>

2.4.2.2 Specifying the key pair

We specify the key pair to use when creating the strong name by adding an attribute that refers to
either the file or CSP container that contains our key pair; we do this with the AssemblyKeyFile and
AssemblyKeyName attributes. You should specify a file or a CSP container-do not specify both. To

specify a key pair file, add the following attribute to the AssemblyInfo.cs or AssemblyInfo.vb file:

C#

[assembly: AssemblyKeyFile("MyKeyPair.snk")]

Visual Basic .NET

<Assembly: AssemblyKeyFile("MyKeyPair.snk")>

To specify that the key pair should be obtained from the MyCSPContainer CSP container, add the

following attribute to the AssemblyInfo.cs or AssemblyInfo.vb file:

C#

[assembly: AssemblyKeyName("MyCSPContainer")]

Visual Basic .NET

<Assembly: AssemblyKeyName("MyCSPContainer")>

2.4.2.3 Creating the strong name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The .NET language compilers will automatically create the strong name if you specify AssemblyInfo.cs
or AssemblyInfo.vb in the list of files to compile. The following command demonstrates how to apply
the strong name to the example single-file assembly that you created previously:

C#

csc /out:SingleFileAssembly.dll /target:library SumNumbers.cs SumArray.cs
AssemblyInfo.cs

Visual Basic .NET

vbc /out:SingleFileAssembly.dll /target:library SumNumbers.vb SumArray.vb
AssemblyInfo.vb

2.4.2.4 Creating a strong name for a multifile assembly

For a single-file assembly, the compiler uses the assembly attributes to locate the key pair and
generates the strong name. When working with a multifile assembly, you must specify the
information required for the strong name as arguments to the Assembly Linker tool (al.exe); the
following command demonstrates how to create a strong-named assembly using the modules you
created previously:

al /out:MultiFileAssembly.dll /target:library /culture:"" /version:2.1.0 /keyfile:
MyKeyPair.snk SumNumbers.netmodule SumArray.netmodule

We specify the culture and version metadata with the /culture and /version arguments, and the
file containing the key pair with the /keyfile argument. The Assembly Linker supports the /keyname

argument to specify a CSP container for the keys.

2.4.3 Delayed Signing

The examples in the previous sections assume that you are able to either create or access the key
pair used to create strong names. In large organizations, a signing authority may manage the key
pair, and you are required to submit your assemblies for signing; this is especially likely if a single key
pair is used to create strong names for the assemblies produced by more then one project.

The .NET Framework supports delayed signing , where the public key is included in the assembly, but
the signature is not created; this allows you to compile and test your assemblies without requiring
access to the secret private key. The first step is to obtain the public key from the key pair, a task
usually performed by the signing authority; the following command demonstrates how to extract the
public key from the key file and place it in a file called MyPublicKey.snk :

sn -p MyKeyPair.snk MyPublicKey.snk

You can also extract the public key from a key pair stored in a CSP container:

sn -pc MyCSPContainer MyPublicKey.snk

For a single-file assembly, enable delayed signing with the AssemblyDelaySign attribute, which you

add to the AssemblyInfo.cs or AssemblyInfo.vb file as follows, specifying the name of the file
containing the public key with the AssemblyKeyFile attribute:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C#

using System.Reflection;
using System.Runtime.CompilerServices;

// Specify the culture and version metadata
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("2.1.0")]

// Enable delayed signing
[assembly: AssemblyDelaySign(true)]
// specify the file containing the public key
[assembly: AssemblyKeyFile("MyPublicKey.snk")]

Visual Basic .NET

Imports System
Imports System.Reflection
Imports System.Runtime.InteropServices

' Specify the culture and version metadata
<Assembly: AssemblyCulture("")>
<Assembly: AssemblyVersion("2.1.0")>

' Enable delayed signing
<Assembly: AssemblyDelaySign(true)>
' specify the file containing the public key
<Assembly: AssemblyKeyFile("MyPublicKey.snk")>

Compile the assembly as before:

C#

csc /out:SingleFileAssembly.dll /target:library SumNumbers.cs SumArray.cs
AssemblyInfo.cs

Visual Basic .NET

vbc /out:SingleFileAssembly.dll /target:library SumNumbers.vb SumArray.vb
AssemblyInfo.vb

For a multifile assembly, use the /delaysign+ argument to enable delayed signing and specify the
key file with the /keyfile argument, as shown below:

al /out:MultiFileAssembly.dll /target:library /culture:"" /version:2.1.0 /delaysign+
/keyfile:MyPublicKey.snk SumNumbers.netmodule SumArray.netmodule

The assemblies that these commands create do not have strong names, because they are not digitally
signed. The signing authority can subsequently complete the strong name by using the -R argument

of the Strong Name tool, as follows:

sn -R MultiFileAssembly.dll MyKeyPair.snk

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This technique applies to single- and multifile assemblies. As well as specifying the name of the
assembly to sign, you must provide the name of the key file that contains the public and private
keys-the public key file cannot be used to create a digital signature. You can specify a CSP container
from which to obtain the key pair with the -Rc argument, as follows:

sn -Rc SingleFileAssembly.dll MyCSPContainer

2.4.4 Verifying a Strong Name

You can verify an assembly strong name with the Strong Name tool (sn.exe); verification checks that
the contents of the assembly have not been changed since the digital signature was created. The
following command verifies our example single-file assembly:

sn -v SingleFileAssembly.dll

For a valid assembly, the output from this command is as follows:

Microsoft (R) .NET Framework Strong Name Utility Version 1.1.4322.510
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Assembly 'SingleFileAssembly.dll' is valid

You can also determine the public key from the key pair used to create the digital signature using the
following command:

sn -Tp SingleFileAssembly.dll

The result of this command is shown below, and you can see that this matches the public key we
created in Section 2.4.1 :

Microsoft (R) .NET Framework Strong Name Utility Version 1.1.4322.510
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Public key is
00240000048000009400000006020000002400005253413100040000010001004b251886d12dfd0501c03
2d9b1d36888f3ee68ecc047a56d457ac21d64a54467d7d223c5be2e99bf2ed499c16db4cee567c16d94d2
94aece0348a00025eb7d415005d887c4cee3ee26b83d9cb4b29ed7b21b0c5097f4277d260938f5e00a4cf
f90cf20befd491782b1f3a34675c3ce6c2224bdcc2e329057031937f7d4e032b7

Public key token is 060fc0167cf4a028

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.5 Publisher Certificates

Strong names provide unique identities for assemblies and protect against tampering, but they do
not contain any information about the identity of the assembly publisher. The .NET Framework
supports the Signcode scheme, which requires a publisher to prove its identity to a trusted third-
party authority and obtain a software publisher's certificate (SPC). Strong names and Signcode are
complimentary technologies, and both can be applied to the same assembly. When you use Signcode,
a digital signature is created using the private key component of the certificate and is embedded into
the assembly along with the public components of the SPC. The digital signature provides the link
between your SPC and the assembly you signed; other parties cannot sign assemblies with your SPC
unless they know the value of the secret key, which is not included in the assembly. See Chapter 15
for more information about public and private keys.

You can use the Certificate Creation tool (makecert.exe) to create an X509 certificate for testing
purposes and then convert it to an SPC; genuine certificates are obtained from companies such as
Verisign. The following command creates a new X509 certificate; the Certificate Creation tool
supports a number of options to configure the test certificate, but we will accept the defaults. The
test certificate is stored in a file named TestCert.cer:

makecert -sv MyPrivateKey.pvk TestCert.cer

The -sv option stores the private key component of the certificate in a file named MyPrivateKey.pvk;

you will need to use this key later. You will be prompted to enter a password to protect the private
key file, as shown in Figure 2-6.

Figure 2-6. Protecting the private key component of the X509 certificate
with a password

Convert the X509 certificate into an SPC with the Software Publisher Certificate Test tool
(Cert2spc.exe), as follows:

cert2spc TestCert.cer TestSPC.spc

Now that you have an SPC, you can sign assemblies to identify ourselves as the publishers. The
following command uses signcode.exe to embed our test SPC into our example assembly:

signcode -spc TestSPC.spc -v MyPrivateKey.pvk SingleFileAssembly.dll

We need to specify the SPC and the file containing the private key in order to sign the assembly. You
will be prompted to enter the password you created to protect the private key file. If you right-click

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the assembly in the Windows Explorer and select the Properties menu item, you will see that a Digital
Signatures tab is available, as shown in Figure 2-7; this tab describes our publisher's certificate,
which is created in the name of Joe's-Software-Emporium. A real certificate would contain detailed
information about you or your company.

Figure 2-7. The Digital Signatures tab of an assembly signed with a
publisher's certificate

2.5.1 Using the Global Assembly Cache

If an assembly is shared by several applications, you can install it into the Global Assembly Cache
(GAC), which is a machine-wide store of shared assemblies. There are several reasons why you may
wish to install an assembly into the GAC:

Application configuration

The .NET Framework automatically looks for assemblies in the GAC, and an application does
not need to be configured to look for assemblies in a known location, as is the case when an
ordinary directory is used to store shared assemblies.

File security

The physical location used by the GAC to store assembly files is contained with the WINNT or
Windows directory, which system administrators typically protect with a higher level of
Windows security than that used for other directories. Installing an assembly into the GAC
requires administrator privileges, which reduces the chances of tampering.

Administration

Installing a shared assembly into the GAC can simplify the administration process, allowing
configuration policies to be applied to a single assembly instance, but affecting all of the
applications that depend on the assembly.

Side-by-side versioning

Multiple copies of assemblies with the same name but different version information can be
maintained in the global assembly cache; see the .NET documentation for details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft recommends that you install an assembly into the GAC only when
necessary. As a rule, you should locate assemblies alongside other application
components unless you seek one of the benefits listed earlier.

Use the Global Assembly Cache tool (gacutil.exe) to manage the GAC. We will demonstrate how to
install an assembly into the GAC, inspect the contents of the GAC, and uninstall an assembly, all of
which are simple tasks.

Assemblies must have a strong name before they can be installed in the GAC.
See Section 2.4 of this chapter for details.

The following command installs our example single-file assembly into the GAC:

gacutil /i SingleFilessembly.dll

The following command lists the contents of the GAC, displaying information about every installed
assembly:

gacutil /l

The list that this command produces is very long, but we can filter the output by specifying the name
of the assembly we are interested in (note that we do not specify the file suffix once the assembly
has been installed into the GAC):

gacutil /l SingleFileAssembly

The output is below and provides a textual summary of the assembly strong name. You can see the
name of the assembly, the version number, the culture setting, and the public key token we assigned
to the assembly in Section 2.4 of this chapter:

Microsoft (R) .NET Global Assembly Cache Utility. Version 1.1.4322.510
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

The Global Assembly Cache contains the following assemblies:
 SingleFileAssembly, Version=2.1.0.0, Culture=neutral,
 PublicKeyToken=060fc0167cf4a028, Custom=null

The cache of ngen files contains the following entries:

Number of items = 1

Finally, uninstall our assembly from the GAC with the following command:

gacutil /u SingleFileAssembly

The GAC is a runtime service, meaning that the .NET Framework consults the
GAC only when executing an application. You must have a local copy of the
shared assemblies that your application depends on at compile time, because
the .NET language compilers will not locate assemblies in the GAC.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.6 Decompiling Explained

When you compile source code into an assembly, the compiler interprets your C# or Visual Basic
.NET statements, and creates a series of MSIL statements that will be executed by the .NET
Framework. A decompiler is an application that analyses the MSIL statements in order to recreate the
original Visual Basic .NET or C# statements written by the programmer.

Unfortunately, the .NET compilers contain human-readable information from our source code in the
MSIL, including the names of types, methods, and fields. A decompiler can use this information to
create source code that is very similar to the original. Some information, such as comments and
blocks of code excluded by conditional compiler statements, are not included in assemblies by the
compiler and cannot be restored by a decompiler.

The nature of MSIL makes it easier to decompile .NET assemblies than native Windows applications,
which are compiled into instructions that are targeted at a specific CPU, such as an Intel Pentium.
Lower-level instructions are more difficult to reconstruct into code statements than the relatively
abstract MSIL statements. The proliferation and use of decompilers is more widespread than you
might think. There are three main reasons why an assembly is decompiled:

Interest

The most benign reason for decompiling an assembly is simply to gain an understanding of how
an application or library is written; the person who decompiles the assembly has no malicious
intent, and simply seeks to improve her knowledge of .NET programming.

Intellectual property theft

Your assemblies can be decompiled to reveal your business secrets, which can be used
commercially by your competitors. In this context, business secrets may be proprietary
algorithms, or the inner workings of your complete application.

Application subversion

Decompiling an assembly can provide details of how to subvert an application, exposing
licensing details and allowing license codes to be generated that allow illegal copies of your
application to be activated.

The scope for intellectual property theft through decompilation has been lessened by the increased
use of thinner clients to connect to network services (this includes the move towards XML web
services); there is less complexity to the client application, and the sophisticated logic is deployed
within a remote network. In contrast, the prevalence of network services increases the scope for
application subversion. Any network service that grants trust to clients based on data that is included
in an assembly is subject to subversion through decompilation. Analysis of a client application can
provide a wealth of information on network protocols and security configuration, which can be used
to manipulate the network components of an application against the wishes and expectations of the
developer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Decompiling into Another Language

MSIL is common between all .NET languages, meaning that an assembly written in Visual
Basic .NET can be decompiled to produce C# statements, or statements in any other
.NET-compliant language. There is no additional risk posed by this feature, but it does
lower the barrier to understand your code; not only can the source code statements be
reconstructed, but they can be reconstructed in a language which a potential attacker is
familiar with.

2.6.1 Decompiling Assemblies

In this section, we demonstrate how much detail a decompiler exposes from an assembly. You will
use the open source Anakrino/Exemplar decompiler to decompile the single-file assembly you created
in the previous section; at the time of writing, the decompiler is available at
http://www.saurik.com/net/exemplar/.

The decompiled versions of the SumNumbers and SumArray classes are below-the decompiler we

have selected generates only C# source code. We do not explain how to install or use the decompiler
in this book-we present the decompiled output so that you can understand what kind of information
can be obtained from an assembly:

C#

using System;

public class SumNumbers {
 private int o_total;

 public SumNumbers() {
 o_total = 0;
 }

 public void AddNumber(int p_number) {
 o_total += p_number;
 }

 public int GetTotal() {
 return o_total;
 }
}

Be careful when you decompile an assembly. You may be in violation of your
country's law if you decompile an assembly to which you do not own the
copyright or intellectual property rights. We do not condone the decompilation
of such assemblies. We accept no responsibility if you decompile assemblies
which contain the intellectual or commercial property of others.

The efficacy of a decompiler is measured by the accuracy of the source code that it generates-the

http://www.saurik.com/net/exemplar/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

better a decompiler is, the more the decompiled source code resembles the original statements. Our
decompilation has produced a rendition of the SumNumbers class that is very close to the original; the

names of the fields are preserved, and the structure and function of the class is clear:

C#

public class SumArray {

 public static int SumArrayOfIntegers(int[] p_arr) {
 SumNumbers sumNumbers = new SumNumbers();
 int[] nums = p_arr;
 for (int k = 0; k < (int)nums.Length; k++) {
 int j = nums[k];
 sumNumbers.AddNumber(j);
 }
 return sumNumbers.GetTotal();
 }
}

The decompiled version of the SumArray class is less like the original but still clearly demonstrates

the implementation. Our simple assembly is easily decompiled, and the workings of our data types
are clearly exposed; logic that is more complex can cause difficulties for decompilers, but in general,
an unprotected assembly will yield its secrets easily.

2.6.2 Protecting Against Decompilation

If your assemblies contain no proprietary data, and no information that can be used to subvert your
application, then you are in a position to distribute the assemblies freely; otherwise, you should
consider protecting against decompilation with one of the techniques discussed below.

You should not protect your assemblies against decompilation unless you have
a good reason-all of the techniques that make decompilation more difficult rely
on changing the contents of your assemblies; this makes it very hard to debug
problems and may even introduce new defects into your applications.

2.6.2.1 Obfuscation

Obfuscation is the technique of altering the MSIL statements so that the application executes in the
same way, but the output of a decompiler is unreadable. Obfuscation is such an important technique
that Microsoft has included a copy of a limited functionality obfuscator in Visual Studio .NET 2003.
Different obfuscators use different approaches to obscure decompiler output, but we summarize the
more common types of obfuscation below:

Renaming methods and fields

Obfuscators rename the nonpublic methods and fields defined by your data types in a way that
makes it difficult to read the decompiled output. A common technique is to use very long
strings that differ by a single character or to use non-printing characters accepted by the .NET
runtime, but which text editors do not display correctly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Adding control flow obfuscation

Obfuscators make application logic more difficult to follow by creating complex sequences of
method calls that do not do anything. This is more effective than it sounds, because it is hard
to establish if these methods are related to the logic of the application. This technique is
especially effective when combined with method and field renaming, creating especially
complex decompiled output.

Encrypting literal strings

Encryption is applied to the literal strings defined within your assemblies; the purpose of this is
to slow down searches that may reveal the purpose of sections of code; for example, searching
for the word "license" may reveal which parts of your code deal with application license control.

Effective obfuscators combine these approaches and often apply proprietary techniques. There is a
kind of "arms race" between the developers of obfuscators and the developers of decompilers, where
each new feature added by an obfuscator is eventually compromised by a decompiler.

The biggest problem with obfuscation is that it alters the MSIL within your assembly; when problems
arise, you will find that the obfuscation process can seriously hamper the debugging process. As a
general guideline, do not obfuscate your assemblies unless you have to, and always select an
obfuscator from a reputable company that will be able to support you if you encounter problems.

You must remember that obfuscation does not protect your assemblies against
determined decompilation. Although an obfuscator will create MSIL that
produces difficult-to-read decompiler output, your application logic is still
contained in the MSIL and can eventually be reverse-engineered; at best,
obfuscation slows down the process.

2.6.2.2 Native compilation

As you will see in Chapter 4, the .NET Framework runtime compiles your MSIL statements into native
commands for the CPU before the code is executed. An alternative to obfuscation is to perform this
compilation yourself and to create native instructions that cannot be processed by an MSIL
decompiler.

Native compilation is a relatively new technique as applied to .NET assemblies, and the tools available
at the time of writing are immature; the principal risk with native compilation is that the output can
differ from that produced by the normal .NET compilation process, which can hamper the debugging
process.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 3. Application Domains
Application domains play a critical role in the implementation of the Microsoft .NET Framework's
security model. Although you will rarely need to work directly with application domains when writing
simple applications, they become an essential program element once you start writing more complex
systems-in particular, systems that utilize and manipulate the code-access security (CAS)
mechanism of the Microsoft .NET Common Language Runtime (CLR).

Only highly trusted code can manipulate application domains-we discuss the
specific permissions required to carry out various operations in Chapter 5,
Chapter 6, and Chapter 7. For now, it is enough to know that applications
running from the hard drive of your machine can utilize all of the techniques we
describe here as long as you have not modified .NET's default security policy.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.1 Application Domains Explained

To ensure application and operating system security and stability, it is necessary to isolate
concurrently executing applications from each other. Application isolation ensures that one application
cannot purposefully or inadvertently modify the memory, or access the resources owned by another.
Traditionally, operating systems isolate applications by running each application in its own process,
and providing each process with its own virtual memory space and resource handles. Memory
references are associated with a single process, and therefore code cannot obtain a reference that
affects the memory of another process. Code cannot access objects in other processes directly and
must use some intermediate communications mechanism, such as a remote procedure call or a proxy
in order to invoke methods.

3.1.1 Application Isolation in the .NET Framework

Application isolation in the .NET Framework is very different from traditional application
environments. Before the CLR loads an assembly, it verifies that the assembly contains only type-
safe code. Type safety guarantees that the code does not perform illegal operations, access memory
directly, or try to access type members incorrectly. If an assembly fails the verification process, the
CLR will refuse to load it and will throw an exception. We discuss the verification of assemblies further
in Chapter 4.

Loading Non-Type-Safe Code

It is possible to load non-type-safe code into the CLR; however, that undermines the
application isolation and security mechanisms provided by the CLR. Because every
assembly is running in a single process, code that directly manipulates the memory of the
containing process does not only modify the memory used by other application
assemblies, but it can also modify the memory used by the CLR and the .NET class library.
A piece of poorly written software could accidentally overwrite blocks of memory used by
other applications. Even worse, a well-written piece of malicious code could use pointers to
change data critical to the operation of the CLR.

Only highly trusted code from a verifiable source should be granted the permission to load
non-type-safe code and only when specific needs demand. We will discuss this more in
Chapter 7, when we talk about code-access security permissions.

The fact that code is type-safe allows the CLR to load many assemblies into the same operating
system process without the risk of those assemblies crashing or corrupting each other. This solves
many code stability issues and enables the CLR to use application domains-a lightweight alternative
to processes-to ensure application isolation. Application domains are logical containers within the
CLR that provide an isolation boundary between type-safe assemblies equivalent to that provided by
processes for native applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switching between processes is a relatively expensive operation on most
software platforms. Enabling multiple applications to run within a single process
(without sacrificing application isolation) significantly reduces the runtime
overheads. This is particularly useful in server solutions (such as ASP.NET) that
must scale to support large numbers of concurrent users across many different
applications.

The relationship between a process, the CLR, application domains, and assemblies is illustrated in
Figure 3-1. Three assemblies have been loaded into the first application domain and one assembly
into the second. As yet, no assemblies have been loaded into the third application domain.

Figure 3-1. The relationship between a process, the CLR, application
domains, and assemblies

By isolating at the assembly level, .NET provides a fine-grained level of control over the isolation of
your applications. Not only can you isolate entire applications from each other, but you can also
isolate individual parts (assemblies) from the rest of your application. This is particularly useful if your
application provides for extensibility using plug-ins or dynamically loadable modules that are of
questionable quality, origin, or intent (for example, Internet Explorer, which allows .NET controls to
be downloaded and run from web sites).

3.1.2 Application Domain and Assembly Management

The CLR provides an execution environment for managed code, but a runtime host-at least written
partially in native code-is required to load the CLR before it can execute your managed code. When
the CLR is loaded, it automatically creates a default application domain. However, the runtime host
usually determines when and if additional application domains are created. Runtime hosts are free to
use different application domain strategies to suit their application execution model and security
requirements. Although it is possible to create custom runtime hosts, the three you will encounter
most frequently are those supplied with the .NET Framework:

The ASP.NET runtime uses a single CLR that runs all ASP.NET web applications; each web
application is loaded into a separate application domain.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Internet Explorer uses a single CLR that executes all downloaded controls. An application
domain is created for each web site from which controls are downloaded; all controls from the
same site run in a single application domain.

The CLR used to execute commands run from the operating system shell creates a single
application domain that the executable assembly and all referenced assemblies are loaded to.

When the CLR loads an assembly, it usually loads it to the same application domain as the code that
referenced it. As mentioned, the runtime host may create a separate application domain in which to
load the assembly. It is also possible for application code with the appropriate permissions to create
application domains and to load assemblies into those application domains. This allows application
code to take direct control of isolating specific assemblies, and provides a mechanism through which
code can unload assemblies. It is not possible to unload an individual assembly once it is loaded;
however, it is possible to unload an entire application domain, which unloads all the assemblies
loaded in to it.

3.1.3 Assembly Isolation with Application Domains

Code loaded into one application domain has no direct access to code loaded into other application
domains. While it is possible for code to enumerate the assemblies and types loaded into its own
application domain, instantiate those types, and invoke object methods, it is not possible for code to
perform these actions in a remote application domain without first obtaining a reference to the
remote domain. Only the creator of an application domain or code running in an application domain
can obtain a reference to a domain; it is not possible for managed code to enumerate the application
domains that exist in the CLR. Because all code is type-safe and guaranteed not to perform direct
memory access, it cannot break through this isolation to access directly the code or data of an
assembly in another application domain, even though they are loaded in the same process.

With an object reference to a remote application domain, code has more ability
to interact with that domain; however, there are still access controls.
Application domains are .NET Remoting boundaries, which place limitations on
the communications between application domains. We refer you to the .NET
Framework SDK for a discussion of .NET Remoting.

3.1.4 Application Domains and Runtime Security

Application domains play a key role in the operation and enforcement of runtime security. Runtime
security is a large and complex topic, which we explore fully in Part II of this book. In the following
sections, we provide a summary of the relationship between application domains and each aspect of
runtime security.

3.1.4.1 Assembly evidence and identity

When you load an assembly into an application domain, you can specify additional evidence to apply
to the assembly. The CLR uses evidence to determine an identity for an assembly, from which it
determines the permissions to grant to the assembly. The permissions granted to an assembly
control the actions and resources that are accessible to the code contained in the assembly. By

http://lib.ommolketab.ir
http://lib.ommolketab.ir

changing an assembly's evidence, you change its identity, which can radically change the permissions
granted to it by the CLR. We demonstrate how to modify the evidence of an assembly in Chapter 6.

3.1.4.2 Application domain evidence and identity

When you create an application domain, you can assign evidence to it. As with assemblies, evidence
gives application domains an identity from which the CLR derives a set of permissions. When code
tries to perform a protected operation, the CLR checks not only the permissions granted to the
assembly in which the code is contained, but also the application domain in which the code is
running. There is more to this process, but the key point to remember is that the permission of an
application domain restricts the capabilities of the code running in it. This is a powerful feature,
especially when loading and executing code from untrusted sources. We discuss how to assign
evidence to application domains in Chapter 6, and describe the effect an application domain's
permissions have on the code in Chapter 8.

3.1.4.3 Application domains and security policy

The CLR uses a set of configurable rules (security policy) to provide a mapping between an
assembly's evidence and the set of permissions granted to it when it is loaded. Security policy is
divided into four layers, or policy levels: enterprise, machine, user, and application domain. Each
layer is evaluated in order from highest (enterprise) to lowest (application domain), with each layer
further restricting the permissions that are granted by the previous layer; lower layers are never able
to grant more permissions than those granted by higher layers. The highest three layers (enterprise,
machine, and user) are statically configured using administrative tools and stored in configuration
files. Application domain policy is defined programmatically, allowing you to set security policy at
runtime instead of relying on statically defined security policy only. We discuss application domain
security policy in Chapter 8.

3.1.4.4 Role-based security

Although code-access security solves many of the long-standing security issues surrounding the use
of mobile code, it does not remove the need for the more familiar role-based security mechanisms.
The .NET framework also contains support for role-based security. When code attempts to perform
actions, it does so in the context of a principal. A principal represents the identity of the active user
and any roles (user groups) to which the user belongs. By default, the application domain through
which a thread runs defines the principal on whose behalf the thread acts. We discuss role-based
security in Chapter 10.

3.1.4.5 Application domains and isolated storage

.NET provides a facility named isolated storage, which provides a managed storage area for .NET
applications to write user and application state information. Isolated storage provides a relatively safe
area where applications can write data without being granted access to important resources such as
the hard drive and the Windows registry. Isolated storage also ensures that one application cannot
access another applications data. The mechanism used to protect one application's data from another
is based on the identity of the assembly and the application domain in which the assembly is loaded.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We discuss isolated storage in Chapter 11.

3.1.5 Application Domains and Application Configuration

The configuration of an application domain determines how the CLR loads assemblies into the
application domain and provides important configuration information that controls the runtime
operation of the loaded assemblies. This means that an assembly loaded into one application domain
can operate very differently than the same assembly loaded into another application domain. An
application domain's configuration controls the following behavior, which can have major
consequences for application security if used inappropriately.

Depending on the mechanism used to load an assembly, the CLR will search for it in different
places. These usually include the directory from which the executing assembly was loaded and
the global assembly cache, which we discussed in Chapter 2. Using application domain
configuration, it is possible to specify additional locations where the CLR will look for assemblies
to load. If configured incorrectly, code could have the ability to load assemblies to which it
should not have access or could even attempt to load the wrong assembly inadvertently.

Application domain configuration defines the name and location of the configuration file used by
assemblies that are loaded into it. Depending on the use an application makes of configuration
files, specifying a different one can fundamentally change the application's behavior. This setting
is particularly important if the application uses a configuration file as a source of security-related
information, such as the authentication or authorization mechanisms to use, or which
cryptographic algorithms to use to encrypt data.

Consult the .NET Framework SDK documentation for specifics on how to configure these application
domain settings.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 4. The Lifetime of a Secure
Application
This chapter looks at the way in which software security is integrated into the application lifetime and
provides practical advice that will help you understand the content contained in later chapters.

We define the term secure application to mean an application designed with security in mind. We
firmly believe that truly effective software security is achieved only when it is completely integrated
into the application development process and is understood to be every bit as important as stability,
performance, and feature completeness.

We recommend that you read this chapter twice. Read it now to help build a context for the technical
content of the following chapters. When you have finished reading this book and have a better grasp
of .NET security, read this chapter again, and consider how you can improve your development
process to best implement the advice and recommendations we make.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.1 Designing a Secure .NET Application

With few exceptions, a design is produced for an application before development begins; for smaller
projects, the programmers may produce the design, which may be closely related to the
implementation and contain low-level technical details. Larger projects usually engage an application
architect to produce a more abstract design, leaving development of it's components to individual
development teams.

Security is an important part of the design process and cannot be left until the implementation phase.
A fully integrated security policy will provide the greatest protection against your application being
subverted and simplify the process of integrating security functionality into your code. You cannot
retrofit a comprehensive security model into a design.

As the application designer, you need to have an understanding of the security capabilities provided
by the platform that the application uses, in the same way that you must understand the features
and functions of other components, such as databases and operating systems. This knowledge is
important even if you will not be involved in the implementation of the application. Where possible we
have written each chapter so that an explanation of the security features offered by .NET is separate
from the details of how to apply the functionality during coding; we recommend that architects
working at even the most abstract levels should read the latter material.

The first step towards applying security to an application design is to identify the restricted resources
and secrets, two concepts that we introduced in Chapter 1. Recall that a restricted resource is
functionality to which you wish to control access to, and a secret is some piece of data that you wish
to hide from third parties.

4.1.1 Identifying Restricted Resources

Restricted resources tend to fall into three categories:

Functional resources

Functional resources are the features that your application provides, for example, the ability to
approve a loan within a banking application. These resources are easy to identify and are
defined with the functional specification for the application.

External resources

External resources are those that underpin your application-for example, a database. Access
to these resources should be coordinated with access to your functional resources, so that, for
example, users who are unable to approve loans through a functional resource are not able to
edit the database directly to achieve the same effect. This coordination proves the need for a
wider security view that we introduced in Chapter 1.

Subversion resources

Subversion resources do not appear to be significant at first glance but can be used in
conjunction with a functional or external resource in order to subvert your application or the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

platform on which your application executed. For example, one resource is the ability to write
data to a file that is used by the operating system to enforce security policy.

Creating the list of restricted resources associated with your application is the foundation for
understanding the trust relationships that you need to define, which we discuss in the next section.
We make the following suggestions to assist in developing your skills in identifying restricted
resources:

Consider the way your application interacts with other systems. Think carefully about
the way in which your application depends on other services. Access to some resources may
need to be restricted in order to protect other systems, even though they cannot be used to
subvert your application.

Apply common sense. Do not follow the business specification slavishly-as an architect, you
are responsible for designing an application that satisfies all of the business and technical
objectives of the project, even those that are not stated explicitly. By applying some common
sense, you can often identify resources that must be restricted in order to achieve the wider
objectives of your organization.

Define and follow design standards. By applying a common design methodology to all of
your projects, you can create patterns of functionality that are recognized easily as restricted
resources.

Open your design to review. Do not work in isolation-ask for, and act on, the comments of
your colleagues. Different people think in different ways, and we have found that reviewing
application designs in groups is especially effective for identifying subversion resources.

4.1.2 Identifying Trust

Once you have identified the protected resources your application uses, you can define the trust
levels your application will require of its users or clients to grant access to them. Trust can be granted
to a wide range of entities, including users, code, external libraries, and different computers.

When you trust a user, you are granting the individual an ability represented by a restricted function
resource. For example, if you were developing a banking application, you might allow loan officers to
approve loan requests. .NET supports this approach with role-based security, where you define the
types of user that will use the system, and consider which resources each requires to perform his
work. We discuss .NET role-based security in Chapter 10.

If you grant trust to code, or to a class library, then you grant trust to the assembly that contains the
classes; we introduced assemblies in Chapter 2. .NET uses attributes of the assembly (the strong
name, the publisher, etc.), known as evidence, to grant trust to assemblies. We discuss evidence in
Chapter 6, and its uses in Chapter 7, Chapter 8, and Chapter 9.

When you require trust, you are in effect asking to consume the restricted resources of another
application. For example, if your application depends on access to a database, then you must ensure
that the database server will accept connections from your computer, and that your application is
able to read and write the data it needs. Trust is a chain of relationships that extends through the
services on which your application depends, your application itself, and the services or users that
make use of your application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Identifying trust is the process of examining your restricted resources and establishing how access to
them should be allocated. You should also examine how the services you depend on assign trust and
ensure that your application design provides for complying with their trust demands. We make the
following suggestions to assist in developing your skills in identifying trust:

Assign the smallest amount of trust required to perform a task. Define levels of trust
that are closely associated with the tasks that will be performed by your users, and ensure that
you are granting the smallest amount of access to restricted resources that the user requires to
perform her tasks. Do not group trust into large, poorly defined levels in the name of
"simplicity"; such an approach will lead to a poor application design.

Consider the effect of the trust chain and the possible subversion it creates. Ensure
that your application is not a tool for gaining illegal access to a more important resource. For
example, if a database trusts your application to read and write data, does your application
provide an easier hacking target than the database itself? Your application should not grant
trust to external resources in a way that bypasses security measures implemented by those
resources.

Consider the real-world organization of trust. Think about the way in which trust is
assigned to the users of your application in the real world, and consider following that model as
the basis for specifying roles in your application.

Consider what overlapping trust allows. Examine the trust that your application requires,
and think about the effect that granting multiple trust levels will have. For example, you may
have defined one trust level that grants access to read the list of customer accounts and
another trust level that grants the ability to send emails. If you assign both of these trust levels
to a single user, you have granted the ability to email details of the customer account outside of
the company. Try to think how a user might tie together apparently unrelated resources and
activities to subvert your security policies.

Document your decisions clearly. When you document the design of your application,
explain why you have defined your trust levels, and clearly illustrate the way in which these
trust levels should be assigned to user roles or services. Clearly documenting this information
will simplify the development process and serve as an authoritative reference during application
testing.

4.1.3 Identifying Secrets

Identifying secrets is usually a simpler process than identifying restricted resources; you must
examine each type of data that your application creates or processes, and decide if that data requires
protection. In Part III, we discuss the measures that you can take to protect data, but we offer the
following advice to assist you in ensuring that you correctly classify your application's data:

Consider who owns the data. If you process data that is created or supplied by another
application, you should protect the data to at least the same level as that application does. Your
application should not be an easy means of accessing data that is better protected elsewhere.

Consider your legal obligations. You may have legal obligations to ensure that certain
information remains private, especially the personal details of your customers. Seek legal advice

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to establish your responsibilities.

Consider the effect of disclosure. Understand the impact of disclosing the data that your
application works with, and use this information to assess what data should be a secret.
Remember, sometimes data is protected for reasons of public image rather than practical
considerations. For example, the damage to your company's reputation exceeds the damage to
a credit card holder if you expose his card number to the world. The credit card provider limits
the cardholder's liability, but there is no limit to the amount of damage bad publicity can do to
your business.

4.1.4 Failing Gracefully

You must accept that you cannot design or implement an application that is invulnerable to
attack-even the best security can be broken. As part of an application design, you should always
specify what actions will be taken in the event of a security breach, and define a plan of action that
ensures that your application fails gracefully, and does not expose other applications and services to
subversion.

It is not acceptable to simply write security events to a log file and hope that someone acts on them.
As the designer of the application, you have a responsibility to minimize the risk to which you expose
your clients and customers. The details of the failure plan will differ based on the purpose and
complexity of the application, but should include, at a minimum, details of how security breaches are
to be dealt with and what immediate actions should be taken to protect your data and protected
resources from further compromises.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.2 Developing a Secure .NET Application

The developer takes the application design from the architect and develops the classes that form the
application implementation. The developer must have a good working knowledge of software
security, and especially the security features provided by the development platform. This knowledge
is required so that the developer can correctly program the security policy as part of the
implementation process.

The developer takes a much more concrete approach than the abstract approach taken during the
design, and takes the broad policy laid out in the application design and transforms it into a robust
and accurate implementation.

We do not suggest that the developer should follow the application design to the exclusion of
everything else. As the developer, you have an obligation to assess the practicality and suitability of
the application design, and the security policy the design defines. Question the design appropriately
and bear in mind that your in-depth knowledge of programming security should be used to
collaborate on improving a faulty design, rather than as a weapon in a political or cultural war.
Nonetheless, respect the purpose of the application design, and do not deviate from it unless you
have the architect's permission-needlessly deviating from the design will lead to implementation
defects, which can present unforeseen opportunities to attack and subvert your application.

The developer is often responsible for making implementation decisions, such as the strength of
cryptography used to protect secrets or the way security roles are employed. There is often a
temptation to adopt new and exciting technologies, which is a dangerous approach when applied to
application security. Security is best established by using tried-and-tested techniques, and by using
algorithms and implementations that have been subjected to extensive testing.

As you will see in later chapters, .NET security is implemented by the developer but is configured by
the system administrator. You should implement your security policy to simplify the configuration
wherever possible, and to use default settings that offer a reasonable level of security without any
configuration at all. You cannot expect a system administrator to have the in-depth knowledge
required to develop the application or the time to invest in learning the intricacies of your application.
Document the default settings you have used, and explain their significance. We offer the following
advice to assist you in developing applications securely:

Ensure that someone knows when you make a change. Implementing changes in isolation
is likely to open security holes in your application. Components of a software system are often
highly dependent on each other. Unless told of a change, other people working from the original
design will assume that your components function as specified and will make implementation
decisions for their own components based on those assumptions.

Do not be afraid to ask questions. You should always seek clarification when you do not
understand part of the application design; many developers feel that this is a sign of
"weakness," but our experience is that confusion is often caused by lack of clarity in the design
or an error made by the architect. Always make sure you understand all of the design before
implementing the application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Take the time to understand the business. You will find it easier to understand the
decisions made in the application design if you take the time to understand the business
problem the application is intended to solve. Remember that the architect is the "bridge"
between the business problem and the technical solution, and decisions that may appear to
have no technical justification are often influenced by business factors.

Do not rely on untested security libraries. Developers are usually responsible for selecting
third-party tools and libraries for the application implementation. We recommend that you
select security libraries from reputable companies and submit their products to your own
security-testing procedure (see Section 4.3).

Apply rigorous unit testing. You should test all of the classes that you develop as part of the
application implementation. This testing should not only test the expected behavior, but also
make sure that unexpected inputs or actions do not expose security weaknesses. In this regard,
your unit testing is a simplified form of the security testing that we proscribe below.

Remove any default accounts before deployment. It is usual to create default user
accounts or trust levels that simplify unit testing; you must ensure that these are disabled or
removed before the application is tested and deployed.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.3 Security Testing a .NET Application

As we stated in Chapter 1, security testing is unlike ordinary application testing-the security tester
looks for ways to subvert the security of an application prior to its deployment. Effective security
testing can significantly reduce the number of security defects in an application and can highlight
flaws in the application design. We offer the following advice to assist you in security testing
applications:

Play the part of the employee. Do not limit your simulated attacks to those you expect a
hacker to make-be sure to determine if it is possible for a disgruntled employee to subvert the
application security. Employees are usually assigned more trust in an application security model,
which can sometimes provide easier routes of attack.

Test beyond the application itself. Your testing should include attacks on the system on
which the application depends, including database, directory, and email servers. In the case of
.NET, you should also see if you can subvert your application via an attack on the runtime
components. Poor configuration or a poor understanding of security functionality can often
provide an avenue for an attack that can subvert the application indirectly.

Test beyond the application design. Do not fall into the trap of simply testing to ensure that
the application design has been correctly implemented; this is functional testing, and it does not
offer many insights into security failures.

Monitor trends in general attack strategies. Expand your range of simulated attacks by
monitoring the way real attacks are performed. Your customers may furnish you with
descriptions of attacks they have seen, and you can learn from the way other applications and
services are attacked.

There is a growing awareness of the value in security testing, and tools have started to emerge to
assist in the testing process. The first generation of tools are focused on testing the configuration of
an application and the .NET runtime, but work is in progressing on more complex software that will
automate applying common types of attack. See the Microsoft .NET home page for information about
.NET testing tools in general and some links to security-testing tools.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.4 Deploying a .NET Application

The system administrator is responsible for installing and configuring the application. This task
includes assigning user accounts to the roles defined by .NET role-based security (see Chapter 10)
and assigning appropriate levels of trust to the assemblies that make up the application. Equally
important is the configuration of the services required by the application, such as database and
directory servers.

If you are the system administrator, you have an obligation to gain an understanding of how the
application should be configured, and to spend the time to determine how the security configuration
is best tailored to your enterprise. You have a reasonable expectation that the software publisher will
provide you with a robust and functional application, and the software publisher has a reasonable
expectation that you will install and configure its application by following its instructions and by
applying your knowledge of the company.

Nonetheless, you should consider carefully the levels of trust that you assign to a publisher's
assemblies, and ensure that you are not granting an application more permissions than it requires to
perform correctly. You should also ensure that you are not compromising the security of your
corporate network by configuring the application and the services that it depends on.

Your final obligation is to monitor the application in order to watch for security defects or breaches
and to report these problems to the software publisher. See Section 4.6 for an explanation of how the
management of security continues for as long as the application is in use.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.5 Executing a .NET Application

Once a system administrator has installed and configured the application, it can be executed using
the Common Language Runtime (CLR). The CLR is a complex piece of software, and a detailed
discussion of how the CLR works is outside the scope of this book. In this section, we discuss the two
facets of CLR operation that relate specifically to security.

Verification is the first aspect of the CLR we are interested in. Before executing a managed
application, the CLR completes a verification process that is the first step toward enforcing .NET
security. If the application is made up of strong-named assemblies (see Chapter 2 for details), then
the contents of the assemblies are checked and compared with the value of the digital signature; the
CLR will not execute code from any assembly that has been tampered with. If the contents of the
assembly are unchanged, the CLR verifies that the code contained within the assemblies is type-safe,
meaning that the code does not perform illegal operations, access memory directly, or try to access
type members incorrectly.

If the code contained in the assemblies is type-safe, and the contents of the assembly have not been
tampered with, then the CLR examines the evidence of each assembly, and grants permissions to the
code within that assembly based on the .NET security policy configuration. We discuss evidence in
Chapter 6, permissions in Chapter 7, and security policies in Chapter 8.

The important fact, and one you must understand, is that the security implementation (performed by
the developer) and the configuration (performed by the system administrator) are combined by the
CLR when the application is started to determine how the application is allowed to execute. .NET
security is not simply proscribed by the software publisher; it is something that requires the
cooperation and understanding of the customer.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.6 Monitoring a .NET Application

It is extremely difficult to develop and deploy software that is reasonably secure, and impossible to
develop and deploy software that is invulnerable to attack. Reconcile yourself to the fact that you
application may be subverted, and plan accordingly.

Do not stop thinking about the security of your application when you have deployed the final product,
or even when the system administrator has completed the configurations and users are making use
of the functionality. The impact of security lasts as long as the life of the application itself; you should
be prepared to monitor for security breaches, and have a plan in place to deal with them.

An effective weapon against hacking is education; you should ensure that your customers understand
how you have applied security within your application, assist them in understanding how to recognize
an in-progress attack, and how to tell when a hacker has bypassed or subverted your application
security. You should aim to build a relationship with your clients that makes it possible for them to
report security problems to you, and endeavor to respond to such reports in a responsible and
sensible manner. We believe that as a publisher of software, your responsibilities include:

Analyzing security reports

If you are successful in establishing a way in which customers can report security attacks and
defects, you have a responsibility to use this information to assess the impact of potential
problems and act to reduce the risk to your customers and users.

Assisting your customers in developing a failure strategy

You should portray the security software techniques you apply to your applications in an
accurate and honest manner, and not make unreasonable or unlikely claims. You should
educate your customer, ensuring that they understand that no security precautions are
impervious to concerted attack, and help them to develop a plan of action to execute in the
event of a successful subversion of your security measures. Such a plan should contain a
reasonable approach to assessing the impact of the attack and steps to take to restore the
application to service.

Informing your customers of attack trends and patterns

Your customers can benefit from knowing how other customers are being attacked and
whether those attacks are successful. This information will allow for an informed assessment of
the security risk as it affects their wider enterprise. We recommend that you should be open
and transparent in your handling of security matters, and make as much information available
to your customers as possible.

Publishing security fixes quickly and publicly

You should use the customer reports you receive to identify security defects in your application,
and issue updates or workarounds quickly, effectively and, ideally, without charge. Security
defects are unlike other software defects and can expose your customer to a wide range of
risks, beyond the compromise of your application; a clear and concise security fix policy can
only enhance your reputation as a software publisher, and will help you to build a more stable
and secure application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Companies that understand security to be a necessity publish the software products that we consider
trustworthy. These companies accept the inevitability of security defects being discovered in their
products, and they act quickly and decisively to provide solutions to their customers. We strongly
recommend that you do the same for your customers.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part II: .NET Security
Contains information about the security-related features provides by the .NET runtime. These
chapters describe how the runtim enforces application security and how you can manipulate,
customize, and extend runtime security to meet your own security requirements:

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 5. Introduction to Runtime Security
In this chapter, we introduce the security features provided by the .NET runtime that most directly
affect the code you develop and run. At a high level, we explain the purpose and function of these
security features, how they interact with each other, and their relationship with the security provided
by the underlying operating system. In the next six chapters, we explore these features in detail,
demonstrate how to use them in your own programs, and show you how to extend and customize
them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.1 Runtime Security Explained

The .NET Framework is a flexible general-purpose computing platform designed to address the needs
of commercial organizations and individuals alike, and supports many different application models.
However, .NET places an emphasis on supporting the trend towards highly distributed systems,
component-based applications, and web-based server solutions, including XML web services.

The .NET Framework is designed to run on multiple operating system platforms. Although Windows is
currently the platform of choice for .NET deployment, there are implementations available for
FreeBSD, Linux, and Mac OS X that are compliant with ECMA Standard 335 (which defines the core
functionality of the .NET Framework). It is likely that in the future, .NET applications compliant with
ECMA Standard 335 will run and integrate seamlessly across a variety of other operating systems.

The .NET Framework's strong support for distributed application models and its cross-platform
capabilities means that software is more mobile, accessible, and integrated than before; although this
provides functionality and productivity benefits, it also means that software consumers, producers,
and service providers need to place a greater emphasis on software and system security. The
increase in accessible web-based server solutions and mobile components also produces an increase
in the number of people who try to hack those systems or who distribute malicious code in the form
of viruses, worms, and Trojan horses for the purpose of gathering information or causing damage.

Cross-platform solutions cannot always rely on the underlying operating system to provide the same
security services on all platforms. The .NET runtime implements the following three features that
provide platform-independent security services to improve the security of both client- and server-side
software solutions:

Role-based security

Code-access security

Isolated storage

These features surround and permeate the .NET runtime to ensure that managed code does not
perform actions and access resources it should not. They provide a baseline set of security, enforced
by the .NET runtime, that managed code must comply with and can depend on regardless of the
underlying operating system. These features do not replace existing operating system security
measures; they either augment or compliment existing platform security, and mean that the .NET
Framework provides one of the most secure and flexible environments in which to run distributed
software solutions.

5.1.1 Running Unverifiable and Native Code

Runtime security works because the CLR is a managed execution environment that goes to great
lengths to ensure that the code it loads is type-safe, meaning that it does not perform illegal
operations, access memory directly, or try to access type members incorrectly. We described the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

validation and verification process used to determine type safety in Chapter 4. Code that is not type-
safe is referred to as unverifiable code.

During execution, the .NET runtime, class libraries, and all required application assemblies are loaded
to the same operating system process, albeit across different application domains. If type safety is
not enforced, malicious code could manipulate the state of the runtime's security system, enabling it
to access resources and carry out operations to which it would not normally have permission.

Another common risk to runtime security is the use of native code. Clearly, for the purpose of
backward compatibility and to enable access to functionality not yet provided by the .NET class
library, managed code must be able to call native code, such as Win32 DLLs and COM objects.
However, once native code is running, the .NET runtime has no control over the actions the code
performs; malicious native code can delete important files or even change the .NET runtime's
security configuration files, which are stored as XML. Only the underlying operating system security
can control the actions of unmanaged code, and this is not always sufficient because it bases security
decisions on the identity of the current user.

Despite the risks, the .NET runtime designers understood that there are situations when it is
necessary to use both native and unverifiable code. However, the runtime restricts access to these
capabilities using its code-access security mechanism. Permission to load unverifiable code or call
native code are two of the highest trust permissions you can grant to code. Once you grant these
permissions to code, you are placing the security of your system at risk. You should have the utmost
trust in the source and integrity of code before granting it these capabilities and must be confident
that your operating system security is sufficient to protect your machine against attack. We discuss
the permission to load unverifiable code and to run native code in Chapter 7.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.2 Introducing Role-Based Security

The .NET Framework provides a generic role-based security mechanism to represent the identity and
roles of the user on whose behalf code is running. As illustrated in Figure 5-1, you can use .NET's
role-based security mechanism to integrate with an existing user account system, such as that
provided by Windows or Microsoft's Passport .NET authentication mechanism. However, it is just as
easy to integrate with other custom user account mechanisms.

Figure 5-1. Role-based security

Regardless of the underlying source of user information, .NET's role-based security interfaces provide
a standard mechanism through which you can make runtime security decisions based on the identity
and roles of a user. For example, you can make decisions, such as:

Ensure that only users who are members of the "Administrators" or "Managers" roles can
execute a protected class member

Ensure that only the user "Peter" can load a class that inherits from a protected class

.NET's abstraction of the role-based security interfaces from the underlying authentication and
authorization mechanisms make it relatively easy to change from one mechanism to another should
the need arise. We provide a detailed coverage of .NET's role-based security mechanisms in Chapter
10.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.3 Introducing Code-Access Security

An important goal of the .NET Framework is to facilitate the development of highly distributed,
component-based systems. With the .NET Framework, you can easily create applications that utilize
code from different publishers, dynamically loading assemblies from different locations as required.
Internet Explorer is an early example of this flexible architecture: downloading and executing .NET
controls on demand, and giving the user a rich interface to the Web. Over the coming years, you can
expect to see many more .NET applications componentized and delivered "on demand."

Traditionally, code executes using the identity, roles, and permissions of the user that runs it. As we
discussed in the previous section, role-based security is important for ensuring system security.
However, in a connected world where distributed systems and highly mobile code are the order of the
day, it is insufficient to base system security decisions solely on the permission granted to the user
running an application. Faulty code can damage files to which the user has access, or, worse,
malicious code can take advantage of the user's authority to perform all kinds of mischief. A highly
trusted user (with extensive system permissions) cannot freely download and run an application from
an untrusted source for fear of what the code may do to his system and other systems on his
network.

Many companies tackle the problem of code security by "locking down" their users' desktops,
restricting the applications that people can install and run. This heavy-handed approach requires
extensive engineering and support resources to maintain and reduces the utility and flexibility of each
user's computer.

The .NET Framework includes an important new feature known as code-access security (CAS), which
provides fine-grained control over the operations and resources to which managed code has access.
With CAS, access is based on the identity of the code, not the user running it. Some examples of
operations protected by CAS include:

Creating, deleting, and modifying files and directories

Reading from and writing to the Windows registry

Using sockets to accept or initiate a network connection

Creating new application domains

Running native (unmanaged) code

Other pre-.NET technologies have offered code-level security by differentiating between the identity
of code from the user running it. These technologies include Java with its "sandbox" approach and
Windows Internet Zones, which restrict the functionality of downloaded controls. However, few of
these technologies provide the level of control, flexibility, and extensibility of CAS.

5.3.1 Evidence, Security Policy, and Permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The three key elements of code-access security are evidence, security policy, and permissions. When
the runtime loads an assembly, it inspects various characteristics of the assembly (evidence) to
determine an identity for the code. Based on a configurable set of rules (security policy), the runtime
uses the assembly's evidence as input to a process named policy resolution. The result of policy
resolution is a set of protected operations and resources to which the code within the assembly has
access (permissions).

In the course of execution, code attempts to perform a variety of operations. If the code attempts to
perform a protected operation, then the runtime will look at the permissions granted to the assembly
containing the code and determine if they include the permission necessary to allow the action to go
ahead. Figure 5-2 illustrates the relationship between evidence, security policy, and permissions
during policy resolution. Here is a detailed account of each element:

Evidence

Evidence includes the characteristics of an assembly used by the runtime to establish an
identity for the assembly. Establishing an identity for each assembly allows the runtime to
apply security policy in order to determine the set of permissions to grant to the assembly.
Evidence includes characteristics, such as the strong name of an assembly, the web site from
where an assembly is loaded, or the publisher certificate used to sign an assembly. We discuss
evidence and code identity in Chapter 6.

Security policy

Security policy is a configurable set of rules that the runtime uses during policy resolution to
determine which permissions to grant to an assembly by evaluating the assembly's evidence.
For example, security policy could dictate that all code downloaded from the web site
http://www.oreilly.com has permission to write to the C:\Test.txt file, or that only code signed
with Microsoft's publisher certificate can run unmanaged code. We discuss security policy in
Chapter 8.

Permissions

Permissions represent the authority of an assembly's code to access protected operations and
resources. Permissions can be very specific, such as permission to open a network connection
to the web site http://www.oreilly.com, or very broad, such as permission to read and write
anywhere on the hard disk. We discuss permissions in Chapter 7.

Figure 5-2. Evidence, security policy, and permissions

5.3.2 Windows Security and Code-Access Security

CAS does not replace or circumvent the security provided by the Windows operating system. As
shown in Figure 5-3, CAS is effectively another layer of security that managed code must pass

http://www.oreilly.com
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

through before it can interact with protected system resources, such as the hard disk and the
Windows registry. The important difference between CAS and Windows security is that CAS bases
security decisions on the identity of the code performing an action, whereas Windows bases security
decisions on the identity of the user on whose behalf the code is running.

Figure 5-3. Relationship of CAS and OS security

For example, if a managed application tries to write a file to the hard disk, CAS first determines if the
code has the necessary authority to write to the file by evaluating the permissions granted to the
assembly when it was loaded. If the code does not have the necessary authority, then the write
operation fails and the runtime throws a security exception. On the other hand, if the code does have
permission, the runtime interacts with the operating system on behalf of the current user to access
the file. If Windows file permissions do not allow the user to write to the specified file, then access is
denied and the runtime throws an exception. If the user has write permission, then the file is written.

As Figure 5-3 also shows, CAS controls the ability of managed code to call unmanaged (native) code,
such as the Win32 APIs. This is important, because when a managed application is allowed to call into
unmanaged code, there is no CAS layer to restrict what the unmanaged code can do on behalf of the
managed code. Instead of having permissions based on code identity, you are back to the situation
where only the permissions of the current user restrict the code's actions. As we discussed at the
beginning of this section, this is not sufficient when dealing with mobile code from potentially
unknown and untrusted sources.

Finally, CAS also controls access to functionality that is internal to the CLR and does not affect
operating system resources, such as the ability to create an application domain. We discuss CAS in
greater detail in Chapter 6 through Chapter 9.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.4 Introducing Isolated Storage

Many applications need to store state or user preferences so that they are available the next time the
application runs. Windows applications usually store this type of data in configuration files, the
Windows registry, or external databases.

For regularly used applications that are trusted, you will configure CAS security policy to give the
application access to the required resource so that it can store this data successfully. However,
because your hard disk, registry, and databases contain important information, it is unlikely that you
will want to configure CAS to allow unknown and untrusted code to access them. Nor do you want to
have to reconfigure security policy every time you install a new application or download mobile code
from the Internet.

Isolated storage provides a safe storage area on the hard disk where managed code can store
noncritical data. The .NET runtime manages isolated storage to ensure that code cannot access other
code's data and to limit the space used by each application. Most importantly, because the interfaces
and CAS permissions that control access to isolated storage are different from those of normal file
I/O, the risk of malicious code using isolated storage as a gateway through which to access other
data on the hard drive is minimized. Figure 5-4 illustrates two managed applications that store data
to the hard drive.

Figure 5-4. Isolated storage

The developer of an application must decide to use isolated storage; it is not
something you can force any application to use.

In Figure 5-4, Application A accesses its data through the .NET Framework's isolated storage
mechanism, while Application B accesses the hard disk directly. We Provide a detailed discussion of
isolated storage in Chapter 11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 6. Evidence and Code Identity
Computerized security systems often use biometric characteristics, such as fingerprints, retina
patterns, and keyboard dynamics to establish the identity of a person.In an analogous manner, .NET
establishes the identity of an assembly based on characteristics derived from the assembly's content,
structure, and source location. .NET refers to these identifying characteristics as evidence, and uses
them to determine the actions and resources that code in the assembly has permission to access.

Our discussion of evidence begins with an explanation of what it is and where it comes from. We
describe the purpose and use of the different types of evidence, including the standard evidence
classes provided with the. NET Framework. Then we demonstrate how to use evidence
programmatically in order to control the access permissions of your code. Finally, we show you how
to extend CAS by developing custom evidence classes.

Evidence is most commonly used to determine the permissions to grant to an assembly but also
plays an important role in securing application domains. To simplify our discussion, we focus on using
evidence with assemblies. In almost all instances, the techniques we discuss are applicable without
change to application domains, and we highlight where this is not the case.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.1 Evidence Explained

Some types of evidence are inherent in the structure and content of an assembly, such as the
assembly strong name, the hash value of the assembly's content, or the publisher certificate used to
sign the assembly. Other types of evidence are determined at runtime, based on characteristics such
as the web site or URL from where the assembly is loaded.

The combined set of evidence establishes an identity for the assembly. When the runtime loads an
assembly, it compares the assembly's identity with the rules defined in the security policy to
determine the permissions to grant to the assembly, called the grant set. The grant set defines the
operations that the code contained in the assembly can perform. We discuss permissions in Chapter 7
and security policy in Chapter 8.

It is important to understand that the same assembly can have very different
identities (and hence permissions) based on runtime evidence. If you run an
assembly from an Internet site, its evidence will be different than if you first
download the assembly to your hard disk and run it locally. We demonstrate
this in "Viewing Evidence" later in this chapter.

Application domains also have an identity based on evidence. As with assemblies, the runtime uses
evidence and security policy to determine the application domain's grant set. The grant set of an
application domain has an important but indirect effect on the operations and resources accessible to
all of the assemblies running in it, which we discuss in Chapter 7.

6.1.1 Sources and Types of Evidence

There are two types of evidence: host evidence and assembly evidence. When the runtime loads an
assembly, it instantiates objects to represent each piece of evidence and associates the set of objects
with the assembly as host evidence. An assembly can contain additional evidence, embedded at build
time. As the runtime loads the assembly, it extracts this additional evidence and associates it with
the assembly as assembly evidence.

The purpose of both types of evidence is to give the assembly an identity, which the runtime uses to
determine the permissions to grant to it. However, the default behavior of the .NET runtime is to
ignore assembly evidence; only through the implementation of CAS extensions can you enable
assembly evidence to drive the policy resolution process. We demonstrate how to enable assembly
evidence in Section 6.3.

Figure 6-1 shows the key characteristics found in an assembly characteristics and how the runtime
uses each to create either host and assembly evidence. The following two sections discuss the nature
and purpose of host and assembly evidence in more detail.

Figure 6-1. Sources and destinations of evidence

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1.1.1 Host evidence

The host, in conjunction with the assembly loader component of the CLR, provides the host evidence
for an assembly; the host could be one of the standard .NET runtime hosts (command shell, Internet
Explorer, or ASP.NET), a custom runtime host, or a trusted piece of managed code that explicitly
loads an assembly at runtime. The assembly loader provides a default set of evidence, but evidence
provided by the host takes precedence if it conflicts with the default evidence.

A host's ability to provide and override evidence is extremely powerful; essentially the host can give
any identity to an assembly. With this ability, malicious code could manipulate the evidence of the
assemblies it loads in order to make the runtime assign them artificially high levels of trust.
Therefore, .NET protects the ability to provide host evidence with the ControlEvidence
permission-an element of the System.Security.Permissions.SecurityPermission permission,

which we discuss in Chapter 7.

A class in the System.Security.Policy namespace represents each of the seven standard types of

host evidence that the .NET Framework supports. Not every loaded assembly has all types of
evidence; an assembly's evidence depends on both its characteristics and the characteristics of the
host that loaded it. Table 6-1 lists the standard evidence types. We take a detailed look at each
evidence class later in Section 6.2.3.

Table 6-1. Standard .NET evidence types

Evidence class Description

ApplicationDirectory
Represents the root directory of an application. ApplicationDirectory is
used in conjunction with Url evidence during policy resolution, which we

discuss in Chapter 8.

Hash
Represents the hash value of the assembly contents. The runtime
provides Hash evidence for all assemblies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Evidence class Description

Publisher
Represents the Authenticode X509 digital certificate used to sign the
assembly. The runtime only provides Publisher evidence for assemblies

signed with a digital certificate.

Site
Represents the host portion of the URL from which the assembly was
loaded. The runtime provides Site evidence for all assemblies loaded

from non-file:// protocol URLs.

StrongName
Represents the strong name of the assembly. The runtime provides
StrongName evidence only when the assembly has a strong name.

Url

Represents the URL from which the assembly was loaded. The runtime
provides Url evidence for all assemblies. For assemblies loaded from the

local disk, the URL protocol will be file:// whereas assemblies downloaded
from a web site have the protocol http:// or https://.

Zone
Represents the Internet Explorer security zone from where the assembly
was loaded. The runtime provides Zone evidence for all assemblies.

In addition to the classes listed in Table 6-1, custom hosts and managed code that dynamically load
assemblies can provide any type of object as host evidence; but unless you extend the policy
resolution mechanism to understand the custom evidence classes, the runtime will ignore them. We
demonstrate the creation of custom evidence in Section 6.3.

6.1.1.2 Assembly evidence

The purpose of assembly evidence is to allow you to serialize custom evidence objects and embed
them into your assembly at build time. When the runtime loads your assembly, it extracts and
deserializes the embedded objects and assigns them to your assembly as assembly evidence.

You are free to use assembly evidence to represent any additional assembly characteristics you
require; the example we use later in "Extending the .NET Framework" identifies the programmer who
created the assembly.

You can use any type of serializable object as assembly evidence. However, you
cannot use any of the standard evidence types listed in Table 6-1; the runtime
will ignore them when it loads the assembly.

As we mentioned earlier, the default configuration of the .NET Framework is to ignore assembly
evidence. With some customization of CAS, assembly evidence can affect the resolution of code-
access permissions in the same way as the standard evidence classes. However, the runtime never
grants identity permissions to your assembly based on assembly evidence; only host evidence results
in the granting of identity permissions. This does limit the usefulness of assembly evidence, but is
necessary to stop malicious code from manipulating CAS and granting itself identity permissions in an
attempt to increase its level of trust. We discuss code-access and identity permissions more in
Chapter 7.

[Team LiB]

Publisher
Represents the Authenticode X509 digital certificate used to sign the
assembly. The runtime only provides Publisher evidence for assemblies

signed with a digital certificate.

Site
Represents the host portion of the URL from which the assembly was
loaded. The runtime provides Site evidence for all assemblies loaded

from non-file:// protocol URLs.

StrongName
Represents the strong name of the assembly. The runtime provides
StrongName evidence only when the assembly has a strong name.

Url

Represents the URL from which the assembly was loaded. The runtime
provides Url evidence for all assemblies. For assemblies loaded from the

local disk, the URL protocol will be file:// whereas assemblies downloaded
from a web site have the protocol http:// or https://.

Zone
Represents the Internet Explorer security zone from where the assembly
was loaded. The runtime provides Zone evidence for all assemblies.

In addition to the classes listed in Table 6-1, custom hosts and managed code that dynamically load
assemblies can provide any type of object as host evidence; but unless you extend the policy
resolution mechanism to understand the custom evidence classes, the runtime will ignore them. We
demonstrate the creation of custom evidence in Section 6.3.

6.1.1.2 Assembly evidence

The purpose of assembly evidence is to allow you to serialize custom evidence objects and embed
them into your assembly at build time. When the runtime loads your assembly, it extracts and
deserializes the embedded objects and assigns them to your assembly as assembly evidence.

You are free to use assembly evidence to represent any additional assembly characteristics you
require; the example we use later in "Extending the .NET Framework" identifies the programmer who
created the assembly.

You can use any type of serializable object as assembly evidence. However, you
cannot use any of the standard evidence types listed in Table 6-1; the runtime
will ignore them when it loads the assembly.

As we mentioned earlier, the default configuration of the .NET Framework is to ignore assembly
evidence. With some customization of CAS, assembly evidence can affect the resolution of code-
access permissions in the same way as the standard evidence classes. However, the runtime never
grants identity permissions to your assembly based on assembly evidence; only host evidence results
in the granting of identity permissions. This does limit the usefulness of assembly evidence, but is
necessary to stop malicious code from manipulating CAS and granting itself identity permissions in an
attempt to increase its level of trust. We discuss code-access and identity permissions more in
Chapter 7.

[Team LiB]

https://
https://
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.2 Programming Evidence

In the normal course of application development, you have little need to work directly with evidence;
the default evidence supplied by the runtime is sufficient to correctly drive the policy resolution
process. If you do need to base runtime decisions on the evidence of an assembly, you'll most likely
do so using identity permissions.

In the following sections, we show you how to use the advanced .NET support for directly
manipulating evidence, which you will need when performing any of the following tasks:

Dynamically loading or creating assemblies at runtime

Creating application domains in which to isolate assemblies

Developing a custom runtime host

Developing custom evidence classes

6.2.1 Introduction to Evidence Programming

The runtime establishes the identity and grant set of an assembly when the assembly is loaded. You
cannot alter the identity of an already loaded assembly to change the permissions granted to it.
Therefore, you must provide all evidence at the time you load the assembly. Note that the runtime
loads each assembly only once into a given application domain. Subsequent load requests result in
the runtime using the already loaded assembly. If you try to reload an already loaded assembly but
alter its identity by specifying additional items of evidence, the runtime will throw a
System.IO.FileLoadException.

To provide evidence when you load an assembly, your code must have the
ControlEvidence permission.

If you do not have the ControlEvidence permission, the runtime will throw a
System.Security.SecurityException when you try to load the assembly. You can use permission

requests to ensure that the runtime will not attempt to execute your code unless it has the
ControlEvidence permission, or you can simply attempt to load your assembly and be prepared to
handle the SecurityException that will occur if you do not have it.

In order to provide your evidence, you must create the set of evidence objects and add them to a
System.Security.Policy.Evidence collection. You then pass the Evidence collection as an

argument to the method that loads the assembly. Your evidence takes precedence over the default
evidence provided by the assembly loader. When specifying the evidence, you can provide both host
and assembly evidence. However, given the limitations of assembly evidence outlined earlier in
Section 6.1.1, there is little value in providing anything but host evidence, and so that is where we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

will focus our discussions.

You can add as many evidence types as you want to the Evidence collection, but only the last one of
each type affects the policy resolution process. If we add two pieces of Url evidence to an Evidence

collection, the first being http://www.oreilly.com and the second being
http://www.somecompany.com, then the permissions for the assembly will be based on the
http://www.somecompany.com evidence.

6.2.2 Using the Evidence Class

The System.Security.Policy.Evidence class is a specialized collection that contains two sets of
evidence objects: a collection of host evidence and a collection of assembly evidence. The Evidence

class has three constructors, as shown in the following declarations:

C#

public Evidence();

public Evidence(Evidence evidence);

public Evidence(
 object[] hostEvidence,
 object[] assemblyEvidence
);

Visual Basic .NET

Public Sub New()

Public Sub New(ByVal evidence As Evidence)

Public Sub New(
 ByVal hostEvidence() As Object, _
 ByVal assemblyEvidence() As Object _
)

The first constructor creates an empty Evidence object. The second constructor takes an existing
Evidence object and makes a copy of it. Note that this is a shallow copy, meaning that the new
Evidence collection references the same evidence objects contained in the source Evidence

collection; no new evidence objects are created. This is not an issue when using the standard
evidence types because they are immutable. The third constructor takes two Object arrays: the
hostEvidence argument contains the evidence objects for the host evidence collection and the
assemblyEvidence argument contains the evidence objects for the assembly evidence collection.

The Evidence class implements the System.Collections.ICollection collection to facilitate the
manipulation of the evidence objects it contains. In addition, Evidence implements members that

support direct manipulation of the host and assembly evidence subcollections. Figure 6-2 illustrates
the structure of the Evidence class and shows the key methods you use to work with contained

evidence elements.

http://www.oreilly.com
http://www.somecompany.com
http://www.somecompany.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-2. Structure of the Evidence class

Table 6-2 summarizes the members of the Evidence class; the members that require your code to
have the ControlEvidence permission are indicated in the far right column titled "C".

Table 6-2. Members of the Evidence class

Member Description C

Properties

Count Gets the total number of evidence objects in the Evidence collection.

IsReadOnly
Always returns false because .NET does not (currently) support

read-only evidence sets.

Locked
Gets or sets the value indicating whether Evidence is locked.
ControlEvidence is required to set this property to false.

Methods

AddAssembly Adds an evidence object to the assembly evidence subcollection.

AddHost
Adds an evidence object to the host evidence subcollection. Requires
the caller to have the ControlEvidence permission when Locked is
true.

CopyTo Copies all of the contained evidence objects to an array.

GetAssemblyEnumerator
Returns an IEnumerator for enumerating across the assembly

evidence subcollection.

GetEnumerator
Returns an IEnumerator for enumerating across the entire evidence

collection.

GetHostEnumerator
Returns an IEnumerator for enumerating across the host evidence

subcollection.

6.2.3 Using the Standard Evidence Classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description C

Merge
Merges the specified Evidence collection into the current collection.
Requires the caller to have the ControlEvidence permission when
Locked is true and the Evidence collection contains host evidence.

6.2.3 Using the Standard Evidence Classes

The evidence objects you will most commonly use to define the identity of your assemblies are the
seven standard evidence classes from the System.Security.Policy namespace:

ApplicationDirectory

Hash

Publisher

Site

StrongName

Url

Zone

Each of these classes is relatively simple and independent; they do not extend a common base class
(other than System.Object), nor do they implement a common interface. However, their designs all

follow a similar pattern, resulting in the following commonalities:

All of the classes are marked as sealed in C#, or NotInheritable in Visual Basic .NET,

ensuring that malicious code cannot subclass from them to manipulate CAS.

All classes are serializable through the application of the System.SerializableAttribute
attribute (the Hash class also implements the System.Runtime.Serialization.ISerializable

interface). Being serializable is a key requirement of evidence classes.

The content of all of the classes is immutable once it is created.

All of the evidence classes except Hash implement a Copy method that creates a clone of the

evidence object.

Most of the evidence classes override the following members inherited from System.Object to

base the result on the content of the evidence object:

Equals

All evidence classes except the Hash class perform equality evaluation based on the value

of the evidence and not on object references.
GetHashCode

All evidence classes except the Hash class return a hash code based on the value of the

Merge
Merges the specified Evidence collection into the current collection.
Requires the caller to have the ControlEvidence permission when
Locked is true and the Evidence collection contains host evidence.

6.2.3 Using the Standard Evidence Classes

The evidence objects you will most commonly use to define the identity of your assemblies are the
seven standard evidence classes from the System.Security.Policy namespace:

ApplicationDirectory

Hash

Publisher

Site

StrongName

Url

Zone

Each of these classes is relatively simple and independent; they do not extend a common base class
(other than System.Object), nor do they implement a common interface. However, their designs all

follow a similar pattern, resulting in the following commonalities:

All of the classes are marked as sealed in C#, or NotInheritable in Visual Basic .NET,

ensuring that malicious code cannot subclass from them to manipulate CAS.

All classes are serializable through the application of the System.SerializableAttribute
attribute (the Hash class also implements the System.Runtime.Serialization.ISerializable

interface). Being serializable is a key requirement of evidence classes.

The content of all of the classes is immutable once it is created.

All of the evidence classes except Hash implement a Copy method that creates a clone of the

evidence object.

Most of the evidence classes override the following members inherited from System.Object to

base the result on the content of the evidence object:

Equals

All evidence classes except the Hash class perform equality evaluation based on the value

of the evidence and not on object references.
GetHashCode

All evidence classes except the Hash class return a hash code based on the value of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

evidence.
ToString

All evidence classes override ToString to return a string containing an XML

representation of the evidence object's content.

The following sections discuss each of the evidence classes in detail and demonstrate how to use
them.

6.2.3.1 The ApplicationDirectory class

The System.Security.Policy.ApplicationDirectory class contains a URL that represents the root
installation directory of an application. ApplicationDirectory evidence is unique amongst the

standard evidence classes in that the runtime does not evaluate it in isolation. If an assembly has
ApplicationDirectory evidence, the runtime also looks for Url evidence to determine if the Url
evidence represents a child location specified in the ApplicationDirectory evidence. This will

become clearer when we discuss membership conditions and policy resolution in Chapter 8.

The ApplicationDirectory class constructor shown takes a System.String argument specifying

the URL of the application root:

C#

public ApplicationDirectory(String name);

Visual Basic .NET

Public Sub New(ByVal name As String)

The read-only Directory property returns the URL string used in construction.

6.2.3.2 The Hash class

The System.Security.Policy.Hash class provides evidence based on a hash value of an assembly.

A hash is a numeric value calculated using cryptographic algorithms that take the bytes contained in
the assembly file as input. The nature of hashing algorithms means that it is very unlikely for the
contents of two assemblies to result in the same hash value; even changing a single bit will result in
a very different hash value. This means that a hash value provides a unique identity for an assembly
(similar to a fingerprint). You can use a hash value to distinguish between two different assemblies,
but by itself, a hash does not guarantee the source or integrity of an assembly; this is the purpose of
strong names and publisher certificates (see Chapter 2). We provide a detailed discussion of hashing
in Chapter 13.

The Hash class is different from other evidence classes in that it provides multiple evidence values
(hash values) from a single set of source data. The Hash class constructor takes a
System.Reflection.Assembly object that identifies the assembly from which to generate hash

values:

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public Hash(Assembly assembly);

Visual Basic .NET

Public Sub New(ByVal assembly as Assembly)

By default, the Hash class supports two hashing algorithms: MD5 and SHA1. The read-only MD5
property returns an MD5 hash value based on the assembly content, and the read-only SHA1 property

does the same but using the SHA1 algorithm.

In addition, the GenerateHash method allows you to compute an assembly's hash using other
hashing algorithms. The GenerateHash method takes a
System.Security.Cryptography.HashAlgorithm argument containing an object that implements

the required hashing algorithm. There are a number of hashing-algorithm implementations provided
in the .NET class library (see Chapter 13).

The following code demonstrates the use of Hash to calculate the MD5, SHA1, and SHA512 hash
values for an assembly. We use the System.Security.Cryptography.SHA512Managed class to

provide the SHA512 hashing implementation:

C#

using System.Reflection;
using System.Security.Policy;
using System.Security.Cryptography;

public class HashEvidenceDemo {

 public static void Main() {

 // Create a new Hash object for the currently executing
 // assembly.
 Hash hashEvidence = new Hash(Assembly.GetExecutingAssembly());

 // Use the Hash class to generate hash values for
 // the current assembly
 byte[] md5 = hashEvidence.MD5;
 byte[] sha1 = hashEvidence.SHA1;
 byte[] sha512 = hashEvidence.GenerateHash(new SHA512Managed());
 }
}

Visual Basic .NET

Imports System.Security.Policy
Imports System.Security.Cryptography

Public Class HashEvidenceDemo

 Public Shared Sub Main()

 ' Create a new Hash object for the currently executing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' assembly. Use fully qualifed name of Assembly class
 ' to avoid conflict with Visual Basic .NET keyword.
 Dim hashEvidence As Hash = _
 New Hash(System.Reflection.Assembly.GetExecutingAssembly())

 ' Use the Hash class to generate hash values for
 ' the current assembly
 Dim md5() As Byte = hashEvidence.MD5
 Dim sha1() As Byte = hashEvidence.SHA1
 Dim sha512() As Byte = _
 hashEvidence.GenerateHash(New SHA512Managed())
 End Sub
End Class

Unlike other evidence classes, the Hash.ToString method does not return a

representation of the evidence value. Instead, it displays an XML representation
of the source from which it calculates the hash values. This means that
whenever you call ToString, you get the string representation of the bytes

contained in your assembly-this is potentially very large.

6.2.3.3 The Publisher class

The System.Security.Policy.Publisher class provides evidence based on the Authenticode X.509

v3 digital certificate used to sign an assembly. The publisher (producer, author, or creator) of an
assembly signs it to prove to consumers that they created the assembly. We discuss signing
assemblies in Chapter 2.

Because the Publisher class implements the IIdentityPermissionFactory

interface, its presence in the host evidence collection of an assembly causes a
System.Security.Permisssions.PublisherIdentityPermission to be

included in the assembly's grant set. Refer to Chapter 7 for an explanation of
identity permissions.

The Publisher class constructor shown here takes a
System.Security.Cryptography.X509Certificates.X509Certificate object that contains the
publisher's code-signing certificate. There are many simple ways to create an X509Certificate

object, including loading it from a certificate file or extracting it from an existing signed file; refer to
the .NET Framework SDK documentation for details:

C#

public Publisher (X509Certificate cert);

Visual Basic .NET

Public Sub New(ByVal cert As X509Certificate)

The read-only Certificate property returns the X509Certificate object provided during creation.

The following code demonstrates the creation of Publisher evidence using an X509 certificate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contained in a certificate file named C:\MyCert.cer and displays the certificate principal using the
GetName() method of the X509Certificate object retrieved via the Certificate property:

C#

using System;
using System.Security.Policy;
using System.Security.Cryptography.X509Certificates;

public class PublisherEvidenceDemo {

 public static void Main() {

 // Create a new X509Certificate object from the
 // test certificate file C:\MyCert.cer.
 X509Certificate cert =
 X509Certificate.CreateFromCertFile(@"C:\MyCert.cer");

 // Create a new Publisher evidence object from the
 // loaded X509Certificate object
 Publisher publisherEvidence = new Publisher(cert);

 // Use the Certificate property to get the publisher
 // certificate and display the principal name.
 Console.WriteLine(publisherEvidence.Certificate.GetName());
 }
}

Visual Basic .NET

Imports System
Imports System.Security.Policy
Imports System.Security.Cryptography.X509Certificates

Public Class PublisherEvidenceDemo

 Public Shared Sub Main()

 ' Create a new X509Certificate object from the
 ' test certificate file C:\MyCert.cer.
 Dim cert As X509Certificate = _
 X509Certificate.CreateFromCertFile("C:\MyCert.cer")

 ' Create a new Publisher evidence object from the
 ' loaded X509Certificate object
 Dim publisherEvidence As Publisher = New Publisher(cert)

 ' Use the Certificate property to get the publisher
 ' certificate and display the principal name.
 Console.WriteLine(publisherEvidence.Certificate.GetName())
 End Sub
End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2.3.4 The Site class

The System.Security.Policy.Site class provides evidence based on the fully qualified host name

portion of the URL from where the assembly was loaded (for example, the site from the URL
https://www.somecompany.com:8080/dev/HelloWorld.exe is www.somecompany.com).

Because the Site class implements the IIdentityPermissionFactory

interface, its presence in the host evidence collection of an assembly causes a
System.Security.Permisssions.SiteIdentityPermission to be included in

the assembly's grant set. Refer to Chapter 7 for an explanation of identity
permissions.

The Site class constructor shown takes a System.String argument containing the name of the site
to use as evidence. After construction, the site name is available through the read-only Name

property:

C#

public Publisher (string name);

Visual Basic .NET

Public Sub New(ByVal name As String)

The Site class also provides the static CreateFromUrl factory method to simplify the creation of
Site objects from URL strings. The value of siteEvidence.Name in the following example is

www.somecompany.com:

C#

String url = "https://www.somecompany.com:8080/dev/HelloWorld.exe";
Site siteEvidence = Site.CreateFromUrl(url);

Visual Basic.NET

Dim url As String = "https://www.somecompany.com:8080/dev/HelloWorld.exe"
Dim siteEvidence As Site = Site.CreateFromUrl(url)

The runtime does not provide Site evidence for assemblies loaded from file protocol URLs such as
file://C:\Dev\HelloWorld.exe. CreateFromUrl will actually throw a System.ArgumentException if

you pass it such a URL.

6.2.3.5 The StrongName class

The System.Security.Policy.StrongName class provides evidence based on the strong name of an

assembly. A strong name provides the assembly with a unique versioned identity and is a guarantee
of the integrity of an assembly. However, a strong name does not guarantee the integrity of the
source of an assembly, which is the purpose of publisher certificates. We discuss assembly strong
names and publisher certificates in Chapter 2.

https://www.somecompany.com:8080/dev/HelloWorld.exe
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because the StrongName class implements the IIdentityPermissionFactory

interface, its presence in the host evidence collection of an assembly causes a
System.Security.Permissions.StrongNameIdentityPermission to be

included in the assembly's grant set. Refer to Chapter 7 for an explanation of
identity permissions.

The StrongName class constructor takes three arguments:

A StrongNamePublicKeyBlob object that represents the public key information for a strong
name. The StrongNamePublicKeyBlob class is a simple utility class from the
System.Security.Permissions namespace used to facilitate the passing of public key

information. See the .NET Framework SDK documentation for complete descriptions

A System.String object containing the name portion of the strong name.

A System.Version object that contains the strong name's version. Version is a utility class that

greatly simplifies the manipulation and comparison of assembly version numbers. See the .NET
Framework SDK documentation for complete descriptions. Here is the code for the StrongName

class constructor:
C#

public StrongName (
 StrongNamePublicKeyBlob blob,
 string name,
 Version version
);

Visual Basic .NET

Public Sub New(_
 ByVal blob As StrongNamePublicKeyBlob, _
 ByVal name As String, _
 ByVal version As Version _
)

Each of the arguments provided during construction is available through the read-only Name,
PublicKey, and Version properties of the StrongName class.

To obtain the strong-name information required to create a StrongName object you can use the
Secutil tool (Secutil.exe) to extract the public key, name, and version from a strong-named

assembly. There is no simple way to extract this information using the .NET class library. The
following command will extract the strong-name information from the assembly HelloWorld.exe and
write it to the strongname.txt file in a format that you can easily incorporate into your program:

secutil -array -cmode -strongname HelloWorld.exe > strongname.txt

The contents of strongname.txt will look something like this:

Microsoft (R) .NET Framework SecUtil 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Key =
{ 0, 36, 0, 0, 4, 128, 0, 0, 148, 0, 0, 0, 6, 2, 0, 0, 0, 36, 0, 0,
82, 83, 65, 49, 0, 4, 0, 0, 1, 0, 1, 0, 169, 206, 164, 8, 66, 197,
231, 138, 148, 74, 99, 125, 171, 203, 120, 143, 240, 155, 104, 138,
4, 123, 15, 55, 85, 255, 183, 20, 111, 10, 217, 58, 127, 15, 236, 86,
16, 121, 222, 35, 161, 14, 122, 246, 85, 226, 162, 221, 46, 215, 161,
151, 183, 38, 31, 150, 198, 119, 109, 94, 11, 65, 208, 33, 122, 172,
106, 62, 192, 4, 35, 255, 220, 10, 43, 90, 92, 183, 29, 136, 57, 235,
30, 5, 127, 72, 210, 108, 215, 226, 65, 197, 184, 28, 129, 184, 191,
211, 159, 69, 8, 84, 116, 65, 186, 179, 35, 116, 174, 223, 167, 217,
116, 8, 178, 232, 213, 155, 172, 87, 181, 187, 61, 43, 133, 105, 10,
187 }
Name =
HelloWorld
Version =
1.1578.0.0
Success

With the strong-name information extracted by Secutil, it is a simple matter to create StrongName

evidence, as shown below:

C#

using System;
using System.Security.Policy;
using System.Security.Permissions;

public class StrongNameEvidenceDemo {

 // Create a byte array containing the strong name public key
 // data.
 static byte[] publickey = { 0, 36, 0, 0, 4, 128, 0, 0, 148,
 0, 0, 0, 6, 2, 0, 0, 0, 36, 0, 0, 82, 83, 65, 49, 0, 4, 0,
 0, 1, 0, 1, 0, 169, 206, 164, 8, 66, 197, 231, 138, 148, 74,
 99, 125, 171, 203, 120, 143, 240, 155, 104, 138, 4, 123, 15,
 55, 85, 255, 183, 20, 111, 10, 217, 58, 127, 15, 236, 86, 16,
 121, 222, 35, 161, 14, 122, 246, 85, 226, 162, 221, 46, 215,
 161, 151, 183, 38, 31, 150, 198, 119, 109, 94, 11, 65, 208,
 33, 122, 172, 106, 62, 192, 4, 35, 255, 220, 10, 43, 90, 92,
 183, 29, 136, 57, 235, 30, 5, 127, 72, 210, 108, 215, 226, 65,
 197, 184, 28, 129, 184, 191, 211, 159, 69, 8, 84, 116, 65, 186,
 179, 35, 116, 174, 223, 167, 217, 116, 8, 178, 232, 213, 155,
 172, 87, 181, 187, 61, 43, 133, 105, 10, 187 };

 public static void Main() {

 // Create a StrongNamePublicKeyBlob object from the
 // publickey byte array.
 StrongNamePublicKeyBlob blob =
 new StrongNamePublicKeyBlob(publickey);

 // Create a Version object based on the assembly version

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // number
 Version version = new Version("1.1578.0.0");

 // Create the new StrongName evidence object
 StrongName sn = new StrongName(blob, "HelloWorld", version);
 }
}

Visual Basic .NET

Imports System
Imports System.Security.Policy
Imports System.Security.Permissions

Public Class StrongNameEvidenceDemo

 ' Create a byte array containing the strong name public key
 ' data.
 Shared publickey() As Byte = { 0, 36, 0, 0, 4, 128, 0, 0, 148, _
 0, 0, 0, 6, 2, 0, 0, 0, 36, 0, 0, 82, 83, 65, 49, 0, 4, 0, _
 0, 1, 0, 1, 0, 169, 206, 164, 8, 66, 197, 231, 138, 148, 74, _
 99, 125, 171, 203, 120, 143, 240, 155, 104, 138, 4, 123, 15, _
 55, 85, 255, 183, 20, 111, 10, 217, 58, 127, 15, 236, 86, 16, _
 121, 222, 35, 161, 14, 122, 246, 85, 226, 162, 221, 46, 215, _
 161, 151, 183, 38, 31, 150, 198, 119, 109, 94, 11, 65, 208, _
 33, 122, 172, 106, 62, 192, 4, 35, 255, 220, 10, 43, 90, 92, _
 183, 29, 136, 57, 235, 30, 5, 127, 72, 210, 108, 215, 226, 65, _
 197, 184, 28, 129, 184, 191, 211, 159, 69, 8, 84, 116, 65, 186, _
 179, 35, 116, 174, 223, 167, 217, 116, 8, 178, 232, 213, 155, _
 172, 87, 181, 187, 61, 43, 133, 105, 10, 187}

 Public Shared Sub Main()

 ' Create a StrongNamePublicKeyBlob object from the
 ' publickey byte array.
 Dim blob As StrongNamePublicKeyBlob = _
 New StrongNamePublicKeyBlob(publickey)

 ' Create a Version object based on the assembly version
 ' number
 Dim version As Version = New Version("1.1578.0.0")

 ' Create the new StrongName evidence object
 Dim sn As StrongName = New StrongName(blob,"HelloWorld",version)

 End Sub

End Class

6.2.3.6 The Url class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The System.Security.Policy.Url class provides evidence based on the URL from where an
assembly was loaded. If the assembly is loaded using a file path on the local machine, the Url
evidence contains a file:// protocol URL; other possibilities are http:// and https:// if the assembly

was loaded from a web site.

Because the Url class implements the IIdentityPermissionFactory

interface, its presence in the host evidence collection of an assembly causes a
System.Security.Permisssions.UrlIdentityPermission to be included in

the assembly's grant set. Refer to Chapter 7 for an explanation of identity
permissions.

The Url class constructor shown takes a System.String argument specifying the URL from where

the assembly was loaded:

C#

public Url(String name);

Visual Basic .NET

Public Sub New(ByVal name As String)

The Url constructor performs some validation on the URL string to ensure that file://-based URLs are

correctly formatted but does not limit the scope of the protocol you can use.

The read-only Value property returns the URL string used in construction.

6.2.3.7 The Zone class

The System.Security.Policy.Zone class provides evidence based on the Internet Explorer security

zone from where an assembly was loaded. The runtime maps the URL of an assembly against the
Internet Explorer zone configuration to determine the type of Zone evidence to create.

Because the Zone class implements the IIdentityPermissionFactory

interface, its presence in the host evidence collection of an assembly causes a
System.Security.Permisssions.ZoneIdentityPermission to be included in

the assembly's grant set. Refer to Chapter 7 for an explanation of identity
permissions.

The Zone class constructor shown below takes as an argument a member of the
System.Security.SecurityZone enumeration which specifies the type of Zone evidence to create;
we list the possible values in Table 6-3. The read-only SecurityZone property returns the
SecurityZone member specified during construction:

C#

public Zone (SecurityZone zone);

Visual Basic .NET

https://
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub New(ByVal zone As SecurityZone)

Table 6-3. Members of the SecurityZone enumeration

Member Description

Internet All web sites that do not belong to one of the other zones

Intranet Web sites located on the local intranet

MyComputer The local computer

NoZone No zone specified

Trusted Specific web sites configured in Internet Explorer to be trusted

UnTrusted Specific web sites configured in Internet Explorer to be untrusted

The Zone class also provides the static CreateFromUrl factory method to simplify the creation of
Zone objects from URL strings. When you call CreateFromUrl the runtime maps the specified URL
against the Internet Explorer zone configuration and returns the appropriate Zone object.

The following code demonstrates how to create Zone evidence representing the Trusted zone, as

well as how to create a zone from the URL
https://www.somecompany.com:8080/dev/HelloWorld.exe:

C#

String url = "https://www.somecompany.com:8080/dev/HelloWorld.exe";
Zone z1 = Zone.CreateFromUrl(url);
Zone z2 = new Zone(SecurityZone.Trusted);

Visual Basic.NET

Dim url As String = "https://www.somecompany.com:8080/dev/HelloWorld.exe"
Dim z1 As Zone = Zone.CreateFromUrl(url)
Dim z2 As Zone = New Zone(SecurityZone.Trusted)

6.2.4 Viewing Evidence

The ability to view an assembly's evidence is extremely useful when debugging CAS-related
programming issues and will help you to understand the concepts discussed previously. The
System.Reflection.Assembly and System.AppDomain classes have read-only Evidence properties

that contain the evidence CAS used during policy resolution to determine the assembly's or
application domain's permissions. The Evidence property is read-only because, as we described

earlier, you can only assign evidence when you load an assembly or create an application domain.

If you try to add new evidence objects to the Evidence collection of an existing
Assembly or AppDomain object, no error will occur, but the evidence collection

will not be modified.

https://www.somecompany.com:8080/dev/HelloWorld.exe
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is unlikely that you will need to use an evidence in order to make security decisions at runtime.
Most of the standard evidence classes result in the inclusion of an appropriate identity permission in
the grant set of the assembly. Identity permissions, which we discuss in Chapter 7, are tightly
integrated with the CAS framework and allow you to base security decisions on the identity of an
assembly.

Example 6-1 shows how to display an assembly's evidence, using a class named LoadAndList, which
you should build into an executable named LoadAndList.exe. The LoadAndList class takes the name

of an assembly as a command-line argument, loads the specified assembly, and lists the assembly's
host and assembly evidence to the console. The LoadAndList class uses the Assembly.Evidence

property to get the assembly's evidence and uses two loops to enumerate first the host and then the
assembly evidence:

Example 6-1. Displaying an assembly's evidence

C#

using System;
using System.Reflection;
using System.Collections;
using System.Security.Policy;

public class LoadAndList {

 public static void Main(string[] args) {

 // Load the specified assembly
 Assembly a = Assembly.LoadFrom(args[0]);

 // Get the Evidence collection from the
 // loaded assembly
 Evidence e = a.Evidence;

 // Display the Host Evidence
 IEnumerator x = e.GetHostEnumerator();
 Console.WriteLine("HOST EVIDENCE:");
 while(x.MoveNext()) {
 Console.WriteLine(x.Current.ToString());
 }

 // Display the Assembly Evidence
 x = e.GetAssemblyEnumerator();
 Console.WriteLine("ASSEMBLY EVIDENCE:");
 while(x.MoveNext()) {
 Console.WriteLine(x.Current.ToString());
 }
 }
}

Visual Basic .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports System
Imports System.Collections
Imports System.Security.Policy

Public Class LoadAndList

 Public Shared Sub Main(ByVal args() As String)

 ' Load the specified assembly
 Dim a As System.Reflection.Assembly = _
 System.Reflection.Assembly.LoadFrom(args(0))

 ' Get the Evidence collection from the
 ' loaded assembly
 Dim e As Evidence = a.Evidence

 ' Display the Host Evidence
 Dim x As IEnumerator = e.GetHostEnumerator()
 Console.WriteLine("HOST EVIDENCE:")
 While x.MoveNext()
 Console.WriteLine(x.Current.ToString())
 End While

 ' Display the Assembly Evidence
 x = e.GetAssemblyEnumerator()
 Console.WriteLine("ASSEMBLY EVIDENCE:")
 While x.MoveNext()
 Console.WriteLine(x.Current.ToString())
 End While
 End Sub
End Class

The LoadAndList utility provides you with the opportunity to demonstrate an important point we

made earlier in this chapter: the identity of an assembly can vary greatly based on the location from
which it is loaded, resulting in the assembly being granted a different set of permissions.

Instead of the path of an assembly file, pass LoadAndList the URL of an assembly to load. If you

place an assembly in the root directory of a Microsoft Internet Information Services (IIS) server
running on your local machine, the evidence assigned to the assembly will be very different if you
access it using an HTTP URL as opposed to the a file path.

For example, if you take any assembly (use one named HelloWorld.exe) and place it in the root
directory of the IIS server running on our Windows 2000 machine, executing the command
LoadAndList C:\Inetpub\wwwroot\HelloWorld.exe results in the following display of host
evidence (the Hash evidence is abbreviated):

HOST EVIDENCE:
<System.Security.Policy.Zone version="1">
 <Zone>MyComputer</Zone>
</System.Security.Policy.Zone>

<System.Security.Policy.Url version="1">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Url>file://C:/Inetpub/wwwroot/HelloWorld.exe</Url>
</System.Security.Policy.Url>

<System.Security.Policy.Hash version="1">
 <RawData>4D5A90000300000004000000FFFF000</RawData>
</System.Security.Policy.Hash>

Alternatively, executing the command LoadAndList http://localhost/HelloWorld.exe results in

a very different set of host evidence despite the fact that you are looking at the same assembly.
Notice the changes (highlighted below) to the value of the Zone and Url evidence, and the addition of
the new Site evidence. The Hash evidence (based on the content of the assembly) remains
unchanged, as would StrongName and Publisher evidence if it were present. Notice that in both

cases, the assembly evidence collection is empty:

HOST EVIDENCE:
<System.Security.Policy.Zone version="1">
 <Zone>Intranet</Zone>
</System.Security.Policy.Zone>

<System.Security.Policy.Url version="1">
 <Url>http://localhost/HelloWorld.exe</Url>
</System.Security.Policy.Url>

<System.Security.Policy.Site version="1">
 <Name>localhost</Name>
</System.Security.Policy.Site>

<System.Security.Policy.Hash version="1">
 <RawData>4D5A90000300000004000000FFFF000</RawData>
</System.Security.Policy.Hash>

6.2.5 Assigning Evidence to Assemblies

Table 6-4 lists the most commonly used methods of the AppDomain and Assembly classes that

directly or indirectly result in the runtime loading an assembly. Each of these methods has one or
more overloads that allow you to provide an Evidence collection for the loaded assembly.

Table 6-4. AppDomain and Assembly methods that take Evidence
collections

Method Description

System.AppDomain

CreateInstance Instantiate a class contained in the specified assembly

CreateInstanceAndUnwrap

CreateInstanceFrom

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Description

CreateInstanceFromAndUnwrap

DefineDynamicAssembly Defines a dynamic assembly

ExecuteAssembly Loads and executes the specified assembly

Load Loads the specified assembly into the application domain

System.Reflection.Assembly

Load Load the specified assembly into the current application domain

LoadFrom

LoadWithPartialName

Although the purpose and signatures of the methods listed in Table 6-4 vary, the steps necessary to
supply evidence to a new assembly are the same:

Create an Evidence collection object.1.

Instantiate the individual evidence objects and add them to the Evidence collection using the
AddHost method.

2.

Execute the method to load the assembly, passing it the Evidence collection as an argument.3.

Example 6-2 shows how to assign evidence to an assembly, using a modified version of the
LoadAndList class (from Example 6-1) named LoadAndAssign. The LoadAndAssign class loads a
named assembly, and assigns it new Site, Url, and Zone host evidence. Because we do not discuss

the use of permission requests until Chapter 7, we catch all exceptions and display a message to the
user. If you execute LoadAndAssign from your local machine, there should be no problem with

permissions as long as you have not modified the default security policy. However, you should always
handle any security exceptions that you know might be thrown.

Example 6-2. Assigning evidence to an assembly

C#

using System;
using System.Reflection;
using System.Collections;
using System.Security;
using System.Security.Policy;

public class LoadAndAssign {

 public static void Main(string[] args) {

 // Create a new Evidence collection
 Evidence e = new Evidence();

CreateInstanceFromAndUnwrap

DefineDynamicAssembly Defines a dynamic assembly

ExecuteAssembly Loads and executes the specified assembly

Load Loads the specified assembly into the application domain

System.Reflection.Assembly

Load Load the specified assembly into the current application domain

LoadFrom

LoadWithPartialName

Although the purpose and signatures of the methods listed in Table 6-4 vary, the steps necessary to
supply evidence to a new assembly are the same:

Create an Evidence collection object.1.

Instantiate the individual evidence objects and add them to the Evidence collection using the
AddHost method.

2.

Execute the method to load the assembly, passing it the Evidence collection as an argument.3.

Example 6-2 shows how to assign evidence to an assembly, using a modified version of the
LoadAndList class (from Example 6-1) named LoadAndAssign. The LoadAndAssign class loads a
named assembly, and assigns it new Site, Url, and Zone host evidence. Because we do not discuss

the use of permission requests until Chapter 7, we catch all exceptions and display a message to the
user. If you execute LoadAndAssign from your local machine, there should be no problem with

permissions as long as you have not modified the default security policy. However, you should always
handle any security exceptions that you know might be thrown.

Example 6-2. Assigning evidence to an assembly

C#

using System;
using System.Reflection;
using System.Collections;
using System.Security;
using System.Security.Policy;

public class LoadAndAssign {

 public static void Main(string[] args) {

 // Create a new Evidence collection
 Evidence e = new Evidence();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Add host evidence to the Evidence collection
 e.AddHost(new Site("www.oreilly.com"));
 e.AddHost(new Url(@"file://C:/Dev/Test.exe"));
 e.AddHost(new Zone(SecurityZone.Trusted));

 // Create a new Assembly reference
 Assembly a = null;

 try {

 // Load the specified assembly and provide the Evidence
 // collection
 a = Assembly.LoadFrom(args[0], e);

 } catch (Exception ex) {

 Console.WriteLine("Could not load assembly - {0}.", args[0]);
 Console.WriteLine(ex);
 return;
 }

 // Display the Host Evidence of the assembly
 IEnumerator x = a.Evidence.GetHostEnumerator();
 Console.WriteLine("HOST EVIDENCE:");
 while(x.MoveNext()) {
 Console.WriteLine(x.Current.ToString());
 }

 // Display the Assembly Evidence of the assembly
 x = a.Evidence.GetAssemblyEnumerator();
 Console.WriteLine("ASSEMBLY EVIDENCE:");
 while(x.MoveNext()) {
 Console.WriteLine(x.Current.ToString());
 }
 }
}

Visual Basic .NET

Imports System
Imports System.Collections
Imports System.Security
Imports System.Security.Policy

Public Class LoadAndAssign

 Public Shared Sub Main(ByVal args() As String)

 ' Create a new Evidence collection
 Dim e As Evidence = new Evidence()

 ' Add host evidence to the Evidence collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 e.AddHost(new Site("www.oreilly.com"))
 e.AddHost(new Url("file://C:/Dev/Test.exe"))
 e.AddHost(new Zone(SecurityZone.Trusted))

 ' Create a new Assembly reference
 Dim a As System.Reflection.Assembly = Nothing

 Try
 ' Load the specified assembly and provide the Evidence
 ' collection
 a = System.Reflection.Assembly.LoadFrom(args(0), e)
 Catch ex As SecurityException
 Console.WriteLine("Could not load assembly - {0}.", args(0))
 Console.WriteLine(ex)
 Return
 End Try

 ' Display the Host Evidence of the assembly
 Dim x As IEnumerator = a.Evidence.GetHostEnumerator()
 Console.WriteLine("HOST EVIDENCE:")
 While x.MoveNext()
 Console.WriteLine(x.Current.ToString())
 End While

 ' Display the Assembly Evidence of the assembly
 x = a.Evidence.GetAssemblyEnumerator()
 Console.WriteLine("ASSEMBLY EVIDENCE:")
 While x.MoveNext()
 Console.WriteLine(x.Current.ToString())
 End While
 End Sub
End Class

From the command line, entering the command LoadAndAssign
C:\Inetpub\wwwroot\HelloWorld.exe to load the HelloWorld.exe assembly you used in Example 6-
1 results in the display of host evidence similar to that listed below. The Url and Zone evidence you
specified has replaced the default evidence. There is also Site evidence, which was previously

present only when you used an HTTP URL to specify the location of the assembly:

HOST EVIDENCE:
<System.Security.Policy.Hash version="1">
 <RawData>4D5A90000300000004000000FFFF000</RawData>
</System.Security.Policy.Hash>

<System.Security.Policy.Site version="1">
 <Name>www.oreilly.com</Name>
</System.Security.Policy.Site>

<System.Security.Policy.Url version="1">
 <Url>file://C:/Dev/Test.exe</Url>
</System.Security.Policy.Url>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<System.Security.Policy.Zone version="1">
 <Zone>Trusted</Zone>
</System.Security.Policy.Zone>

6.2.6 Assigning Evidence to Application Domains

Many of the standard evidence types are more applicable to assemblies than to application domains,
but there is nothing to stop you assigning any of the evidence types of application domains.

For example, although it is impossible to sign an application domain with a publisher certificate, you
could still assign Publisher evidence to an application domain manually. This may be appropriate on

a server that runs code on behalf of many different companies. You may decide to run all code from a
single company in its own application domain. Assigning the application domain Publisher evidence

ensures that any code running within the application domain is limited to the permissions you assign
to that particular company. The benefits of application domain evidence will become clearer when we
discuss security demands and stack walks in Chapter 7.

When you create an application domain using the static AppDomain.CreateDomain method, two of
the method overloads give you the option of providing an Evidence collection for the new application

domain:

C#

public static AppDomain CreateDomain(
 string friendlyName,
 Evidence securityInfo,
 AppDomainSetup info
);

public static AppDomain CreateDomain(
 string friendlyName,
 Evidence securityInfo,
 string appBasePath,
 string appRelativeSearchPath,
 bool shadowCopyFiles
);

Visual Basic .NET

Overloads Public Shared Function CreateDomain(_
 ByVal friendlyName As String, _
 ByVal securityInfo As Evidence, _
 ByVal info As AppDomainSetup _
) As AppDomain

Overloads Public Shared Function CreateDomain(_
 ByVal friendlyName As String, _
 ByVal securityInfo As Evidence, _
 ByVal appBasePath As String, _
 ByVal appRelativeSearchPath As String, _
 ByVal shadowCopyFiles As Boolean _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

) As AppDomain

The process of specifying evidence for an application domain is the same as for assemblies except
that you pass the Evidence collection populated with evidence objects to the CreateDomain method:

C#

// Create an empty Evidence collection
Evidence e = New Evidence();

// Add Host and Assembly Evidence
e.AddHost(new Site("www.oreilly.com"));
e.AddHost(new Zone(SecurityZone.Trusted));

// Create a new application domain reference.
AppDomain d = null;

try {

 // Create the new application domain
 d = AppDomain.CreateDomain("New Domain", e, null);

} catch (Exception ex) {

 Console.WriteLine("Could not create application domain");
 Console.WriteLine(ex);
}

Visual Basic .NET

' Create an empty Evidence collection
Dim e As Evidence = New Evidence()

' Add Host and Assembly Evidence
e.AddHost(New Site("www.oreilly.com"))
e.AddHost(New Zone(SecurityZone.Trusted))

' Create a new application domain reference.
Dim d As AppDomain = Nothing

Try

 ' Create the new application domain
 d = AppDomain.CreateDomain("New Domain",e,Nothing)

Catch ex As Exception

 Console.WriteLine("Could not create application domain")
 Console.WriteLine(ex)
End Try

Be aware of the following behavior:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The runtime host determines the evidence assigned to the initial application domain. In the case
of the shell runtime host, the default application domain is assigned the same set of evidence
assigned to the assembly whose execution caused the CLR to be loaded.

If you specify null (C#) or Nothing (Visual Basic .NET) as the Evidence argument to the
CreateDomain method, the runtime assigns the new application domain the same evidence that

is assigned to the current application domain.

If you pass an empty Evidence collection to the CreateDomain method, the application domain

will have no evidence. This does not mean that code running in the application domain has no
permissions; in fact, it means the application domain is transparent to security permission
checks (which means that the application domain has no effect on the permissions of the code
running in it). See Chapter 7 for details.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.3 Extending the .NET Framework

The standard .NET evidence classes represent the most commonly available and useful
characteristics of an assembly. For most situations, these classes provide enough reliable information
from which to determine a unique identity for an assembly, enabling you to configure your security
policy. However, there are times when the systems you develop need to provide users,
administrators, and programmers with additional criteria on which to base their security policy
decisions. CAS supports the use of custom evidence to meet this requirement.

The creation of custom evidence is a simple task, but there are more steps before you can drive the
policy resolution process using your custom evidence. In the following sections, we discuss the
creation of a custom evidence class. We then continue our customization example with the
development of custom membership conditions in Chapter 8.

6.3.1 Creating Custom Evidence

You can use any serializable class as evidence. There are no evidence-specific interfaces to
implement, nor do you need to derive from a common base class (other than System.Object).

However, here are some guidelines to consider when implementing custom evidence classes:

Make evidence simple. Evidence classes tend to be relatively simple classes that represent a
single piece or type of information. Creating evidence classes that represent multiple or complex
sets of data will result in security policy that is difficult for security administrators and users to
configure and understand. If you need to represent multiple pieces of information, then create
separate evidence classes for each.

Make evidence lightweight. When the runtime loads an assembly, it must instantiate the
objects that represent the assembly's evidence. These objects stay in memory until the
assembly is unloaded or the runtime terminates. Consider the amount of memory used by your
evidence classes as well as avoid lengthy processing tasks, such as network, file, and database
access during instantiation.

Make evidence serializable. Evidence classes must be serializable. Because of their
simplicity, application of the System.SerializableAttribute is usually sufficient. Those

evidence classes that have more complex serialization requirements must implement the
System.Runtime.Serialization.ISerializable interface.

Unless you implement ISerializable, deserialization of an object does not

result in the execution of a constructor, and you should not depend on
constructor logic to configure or modify the state of the de-serialized object.

Make evidence noninheritable. It is safest to mark your evidence classes as sealed in C#
and NotInheritable in Visual Basic .NET so that malicious code cannot subclass your evidence

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class in an attempt to change its behavior and subvert CAS.

Don't assume default values. You should consider whether it is appropriate for your evidence
class to assume default evidence values if the caller does not explicitly set them during creation.
The approach taken by the standard evidence classes is never to provide default values for
evidence. None of the standard evidence classes implements a default (empty) constructor, nor
do they make assumptions about the value of incorrectly specified arguments. In all cases, the
evidence classes' constructor throws a System.ArgumentNullException if passed null

arguments. If arguments have invalid values, the constructor throws a
System.ArgumentException.

Make evidence immutable. Once created, the information held within an evidence class
should be immutable. The evidence assigned to an assembly or application domain is accessible
to many classes during policy resolution. It would cause problems if these classes could change
the values of the evidence part way through the policy resolution process.

Override Object.ToString. All standard evidence classes override the Object.ToString

method to display a simple XML representation of the evidence object. For consistency, you
should consider taking the same approach. Being able to display the contents of evidence is
invaluable when testing and debugging.

Grant identity permissions. To create evidence that will result in the granting of custom
identity permissions, your evidence class must implement the
System.Security.Policy.IIdentityPermissionFactory interface, which we discuss in

Chapter 7.

6.3.1.1 Defining the Author evidence class

To demonstrate the creation and use of custom evidence, create the Author class shown in Example
6-3. The Author class provides evidence containing the name of the programmer who developed an

assembly. Our ultimate goal is to assign code-access permissions to assemblies based on the
assembly's Author evidence and to make runtime security decisions based on the assembly's Author

using identity permissions.

In reality, you would be foolish to place any trust in evidence such as the Author class because it is
susceptible to easy falsification. There is nothing to stop someone from assigning Author evidence
that represents someone else to an assembly. However, Author is more than adequate for the

purpose of our customization demonstration:

Example 6-3. Creating a custom evidence class

C#

using System;
using System.Security;
using System.Reflection;

[assembly:AssemblyKeyFile("Keys.snk")]
[assembly:AssemblyVersion("1.0.0.0")]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespace ORA.DotNetSecurity.Policy {

 [Serializable]
 public sealed class Author {

 private readonly string AuthorName = "";

 public Author (string author) {

 if (author == null) {
 throw new ArgumentNullException("author");
 } else {
 this.AuthorName = author;
 }
 }

 public string Name {

 get {
 return AuthorName;
 }
 }

 // Return string representation of the Author object
 public override string ToString() {

 // Create a new "Author" element
 SecurityElement se =
 new SecurityElement(this.GetType().FullName);

 // Add version of "1"
 se.AddAttribute("version", "1");

 // Add a child element to contain the author name
 if(AuthorName != "") {
 se.AddChild(new SecurityElement("Author", AuthorName));
 }

 // Render the SecurityElement to a string and return it
 return se.ToString();
 }
 }
}

Visual Basic .NET

Imports System
Imports System.Security
Imports System.Reflection

<assembly:AssemblyKeyFile("Keys.snk")>
<assembly:AssemblyVersion("1.0.0.0")>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Namespace ORA.DotNetSecurity.Policy

 <Serializable> _
 Public NotInheritable Class Author

 Private AuthorName As String = ""

 Public Sub New(ByVal author As String)
 If author Is Nothing Then
 Throw New ArgumentNullException("author")
 Else
 Me.AuthorName = author
 End If
 End Sub

 Public ReadOnly Property Name() As String
 Get
 Return AuthorName
 End Get
 End Property

 ' Return string representation of the Author object
 Public Overrides Function ToString() As String

 ' Create a new "Author" element
 Dim se As SecurityElement = _
 New SecurityElement(Me.GetType().FullName)

 ' Add version of "1"
 se.AddAttribute("version", "1")

 ' Add a child element to contain the author name
 If AuthorName <> "" Then
 se.AddChild(New SecurityElement("Author",AuthorName))
 End If

 ' Render the SecurityElement to a string and return it
 Return se.ToString()
 End Function
 End Class
End Namespace

The Author class implements many of the guidelines we outlined earlier, such as:

Author is sealed (C#) and NotInheritable (Visual Basic .NET), ensuring that nobody can

create a subclass that behaves differently than we intended.

Author contains a single data member: a String named AuthorName, which contains the name
of the author represented by the evidence object. AuthorName is a read-only private member
that can be set only on instantiation and is retrievable only through the Name property, ensuring

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that Author is immutable.

Author is made serializable using SerializableAttribute. Because Author contains only a
single String member, the default serialization capabilities provided by the
SerializableAttribute are sufficient.

Author overrides the Object.ToString method to render an Author object to XML in a format
consistent with the standard evidence types. Author builds the XML representation using the
System.Security.SecurityElement class, which we discuss in the next section, before
returning it as a String. The output of ToString for an Author object representing the author

"Peter" is shown below. The version attribute identifies the format of XML output in case you
decide to represent future versions of the Author class differently.
<ORA.DotNetSecurity.Policy.Author version="1">
 <Author>Peter</Author>
</ORA.DotNetSecurity.Policy.Author>

6.3.1.2 Using the SecurityElement Class

System.Security.SecurityElement is a utility class that implements a simple, lightweight XML
object model for encoding .NET security objects. SecurityElement lacks the functionality required

for general-purpose XML processing but is sufficient for use within the security system where only
simple XML representations are required. When extending the .NET security system, you will
frequently need to use SecurityElement, which is why understanding how it works is essential.

A SecurityElement object represents a single XML element and provides members that allow you to

specify the following characteristics:

The element name or tag

Attributes of the element

Child elements (also represented by SecurityElement objects)

Text within the body of the element

SecurityElement also includes methods that allow you to perform simple searches of your XML

element and its children, as well as static utility methods for manipulating and testing the validity of
string values used within SecurityElement objects. The Author.ToString method demonstrates the
use of SecurityElement, and we include additional examples in Chapter 7 and Chapter 8, where we
develop further CAS extensions. Table 6-5 lists the members of SecurityElement.

SecurityElement provides flexibility in how you model the XML representation

of your data. The .NET SDK documentation recommends that in the interest of
readability and portability, you use attributes instead of child elements
wherever possible and avoid text nested within tags. You will notice however,
that all of the standard evidence classes use nested text values.

Table 6-5. Members of the SecurityElement class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Properties

Attributes
Gets and sets the attributes of a SecurityElement using a
System.Collections.Hashtable containing a collection of name/value

string pairs representing the attributes.

Children
Gets and sets the child elements by providing a
System.Collections.ArrayList of SecurityElements.

Tag Gets or sets the tag of the SecurityElement.

Text Gets or sets the text of the SecurityElement.

Methods

AddAttribute
Adds an attribute with the specified name and value to the
SecurityElement.

AddChild Adds the specified SecurityElement as a child element.

Methods

Attribute
Finds an attribute by name and returns its value, returning null (C#) or
Nothing (Visual Basic .NET) if the attribute does not exist.

Equal
Tests two SecurityElement objects for equality by comparing tags,

attributes, text, and child elements. This is different than the inherited
Object.Equals method.

Escape
Static utility method for encoding invalid characters (that are invalid
within XML) as valid escape sequences. Use the resulting string as a tag,
attribute, or text value within the SecurityElement.

IsValidAttributeName
Static utility method that tests if a string represents a valid attribute
name.

IsValidAttributeValue
Static utility method that tests if a string represents a valid attribute
value.

IsValidTag Static utility method that tests if a string represents a valid element tag.

IsValidText Static utility method that tests if a string represents valid element text.

SearchForChildByTag

Searches the SecurityElement for the first child with the specified tag,
returning the child as a SecurityElement. This method does not

perform a recursive search; it searches only the immediate child
elements.

SearchForTextOfTag
Searches the SecurityElement for the first child with the specified tag

and returns the child's text. This method searches recursively through all
child elements.

ToString
Returns a System.String containing the XML representation of the
SecurityElement and its children.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3.1.3 Building the Author evidence class

For reasons that we will explain shortly, Author.dll needs a strong name, so we have included the
AssemblyKeyFile and AssemblyVersion attributes. We explained the purpose and creation of
assembly strong names in Chapter 2. For this example, the AssemblyKeyFile attribute references a

key file named Keys.snk, which we generated solely for this demonstration using the .NET Strong
Name tool (Sn.exe). You should create the Keys.snk file and compile the Author class into a library
named Author.dll using the following commands:

C#

sn -k Keys.snk
csc /target:library Author.cs

Visual Basic .NET

sn -k Keys.snk
vbc /target:library Author.vb

6.3.2 Using Custom Evidence

The previous section explains that the runtime recognizes two categories of evidence: host evidence
and assembly evidence. Using custom evidence as host evidence at runtime is no different from using
standard evidence; refer to Section 6.2 for details.

Because you must embed assembly evidence in the target assembly file, the use of custom evidence
as assembly evidence involves additional steps during the build process of the assembly. You must
prepare the custom assembly evidence programmatically, which you would normally do with a
separate utility program, as we demonstrate later in this section. The process, illustrated in Figure 6-
3, is as follows:

Create a System.Security.Policy.Evidence collection.1.

Create the objects you want to assign as assembly evidence.2.

Add the evidence objects to the Evidence collection using the AddAssembly method.

There is no benefit in using the AddHost method to add evidence, because the runtime simply

ignores host evidence when loading an assembly.

3.

Serialize the Evidence collection using an instance of the
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter class and write it to

a file.

4.

Build your code into a set of modules using the /target:module flag on the C# or Visual Basic

.NET compiler.

5.

Combine the modules and the evidence resource into an assembly using the Assembly Linker
tool (al.exe). Use the /evidence:file flag to specify the file containing the serialized assembly

evidence.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-3. Embedding custom evidence in an assembly

In the following sections, we expand on this summary and demonstrate exactly how to use Author
evidence as embedded assembly evidence, but first we must make Assembly.dll a fully trusted

assembly.

6.3.2.1 Making the Author assembly a fully trusted assembly

Assemblies that provide CAS extensions (such as the Author.dll in the previous section) must be

fully trusted by the security system. This avoids problems when the runtime loads the assembly
during the policy resolution process. We discuss the need for fully trusted assemblies in Chapter
8-for now, type the following commands:

gacutil -i Author.dll
caspol -user -addfulltrust Author.dll
caspol -machine -addfulltrust Author.dll
caspol -enterprise -addfulltrust Author.dll

The first command installs Author.dll into the global assembly cache; which you must do before
you can make it a fully trusted assembly. This is why you had to give Author.dll a strong name
when you built it. The other commands make Author.dll a fully trusted assembly in the user,
machine, and enterprise policy levels. We explain policy levels in Chapter 8 and the Caspol.exe

utility in Chapter 9.

6.3.2.2 Serializing evidence

To embed evidence in an assembly, you must serialize an Evidence collection that contains the

evidence objects you want to use as assembly evidence. The .NET class library includes the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Runtime.Serialization.Formatters.Binary.BinaryFormatter class, which makes the

serialization of serializable objects a straightforward process.

Example 6-4 contains a simple utility named CreateAuthorEvidenceResource that creates an
Author object using a name provided on the command line, adds the Author object to an Evidence
collection, and then serializes the Evidence collection to a file. Running the command
CreateAuthorEvidenceResource Peter results in the creation of the file named Peter.evidence
that contains the serialized Evidence collection; you can then embed that file into the assembly.

Example 6-4. The CreateAuthorEvidenceResource utility

C#

using System;
using System.IO;
using System.Security.Policy;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using ORA.DotNetSecurity.Policy;

public class CreateAuthorEvidenceResource {

 public static void Main(string[] args) {

 // Create a new Evidence collection
 Evidence ev = new Evidence();

 // Create and configure new Author object
 Author auth = new Author(args[0]);

 // Add the new Author object to the assembly evidence
 // collection of the Evidence object
 ev.AddAssembly(auth);

 // Generate the name of the output file
 String file = auth.Name + ".evidence";

 // Serialize the Evidence object
 IFormatter fmtr = new BinaryFormatter();
 Stream strm = new FileStream(file,
 FileMode.Create,
 FileAccess.Write,
 FileShare.None);
 fmtr.Serialize(strm, ev);
 strm.Close();

 // Display result
 Console.WriteLine("Created author evidence resource : " +
 file);
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic .NET

Imports System
Imports System.IO
Imports System.Security.Policy
Imports System.Runtime.Serialization
Imports System.Runtime.Serialization.Formatters.Binary
Imports ORA.DotNetSecurity.Policy

Public Class CreateAuthorEvidenceResource

 Public Shared Sub Main(ByVal args() As String)

 ' Create a new Evidence collection
 Dim ev As Evidence = New Evidence()

 ' Create and configure new Author object
 Dim auth As Author = New Author(args(0))

 ' Add the new Author object to the assembly evidence
 ' collection of the Evidence object
 ev.AddAssembly(auth)

 ' Generate the name of the output file
 Dim file As String = auth.Name & ".evidence"

 ' Serialize the Evidence object
 Dim fmtr As IFormatter = New BinaryFormatter()
 Dim strm As Stream = New FileStream(file, _
 FileMode.Create, _
 FileAccess.Write, _
 FileShare.None)
 fmtr.Serialize(strm, ev)
 strm.Close()

 ' Display result
 Console.WriteLine("Created author evidence resource : " & _
 file)
 End Sub
End Class

If you use custom evidence classes, or provide them to third parties to use in their own application
development, provision of a utility similar to CreateAuthorEvidenceResource makes everyone's life

a lot easier.

Build the CreateAuthorEvidenceResource class into an executable using the following command;
remember, there is a dependency on the Author.dll assembly:

C#

csc /reference:Author.dll CreateAuthorEvidenceResource.cs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic .NET

vbc /reference:Author.dll CreateAuthorEvidenceResource.vb

6.3.2.3 Embedding evidence in an assembly

We now have a mechanism for creating serialized Evidence collections, but we need a target
assembly in which to embed the evidence. The simple HelloWorld class listed here will do for the

purpose of this example:

C#

using System;

public class HelloWorld {
 public static void Main() {
 Console.WriteLine("HelloWorld");
 }
}

Visual Basic .NET

Imports System

Public Class HelloWorld
 Public Shared Sub Main()
 Console.WriteLine("HelloWorld")
 End Sub
End Class

Embedding serialized evidence into your target assembly requires the use of the Assembly Linker tool
(al.exe), which comes with the .NET Framework SDK. The Assembly Linker tool takes a number of
modules and resources and combines them to create an assembly. You must first build your source
into modules using the C# or Visual Basic .NET compilers and then combine the resulting modules,
along with your evidence, into an assembly.

Assuming you have already built the Author.dll library and the CreateAuthorEvidenceResource.exe

executable (as demonstrated in the previous sections), the following series of commands creates the
HelloWorld.exe assembly complete with assembly evidence representing the author Peter:

C#

CreateAuthorEvidenceResource Peter
csc /target:module HelloWorld.cs

al /target:exe /out:HelloWorld.exe /main:HelloWorld.Main
/evidence:Peter.evidence HelloWorld.netmodule

Visual Basic .NET

CreateAuthorEvidenceResource Peter
vbc /target:module HelloWorld.vb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

al /t:exe /out:HelloWorld.exe /main:HelloWorld.Main
/evidence:Peter.evidence HelloWorld.netmodule

The first command calls our CreateAuthorEvidenceResource utility, which creates a binary security
resource file containing an Author evidence object for the author named Peter. Then you compile
the HelloWorld source file into a module. Finally, you use the Assembly Linker tool to combine
HelloWorld.netmodule and the Peter.evidence security resource to form the executable assembly

named HelloWorld.exe.

Now run the LoadAndList utility developed in Example 6-1 to view the evidence assigned to the

HelloWorld.exe assembly when it is loaded. For example, if you place HelloWorld.exe in the directory
C:\dev, and run the command LoadAndList C:\Dev\HelloWorld.exe, you see output similar to that
shown below (the Hash evidence is abbreviated). Notice the inclusion of the Author evidence in the

assembly evidence collection:

HOST EVIDENCE:
<System.Security.Policy.Zone version="1">
 <Zone>MyComputer</Zone>
</System.Security.Policy.Zone>

<System.Security.Policy.Url version="1">
 <Url>file://C:/Dev/HelloWorld.exe</Url>
</System.Security.Policy.Url>

<System.Security.Policy.Hash version="1">
 <RawData>4D5A90000300000004000000FFFF0000B80000000000000040</RawData>
</System.Security.Policy.Hash>

ASSEMBLY EVIDENCE:
<ORA.DotNetSecurity.Policy.Author version="1">
 <Author>Peter</Author>
</ORA.DotNetSecurity.Policy.Author>

If you were to modify the CreateAuthorEvidenceResource class to write the Author evidence into
the host subcollection of the Evidence class (using the AddHost method instead of the AddAssembly
method), not only would the assembly evidence collection be empty, but the Author evidence would

not be present in the host evidence of HelloWorld.exe because the runtime would ignore it.

6.3.3 The Next Steps in Customization

Now you have the Author evidence class that represents the programmer who developed an
assembly. You can assign Author evidence as host evidence at runtime and embed it as assembly

evidence during the build process. Unfortunately, you are not yet able to grant code-access
permission based on the Author of an assembly. You will continue your extensions in Chapter 8,

where you implement a custom membership condition so that you can assign permissions to
assemblies using Author evidence.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Permissions
In this chapter, we explain permissions and discuss their role in the implementation of CAS. We
describe the mechanisms that the runtime uses to enforce code-level security, and explain how you
can use permissions to manipulate these mechanisms. We examine the functionality common to all
permissions, and demonstrate the use of key permission classes provided in the .NET class library.
Finally, we show you how to extend CAS by implementing your own custom permissions.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.1 Permissions Explained

The goal of CAS is to give security administrators (and users) fine-grained control over the actions
and resources to which code has access. For example, a security-conscious administrator may want
to stop applications run from the Internet from starting new processes or allow only code written by
Microsoft to be able to write to the Windows registry.

Instead of defining a fixed set of operations and resources to which access can be controlled, CAS
provides a flexible and extensible framework that uses objects called permissions to define and
enforce security. Permission objects serve the following purposes:

When the runtime loads an assembly, it assigns the assembly a set of permission objects that
represent the authority the runtime has granted to the assembly. Most permission objects
represent access to actions or resources that are subject to security control, such as the ability
to create application domains or the ability to write to the Windows event log. Other permissions
represent elements of code identity derived from the assembly's evidence, such as publisher
certificates and strong names, which we discussed in Chapter 6.

Code that provides functionality or accessibility to resources that must be protected can use the
security framework to demand that any code calling it has a specific set of permission objects.
The .NET runtime and class library use this capability extensively to protect access to operations
and resources, including the ability to run unmanaged code or access the hard disk and
Windows registry.

Figure 7-1 illustrates the use of permission objects to enforce code-level security and demonstrates
the most common CAS operation-the security demand. The runtime grants each of the application's
assemblies a set of permissions at load time, which the runtime represents with a set of permission
objects that it associated with the assemblies. When an assembly's code calls a protected library
member, the library uses a permission object to demand that the runtime ensure that the calling
assembly has the equivalent permission. The runtime evaluates the permission objects associated
with the assembly and confirms to the library whether the assembly has the specified permission.
Based on the response, the library determines whether to complete the application's request.

Figure 7-1. The security demand

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As Figure 7-1 shows, it is the library's responsibility to invoke the facilities provided by CAS to ensure
that the calling application has the necessary permission to access its functionality. The library must
also determine the appropriate action to take if the security demand fails. We will discuss this process
in Section 7.1.4, later in this chapter.

7.1.1 Granting Permissions

The functionality accessible to the code in an assembly is represented by the set of permission
objects assigned to it by the runtime. The runtime determines which permissions to grant to an
assembly (the grant set) based on the assembly's identity. The runtime establishes the identity of an
assembly using the evidence the assembly presents when it is loaded; we discuss evidence and code
identity in Chapter 6. As shown in Figure 7-2, the runtime uses two different mechanisms to translate
evidence into permissions. Figure 7-2 also shows that there are two types of permissions, which we
discuss in Section 7.1.3, later in this chapter.

Figure 7-2. Sources of permissions

The two mechanisms depicted in Figure 7-2 work as follows:

The runtime compares all of the assembly's evidence with the .NET security policy, in a process
named policy resolution, to determine which code-access permissions to grant to the assembly.
We describe security policy and the policy resolution process in Chapter 8. For now, it is enough
to understand that security policy is a configurable set of rules that provides a mapping between
evidence and permissions, and that policy resolution is the process of applying security policy to
an assembly to determine the code-access permissions to grant to it.

1.

Any host evidence that implements the
System.Security.Policy.IIdentityPermissionFactory interface results in the runtime

granting the assembly an identity permission that represents the type and value of the
evidence. Of the seven standard evidence types discussed in Chapter 6, Publisher, Site,
StrongName, Url, and Zone evidence result in the creation of identity permissions.

2.

Security policy can never grant identity permissions; the runtime only grants
identity permission in response to an assembly or application domain
presenting the necessary types of host evidence.

7.1.2 Requesting Permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Configuring security policy can be complicated, and problems arise when the security policy does not
grant legitimate assemblies enough permission to function correctly. For example, without permission
to establish network connections to an email server, an email client application cannot send and
receive email. In an ideal security configuration, it is also important to make sure assemblies do not
have more permissions than they need. This reduces the chance that bugs in the assembly can
damage important resources. It also reduces the chance that malicious code can use the assembly as
a gateway through which to access protected functionality. CAS supports the following three
permission request operations to address the issues associated with assemblies having too many or
too few permissions:

Requesting minimum permissions

Based on the premise that it is better for an application not to run than to start and crash
because of insufficient permissions, CAS allows assemblies to include minimum permission
requests. A minimum permission request is a statement contained within an assembly's
metadata that specifies a set of permissions that the runtime must grant to an assembly in
order for it to function correctly. After the runtime resolves the permissions for an assembly, if
the grant set does not contain all of the requested permissions, then the runtime will throw an
exception and will not load the assembly.

To use the email client application as an example, the programmer of the client builds a
minimum permission request into the application assembly stating that the application must
have permission to establish network connections. If the runtime does not grant permission to
create network connections, then the application does not run and the user receives an error
message. A security administrator can inspect the permission requests made by the application
and adjust his security policy accordingly; we discuss the Permview.exe tool used to do this in
Chapter 9.

Requesting optional permissions

Over and above core functionality, some applications offer additional but nonessential features.
CAS allows assemblies to specify in their metadata a set of permissions that is useful for the
assembly to have. The runtime loads the assembly even if it cannot grant these optional
permissions, and so the assembly must accommodate situations in which it does not have
them. For example, an email client application may allow users to export copies of email to disk
if it has permission to write to the hard drive. Without the permission, the mail client still
functions. However, it does not present the export option to the user nor does it display an
appropriate message when the function is invoked.

The main effect of requesting optional permissions is that the runtime never grants the
assembly any permission not listed in the optional-permission set; the maximum grant set
possible is the union of the assembly's minimum permissions and optional permissions. The
runtime discards any permissions granted to the assembly that fall outside these two groups.

Refusing permissions

The ability to request optional permissions enables an assembly to place an upper limit on the
permissions that the runtime will grant it. However, sometimes you may want to refuse a
specific set of permissions. CAS allows an assembly to specify a set of permissions in its
metadata that the runtime must never grant it. Even if policy resolution normally results in the
granting of a permission, the runtime will remove it when it loads the assembly. This allows you
to ensure that nobody can use your code to perform any action controlled by the refused
permissions. In the case of the email client application, the programmer may want to ensure
that the client never calls unmanaged code and builds the refusal request into the assembly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We describe the techniques used to make these requests in Section 7.2.4.

7.1.3 Permission Types

The .NET Framework class library uses permissions to control access to the functionality it provides.
The designers of the .NET class library have made decisions about which members of which classes
must have restricted access and have implemented a set of permission classes through which they
secure that functionality. The runtime also uses permissions to restrict access to a handful of
operations that are critical to the security of the overall runtime environment. These operations
include the ability of code to execute, to run unmanaged code, and to skip verification.

The permission classes implemented in the class library of the .NET Framework fall into three
categories: code-access permissions, identity permissions, and role-based permissions.

Role-based permissions represent the user context in which code is executing. For example, the user
Gary is running the application or an application is running as the inbuilt Windows system account.

We discuss role-based permissions in Chapter 10 along with the other role-based security features
provided by the .NET runtime.

In the following sections, we introduce the code-access and identity permission classes contained in
the .NET class library.

It is important to understand that access to the vast majority of the
functionality contained in the .NET class library is not protected using CAS. If
.NET used CAS to protect every method in its class library, applications would
run significantly slower and administration of security policy would be so
complex as to be impossible. The class and method documentation of the .NET
Framework SDK indicates where permissions are required to access
functionality.

7.1.3.1 Code-access permissions

Code-access permission classes represent actions and resources that are subject to security control.
The .NET class library includes the code-access permission classes listed in Table 7-1. Some
permission classes are members of the System.Security.Permissions namespace, while others are

members of the namespace containing the functionality to which they apply. We break down the
classes by namespace and highlight those permissions new to Version 1.1 of the .NET Framework.

All of these classes implement a common set of interfaces and adhere to a common design pattern. It
is through the methods exposed by the code-access permission classes that code invokes the runtime
to enforce code-level security. We discuss the specific functionality of code-access permission classes
later in Section 7.2.2.

Table 7-1. .NET code-access permission classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Namespace and class Description

System.Data.Common

DBDataPermission

An abstract base class that provides common functionality for
data provider permission classes, including the
OdbcPermission, OleDbPermission, and
SqlClientPermission classes. Note that OraclePermission is
not derived from DBDataPermission.

System.Data.Odbc

OdbcPermission (1.1)
Controls access to data sources through the ODBC data
provider.

System.Data.OleDb

OleDbPermission
Controls access to data sources through the OLE DB data
provider.

System.Data.OracleClient

OraclePermission (1.1)
Controls access to Oracle databases through the Oracle data
provider.

System.Data.SqlClient

SqlClientPermission
Controls access to Microsoft SQL Server databases through the
SQL Client data provider.

System.Diagnostics

EventLogPermission Controls access to the Windows event log.

PerformanceCounterPermission Controls access to Windows performance counters.

System.DirectoryServices

DirectoryServicesPermission
Controls access to directory services, such as LDAP and
Microsoft Active Directory.

System.Drawing.Printing

PrintingPermission Controls access to printers.

System.Net

DnsPermission Controls access to network-based domain name servers (DNSs).

WebPermission Controls access to Internet resources.

SocketPermission Controls access to socket-based network communications.

System.Messaging

MessageQueuePermission Controls access to the Microsoft message queue.

System.Security.Permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Namespace and class Description

EnvironmentPermission
Controls access to read, create, and change environment
variables.

FileDialogPermission
Controls access to files and folders by restricting the accessibility
and functionality of the standard Windows file dialog box.

FileIOPermission
Controls access to the local hard disk by restricting access to
create, change, and delete files and folders.

IsolatedStoragePermission
Controls access to isolated storage, which we discuss in Chapter
11.

ReflectionPermission
Controls access to the reflection functionality provided by the
runtime.

RegistryPermission Controls access to the Windows registry.

ResourcePermissionBase

An abstract base class that provides common functionality for
Windows resource-oriented permission classes, including the
EventLogPermission, PerformanceCounterPermission,
DirectoryServicesPermission, and
ServiceControllerPermission classes.

SecurityPermission

Controls access to the set of security features relating to
application domains, policy, evidence, threading, principles,
execution, infrastructure, .NET Remoting configuration,
serialization, verification, and unmanaged code.

UIPermission
Controls access to manipulate the user interface and the
clipboard.

System.ServiceProcess

ServiceControllerPermission Controls access to Windows services entries.

System.Web

AspNetHostingPermission (1.1) Controls access to ASP.NET-hosted environments.

Each of the standard code-access permission classes controls access to a range of related
functionality and provides fine-grained control over the actions and resources a particular permission
object represents. For example, the SecurityPermission class represents access to a set of discrete

security related functions, such as the ability to control evidence or the ability to execute unmanaged
code. In contrast, because the FilIOPermission class must represent different types of access

(read, write, append) to everything from a specific named file or directory to the entire hard disk, it
can represent an infinite variety of resource access.

Each of the standard code-access permission classes can also represent a completely restricted state
and a completely unrestricted state. For example, an unrestricted FileIOPermission represents full

access to all files and directories on the local hard drives, whereas a completely restricted
FileIOPermission represents no access.

7.1.3.2 Identity permissions

EnvironmentPermission
Controls access to read, create, and change environment
variables.

FileDialogPermission
Controls access to files and folders by restricting the accessibility
and functionality of the standard Windows file dialog box.

FileIOPermission
Controls access to the local hard disk by restricting access to
create, change, and delete files and folders.

IsolatedStoragePermission
Controls access to isolated storage, which we discuss in Chapter
11.

ReflectionPermission
Controls access to the reflection functionality provided by the
runtime.

RegistryPermission Controls access to the Windows registry.

ResourcePermissionBase

An abstract base class that provides common functionality for
Windows resource-oriented permission classes, including the
EventLogPermission, PerformanceCounterPermission,
DirectoryServicesPermission, and
ServiceControllerPermission classes.

SecurityPermission

Controls access to the set of security features relating to
application domains, policy, evidence, threading, principles,
execution, infrastructure, .NET Remoting configuration,
serialization, verification, and unmanaged code.

UIPermission
Controls access to manipulate the user interface and the
clipboard.

System.ServiceProcess

ServiceControllerPermission Controls access to Windows services entries.

System.Web

AspNetHostingPermission (1.1) Controls access to ASP.NET-hosted environments.

Each of the standard code-access permission classes controls access to a range of related
functionality and provides fine-grained control over the actions and resources a particular permission
object represents. For example, the SecurityPermission class represents access to a set of discrete

security related functions, such as the ability to control evidence or the ability to execute unmanaged
code. In contrast, because the FilIOPermission class must represent different types of access

(read, write, append) to everything from a specific named file or directory to the entire hard disk, it
can represent an infinite variety of resource access.

Each of the standard code-access permission classes can also represent a completely restricted state
and a completely unrestricted state. For example, an unrestricted FileIOPermission represents full

access to all files and directories on the local hard drives, whereas a completely restricted
FileIOPermission represents no access.

7.1.3.2 Identity permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Identity permissions represent the value of certain types of host evidence an assembly presents to
the runtime when it was loaded. Table 7-2 lists the standard identity permission classes provided in
the .NET class library and shows the type of evidence they represent; all identity permission classes
are members of the System.Security.Permissions namespace. We discussed each of the evidence

classes in Chapter 6.

Only host evidence is a source of identity permissions; assembly evidence
never results in their creation. See Chapter 6 for a description of the difference
between host and assembly evidence.

Table 7-2. Evidence classes that implement IIdentityPermissionFactory

Identity permission class Evidence type represented

PublisherIdentityPermission Publisher

SiteIdentityPermission Site

StrongNameIdentityPermission StringName

UrlIdentityPermission Url

ZoneIdentityPermission Zone

Because identity permissions implement the same interfaces as code-access permissions, you can
use them in the same ways. Identity permissions are a powerful and convenient way to leverage the
functionality of the CAS security framework and make security decisions based on the identity of an
assembly, avoiding the need to work directly with evidence objects. For example, you can use
identity permissions to enforce the following types of security restrictions:

To allow only code run from the LocalIntranet security zone to execute your method

To allow only code in an assembly signed with your company's publisher certificate to inherit
from your class

To run your application only if it was executed from the web site www.oreilly.com

7.1.4 Enforcing Code-Access Security

The security demand, which we mentioned in the introduction to this section, is the principal
mechanism used to enforce code-level security. When code makes a security demand, it instructs the
runtime to ensure that the code that called it has a specified permission object (or set of
permissions). Figure 7-3 shows what happens when a simple console application named MyApp.exe
tries to delete a file named C:\Test.txt using the static System.IO.File.Delete method from the

.NET class library.

Figure 7-3. The security demand process

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The security demand process shown in Figure 7-3 works as follows:

When you run MyApp, the runtime loads the MyApp.exe assembly, evaluates its evidence, and

determines what permissions to grant it. In this example, the runtime grants MyApp.exe the
following three permissions, which it creates permission objects for and assigns to the
assembly:

A RegistryPermission object that represents permission to read the Windows registry

An EnvironmentPermission object that represents permission to read the USER

environment variable

A FileIOPermission object that represents permission to write to the C:\Test.txt file

1.

At some point during its execution, MyApp calls File.Delete to delete the C:\Test.txt file.2.

The File.Delete method creates a FileIOPermission object that represents permission to
write to the C:\Test.txt file and calls its Demand method to request that the runtime ensures that
MyApp has the equivalent permission.

3.

The runtime checks the permission objects assigned to MyApp and confirms that they include a
FileIOPermission that represents permission to write to the C:\Test.txt file.

4.

The runtime responds with a positive result to the File.Delete method, indicating that MyApp

has the demanded permission. The positive response is not to throw a
System.Security.SecurityException.

5.

Given that MyApp has the necessary permission, the File.Delete method attempts to delete

the C:\Test.txt file; only if the access controls of the underlying operating system allow the
active user to delete the C:\Test.txt file will the operation succeed; we discussed the
relationship between runtime and operating system security in Chapter 5.

6.

In this example, MyApp is the only executing application and is the only assembly that you are

concerned with. However, when code makes a security demand, the runtime must ensure that not
only the immediate caller has the specified permission, but that the whole chain of previous callers
have the necessary permission as well. This ensures that less-trusted code does not exploit more

http://lib.ommolketab.ir
http://lib.ommolketab.ir

highly trusted code to perform operations to which it does not have permission (commonly known as
a luring attack). The runtime checks the permission of all callers using a stack walk, which we
describe in the next section. We discuss the implementation of security demands in Section 7.2.5.

7.1.4.1 Stack walks explained

The runtime maintains a call stack for each thread of execution. When an active thread calls a
method or function, the runtime adds a new activation record (also called a stack frame) to the top of
the thread's call stack. The activation record contains details of the method that was called, the
arguments passed to the method, and the address to return to when the method completes. Upon
completion of the called method, the runtime removes the activation record from the top of the stack
and returns control to the instruction specified in the record.

The runtime also records application domain transitions on the call stack. As code running in one
application domain calls a method in another application domain, the runtime records the transition
by adding a record to the call stack. We discussed application domains in Chapter 3.

The call stack grows and shrinks constantly throughout the life of an application, but at any instant,
the call stack contains an accurate record of the sequence of method calls and application domain
transitions that have brought the code to its current point of execution. Figure 7-4 shows the state of
call stack after a sequence of method calls (shown with arrows), which cross assembly and
application domain boundaries.

Figure 7-4. Structure of a call stack

When code makes a security demand, the runtime walks back up the call stack (hence the name
stack walk), from the most recent activation record to the oldest. Importantly, stack walks do not
include the activation record of the method making the security demand; the first activation record
evaluated is that of the immediate caller.

As the runtime walks the stack, it compares the permissions granted to each method and application
domain to see whether they contain the demanded permission. Remember that the permissions of a
method are the same as the permissions of the assembly in which it is contained.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If every method and application domain on the call stack has the demanded permission, then the
stack walk completes without event; execution returns to the method that made the security
demand, which in turn carries on to complete the protected operation. However, if the runtime
encounters a method or application domain without the demanded permission, the runtime throws a
System.Security.SecurityException back to the method that made the security demand, which

would normally pass this through to the code that called it.

An application domain created without evidence has no permissions. Such
application domains are transparent to the stack walk and do not cause it to
fail.

Figure 7-5 shows a stack walk that results when MethodD from Figure 7-4 calls the File.Delete
method. The Delete method demands that callers have the FileIOPermission permission to write

to a specified file. In response to the security demand, the runtime walks the stack and inspects the
permissions granted to first MethodD, and then MethodC, MethodB, AppDomainY, MethodA, and finally
AppDomainX. As long as all of them have the necessary FileIOPermission, the Delete call is

permitted.

Figure 7-5. Walking the stack

Some important points to note:

MethodC and MethodD have the same grant set, because they are both contained in AssemblyB

and are executing from the same application domain. It is still necessary for the runtime to
evaluate each method independently because of the features we discuss in Section 7.2.6.

Even though both MethodA and MethodB are contained in AssemblyA they may not have the
same permissions. AssemblyA has been loaded into two different application domains. This can

result in each instance having different permission sets depending on the security policy of
AppDomainY; we discuss security policy in Chapter 8.

The stack walk process described here is the default behavior of the runtime in response to a security
demand. You can override the default behavior of the stack walk process in three ways:

Assert

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assert allows a method to specify a set of permissions for which it is willing to vouch for the

callers' authority above it on the stack. The stack walk terminates with a positive result at the
frame of the method invoking Assert and does not look at the remaining stack frames.

Deny

Deny is effectively the opposite of Assert. Any stack walk looking for the denied set of
permissions terminates with a negative result at the frame of the method invoking Deny,

regardless of the permissions held by the remaining methods on the stack.
PermitOnly

PermitOnly is similar to Deny, but it allows a method to specify the set of permissions that

should not terminate the stack walk. A security demand for any other permission results in the
stack walk terminating as if it has encountered a Deny override.

We discuss each of the Assert, Deny, and PermitOnly overrides further in Section 7.2.6, where we

provide implementation examples.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.2 Programming Code-Access Security

So far, we have discussed permissions and introduced the features provided by CAS to enforce and
control code-level security. In this section, we look at how you implement these features in your
programs. Your level of interest in this section will depend on the type of code you intend to write. As
a developer of applications, you will be interested in understanding the implementation and
functionality of the standard permission classes, as well as how to make security requests to ensure
that your application has the permissions it needs to execute. If you are writing libraries, you will also
be interested in how to use permissions to control access to your functionality, as well as the features
available to control the stack walk process.

We begin by explaining the general syntax of security statements, followed by a look at the standard
permission classes included in the .NET class library. There are more than 25 different code-access
and identity permission classes in Version 1.1 of the .NET Framework, and we do not cover them all in
detail. We provide detailed coverage of only the SecurityPermission class, which is an important

permission for performing many of the security-related operations we discuss in this book. Once you
understand how to use permissions in general, everything you need to know about specific permission
classes can be found easily in the .NET Framework SDK documentation.

We conclude this section by looking at how to apply different security syntax to build permission
requests, security demands, and stack walk overrides into your code.

7.2.1 Security Statement Syntax

The statements to control CAS do not form part of the C# or Visual Basic .NET languages. It is
through the permission classes and their associated attribute class counterparts that you control CAS;
although this makes the syntax and use of CAS more complex and initially harder to understand, it
means that CAS is flexible, extensible, and to a large degree language-independent.

There are two different ways to express security statements. The first, imperative security , uses the
standard methods implemented by the permission classes. The second, declarative security , uses the
attribute class counterparts of each permission class.

7.2.1.1 Imperative security statements

Imperative security statements appear in the body of your methods and functions, which means they
end up forming part of the compiled intermediate language (IL) code contained in your assembly. We
discuss IL code in Chapter 2 in our discussion of assemblies.

The first steps in using imperative security are to instantiate a permission object of the type you
require and configure it to represent the permission you want to work with. Then you call one of the
following methods, which are implemented by all code-access and identity permission classes to
execute the desired security statement. For security demands, you will use the Demand method; for
stack walk manipulation, you will typically use the Assert , Deny , and PermitOnly methods.

We discuss the details of these methods later in this chapter; for now all we are concerned with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

understanding is the general syntax of imperative security statements. Example 7-1 creates a
FileIOPermission object, configures it to represent write access to the file C:\SomeFile.txt , and
then calls its Demand method to initiate an imperative security demand. Unless the code calling the
CreateFile method (and all previous callers on the call stack) has been granted write access to the
C:\SomeFile.txt file, the runtime throws a System.Security.SecurityException .

Example 7-1. Imperative security statement

C#
public void CreateFile() {

 // Create a new FileIO permission object
 FileIOPermission perm = new FileIOPermission(
 FileIOPermissionAccess.Write, @"C:\SomeFile.txt");

 try {
 // Demand the FileIOPermission
 perm.Demand();
 } catch (SecurityException se) {
 // Callers do not have necessary permission
 }

 // Method implementation...
}

Visual Basic .NET

Public Function CreateFile ()

 ' Create a new FileIO permission object
 Dim perm As FileIOPermission = New FileIOPermission(_
 FileIOPermissionAccess.Write, "C:\SomeFile.txt")

 Try
 ' Demand the FileIOPermission
 perm.Demand()
 Catch (se As SecurityException)
 ' Callers do not have necessary permission
 End Try

 ' Method implementation...

End Function

You cannot express all security operations using imperative syntax. However, imperative security
offers a level of flexibility and control that you cannot achieve using declarative syntax, which we
discuss in Section 7.2.1.2 .

Because imperative security statements appear in the body of your program, you can use them in
conjunction with the normal program control constructs supported in the language, such as
conditional and iterative statements. In addition, imperative security allows you to base security
decisions on information that is available only at runtime, such as user input, and you can use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

structured exception handling to process security exceptions that result from your imperative security
statements.

7.2.1.2 Declarative security statements

Declarative security statements are expressed using attributes, which are statements compiled to
form part of an assembly's metadata. For every code-access and identity permission class, the .NET
class library contains a corresponding attribute class, which enables the use of declarative security
syntax with that permission. Each attribute class is a member of the same namespace as its
corresponding permission class and has the same name as the permission, but with the word
"Attribute" appended. For example, the corresponding attribute for the FileIOPermission class is the
FileIOPermissionAttribute class, and they are both members of the
System.Security.Permissions namespace.

Because the C# and Visual Basic .NET compilers both allow you to omit the
standard "Attribute" appendix from attributes when you use them in your code,
it looks as if you are using the permission class which aids readability.

All permission attribute classes extend the
System.Security.Permissions.CodeAccessSecurityAttribute class, including the attribute class
counterparts of identity permissions. The CodeAccessSecurityAttribute class and every subclass

implement a single constructor with the signature shown here:

C#

public CodeAccessPermissionAttribute(
 SecurityAction action
);

Visual Basic .NET

Public Sub New(_
 ByVal action As SecurityAction _
)

System.Security.Permissions.SecurityAction is an enumeration that contains members

representing each of the security operations supported by declarative syntax.

Permission requests

RequestMinimum

RequestOptional

RequestRefuse

Security demands

Demand

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LinkDemand

InheritanceDemand

Stack walk manipulation

Assert

Deny

PermitOnly

The selection of operations supported by declarative security is more than that supported using
imperative security. We discuss the details of each operation later in this chapter; for now we are
concerned only with the general syntax of declarative security statements.

Each attribute class defines a set of properties that are specific to the type of permission. These allow
you to configure the attribute to represent the permission state to which you want to invoke the
declarative security statement. The following code demonstrates the declarative syntax alternative to
that listed in Example 7-1 . The Write property is specific to the FileIOPermissionAttribute class

and specifies the full path of the file to which write access is granted, as in C:\SomeFile.txt . To
change the security operation, it is a simple matter of changing the value of the SecurityAction

argument:

C#

[FileIOPermission(SecurityAction.Demand, Write = @"C:\SomeFile.txt"]
public void CreateFile() {

 // Method implementation...
}

Visual Basic .NET

<FileIOPermission(SecurityAction.Demand, Write = "C:\SomeFile.txt"> _
Public Sub CreateFile ()

 ' Method implementation...
End Sub

As metadata, the runtime and other tools can extract and view the declarative security statements
contained in your assembly without loading or running the assembly's IL. Permview.exe is one such
tool supplied with the .NET Framework. We discuss the use of Permview.exe in Chapter 9 , but in
summary, it allows security administrators to inspect all the declarative security statements contained
in your assembly. This provides them with valuable information when they are configuring security
policy.

The primary limitation of declarative syntax when compared with imperative syntax is that the
permission definitions are fixed at build time and cannot be based on runtime state. The only way to
change the permissions is to modify the code and recompile it.

7.2.2 Programming Permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The use you make of the standard permission classes in your own development will vary depending
on what type of code you are writing. If you are writing applications that call protected functionality of
the .NET class library, you will be concerned primarily with ensuring that your code has the necessary
permissions to call the functionality it needs and fails gracefully if it does not. Your focus will be on the
correct configuration of security policy (see Chapter 8), making the necessary permission requests
and correctly handling any security exceptions thrown at runtime.

If you are writing library code that will be used by others, use the standard evidence classes in the
same way that the .NET class library does to protect the functionality you provide. Be aware that if
you are providing a wrapper around existing .NET class library functionality, you may not need to
implement your own security because the underlying methods you call could already be protected. If
you are creating a library that calls unmanaged code or provides access to a new type of resource,
you may decide to protect it using an appropriate standard permission class. However, permission
classes tend to be task-specific, and you might find yourself wanting to implement a completely new
permission class to represent your needs, which we discuss in Section 7.3.1 .

Each of the standard permission classes represents a different type of secured functionality or code
identity. Some code-access permission classes represent access to a set of discrete actions grouped
together into a single container (for example, SecurityPermission), but many represent access to
an infinite variety of resources (like FileIOPermission). Despite this variety and scope of purpose,

all permission classes integrate with the security framework to provide the same base functionality
and pattern of use.

7.2.2.1 Common permission class functionality

All code-access and identity permissions extend directly or indirectly the abstract
System.Security.CodeAccessPermission class, which implements three interfaces that define the

functionality all permission classes must provide:

System.Security.IPermission

IPermission defines methods to initiate security demands as well as to create, compare, and

combine permission objects.
System.Security.IStackWalk

IStackWalk defines methods that allow code to invoke security demands and override the

default stack-walk process.
System.Security.ISecurityEncodable

ISecurityEncodable defines methods that allow permission objects to be converted to and

from XML representations.

In addition to the methods defined by these interfaces, CodeAccessPermission implements four

static methods that are used to undo previously implemented stack-walk overrides. Table 7-3
summarizes the methods of the CodeAccessPermission class broken down by interface.

Table 7-3. Methods of the CodeAccessPermission class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Description

IPermission
interface

Copy Returns a permission object that is a copy of the current permission.

Demand
Invokes a security demand for the current permission object-see Section
7.2.5 in this chapter for details.

Intersect
Returns a permission that is the intersection the current permission and the
specified permission.

IsSubsetOf
Determines whether the current permission is a subset of the specified
permission.

Union
Creates a permission that is the union of the current permission and the
specified permission.

IStackWalk
interface

Assert
Adds an Assert override to the current stack frame-see Section 7.2.6 in

this chapter for details.

Demand See IPermission.Demand .

Deny
Adds a Deny override to the current stack frame-see Section 7.2.6 in this

chapter for details.

PermitOnly
Adds a PermitOnly override to the current stack frame-see Section 7.2.6

in this chapter for details.

FromXml
Reconstructs a permission object from a
System.Security.SecurityElement that contains an XML object model

representing the permissions state.

ToXml
Returns a SecurityElement that contains an XML object model of the

permission object, including state information.

ISecurityEncodable

RevertAll
Removes all Assert , Deny , and PermitOnly overrides from the current

stack frame- see Section 7.2.6 in this chapter for details.

RevertAssert
Removes all Assert overrides from the current stack frame-see Section

7.2.5 in this chapter for details.

RevertDeny
Removes all Deny overrides from the current stack frame-see Section 7.2.6

in this chapter for details.

RevertPermitOnly
Removes all PermitOnly overrides from the current stack frame-see

Section 7.2.6 in this chapter for details.

All code-access permission classes also implement the
System.Security.Permissions.IUnrestrictedPermission interface, which includes a single
method named IsUnrestricted . The IsUnrestricted method returns true if a permission object

represents the unrestricted state of the permission class; otherwise, it returns false.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CodeAccessPermission does not implement IUnrestrictedPermission
because identity permissions, which also extend CodeAccessPermission ,

never represent unrestricted states.

Each concrete code-access permission class implements its own internal state to represent the
functionality to which it controls access. Likewise, each concrete identity permission class implements
internal state to represent values appropriate to the type of evidence on which they are based.
Therefore, all permission classes implement a unique set of constructors, properties, and methods
necessary to manipulate their own internal state information. One constructor signature common to
all code-access permission classes is shown here for the SecurityPermission class:

C#

public SecurityPermission(
 PermissionState state
);

Visual Basic .NET

Public Sub New(_
 ByVal state As PermissionState _
)

The PermissionState enumeration contains two member values:

None

Represents a completely restricted state (no permission)
Unrestricted

Represents an unrestricted state (all permissions)

7.2.2.2 Using the SecurityPermission class

The SecurtityPermission class is used by both the runtime and methods in the .NET Framework

class library to control access to a set of 14 discrete operations that are critical to the security of the
runtime environment. Many of the activities we discuss in this book require permissions represented
by the SecurtityPermission class. These include things like controlling evidence, modifying security

policy, and creation application domains.

The SecurityPermission class implements two constructors with the following signatures:

C#

public SecurityPermission(
 PermissionState state
);

public SecurityPermission(
 SecurityPermissionFlag flag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

);

Visual Basic .NET

Public Sub New(_
 ByVal state As PermissionState _
)

Public Sub New(_
 ByVal flag As SecurityPermissionFlag _
)

The first constructor takes a member of the PermissionState enumeration, which we discussed in
the previous section. Passing the value PemissionState.None creates a SecurityPermission that
grants access to none of the contained 14 operations, while PemissionState.Unrestricted grants

access to them all.

The second constructor takes a member of the
System.Security.Permissions.SecurityPermissionFlag enumeration, which defines the set of
component operations represented by the SecurityPermission object. Table 7-4 lists the members
of the SecurityPermissionFlag enumeration. Because SecurityPermissionFlag has the
FlagsAttribute attribute, you can specify more than one value simultaneously using bitwise

combination.

Table 7-4. Members of the SecurityPermissionFlag enumeration

Member Description

AllFlags All the permissions listed in this table except for NoFlags .

Assertion
The ability to call Assert on the permissions that have been granted to

the code, which we discuss in Section 7.2.6 .

BindingRedirects
The ability to perform binding redirection of assemblies in the
application configuration file.

ControlAppDomain
The ability to create and manipulate application domains, which we
discuss in Chapter 3 .

ControlDomainPolicy
The ability to specify application domain policy, which we discuss in
Chapter 8 .

ControlEvidence
The ability to provide evidence for assemblies and application domains,
which we discuss in Chapter 6 .

ControlPolicy
The ability to view and edit security policy, which we discuss in Chapter
8 .

ControlPrincipal
The ability to manipulate the principal object associated with application
domains and threads, which we discuss in Chapter 10 .

ControlThread Advanced threading control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Execution The ability of code to execute.

Infrastructure
The ability to plug certain types of code extensions into the .NET
Framework.

NoFlags No permissions.

RemotingConfiguration The ability to configure .NET Remoting types and channels.

SerializationFormatter The ability to provide serialization services.

SkipVerification The ability for code to skip verification, which we discuss in Chapter 4 .

UnmanagedCode

The ability to execute unmanaged code. Calls to unmanaged code
through either PInvoke or COM Interoperability result in an implicit
security demand for the SecurityPermission.UnmanagedCode

permission. This is an expensive operation when code calls unmanaged
code frequently. Managed libraries that provide access to unmanaged
code can use the
System.Security.SuppressUnmanagedCodeAttribute to limit the

performance impact; refer to the .NET Framework SDK documentation
for further information.

Example 7-2 demonstrates how to create two SecurityPermission objects. The first represents
unrestricted access to all SecurityPermission operations, and the second specifies only the
Assertion and ControlEvidence permissions.

Example 7-2. Constructing SecurityPermission objects

C#

SecurityPermission p1 =
 new SecurityPermission(PermissionState.Unrestricted);

SecurityPermission p2 = new SecurityPermission(
 SecurityPermissionFlag.Assertion |
 SecurityPermissionFlag.ControlEvidence
);

Visual Basic .NET

Dim p1 As SecurityPermission = _
New SecurityPermission(PermissionState.Unrestricted)

Dim p2 As SecurityPermission = _
New SecurityPermission(SecurityPermissionFlag.Assertion Or _
SecurityPermissionFlag.ControlEvidence)

Using these SecurityPermission objects, you can execute imperative security statements. For

example, your code could use an imperative security demand to control the functionality it exposes to
the calling code based on the permissions the callers have:

Execution The ability of code to execute.

Infrastructure
The ability to plug certain types of code extensions into the .NET
Framework.

NoFlags No permissions.

RemotingConfiguration The ability to configure .NET Remoting types and channels.

SerializationFormatter The ability to provide serialization services.

SkipVerification The ability for code to skip verification, which we discuss in Chapter 4 .

UnmanagedCode

The ability to execute unmanaged code. Calls to unmanaged code
through either PInvoke or COM Interoperability result in an implicit
security demand for the SecurityPermission.UnmanagedCode

permission. This is an expensive operation when code calls unmanaged
code frequently. Managed libraries that provide access to unmanaged
code can use the
System.Security.SuppressUnmanagedCodeAttribute to limit the

performance impact; refer to the .NET Framework SDK documentation
for further information.

Example 7-2 demonstrates how to create two SecurityPermission objects. The first represents
unrestricted access to all SecurityPermission operations, and the second specifies only the
Assertion and ControlEvidence permissions.

Example 7-2. Constructing SecurityPermission objects

C#

SecurityPermission p1 =
 new SecurityPermission(PermissionState.Unrestricted);

SecurityPermission p2 = new SecurityPermission(
 SecurityPermissionFlag.Assertion |
 SecurityPermissionFlag.ControlEvidence
);

Visual Basic .NET

Dim p1 As SecurityPermission = _
New SecurityPermission(PermissionState.Unrestricted)

Dim p2 As SecurityPermission = _
New SecurityPermission(SecurityPermissionFlag.Assertion Or _
SecurityPermissionFlag.ControlEvidence)

Using these SecurityPermission objects, you can execute imperative security statements. For

example, your code could use an imperative security demand to control the functionality it exposes to
the calling code based on the permissions the callers have:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C#

// Declare boolean on which to base available functionality
bool unrestricted = false;

// Test to see if callers have unrestricted security access
try {
 p1.Demand();
 unrestricted = true;
} catch (SecurityException) {
 // Don't have unrestricted access, check for Assertion and
 // ControlEvidence
 try {
 p2.Demand();
 } catch (SecurityException) {
 // No Assertion or ControlEvidence permisson either
 // Take appropriate action
 }
}

Visual Basic.NET

' Declare boolean on which to base available functionality
Dim unrestricted As Boolean = False

' Test to see if callers have unrestricted security access
Try
 p1.Demand()
 unrestricted = True
Catch
 ' Don't have unrestricted access, check for Assertion and
 ' ControlEvidence
 Try
 p2.Demand()
 Catch
 ' No Assertion or ControlEvidence permisson either
 ' Take appropriate action
 End Try
End Try

Given the nature of the actions protected by SecurityPermission , it is more likely that you will
want to use it in a permission request. The SecurityPermissionAttribute class is the attribute
counterpart of the SecurityPermission class. It implements a single constructor that takes a
SecurityAction argument, which defines what type of security action the attribute represents:

C#

public SecurityPermissionAttribute(
 SecurityAction action
);

Visual Basic .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub New(_
 ByVal action As SecurityAction _
)

The configuration of SecurityPermissionAttribute is specified using its properties.
SecurityPermissionAttribute defines a set of properties with the same name and purpose as the

component permissions listed in Table 7-4 . Each of these properties takes a Boolean value to indicate
whether the attribute configuration contains the specified component permission. There is also an
Unrestricted property, which allows you to represent an unrestricted SecurityPermission , and a
Flags attribute, which allows you to logically combine the values of SecurityPermissionFlag listed
in Table 7-4 , as you would in a normal SecurityPermission constructor.

The following code demonstrates the use of the SecurityPermissionAttribute to define the
equivalent SecurityPermisson instances as shown in Example 7-2 . In this case, we are issuing a
minimum-permission request for the specified SecurityPermission , as indicated by the
SecurityAction.RequestMinimum argument:

C#

[SecurityPermission(SecurityAction.RequestMinimum, Unrestricted = true)]

[SecurityPermission(SecurityAction. RequestMinimum, Assertion = true,
 ControlEvidence = true)]

Visual Basic .NET

<SecurityPermission(SecurityAction. RequestMinimum, _
Unrestricted := True)> _

<SecurityPermission(SecurityAction. RequestMinimum, _
Assertion := True, ControlEvidence := True)> _

7.2.3 Programming Permission Sets

When implementing CAS features in your code, you will often need to work with more than one
permission at a time. For example, a method can make a security demand for both
FileIOPermission and SecurityPermission . The System.Security.PermissionSet class provides

the capability to create permission sets that can contain an arbitrary number of individual permission
objects.

Permission sets expose much of the same functionality as the individual permission classes, and you
can use an entire permission set in the same way as you can an individual permission to enforce
code-level security. The PermissionSet class implements two constructors with the following

signatures:

C#

public PermissionSet(
 PermissionSet permSet
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public PermissionSet(
 PermissionState state
);

Visual Basic .NET

Public Sub New(_
 ByVal permSet As PermissionSet _
)

Public Sub New(_
 ByVal state As PermissionState _
)

The first constructor populates the new PermissionSet with copies of the permission objects
contained in the specified PermissionSet . The second constructor takes a member of the
PermissionState enumeration, which we discussed in Section 7.2.2.1 . Specifying
PermissionState.None creates an empty PermissionSet with no permissions. Passing
PermissionState.Unrestricted creates a permission set that is equivalent to having all permissions
that implement the IUnrestricted interface (this includes all of the standard code-access

permissions but not the identity permissions).

PermissionSet implements the same IStackWalk interface that the individual permission classes do,
which allows you to execute the Assert , Demand , Deny , and PermitOnly methods against the entire
set of permissions with a single call. PermissionSet also implements the
System.Collections.ICollection and System.Collections.IEnumerator interfaces to facilitate

the management and manipulation of the contained permission objects. Table 7-5 summarizes the
members of the PermissionSet class.

Table 7-5. Members of the PermissionSet class

Member Description

Properties

Count
Gets the number of IPermission objects in the permission

set.

IsReadOnly
Always returns false; read-only permission sets are not
supported.

Methods

AddPermission

Adds an IPermission to the PermissionSet . If the
PermissionSet already contains an IPermission of the

same type, the result is the union of the existing
IPermission and the new one. The resulting IPermission
added to the PermissionSet is also returned to the caller.

Assert
Adds an Assert override to the current stack frame for all
permission objects in the PermissionSet -see Section

7.2.6 in this chapter for details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

ContainsNonCodeAccessPermissions
Determines if the PermissionSet contains any
IPermission objects that do not extend
CodeAccessPermission .

Copy Creates a copy of the PermissionSet .

CopyTo
Copies all of the IPermission objects in the PermissionSet

to an array.

Demand
Invokes a security demand for all permission objects in the
PermissionSet -see Section 7.2.5 in this chapter for

details.

Deny
Adds a Deny override to the current stack frame for all
permission objects in the PermissionSet -see Section

7.2.6 in this chapter for details.

FromXml

Reconstructs the state of the permission set from a
System.Security.SecurityElement ,which contains an
XML object model representing the desired PermissionSet

state.

GetEnumerator
Returns a System.Collections.IEnumerator for the
IPermission objects contained in the PermissionSet .

GetPermission
Returns a copy of the IPermission of the specified
System.Type contained in the PermissionSet .

Intersect
Creates a new PermissionSet that is the intersection of the
current PermissionSet and another.

IsEmpty
Returns true if the PermissionSet is empty; otherwise,

returns false.

IsSubsetOf
Determines if the PermissionSet is a subset of the
specified PermissionSet .

IsUnrestricted
Returns true if the PermissionSet represents an

unrestricted permission set; otherwise, returns false.

PermitOnly
Adds a PermitOnly override to the current stack frame for
all permission objects in the PermissionSet -see Section

7.2.6 in this chapter for details.

RemovePermission
Removes the permission of the specified System.Type from
the PermissionSet and returns it to the caller.

SetPermission
Adds a specified IPermission to the PermissionSet . If an
IPermission of the specified type already exists, it is

replaced by the new one.

ToString
Returns a System.String containing an XML representation
of the PermissionSet and its contents.

ToXml
Returns a SecurityElement containing an XML object
model representing the state of the PermissionSet .

ContainsNonCodeAccessPermissions
Determines if the PermissionSet contains any
IPermission objects that do not extend
CodeAccessPermission .

Copy Creates a copy of the PermissionSet .

CopyTo
Copies all of the IPermission objects in the PermissionSet

to an array.

Demand
Invokes a security demand for all permission objects in the
PermissionSet -see Section 7.2.5 in this chapter for

details.

Deny
Adds a Deny override to the current stack frame for all
permission objects in the PermissionSet -see Section

7.2.6 in this chapter for details.

FromXml

Reconstructs the state of the permission set from a
System.Security.SecurityElement ,which contains an
XML object model representing the desired PermissionSet

state.

GetEnumerator
Returns a System.Collections.IEnumerator for the
IPermission objects contained in the PermissionSet .

GetPermission
Returns a copy of the IPermission of the specified
System.Type contained in the PermissionSet .

Intersect
Creates a new PermissionSet that is the intersection of the
current PermissionSet and another.

IsEmpty
Returns true if the PermissionSet is empty; otherwise,

returns false.

IsSubsetOf
Determines if the PermissionSet is a subset of the
specified PermissionSet .

IsUnrestricted
Returns true if the PermissionSet represents an

unrestricted permission set; otherwise, returns false.

PermitOnly
Adds a PermitOnly override to the current stack frame for
all permission objects in the PermissionSet -see Section

7.2.6 in this chapter for details.

RemovePermission
Removes the permission of the specified System.Type from
the PermissionSet and returns it to the caller.

SetPermission
Adds a specified IPermission to the PermissionSet . If an
IPermission of the specified type already exists, it is

replaced by the new one.

ToString
Returns a System.String containing an XML representation
of the PermissionSet and its contents.

ToXml
Returns a SecurityElement containing an XML object
model representing the state of the PermissionSet .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Union
Creates a new PermissionSet that is the union of the
current PermissionSet and another.

The runtime uses permission sets extensively during policy resolution (which we discuss in Chapter 8
); you will find this functionality invaluable as you work more with permissions.

Example 7-3 creates and populates two PermissionSet objects:

PermissionSetOne , which contains a SecurityPermission representing the ability to control
evidence (SecurityPermissionFlag.ControlEvidence), a FileIOPermission representing

the ability to read from directory C:\ .

PermissionSetTwo , which contains an unrestricted SecurityPermission , and a
FileIOPermission representing the ability to read andsm write to the file C:\Test.txt .

Example 7-3. Creating a permission set from an intersection of
permission sets

C#

// Create and populate PermissionSetOne
PermissionSet PermissionSetOne =
 new PermissionSet(PermissionState.None);

PermissionSetOne.AddPermission(
 new SecurityPermission(SecurityPermissionFlag.ControlEvidence));
PermissionSetOne.AddPermission(
 new FileIOPermission(FileIOPermissionAccess.Read, @"C:\"));

// Create and populate PermissionSetTwo
PermissionSet PermissionSetTwo =
 new PermissionSet(PermissionState.None);

PermissionSetTwo.AddPermission(
 new SecurityPermission(PermissionState.Unrestricted));
PermissionSetTwo.AddPermission(
 new FileIOPermission(FileIOPermissionAccess.Read
 | FileIOPermissionAccess.Write, @"C:\Test.txt"));

Visual Basic .NET

' Create and populate PermissionSetOne
Dim PermissionSetOne As PermissionSet = _
New PermissionSet(PermissionState.None)

PermissionSetOne.AddPermission(_
New SecurityPermission(SecurityPermissionFlag.ControlEvidence))
PermissionSetOne.AddPermission(_

Union
Creates a new PermissionSet that is the union of the
current PermissionSet and another.

The runtime uses permission sets extensively during policy resolution (which we discuss in Chapter 8
); you will find this functionality invaluable as you work more with permissions.

Example 7-3 creates and populates two PermissionSet objects:

PermissionSetOne , which contains a SecurityPermission representing the ability to control
evidence (SecurityPermissionFlag.ControlEvidence), a FileIOPermission representing

the ability to read from directory C:\ .

PermissionSetTwo , which contains an unrestricted SecurityPermission , and a
FileIOPermission representing the ability to read andsm write to the file C:\Test.txt .

Example 7-3. Creating a permission set from an intersection of
permission sets

C#

// Create and populate PermissionSetOne
PermissionSet PermissionSetOne =
 new PermissionSet(PermissionState.None);

PermissionSetOne.AddPermission(
 new SecurityPermission(SecurityPermissionFlag.ControlEvidence));
PermissionSetOne.AddPermission(
 new FileIOPermission(FileIOPermissionAccess.Read, @"C:\"));

// Create and populate PermissionSetTwo
PermissionSet PermissionSetTwo =
 new PermissionSet(PermissionState.None);

PermissionSetTwo.AddPermission(
 new SecurityPermission(PermissionState.Unrestricted));
PermissionSetTwo.AddPermission(
 new FileIOPermission(FileIOPermissionAccess.Read
 | FileIOPermissionAccess.Write, @"C:\Test.txt"));

Visual Basic .NET

' Create and populate PermissionSetOne
Dim PermissionSetOne As PermissionSet = _
New PermissionSet(PermissionState.None)

PermissionSetOne.AddPermission(_
New SecurityPermission(SecurityPermissionFlag.ControlEvidence))
PermissionSetOne.AddPermission(_

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New FileIOPermission(FileIOPermissionAccess.Read,"C:\"))

' Create and populate PermissionSetTwo
Dim PermissionSetTwo As PermissionSet = _
New PermissionSet(PermissionState.None)

PermissionSetTwo.AddPermission(_
New SecurityPermission(PermissionState.Unrestricted))
PermissionSetTwo.AddPermission(_
New FileIOPermission(FileIOPermissionAccess.Read _
Or FileIOPermissionAccess.Write, "C:\Test.txt"))

Example 7-4 creates a third permission set named PermissionSetThree from the union of
PermissionSetOne and PermissionSetTwo .

Example 7-4. Creating a permission set from a union of permission sets

C#

// Create PermissionSetThree
PermissionSet PermissionSetThree =
 PermissionSetOne.Union(PermissionSetTwo);

Visual Basic .NET

' Create PermissionSetThree
Dim PermissionSetThree As PermissionSet = _
PermissionSetOne.Union(PermissionSetTwo)

Calling PermissionSetThree.ToString produces the following output, which, incidentally, is the
same as calling PermissionSetThree.ToXml.ToString . You can see that the resulting
FileIOPermission lists both of the permissions we specified, whereas the SecurityPermission
shows an unrestricted state, which includes the ControlEvidence ability:

<PermissionSet class="System.Security.PermissionSet"
 version="1">
 <IPermission class="System.Security.Permissions.FileIOPermission,
mscorlib, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Read="C:\"
 Write="C:\Test.txt"/>
 <IPermission class="System.Security.Permissions.SecurityPermission,
mscorlib, Version=1.0.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 version="1"
 Unrestricted="true"/>
</PermissionSet>

If instead you had created PermissionSetThree as the intersection of PermissionSetOne and
PermissionSetTwo using the Intersect method, as in Example 7-5 , the output from
PermissionSetThree.ToString would be very different.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 7-5. Creating a permission set from an intersection of
permission sets

C#

// Create PermissionSetThree
PermissionSet PermissionSetThree =
 PermissionSetOne.Intersect(PermissionSetTwo);

Visual Basic .NET

' Create PermissionSetThree
Dim PermissionSetThree As PermissionSet = _
PermissionSetOne.Intersect(PermissionSetTwo)

Notice that FileIOPermission now includes only the ability to Read from C:\Test.txt and not to write
to it. Also, you are left only with the ability to implement ControlEvidence from the
SecurityPermission :

<PermissionSet class="System.Security.PermissionSet"
 version="1">
 <IPermission class="System.Security.Permissions.FileIOPermission, mscorlib,
Version=1.0.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 version="1"
 Read="C:\Test.txt"/>
 <IPermission class="System.Security.Permissions.SecurityPermission, mscorlib,
Version=1.0.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 version="1"
 Flags="ControlEvidence"/>
</PermissionSet>

When creating the union and intersection of permission sets, the PermissionSet object relies on the
Union and Intersect methods of the individual IPermission objects. The logic used by each
IPermission class to calculate unions and intersections is class-dependent; consult the .NET

Framework SDK documentation for details.

The NamedPermissionSet class extends PermissionSet but includes only two additional members:
the Name property gets and sets a name for the NamedPermissionSet , and the Description
property gets and sets the description for the NamedPermissionSet . You will use
NamedPermissionSet objects primarily when working with security policy, which we discuss in

Chapter 8 .

The System.Security.Permissions.PermissionSetAttribute class enables you to use permission

sets with declarative security syntax. As with permission attributes, you must use the values of the
SecurityAction enumeration to specify the security statement you want to invoke. To specify the
contents of the permission set, you use the Name , XML , and File properties of
PermissionSetAttribute .

The Name property allows you to specify the name of one of the immutable named permission sets

included in .NET's default security policy, which we discuss in Chapter 9 . Table 7-6 lists the possible

http://lib.ommolketab.ir
http://lib.ommolketab.ir

values and gives an indication of the permissions each set contains.

Table 7-6. Named permission sets

Permission set Description

FullTrust Unrestricted access to all operations and resources

SkipVerification
No access to any operation or resource other than permission to skip
verification, which we discuss in Chapter 4

Execution No access to any operation or resource other than the permission to execute

Nothing No access to any operation or resource, not even the permission to execute

LocalIntranet
A set of permissions defined in the default security policy deemed by Microsoft
to be appropriate for code loaded from the local intranet

Internet
A set of permissions defined in the default security policy deemed by Microsoft
to be appropriate for code loaded from the Internet

The following example demonstrates a declarative security demand using the Internet named

permission set:

C#

[assembly:PermissionSet(SecurityAction.Demand,Name = "Internet")]

Visual Basic .NET

<assembly: PermissionSet(SecurityAction. Demand,Name := "Internet")> _

The XML property allows you to provide a String containing an XML representation of the permission
set you want to use. The correct format of the XML can be seen using PermissionSet.ToString ,

which we did earlier. The following example executes a declarative security demand on a permission
set containing an unrestricted FileIOPermission . Although you cannot show it correctly here

because of the length of the text, you should not have line breaks in the middle of the quoted strings
within the XML text:

C#

[PermissionSet(SecurityAction.Demand, XML = "<PermissionSet class=\"System.Security.
PermissionSet\" version=\"1\"><IPermission class=\"System.Security.Permissions.
FileIOPermission, mscorlib, Version=1.0.3300.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089\" version=\"1\" Unrestricted=\"true\"/></
PermissionSet>")]

Visual Basic .NET

<PermissionSet(SecurityAction.Demand, XML := "<PermissionSet class=""System.Security.
PermissionSet"" version=""1""><IPermission class=""System.Security.Permissions.
FileIOPermission, mscorlib, Version=1.0.3300.0, Culture=neutral,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PublicKeyToken=b77a5c561934e089"" version=""1"" Unrestricted=""true""/></
PermissionSet>")> _

Notice that the use of the XML property can be a little unwieldy even for small permission sets. The
File property allows you to specify the name of a file that contains the XML representation of the

permission set. The following example uses the contents of the Test.xml file from the local directory
to execute a declarative security demand. The Test.xml file content is used during compilation of your
code but is not required afterwards:

C#

[PermissionSet(SecurityAction.Demand, File = "Test.xml")]

Visual Basic .NET

<PermissionSet(SecurityAction.Demand, File = "Test.xml")> _

7.2.4 Programming Permission Requests

Earlier in Section 7.1.2 , we explained that CAS supports three types of permission requests, which
are represented by the following members of the SecurityAction enumeration: RequestMinimum ,
RequestOptional , and RequestRefuse .

Permission requests are evaluated as the runtime loads an assembly and are expressed only using
declarative security syntax. Because permission requests define the security requirements of your
assembly, they must be declared using assembly scope attributes. Each statement takes a
permission, or set of permissions, that can include any of the standard code-access and identity
permission classes. After the runtime calculates the grant set of an assembly, it looks at any
permission request statements in the assembly and applies them, as described in the following
sections.

7.2.4.1 Requesting minimum permission

If you are writing code that must have access to a certain set of permissions in order to function
correctly, the best tactic is to configure minimum-permission requests in your assembly. This is
especially true if your code requires permissions that are not normally granted under default security
policy. For example, if your code writes to the Windows registry but you expect people to run it over
the Internet, many people will have problems running your code, because default Internet policy does
not give access to write to the registry. We discuss the permission granted by the default security
policy in Chapter 9 .

By including a RequestMinimum statement in your assembly, you can specify that your code requires

permission to write to the registry. This will not alter the fact that your code does not have the
permission, but it will stop your application from loading; the runtime will throw a
System.Security.Policy.PolicyExcpetion and identify the permission that is required. Knowing

that there is a problem, the user or security administrator can view the assembly's permission
requests with the Permview.exe tool (see Chapter 9) and decide whether to make the necessary
security policy changes.

The use of RequestMinimum statements also allows you to simplify your code. Because the runtime

will not load your assembly if it does not have the specified minimum set of permissions, you do not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

need to place SecurityException handling code around every secured operation you perform. The

fact that the code is running is proof that it has the required permissions.

The following code demonstrates how to declare a minimum-permission request for the
FileIOPermission to read from the C:\config directory and have full access to the C:\development
directory. Note that you cannot include both the Read and All properties in a single statement; the
FileIOPermissionAttribute requires that you use a separate attribute for each path requested:

C#

[assembly:FileIOPermission(SecurityAction.RequestMinimum,
 Read = @"C:\config")]
[assembly:FileIOPermission(SecurityAction.RequestMinimum,
 All = @"C:\development")]

Visual Basic .NET

<assembly:FileIOPermission(SecurityAction.RequestMinimum, _
Read := "C:\config")> _

<assembly:FileIOPermission(SecurityAction.RequestMinimum, _
All := "C:\development")> _

7.2.4.2 Requesting optional permissions

The RequestOptional statement specifies the maximum set of permissions that the runtime should

grant to your assembly regardless of security policy configuration. The runtime will still load your
assembly if it cannot grant all of the permissions specified in the RequestOptional statement, but it

will never grant more than those permissions specified.

The RequestOptional statement serves two principal purposes. First, you can request permissions

that your application will make use of if they are granted. This could be to support noncore
functionality that is made available only if the runtime grants the necessary permissions. Second,
RequestOptional statements provide an excellent mechanism to limit the security exposure of your

code. By minimizing the functionality and resources to which your code has access, you can ensure
that bugs in your code cannot inadvertently destroy or modify protected resources. In addition, you
reduce the chance that malicious users can use your code as a gateway to execute protected
operations surreptitiously.

The major problem with optional permission requests is that the runtime does not indicate to the
assembly which (if any) of the optional permissions requested it actually granted. You must either use
exception handling around the code where you rely on the optional permissions or test whether the
assembly has each of the permissions using the SecurityManager.IsGranted method, which we

discuss in Chapter 8 .

The following RequestOptional statement requests full access to the hard drive through an
unrestricted FileIOPermission :

C#

[assembly:FileIOPermission(PermissionState.Unrestricted)]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic .NET

<assembly:FileIOPermission(PermissionState.Unrestricted)> _

7.2.4.3 Refusing permissions

The RequestOptional statement enables you to define an upper limit on the permission set that the

runtime will grant to your assembly. However, if there is a specific permission or set of permissions
you are concerned about, then it is easy to ensure that they are never granted to your assembly
using a RequestRefuse statement. Even if the runtime would have normally granted the permissions

to the assembly based on policy resolution, the permission will be removed if specified in the
RequestRefuse statement:

The following RequestRefuse statement refuses all access to the hard drive using an unrestricted
FileIOPermission :

C#

[assembly:FileIOPermission(PermissionState.Unrestricted)]

Visual Basic .NET

<assembly:FileIOPermission(PermissionState.Unrestricted)> _

7.2.5 Programming Permission Demands

In Section 7.1.4 , we discussed the basic security demand Demand , which is the most commonly used

mechanism of enforcing code-access security. In addition, CAS supports two other kinds of security
demands: LinkDemand and InheritanceDemand

You will use LinkDemand and InheritanceDemand less frequently than Demand , but under certain

circumstances, they provide invaluable mechanisms to protect your code from misuse. In the
following sections, we describe the purpose of the LinkDemand and InheritanceDemand statements
and demonstrate how to use them. First, we complete our coverage of Demand statements.

7.2.5.1 Demand

The Demand statement causes the runtime to walk the stack and ensures that not only the immediate

caller, but all previous callers have a set of demanded permissions. You can use either declarative or
imperative syntax to invoke a Demand . A declarative Demand occurs as soon as code invokes the
protected method, whereas an imperative Demand occurs where you position the statement in your

code.

You can apply declarative demands to classes or individual functional members, such as methods,
properties, and events. If you use declarative syntax to specify a Demand on a class declaration, the
same Demand is enforced on every class member. To override a class-level Demand , simply specify a
different Demand on the individual members.

The following code demonstrates the use and syntax of the Demand statement. We have applied a
declarative Demand for the "Internet" permission set to the SomeClass class, but MethodA overrides

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this Demand with its own declarative Demand for an unrestricted FileIOPermission . The class-level
Demand is still enforced on MethodB , but within the body of MethodB , we make an additional
imperative Demand for an unrestricted FileIOPermission :

C#

using System.Security;
using System.Security.Permissions;

[PermissionSet(SecurityAction.Demand, Name = "Internet")]
public class SomeClass {

 [FileIOPermission(SecurityAction.Demand, Unrestricted = true)]
 public void MethodA() {

 //...
 }

 public void MethodB() {

 // Create a new unrestricted FileIOPermission object
 FileIOPermission f =
 new FileIOPermission(PermissionState.Unrestricted);

 try {

 // Invoke security demand
 f.Demand();

 } catch (SecurityException se) {

 // Handle exception condition
 }
 }
}

Visual Basic .NET

Imports System.Security
Imports System.Security.Permissions

<PermissionSet(SecurityAction.Demand, Name := "Internet")> _
Public Class SomeClass

 <FileIOPermission(SecurityAction.Demand, Unrestricted := True)> _
 Public Sub MethodA()
 '...
 End Sub

 Public Sub MethodB()

 ' Create a new unrestricted FileIOPermission object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim f As FileIOPermission = _
 New FileIOPermission(PermissionState.Unrestricted)

 Try
 ' Invoke security demand
 f.Demand()
 Catch se As SecurityException
 ' Handle exception condition
 End Try
 End Sub
End Class

7.2.5.2 LinkDemands

A LinkDemand is similar to a Demand , but it is evaluated only when a caller first links to your code and

only checks the permissions of the immediate caller as opposed to the permissions of all callers on the
call stack. LinkDemand provides a lightweight alternative to the Demand and is used to reduce the

performance hit of performing stack walks on frequently called and time-critical methods. However,
because the permissions of all callers are not checked, LinkDemand leaves your code susceptible to

attacks.

Because the runtime resolves LinkDemand security before your code is running, you can only invoke
LinkDemand statements using declarative syntax. Like the Demand , if you apply a LinkDemand to a
class declaration, it is enforced on all class members. If you also apply LinkDemand statements to
individual class members, the runtime evaluates the class- and member-level LinkDemand statements
sequentially. The following code demonstrates the syntax of LinkDemand to allow only code loaded
from the MyComputer Internet Explorer Zone to call method MethodA :

C#

[ZoneIdentityPermission(SecurityAction.LinkDemand,
Zone = SecurityZone.MyComputer)]
public void MethodA() {
// ...
}

Visual Basic .NET

<ZoneIdentityPermission(SecurityAction.LinkDemand, _
Zone := SecurityZone.MyComputer)> _
Public Sub MethodA()
' ...
End Sub

Calls to the public and protected members of strong-named assemblies result in
an implicit LinkDemand for the FullTrust permission set. This means that only

fully trusted code can call the methods of any strong-named assembly, which is
problematic for most code not run from the local machine. Applying the
System.Security.AllowPartiallyTrustedCallers attribute to a strong-
named assembly disables this implicit LinkDemand . See Chapter 2 for more
details on using the AllowPartiallyTrustedCallers attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2.5.3 Inheritance demands

The InheritanceDemand statement allows you to restrict which code can extend your classes. For

example, you may want to allow only code that is signed with your company's publisher certificate to
extend a set of business-critical classes. In this case, apply the following InheritanceDemand to your
class definition (assuming certificate.cer contains your company's publisher certificate):

C#

[PublisherIdentityPermission(SecurityAction.InheritanceDemand,
 CertFile = "certificate.cer")]
public class SomeClass {
//...
}

Visual Basic .NET

<PublisherIdentityPermission(SecurityAction.InheritanceDemand, _
CertFile := "certificate.cer")> _
Public Class SomeClass
'...
End Class

The runtime enforces the InheritanceDemand when it loads an assembly containing a class that

extends the protected class. If the loaded assembly does not have the demanded permission (in this
case, the necessary PublisherIdentityPermission), the runtime will throw a SecurityException .

You can also apply an InheritanceDemand to individual methods, properties, and events to define the

permissions code it must have if it wants to override the protected member.

Whether applied at the class or member level, the InheritanceDemand is transitive-all classes

derived directly or indirectly from the protected class must meet the requirements specified in the
InheritanceDemand .

7.2.6 Manipulating Stack Walks

In Section 7.1.4.1 , we described how the runtime uses the call stack in response to a security
demand to ensure that every caller on the stack has the demanded permission or set of permissions.
This is normally desirable, but in some instances, you will need to use stack-walk overrides to change
this default behavior. CAS supports three different stack-walk overrides: Assert , Deny , and
PermitOnly .

You can use either declarative or imperative syntax to invoke these overrides, and can specify either
individual permissions or a permission set. Each statement causes the runtime to annotate the stack
frame of the current method with the type of override and the set of permissions to which it applies.
In the course of execution, when a stack walk occurs, the runtime uses the annotation information to
modify the default stack walk behavior. If a single stack frame has different types of overrides in
effect, the runtime applies the PermitOnly , then the Deny , and finally the Assert .

There can be only one of each type of override in effect on each stack frame. Before adding a new

http://lib.ommolketab.ir
http://lib.ommolketab.ir

override of the same type, you must revert the existing override or the runtime throws a
SecurityException ; see Section 7.2.6.4 later in this section for details.

When using declarative syntax to express Assert , Deny , and PermitOnly operations, apply them at

the class, method, or property level. If you specify the security demand at the class level, the same
override is applied to every member of the class. Applying a different override to an individual method
will replace the default class-level override.

The .NET Framework SDK documentation states that stack-walk overrides
should not be used in class constructors. The inconsistent state of the call stack
during object construction may lead to undesirable results.

7.2.6.1 Assert

If you write code that accesses a protected resource or action, it is unreasonable to expect that
security policy will grant all code that uses your code the same level of permission. Assert allows a

method to override the normal stack-walk process and vouch for the authority of the callers above it
on the stack. During a stack walk, if the demanded permission matches or is a subset of the asserted
permissions, then the stack walk terminates successfully at the stack frame of the method that made
the assertion. For example, in Figure 7-6 MethodB asserts an unrestricted FileIOPermission .

Figure 7-6. The effect of Assert on a stack walk

When MethodD calls the static System.IO.File.Delete method to delete the C:\Test.txt file, Delete

makes a security demand for the permission to write to C:\Test.txt , which is similar to the following
code:

C#

FileIOPermission p =
 new FileIOPermission(FileIOPermissionAccess.Write,@"C:\Test.txt");
p.Demand();

Visual Basic .NET

Dim p As New FileIOPermission(FileIOPermissionAccess.Write,"C:\Test.txt")
p.Demand()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assuming that both MethodD and MethodC have the necessary permission, when the stack walk
reaches the stack frame for MethodB , it compares the demanded FileIOPermission with the
asserted unrestricted FileIOPermission . Because permission to write to the C:\Test.txt file is a
subset of the unrestricted FileIOPermission permission, the stack walk terminates as if all callers on
the call stack had been found to have the demanded permission. The true grant sets of AppDomainY ,
MethodA , and AppDomainX are irrelevant.

If the security demand that initiated the stack walk was called on a permission set and the asserted
permissions satisfy only part of the security demand, the stack walk will continue, but the remaining
stack frames will only be compared against the subset of permissions not satisfied by the Assert .

The following code shows the imperative security statement to Assert the unrestricted
FileIOPermission described in this example:

C#

public void MethodB() {

 try {

 // Instantiate and Assert FileIOPermission
 FileIOPermission p = new FileIOPermission(
 PermissionState.Unrestricted);
 p.Assert();

 } catch (SecurityException se) {

 // Handle SecurityException
 }
}

Visual Basic .NET

Public Sub MethodB()

 Try

 ' Instantiate and Assert FileIOPermission
 Dim p As FileIOPermission = _
 New FileIOPermission(PermissionState.Unrestricted)
 p.Assert()

 Catch se As SecurityException

 ' Handle SecurityException
 End Try
End Sub

Note that the Assert call can throw a System.Security.SecurityException in three instances:

If the assembly containing the asserting method does not have the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SecurityPermission.Assertion permission

If the assembly containing the asserting method does not have the permission it is asserting

If an Assert override is already present on the callers stack frame, in which case the caller must
first revert to the existing Assert

The following code shows the equivalent declarative syntax to Assert an unrestricted
FileIOPermission :

C#

[FileIOPermission(SecurityAction.Assert, Unrestricted = true)]
public void MethodB() {}

Visual Basic .NET

<FileIOPermission(SecurityAction.Assert, Unrestricted := True)> _
Public Sub MethodB()
End Sub

Before using Assert , you should be confident that your code cannot be used as a gateway through
which malicious code can access protected resources. This is particularly true because the Assert

override is frequently used with highly trusted permissions not normally given to all applications, such
as the ability to execute unmanaged code. Used carelessly, Assert can open up gaping holes in the

overall security of the runtime.

7.2.6.2 Deny

The Deny is the opposite of an Assert . Instead of vouching for the authority of the callers higher on

the call stack and terminating a stack walk with a positive response, the runtime throws a
SecurityException to the code that initiated the Demand and terminates the stack walk.

For example, in Figure 7-7 MethodB denies an unrestricted FileIOPermission . This causes any stack
walk looking for access to the hard drive to fail. When MethodD calls the static
System.IO.File.Delete method to delete the C:\Test.txt file, Delete makes a security demand for

the permission to write to the C:\Test.txt file.

Figure 7-7. The effect of Deny on a stack walk

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assuming the stack walk reaches MethodB , it compares the demanded FileIOPermission with the
denied unrestricted FileIOPermission . Because permission to write to C:\Test.txt file is a subset of
the unrestricted FileIOPermission permission, the stack walk terminates and throws a
SecurityException in the Delete method.

The following code shows the imperative security syntax to Deny the unrestricted FileIOPermission
described in the example. Note that the Deny call can throw a SecurityException if there is already
a Deny override in place for the current stack frame:

C#

public void MethodB() {

 try {

 // Instantiate and Deny FileIOPermission
 FileIOPermission p = new FileIOPermission(
 PermissionState.Unrestricted);
 p.Deny();

 } catch (SecurityException se) {

 // Handle SecurityException
 }
}

Visual Basic .NET

Public Sub MethodB()

 Try

 ' Instantiate and Deny FileIOPermission
 Dim p As FileIOPermission = _
 New FileIOPermission(PermissionState.Unrestricted)
 p.Deny()

 Catch se As SecurityException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Handle SecurityException
 End Try
End Sub

The following example shows the equivalent declarative syntax to Deny an unrestricted
FileIOPermission :

C#

[FileIOPermission(SecurityAction.Deny, Unrestricted = true)]
public void MethodB() {}

Visual Basic .NET

<FileIOPermission(SecurityAction.Deny, Unrestricted := True)> _
Public Sub MethodB()
End Sub

7.2.6.3 PermitOnly

The PermitOnly stack-walk override is like an inverted Deny . Instead of specifying the permissions

that should be denied, you specify only those permissions that permit the stack walk to continue
unaffected. This provides a more concise way of denying large sets of permissions without the need to
specify them all in a Deny override.

In the following code, MethodB will cause a stack walk to terminate (and a SecurityException to be

thrown) if methods further down the call stack demand any permission other than a
FileIOPermission . In this instance, the stack walk illustrated in Figure 7-7 passes through the
overrides of MethodB without effect, because the permission to write to the C:\Test.txt file is a subset
of the unrestricted FileIOPermission permission:

C#

public void MethodB() {

 try {

 // Instantiate and PermitOnly FileIOPermission
 FileIOPermission p = new FileIOPermission(
 PermissionState.Unrestricted);
 p.PermitOnly();

 } catch (SecurityException se) {

 // Handle SecurityException
 }
}

Visual Basic .NET

Public Sub MethodB()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Try

 ' Instantiate and PermitOnly FileIOPermission
 Dim p As FileIOPermission = _
 New FileIOPermission(PermissionState.Unrestricted)
 p.PermitOnly ()

 Catch se As SecurityException

 ' Handle SecurityException
 End Try
End Sub

The following example shows the equivalent declarative syntax to PermitOnly an unrestricted
FileIOPermission :

C#

[FileIOPermission(SecurityAction.PermitOnly, Unrestricted = true)]
public void MethodB() {}

Visual Basic .NET

<FileIOPermission(SecurityAction.PermitOnly, Unrestricted := True)> _
Public Sub MethodB()
End Sub

7.2.6.4 Reverting overrides

Using the static methods of the CodeAccessPermission class listed in Table 7-7 , code removes the
stack frame annotations made by previous calls to Assert , Deny , and PermitOnly . If you call any of

these methods and there is none of the specified override in effect, the runtime throws a
System.ExecutionEngineException that you must catch and handle appropriately.

Table 7-7. Removing stack-walk overrides

Static method Description

RevertAll
Causes the removal of all previous Assert , Deny , or PermitOnly overrides on

the current stack frame

RevertAssert Causes the removal of all previous Assert overrides on the current stack frame

RevertDeny Causes the removal of all previous Deny overrides on the current stack frame

RevertPermitOnly
Causes the removal of all previous PermitOnly overrides on the current stack

frame

Because the revert statements are all issued through static methods of the CodeAccessPermission

class, there are no declarative syntax alternatives.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.3 Extending the .NET Framework

CAS is fully extensible and allows you to create your own permission classes that integrate with the
security framework to provide capabilities equivalent to the standard permission classes. The creation
of custom permissions is relatively straightforward. The complexity of the identity, actions, or
resources that your permission class represents defines how difficult the development task is. In the
following sections, we demonstrate how to create and implement custom code-access permissions.

7.3.1 Creating Custom Code-Access Permissions

All code-access permissions must meet the following requirements:

Implement the IPermission interface

Implement the IStackWalk interface

Implement the ISecurityEncodable interface

Implement the IUnrestrictedPermission interface

Provide a constructor that takes a PermissionState argument

Be serializable

The simplest way to meet these requirements is to derive your permission class from the abstract
CodeAccessPermission class, which we discussed in Section 7.2.2.1 earlier in this chapter.
CodeAccessPermission declares implementation of the IPermission, IStackWalk, and
ISecurityEncodeable interfaces, but only provides concrete implementations of the IStackWalk

interface methods. Because the logic of the following methods depends on permission-specific state,
you must provide implementations of them in your class:

IPermission methods

Copy

Intersect

IsSubsetOf

Union

ISecurityEncodable methods

FromXml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ToXml

IUnrestrictedPermision method

IsUnrestrictedPermission

To meet the requirements of serialization, it is usually enough to apply the SerializableAttribute

to your class definition. However, if your permission class requires nonstandard serialization
processing because of the complex internal state it maintains, implement the ISerializable

interface.

The CodeAccessPermission class defines an InheritenceDemand for the
ControlEvidence and ControlPolicy elements of the SecurityPermission
class. The assembly containing your subclass of CodeAccessPermission must
have these permissions, or the runtime throws a SecurityException.

To support declarative security syntax, create an attribute counterpart to your permission class. This
involves creating a class that extends the
System.Security.Permissions.CodeAccessSecurityAttribute class. Your class must:

Implement a single constructor that takes a SecurityAction argument

Override the CreatePermission method

Implement public properties that enable the configuration of the attribute's state

7.3.1.1 Designing the RadioPermission class

To demonstrate the creation and use of custom code-access permissions, imagine that we need to
develop a managed library that allows an application to control a PC-based radio tuner. The radio
tuner could be a hardware attachment to the PC or software that plays Internet-based radio stations;
the implementation details are unimportant, but the library must allow code to:

Turn the radio on and off

Adjust the volume of the radio

Change the station the radio is tuned to

The goal is to create a custom code-access permission that you can use to control access to each of
these actions. After all, you do not want to allow malicious code downloaded from competitive radio
stations to casually change the tuning of the radio.

The best way to achieve fine-grained access control is to implement a code-access permission that
represents a discrete set of actions; this is the same model used by the SecurityPermission class

that we described in Section 7.2.2.2 earlier in this chapter. Because the number of possible actions is
small and well-defined, this model fits your needs well. Another common approach is to implement a
permission hierarchy, where permission to perform a highly trusted action gives permission to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

perform all lesser-trusted actions; however, the actions you need to represent in this case do not fit
this model well.

To give the programmers using the custom permission flexibility, you want to provide both
imperative and declarative syntax support. This will also allow application developers to build
permission requests for your permission into their assemblies. Create two classes and one
enumeration:

RadioPermission

The custom code-access permission that controls access to the managed library for the radio
tuner

RadioPermissionAttribute

The attribute counterpart to RadioPermission that provides declarative syntax support
RadioAction

An enumeration that defines values that represent each of the controlled actions

For convenience, we include all three types in a single source file named Radio.cs (C#) and Radio.vb
(Visual Basic .NET). We will build this into a library named Radio.dll, which programmers will use in
the development of the managed radio tuner library, the configuration of .NET security policy, and to
make permission requests in assemblies that access the managed library. Although the code is
straightforward, it is lengthy, so we break the listings into manageable sections for explanation.

7.3.1.2 Defining imports and assembly scope attributes

Aside from importing the necessary namespace references, the first thing to do is to specify the
assembly scope attributes AssemblyKeyFile and AssemblyVersion to give Radio.dll a strong name.

Because Radio.dll contains security classes used to extend CAS, you must configure it as a fully
trusted assembly in the runtime's security policy; we discuss fully trusted assemblies in Chapter 8.
For this example, the AssemblyKeyFile attribute references a key file named Keys.snk, which you

can generate later using the .NET Strong Name tool (Sn.exe):

C#

using System;
using System.Reflection;
using System.Security;
using System.Security.Permissions;

[assembly:AssemblyKeyFile("Keys.snk")]
[assembly:AssemblyVersion("1.0.0.0")]

namespace OReilly.ProgrammingDotNetSecurity {

Visual Basic .NET

Imports System
Imports System.Reflection
Imports System.Security

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports System.Security.Permissions

<assembly:AssemblyKeyFile("Keys.snk")>
<assembly:AssemblyVersion("1.0.0.0")>

Namespace OReilly.ProgrammingDotNetSecurity

7.3.1.3 Defining the RadioAction enumeration

RadioPermission represents control of a discrete set of actions. The RadioAction enumeration
represents each of the actions to which RadioPermission controls access. RadioAction also includes

a value to represent no permission and a value to represent full or unrestricted permission.

To simplify the implementation of your permission model, apply the Flags attribute to the
RadioAction enumeration. The Flags attribute allows you to use the values of the RadioAction
enumeration as bit fields, enabling you to manipulate and compare RadioAction values with bitwise
operators. Table 7-8 lists the members of RadioAction and shows their binary and hex values. From
the binary values, it is easy to see how RadioAction identifies the individual actions to which a
RadioPermission object represents access.

Table 7-8. Values of the RadioAction enumeration

Value Binary value Hex value Description

None 000 0 No access to perform any actions with the radio

StartStop 001 1 Permission to turn the radio on and off

Channel 010 2 Permission to change the radio's channel

Volume 100 4 Permission to change the radio's volume

All 111 7 Permission to perform any of the above actions

Finally, because you use RadioAction values inside SecurityPermission objects (which must be
serializable), you also mark RadioAction as Serializable:

C#

 // Define enumeration to represent the set of possible permissions.
 [Flags, Serializable]
 public enum RadioAction {
 None = 0x00, // No permissions
 StartStop = 0x01, // Permission to start and stop the radio
 Channel = 0x02, // Permission to change the channel
 Volume = 0x04, // Permission to change the volume
 All = 0x07 // All permissions
 }

Visual Basic .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Define enumeration to represent the set of possible permissions.
 <Flags, Serializable> _
 Public Enum RadioAction
 None = &H00 ' No permissions
 StartStop = &H01 ' Permission to start and stop the radio
 Channel = &H02 ' Permission to change the channel
 Volume = &H04 ' Permission to change the volume
 All = &H07 ' All permissions
 End Enum

7.3.1.4 Defining the RadioPermission class

The class declaration for RadioPermission specifies that it is sealed (C#) and NotInheritable
(Visual Basic .NET). There is no need to allow anybody to extend the RadioPermission class, and it
stops malicious code from subclassing RadioPermission in an attempt to subvert security

restrictions.

RadioPermission extends CodeAccessPermission, implements the IUnrestricted interface, and is
Serializable. The CodeAccessPermission base class already implements the functionality defined
in the IStackWalk interface so you do not have to implement the Assert, Demand, Deny, and
PermitOnly methods; this simplifies the development of custom code-access permissions. However,
you still need to implement the permission-specific Copy, Intersect, IsSubsetOf, and Union
methods defined in IPermission, and the FromXml and ToXml methods defined in
ISecurityEncodable, all of which CodeAccessPermission declares as abstract.

Declare a single private data member named RadioActions of type RadioAction. This holds a bit
field representing the actions to which a specific RadioPermission object grants access. Implement
the Actions property to provide controlled access to the private RadioActions member:

C#

 // Define the RadioPermission class.
 [Serializable]
 public sealed class RadioPermission :
 CodeAccessPermission, IUnrestrictedPermission {

 // Private member to signal permitted actions.
 private RadioAction RadioActions;

 // Property to provide access to the enabled radio actions.
 public RadioAction Actions {

 get {
 return RadioActions;
 }
 set {
 if ((value & (~RadioAction.All)) != 0) {
 throw new
 ArgumentException("Inavalid RadioAction value");
 } else {
 RadioActions = value;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

Visual Basic .NET

 ' Define the RadioPermission class.
 <Serializable> _
 Public NotInheritable Class RadioPermission
 Inherits CodeAccessPermission

 ' Private member to signal permitted actions.
 Private RadioActions As RadioAction

 ' Property to provide access to the enabled radio actions.
 Public Property Actions() As RadioAction
 Get
 Return RadioActions
 End Get
 Set (ByVal Value As RadioAction)
 If (value And (Not RadioAction.All)) <> 0 Then
 Throw New ArgumentException _
 ("Inavalid RadioAction value")
 Else
 RadioActions = value
 End If
 End Set
 End Property

Declare two constructors for RadioPermission. All code-access permission classes that extend
CodeAccessPermission must implement a constructor that takes a PermissionState argument.
Passing the constructor the value PermissionState.None creates a RadioPermission that
represents no permissions by setting RadioActions to RadioAction.None, whereas passing the
PermissionState.Unrestricted value creates a RadioPermission object representing full
permission by setting RadioActions to RadioAction.All.

Because you use a bit field to represent each permitted action, it is easy to represent an unrestricted
permission simply by switching on all action bits (RadioAction.All equals 111 in binary). In other

permission models, you may need to implement a separate Boolean data member to represent an
unrestricted state.

The second constructor takes a member of the RadioAction enumeration, confirms that it is valid,
and sets the private RadioActions member to the value of the argument:

C#

 // Constructor that takes a PermissionState.
 public RadioPermission (PermissionState state) {

 if (state == PermissionState.None) {
 this.RadioActions = RadioAction.None;
 } else if (state == PermissionState.Unrestricted) {
 this.RadioActions = RadioAction.All;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else {
 throw new ArgumentException("state");
 }
 }

 // Constructor that takes a RadioAction specifying the set
 // of actions permitted by this RadioPermission object.
 public RadioPermission (RadioAction actions) {

 // Ensure we have a valid actions value.
 if ((actions & (~RadioAction.All)) != 0) {
 throw new ArgumentException("Inavalid RadioAction value");
 } else {
 RadioActions = actions;
 }
 this.RadioActions = actions;
 }

Visual Basic .NET

 ' Constructor that takes a PermissionState.
 Public Sub New(ByVal state As PermissionState)

 If state = PermissionState.None Then
 Me.RadioActions = RadioAction.None
 Else If state = PermissionState.Unrestricted Then
 Me.RadioActions = RadioAction.All
 Else
 Throw New ArgumentException("state")
 End If
 End Sub

 ' Constructor that takes a RadioAction specifying the set
 ' of actions permitted by this RadioPermission object.
 Public Sub New(ByVal actions As RadioAction)

 ' Ensure we have a valid actions value.
 If (actions And (Not RadioAction.All)) <> 0 Then
 Throw New ArgumentException("Inavalid RadioAction value")
 Else
 RadioActions = actions
 End If
 Me.RadioActions = actions
 End Sub

7.3.1.5 Implementing the IUnrestrictedPermission interface

The IUnrestrictedPermission interface defines the IsUnrestricted method, which returns a

Boolean indicating whether a permission object represents an unrestricted state. In the case of
RadioPermission, you can easily calculate the response by comparing the value of the private

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RadioActions member with the value RadioAction.All and returning the result:

C#

 // Return whether permission represents unrestricted access.
 public bool IsUnrestricted()
 {
 return RadioActions == RadioAction.All;
 }

Visual Basic .NET

 ' Return whether permission represents unrestricted access.
 Public Function IsUnrestricted() As Boolean
 Return RadioActions = RadioAction.All
 End Function

7.3.1.6 Implementing the IPermission interface

Both the IStackWalk and IPermission interfaces define a method named Demand. The
CodeAccessPermission base class implements all members of the IStackWalk interface, and you do
not need to implement the Demand method from the IPermission interface, leaving you with the
Copy, Intersect, Union, and IsSubsetOf methods to implement.

The Copy method returns a clone of the permission object. In the case of RadioPermission, this is a
simple matter of calling one of the constructors and passing the current RadioActions value. If your
permission class uses objects to represent state, Copy must perform a deep copy and create copies

of all contained objects:

C#

 // Create a copy the RadioPermission.
 public override IPermission Copy() {

 return new RadioPermission(RadioActions);
 }

Visual Basic .NET

 ' Create a copy the RadioPermission.
 Public Overrides Function Copy() As IPermission

 Return New RadioPermission(RadioActions)
 End Function

The Intersect method returns a new IPermission that represents the logical intersection of the
current RadioPermission and another. Because RadioPermission represents permission to perform
a discrete set of actions, the intersection of two RadioPermission objects is the set of actions
permitted by both objects. For example, if the current RadioPermission grants Volume and Channel
control and the other grants only Volume control, the intersection of the two is a RadioPermission
that grants only Volume control. Because the Flags attribute allows you to treat values of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RadioAction enumeration as bit fields, you can express the intersection logic using a bitwise And on
the RadioActions members of the two original RadioPermission objects.

C#

 // Return an intersection of this and another RadioPermission
 // object.
 public override IPermission Intersect(IPermission target) {

 // Return null if the target argument is null.
 if (target == null) {
 return null;
 }

 // Ensure the target argument is another RadioPermission
 // object, if not throw an ArgumentException.
 if (target is RadioPermission) {

 RadioPermission r = (RadioPermission)target;

 // Calculate the intersection of the radio actions
 // from this and the target RadioPermission.
 RadioAction i =
 this.RadioActions & r.RadioActions;

 // Return a new RadioPermission.
 return new RadioPermission(i);

 } else {
 throw new ArgumentException("target");
 }
 }

Visual Basic .NET

 ' Return an intersection of this and another RadioPermission
 ' object.
 Public Overrides Function Intersect(ByVal target As IPermission) _
 As IPermission

 ' Return null if the target argument is null.
 If target Is Nothing Then
 Return Nothing
 End If

 ' Ensure the target argument is another RadioPermission
 ' object, if not throw an ArgumentException.
 If TypeOf target Is RadioPermission Then

 Dim r As RadioPermission = _
 CType(target, RadioPermission)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Calculate the intersection of the radio actions
 ' from this and the target RadioPermission.
 Dim i As RadioAction = Me.RadioActions And _
 r.RadioActions

 ' Return a new RadioPermission.
 Return New RadioPermission(i)

 Else
 Throw New ArgumentException("target")
 End If
 End Function

The Union method returns a new IPermission that represents the logical union of the current
RadioPermission and another. For example, if one RadioPermission grants Channel control and
the other grants Volume control, the union of the two is a RadioPermission that grants both Volume
and Channel control. The implementation of the Union method is similar to the Intersect method,
but uses a bitwise Or operator on the RadioActions members of the two original RadioPermission

objects to calculate the union:

C#

 // Return the union of this and another RadioPermission object.
 public override IPermission Union(IPermission other) {

 // Return null if the other argument is null.
 if (other == null) {
 return null;
 }

 // Ensure the other argument is another RadioPermission object
 // if not throw an ArgumentException.
 if (other is RadioPermission) {

 RadioPermission r = (RadioPermission)other;

 // Calculate the union of the radio actions
 // from this and the other RadioPermission.
 RadioAction u =
 this.RadioActions | r.RadioActions;

 // Return a new RadioPermission
 return new RadioPermission(u);
 } else {
 throw new ArgumentException("other");
 }
 }

Visual Basic .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Return the union of this and another RadioPermission object.
 Public Overrides Function Union(ByVal other As IPermission) _
 As IPermission

 ' Return null if the other argument is null.
 If other Is Nothing Then
 Return Nothing
 End If

 ' Ensure the other argument is another RadioPermission object
 ' if not throw an ArgumentException.
 If TypeOf other Is RadioPermission Then

 Dim r As RadioPermission = CType(other, RadioPermission)

 ' Calculate the union of the radio actions
 ' from this and the other RadioPermission.
 Dim u As RadioAction = Me.RadioActions _
 Or r.RadioActions

 ' Return a new RadioPermission
 Return New RadioPermission(u)

 Else
 Throw New ArgumentException("other")
 End If
 End Function

The IsSubsetOf method returns a Boolean value indicating whether the current RadioPermission is
a subset of the RadioPermission passed as an argument to the method. For example, if the current
RadioPermission allowed Volume control, and the one specified by the argument allowed both
Volume and Channel control, then the current RadioPermission is a subset of the other. As with the
Intersect and Union methods, we perform the subset relationship test using bitwise operators.

C#

 // Determines if this RadioPermission is a subset of the provided
 // RadioPermission.
 public override bool IsSubsetOf(IPermission target) {

 // Return false if the target argument is null.
 if (target == null) {

 return false;
 }

 // Ensure the target argument is another RadioPermission
 // object, if not throw an ArgumentException.
 if (target is RadioPermission) {

 RadioPermission r = (RadioPermission)target;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Determine if the provided set of actions are
 // a subset of the current permissions actions.
 return (this.RadioActions
 & (~r.RadioActions)) == 0;

 } else {

 throw new ArgumentException("target");
 }
 }

Visual Basic .NET

 ' Determines if this RadioPermission is a subset of the provided
 ' RadioPermission.
 Public Overrides Function IsSubsetOf _
 (ByVal target As IPermission) As Boolean

 ' Return false if the target argument is null.
 If target Is Nothing Then

 Return False
 End If

 ' Ensure the target argument is another RadioPermission
 ' object, if not throw an ArgumentException.
 If TypeOf target Is RadioPermission Then

 Dim r As RadioPermission = _
 CType(target, RadioPermission)

 ' Determine if the provided set of actions are
 ' a subset of the current permissions actions.
 Return (Me.RadioActions And _
 (Not r.RadioActions)) = 0
 Else
 Throw New ArgumentException("target")
 End If
 End Function

7.3.1.7 Implementing the ISecurityEncodable interface

The ToXml method returns a SecurityElement, which we discussed in Chapter 6. The
SecurityElement contains a simple XML object model representing the state of the
RadioPermission object. The runtime uses the ToString method of SecurityElement to render

permission objects to XML for writing to the security policy files, which we discuss in Chapter 9. The
XML representation is also useful when debugging CAS programming issues.

The XML representation of all code-access permissions must have a root element named
"IPermission." The internal structure of this element is up to you, as long as the FromXml method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(discussed next) can accurately recreate the state of a permission object from the XML. Here is an
example of the XML used to represent a RadioPermission object that represents access to the
StartStop action only.

<IPermission class="OReilly.ProgrammingDotNetSecurity.RadioPermission,
Radio, Version=1.0.0.0, Culture=neutral, PublicKeyToken=cc5e18bc387194b3"
 version="1"
 StartStop="true"/>

The XML structure you have implemented for RadioPermission is consistent with that used by the

standard permission classes. Use attributes, as opposed to child elements, to store state data, and
include active state only, assuming missing values have their default values. If the RadioPermission
object represents access to all actions, include a single Unrestricted = true attribute instead of
including values for each of the individual actions. The version attribute identifies the XML format to
provide backward compatibility in case future versions of the RadioPermission use different XML

representations:

C#

 // Convert the Radio Permission to a SecurityElement.
 public override SecurityElement ToXml() {

 // Create a new "IPermission" element.
 SecurityElement se = new SecurityElement("IPermission");

 // Add fully qualified type name for the RadioPermission.
 se.AddAttribute("class",this.GetType().AssemblyQualifiedName);

 // Add version of "1" to be consistent with other permission
 // classes
 se.AddAttribute("version", "1");

 // Add the radio action state, only write out active
 // permissions.
 if (this.IsUnrestricted()) {

 // Write only the unrestricted attribute if the
 // permission is unrestricted.
 se.AddAttribute("Unrestricted", "true");
 } else {

 // Write out the individual actions that are granted.
 if ((RadioActions & RadioAction.StartStop) != 0) {
 se.AddAttribute("StartStop", "true");
 }
 if ((RadioActions & RadioAction.Channel) != 0) {
 se.AddAttribute("Channel", "true");
 }
 if ((RadioActions & RadioAction.Volume) != 0) {
 se.AddAttribute("Volume", "true");
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Return the new SecurityElement.
 return se;
 }

Visual Basic .NET

 ' Convert the Radio Permission to a SecurityElement.
 Public Overrides Function ToXml() As SecurityElement

 ' Create a new "IPermission" element.
 Dim se As SecurityElement = New SecurityElement("IPermission")

 ' Add fully qualified type name for the RadioPermission.
 se.AddAttribute("class",Me.GetType().AssemblyQualifiedName)

 ' Add version of "1" to be consistent with other permission
 ' classes
 se.AddAttribute("version", "1")

 ' Add the radio action state, only write out active
 ' permissions.
 If Me.IsUnrestricted() Then

 ' Write only the unrestricted attribute if the
 ' permission is unrestricted.
 se.AddAttribute("Unrestricted", "true")
 Else

 ' Write out the individual actions that are granted.
 If (RadioActions And RadioAction.StartStop) <> 0 Then
 se.AddAttribute("StartStop", "true")
 End If
 If (RadioActions And RadioAction.Channel) <> 0 Then
 se.AddAttribute("Channel", "true")
 End If
 If (RadioActions And RadioAction.Volume) <> 0 Then
 se.AddAttribute("Volume", "true")
 End If
 End If

 ' Return the new SecurityElement.
 Return se
 End Function

The FromXml method recreates the state of a RadioPermission object that was rendered previously
to XML using the ToXml method. Check first to see if the XML represents an unrestricted permission;

if it does not, look for each individual action:

C#

 // Extract state from a SecurityElement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public override void FromXml(SecurityElement e) {

 // Ensure we have a SecurityElement to work with
 if (e == null) throw new ArgumentNullException("e");

 // Ensure the SecurityElement is an IPermission
 if (e.Tag != "IPermission") {throw new ArgumentException(
 "Element must be IPermission");
 } else {

 // Determine if the permission is unrestricted
 if (e.Attribute("Unrestricted") == "true") {

 RadioActions = RadioAction.All;
 } else {

 // Look for each individual action attribute to
 // build the set of permissions
 RadioActions = RadioAction.None;

 if (e.Attribute("StartStop") == "true") {
 RadioActions =
 RadioActions | RadioAction.StartStop;
 }
 if (e.Attribute("Channel") == "true") {
 RadioActions =
 RadioActions | RadioAction.Channel;
 }
 if (e.Attribute("Volume") == "true") {
 RadioActions =
 RadioActions | RadioAction.Volume;
 }
 }
 }
 }
 }

Visual Basic .NET

 ' Extract state from a SecurityElement.
 Public Overrides Sub FromXml(ByVal e As SecurityElement)

 ' Ensure we have a SecurityElement to work with
 If e Is Nothing Then
 Throw New ArgumentNullException("e")
 End If

 ' Ensure the SecurityElement is an IPermission
 If e.Tag <> "IPermission" Then
 Throw New ArgumentException("Element must be IPermission")
 Else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Determine if the permission is unrestricted
 If e.Attribute("Unrestricted") = "true" Then
 RadioActions = RadioAction.All
 Else
 ' Look for each individual action attribute to
 ' build the set of permissions
 RadioActions = RadioAction.None

 If e.Attribute("StartStop") = "true" Then
 RadioActions = _
 RadioActions Or RadioAction.StartStop
 End If
 If e.Attribute("Channel") = "true" Then
 RadioActions = _
 RadioActions Or RadioAction.Channel
 End If
 If e.Attribute("Volume") = "true" Then
 RadioActions = _
 RadioActions Or RadioAction.Volume
 End If
 End If
 End If
 End Sub
 End Class

7.3.1.8 Defining the RadioPermissionAttribute class

We begin the declaration of the RadioPermissionAttribute class by using the AttributeUsage
attribute to define the program elements you can apply the RadioPermissionAttribute to.

RadioPermissionAttribute extends the CodeAccessSecurityAttibute class, which provides the

base class from which all permission attributes must extend. Implement a single constructor that all
permission attributes extending CodeAccessSecurityAttibute must define. The constructor takes a
value from the SecurityAction enumeration, which describes the CAS operation invoked by a

declarative security statement; see Section 7.2.1.2 for details:

C#

 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Constructor
 | AttributeTargets.Class | AttributeTargets.Struct
 | AttributeTargets.Assembly, AllowMultiple = true,
 Inherited = false)]
 [Serializable]
 public sealed class RadioPermissionAttribute :
 CodeAccessSecurityAttribute {

 // Constructor to take SecurityAction, simply calls base
 // class constructor.
 public RadioPermissionAttribute(SecurityAction action):
 base(action) {}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic .NET

 <AttributeUsage(AttributeTargets.Method Or _
 AttributeTargets.Constructor Or AttributeTargets.Class Or _
 AttributeTargets.Struct Or AttributeTargets.Assembly, _
 AllowMultiple := True, Inherited := False), Serializable> _
 Public NotInheritable Class RadioPermissionAttribute
 Inherits CodeAccessSecurityAttribute

 ' Constructor to take SecurityAction, simply calls base
 ' class constructor.
 Public Sub New(ByVal action As SecurityAction)
 MyBase.New(action)
 End Sub

As with RadioPermission, the RadioPermissionAttribute class contains a private data member
named RadioActions (of type RadioAction) to identify which actions the
RadioPermissionAttribute object represents. Four properties provide controlled access to
configure the value of the private RadioActions member. The first property, named Actions, allows
you to provide a RadioAction value to configure the state of all actions in a single call. The other
three attributes, named StartStop, Channel, and Volume, allow you to configure the individual bits
of RadioActions to set whether an individual action is permitted or not:

C#

 // Private member to signal permitted actions.
 private RadioAction RadioActions = RadioAction.None;

 // Property allows all actions to be configured in one call
 // using values from the RadioAction enumeration
 public RadioAction Actions {
 get { return RadioActions; }
 set { RadioActions = value; }
 }

 // Property to allow StartStop permission to be switched on
 // and off
 public bool StartStop {
 get { return (RadioActions & RadioAction.StartStop) != 0; }
 set {
 if (value) {
 RadioActions = RadioActions | RadioAction.StartStop;
 } else {
 RadioActions = RadioActions & ~RadioAction.StartStop;
 }
 }
 }

 // Property to allow Channel permission to be switched on
 // and off
 public bool Channel {
 get { return (RadioActions & RadioAction.Channel) != 0; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 set {
 if (value) {
 RadioActions = RadioActions | RadioAction.Channel;
 } else {
 RadioActions = RadioActions & ~RadioAction.Channel;
 }
 }
 }

 // Property to allow Volume permission to be switched on
 // and off
 public bool Volume {
 get { return (RadioActions & RadioAction.Volume) != 0; }
 set {
 if (value) {
 RadioActions = RadioActions | RadioAction.Volume;
 } else {
 RadioActions = RadioActions & ~RadioAction.Volume;
 }
 }
 }

Visual Basic .NET

 ' Private member to signal permitted actions.
 Private RadioActions As RadioAction = RadioAction.None

 ' Property allows all actions to be configured in one call
 ' using values from the RadioAction enumeration
 Public Property Actions() As RadioAction
 Get
 Return RadioActions
 End Get
 Set (ByVal Value As RadioAction)
 RadioActions = value
 End Set
 End Property

 ' Property to allow StartStop permission to be switched on
 ' and off
 Public Property StartStop() As Boolean
 Get
 Return (RadioActions And RadioAction.StartStop) <> 0
 End Get
 Set (ByVal Value As Boolean)
 If value Then
 RadioActions = RadioActions Or RadioAction.StartStop
 Else
 RadioActions = RadioActions And _
 (Not RadioAction.StartStop)
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Set
 End Property

 ' Property to allow Channel permission to be switched on
 ' and off
 Public Property Channel() As Boolean
 Get
 Return (RadioActions And RadioAction.Channel) <> 0
 End Get
 Set (ByVal Value As Boolean)
 If value Then
 RadioActions = RadioActions Or RadioAction.Channel
 Else
 RadioActions = RadioActions And _
 (Not RadioAction.Channel)
 End If
 End Set
 End Property

 ' Property to allow Volume permission to be switched on
 ' and off
 Public Property Volume() As Boolean
 Get
 Return (RadioActions And RadioAction.Volume) <> 0
 End Get
 Set (ByVal Value As Boolean)
 If value Then
 RadioActions = RadioActions Or RadioAction.Volume
 Else
 RadioActions = RadioActions And _
 (Not RadioAction.Volume)
 End IF
 End Set
 End Property

Despite its simplicity, the CreatePermission method is the most important method of a permission

attribute. It allows the runtime to create permission objects from the declarative security statements
contained in your code. The CreatePermission method returns a newly created RadioPermission
using the value of attributes RadioActions member:

C#

 // Creates and returns an RadioPermission object
 // based on the configured radio actions.
 public override IPermission CreatePermission() {

 return new RadioPermission(RadioActions);
 }
 }
}

Visual Basic .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Creates and returns an RadioPermission object
 ' based on the configured radio actions.
 Public Overrides Function CreatePermission() As IPermission
 Return New RadioPermission(RadioActions)
 End Function
 End Class
End Namespace

7.3.1.9 Building the Radio.dll library

The RadioAction, RadioPermission, and RadioPermissionAttribute classes are all contained in a

single source file named Radio.cs (C#) or Radio.vb (Visual Basic .NET). Before you can build the
Radio.dll library containing the new security classes, you must create a key file named Keys.snk to
satisfy the reference contained in the AssemblyKeyFile attribute. Create the Keys.snk file and

compile the Radio.dll library using the following commands:

C#

sn -k Keys.snk
csc /target:library Radio.cs

Visual Basic .NET

sn -k Keys.snk
vbc /target:library Radio.vb

7.3.1.10 Using RadioPermission to enforce security

RadioPermission is now ready to protect the methods in the managed library that provides access
to the radio tuner. As demonstrated in the following code fragments, you can use RadioPermission

in exactly the same ways as the standard permission classes:

C#

// An imperative assert of RadioPermission granting Volume control
RadioPermission r = new RadioPermission(RadioAction.Volume);
r.Assert();

// A declarative demand for permission to change the radio channel
[RadioPermission(SecurityAction.Demand, Channel = true)]

// A minimum permission request for unrestricted access to the radio
[assembly:RadioPermission(SecurityAction.RequestMinimum,
Unrestricted = true)]

Visual Basic .NET

' An imperative assert of RadioPermission granting Volume control
Dim r As RadioPermission = New RadioPermission(RadioAction.Volume)
r.Assert()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' A declarative demand for permission to change the radio channel
<RadioPermission(SecurityAction.Demand, Channel := True)> _

' A minimum permission request for unrestricted access to the radio
<assembly:RadioPermission(SecurityAction.RequestMinimum, _
Unrestricted := True)>

Once you have developed the secure class library that enables managed code to control the PC radio
tuner, you must configure the security policy to grant access to the appropriate code. First, you must
understand how security policy calculates the set of permissions to grant to an assembly. Then you
need to understand how to use the security administration tools supplied with the .NET Framework to
configure security policy. We discuss security policy in Chapter 8 and the .NET administration tools in
Chapter 9.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Security Policy
This chapter explains how the runtime uses security policy to determine which permissions to grant
an assembly or application domain based on its identity. We begin with a high-level explanation of
security policy and clarify its relationship to evidence and permissions. We describe the structure of
security policy and explain how the component elements interact at runtime. We explain how to
manipulate security policy programmatically and demonstrate the use of application domain policy.
Finally, we continue the development of the CAS extensions started in Chapter 6, showing you how to
use custom evidence in security policy configuration.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.1 Security Policy Explained

Security policy is the set of configurable rules that provide a mapping between evidence and
permissions. Specifically, the runtime uses security policy to determine which code-access
permissions to grant an assembly or application domain based on the set of evidence that the
assembly or application domain presents-a process known as policy resolution.

Security policy only determines the code-access permissions assigned to an
assembly or application domain. The runtime assigns identity permissions as a
direct result of the assembly or application domain presenting certain types of
evidence. Role-based permissions are based on the identity of the user under
which the application is executing. See Chapter 7 for a complete description of
the different permission types.

The security policy mechanism is flexible and extensible. It gives administrators and users fine-
grained control over the operations and resources to which code has access. With a properly
configured security policy, users can confidently run managed code from any source, knowing that
the runtime will stop the code from performing undesired actions.

The flexibility provided by the security policy mechanism is essential; no single set of security
restrictions can meet everyone's requirements. One user may never want to allow code from the
Internet to write to the hard disk, another may only want applications written by Microsoft to write to
the Windows registry, yet another may want an environment where all applications can do
everything. The security policy mechanism is flexible enough to cater to all of these situations.

8.1.1 Security Policy Levels

As shown in Figure 8-1, .NET divides security policy into four levels: enterprise, machine, user, and
application domain. The enterprise, machine, and user levels are configurable independently using
administrative tools provided with the .NET Framework, which we discuss in Chapter 9. Because
application domains exist only at runtime, it is not possible to configure them statically using tools;
you must configure application domain policy programmatically, which we explain in Section 8.2 of
this chapter.

Figure 8-1. Security policy levels

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the runtime loads an assembly or creates an application domain, it determines the permissions
granted by the enterprise policy first, followed by the machine policy, and finally the user policy. In
the case of an assembly, the runtime will also determine the permissions granted by the application
domain to which the assembly is loaded. The runtime intersects the sets of permissions granted by
each policy level to determine the final code-access permission set for the assembly or application
domain. This means that each policy level can further restrict the permissions granted by previous
levels but can never grant additional permissions. We provide a more complete description of this in
Section 8.2.1.2.

The purpose of enterprise policy is to provide a corporate-wide security policy that is enforced on all
machines, but both the enterprise and machine policies are machine- specific. Although we will
discuss mechanisms for distributing enterprise security policy in Chapter 9, there are no mechanisms
built into the .NET Framework to manage enterprise policy from a central location. User policy is
user-specific; on a machine used by different people, each user will have his own user policy
configuration.

The division of security policy into different levels complicates administration, but the flexibility it
provides far outweighs the complexity, especially in corporate environments. With multiple levels of
security policy, it is possible to delegate the task of security management. For example, the central
IT or security department can use enterprise policy to enforce the minimum security standards of the
organization, while giving departments, teams, or even individuals the autonomy to further restrict
permissions to suit local needs with machine and user policy.

Each policy level contains three key elements:

Code groups

Named permission sets

Fully trusted assemblies

We discuss each of these elements in detail in the following sections.

8.1.1.1 Code groups

Code groups are the basic building blocks of security policy; they embody the logic that controls the
policy resolution process. More specifically, code groups provide the mapping between evidence and
permissions that the policy resolution process uses to determine which code-access permissions to
grant an assembly or application domain.

Each policy level consists of a set of code groups organized into a tree structure as shown in Figure 8-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2. During policy resolution, the runtime traverses the tree of code groups in each policy level and
compares the evidence presented by the assembly or application domain with the membership
condition of each code group. If the evidence meets the code group's membership condition, then the
runtime grants the assembly or application domain the permissions contained in the code group's
permission set.

Figure 8-2. Code group hierarchies

We provide a detailed explanation of how the runtime uses code groups to resolve policy in Section
8.1.2, but first we explain a little more about the structure of code groups. Each code group has a
name and a description and contains the following elements:

Membership condition

As shown in Figure 8-3, the membership condition defines the evidence that an assembly or
application domain must have to qualify for membership to a code group. Membership
conditions support all of the standard evidence types and can be extended to support custom
evidence types such as the Author class developed in Chapter 6. Possible membership
conditions include tests like Site = "*.oreilly.com," Zone = Internet, or Author = "Peter." A

membership condition can also specify "all code," in which case any assembly or application
domain is a member of the code group regardless of the evidence it presents.

Figure 8-3. Membership conditions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Permission set

The permission set is the set of permissions to grant an assembly or application domain that
qualifies for membership of the code group. When configuring security policy using the .NET
administrative tools, this is a named permission set, which we discuss in the next section. If
you are manipulating the code group programmatically, you can use any permission set, which
we will demonstrate in Section 8.2.1.

Child code groups

As shown in Figure 8-2, each policy level consists of a single tree of code groups with each code
group having one or more child code groups. An assembly or application domain that is a
member of a code group is tested for membership of the code group's children and so on down
through the tree. We discuss the relationship between parent and child code groups when
determining grant sets in "Policy Resolution." The use of code group trees and simple
membership conditions is a flexible model that allows you to create complex security policies
that remain easy to manage and understand.

Attributes

There are two optional attributes that you can assign to a code group in order to modify the
normal policy resolution process:

Exclusive

The code group's permission set defines the maximum set of permissions that the
assembly or application domain can get from the current policy level regardless of what
other code groups it is a member of. Because the final permission set of an assembly or
application domain is the union of the sets of permissions granted by each policy level,
an Exclusive code group effectively limits the overall permissions available from the

policy resolution.
LevelFinal

The runtime will not evaluate any policy level below the current level other than the
application domain level (when resolving assemblies).

We explain the effects of these attributes on policy resolution more in Section 8.1.2.1 of "Policy
Resolution."

8.1.1.2 Named permission sets

As the name suggests, named permission sets are simply groups of permissions to which you assign
a name. Each policy level maintains its own set of named permission sets that are valid only within
the scope of that policy level.

When using the .NET administrative tools (discussed in Chapter 9) to configure the permission set
granted by a code group, you must use a named permission set from the policy level to which the
code group belongs. Named permission sets simplify the administration and auditing of security
policy, and although this approach may initially seem restrictive, when you look at the interaction of
code groups in Section 8.1.2, you will see that the model maintains a high degree of flexibility.

The default security policy defines a standard set of named permission sets for the enterprise,
machine, and user policy levels, which we list in Table 8-1. All permission sets except the Everything

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set are immutable.

Table 8-1. Standard named permission sets

Permission set Description

FullTrust Unrestricted access to all operations and resources.

SkipVerification
No access to any operation or resource other than permission to skip
verification, which we discuss in Chapter 4.

Execution No access to any operation or resource other than permission to execute.

Nothing No access to any operation or resource, not even the permission to execute.

LocalIntranet
A set of permissions defined in the default security policy deemed by Microsoft
to be appropriate for code loaded from the local intranet. See Chapter 9 for a
more detailed description of the permissions included in this permission set.

Internet
A set of permissions defined in the default security policy deemed by Microsoft
to be appropriate for code loaded from the Internet. See Chapter 9 for a more
detailed description of the permissions included in this permission set.

Everything
The only modifiable standard permissions set. By default, Everything contains
all permissions with unrestricted access except the SkipVerification element
of the SecurityPermission.

8.1.1.3 Fully trusted assemblies

.NET uses classes to represent all key elements of CAS. Some elements that we have discussed so
far include evidence, policy levels, code groups, membership conditions, and permissions. During
policy resolution, the runtime creates objects to represent the security information it is working with;
this can involve the instantiation of classes from many different assemblies.

Under normal circumstances, as the runtime loads these assemblies, it would need to resolve the
policy for each one to determine their permissions. However, if the policy resolution of these
assemblies required the runtime to instantiate security classes contained within the same assemblies,
the runtime would need to resolve the policy for the same assembly again, resulting in a never-
ending policy resolution loop.

To overcome this problem, each policy level contains a list of fully trusted assemblies. When the
runtime loads any of these assemblies during policy resolution, it automatically assigns them full trust
within that policy level; they are not subject to the normal policy resolution process.

Making an assembly fully trusted in one policy level does not mean that that
assembly has full trust during program execution. The final set of permissions
granted to the assembly is still calculated by intersecting the permission sets
granted by each policy level.

The default security policy defines a standard set of fully trusted assemblies for the enterprise,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

machine, and user policy levels. These lists include all of the standard .NET assemblies that contain
classes required in the policy resolution process. You do not need to make any changes to the default
lists unless you install extensions to CAS containing custom security classes. See Chapter 9 for a
description of the default security policy.

To use a CAS extension, you must add the assembly containing your custom security classes and all
the assemblies it references to the fully trusted assemblies list of the policy level in which you will use
your extensions. If you create a custom evidence class, as we did in Chapter 6, you must add the
assembly to the fully trusted list of every policy level, because every policy level will use it. Before
you can add an assembly to the fully trusted list of a policy level, you must install the assembly in the
global assembly cache; this requires the assembly to have a strong name. We discuss the global
assembly cache in Chapter 2, and describe how to configure the fully trusted assembly lists using
both graphical and command-line tools in Chapter 9.

8.1.2 Policy Resolution

The runtime uses only the enterprise, machine, and user policy levels when resolving the grant set
for application domains. Other than this, the policy resolution process for assemblies and application
domains is the same. To simplify the following explanation, refer only to assemblies.

There are different types of code groups that affect the policy resolution
process in different ways. The policy resolution we describe here uses the most
common type of code group and the only one with direct support in the security
administration tools. We discuss each type of code group and provide details of
how they affect policy resolution in Section 8.2.1.

When resolving policy for an assembly, the runtime starts at the enterprise policy's root code group
and checks the assembly's evidence against the code group's membership condition. If the evidence
meets the membership condition, the runtime grants the permissions specified in the code group's
permission set to the assembly.

The runtime then traverses the code group tree by comparing the assembly's evidence with each
child code group of the current code group. At any stage, if the assembly does not qualify for
membership of a code group, then the runtime does not grant the code group's permission set to the
assembly, and policy resolution moves on to the next peer-level code group, ignoring the current
code group's children.

For example, Figure 8-4 shows a code group hierarchy and an assembly with the evidence Zone =
My_Computer. Policy resolution begins by comparing the assembly's evidence collection to the
membership condition of the root code group All_Code. The membership condition of All_Code is
All_Code, and the assembly qualifies for membership, but receives no permissions because the
permission set of All_Code is Nothing.

Figure 8-4. Policy resolution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because the assembly is a member of the All_Code group, the runtime compares the assembly for
membership of each child code group: My_Code followed by Internet_Code. The Zone evidence of
the assembly matches the membership condition of the My_Code group, and the runtime grants the
assembly the FullTrust permission set. Even though the assembly now has FullTrust, policy
resolution must continue in case another code group implements the Exclusive attribute, which may

limit the assembly grant set-see Section 8.1.2.1 for details.

When the runtime compares the assembly to the Internet_Code group, the assembly's evidence
does not meet the membership condition. The runtime ignores the children of the Internet_Code

group, and because there are no further peer-level groups, policy resolution is complete. The final
grant set for the policy level is the union of Nothing (granted by All_Code) and FullTrust (granted
by My_Code), which is FullTrust.

In Figure 8-5, we show the same code group hierarchy, but this time the policy resolution is for an
assembly with Zone = Internet and Site = www.company.com evidence. Policy resolution begins, as

in the previous example, by comparing the assembly's evidence with the membership condition of
All_Code. Again, the assembly meets the membership condition (All_Code), and the runtime
compares the assembly for membership with the My_Code and Internet_Code child groups.

Figure 8-5. Policy resolution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, the assembly does not qualify for membership to the My_Code group, but it's Zone =
Internet evidence means it is a member of the Internet_Code group, which grants it the Internet
permission set. When compared to the child My_Site and Work_Site groups, the assembly's Site =
www.company.com evidence qualifies it for membership to the Work_Site code group, and therefore
the runtime grants the assembly the custom MyCompany permission set.

In this example, the assembly is a member of three code groups: All_Code, Internet_Code, and
Work_Site. The shaded area in Figure 8-6 shows the final permission set for this policy level
calculated as the union of the permissions contained in the Nothing, Internet, and MyCompany

permission sets.

Figure 8-6. Calculating policy level permissions

The runtime uses this process to determine the permissions granted by each policy level and then
intersects them to calculate the final code-access permission set for the assembly. Figure 8-7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

illustrates the intersection of permission sets from the enterprise, machine, and user policy levels
(areas E, M, and U) to create a final grant set (area Z) for the assembly. For clarity, we have omitted
the application domain policy.

Figure 8-7. Intersecting policy level grant sets

8.1.2.1 Code group attributes

We have mentioned that the Exclusive and LevelFinal code group attributes affect the policy

resolution process. A code group can have none, one, or both of the attributes, but their effect is
significant and you should consider their impact thoroughly before implementing either of them.

Exclusive

The permissions specified in the code group's permission set are the maximum set of
permissions that the assembly can receive from the current policy level. For example, in Figure
8-5, if we make the Internet_Code code group Exclusive, even though the assembly is also
a member of the Work_Site group, it will receive only the permissions specified in the
Internet permission set.

As shown in Figure 8-7, to determine the assembly's final grant set, the permissions granted
by each policy level intersect to determine the assembly's final grant set, and a code group
with the Exclusive attribute defines the absolute maximum set of permissions an assembly

can be granted.

Exclusive code groups are useful if you want to single out applications with a specific

characteristic (the Publisher or source web site, for example) and assign them an absolute set
of permissions. This avoids the runtime inadvertently granting them additional permissions
based on the other evidence they present.

Be careful when configuring Exclusive code groups. If an assembly resolves to
be a member of more than one Exclusive code group, the runtime will throw a
System.Security.Policy.PolicyException, and the assembly will not be

loaded.

LevelFinal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If an assembly or application domain is a member of a LevelFinal code group, the runtime

will not evaluate any policy levels below the current level. If resolving the permissions for an
assembly, the runtime still evaluates the application domain policy regardless of whether the
assembly is the member of a LevelFinal code group. For example, if the runtime resolves an
assembly to be a member of a LevelFinal code group in the machine policy level, the runtime

will skip the user policy level, but will still evaluate the application domain policy.

In environments that distribute security policy management between multiple people or
groups, LevelFinal gives security administrators the ability to disable lower levels of security

policy. This enables security administrators to stop people from using security policy to break
applications. For example, if every machine in your organization needed to run a particular
virus checker, you could create an enterprise-level LevelFinal code group based on
Publisher or StrongName evidence that grants the virus checker the permission it requires.

Nobody could use machine or user policy to restrict security policy further in order to stop the
virus checker from running. By also making the code group Exclusive, you could ensure that

the enterprise policy would not grant the virus checker more permissions than it needed.

8.1.3 Configuring Security Policy

Security policy is stored in XML files; there is one file for each of the enterprise, machine, and user
policy levels. We discuss the location of these files in Chapter 9. There are four ways to configure
security policy:

Using the .NET Framework Configuration tool (Mscorcfg.msc), a Microsoft Management Console
(MMC) plug-in provided with the .NET Framework that provides a graphical interface with which
to administer security policy

Using the Code Access Security Policy tool (Caspol.exe), a command-line tool provided with the
.NET Framework

Programmatically, using the security classes contained in the .NET class library

Manually, by editing the XML contained in the individual security policy files

We suggest that you do not try to edit your security policy files manually. The
structure of policy files is poorly documented, and they can easily become long
and confusing. A simple typing error can change your security configuration to
the point where no code at all can run. Even worse, you may introduce a subtle
and difficult-to-spot security hole, which grants code more permissions than
you intended.

The only way to configure application domain policy is at runtime using the .NET security classes. The
techniques for the programmatic manipulation of security policy are the same for all policy levels, and
we discuss these in the next section. We explain how to use the .NET Framework Configuration tool
and the Code Access Security Policy tool in Chapter 9.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.2 Programming Security Policy

The .NET security administration tools (discussed in Chapter 9) are sufficient for most users and
security administrators to configure their security policy, but to have complete control over all
security policy features, you must do so programmatically. As with evidence and permissions, .NET
represents each of the security policy elements with classes, meaning that you can manipulate them
in your own code very easily.

In the following sections, we provide explanations of how to program the key components of security
policy, starting with code groups and membership conditions, then moving on to policy levels, and
finally the security manager. We do not discuss individual permissions or permission sets, because we
covered them in Chapter 7. We conclude with an example that brings together all elements of
security policy programming; we demonstrate how to manipulate the policy of an application domain
to control the policy resolution process applied to the assemblies loaded into it.

8.2.1 Programming Code Groups

The abstract System.Security.Policy.CodeGroup class provides the base representation of a code

group and defines the functionality that lies at the heart of the policy resolution process. Four
noninheritable subclasses extend CodeGroup to provide concrete implementations that you can use in

security policy programming; these are shown in Figure 8-8.

Figure 8-8. Concrete subclasses of CodeGroup

Figure 8-9 illustrates the structure of the CodeGroup class, showing that CodeGroup is a container for
all of the elements we discussed in Section 8.1.1.1. We summarize how CodeGroup implements each

of these component elements here and provide additional details on how to use them later in this
section.

Membership condition

An object that implements the System.Security.Policy.IMembershipCondition interface

provides the functionality to determine whether an assembly or application domain qualifies for
membership to the code group. You must specify the membership condition at CodeGroup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instantiation but can change it later using the MembershipCondition property.

Policy statement

The policy statement contains values that specify the effect the CodeGroup has on assemblies

and application domains that are members of the group. The
System.Security.Policy.PolicyStatement class represents a code group's policy statement.
It contains a value from the System.Security.Policy.PolicyStatementAttribute
enumeration to represent the code group's attributes, and a System.Security.PermissionSet

that specifies the set of permissions granted by the code group to its members.
Children

Each CodeGroup contains an ordered list of child CodeGroup objects. In turn, each child
CodeGroup can have its own children, creating a tree structure. The Children property gets or
sets the code group's children using a System.Collections.IList containing the set of child
CodeGroup objects.

Figure 8-9. Structure of the CodeGroup class

The most important method of the CodeGroup class is Resolve, which takes an Evidence collection

as an argument. Policy resolution of an assembly (or application domain) consists of the runtime
calling the Resolve method on the root CodeGroup in each policy level and passing it the assembly's
Evidence collection. In the Resolve method, the CodeGroup is responsible for determining if the

assembly's evidence qualifies it for membership, how to apply any attributes, and how or if the
CodeGroup should use its children to continue the policy resolution process. Resolve returns a
PolicyStatement that represents the net effect of all code groups in the tree to which the assembly
qualified for membership. The key difference between each of the CodeGroup subclasses is how they
process the Resolve method:

UnionCodeGroup

This is the most commonly used code group type, which implements policy resolution, as we
explained in Section 8.1.2. Members are tested against all child code groups for membership.
The resulting PolicyStatement contains the union of the code group's permission set and the

permission sets of each child of which the assembly is also a member. If a code group has the
Exclusive attribute, the PolicyStatement will include only those permissions granted by that

group, as we described in Section 8.1.2.1.
FileCodeGroup

This operates the same as UnionCodeGroup with respect to matching members against its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

children and how the resulting PolicyStatement is calculated. However, FileCodeGroup does

not support attributes and does not contain a statically defined permission set. With each call
to Resolve, if the evidence of the assembly contains "file://"-based Url evidence, the
FileCodeGroup dynamically generates a permission set that contains a
System.Security.Permissions.FileIOPermission granting access to the directory specified
in the Url evidence. We discussed Url evidence in Chapter 6 and FileIOPermission in

Chapter 7.
NetCodeGroup

This operates the same as FileCodeGroup, but with each call to Resolve, if the evidence of
the assembly contains "http://" or "https://" Url (or Site) evidence, the NetCodeGroup

dynamically generates a permission set that contains a
System.Security.Permissions.WebPermission granting connect access to the specified web
site. We discussed WebPermission in Chapter 7.

FirstMatchCodeGroup

This operates the same UnionCodeGroup but evaluates members against its children only until
it finds the first matching child group. The resulting PolicyStatement contains the permission
granted by the FirstMatchCodeGroup and at most one of its child groups; this makes the

order of the child elements important.

As important as Resolve is to the runtime, both Resolve and the similar
ResolveMatchingCodeGroups method provide minimal value when used directly. You cannot use

them to drive the policy resolution process manually, and therefore they are useful only for testing
and debugging. Table 8-2 summarizes the properties and methods of CodeGroup and highlights any

special behavior implemented by the subclasses. No specific code-access permissions are required to
use the members of the code group classes.

Table 8-2. Members of the code group classes

Member Description

Properties

AttributeString
Returns a String representing the code group's attributes.
FileCodeGroup and NetCodeGroup do not use attributes and
always return null (C#) or Nothing (Visual Basic .NET).

Children

Gets or sets the code group's child code groups. The child
CodeGroup elements are contained in an IList. For
FirstMatchCodeGroup groups, the order of the children in the
IList is important.

Description Gets or sets the description of the code group as a String.

MembershipCondition
Gets or sets the membership condition for the code group using a
System.Security.Policy.IMembershipCondition instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

MergeLogic

Returns a String that describes the logic used to merge the

permissions of the code group and its children; returns "First Match"
for FirstMatchCodeGroup and "Union" for the other three types of

code groups.

Name Gets or sets the name of the code group using a String.

PermissionSetName

Gets a String containing the name of the code group's permission
set. This is null (C#) or Nothing (Visual Basic .NET) if the
permission set does not have a name. The NetCodeGroup class
always returns the name "Same site Web" and the FileCodeGroup

always returns the name "Same directory FileIO-" appended with
the type of file access granted.

PolicyStatement Gets or sets the PolicyStatement of the code group.

Methods

AddChild
Creates a copy of the specified CodeGroup and adds it to the end of

the current list of children.

Copy
Creates a deep copy of the CodeGroup, including all child code

groups.

Equals
Basic equality is determined by comparing the Name, Description,
and MembershipCndition of two CodeGroup objects. It is also

possible to force a comparison that includes all child code groups.

FromXml
Reconstructs a CodeGroup from XML previously generated using the
ToXml method.

RemoveChild
Removes the specified CodeGroup from the list of immediate

children.

Resolve

Returns a PolicyStatement containing the permissions granted by
the CodeGroup based on a specified Evidence collection. As

discussed earlier, the type of code group determines how the
permissions of child code groups affect the final PolicyStatement.

ResolveMatchingCodeGroups

Returns a CodeGroup tree containing all of the child code groups to
which a specified Evidence collection qualifies for membership. The

type of code group determines the set of child code groups
contained in the final collection.

ToXml

Returns a SecurityElement containing the XML object model for
the CodeGroup. ToXml is useful for writing the contents of a code

group to an XML file so that you can import it when using the
administrative tools. See Chapter 9 for further details.

Before demonstrating the creation and manipulation of code groups, we provide details of
membership conditions and policy statements.

8.2.1.1 Programming membership conditions

MergeLogic

Returns a String that describes the logic used to merge the

permissions of the code group and its children; returns "First Match"
for FirstMatchCodeGroup and "Union" for the other three types of

code groups.

Name Gets or sets the name of the code group using a String.

PermissionSetName

Gets a String containing the name of the code group's permission
set. This is null (C#) or Nothing (Visual Basic .NET) if the
permission set does not have a name. The NetCodeGroup class
always returns the name "Same site Web" and the FileCodeGroup

always returns the name "Same directory FileIO-" appended with
the type of file access granted.

PolicyStatement Gets or sets the PolicyStatement of the code group.

Methods

AddChild
Creates a copy of the specified CodeGroup and adds it to the end of

the current list of children.

Copy
Creates a deep copy of the CodeGroup, including all child code

groups.

Equals
Basic equality is determined by comparing the Name, Description,
and MembershipCndition of two CodeGroup objects. It is also

possible to force a comparison that includes all child code groups.

FromXml
Reconstructs a CodeGroup from XML previously generated using the
ToXml method.

RemoveChild
Removes the specified CodeGroup from the list of immediate

children.

Resolve

Returns a PolicyStatement containing the permissions granted by
the CodeGroup based on a specified Evidence collection. As

discussed earlier, the type of code group determines how the
permissions of child code groups affect the final PolicyStatement.

ResolveMatchingCodeGroups

Returns a CodeGroup tree containing all of the child code groups to
which a specified Evidence collection qualifies for membership. The

type of code group determines the set of child code groups
contained in the final collection.

ToXml

Returns a SecurityElement containing the XML object model for
the CodeGroup. ToXml is useful for writing the contents of a code

group to an XML file so that you can import it when using the
administrative tools. See Chapter 9 for further details.

Before demonstrating the creation and manipulation of code groups, we provide details of
membership conditions and policy statements.

8.2.1.1 Programming membership conditions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Membership conditions are classes that implement the IMembershipCondition interface. All four
types of code group contain a single IMembershipCondition instance that you must specify as an
argument to the code group's constructor; you can get and set the IMembershipCondition through
the CodeGroup.MembershipCondition property after construction.

The IMembershipCondition interface defines a method named Check, which takes an Evidence

collection argument and returns a Boolean value indicating whether the values of the contained
evidence objects satisfy a configurable condition:

C#

bool Check(Evidence evidence);

Visual Basic .NET

Function Check(ByVal evidence As Evidence) As Boolean

A CodeGroup calls the Check method of its IMembershipCondtion during policy resolution to evaluate

whether an assembly or application domain qualifies for membership to the code group.

The .NET Framework includes the eight standard membership condition classes listed in Table 8-3; all
are members of the System.Security.Policy namespace. Seven of these classes contain the logic

necessary to test the values of standard evidence classes, which we discussed in Chapter 6. One
additional membership condition class, named AllMembershipCondition always returns true when
Check is called, regardless of the evidence provided. This means a code group using
AllMembershipCondition as its membership condition will contain all assemblies and application

domains tested against it.

Table 8-3. Standard membership condition classes

Membership class Membership condition

AllMembershipCondition All code irrespective of evidence.

ApplicationDirectoryMembershipCondition

Evidence collection contains both
ApplicationDirectory and Url evidence. The
Url evidence represents a location that is a child of
that represented by the ApplicationDirectory

evidence.

HashMembershipCondition
Evidence collection contains a Hash class with the

specified hash value.

PublisherMembershipCondition
Evidence collection contains a Publisher class

with the specified publisher certificate.

SiteMembershipCondition
Evidence collection contains a Site class with the

specified site name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Membership class Membership condition

StrongNameMembershipCondition
Evidence collection contains a StrongName class

with the specified hash value.

UrlMembershipCondition
Evidence collection contains a Url class with the

specified URL location.

ZoneMembershipCondition
Evidence collection contains a Zone class with the

specified security zone.

The constructors for each type of membership condition vary depending on the evidence types they
evaluate, but all of them are relatively straightforward to use if you understand the standard
evidence types. You should consult the .NET Framework SDK documentation for complete details, but
here are some examples of how to create membership conditions:

C#

// Create a membership condition to match all code.
IMembershipCondition m1 = new AllMembershipCondition();

// Create a membership condition to match all code with
// Internet Zone evidence.
IMembershipCondition m2 =
 new ZoneMembershipCondition(SecurityZone.Internet);

// Create a membership condition to match all code from
// all "oreilly.com" Sites.
IMembershipCondition m3 =
 new SiteMembershipCondition("*.oreilly.com");

// Create a membership condition to match all code with
// the same Publisher certificate as was used to sign
// the SomeFile.exe assembly.
IMembershipCondition m4 =
 new PublisherMembershipCondition(
 X509Certificate.CreateFromSignedFile("SomeFile.exe")
);

Visual Basic .NET

' Create a membership condition to match all code.
Dim m1 As IMembershipCondition = New AllMembershipCondition()

' Create a membership condition to match all code with
' Internet Zone evidence.
Dim m2 As IMembershipCondition = _
New ZoneMembershipCondition(SecurityZone.Internet)

' Create a membership condition to match all code from
' all "oreilly.com" Sites.
Dim m3 As IMembershipCondition = _

StrongNameMembershipCondition
Evidence collection contains a StrongName class

with the specified hash value.

UrlMembershipCondition
Evidence collection contains a Url class with the

specified URL location.

ZoneMembershipCondition
Evidence collection contains a Zone class with the

specified security zone.

The constructors for each type of membership condition vary depending on the evidence types they
evaluate, but all of them are relatively straightforward to use if you understand the standard
evidence types. You should consult the .NET Framework SDK documentation for complete details, but
here are some examples of how to create membership conditions:

C#

// Create a membership condition to match all code.
IMembershipCondition m1 = new AllMembershipCondition();

// Create a membership condition to match all code with
// Internet Zone evidence.
IMembershipCondition m2 =
 new ZoneMembershipCondition(SecurityZone.Internet);

// Create a membership condition to match all code from
// all "oreilly.com" Sites.
IMembershipCondition m3 =
 new SiteMembershipCondition("*.oreilly.com");

// Create a membership condition to match all code with
// the same Publisher certificate as was used to sign
// the SomeFile.exe assembly.
IMembershipCondition m4 =
 new PublisherMembershipCondition(
 X509Certificate.CreateFromSignedFile("SomeFile.exe")
);

Visual Basic .NET

' Create a membership condition to match all code.
Dim m1 As IMembershipCondition = New AllMembershipCondition()

' Create a membership condition to match all code with
' Internet Zone evidence.
Dim m2 As IMembershipCondition = _
New ZoneMembershipCondition(SecurityZone.Internet)

' Create a membership condition to match all code from
' all "oreilly.com" Sites.
Dim m3 As IMembershipCondition = _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New SiteMembershipCondition("*.oreilly.com")

' Create a membership condition to match all code with
' the same Publisher certificate as was used to sign
' the SomeFile.exe assembly.
Dim m4 As IMembershipCondition = _
New PublisherMembershipCondition(_
X509Certificate.CreateFromSignedFile("SomeFile.exe"))

8.2.1.2 Programming policy statements

For the UnionCodeGroup and FirstMatchCodeGroup classes, a PolicyStatement class represents

the effect the code group has on its members, including the code group's attributes and its
permission set. The FileCodeGroup and NetCodeGroup classes do not require you to set a policy

statement, because they generate their permission sets dynamically and do not support attributes.

Provide a PolicyStatement as an argument to the UnionCodeGroup and FirstMatchCodeGroup
constructors, and you can get and set the PolicyStatement after construction through the
CodeGroup.PolicyStatement property.

The PolicyStatement class provides two constructors. The first takes a
System.Security.PermissionSet argument specifying the permissions a code group grants to its
members. The second constructor takes both a PermissionSet and a member of the
System.Security.Policy.PolicyStatementAttribute enumeration, representing the code group's
set of attributes. We list the possible values of PolicyStatementAttribute in Table 8-4.

Table 8-4. Members of the PolicyStatementAttribute enumeration

Member Description

All The code group has both the Exclusive and LevelFinal attributes

Exclusive
The code group has only the Exclusive attribute. See "Code Group Attributes" for

details

LevelFinal
The code group has only the LevelFinal attribute. See "Code Group Attributes" for

details

Nothing The code group has no attributes

The properties listed in Table 8-5 provide access to the content of the PolicyStatement after

instantiation.

Table 8-5. Properties of PolicyStatement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

Attributes
Gets or sets the attributes contained in the policy statement as a member of
the PolicyStatementAttribute enumeration.

AttributeString
Gets a human-readable String representing the attributes contained in the
PolicyStatement.

PermissionSet
Gets or sets the permission contained in the PolicyStatement as a
PermissionSet.

The following examples demonstrate how to create PolicyStatement objects. See Chapter 7 for a
description of how to create PermissionSet objects:

C#

// Create a PolicyStatement that grants Unrestricted access
// to everything
PolicyStatement p1 = new PolicyStatement(
 new PermissionSet(PermissionState.Unrestricted)
);

// Create a PolicyStatement that grants read access to the
// file "C:\File.txt" and specifies the LevelFinal attribute.
PermissionSet pset = new PermissionSet(
 new FileIOPermission(FileIOPermissionAccess.Read,@"C:\File.txt"));
PolicyStatement p2 = new PolicyStatement(
 pset, PolicyStatementAttribute.LevelFinal);

Visual Basic .NET

' Create a PolicyStatement that grants Unrestricted access
' to everything
Dim p1 As PolicyStatement = New PolicyStatement(_
New PermissionSet(PermissionState.Unrestricted))

' Create a PolicyStatement that grants read access to the
' file "C:\File.txt" and specifies the LevelFinal attribute.
Dim pset As PermissionSet = New PermissionSet(_
New FileIOPermission(FileIOPermissionAccess.Read,"C:\File.txt"))

Dim p2 As PolicyStatement = New PolicyStatement _
(pset,PolicyStatementAttribute.LevelFinal)

8.2.1.3 Creating code groups

With the knowledge of how to create policy statements and membership conditions, creating code
groups is straightforward. You create UnionCodeGroup and FirstMatchCodeGroup objects by
providing an IMembershipCondition and a PolicyStatement as constructor arguments. The
following example creates a UnionCodeGroup with the Exclusive attribute that matches all code

downloaded from any web site in the oreilly.com domain and grants it unrestricted access to the
filesystem:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C#

// Create the permission set and add unrestricted file access.
PermissionSet pset = new PermissionSet(PermissionState.None);
pset.AddPermission(new FileIOPermission(PermissionState.Unrestricted));

// Create the policy statement and set the Exclusive attribute.
PolicyStatement pstate =
 new PolicyStatement(pset, PolicyStatementAttribute.Exclusive);

// Create the membership condition to match all "*.oreilly.com" sites.
IMembershipCondition mcon =
 new SiteMembershipCondition("*.oreilly.com");

// Create the UnionCodeGroup
UnionCodeGroup cg = new UnionCodeGroup(mcon, pstate);

Visual Basic .NET

' Create the permission set and add unrestricted file access.
Dim pset As PermissionSet = New PermissionSet(PermissionState.None)
pset.AddPermission(New FileIOPermission(PermissionState.Unrestricted))

' Create the policy statement and set the Exclusive attribute.
Dim pstate As PolicyStatement = _
New PolicyStatement(pset, PolicyStatementAttribute.Exclusive)

' Create the membership condition to match all "*.oreilly.com" sites.
Dim mcon As IMembershipCondition = _
New SiteMembershipCondition("*.oreilly.com")

' Create the UnionCodeGroup
Dim cg As UnionCodeGroup = New UnionCodeGroup(mcon,pstate)

The NetCodeGroup class constructor takes only an IMembershipCondition, because it calculates

dynamically its permission set and does not support attributes; therefore, there is no need for a
PolicyStatement. The following example creates a NetCodeGroup that allows all code signed with
the publisher certificate contained in the Publisher.cer file to connect back to the web site from
where it is loaded. Details of the WebPermission class are in Chapter 7:

C#

NetCodeGroup cg = new NetCodeGroup(
 new PublisherMembershipCondition(
 X509Certificate.CreateFromCerFile("Publisher.cer")
));

Visual Basic .NET

Dim cg As NetCodeGroup = New NetCodeGroup(_
New PublisherMembershipCondition(_
X509Certificate.CreateFromCerFile("Publisher.cer")))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The FileCodeGroup constructor takes an IMembershipCondition and a
System.Security.Permissions.FileIOPermissionAccess argument. The
FileIOPermissionAccess specifies the type of file access permission the FileCodeGroup should

include in its dynamically generated permission set; see Table 8-6 for possible values. Details of the
FileIOPermission class are in Chapter 7.

Table 8-6. Members of the FileIOPermissionAccess enumeration

Property Description

AllAccess All access

Append Access to append content to an existing file or directory

NoAccess No access

PathDiscovery Access to the information contained in the path of a directory or file

Read Access to read from a file or directory

Write
Access to write to a file or directory, including overwriting and deleting existing
files and directories

The following code creates a FileCodeGroup that allows all code signed with the publisher certificate
contained in the Publisher.cer file to write to the directory from which it was loaded:

C#

FileCodeGroup cg = new FileCodeGroup(
 new PublisherMembershipCondition(
 X509Certificate.CreateFromCertFile("Publisher.cer")),
 FileIOPermissionAccess.Write
);

Visual Basic .NET

Dim cg As FileCodeGroup = New FileCodeGroup(_
New PublisherMembershipCondition(_
X509Certificate.CreateFromCertFile("Publisher.cer")),
FileIOPermissionAccess.Write)

8.2.2 Programming Policy Levels

The .NET class library contains the System.Security.Policy.PolicyLevel class to represent all
security policy levels: enterprise, machine, user, and application domain. The PolicyLevel class is a

container for the component elements we described in "Security Policy Levels": fully trusted
assemblies, named permission sets, and code groups.

You cannot create new PolicyLevel objects using constructors. To manipulate the enterprise,

machine, or user policy levels, you must obtain a reference to the desired level using the static

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods of the System.Security.SecurityManager class, which we discuss in the next section. To
create a new application domain policy level, use the static PolicyLevel.CreateAppDomainLevel

factory method, which we demonstrate in Section 8.2.4.

Table 8-7 summarizes the members of the PolicyLevel class. None of the members is protected

with code-access permissions. .NET protects the methods you use to obtain and update policy levels,
not the methods that manipulate them once you have a reference.

Table 8-7. Members of the PolicyLevel class

Member Description

Properties

FullTrustAssemblies
Gets an IList of StrongNameMembershipCondition objects

representing the fully trusted assemblies of the policy level.

Label Gets a String containing a description of the PolicyLevel.

NamedPermissionSets
Gets an IList of NamedPermissionSet objects representing the

fully trusted assemblies of the policy level.

RootCodeGroup
Gets or sets the root CodeGroup of the policy levels code group

tree.

StoreLocation
Gets a String containing the path of the file in which the
PolicyLevel is stored. Returns null (C#) or Nothing (Visual Basic
.NET) if the PolicyLevel does not have a storage location.

Methods

AddFullTrustAssembly
Adds a StrongNamedMembershipCondition to the fully trusted

assembly list.

AddNamedPermissionSet
Adds a NamedPermissionSet to the policy level's set of named

permission sets.

ChangeNamedPermissionSet Replaces the PermissionSet of the specified NamedPermissionSet.

CreateAppDomainLevel
Returns a PolicyLevel configured for use as an application domain

policy level.

FromXml
Reconstructs a PolicyLevel from correctly formatted XML, which is
normally generated using the ToXml method.

GetNamedPermissionSet Returns a NamedPermissionSet with the specified name.

Recover
Reverts the file where the policy level is stored to the previously
stored version.

RemoveFullTrustAssembly Removes the specified fully trusted assembly.

RemoveNamedPermissionSet Removes the specified named permission set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Reset
Returns the policy level to its default state. See Chapter 9 for details
on the default state of the various policy levels.

Resolve

Returns a PolicyStatement containing the permissions granted by
the PolicyLevel based on a specified Evidence collection. This is
the same as calling Resolve on the CodeGroup contained in the
policy levels RootCodeGroup property.

ResolveMatchingCodeGroups

Returns a CodeGroup tree containing all of the child code groups to
which a specified Evidence collection qualifies for membership. This
is the same as calling ResolveMatchingCodeGroups on the
CodeGroup contained in the policy levels RootCodeGroup property.

ToXml
Returns a SecurityElement containing an XML object model of the
PolicyLevel and its contents.

8.2.2.1 Managing fully trusted assemblies

The PolicyLevel class represents fully trusted assemblies by maintaining a list of
StrongNameMembershipCondition objects configured to match the strong names of the trusted
assembly. You can manage the fully trusted assembly list by providing StrongName or
StrongNameMembershipCondition objects to the AddFullTrustAssembly and
RemoveFullTrustAssembly methods. The read-only FullTrustAssemblies property gets a
System.Collections.IList containing the list of fully trusted assemblies.

Example 8-1 creates a StrongNameMembershipCondition object to add an entry to the fully trusted
assembly list for the HelloWorld assembly.

Example 8-1. Managing a fully trusted assembly

C#

// Create a byte array containing the strong name public key
// data.
byte[] publickey = { 0, 36, 0, 0, 4, 128, 0, 0, 148,
 0, 0, 0, 6, 2, 0, 0, 0, 36, 0, 0, 82, 83, 65, 49, 0, 4, 0,
 0, 1, 0, 1, 0, 169, 206, 164, 8, 66, 197, 231, 138, 148, 74,
 99, 125, 171, 203, 120, 143, 240, 155, 104, 138, 4, 123, 15,
 55, 85, 255, 183, 20, 111, 10, 217, 58, 127, 15, 236, 86, 16,
 121, 222, 35, 161, 14, 122, 246, 85, 226, 162, 221, 46, 215,
 161, 151, 183, 38, 31, 150, 198, 119, 109, 94, 11, 65, 208,
 33, 122, 172, 106, 62, 192, 4, 35, 255, 220, 10, 43, 90, 92,
 183, 29, 136, 57, 235, 30, 5, 127, 72, 210, 108, 215, 226, 65,
 197, 184, 28, 129, 184, 191, 211, 159, 69, 8, 84, 116, 65, 186,
 179, 35, 116, 174, 223, 167, 217, 116, 8, 178, 232, 213, 155,
 172, 87, 181, 187, 61, 43, 133, 105, 10, 187 };

// Create a StrongNamePublicKeyBlob object from the
// public key byte array.
StrongNamePublicKeyBlob blob = new StrongNamePublicKeyBlob(publickey);

Reset
Returns the policy level to its default state. See Chapter 9 for details
on the default state of the various policy levels.

Resolve

Returns a PolicyStatement containing the permissions granted by
the PolicyLevel based on a specified Evidence collection. This is
the same as calling Resolve on the CodeGroup contained in the
policy levels RootCodeGroup property.

ResolveMatchingCodeGroups

Returns a CodeGroup tree containing all of the child code groups to
which a specified Evidence collection qualifies for membership. This
is the same as calling ResolveMatchingCodeGroups on the
CodeGroup contained in the policy levels RootCodeGroup property.

ToXml
Returns a SecurityElement containing an XML object model of the
PolicyLevel and its contents.

8.2.2.1 Managing fully trusted assemblies

The PolicyLevel class represents fully trusted assemblies by maintaining a list of
StrongNameMembershipCondition objects configured to match the strong names of the trusted
assembly. You can manage the fully trusted assembly list by providing StrongName or
StrongNameMembershipCondition objects to the AddFullTrustAssembly and
RemoveFullTrustAssembly methods. The read-only FullTrustAssemblies property gets a
System.Collections.IList containing the list of fully trusted assemblies.

Example 8-1 creates a StrongNameMembershipCondition object to add an entry to the fully trusted
assembly list for the HelloWorld assembly.

Example 8-1. Managing a fully trusted assembly

C#

// Create a byte array containing the strong name public key
// data.
byte[] publickey = { 0, 36, 0, 0, 4, 128, 0, 0, 148,
 0, 0, 0, 6, 2, 0, 0, 0, 36, 0, 0, 82, 83, 65, 49, 0, 4, 0,
 0, 1, 0, 1, 0, 169, 206, 164, 8, 66, 197, 231, 138, 148, 74,
 99, 125, 171, 203, 120, 143, 240, 155, 104, 138, 4, 123, 15,
 55, 85, 255, 183, 20, 111, 10, 217, 58, 127, 15, 236, 86, 16,
 121, 222, 35, 161, 14, 122, 246, 85, 226, 162, 221, 46, 215,
 161, 151, 183, 38, 31, 150, 198, 119, 109, 94, 11, 65, 208,
 33, 122, 172, 106, 62, 192, 4, 35, 255, 220, 10, 43, 90, 92,
 183, 29, 136, 57, 235, 30, 5, 127, 72, 210, 108, 215, 226, 65,
 197, 184, 28, 129, 184, 191, 211, 159, 69, 8, 84, 116, 65, 186,
 179, 35, 116, 174, 223, 167, 217, 116, 8, 178, 232, 213, 155,
 172, 87, 181, 187, 61, 43, 133, 105, 10, 187 };

// Create a StrongNamePublicKeyBlob object from the
// public key byte array.
StrongNamePublicKeyBlob blob = new StrongNamePublicKeyBlob(publickey);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Create a Version object based on the assembly version
// number
Version version = new Version("1.1578.0.0");

// Create the new StrongNameMembershipCondition
StrongNameMembershipCondition mc =
 new StrongNameMembershipCondition (blob, "HelloWorld", version);

// Create a new application domain policy level
PolicyLevel p = PolicyLevel.CreateAppDomainLevel();

// Add the StrongNameMembershipCondition to the fully trusted
// assembly list
p.AddFullTrustAssembly(mc);

Visual Basic .NET

' Create a byte array containing the strong name public key
' data.
Dim publickey() As Byte = { 0, 36, 0, 0, 4, 128, 0, 0, 148, _
 0, 0, 0, 6, 2, 0, 0, 0, 36, 0, 0, 82, 83, 65, 49, 0, 4, 0, _
 0, 1, 0, 1, 0, 169, 206, 164, 8, 66, 197, 231, 138, 148, 74, _
 99, 125, 171, 203, 120, 143, 240, 155, 104, 138, 4, 123, 15, _
 55, 85, 255, 183, 20, 111, 10, 217, 58, 127, 15, 236, 86, 16, _
 121, 222, 35, 161, 14, 122, 246, 85, 226, 162, 221, 46, 215, _
 161, 151, 183, 38, 31, 150, 198, 119, 109, 94, 11, 65, 208, _
 33, 122, 172, 106, 62, 192, 4, 35, 255, 220, 10, 43, 90, 92, _
 183, 29, 136, 57, 235, 30, 5, 127, 72, 210, 108, 215, 226, 65, _
 197, 184, 28, 129, 184, 191, 211, 159, 69, 8, 84, 116, 65, 186, _
 179, 35, 116, 174, 223, 167, 217, 116, 8, 178, 232, 213, 155, _
 172, 87, 181, 187, 61, 43, 133, 105, 10, 187}

' Create a StrongNamePublicKeyBlob object from the
' publickey byte array.
Dim blob As StrongNamePublicKeyBlob = New StrongNamePublicKeyBlob(publickey)

' Create a Version object based on the assembly version
' number
Dim version As Version = New Version("1.1578.0.0")

' Create the new StrongNameMembershipCondition
Dim mc As StrongNameMembershipCondition = _
New StrongNameMembershipCondition(blob,"HelloWorld",version)

' Create a new application domain policy level
Dim p As PolicyLevel = PolicyLevel.CreateAppDomainLevel()

' Add the StrongNameMembershipCondition to the fully trusted
' assembly list
p.AddFullTrustAssembly(mc)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2.2.2 Managing named permission sets

As described in Section 8.1.1, each policy level contains a default set of named permissions sets.
These default sets cannot be deleted, and, apart from the Everything group, you cannot edit them.

To manage a policy level's named permission sets use the AddNamedPermissionSet and
RemoveNamedPermissionSet methods. AddNamedPermissionSet takes a NamedPermissionSet
argument, whereas RemoveNamedPermissionSet can take either a NamedPermissionSet or a String
containing the name of the NamedPermissionSet to remove. You can also change the permission set
of an existing NamedPermissionSet without having to add and remove it by calling the
ChangeNamedPermissionSet method and passing it the name of the NamedPermissionSet to
change, and a PermissionSet containing the new set of permissions.

The GetNamedPermissionSet method returns a NamedPermissionSet with the specified name, and
the NamedPermissionSets property gets an IList containing the set of NamedPermissionSet

objects. Example 8-2 demonstrates the manipulation of named permission sets.

Example 8-2. Manipulating named permission sets

C#
// Create a new application domain policy level
PolicyLevel p = PolicyLevel.CreateAppDomainLevel();

// Get a copy of the default permission set named "Internet" and
// call it "NewPermissionSet"
NamedPermissionSet ps =
 p.GetNamedPermissionSet("Internet").Copy("NewPermissionSet");

// Add the new permission set
p.AddNamedPermissionSet(ps);

// Modify the permission set "NewPermissionSet" to grant unrestricted
// access
p.ChangeNamedPermissionSet("NewPermissionSet",
 new PermissionSet(PermissionState.Unrestricted));

// Remove the NewPermissionSet permission set
p.RemoveNamedPermissionSet("NewPermissionSet");

Visual Basic .NET

' Create a new application domain policy level
Dim p As PolicyLevel = PolicyLevel.CreateAppDomainLevel()

' Get a copy of the default permission set named "Internet" and
' call it "NewPermissionSet"
Dim ps As NamedPermissionSet = _
p.GetNamedPermissionSet("Internet").Copy("NewPermissionSet")

' Add the new permission set
p.AddNamedPermissionSet(ps)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Modify the permission set "NewPermissionSet" to grant unrestricted
' access
p.ChangeNamedPermissionSet("NewPermissionSet", _
New PermissionSet(PermissionState.Unrestricted))

Console.WriteLine(p.ToXml())
' Remove the NewPermissionSet permission set
p.RemoveNamedPermissionSet("NewPermissionSet")

8.2.2.3 Managing the code group tree

You get and set the root code group of the policy level's code group tree using the RootCodeGroup
property (see Example 8-3). You must then use the methods and properties of CodeGroup, which we

discussed in Section 8.2.1, to build and configure the tree hierarchy. The following code creates the
policy level we used in Section 8.1.2 to demonstrate the policy resolution process (see Figure 8-4).

The difficulty in building large code trees is that the CodeGroup.AddChild
method and the PolicyLevel.RootCodeGroup property both create a copy of
the CodeGroup argument you pass to them. Therefore, either you must build
your tree from the bottom up, or reacquire the reference to the CodeGroup you

have just added before adding children to it.

Example 8-3. Manipulating the code group tree of a policy level

C#

// Create a new application domain policy level.
PolicyLevel p = PolicyLevel.CreateAppDomainLevel();

// Create the MyCompany named permission set as a copy of
// the default LocalIntranet named permission set
p.AddNamedPermissionSet(
 p.GetNamedPermissionSet("LocalIntranet").Copy("MyCompany")
);

// Create the My_Site code group that matches all code
// run from the "www.mysite.com" Site and grants it FullTrust.
UnionCodeGroup MySite = new UnionCodeGroup(
 new SiteMembershipCondition("www.mysite.com"),
 new PolicyStatement(p.GetNamedPermissionSet("FullTrust"))
);
MySite.Name = "My_Site";

// Create the Work_Site code group that matches all code
// run from the "www.company.com" Site and grants it the
// MyCompany, permission set.
UnionCodeGroup WorkSite = new UnionCodeGroup(
 new SiteMembershipCondition("www.company.com"),
 new PolicyStatement(p.GetNamedPermissionSet("MyCompany"))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

);
WorkSite.Name = "Work_Site";

// Create the Internet_Code code group that matches all code
// run from the Internet Zone and grants it Interent permissions.
UnionCodeGroup Internet = new UnionCodeGroup(
 new ZoneMembershipCondition(SecurityZone.Internet),
 new PolicyStatement(p.GetNamedPermissionSet("Internet"))
);
Internet.Name = "Internet_Code";

// Add the My_Site and Work_Site code groups as children of the
// Internet code group
Internet.AddChild(MySite);
Internet.AddChild(WorkSite);

// Create the My_Code code group that matches all code
// run from the My_Computer Zone and grants it FullTrust.
UnionCodeGroup MyCode = new UnionCodeGroup(
 new ZoneMembershipCondition(SecurityZone.MyComputer),
 new PolicyStatement(p.GetNamedPermissionSet("FullTrust"))
);
MyCode.Name = "My_Code";

// Create the root UnionCodeGroup that matches all code,
// but grants no permissions.
UnionCodeGroup Root = new UnionCodeGroup(
 new AllMembershipCondition(),
 new PolicyStatement(p.GetNamedPermissionSet("Nothing"))
);
Root.Name = "All_Code";

// Add the My_Code and Internet_Code groups as children of the
// Root code group
Root.AddChild(MyCode);
Root.AddChild(Internet);

// Assign the code group tree to the PolicyLevel
p.RootCodeGroup = Root;

Visual Basic .NET

' Create a new application domain policy level.
Dim p As PolicyLevel = PolicyLevel.CreateAppDomainLevel()

' Create the MyCompany named permission set as a copy of
' the default LocalIntranet named permission set
p.AddNamedPermissionSet(_
p.GetNamedPermissionSet("LocalIntranet").Copy("MyCompany"))

' Create the My_Site code group that matches all code
' run from the "www.mysite.com" Site and grants it FullTrust.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim MySite As UnionCodeGroup = New UnionCodeGroup(_
New SiteMembershipCondition("www.mysite.com"), _
New PolicyStatement(p.GetNamedPermissionSet("FullTrust")))
MySite.Name = "My_Site"

' Create the Work_Site code group that matches all code
' run from the "www.company.com" Site and grants it the
' MyCompany, permission set.
Dim WorkSite As UnionCodeGroup = New UnionCodeGroup(_
New SiteMembershipCondition("www.company.com"), _
New PolicyStatement(p.GetNamedPermissionSet("MyCompany")))
WorkSite.Name = "Work_Site"

' Create the Internet_Code code group that matches all code
' run from the Internet Zone and grants it Interent permissions.
Dim Internet As UnionCodeGroup = New UnionCodeGroup(_
New ZoneMembershipCondition(SecurityZone.Internet), _
New PolicyStatement(p.GetNamedPermissionSet("Internet")))
Internet.Name = "Internet_Code"

' Add the My_Site and Work_Site code groups as children of the
' Internet code group
Internet.AddChild(MySite)
Internet.AddChild(WorkSite)

' Create the My_Code code group that matches all code
' run from the My_Computer Zone and grants it FullTrust.
Dim MyCode As UnionCodeGroup = New UnionCodeGroup(_
New ZoneMembershipCondition(SecurityZone.MyComputer), _
New PolicyStatement(p.GetNamedPermissionSet("FullTrust")))
MyCode.Name = "My_Code"

' Create the root UnionCodeGroup that matches all code,
' but grants no permissions.
Dim Root As UnionCodeGroup = New UnionCodeGroup(_
New AllMembershipCondition(), _
New PolicyStatement(p.GetNamedPermissionSet("Nothing")))
Root.Name = "All_Code"

' Add the My_Code and Internet_Code groups as children of the
' Root code group
Root.AddChild(MyCode)
Root.AddChild(Internet)

' Assign the code group tree to the PolicyLevel
p.RootCodeGroup = Root

8.2.3 Programming the Security Manager

The System.Security.SecurityManager class contains a set of static members that provide access
to critical security system functionality and data. Most members of SecurityManager require the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

caller to have the ControlPolicy permission; ControlPolicy is an element of
System.Security.Permissions.SecurityPermission, which we discussed in Chapter 7. The
SecurityManager functionality protected by ControlPolicy means that ControlPolicy is one of

the highest trust permissions you can grant to code; you must have absolute confidence in the
source and integrity of the code to which you grant the ControlPolicy permission.

Table 8-8 summarizes the members of the SecurityManager class. The far right column titled "C"
identifies those members that require the ControlPolicy permission.

Table 8-8. Members of the SecurityManager class

Member Description C

Properties

CheckExecutionRights
Controls whether the runtime enforces the Execution

permission.

SecurityEnabled Controls whether the runtime enforces code-access security.

Methods

IsGranted Checks if the calling code has a specified permission.

LoadPolicyLevelFromFile

Replaces the specified policy level with a policy level loaded from
a file; the file must contain an XML representation of the policy
level. Use a member of the PolicyLevelType enumeration to

identify the current policy level to replace.

LoadPolicyLevelFromString
Like LoadPolicyLevelFromFile but reads the XML definition of
the new policy level from a String.

PolicyHierarchy
Provides access to the currently active policy levels via an
IEnumerator.

ResolvePolicy
Returns a PermissionSet containing all of the permissions the

policy resolution process would grant based on a specified
Evidence collection.

ResolvePolicyGroup
Returns an IEnumerator containing a set of CodeGroup objects
representing the code groups to which a specified Evidence

collection would grant membership.

SavePolicy Saves the security configuration, including all policy levels.

SavePolicyLevel
Saves the specified policy level to the same location from which
it was loaded.

The SecurityEnabled property is critical to the overall operation of the security system.
SecurityEnabled is the master switch for code access security. Setting SecurityEnabled to false

causes all demands for code-access or identity permissions to succeed; role-based security is not
affected. This is effectively the same as giving all code FullTrust but has less overhead, because the

runtime bypasses the security system when code makes security demands.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SecurityManager implements one of the most important members of the
whole security system. The SecurityEnabled property allows you to turn off

all code-access security, meaning that any code can perform any operation
regardless of evidence and permissions.

The CheckExecutionRights property controls whether the runtime enforces the Execution
permission, which is also an element of the SecurityPermission class. When
CheckExecutionRights is false, any code can run regardless of whether it has the Execution

permission.

The runtime will not store changes to the SecurityEnabled and CheckExecutionRights properties
until you call the SavePolicy method. Even after calling SavePolicy, the effect on the current

process is unpredictable, and only new processes will work reliably with the new settings:

C#

// Turn on security, turn off execution checking, and save the settings
SecurityManager.SecurityEnabled = true;
SecurityManager.CheckExecutionRights = false;
SecurityManager.SavePolicy();

Visual Basic.NET

' Turn on security, turn off execution checking, and save the settings
SecurityManager.SecurityEnabled = True
SecurityManager.CheckExecutionRights = False
SecurityManager.SavePolicy()

The reason you are most likely to be tempted to use both SecurityEnabled and
CheckExecutionRights is performance. In an environment where security is not required, it makes

sense to remove the overhead of runtime security checks, but the performance gains will vary greatly
depending on the nature of the application. In addition, you should consider thoroughly what other
factors are affecting application performance before you decide to turn off code-access security.

The IsGranted, ResolvePolicy, and ResolvePolicyGroup members are useful for testing and
debugging but are not as useful as they might initially seem. IsGranted only determines if the grant

set of the calling code contains a specified permission-you should not use it as a substitute for the
normal security control statements we discussed in Chapter 7. ResolvePolicy and
ResolvePolicyGroup both take an Evidence collection and run it through the policy resolution
process. ResolvePolicy returns a grant set based on the evidence provided, and
ResolvePolicyGroup returns the code groups to which the evidence qualifies for membership.

Of more use is the PolicyHierarchy method that returns a System.Collections.IEnumerator
containing PolicyLevel objects for each of the active policy levels. Stepping through the
enumerator, you can obtain a PolicyLevel object representing one of the active policy levels,
allowing you to edit its content. Use the PolicyLevel.Label property to identify the desired
PolicyLevel:

C#

// Get the enumeration of policy levels.
IEnumerator e = SecurityManager.PolicyHierarchy();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Step through the PolicyLevel objects, find the User policy
// and display it to the console.
while(e.MoveNext()) {

 PolicyLevel p = e.Current as PolicyLevel;

 if (p.Label == "User") {
 Console.WriteLine(p.ToXml().ToString());
 }
}

Visual Basic .NET

' Get the enumeration of policy levels.
Dim e As IEnumerator = SecurityManager.PolicyHierarchy()

' Step through the PolicyLevel objects, find the User policy
' and display it to the console.
While e.MoveNext()

 Dim p As PolicyLevel = CType(e.Current,PolicyLevel)

 If p.Label = "User" Then
 Console.WriteLine(p.ToXml().ToString())
 End If
End While

After editing an active PolicyLevel, you must call SavePolicy or SavePolicyLevel method if you
want to save the changes to disk so that they affect future processes. SavePolicy saves all policy
levels and policy settings, but SavePolicyLevel saves the configuration of a specified PolicyLevel.
SavePolicyLevel saves the specified PolicyLevel back to its source location, which is contained in
the PolicyLevel.StoreLocation property.

8.2.4 Programming Application Domain Policy

Application domain policy is the final layer of security policy evaluated when determining the code-
access permissions to grant an assembly. Regardless of the permissions granted to an assembly
based on the enterprise, machine, and user policies, you can further lock down its permissions using
application domain policy. Application domain policy is resolved even if the assembly is a member of
a LevelFinal code group in a higher policy level.

You configure application domain policy by calling the AppDomain.SetAppDomainPolicy method and
passing a configured PolicyLevel object. Application domain policy can be set only once per

application domain-setting it a second time results in a
System.Security.Policy.PolicyException. Your code must have the ControlDomainPolicy
permission to call the SetAppDomainPolicy method. ControlDomainPolicy is an element of
SecurityPermission, which we discussed in Chapter 7:

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void SetAppDomainPolicy(
 PolicyLevel domainPolicy
);

Visual Basic .NET

NotOverridable Public Sub SetAppDomainPolicy(_
 ByVal domainPolicy As PolicyLevel
)

Any assemblies loaded into an application domain before you configure the application domain policy
are subject to the standard policy resolution results from the enterprise, machine, and user levels.
Application domain policy affects only those assemblies loaded after it's set. This allows you to load
assemblies that require higher trust, before locking down the application domain through the
additional layer of policy.

The need to implement application domain policy will not be an everyday occurrence, but when
writing applications that are responsible for loading other code, the capability is invaluable.

Example 8-4 uses the SetDomainPolicy method to create a policy level with the code group

structure shown in Figure 8-10 and assign it to a specified application domain. The root code group
matches all code but grants the Nothing permission set. The second layer of code groups determines
the permissions to grant based on Url evidence of a loaded assembly. You grant assemblies loaded
from the Trusted folder the FullTrust permission set, assemblies loaded from the Untrusted folder
the Internet permission set, and assemblies loaded from the Demo the Execution permission set.

You grant all other assemblies no permissions. Because we expect an assembly to have only one
piece of Url evidence, we make the root code group of type FirstMatchCodeGroup, saving the

runtime from performing unnecessary policy resolution processing.

Figure 8-10. Sample application domain policy

Example 8-4. Creating a policy level and assigning it to an application
domain

C#

private static void SetDomainPolicy(AppDomain domain) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Create a new PolicyLevel for the application domain
 PolicyLevel policy = PolicyLevel.CreateAppDomainLevel();

 // Create a new FirstMatchCodeGroup that matches all code and
 // grants the named permission set "Nothing".
 policy.RootCodeGroup = new FirstMatchCodeGroup(
 new AllMembershipCondition(),
 new PolicyStatement(policy.GetNamedPermissionSet("Nothing"))
);

 // Determine the base path name for the URL evidence
 String basePath = "file://" + AppDomain.CurrentDomain.BaseDirectory;

 // Create the code groups that apply to the assemblies loaded
 // from specific folders. Make each of the the code groups
 // Exclusive so that they set the absolut maximum permisisons a
 // plugin can have.
 policy.RootCodeGroup.AddChild(new UnionCodeGroup(
 new UrlMembershipCondition(basePath + "Trusted/*"),
 new PolicyStatement(policy.GetNamedPermissionSet("FullTrust"),
 PolicyStatementAttribute.Exclusive)
));

 policy.RootCodeGroup.AddChild(new UnionCodeGroup(
 new UrlMembershipCondition(basePath + "Untrusted/*"),
 new PolicyStatement(policy.GetNamedPermissionSet("Internet"),
 PolicyStatementAttribute.Exclusive)
));

 policy.RootCodeGroup.AddChild(new UnionCodeGroup(
 new UrlMembershipCondition(basePath + "Demo/*"),
 new PolicyStatement(policy.GetNamedPermissionSet("Execution"),
 PolicyStatementAttribute.Exclusive)
));

 // Assign the policy to the specified application domain.
 domain.SetAppDomainPolicy(policy);
}

Visual Basic .NET

Private Shared Sub SetDomainPolicy(ByVal domain As AppDomain)

 ' Create a new PolicyLevel for the application domain
 Dim policy As PolicyLevel = _
 PolicyLevel.CreateAppDomainLevel()

 ' Create a new FirstMatchCodeGroup that matches all code and
 ' grants the named permission set "Nothing".
 policy.RootCodeGroup = New FirstMatchCodeGroup(_
 New AllMembershipCondition(), _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 New PolicyStatement(policy.GetNamedPermissionSet("Nothing")))

 ' Determine the base path name for the URL evidence
 Dim basePath As String = _
 "file://" & AppDomain.CurrentDomain.BaseDirectory;

 ' Create the code groups that apply to the assemblies loaded
 ' from specific folders. Make each of the the code groups
 ' Exclusive so that they set the absolut maximum permisisons a
 ' plugin can have.
 policy.RootCodeGroup.AddChild(New UnionCodeGroup(_
 New UrlMembershipCondition(basePath & "Trusted/*"), _
 New PolicyStatement(policy.GetNamedPermissionSet("FullTrust"), _
 PolicyStatementAttribute.Exclusive)))

 policy.RootCodeGroup.AddChild(New UnionCodeGroup(_
 New UrlMembershipCondition(basePath & "Untrusted/*"), _
 New PolicyStatement(policy.GetNamedPermissionSet("Internet"), _
 PolicyStatementAttribute.Exclusive)))

 policy.RootCodeGroup.AddChild(New UnionCodeGroup(_
 New UrlMembershipCondition(basePath & "Demo/*"), _
 New PolicyStatement(policy.GetNamedPermissionSet("Execution"), _
 PolicyStatementAttribute.Exclusive)))

 ' Assign the policy to the specified application domain.
 domain.SetAppDomainPolicy(policy)
End Sub

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.3 Extending the .NET Framework

In Section 6.3.1.1, we developed the Author evidence class, which identifies the developer of an

assembly. In this section, we extend CAS so that you can base policy resolution on the presence of
Author evidence.

8.3.1 Custom Membership Conditions Explained

To enable Author evidence to drive policy resolution, first you create a custom membership condition

class. Using the techniques described in Section 8.2, you can then use the custom membership
condition in code groups to test the values of any Author evidence presented by an assembly or

application domain. Here are the key requirements of a custom membership condition class:

Implement IMembershipCondition

Membership condition classes must implement the
System.Security.Policy.IMembershipCondition interface, which extends both the
System.Security.ISecurityPolicyEncodable and System.Security.ISecurityEncodeable

interfaces. We summarize the members of each interface in Table 8-9.
Implement default constructor

Membership condition classes must implement a default (empty) constructor. The runtime uses
this constructor when it needs to create a membership condition object from XML contained in
the security policy files.

Make serializable

Membership condition classes must be serializable. Because of their simplicity, application of
the System.SerializableAttribute is usually sufficient. Those membership condition classes

that have more complex serialization requirements must implement the
System.Runtime.Serialization.ISerializable interface.

Unless you implement ISerializable, deserialization of an object does not

result in the execution of a constructor, and therefore you should not depend
on constructor logic to configure or modify the state of the deserialized object.

Table 8-9. Members of the IMembershipCondition,
ISecurityPolicyEncodable, and ISecurityEncodeable interfaces

Member Description

IMembershipCondition
interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Check
Determines whether an Evidence collection contains evidence that

satisfies the membership criterion

Copy Returns a copy of the membership condition

Equals Tests a System.Object against the IMembershipCondition object

ToString
Returns a System.String representation of the membership

condition

ISecurityEncodable
interface

FromXml
Reconstructs the IMembershipCondition object's state from a
specified SecurityElement

ToXml
Creates and returns a SecurityElement containing an XML object
model representing the IMembershipCondition object's state

ISecurityPolicyEncodable

FromXml
The same as ISecurityEncodable.ToXml but handles any policy

level-specific state

ToXml
The same as ISecurityEncodable.FromXml but includes any

policy level-specific state

In addition to these requirements, many of the guidelines we outlined for evidence in Chapter 6 also
hold true for custom membership conditions. These include:

Make membership conditions simple. Membership conditions classes have access to the
entire Evidence collection of an assembly or application domain in the Check method, and

therefore it is possible to create custom membership conditions that test complex membership
criteria spanning multiple items of evidence. You must consider who will use your membership
condition class and design it appropriately. Creating membership classes that test multiple or
complex sets of data can result in security policy that is difficult for security administrators and
users to configure and understand.

Make membership conditions lightweight. You should consider the amount of memory
used by your membership condition classes as well as avoid lengthy processing tasks, such as
network, file, and database access during membership evaluation.

Make membership conditions noninheritable. It is safest to mark your membership
condition classes as sealed in C# and NotInheritable in Visual Basic .NET so that malicious

code cannot subclass them in an attempt to change its behavior and subvert CAS, or confuse
security administrators.

Override Object.ToString. The security administration tools use ToString to display a

message that describes the condition and value that a membership is configured to match
against. The use of this information necessitates that the output be concise. For example, "Site
= *.oreilly.com" or "Author = Peter."

Check
Determines whether an Evidence collection contains evidence that

satisfies the membership criterion

Copy Returns a copy of the membership condition

Equals Tests a System.Object against the IMembershipCondition object

ToString
Returns a System.String representation of the membership

condition

ISecurityEncodable
interface

FromXml
Reconstructs the IMembershipCondition object's state from a
specified SecurityElement

ToXml
Creates and returns a SecurityElement containing an XML object
model representing the IMembershipCondition object's state

ISecurityPolicyEncodable

FromXml
The same as ISecurityEncodable.ToXml but handles any policy

level-specific state

ToXml
The same as ISecurityEncodable.FromXml but includes any

policy level-specific state

In addition to these requirements, many of the guidelines we outlined for evidence in Chapter 6 also
hold true for custom membership conditions. These include:

Make membership conditions simple. Membership conditions classes have access to the
entire Evidence collection of an assembly or application domain in the Check method, and

therefore it is possible to create custom membership conditions that test complex membership
criteria spanning multiple items of evidence. You must consider who will use your membership
condition class and design it appropriately. Creating membership classes that test multiple or
complex sets of data can result in security policy that is difficult for security administrators and
users to configure and understand.

Make membership conditions lightweight. You should consider the amount of memory
used by your membership condition classes as well as avoid lengthy processing tasks, such as
network, file, and database access during membership evaluation.

Make membership conditions noninheritable. It is safest to mark your membership
condition classes as sealed in C# and NotInheritable in Visual Basic .NET so that malicious

code cannot subclass them in an attempt to change its behavior and subvert CAS, or confuse
security administrators.

Override Object.ToString. The security administration tools use ToString to display a

message that describes the condition and value that a membership is configured to match
against. The use of this information necessitates that the output be concise. For example, "Site
= *.oreilly.com" or "Author = Peter."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3.2 Defining the AuthorMembershipCondition Class

Following the naming pattern used in the .NET class library, we name the membership condition class
AuthorMembershipCondition. The AuthorMembershipCondition class is relatively simple; however,

there is still a fair amount of code involved because we have to implement the eight members defined
in the IMembershipCondition interface. We will break the AuthorMembershipCondition class into

manageable sections for explanation.

The class declaration for AuthorMembershipCondition specifies that it is sealed (C#) and
NotInheritable (Visual Basic .NET) to stop malicious code from subclassing it in order to subvert
CAS. You should also specify the implementation of IMembershipCondition and annotate
AuthorMembershipCondition with the System.Serializable attribute-satisfying the two major

requirements of membership condition classes.

We define a single private System.String data member named AuthorName, which will contain the
name of the author on which an AuthorMembershipCondition object will base its membership test:

C#

using System;
using System.Security;
using System.Collections;
using System.Reflection;
using System.Security.Policy;

[assembly:AssemblyKeyFile("Keys.snk")]
[assembly:AssemblyVersion("1.0.0.0")]

namespace ORA.DotNetSecurity.Policy {

 [Serializable]
 public sealed class AuthorMembershipCondition : IMembershipCondition {

 private string AuthorName = "";

Visual Basic .NET

Imports System
Imports System.Security
Imports System.Collections
Imports System.Reflection
Imports System.Security.Policy

<assembly:AssemblyKeyFile("Keys.snk")>
<assembly:AssemblyVersion("1.0.0.0")>

Namespace ORA.DotNetSecurity.Policy

 <Serializable> _
 Public NotInheritable Class AuthorMembershipCondition
 Implements IMembershipCondition

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private AuthorName As String = ""

We define two constructors for AuthorMembershipCondition. The first is a default (empty)
constructor. The runtime uses this constructor to create AuthorMembershipCondition objects before
calling the FromXml method to recreate the state of an AuthorMembershipCondition from XML

stored in the policy configuration files. The second constructor is for general use and takes a
System.String argument containing the name of the author on which the
AuthorMembershipCondition should base its membership test:

C#

 public AuthorMembershipCondition() {

 this.AuthorName = "";
 }

 public AuthorMembershipCondition(string author) {

 if (VerifyAuthorName(author)) {
 this.AuthorName = author;
 }
 }

Visual Basic.NET

 Public Sub New()
 Me.AuthorName = ""
 End Sub

 Public Sub New(ByVal author As String)
 If VerifyAuthorName(author) Then
 Me.AuthorName = author
 End If
 End Sub

We include a Name property to provide controlled access to the private AuthorName data member and
the private VerifyAuthorName utility method, which we use in both the Name property and class
constructor to validate the author name provided. To simplify AuthorMembershipCondition you
check only if the author name is null (C#) or Nothing (Visual Basic .NET)-in which case, you throw
a System.ArgumentNullException. In a production-quality membership condition class, it is good
practice to verify the condition data more thoroughly and throw a System.ArgumentException if the

data is invalid. For example, it would be a good idea to check for invalid characters and limit the size
of the name provided:

 # C#

 // Property to get/set the author name
 public string Name {

 get {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return AuthorName;
 }

 set {
 if (VerifyAuthorName(value)) {
 this.AuthorName = value;
 }
 }
 }

 // Utility method to verify that the author name
 // is not null.
 private bool VerifyAuthorName(string author) {

 if (author == null) {
 throw new ArgumentNullException("author");
 } else {
 return true;
 }
 }

Visual Basic .NET

 ' Property to get/set the author name
 Public Property Name() As String
 Get
 Return AuthorName
 End Get
 Set (ByVal Value As String)
 If VerifyAuthorName(Value) Then
 Me.AuthorName = Value
 End If
 End Set
 End Property

 ' Utility method to verify that the author name
 ' is not null.
 Private Function VerifyAuthorName(ByVal author As String) _
 As Boolean

 If author Is Nothing Then
 Throw New ArgumentNullException("author")
 Else
 Return True
 End If
 End Function

The real work of the AuthorMembershipCondition class takes place in the Check method. The Check
method takes an Evidence collection and enumerates the contained evidence objects to determine if
any of them are Author objects. If Check finds an Author object, it compares the Author.Name
property with its own private AuthorName data member. If the two names match, Check returns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

true; otherwise, Check returns false.

For simplicity, we have implemented a straightforward case-sensitive string comparison, but you
might also consider support for non-case-sensitive comparisons and wildcard matches. The
membership condition logic can be arbitrarily complex, but remember that the runtime may call
Check many times during policy resolution, and time-consuming membership condition evaluations

will affect application performance:

C#

 // Determines whether the Evidence meets the membership
 // condition.
 public bool Check(Evidence evidence) {

 // Return false if the Evidence is null
 if (evidence == null) {
 return false;
 }

 Author auth = null;

 // Enumerate across the host and assembly evidence
 // collections.
 IEnumerator enumerator = evidence.GetEnumerator();
 while (enumerator.MoveNext())
 {
 auth = enumerator.Current as Author;

 // If the evidence is of type Author and the
 // author names match, the evidence meets the
 // membership condition.
 if (auth != null) {
 if (auth.Name == this.AuthorName) {
 return true;
 }
 }
 }
 return false;
 }

Visual Basic .NET

 ' Determines whether the Evidence meets the membership
 ' condition.
 Public Function Check(ByVal evidence As Evidence) As Boolean _
 Implements IMembershipCondition.Check

 ' Return false if the Evidence is Nothing
 If evidence Is Nothing Then
 Return False
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim auth As Author = Nothing

 ' Enumerate across the host and assembly evidence
 ' collections.
 Dim enumerator As IEnumerator = evidence.GetEnumerator()
 While enumerator.MoveNext()

 auth = CType(enumerator.Current, Author)

 ' If the evidence is of type Author and the
 ' author names match, the evidence meets the
 ' membership condition.
 If Not auth Is Nothing Then
 If auth.Name = Me.AuthorName Then
 Return True
 End If
 End If
 End While

 Return False
 End Function

The remaining members of the IMembershipCondition interface are straightforward. The Copy
method returns a clone of the current AuthorMembershipCondition object, and the Equals method
compares two AuthorMembershipCondition objects for equality based on the value of their private
AuthorName data members instead of comparing object references. Because Object also defines an
Equals method, you must override it with the one defined in the IMembershipCondition interface.
As a result, you must also override the GetHashCode method:

C#

 // Creates a copy of the membership condition
 public IMembershipCondition Copy() {

 return new AuthorMembershipCondition(this.AuthorName);
 }

 // Compares an object for equality based on the author's
 // name, not the object reference.
 public override bool Equals(object obj) {

 AuthorMembershipCondition that =
 (obj as AuthorMembershipCondition);

 if (that != null) {
 if (this.AuthorName == that.AuthorName) {
 return true;
 }
 }
 return false;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // We must override GetHashCode because we override
 // Object.Equals. Returns a hash code based on the
 // author's name.
 public override int GetHashCode() {

 return this.AuthorName.GetHashCode();
 }

Visual Basic .NET

 ' Creates a copy of the membership condition
 Public Function Copy() As IMembershipCondition _
 Implements IMembershipCondition.Copy

 Return New AuthorMembershipCondition(Me.AuthorName)
 End Function

 ' Compares an object for equality based on the author's
 ' name, not the object reference.
 Public Overloads Function Equals(ByVal obj As Object) As Boolean _
 Implements IMembershipCondition.Equals

 Dim that As AuthorMembershipCondition = _
 CType(obj,AuthorMembershipCondition)

 If Not that Is Nothing Then
 If Me.AuthorName = that.AuthorName Then
 Return True
 End If
 End If
 Return False
 End Function

 ' We must override GetHashCode because we override
 ' Object.Equals. Returns a hash code based on the
 ' author's name.
 Public Overrides Function GetHashCode() As Integer

 Return Me.AuthorName.GetHashCode()
 End Function

All of the standard membership condition classes override Object.ToString to return a simple

human-readable representation of the membership condition they define. The administration tools
display this information, and it should be relatively concise. For consistency, we take the same
approach:

C#

 // Returns a simple string representation of the
 // membership condition
 public override string ToString() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return "Author - " + AuthorName;
 }

Visual Basic .NET

 ' Returns a simple string representation of the
 ' membership condition
 Public Overrides Function ToString() As String _
 Implements IMembershipCondition.ToString

 Return "Author - " & AuthorName
 End Function

Both the ISecurityEncodable and ISecurityPolicyEncodable interfaces define a ToXml method
that returns a System.Security.SecurityElement containing an XML object model of the
AuthorMembershipCondition object. The AuthorMembershipCondition class does not differentiate

between different policy levels and therefore implements both methods the same.

Most importantly, the root XML element must be "IMembershipCondition" or the administrative tools
will not be able to import the XML describing the custom membership condition. The XML
representation of all standard membership condition classes includes a version attribute that

represents the XML format used to represent the membership condition. We have taken the same
approach, which gives flexibility should future versions of the AuthorMembershipCondition class

require a different structure:

C#

 // Return a SecurityElement containing an XML object
 // model representing the membership condition.
 public SecurityElement ToXml() {

 return this.ToXml(null);
 }

 // Return a SecurityElement containing an XML object
 // model representing the membership condition. We have
 // no need to differentiate between policy levels and so
 // we ignore the "level" argument.
 public SecurityElement ToXml(PolicyLevel level) {

 // Create a new "IMembershipCondition" element
 SecurityElement se =
 new SecurityElement("IMembershipCondition");

 // Add fully qualified type name for membership condition
 se.AddAttribute(
 "class",
 this.GetType().AssemblyQualifiedName
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Add an XML version number of "1"
 se.AddAttribute("version", "1");

 // Add the author name
 se.AddAttribute("name", AuthorName);

 // Return the new SecurityElement
 return se;
 }

Visual Basic .NET

 ' Return a SecurityElement containing an XML object
 ' model representing the membership condition.
 Public Function ToXml() As SecurityElement _
 Implements ISecurityEncodable.ToXml

 Return Me.ToXml(Nothing)
 End Function

 ' Return a SecurityElement containing an XML object
 ' model representing the membership condition. We have
 ' no need to differentiate between policy levels and so
 ' we ignore the "level" argument.
 Public Function ToXml(ByVal level As PolicyLevel) _
 As SecurityElement Implements ISecurityPolicyEncodable.ToXml

 ' Create a new "IMembershipCondition" element
 Dim se As SecurityElement = _
 New SecurityElement("IMembershipCondition")

 ' Add fully qualified type name for membership condition
 se.AddAttribute(_
 "class", _
 Me.GetType().AssemblyQualifiedName _
)

 ' Add an XML version number of "1"
 se.AddAttribute("version", "1")

 ' Add the author name
 se.AddAttribute("name", AuthorName)

 ' Return the new SecurityElement
 Return se
 End Function

The reverse of the ToXml method is FromXml, which takes a SecuirtyElement and reconstructs the
object state. As with ToXml, both the ISecurityEncodable and ISecurityPolicyEncodable
interfaces define a FromXml method. Again, you implement both methods the same, because you do

not need to perform policy level-specific state configuration:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C#

 // Reconstruct the state of the membership condition
 // object from the SecurityElement provided.
 // fromExtract state from a SecurityElement
 public void FromXml(SecurityElement e) {

 this.FromXml(e, null);
 }

 // Reconstruct the state of the membership condition
 // object from the SecurityElement provided. We have
 // no need to differentiate between policy levels and so
 // we ignore the "level" argument.
 public void FromXml(SecurityElement e, PolicyLevel level) {

 // Ensure we have a SecurityElement to work with
 if (e == null) throw new ArgumentNullException("e");

 // Ensure the SecurityElement is an AuthorMembershipCondition
 if (e.Tag != "IMembershipCondition") {
 throw new ArgumentException
 ("Element must be IMembershipCondition");
 } else {
 // Extract the author name from the SecurityElement
 this.AuthorName = e.Attribute("name");
 }
 }
 }
}

Visual Basic .NET

 ' Reconstruct the state of the membership condition
 ' object from the SecurityElement provided.
 ' fromExtract state from a SecurityElement
 Public Sub FromXml(ByVal e As SecurityElement) _
 Implements ISecurityEncodable.FromXml

 Me.FromXml(e, Nothing)
 End Sub

 ' Reconstruct the state of the membership condition
 ' object from the SecurityElement provided. We have
 ' no need to differentiate between policy levels and so
 ' we ignore the "level" argument.
 Public Sub FromXml(ByVal e As SecurityElement, _
 ByVal level As PolicyLevel) _
 Implements ISecurityPolicyEncodable.FromXml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Ensure we have a SecurityElement to work with
 If e Is Nothing Then
 Throw New ArgumentNullException("e")
 End If

 ' Ensure the SecurityElement is an AuthorMembershipCondition
 If e.Tag <> "IMembershipCondition" Then
 Throw New ArgumentException _
 ("Element must be IMembershipCondition")
 Else
 ' Extract the author name from the SecurityElement
 Me.AuthorName = e.Attribute("name")
 End If
 End Sub
 End Class
End Namespace

8.3.3 Building the AuthorMembershipCondition Assembly

The AuthorMembershipCondition class has a dependency on the Author class you created in the
Chapter 7. For convenience, you could build all of the Author-related security classes into a single

assembly. This would simplify security administration if you needed to distribute CAS extensions to
third parties, but because the Author class is evidence, you would need to add the assembly to the

fully trusted assembly list of every policy level. This would grant the assembly full trust at runtime,
which many people would find unacceptable.

For the purpose of an example, build AuthorMembershipCondition into its own assembly using the

following command. Remember to ensure that you place a copy of the Author.dll assembly from
Chapter 7 in the directory where you build AuthorMembershipCondition:

C#

csc /t:library /reference:Author.dll AuthorMembershipCondition.cs

Visual Basic .NET

vbc /t:library /reference:Author.dll AuthorMembershipCondition.vb

8.3.4 Using the AuthorMembershipCondition Membership Condition

The Microsoft .NET Framework Configuration tool (Mscorcfg.msc) provides a graphical interface
through which you can configure security policy. Mscorcfg.msc implements specific support for the
standard membership condition classes and provides user-friendly interfaces through which you can
configure their membership condition parameters. However, the support for using custom
membership conditions is rudimentary, requiring you to import an XML fragment describing the
membership condition to use. This XML is the result of calling ToXml().ToString() on a custom

membership condition object.

In this example, we will use the Code Access Security Policy tool (Caspol.exe) to configure a code
group in the user policy level that uses AuthorMembershipCondition to evaluate membership. We

will describe the Caspol.exe commands necessary to perform this configuration, but you should look

http://lib.ommolketab.ir
http://lib.ommolketab.ir

at Chapter 9 for complete details of both the command-line and graphical administration tools.

8.3.4.1 Installing security assemblies

As we discussed in Section 8.1.1.3, assemblies that provide CAS extensions (such as the
AuthorMembershipCondition.dll assembly) must be fully trusted by the policy level in which they are
used. To make AuthorMembershipCondition.dll fully trusted by the user policy level, execute the
following commands from the directory where the AuthorMembershipCondition is located:

gacutil -i AuthorMembershipCondition.dll
caspol -user -addfulltrust AuthorMembershipCondition.dll

The first command installs AuthorMembershipCondition into the global assembly cache (which you

must do before you can make it a fully trusted assembly). The second command makes
AuthorMembershipCondition a fully trusted assembly in the user policy level.

8.3.4.2 Generating AuthorMembershipCondition XML

You must create an XML representation of the membership condition you want to assign to the code
group. Although the required XML is simple enough that you could create it manually, it is much
easier and safer to instantiate an AuthorMembershipCondition object and write the contents of the
SecurityElement returned by the ToXml to disk.

If you distribute custom membership condition classes to users or customers, we advise you to
create a simple utility to perform the creation of the required XML fragments. The
CreateAuthorMembership class takes an author name as a command-line argument, instantiates an
AuthorMembershipCondition object, and writes an XML representation of it to disk:

C#

using System;
using System.IO;
using ORA.DotNetSecurity.Policy;

public class CreateAuthorMembership {

 public static void Main(string[] args) {

 // Create a new AuthorMembershipCondition based
 // on the name of the author provided
 AuthorMembershipCondition amc =
 new AuthorMembershipCondition(args[0]);

 // Generate the name of the XML output file
 String file = args[0] + ".xml";

 // Render the AuthorMembershipCondition to
 // XML and write it to a file
 StreamWriter strm = new StreamWriter(file);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 strm.Write(amc.ToXml().ToString());
 strm.Close();

 // Display result
 Console.WriteLine("Created author membership condition : " +
 file);
 }
}

Visual Basic .NET

Imports System
Imports System.IO
Imports ORA.DotNetSecurity.Policy

Public Class CreateAuthorMembership

 Public Shared Sub Main(ByVal args() As String)

 ' Create a new AuthorMembershipCondition based
 ' on the name of the author provided
 Dim amc As AuthorMembershipCondition = _
 New AuthorMembershipCondition(args(0))

 ' Generate the name of the XML output file
 Dim file As String = args(0) + ".xml"

 ' Render the AuthorMembershipCondition to
 ' XML and write it to a file
 Dim strm As StreamWriter = New StreamWriter(file)
 strm.Write(amc.ToXml().ToString())
 strm.Close()

 ' Display result
 Console.WriteLine("Created author membership condition : " & _
 file)
 End Sub
End Class

Build the CreateAuthorMembership utility using the following command, remembering the

dependency on the AuthorMembershipCondition.dll library:

C#

csc /reference:AuthorMembershipCondition.dll CreateAuthorMembership.cs

Visual Basic .NET

vbc /reference:AuthorMembershipCondition.dll CreateAuthorMembership.vb

Run the command CreateAuthorMembership Peter to create the XML representation of an
AuthorMembershipCondition that matches Author evidence for the author "Peter." Here is the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

content of the Peter.xml file. The PublicKeyToken value will change based on the keys you used to
give create a strong name:

<IMembershipCondition class="ORA.DotNetSecurity.Policy.
AuthorMembershipCondition, AuthorMembershipCondition,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=cc5e18bc387194b3"
 version="1"
 name="Peter"/>

8.3.4.3 Configuring security policy

With the Author.dll assembly configured as a fully trusted assembly in the user policy level, you are
ready to create a code group whose membership condition is based on Author evidence. Type the

following command:

caspol -user -addgroup All_Code -custom Peter.xml FullTrust
-name "Peter's code" -description "Code group grants all
code written by Peter full trust"

Here is a summary of the arguments used in this command:

-user

Specifies that the command is to affect the user policy level
-addgroup All_Code

Specifies that you want to add a new child code group to the existing group with the label
"All_Code"

-custom Peter.xml FullTrust

Specifies that you are adding a custom membership condition contained in the file Peter.xml
and that the permission set granted by the code group is the named permission set "FullTrust"

-name "Peter's code"

Specifies the name of the new code group
-description "Code group grants all code written by Peter full trust"

Specifies a description for the new code group

Depending on how Caspol.exe is configured, it may prompt you to confirm the change your are about
to make with the following message:

The operation you are performing will alter security policy.
Are you sure you want to perform this operation? (yes/no)

Entering "yes" updates the user security policy and commits the changes to disk; you will see the
following message:

Added union code group with "-custom" membership condition to the User level.
Success

8.3.5 Testing Custom Membership Conditions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The easiest way to test the extensions to the policy resolution process is to use the Caspol.exe tool.
In Chapter 6, we embedded Author evidence in an assembly named HelloWorld.exe. We can use

Caspol.exe and the HelloWorld.exe assembly to show that the "Peter's code" code group does detect
Author evidence and evaluate it correctly. Type the following command from the directory where

HelloWorld.exe is located:

caspol -user -resolvegroup HelloWorld.exe

Caspol.exe produces the following output, showing that HelloWorld.exe is a member of the code
group "Peter's code":

Microsoft (R) .NET Framework CasPol 1.0.3705.288
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Level = User

Code Groups:

1. All code: FullTrust
 1.1. Author - Peter: FullTrust

Success

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 9. Administering Code-Access
Security
The final aspect of code-access security (CAS) comprises the tools provided with the .NET Framework
SDK that allow you to configure and test the security system. This chapter is not a comprehensive
administrative reference for the configuration of .NET Framework security; instead we focus on the
information and tools you as a programmer will need during the testing and debugging of your
programs. These tools are relevant no matter what type of code you develop, but are particularly
useful when developing systems that rely on or manipulate the CAS features we have discussed in
the previous four chapters. If you require a more general discussion of these tools and .NET security
administration, we refer you to the .NET Framework SDK documentation.

First, we outline the default security policy implemented by the .NET Framework. If you work in a
corporate environment, it is likely that a central IT or security group will define a standard security
policy. However, outside such environments many average users are unable or reluctant to change
the default security policy. It is important that you understand the security restrictions enforced by
the most common environment in which your code is likely to run. You can then either program
around these restrictions or communicate any special security requirements to the users of your
code.

We look at three tools provided with the .NET Framework SDK and show you how to use them in the
configuration and testing of security policy:

Permissions View tool

Allows you to view an assembly's declarative security statements
The .NET Framework Configuration tool

Provides a graphical interface through which to configure aspects of the .NET Framework
The Code-Access Security Policy tool

Provides a command-line interface through which to configure the .NET Framework security
system

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.1 Default Security Policy

The .NET Framework provides a simple and conservative default security policy that makes use of
Microsoft Internet Explorer security zones, which map to the Zone evidence type that we discussed in

Chapter 6.

9.1.1 Security Policy Files

The configuration information for the enterprise, machine, and user policy levels is stored in separate
files. Each file contains an XML description of the complete policy level including code groups, named
permission sets, and fully trusted assemblies. The runtime uses the XML description to create the
policy level's object hierarchy for use during policy resolution, which we discussed in Chapter 8.

Table 9-1 lists the default names and storage locations of the policy files on the Windows 2000,
Windows NT, Windows 98, and Windows Me platforms. The location of the enterprise and machine
policy files depends on the location of the .NET Framework runtime installation. User policy files are
user-specific, and their default location depends on where the operating system stores user files. To
support users that run multiple versions of the .NET Framework, the location of user policy files also
depends on the version of the .NET Framework to which they apply.

Table 9-1. Security policy file locations

Policy level Default location

Enterprise runtime_install_path\Config\Enterprisesec.config

Machine runtime_install_path \Config\Security.config

User (Windows 2000
and NT)

%USERPROFILE%\Application Data\Microsoft\CLR Security
Config\version\security.config

User (Windows 98 and
Me)

%WINDIR%\username\CLR Security Config\version\security.config

When the runtime starts, it looks for the enterprise, machine, and user policy files. If any of the files
are missing, the runtime will recreate the missing files automatically using the default configuration
settings that we discuss in the following sections. This behavior ensures that the runtime never
operates without a complete security policy. However, this approach can also give surprising and
undesirable results if you are unaware that one of the policy files has been removed. For example, if
somebody manages to delete the enterprise policy file in which you have defined a series of security
constraints, the new one created by the runtime will contain the default enterprise-level
configuration, which gives all code full trust.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Policy files are stored as clear-text XML files and are susceptible to both manual
and programmatic manipulation. Because policy files are so important to the
security of the .NET runtime, it is essential that you protect them from
inadvertent or malicious modification and deletion by using operating system
file-access controls, such as those provided by NTFS.

9.1.2 Named Permission Sets

The default enterprise, machine, and user policy levels all contain the set of named permission sets
listed in Table 9-2. We summarize the permissions granted by each permission set, but refer you to
the .NET Framework SDK documentation for exact details. All of these permission sets except
Everything are immutable.

Table 9-2. Default named permission sets

Permission set Description

FullTrust Unrestricted access to all operations and resources.

SkipVerification
Includes permission for code to skip verification, but nothing else. This set
includes only the SecurityPermission.SkipVerification permission. We

discuss the importance of verification in Chapter 4.

Execution
Includes permission for code to execute, but nothing else. This set includes
only the SecurityPermission.Execution permission.

Nothing No access to any operation or resource, not even the permission to execute.

LocalIntranet

A set of permissions deemed by Microsoft to be appropriate for code loaded
from the local intranet. This includes the following permissions:

DnsPermisison.Unrestricted
EnvironmentPermission.Read(Username)
EventLogPermission.Instrument
FileDialogPermission.Unrestricted
IsolatedStroragePermssion.AssemblyIsolaitionByUser
PrintingPermission.DefaultPrinting
ReflectionPermission.ReflectionEmit
SecurityPermission.Execution
SecurityPermission.Assertion
UIPermission.Unresticted

Internet

A set of permissions deemed by Microsoft to be appropriate for code loaded
from the Internet. This includes the following permissions:

FileDialogPermission.Open
IsolatedStroragePermssion.DomainIsolaitionByUser
PrintingPermission.SafePrinting
SecurityPermission.Execution
UIPermission.SafeTopLevelWindoews

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Permission set Description UIPermission.SafeTopLevelWindoews
UIPermission.OwnClipboard

Everything
When created, the Everything group contains an unrestricted version of each

standard code-access permission contained in the .NET class library except the
SkipVerification element of the SecurityPermission class.

9.1.3 Enterprise and User Policy Code Groups

The default security policy does not rely on the enterprise and user policy levels to enforce code-
access security. Both the default enterprise and user policy levels consist of a single code group
named All_Code, which has a membership condition of AllCode and grants its members the
FullTrust permission set. This means that without the default machine policy (discussed next), any

code regardless of the evidence it presents can perform any action and access any resource.

9.1.4 Machine Policy Code Groups

In the interest of simplicity, the default security policy concentrates all security decisions in the
machine policy level. The code group hierarchy of the machine policy level is oriented around
Microsoft Internet Explorer security zones. Figure 9-1 shows the group hierarchy of the default
machine policy. The root code group, named All_Code, gives all code the Nothing permission set.
Below the All_Code root node are five code groups-one for each value of Zone evidence.
Internet_Zone and Trusted_Zone use child code groups of type NetCodeGroup and FileCodeGroup

to grant code permission to the URL and web site from where they where downloaded; see Chapter 8
for a description of the different types of code groups.

Figure 9-1. Default machine policy code group hierarchy

UIPermission.SafeTopLevelWindoews
UIPermission.OwnClipboard

Everything
When created, the Everything group contains an unrestricted version of each

standard code-access permission contained in the .NET class library except the
SkipVerification element of the SecurityPermission class.

9.1.3 Enterprise and User Policy Code Groups

The default security policy does not rely on the enterprise and user policy levels to enforce code-
access security. Both the default enterprise and user policy levels consist of a single code group
named All_Code, which has a membership condition of AllCode and grants its members the
FullTrust permission set. This means that without the default machine policy (discussed next), any

code regardless of the evidence it presents can perform any action and access any resource.

9.1.4 Machine Policy Code Groups

In the interest of simplicity, the default security policy concentrates all security decisions in the
machine policy level. The code group hierarchy of the machine policy level is oriented around
Microsoft Internet Explorer security zones. Figure 9-1 shows the group hierarchy of the default
machine policy. The root code group, named All_Code, gives all code the Nothing permission set.
Below the All_Code root node are five code groups-one for each value of Zone evidence.
Internet_Zone and Trusted_Zone use child code groups of type NetCodeGroup and FileCodeGroup

to grant code permission to the URL and web site from where they where downloaded; see Chapter 8
for a description of the different types of code groups.

Figure 9-1. Default machine policy code group hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although the default machine policy code group hierarchy remains the same
between Versions 1.0 and 1.1 of the .NET Framework, the permissions granted
to the Internet_Zone code group are different. The .NET Framework Version
1.0 security policy is extremely conservative and grants the Internet_Zone
code group the Nothing permission set. As of Version 1.0 SP1 and including
Version 1.1 of the .NET Framework, the Internet_Zone code group grants the
Internet permission set to its members.

9.1.5 Fully Trusted Assemblies

The following is a list of assemblies contained in the fully trusted assemblies list of the default
enterprise, machine, and user policy levels. Each of these assemblies contains classes that may be
used during the policy-resolution process. You should not remove any of these assemblies from the
fully trusted list, as this will almost certainly cause problems during policy resolution:

mscorlib.resources

System

System.resources

System.Data

System.Data.resources

System.Drawing

System.Drawing.resources

System.Messaging

System.Messaging.resources

System.ServiceProcess

System.ServiceProcess.resources

System.DirectoryServices

System.DirectoryServices.resources

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.2 Inspecting Declarative Security Statements

The Permissions View tool (Permview.exe) allows you to view the declarative security statements
used in an assembly. This is particularly useful when configuring security policy, as it allows you to
view the permission requests contained in the assembly. Permview.exe is located in the \bin
subdirectory of the .NET Framework SDK installation directory. Note that the \bin directory is not
added to the Path environment variable by the SDK-installation process.

Permview.exe only shows declarative security statements and cannot extract
the imperative security demands. It overrides from the body of an assembly.

To demonstrate Permview.exe, use the MessageUtil class shown here, which allows any caller to
display a message box containing the value of the Message environment variable. MessageUtil uses
three RequestMinumum permission requests to ensure that it has permission to read the Message
environment variable, called Assert, and display safe top-level windows (such as message boxes).
The DisplayMessage method uses declarative syntax to Assert UIPermission and
EnvironmentPermission. This allows any client code to use DisplayMessage regardless of the

caller's permissions:

C#

using System;
using System.Windows.Forms;
using System.Security.Permissions;

// Request read access to the Message environment variable.
[assembly:EnvironmentPermission(SecurityAction.RequestMinimum,
 Read = "Message")]

// Request permission to Assert.
[assembly:SecurityPermission(SecurityAction.RequestMinimum,
 Assertion = true)]

// Request permission to display safe top level windows.
[assembly:UIPermission(SecurityAction.RequestMinimum,
 Window = UIPermissionWindow.SafeTopLevelWindows)]

public class MessageUtil {

 // Assert the permission to read the Message environment variable and
 // to display top level windows.
 [EnvironmentPermission(SecurityAction.Assert, Read = "Message")]
 [UIPermission(SecurityAction.Assert,
 Window = UIPermissionWindow.SafeTopLevelWindows)]
 public static void DisplayMessage() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Display the value of the Message environment variable
 // in a message box.
 MessageBox.Show(Environment.GetEnvironmentVariable("Message"));
 }
}

Visual Basic .NET

Imports System
Imports System.Windows.Forms
Imports System.Security.Permissions

' Request read access to the Message environment variable.
<assembly:EnvironmentPermission(SecurityAction.RequestMinimum, _
 Read := "Message")> _

' Request permission to Assert.
<assembly:SecurityPermission(SecurityAction.RequestMinimum, _
 Assertion := True)> _

' Request permission to display safe top level windows.
<assembly:UIPermission(SecurityAction.RequestMinimum, _
 Window := UIPermissionWindow.SafeTopLevelWindows)> _

Public Class MessageUtil

 ' Assert the permission to read the Message environment variable and
 ' to display top level windows.
 <EnvironmentPermission(SecurityAction.Assert, Read := "Message"), _
 UIPermission(SecurityAction.Assert, _
 Window := UIPermissionWindow.SafeTopLevelWindows)> _
 Public Shared Sub DisplayMessage()
 ' Display the value of the Message environment variable
 ' in a message box.
 MessageBox.Show(Environment.GetEnvironmentVariable("Message"))
 End Sub
End Class

If you build MessageUtil into a library named MessageUtil.dll and then run the command permview
MessageUtil.dll, you will see the following XML descriptions of the permission request statements:

Microsoft (R) .NET Framework Permission Request Viewer. Version 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

minimal permission set:
<PermissionSet class="System.Security.PermissionSet"
 version="1">
 <IPermission class="System.Security.Permissions.EnvironmentPermission, mscorl
ib, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Read="Message"/>
 <IPermission class="System.Security.Permissions.SecurityPermission, mscorlib,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Flags="Assertion"/>
 <IPermission class="System.Security.Permissions.UIPermission, mscorlib, Versi
on=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Window="SafeTopLevelWindows"/>
</PermissionSet>

optional permission set:
 Not specified

refused permission set:
 Not specified

This is not the easiest format to read, but it contains all the information you need to configure your
security policy correctly. Unfortunately, the output is not pure XML, and therefore creating a utility to
parse the output and create a more readable report is not as straightforward as it could be.

Using the command permview /decl MessageUtil.dll extracts and displays all declarative security

demands and stack walk overrides in addition to the permission requests. You will see the following
information in addition to the permission request information we have already shown. Be aware that
for large libraries the output from Permview may be significant:

Method MessageUtil::DisplayMessage() Assert permission set:
<PermissionSet class="System.Security.PermissionSet"
 version="1">
 <IPermission class="System.Security.Permissions.EnvironmentPermission, mscorl
ib, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Read="Message"/>
 <IPermission class="System.Security.Permissions.UIPermission, mscorlib, Versi
on=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Window="SafeTopLevelWindows"/>
</PermissionSet>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.3 Using the .NET Framework Configuration Tool

The .NET Framework Configuration tool (Mscorcfg.msc) is a Microsoft Management Console (MMC)
snap-in supplied with the .NET Framework that provides a graphical interface to manage various
aspects of .NET configuration. We are concerned with the administration of security policy only and
will not discuss the other features (refer to the .NET Framework documentation).

You can run Mscorcfg.msc only if you have MMC version 1.2 or later installed on
your computer. If you do not have MMC 1.2, you can download it from the
Microsoft web site.

The steps to execute Mscorcfg.msc from the Windows user interface depend on the operating system
you are using:

Windows 2000 Professional

Run Microsoft .NET Framework Configuration from the Administrative Tools group of the
Control Panel.

Windows 2000 Server or Windows .NET Server

Click Start, Programs, Administrative Tools, and finally Microsoft .NET Framework Configuration
Windows XP Professional

From the Control Panel, click Performance and Maintenance then Administrative Tools and run
Microsoft .NET Framework Configuration

Regardless of the operating system you choose, you can start Mscorcfg.msc from the command line
using the following command, where version is the version of the .NET framework, such as

"v1.0.3705" for Version 1.0:

%Systemroot%\Microsoft.NET\Framework\version\Mscorcfg.msc

Figure 9-2 shows the main window of Mscorcfg.msc. Expanding the Runtime Security Policy node of
the console tree, you will see child nodes for each of the enterprise, machine, and user policy levels.

Figure 9-2. The Mscorcfg.msc main window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By expanding the node representing the policy level you want to administer, you can see three
subtrees, one for each of the following policy-level elements we discussed in Chapter 8:

Fully trusted assemblies list

Named permission sets

Code group hierarchy

The following sections focus on the management of these three elements.

9.3.1 Managing Fully Trusted Assemblies

In Chapter 8, we explained the requirement for policy levels to define a list of fully trusted
assemblies. By right-clicking the Policy Assemblies node, as shown in Figure 9-3, a shortcut menu
provides you with the following options:

Add...

Allows you to add an assembly to the fully trusted assembly list, which we discuss further in
Section 9.3.1.1

View

Allows you to control the righthand console pane to display either the current list of fully
trusted assemblies (shown in Figure 9-3) or help information that describes the purpose of fully
trusted assemblies

Export List...

Allows you to export the list of fully trusted assemblies to a text file, including version numbers
and public key token values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Help

Displays MMC help information

Figure 9-3. Managing fully trusted assemblies

9.3.1.1 Adding a fully trusted assembly

Before you can add a new assembly to the fully trusted assemblies list, you must install the assembly
into the global assembly cache. In Chapter 2, we discussed the global assembly cache and how to
add assemblies to it.

After you have installed the assembly in the global assembly cache, right-click the Policy Assemblies
node of the console tree, as shown in Figure 9-3 and select Add... from the shortcut menu. The
Choose Assembly From Assembly Cache dialog box (shown in Figure 9-4) is displayed, listing all of
the assemblies installed in the global assembly cache. Select the assembly you want to make fully
trusted and click the Select button.

Figure 9-4. List of assemblies in the global assembly cache

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You must make an assembly fully trusted in every policy level in which you will
use the security classes that the assembly contains; see Chapter 8 for more
details.

9.3.1.2 Deleting a fully trusted assembly

To remove an assembly from the fully trusted assemblies list, make sure the righthand pane of the
console displays the current list of fully trusted assemblies, as previously shown in Figure 9-3. To
configure this, right-click the Policy Assemblies node in the console tree and click View followed by
Assemblies from the shortcut menus.

With the list displayed, right-click the assembly that you want to remove and select Delete from the
shortcut menu that appears. You will be prompted to confirm the delete action; click the Yes button
and the assembly is removed.

Security policy resolution will not function correctly if you remove an assembly
containing classes on which the active policy configuration depends; see
Chapter 8 for details.

9.3.2 Managing Named Permission Sets

By expanding a policy level's Permission Sets node in the console tree, you will see the list of named
permission sets defined in that policy level. Figure 9-5 shows the list of named permission sets
defined in the default user policy.

Figure 9-5. Managing named permission sets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As shown in Figure 9-5, right-clicking any of the default permission set nodes displays a shortcut
menu containing the following options:

Duplicate

Creates a copy of the selected permission set in the current policy level. For example, if you
right-click the Internet permission set and select Duplicate, you create a new permission set

named Copy of Internet in the user policy level.
View

Allows you to control the contents of the righthand console pane to display either the
permissions contained in the selected permission set (shown in Figure 9-5) or help information
that describes the permission set.

Properties

Displays a dialog box containing the name and description of the permission set. Because the
default permission sets (except Everything, which we discuss shortly) are immutable, the

dialog box does not allow you to edit the property values.
Copy

Copies the permission set to the clipboard, allowing you to make copies of the permission set in
other policy levels using the clipboard's Paste facility.

Help

Displays MMC help information.

The shortcut menu for the default Everything permission set or any other non-default permission set

includes these additional options:

Change Permissions...

Brings up a dialog box that allows you to change the permissions contained in the permission

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set. The dialog boxes for editing the permission sets' content are the same dialog boxes used
to create permission sets; we will discuss them in Section 9.3.2.1.

Cut

Copies the permission set to the clipboard and deletes it from the current policy level. You
cannot cut permission sets that are in use by code groups.

Delete

Allows you to delete the permission set as long as it is not in use by any code group.
Rename

Allows you to rename the permission set as long as it is not is in use by any code group.
Properties

Displays a dialog box that allows you to edit the name and description of the permission set. As
with Rename, you cannot change the name of a permission set that is currently in use by a
code group.

9.3.2.1 Creating named permission sets

To create a new named permission set, right-click Permission Sets node in the console tree and select
New... from the shortcut menu.

The Create Permission Set dialog box, shown in Figure 9-6, appears. You have two options for
creating the new permission set: manual creation using the graphical interface or importing the
definition of the permission set from an XML file.

Figure 9-6. Creating a new permission set

To import the named permission set from a file, select the Import a permission set from an XML file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

radio button, enter the name of the file containing the definition, and press the Next button. The XML
description of the permission set must have the structure shown in the following example, which
describes a permission set named TestSet containing the unrestricted FileIOPermission, as well as
the Assertion and Execution permissions from SecurityPermission:

<PermissionSet class="System.Security.NamedPermissionSet"
 version="1"
 Name="TestSet">
 <IPermission class="System.Security.Permissions.FileIOPermission, mscorlib,
Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Unrestricted="true"/>
 <IPermission class="System.Security.Permissions.SecurityPermission, mscorlib,
Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Flags="Assertion, Execution"/>
</PermissionSet>

The complexity of information in the XML description of a named permission set means that it is
easier to create this information programmatically. This is easy to do by creating a
System.Security.NamedPermission object, populating it with permission objects, and calling the
ToString method on the System.Security.SecurityElement returned by the ToXml method. The
following code demonstrates the creation of the TestSet named permission set (whose XML

description we just listed) and displays it to the console:

C#

// Create an empty NamedPermissionSet
NamedPermissionSet ps = new NamedPermissionSet("TestSet", PermissionState.None);

// Add an unrestricted FileIOPermission
ps.AddPermission(new FileIOPermission(PermissionState.Unrestricted));

// Add a SecurityPermission with Assertion and Execution permissions
ps.AddPermission(new SecurityPermission(SecurityPermissionFlag.Assertion |
 SecurityPermissionFlag.Execution));

// Display an XML version of the named permission set to the console.
Console.WriteLine(ps.ToXml().ToString());

Visual Basic .NET

' Create an empty NamedPermissionSet
Dim ps As NamedPermissionSet = _
New NamedPermissionSet("TestSet",PermissionState.None)

' Add an unrestricted FileIOPermission
ps.AddPermission(New FileIOPermission(PermissionState.Unrestricted))

' Add a SecurityPermission with Assertion and Execution permissions
ps.AddPermission(New SecurityPermission(SecurityPermissionFlag.Assertion Or
SecurityPermissionFlag.Execution))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Display an XML version of the named permission set to the console.
Console.WriteLine(ps.ToXml().ToString())

Imported permission set definitions can include entries for custom code-access
permission classes, which we discussed in Chapter 7. Before you import custom
code-access permissions, make sure you have added the assembly that
contains the custom class to the fully trusted assemblies list of the current
policy level; see "Managing Fully Trusted Assemblies" earlier in this chapter for
details.

Instead of importing the named permission set, you can create it manually by selecting the Create a
new permission set radio button. Enter a name and a description for the new permission set. In
Figure 9-6, we entered the name "CAS_Manipulation" because we are creating a permission set that
includes all of the permissions necessary to manipulate CAS programmatically. Press the Next button
to display the dialog box shown in Figure 9-7, which allows you to select the set of permissions to
include in the permission set.

Figure 9-7. Assigning permissions

Select the permission you want to include in your permission set from the Available Permissions list
and click the Add button. You will see a Permission Settings dialog box. The contents of this dialog
box depend on which permission you selected to add. Figure 9-8 shows the Permission Settings
dialog box for the Security permission, which represents the
System.Security.Permissions.SecurityPermission class we described in Chapter 7.

Figure 9-8. Configuring permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Figure 9-8, we select the individual elements of the SecurityPermission that we want to include
in the new permission set. The permissions we have selected here map to the Execution,
ControlPolicy, ControlDomainPolicy, ControlAppDomain, and ControlEvidence members of the
System.Security.Permissions.SecurityPermissionFlag enumeration, which is also discussed in

Chapter 7. Pressing the OK button takes you back to the list of available permissions shown in Figure
9-7. You can add more permissions or remove any that you have already added.

Figure 9-7 also shows a button named Import... (which allows you to import an individual custom
permission to your permission set). Pressing the Import... button displays a dialog box that allows
you to select the file containing the XML description of the custom permission. The XML description of
the permission must be of the appropriate structure to allow the runtime to create an instance of the
permission using the permission class's FromXml method. The following example contains the XML
description of the custom RadioPermission class that we developed in Chapter 7. This specific

example grants access to turn the radio on and off:

<IPermission class="OReilly.ProgrammingDotNetSecurity.RadioPermission,
Radio, Version=1.0.0.0, Culture=neutral, PublicKeyToken=cc5e18bc387194b3"
 version="1"
 StartStop="true"/>

After configuring the contents of the new permission set, clicking Finish returns you to the main
Mscorcfg.msc window.

Before you import custom code-access permissions, make sure you have added
the assembly that contains the custom class to the fully trusted assemblies list
of the current policy level; see "Managing Fully Trusted Assemblies" earlier in
this chapter for details.

9.3.3 Managing Code Groups

By expanding a policy level's Code Groups node in the console tree, you will see the root code group
for the policy level, as shown in Figure 9-9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 9-9. Managing code groups

Code group names must be unique within a policy level.

Right-clicking the root code group brings up a shortcut menu with the following options:

New...

Allows you to create a new child code group, which we discuss in Section 9.3.3.1.
Duplicate

Creates a deep copy (including all child code groups) of the selected code group and adds it as
a child node to the current code group. For example, if you right-click on the All_Code group
and select Duplicate, you create a new child group under All_Code named Copy of All_Code.

Copy

Copies the code group to the clipboard, allowing you to create copies of the code group as
children of other code groups using the clipboard's Paste facility.

Paste

Pastes a previously copied code group as a child of the selected code group.
Rename

Allows you to edit the name of the code group.
Properties

Displays a dialog box that allows you to edit the configuration of the code group. With the
exception of the code group's attributes, the property pages contain the same settings as the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dialog boxes used during the creation of the code group. We detail these settings in Section
9.3.3.1.

The key use of the property pages is to configure the Exclusive and LevelFinal attributes for

the code group, which we discussed in Chapter 8. However, the interface does not use the
attribute names and provides check boxes with the following human-readable interpretations
from which to choose:

Exclusive

This policy level will only have the permissions from the permission set associated with
this code group.

LevelFinal

Policy levels below this level will not be evaluated.
Help

Displays MMC help information.

By expanding the node representing the root code group, and the subsequently displayed child
nodes, you can navigate through the code group hierarchy of the policy level. Right-clicking any code
group node (except the root node) displays a shortcut menu the same as that we have already
described, but with the following two additional options:

Cut

Copies the code group and its children to the clipboard and deletes it from the current policy
level

Delete

Deletes the code group and its children.

9.3.3.1 Creating code groups

To create a new code group, right-click the existing code group under which you want to create the
new child code group and select New... from the shortcut menu.

You can only create code groups of type
System.Security.Policy.UnionCodeGroup using the graphical interface of

Mscorcfg.msc. To create code groups of other types, you must import the XML
description of the code group. See Chapter 8 for a description of the different
types of code groups.

In the Create Code Group dialog box shown in Figure 9-10, you have the option to create the new
code group manually or to import an XML description of the code group from a file.

Figure 9-10. Identifying the new code group

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To import a code group from a file select, the Import a code group from a XML file radio button, enter
the name of the file containing its XML description, and press the Next button. The XML description of
the code group must have the structure shown in the following example, which defines a code group
with the configuration listed in Table 9-3:

<CodeGroup class="System.Security.Policy.UnionCodeGroup, mscorlib, Version=1.0.3300.
0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Attributes="Exclusive"
 Name="TestGroup"
 Description="A code group for testing">
 <IMembershipCondition class="System.Security.Policy.SiteMembershipCondition,
mscorlib, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Site="*.oreilly.com"/>
 <PermissionSet class="System.Security.NamedPermissionSet"
 version="1"
 Name="FileAccess">
 <IPermission class="System.Security.Permissions.FileIOPermission, mscorlib,
Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Unrestricted="true"/>
 </PermissionSet>
</CodeGroup>

Table 9-3. Parameter values of the TestGroup code group

Parameter Setting

Name TestGroup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parameter Setting

Description A code group for testing

Membership
Condition

All code downloaded from a Site in the oreilly.com domain

Permission Set
A custom permission set named FileAccess, containing unrestricted access

to the filesystem

Attributes Exclusive

As with the permission set you imported in Section 9.3.2.1, the complexity of a code group's XML
description means it is easier and less error-prone to create. We detail the programmatic creation
and configuration of code groups in Chapter 8. As an example, here is the code that will generate the
TestGroup code group we just described and print an XML representation of it to the console:

C#

// Create the named permission set and add unrestricted file access.
NamedPermissionSet pset =
 new NamedPermissionSet("FileAccess",PermissionState.None);
pset.AddPermission(new FileIOPermission(PermissionState.Unrestricted));

// Create the policy statement and set the Exclusive attribute.
PolicyStatement pstate =
 new PolicyStatement(pset, PolicyStatementAttribute.Exclusive);

// Create the membership condition to match all "*.oreilly.com" sites.
IMembershipCondition mcon = new SiteMembershipCondition("*.oreilly.com");

// Create and configure the UnionCodeGroup
UnionCodeGroup cg = new UnionCodeGroup(mcon, pstate);
cg.Name = "TestGroup";
cg.Description = "A code group for testing";

// Display the CodeGroup to the console
Console.WriteLine(cg.ToXml().ToString());

Visual Basic .NET

' Create the named permission set and add unrestricted file access.
Dim pset As NamedPermissionSet = _
New NamedPermissionSet("FileAccess",PermissionState.None)
pset.AddPermission(New FileIOPermission(PermissionState.Unrestricted))

' Create the policy statement and set the Exclusive attribute.
Dim pstate As PolicyStatement = _
New PolicyStatement(pset,PolicyStatementAttribute.Exclusive)

' Create the membership condition to match all "*.oreilly.com" sites.
Dim mcon As IMembershipCondition = _
New SiteMembershipCondition("*.oreilly.com")

Description A code group for testing

Membership
Condition

All code downloaded from a Site in the oreilly.com domain

Permission Set
A custom permission set named FileAccess, containing unrestricted access

to the filesystem

Attributes Exclusive

As with the permission set you imported in Section 9.3.2.1, the complexity of a code group's XML
description means it is easier and less error-prone to create. We detail the programmatic creation
and configuration of code groups in Chapter 8. As an example, here is the code that will generate the
TestGroup code group we just described and print an XML representation of it to the console:

C#

// Create the named permission set and add unrestricted file access.
NamedPermissionSet pset =
 new NamedPermissionSet("FileAccess",PermissionState.None);
pset.AddPermission(new FileIOPermission(PermissionState.Unrestricted));

// Create the policy statement and set the Exclusive attribute.
PolicyStatement pstate =
 new PolicyStatement(pset, PolicyStatementAttribute.Exclusive);

// Create the membership condition to match all "*.oreilly.com" sites.
IMembershipCondition mcon = new SiteMembershipCondition("*.oreilly.com");

// Create and configure the UnionCodeGroup
UnionCodeGroup cg = new UnionCodeGroup(mcon, pstate);
cg.Name = "TestGroup";
cg.Description = "A code group for testing";

// Display the CodeGroup to the console
Console.WriteLine(cg.ToXml().ToString());

Visual Basic .NET

' Create the named permission set and add unrestricted file access.
Dim pset As NamedPermissionSet = _
New NamedPermissionSet("FileAccess",PermissionState.None)
pset.AddPermission(New FileIOPermission(PermissionState.Unrestricted))

' Create the policy statement and set the Exclusive attribute.
Dim pstate As PolicyStatement = _
New PolicyStatement(pset,PolicyStatementAttribute.Exclusive)

' Create the membership condition to match all "*.oreilly.com" sites.
Dim mcon As IMembershipCondition = _
New SiteMembershipCondition("*.oreilly.com")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Create and configure the UnionCodeGroup
Dim cg As UnionCodeGroup = New UnionCodeGroup(mcon,pstate)
cg.Name = "TestGroup"
cg.Description = "A code group for testing"

' Display the CodeGroup to the console
Console.WriteLine(cg.ToXml().ToString())

Imported code group definitions can include entries for custom code group
types, membership conditions, and permissions. Before you import custom
code groups, make sure you have added the assembly that contains any
custom classes to the fully trusted assemblies list of the current policy level;
see "Managing Fully Trusted Assemblies" earlier in this chapter for details.

Instead of importing the code group, you can create it manually using a series of dialog boxes by
selecting the Create a new code group radio button, and entering a name and a description for the
new code group. In Figure 9-10, we entered the name "Test_Group" to create a code group that we
will use to grant permission to applications we are in the process of developing.

Press the Next button to display the dialog box shown in Figure 9-11, which allows you to configure
the membership condition for the new code group. The graphical interfaces allow you to base
membership on any of the standard evidence types we discussed in Chapter 6. Figure 9-11 shows the
use of Url evidence to match any code loaded from the c:\development\cas_project directory.

Figure 9-11. Specifying a membership condition

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also choose to import a custom membership condition such as the
AuthorMembershipCondition class that we developed in Chapter 8. Selecting (custom) from the list

of membership condition types causes the dialog box to change its appearance to that shown in
Figure 9-12. Pressing the Import button allows you to specify the file that contains an XML description
of the custom membership condition. In Figure 9-12, we have imported the XML description of an
AuthorMembershipCondition that matches any code with Author = Peter evidence.

Figure 9-12. Importing a custom membership condition

Before you import custom membership conditions, make sure you have added
the assembly that contains the custom class to the fully trusted assemblies list
of the current policy level; see "Managing Fully Trusted Assemblies" earlier in
this chapter for details.

After configuring the code group's membership condition, press the Next button to display the dialog
box shown in Figure 9-13, which allows you to select the permission set that the code group grants to
its members. You can choose an existing named permission set from the current policy level, or you
can choose to create a new code group. If you choose to create a new code group, you will begin the
process we described earlier in Section 9.3.2.1.

Figure 9-13. Selecting the code group's permission set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Selecting the named permission set for the code group and pressing the Next button completes the
creation of the code group and returns you to the Mscorcfg.msc main window.

9.3.4 Other Security Policy Administration Options

The previous sections have shown you how to perform the security policy configuration tasks you will
use most frequently during the development and testing process. Here we outline a number of other
operations available through Mscorcfg.msc that you may find useful. By right-clicking the Runtime
Security Policy node in the console tree, you will see the shortcut menu shown in Figure 9-14.

Figure 9-14. The shortcut menu available through Mscorcfg.msc

The commands available to you are:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

New...

Creates a new policy level based on the default security configuration described in Section 9.1
earlier in this chapter. You can also specify the location where the policy file will be stored.

Open...

Opens a new policy level from a specified file.
Reset All...

Allows you to reset all security policy to the default configuration described in Section 9.1
earlier in this chapter. You can also reset individual policy levels to the default settings by right-
clicking the individual policy level nodes in the console tree and selecting "Reset" from the
shortcut menu.

Adjust Security...

Provides a simple interface through which to adjust the default machine security policy, which
we discussed earlier in Section 9.1. You can configure the level of trust you want to grant to
each of the Internet Explorer zones, which modifies the named permission set assigned to that
code group.

Evaluate Assembly...

Allows you to test an assembly to see what code groups the assembly is a member of and what
permissions policy resolution would grant to the assembly.

Trust Assembly...

Allows you to define the minimum level of trust that will be assigned to an assembly.
Create Deployment Package...

Allows you to create a Windows Installer (.msi) file containing the definition of a security policy
level from the current machine. Running this file on a target machine will configure the policy
level of that machine. This simplifies the task of configuring security policy on a large number
of machines, but .NET contains no mechanism to perform the distribution process. You can
simply send the file to people that need it via email or use the normal software distribution
processes used by your organization.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.4 Using the Code-Access Security Policy Tool

The Code Access Security Policy tool (Caspol.exe) is a utility provided with the .NET Framework that
allows you to administer .NET's code-access security system from the command line and from batch
files. You can run Caspol.exe from the following location, where version is the version of the .NET

framework, such as "v1.0.3705" for Version 1.0:

%Systemroot%\Microsoft.NET\Framework\version\Caspol.exe

When performing some administrative tasks Caspol.exe commands can become long and confusing,
but for many tasks, Caspol.exe provides a much quicker way of configuring and inspecting security
policy, as long as you are happy to work from the command line. Before we look at how to configure
security policy using Caspol.exe, there is one Caspol.exe configuration setting that you will want to
change if you use Caspol.exe frequently.

Whenever you run a Caspol.exe command that changes the security policy configuration, before
Capsol.exe commits the change to disk, it will prompt you to confirm the change with the following
message:

The operation you are performing will alter security policy.
Are you sure you want to perform this operation? (yes/no)

You must enter "y" or "yes" for the change to proceed. Although it serves a valuable purpose, you
will find this level of protection frustrating if you use Caspol.exe frequently. To turn this prompt on
and off use the following statements, but remember that if you turn it off, any changes you make will
be committed automatically:

caspol -polchgprompt on
caspol -polchgprompt off

Each Caspol.exe command has a short version as well as the full version we use
throughout this section. For example, the short version of the -polchgprompt
flag we just used is -pp. Consult the .NET SDK Documentation for the short

versions of each command.

9.4.1 Controlling the Security System

Not only does Caspol.exe allow you to manage security policy, but it also allows you to manage some
higher-level configuration settings of the security system. These features map directly to methods of
the System.Security.SecurityManager class, which we discussed in Chapter 8.

9.4.1.1 Switching code-access security on and off

To switch code-access security on and off, use the -security flag, as shown here:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

caspol -security on
caspol -security off

Turning off code-access security bypasses the security system, meaning that all code has full
permission to perform any action. You should consider this only after ensuring that other security
mechanisms, such as operating system security, are in place and properly configured to protect your
system and resources.

The -security flag does not control the enforcement of role-based security

checks, which we discuss in Chapter 10.

Use of the -security flag maps directly to the static SecurityManager.SecurityEnabled property
we discussed in Chapter 8; it is protected by the SecurityPermission.ControlPolicy permission.

9.4.1.2 Switching execution permission checks on and off

Normally, the .NET Framework runtime checks to see if an assembly has the
SecurityPermission.Execution permission before it will load and run the assembly. You can switch
execution permission checking on and off using the -execution flag shown here:

caspol -execution on
caspol -execution off

There are performance benefits from turning off execution checking; your assembly will load and
start more quickly, but you must weigh those savings against the decreased security. Once an
assembly is running, there are many undesirable things that malicious code can do that do not
require permissions, such as making heavy use of your CPU. Also' once loaded, malicious code is free
to probe the security you have in place to try to identify any weaknesses that exist.

Use of the -execution flag maps directly to the static SecurityManager.CheckExecutionRights
property we discussed in Chapter 8; it is protected by the SecurityPermission.ControlPolicy

permission.

9.4.2 Administering Policy Levels

With respect to the administration of security policy, the functionality of Caspol.exe is much the same
as what we described for Mscorfg.msc in Section 9.3. In the following sections, we describe how to
manage each of the key elements of security policy, but first we must describe how to target your
Caspol.exe commands to affect the appropriate policy level and code group.

9.4.2.1 Specifying the target policy level

You must target each policy-administration command at the policy levels you want it to affect using
one of the following flags:

-all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Affects the enterprise and machine policies as well as the user policy for the currently logged-
on user

-enterprise

Affects only the enterprise policy
-machine

Affects only the machine policy
-user

Affects only the user policy for the currently logged on user
-customuser path

Affects only the user policy contained in the security policy file located at the specified path
-customall path

Affects the enterprise and machine policies as well as the user policy contained in the security
policy file located at the specified path

Not every target value is valid for every Caspol.exe command. In addition, if you do not specify a
target policy level, the result will depend on the command you execute; some commands assume a
default -machine setting, others use -all. We describe the default behavior when we discuss the

individual commands.

9.4.2.2 Specifying the target code group

Some Caspol.exe commands require you to specify an existing code group as the target of the
command. For example, you must identify the code group you want to delete, or the code group
under which you want to add a new child code group. Caspol.exe provides two ways in which you can
uniquely reference a code group.

First, because code group names must be unique within their policy levels, you can use the name of
the code group. For example, when manipulating code groups from the default machine policy that
we described in Section 9.1 earlier, you could use names like All_Code, Trusted_Zone, or
Microsoft_Strong_Name to identify the target of your command.

Second, you can use a numeric label that uniquely represents the position of the target code group
within the code group hierarchy of a policy group. The root code group has a label of "1.", and every
code group below it has a label that identifies its position among its peers-for example, "1.1.",
"1.2.", "1.3.", and so on. The labels extend to accommodate all the levels in the code group
hierarchy-for example, "1.1.", "1.1.1.", "1.1.1.1.", and so on. You must always include the final
decimal point when specifying the label of a code group.

9.4.2.3 Managing fully trusted assemblies

To list the fully trusted assemblies in a policy level use the -listfulltrust flag. The default target
for -listfulltrust is -machine, but you can specify any of the target values; we show some

examples here:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

caspol -listfulltrust
caspol -all -listfulltrust
caspol -customuser "c:\someuser\security.config" -listfulltrust

The start of the output from these commands will look similar to the following. The output shows
some general Caspol.exe settings, identifies the target policy level, and then lists the fully trusted
assemblies, along with strong-name information.

Microsoft (R) .NET Framework CasPol 1.0.3705.288
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Machine

Full Trust Assemblies:

1. mscorlib.resources 1.0.3300.0 =
StrongName - 00000000000000000400000000000000 name = mscorlib.resources version
= 1.0.3300.0
2. System 1.0.3300.0 =
StrongName - 00000000000000000400000000000000 name = System version = 1.0.3300.0

To add an assembly to the fully trusted list of a policy level, use the -addfulltrust flag. You cannot
specify -all or -customall as the target, and if you do not specify any target, -machine is used. You

must specify the name and path of the assembly that you want to add to the fully trusted list, as
shown in the following examples:

caspol -addfulltrust SomeAssembly.dll
caspol -user -addfulltrust C:\Development\SomeOtherAssembly.dll

The assembly specified in the -addfulltrust command must already be

installed in the global assembly cache, or Caspol.exe will throw an error; see
Chapter 2 for details.

To remove an assembly from the fully trusted assembly list, use the -remfulltrust flag and specify

the name of the assembly to remove, as shown here; note that you do not need to include any path
information. Again, the default target is -machine, and you cannot specify -all or -customall as the

target of the command:

caspol -remfulltrust SomeAssembly.dll
caspol -user -remfulltrust SomeOtherAssembly.dll

Security policy resolution will not function correctly if you remove an assembly
containing classes that the active policy configuration depends on; see Chapter
8 for an explanation of why assemblies need to be fully trusted.

9.4.2.4 Managing named permission sets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To list the named permission sets currently defined in a policy level, use the -listpset flag. The
default target for -listpset is -machine, but you can specify any target, as shown in these

examples:

caspol -listpset
caspol -user -listpset
caspol -customall "c:\someuser\security.config" -listpset

The start of the output from these commands will look something like this, showing the XML
representation of every code group defined in the policy level. This information is long and difficult to
read in this format, but you cannot get Caspol.exe to list the definition of a specific permission set:

Microsoft (R) .NET Framework CasPol 1.0.3705.288
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Machine

Named Permission Sets:

1. FullTrust (Allows full access to all resources) =
<PermissionSet class="System.Security.NamedPermissionSet"
 version="1"
 Unrestricted="true"
 Name="FullTrust"
 Description="Allows full access to all resources"/>

2. SkipVerification (Grants right to bypass the verification) =
<PermissionSet class="System.Security.NamedPermissionSet"
 version="1"
 Name="SkipVerification"
 Description="Grants right to bypass the verification">
 <IPermission class="System.Security.Permissions.SecurityPermission, mscorlib,
 Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Flags="SkipVerification"/>
</PermissionSet>

To add a new named permission set to a policy level, use the -addpset flag. You must specify the

name of the file that contains the XML description of the permission set to add. This is equivalent to
importing the permission set using Mscorcfg.msc, which we discussed earlier in Section 9.3.2.1, and
the XML format is the same. The following statements demonstrate how to create permission sets
from an XML description contained in the file pset.xml. You cannot use -all or -customall as the
target of the command, and the default is -machine:

caspol -addpset pset.xml
caspol -enterprise -addpset pset.xml

If the XML description of the permission set does not include a Name attribute, Capsol.exe will throw

http://lib.ommolketab.ir
http://lib.ommolketab.ir

an error and refuse to create the permission set. In this case, you must specify the name of the
permission set as an argument to the -addpset command, as shown here where we name the

permission set "TestSet":

caspol -addpset pset.xml TestSet
caspol -enterprise -addpset pset.xml TestSet

You can change an existing permission set using the -chgpset flag and specifying the name of the

existing permission set to change and the name of the file containing the new XML description for the
permission set. The -chgpset command simply overwrites the existing permission set definition with

the new one. For example, to change the TestSet permission set that we just created using the
contents of a file named newpset.xml, we use these commands:

caspol -chgpset newpset.xml TestSet
caspol -enterprise -chgpset newpset.xml TestSet

To remove a named permission set, use the -rempset flag and specify the name of the permission

set to remove. Here we show how to remove the TestSet permission set that we just created. Again,
the default target is -machine, and you cannot specify -all or -customall as the target of the

command:

caspol -rempset TestSet
caspol -enterprise TestSet

Caspol.exe will not remove permission sets that are in use by code groups.

9.4.2.5 Managing code groups

To list the code groups in a policy level, use the -listgroups flag. The default target for -listgroups
is -machine, but you can specify any of the target settings, as demonstrated in the following

examples:

caspol -listgroups
caspol -user -listgroups
caspol -customuser "c:\someuser\security.config" -listgroups

When executed against the default machine policy, which we described in Section 9.1, the output of
the -listgroups command looks like this; the numeric label we discussed in Section 9.4.2.2

precedes the membership condition, and the name of the permission set each code group grants:

Microsoft (R) .NET Framework CasPol 1.0.3705.288
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Machine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName - 00240000048000009400000006020000002400005253413100040
0000100010007D1FA57C4AED9F0A32E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE
79AD9D5DCC1DD9AD236132102900B723CF980957FC4E177108FC607774F29E8320E92EA05ECE4E82
1C0A5EFE8F1645C4C0C93C1AB99285D622CAA652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8
A12436518206DC093344D5AD293: FullTrust
 1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web.
 1.2.2. All code: Same directory FileIO - Read, PathDiscovery
 1.3. Zone - Internet: Nothing
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web.
Success

To add a new code group to a policy level, use the -addgroup flag. Because of the complexity of code
group configuration, the -addgroup command is the most complex Caspol.exe statement, and takes
multiple arguments with many optional values. The general form of the -addgroup command is

shown here:

caspol -target -addgroup {label|name} membership pset [flags]

The target argument specified the target policy level, which defaults to -machine, and cannot be -
all or -customall. The label and name arguments allow you to specify the parent of the new code

group using either its numeric label or name, as we discusses earlier in Section 9.4.2.2. The
membership, pset, and flags arguments specify the membership condition, permission set, and
properties of the code group respectively. We summarize the possible values of the membership
argument in Table 9-4, and those of the flags argument in Table 9-5. The types of evidence listed in

Table 9-4 are discussed in Chapter 6, and we provide a more complete discussion of membership
conditions in Chapter 8.

Table 9-4. Possible values of the membership argument

Value Description

-all Specifies that all code is a member of the code group.

-appdir

Looks for both ApplicationDirectory and Url evidence and tests to see of if
the location specified in the Url evidence represents a location that is a child of
the location specified in the ApplicationDirectory evidence.

-custom xmlfile

Specifies the use of a custom membership condition to determine membership
of the code group. The xmlfile argument specifies the name of the file

containing the XML description of the custom membership condition. See
Chapter 8 for details on creating custom membership conditions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

-hash hashAlg {-
hex value|-file
assembly}

Specifies that all code with Hash evidence of a specified value is a member of the
code group. The hashAlg specifies the hashing algorithm to use, and the hex
and file arguments provide different ways of providing the hash value; see the

.NET Framework SDK documentation for details.

-pub {-cert file|-
file file|-hex
string}

Specifies that all code with the specified Publisher evidence is a member of the
code group. The cert, file, and hex arguments provide different ways of

specifying the publisher certificate to test for; see the .NET Framework SDK
documentation for details.

-site sitename
Specifies that all code with the Site evidence specified by the sitename

argument is a member of the code group.

-strong -file
file_name name
version

Specifies that all code with the specified StrongName evidence is a member of
the code group. The file_name, name, and version arguments specify the

component parts of the strong name; see the .NET Framework SDK
documentation for details.

-url URL
Specifies that all code with the Url evidence specified by the URL argument is a

member of the code group.

-zone zonename
Specifies that all code with the Zone evidence specified by the zonename

argument is a member of the code group.

Table 9-5. Possible values of the flags argument

Value Description

-description
"description"

Allows you to specify the description for the code group, which you must
enclose in double quotes.

-exclusive
{on|off}

Allows you to set the code group's Exclusive attribute on or off, see Chapter 8

for a description of this attribute.

-levelfinal {on|off}
Allows you to set the code group's LevelFinal attribute on or off, see Chapter

8 for a description of this attribute.

-name "name"
Allows you to specify the name of the code group, which you must enclose in
double quotes, and which must be unique within the target policy level.

The following is an example of the -addgroup command that we used in Chapter 8 to create a code
group using the custom AuthorMembershipCondition class:

caspol -user -addgroup All_Code -custom Peter.xml FullTrust
-name "Peter's code" -description "Code group grants all
code written by Peter full trust"

The command to change an existing code group is also complex but uses the same arguments as the
-addgroup command, with which you are now familiar. The general structure of a -chggroup

command is as follows:

-hash hashAlg {-
hex value|-file
assembly}

Specifies that all code with Hash evidence of a specified value is a member of the
code group. The hashAlg specifies the hashing algorithm to use, and the hex
and file arguments provide different ways of providing the hash value; see the

.NET Framework SDK documentation for details.

-pub {-cert file|-
file file|-hex
string}

Specifies that all code with the specified Publisher evidence is a member of the
code group. The cert, file, and hex arguments provide different ways of

specifying the publisher certificate to test for; see the .NET Framework SDK
documentation for details.

-site sitename
Specifies that all code with the Site evidence specified by the sitename

argument is a member of the code group.

-strong -file
file_name name
version

Specifies that all code with the specified StrongName evidence is a member of
the code group. The file_name, name, and version arguments specify the

component parts of the strong name; see the .NET Framework SDK
documentation for details.

-url URL
Specifies that all code with the Url evidence specified by the URL argument is a

member of the code group.

-zone zonename
Specifies that all code with the Zone evidence specified by the zonename

argument is a member of the code group.

Table 9-5. Possible values of the flags argument

Value Description

-description
"description"

Allows you to specify the description for the code group, which you must
enclose in double quotes.

-exclusive
{on|off}

Allows you to set the code group's Exclusive attribute on or off, see Chapter 8

for a description of this attribute.

-levelfinal {on|off}
Allows you to set the code group's LevelFinal attribute on or off, see Chapter

8 for a description of this attribute.

-name "name"
Allows you to specify the name of the code group, which you must enclose in
double quotes, and which must be unique within the target policy level.

The following is an example of the -addgroup command that we used in Chapter 8 to create a code
group using the custom AuthorMembershipCondition class:

caspol -user -addgroup All_Code -custom Peter.xml FullTrust
-name "Peter's code" -description "Code group grants all
code written by Peter full trust"

The command to change an existing code group is also complex but uses the same arguments as the
-addgroup command, with which you are now familiar. The general structure of a -chggroup

command is as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

caspol -target -chggroup {label|name} {membership|pset|flags}

In the following example, we change the name of the machine-level code group with label "1.5." to
"SomeTestGroup":

caspol -enterprise -chggroup 1.5. -name SomeTestGroup

Here, we target a machine-level code group named "MyCode" to change its membership condition
and its permission set, and make the code group Exclusive; notice that we do not specify the target
level because -machine is the default:

caspol -chggroup MyCode -url "file://c:\dev*" FullTrust -exclusive on

To remove a code group, use the -remgroup flag and specify the code group to remove. The

examples here show how to remove a code group in the enterprise level using both its name and
numeric label. Again, the default target is -machine, and you cannot specify -all or -customall as

the target of the command:

caspol -enterprise -remgroup 1.5.
caspol -enterprise -remgroup SomeTestGroup

9.4.3 Evaluating Security Policy

Caspol.exe also allows you to test an assembly to determine which code groups it is a member of
and, consequentially, the runtime would grant to it when loaded. To determine which groups an
assembly is a member of, use the -resolvegroup flag and specify the assembly name as follows:

caspol -resolvegroup HelloWorld.exe

Depending on the evidence of the assembly and the configuration of security policy, the output will
look similar to this:

Microsoft (R) .NET Framework CasPol 1.0.3705.288
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Level = Enterprise

Code Groups:

1. All code: FullTrust
 1.1. Url - file://C:/development/*: FullTrust (Exclusive)
 1.2. All code: FullTrust
 1.2.1. All code: Internet

Level = Machine

Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Level = User

Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust

Success

To view the permission granted to an assembly, use the -resolveperm flag, as shown here:

caspol -resolveperm HelloWorld.exe

The -resolveperm command will display the XML description of the permission set granted to the

assembly, similar to that shown here. Notice that the permission set also lists the identity
permissions granted to the assembly based on the evidence it presented, as well as the permissions
granted by the security policy:

Microsoft (R) .NET Framework CasPol 1.0.3705.288
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Resolving permissions for level = Enterprise
Resolving permissions for level = Machine
Resolving permissions for level = User

Grant =
<PermissionSet class="System.Security.PermissionSet"
 version="1"
 Unrestricted="true">
 <IPermission class="System.Security.Permissions.UrlIdentityPermission, mscorl
ib, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Url="file://C:/Development/HelloWorld.exe"/>
 <IPermission class="System.Security.Permissions.ZoneIdentityPermission, mscor
lib, Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Zone="MyComputer"/>
</PermissionSet>

Success

Both the -resolvegroup and -resolveperm commands allow you to specify a target policy level, in

which case the assembly is only evaluated against that policy level. If you do not specify a policy
level, the default target -all is used.

9.4.4 Forcing Security Changes

Caspol.exe is a managed application that relies on obtaining a high level of trust from the runtime in
order to perform management of the security system. When you execute any of the commands we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

discussed in the previous sections, Caspol.exe will test to see if the changes will result in Caspol.exe
being unable to run correctly in the future; Caspol.exe will refuse to make such changes and display
the following message:

Microsoft (R) .NET Framework CasPol 1.0.3705.288
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

This operation will make some or all caspol functionality cease to work. If you
 are sure you want to do this operation, use the '-force' option before the opti
on you just executed. For example:
 caspol -force -machine -remgroup 1.6

Policy save aborted.

If you want to force the change despite this warning, you must use the -force flag. The following
command makes the All_Code code group of the machine policy exclusive. In the default security

policy, this will stop all code from running:

caspol -force -machine -chggroup All_Code -exclusive on

9.4.5 Resetting Security Policy

A feature of Caspol.exe you will find useful during development is the ability to reset the security
policy to its default value. When developing software that manipulates security policy directly, it is
not difficult to break security policy to a point where your code will not run. To reset policy levels, use
the -reset flag and specify the levels you want to reset:

caspol -user -reset
caspol -all -reset

You can also undo the last change you made with Caspol.exe using the -recover flag, as shown

here:

caspol -machine -recover
caspol -all -recover

If your security policy is broken to such a degree that Caspol.exe will not run,
the final resort is to delete the security policy files to force the runtime to
create new ones with default settings, as we described in Section 9.1.1.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 10. Role-Based Security
The most significant security enhancement added to the .NET Framework is code-access security,
which we discussed in the previous chapters. However, at times it is still necessary to make security
decisions based on the user running the code, as opposed to the identity of the code itself. For this
purpose, the .NET Framework supports a simple role-based security model. In this chapter, we
explain what role-based security is and discuss the .NET Framework's implementation. We describe
the classes used to access role-based security and demonstrate how to use them in your programs.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.1 Role-Based Security Explained

Role-based security (RBS) is a common security model in contemporary computing. When users wish
to access a computer system, they must first prove their identity-a process known as
authentication. Authentication requires the user to provide a set of credentials that uniquely identify
him. These credentials are commonly a name and password but could be a physical token, such as a
key card, or a biological attribute, such as a thumbprint. The computer system consults an authority
to determine if the supplied credentials represent a known user and whether that user should have
access to the system. During operation, the system relies on the user's authenticated identity when
performing authorization-the process of determining what actions and resources a user has
authority to access. A person's authority is expressed in terms of roles. A role is a logical
categorization that grants members of the role specific permissions.

To use an example with which you should be familiar, the Windows NT, Windows 2000, and Windows
XP user account systems provide a form of RBS. Each user authenticates with Windows by providing
a username and password that must match a predefined user account; to the Windows operating
system, the user account represents the user's identity. The Windows groups that the user account is
a member of represent the user's roles and determine the resources and operations to which the
user has access.

The most common types of roles mirror the jobs and activities we perform in everyday life, such as
teller, manager, or administrator, and grant their members the authority to perform the actions and
access the resources that they need to carry out their daily duties. However, roles are an abstract
concept that you can use to represent any kind of grouping to which you want to assign a set of
permissions (for example, members of a certain project that need access to a special color printer).

10.1.1 .NET Role-Based Security Explained

.NET provides a general-purpose RBS abstraction that you can use in conjunction with a variety of
authentication and authorization mechanisms. In .NET RBS, an identity represents the user on whose
behalf code is running. Normally, this is the currently logged-on Windows user, but this is not always
the case. If your application authenticates users against an authority other than the Windows account
system, then the identity may be different to the currently logged-on Windows user.

A principal encapsulates an identity and the roles to which the identity belongs; we illustrate this
relationship in Figure 10-1. If the identity represents a Windows user account, the roles will identify
the Windows groups to which the user belongs. Because a principal encapsulates both the identity
and roles of a user, it is the primary reference point on which the .NET runtime bases any role-based
security decisions.

Figure 10-1. The relationship between principals, identities, and roles

http://lib.ommolketab.ir
http://lib.ommolketab.ir

.NET role-based security is independent of the role-based security mechanism
provided by COM+. See Chapter 19 for a discussion of how to use COM+
security.

10.1.2 Comparing .NET Role-Based Security and Windows Security

.NET RBS makes it easy to integrate with the Windows user accounts system, but .NET RBS is not
just an extension of Windows user security into the .NET runtime. .NET RBS and the Windows user
account system are completely independent security mechanisms that operate concurrently and
serve different purposes.

Windows security protects the integrity of the entire system by controlling user access to important
operating system operations and resources. Every Windows process and thread has an associated
access token that represents the user on whose behalf the process or thread is running. The access
token is an operating system object that contains information about the permissions and privileges of
the user it represents, and the groups to which the user belongs. Before Windows allows code to
perform a protected operation or access a protected resource, it evaluates the thread's access token
to ensure that it contains the permission necessary to perform the operation. Windows enforces
security regardless of whether an action is initiated by a managed .NET application or native code.

.NET RBS operates at the application level, providing a convenient mechanism through which you can
control access to functionality based on the user's identity and roles. For example, you may only
allow users who are members of certain roles to call an important method or you may make different
menu items visible depending on the roles of the current user. Each thread running .NET code has a
principal associated with it; the principal serves a similar purpose to the Windows access token,
allowing .NET to determine if the user on whose behalf a thread is running is a member of a specified
role. Although it is common for both the principal and access token of a thread to represent the same
user, they are independent objects and there is no fixed relationship between the two. The use of
.NET RBS is entirely optional; you are responsible for deciding what is protected by .NET RBS, and
you must express these requirements in your code.

A .NET application can change the Windows access token of the current
operating system thread in order to impersonate another Windows user-see
Section 10.2.3.2 later in this chapter for details.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.2 Programming Role-Based Security

The .NET runtime enforces role-based security using techniques and syntax similar to those we
described in Chapter 7 for code-access security. In your applications, you protect functionality by
making role-based security demands that specify the identity or role that the thread's principal must
contain. If the thread's principal does not contain the demanded identity and role, then the demand
causes an exception.

10.2.1 Introducing the IIdentity and IPrincipal Interfaces

The System.Security.Principal namespace includes the IIdentity and IPrincipal interfaces to

represent identities and principals. By using interfaces to represent identities and principals, .NET
provides flexibility, which means that it is relatively easy to create concrete role-based security
implementations to support many different authentication and authorization mechanisms. The .NET
class library contains four concrete RBS implementations that use the IIdentity and IPrincipal

interfaces:

Forms

Provides a role-based authentication mechanism for use in ASP.NET applications. Forms
authentication only provides an implementation of IIdentity; we discuss Forms authentication

in Chapter 18.
Generic

Provides a generic role-based security implementation that is independent of any specific
authentication and authorization mechanism. See Section 10.2.5 for details.

Passport

Provides a role-based authentication mechanism that relies on the Microsoft Passport .NET
web-based service to authenticate users. Passport authentication only provides an
implementation of IIdentity. A discussion of Passport authentication is beyond the scope of

this book, and we refer you to the .NET Framework SDK and Passport SDK documentation for
further details.

Windows

Provides a role-based security implementation that is based on the users defined in the
Windows user account system. See Section 10.2.3 for details.

We describe the members of the IIdentity and IPrincipal interfaces in Table 10-1. In later

sections, when we discuss the Windows and Generic implementations of these interfaces, we highlight
any implementation-specific behavior.

Table 10-1. Members of the IIdentity and IPrincipal interfaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

IIdentity interface

AuthenticationType
Property that returns a string specifying the type of authentication used to
identify the user represented by the IIdentity object

IsAuthenticated
Property that returns true if the user represented by the IIdentity has

been authenticated; otherwise it returns false

Name
Property that returns a string containing the name of the user represented
by the IIdentity object

IPrincipal interface

Identity
Property that returns the IIdentity object contained in the IPrincipal

object

IsInRole
Method that returns true if the IIdentity contained in the IPrincipal is a

member of the role with the specified name; otherwise, it returns false

The IPrincipal interface makes no provision for enumerating or accessing all

of a principal's roles. The only access provided is to test individual role names
against the principal's role set using the IsInRole method.

10.2.2 Determining the Current Principal

Every thread executing in the .NET runtime has an IPrincipal object associated with it. The
thread's IPrincipal object represents the user on whose behalf the thread is running, and allows

the runtime to make role-based security decisions for the thread based on the user's identity and
roles. However, many applications do not use the RBS features of .NET, and so in the interest of
performance and conserving resources, the .NET runtime does not automatically assign an
IPrincipal object to every thread. If you intend to use RBS, you must either assign an IPrincipal

to a thread manually or configure the runtime to create one automatically the first time it is needed.

You can use the System.AppDomain.SetThreadPrincipal method shown in the following code to
specify an IPrincipal object that the runtime will automatically assign to each thread running in the
application domain. You can call the SetThreadPrincipal method only once on each application
domain; otherwise, an instance of System.Security.Policy.PolicyException is thrown:

C#

public void SetThreadPrincipal(
 IPrincipal principal
);

Visual Basic .NET

NotOverridable Public Sub SetThreadPrincipal(_
 ByVal principal As IPrincipal _
)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instead of using SetThreadPrincipal to set a default IPrincipal for an entire application domain,
you can set the current thread's IPrincipal manually through the
System.Threading.Thread.CurrentPrincipal property. CurrentPrincipal is static (C#) or
Shared (Visual Basic .NET) and always affects the IPrincipal of the currently executing thread. You
also use CurrentPrincipal to obtain the IPrincipal of the current thread.

Code must have the ControlPrincipal permission of the
System.Security.Permissions.SecurityPermission class in order to call the
AppDomain.SetThreadPrincipal method or set the
Thread.CurrentPrincipal property. We discuss the SecurityPermission

class in Chapter 7.

If you do not use AppDomain.SetThreadPrincipal or Thread.CurrentPrincipal to assign an
IPrincipal to a Thread, the principal policy of the application domain in which the thread is running
determines what happens when code tries to obtain the thread's CurrentPrincipal. You can

configure the principal policy of an application domain using the
System.AppDomain.SetPrincipalPolicy method, which has the following signature:

C#

public void SetPrincipalPolicy(
 PrincipalPolicy policy
);

Visual Basic .NET

NotOverridable Public Sub SetPrincipalPolicy(_
 ByVal policy As PrincipalPolicy _
)

The policy argument is a member of the System.Security.Principal.PrincipalPolicy

enumeration, whose values we list in Table 10-2. The default principal policy for all application
domains is UnauthenticatedPrincipal, which creates an empty IPrincipal that is not useful for

making role-based security decisions.

To call SetPrincipalPolicy, code must have the ControlPrincipal
permission of the System.Security.Permissions.SecurityPermission class.

Table 10-2. Members of the PrincipalPolicy enumeration

Value Description

NoPrincipal
No principal or identity object is created. Getting the
Thread.CurrentPrincipal property will return null (C#) or
Nothing (Visual Basic .NET). All role-based security demands will fail.

The runtime creates a GenericPrincipal containing a
GenericIdentity with its Name and AuthenticationType properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value Description

UnauthenticatedPrincipal

GenericIdentity with its Name and AuthenticationType properties
set to empty strings (""), and its IsAuthenticated property set to
false. The GenericIdentity is a member of no roles. We discuss the
GenericIdentity and GenericPrincipal classes in Section 10.2.3

later in this chapter.

WindowsPrincipal

The runtime creates a WindowsPrincipal containing a
WindowsIdentity based on the Windows access token of the current
thread. The roles contained in the WindowsPrincipal are the

Windows groups of the current user. We discuss the
WindowsIdentity and WindowsPrincipal classes in Section 10.2.3

later in this chapter.

As you can see from the three principal policy options, if you want to use an RBS implementation in
your programs that does not rely the current Windows user, principal policy provides no benefit. It is
your responsibility to ensure that the current thread has the correct IPrincipal associated with it.
You must create the IPrincipal object and assign it to the thread using the
AppDomain.SetThreadPrincipal method or the Thread.CurrentPrincipal property.

10.2.3 Programming the Windows Role-Based Security Implementation

The WindowsIdentity and WindowsPrincipal classes of the System.Security.Principal

namespace provide an RBS implementation that allows you to base security decisions on the identity
and roles of Windows user accounts. The WindowsIdentity class implements the IIdentity

interface and represents a Windows user account. The Windows user's name, accessible through the
WindowsIdentity.Name property, is of the form "Domain\User."

The WindowsPrincipal class implements IPrincipal and contains the user's WindowsIdentity

object, along with the names of the Windows groups to which the user belongs. The name of any
built-in Windows user groups has the prefix "BUILTIN\"-for example, "BUILTIN\Administrators" or
"BUILTIN\Users". This is important to remember when using the WindowsPrincipal.IsInRole

method to test role membership. Non-built-in group names are prefixed with the name of the domain
to which the group belongs, or the machine name if the group exists on a standalone machine-for
example, "MyDomain\Developers" or "MyMachine\Developers".

The WindowsIdentity and WindowsPrincipal do not provide access to the

Windows operating system permissions granted to the user and groups they
represent. You must base your RBS decisions solely on the username and the
names of the groups to which the user belongs.

The WindowsIdentity class implements members in addition to those defined in the IIdentity
interface. These additional members provide useful functionality for creating WindowsIdentity
objects, testing what type of Windows account a WindowsIdentity object represents, and
impersonating Windows users. We summarize the members of the WindowsIdentity class in Table

10-3.

Table 10-3. Members of the WindowsIdentity class

UnauthenticatedPrincipal

GenericIdentity with its Name and AuthenticationType properties
set to empty strings (""), and its IsAuthenticated property set to
false. The GenericIdentity is a member of no roles. We discuss the
GenericIdentity and GenericPrincipal classes in Section 10.2.3

later in this chapter.

WindowsPrincipal

The runtime creates a WindowsPrincipal containing a
WindowsIdentity based on the Windows access token of the current
thread. The roles contained in the WindowsPrincipal are the

Windows groups of the current user. We discuss the
WindowsIdentity and WindowsPrincipal classes in Section 10.2.3

later in this chapter.

As you can see from the three principal policy options, if you want to use an RBS implementation in
your programs that does not rely the current Windows user, principal policy provides no benefit. It is
your responsibility to ensure that the current thread has the correct IPrincipal associated with it.
You must create the IPrincipal object and assign it to the thread using the
AppDomain.SetThreadPrincipal method or the Thread.CurrentPrincipal property.

10.2.3 Programming the Windows Role-Based Security Implementation

The WindowsIdentity and WindowsPrincipal classes of the System.Security.Principal

namespace provide an RBS implementation that allows you to base security decisions on the identity
and roles of Windows user accounts. The WindowsIdentity class implements the IIdentity

interface and represents a Windows user account. The Windows user's name, accessible through the
WindowsIdentity.Name property, is of the form "Domain\User."

The WindowsPrincipal class implements IPrincipal and contains the user's WindowsIdentity

object, along with the names of the Windows groups to which the user belongs. The name of any
built-in Windows user groups has the prefix "BUILTIN\"-for example, "BUILTIN\Administrators" or
"BUILTIN\Users". This is important to remember when using the WindowsPrincipal.IsInRole

method to test role membership. Non-built-in group names are prefixed with the name of the domain
to which the group belongs, or the machine name if the group exists on a standalone machine-for
example, "MyDomain\Developers" or "MyMachine\Developers".

The WindowsIdentity and WindowsPrincipal do not provide access to the

Windows operating system permissions granted to the user and groups they
represent. You must base your RBS decisions solely on the username and the
names of the groups to which the user belongs.

The WindowsIdentity class implements members in addition to those defined in the IIdentity
interface. These additional members provide useful functionality for creating WindowsIdentity
objects, testing what type of Windows account a WindowsIdentity object represents, and
impersonating Windows users. We summarize the members of the WindowsIdentity class in Table

10-3.

Table 10-3. Members of the WindowsIdentity class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Properties

AuthenticationType
Defined in IIdentity. Returns a string identifying the mechanism used to
authenticate the user represented by the WindowsIdentity object.

IsAnonymous

Returns true if the Windows account type represented by the
WindowsIdentity object is an anonymous account. Normally, you will see

only anonymous identities within ASP.NET applications; see Chapter 18 for a
discussion of ASP.NET security.

IsAuthenticated
Defined in IIdentity. Returns true of the user represented by the
WindowsIdentity object was authenticated; otherwise, it returns false.

IsGuest
Returns true if the Windows account type represented by the
WindowsIdentity object is a guest account.

IsSystem
Returns true if the Windows account type represented by the
WindowsIdentity object is a system account.

Name
Defined in IIdentity. Returns the Windows logon name of the user. The
Name property returns a string of the form "Domain\User."

Token
Returns a System.IntPtr containing the handle of the Windows account
token for the user represented by the WindowsIdentity object.

Methods

GetAnonymous
Static method that returns a WindowsIdentity object that represents an

anonymous Windows user account.

GetCurrent
Static method that returns a WindowsIdentity object that represents the

currently logged-on Windows user account.

Impersonate
Allows code to impersonate other Windows users. See "Impersonating
Windows Users."

The WindowsPrincipal class implements no role-based functionality other than that specified by the
IPrincipal interface. The Identity property returns the contained WindowsIdentity as an
IIdentity object; therefore, you must cast it to WindowsIdentity before you can use the additional

methods listed in Table 10-3.

Of note is the implementation of the IsInRole method, which has three overloads:

C#

public virtual bool IsInRole(
 int rid
);

public virtual bool IsInRole(
 string role
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public virtual bool IsInRole(
 WindowsBuiltInRole role
);

Visual Basic .NET

Overridable Overloads Public Function IsInRole(_
 ByVal rid As Integer _
) As Boolean

Overridable Overloads Public Function IsInRole(_
 ByVal role As String _
) As Boolean

Overridable Overloads Public Function IsInRole(_
 ByVal role As WindowsBuiltInRole _
) As Boolean

In the first overload, the rid argument specifies a Windows Role Identifier (RID). RIDs are a

component of a Windows group's security identifier and provide a way to identify groups independent
of language localization. The second overload takes a case-insensitive string that specifies the name
for which to test; this is the standard form of IsInRole defined in IPrincipal. The final overload
takes a member of the System.Security.Principal.WindowsBuiltInRole enumeration as an
argument; WindowsBuiltInRole contains values that represent the standard Windows groups. Table
10-4 compares the role names, RIDs, and WindowsBuiltInRole values used to test for membership

of the most commonly used Windows groups.

Table 10-4. Commonly used role names, RIDs, and WindowsBuiltInRole
members

Name RID (hex) WindowsBuiltInRole

BUILTIN\Account Operators 0x224 AccountOperator

BUILTIN\Administrators 0x220 Administrator

BUILTIN\Backup Operators 0x227 BackupOperator

BUILTIN\Guests 0x222 Guest

BUILTIN\Power Users 0x223 PowerUser

BUILTIN\Print Operators 0x226 PrintOperator

BUILTIN\Replicator 0x228 Replicator

BUILTIN\Server Operators 0x225 SystemOperator

BUILTIN\Users 0x221 User

10.2.3.1 Configuring the current WindowsPrincipal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The easiest way to make the current principal represent the active Windows user is by calling the
System.AppDomain.SetPrincipalPolicy method and passing it the value
PrincipalPolicy.WindowsPrincipal. The first time code requests the thread's IPrincipal, the
runtime creates a WindowsIdentity and a WindowsPrincipal for a thread based on the currently

active Windows access token:

C#

// Configure the current application domain's principal policy
// to represent the active Windows user
AppDomain.CurrentDomain.SetPrincipalPolicy(
 PrincipalPolicy.WindowsPrincipal);

Visual Basic .NET

' Configure the current application domain's principal policy
' to represent the active Windows user
AppDomain.CurrentDomain.SetPrincipalPolicy(_
PrincipalPolicy.WindowsPrincipal)

You can also create WindowsIdentity and WindowsPrincipal objects manually and pass them to
the AppDomain.SetThreadPrincipal method or the Thread.CurrentPrincipal property. The
AppDomain.SetThreadPrincipal defines the default principal that the runtime assigns to any thread
in the application domain, whereas the Thread.CurrentPrincipal property sets the principal of the

current thread.

The WindowsIdentity.GetCurrent method returns a WindowsIdentity object that represents the
current Windows user. Once you have a WindowsIdentity object, you can pass it to the
WindowsPrincipal constructor and assign the new WindowsPrincipal to the current thread, as

demonstrated by the following statements:

C#

// Create a WindowsIdentity for the active Windows user
WindowsIdentity wi = WindowsIdentity.GetCurrent();

// Create a new WindowsPrincipal
WindowsPrincipal wp = new WindowsPrincipal(wi);

// Assign the WindowsPrincipal to the active thread.
Thread.CurrentPrincipal = wp;

Visual Basic .NET

' Create a WindowsIdentity for the active Windows user
Dim wi As WindowsIdentity = WindowsIdentity.GetCurrent()

' Create a new WindowsPrincipal
Dim wp As WindowsPrincipal = New WindowsPrincipal(wi)

' Assign the WindowsPrincipal to the active thread.
Thread.CurrentPrincipal = wp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the Thread.CurrentPrincipal property or the AppDomain.SetThreadPrincipal method

allows you to change the thread's current principal if you need your code to operate on behalf of a
different principal-a process known as impersonation. However, changing the current principal does
not change the current Windows access token.

10.2.3.2 Impersonating Windows users

Sometimes, you will want your code to act at the operating system level as though it is a different
user than the one currently logged on. This is particularly common in server applications that process
requests from different users and need to access resources, such as databases, on behalf of the user.

The WindowsIdentity class provides the mechanism through which you can impersonate another

Windows user. However, first you must obtain a Windows access token that represents the user you
want to impersonate. Unfortunately, the .NET Framework class library does not currently contain
classes that provide managed access to the Windows account database, and therefore you must call
the LogonUser method of the unmanaged advapi32.dll Win32 library to obtain the access token. The
LogonUser method takes username and password arguments, along with other parameters that

control the authentication process, and provides access to an access token for the user. If the
LogonUser fails, you will also need to call the
System.Runtime.InteropServices.Marshal.GetLastWin32Error method to determine what the
problem is. The GetLastWin32Error method exposes the GetLastError method of the kernel32.dll

library and avoids possible problems arising from the CLR making internal calls to the WIN32 APIs
that would overwrite the last error code.

On the Windows NT and Windows 2000 platforms, the account under which a
program is running requires the Windows SE_TCB_NAME privilege to call
LogonUser in order to obtain an access token. Without this privilege, calls to
LogonUser fail and calling GetLastError returns the code

ERROR_PRIVILEGE_NOT_HELD (value 1314). To grant an account the
SE_TCB_NAME privilege, you must configure the local security policy to allow the

account to "Act as part of the operating system." This highly trusted privilege
allows the account to create access tokens that represent any user or
permission set. You should only grant this permission to accounts created
specifically to run your software; never grant this permission to user accounts.

Once you have the access token, you use it to create a new WindowsIdentity object and call its
Impersonate method. The Impersonate method changes the Windows access token of the current
thread. Any operating system operation you perform after calling Impersonate takes place as the
impersonated user. The Impersonate method returns a
System.Security.Principal.WindowsImpersonationContext object that represents the Windows

user prior to impersonation. When you want to revert to the original user, call the
WindowsImpersonationContext.Undo method.

Example 10-1 demonstrates the impersonation of a Windows user named "Bob." Although the
example demonstrates how to call LogonUser from managed code, a complete discussion of
unmanaged code interoperability and the LogonUser method is beyond the scope of this book. You

should consult the .NET Framework SDK documentation for details on calling unmanaged code and
the Windows Platform SDK for details of the LogonUser method.

Example 10-1. Impersonating a Windows user

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C#

using System;
using System.IO;
using System.Security.Principal;
using System.Security.Permissions;
using System.Runtime.InteropServices;

// Make sure we have permission to execute unmanged code
[assembly:SecurityPermission(SecurityAction.RequestMinimum,
 UnmanagedCode=true)]

public class WindowsImpersonationTest {

 // Define the external LogonUser method from advapi32.dll.
 [DllImport("advapi32.dll", SetLastError=true)]
 static extern int LogonUser(String UserName, String Domain,
 String Password, int LogonType, int LogonProvider,
 ref IntPtr Token);

 public static void Main() {

 // Create a new initialized IntPtr to hold the access token
 // of the user to impersonate.
 IntPtr token = IntPtr.Zero;

 // Call LogonUser to obtain an access token for the user
 // "Bob" with the password "treasure". We authenticate against
 // the local accounts database by specifying a "." as the Domain
 // argument.
 int ret = LogonUser(@"Bob", ".", "treasure", 2, 0, ref token);

 // If the LogonUser return code is zero an error has occured.
 // Display it and exit.
 if (ret == 0) {
 Console.WriteLine("Error {0} occured in LogonUser",
 Marshal.GetLastWin32Error());
 return;
 }

 // Create a new WindowsIdentity from Bob's access token
 WindowsIdentity wi = new WindowsIdentity(token);

 // Impersonate Bob, saving a reference to the returned
 // WindowsImpersonationContext.
 WindowsImpersonationContext impctx = wi.Impersonate();

 // !!! Perform actions as Bob !!!
 // We create a file that Windows will show is owned by Bob.
 StreamWriter file = new StreamWriter("test.txt");
 file.WriteLine("Bob's test file.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 file.Close();

 // Revert back to the original Windows user using the
 // WindowsImpersonationContext object.
 impctx.Undo();
 }
}

Visual Basic .NET

Imports System
Imports System.IO
Imports System.Security.Principal
Imports System.Security.Permissions
Imports System.Runtime.InteropServices

' Make sure we have permission to execute unmanged code
<assembly:SecurityPermission(SecurityAction.RequestMinimum, _
UnmanagedCode:=True)> _

Public Class WindowsImpersonationTest

 ' Define the external LogonUser method from advapi32.dll.
 <DllImport("advapi32.dll", SetLastError := True)> _
 Public Shared Function LogonUser(UserName As String, _
 Domain As String, Password As String, LogonType As Integer, _
 LogonProvider As Integer, ByRef Token As IntPtr) As Integer
 End Function

 Public Shared Sub Main()

 ' Create a new initialized IntPtr to hold the access token
 ' of the user to impersonate.
 Dim token As IntPtr = IntPtr.Zero

 ' Call LogonUser to obtain an access token for the user
 ' "Bob" with the password "treasure". We authenticate against
 ' the local accounts database by specifying a "." as the Domain
 ' argument.
 Dim ret As Integer = LogonUser("Bob",".","treasure",2,0, token)

 ' If the LogonUser return code is zero an error has occured.
 ' Display it and exit.
 If ret = 0 Then
 Console.WriteLine("Error {0} occured in LogonUser", _
 Marshal.GetLastWin32Error())
 Return
 End If

 ' Create a new WindowsIdentity from Bob's access token
 Dim wi As WindowsIdentity = New WindowsIdentity(token)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Impersonate Bob, saving a reference to the returned
 ' WindowsImpersonationContext.
 Dim impctx As WindowsImpersonationContext = wi.Impersonate()

 ' !!! Perform actions as Bob !!!
 ' We create a file that Windows will show is owned by Bob.
 Dim file As StreamWriter = New StreamWriter("test.txt")
 file.WriteLine("Bob's test file.")
 file.Close()

 ' Revert back to the original Windows user using the
 ' WindowsImpersonationContext object.
 impctx.Undo()
 End Sub
End Class

10.2.4 Making Role-Based Security Demands

Role-based security demands function similarly to code-access security demands. The key difference
is that role-based security demands never result in a stack walk. The result of a role-based security
demand is based solely on the identity and roles of the active thread's principal. If the thread's
principal does not contain the demanded identity or roles, the runtime throws a
System.Security.SecurityException. If the principal meets the demanded requirements,

execution continues unaffected.

The PrincipalPermission class, with its attribute counterpart named
PrincipalPermissionAttribute, provides the mechanisms through which you invoke role-based
security demands in your programs. The PrincipalPermission class allows you to use imperative
security syntax, and the PrincipalPermissionAttribute class enables the use of declarative
syntax; both classes are members of the System.Security.Permissions namespace. We discussed

the syntax and use of both imperative and declarative security demands in Chapter 7, and therefore
we will only cover them briefly in the following sections.

Unlike code-access security, which is enforced exclusively through permissions
and attributes, it is commonplace to make role-based security decisions by
calling the members of a thread's principal and identity objects directly. This is
particularly useful if the RBS implementation includes functionality in addition to
that defined in the IIdentity or IPrincipal interfaces. For example, the

implementation may expose features specific to the underlying authentication
or authorization mechanism, as is the case with the WindowsIdentity object

that we discussed in Section 10.2.3.

10.2.4.1 Using imperative role-based security statements

To make an imperative RBS demand, you must instantiate a PrincipalPermission object and call
its Demand method. The most commonly used PrincipalPermission constructor has the signature

shown here:

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public PrincipalPermission(
 string name,
 string role
);

Visual Basic .NET

Public Sub New(_
 ByVal name As String, _
 ByVal role As String _
)

The name and role arguments specify the values that the current principal must have for the Demand
to succeed. Each PrincipalPermission can specify only a single role name. The current principal
must match both the specified name and role values; however, you can specify null (C#) or
Nothing (Visual Basic .NET) for either argument to match any value. Table 10-5 explains how
PrincipalPermission uses these arguments to in determine the result of the Demand.

Table 10-5. Arguments of the PrincipalPermission constructors

Argument Description

name
Must match the value held in the Thread.CurrentPrincipal.Identity.Name
property. Both the GenericPrincipal and WindowsPrincipal classes implement
case-insensitive comparisons of the Name property.

role

Used as an argument to the Thread.CurrentPrincipal.IPrincipal.IsInRole

method to test if the current principal is a member of the specified role. Both the
GenericPrincipal and WindowsPrincipal classes implement case-insensitive
comparisons for IsInRole.

The following statements demonstrate the use of the PrincipalPermission class to invoke a variety

of imperative RBS demands:

C#

// Demand that the active principal has the identity name "Peter".
PrincipalPermission p1 = new PrincipalPermission("Peter", null);
p1.Demand();

// Demand that the active principal is a member of the "Developers"
// group with any identity.
PrincipalPermission p2 = new PrincipalPermission(null,"Developers");
p2.Demand();

// Demand that the active principal have the identity name "Bart"
// and be a member of the "Managers" group.
PrincipalPermission p3 = new PrincipalPermission("Bart", "Managers");
p3.Demand();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic .NET

' Demand that the active principal has the identity name "Peter".
Dim p1 As PrincipalPermission = _
New PrincipalPermission("Peter",Nothing)
p1.Demand()

' Demand that the active principal is a member of the "Developers"
' group with any identity.
Dim p2 As PrincipalPermission = _
New PrincipalPermission(Nothing,"Developers")
p2.Demand()

' Demand that the active principal have the identity name "Bart"
' and be a member of the "Managers" group.
Dim p3 As PrincipalPermission = _
New PrincipalPermission("Bart","Managers")
p3.Demand()

PrincipalPermission implements the System.Security.IPermission interface, and defines the
Copy, Intersect, IsSubsetOf, and Union methods to manipulate PrincipalPermission objects.
The composition of PrincipalPermission objects means the Intersect and IsSubSetOf methods
are of little value; PrincipalPermission primarily implements them to satisfy the requirements of
the IPermission interface. The Union method, however, does provide useful functionality, enabling

you to make security demands that test against multiple sets of name/role pairs.

The Union of two PrincipalPermission objects is a PrincipalPermission object that contains the
name and role elements of both source objects. For example if the two source PrincipalPermission

objects contained the name/role values "Alice"/"managers" and "Bob"/"developers," the union would
contain both name/role pairs. Calling Demand on the resulting PrincipalPermission would succeed if
the current principal matches either name/role pair. However, PrincipalPermission maintains and

compares the contained name/role pairs independently. Comparing the union against a principal with
the name/role pair "Alice"/"developers" would fail. To understand the contents of a
PrincipalPermission resulting from a Union, look at the following output from the
PrincipalPermission.ToString method:

<Permission class="System.Security.Permissions.PrincipalPermission,
mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 version="1">
 <Identity Authenticated="true"
 ID="Alice"
 Role="managers"/>
 <Identity Authenticated="true"
 ID="Bob"
 Role="developers"/>
</Permission>

10.2.4.2 Using declarative role-based security statements

You can apply PrincipalPermissionAttribute to classes, methods, properties, or events to force
declarative security demands. The key difference between PrincipalPermissionAttribute and the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

permission attributes (see Chapter 7) is that you cannot apply the PrincipalPermisisonAttribute

at the assembly level. This means you cannot make role-based permission requests, such as
RequestMinimum, RequestOptional, and RequestRefuse. In addition, because RBS does not use or

affect the call stack, there are no declarative stack override statements available. Thus, you can only
invoke the following three role-based security statements using declarative syntax: Demand,
LinkDemand, and InheritenceDemand.

The PrincipalPermissionAttribute class defines the Name and Role properties that you use to

specify the name and role values that the current principal must have for the declarative RBS
demand to succeed. The following statements demonstrate the equivalent
PrincipalPermissionAttribute syntax used to make the same demands we made in the previous

section:

C#

// Demand that the active principal has the identity name "Peter".
[PrincipalPermission(SecurityAction.Demand, Name = "Peter")]

// Demand that the active principal is a member of the "Developers"
// group with any identity.
[PrincipalPermission(SecurityAction.Demand, Role = "Developers")]

// Demand that the active principal have the identity name "Bart"
// and be a member of the "Managers" group.
[PrincipalPermission(SecurityAction.Demand, Name = "Bart", Role = "Managers")]

Visual Basic .NET

' Demand that the active principal has the identity name "Peter".
<PrincipalPermission(SecurityAction.Demand, Name := "Peter")> _

' Demand that the active principal is a member of the "Developers"
' group with any identity.
<PrincipalPermission(SecurityAction.Demand, Role := "Developers")> _

' Demand that the active principal have the identity name "Bart"
' and be a member of the "Managers" group.
<PrincipalPermission(SecurityAction.Demand, Name:="Bart", Role:="Managers")> _

10.2.5 Programming the Generic Role-Based Security Implementation

If you rely on an authority other than the Windows accounts system to authenticate and authorize
your users, it is possible that the manufacturers of the system will provide IIdentity and
IPrincipal implementations that work directly with the authority. If not, the simplest approach is to
obtain identity and role information from the custom authority and use the GenericIdentity and
GenericPrincipal classes from the System.Security.Principal namespace to enable role-based
security support in your managed applications. The GenericIdentity and GenericPrincipal

classes provide a generic RBS implementation that you can use independently of the Windows user
accounts database. The GenericIdentity class implements IIdentity, and GenericPrincipal
implements IPrincipal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.5.1 Configuring the current GenericPrincipal

The techniques for setting the current principal to a GenericPrincipal object are more limited than

those we described earlier in Section 10.2.3.1. It is impossible for an application domain's principal
policy to create useful GenericPrincipal objects automatically; therefore, you have two options:

Create a GenericPrincipal object and pass it to the AppDomain.SetThreadPrincipal

method. This defines the default principal that the runtime will assign to any thread executing in
the application domain.

Create a GenericPrincipal object and use it to set the Thread.CurrentPrincipal property.

This sets the principal of the current thread.

To create a GenericPrincipal, you must first create a GenericIdentity. The GenericIdentity

class provides two constructors with the following signatures:

C#

public GenericIdentity(
 string name
);

public GenericIdentity(
 string name,
 string type
);

Visual Basic .NET

Public Sub New(_
 ByVal name As String _
)

Public Sub New(_
 ByVal name As String, _
 ByVal type As String _
)

The first constructor takes a single name argument, in which you specify the name of the user
represented by the identity. In addition to the name argument, the second constructor takes a type
argument. The type argument allows you to specify a string that identifies the type of authentication
mechanism used to authenticate the user. The GenericIdentity class enforces no restrictions on the
format or content of the name and type arguments as long as they contain only valid string
characters. This provides maximum flexibility, which allows you to use the GenericIdentity class in

conjunction with any custom authentication mechanisms. The following statements demonstrate the
use of the GenericIdentity constructors:

C#

GenericIdentity i1 = new GenericIdentity("Peter");
GenericIdentity i2 = new GenericIdentity("Peter","SmartCard");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic .NET

Dim i1 As GenericIdentity = New GenericIdentity("Peter")
Dim i2 As GenericIdentity = New GenericIdentity("Peter","SmartCard")

The GenericPrincipal class provides a single constructor that takes an IIdentity object and a

string array as arguments:

C#

public GenericPrincipal(
 IIdentity identity,
 string[] roles
);

Visual Basic .NET

Public Sub New(_
 ByVal identity As IIdentity, _
 ByVal roles() As String _
)

The identity argument can be of any type that implements IIdentity and represents the user that
the GenericPrincipal should represent. The roles argument takes a string array containing the set
of role names to which the user belongs. You must specify the user roles in the GenericPrincipal
object constructor because the GenericPrincipal class is independent of any underlying user-
authorization mechanism. The following statements demonstrate the creation of a GenericPrincipal
from a GenericIdentity, and then make the new GenericPrincipal the current principal using the
Thread.CurrentPrincipal property:

C#

// Create a GenericIdentity for the user Peter
GenericIdentity gi = new GenericIdentity("Peter");

// Create a GenericPrincipal for Peter and specify membership of the
// Developers and Managers roles
String[] roles = new String[]{"Developers", "Managers"};
GenericPrincipal gp = new GenericPrincipal(gi, roles);

// Assign the new principal to the current thread
Thread.CurrentPrincipal = gp;

Visual Basic .NET

' Create a GenericIdentity for the user Peter
Dim gi As GenericIdentity = New GenericIdentity("Peter")

' Create a GenericPrincipal for Peter and specify membership of the
' Developers and Managers roles
Dim roles() As String = New String() {"Developers", "Managers"}
Dim gp As GenericPrincipal = New GenericPrincipal(gi,roles)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Assign the new principal to the current thread
Thread.CurrentPrincipal = gp;

Both the GenericIdentity and GenericPrincipal classes are simple, offering no role-based
functionality other than that defined in their respective IIdentity and IPrincipal interfaces. In
Table 10-6, we describe the GenericIdentity and GenericPrincipal classes' implementations of
the IIdentity and IPrincipal interfaces.

Table 10-6. Members of GenericIdentity and GenericPrincipal classes

Member Description

GenericIdentity
class

AuthenticationType
Read-only property that gets the authentication type specified in the type
argument of the GenericIdentity constructor. If type was not specified,

an empty string is returned.

IsAuthenticated
Read-only property that returns true as long as the username specified in
the name argument of the GenericIdentity constructor was not an empty

string; otherwise, it returns false.

Name
Read-only property that gets the username specified in the name argument
of the GenericIdentity constructor.

GenericPrincipal
class

Identity
Read-only property that gets the IIdentity object specified in the
identity argument of the GenericPrincipal constructor. You must cast it
to the right type, which will normally be GenericIdentity.

IsInRole

Method that takes a string argument containing the name of a role and
returns true if the specified role name matches one of those contained in
the roles argument of the GenericPrincipal constructor. The comparison

is case-insensitive.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 11. Isolated Storage
Isolated storage is the final aspect of .NET runtime security we discuss. Isolated storage is a data
storage mechanism that allows managed code to store user and application-specific data to disk. The
use of isolated storage simplifies programming and minimizes the security risks associated with
allowing code to store data to a computer's hard drive. In this chapter, we describe what isolated
storage is and explain where it provides benefits over existing data storage options. We demonstrate
how to use isolated storage in your own programs, as well as how to administer and control access to
it.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.1 Isolated Storage Explained

Many applications need to write data to a persistent store so that it's available each time the
application runs. Data, such as user preferences and application state, is generally user-specific and
needs to be stored in such a way that other users, and possibly other applications, cannot access and
modify it. On the Windows platform, there has been no standard method of doing this, and therefore
different applications have taken different approaches. These include using the Windows registry,
configuration files (such as .ini files), or databases.

Windows features such as role-based security, ACL-based file permissions, user profiles, and the
registry's HKEY_CURRENT_USER hive make it relatively easy for code to store data that other users

cannot access. However, it is not so easy to ensure that applications run by the same user cannot
read and modify each other's data. This presents significant security risks, especially with the
increase in the use of mobile code and dynamically downloaded components.

Isolated storage provides a controlled and structured mechanism through which code can write data
to the hard drive in a way that prevents access by other users and managed applications. When you
use isolated storage in your programs, you do not have to worry about the mechanics of isolation and
you do not have to choose a storage location that will not conflict with those used by other
applications. In addition, isolated storage can leverage the capabilities of Windows-roaming user
profiles, ensuring that a user's data is available to them regardless of which machine they use.

Before managed code can save data to isolated storage, it must obtain a store. A store is a
compartment within isolated storage that has an identity derived from the identity of the user and
code that created it. When code tries to obtain a store, isolated storage first looks for an existing
store with the correct identity to pass to the code. If one does not exist, isolated storage creates a
new store automatically. The use of stores means that each time code runs, it has access to any data
that it previously saved to isolated storage. Because different applications run by the same user have
different identities, they each obtain unique stores. We describe how isolated storage determines the
user and code's identity later in Section 11.1.1.1.

Isolated storage provides a more secure data storage alternative than granting code direct access to
selected areas of the hard drive. Different code-access permissions control access to isolated storage
and normal hard disk access, simplifying security administration and ensuring that code granted
access to isolated storage can't gain unforeseen access to other areas of the hard disk. In addition,
each store appears to be a root-level container for the code using it. Within its own store, code is free
to create files and directories as if it was working directly with the filesystem, but code cannot
manipulate file or directory paths to access data in other stores, or other areas of the hard drive.

Isolated storage also allows security administrators to configure quotas that limit the maximum size
of each store, ensuring that no application can create a store so large that it fills the entire hard disk.
Isolated storage enforces these quotas as code writes data to its store. In summary, it is a relatively
low-risk decision to give any code permission to use isolated storage, even code downloaded from
unknown and untrusted sources. Isolated storage provides a perfect data storage solution for use by
controls downloaded from the Internet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1.1 Levels of Isolation

Isolated storage manages the isolation of application data automatically, always ensuring that one
user cannot access the data of another. However, the level of isolation (isolation scope) between
different applications run by the same user is configurable when the application obtains a store.
Isolated storage supports two primary levels of isolation scope:

Isolation by user and assembly

Isolation by user, assembly, and application domain

You can configure each of these isolation scopes to support roaming users as long as the application
is running on a platform that supports Windows-roaming profiles. In the following sections, we
discuss these two isolation scopes and describe where each is preferable. First, we describe how
isolated storage determines the identity of users and code on which it bases the isolation of stores.

11.1.1.1 Determining user and code identity

User-level isolation is implicit in isolated storage because of the structure of the underlying file store.
A user's isolated storage data is stored in his Windows profile directory, and is always separate from
all other user's data and protected by Windows file permissions. The storage location of a users'
profile is dependant on the version of Windows and whether roaming profiles are being used. The
.NET Framework SDK documentation lists the storage location used for each version of Windows.

Isolated storage achieves isolation at the assembly and application domain level by assigning each
store an identity derived from the code that created it. Isolated storage uses the evidence possessed
by the creating code to establish the store's identity; we discussed evidence in Chapter 6. Only code
that presents the same evidence values can obtain the store in the future.

With user and assembly isolation, one piece of evidence from the assembly is used. When isolating by
user, assembly, and application domain, isolated storage uses one piece, of evidence from the
assembly and one from the application domain for the stores identity. This list shows the order in
which isolated storage will use available evidence objects (all from the System.Security.Policy

namespace):

Publisher1.

StrongName2.

Url3.

Site4.

Zone5.

In the unlikely event that an assembly or application domain has none of these evidence objects, the
runtime will throw a System.IO.IsolatedStorage.IsolatedStorageException when code tries to

obtain a store.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1.1.2 Isolation by user and assembly

When code obtains a store isolated by user and assembly, isolated storage returns a store with an
identity based on the current user and the assembly that made the call to obtain the store. As shown
in Figure 11-1, if an assembly is loaded into different application domains within a single application,
the assembly will obtain the same store as long as it presents the same evidence. Even if the
assembly is loaded into entirely different applications or Windows processes, as long as it presents
the same evidence, it will obtain the same store. This kind of store sharing is most likely to happen if
the assembly presents Publisher or StrongName evidence.

Figure 11-1. Isolation by user and assembly

Isolation by user and assembly enables an assembly used in multiple applications to share data
across those applications. In many instances, this is desirable behavior. For example, an assembly
that implements spellchecker functionality that is used in both a word processor and a spreadsheet
can save user preferences to affect the spellchecker behavior in both applications.

Used inappropriately, isolation by user and assembly can cause data leaks between applications.
Depending on how the assembly uses isolated storage, this can result in an application gaining access
to data that it should not have, or unpredictable behavior as one application overwrites the settings
of another. Because of the risk of data leaks, the ability to obtain a store isolated by user and
assembly requires a higher level of trust than obtaining a store isolated by user, assembly, and
application domain. We discuss code-access permission requirements in Section 11.2.1 later in this
chapter.

11.1.1.3 Isolation by user, assembly, and application domain

Isolation by user, assembly, and application domain limits the ability of an assembly to share or leak
data across multiple applications. When code obtains a store isolated by user, assembly, and
application domain, isolated storage returns a store with an identity based on the current user, the
assembly that made the call to obtain the store, and the application domain in which the assembly is
loaded. As shown in Figure 11-2, even if the same assembly tries to obtain a store, because each
instance is loaded into an application domain with unique identities, isolated storage returns a
different store. Unless there is a specific need to share data across multiple applications, you are best
to use isolation by user assembly and application domain for the extra guarantee of isolation it
provides.

Figure 11-2. Isolation by user, assembly, and application domain

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As Figure 11-2 also shows, if two application domains have the same identity, then it is still possible
for applications to share data; see Section 11.1.1.1 for more details. However, this is not common
and is unlikely to happen by coincidence, as it requires a high level of trust for code to manipulate the
identity of an application domain (see Chapter 6 for details).

11.1.2 Limitations of Isolated Storage

As useful as isolated storage is, it is not the answer to every managed application's data storage
requirements. Here are some examples of when the use of isolated storage is inappropriate:

When valuable or secret data is used

Isolated storage is not secure and you should not use it to store sensitive or secret data
without first encrypting that data. Although the .NET runtime ensures isolation of data between
managed applications, any application that has direct access to the area of the hard disk that
contains the isolated storage files can access the data they contain. This includes both native
applications and managed applications with permission to access the hard drive. In addition, if
data needs to be backed up, isolated storage should not be used unless you have a distributed
backup tool, or use roaming profiles and accept the risk that a user's most recent data may not
always be contained in the centralized roaming-profile store.

When data between users is shared

The only way one user can access another user's isolated storage data is by using
impersonation, which we discussed in Chapter 10. This is not a suitable mechanism for most
data-sharing solutions, so you should use a shared network drive, or a database instead of
isolated storage.

When managed and nonmanaged code need application access

If both managed and nonmanaged code need to access shared data, storing it in isolated
storage is not a good solution. Although the nonmanaged application can access the isolated
storage files through direct access to the hard drive, isolated storage manages the structure of
the file store to meet its own needs, and is not easy to work with directly.

When there is no roaming-profile support

If you need the isolated storage data to be available to a user regardless of the machine he
uses, but you do not have a network with Windows-roaming profiles enabled, you should not
use isolated storage. Without roaming profiles, a user will have different data stored on every
machine he uses.

When used as a primary file store

You should not use isolated storage as the primary storage area for datafiles produced by your

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application. For example, it is inappropriate for email clients, word processors, and the like to
store a user's files in isolated storage. The primary purpose of isolated storage is to store small
amounts of noncritical data.

When large amounts of data are used

You must take the number of different people that use an application and the use of roaming
profiles into consideration, but it is generally not a good idea to store large amounts of data in
isolated storage. If many people use an application that consumes large amounts of isolated
storage, it can easily fill up the disk space because isolated storage enforces quotas at the
individual store level, not across all stores cumulatively.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.2 Programming Isolated Storage

Isolated storage is simple to use and requires knowledge of relatively few classes. The most
important class is System.IO.IsolatedStorage.IsolatedStorageFile. IsolatedStorageFile

objects represent individual stores and provide methods to manage the files and directories contained
within the stores, as well as properties to access information, such as the store's isolation scope,
current size, and maximum size. The IsolatedStorageFile class also provides static factory

methods through which you initially obtain store objects.

Also important is the System.IO.IsolatedStorage.IsolatedStorageFileStream class, which
extends System.IO.FileStream and provides the mechanism through which you read and write data

to files in isolated storage.

In the following sections, we demonstrate how to use these classes to implement the use of isolated
storage in your programs. First, we look at the code-access permissions used to control access to
isolated storage.

11.2.1 Isolated Storage and Code-Access Security

The System.Security.Permissions.IsolatedStorageFilePermission code-access permission

class controls access to isolated storage. Unlike the
System.Security.Permissions.FileIOPermission class that controls direct access to the hard
drive, the IsolatedStorageFilePermission class does not control the type of access (read or write)
to specific directories or even specific stores. IsolatedStorageFilePermission controls access to

isolated storage by restricting the scope of isolation at which code can obtain a store. Permission to
obtain a store of a specified scope implies the ability for code to read and write data in the store. The
IsolatedStorageFilePermission class also controls the maximum size that code can make a store.

If different code obtains the same store, the maximum store size granted to
each assembly may be different based on the configuration of the
IsolatedStorageFilePermission granted to the each assembly.

When configuring IsolatedStorageFilePermission instances, the
System.Security.Permissions.IsolatedStorageContainment enumeration represents the

different isolation scopes available, as well as some levels of access that transcend the individual
isolation scopes. Table 11-1 lists the members of the IsolatedStorageContainment enumeration

and describes the access they represent.

Table 11-1. Members of the IsolatedStorageContainment enumeration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

None No permission to access isolated storage

DomainIsolationByUser
Permission to obtain a nonroaming store isolated by user,
assembly, and application domain

AssemblyIsolationByUser
Permission to obtain a nonroaming store isolated by user
and assembly

DomainIsolationByRoamingUser
Permission to obtain a roaming store isolated by user,
assembly, and application domain

AssemblyIsolationByRoamingUser
Permission to obtain a roaming store isolated by user and
assembly

AdministerIsolatedStorageByUser
Permission to enumerate and obtain all stores for the current
user, but not the ability to modify the stores contents

UnrestrictedIsolatedStorage
Grants code unrestricted access to all stores isolated by the
current user

The IsolatedStorageFilePermission treats the DomainIsolationByUser,
AssemblyIsolationByUser, DomainIsolationByRoamingUser, and
AssemblyIsolationByRoamingUser values of the
IsolatedStorageContainment enumeration as a hierarchy of permissions.

This introduces an important inconsistency in the control of access to isolated
storage. Granting code the DomainIsolationByRoamingUser permission

results in the code also obtaining a store isolated by user and assembly
(AssemblyIsolationByUser) only. This introduces a significant risk because an

assembly used by multiple applications can leak data between those
applications, when the expected behavior allows code to obtain a roaming store
isolated by user, assembly, and application domain.

Despite the relative safety of isolated storage, .NET's default security policy (discussed in Chapter 9)
restricts the isolation scope of stores some code can obtain. In particular, code run from the Internet
can obtain only a store isolated by user, assembly, and application domain. This minimizes the
chance that applications downloaded from the Internet can share data between each other.

If you intend to use isolated storage in your code, it is prudent to use a permission request, which we
discussed in Chapter 7, to ensure the runtime grants your code the isolation scope it requires. The
following code demonstrates the statements that request permission to create stores of some sample
isolation scopes:

C#

// Minimum permission request to obtain a non-roaming store isolated by
// user, assembly, and application domain
[assembly:IsolatedStorageFilePermission(SecurityAction.RequestMinimum,
UsageAllowed = IsolatedStorageContainment.DomainIsolationByUser)]

// Minimum permission request to obtain a roaming store isolated by
// user and assembly with a quota of 2048 bytes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[assembly:IsolatedStorageFilePermission(SecurityAction.RequestMinimum,
UsageAllowed = IsolatedStorageContainment.AssemblyIsolationByRoamingUser,
UserQuota = 2048)]

// Minimum permission request for unrestricted access to isolated storage
[assembly:IsolatedStorageFilePermission(SecurityAction.RequestMinimum,
Unrestricted = true)]

Visual Basic .NET

' Minimum permission request to obtain a non-roaming store isolated by
' user, assembly, and application domain
<Assembly:IsolatedStorageFilePermission(SecurityAction.RequestMinimum, _
UsageAllowed := IsolatedStorageContainment.DomainIsolationByUser)>

' Minimum permission request to obtain a roaming store isolated by
' user and assembly with a quota of 2048 bytes
<Assembly:IsolatedStorageFilePermission(SecurityAction.RequestMinimum, _
UsageAllowed:=IsolatedStorageContainment.AssemblyIsolationByRoamingUser, _
UserQuota := 2048)>

' Minimum permission request for unrestricted access to isolated storage
<Assembly:IsolatedStorageFilePermission(SecurityAction.RequestMinimum, _
Unrestricted := true)>

You cannot Assert the IsolatedStorageFilePermission in your code;
attempts to Assert are ignored.

11.2.2 Obtaining a Store

Two static methods of the IsolatedStorageFile class provide the simplest and most common way

of obtaining a store:

GetUserStoreForAssembly

Returns a nonroaming store isolated by user and assembly. To invoke
GetUserStoreForAssembly, the calling code must have the AssemblyIsolationByUser
element of the IsolatedStorageFilePermission permission.

GetUserStoreForDomain

Returns a nonroaming store isolated by user, assembly, and application domain. To invoke
GetUserStoreForDomain, the calling code must have the DomainIsolationByUser element of
the IsolatedStorageFilePermission permission.

Both methods take no arguments and return an IsolatedStorageFile object representing the store

with the appropriate identity for the current user and code. If a store with the necessary identity does
not already exist, isolated storage creates a new one. The following statements demonstrate the use
of both methods:

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Obtain a store isolated by user and assembly
IsolateStorageFile iso1 = IsolatedStorageFile.GetUserStoreForAssembly();

// Obtain a store isolated by user, assembly, and application domain
IsolateStorageFile iso2 = IsolatedStorageFile.GetUserStoreForDomain();

Visual Basic .NET

' Obtain a store isolated by user and assembly
Dim iso1 As IsolateStorageFile =_
IsolatedStorageFile.GetUserStoreForAssembly()

' Obtain a store isolated by user, assembly, and application domain
Dim iso2 As IsolateStorageFile = _
IsolatedStorageFile.GetUserStoreForDomain()

The static IsolatedStorageFile.GetStore method also obtains a store, but allows the caller to
specify the scope and identity of the store to obtain. GetStore has three overloads that provide

different ways to specify the identity of the store. We show the most commonly used signature here;
refer to the .NET Framework documentation for a discussion of all available overloads:

C#

public static IsolatedStorageFile GetStore {
 IsolatedStorageScope scope,
 object domainIdentity,
 object assemblyIdentity
);

Visual Basic .NET

Overloads Public Shared Function GetStore(_
 ByVal scope As IsolatedStorageScope, _
 ByVal domainIdentity As Object, _
 ByVal assemblyIdentity As Object _
) As IsolatedStorageFile

The domainIdentity and assemblyIdentity arguments represent the evidence objects for isolated
storage to use when determining the identity of the store to obtain. Specifying null (C#) or Nothing

(Visual Basic .NET) for both arguments means isolated storage will use its default approach to
determine code identity, which we discussed earlier in Section 11.1.1.1.

The scope argument takes a value of the System.IO.IsolatedStorage.IsolatedStorageScope
enumeration that identifies the desired isolation scope for the store. The IsolatedStorageScope

enumeration contains the following five values:

Assembly

Domain

None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Roaming

User

By themselves, these values serve no purpose; only by combining them using a logical Or operation
do they have any meaning to the GetStore method. Table 11-2 lists the valid combination of values.
The | symbol is the C# equivalent of the Visual Basic .NET Keyword Or.

Table 11-2. Valid IsolatedStorageScope values for GetStore

Values Description

User | Assembly
Requests a store isolated by user and assembly, the same as that returned
by the GetUserStoreForAssembly method

User | Assembly |
Domain

Requests a store isolated by user, assembly, and application domain, the
same as that returned by the GetUserStoreForDomain method

Roaming | User |
Assembly

Requests a roaming store isolated by user and assembly

Roaming | User |
Assembly | Domain

Requests a roaming store isolated by user, assembly, and application
domain

GetStore is the only way to obtain stores backed by Windows-roaming profiles. If you use
GetUserStoreForAssembly, GetUserStoreForDomain, or do not specify the Roaming flag when
calling GetStore, the store will exist only on the machine on which it was created and will not be

accessible to the user when she uses other machines.

Because the GetStore method allows you to override the default evidence used to identify the store

to obtain, you can obtain another application's store if you specify the correct evidence values-a
relatively easy task. This breaks the normal code-level isolation provided by isolated storage;
therefore, the calling code must have the more highly trusted AdministerIsolatedStorageByUser
element of the IsolatedStorageFilePermission to call GetStore with evidence arguments that are
not null (C#) or Nothing (Visual Basic .NET).

The following statements demonstrate the use of the GetStore method, including method calls that
are equivalent to calling the GetUserStoreForAssembly and GetUserStoreForDomain methods:

C#

// GetStore equivalent of GetUserStoreForAssembly
IsolatedStorageFile iso1 = IsolatedStorageFile.GetStore(
 IsolatedStorageScope.User | IsolatedStorageScope. Assembly,
 null, null
);

// GetStore equivalent of GetUserStoreForDomain
IsolatedStorageFile iso2 = IsolatedStorageFile.GetStore(
 IsolatedStorageScope.User | IsolatedStorageScope.Assembly |
 IsolatedStorageScope.Domain, null, null

http://lib.ommolketab.ir
http://lib.ommolketab.ir

);

// Get a roaming store isolated by user and assembly. Specify
// new Url evidence for the assembly identity
IsolatedStorageFile iso3 = IsolatedStorageFile.GetStore(
 IsolatedStorageScope.User | IsolatedStorageScope.Assembly |
 IsolatedStorageScope.Roaming, null, new Url(@"http://test.com")
);

Visual Basic .NET

' GetStore equivalent of GetUserStoreForAssembly
Dim iso1 As IsolatedStorageFile = IsolatedStorageFile.GetStore(_
IsolatedStorageScope.User Or IsolatedStorageScope.Assembly, _
Nothing, Nothing)

' GetStore equivalent of GetUserStoreForDomain
Dim iso2 As IsolatedStorageFile = IsolatedStorageFile.GetStore(_
IsolatedStorageScope.User Or IsolatedStorageScope.Assembly Or _
IsolatedStorageScope.Domain, Nothing, Nothing)

' Get a roaming store isolated by user and assembly. Specify
' new Url evidence for the assembly identity
Dim iso3 As IsolatedStorageFile = IsolatedStorageFile.GetStore(_
IsolatedStorageScope.User Or IsolatedStorageScope.Assembly Or _
IsolatedStorageScope.Roaming, Nothing, New Url("http://test.com"))

The final way to obtain a store is to enumerate all stores for the current user. This breaks the data
isolation provided by isolated storage completely and requires the caller to have the
AdministerIsolatedStorageByUser element of the IsolatedStorageFilePermission permission.
The IsolatedStorageFile.GetEnumerator method has the following signature:

C#
public static IEnumerator GetEnumerator(
 IsolatedStorageScope scope
);

Visual Basic .NET

Public Shared Function GetEnumerator(_
 ByVal scope As IsolatedStorageScope _
) As IEnumerator

The scope argument takes a value of the IsolatedStorageScope enumeration; Table 11-3 lists the

valid member combinations.

Table 11-3. Valid IsolatedStorageScope values for GetEnumerator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values Description

User Returns an enumeration across all nonroaming stores for the current user

Roaming | User Returns an enumeration across all roaming stores for the current user

You can read data from IsolatedStorageFile objects obtained through the GetEnumerator

method, but you cannot write to them. Methods that write data to stores ensure that no write
operation increases the size of the store beyond that specified by the
IsolatedStorageFilePermission permission granted to the executing code. When code obtains a
store through the GetStore, GetUserStoreForAssembly, or GetUserStoreForDomain methods, the

code's permissions determine the maximum size of the store. This figure is stored in the
IsolatedStorageFile.MaximumSize property. However, code that executes GetEnumerator has no

defined quota and so no maximum size is set. The lack of a maximum size value does not, however,
result in an unrestricted store quote. Any attempt by code that obtains a store using GetEnumerator
to read or modify the MazimumSize property will cause a System.InvalidOperationException to be

thrown.

Example 11-1 demonstrates the use of the GetEnumerator method to obtain all nonroaming stores

for the current user. We then step through the stores and display the stores' isolation scope, current
size, and the evidence of the code that created the stores using the Scope, CurrentSize,
AssemblyIdentity, and DomainIdentity properties:

Example 11-1. Enumerating and displaying the characteristics of isolated
stores

C#

using System;
using System.Collections;
using System.IO.IsolatedStorage;
using System.Security.Permissions;

// Ensure we have permission to enumerate stores
[assembly:IsolatedStorageFilePermission(SecurityAction.RequestMinimum,
UsageAllowed = IsolatedStorageContainment.AdministerIsolatedStorageByUser)]

public class EnumerateStores {

 public static void Main() {

 // Obtain an IEnumerator across all non roaming stores for the
 // current user
 IEnumerator e =
 IsolatedStorageFile.GetEnumerator(IsolatedStorageScope.User);

 // Iterate through the enumerator
 while (e.MoveNext()) {

 IsolatedStorageFile i = (IsolatedStorageFile)e.Current;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Display the scope of the current store
 Console.WriteLine("STORE SCOPE: {0}", i.Scope);

 // Display the maximum and current size for the store
 Console.WriteLine("Current size={0}", i.CurrentSize);

 // Display the assembly identity of the current store
 Console.WriteLine("Assembly ID:");
 Console.WriteLine(i.AssemblyIdentity);

 // Display the domain identity of the current store if
 // the store is isolated by domain
 if ((i.Scope & IsolatedStorageScope.Domain) != 0) {

 Console.WriteLine("Domain ID:");
 Console.WriteLine(i.DomainIdentity);
 }
 }
 }
}

Visual Basic .NET

Imports System
Imports System.Collections
Imports System.IO.IsolatedStorage
Imports System.Security.Permissions

' Ensure we have permission to enumerate stores
<assembly:IsolatedStorageFilePermission(SecurityAction.RequestMinimum, _
UsageAllowed := IsolatedStorageContainment.AdministerIsolatedStorageByUser _
)> _

Public Class EnumerateStores

 Public Shared Sub Main()

 ' Obtain an IEnumerator across all non roaming stores for the
 ' current user
 Dim e As IEnumerator = _
 IsolatedStorageFile.GetEnumerator(IsolatedStorageScope.User)

 ' Iterate through the enumerator
 While e.MoveNext()

 Dim i As IsolatedStorageFile = _
 CType(e.Current, IsolatedStorageFile)

 ' Display the scope of the current store
 Console.WriteLine("STORE SCOPE: {0}", i.Scope)

 ' Display the maximum and current size for the store

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine("Current size={0}", i.CurrentSize)

 ' Display the assembly identity of the current store
 Console.WriteLine("Assembly ID:")
 Console.WriteLine(i.AssemblyIdentity)

 ' Display the domain identity of the current store if
 ' the store is isolated by domain
 If (i.Scope And IsolatedStorageScope.Domain) <> 0 Then

 Console.WriteLine("Domain ID:")
 Console.WriteLine(i.DomainIdentity)
 End If
 End While
 End Sub
End Class

11.2.3 Creating Directories

Once you have an IsolatedStorageFile object representing a store, you can create files and

directories in the store. .NET's isolated storage implementation does not provide an object that
represents directories; this simplifies the isolated storage class structure but also forces you to
constantly work with strings that represent directory paths. The CreateDirectory method, with the

following signature, creates a directory with the specified fully qualified name:

C#

public void CreateDirectory(
 string dir
);

Visual Basic .NET

Public Sub CreateDirectory(_
 ByVal dir As String _
)

You can create more than one level of the directory hierarchy in a single call. For example, the
following statements create a directory named Dir1, as well as two subdirectories named Dir2 and
Dir3 in the store represented by the iso object:

C#

IsolatedStorageFile iso = IsolatedStorageFile.GetUserStoreForDomain();
iso.CreateDirectory(@"Dir1\Dir2");
iso.CreateDirectory("Dir1/Dir3");

Visual Basic .NET

Dim iso As IsolatedStorageFile = IsolatedStorageFile.GetUserStoreForDomain()
iso.CreateDirectory("Dir1\Dir2")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

iso.CreateDirectory("Dir1/Dir3")

On the first call, CreateDirectory creates both the Dir1 and Dir2 directories. If you specify a
directory name that already exists, as is the case with Dir1 in the second call to CreateDirectory,
no error occurs. If you specify a directory name that contains illegal characters, CreateDirectory
throws an IsolatedStorageException. As this code shows, you can use either the forward slash / or

backward slash \ characters as the path separators.

11.2.4 Creating, Reading, and Writing Files

The IsolatedStorageFileStream class represents a file in a store. IsolatedStorageFileStream
extends System.IO.FileStream and apart from its Handle property, supports all of the normal file
I/O capabilities that you are familiar with, including asynchronous I/O. If you use the Handle
property, it throws an IsolatedStorageException.

You do not create an IsolatedStorageFileStream through an IsolatedStorageFile object as you
may expect; instead, you pass the IsolatedStorageFile instance in which you want to create or
open the file to one of the IsolatedStorageFileStream constructors. The
IsolatedStorageFileStream class provides eight overloaded constructors. We show the most
specific IsolatedStorageFileStream constructor signature here; the other seven variations take

subsets of the arguments required by this version and provide defaults for the arguments not
specified:

C#

public IsolatedStorageFileStream(
 string path,
 FileMode mode,
 FileAccess access,
 FileShare share,
 int bufferSize,
 IsolatedStorageFile isf
);

Visual Basic .NET

Public Sub New(_
 ByVal path As String, _
 ByVal mode As FileMode, _
 ByVal access As FileAccess, _
 ByVal share As FileShare, _
 ByVal bufferSize As Integer, _
 ByVal isf As IsolatedStorageFile _
)

All of the arguments to the IsolatedStorageFileStream constructor serve the same purpose as
those to the FileStream constructor, and we do not cover them in detail here. Of special interest are
the first and last arguments: path and isf. The path argument is a String that contains the name

of the file to create and must include the full path (within the store) of the file. If you create a file in a
directory, the directory must exist before you create the file. The isf argument is a reference to the
IsolatedStorageFile in which to create or open the file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some constructors of the IsolatedStorageFileStream class do not require
you to obtain an IsolateStorageFile object first. When you call them, they

automatically open a store isolated by user, assembly, and application domain
as if you had first called the GetUserAssemblyForDomain method. Refer to the

.NET Framework SDK documentation for details on the available constructors.

After creating or opening a file in a store, you can use the IsolatedStorageFileStream object as
you would with any other FileStream object. Example 11-2 demonstrates two methods that

demonstrate the simplicity with which you can read and write XML data to isolated storage-a
common approach when storing user and application data. In WriteConfig, we demonstrate the

creation of an XML file named Config.xml, to which we write the contents of a
System.Xml.XmlDocument. In the ReadConfig method, read the Config.xml file and return a new
XmlDocument created from the files contents. Consult the .NET Framework SDK documentation for
details of the XmlDocument class.

Example 11-2. Reading and writing XML data to isolated storage

C#

public static void WriteConfig(IsolatedStorageFile store,
 XmlDocument xml) {

 //Ensure there is a config directory
 store.CreateDirectory("/config");

 // Create or Open the Config.xml file
 IsolatedStorageFileStream str = new IsolatedStorageFileStream(
 "/config/Config.xml",
 FileMode.OpenOrCreate,
 FileAccess.Write,
 FileShare.None,
 100,
 store
);

 // Write the XmlDocument to the isolated storage file
 xml.Save(str);

 // Close the Config.xml file
 str.Close();
}

public static XmlDocument ReadConfig(IsolatedStorageFile store) {

 // Open the Config.xml file
 IsolatedStorageFileStream str = new IsolatedStorageFileStream(
 "config/Config.xml",
 FileMode.Open,
 FileAccess.Read,
 FileShare.None,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 100,
 store
);

 // Create a new XmlDocument and load the config file
 XmlDocument xml = new XmlDocument();
 xml.Load(str);

 // Close the Config.xml file
 str.Close();

 // return the XmlDocument
 return xml;
}

Visual Basic .NET

Public Shared Sub WriteConfig(ByVal store As IsolatedStorageFile, _
ByVal xml As XmlDocument)

 'Ensure there is a config directory
 store.CreateDirectory("/config")

 ' Create or Open the Config.xml file
 Dim str As IsolatedStorageFileStream = New IsolatedStorageFileStream(_
 "/config/Config.xml",FileMode.OpenOrCreate,FileAccess.Write, _
 FileShare.None,100,store)

 ' Write the XmlDocument to the isolated storage file
 xml.Save(str)

 ' Close the Config.xml file
 str.Close()
End Sub

Public Shared Function ReadConfig(ByVal store As IsolatedStorageFile) _
As XmlDocument

 ' Open the Config.xml file
 Dim str As IsolatedStorageFileStream = New IsolatedStorageFileStream(_
 "config/Config.xml",FileMode.Open,FileAccess.Read,FileShare.None,100, _
 store)

 ' Create a new XmlDocument and load the config file
 Dim xml As XmlDocument = New XmlDocument()
 xml.Load(str)

 ' Close the Config.xml file
 str.Close()

 ' return the XmlDocument
 Return xml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Function

11.2.5 Searching for Files and Directories

Isolated storage does not provide any mechanism through which you can work directly with objects
that represent the individual directories within a store, but does provide search capabilities that
simplify the discovery of files and directories.

The GetDirectoryNames and GetFileNames methods both return a String array containing a list of

files or directories contained in a store with names that match a specified pattern. Both methods take
a single String argument containing the pattern for which to search. The GetDirectoryNames and
GetFileNames methods have the following signatures:

C#

public string[] GetDirectoryNames(
 string searchPattern
);

public string[] GetFileNames(
 string searchPattern
);

Visual Basic .NET

Public Function GetDirectoryNames(_
 ByVal searchPattern As String _
) As String()

Public Function GetFileNames(_
 ByVal searchPattern As String _
) As String()

The searchPattern argument must specify the full path of the directory in which you want to search

and can include both single-character ("?") and multicharacter ("*") wildcards, but only in the final
element. Table 11-4 lists some example values of searchPattern for both the GetDirectoryNames
and GetFileNames methods and describes their effects.

Table 11-4. Example searchPattern values

Values Description

GetDirectoryNames

"*" Returns the names of all directories contained in the root directory

"/data/*" Returns the names of all directories contained in the data directory

"/data??/*" Error; wildcards can occur only in the last element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Values Description

GetFileNames

"*" Returns the names of all files contained in the root directory

"config/*.xml" Returns the names of all .xml files contained in the config directory

"data/SomeApp.???"
Returns the names of all files in the data directory with the name SomeApp
and any three-letter extension

We demonstrate the use of both the GetDirectoryNames and GetFileNames methods in the

following section.

11.2.6 Deleting Files and Directories

You delete files and directories from a store through the methods of the IsolatedStorageFile
object that represents the containing store. Both the DeleteDirectory and DeleteFile methods
take a single String argument that specifies the fully qualified name of the file to delete:

C#

public void DeleteDirectory(
 string dir
);

public void DeleteFile(
 string file
);

Visual Basic .NET

Public Sub DeleteDirectory(_
 ByVal dir As String _
)

Public Sub DeleteFile(_
 ByVal file As String _
)

If you try to delete a directory that does not exist or you include wildcard characters in the directory
name, DeleteDirectory throws an IsolatedStorageFile exception. Attempting to delete a file that
does not exist also results in an IsolatedStorageFile exception, but including wildcard characters
in the filename will cause a System.Argument exception.

The major difficulty in using DeleteDirectory is that the directory must be empty of files and

subdirectories before you can delete it. Because you cannot specify wildcard characters to delete
groups of files and directories, you have to implement the program logic necessary to delete all of the
files in the directory. Example 11-3 contains a static method named DeleteDirectory, which

demonstrates the techniques necessary to delete an isolated storage directory tree.
DeleteDirectory takes two arguments: an IsolatedStorageFile object that represents the store

GetFileNames

"*" Returns the names of all files contained in the root directory

"config/*.xml" Returns the names of all .xml files contained in the config directory

"data/SomeApp.???"
Returns the names of all files in the data directory with the name SomeApp
and any three-letter extension

We demonstrate the use of both the GetDirectoryNames and GetFileNames methods in the

following section.

11.2.6 Deleting Files and Directories

You delete files and directories from a store through the methods of the IsolatedStorageFile
object that represents the containing store. Both the DeleteDirectory and DeleteFile methods
take a single String argument that specifies the fully qualified name of the file to delete:

C#

public void DeleteDirectory(
 string dir
);

public void DeleteFile(
 string file
);

Visual Basic .NET

Public Sub DeleteDirectory(_
 ByVal dir As String _
)

Public Sub DeleteFile(_
 ByVal file As String _
)

If you try to delete a directory that does not exist or you include wildcard characters in the directory
name, DeleteDirectory throws an IsolatedStorageFile exception. Attempting to delete a file that
does not exist also results in an IsolatedStorageFile exception, but including wildcard characters
in the filename will cause a System.Argument exception.

The major difficulty in using DeleteDirectory is that the directory must be empty of files and

subdirectories before you can delete it. Because you cannot specify wildcard characters to delete
groups of files and directories, you have to implement the program logic necessary to delete all of the
files in the directory. Example 11-3 contains a static method named DeleteDirectory, which

demonstrates the techniques necessary to delete an isolated storage directory tree.
DeleteDirectory takes two arguments: an IsolatedStorageFile object that represents the store

http://lib.ommolketab.ir
http://lib.ommolketab.ir

containing the directory to delete, and a System.String, which specifies the fully qualified name of

the directory to delete-for example, "/config/gary":

Example 11-3. Deleting an isolated storage directory tree

C#

public static void DeleteDirectory(IsolatedStorageFile store, String root) {

 // Ensure we have a directory name ending in a "/" character
 String dir = root.EndsWith("/") ? root : root + "/";

 // Get a list of all files in the current directory, iterate
 // through them and delete them.
 foreach (String file in store.GetFileNames(dir + "*")) {

 store.DeleteFile(file);
 }

 // Get a list of all sub-directories in the current directory,
 // iterate through them and delete them.
 foreach (String subdir in store.GetDirectoryNames(dir + "*")) {

 DeleteDirectory(store, dir + subdir + "/");
 }

 // Delete the current directory
 store.DeleteDirectory(dir);
}

Visual Basic .NET

Public Shared Sub DeleteDirectory(ByVal store As IsolatedStorageFile, _
ByVal root As String)

 ' Ensure we have a directory name ending in a "/" character
 Dim dir As String = IIf(root.EndsWith("/"), root, root & "/")

 ' Get a list of all files in the current directory, iterate
 ' through them and delete them.
 Dim file As String
 For Each file In store.GetFileNames(dir + "*")

 store.DeleteFile(file)
 Next

 ' Get a list of all sub-directories in the current directory,
 ' iterate through them and delete them.
 Dim subdir As String
 For Each subdir In store.GetDirectoryNames(dir + "*")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DeleteDirectory(store, dir + subdir + "/")
 Next

 ' Delete the current directory
 store.DeleteDirectory(dir)
End Sub

11.2.7 Deleting Stores

To delete a store, use the Remove method of the IsolatedStorageFile class. Remove has two

overloads, with the signatures shown here:

C#
public override void Remove();

public static void Remove(
 IsolatedStorageScope scope
);

Visual Basic .NET

Overrides Overloads Public Sub Remove()

Overloads Public Shared Sub Remove(_
 ByVal scope As IsolatedStorageScope _
)

The first overload is an instance method that takes no arguments and simply deletes the store
represented by the current IsolatedStorageFile object. If you try to use the
IsolatedStorageFile object after calling Remove, a System.InvalidOperation exception is thrown
because the store is considered to be closed. The second Remove overload is a static method that
takes an IsolatedStorageScope argument, which represents the isolation scope of the stores to
delete. Table 11-5 lists the valid combination of IsolatedStorageScope values you can use for the
scope argument.

Once you delete a store, its contents are not recoverable.

Table 11-5. Valid IsolatedStorageScope values for GetEnumerator

Values Description

User Removes all nonroaming stores for the current user

Roaming | User Removes all roaming stores for the current user

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.3 Administering Isolated Storage

There are two aspects to the administration of isolated storage:

Configuring security policy to control access to isolated storage

Managing existing stores

In the following sections, we discuss the administration of isolated storage, beginning with the
configuration of security policy.

11.3.1 Configuring Security Policy

You can use both the .NET Framework Configuration tool (Mscorcfg.msc) and the Code Access
Security Policy tool (Caspol.exe) to administer security policy to grant access to isolated storage. We
discussed the general use of Mscorcfg.exe and Caspol.exe in Chapter 9. In the following sections, we
describe how to use Mscorcfg.exe and Caspol.exe specifically to control access to isolated storage.

11.3.1.1 Granting isolated storage permissions with Mscorcfg.msc

To grant code access to isolated storage, you must create a named permission set that grants its
members the IsolateStorageFilePermission class, and you must assign this permission set to a
code group. To create a permission set containing IsolateStorageFilePermission, you should

follow the process we described in Section 11.1.1.1 of Chapter 9. Figure 11-3 shows the dialog box
through which you select the permissions to add to the new permission set. The Isolated Storage File
entry (highlighted in the diagram) represents the IsolateStorageFilePermission class.

Figure 11-3. Selecting IsolatedStorageFilePermission graphically

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you press the Add >> button to include the IsolateStorageFilePermission in your

permission set, the dialog box shown in Figure 11-4 appears and allows you to configure the specific
level of isolated storage access to grant.

Figure 11-4. Configuring IsolatedStorageFilePermission graphically

You can grant unrestricted access to isolated storage by pressing the bottom radio button, or grant a
specific level of access by pressing the top radio button and choosing the desired level from the
Usage Allowed drop-down list. The configuration maps to the values of the
IsolatedStorageContainment enumeration, which we discussed in Section 11.2.1 earlier in this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chapter.

11.3.1.2 Granting isolated storage permissions with Caspol.exe

In Chapter 9, we explained how to use Caspol.exe to administer code-access security. To create a
named permission set that grants access to isolated storage, you must generate an XML file that
contains the description of a System.Security.NamedPermissionSet object containing a configured
IsolateStorageFilePermission object. Because of the complexity of the XML description, we

recommend that you don't try to create these XML files manually; you should create the permission
set programmatically, and then write its XML description to a file, as demonstrated in Example 11-4:

Example 11-4. Programmatically creating an XML description of a
permission set

C#

using System;
using System.IO;
using System.Security;
using System.Security.Permissions;

public class WritePermSet {

 public static void Main() {

 // Create an empty NamedPermissionSet
 NamedPermissionSet nps =
 new NamedPermissionSet("IsoTestSet",PermissionState.None);

 // Create an IsolatedStorageFilePermission and add it to the
 // NamedPermissionSet
 IsolatedStorageFilePermission p =
 new IsolatedStorageFilePermission(PermissionState.None);
 p.UsageAllowed = IsolatedStorageContainment.DomainIsolationByUser;
 p.UserQuota = 2048;
 nps.AddPermission(p);

 // Write the NamedPermissionSet to a file
 StreamWriter sw = new StreamWriter("IsoTestSet.xml");
 sw.Write(nps.ToString());
 sw.Close();
 }
}

Visual Basic .NET

Imports System
Imports System.IO
Imports System.Security
Imports System.Security.Permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Class WritePermSet

 Public Shared Sub Main()

 ' Create an empty NamedPermissionSet
 Dim nps As NamedPermissionSet = _
 New NamedPermissionSet("IsoTestSet",PermissionState.None)

 ' Create an IsolatedStorageFilePermission and add it to the
 ' NamedPermissionSet
 Dim p As IsolatedStorageFilePermission = _
 New IsolatedStorageFilePermission(PermissionState.None)
 p.UsageAllowed = IsolatedStorageContainment.DomainIsolationByUser
 p.UserQuota = 2048
 nps.AddPermission(p)

 ' Write the NamedPermissionSet to a file
 Dim sw As StreamWriter = new StreamWriter("IsoTestSet.xml")
 sw.Write(nps.ToString())
 sw.Close()
 End Sub
End Class

Running this utility produces a file named IsoTestSet.xml that contains the following XML:

<PermissionSet class="System.Security.NamedPermissionSet"
 version="1"
 Name="IsoTestSet">
 <IPermission class="System.Security.Permissions.IsolatedStorageFilePermission,
mscorlib, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 version="1"
 Allowed="DomainIsolationByUser"
 UserQuota="2048"/>
</PermissionSet>

You can use the IsoTestSet.xml file to create a new permission set in the machine policy level using
the following command:

caspol -machine -addpset IsoTestSet.xml

11.3.2 Managing Isolated Storage Stores

The Isolated Storage tool (Storeadm.exe) is a command-line tool that comes with the .NET
Framework SDK and is located in the /bin subdirectory of the SDK installation directory.
Storeadm.exe allows you to list or remove the stores of the current user; no tool lets you manage
isolated storage for all users, and you must manage the user's roaming and nonroaming stores
independently.

To list the nonroaming stores of the current user, use the command storeadm /list. Specifying the
/roaming flag lists the roaming stores-for example, storeadm /list /roaming. Either of these

commands displays a list of stores but not content, similar to that shown here. We have abbreviated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the StrongName.Key and Publisher.X509Certificate elements in the interest of brevity:

Microsoft (R) .NET Framework Store Admin 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Record #1
[Assembly]
<StrongName version="1"
 Key="002400000480000094000000060200000024000052534131
00040000010001005308669520E62E2E1F08F07B0D5DA0B33C0F82AC093C54E26
852080E8C5B7"
 Name=" SomeOtherApp"
 Version="1.5.0.0"/>

 Size : 0
Record #2
[Domain]
<System.Security.Policy.Url version="1">
 <Url>file://C:/Development/projects</Url>
</System.Security.Policy.Url>

[Assembly]
<System.Security.Policy.Publisher version="1">
 <X509v3Certificate>308201713082011BA0030201020210E5D7C7E57FD9B9B347A7EE
AC3221100A39899EB866979DBBB6430F5A52A024FC7FCEE9</X509v3Certificate>
</System.Security.Policy.Publisher>

 Size : 0

The example output contains information about two stores: Record #1 and Record #2 (which we
have highlighted in boldface). Record #1 represents a store isolated by user and assembly; the
assembly's StrongName evidence identifies the creating code. Record #2 represents a store isolated
by user, assembly, and application domain; the application domain's Url evidence and the
assembly's Publisher evidence identify the creating code.

Storeadm.exe also allows you to remove stores for the current user. However, you must remove all
roaming or nonroaming stores at once; there is no way to remove individual stores. To remove all
nonroaming stores, use the command storeadm /remove. To remove all roaming stores, use the
command storeadm /roaming /remove.

Storeadm.exe will not prompt you to confirm the removal of stores, and you
cannot recover any stores once you remove them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part III: .NET Cryptography
Provides a description of modern cryptographic techniques and details the implementation of
these techniques provided by the .NET Framework class library. These chapters demonstrate
the use of each implementationand show you how to extend the functionality of the .NET class
library by implementing your own cryptographic algorithms:

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 12. Introduction to Cryptography
The previous chapters shown how to apply security to an application; the topics that follow
demonstrate how to use cryptography to secure the data that your applications use.

We begin with an overview of cryptography and discuss some of the dangers and limitations of which
you should be aware when putting it to use. Consider this chapter as a simple primer for those who
have not previously encountered cryptography. In the chapters that follow, we examine specific
aspects of cryptography in detail, and illustrate how to use and extend the .NET Framework's
cryptographic support.

You should seriously consider using cryptography in any application that processes sensitive or
valuable data. However, contrary to common opinion, cryptography itself is vulnerable to attack and
is not something that can be "plugged into" an application and then forgotten. Throughout this book,
we have shown you that software security is an ongoing process that requires careful planning and
management. This is especially true for cryptography, where it is easy to create disastrous mistakes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.1 Cryptography Explained

The most common way to describe cryptographic systems is to assume that one person (usually
named Alice) wants to send a message to another person (Bob). However, a third person (Eve) is
determined to eavesdrop on their conversation. Figure 12-1 shows the relationship between Alice,
Bob, and Eve.

Figure 12-1. Alice, Bob, and Eve are commonly used to illustrate
cryptography.

Let's assume that Eve will intercept and alter messages between Alice and Bob irrespective of how
those messages are composed and sent. Although this might seem paranoid, there are benefits to
this way of thinking. By assuming that Eve can intercept each message, you are, in effect, forced to
regard the communications channel as insecure-this is a realistic approach because communications
techniques that seem secure today may be compromised in the future. By assuming that Eve can
read any message, we focus on the security of the message itself.

Cryptography has a long history, and different techniques for protecting messages have been in use
for thousands of years. For most of that time, Alice, Bob, and Eve have represented real people or
organizations. With advances in technology, cryptography has become irrevocably bound to the world
of computers. Computers have facilitated stronger cryptographic techniques but also allowed people
like Eve to mount stronger attacks on cryptography. Although we find it useful to talk about Alice,
Bob, and Eve, these names are often a metaphor for computers.

When we say "Alice sends a message to Bob," we do not consider the details of how she does this,
and as a result, we will be discussing techniques that are applicable in many different situations. For
example, Alice may use her email client to compose and send a message, or she may have written an
application that will communicate automatically with her bank to pay her bills while she is on
vacation. Irrespective of how Alice communicates with Bob, her need for cryptography can be broken
down into the three categories that we discuss in Section 12.1.1, Section 12.1.2, and Section 12.1.3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1.1 Confidentiality

Confidentiality becomes an issue when Alice wants to send a message containing a secret to Bob. We
assume that Eve can intercept and read the message, and that Alice and Bob do not want Eve to
know the secret contained in the message.

The cryptographic solution to this problem is to obscure the contents of the message using
encryption. Encryption ensures that Eve cannot understand the messages sent between Alice and
Bob, even though she is able to intercept them. Figure 12-2 illustrates the role of encryption in
confidentiality.

Figure 12-2. Alice uses encryption to ensure that her messages to Bob
remain confidential

Encryption works on the basis that there is one piece of information that Eve has not been able to
acquire, known as the key. The key is used as part of the encryption process and is kept secret. Alice
selects an encryption algorithm and uses the secret key to create the encrypted data, as shown in
Figure 12-3. When Bob receives the encrypted text, he uses the secret key to restore the confidential
message so that he can read it.

Figure 12-3. Alice uses the confidential message and the secret key to
create the encrypted data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using encryption changes the nature of the confidentiality problem-Alice and Bob can exchange
confidential messages as long as Eve does not acquire the secret key. When Alice and Bob exchange
messages, they send the encrypted data only-they never send the key, because they know that Eve
can intercept it and then read their messages.

This is the very essence of encryption-Alice uses one secret that Eve does not know (the key) to
protect another (the confidential message). However, Eve can read the confidential messages if she
discovers or guesses the key.

In practice, using encryption becomes centered on protecting and managing these secret keys. Some
types of encryption require Alice and Bob to know the key and are called symmetric encryption
(because Alice and Bob have the same knowledge). The problem with symmetric encryption is that
Alice and Bob need to agree on what the secret key will be before sending any messages.

Another approach is to use asymmetric encryption, where only Bob has to keep a secret. Bob creates
a special pair of keys, one of which he keeps secret (known as the private key) and one that is given
out to anyone who wants to send him a message (the public key). Bob can send Alice his public key
openly, because he does not care if Eve intercepts it.

When Alice wants to send Bob a confidential message, she uses an asymmetric encryption technique
to encrypt the data. This is similar to the model shown in Figure 12-3; but instead of using the secret
key, Alice uses Bob's public key and the contents of the message as inputs.

When Bob receives the message, he decrypts it using his private key (which he always keeps secret)
and restores the confidential message from the encrypted data. Eve cannot read the message unless
she acquires Bob's secret key. Using this technique, Alice and Bob do not have to agree on a key that
they both know, further reducing the chances that Eve can acquire the key during the agreement
process. The use of asymmetrical encryption is also known as public key cryptography.

We discuss the .NET Framework's support for symmetric encryption in Chapter 14, and provide more
information about public key cryptography in Chapter 15 and Chapter 16.

12.1.2 Integrity

Integrity becomes an issue when Alice wants to send a message to Bob but is concerned that Eve will
tamper with the message and change the contents. In this case, Alice does not care if Eve can read
the message-she only wants to make sure that Bob can detect any changes made by Eve.

Alice takes the message that she has written and creates a cryptographic hash code, which is a
numeric code based on the contents of the message that acts as a "fingerprint" to identify the
message. Changing even the smallest portion of the message results in a different hash code. Alice
sends the message and the hash code to Bob.

Bob takes the message that he has received and creates his own hash code using the same
technique that Alice used. If his code matches the one that Alice sent, Bob can assume that Eve has
not modified the message-if the hash codes do not match, then Bob can assume that Eve has
altered the message en route. Figure 12-4 illustrates the use of hash codes.

Figure 12-4. Alice and Bob use hash codes to check the integrity of their
messages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Eve will be able to change the message without detection if she changes the hash code as well. Eve
creates a new message and a new hash code, both of which she sends to Bob. When Bob creates a
hash code for the message, it will match the hash code he has received, leading him to think that the
message has not been tampered with.

The solution to this problem is to use a "keyed" hash code, which uses the contents of the message
and a secret key to create the hash code, as illustrated in Figure 12-5. Eve can still modify the
message, but she can no longer create a valid hash code, because she lacks the key used to create
the original code.

Figure 12-5. Keyed hash codes are created using the contents of the
message and a secret key.

Unless Eve is able to discover the key, she will be unable to create hash codes that will fool Bob; if
Eve acquires the key, she will be able to generate valid hash codes for her own messages, rendering
Alice and Bob's efforts to ensure message integrity useless. As with confidentiality, the issue of
integrity becomes one of protecting secret keys from Eve. We discuss the .NET Framework support
for cryptographic hash codes in Chapter 13.

12.1.3 Authentication

The goal of authentication is to allow Bob to establish that Alice is the author of a message. For our
purposes, this means that Alice should be able to create a "digital signature" for the message and
that Bob should be able to check the signature to ensure that it is valid. In addition, Eve should not
be able to create and sign messages as though she were Alice.

Digital signatures rely on asymmetric encryption techniques, although they are applied differently
than we discussed earlier. Alice creates a pair of keys, one of which she makes public and one of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which she keeps private. To sign the message, Alice creates a cryptographic hash code of the
message that she wants to send to Bob, as discussed earlier. Alice then signs the hash code using her
private key, as shown in Figure 12-6. This creates a digital signature that is unique to the
combination of the document and Alice's private key.

Figure 12-6. Alice uses public key cryptography to create a digital
signature

When Bob receives the message, he verifies the signature using Alice's public key. If the signature is
valid, then Alice has "signed" the message, and Bob can assume that Eve has not forged the
message.

Because digitally signing a document requires the creation of a hash code, it also addresses the issue
of integrity that we discussed earlier. If Eve modifies the message that Alice has sent, then Alice's
signature will not be valid. Bob will generate his own hash code for the message, and it will not be the
same as the one Alice signed. Figure 12-7 shows the protocol for message signatures.

Figure 12-7. Alice uses a digital signature to authenticate a message

Eve is unable to forge messages from Alice, because she does not know Alice's secret key and is
unable to create digital signatures that will fool Bob. However, as with the areas of confidentiality and
integrity, if Eve is able to acquire the secret key, she will be able to sign messages as though she
were Alice.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.2 Cryptography Is Key Management

It should be evident from the earlier sections that although cryptography can be classified according
to whether it will be used to provide confidentiality, integrity and authentication, each of these
approaches relies on the protection of secret keys to work properly.

For symmetrical encryption and keyed hash codes, Alice and Bob must agree on a key before sending
any messages and ensure that the key does not fall into Eve's hands. For asymmetric encryption and
digital signatures, only one person has to keep the secret (the private key), which is an improvement
over needing an agreed key, but still requires either Alice or Bob to remain vigilant.

Alice and Bob have no way of determining if Eve has been able to learn the secrets that they are
protecting. When Eve intercepts a message, she is careful to send on a copy (or a replacement
message) to Bob. If Eve has learned the keys, then she is able to impersonate Alice or Bob and
interfere with their messages at will.

To minimize the damage Eve can cause if she discovers the secret keys, Alice and Bob may agree to
change their keys regularly. Eve may be able to obtain or guess the key, but if Alice and Bob change
the keys every week, Eve will only be able to meddle with up to seven days worth of messages
before she is back in the dark. Selecting and changing keys is an important process, and the
problems of storing and distributing keys securely are two of the most difficult aspects of
implementing cryptographic solutions. We will discuss the issues that arise in the following chapters.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.3 Cryptographic Attacks

In general, there are three ways to attack cryptography:

Acquire or guess the secret key1.

Identify and exploit weaknesses in the cryptographic algorithms2.

Identify and exploit weaknesses in the software that implements the cryptographic solution3.

We discuss each of these techniques in the following sections, but the key point to remember is that
cryptography is vulnerable to attack, and does not provide invincible security. The passage of time
weakens cryptographic security. Once Eve has intercepted a message from Alice, she can attack the
cryptography at her leisure; therefore, Alice and Bob must assume that at some point Eve will be
able to read the contents of that message.

12.3.1 Brute Force Attacks, Theft, and Guessing

A brute force attack is the process of trying every possible key to determine which key Alice used.
Modern cryptography is based on mathematical algorithms using numerical keys. The length of the
key (the number of digits) determines how many possible keys there can be. If there are only 10
possible keys, Eve has to try to decrypt the message at most 10 times before she finds the key that
Alice uses.

The cryptographic algorithms that we discuss in this book have different key sizes, some of them
allowing ranges that are so big that it could take many hundreds of thousands of years to check all of
the possible keys that Alice may have used. However, Eve has history on her side; the speed at
which computers can test keys has increased enormously in recent years, and there is no reason why
this should change in the future. Computing-performance increases will allow Eve to check more keys
each day, or completely new techniques may be devised for attempting to guess keys, allowing her to
test all of the combinations in a fraction of the time. Alternately, Eve may create a global network of
computers and coordinate the guesses to speed up the attack using current technology.

Instead of using brute force, Eve may try to steal the key from Alice or Bob, either by tricking them
into revealing the secret, or by intimidation and violence. While it is more likely that trickery would be
used, we have to bear in mind that some information is of limitless value, and using violence to force
Alice or Bob into revealing the key is not inconceivable.

Finally, Eve may just guess the key. Eve has to be lucky only once to be able to beat huge odds and
guess the right key; the odds of her guessing correctly are extremely low, but that is the very nature
of being lucky.

12.3.2 Cryptanalysis

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cryptanalysis is the study of the algorithms that Alice and Bob have used, looking for weaknesses
that can be exploited to reveal the messages or the keys that have been used. By the time that new
cryptographic algorithms enter commercial use, they have been subjected to extensive cryptanalysis
by security researchers and interested mathematicians, and are generally regarded to contain no
obvious flaws.

However, just because there are no publicly known flaws does not mean that none will be discovered
in the future or even that some flaws are already known, but they are being kept secret by people
like Eve in order to lull Alice and Bob into a false sense of security. Cryptography is a dynamic area;
new algorithms are developed and old ones are found to be insecure. Alice and Bob cannot rely on
their selected algorithm to remain secure forever.

12.3.3 Software Bugs

Even if Eve is unable to discover the key or find a weakness in the cryptographic algorithm, she may
be able to exploit a bug in the software that Alice and Bob use to perform their cryptography.

Although new cryptographic theories are rigorously debated and tested before they are considered to
be secure, the software that implements the theory is often untested and insecure. If Eve can find a
weakness in the software, she may be able to exploit it to obtain the keys that Alice and Bob are
using.

The most common problem with security software is that complex algorithms are not correctly
implemented or are used in such a way as to make them much less secure than they should be, as in
inadvertently discarding some of the key that Alice has created, thereby reducing the number of
guesses that Eve has to make.

When Alice and Bob select cryptographic software, they must be confidant that their security will not
be compromised by programming errors.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 13. Hashing Algorithms
In the previous chapter, we showed you that Alice and Bob could ensure the integrity of their
messages by using data hash codes. Alice creates a hash code, which she sends to Bob along with
her message. When Bob receives the message, he creates his own hash code and compares it to the
one that he received from Alice. If the two hash codes are the same, then Bob can assume that Eve
has not altered the contents of the message.

In this chapter, we examine hash codes in-depth and show you how to create and validate your own
hash codes using the .NET Framework classes. We also show you how you can extend the .NET
Framework by adding a new hashing algorithm.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.1 Hashing Algorithms Explained

A hashing algorithm creates a hash code, also called a "message digest" or "message fingerprint." As
we explained in Chapter 12, hash codes are of limited use for communications security, because Eve
can replace both the hash code and the message that Bob receives, but they are an essential
element of digital signatures, which we discuss in Chapter 16.

In this section, we explain how hashing algorithms work, and provide some practical insight into
choosing a suitable algorithm for your project.

13.1.1 Creating a Hash Code

At the heart of a hashing algorithm is a mathematical function that operates on two fixed-size blocks
of data to create a hash code, as shown in Figure 13-1.

Figure 13-1. The hash function operates on fixed-size blocks of data

We break up Alice's message into blocks that are the same size as the input for the hash function.
The size of each data block varies depending on the algorithm but the blocks tend to be small-the
algorithms included in the .NET Framework break the messages into blocks of 512 or 1024 bits. The
design of the hash function differs for each hashing algorithm, but they all share the same basic
approach.

The algorithm specifies a "seed" value that feeds into the hash function along with the first block of
message data, thus producing our first hash code. Take this hash code and feed it into the hash
function along with the second block of message data, creating a second hash code. Feed the second
hash code into the function along with the third message block, and repeat the process of hashing a
data block along with the hash code of the previous block until you have processed all of the message
data, as shown in Figure 13-2.

Figure 13-2. Creating the hash code by "chaining" the hash function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The idea of a hash code acting as a message "fingerprint" is reasonable, because making even the
smallest change in the message data changes the value of the final hash code. By "chaining"
repeated calls to the hashing function, you can create a hash code that relies on the value of every
single bit of the message. The output of hashing the first data block becomes an input to the next
operation, which will alter the value of the second hash code, which will affect the result of the third
operation, and so on. Known as a "ripple effect" or an "avalanche," the huge impact that the smallest
change has on the final hash code provides the fingerprint. Two messages that differ by a single bit of
data produce very different hash codes.

It is important not to confuse the hashing algorithm with the hash function. The hash function
generates a hash code by operating on two blocks of fixed-length binary data. The hashing algorithm
describes the process of using the hash function to create a hash code for a message-the algorithm
is a protocol for using the hash function, specifying how the message will be broken up and how the
results from previous message blocks are chained together.

13.1.2 Message Limits

There is limit to the size of message that a hashing algorithm can process before the hash code is no
longer secure. A very large message causes the initial bytes of message data to have less of an effect
on the hash code than the bytes at the end of the message. This means that it is easier for Eve to
find a message with the same hash code as Alice sent to Bob, because we have increased the
likelihood of being able to find two messages with slightly different initial bytes that result in the same
hash code.

The problem arises because the hash function is called so many times for large messages-for
example, a 1 GB message will cause the hash function to be called more than 6,000,000 times. So
many hashing operations lessen the "ripple effect."

Most hashing algorithms impose a message size limit of 264 bits. This limit is not a practical
consideration for most projects but can be an issue when calculating hash codes for data generated
over a long period. Some algorithms are able to process 2128 bits of data securely.

All of the hashing algorithms in the .NET Framework can handle message limits of at least 264 bits,
which is sufficient for most projects. However, we recommend that you bear the limit in mind when
considering hashing algorithms provided by third parties.

13.1.3 Hash Code Length

It is common to refer to a hash code as "uniquely" identifying a message, but the reality is slightly
different. The reason that hash codes can be used to protect message integrity is that it is very

http://lib.ommolketab.ir
http://lib.ommolketab.ir

difficult (but not impossible) to find another message that produces the same hash code.

Irrespective of the size or content of the message processed, hash algorithms produce a fixed-length
hash code, meaning that there is a finite set of hash code values. We measure the length of a hash
code in binary bits, meaning that a 64-bit hash code can represent 264 different numeric hash values.

You can create an infinite number of different messages, and there are only a finite number of
possible hash codes; therefore, it must be possible to find a pair of messages that produce the same
hash code. In this section, we consider the security of a 64-bit hash code which was, until quite
recently, thought of as very secure.

For Eve to find a message that produces the same hash code that Alice has sent to Bob, we expect
that she will have to create and test 264 (18,446,744,073,709,551,616) different messages before
she finds a match (assume that hash codes are evenly distributed). If Eve can check 50 messages
per second (around what you can achieve using our desktop PCs), then it will take her 11.6 billion
years to test enough messages. If Eve were able to access very powerful computers, she might be
able to check 10 million messages each second, but we would still expect her to take 58,494 years to
find a match. This is the basic security of hash codes; realistically, Eve cannot wait almost 60,000
years, meaning that finding a matching message for a specific hash code is "computationally
infeasible"-a phrase that is used by cryptographers to mean "possible, but extremely unlikely."

However, if Eve can control the contents of both messages, then she has a much easier job of finding
two matching hash codes, known as a message collision. If Eve wants to find any pair of messages
that create the same hash code, then she only has to create and test 232 different messages before
she has a better than 50% chance of finding two that match. In fact, if she is able to check 50
messages a second, she is likely to find a match in less than 3 years, which is a lot less than the 11.6
billion years it would take to handle 264 messages. If Eve is able to check 10 million messages per
second, she is likely to find a pair of messages in a little over 7 minutes.

Eve now has a pair of messages that she has written, both of which result in the same hash code.
She cannot use these messages to bother Alice and Bob, because she is unlikely to get Alice to hash
either of her messages and send them to Bob. However, Eve can use the following attack to defraud
Joe, who happens to owe her some money:

Eve creates two versions of a message. The first message instructs Joe's bank to pay Eve $100,
which is the amount he owes her. The second message instructs Joe's bank to pay Eve
$1,000,000.

1.

Eve generates 232 variations of the innocuous message by making minor editorial changes that
do not affect the meaning of the message (for example, adding spaces or tabs, or altering the
formatting).

2.

Eve also generates 232 variations of her dishonest message. Because she is in control of the
content of both messages, the chances of her finding a version of the innocuous message and
the dishonest message with the same hash code are better than 50%.

3.

Eve sends the innocuous message to Joe, who creates a hash code and digitally signs it (see
Chapter 16 for more information about digital signatures). Joe sends the signed hash code to
Eve so that she may present the signed message to his bank.

4.

Eve presents her dishonest message to Joe's bank along with the signed hash code. The bank
checks the digital signature and finds that the hash code matches the message and that Joe

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

signed it. Eve was able to forge a signature without learning Joe's secret keys.

5.

Luckily, for Joe at least, most banks would not honor a request for a million dollars in this way.
Nonetheless, Eve was able to create a forged message with very little effort-in fact, if Joe has used a
64-bit hash code for his signature, it would have taken Eve somewhere between 7 minutes and 3
years to create the messages. Looking for collisions in this way is a "birthday" attack and drastically
reduces the effectiveness of a hashing algorithm, forcing you to treat a hash code as though it was
only half of its actual length.

Birthday Attacks

How many people must be in a room before the probability of one of them sharing your
birthday is greater then 50%? The answer is 183. How many people have to be in the
room before the probability of any two people sharing the same birthday is greater than
50%? The answer is 23. It is easier to find any shared birthday than to find a specific one.

Eve is relying on being able to create two messages that produce the same hash code,
knowing that it is simpler than trying to find a match for a specific message from Alice.
Any attack along these lines is a "birthday attack."

If this kind of attack is possible in your project, then you will need to select an algorithm that creates
hash codes with twice the length you might expect. If this kind of attack is not possible, then you
should select a hash code based on its actual length. As a rule, a longer hash code will take more
time to attack, but takes longer to generate.

13.1.4 The .NET Framework Hashing Algorithms

The .NET Framework includes classes for five different hashing algorithms, although four of them are
closely related, being variations of the same basic premise to create hash codes of different length.
Table 13-1 lists the hashing algorithms available.

Table 13-1. Summary of .NET Framework hashing algorithms

Name Input block size Message limit (bits) Hash code size (bits)

MD5 512 264 128

SHA-1 512 264 160

SHA-256 512 264 256

SHA-384 1024 2128 384

SHA-512 1024 2128 512

Developed in 1991, MD5 has been used in all sorts of systems and is an integral part of many
standards for communications security. MD stands for "Message Digest," and MD5 was the fifth such

http://lib.ommolketab.ir
http://lib.ommolketab.ir

algorithm that Rivest had designed.

MD5 is the fastest hashing algorithm included in the .NET Framework, but the relatively small hash
code size makes it more susceptible to brute force and birthday attacks.

The National Security Agency (NSA) designed the Secure Hash Algorithm (SHA) in 1993, and the
National Institute of Standards and Technology (NIST) published it as Federal Information Processing
Standard (FIPS) 180, permitting its use in government projects. NSA withdrew the standard shortly
after publication, replacing it with SHA-1, which contained a slight modification to the hash function.

The NSA stated that the change addressed a flaw in the original algorithm that reduced its
cryptographic security. The NSA has never described this flaw, leading the paranoid world of
cryptographers to spend many thousands of hours analyzing the algorithm, looking for any
weaknesses deliberately introduced into SHA-1 to facilitate government skullduggery. To date, no
weaknesses have been found, and SHA-1 is considered a secure algorithm.

NIST published FIPS 180-2 in 2001, which defined the SHA-256, SHA-384, and SHA-512 algorithms,
named after the length of the hash code that each produces. These new algorithms are variations of
SHA-1, but are sufficiently recent that their cryptographic security remains open.

Consider how much you know about an algorithm before selecting one for use in a project. For
example, although SHA-256, SHA-384, and SHA-512 have longer hash codes, MD5 and SHA-1 are
tried and tested and are known to be reliable. Remember that a longer hash code does not provide
greater security if the underlying algorithm is flawed.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.2 Programming Hashing Algorithms

The .NET Framework represents all hashing algorithms with the abstract
System.Security.Cryptography.HashAlgorithm class. An abstract class represents each specific

algorithm, extended by individual implementation classes, as shown in Figure 13-3. This approach
supports selecting between several implementations of the same algorithm.

Figure 13-3. The .NET Framework class hierarchy for hashing algorithms

There are two types of implementation class included with the .NET Framework. Those whose names
end with Managed (for example, SHA1Managed) were written in a managed .NET language (for
example, C# or Visual Basic .NET). Those classes whose names end in CryptoServiceProvider (for
example, SHA1CryptoServiceProvider) rely on the Windows Crypto API. Where there is a choice

between a managed implementation and a Crypto API implementation, our (unscientific) testing
shows that the Crypto API versions are slightly faster and consume less system memory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Windows Crypto API

The Crypto API is a component of the Windows operating system that contains
cryptographic functionality. Many of the .NET cryptographic classes rely on features of the
Crypto API for tasks such as key management or providing implementations of algorithms.
As a .NET programmer, you do not need to have an understanding of the details of the
Crypto API. We do not explore the Crypto API in this book; for more information, consult
the Windows API documentation.

13.2.1 The HashAlgorithm Class

The design of the HashAlgorithm class makes it very simple to generate hash codes for any of the

hashing algorithms that the .NET Framework supports. In this section, we show you how to create an
instance of a given hashing algorithm and the techniques used to create hash codes for different
types of data. Table 13-2 lists the members of the HashAlgorithm class.

Table 13-2. Members of the HashAlgorithm Class

Member Description

Properties

Hash
This property returns the value of the computed hash code. It is
not commonly used. See the following sections for instructions on
using the ComputeHash method to create hash codes.

HashSize

This property returns the size of the hash code (in bits) that the
hashing algorithm produces. See Table 13-1 for details of the
hashing algorithms implemented in the .NET Framework and the
sizes of the hash codes that they produce.

CanReuseTransform
These properties are from the ICryptoTranform interface, which

is not directly related to hashing, but is implemented by the
HashAlgorithm class. See Chapter 14 for more information.

CanTransformMultipleBlocks

InputBlockSize

OutputBlockSize

Methods

Create
This static method creates a new instance of the HashAlgorithm

class by name. See Section 13.2.2 for further details.

ComputeHash
The ComputeHash method is used to create hash codes from byte

arrays and data streams. See Section 13.2.3 and Section 13.2.4 in
this chapter for full details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Initialize
This is used by algorithm-implementation classes to initialize their
state before use.

Clear This releases the resources held by the HashAlgorithm instance.

TransformBlock
These methods are from the ICryptoTransform interface, which is

not directly related to hashing, but is implemented by the
HashAlgorithm class. See Chapter 14 for more information.

TransformFinalBlock

13.2.2 Instantiating the Algorithm

The first step toward creating a hash code is to create an instance of an implementation class for the
algorithm that you want to use. The simplest way of doing this is to use the name of the class
directly:

C#

SHA1Managed x_hash_alg = new SHA1Managed();

Visual Basic .NET

Dim x_hash_alg As SHA1Managed = New SHA1Managed()

This statement creates an instance of the managed-code implementation of the SHA-1 algorithm.
This is the clearest and most direct approach to instantiating hashing algorithms. Another approach is
to use the static HashAlgorithm.Create method to instantiate the class indirectly:

C#

HashAlgorithm x_hash_alg = HashAlgorithm.Create("SHA1");

Visual Basic .NET

Dim x_hash_alg As HashAlgorithm = HashAlgorithm.Create("SHA1")

The Create method instantiates an algorithm based on the value of the string argument. Table 13-3

lists the mapping between string values and implementation classes.

Table 13-3. Mapping string values to algorithm classes

String value Algorithm-implementation class

MD5 MD5CryptoServiceProvider

System.Security.Cryptography.MD5 MD5CryptoServiceProvider

Initialize
This is used by algorithm-implementation classes to initialize their
state before use.

Clear This releases the resources held by the HashAlgorithm instance.

TransformBlock
These methods are from the ICryptoTransform interface, which is

not directly related to hashing, but is implemented by the
HashAlgorithm class. See Chapter 14 for more information.

TransformFinalBlock

13.2.2 Instantiating the Algorithm

The first step toward creating a hash code is to create an instance of an implementation class for the
algorithm that you want to use. The simplest way of doing this is to use the name of the class
directly:

C#

SHA1Managed x_hash_alg = new SHA1Managed();

Visual Basic .NET

Dim x_hash_alg As SHA1Managed = New SHA1Managed()

This statement creates an instance of the managed-code implementation of the SHA-1 algorithm.
This is the clearest and most direct approach to instantiating hashing algorithms. Another approach is
to use the static HashAlgorithm.Create method to instantiate the class indirectly:

C#

HashAlgorithm x_hash_alg = HashAlgorithm.Create("SHA1");

Visual Basic .NET

Dim x_hash_alg As HashAlgorithm = HashAlgorithm.Create("SHA1")

The Create method instantiates an algorithm based on the value of the string argument. Table 13-3

lists the mapping between string values and implementation classes.

Table 13-3. Mapping string values to algorithm classes

String value Algorithm-implementation class

MD5 MD5CryptoServiceProvider

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String value Algorithm-implementation class

System.Security.Cryptography.MD5 MD5CryptoServiceProvider

SHA SHA1CryptoServiceProvider

SHA1 SHA1CryptoServiceProvider

System.Security.Cryptography.SHA1 SHA1CryptoServiceProvider

SHA256 SHA256Managed

SHA-256 SHA256Managed

System.Security.Cryptography.SHA256 SHA256Managed

SHA384 SHA384Managed

SHA-384 SHA384Managed

System.Security.Cryptography.SHA384 SHA384Managed

SHA512 SHA512Managed

SHA-512 SHA512Managed

System.Security.Cryptography.SHA512 SHA512Managed

If you do not supply a string as an argument to the Create method or the string
is not one of the values listed in Table 13-3, then the
System.Security.Cryptography.SHA1CryptoServiceProvider algorithm will

be used as a default.

This approach is less direct but does have a number of benefits. First, we only have to change the
value of the string to change the algorithm that is used. Second, the systems administrator can alter
the mappings listed in Table 13-3 by editing the .NET configuration files, potentially allowing a
customer to use a different algorithm for specific tasks. For example, a customer may want to use
specialized hardware to generate hash codes rather than relying on the default software
implementations. We recommend that you use the HashAlgorithm.Create method for the flexibility

that it offers.

13.2.3 Hashing Data from Memory

The simplest way to generate a hash code is to use data held in memory. The overloaded
ComputeHash method is able to create a hash code from a byte array, as shown by the following

signature:

C#

public byte[] ComputeHash(
 byte[] buffer
);

Visual Basic .NET

System.Security.Cryptography.MD5 MD5CryptoServiceProvider

SHA SHA1CryptoServiceProvider

SHA1 SHA1CryptoServiceProvider

System.Security.Cryptography.SHA1 SHA1CryptoServiceProvider

SHA256 SHA256Managed

SHA-256 SHA256Managed

System.Security.Cryptography.SHA256 SHA256Managed

SHA384 SHA384Managed

SHA-384 SHA384Managed

System.Security.Cryptography.SHA384 SHA384Managed

SHA512 SHA512Managed

SHA-512 SHA512Managed

System.Security.Cryptography.SHA512 SHA512Managed

If you do not supply a string as an argument to the Create method or the string
is not one of the values listed in Table 13-3, then the
System.Security.Cryptography.SHA1CryptoServiceProvider algorithm will

be used as a default.

This approach is less direct but does have a number of benefits. First, we only have to change the
value of the string to change the algorithm that is used. Second, the systems administrator can alter
the mappings listed in Table 13-3 by editing the .NET configuration files, potentially allowing a
customer to use a different algorithm for specific tasks. For example, a customer may want to use
specialized hardware to generate hash codes rather than relying on the default software
implementations. We recommend that you use the HashAlgorithm.Create method for the flexibility

that it offers.

13.2.3 Hashing Data from Memory

The simplest way to generate a hash code is to use data held in memory. The overloaded
ComputeHash method is able to create a hash code from a byte array, as shown by the following

signature:

C#

public byte[] ComputeHash(
 byte[] buffer
);

Visual Basic .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Overloads Public Function ComputeHash(_
 ByVal buffer() As Byte _
) As Byte()

The ComputeHash returns a byte array that contains the hash code for the message data. The
following class demonstrates how to create a hash code for a String value; note that you should use
the System.Text.Encoding class to convert the string to a byte array:

C#

using System;
using System.Text;
using System.Security.Cryptography;

class StringHash {

 static void Main(string[] args) {

 // define the string that we will
 // create a hash code for
 String x_str = "Programming .NET Security";

 // create a byte array from the string
 byte[] x_message_data = Encoding.Default.GetBytes(x_str);

 // create an instance of the MD5 hashing algorithm
 HashAlgorithm x_hash_alg = HashAlgorithm.Create("MD5");

 // obtain the hash code from the HashAlgorithm by
 // using the ComputeHash method
 byte[] x_hash_code = x_hash_alg.ComputeHash(x_message_data);

 // print out the hash code to the console
 foreach (byte x_byte in x_hash_code) {
 Console.Write("{0:X2} ", x_byte);
 }
 }
}

Visual Basic .NET

Imports System
Imports System.Text
Imports System.Security.Cryptography

Module StringHash

 Sub Main()
 ' define the string that we will
 ' create a hash code for
 Dim x_str As String = "Programming .NET Security"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' create a byte array from the string
 Dim x_message_data() As Byte = Encoding.Default.GetBytes(x_str)

 ' create an instance of the MD5 hashing algorithm
 Dim x_hash_alg As HashAlgorithm = HashAlgorithm.Create("MD5")

 ' obtain the hash code from the HashAlgorithm by
 ' using the ComputeHash method
 Dim x_hash_code() As Byte = x_hash_alg.ComputeHash(x_message_data)

 ' print out the hash code to the console
 Dim x_byte As Byte
 For Each x_byte In x_hash_code
 Console.Write("{0:X2} ", x_byte)
 Next
 End Sub

End Module

The output from this example is:

E1 62 9F C2 96 85 C3 A4 5B 94 97 57 D8 9C 65 78

To make the hash code easier to read, convert each byte to a hexadecimal value and print a space
between each one. When you used the ComputeHash method in the previous example, you wanted to
process an entire byte array; however, the HashAlgorithm class includes a different version of the

method, which can process a region of a byte array:

C#

public byte[] ComputeHash(
 byte[] buffer,
 int offset,
 int count
);

Visual Basic .NET

Overloads Public Function ComputeHash(_
 ByVal buffer() As Byte, _
 ByVal offset As Integer, _
 ByVal count As Integer _
) As Byte()

13.2.4 Hashing Streamed Data

You can also create a hash code from a stream of data; this is useful for processing datafiles or for
reading data from a network connection. The HashAlgorithm class contains an overloaded version of
the ComputeHash method for working with streams:

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public byte[] ComputeHash(
 Stream inputStream
);

Visual Basic .NET

Overloads Public Function ComputeHash(_
 ByVal inputStream As Stream _
) As Byte()

The following class demonstrates how to create a hash code using a stream, in this case streaming
data from a file called myfile.txt, which contains the string "Programming .NET Security":

C#

using System;
using System.IO;
using System.Security.Cryptography;

class StreamHash {

 static void Main(string[] args) {

 // create the file stream
 Stream x_stream = new FileStream("mydata.txt", FileMode.Open);

 // create an instance of the MD5 hashing algorithm
 HashAlgorithm x_hash_alg = HashAlgorithm.Create("MD5");

 // obtain the hash code from the HashAlgorithm by
 // using the ComputeHash method
 byte[] x_hash_code = x_hash_alg.ComputeHash(x_stream);

 // print out the hash code to the console
 foreach (byte x_byte in x_hash_code) {
 Console.Write("{0:X2} ", x_byte);
 }

 // close the stream
 x_stream.Close();
 }
}

Visual Basic .NET

Imports System
Imports System.IO
Imports System.Security.Cryptography

Module StreamHash

 Sub Main()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' create the file stream
 Dim x_stream As Stream = New FileStream("mydata.txt", FileMode.Open)

 ' create an instance of the MD5 hashing algorithm
 Dim x_hash_alg As HashAlgorithm = HashAlgorithm.Create("MD5")

 ' obtain the hash code from the HashAlgorithm by
 ' using the ComputeHash method
 Dim x_hash_code() As Byte = x_hash_alg.ComputeHash(x_stream)

 ' print out the hash code to the console
 Dim x_byte As Byte
 For Each x_byte In x_hash_code
 Console.Write("{0:X2} ", x_byte)
 Next

 ' close the stream
 x_stream.Close()

 End Sub

End Module

As you might expect, the output from the example, shown below, is the same hash code produced by
our first example:

E1 62 9F C2 96 85 C3 A4 5B 94 97 57 D8 9C 65 78

13.2.5 Validating Hash Codes

Now that you have seen how to create hash codes (playing the role of Alice), we will show you how to
validate them, playing the role of Bob. Remember that Bob receives a hash code and a message from
Alice. He generates his own hash code and checks that it matches the one that he received. Example
13-1 shows a simple approach to validating hash codes:

Example 13-1. Validating a hash code

C#

using System;
using System.Text;
using System.Security.Cryptography;

class HashCodeValidation {

 private static byte[] ParseHashCodeString(string p_hash_code_string) {
 // split the hash code on spaces
 string[] x_elements = p_hash_code_string.Split(' ');
 // create a byte array to hold the elements
 byte[] x_hash_code_array = new byte[x_elements.Length];
 // parse each string element into a byte

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (int i = 0; i < x_elements.Length; i++) {
 x_hash_code_array[i] = Byte.Parse(x_elements[i],
 System.Globalization.NumberStyles.HexNumber);
 }
 // return the byte array
 return x_hash_code_array;
 }

 private static bool CompareHashCodes(byte[] x_hash_code1,
 byte[] x_hash_code2) {

 // check that the hash codes are the same length
 if (x_hash_code1.Length == x_hash_code2.Length) {
 // run through the hash code and check
 // each value in turn
 for (int i = 0; i < x_hash_code1.Length; i++) {
 if (x_hash_code1[i] != x_hash_code2[i]) {
 // the byte at this location is different
 // in each hash code
 return false;
 }
 }
 // the hash codes are the same
 return true;
 } else {
 // the hash codes contain different numbers of
 // bytes and so cannot be the same
 return false;
 }
 }

 public static bool ValidateHashCode(string p_hash_algorithm,
 string p_hash_string, byte[] p_data) {

 // parse the hash code string into a byte array
 byte[] x_hash_code = ParseHashCodeString(p_hash_string);

 // create the hashing algorithm object using the
 // name argument
 HashAlgorithm x_hash_alg = HashAlgorithm.Create(p_hash_algorithm);

 // compare the hash codes
 return CompareHashCodes(x_hash_code, x_hash_alg.ComputeHash(p_data));
 }

 static void Main(string[] args) {
 // define the message data that Alice sent to Bob
 string x_message_data = "Programming .NET Security";
 // covert the message data into a byte array
 byte[] x_message_bytes = Encoding.Default.GetBytes(x_message_data);
 // define the hash code that Alice sent to Bob
 string x_hash_string =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "E1 62 9F C2 96 85 C3 A4 5B 94 97 57 D8 9C 65 78";
 // define the name of the hashing algorithm that Alice used
 string x_algorithm_name = "MD5";

 // validate the hash code and write out the result
 bool x_result = ValidateHashCode(x_algorithm_name,
 x_hash_string, x_message_bytes);

 if (x_result) {
 Console.WriteLine("The hash code is valid");
 } else {
 Console.WriteLine("The hash code is invalid");
 }
 }
}
Visual Basic .NET

Imports System.Security.Cryptography
Imports System.Text

Module HashCodeValidation

 Public Function ParseHashCodeString(ByVal p_hash_code_string _
 As String) As Byte()
 ' split the hash code on spaces
 Dim x_elements() As String = p_hash_code_string.Split(" "c)
 ' create a byte array to hold the elements
 Dim x_hash_code_array() As Byte = New Byte(x_elements.Length - 1) {}
 ' parse each string element into a byte
 Dim i As Integer
 For i = 0 To x_elements.Length - 1 Step i + 1
 x_hash_code_array(i) = Byte.Parse(x_elements(i), _
 System.Globalization.NumberStyles.HexNumber)
 Next
 ' return the bye array
 Return x_hash_code_array
 End Function

 Private Function CompareHashCodes(ByVal x_hash_code1() As Byte, _
 ByVal x_hash_code2() As Byte) As Boolean
 ' check that the hash codes are the same length
 If x_hash_code1.Length = x_hash_code2.Length Then
 ' run through the hash code and check
 ' each value in turn
 Dim i As Integer
 For i = 0 To x_hash_code1.Length - 1 Step i + 1
 If x_hash_code1(i) <> x_hash_code2(i) Then
 ' the byte at this location is different
 ' in each hash code
 Return False
 End If
 Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' the hash codes are the same
 Return True
 Else
 ' the hash codes contain different numbers of
 ' bytes and so cannot be the same
 Return False
 End If
 End Function

 Public Function ValidateHashCode(ByVal p_hash_algorithm As String, _
 ByVal p_hash_string As String, ByVal p_data() As Byte) As Boolean

 ' parse the hash code string into a byte array
 Dim x_hash_code() As Byte = ParseHashCodeString(p_hash_string)

 ' create the hashing algorithm object using the
 ' name argument
 Dim x_hash_alg As HashAlgorithm = HashAlgorithm.Create(p_hash_algorithm)

 ' compare the hash codes
 Return CompareHashCodes(x_hash_code, x_hash_alg.ComputeHash(p_data))
 End Function

 Sub Main()
 ' define the message data that Alice sent to Bob
 Dim x_message_data As String = "Programming .NET Security"
 ' covert the message data into a byte array
 Dim x_message_bytes() As Byte = Encoding.Default.GetBytes(x_message_data)
 ' define the hash code that Alice sent to Bob
 Dim x_hash_string As String = _
 "E1 62 9F C2 96 85 C3 A4 5B 94 97 57 D8 9C 65 78"
 ' define the name of the hashing algorithm that Alice used
 Dim x_algorithm_name As String = "MD5"

 ' validate the hash code and write out the result
 Dim x_result As Boolean = ValidateHashCode(x_algorithm_name, _
 x_hash_string, x_message_bytes)

 If (x_result) Then
 Console.WriteLine("The hash code is valid")
 Else
 Console.WriteLine("The hash code is invalid")
 End If
 End Sub

End Module

The first step in validating the hash code is to parse the information that Bob has received. The
format we have used to express the hash codes is the most commonly used, but you may encounter
other formats.

The ParseHashCodeString method accepts a string containing a formatted hash code and produces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a byte array. The CompareHashCodes method takes care of comparing two arrays of bytes to ensure

that they contain the same hash code.

The ValidateHashCode method uses the other two methods to validate a hash code, taking three

arguments:

The name of the algorithm that Alice used to create the hash code1.

The hash code Alice created, expressed as a string of hexadecimal bytes2.

The message from Alice, expressed as a string3.

Parse the hash code string into a byte array, and then create an instance of the HashAlgorithm class

based on the algorithm name. Assume that Alice and Bob agree on the algorithm that was used to
create the hash codes, or that Alice picks one and indicates which algorithm she has used by sending
some information along with the message. Notice how you cannot create an instance of any
supported algorithm using the same code statements; this is another benefit of instantiating
algorithms by name.

Finally, calculate a hash code for the message data and compare it to the one that Bob received from
Alice. The example includes a Main method to demonstrate how to validate the hash code that you
created previously.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.3 Keyed Hashing Algorithms Explained

Keyed hashing algorithms address the problem of Eve intercepting and replacing both the message
and the hash code that Alice sent to Bob. Keyed hashing algorithms mix a secret key in with the
message data blocks when creating a hash code, as illustrated in Figure 13-4. Eve cannot replace a
keyed hash code, because she does not know the secret key.

Figure 13-4. Using a secret key to create a hash code

13.3.1 Creating the Keyed Hash Code

There are two main approaches to creating keyed hash codes, also known as Message Authentication
Codes (MACs). The first, and most commonly used, approach is to combine the secret key and the
message data together, and use a normal cryptographic hashing algorithm to create a hash code for
the combination. The details of how to combine the key and the message depend on your choice of
algorithm, but one commonly used approach is the HMAC standard, which we discuss in the following
section.

The second approach does not involve a hashing algorithm at all. The message data is encrypted with
a symmetrical algorithm, and all but the last few bits of the encrypted data are discarded-what
remains is used as the keyed hash code. Note that even though a normal hashing algorithm is not
used, the protocol of using encryption to create a keyed hash code is still classified as a keyed
hashing algorithm.

13.3.1.1 HMAC algorithms

The HMAC standard specifies how the message data and the secret key are combined, but does not
specify which hashing algorithm should be used to create the hash code, meaning that the standard
can be applied to any algorithm. It is customary to refer to HMAC algorithms by including the name
of the hashing algorithm that was used. Therefore, HMAC-SHA-1 is the combination of the key and
message, using the HMAC standard and the SHA-1 algorithm to create the hash code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The HMAC standard specifies that the key is used as the first data block processed by the hash
function, as shown in Figure 13-5. This is equivalent to adding the key to the front of the message
before it is processed.

Figure 13-5. The HMAC standard specifies that the secret key is the first
data block processed by the hash function

13.3.1.2 Block cipher hash codes

Block cipher hash codes are generated by encrypting the message data and discarding all but the last
few bytes. For example, if you wanted to create a 64-bit hash code, you would encrypt the data and
discard all but the last 8 bytes of data, as shown in Figure 13-6. In some schemes, you would encrypt
the retained data again.

Figure 13-6. MACs are created by encrypting the message and discarding
all but the last few bytes

The word "block" refers to the fact that the encryption algorithm works by breaking the message into
fixed-sized blocks, in the same way that normal hashing algorithms operate (not all encryption
algorithms work in this way, meaning that they cannot be used to create secure hash codes). See
Chapter 14 and Chapter 15 for more information about encryption.

13.3.2 The .NET Framework Keyed Hashing Algorithms

The .NET Framework includes only two keyed hashing algorithms, but they are the most commonly
used ones. The HMAC-SHA-1 algorithm combines the HMAC standard with the SHA-1 hashing
algorithm. This is the most popular combination for commercial software and communications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

security.

The MAC-Triple-DES algorithm uses the Triple-DES encryption algorithm to create a block cipher hash
code. This technique has been widely used to protect the integrity of financial transactions, but is
gradually being replaced by HMAC hash codes. See Chapter 14 for more information about Triple-DES
encryption.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.4 Programming Keyed Hashing Algorithms

The .NET Framework has a much more direct model for representing keyed hashing algorithms.
There are no abstract classes for different algorithms, meaning that there can be only one
implementation of each keyed algorithm. Figure 13-7 shows the class hierarchy for keyed hashing
algorithms.

Figure 13-7. The .NET Framework class hierarchy for keyed hashing
algorithms.

13.4.1 The KeyedHashAlgorithm Class

The KeyedHashAlgorithm class extends HashAlgorithm, adding a new property called Key, which is

used to get and set the secret key as a byte array. Aside from this addition, the
KeyedHashAlgorithm class provides the same abstraction benefits as using HashAlgorithm for

creating normal hash codes.

13.4.2 Instantiating the Algorithm

The process of creating instances of keyed algorithms is much the same as for normal hashing
algorithms. You can create algorithms directly using the implementation class name, or indirectly
using the Create method of the KeyedHashingAlgorithm class.

When using the direct approach, you can supply the secret key as an argument to the class
constructor. In the following fragment, use the System.Text.Encoding class to convert a string
into a byte array and to initialize the keyed hashing algorithm:

C#

// define the key as a string
string x_key_string = "This is my secret key";
// convert the string to a byte array
byte[] x_key_bytes
 = System.Text.Encoding.Default.GetBytes(x_key_string);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// create the keyed hashing algorithm, using the
// byte array as the constructor argument
KeyedHashAlgorithm x_hash_alg = new HMACSHA1(x_key_bytes);

Visual Basic .NET

' define the key as a string
Dim x_key_string As String = " This is my secret key "
' convert the string to a byte array
Dim x_key_bytes As Byte() _
 = System.Text.Encoding.Default.GetBytes(x_key_string)

' create the keyed hashing algorithm, using the
' byte array as the constructor argument
Dim x_hash_alg As KeyedHashAlgorithm = New HMACSHA1(x_key_bytes)

These statements create an instance of the HMAC-SHA-1 implementation class, using the key "This is
my secret key." When using the Create method, the key value is set separately, using the Key

property. The following fragment demonstrates how to do this:

C#

// create the keyed hashing algorithm, using the
// byte array as the constructor argument
KeyedHashAlgorithm x_hash_alg = KeyedHashAlgorithm.Create("HMACSHA1");

// define the key as a string
string x_key_string = " This is my secret key ";
// convert the string to a byte array
byte[] x_key_bytes
 = System.Text.Encoding.Default.GetBytes(x_key_string);

// set the keyed hash algorithm key
x_hash_alg.Key = x_key_bytes;

Visual Basic .NET

' create the keyed hashing algorithm, using the
' byte array as the constructor argument
Dim x_hash_alg As KeyedHashAlgorithm = KeyedHashAlgorithm.Create("HMACSHA1")

' define the key as a string
Dim x_key_string As String = " This is my secret key "
' convert the string to a byte array
Dim x_key_bytes As Byte() _
 = System.Text.Encoding.Default.GetBytes(x_key_string)

' set the keyed hash algorithm key
x_hash_alg.Key = x_key_bytes

The Create method creates an algorithm class based on the value of the string argument. Table 13-4

lists the mapping between string values and implementation classes for keyed hashing algorithms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you do not supply a string as an argument to the Create method, the
System.Security.Cryptography.HMACSHA1 algorithm will be used as a

default. If you use a string that is not one of the values listed in Table 13-4,
then a System.NullReferenceException will be thrown.

Table 13-4. Mapping string values to keyed algorithm classes

String value Algorithm implementation class

HMACSHA1 HMACSHA1

System.Security.Cryptography.HMACSHA1 HMACSHA1

MACTripleDES MACTripleDES

System.Security.Cryptography.MACTripleDES MACTripleDES

13.4.3 Hashing Data and Validating Hash Codes

Because the KeyedHashAlgorithm class derives from HashAlgorithm, the processes for creating and

validating keyed hash codes is the same as for normal hash codes, with the exception that the value
of the key should be set either as a constructor argument or as using the Key property. For

reference, Example 13-2 demonstrates how to create a keyed hash code from a byte array of data:

You must set the secret key value before creating the hash code; otherwise,
the KeyedHashAlgorithm will create a random key. See Chapter 17 for more

information about creating and managing keys.

Example 13-2. Creating a keyed hash code from a byte array of data

C#

using System;
using System.Text;
using System.Security.Cryptography;

class ByteArrayHash {

 static void Main(string[] args) {

 // define the string that we will
 // create a hash code for
 String x_str = "Programming .NET Security";
 // create a byte array from the string
 byte[] x_message_data = Encoding.Default.GetBytes(x_str);

 // define the secret key as a string
 string x_key_string = "This is my secret key";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create a byte array containing the key
 byte[] x_key_bytes = Encoding.Default.GetBytes(x_key_string);

 // create an instance of the HMAC-SHA-1 keyed algorithm
 KeyedHashAlgorithm x_hash_alg = KeyedHashAlgorithm.Create("HMACSHA1");

 // set the secret key for the hashing algorithm
 x_hash_alg.Key = x_key_bytes;

 // obtain the hash code from the HashAlgorithm by
 // using the ComputeHash method
 byte[] x_hash_code = x_hash_alg.ComputeHash(x_message_data);

 // print out the hash code to the console
 foreach (byte x_byte in x_hash_code) {
 Console.Write("{0:X2} ", x_byte);
 }
 }
}

Visual Basic .NET

Imports System
Imports System.Text
Imports System.Security.Cryptography

Module Module1

 Sub Main()

 ' define the string that we will
 ' create a hash code for
 Dim x_str As String = "Programming .NET Security"
 ' create a byte array from the string
 Dim x_message_data() As Byte = Encoding.Default.GetBytes(x_str)

 ' define the secret key as a string
 Dim x_key_string As String = "This is my secret key"
 ' create a byte array containing the key
 Dim x_key_bytes() As Byte = Encoding.Default.GetBytes(x_key_string)

 ' create an instance of the HMAC-SHA-1 keyed algorithm
 Dim x_hash_alg As KeyedHashAlgorithm = _
 KeyedHashAlgorithm.Create("HMACSHA1")

 ' set the secret key for the hashing algorithm
 x_hash_alg.Key = x_key_bytes

 ' obtain the hash code from the HashAlgorithm by
 ' using the ComputeHash method
 Dim x_hash_code() As Byte = x_hash_alg.ComputeHash(x_message_data)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' print out the hash code to the console
 Dim x_byte As Byte
 For Each x_byte In x_hash_code
 Console.Write("{0:X2} ", x_byte)
 Next
 End Sub
End Module

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.5 Extending the .NET Framework

In this section, we extend the .NET Framework by adding a new algorithm. Unfortunately,
cryptographic hashing algorithms usually include large tables of random numbers, making them
unsuitable for listing in a book such as this.

Because we want to focus on the process of adding an algorithm rather than on the algorithm itself,
we have selected a simple, noncryptographic hashing scheme to use, known as Alder32.

13.5.1 The Alder32 Algorithm Explained

The Adler32 algorithm generates a 32-bit hash code and is included as part of GZIP-compressed files
to guard against inadvertent modification (for example, errors introduced in copying a compressed
file over a network connection).

Adler32 is a simple algorithm, which operates on 8-bit blocks of message data to create hash codes,
as follows:

Define a 16-bit value called Sum1 with an initial value of 1.1.

Define a 16-bit value called Sum2 with an initial value of 0.2.

Process each 8-bit message block in turn:3.

Add the numeric value of the message block to Sum 1, modulo 65521.4.

Add the value of Sum 1 to Sum 2, modulo 65521.5.

Concatenate Sum 2 and Sum 1 together to create a 32-bit hash code.6.

The Adler32 algorithm is not suitable for cryptographic uses because it
produces hash codes that are susceptible to attack. Adler32 produces short
hash codes that easily succumb to birthday attacks and, more importantly, it is
easy to generate a message that results in a specific Adler32 hash code.

13.5.2 Defining the Abstract Class

The first step is to create an abstract class representing the Adler32 algorithm. The abstract class
extends the System.Security.Cryptography.HashAlgorithm class but does not need to implement
any members. Here is the definition of the abstract Adler32 algorithm class:

C#
using System.Security.Cryptography;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public abstract class Adler32 : HashAlgorithm {

}

Visual Basic .NET

Imports System.Security.Cryptography

Public MustInherit Class Adler32
 Inherits HashAlgorithm

End Class

We have created the abstract class to conform to the .NET class model, allowing you to add other
Adler32 implementations in the future. You can omit the abstract class, but we feel that the extra
flexibility of this model is well worth the effort.

13.5.3 Defining the Implementation Class

The abstract HashAlgorithm class contains a lot of functionality that makes writing a new algorithm
a simple process. For example, the details of the ComputeHash method are hidden from the

implementer, and only a small number of methods need to be written in order to create a fully
functional implementation.

13.5.3.1 Creating the implementation class

We have named our implementation class Adler32Managed, because it is written using a managed

.NET language. The following listing shows the initial version of the implementation class extending
the abstract Adler32 class. We have defined the two 16-bit values as o_sum_1 and o_sum_2. For

Visual Basic .NET, we have used 32-bit integers to represent the 16-bit sums, because Visual Basic
.NET does not support unsigned data types:

C#

using System;
using System.Security.Cryptography;

public class Adler32Managed : HashAlgorithm {
 private ushort o_sum_1;
 private ushort o_sum_2;

}

Visual Basic .NET
Imports System
Imports System.Security.Cryptography

Public Class Adler32Managed
 Inherits Adler32

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private o_sum_1 As Integer
 Private o_sum_2 As Integer

End Class

13.5.3.2 Implementing the Initialize method

You should use the Initialize method to set the initial state of any algorithm; an algorithm will

produce unexpected hash code values unless correctly reset between invocations. For Adler32, we
use this method to set the initial sum values. We have also added a class constructor that calls the
Initialize method to ensure that the values are correctly set before the class is first used:

C#

using System;
using System.Security.Cryptography;

public class Adler32Managed : HashAlgorithm {
 private ushort o_sum_1;
 private ushort o_sum_2;

 public Adler32Managed() {
 Initialize();
 }

 public override void Initialize() {
 // reset the sum values
 o_sum_1 = 1;
 o_sum_2 = 0;

}

Visual Basic .NET

Imports System
Imports System.Security.Cryptography

Public Class Adler32Managed
 Inherits Adler32

 Private o_sum_1 As Integer
 Private o_sum_2 As Integer

 Public Sub New()
 Initialize()
 End Sub

 Public Overrides Sub Initialize()
 ' reset the sum values
 o_sum_1 = 1
 o_sum_2 = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Sub

End Class

13.5.3.3 Implementing the HashCore and HashFinal methods

The HashCore method receives message data into the algorithm class; the amount of data to process

can vary from a single byte to very large arrays. Always ensure that you process only the region of
the array indicated by the p_start_index and p_count parameters. This method may be invoked

multiple times, and you must make sure that your algorithm can process data blocks incrementally,
rather then assuming that all of the message data will arrive at once:

C#

protected override void HashCore(byte[] p_array, int p_start_index, int p_count) {
 // process each byte in the array
 for (int i = p_start_index; i < p_count; i++) {
 o_sum_1 = (ushort)((o_sum_1 + p_array[i]) % 65521);
 o_sum_2 = (ushort)((o_sum_1 + o_sum_2) % 65521);
 }
}

Visual Basic .NET

Protected Overrides Sub HashCore(ByVal p_array() As Byte, _
ByVal p_start_index As Integer, ByVal p_count As Integer)

 ' process each byte in the array
 Dim i As Integer
 For i = p_start_index To p_count - 1 Step i + 1
 o_sum_1 = (o_sum_1 + p_array(i)) Mod 65521
 o_sum_2 = (o_sum_1 + o_sum_2) Mod 65521
 Next
End Sub

The HashFinal method is called when all of the message data has been processed by the HashCore
method and returns the computed hash code value as a byte array. This method allows you to

complete any pending calculations before computing the final hash code. For Alder32, you simply
need to concatenate the two sum values together to form the 32-bit hash code, and convert the
result into a byte array:

C#

protected override byte[] HashFinal() {
 // concat the two 16 bit values to form
 // one 32-bit value
 uint x_concat_value = (uint)((o_sum_2 << 16) | o_sum_1);
 // use the bitconverter class to render the
 // 32-bit integer into an array of bytes
 return BitConverter.GetBytes(x_concat_value);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic .NET

Protected Overrides Function HashFinal() As Byte()
 ' concat the two 16 bit values to form
 ' one 32-bit value
 Dim x_concat_value As Integer = (o_sum_2 * 65536) Or o_sum_1
 ' use the bitconverter class to render the
 ' 32-bit integer into an array of bytes
 Return BitConverter.GetBytes(x_concat_value)
End Function

13.5.3.4 Completing the class

The final step is to implement the HashSize property to specify the size (in bits) of the hash code
that you are generating. Example 13-3 is the complete listing for the Alder32Managed class:

Example 13-3. algorithm

C#

using System;
using System.Security.Cryptography;

public class Adler32Managed : HashAlgorithm {
 private ushort o_sum_1;
 private ushort o_sum_2;

 public Adler32Managed() {
 Initialize();
 }

 public override int HashSize {
 get {
 return 32;
 }
 }

 public override void Initialize() {
 // reset the sum values
 o_sum_1 = 1;
 o_sum_2 = 0;
 }

 protected override void HashCore(byte[] p_array, int p_start_index,
 int p_count) {
 // process each byte in the array
 for (int i = p_start_index; i < p_count; i++) {
 o_sum_1 = (ushort)((o_sum_1 + p_array[i]) % 65521);
 o_sum_2 = (ushort)((o_sum_1 + o_sum_2) % 65521);
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protected override byte[] HashFinal() {
 // concat the two 16 bit values to form
 // one 32-bit value
 uint x_concat_value = (uint)((o_sum_2 << 16) | o_sum_1);
 // use the bitconverter class to render the
 // 32-bit integer into an array of bytes
 return BitConverter.GetBytes(x_concat_value);

}

Visual Basic .NET

Imports System
Imports System.Security.Cryptography

Public Class Adler32Managed
 Inherits Adler32

 Private o_sum_1 As Integer
 Private o_sum_2 As Integer

 Public Sub New()
 Initialize()
 End Sub

 Public Overrides ReadOnly Property HashSize() As Integer
 Get
 Return 32
 End Get
 End Property

 Public Overrides Sub Initialize()
 ' reset the sum values
 o_sum_1 = 1
 o_sum_2 = 0
 End Sub

 Protected Overrides Sub HashCore(ByVal p_array() As Byte, _
 ByVal p_start_index As Integer, ByVal p_count As Integer)

 ' process each byte in the array
 Dim i As Integer
 For i = p_start_index To p_count - 1 Step i + 1
 o_sum_1 = (o_sum_1 + p_array(i)) Mod 65521
 o_sum_2 = (o_sum_1 + o_sum_2) Mod 65521
 Next
 End Sub

 Protected Overrides Function HashFinal() As Byte()
 ' concat the two 16 bit values to form
 ' one 32-bit value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim x_concat_value As Integer = (o_sum_2 * 65536) Or o_sum_1
 ' use the bitconverter class to render the
 ' 32-bit integer into an array of bytes
 Return BitConverter.GetBytes(x_concat_value)
 End Function

End Class

13.5.3.5 Testing the implementation

Now that you have created the implementation class, you can use the Adler32 algorithm in exactly
the same way as the other classes covered in this chapter. The following listing details how to create
an Adler32 hash code for the message "Programming .NET Security":

C#

// define the message string that we will create a hash code for
string x_message_string = "Programming .NET Security";
// convert the message string into bytes
byte[] x_message_bytes = Encoding.Default.GetBytes(x_message_string);

HashAlgorithm x_hash_alg = new Adler32Managed();
byte[] x_hash_code = x_hash_alg.ComputeHash(x_message_bytes);

// print out the hash code
foreach (byte x_byte in x_hash_code) {
 Console.Write("{0:X2} ", x_byte);
}

Visual Basic .NET

' define the message string that we will create a hash code for
Dim x_message_string As String = "Programming .NET Security"
' convert the message string into bytes
Dim x_message_bytes() As Byte = Encoding.Default.GetBytes(x_message_string)

Dim x_hash_alg As HashAlgorithm = New Adler32Managed()
Dim x_hash_code() As Byte = x_hash_alg.ComputeHash(x_message_bytes)

' print out the hash code
Dim x_byte As Byte
For Each x_byte In x_hash_code
 Console.Write("{0:X2} ", x_byte)
Next

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 14. Symmetric Encryption
In Chapter 13, we showed you how Alice can use data hash codes to prevent Eve from secretly
modifying the messages that she sends to Bob. Hash codes are useful for message integrity, but they
do not provide any confidentiality; although Eve cannot alter the messages from Alice without Bob
knowing, she is able to read the messages, and Alice and Bob are unable to keep secrets from her.

In this chapter, we examine how to achieve confidentiality with data encryption, and how to encrypt
and decrypt data using the .NET Framework. We also show you how to extend the .NET Framework
by adding a new encryption algorithm.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.1 Encryption Revisited

Encryption is the process of transforming a message so that it cannot be read if it is intercepted but
can still be understood by the intended recipient. If Alice encrypts and sends a confidential message
to Bob, Eve will not be able to make sense of what it says, and the contents of the message will
remain confidential. Bob, as the intended recipient, is able to decrypt the message, which is the
process of restoring the original message from the encrypted data. Like almost all types of
cryptography, encryption relies on keeping a key secret from Eve.

Figure 14-1 shows the basic model for modern data encryption. Alice uses an encryption algorithm to
convert her message into encrypted data, which she sends to Bob. Bob uses a secret key to decrypt
the data, transforming it back into the original message, which he then reads. Eve can intercept the
encrypted data, but she is unable to read the original message unless she can acquire the secret key
that Bob uses to decrypt the data or find a weakness in the encryption algorithm Alice used.

Figure 14-1. Alice uses encryption to ensure message confidentiality

If Eve acquires the key, she will be able to decrypt the data in the same way that Bob does and read
the message. She may be able to steal the key, or she may keep guessing until she finds the right
key. If Eve is able to find a weakness in the algorithm Alice used, then she may be able to determine
the contents of the confidential message without needing the secret key. In this chapter, we discuss
the first of the two basic types of encryption, known as "symmetric" or "secret key" encryption. We
cover the second type of encryption in Chapter 15.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.2 Symmetric Encryption Explained

Symmetric encryption is the oldest and most established way of ensuring message confidentiality,
dating back for many thousands of years. Figure 14-2 illustrates the basic approach, which is as
follows:

Alice and Bob agree on a secret key.1.

Alice composes a confidential message to Bob and encrypts it using the secret key.2.

Alice sends the encrypted data to Bob.3.

Bob uses the secret key to decrypt the encrypted data, and reads the confidential message.4.

The most important aspect of symmetric encryption is that Alice and Bob agree on a secret key
without Eve eavesdropping. If Eve acquires the secret key, she will be able to read, modify. and forge
messages between Alice and Bob. The traditional means of agreeing on secret key has been to meet
in person at a private location, or to rely on a secure and trusted courier service, both of which can
be difficult to arrange securely.

Figure 14-2. Alice and Bob use symmetric encryption to ensure message
confidentiality

14.2.1 Creating the Encrypted Data

At the heart of a symmetric encryption algorithm is a cipher function that transforms fixed-size

http://lib.ommolketab.ir
http://lib.ommolketab.ir

blocks of message data, known as plaintext, into blocks of encrypted data, known as ciphertext,
illustrated by Figure 14-3. This type of function is a block cipher, because it processes blocks of data
sequentially and independently. The output of a block ciphers is deterministic; this means that a
given block of plaintext encrypted using a given key will always result in the same block of ciphertext.
Different block ciphers process differently sized blocks of plaintext.

Figure 14-3. A cipher function uses a secret key and a fixed-size message
block to create a block of ciphertext

You can restore a block of plaintext from a block of ciphertext by reversing the transformation, as
illustrated by Figure 14-4. Both the transformation into ciphertext and the restoration of the plaintext
require the secret key; therefore, Bob can decrypt the data only if he uses the same secret key that
Alice used to encrypt the message. This is different from the hash functions we examined in Chapter
13; encryption is a reversible, or "two-way," process, where we can use the secret key to "reverse"
the encryption effect and restore the plaintext. Creating a hash code is a "one-way" process, and the
original message data cannot be determined from the hash code data easily.

Figure 14-4. Cipher functions also transform ciphertext back into
plaintext, which is known as decryption

An encryption algorithm is the protocol for using a cipher function to encrypt plaintext, in the same
way that a hashing algorithm specifies how to use a hash function to create a hash code. The
algorithm specifies how the plaintext is broken into blocks and how to use the output of the cipher
function in creating the ciphertext; the details of how to perform these tasks differ between
algorithms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On a practical basis, the .NET Framework provides a standardized model for using symmetric
encryption algorithms, and you do not have to understand the inner workings of any specific block
ciphers. However, you should understand some of the different ways that you can configure an
algorithm, which we discuss in the following sections.

14.2.2 Cipher Modes

Most symmetric encryption algorithms operate in different cipher modes, which specify variations in
the way that data is prepared before being processed by the cipher function. The following sections
explain the most commonly used modes, but you should bear in mind that there are a large number
of variations and not all algorithms can support all cipher modes.

14.2.2.1 Electronic Codebook mode

The Electronic Codebook (ECB) mode is the simplest cipher mode and builds ciphertext by
concatenating the output of the cipher function, as shown in Figure 14-5. We can summarize the
process as follows:

Break the plaintext into blocks that are the same size as the input of the cipher function.1.

Use the secret key to encrypt each plaintext data block in turn with the cipher function.2.

Append the output of the cipher function to the ciphertext.3.

Figure 14-5. The ECB mode is the simplest way to encrypt data with a
block cipher function

Although this seems like the obvious way to encrypt data, the deterministic nature of the cipher
function exposes the ciphertext to a special kind of attack whenever there is repetition in the
confidential message.

The cipher function is consistent, and using a secret key to encrypt two identical blocks of data
results in identical blocks of ciphertext. If there are any repeated blocks of data in the plaintext, you
will end up with repeated blocks of data in the ciphertext, which presents a weakness that Eve can
exploit.

There is a natural structure to many types of messages; for example, Alice's letters often begin with
"Dear Bob" and emails will often start with "From," "To," or "Received." Imagine that Alice sends a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

company memo to Bob, and that Eve knows (or can guess at) the structure of such messages.

Figure 14-6 shows a simplified representation of the effect of building the ciphertext from the output
of the cipher function directly-simplified because we have assumed that each word is encrypted as a
plaintext block in a case-insensitive manner. Real encryption algorithms work on binary data, but our
example is useful for understanding the issue at hand. Eve knows that all of Alice's memos begin with
"From," and therefore knows that the first block of ciphertext represents that word. Eve knows that
every time she finds that particular ciphertext block in the encrypted data she has located another
instance of the word "From." By applying her knowledge of the message structure, Eve deduces
several words in the confidential message, including the words "To," "Bob," "Subject," and "Alice."

Figure 14-6. Eve uses plaintext repetition to build a codebook of known
ciphertext blocks

Eve finds repeated ciphertext blocks for which she can't deduce the meaning, because the word that
the block represents is not included in the standard structure of Alice's memo; AAA and BBBB
indicate these blocks. Regardless, Eve keeps a record of these blocks, because she may intercept
another message that reveals their meaning later and shed more light on this message-a process of
building a codebook that will help her recognize the meaning of known ciphertext blocks as she
intercepts them. Eve's "codebook" is useful only while Alice and Bob use the same secret key. If they
agree on a new key, the ciphertext blocks for known words will be different, and Eve will have to
start from scratch.

The ECB mode is the simplest way to create ciphertext, although the risks associated with encrypting
duplicate plaintext blocks mean that you should use it with caution. The following sections describe
alternate cipher modes that address the problem of block repetition, and we recommend that you use
these instead of ECB.

14.2.2.2 Cipher block chaining

The most common way to overcome the block repetition weakness of ECB is to add "feedback" into
the cipher function. Adding feedback produces a ciphertext in which the result of encrypting a data
block affects the results of encrypting all subsequent blocks. Figure 14-7 illustrates the most widely
used way of doing this, called Cipher Block Chaining (CBC), which works as follows:

Break the plaintext into blocks that are the same size as the input for the cipher function.1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Process the first message block:

XOR the message block with the "seed" data to create a combined data block.a.

Encrypt the result to produce the first block of ciphertext.b.

2.

Process remaining message blocks in turn:

XOR the plaintext block with most recently created ciphertext block to create a combined
data block.

a.

Encrypt the combined data block and append the result to the ciphertext.b.

3.

Figure 14-7. CBC uses the result of previous encryptions to transform
plain text blocks

For example, to encrypt the 10th plaintext block you XOR it with the 9th ciphertext block and encrypt
the result, producing the 10th ciphertext block, which you XOR with the 11th plaintext block, and so
on.

The seed data for symmetric encryption is called the initialization vector (IV) and is used to ensure
that the first block of ciphertext is not open to ECB-style attacks. The IV is a block of random data
that is the same size as the cipher function input block.

Using CBC means that Bob has to use the same IV to decrypt the data as Alice used to encrypt the
message; fortunately, the value of the IV is not a secret, and there is no danger in allowing it to fall
into Eve's hands. Alice should select a new IV for each message that she encrypts, and she will
normally send the IV to the recipient along with the encrypted data.

14.2.2.3 Cipher feedback mode

Processing plaintext data block by block is not suitable for all projects, especially those where the
data to encrypt becomes available over time (for example, received via a network stream). In such
cases, the confidential data has to be held in memory until a complete block is received and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encrypted, which can present a security risk.

Cipher Feedback (CFB) mode is a technique for using a block cipher function to encrypt plaintext in
fragments smaller than the function block size, allowing data to be encrypted as it arrives. Like CBC,
CFB uses an IV, but in this mode, it represents the initial value for a queue, which is a data block the
same size as the cipher function input. If you are using a cipher that operates on 64-bit data blocks
but the data becomes available in 8-bit chunks, then the CFB protocol is as follows:

Create a 64-bit queue, and fill it with a 64-bit IV.1.

As each 8-bit chunk of plaintext becomes available:

Encrypt the queue.a.

XOR the leftmost eight bits of the encrypted queue with the eight bits of plaintext to create
the cipher data chunk.

b.

Append the cipher data chunk to the ciphertext output.c.

Shift the queue eight bits to the left and discard the leftmost eight bits.d.

Set the rightmost eight bits of the queue to be the eight bits of ciphertext.e.

2.

This seems a lot more complicated than it actually is. Start with a 64-bit queue that contains the IV,
and as you progress, the queue gradually fills up with 8-bit chunks of ciphertext. Figure 14-8
illustrates the way in which CFB works.

Figure 14-8. CFB mode uses a queue to process small chunks of data

CFB encrypts data one bit at a time if required, although that would use a lot of CPU (because the
cipher function encrypts a complete block of data for each message bit). In the queue, the gradual

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shifting of the data protects against ECB attacks.

14.2.3 Block Padding

Most messages do not divide neatly into the fixed-size blocks required by the cipher function, and
there is usually a partial data block left over at the end. The cipher function cannot process partial
blocks, and the algorithm adds "padding" to the leftover data to create a complete block.

Padding, unlike other aspects of encryption, is expressed in bytes rather than bits. For example, if
you are using a cipher that processes 64-bit blocks, a 13-byte (104-bit) message breaks down into
one complete data block with 40 bits remaining. We need to add 3 bytes (24 bits) of data to the
remainder to create a second block that the cipher function can process. There are two commonly
used approaches to block padding, and the .NET Framework supports both. The first approach is
simply to set the remaining bytes to 0, as shown in Figure 14-9.

Figure 14-9. Using zeros to pad a partial data block

Encrypt the padded plaintext block, and the result is appended to the ciphertext; note that the
ciphertext will be three bytes larger than the plaintext. When you decrypt the ciphertext, remove the
padding values to return to the original plaintext message. The problem with this approach is that it
is difficult to be sure that you are removing the padding correctly; some algorithms naturally
generate strings of zeros, and you may remove bytes that are part of the message.

A more reliable approach is to use PKCS #7 padding, where you set the value of the padding bytes to
the number of bytes you added. For our example, the padding would be three bytes set to a value of
"3". When you remove the padding, simply read the value of the last byte and you can tell which
bytes you have to remove, as shown in Figure 14-10.

Figure 14-10. Using PKCS #7 padding to complete a partial data block

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You still have to add PKCS #7 padding even when there are no partial plaintext blocks to process.
This is because many algorithm implementations examine the numeric value of the last byte, and do
not check to ensure that all of the padding bytes are set to the same value. When the plaintext
results in only whole blocks, add a complete block of padding data, with all of the byte values set to
be 1/8th of the block size; for a 64-bit block cipher, this would be 8 bytes of value "8". When the
ciphertext is decrypted, remove the entire final block to leave the original plaintext. PKCS #7 padding
is limited to 256 bytes of padding, which is the largest numeric value a single byte of data can
represent.

14.2.4 Symmetric Encryption Key Lengths

The security of symmetric encryption comes from the fact that Eve does not have the secret key. If
she did, she would be able to read any of Alice's messages to Bob and even forge new messages by
using the secret key to encrypt them.

We describe secret keys by their length, measured in bits. A 64-bit key can represent 264 different
key values, and a 256-bit key can represent 2256

 different key values. Symmetric encryption keys are
typically attacked using brute force, where Eve tries all of the possible keys until she finds the one
that Alice and Bob have selected. Protect the confidential messages by making it hard for Eve to try
all of the possible keys; the longer you make the key, the longer it takes Eve to check all of the
possible key values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Probability and Brute Force Attacks

When you see calculations that tell you how long it takes to guess a secret key, you
should be aware of two assumptions that are rarely stated:

Alice and Bob select the secret key randomly, and Eve has no information that would
lead her to suspect that checking a specific range of keys is more likely to yield a
result than any other range.

1.

Eve will have to check all of the possible key values before she finds the correct one.2.

If you consider these assumptions, you will notice that there is a fundamental conflict. For
a randomly selected key, Eve may be lucky and find that the first key that she checks is
the one that she is looking for.

It will take Eve 11.6 billion years to try all the possible values for a 64-bit key if she can
test 50 keys per second, but there is a 50% chance that she will find a match after
checking only half the key space and a 1 in 264 chance that the first key she checks will be
the one that Alice and Bob have used. When assessing the security of keys, always bear in
mind that brute force attacks are subject to the laws of probability, and it's a very
optimistic expectation to hope that Eve will have to check all possible keys.

If Eve knows that the key is contained in a specific range, then the situation is even
worse: not only is early success still possible but she is also able to reduce the total
number of keys to check. See Chapter 17 for more information about selecting and
managing keys.

Assess the length of the key you need by estimating how many candidate keys Eve can test per
second then compare this with how long you need to maintain confidentiality. For example, if Eve
could check 50 candidate keys per second, it would take her 11.6 billion years to check all of the
possible values for a 64-bit key. Symmetric cryptography is not subject to the birthday attacks we
mentioned in Chapter 13, and calculating the relative security of a key is a simple process. If Eve
checks more keys per second, then you will have to adjust your projections accordingly.

The trade-off is that encrypting and decrypting data using longer keys requires more computation,
and using very long keys is practical only when you are using high-end computers. Make a
reasonable estimate of your confidentiality requirements when selecting a key length and include an
estimation of how Eve's ability to perform brute force attacks will change over time. History shows us
that improvements in design and manufacturing halve the cost of processing power every 18
months; therefore, over time Eve will be able to increase her ability to check candidate keys for each
dollar that she spends.

14.2.5 The .NET Framework Encryption Algorithms

The .NET Framework provides classes for four different symmetric encryptions. Table 14-1
summarizes the encryption algorithms available and the possible secret key lengths.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 14-1. Summary of .NET symmetric encryption algorithms

Name Block size Key length (bits)

DES 64 56 (although conventionally expressed as a 64-bit number)

RC2 64 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128

Triple-DES 64 Two or three 56-bit keys, expressed as 64-bit numbers

Rijndael (AES) 128, 192, 256 128, 192, 256

Based on the Lucifer cipher developed by IBM, the Data Encryption Standard (DES) algorithm was
published in 1976 and has been used in a huge range of applications. The design has aged
remarkably well, given it's rocky beginnings. To produce DES, the National Security Agency modified
the Lucifer cipher in a way that was thought to compromise security. (A common theory throughout
recent cryptographic history is that the National Security Agency is tinkering behind the scenes to
limit the efficacy of cryptography.) The limit of a 56-bit key means that DES is becoming increasingly
susceptible to exhaustive key searches using modern computers, but various efforts have been made
to prolong the life of this venerable cipher, most notably the Triple-DES standard. The Advanced
Encryption Standard (AES) officially succeeded DES in 2001 as the principal U.S. federal standard for
data encryption.

The RC2 algorithm was developed by Ron Rivest of RSA (also responsible for the MD5 hashing
algorithm discussed in Chapter 13) as a direct replacement for DES. Controversy dogged the
acceptance of RC2, because RSA decided to keep the details of the cipher secret, preventing proper
security analysis. In 1997, RSA published the details of the algorithm to foster the adoption of the
S/MIME standard, which acts as a framework for cryptographically secure email. A wide range of
products use RC2, and it has become one of the most commonly used symmetrical ciphers. RC2
operates with key lengths ranging from 40 to 128 bits.

Designed to prolong the life of DES, Triple-DES encrypts data three times using the DES algorithm. A
different 56-bit key can be used for each encryption step, or two 56-bit keys can be used and the
third encryption step will be performed using the first key. Triple-DES has found a lasting niche in the
international financial markets for encrypting banking data.

Rijndael (pronounced "RAIN-Dahl" or "REIN-Daal") was the winner of the U.S. Government's
selection process for the AES, which is the successor to the aging DES algorithm. Unlike the other
algorithms included in the .NET Framework, the Rijndael cipher function operates on a range of data
block sizes. Although tested rigorously during selection, cryptographers have not yet established the
long-term security of the Rijndael/AES algorithm. You should exercise caution before using Rijndael,
and remember that it takes a great deal of time and analysis before a new algorithm can be fully
trusted.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.3 Programming Symmetrical Encryption

The .NET Framework takes the same basic approach to defining symmetric algorithms as the one you
saw in Chapter 13 for hashing algorithms; abstract classes extend the
System.Security.Cryptography.SymmetricAlgorithm class for each of the supported algorithms.

Individual implementations of the algorithms extend the abstract class, supporting the possibility of
more than one implementation of an algorithm, as represented by Figure 14-11.

Figure 14-11. The .NET Framework class hierarchy for symmetric
encryption algorithms

14.3.1 The SymmetricAlgorithm Class

The SymmetricAlgorithm class allows you to configure an algorithm (select the block size, padding

mode, etc.) and create instances of the classes that encrypt and decrypt data; this class, and the
derived implementation classes, are not used to process data directly; see Section 14.3.4 for more
details. Table 14-2 summarizes the public members of the SymmetricAlgorithm class.

Table 14-2. Members of the SymmetricAlgorithm Class

Member Description

Properties

BlockSize Gets or sets the block size used by the cipher function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

FeedbackSize Gets or sets the block size used to create feedback when encrypting data.

KeySize Gets or sets the size in bits of the secret key used by the algorithm.

IV
Get and set the values of the secret key and initialization vector, expressed as
an array of bytes.

Key

LegalBlockSizes Return the range of block and secret key sizes that the algorithm supports.

LegalKeySizes

Mode Gets and sets the cipher mode used to prepare data.

Padding Gets or sets the padding mode that will fill out partial blocks of data.

Methods

Create
Creates a new instance of the SymmetricAlgorithm class by name. See the

following section for further details.

CreateEncryptor
Create instances of the classes used to encrypt and decrypt data. See Section
14.3.4 for details.

CreateDecryptor

GenerateIV Generate random secret keys and initialization vectors.

GenerateKey

ValidKeySize Determines if a key of a given length is valid for the algorithm.

14.3.2 Instantiating the Algorithm

You can instantiate the implementation classes for symmetric algorithms in the same way as the
hashing algorithms we examined in Chapter 13. The preferred way to create an instance is by using
the Create method of the SymmetricAlgorithm class:

C#

SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("RC2");

Visual Basic .NET

Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("RC2")

The Create method instantiates an implementation class based on the value of the argument; Table

14-3 shows the list of supported argument strings and the implementation classes that they create. If
no argument is supplied, the Create method will instantiate the RijndaelManaged class and return
null (C#) or Nothing (Visual Basic .NET) if the argument is not one of those listed in Table 14-3.

The system administrator configures the mapping between the string values and the instantiated
classes.

FeedbackSize Gets or sets the block size used to create feedback when encrypting data.

KeySize Gets or sets the size in bits of the secret key used by the algorithm.

IV
Get and set the values of the secret key and initialization vector, expressed as
an array of bytes.

Key

LegalBlockSizes Return the range of block and secret key sizes that the algorithm supports.

LegalKeySizes

Mode Gets and sets the cipher mode used to prepare data.

Padding Gets or sets the padding mode that will fill out partial blocks of data.

Methods

Create
Creates a new instance of the SymmetricAlgorithm class by name. See the

following section for further details.

CreateEncryptor
Create instances of the classes used to encrypt and decrypt data. See Section
14.3.4 for details.

CreateDecryptor

GenerateIV Generate random secret keys and initialization vectors.

GenerateKey

ValidKeySize Determines if a key of a given length is valid for the algorithm.

14.3.2 Instantiating the Algorithm

You can instantiate the implementation classes for symmetric algorithms in the same way as the
hashing algorithms we examined in Chapter 13. The preferred way to create an instance is by using
the Create method of the SymmetricAlgorithm class:

C#

SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("RC2");

Visual Basic .NET

Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("RC2")

The Create method instantiates an implementation class based on the value of the argument; Table

14-3 shows the list of supported argument strings and the implementation classes that they create. If
no argument is supplied, the Create method will instantiate the RijndaelManaged class and return
null (C#) or Nothing (Visual Basic .NET) if the argument is not one of those listed in Table 14-3.

The system administrator configures the mapping between the string values and the instantiated
classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Algorithms can be instantiated directly, an approach that is useful if you wish to ensure that a specific
implementation class is used or if you are using algorithms for which no mappings are available:

C#

SymmetricAlgorithm x_alg = new RC2CryptoServiceProvider();

Visual Basic .NET

Dim x_alg As SymmetricAlgorithm = New RC2CryptoServiceProvider()

Table 14-3. Mapping string values to algorithm classes

String value Algorithm-implementation class

DES DESCryptoServiceProvider

System.Security.Cryptography.DES DESCryptoServiceProvider

3DES TripleDESCryptoServiceProvider

TripleDES TripleDESCryptoServiceProvider

Triple DES TripleDESCryptoServiceProvider

System.Security.Cryptography.TripleDES TripleDESCryptoServiceProvider

RC2 RC2CryptoServiceProvider

System.Security.Cryptography.RC2 RC2CryptoServiceProvider

Rijndael RijndaelManaged

System.Security.Cryptography.Rijndael RijndaelManaged

14.3.3 Configuring the Algorithm

The public properties of the SymmetricAlgorithm class provide a mechanism that allows you to

configure an algorithm before data is encrypted or decrypted. The following sections describe the
configuration options and the impact that each option has.

14.3.3.1 Block and key sizes

The KeySize and BlockSize properties represent the size (in bits) of the secret key and the size of

block processed by the cipher function. Inspect and change the current settings as follows:

C#

SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("Rijndael");

// print out the current values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Console.WriteLine("Block Size: {0}", x_alg.BlockSize);
Console.WriteLine("Key Size: {0}", x_alg.KeySize);

// change the values
x_alg.BlockSize = 192;
x_alg.KeySize = 128;

Visual Basic .NET

Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("Rijndael")

' print out the current values
Console.WriteLine("Block Size: {0}", x_alg.BlockSize)
Console.WriteLine("Key Size: {0}", x_alg.KeySize)

' change the values
x_alg.BlockSize = 192
x_alg.KeySize = 128

Each algorithm supports a different set of block and key sizes; refer to Table 14-1 for a summary of
the sizes supported by the algorithms included in the .NET Framework. Inspect the valid sizes
programmatically using the LegalKeySizes and LegalBlockSizes properties, which rely on the
KeySizes structure, summarized in Table 14-4.

Table 14-4. The KeySizes structure

Property Description

MinSize The smallest valid key size in bits

SkipSize The interval between valid key sizes in bits

MaxSize The largest valid key size in bits

Both properties return an array of the KeySizes structure, where each element represents a range of

keys. To determine the valid key lengths, begin with the smallest valid size and append multiples of
the skip size until you reach the largest valid size; for example, if MinSize is 16 bits, SkipSize is 8
bits, and MaxSize is 32 bits, then the valid key lengths would be 16, 24, and 32 bits. The following
code demonstrates how to determine all of the valid key lengths for a SymmetricAlgorithm instance:

C#

// create the encryption algorithm instance
SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("Rijndael");

// get the valid sizes for the secret key
KeySizes[] x_size_ranges = x_alg.LegalKeySizes;

// iterate through each KeyRange in the array
foreach (KeySizes x_range in x_size_ranges) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // only iterate through if there is a range to process
 if (x_range.SkipSize > 0) {
 // calculate each valid size
 for (int i = x_range.MinSize; i <= x_range.MaxSize; i+= x_range.SkipSize) {
 Console.WriteLine("Valid Secret Key Size: {0}", i);
 }
 } else {
 // there is no range - only a single value
 Console.WriteLine("Valid Secret Key Size: {0}", x_range.MinSize);
 }
}

Visual Basic .NET

' create the encryption algorithm instance
Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("Rijndael")

' get the valid sizes for the secret key
Dim x_size_ranges() As KeySizes = x_alg.LegalKeySizes

' iterate through each KeyRange in the array
Dim x_range As KeySizes
For Each x_range In x_size_ranges
 ' only iterate through if there is a range to process
 If x_range.SkipSize > 0 Then
 ' calculate each valid size
 Dim i As Integer
 For i = x_range.MinSize To x_range.MaxSize Step x_range.SkipSize
 Console.WriteLine("Valid Secret Key Size: {0}", i)
 Next
 Else
 ' there is no range - only a single value
 Console.WriteLine("Valid Secret Key Size: {0}", x_range.MinSize)
 End If
Next

14.3.3.2 Cipher and padding modes

The .NET Framework supports the two padding modes that we described in Section 14.2.3 earlier in
the chapter. A member of the System.Security.Cryptography.PaddingMode enumeration, as
summarized in Table 14-5, represents each padding mode. The Padding property of the
SymmetricAlgorithm class allows the padding mode to be determined and changed.

Table 14-5. The members of the PaddingMode enumeration

Member Description

The .NET Framework supports block cipher modes that include those we describe in the "Cipher
Modes" section of this chapter, and some additional variations. The members of the
System.Security.Cryptography.CipherMode enumeration, listed in Table 14-6, represent each
cipher mode. The Mode property of the SymmetricAlgorithm class configures the cipher mode; note

that not all encryption algorithms support all of the cipher modes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

PKCS7
Represents the PKCS #7 padding style, where the value of the padding bytes is the total
number of padding bytes added to the partial data block

Zeros Represents the use of padding bytes that are set to 0

The .NET Framework supports block cipher modes that include those we describe in the "Cipher
Modes" section of this chapter, and some additional variations. The members of the
System.Security.Cryptography.CipherMode enumeration, listed in Table 14-6, represent each
cipher mode. The Mode property of the SymmetricAlgorithm class configures the cipher mode; note

that not all encryption algorithms support all of the cipher modes.

Table 14-6. The members of the CipherMode enumeration

Member Description

ECB These members represent the modes described in Section 14.2.2 of this chapter.

CBC

CFB

CTS
This member represents the "Cipher Text Stealing" mode, which is a variation of the CBC
mode that computes the last block of ciphertext in such a way as to ensure that the
plaintext and the ciphertext are the same size.

OFB
This member represents the "Output Feedback" mode, which is a variation of the CFB
mode, using a different technique to fill the queue.

The following code example demonstrates how to inspect the padding and cipher modes:

C#

// create the encryption algorithm instance
SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("Rijndael");

// view the current settings
Console.WriteLine("Padding Mode: {0}", x_alg.Padding);
Console.WriteLine("Cipher Mode: {0}", x_alg.Mode);

// change the padding and cipher modes
x_alg.Padding = PaddingMode.Zeros;
x_alg.Mode = CipherMode.ECB;

Visual Basic .NET

' create the encryption algorithm instance
Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("Rijndael")

' view the current settings

PKCS7
Represents the PKCS #7 padding style, where the value of the padding bytes is the total
number of padding bytes added to the partial data block

Zeros Represents the use of padding bytes that are set to 0

The .NET Framework supports block cipher modes that include those we describe in the "Cipher
Modes" section of this chapter, and some additional variations. The members of the
System.Security.Cryptography.CipherMode enumeration, listed in Table 14-6, represent each
cipher mode. The Mode property of the SymmetricAlgorithm class configures the cipher mode; note

that not all encryption algorithms support all of the cipher modes.

Table 14-6. The members of the CipherMode enumeration

Member Description

ECB These members represent the modes described in Section 14.2.2 of this chapter.

CBC

CFB

CTS
This member represents the "Cipher Text Stealing" mode, which is a variation of the CBC
mode that computes the last block of ciphertext in such a way as to ensure that the
plaintext and the ciphertext are the same size.

OFB
This member represents the "Output Feedback" mode, which is a variation of the CFB
mode, using a different technique to fill the queue.

The following code example demonstrates how to inspect the padding and cipher modes:

C#

// create the encryption algorithm instance
SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("Rijndael");

// view the current settings
Console.WriteLine("Padding Mode: {0}", x_alg.Padding);
Console.WriteLine("Cipher Mode: {0}", x_alg.Mode);

// change the padding and cipher modes
x_alg.Padding = PaddingMode.Zeros;
x_alg.Mode = CipherMode.ECB;

Visual Basic .NET

' create the encryption algorithm instance
Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("Rijndael")

' view the current settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Console.WriteLine("Padding Mode: {0}", x_alg.Padding)
Console.WriteLine("Cipher Mode: {0}", x_alg.Mode)

' change the padding and cipher modes
x_alg.Padding = PaddingMode.Zeros
x_alg.Mode = CipherMode.ECB

14.3.3.3 Keys and initialization vectors (IVs)

The .NET Framework expresses secret keys and initialization vectors (IVs) as arrays of bytes. The
Key and IV properties of the SymmetricAlgorithm class allow you to get and set the values.

If you set values using the Key and IV properties, the SymmetricAlgorithm class will use them for

encryption or decryption. If you wish to generate random values for the key and IV, simply get the
values from the related properties, as illustrated in the following code fragment:

C#

// create the encryption algorithm instance
SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("DES");

// we are "getting" the value of the secret key, which
// will lead the SymmetricAlgorithm class to create a
// new random key
byte[] x_secret_key = x_alg.Key;

// we are "setting" the value of the secret key, which
// will now be used for any subsequent encryption or
// decryption operations
x_alg.Key = new byte[] {0xD0, 0x8C, 0xD3, 0xEB, 0x10, 0x60, 0x41, 0x59};

Visual Basic .NET

' create the encryption algorithm instance
Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("DES")

' we are "getting" the value of the secret key, which
' will lead the SymmetricAlgorithm class to create a
' new random key
Dim x_secret_key() As Byte = x_alg.Key

' we are "setting" the value of the secret key, which
' will now be used for any subsequent encryption or
' decryption operations
x_alg.Key = New Byte() {&HD0, &H8C, &HD3, &HEB, &H10, &H60, &H41, &H59}

You do not have to get the values of the key and IV explicitly to create random values; any
encryption or decryption operation will lead to the SymetricAlgorithm implementation class creating
new Key and IV values if they have not been set. If you are using randomly generated values, you
must be sure to take note of the key and IV values used to encrypt the plaintext or you won't be

able to decrypt the ciphertext.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.3.4 Encrypting and Decrypting Data

The SymmetricAlgorithm class delegates the process of encrypting and decrypting data to the
ICryptoTransform interface, which exposes the details of handling data in blocks.

An instance of ICryptoTransform transforms plaintext to ciphertext or transforms ciphertext to
plaintext; each ICryptoTransform is "one-way" and can be used only for the purpose for which it

was created. The following statements demonstrate how to create transformations, using the
CreateEncryptor and CreateDecryptor methods:

C#

// create the encryption algorithm
SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("Rijndael");

// create an ICryptoTransform that can be used to encrypt data
ICryptoTransform x_encryptor = x_alg.CreateEncryptor();

// create an ICryptoTransform that can be used to decrypt data
ICryptoTransform x_decryptor = x_alg.CreateDecryptor();

Visual Basic .NET

' create the encryption algorithm
Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("Rijndael")

' create an ICryptoTransform that can be used to encrypt data
Dim x_encryptor As ICryptoTransform = x_alg.CreateEncryptor()

' create an ICryptoTransform that can be used to decrypt data
Dim x_decryptor As ICryptoTransform = x_alg.CreateDecryptor()

The transformations that these statements create will transform data using the key and IV from the
SymmetricAlgorithm instance; there are overloaded forms of the CreateEncryptor and
CreateDecryptor classes that accept byte arrays to specify particular key and IV values. Table 14-7
summarizes the members of the ICryptoTransform interface.

Table 14-7. The members of the ICryptoTransform interface

Member Description

Properties

InputBlockSize Returns the number of bytes that the cipher function operates on

OutputBlockSize
Returns the number of bytes that the cipher function produces
when processing a data block of InputBlockSize bytes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

CanReuseTransform
Indicates if a transformation can be used to process more than
one ciphertext/plaintext

CanTransformMultipleBlocks
If true, the TransformBlock method can accept data in multiples
of InputBlockSize bytes

Methods

TransformBlock
Transforms a region of a byte array and copies the result to a
region of an output buffer

TransformFinalBlock Transforms the final block of data

Instances of the ICryptoTransform interface are not useful on their own; the .NET Framework
provides the CryptoStream companion class, which is the basis for using instances of
ICryptoTransform.

The CryptoStream class acts as a wrapper around a stream and automatically transforms blocks of
data using an ICryptoTransform. The CryptoStream class transforms data read from a stream (for

example, decrypting ciphertext stored in a file) or written to a stream (for example, encrypting
programmatically generated data and storing the result in a file).

Creating instances of CryptoStream requires a real stream, an ICryptoTransform, and a value from
the CryptoStreamMode enumeration, which defines whether to transform the data as it is read from
the stream (CryptoStreamMode.Read) or as it is written to the stream (CryptoStreamMode.Write).

The CryptoStream class extends System.IO.Stream and exposes all of the functionality of the
stream it is wrapped around; requests made to the CryptoStream Read or Write methods are
serviced by the underlying stream, and then transformed using an ICryptoTransform. Figure 14-12
shows how the CryptoStream class transforms data read from a file stream.

Figure 14-12. Using the CryptoStream class to transform data

The following statements, Example 14-1, demonstrate how to use the CryptoStream class to encrypt
data as it is written to a MemoryStream, which provides a stream that is backed by an in-memory

byte array:

Example 14-1. using the CryptoStream class to encrypt data in a stream

C#

CanReuseTransform
Indicates if a transformation can be used to process more than
one ciphertext/plaintext

CanTransformMultipleBlocks
If true, the TransformBlock method can accept data in multiples
of InputBlockSize bytes

Methods

TransformBlock
Transforms a region of a byte array and copies the result to a
region of an output buffer

TransformFinalBlock Transforms the final block of data

Instances of the ICryptoTransform interface are not useful on their own; the .NET Framework
provides the CryptoStream companion class, which is the basis for using instances of
ICryptoTransform.

The CryptoStream class acts as a wrapper around a stream and automatically transforms blocks of
data using an ICryptoTransform. The CryptoStream class transforms data read from a stream (for

example, decrypting ciphertext stored in a file) or written to a stream (for example, encrypting
programmatically generated data and storing the result in a file).

Creating instances of CryptoStream requires a real stream, an ICryptoTransform, and a value from
the CryptoStreamMode enumeration, which defines whether to transform the data as it is read from
the stream (CryptoStreamMode.Read) or as it is written to the stream (CryptoStreamMode.Write).

The CryptoStream class extends System.IO.Stream and exposes all of the functionality of the
stream it is wrapped around; requests made to the CryptoStream Read or Write methods are
serviced by the underlying stream, and then transformed using an ICryptoTransform. Figure 14-12
shows how the CryptoStream class transforms data read from a file stream.

Figure 14-12. Using the CryptoStream class to transform data

The following statements, Example 14-1, demonstrate how to use the CryptoStream class to encrypt
data as it is written to a MemoryStream, which provides a stream that is backed by an in-memory

byte array:

Example 14-1. using the CryptoStream class to encrypt data in a stream

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System;
using System.Security.Cryptography;
using System.IO;
using System.Text;

class MemoryEncryptionExample {

 static void Main() {

 // define the message that we will encrypt
 string x_message = "Programming .NET Security";

 // get the bytes representing the message
 byte[] x_plaintext = Encoding.Default.GetBytes(x_message);

 // create the memory stream
 MemoryStream x_memory_stream = new MemoryStream();

 // create the encryption algorithm
 SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("RC2");

 // create an ICryptoTransform that can be used to encrypt data
 ICryptoTransform x_encryptor = x_alg.CreateEncryptor();

 // create the CryptoStream that ties together the FileStream and
 // the ICryptoTransform
 CryptoStream x_cryptostream = new CryptoStream(x_memory_stream,
 x_encryptor,
 CryptoStreamMode.Write);

 // write the plaintext out to the cryptostream
 x_cryptostream.Write(x_plaintext, 0, x_plaintext.Length);

 // close the CryptoStream
 x_cryptostream.Close();

 // get the ciphertext from the MemoryStream
 byte[] x_ciphertext = x_memory_stream.ToArray();

 // print out the cipher text bytes
 foreach (byte b in x_ciphertext) {
 Console.Write("{0:X2} ", b);
 }
 }
}

Visual Basic .NET

Imports System
Imports System.Security.Cryptography
Imports System.IO
Imports System.Text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class MemoryEncryptionExample

 Shared Sub Main()

 ' define the message that we will encrypt
 Dim x_message As String = "Programming .NET Security"

 ' get the bytes representing the message
 Dim x_plaintext() As Byte = Encoding.Default.GetBytes(x_message)

 ' create the memory stream
 Dim x_memory_stream As MemoryStream = New MemoryStream()

 ' create the encryption algorithm
 Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("RC2")

 ' create an ICryptoTransform that can be used to encrypt data
 Dim x_encryptor As ICryptoTransform = x_alg.CreateEncryptor()

 ' create the CryptoStream that ties together the FileStream and
 ' the ICryptoTransform
 Dim x_cryptostream As CryptoStream = New CryptoStream(x_memory_stream, _
 x_encryptor, _
 CryptoStreamMode.Write)

 ' write the plaintext out to the cryptostream
 x_cryptostream.Write(x_plaintext, 0, x_plaintext.Length)

 ' close the CryptoStream
 x_cryptostream.Close()

 ' get the ciphertext from the MemoryStream
 Dim x_ciphertext() As Byte = x_memory_stream.ToArray()

 ' print out the cipher text bytes
 Dim b As Byte
 For Each b In x_ciphertext
 Console.Write("{0:X2} ", b)
 Next
 End Sub
End Class

This example provides the general model for encrypting and decrypting data using symmetric
algorithms; substitute any stream in the example to write encrypted data using the CryptoStream

class. Note that the .NET symmetric encryption support makes no special provision for handling data
held in memory; the MemoryStream class provides the means to process in-memory data using

streams.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.4 Extending the .NET Framework

In this section, we extend the .NET Framework by implementing the Extended Tiny Encryption
Algorithm (XTEA). We have selected XTEA because it is simple to express, allowing us to concentrate
on the details of adding a new algorithm rather than the specifics of the algorithm itself. Most
symmetric encryption algorithms rely on large lookup tables that speed up encryption, but these are
not suitable for listing in this book.

We have provided only a C# implementation of the XTEA algorithm. Like almost all encryption
algorithms, XTEA relies on using bitwise shift operations on unsigned data types; this is not possible
in Visual Basic .NET without creating additional support functions to compensate for the limited
numeric support Visual Basic .NET provides.

14.4.1 The Extended Tiny Encryption Algorithm Explained

The Tiny Encryption Algorithm (TEA) was developed by David Wheeler and Roger Needham of
Cambridge University, England. They designed TEA to be simple, quick, and easily expressed in a
range of programming languages. Wheeler and Needham released the XTEA in response to a
weakness discovered in the original algorithm. Since that time, further weaknesses have emerged
with TEA, leading the designers to make more modifications (often referred to as XTEA).

To complicate matters, poor documentation has made differing implementations incompatible. This
confusion has restricted the adoption of XTEA, and it is not frequently used. There has been little
analysis of the XTEA algorithm, and the security of the design is unknown.

We have selected the XTEA algorithm for clarity, not security. We recommend
that you do not use this implementation to protect confidential data.

14.4.2 Defining the Abstract Class

First, create an abstract class representing the XTEA algorithm. The abstract class extends the
System.Security.Cryptography.SymmetricAlgorithm class and is the foundation for our managed

code implementation:

using System.Security.Cryptography;

public abstract class XTEA : SymmetricAlgorithm {

}

You have created the abstract class to conform to the .NET class model, allowing you to add other
XTEA implementations in the future. You can omit the abstract class, but we feel that the extra
flexibility of this model is well worth the effort.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.4.3 Defining the Implementation Class

The SymmetricAlgorithm class has two roles: the first is to describe an algorithm and the second is
to provide a mechanism for creating instances of ICryptoTransform to encrypt or decrypt data.
Table 14-8 lists the SymmetricAlgorithm-protected fields, each of which, with the exception of
LegalKeySizesValue and LegalBlockSizesValue, can also be get and set using a corresponding

property; each property holds data that describes an aspect of the encryption algorithm
configuration.

Table 14-8. The protected fields of the SymmetricAlgorithm class

Name Data type Description

BlockSizeValue int The cipher function block size in bits

FeedbackSizeValue int
The number of data bits fed back into the cipher function in
chained cipher modes

IVValue byte[] The value of the initialization vector

KeySizeValue int The size of the secret key in bits

KeyValue byte[] The value of the secret key

LegalBlockSizeValue KeySize
The range of data block sizes that can be processed by the
cipher function

LegalKeySizeValue KeySize The range of key sizes supported by the algorithm

ModeValue CipherMode Represents the cipher mode

PaddingValue PaddingMode
Specifies the technique to use in padding incomplete data
blocks

We define the XTEAManaged class as our implementation of the XTEA algorithm. The XTEA cipher

operates on 64-bit blocks of data and uses a 128-bit secret key. Use the class constructor to set
these values, implementing the LegalKeySizeValue and LegalBlockSizeValue fields:

using System.Security.Cryptography;

public class XTEAManaged : XTEA {

 public XTEAManaged() {
 // define the valid block and key sizes
 LegalKeySizesValue = new KeySizes[] {new KeySizes(128, 128, 0)};
 LegalBlockSizesValue = new KeySizes[] {new KeySizes(64, 64, 0)};
 }

The GenerateKey and GenerateIV methods are marked as abstract in the SymmetricAlgorithm

class; therefore, they must be included in the implementation class; these methods must create a
random secret key or initialization vector that is subject to the design of the algorithm. Create a 128-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bit secret key and a 64-bit IV using the random number generator; see Chapter 17 for more
information about creating and managing keys.

 public override void GenerateIV() {
 // create the PRNG
 RandomNumberGenerator x_random = RandomNumberGenerator.Create();
 // create the data array that will hold the IV
 IVValue = new byte[8];
 x_random.GetBytes(IVValue);
 }

 public override void GenerateKey() {
 // create the PRNG
 RandomNumberGenerator x_random = RandomNumberGenerator.Create();
 // create the data array that will hold the IV
 KeyValue = new byte[16];
 x_random.GetBytes(KeyValue);
 }

 public override ICryptoTransform CreateDecryptor(byte[] p_key, byte[] p_iv) {
 return new XTEAManagedDecryptor(p_key);
 }

 public override ICryptoTransform CreateEncryptor(byte[] p_key, byte[] p_iv) {
 return new XTEAManagedEncryptor(p_key);
 }
}

The remaining methods create implementations of the ICryptoTransform interface, called
XTEAManagedEncryptor and XTEAManagedDecryptor. Notice that you do not pass the p_iv
parameter into the constructor for the ICryptoTranform implementations; this is because our XTEA

implementation supports only the ECB cipher mode; therefore, you do not need to use an IV as a
seed value for cipher function chaining.

14.4.4 Defining an Abstract Transformation

We have defined an abstract class that you used as the basis for the ICryptoTransform

implementation classes. The main purpose of this class is to provide a common location for utility
methods and ICryptoTransform interface members that are the same in both the encryption and

decryption classes:

using System;
using System.Security.Cryptography;

public abstract class XTEAManagedAbstractTransform : ICryptoTransform {

 protected uint[] o_key; // the key, expressed as a series of 32bit words

 public XTEAManagedAbstractTransform(byte[] p_key) {
 // convert the key from an array of bytes into
 // and array of unsigned 32-bit words, as required

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // by the XTEA specification
 o_key = ConvertBytesToUints(p_key, 0, p_key.Length);
 }

The constructor simply converts the secret key from a byte array, as expressed by the .NET
Framework, to an array of unsigned 32-bit integers as required by the XTEA algorithm; store the key
as an instance array. The XTEA algorithm has been designed with unsigned 32-bit integers in mind,
and you can use the ConvertBytesToUints and ConvertUintstoBytes methods in the encryption

and decryption transformations to convert to and from the byte representation that the .NET
Framework uses:

 protected uint[] ConvertBytesToUints(byte[] p_data, int p_offset,
 int p_count) {

 // allocate an array - each uint requires 4 bytes
 uint[] x_result = new uint[p_count/4];

 // run through the data and create the unsigned ints from
 // the array of bytes
 for (int i = p_offset, j = 0; i < p_offset + p_count; i+=4, j++) {
 x_result[j] = BitConverter.ToUInt32(p_data, i);
 }

 // return the array of 32-bit unsigned ints
 return x_result;
 }

 protected byte[] ConvertUintstoBytes(uint[] p_data) {
 // convert the unit[] into a byte[]
 byte[] x_result = new byte[p_data.Length * 4];

 // run through the data and create the bytes from
 // the array of unsigned ints
 for (int i = 0, j = 0; i < p_data.Length; i++, j+=4) {
 byte[] x_interim = BitConverter.GetBytes(p_data[i]);
 Array.Copy(x_interim, 0, x_result, j, x_interim.Length);
 }

 // return the array of 8-bit bytes
 return x_result;
 }

The ICryptoTransform interface requires the following properties, which describe the algorithm used

by the transformation. Some encryption algorithms (for example, Rijndael/AES) support a range of
block and key sizes, and it can be useful to examine the settings for a specific transformation,
especially if the SymmetricAlgorithm instance used to create it is not available.

The XTEA algorithm accepts and produces 64-bit blocks of data, and so the InputBlockSize and
OutputBlockSize properties both return "8", representing the number of bytes-note that unlike the
SymmetricAlgorithm class, the ICryptoTransform interface expresses blocks in bytes rather than

bits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The CryptoStream class uses the CanTransformMultipleBlocks property when breaking up data for
processing. If this property returns true, then the implementation of the TransformBlock method
will process data arrays that are multiples of InputBlockSize. The implementations of XTEA
processes only 64-bit blocks, and for simplicity, return false from this method, indicating that
CryptoStream should only request processing for data in 64-bit blocks and not multiples thereof. Set
the CanReuseTransform property always to return false so that our XTEA transformation can be

used only to process one set of data-to either encrypt a single plaintext or decrypt a single
ciphertext:

 public bool CanReuseTransform {
 get {
 return false;
 }
 }

 public bool CanTransformMultipleBlocks {
 get {
 return false;
 }
 }

 public int InputBlockSize {
 get {
 return 8;
 }
 }

 public int OutputBlockSize {
 get {
 return 8;
 }
 }

The remaining members of this class are included simply to comply with the interface requirements;
the Dispose method is useful if your algorithm uses unmanaged code (for accessing specialized

acceleration hardware or key readers), but the XTEA implementation is written using only managed
code; therefore you have no need to use statements to clean up resources. The definitions for
TransformBlock and TransformFinalBlock are abstract, because they represent the point of

specialization for the encryption and decryption transformations:

 public virtual void Dispose() {
 // we use no unmanaged resources
 }

 public abstract int TransformBlock(byte[] p_buffer, int p_offset,
 int p_count, byte[] p_output, int p_output_offset);

 public abstract byte[] TransformFinalBlock(byte[] p_buffer, int p_offset,
 int p_count);
}

14.4.5 Defining the Encryption Transformation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The XTEAManagedEncryptor class is instantiated by the XTEAManaged.CreateEncryptor method

(see Section 14.4.2) and is used to transform blocks of plaintext into ciphertext:

using System;
using System.Security.Cryptography;

public class XTEAManagedEncryptor : XTEAManagedAbstractTransform {

 public XTEAManagedEncryptor(byte[] p_key) : base(p_key) {
 // do nothing
 }

The class constructor does nothing other than set the key in the base class for future use. The private
XTEAEncrypt method is the encrypting version of the XTEA cipher function; this method converts a

series of bytes to unsigned 32-bit integers, encrypts them, and then converts the results back into a
byte array. We have listed the XTEAEncrypt method for completeness, but we will treat the working

of the XTEA cipher as a black box and will not explain the way that the cipher works:

 private byte[] XTEAEncrypt(byte[] p_data, int p_offset, int p_count) {

 // defintions that are used to create the cipher text
 uint x_sum = 0, x_delta = 0x9e3779b9, x_count = 32;

 // convert the plaintext data into 32 bit words
 uint[] x_words = ConvertBytesToUints(p_data, p_offset, p_count);

 // main part of the XTEA Cipher
 while(x_count-->0) {
 x_words[0]+= (x_words[1]<<4 ^ x_words[1]>>5) + x_words[1] ^
 x_sum + o_key[x_sum&3];
 x_sum += x_delta;
 x_words[1]+= (x_words[0]<<4 ^ x_words[0]>>5) + x_words[0] ^
 x_sum + o_key[x_sum>>11 & 3];
 }

 // convert the cipher block into bytes are return the result
 return ConvertUintstoBytes(x_words);
 }

The CryptoStream class uses the TransformBlock method to encrypt blocks of data that are the
same size as the return value of the InputBlockSize property-for XTEA this means that you will

process eight bytes of data at a time.

If the CanTransformMultipleBlocks property returns true, then CryptoStream may request that
the transformation encrypt bytes in multiples of InputBlockSize, but will never request that the
TransformBlock method process a partial data block. The implementation only transforms single
data blocks; therefore, you work on the basis that CryptoStream will only request a transformation
for eight bytes, which is the input for the XTEAEncrypt cipher function:

 public override int TransformBlock(byte[] p_buffer, int p_offset, int p_count,
 byte[] p_output, int p_output_offset) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // get the cipher text for the block
 byte[] x_ciphertext = XTEAEncrypt(p_buffer, p_offset, p_count);

 // copy the ciphertext into the output buffer
 Array.Copy(x_ciphertext, 0, p_output, p_output_offset,
 x_ciphertext.Length);

 // return the number of bytes written out
 return x_ciphertext.Length;
 }

The CryptoStream class calls the TransformFinalBlock after the TransformBlock method has

processed all of the complete data blocks. This method allows you to pad out any partial data and is
called even if there is no partial data to process (in which case the value of p_count is 0). The XTEA

algorithm requires padding (because the cipher function works only on complete 64-bit blocks), so
use "PKCS#7" padding.

Algorithm implementations are directly responsible for supporting cipher
modes, which is an unexpected omission from the .NET abstract classes, given
the way that the Cryptostream class is used by the .NET Framework to break

data into fixed-sized blocks. If you are implementing a new algorithm, you
must cater to all of the cipher modes that you wish to support. For simplicity,
use the ECB cipher mode to process data for our XTEA implementation only.

 public override byte[] TransformFinalBlock(byte[] p_buffer,
 int p_offset, int p_count) {

 // create an array which is the size of an input block
 byte[] x_result = new byte[InputBlockSize];

 // copy in the data from the buffer to the array
 Array.Copy(p_buffer, p_offset, x_result, 0, p_count);

 // work out the number of bytes we need to add to the
 // array to ensure that we have a complete block
 int x_shortfall = InputBlockSize - ((p_count - p_offset));

 // pad out the data by adding bytes
 for (int i = p_count - p_offset; i < x_result.Length; i++) {
 x_result[i] = (byte)x_shortfall;
 }

 // encrypt and return the data block
 return XTEAEncrypt(x_result, 0, x_result.Length);
 }
}

The effect of padding out partial data blocks is that the ciphertext you produce can be longer than the
plaintext, most notably, add a complete block of padding (8 bytes) when the plaintext contains only
full data blocks.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.4.6 Defining the Decryption Transformation

The XTEAManagedDecryptor class is instantiated by the XTEAManaged.CreateDecryptor method

(see Section 14.4.3) and is used to transform blocks of ciphertext into plaintext, a task complicated
by the way that we pad partial blocks of data during encryption.

This padding strategy means that you will have to decrypt complete data blocks only, but you have to
process the final block to remove the padding. The problem is that the CryptoStream class will call
the TransformFinalBlock method only after the TransformBlock method has processed all of the

data blocks.

The solution to this problem is to hold onto each block of plaintext until the next time that the
TransformBlock or TransformFinalBlock methods are called. You know that you have retained the
last data block if the CryptoStream has invoked the TransformFinalBlock method and you can

safely remove the padding:

using System;

public class XTEAManagedDecryptor : XTEAManagedAbstractTransform {
 private byte[] o_data_block;

 public XTEAManagedDecryptor(byte[] p_key) : base(p_key) {
 // initalize the data block
 o_data_block = new byte[0];
 }

 private byte[] XTEADecrypt(byte[] p_data, int p_offset, int p_count) {
 // defintions that are used to restore the plaintext text
 uint x_count = 32, x_sum = 0xC6EF3720, x_delta = 0x9E3779B9;

 // convert the data into 32 bit words
 uint[] x_words = ConvertBytesToUints(p_data, p_offset, p_count);

 // main part of the XTEA Cipher
 while(x_count-- > 0) {
 x_words[1]-= (x_words[0]<<4 ^ x_words[0]>>5) + x_words[0]
 ^ x_sum + o_key[x_sum>>11 & 3];
 x_sum -= x_delta;
 x_words[0]-= (x_words[1]<<4 ^ x_words[1]>>5) + x_words[1]
 ^ x_sum + o_key[x_sum&3];
 }

 // convert the unit[] into a byte[]
 return ConvertUintstoBytes(x_words);
 }

The class constructor sets the key in the base class and initializes the byte array that you use to hold
back plaintext blocks. The private XTEADecrypt method is the decryption version of the XTEA cipher

function; this method converts a series of bytes to unsigned 32-bit integers, decrypts them and then
converts the results back into a byte array.

The TransformBlock implementation decrypts the ciphertext block and assigns the result to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

o_data_block field. Write any data held from previous invocations to the output buffer:

 public override int TransformBlock(byte[] p_buffer, int p_offset, int p_count,
 byte[] p_output, int p_output_offset) {

 // define the number of data bytes we copied
 int x_result = 0;

 if (o_data_block.Length > 0) {
 // there is some data from a previous call - write it out
 Array.Copy(o_data_block, 0, p_output, p_output_offset,
 o_data_block.Length);
 x_result = o_data_block.Length;
 }

 // decrypt the ciphertext block we are bring passed and store it
 o_data_block = XTEADecrypt(p_buffer, p_offset, p_count);

 // return the number of bytes that we have written
 // to the output buffer
 return x_result;
 }

You know that the "held" data is the final plaintext block when the TransformFinalBlock method is

invoked. Remove the PKCS #7 padding and copy the rest of the data into a new byte array, which
returns as the method result, completing our implementation of the XTEA cipher:

 public override byte[] TransformFinalBlock(byte[] p_buffer, int p_offset,
 int p_count) {

 // get the value of the last byte, which tells us
 // how many padding bytes there are
 int x_padding_count = (int)o_data_block[o_data_block.Length -1];

 // create the shortened data block
 byte[] x_final_block = new byte[o_data_block.Length - x_padding_count];

 // copy in the data from the block
 Array.Copy(o_data_block, 0, x_final_block, 0, x_final_block.Length);

 // return the final plaintext block
 return x_final_block;
 }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 15. Asymmetric Encryption
In the previous chapter, we discussed symmetric encryption and the support available in the .NET
Framework. The word "symmetric" is an appropriate description because both Alice and Bob must
know the secret key used to encrypt data in order to read it, leading to the problem of agreeing on
the key in such a way that Eve is unable to eavesdrop. In this chapter, we discuss an alternative
approach to message confidentiality known as "asymmetric encryption." We'll explain what it is, how
it works, and how it overcomes the problem of exchanging secret keys.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.1 Asymmetric Encryption Explained

Asymmetric encryption, often called "public key" encryption, allows Alice to send Bob an encrypted
message without a shared secret key; there is a secret key, but only Bob knows what it is, and he
does not share it with anyone, including Alice. Figure 15-1 provides an overview of this asymmetric
encryption, which works as follows:

Figure 15-1. Asymmetric encryption does not require Alice and Bob to
agree on a secret key

Bob creates a pair of keys, one of which he keeps secret and one of which he sends to Alice.1.

Alice composes a confidential message and encrypts it using the key that Bob has sent to her.2.

Alice sends the encrypted data to Bob.3.

Bob uses his secret key to decrypt the data and reads the confidential message.4.

The key that Bob sends to Alice is the public key, and the key he keeps to himself is the "private"
key; jointly, they form Bob's "key pair."

The most striking aspect of asymmetric encryption is that Alice is not involved in selecting the key:
Bob creates a pair of keys without any input or agreement from Alice and simply sends her the public
key. Bob retains the private key and keeps it secret. Alice uses an asymmetric algorithm to encrypt a
message with Bob's public key and sends him the encrypted data, which he decrypts using the
private key.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asymmetric algorithms include a "key generation" protocol that Bob uses to create his key pair, as
shown by Figure 15-2. Following the protocol results in the creation of a pair of keys that have a
mathematical relationship-the exact detail of the protocol and the relationship between the keys is
different for each algorithm.

Figure 15-2. Bob uses a key generation protocol to create a new key pair

When we talk about an asymmetric encryption algorithm, we are actually referring to two related
functions that perform specific tasks: an encryption function that encrypts a message using a public
key, and a decryption function that uses a secret key to decrypt a message encrypted with the
corresponding public key.

The encryption function can only encrypt data. Alice cannot decrypt ciphertext that she has created
using the encryption function. This means that Bob can send his public key to several people, and
each of them can create ciphertext that only Bob's secret key can decrypt, as shown in Figure 15-3.

Figure 15-3. Alice and Anthony are able to use the same public key to
create ciphertext that can only be decrypted using Bob's secret key

The one-way nature of the encryption function means that messages created by one sender cannot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be read by another (i.e., Alice cannot decrypt the ciphertext that Anthony has created, even though
they both have Bob's public key). Bob can give out the public key to anyone who wants to send him a
message, and he can even print his public key on his business card and hand it out to anyone who
might want to send him a message. He can add the public key to an Internet directory of keys,
allowing people Bob has never met to create messages that only he can read.

If Bob suspects that Eve has guessed his private key, he simply creates a new key pair and sends out
the new public key to anyone who might send him a message. This is a lot easier than arranging to
meet in a secure location to agree on a new symmetric secret key with every person that might want
to communicate with him. In practice, the process of changing key pairs is more complex, and we
have more to say on this topic in Chapter 17.

Bob's pair of keys allows Alice to send him encrypted messages, but Bob cannot use them to send a
message back to Alice because of the one-way nature of the encryption and decryption functions. If
Bob needs to send Alice a confidential message, Alice must create her own pair of keys and send the
public key to Bob, who can then use the encryption function to create ciphertext that only Alice can
decrypt with her private key.

The main limitation of public key encryption is that it is very slow relative to symmetric encryption
and is not practical for encrypting large amounts of data. In fact, the most common use of public key
encryption is to solve the key agreement problem for symmetric encryption algorithms, which we
discuss in more detail in Chapter 17.

In the following sections, we demonstrate how an asymmetric encryption algorithm works. We use
the RSA algorithm for our illustration because it is the only one implemented in the .NET Framework.
Ronald Rivest, Adi Shamir, and Leonard Adleman created the RSA algorithm in 1977, and the name is
the first letter of each of the inventors' last names. The RSA algorithm is the basis for numerous
security systems, and remains the most widely used and understood asymmetric algorithm.

15.1.1 Creating Asymmetric Keys

Most asymmetric algorithms use keys that are very large numbers, and the RSA algorithm is no
exception. In this section, we demonstrate the RSA key generation protocol and provide you with
some general information about the structure and usage of asymmetric keys.

We step through the RSA key generation protocol, using small test values. The protocol is as follows:

Choose two large random prime numbers, p and q, of equal length and multiply them together
to create n, the RSA key modulus.

Select p as 23 and q as 31, so that the modulus, n, is:

n = p x q = 23 x 31 = 713

1.

Randomly choose e, the public exponent, so that e and (p - 1)(q - 1) are relatively prime.

Numbers are "relatively" prime when they share no common factors except 1. For these test

values select a value for e that has no common
factors with 660. Select e as 19.

2.

Compute the private exponent, d, where d = e-1mod((p - 1)(q - 1)).3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For our example, we calculate d as follows:

d = 19-1mod(22 x 30) = 139

3.

The public key consists of e and n. The private key is d. Discard p and q, but do not reveal their
values.

4.

You can see how simple it is to create an RSA key pair. Bob sends the value of e (19) and n (713) to
Alice and keeps the value of d (139) secret. Most asymmetric encryption algorithms use a similar
approach to key generation; we explain the protocol for a different asymmetric algorithm in Section
15.3.

Random Prime Numbers

Selecting prime numbers at random is a requirement of many different key generation
protocols. It is very time-consuming to check that a random number is truly a prime
number, especially when dealing with numbers that have hundreds of digits.

The compromise between the need for prime numbers and the need to generate them in a
reasonable time is to create numbers that are "probably" prime, which means that there is
a small possibility that a number seems to be a prime number, but is actually not.
Probable prime numbers are subject to a level of confidence, so that a level of 16 means
that the probability that a number is a true prime number exceeds:

Some asymmetric encryption algorithms are significantly less secure if numbers that are
supposed to be prime numbers turn out not to be, and so care must be taken when
generating numbers with a low level of confidence. There is a balance between the
confidence in a prime number and the amount of computation that is required to attain
that confidence level.

15.1.2 Asymmetric Algorithm Security

Asymmetric algorithms use much longer keys than symmetric algorithms. In our examples, we
selected small values to demonstrate the key generation protocol, but the numeric values used in
practice contain many hundreds of digits.

Measure asymmetric key lengths in bits. The way to determine the number of bits differs between
algorithms. The RSA algorithm specifies that the key length is the smallest number of bits needed to
represent the value of the key modulus, n, using binary. Round up the number of bits to a factor of
eight so that you can express the key using bytes; for example, consider a modulus represented by
509 bits to be a 512-bit key. Common lengths for keys are 512 and 1024-bits, but a 1024-bit
asymmetric key does not provide 16 times more resistance to attack than a 64-bit symmetric key.
Table 15-1 lists the equivalent asymmetric and symmetric key lengths accepted as providing
equivalent resistance to brute force attacks (where Eve obtains the value of the private/secret key by
testing all of the possible key values).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most asymmetric algorithms rely on some form mathematical task that is difficult or time-consuming
to perform. Cryptographers consider the RSA algorithm secure because it is hard to find the factors
of a large number; given our example value for n (713), it would take some time to establish that the
factors are the values you selected for p (23) and q (31). The longer the value of n, the longer it
takes to determine the factors; bear in mind that the example value of n has only five digits, whereas
the numbers that you would use for a secure key pair will be significantly longer.

Table 15-1. Asymmetric and symmetric key lengths providing equivalent
resistance to brute force attacks

Symmetric key length Asymmetric key length

64 bits 512 bits

80 bits 768 bits

112 bits 1792 bits

128 bits 2304 bits

Therefore, the essence of security for RSA is that given only the public key e and n, it takes a lot of
computation to discover the private key d. Once you know the factors p and q, it is relatively easy to
calculate d and decrypt ciphertext. Bob makes it difficult for Eve to decrypt his messages by keeping
secret the values of d, p and q.

The main risk with asymmetric algorithms is that someone may discover a technique to solve the
mathematical problems quickly, undermining the security of the algorithm. New techniques to factor
large numbers might make it a simple process to decrypt messages or to deduce the value of the
private key from the public key, and this would render the RSA algorithm (and any others that rely
on the same mathematical problem) insecure.

15.1.3 Creating the Encrypted Data

We have already explained how the encryption and decryption functions are at the heart of an
asymmetric algorithm, and the way in which we use these functions is similar to the techniques we
discussed in Chapter 14. The protocol for encrypting data using an asymmetric algorithm is as
follows:

Break the plaintext into small blocks of data.1.

Encrypt each small plaintext block by using the public key and the encryption function.2.

Concatenate the encrypted blocks to form the ciphertext.3.

The length of the public key determines the size of the block to which we break the plaintext. Each
algorithm specifies a rule for working out how many bytes of data should be in each block, and for
the RSA protocol, we subtract 1 from the key length (in bits) and divide the result by 8. The integral
part of the result (the part of the number to the left of the decimal point) tells you how many bytes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of data should be in each block of plaintext passed that is to the encryption function. You can work
out how many bytes should be in a plaintext block for a 1024-bit key, as follows:

The integral value of the result is 127, meaning that when using the RSA algorithm with a 1024-bit
public key we should break the plaintext into blocks of 127 bytes. The small key that you generated
to demonstrate the key generation protocol is 16 bits long (713 is 1011001001 in binary and the bit
length is therefore rounded up to be 16 bits) and with a 16-bit key, we must use 1-byte blocks (the
integral part of (10 - 1)/8 = 1.875 is 1).

Encrypt each data block by interpreting it as an integer value and compute a ciphertext block using
the RSA encryption function shown below (m is the integer value of the plaintext block and c is the
ciphertext block):

c = me mod n

Figure 15-4 demonstrates how this process works for a 24-bit key, meaning that you process 2 bytes
of plaintext at a time; the figure shows how the encryption function is applied to encrypt the string
".NET" into the ciphertext "35 7B AE 05 F1 6F."

Figure 15-4. Using the RSA encryption function to encrypt the string .NET
using a 24-bit public key

For reference, we created our 24-bit key using 1901 for p and 1999 for q. We chose e to be 19,
giving a secret key value, d, of 2805887. Notice that the output of the cipher function is the same
length as the key modulus, making the ciphertext larger than the plaintext.

Decrypting data is the reverse of the encryption protocol:

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Break the ciphertext into small blocks of data that are the same length as the public key
modulus.

1.

Decrypt each small ciphertext block by using the private key and the decryption function.2.

Concatenate the decrypted blocks to form the restored plaintext.3.

The decryption function is as follows (c is the value of the ciphertext block and m is the plaintext
block):

m = cd mod n

Notice that the decryption function uses the secret key (d) and the modulus from the public key (n).
Figure 15-5 demonstrates how this process works for our 24-bit key, meaning that we process 3
bytes of ciphertext at a time; the figure shows how we decrypt the ciphertext that we created in
Figure 15-4.

Figure 15-5. Using the RSA decryption function

15.1.3.1 Asymmetric data padding

Asymmetric encryption algorithms rely on padding to protect against specific kinds of attack, in much
the same way that symmetric algorithms rely on cipher feedback. Padding schemes also ensure that
the encryption function does not have to process partial blocks of data.

Asymmetric padding schemes are a series of instructions that specify how to prepare data before
encryption, and usually mix the plaintext with other data to create a ciphertext that is much larger
than the original message. The .NET Framework supports two padding schemes for the RSA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

algorithm: Optimal Asymmetric Encryption Padding (OAEP) and PKCS #1 v1.5. OAEP is a newer
scheme that provides protection from attacks to which the PKCS #1 v1.5 scheme is susceptible. You
should always use OAEP, unless you need to exchange encrypted data with a legacy application that
expects PKCS #1 v1.5 padding.

We do not discuss the details of either padding scheme in this book; it is important only that you
understand that padding is used in conjunction with the asymmetric algorithm to further protect
confidential data.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.2 Programming Asymmetrical Encryption

The .NET Framework takes the same approach to representing asymmetric algorithms as it does for
symmetric algorithms and hashing algorithms; abstract classes extend the
System.Security.Cryptography.AsymmetricAlgorithm class for each of the supported algorithms.

Individual implementations of the algorithms extend the abstract class, supporting the possibility of
more than one implementation of an algorithm. Figure 15-6 shows the class hierarchy that supports
asymmetric encryption algorithms, which is very simple because the .NET Framework supports only
the RSA algorithm.

Figure 15-6. The .NET Framework class hierarchy for asymmetric
encryption algorithms

15.2.1 The AsymmetricAlgorithm class

Different asymmetric algorithms can take very different approaches to encrypting data, and the
abstract AsymmetricAlgorithm class provides very little in the way of common functionality. Table
15-2 lists the pubic methods of the AsymmetricAlgorithm class.

Table 15-2. Members of the AsymmetricAlgorithm class

Member Description

Properties

KeySize Gets or sets the size in bits of the key modulus used by the algorithm

LegalKeySizes Gets the key sizes supported by the algorithm

KeyExchangeAlgorithm Gets the name of the key exchange algorithm

SignatureAlgorithm
Gets the name of the digital signature algorithm; see Chapter 16 for
details of digital signatures

Methods

Create Creates a new instance of the AsymmetricAlgorithm class by name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

ToXmlString
Creates an XML string representation of the AsymmetricAlgorithm

instance

FromXmlString Reconstructs an instance of AsymmetricAlgorithm from an XML string

15.2.2 The RSA class

The RSA class is the abstract representation of the RSA algorithm and extends AsymmetricAlgorithm

. This class provides the common functionality shared by any implementation of the underlying
algorithm and allows the algorithm to be employed without regard to the implementation details;
however, as you will see in the following sections, the RSA class is not as useful as it should be. Table
15-3 summarizes the public members of the RSA class.

Table 15-3. Members of the RSA class

Method Description

DecryptValue
Abstract decryption method-consult the following sections for details of
decrypting data with the RSA implementation class

EncryptValue
Abstract encryption method-consult the following sections for details of
encrypting data with the RSA implementation class

ExportParameters Exports the public or private key using the RSAParameters structure

ImportParameters Imports a key using the RSAParameters structure

The EncryptValue and DecryptValue methods are not as useful as they seem, as we will explain in
the next section. The value of the RSA class is the addition of the ImportParameters and
ExportParameters methods, which allow the public or private keys to be imported into or exported
from an instance of the class. Table 15-4 details the members of the RSAParameters structure, which

represents RSA keys as a related series of byte arrays.

Table 15-4. Members of the RSAParameters structure

Field Description

Modulus The key modulus value, n .

Exponent The key exponent value, e .

D The secret key value, d .

P These values are used to increase the performance of the RSA algorithm.

Q

DP

ToXmlString
Creates an XML string representation of the AsymmetricAlgorithm

instance

FromXmlString Reconstructs an instance of AsymmetricAlgorithm from an XML string

15.2.2 The RSA class

The RSA class is the abstract representation of the RSA algorithm and extends AsymmetricAlgorithm

. This class provides the common functionality shared by any implementation of the underlying
algorithm and allows the algorithm to be employed without regard to the implementation details;
however, as you will see in the following sections, the RSA class is not as useful as it should be. Table
15-3 summarizes the public members of the RSA class.

Table 15-3. Members of the RSA class

Method Description

DecryptValue
Abstract decryption method-consult the following sections for details of
decrypting data with the RSA implementation class

EncryptValue
Abstract encryption method-consult the following sections for details of
encrypting data with the RSA implementation class

ExportParameters Exports the public or private key using the RSAParameters structure

ImportParameters Imports a key using the RSAParameters structure

The EncryptValue and DecryptValue methods are not as useful as they seem, as we will explain in
the next section. The value of the RSA class is the addition of the ImportParameters and
ExportParameters methods, which allow the public or private keys to be imported into or exported
from an instance of the class. Table 15-4 details the members of the RSAParameters structure, which

represents RSA keys as a related series of byte arrays.

Table 15-4. Members of the RSAParameters structure

Field Description

Modulus The key modulus value, n .

Exponent The key exponent value, e .

D The secret key value, d .

P These values are used to increase the performance of the RSA algorithm.

Q

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Field Description

DP

DQ

InverseQ

You will be familiar with the purpose of the RSAParameters values Modulus , Exponent , and D from

Section 15.1.1 in this chapter. The other fields represented by the structure can be used to increase
the performance of the decryption function. The performance enhancement is not part of the RSA
algorithm specification, but the RSA class only imports private keys using RSAParameters structures

that contain all of the addition values. You do not need to understand how the performance
enhancements work, but you should be aware that the .NET RSA classes always expect these
additional values.

15.2.3 The RSACryptoServiceProvider Class

This class is the only asymmetric encryption implementation class contained in the .NET Framework.
Unfortunately, while this class extends the abstract RSA class, it does not implement the
EncryptValue and DecryptValue methods, meaning that you must work with the implementation

class directly to use the RSA algorithm. Table 15-5 details the new methods introduced by the
RSACryptoServiceProvider class.

Table 15-5. Members of the RSACryptoServiceProvider class

Method Description

Encrypt Encrypts plaintext, using OAEP or PKCS #1 v1.5 padding.

Decrypt Decrypts OAEP or PKCS #1 v1.5 padded ciphertext.

SignData These methods create and verify digital signatures, which we discuss in Chapter 16 .

SignHash

VerifyData

VerifyHash

15.2.4 Instantiating the Algorithm

The RSACryptoServiceProvider class does not implement all of the methods defined by the abstract
RSA class. There is no purpose in using the Create method specified in the AsymmetricAlgorithm

class; the abstraction advantages offered with symmetric and hashing algorithms do not apply to RSA
encryption, because you must always create instances of the implementation class to be able to use
the Encrypt and Decrypt methods:

C#

DP

DQ

InverseQ

You will be familiar with the purpose of the RSAParameters values Modulus , Exponent , and D from

Section 15.1.1 in this chapter. The other fields represented by the structure can be used to increase
the performance of the decryption function. The performance enhancement is not part of the RSA
algorithm specification, but the RSA class only imports private keys using RSAParameters structures

that contain all of the addition values. You do not need to understand how the performance
enhancements work, but you should be aware that the .NET RSA classes always expect these
additional values.

15.2.3 The RSACryptoServiceProvider Class

This class is the only asymmetric encryption implementation class contained in the .NET Framework.
Unfortunately, while this class extends the abstract RSA class, it does not implement the
EncryptValue and DecryptValue methods, meaning that you must work with the implementation

class directly to use the RSA algorithm. Table 15-5 details the new methods introduced by the
RSACryptoServiceProvider class.

Table 15-5. Members of the RSACryptoServiceProvider class

Method Description

Encrypt Encrypts plaintext, using OAEP or PKCS #1 v1.5 padding.

Decrypt Decrypts OAEP or PKCS #1 v1.5 padded ciphertext.

SignData These methods create and verify digital signatures, which we discuss in Chapter 16 .

SignHash

VerifyData

VerifyHash

15.2.4 Instantiating the Algorithm

The RSACryptoServiceProvider class does not implement all of the methods defined by the abstract
RSA class. There is no purpose in using the Create method specified in the AsymmetricAlgorithm

class; the abstraction advantages offered with symmetric and hashing algorithms do not apply to RSA
encryption, because you must always create instances of the implementation class to be able to use
the Encrypt and Decrypt methods:

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RSACryptoServiceProvider x_alg = new RSACryptoServiceProvider();

Visual Basic .NET

Dim x_al2g As RSACryptoServiceProvider = New RSACryptoServiceProvider()

15.2.5 Using RSA Keys

Even though you cannot use the abstract classes to encrypt and decrypt data, the methods that they
define do allow you to configure the keys used by instances of the RSACryptoServiceProvider class.

The AsymmetricAlgorithm class provides the LegalKeySizes property, which returns an array of the
KeySizes structure, specifying all of the key lengths that the algorithm supports. This is the same
model used by the SymmetricAlgorithm class (see Section 14.3.3.1 of Chapter 14 for full details).

The .NET RSA implementation supports key lengths from 384 to 16384 bits, in 8-bit steps, and the
size of key you wish to use is set using the KeySize property.

The RSA implementation will create a new key pair automatically if you have not imported a key value
before you encrypt or decrypt data. You can export the details of this key using the
ExportParameters method, which returns an instance of the RSAParameters structure. This method
accepts a Boolean argument. If the argument is true , then the private key is exported; otherwise,

only the details of the public key are included:

C#

RSACryptoServiceProvider x_alg = new RSACryptoServiceProvider();

// export only the public key
RSAParameters x_public_params = x_alg.ExportParameters(false);

// export the private key
RSAParameters x_private_params = x_alg.ExportParameters(true);

Visual Basic .NET

Dim x_alg As RSACryptoServiceProvider = New RSACryptoServiceProvider()

' export only the public key
Dim x_public_params As RSAParameters = x_alg.ExportParameters(False)

' export the private key
Dim x_private_params As RSAParameters = x_alg.ExportParameters(True)

The most common use for the ExportParameters method is to export details of a key from one
instance of an algorithm and then import them to another using the ImportParameters method:

C#

// create an instance of the RSA algorithm
RSACryptoServiceProvider x_alg = new RSACryptoServiceProvider();
// export only the public key
RSAParameters x_public_params = x_alg.ExportParameters(false);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// create a second instance of the algorithm
RSACryptoServiceProvider x_second_algorithm = new RSACryptoServiceProvider();
// import the public key
x_second_algorithm.ImportParameters(x_public_params);

Visual Basic .NET

' create an instance of the RSA algorithm
Dim x_alg As RSACryptoServiceProvider = New RSACryptoServiceProvider()
' export only the public key
Dim x_public_params As RSAParameters = x_alg.ExportParameters(False)

' create a second instance of the algorithm
Dim x_second_algorithm As RSACryptoServiceProvider = New RSACryptoServiceProvider()
' import the public key
x_second_algorithm.ImportParameters(x_public_params)

The RSAParameters structure is also useful if you need to export a key into a custom format. The

following statements demonstrate how to export the public part of a key pair and write it out as a pair
of hexadecimal strings:

C#

// create an instance of the RSA algorithm
RSACryptoServiceProvider x_alg = new RSACryptoServiceProvider();

// export only the public key
RSAParameters x_public_params = x_alg.ExportParameters(false);

Console.Write("n: ");
foreach (byte x_byte in x_public_params.Modulus) {
 Console.Write("{0:X2} ", x_byte);
}
Console.WriteLine();
Console.Write("e: ");
foreach (byte x_byte in x_public_params.Exponent) {
 Console.Write("{0:X2} ", x_byte);
}

Visual Basic .NET

' create an instance of the RSA algorithm
Dim x_alg As RSACryptoServiceProvider = New RSACryptoServiceProvider()
' export only the public key
Dim x_public_params As RSAParameters = x_alg.ExportParameters(False)

Console.Write("n: ")
Dim x_byte As Byte
For Each x_byte In x_public_params.Modulus
 Console.Write("{0:X2} ", x_byte)
Next x_byte

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Console.WriteLine()
Console.Write("e: ")
For Each x_byte In x_public_params.Exponent
 Console.Write("{0:X2} ", x_byte)
Next x_byte

The ToXmlString method exports the key information as an XML string, as in the following example:

<RSAKeyValue>
 <Modulus>xCDce...</Modulus>
 <Exponent>AQAB</Exponent>
 <P>6heANKwqXC4d...</P>
 <Q>1nvPzfGay26Q...</Q>
 <DP>Wxyyhc3M3vw...</DP>
 <DQ>i0evdC8WtFB...</DQ>
 <InverseQ>r01lw... </InverseQ>
 <D>mHKmjx5hjhZn...</D>
</RSAKeyValue>

The XML string represents each of the values from the RSAParameters structure as a Base64-

encoded string; we have shortened the strings shown, which are very long even for a 384-bit key.
The ToXmlString method accepts a Boolean argument that includes the private key when set to true
and exports only the public key when false . You can import XML strings exported using this method
into instances of RSACryptoServiceProvider using the FromXmlString method.

15.2.6 Encrypting and Decrypting Data

The RSACryptoServiceProvider class defines the Encrypt and Decrypt methods, each of which

processes a byte array, as demonstrated by the following statements:

C#

using System;
using System.Security.Cryptography;
using System.Text;

class RSAExample {

 static void Main() {

 // define the plaintext to encrypt
 byte[] x_plaintext
 = Encoding.Default.GetBytes("Programming .NET Security");

 // create an instance of the RSA algorithm
 RSACryptoServiceProvider x_alg = new RSACryptoServiceProvider();

 // encrypt the plaintext using OAEP padding
 byte[] x_ciphertext = x_alg.Encrypt(x_plaintext, true);

 // decrypt the plaintext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 byte[] x_new_plaintext = x_alg.Decrypt(x_ciphertext, true);

 // reconstruct a string from the new plaintext and print it out
 string x_output = Encoding.Default.GetString(x_new_plaintext);
 Console.WriteLine(x_output);
 }
}

Visual Basic .NET

Imports System
Imports System.Security.Cryptography
Imports System.Text

Class RSAExample

 Shared Sub Main()

 ' define the plaintext to encrypt
 Dim x_plaintext As Byte() _
 = Encoding.Default.GetBytes("Programming .NET Security")

 ' create an instance of the RSA algorithm
 Dim x_alg As RSACryptoServiceProvider = New RSACryptoServiceProvider()

 ' encrypt the plaintext using OAEP padding
 Dim x_ciphertext() As Byte = x_alg.Encrypt(x_plaintext, True)

 ' decrypt the plaintext
 Dim x_New_plaintext() As Byte = x_alg.Decrypt(x_ciphertext, True)

 ' reconstruct a string from the new plaintext and print it out
 Dim x_output As String = Encoding.Default.GetString(x_New_plaintext)
 Console.WriteLine(x_output)

 End Sub
End Class

The Boolean argument to the Encrypt and Decrypt methods specifies whether to use OAEP padding;
if this value is set to false , then PKCS #1 v1.5 padding will be used.

The OAEP padding mode is available only on computers running Windows XP or
earlier versions upgraded with the "high encryption" pack.

The RSA implementation does not support processing data using the CryptoStream class that we

described in Chapter 14 . The relatively slow performance of all asymmetric algorithms means that
they are rarely used to encrypt large amounts of data and are most frequently employed for "key
exchange," which we discuss in Chapter 17 .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.3 Extending the .NET Framework

In this section, we demonstrate how to extend the .NET Framework by adding a new asymmetric
encryption algorithm. We have selected the ElGamal algorithm, and we will implement the base classes
and the core encryption functions. In the following chapters, we will extend our implementation to
include support for digital signatures and padding schemes.

We have provided only a C# implementation of the ElGamal algorithm. Like almost all encryption
algorithms, ElGamal relies on mathematical operations that are not possible in Visual Basic .NET without
creating additional support functions to compensate for the limited numeric support the language
provides.

15.3.1 The ElGamal Algorithm Explained

Taher ElGamal published the ElGamal algorithm in 1985, and it has been widely adopted as an
alternative to RSA, where licensing and patents have been an issue (the RSA algorithm was protected
by a patent that has now expired, whereas no patents were obtained for ElGamal).

ElGamal relies on a different mathematical problem than the factoring of large numbers used by the RSA
algorithm; this problem is finding the discrete logarithm of a large integer value. The ElGamal algorithm
is as secure as RSA, but encrypts data slower; the algorithm is the basis for the Digital Signature
Algorithm, which we discuss in the following chapter.

15.3.1.1 ElGamal key generation protocol

The key generation protocol for the ElGamal algorithm is as follows; we will select small values to
demonstrate the key generation, and then use this key to show how the encryption and decryption
functions operate:

Create a random prime number, p . This number is the ElGamal "modulus." The number of bits
required to represent p is the size of the public key, so that if p is represented using 1024 bits,
then the key created by following the protocol is a 1024-bit key. We will select 607 as our example
value.

1.

Select two other random numbers, g and x , both of which are less than p ; these numbers do not
have to be prime. We will select 23 as our value of g , and 152 as our value of x .

2.

Compute y , where y = gx modp

For our example, we calculate y as follows:

y = 23152 mod607 = 209

3.

The public key is p, g and y . The private key is x .4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

15.3.1.2 ElGamal encryption and decryption functions

The ElGamal algorithm encrypts only numeric values that are less than the modulus, p . In order to
encrypt messages greater than the modulus, we must break the plaintext into smaller values, just as we
did with the RSA algorithm.

The ElGamal encryption function is as follows:

Break the plaintext into blocks based on the length of the public key modulus.1.

Process each plaintext block, m:

Choose a random number, k , relatively prime to p - 1 (i.e., k and p - 1 have no common
factors).

a.

Compute a = gk modpb.

Compute b = (yk m)modpc.

Concatenate a and b to form an encrypted data block.d.

2.

Concatenate the encrypted data blocks to form the ciphertext.3.

The size of the ciphertext created by the encryption function is double the size of the plaintext; this is
not an issue for most projects because asymmetric algorithms are typically used to encrypt only small
amounts of data; see Chapter 17 for more details.

The ElGamal decryption function is as follows:

Break the ciphertext into blocks that are twice the length of the key modulus.1.

Process each ciphertext block:

Break the ciphertext block in half to form a and b .a.

Use the private key to compute the decrypted block m where b.

Concatenate the decrypted blocks to form the plaintext.c.

2.

These functions are the "raw" algorithm; like RSA, ElGamal is always used in conjunction with a padding
scheme, usually OAEP. In this chapter, we implement the raw algorithm, setting the padding aside until
Chapter 17 .

15.3.2 Processing Large Integer Values

One problem that asymmetric algorithms present is the need to perform arithmetic operations on very
large integer values, often containing many hundreds of digits. The .NET Framework cannot process
numbers that require more than 64 bits to represent, falling short of our requirements, where 1024-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and 2048-bit numbers are commonly required.

Our ElGamal implementation relies on the BigInteger class written and placed in the public domain[1]

by Chew Keong Tan. The BigInteger class represents large integer values by using arrays of 32-bit

integers and includes useful methods for many mathematical functions, including the generation of
probable prime numbers.

[1] The following statements comprise the copyright declaration and the license for Chew Keong Tan's BigInteger
class :

We have included the BigInteger class in the ElGamal example code, and with the exception of one

small change, we use the same version that you can download from the internet. The change we have
made is to double the largest value that the class can represent by increasing the maxLength variable to

140. You do not have to be concerned with the details of this change or the implementation of the class.
Table 15-6 describes the class members that we use for our algorithm implementation.

Table 15-6. Selected members of the BigInteger class

Member Description

Constructors

BigInteger(byte[]) Creates a new instance from an array of signed byte values

BigInteger(long)

BigInteger(int)

Creates a new instance representing the numeric value
specified by the long or int argument

BigInteger(BigInteger)
Creates a new instance with the same value as the
argument

Methods

modPow(BigInteger exp, BigInteger
m)

Returns the value (thisexp mod m)

modInverse(BigInteger m) Returns the value (this-1 mod m)

getBytes() Converts the integer into a series of signed byte values

bitCount()
Calculates how many bits are required to express the integer
value

genPseudoPrime(int bits, int
confidence , Random rand)

Generates a random positive BigInteger with the specified

number of bits and confidence level, using the provided
random number generator

genRandomBits(int bits, Random
rand)

Creates a random number with the specified number of bits,
using the provided random number generator

15.3.3 Defining the Abstract Class

We start by defining the ElGamalParameters structure, which we use to import and export keys to and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from the implementation classes without exposing our dependence on the BigInteger class; this is
equivalent to the RSAParameters structure used by the RSA implementation classes:

[Serializable]
public struct ElGamalParameters {
 public byte[] P;
 public byte[] G;
 public byte[] Y;
 [NonSerialized] public byte[] X;
}

We have annotated the structure with the Serializable attribute so that users of the ElGamal
implementation can store public keys persistently, but we have used the NonSerialized attribute to
ensure that the private key cannot be persisted. We express the value of P , G , Y and X as byte arrays

for consistency with the rest of the .NET Framework, even though we will represent these values
internally using the BigInteger class:

public abstract class ElGamal : AsymmetricAlgorithm {

 public abstract void ImportParameters(ElGamalParameters p_parameters);
 public abstract ElGamalParameters ExportParameters(bool
 p_include_private_params);

We have called our abstract class ElGamal , in keeping with the standard naming model. The
ImportParameters and ExportParameters methods set and get the state of the algorithm using
instances of the ElGamalParameters structure we defined previously:

 public abstract byte[] EncryptData(byte[] p_data);
 public abstract byte[] DecryptData(byte[] p_data);
 public abstract byte[] Sign(byte[] p_hashcode);
 public abstract bool VerifySignature(byte[] p_hashcode, byte[] p_signature);

The remaining abstract methods define the asymmetric encryption and digital signature functions we
support; for simplicity we will not support padding schemes in the algorithm class, which allows us to
define an abstract class that can be used directly (unlike the RSA implementation, where the methods
defined by the abstract class are not implemented by the Crypto API implementation).

The only methods that are not abstract are ToXmlString and FromXmlString , required by the
AsymmetricAlgorithm class. We can implement these in the abstract class safely because the
implementation gets and sets the details about the key using the abstract ImportParameters and
ExportParameters methods; the implementation details do not affect the way in which the XML string is

processed:

 public override string ToXmlString(bool p_include_private) {
 ElGamalParameters x_params = ExportParameters(p_include_private);
 // create a new string builder
 StringBuilder x_sb = new StringBuilder();
 // add the header
 x_sb.Append("<ElGamalKeyValue>");
 // add the public elements from the parameters
 x_sb.Append("<P>" + Convert.ToBase64String(x_params.P) + "</P>");
 x_sb.Append("<G>" + Convert.ToBase64String(x_params.G) + "</G>");
 x_sb.Append("<Y>" + Convert.ToBase64String(x_params.Y) + "</Y>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (p_include_private) {
 // we need to include X, which is the part of private key
 x_sb.Append("<X>" + Convert.ToBase64String(x_params.X) + "</X>");
 }
 // add the final element
 x_sb.Append("</ElGamalKeyValue>");
 return x_sb.ToString();
 }

 public override void FromXmlString(String p_string) {
 // create the params that we will use as the result
 ElGamalParameters x_params = new ElGamalParameters();
 // create a text reader using a string reader
 XmlTextReader x_reader =
 new XmlTextReader(new System.IO.StringReader(p_string));

 // run through the elements in the xml string
 while (x_reader.Read()) {
 // we are only interested in processing start nodes
 if (true || x_reader.IsStartElement()) {
 switch (x_reader.Name) {
 case "P":
 // set the value for P
 x_params.P =
 Convert.FromBase64String(x_reader.ReadString());
 break;
 case "G":
 // set the value for G
 x_params.G =
 Convert.FromBase64String(x_reader.ReadString());
 break;
 case "Y":
 // set the value for Y
 x_params.Y =
 Convert.FromBase64String(x_reader.ReadString());
 break;
 case "X":
 // set the value for X (this would not be found in a
 // string that was generated by excluding the private
 // elements.
 x_params.X =
 Convert.FromBase64String(x_reader.ReadString());
 break;
 }
 }
 }
 // Import the result
 ImportParameters(x_params);
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.3.4 Defining the Implementation Class

Begin the implementation by defining a structure that you can use privately to represent the key as a
series of BigIntegers . The ElGamalKeyStruct structure makes processing blocks of data simpler,
because you do not need to convert the byte arrays represented by the ElGamalParameters to integer

values each time you need to use one of the key parameters:

using System;
using System.Security.Cryptography;

public struct ElGamalKeyStruct {
 public BigInteger P;
 public BigInteger G;
 public BigInteger Y;
 public BigInteger X;
}

The name of our implementation class is ElGamalManaged , in keeping with the .NET cryptographic

naming model. This class extends the ElGamal abstract algorithm class, and defines an
ElGamalKeyStruct instance variable that you use to represent the current key in use:

public class ElGamalManaged : ElGamal {
 private ElGamalKeyStruct o_key_struct;

The first part of the constructor initializes the BigIntegers contained in the ElGamalKeyStruct to 0;

this gives a known starting point, and you can assume the user has not imported a key if the public key
parameter values are all set to 0:

 public ElGamalManaged() {
 // create the key struct
 o_key_struct = new ElGamalKeyStruct();
 // set all of the big integers to zero
 o_key_struct.P = new BigInteger(0);
 o_key_struct.G = new BigInteger(0);
 o_key_struct.Y = new BigInteger(0);
 o_key_struct.X = new BigInteger(0);

The other task the constructor performs defines the range of key lengths that the implementation
supports. We have selected 384 bits as the shortest key supported to conform to the .NET RSA
implementation. We define 1088 bits as the largest value because of the size limitations when using the
BigInteger class; even though we have doubled the largest value that this class can represent, we still

exceed that limit when performing the encryption computation for larger key sizes. We set the default
key size to be 1024 bits, which provides a key strength that is suitable for most projects:

 // set the default key size value
 KeySizeValue = 1024;
 // set the range of legal keys
 LegalKeySizesValue = new KeySizes[] {new KeySizes(384, 1088, 8)};
 }

The SignatureAlgorithm and KeyExchangeAlgorithm properties return a string value that indicates

how the class performs encryption and creates digital signatures; we are implementing the "raw"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ElGamal algorithm, and so both of these properties simply return ElGamal :

 public override string SignatureAlgorithm {
 get {
 return "ElGamal";
 }
 }

 public override string KeyExchangeAlgorithm {
 get {
 return "ElGamal";
 }
 }

The CreateKeyPair method follows the ElGamal key generation protocol to create a new key pair; the
key parameter values are set using the ElGamalKeyStruct instance variable; the method accepts an

integer argument that specifies the required key length:

 private void CreateKeyPair(int p_key_strength) {
 // create the random number generator
 Random x_random_generator = new Random();

 // create the large prime number, P
 o_key_struct.P = BigInteger.genPseudoPrime(p_key_strength,
 16, x_random_generator);

 // create the two random numbers, which are smaller than P
 o_key_struct.X = new BigInteger();
 o_key_struct.X.genRandomBits(p_key_strength -1, x_random_generator);
 o_key_struct.G = new BigInteger();
 o_key_struct.G.genRandomBits(p_key_strength -1, x_random_generator);

 // compute Y
 o_key_struct.Y = o_key_struct.G.modPow(o_key_struct.X, o_key_struct.P);
 }
}

The NeedToGenerateKey method tests the value of the public key parameters; if all of the values are 0,

then we assume that the user has not imported a key and that we should create a new key pair before
encrypting or decrypting data. The KeyStruct property simply gets or sets the ElGamalKeyStruct

instance member:

 private bool NeedToGenerateKey() {
 return o_key_struct.P == 0 && o_key_struct.G == 0 && o_key_struct.Y == 0;
 }

 public ElGamalKeyStruct KeyStruct {
 get {
 if (NeedToGenerateKey()) {
 CreateKeyPair(KeySizeValue);
 }
 return o_key_struct;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 set {
 o_key_struct = value;
 }
 }

The ImportParameters method accepts an instance of the ElGamalParameters structure and creates
the BigIntegers that we will use to represent the key; this method allows users to import a previously
created key and is used by the FromXmlString method in the abstract ElGamal class:

 public override void ImportParameters(ElGamalParameters p_parameters) {
 // obtain the big integer values from the byte parameter values
 o_key_struct.P = new BigInteger(p_parameters.P);
 o_key_struct.G = new BigInteger(p_parameters.G);
 o_key_struct.Y = new BigInteger(p_parameters.Y);
 if (p_parameters.X != null && p_parameters.X.Length > 0) {
 o_key_struct.X = new BigInteger(p_parameters.X);
 }
 // set the length of the key based on the import
 KeySizeValue = o_key_struct.P.bitCount();
 }

The ExportParameters method creates an ElGamalParameters structure using the key represented by
the instance ElGamalKeyStruct member. Notice that we check to see if we need to create a new key

pair before we export the key details to ensure that there is something to export. The Boolean argument
determines whether to export the private parameters, in keeping with the model used by the RSA
implementation classes:

 public override ElGamalParameters ExportParameters(bool
 p_include_private_params) {

 if (NeedToGenerateKey()) {
 // we need to create a new key before we can export
 CreateKeyPair(KeySizeValue);
 }

 // create the parameter set
 ElGamalParameters x_params = new ElGamalParameters();
 // set the public values of the parameters
 x_params.P = o_key_struct.P.getBytes();
 x_params.G = o_key_struct.G.getBytes();
 x_params.Y = o_key_struct.Y.getBytes();

 // if required, include the private value, X
 if (p_include_private_params) {
 x_params.X = o_key_struct.X.getBytes();
 } else {
 // ensure that we zero the value
 x_params.X = new byte[1];
 }
 // return the parameter set
 return x_params;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

The EncryptData and DecryptData methods provide access to the ElGamal encryption and decryption

functions; create a new key pair if the user has not imported a key, and then pass the data to the
specialized ElGamalEncryptor and ElGamalDecryptor classes, which we detail in the next sections:

 public override byte[] EncryptData(byte[] p_data) {
 if (NeedToGenerateKey()) {
 // we need to create a new key before we can export
 CreateKeyPair(KeySizeValue);
 }
 // encrypt the data
 ElGamalEncryptor x_enc = new ElGamalEncryptor(o_key_struct);
 return x_enc.ProcessData(p_data);
 }

 public override byte[] DecryptData(byte[] p_data) {
 if (NeedToGenerateKey()) {
 // we need to create a new key before we can export
 CreateKeyPair(KeySizeValue);
 }
 // encrypt the data
 ElGamalDecryptor x_enc = new ElGamalDecryptor(o_key_struct);
 return x_enc.ProcessData(p_data);
 }

The Dispose method is useful for releasing unmanaged resources, but you do not need to do anything

in this method since the implementation is written entirely in managed code, but it is a requirement of
extending from the AsymmetricAlgorithm class:

 protected override void Dispose(bool p_bool) {
 // do nothing - no unmanaged resources to release
 }

The Sign and VerifySignature methods support the creation and verification of digital signatures;
although you have implemented these methods to comply with the abstractions of the ElGamal class,

we will not explain their use, or detail the classes they call until Chapter 16 :

 public override byte[] Sign(byte[] p_hashcode) {
 throw new System.NotImplementedException();
 }

 public override bool VerifySignature(byte[] p_hashcode, byte[] p_signature) {
 throw new System.NotImplementedException();
 }

15.3.5 Defining the Abstract Cipher Function Class

We use the ElGamalAbstractCipher class as the basis for the encryption and decryption classes; it

contains methods that are common to both functions. This class is also responsible for breaking up an
array of data into blocks that can be processed using the current public key (remember that the length
of the key modulus affects the amount of data that can be processed by the encryption function in one

http://lib.ommolketab.ir
http://lib.ommolketab.ir

go):

using System;
using System.IO;

public abstract class ElGamalAbstractCipher {
 protected int o_block_size;
 protected int o_plaintext_blocksize;
 protected int o_ciphertext_blocksize;
 protected ElGamalKeyStruct o_key_struct;

 public ElGamalAbstractCipher(ElGamalKeyStruct p_key_struct) {
 // set the key details
 o_key_struct = p_key_struct;

 // calculate the blocksizes
 o_plaintext_blocksize = (p_key_struct.P.bitCount() -1) / 8;
 o_ciphertext_blocksize = ((p_key_struct.P.bitCount() + 7) / 8) * 2;

 // set the default block for plaintext, which is suitable for encryption
 o_block_size = o_plaintext_blocksize;
 }

The constructor accepts an ElGamalKeyStruct structure as an argument, which is used to work out the

size of the blocks that will be used by the encryption and decryption functions-the ElGamal encryption
function produces ciphertext that is twice the size of the corresponding plaintext:

 public byte[] ProcessData(byte[] p_data) {

 // create a stream backed by a memory array
 MemoryStream x_stream = new MemoryStream();
 // determine how many complete blocks there are
 int x_complete_blocks = p_data.Length / o_block_size;

 // create an array which will hold a block
 byte[] x_block = new Byte[o_block_size];

 // run through and process the complete blocks
 int i = 0;
 for (; i < x_complete_blocks; i++) {
 // copy the block and create the big integer
 Array.Copy(p_data, i * o_block_size, x_block, 0, o_block_size);
 // process the block
 byte[] x_result = ProcessDataBlock(x_block);
 // write the processed data into the stream
 x_stream.Write(x_result, 0, x_result.Length);
 }

 // process the final block
 byte[] x_final_block = new Byte[p_data.Length -
 (x_complete_blocks * o_block_size)];
 Array.Copy(p_data, i * o_block_size, x_final_block, 0,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 x_final_block.Length);

 // process the final block
 byte[] x_final_result = ProcessFinalDataBlock(x_final_block);

 // write the final data bytes into the stream
 x_stream.Write(x_final_result, 0, x_final_result.Length);

 // return the contents of the stream as a byte array
 return x_stream.ToArray();
 }

The ProcessData method uses the block sizes calculated in the constructor to process an array of data;
the array is broken down into data blocks and passed to the ProcessDataBlock and
ProcessFinalDataBlock using the model laid down by the ICryptoTransform interface you saw in

Chapter 14 .

The ProcessDataBlock and ProcessFinalDataBlock methods are abstract, and the encryption and

decryption subclasses must implement them in order to process the blocks of data created by the
ProcessData method:

 protected abstract byte[] ProcessDataBlock(byte[] p_block);

 protected abstract byte[] ProcessFinalDataBlock(byte[] p_final_block);
}

15.3.6 Defining the Encryption Class

The ElGamalEncryptor class extends ElGamalAbstractCipher and is responsible for producing
ciphertext using the ElGamal encryption cipher; the EncryptData method in the ElGamalManaged class

uses this class:

using System;

public class ElGamalEncryptor : ElGamalAbstractCipher {
 Random o_random;

 public ElGamalEncryptor(ElGamalKeyStruct p_struct) : base(p_struct) {
 o_random = new Random();
 }

The constructor creates a new random number generator, which the BigInteger class uses to create
the large random value K , required by the encryption function. The ProcessDataBlock method
represents the encryption function, and computes the A and B values that we discussed in the

introduction to the ElGamal algorithm; these values are concatenated to form a single ciphertext block
that is the method return value:

 protected override byte[] ProcessDataBlock(byte[] p_block) {
 // the random number, K
 BigInteger K;
 // create K, which is the random number
 do {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 K = new BigInteger();
 K.genRandomBits(o_key_struct.P.bitCount() -1, o_random);
 } while (K.gcd(o_key_struct.P -1) != 1);

 // compute the values A and B
 BigInteger A = o_key_struct.G.modPow(K, o_key_struct.P);
 BigInteger B = (o_key_struct.Y.modPow(K, o_key_struct.P)
 * new BigInteger(p_block)) % (o_key_struct.P);

 // create an array to contain the ciphertext
 byte[] x_result = new byte[o_ciphertext_blocksize];
 // copy the bytes from A and B into the result array
 byte[] x_a_bytes = A.getBytes();
 Array.Copy(x_a_bytes, 0, x_result, o_ciphertext_blocksize / 2
 - x_a_bytes.Length, x_a_bytes.Length);
 byte[] x_b_bytes = B.getBytes();
 Array.Copy(x_b_bytes, 0, x_result, o_ciphertext_blocksize
 - x_b_bytes.Length, x_b_bytes.Length);
 // return the result array
 return x_result;
 }

The ElGamalAbstractCipher class calls the ProcessFinalDataBlock method to encrypt the last block

of plaintext, which may not be a complete block; the block is padded with 0 as required, and then
passed to the ProcessDataBlock method for encryption. If the data block contains no data, then

assume that the plaintext is divided into blocks with no partial data remaining, and therefore there is no
remaining data for encryption. In this case, simply return an empty byte array:

 protected override byte[] ProcessFinalDataBlock(byte[] p_final_block) {
 if (p_final_block.Length > 0) {
 if (p_final_block.Length < o_block_size) {
 // create a fullsize block which contains the
 // data to encrypt followed by trailing zeros
 byte[] x_padded = new byte[o_block_size];
 Array.Copy(p_final_block, 0, x_padded, 0, p_final_block.Length);
 return ProcessDataBlock(x_padded);
 } else {
 return ProcessDataBlock(p_final_block);
 }
 } else {
 return new byte[0];
 }
 }
}

15.3.7 Defining the Decryption Class

The ElGamalDecryptor class extends ElGamalAbstractCipher and is responsible for restoring plaintext
using the ElGamal decryption cipher; the DecryptData method in the ElGamalManaged class uses this

class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System;

public class ElGamalDecryptor : ElGamalAbstractCipher {

 public ElGamalDecryptor(ElGamalKeyStruct p_struct) : base(p_struct) {
 // set the default block size to be ciphertext
 o_block_size = o_ciphertext_blocksize;
 }

The ProcessDataBlock method represents the decryption function, and breaks the data block in half to
obtain the a and b values that we discussed in the introduction to the ElGamal algorithm; these values

are used to compute the plaintext block that is the method return value:

 protected override byte[] ProcessDataBlock(byte[] p_block) {
 // extract the byte arrays that represent A and B
 byte[] x_a_bytes = new byte[o_ciphertext_blocksize / 2];
 Array.Copy(p_block, 0, x_a_bytes, 0, x_a_bytes.Length);
 byte[] x_b_bytes = new Byte[o_ciphertext_blocksize / 2];
 Array.Copy(p_block, x_a_bytes.Length, x_b_bytes, 0, x_b_bytes.Length);
 // create big integers from the byte arrays
 BigInteger A = new BigInteger(x_a_bytes);
 BigInteger B = new BigInteger(x_b_bytes);
 // calculate the value M
 BigInteger M = (B *
 A.modPow(o_key_struct.X, o_key_struct.P).modInverse(o_key_struct.P))
 % o_key_struct.P;
 // return the result - take care to ensure that we create
 // a result which is the correct length
 byte[] x_m_bytes = M.getBytes();
 // we may end up with results which are short some leading
 // bytes - add these are required
 if (x_m_bytes.Length < o_plaintext_blocksize) {
 byte[] x_full_result = new byte[o_plaintext_blocksize];
 Array.Copy(x_m_bytes, 0, x_full_result,
 o_plaintext_blocksize - x_m_bytes.Length, x_m_bytes.Length);
 x_m_bytes = x_full_result;
 }
 return x_m_bytes;
 }

The decryption version of the ProcessFinalDataBlock method can assume that there is no partial data

to process, because the encryption version will add padding as required:

 protected override byte[] ProcessFinalDataBlock(byte[] p_final_block) {
 if (p_final_block.Length > 0) {
 return ProcessDataBlock(p_final_block);
 } else {
 return new byte[0];
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.3.8 Testing the Algorithm

The following statements use the smallest supported key size (384 bits) to encrypt and decrypt the
string "Programming .NET Security". Export the key parameters from one instance of the
ElGamalManaged class and import them into other instances to perform the encryption and decryption:

using System;
using System.Text;
using System.Security.Cryptography;

public class Test {

 public static void Main() {
 // define the byte array that we will use
 // as plaintext
 byte[] x_plaintext
 = Encoding.Default.GetBytes("Programming .NET Security");

 // Create an instance of the algorithm and generate some keys
 ElGamal x_alg = new ElGamalManaged();
 // set the key size - keep is small to speed up the tests
 x_alg.KeySize = 384;
 // extract and print the xml string (this will cause
 // a new key pair to be generated)
 string x_xml_string = x_alg.ToXmlString(true);
 Console.WriteLine("\n{0}\n", x_xml_string);

 // Test the basic encryption support
 ElGamal x_encrypt_alg = new ElGamalManaged();
 // set the keys - note that we export without the
 // private parameters since we are encrypting data
 x_encrypt_alg.FromXmlString(x_alg.ToXmlString(false));
 byte[] x_ciphertext = x_alg.EncryptData(x_plaintext);

 // create a new instance of the algorithm to decrypt
 ElGamal x_decrypt_alg = new ElGamalManaged();
 // set the keys - note that we export with the
 // private parameters since we are decrypting data
 x_decrypt_alg.FromXmlString(x_alg.ToXmlString(true));
 // restore the plaintext
 byte[] x_candidate_plaintext = x_decrypt_alg.DecryptData(x_ciphertext);

 Console.WriteLine("BASIC ENCRYPTION: {0}",
 CompareArrays(x_plaintext, x_candidate_plaintext));
 }

 private static bool CompareArrays(byte[] p_arr1, byte[] p_arr2) {
 for (int i = 0; i < p_arr1.Length; i++) {
 if (p_arr1[i] != p_arr2[i]) {
 return false;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 return true;
 }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 16. Digital Signatures
Digital signatures provide a solution to the problem of message authentication, and let Bob accurately
identify the author of messages he receives. For example, with digital signatures, Bob can
differentiate between messages sent by Alice and messages forged by Eve. In this chapter, we
explain what digital signatures are, how they work, and how you use them. We also extend the .NET
Framework by adding support for digital signatures to the implementation of the ElGamal algorithm
that we introduced in Chapter 15.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.1 Digital Signatures Explained

Digital signatures are a different application of the asymmetric algorithms that we discussed in
Chapter 15. You use an asymmetric key pair to create a "signature" for a message by adding a
signature function to the asymmetric algorithm. The recipient can verify the signature using a
verification function. Asymmetric algorithms that support signature and verification functions are
digital signature algorithms. Each digital signature is specific to an individual message or document,
and if Alice signs a message, Bob can be confident that Eve has not sent him a forgery.

Figure 16-1 provides an overview of using digital signatures, which work as follows:

Alice selects an asymmetric signature algorithm and follows the key generation protocol to
create a new pair of keys. She keeps her private key secret and sends the public key to Bob.

1.

Alice composes a message and creates a signature using her private key.2.

Alice sends the message and the signature to Bob.3.

Bob uses Alice's public key to verify the signature. If the signature is valid, Bob can be confident
that:

Alice is truly the author of the message.a.

Eve has not altered the message contents.b.

4.

Figure 16-1. Using asymmetric signature algorithms to provide message
authentication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that Alice, the sender of the message, creates the key pair and retains the private key; this is
different from asymmetric encryption, where the recipient (Bob) is responsible for key creation.
Digitally signing a message creates a separate piece of data, which Alice sends to Bob along with the
message.

The relatively slow performance of asymmetric algorithms means that Alice does not sign the entire
message she wants to send; instead, she creates a cryptographic hash code for the message and
signs this instead. Subject to the limitations of hash code security (discussed in Chapter 13), signing
hash code for a message is equivalent to signing the message itself, but is much faster, because the
hash code is less data to process with the asymmetric algorithm. Figure 16-2 illustrates the way that
Alice creates the signature by using her private key, the data hash code, and the asymmetric
signature function.

Figure 16-2. Using a hash code as the basis for creating a digital
signature

Bob verifies the signature by creating his own hash code and using the asymmetric signature
verification and Alice's public key. Bob cannot verify the signature if the message is altered in any
way, meaning that Eve cannot secretly tamper with the contents and Bob cannot alter a message
and later claim that Alice had signed the altered version. Alice and Bob must use the same hash code
algorithm; otherwise, Bob will not be able to verify valid signatures. Figure 16-3 illustrates how Bob

http://lib.ommolketab.ir
http://lib.ommolketab.ir

verifies a signature.

Figure 16-3. Using a hash code as the basis for verifying a digital
signature

Digital signatures allow more than one person to sign a message or document, such as a contract.
Each person signs the message using the basic protocol we described, and sends their signature to all
of the other signatories. If Alice and Bob wish to sign a digital contract, the basic protocol that they
use is as follows:

Alice and Bob agree on the contents of the contract they will sign.1.

Alice creates a hash code for the contract and signs it with her private key.2.

Bob creates a hash code for the contract and signs it with his private key.3.

Alice and Bob exchange digital signatures and public keys.4.

Alice checks that Bob has used the correct hash code (and therefore has signed the expected
version of the contract) and verifies the signature using his public key.

5.

Bob checks that Alice has used the correct hash code and verifies the signature using her public
key.

6.

Should there be any dispute, a third party (perhaps a judge or other arbitrator) can use Alice and
Bob's pubic keys to verify that both Alice and Bob have signed the same contract. Neither party can
alter the contract (because then the hash code would not match) nor deny that they signed the
contract (because the third party can verify each separate signature).

16.1.1 Digital Signature Security

Digital signatures have two objectives: they must be cryptographically secure and they must provide
equivalent security features to an ink signature on a printed document. We summarize the security
features of digital signatures as follows:

Eve should not be able to forge Alice's digital signature. Eve cannot create a fake
signature unless she knows Alice's private key; as in almost all aspects of cryptography, digital
signatures rely on the careful protection and management of keys. If Eve could forge Alice's
signature, Eve could make it appear that Alice has signed any document.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Eve should not be able to reuse one of Alice's digital signatures. Eve can only take
Alice's signature from one document and associate it with another if both documents produce
the same data hash code. See Chapter 13 for details of why this is not a simple thing to
achieve.

Eve should not be able to alter a signed document. If Eve alters the content of a
document, then Alice's signature will no longer be valid, because the altered document will
produce a different data hash code to the one that Alice signed. Eve could alter a document
successfully if it resulted in the same data hash code as the original (which is, in effect, the
same as reusing Alice's signature).

Alice should not be able to deny that she has signed a document. Alice cannot sign a
document and then later claim that she did not, because we assume that she is the only person
who knows her secret key. If she suspects that her key has been compromised, then she must
create a new key pair.

From these features, you can see that digital signatures provide a reasonable analogue to a physical
signature. You can also see that the entire security of digital signatures is dependent on the following
assumptions:

Eve is unable to guess or otherwise obtain Alice's secret key.

Eve is unable to find a document that results in a specific data hash value.

We know that these assumptions are optimistic. Eve can find Alice's secret key by testing every
possible value and find a document that results in a specific hash code if she creates and tests
enough variations. In Chapter 13 and Chapter 14, we found that Eve can do these things, but that
they can take her a very long time to accomplish. The security of digital signatures, like every other
aspect of cryptography, is based on probabilities and effective key management. When using digital
signatures, you should be aware that they are susceptible to the same attacks as data hash codes
and asymmetric keys.

The final point raises a very serious issue. Alice should not be able to sign a document and then later
claim that she did not. Relying on digital signatures means making another assumption: Alice is
responsible for all signatures created with her private key, even if Eve is able to guess the secret
value.

The problem that this presents is that Eve may be able to guess Alice's private key by brute force
without Alice being aware that her private key is compromised. Eve could then sign documents using
Alice's signature, but Alice would not find out that this was happening until it was too late. For
example, if Eve signs a digital money order to herself, Alice will not know that money is missing from
her account until she receives her next bank statement.

We need Alice to be responsible for signatures created with her key; otherwise, digital signatures
would be worthless, and Alice could simply deny signing documents that are not in her favor. On the
other hand, because it is possible to guess the value of Alice's key, we run the risk of holding her
responsible for signatures that she really did not create. There is currently no solution to this
problem, which is a fundamental barrier to the adoption of digital signatures.

16.1.2 The .NET Framework Digital Signature Algorithms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The .NET Framework includes two asymmetric algorithms that support digital signatures, one is the
RSA algorithm that we discussed in Chapter 15; this algorithm defines functions for both data
encryption and digital signatures.

The second algorithm is the Digital Signature Algorithm (DSA), published as a U.S. FIPS in May 1994.
DSA supports digital signatures but not data encryption. Initially created to provide a standard
algorithm for digital signatures for federal projects, DSA has gained support in commercial projects
gradually but still lags behind RSA in terms of adoption.

The creators of DSA based their design, in part, on the ElGamal algorithm that we introduced in
Chapter 15. In Section 16.4 of this chapter, we add support for signatures and signature formatting
to our ElGamal implementation.

All asymmetric algorithms include a key generation protocol, similar to the ones that we discussed in
Chapter 15. If an algorithm supports both encryption and digital signatures, then the same keys can
be used by the encryption, decryption, signature, and verification functions; following the key
generation protocol results in keys that can be used for all asymmetric cryptographic tasks.

16.1.3 Creating Digital Signatures

The hash code created from the document to be signed is usually formatted before being processed
by the algorithm's signature function; this ensures that the specified key pair pads the hash code to
the maximum size that can be signed. See Chapter 15 for more information about how to determine
the length of a key and how the length affects the amount of data that algorithm functions can
process. The act of formatting a hash code before it is signed also protects the digital signature from
certain types of cryptographic attack.

The most commonly used signature-formatting protocol is PKCS #1, which we summarize as follows:

Create H, the cryptographic hash code for the document. SHA-1 and MD5 are the most

commonly used hashing algorithms; see Chapter 13 for details of these hashing algorithms and
the .NET Framework support for them.

1.

Concatenate the hashing algorithm ID and the hexadecimal representation of the hash code
together to form the DigestInfo value. Each hashing algorithm has a unique identifier. Table

16-1 lists the hexadecimal IDs for each of the algorithms that the .NET Framework supports.

2.

Create an array of padding bytes, PS; the value of each byte is 255. The number of bytes to
create depends on the length of the key and the length of DigestInfo. The number of bytes is

, where the lengths DigestInfo and the key are expressed in
bytes. The length of PS will be at least 8 bytes.

3.

Combine the following to form the formatted data:

One byte with a value of 0a.

One byte with a value of 1b.

The padding string PSc.

d.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

c.

DigestInfo, represented as bytesd.

The acronym PKCS stands for Public Key Cryptography Standard, which is a
series of documents published by RSA Security, whose founders developed the
RSA Algorithm. The PKCS #1 formatting for digital signatures is not the same
as the PKCS #1 padding that we described in Chapter 15.

Each PKCS standard addresses a specific aspect of asymmetric cryptography,
and PKCS #1 describes how to use the RSA algorithm for encryption and digital
signatures. The PKCS #1 data padding and signature formatting techniques we
describe are both contained in the PKCS #1 document.

Table 16-1. Hexadecimal IDs for hashing algorithms

Algorithm Hexadecimal ID

MD5 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10

SHA-1 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14

SHA-256 30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20

SHA-384 30 41 30 0d 06 09 60 86 48 01 65 03 04 02 02 05 00 04 30

SHA-512 30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40

Once you have created the formatted data, sign it using the signature function. In this section, we
continue our illustrations using the RSA protocol. The RSA signature function is shown below, where s
is the signature value and m is the formatted data to sign:

s = mdmodn

The values d and n are parameters of the RSA key; see the previous chapter for details about RSA
key pairs and how to create them. The RSA key length required to create a digital signature depends
on the size of the hash code that the selected hashing algorithm produces. For example, MD5
produces a 128-bit hash code, and with the 18 bytes of the algorithm ID and the 11 bytes of data
that PKCS #1 formatting adds as a minimum, you need a key that is able to process 360-bits of data.
Therefore, the smallest key length that you can use to sign a PKCS #1-formatted MD5 hash code is
368 bits.

We won't walk through the computation required to create a digital signature because the numeric
values that make up a 368-bit key are simply too large to print on a page; see Chapter 15 for an
example of using the RSA functions with small key lengths.

To verify a signature, take the document you have received and create a PKCS #1-formatted hash
code, following the protocol we described previously. Use the RSA verification function, shown below,
where m2 is the verification result, s is the digital signature, and e and n are the RSA public key

parameters:

m2 = semodn

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you verify the signature, the value of m2 should be the PKCS #1-formatted hash code that you
created from the document you received with the signature. If someone has tampered with the
document in transit, the value of the hash code that you created will be different then the output of
the verification function, and you should reject the signature.

Notice that the RSA signature and verification functions are the same as the encryption and
decryption functions that we described in Chapter 15; the signature and decryption functions are
identical, as are the verification and encryption functions. This relationship does not apply to all
asymmetric algorithms, and we describe a very different approach when we extend our ElGamal
implementation in the Section 16.4.

The DSA algorithm specification requires that PKCS #1 formatting is always used, and all hash codes
are generated using the SHA-1 hashing algorithm. The SHA-1 algorithm ID is still included as part of
the PKCS #1 formatting.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.2 Programming Digital Signatures

The .NET Framework groups encryption and digital signature algorithms together as subclasses of the
AsymmetricAlgorithm class. Figure 16-4 depicts the .NET class hierarchy for digital signature

algorithms, which differs from the encryption algorithm hierarchy only because of the addition of the
signature-only DSA support.

Figure 16-4. The .NET Framework class hierarchy for digital signature
algorithms

The general lack of consistency between the abstract algorithm classes (RSA and DSA) and their
implementation counterparts (RSACryptoServiceProvider and DSACryptoServiceProvider) means

that there are several equivalent ways to accomplish signature operations, which we demonstrate in
the following sections.

16.2.1 Using the Abstract Class

The abstract System.Security.Cryptography.DSA class defines the CreateSignature method,

which accepts a SHA-1 hash code that will be PKCS #1 formatted and signed, as the following
example demonstrates (we have omitted the process of specifying the key pair to use):

C#

// create the plaintext
byte[] x_plaintext = Encoding.Default.GetBytes("Programming .NET Security");

// create the SHA-1 algorithm instance and create a hash code for the plaintext
SHA1 x_sha = SHA1.Create();
byte[] x_hashcode = x_sha.ComputeHash(x_plaintext);

// create an instance of the DSA algorithm using
// the Create method in the abstract class
DSA x_dsa = DSA.Create();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// use the CreateSignature method to sign the
// SHA-1 hashcode created from the plaintext
byte[] x_signature = x_dsa.CreateSignature(x_hashcode);

Visual Basic .NET

' create the plaintext
Dim x_plaintext As Byte() = Encoding.Default.GetBytes("Programming .NET Security")

' create the SHA-1 algorithm instance and create a hash code for the plaintext
Dim x_sha As SHA1 = SHA1.Create()
Dim x_hashcode As Byte() = x_sha.ComputeHash(x_plaintext)

' create an instance of the DSA algorithm using
' the Create method in the abstract class
Dim x_dsa As DSA = DSA.Create()

' use the CreateSignature method to sign the
' SHA-1 hashcode created from the plaintext
Dim x_signature As Byte() = x_dsa.CreateSignature(x_hashcode)

You must create the SHA-1 hash code yourself when using the CreateSignature method. The

method returns the DSA signature, expressed as an array of bytes.

The DSA signature function relies on random numbers to create signatures.
This means that any two signatures will be different, even when created for the
same data and using the same key pair.

The VerifySignature method is the counterpart to CreateSignature, and accepts a SHA-1 hash

code and the signature to verify, both expressed as an array of bytes. The following statements
demonstrate how to verify a DSA signature:

C#

// create the plaintext
byte[] x_plaintext
 = Encoding.Default.GetBytes("Programming .NET Security");

// define the signature to verify
byte[] x_signature = new Byte[] {0x7D, 0x2B, 0xD7, 0x3D, 0x88, 0xCB, 0x1B, 0x6B,
 0x04, 0x62, 0x95, 0xBE, 0x28, 0x59, 0x3E, 0xC5,
 0x40, 0xDA, 0x79, 0xFE, 0x3B, 0x25, 0x08, 0x4B,
 0x27, 0xF1, 0x31, 0x2A, 0x6F, 0x7C, 0x6E, 0x35,
 0x45, 0x9A, 0x49, 0x4C, 0xA4, 0x5E, 0xE6, 0xA0};

// create the SHA-1 algorithm instance and
// create a hash code for the plaintext
SHA1 x_sha = SHA1.Create();
byte[] x_hashcode = x_sha.ComputeHash(x_plaintext);

// create an instance of the DSA algorithm using

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// the Create method in the abstract class
DSA x_dsa = DSA.Create();

// use the VerifySignature method to verify the DSA signature
bool x_signature_valid = x_dsa.VerifySignature(x_hashcode, x_signature);

Visual Basic .NET

' create the plaintext
Dim x_plaintext As Byte()= Encoding.Default.GetBytes("Programming .NET Security")

' define the signature to verify
Dim x_signature As Byte() = New Byte() {&H7D, &H2B, &HD7, &H3D, &H88, &HCB, _
 &H1B, &H6B, &H4, &H62, &H95, &HBE, &H28, _
 &H59, &H3E, &HC5, &H40, &HDA, &H79, &HFE, _
 &H3B, &H25, &H8, &H4B, &H27, &HF1, &H31, _
 &H2A, &H6F, &H7C, &H6E, &H35, &H45, &H9A, _
 &H49, &H4C, &HA4, &H5E, &HE6, &HA0}

' create the SHA-1 algorithm instance and
' create a hash code for the plaintext
Dim x_sha As SHA1 = SHA1.Create()
Dim x_hashcode As Byte() = x_sha.ComputeHash(x_plaintext)

' create an instance of the DSA algorithm using
' the Create method in the abstract class
Dim x_dsa As DSA = DSA.Create()

' use the VerifySignature method to verify the DSA signature
Dim x_signature_valid As Boolean = x_dsa.VerifySignature(x_hashcode, x_signature)

The VerifySignature method returns true if the signature can be verified and false if the

signature is not valid.

The abstract RSA class does not provide any methods to support digital

signatures with the RSA algorithm.

16.2.2 Using the Implementation Class

The RSACryptoServiceProvider and DSACryptoServiceProvider classes both define four methods
related to digital signatures (DSACryptoServiceProvider implements these methods in addition to
the CreateSignature and VerifySignature methods we discussed in the previous section). Table

16-2 summarizes the methods.

Table 16-2. Algorithm implementation signature methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Description

SignData Creates a digital signature from the original document

SignHash Creates a digital signature from a hash code

VerifyData Verifies a digital signature against the original document

VerifyHash Verifies a digital signature against a hash code

The SignData method creates a signature by generating a hash code, formatting the hash code using
PKCS #1, and signing the result. The corresponding VerifyData method creates a PKCS #1-

formatted hash code and uses it to verify a signature.

For the RSA algorithm, the hash codes are generated using an instance of
System.Security.Cryptography.HashAlgorithm, provided as an argument to the SignData and
VerifyData methods; see Chapter 13 for details of the HashAlgorithm class. For the DSA algorithm,

the SHA-1 hashing algorithm is always used to generate the hash codes.

The following statements demonstrate how to use the SignData method to create a signature for a
byte array, and then verify the signature using the VerifyData method:

C#
// create the plaintext
byte[] x_plaintext = Encoding.Default.GetBytes("Programming .NET Security");

// create an instance of the DSA implementation class
DSACryptoServiceProvider x_dsa = new DSACryptoServiceProvider();
// create a signature for the plaintext
byte[] x_dsa_signature = x_dsa.SignData(x_plaintext);
// verify the signature, using the plaintext
bool x_dsa_sig_valid = x_dsa.VerifyData(x_plaintext, x_dsa_signature);

// create an instance of the RSA implementation class
RSACryptoServiceProvider x_rsa = new RSACryptoServiceProvider();
// create an instance of the SHA-1 hashing algorithm
HashAlgorithm x_sha1 = HashAlgorithm.Create("SHA1");
byte[] x_rsa_signature = x_rsa.SignData(x_plaintext, x_sha1);
// verify the signature, using the plaintext
bool x_rsa_sig_valid = x_rsa.VerifyData(x_plaintext, x_sha1, x_rsa_signature);

Visual Basic .NET

' create the plaintext
Dim x_plaintext As Byte() = Encoding.Default.GetBytes("Programming .NET Security")

' create an instance of the DSA implementation class
Dim x_dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider()
' create a signature for the plaintext
Dim x_dsa_signature As Byte() = x_dsa.SignData(x_plaintext)
' verify the signature, using the plaintext
Dim x_dsa_sig_valid As Boolean = x_dsa.VerifyData(x_plaintext, x_dsa_signature)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' create an instance of the RSA implementation class
Dim x_rsa As RSACryptoServiceProvider = New RSACryptoServiceProvider()
' create an instance of the SHA-1 hashing algorithm
Dim x_sha1 As HashAlgorithm = HashAlgorithm.Create("SHA1")
Dim x_rsa_signature As Byte() = x_rsa.SignData(x_plaintext, x_sha1)
' verify the signature, using the plaintext
Dim x_rsa_sig_valid As Boolean = x_rsa.VerifyData(x_plaintext, x_sha1, _
x_rsa_signature)

The principal advantage of the SignData method is that the data to be signed can be read from a

stream, which is useful for signing documents (which would otherwise be read into system memory).
The following statements demonstrate how to use the SignData method to create a DSA signature

by reading data from a stream. For this example, assume that we wish to sign a disk file called
mydocument.txt:

C#

// open the file as a stream
System.IO.FileStream x_stream
 = new System.IO.FileStream("mydocument.txt", System.IO.FileMode.Open);

// create an instance of the DSA implementation class
DSACryptoServiceProvider x_dsa = new DSACryptoServiceProvider();

// create a signature using the stream
byte[] x_dsa_signature = x_dsa.SignData(x_stream);

// close the stream
x_stream.Close();

Visual Basic .NET

' open the file as a stream
Dim x_stream As System.IO.FileStream _
= New System.IO.FileStream("mydocument.txt", System.IO.FileMode.Open)

' create an instance of the DSA implementation class
Dim x_dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider()

' create a signature using the stream
Dim x_dsa_signature As Byte() = x_dsa.SignData(x_stream)

' close the stream
x_stream.Close()

The SignHash and VerifyHash methods format and sign a pre-existing hash code, which is passed

into the methods as an argument; the methods also require a string argument representing the
identifier of the hashing algorithm that has been used to create the hash code (this is so the correct
PKCS #1 algorithm ID is included in the signature). The static MapNameToOID method of the
CryptoConfig class returns the ID of a hashing algorithm, so that the following statements obtain

the ID for the SHA-1 algorithm:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C#

string x_id = CryptoConfig.MapNameToOID("SHA1");
Console.WriteLine(x_id);
Visual Basic .NET

Dim x_id As String = CryptoConfig.MapNameToOID("SHA1")
Console.WriteLine(x_id)

These statements produce the following output, which is a decimal representation of part of the ID
that we listed in Table 16-1:

1.3.14.3.2.26

The following statements demonstrate how to create and verify a signature using the SignHash and
VerifyHash methods and the DSA algorithm. Notice that the DSA implementation requires the ID of

the hashing algorithm, even though the DSA specification demands that SHA-1 is always used:

C#

// create the plaintext
byte[] x_plaintext = Encoding.Default.GetBytes("Programming .NET Security");

// create a hash code for the plaintext, using the SHA-1 algorithm
byte[] x_hashcode = HashAlgorithm.Create("SHA1").ComputeHash(x_plaintext);

// create an instance of the DSA implementation class
DSACryptoServiceProvider x_dsa = new DSACryptoServiceProvider();

// create a DSA signature using the hash code
byte[] x_signature = x_dsa.SignHash(x_hashcode, CryptoConfig.MapNameToOID("SHA1"));

// verify the signature
bool x_sig_valid = x_dsa.VerifyHash(x_hashcode, CryptoConfig.MapNameToOID("SHA1"),
 x_signature);

Visual Basic .NET

' create the plaintext
Dim x_plaintext As Byte() = Encoding.Default.GetBytes("Programming .NET Security")

' create a hash code for the plaintext, using the SHA-1 algorithm
Dim x_hashcode As Byte() = HashAlgorithm.Create("SHA1").ComputeHash(x_plaintext)

' create an instance of the DSA implementation class
Dim x_dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider()

' create a DSA signature using the hash code
Dim x_signature As Byte() = x_dsa.SignHash(x_hashcode, _
CryptoConfig.MapNameToOID("SHA1"))

' verify the signature

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim x_sig_valid As Boolean = x_dsa.VerifyHash(x_hashcode, _
CryptoConfig.MapNameToOID("SHA1"), x_signature)

16.2.3 Using the Signature Formatter Classes

The .NET Framework specifies separate formatter and deformatter classes, as shown by the
hierarchy in Figure 16-5. These classes format a hash code using PKCS #1, and sign the result in
conjunction with the abstract and implementation classes. The functionality that these classes
provide is equivalent to using the methods that we have described in the preceding sections; there is
no specific advantage to using the formatter and deformatter classes.

Figure 16-5. The .NET Framework class hierarchy for signature
formatters

The abstract AsymmetricSignatureFormatter class defines the methods described in Table 16-3.

The abstract class does not specify how to format a hash code, and so implementation classes can
define any formatting that is appropriate to an algorithm; both of the default .NET implementation
classes use PKCS #1 formatting.

Table 16-3. AsymmetricSignatureFormatter members

Method Description

SetHashAlgorithm
Specifies the name of the hashing algorithm that was used to create the hash
code that will be signed; in the case of PKCS #1 formatting, the ID of the
algorithm will be included in the signed data

SetKey
Specifies an instance of the asymmetric signing algorithm that will be used to
create the digital signature

CreateSignature Creates a digital signature from a hash code

The following statements demonstrate how to use the RSAPKCS1SignatureFormatter class to create

a digital signature:

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// create the plaintext
byte[] x_plaintext = Encoding.Default.GetBytes("Programming .NET Security");

// create a hash code for the plaintext, using the SHA-1 algorithm
byte[] x_hashcode = HashAlgorithm.Create("SHA1").ComputeHash(x_plaintext);

// create an instance of the DSA implementation class
DSACryptoServiceProvider x_dsa = new DSACryptoServiceProvider();

// create the signature formatter
DSASignatureFormatter x_formatter = new DSASignatureFormatter();
// set the instance of the DSA algorithm that will sign the data
x_formatter.SetKey(x_dsa);
// set the name of the hashing algorithm we used to create the hash code
x_formatter.SetHashAlgorithm("SHA1");
// create the formatted DSA signature
byte[] x_signature = x_formatter.CreateSignature(x_hashcode);

Visual Basic .NET

' create the plaintext
Dim x_plaintext As Byte() = Encoding.Default.GetBytes("Programming .NET Security")

' create a hash code for the plaintext, using the SHA-1 algorithm
Dim x_hashcode As Byte() = HashAlgorithm.Create("SHA1").ComputeHash(x_plaintext)

' create an instance of the DSA implementation class
Dim x_dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider()

' create the signature formatter
Dim x_formatter As DSASignatureFormatter = New DSASignatureFormatter()
' set the instance of the DSA algorithm that will sign the data
x_formatter.SetKey(x_dsa)
' set the name of the hashing algorithm we used to create the hash code
x_formatter.SetHashAlgorithm("SHA1")
' create the formatted DSA signature
Dim x_signature As Byte() = x_formatter.CreateSignature(x_hashcode)

The abstract AsymmetricSignatureDeformatter is the basis for classes that verify digital signatures
created by subclasses of the AsymmetricSignatureFormatter class. Table 16-4 summarizes the
methods of the AsymmetricSignatureDeformatter class.

Table 16-4. AsymmetricSignatureDeformatter members

Method Description

SetHashAlgorithm
Specifies the name of the hashing algorithm that will be used to verify the
signature

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Description

SetKey
Specifies an instance of the asymmetric signing algorithm that will be used to
verify the digital signature

VerifySignature Verifies a digital signature

The following statements demonstrate how to verify a digital signature using the
DSASignatureDeformatter class:

C#

// create the plaintext
byte[] x_plaintext = Encoding.Default.GetBytes("Programming .NET Security");

// create a hash code for the plaintext, using the SHA-1 algorithm
byte[] x_hashcode = HashAlgorithm.Create("SHA1").ComputeHash(x_plaintext);

// define the signature to verify
byte[] x_signature = new Byte[] {0x7D, 0x2B, 0xD7, 0x3D, 0x88, 0xCB, 0x1B, 0x6B,
 0x04, 0x62, 0x95, 0xBE, 0x28, 0x59, 0x3E, 0xC5,
 0x40, 0xDA, 0x79, 0xFE, 0x3B, 0x25, 0x08, 0x4B,
 0x27, 0xF1, 0x31, 0x2A, 0x6F, 0x7C, 0x6E, 0x35,
 0x45, 0x9A, 0x49, 0x4C, 0xA4, 0x5E, 0xE6, 0xA0};

// create an instance of the DSA implementation class
DSACryptoServiceProvider x_dsa = new DSACryptoServiceProvider();

// create the signature deformatter
DSASignatureDeformatter x_deformatter = new DSASignatureDeformatter();
// set the instance of the DSA algorithm that will verify the signature
x_deformatter.SetKey(x_dsa);
// set the name of the hashing algorithm we used to create the hash code
x_deformatter.SetHashAlgorithm("SHA1");
// verify the DSA signature
bool x_signature_valid = x_deformatter.VerifySignature(x_hashcode, x_signature);

Visual Basic .NET

' create the plaintext
Dim x_plaintext As Byte() = Encoding.Default.GetBytes("Programming .NET Security")

' create a hash code for the plaintext, using the SHA-1 algorithm
Dim x_hashcode As Byte() = HashAlgorithm.Create("SHA1").ComputeHash(x_plaintext)

' define the signature to verify
Dim x_signature As Byte() = New Byte() {&H7D, &H2B, &HD7, &H3D, &H88, &HCB, _
 &H1B, &H6B, &H4, &H62, &H95, &HBE, &H28, _
 &H59, &H3E, &HC5, &H40, &HDA, &H79, &HFE, _
 &H3B, &H25, &H8, &H4B, &H27, &HF1, &H31, _
 &H2A, &H6F, &H7C, &H6E, &H35, &H45, &H9A, _
 &H49, &H4C, &HA4, &H5E, &HE6, &HA0}

SetKey
Specifies an instance of the asymmetric signing algorithm that will be used to
verify the digital signature

VerifySignature Verifies a digital signature

The following statements demonstrate how to verify a digital signature using the
DSASignatureDeformatter class:

C#

// create the plaintext
byte[] x_plaintext = Encoding.Default.GetBytes("Programming .NET Security");

// create a hash code for the plaintext, using the SHA-1 algorithm
byte[] x_hashcode = HashAlgorithm.Create("SHA1").ComputeHash(x_plaintext);

// define the signature to verify
byte[] x_signature = new Byte[] {0x7D, 0x2B, 0xD7, 0x3D, 0x88, 0xCB, 0x1B, 0x6B,
 0x04, 0x62, 0x95, 0xBE, 0x28, 0x59, 0x3E, 0xC5,
 0x40, 0xDA, 0x79, 0xFE, 0x3B, 0x25, 0x08, 0x4B,
 0x27, 0xF1, 0x31, 0x2A, 0x6F, 0x7C, 0x6E, 0x35,
 0x45, 0x9A, 0x49, 0x4C, 0xA4, 0x5E, 0xE6, 0xA0};

// create an instance of the DSA implementation class
DSACryptoServiceProvider x_dsa = new DSACryptoServiceProvider();

// create the signature deformatter
DSASignatureDeformatter x_deformatter = new DSASignatureDeformatter();
// set the instance of the DSA algorithm that will verify the signature
x_deformatter.SetKey(x_dsa);
// set the name of the hashing algorithm we used to create the hash code
x_deformatter.SetHashAlgorithm("SHA1");
// verify the DSA signature
bool x_signature_valid = x_deformatter.VerifySignature(x_hashcode, x_signature);

Visual Basic .NET

' create the plaintext
Dim x_plaintext As Byte() = Encoding.Default.GetBytes("Programming .NET Security")

' create a hash code for the plaintext, using the SHA-1 algorithm
Dim x_hashcode As Byte() = HashAlgorithm.Create("SHA1").ComputeHash(x_plaintext)

' define the signature to verify
Dim x_signature As Byte() = New Byte() {&H7D, &H2B, &HD7, &H3D, &H88, &HCB, _
 &H1B, &H6B, &H4, &H62, &H95, &HBE, &H28, _
 &H59, &H3E, &HC5, &H40, &HDA, &H79, &HFE, _
 &H3B, &H25, &H8, &H4B, &H27, &HF1, &H31, _
 &H2A, &H6F, &H7C, &H6E, &H35, &H45, &H9A, _
 &H49, &H4C, &HA4, &H5E, &HE6, &HA0}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' create an instance of the DSA implementation class
Dim x_dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider()

' create the signature deformatter
Dim x_deformatter As DSASignatureDeformatter = New DSASignatureDeformatter()
' set the instance of the DSA algorithm that will verify the signature
x_deformatter.SetKey(x_dsa)
' set the name of the hashing algorithm we used to create the hash code
x_deformatter.SetHashAlgorithm("SHA1")

' verify the DSA signature
Dim x_signature_valid As Boolean = _
x_deformatter.VerifySignature(x_hashcode, x_signature)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.3 Programming XML Signatures

The .NET Framework supports the XML Signature specification (commonly referred to as XMLDSIG),
which provides a standard approach to creating and representing signatures for XML documents.

In this section, we introduce the .NET XMLDSIG classes. We do not discuss all of the options available
to you or provide in-depth coverage of the standard itself. The XMLDSIG standard is complex, and
full coverage is outside the scope of this book. For full details of the XML Signature specification,
consult the World Wide Web Consortium web site, at http://www.w3.org/TR/xmldsig-core. Consult
the .NET documentation for full details of the XMLDSIG classes. You should have a basic
understanding of how the .NET Framework supports XML.

16.3.1 XMLDSIG Explained

The .NET Framework includes classes that support creating and verifying XMLDSIG signatures for
XML documents; in other words, the .NET XMLDSIG classes allow you to sign XML documents to
create signatures that are also XML documents themselves.

Throughout this section, we will base our examples on creating a signature for the following simple
XML, which we assume is in a file named book.xml:

<book>
 <title>Programming .NET Security</title>
 <author>Adam Freeman</author>
 <author>Allen Jones</author>
</book>

All of the .NET XMLDSIG classes are contained in the System.Security.Cryptography.Xml

namespace, which is included in System.Security.dll.

16.3.2 Signing an XML Document

In the following sections, we demonstrate how to create an XMLDSIG signature for our sample XML
document.

16.3.2.1 Creating the reference

To create a signature, the first step is to create a reference to the XML document that you want to
sign. The .NET Reference class allows you to create a reference using a URL string or a stream of

data. When the signature is created, the XML data will be read from the URL or the stream to create
the signature. The following statements demonstrate how to create a Reference object:

C#

http://www.w3.org/TR/xmldsig-core
http://lib.ommolketab.ir
http://lib.ommolketab.ir

// specify the URL of the document we want to sign
string x_url = "http://www.mydomain.com/book.xml";
// create a reference that points to the URL
Reference x_url_ref = new Reference(x_url);

// open a file stream for the document we want to sign
FileStream x_stream = new FileStream("book.xml", FileMode.Open);
// create a Reference that will use the stream
Reference x_stream_ref = new Reference(x_stream);

Visual Basic .NET

' specify the URL of the document we want to sign
Dim x_url As String = "http:'www.mydomain.com/book.xml"
' create a reference that points to the URL
Dim x_url_ref As Reference = New Reference(x_url)

' open a file stream for the document we want to sign
Dim x_stream As FileStream = New FileStream("book.xml", FileMode.Open)
' create a Reference that will use the stream
Dim x_stream_ref As Reference = New Reference(x_stream)

16.3.2.2 Creating the SignedXML

The System.Security.Cryptography.Xml.SignedXml class is responsible for creating the signature

document. Create an instance of this class, and then configure it with the settings you wish to use in
creating the signature. Create a new instance of the SignedXml class using the default constructor,
and then use the AddReference method to add the Reference object you created in the previous

section:

C#

SignedXml x_signed_xml = new SignedXml();
x_signed_xml.AddReference(x_stream_ref);

Visual Basic .NET

Dim x_signed_xml As SignedXml = New SignedXml()
x_signed_xml.AddReference(x_stream_ref)

16.3.2.3 Setting the signing algorithm

you need to create a new asymmetric signing algorithm instance and assign it to the SignedXml
object using the SigningKey property, as illustrated by the following statements:

C#

// create a new instance of the DSA algorithm
DSA x_dsa = DSA.Create();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// configure the signing key
// ...

// set the algorithm for the SignedXml
x_signed_xml.SigningKey = x_dsa;

Visual Basic .NET

' create a new instance of the DSA algorithm
Dim x_dsa As DSA = DSA.Create()

' configure the signing key
' ...

' set the algorithm for the SignedXml
x_signed_xml.SigningKey = x_dsa

These statements have the effect of defining the algorithm and the keys that will be used to create
the signature. The .NET classes support using the RSA and DSA algorithms for generating XML
Signature documents.

16.3.2.4 Creating the signature

Create the signature by calling the ComputeSignature method. You can then obtain the signature by
calling the GetXml method, and obtain a string representation by using the OuterXml property, as

shown below:

C#

x_signed_xml.ComputeSignature();
Console.WriteLine(x_signed_xml.GetXml().OuterXml);

Visual Basic .NET

x_signed_xml.ComputeSignature()
Console.WriteLine(x_signed_xml.GetXml().OuterXml)

The result of creating a DSA signature for our sample XML is as follows:

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />
 <Reference>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>eJgWGA+lXiqrOpXa+2NSBbO1HS4=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>u5zleIl7IY5MV8sxsirlGIqRaZ9LgExoKdQwgCMqaPxWZX7VOAcT9g==
 </SignatureValue>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</Signature>

Notice that the XML signature document contains information about the signing algorithm (DSA), the
hashing algorithm (SHA-1), and the signature value, which has been Base64-encoded. This is a
formalized representation of the information that is needed to verify the signature, which would
otherwise have to be communicated between parties in an ad hoc manner (for example, Alice and
Bob exchange messages to agree on the hashing and signing algorithms before they exchange signed
data).

16.3.3 Embedding Objects in the Signature

The signature that you created in the previous section is separate from the data it relates to, as are
the other signatures you created in Section 16.2. The XMLDSIG standard supports including the
original data as part of the XML signature document.

To include your sample XML document, load the XML document and use it to create a new instance of
the DataObject class:

C#

// load the XML document
XmlDocument x_xml_doc = new XmlDocument();
x_xml_doc.Load("book.xml");

// create the data object for the xml document
DataObject x_obj = new DataObject();
x_obj.Data = x_xml_doc.ChildNodes;
x_obj.Id = "book";

Visual Basic .NET

' load the XML document
Dim x_xml_doc As XmlDocument = New XmlDocument()
x_xml_doc.Load("book.xml")

' create the data object for the xml document
Dim x_obj As DataObject = New DataObject()
x_obj.Data = x_xml_doc.ChildNodes
x_obj.Uri = "book"

Assign the XML data to the DataObject using the Data property, and assign an ID to the object using
the URI property; for example, choose the ID "book." Continue by creating a new reference, but

instead of using a URL or a stream for the data, use a "local" reference, where you place a # symbol
in front of our object ID (in this case, the local reference is #book):

C#

// create the local reference
Reference x_local_reference = new Reference();
x_local_reference.Uri = "#book";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Studio .NET

' create the local reference
Dim x_local_reference As Reference = New Reference()
x_local_reference.Uri = "#book"

Create a new instance of the SignedXml class, and use the AddReference and AddObjects methods

to add your reference and data:

C#

// create the SignedXml instance
SignedXml x_signed_xml = new SignedXml();
// add the local reference
x_signed_xml.AddReference(x_local_reference);
// add the data object
x_signed_xml.AddObject(x_obj);

Visual Basic .NET

' create the SignedXml instance
Dim x_signed_xml As SignedXml = New SignedXml()
' add the local reference
x_signed_xml.AddReference(x_local_reference)
' add the data object
x_signed_xml.AddObject(x_obj)

Finally, set the instance of the signing algorithm and compute the signature:

C#

// create a new instance of the DSA algorithm
DSA x_dsa = DSA.Create();

// configure the signing key
// ...

// set the algorithm for the SignedXml
x_signed_xml.SigningKey = x_dsa;

// compute the signature
x_signed_xml.ComputeSignature();
Console.WriteLine(x_signed_xml.GetXml().OuterXml);

Visual Basic .NET

' create a new instance of the DSA algorithm
Dim x_dsa As DSA = DSA.Create()

' configure the signing key
' ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' set the algorithm for the SignedXml
x_signed_xml.SigningKey = x_dsa

' compute the signature
x_signed_xml.ComputeSignature()
Console.WriteLine(x_signed_xml.GetXml().OuterXml)

The resulting signature is shown below; the included data is hightlighted:

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />
 <Reference URI="#book">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>1UhFInEywZYY/3eLgCqg5w+IROI=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>DUuD4ZJd8YiDLIr7HimDWGmCXYQDpX1jv1xRxKLgccw/lTyh3XjB6Q==
 </SignatureValue>
 <Object Id="book">
 <book xmlns="">
 <title>Programming .NET Security</title>
 <author>Adam Freeman</author>
 <author>Allen Jones</author>
 </book>
 </Object>
</Signature>

By including the data in this way, you create an XML document that contains the data that was
signed, details of how the signature was created (hashing and signature algorithms), and the
signature itself, which allows Alice to send a single XML document to Bob when exchanging signed
messages.

16.3.4 Verifying an XML Signature

Begin verifying the signature by loading the XML Signature document (which you have saved as the
file xmlsig.xml) into an instance of the SignedXml class:

C#

// load the XML document
XmlDocument x_xml_doc = new XmlDocument();
x_xml_doc.Load("xmlsig.xml");

// create the SignedXml instance
SignedXml x_signed_xml = new SignedXml();

// get the node list from the XML sig doc
XmlNodeList x_node_list = x_xml_doc.GetElementsByTagName("Signature");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// load the XML signature document
x_signed_xml.LoadXml((XmlElement)x_node_list[0]);

Visual Basic .NET

' load the XML document
Dim x_xml_doc As XmlDocument = New XmlDocument()
x_xml_doc.Load("xmlsig.xml")

' create the SignedXml instance
Dim x_signed_xml As SignedXml = New SignedXml()

' get the node list from the XML sig doc
Dim x_node_list As XmlNodeList = x_xml_doc.GetElementsByTagName("Signature")
' load the XML signature document
x_signed_xml.LoadXml(CType(x_node_list(0), XmlElement))

You need to create the asymmetric algorithm that will be used to verify the signature; you should
configure the algorithm class with the public parameters from the key pair that was used to generate
the signature.

Once you have created the algorithm, create an instance of the KeyInfo class, which accepts an
instance of either the DSAKeyValue or RSAKeyValue class, depending on which algorithm has been
used. Configure the SignedXml class to use the asymmetric algorithm by setting the value of the
KeyInfo property:

C#

// create a new instance of the DSA algorithm
DSA x_dsa = DSA.Create();

// configure the signing key
// ...

// create the KeyInfo instance
KeyInfo x_info = new KeyInfo();

// add the DSA instance to the KeyInfo
x_info.AddClause(new DSAKeyValue(x_dsa));

// configure the SignedXml class to use the
// DSA keys for verification
x_signed_xml.KeyInfo = x_info;

Visual Basic .NET

' create a new instance of the DSA algorithm
Dim x_dsa As DSA = DSA.Create()

' configure the signing key
' ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' create the KeyInfo instance
Dim x_info As KeyInfo = New KeyInfo()

' add the DSA instance to the KeyInfo
x_info.AddClause(New DSAKeyValue(x_dsa))

' configure the SignedXml class to use the
' DSA keys for verification
x_signed_xml.KeyInfo = x_info

Finally, verify the signature by calling the CheckSignature method of the SignedXml class; this
method returns true if the signature is valid and false if it is not:

C#

// verify the signature
bool x_signature_valid = x_signed_xml.CheckSignature();

Visual Basic .NET

' verify the signature
Dim x_signature_valid As Boolean = x_signed_xml.CheckSignature()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.4 Extending the .NET Framework

In Chapter 15, we extended the .NET Framework by creating an implementation of the ElGamal
algorithm that supported encryption. In this section, we extend our implementation to include
support for creating and verifying digital signatures.

We have provided a C# implementation of the ElGamal algorithm only. Like almost all encryption
algorithms, ElGamal relies on mathematical operations that are not possible in Visual Basic .NET
without creating additional support functions to compensate for the limited numeric support the
language provides.

16.4.1 The ElGamal Signature Functions Explained

The ElGamal algorithm supports encryption and digital signatures using the same key pair. Keys
created by following the key generation protocol (discussed in Chapter 15) can be used to create and
verify digital signatures using the functions that we explain in this section. As a reminder, the
parameters p, g, and y form the public key, and the parameter x is the private key.

The basic protocol for creating an ElGamal signature is:

Choose a random number, k, that is relatively prime to (p -1).1.

Compute the signature element, a, as follows:

a = gkmodp

2.

Compute the signature element, b, as follows (m is the data to sign):3.

Concatenate a and b to form the signature.4.

To verify an ElGamal signature, we follow the following protocol:

Split the digital signature to form the signature elements, a and b.1.

Compute the first verification element, e1, as follows:

e1 = yaabmodp

2.

Compute the second verification element, e2, as follows:

e2 = gmmodp

3.

The signature is valid if e1 and e2 are of equal value and is not valid otherwise.4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Notice that, unlike RSA, the ElGamal algorithm specifies different functions for data encryption and
digital signatures.

16.4.2 Defining the Signature Function Class

Begin by defining the ElGamalSignature class, which implements the basic signature and verification

functions that we described in the preceding section:

using System;
using System.Security.Cryptography;

public class ElGamalSignature {

Define the mod method to ensure that you always receive a positive result when using the modular
arithmetic support included in the BigInteger class:

 public static BigInteger mod(BigInteger p_base, BigInteger p_val) {
 BigInteger x_result = p_base % p_val;
 if (x_result < 0) {
 x_result += p_val;
 }
 return x_result;
 }

The CreateSignature class implements the ElGamal signature function and creates a digital

signature; the arguments to this method are the data to sign and the key to use:

 public static byte[] CreateSignature(byte[] p_data,
 ElGamalKeyStruct p_key_struct) {

Begin by generating a random number, k, that is relatively prime to p - 1. Refer to Table 15-6 for a
summary of the methods we use in the BigInteger class:

 // define P -1
 BigInteger x_pminusone = p_key_struct.P - 1;
 // create K, which is the random number
 BigInteger K;
 do {
 K = new BigInteger();
 K.genRandomBits(p_key_struct.P.bitCount() -1, new Random());
 } while (K.gcd(x_pminusone) != 1);

The following statements compute the values of the signature elements, a and b. Although these

statements may appear convoluted, they do compute the values that you require; their appearance
is a result of the requirements of the BigInteger class and the fact that we have defined the mod

method in this class:

 // compute the values A and B
 BigInteger A = p_key_struct.G.modPow(K, p_key_struct.P);
 BigInteger B = mod(mod(K.modInverse(x_pminusone)
 * (new BigInteger(p_data)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 -(p_key_struct.X*(A))),(x_pminusone)),(x_pminusone));

Having completed the computations, now create a byte array to hold the signature data and fill it
with the signature elements that you created previously to create the complete signature:

 // copy the bytes from A and B into the result array
 byte[] x_a_bytes = A.getBytes();
 byte[] x_b_bytes = B.getBytes();
 // define the result size
 int x_result_size = (((p_key_struct.P.bitCount() + 7) / 8) * 2);
 // create an array to contain the ciphertext
 byte[] x_result = new byte[x_result_size];
 // populate the arrays
 Array.Copy(x_a_bytes, 0, x_result, x_result_size / 2
 - x_a_bytes.Length, x_a_bytes.Length);
 Array.Copy(x_b_bytes, 0, x_result, x_result_size
 - x_b_bytes.Length, x_b_bytes.Length);

 // return the result array
 return x_result;
 }

The VerifySignature method implements the ElGamal verification function, accepting arguments

that represent the data that was signed, the signature to verify, and the key with which to perform
the verification:

 public static bool VerifySignature(byte[] p_data, byte[] p_sig,
 ElGamalKeyStruct p_key_struct) {

We begin by splitting the signature into two sections and creating instances of the BigInteger class
to represent the signature elements a and b:

 // define the result size
 int x_result_size = p_sig.Length/2;

 // extract the byte arrays that represent A and B
 byte[] x_a_bytes = new byte[x_result_size];
 Array.Copy(p_sig, 0, x_a_bytes, 0, x_a_bytes.Length);
 byte[] x_b_bytes = new Byte[x_result_size];
 Array.Copy(p_sig, x_result_size, x_b_bytes, 0, x_b_bytes.Length);

 // create big integers from the byte arrays
 BigInteger A = new BigInteger(x_a_bytes);
 BigInteger B = new BigInteger(x_b_bytes);

The remaining statements compute the two verification elements, and the method returns 2 if the
elements have the same value (the signature is valid) and false otherwise (the signature is not
valid):

 // create the two results
 BigInteger x_result1 = mod(p_key_struct.Y.modPow(A, p_key_struct.P)
 * A.modPow(B, p_key_struct.P), p_key_struct.P);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BigInteger x_result2 = p_key_struct.G.modPow(new BigInteger(p_data),
 p_key_struct.P);

 // return true if the two results are the same

 return x_result1 == x_result2;
 }
}

16.4.3 Implementing the Managed Class Methods

We now define the implementations for the signature function methods in the managed algorithm
class, which we left unfinished in Chapter 15. The Sign and VerifySignature methods call the static
CreateSignature and VerifySignature methods in the ElGamalSignature class, which we defined

in the preceding section. Both methods check to see if the user has specified a key and will create a
new pair as required:

public class ElGamalManaged : ElGamal {

 // ... other methods

 public override byte[] Sign(byte[] p_hashcode) {
 if (NeedToGenerateKey()) {
 // we need to create a new key before we can export
 CreateKeyPair(KeySizeValue);
 }
 return ElGamalSignature.CreateSignature(p_hashcode, o_key_struct);
 }

 public override bool VerifySignature(byte[] p_hashcode, byte[] p_signature) {
 if (NeedToGenerateKey()) {
 // we need to create a new key before we can export
 CreateKeyPair(KeySizeValue);
 }
 return ElGamalSignature.VerifySignature(p_hashcode,
 p_signature, o_key_struct);
 }

 // ... other methods
}

This implementation means that the Sign and VerifySignature methods depend directly on the

"raw" signature functions, which are created without PKCS #1 formatting. We define separate
formatting classes in the following sections.

16.4.4 Defining the PKCS #1 Helper Class

We have defined the ElGamalSignatureFormatHelper class to simplify our formatter and

deformatter implementations. This class is responsible for formatting blocks of data in accordance
with the PKCS #1 formatting technique:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using System;
using System.Security.Cryptography;

public class ElGamalSignatureFormatHelper {

We begin by defining the set of algorithm IDs that we listed in Table 16-1. These IDs are included in
the PKCS #1-formatted data; see Section 16.2 for details of PKCS #1. We have defined the algorithm
IDs as byte arrays to simplify the formatting process:

 private static byte[] MD5_BYTES
 = new byte[] {0x30, 0x20, 0x30, 0x0C, 0x06, 0x08, 0x2A, 0x86,
 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, 0x05, 0x00,
 0x04, 0x10};

 private static byte[] SHA1_BYTES
 = new byte[] {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0E, 0x03,
 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14};

 private static byte[] SHA256_BYTES
 = new byte[] {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
 0x00, 0x04, 0x20};

 private static byte[] SHA384_BYTES
 = new byte[] {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
 0x00, 0x04, 0x30};

 private static byte[] SHA512_BYTES
 = new byte[] {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
 0x00, 0x04, 0x40};

The GetHashAlgorithmID returns a byte array representing the ID for a hashing algorithm, which is

specified as the method argument:

 private static byte[] GetHashAlgorithmID(HashAlgorithm p_hash) {
 if (p_hash is MD5) {
 return MD5_BYTES;
 } else if (p_hash is SHA1) {
 return SHA1_BYTES;
 } else if (p_hash is SHA256) {
 return SHA256_BYTES;
 } else if (p_hash is SHA384) {
 return SHA384_BYTES;
 } else if (p_hash is SHA512) {
 return SHA512_BYTES;
 } else {
 throw new ArgumentException("Unknown hashing algorithm", "p_hash");
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateEMSA_PKCS1_v1_5_ENCODE formats a block of data in accordance with the PKCS #1 technique

that we described in Section 16.2 of this chapter:

 public static byte[] CreateEMSA_PKCS1_v1_5_ENCODE(byte[] p_hashcode,
 HashAlgorithm p_hash_alg, int p_key_length) {

 // Concatenate the algorithm ID for the hash algorithm
 // and the hash code to form T
 byte[] x_algorithm_id = GetHashAlgorithmID(p_hash_alg);
 byte[] T = new byte[p_hashcode.Length + x_algorithm_id.Length];
 Array.Copy(x_algorithm_id, 0, T, 0, x_algorithm_id.Length);
 Array.Copy(p_hashcode, 0, T, x_algorithm_id.Length, p_hashcode.Length);

 // Generate an octet string PS consisting of p_key_length - T.Length -
 // 3 octets with hexadecimal value 0xff.
 // The length of PS will be at least 8 octets.
 int x_PS_length = p_key_length - T.Length -3;
 byte[] PS = new byte[x_PS_length < 0 ? 8 : x_PS_length];
 for (int i = 0; i < PS.Length; i++) {
 PS[i] = 0xFF;
 }
 // Concatenate PS, the DER encoding T, and other padding to form the
 // encoded message EM as EM = 0x00 || 0x01 || PS || 0x00 || T .
 byte[] EM = new byte[3 + PS.Length + T.Length];
 EM[0] = 0x00;
 EM[1] = 0x01;
 Array.Copy(PS, 0, EM, 2, PS.Length);
 EM[PS.Length + 2] = 0x00;
 Array.Copy(T, 0, EM, PS.Length + 3, T.Length);
 // Output EM.
 return EM;

 }
}

16.4.5 Defining the Signature Formatter Class

The ElGamalPKCS1SignatureFormatter class extends AsymmetricSignatureFormatter, and uses
ElGamalSignatureFormatHelper to create a PKCS #1-formatted hash code, which is passed to the
Sign method of the ElGamalManaged class:

using System;
using System.Security.Cryptography;

public class ElGamalPKCS1SignatureFormatter : AsymmetricSignatureFormatter {
 private string o_hash_name; // the hash algorithm to use
 private ElGamalManaged o_key; // the ElGamal algorithm

 public override void SetHashAlgorithm(string p_name) {
 o_hash_name = p_name;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public override void SetKey(AsymmetricAlgorithm p_key) {
 if (p_key is ElGamalManaged) {
 o_key = p_key as ElGamalManaged;
 } else {
 throw new ArgumentException(
 "Key is not an instance of ElGamalManaged", "p_key");
 }
 }

 public override byte[] CreateSignature(byte[] p_data) {
 if (o_hash_name == null || o_key == null) {
 throw new
 CryptographicException("Key and Hash Algorithm must be set");
 } else {
 // create the hashing algorithm
 HashAlgorithm x_hash_alg = HashAlgorithm.Create(o_hash_name);
 // create a PKCS1 formatted block from the data
 byte[] x_pkcs
 = ElGamalSignatureFormatHelper.CreateEMSA_PKCS1_v1_5_ENCODE(p_data,
 x_hash_alg, o_key.KeyStruct.P.bitCount());
 // create and return the signature
 return o_key.Sign(x_pkcs);
 }
 }
}

16.4.6 Defining the Signature Deformatter Class

The ElGamalPKCS1SignatureDeformatter class extends AsymmetricSignatureDeformatter and
uses ElGamalSignatureFormatHelper to create a PKCS #1-formatted hash code to verify a
signature, using the VerifySignature method of the ElGamalManaged class:

using System;
using System.Security.Cryptography;

public class ElGamalPKCS1SignatureDeformatter : AsymmetricSignatureDeformatter

 private string o_hash_name; // the hash algorithm to use
 private ElGamalManaged o_key; // the ElGamal algorithm

 public override void SetHashAlgorithm(string p_name) {
 o_hash_name = p_name;
 }

 public override void SetKey(AsymmetricAlgorithm p_key) {
 if (p_key is ElGamalManaged) {
 o_key = p_key as ElGamalManaged;
 } else {
 throw new ArgumentException(
 "Key is not an instance of ElGamalManaged", "p_key");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public override bool VerifySignature(byte[] p_data, byte[] p_signature) {
 if (o_hash_name == null || o_key == null) {
 throw new
 CryptographicException("Key and Hash Algorithm must be set");
 } else {
 // create the hashing algorithm
 HashAlgorithm x_hash_alg = HashAlgorithm.Create(o_hash_name);
 // create a PKCS1 formatted block from the data
 byte[] x_pkcs
 = ElGamalSignatureFormatHelper.CreateEMSA_PKCS1_v1_5_ENCODE(
 p_data, x_hash_alg, o_key.KeyStruct.P.bitCount());

 // create and return the signature
 return o_key.VerifySignature(x_pkcs, p_signature);
 }
 }
}

16.4.7 Testing the Algorithm

The following statements test the support for raw and PKCS #1-formatted ElGamal signatures:

using System;
using System.Text;
using System.Security.Cryptography;

public class Test {

 public static void Main() {
 // define the byte array that we will use
 // as plaintext
 byte[] x_plaintext
 = Encoding.Default.GetBytes("Programming .NET Security");

 // Create an instance of the algorithm and generate some keys
 ElGamal x_alg = new ElGamalManaged();
 // set the key size - keep is small to speed up the tests
 x_alg.KeySize = 384;
 // extract and print the xml string (this will cause
 // a new key pair to be generated)
 string x_xml_string = x_alg.ToXmlString(true);
 Console.WriteLine("\n{0}\n", x_xml_string);

 // create a signature for the plaintext
 ElGamal x_sign_alg = new ElGamalManaged();
 // set the keys - note that we export with the
 // private parameters since we are signing data
 x_sign_alg.FromXmlString(x_alg.ToXmlString(true));
 byte[] x_signature = x_sign_alg.Sign(x_plaintext);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // verify the signature
 ElGamal x_verify_alg = new ElGamalManaged();
 // set the keys - note that we export without the
 // private parameters since we are verifying data
 x_verify_alg.FromXmlString(x_alg.ToXmlString(false));
 Console.WriteLine("BASIC SIGNATURE: {0}",
 x_verify_alg.VerifySignature(x_plaintext, x_signature));

 // check the formatted signature support
 // - create a hash code for the plaintext
 HashAlgorithm x_hash_alg = HashAlgorithm.Create("SHA1");
 byte[] x_hashcode = x_hash_alg.ComputeHash(x_plaintext);

 // check the PKCS#1 signature formatting
 ElGamalPKCS1SignatureFormatter x_sig_formatter
 = new ElGamalPKCS1SignatureFormatter();
 x_sig_formatter.SetHashAlgorithm("SHA1");
 x_sig_formatter.SetKey(x_sign_alg);
 x_signature = x_sig_formatter.CreateSignature(x_hashcode);

 // verify the signature
 ElGamalPKCS1SignatureDeformatter x_sig_deformatter
 = new ElGamalPKCS1SignatureDeformatter();
 x_sig_deformatter.SetHashAlgorithm("SHA1");
 x_sig_deformatter.SetKey(x_verify_alg);

 Console.WriteLine("PKCS#1 SIGNATURE: {0}",
 x_sig_deformatter.VerifySignature(x_hashcode, x_signature));
 }

 private static bool CompareArrays(byte[] p_arr1, byte[] p_arr2) {
 for (int i = 0; i < p_arr1.Length; i++) {
 if (p_arr1[i] != p_arr2[i]) {
 return false;
 }
 }
 return true;
 }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 17. Cryptographic Keys
In this chapter, we discuss how the .NET Framework supports the cryptographic keys that we have
used in the previous chapters. We explain the importance of keys and the decisions you must make
in deciding how you will create them. We provide examples of how to program the .NET support for
cryptographic keys and finish our coverage of cryptography by extending our ElGamal
implementation to support session key exchange formatting.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.1 Cryptographic Keys Explained

When you use cryptography, you simplify problems by relying on your ability to manage secret keys
correctly; in essence, you exchange one problem (the need to communicate securely) for another
(protecting the key), which you expect to be simpler. For example, when you use data encryption to
keep messages confidential, you must protect your secret or private key, which should, in principle,
be simpler than arranging to meet in person or using a secure courier service. You can simplify the
problem of authentication by using digital signatures, but these are useful only as long as you are
able to protect a private key; Bob can trust signatures from Alice for as long as it takes Eve to guess
or otherwise acquire the private key.

The importance of managing your keys cannot be overstated; Alice and Bob must manage theirs
carefully to protect encoded messages. Eve could undermine all of their efforts if she acquires the
keys. We use the word "acquire," because as we discussed in Chapter 12, Eve can do more than
simply guessing the value of the key-Eve may try to steal the key, or attempt to deceive Alice or
Bob into revealing their keys to her.

17.1.1 Understanding Key Complexity

You want to create keys that provide suitable protection against attack and yet are easy to use.
Choosing a key that provides suitable protection means assessing the amount of time that the
confidential data should remain secure and selecting a key length that would take at least this
amount of time to find using brute force; we touched on how key lengths affect security in Chapter
14 and Chapter 15. In general, the longer the key, the longer it takes to check all of the possible key
values and the more secure it is.

It might seem as though the best approach is for Alice and Bob to create keys that are as long as
possible, to provide the greatest level of security. The problem is that they must remember their
keys, and type them in when they want to use them; the security advantages of a 2048-bit RSA key
are obvious, but it is almost impossible to remember. For example, the sequence below is the private
key parameter D for a 2048-bit RSA key (Chapter 15 contains full details of the RSA algorithm):

56 90 E2 5B F7 FA CB 85 0C CA F5 3B 0A 25 DC 07 F2 8D 32 4F 0D 4B EB 87 4C D1 E9
90 30 09 74 40 9B BE FA B3 CB C9 C1 5D C9 9D F9 B4 34 6F 27 CA 32 A0 0B FF 84 58
E9 E7 47 4C F9 E3 33 DD DA 3A CF AE 4D DA F8 DB C5 07 97 B6 42 26 84 E8 F9 07 3C
01 E3 D3 B7 C5 60 A9 8B 85 B2 1A 93 D1 74 27 64 4C 01 74 F7 5E 58 61 B9 C9 19 33
73 43 2D F3 0C 29 43 40 98 A4 85 15 FD 50 8C 8C 42 F1 19 01

Alice will be very frustrated if she has to remember this sequence (and the sequences for the other
key parameters) and type it correctly before she can decrypt data or sign a document; the chances
of her being able to correctly do this are slim. Alice will do what all users do when faced with this kind
of memory problem-she will write down the password. Alice has now changed the nature of her
security; the length of time it takes Eve to acquire the key is affected by how hard it is to steal Alice's
notepad.

By asking Alice to do the impossible, we have changed the nature of her cryptographic security. As

http://lib.ommolketab.ir
http://lib.ommolketab.ir

soon as Alice writes down the key, we are dealing with a physical security problem. Even if Alice
works in a "secure" building, Eve knows that it is easier to break into Alice's building and read her
notes than it is to test every possible key value. We can make life easier for Alice and Bob by using
very small key values, but while we reduce the chance of having the keys written down, we
significantly increase the efficacy of brute force attacks.

We also need to consider the type of data that we use to create keys. The most secure way to create
a key is to use a random data generator, which makes it harder for Eve to brute force the key value,
because all key values are equally likely. The problem with random data is that it results in a
sequence that is difficult to remember-people are not naturally able to remember an otherwise
meaningless sequence of digits. Alice and Bob will start writing down their keys again if we ask them
to use randomly generated keys.

If we ask Alice and Bob to select their own keys, we will find that they tend to pick words or phrases
that have a personal significance. For example, Bob might use the name of his favorite sports team,
the name of his cat, or his wife's birthday. The concern is that Eve will be able to acquire the key
quickly by testing only key values derived from Bob's background and preferences. There are only a
limited number of sports teams, and it does not take long to test them all.

The tension between the needs of the user and the needs to attain a certain level of security is one of
the fundamental challenges you will face when designing systems that use cryptography. There is no
simple answer to this problem, and the most common mistake we have seen is where software forces
users to work with long and random keys, and the employer addresses this by making writing down
keys a punishable offense. Users are incapable of remembering long data sequences, and outlawing
the natural solution just forces users to write the keys down in secret.

One potential solution is to generate a sequence of words to create a key that is a nonsensical phrase
on the basis that users will find this type of key easier to remember-for example, "Blue Jazz Fish
Happy Green Walking Light Special." Though people can remember this kind of phrase, they can only
do so for a short period and still end up writing down the phrase in the long term. Another problem is
that we have made it easier to brute force the key by restricting the key to a set of English words;
Eve can use a dictionary to test combinations of words and do so relatively quickly.

The most common technique is to rely on a shorter key to protect a long cryptographic key-for
example, rely on a Windows log-on password to protect an RSA key. This approach has an obvious
appeal, because the user has to remember only one thing, based on the assumption that it is harder
to attack the user's computer than it is to guess the key, presumably because the computer, the
network, and every other device connected to the network are completely secure. A quick glance
through most IT security bulletins demonstrates why this is not a reasonable assumption to make.

17.1.2 Exchanging Symmetric Algorithm Keys

In Chapter 14, we explained that agreeing on a key for a symmetrical algorithm was
problematic-Alice and Bob need to meet in a secure location, where they can be sure that Eve
cannot eavesdrop on their conversation. As an alternative, Alice and Bob can use a trusted and
secure courier service to send keys to one another. Both of these approaches present Eve with an
attractive line of attack-breaking the security of the "secure" location or bribing one of the "trusted"
couriers could be easier than brute forcing the keys. Worse still, Alice and Bob should change their
key regularly (as discussed in Chapter 14), presenting Eve with further opportunities.

In this section, we explain how Alice and Bob can use asymmetric algorithms to perform symmetric

http://lib.ommolketab.ir
http://lib.ommolketab.ir

key exchange, and exchange the problem of agreeing on symmetric keys for the simpler problem of
using asymmetric keys. Figure 17-1 illustrates the basic protocol for key exchange, which works as
follows:

Alice asks Bob for his asymmetric public key.1.

Alice selects a symmetric secret key value.2.

Alice uses an asymmetric algorithm to encrypt the value with Bob's public key.3.

Alice sends the encrypted key value to Bob.4.

Bob uses his asymmetric private key to decrypt the key value.5.

Alice and Bob use a symmetric algorithm to encrypt data using the symmetric key value that
Alice selected.

6.

Figure 17-1. Exchanging symmetric keys using asymmetric encryption

At the end of this process, Alice and Bob have decided on a new symmetric secret key without the
difficulty of arranging a secure meeting. Eve may intercept the key exchange messages between
Alice and Bob, but she cannot decrypt the secret key value without Bob's asymmetric secret key. In
essence, Alice and Bob have simplified their key agreement problem by relying on the security of
Bob's asymmetric key pair, and so another aspect of cryptography becomes an issue of key security.

Using the described key exchange protocol, the exchange of symmetric keys becomes a simple and
secure process. To improve security further, there is no reason why Alice and Bob should not create

http://lib.ommolketab.ir
http://lib.ommolketab.ir

new keys every time that they need to exchange confidential data; such keys are called session keys.

Alice and Bob could have encrypted all of their confidential data using an asymmetric encryption
algorithm, but such algorithms process data very slowly compared to symmetric algorithms. This kind
of key exchange makes the best use of both kinds of algorithm-symmetrical algorithms are fast and
asymmetric algorithms are ideally suited to encrypting the small secret key values. Key exchange is
also suitable for "impromptu" encryption, where someone who Bob has no prior relationship with
wishes to send him confidential data. Figure 17-2 illustrates this technique, which we summarize as
follows:

Eugene, who has no prior relationship with Bob, selects a symmetric session key.1.

Eugene composes a confidential message and uses a symmetric algorithm to encrypt the
message with the session key.

2.

Eugene uses an asymmetric algorithm to encrypt the session key with Bob's public key.3.

Eugene sends the encrypted message data and the encrypted session key to Bob.4.

Figure 17-2. Anonymous encryption using key exchange techniques

Impromptu encryption allows Eugene to send confidential data to Bob that can be decrypted using
Bob's secret key only, even though a symmetric algorithm has been used to encrypt the message
data. Not only does this technique require no arrangement between Bob and Eugene, it also does not
need Eugene to identify himself, allowing the impromptu encryption to be used anonymously.

Bob reads the message sent to him by Eugene by following this protocol:

Bob uses an asymmetric algorithm to decrypt the session key with his private key.1.

Bob uses a symmetric algorithm to decrypt the message with the session key.2.

Bob reads the decrypted message.3.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.2 Programming Cryptographic Keys

In the following sections, we demonstrate how to use the .NET support for creating and managing
keys. Some of these techniques are functionality equivalent, and when deciding between them for
your projects, you must take into consideration the tension between the abilities of the user and the
demands for data security; see Section 17.1.1 for details.

17.2.1 Creating Keys

In the following sections, we discuss three techniques for creating keys. Only one of these techniques
presents the user with data that is easy to memorize. You must be pragmatic when deciding how to
create new keys, and select a process that satisfies the security demands of your project and the
practical demands of the users.

17.2.1.1 Using the algorithm classes

The simplest way to create keys is to use the functionality built into all of the .NET algorithm classes
for both symmetric and asymmetric algorithms. The .NET classes creates new keys as they are
needed; if you attempt to perform any cryptographic operation and you have not explicitly specified
the keys to use, then the .NET classes will create new keys automatically. The following statements
demonstrate how to use this functionality to print out the key value for a symmetrical algorithm (for
full details see Chapter 14):

C#

// create an instance of the symmetric algorithm
SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("Rijndael");

// set the length of key that we want to create
x_alg.KeySize = 128;

// get the key value, which will cause the implementation
// class to create a new secret key
byte[] x_secret_key = x_alg.Key;

// print out the key
foreach (byte b in x_secret_key) {
 Console.Write("{0:X2} ", b);
}

Visual Basic .NET

' create an instance of the symmetric algorithm
Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("Rijndael")

' set the length of key that we want to create

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x_alg.KeySize = 128

' get the key value, which will cause the implementation
' class to create a new secret key
Dim x_secret_key As Byte() = x_alg.Key

' print out the key
Dim b As Byte
For Each b In x_secret_key
 Console.Write("{0:X2} ", b)
Next b

The following statements demonstrate how to create a new key and print out the value for an
asymmetric algorithm; unlike most asymmetric functions, obtaining details of the key can be
performed through the abstract AsymmetricAlgorithm class (for full details see Chapter 15):

C#

// create an instance of the asymmetric algorithm
AsymmetricAlgorithm x_alg = AsymmetricAlgorithm.Create("RSA");

// set the length of key that we want to create
x_alg.KeySize = 1024;

// get the key value, which will cause the implementation
// class to create a new secret key
string x_key_pair = x_alg.ToXmlString(true);

// print out the key
Console.WriteLine(x_key_pair);

Visual Basic .NET

' create an instance of the asymmetric algorithm
Dim x_alg As AsymmetricAlgorithm = AsymmetricAlgorithm.Create("RSA")

' set the length of key that we want to create
x_alg.KeySize = 1024

' get the key value, which will cause the implementation
' class to create a new secret key
Dim x_key_pair As String = x_alg.ToXmlString(True)

' print out the key
Console.WriteLine(x_key_pair)

The principal benefit of creating keys in this manner is that you do not have to have any prior
knowledge about how the key should be created; the algorithm class is responsible for creating keys
in accordance with the relevant specification. The principle drawback is that the .NET classes generate
keys that users will find difficult to remember.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When using an algorithm class to create a new key, you must be confident that
the implementation creates keys securely and there are no flaws in the
implementation that might result in key values that are easily guessed.

17.2.1.2 Using a random number generator

The second approach to creating keys is to use a random number generator (RNG). The .NET
Framework provides support classes for generating random data; Figure 17-3 illustrates the class
hierarchy.

Figure 17-3. The.NET Framework class hierarchy for random number
generators

You cannot generate random data to create a key pair for an asymmetric
algorithm. You must rely on the implementation classes to create key pairs or
follow the appropriate key generation protocol; see Chapter 15 for details.
Asymmetric algorithms create keys using numbers that are mathematically
related and cannot be created from random data.

The class hierarchy for random number generators follows the abstract class/implementation class
model that is used for hashing algorithms and symmetrical algorithms. The .NET Framework includes
one implementation class, which is a wrapper around the RNG functions of the native Windows
Cryptography API. Table 17-1 details the public members of the abstract RandomNumberGenerator

class.

Table 17-1. Members of the RandomNumberGenerator class

Member Description

Create
Creates an instance of a RandomNumberGenerator implementation class by

name or creates an instance of the default implementation class if no name is
specified

GetBytes Populates a byte array with a sequence of random values

GetNonZeroBytes
Populates a byte array with a sequence of random values, none of which will be
0

You must know how many bytes of random data to create to prepare a key for a given algorithm
correctly. The following statements demonstrate how to use the random number generator to create
a key for a symmetric algorithm:

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// create an instance of the symmetric algorithm
SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("Rijndael");

// set the length of key that we want to create
x_alg.KeySize = 128;

// we need to create an array of 16 bytes (16 bytes is 128 bits)
byte[] x_key_data = new byte[16];

// create the RNG
RandomNumberGenerator x_rng = RandomNumberGenerator.Create();

// use the RNG to populate the byte array with random data
x_rng.GetBytes(x_key_data);

// set the key value for the symmetrical algorithm
x_alg.Key = x_key_data;

Visual Basic .NET

' create an instance of the symmetric algorithm
Dim x_alg As SymmetricAlgorithm = SymmetricAlgorithm.Create("Rijndael")

' set the length of key that we want to create
x_alg.KeySize = 128

' we need to create an array of 16 bytes (16 bytes is 128 bits)
Dim x_key_data(15) As Byte

' create the RNG
Dim x_rng As RandomNumberGenerator = RandomNumberGenerator.Create()

' use the RNG to populate the byte array with random data
x_rng.GetBytes(x_key_data)

' set the key value for the symmetrical algorithm
x_alg.Key = x_key_data

17.2.1.3 Using a key-derivation protocol

The previous two approaches result in values that a user will find difficult to remember. Users tend to
prefer key values that have some meaning, but keys made up of proper words do not make ideal
cryptographic keys; they are more susceptible to brute force attacks, because not all key values are
equally likely when we are restricted to alphanumeric values listed in a dictionary.

A key-derivation protocol is a compromise between the need to create keys that are difficult to guess
and the need for users to remember the key values. This kind of protocol processes a password
selected by the user to create a cryptographic key. The user remembers the password, and types it in
(rather than a sequence of numeric values). The derivation protocol transforms the password into a
cryptographic key. The .NET Framework supports one key-derivation protocol, which is based on the
PKCS #5/PBKDF1 standard. We summarize the protocol, as follows:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Alice selects a password. The password can be made up of more than one word-for example,
"Programming .NET Security" would be acceptable as a password; though the word "password"
is used, "pass phrase" is more appropriate.

1.

Alice generates eight bytes of random data, known as the salt . The salt value is not secret, and
Alice can safely write it down. The benefit of adding random data to the password is that two
users who select the same password will end up with different cryptographic keys.

2.

Alice concatenates her password and the salt data together to form the data block.3.

Alice selects a hashing algorithm and creates a hash code for the data block.4.

For a specified number of iterations, Alice uses the hashing algorithm to create a new hash code,
using the previous hash code as the input. The first hash code is produced by hashing the data
block. The second hash code is produced by hashing the first hash code. The third hash code is
created by hashing the second hash code, and so on. It is common to perform 100 iterations.

5.

Alice uses the first n bytes of the final hash code to create a cryptographic key of 8n bits. For

example, if Alice selected the SHA-1 hashing algorithm, she will acquire a hash code that is 20
bytes long (because SHA-1 produces 160-bit hash codes). If Alice required a 128-bit key, she
will use the first 16 bytes of the hash code value.

6.

Key-derivation protocols are deterministic, meaning that they will always create the same
cryptographic key when supplied with specific password and salt values. Keys derived from passwords
are suitable for symmetric algorithms, but asymmetric algorithms require you to follow the
appropriate key-generation protocol to create new key pairs. Keys that are derived in this way are not
as secure as those created from random data, and the password should be chosen so that it is difficult
to guess.

Figure 17-4 illustrates the .NET Framework class hierarchy for derivation protocols. The
PasswordDerivedBytes class implements the protocol we described; the members of this class are

listed in Table 17-2 .

Figure 17-4. The .NET Framework class hierarchy for byte derivation
schemes

Table 17-2. PasswordDeriveBytes Members

Member Description

Properties

HashName
The name of the hashing algorithm to use; see Chapter 13 for details of the
supported algorithms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

IterationCount The number of iterations to perform to create the final hash code

Salt A byte array representing the salt data

Methods

GetBytes
Creates the final hash code and returns a number of bytes, specified as an
integer method argument

The following statements demonstrate how to use the PasswordDeriveBytes class to derive a key

using "Programming .NET Security" as the password; the password and the salt value are specified in
the class constructor:

C#

// create the random salt value
byte[] x_salt = new byte[8];
RandomNumberGenerator x_rand = RandomNumberGenerator.Create();
x_rand.GetBytes(x_salt);

// create the derivation protocol class
PasswordDeriveBytes x_pwd
 = new PasswordDeriveBytes("Programming .NET Security", x_salt);
// specify the number of iterations
x_pwd.IterationCount = 100;
// specify the hashing algorithm
x_pwd.HashName = "SHA1";

// create the key
byte[] x_key = x_pwd.GetBytes(16);

// write out the salt value
Console.Write("SALT: ");
foreach (byte b in x_salt) {
 Console.Write("{0:X2} ", b);
}
Console.WriteLine();

// write out the key value
Console.Write("KEY: ");
foreach (byte b in x_key) {
 Console.Write("{0:X2} ", b);
}
Console.WriteLine();

Visual Basic .NET

' create the random salt value
Dim x_salt(7) As Byte
Dim x_rand As RandomNumberGenerator = RandomNumberGenerator.Create()
x_rand.GetBytes(x_salt)

IterationCount The number of iterations to perform to create the final hash code

Salt A byte array representing the salt data

Methods

GetBytes
Creates the final hash code and returns a number of bytes, specified as an
integer method argument

The following statements demonstrate how to use the PasswordDeriveBytes class to derive a key

using "Programming .NET Security" as the password; the password and the salt value are specified in
the class constructor:

C#

// create the random salt value
byte[] x_salt = new byte[8];
RandomNumberGenerator x_rand = RandomNumberGenerator.Create();
x_rand.GetBytes(x_salt);

// create the derivation protocol class
PasswordDeriveBytes x_pwd
 = new PasswordDeriveBytes("Programming .NET Security", x_salt);
// specify the number of iterations
x_pwd.IterationCount = 100;
// specify the hashing algorithm
x_pwd.HashName = "SHA1";

// create the key
byte[] x_key = x_pwd.GetBytes(16);

// write out the salt value
Console.Write("SALT: ");
foreach (byte b in x_salt) {
 Console.Write("{0:X2} ", b);
}
Console.WriteLine();

// write out the key value
Console.Write("KEY: ");
foreach (byte b in x_key) {
 Console.Write("{0:X2} ", b);
}
Console.WriteLine();

Visual Basic .NET

' create the random salt value
Dim x_salt(7) As Byte
Dim x_rand As RandomNumberGenerator = RandomNumberGenerator.Create()
x_rand.GetBytes(x_salt)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' create the derivation protocol class
Dim x_pwd As PasswordDeriveBytes _
= New PasswordDeriveBytes("Programming .NET Security", x_salt)

' specify the number of iterations
x_pwd.IterationCount = 100
' specify the hashing algorithm
x_pwd.HashName = "SHA1"

' create the key
Dim x_key() As Byte = x_pwd.GetBytes(16)

' write out the salt value
Dim b As Byte
Console.Write("SALT: ")
For Each b In x_salt
 Console.Write("{0:X2} ", b)
Next
Console.WriteLine()

' write out the key value
Console.Write("KEY: ")
For Each b In x_key
 Console.Write("{0:X2} ", b)
Next
Console.WriteLine()

17.2.2 Using Key Persistence

The implementation classes for the DSA and RSA algorithms are wrappers around native code
contained in the Windows Crypto API. These classes expose a feature of this API that allows
asymmetric key pairs to be stored persistently by the operating system; the user does not have to
remember the key parameters, which are protected by the Windows account password.

Relying on the security of the Windows operating system to protect cryptographic key pairs is not
suitable for all projects; projects that require high levels of security are likely to be affected by the
relative ease with which a Windows password can be attacked. The full details of the Windows Crypto
API are beyond the scope of this book, but in this section, we briefly demonstrate how to use the .NET
classes to store key pairs persistently.

The System.Security.Cryptography.CspParameters class allows you to specify the details of how a

key pair should be stored-there are various options available, but for your purposes, you require
only a name to associate with the keys. The name relates to the key store , and you can use any
name that suits your needs; the following statements create an instance of the CspParameters class

and set the key store name to be MyKeys :

C#

// create the parameters instance
CspParameters x_params = new CspParameters();
// specify the container name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x_params.KeyContainerName = "MyKeys";

Visual Basic .NET

' create the parameters instance
Dim x_params As CspParameters = New CspParameters()
' specify the container name
x_params.KeyContainerName = "MyKeys"

Once you have created your CspParameters instance, you can use it as the argument to the
constructor of the algorithm implementation class. The final step is to set the PersistKeyInCsp
property to true , specifying that you want to store the algorithm's key pair persistently. The
following statements demonstrate how to create an instance of the RSACryptoServiceProvider class
using the CspParameters instance as an argument and set the PersistKeyInCsp property:

C#

// create an instance of the crypto provider class with the csp parameters
RSACryptoServiceProvider x_rsa = new RSACryptoServiceProvider(x_params);

// enable key persistence
x_rsa.PersistKeyInCsp = true;

Visual Basic .NET

' create an instance of the crypto provider class with the csp parameters
Dim x_rsa As RSACryptoServiceProvider = New RSACryptoServiceProvider(x_params)

' enable key persistence
x_rsa.PersistKeyInCsp = true

The asymmetric implementation classes will create a key pair automatically before performing any
cryptographic operations or exporting the key parameters. When the key pair is created, it will be
stored persistently and the user will not have to try and remember (or write down) the key details.
This technique can be used only with classes that build on functionality of the Windows Crypto API;
implementations from third-party companies may not provide this support.

17.2.3 Key Exchange Formatting

The .NET Framework includes classes specifically for exchanging session keys using asymmetric
encryption. The process for encrypting a key value is as follows:

Create a new instance of the appropriate symmetric algorithm class and create a new session
key.

1.

Create a new instance of an asymmetric algorithm class and import the public key that you wish
to use to encrypt the session key value.

2.

Create a new instance of a key exchange formatter and specify the asymmetric class created in
the previous step.

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

Encrypt the session key value using the key exchange formatter.4.

The formatter class is responsible for preparing the session key data prior to encryption with the
asymmetric algorithm. Figure 17-5 illustrates the .NET class hierarchy for key exchange formatter
classes. The .NET class library includes formatting classes for the RSA algorithm; the DSA algorithm is
not suitable for session key exchange since it does not support data encryption.

Figure 17-5. The .NET Framework class hierarchy for key exchange
formatting

Two formatting schemes are supported-the OAEP scheme is preferred. The second scheme, PKCS #1
v1.5, is included for compatibility with legacy systems. The formatting scheme is used to protect the
session key value from specific attacks; we implement the OAEP scheme in the Section 17.3 of this
chapter, but it is not essential that you understand the details of the formatting schemes available,
only that you know how to use them. Table 17-3 summarizes the members of the abstract
AsymmetricExchangeFormatter class.

Table 17-3. AsymmetricExchangeFormatter members

Member Description

Properties

SetKey
Sets the instance of the asymmetric algorithm implementation class to
encrypt the session key

CreateKeyExchange Encrypts a session key, expressed as an array of bytes

Methods

Parameters Returns the parameters of the key used to encrypt the session key

Example 17-1 statements demonstrate how to create and format a 128-bit Rijndael session key using
the RSA algorithm and the OAEP formatting scheme:

Example 17-1. bit Rijndael session key

C#

// create an instance of the Rijndael algorithm and
// specify 128-bits as the key length
Rijndael x_rijndael = Rijndael.Create();
x_rijndael.KeySize = 128;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// rely on the fact that the algorithm implementation
// class will create a new key to obtain the session value
byte[] x_session_key = x_rijndael.Key;

// create an instance of the RSA algorithm class
RSA x_rsa = new RSACryptoServiceProvider();

//
// ... specify public key to encrypt with
//

// create a new instance of the RSA OAEP formatter
RSAOAEPKeyExchangeFormatter x_formatter
 = new RSAOAEPKeyExchangeFormatter();

// specify the RSA instance we created as the one
// to use when encrypting the session key data
x_formatter.SetKey(x_rsa);

// encrypt the session key with the formatter
byte[] x_exchange_data = x_formatter.CreateKeyExchange(x_session_key);

// write out the encrypted data
foreach (byte b in x_exchange_data) {
 Console.Write("{0:X2} ", b);
}

Visual Basic .NET

' create an instance of the Rijndael algorithm and
' specify 128-bits as the key length
Dim x_rijndael As Rijndael = Rijndael.Create()
x_rijndael.KeySize = 128

' rely on the fact that the algorithm implementation
' class will create a new key to obtain the session value
Dim x_session_key() As Byte = x_rijndael.Key

' create an instance of the RSA algorithm class
Dim x_rsa As RSA = New RSACryptoServiceProvider()

'
' ... specify public key to encrypt with
'

' create a new instance of the RSA OAEP formatter
Dim x_formatter As RSAOAEPKeyExchangeFormatter = New RSAOAEPKeyExchangeFormatter()
' specify the RSA instance we created as the one
' to use when encrypting the session key data
x_formatter.SetKey(x_rsa)

' encrypt the session key with the formatter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim x_exchange_data() As Byte = x_formatter.CreateKeyExchange(x_session_key)

' write out the encrypted data
Dim b As Byte
For Each b In x_exchange_data
 Console.Write("{0:X2} ", b)
Next

The output below shows an example of the formatted exchange data; the data will change each time
the statements are executed, because a new session key will have been created at random by the
Rijndael class:

C5 3B 7F 1C 44 B9 DF 3C C6 7F 7E 18 3E E7 F9 15 2E 0C B3 2A EF EC 4C EF 45 1D 51
B8 CC D1 FB C8 7F 8B A8 4F 58 92 76 20 61 13 C1 A2 4E 06 50 9A E2 0E 97 34 8A C7
19 8C 21 59 67 30 3A 57 9A E3 B9 4C 5F 56 4F 10 54 1A 83 5B 45 1A 4F 39 A9 C4 64
C2 11 5C 82 6D E1 A9 F3 BD F3 79 87 EA 13 52 2B EF 5F 71 8B 82 08 F6 9D 57 88 43
42 AE 75 E4 DD B9 BD 52 0F DB CD 86 E7 D2 17 0F 2F DB BF A8

The output is sent to the person with whom you wish to exchange confidential messages. Notice that
the encrypted session key is much longer than the 20 bytes that make up the 128-bit Rijndael session
key; this is a result of the padding added to the session key during the formatting process; the
encrypted data is always the same length to prevent revealing the length of the session key to
eavesdroppers. Figure 17-6 illustrates the hierarchy for the classes that decrypt the exchange data
and restore the session key value by removing the formatting.

Figure 17-6. The .NET Framework class hierarchy for key exchange
deformatting

The process for decrypting a key value is as follows:

Create a new instance of an asymmetric algorithm class and import the private key that you
wish to use to decrypt the formatted exchange data.

1.

Create a new instance of a key exchange deformatter and specify the asymmetric class created
in the previous step.

2.

Decrypt the formatted exchange data using the key exchange deformatter.3.

Create a new instance of the appropriate symmetric algorithm class and set the session key.4.

Table 17-4 summarizes the members of the abstract AsymmetricExchangeDeformatter class.

Table 17-4. AsymmetricExchangeDeformatter members

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Properties

SetKey
Sets the instance of the asymmetric algorithm implementation class to
decrypt the exchange data

DecryptKeyExchange Decrypts exchange data, expressed as an array of bytes

Methods

Parameters Returns the parameters of the key used to decrypt the exchange data

The following statements demonstrate how to decrypt the exchange data from the previous example
to restore the session key:

C#

byte[] x_exchange_data = new byte[] {0xC5, 0x3B, 0x7F, 0x1C, 0x44, 0xB9, 0xDF,
 0x3C, 0xC6, 0x7F, 0x7E, 0x18, 0x3E, 0xE7, 0xF9, 0x15, 0x2E, 0x0C, 0xB3,
 0x2A, 0xEF, 0xEC, 0x4C, 0xEF, 0x45, 0x1D, 0x51, 0xB8, 0xCC, 0xD1, 0xFB,
 0xC8, 0x7F, 0x8B, 0xA8, 0x4F, 0x58, 0x92, 0x76, 0x20, 0x61, 0x13, 0xC1,
 0xA2, 0x4E, 0x06, 0x50, 0x9A, 0xE2, 0x0E, 0x97, 0x34, 0x8A, 0xC7, 0x19,
 0x8C, 0x21, 0x59, 0x67, 0x30, 0x3A, 0x57, 0x9A, 0xE3, 0xB9, 0x4C, 0x5F,
 0x56, 0x4F, 0x10, 0x54, 0x1A, 0x83, 0x5B, 0x45, 0x1A, 0x4F, 0x39, 0xA9,
 0xC4, 0x64, 0xC2, 0x11, 0x5C, 0x82, 0x6D, 0xE1, 0xA9, 0xF3, 0xBD, 0xF3,
 0x79, 0x87, 0xEA, 0x13, 0x52, 0x2B, 0xEF, 0x5F, 0x71, 0x8B, 0x82, 0x08,
 0xF6, 0x9D, 0x57, 0x88, 0x43, 0x42, 0xAE, 0x75, 0xE4, 0xDD, 0xB9, 0xBD,
 0x52, 0x0F, 0xDB, 0xCD, 0x86, 0xE7, 0xD2, 0x17, 0x0F, 0x2F, 0xDB, 0xBF,
 0xA8};

// create an instance of the RSA algorithm class
RSA x_rsa = new RSACryptoServiceProvider();

//
// ... specify private key to decrypt with
//

// create a new instance of the RSA OAEP deformatter
RSAOAEPKeyExchangeDeformatter x_deformatter
 = new RSAOAEPKeyExchangeDeformatter();

// specify the RSA instance we created as the one
// to use when encrypting the session key data
x_deformatter.SetKey(x_rsa);

// decrypt the exchange data with the deformatter to
// obtain the Rijndael session key
byte[] x_session_key = x_deformatter.DecryptKeyExchange(x_exchange_data);

// create an instance of the Rijndael algorithm
Rijndael x_rijndael = Rijndael.Create();
// set the session key

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x_rijndael.Key = x_session_key;

Visual Basic .NET

Dim x_exchange_data() As Byte = New Byte() {&HC5, &H3B, &H7F, &H1C, &H44, &HB9, _
&HDF, &H3C, &HC6, &H7F, &H7E, &H18, &H3E, &HE7, &HF9, &H15, &H2E, &HC, &HB3, _
&H2A, &HEF, &HEC, &H4C, &HEF, &H45, &H1D, &H51, &HB8, &HCC, &HD1, &HFB, _
&HC8, &H7F, &H8B, &HA8, &H4F, &H58, &H92, &H76, &H20, &H61, &H13, &HC1, _
&HA2, &H4E, &H6, &H50, &H9A, &HE2, &HE, &H97, &H34, &H8A, &HC7, &H19, _
&H8C, &H21, &H59, &H67, &H30, &H3A, &H57, &H9A, &HE3, &HB9, &H4C, &H5F, _
&H56, &H4F, &H10, &H54, &H1A, &H83, &H5B, &H45, &H1A, &H4F, &H39, &HA9, _
&HC4, &H64, &HC2, &H11, &H5C, &H82, &H6D, &HE1, &HA9, &HF3, &HBD, &HF3, _
&H79, &H87, &HEA, &H13, &H52, &H2B, &HEF, &H5F, &H71, &H8B, &H82, &H8, _
&HF6, &H9D, &H57, &H88, &H43, &H42, &HAE, &H75, &HE4, &HDD, &HB9, &HBD, _
&H52, &HF, &HDB, &HCD, &H86, &HE7, &HD2, &H17, &HF, &H2F, &HDB, &HBF, _
&HA8}

' create an instance of the RSA algorithm class
Dim x_rsa As RSA = New RSACryptoServiceProvider()

'
' ... specify private key to decrypt with
'

' create a new instance of the RSA OAEP deformatter
Dim x_deformatter As RSAOAEPKeyExchangeDeformatter _
= New RSAOAEPKeyExchangeDeformatter()
' specify the RSA instance we created as the one
' to use when encrypting the session key data
x_deformatter.SetKey(x_rsa)

' decrypt the exchange data with the deformatter to
' obtain the Rijndael session key
Dim x_session_key() As Byte = x_deformatter.DecryptKeyExchange(x_exchange_data)

' create an instance of the Rijndael algorithm
Dim x_rijndael As Rijndael = Rijndael.Create()
' set the session key
x_rijndael.Key = x_session_key

In Chapter 15 , we demonstrated that the RSA implementation class always prepares data by
applying either OAEP or PKCS #1 v1.5 formatting, making its functionality equivalent to using the
formatting classes discussed in this section. These classes define a generic approach to key exchange
that can be applied to all implementation classes, including those provided by third parties. In the
next section, we define the formatting classes for our ElGamal implementation, which does not format
data during encryption automatically.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.3 Extending the .NET Framework

In the following sections, we complete our implementation of the ElGamal algorithm by creating the
key exchange formatter and deformatter classes. We have only provided a C# implementation of the
ElGamal key exchange formatters. Like almost all encryption algorithms, ElGamal relies on
mathematical operations that are not possible in Visual Basic .NET without creating additional support
functions to compensate for the limited numeric support the language provides.

17.3.1 ElGamal Key Exchange Explained

Our implementation of the ElGamal encryption functions exposes the "raw" algorithm; that is, unlike
the Microsoft RSA implementation, our ElGamalManaged class does not format data prior to

encryption.

To provide support for session key exchange, we must provide classes that extend the
AsymmetricExchangeFormatter and AsymmetricExchangeDeformatter classes that we discussed in

the previous section. We have selected the OAEP formatting scheme for our key exchange; we have
listed the complete code for our formatting classes, which naturally includes the details of the OAEP
scheme. We do not discuss the details of OAEP, and you should refer to the PKCS #1 standard (which
defines both the OAEP and PKCS #1 v1.5 formatting schemes) for details.

17.3.2 Defining the Key Exchange Formatter

We begin by defining ElGamalOAEPKeyExchangeFormatter, which is our formatter class, extending
the AsymmetricKeyExchangeFormatter class that we discussed in the previous section:

using System;
using System.IO;
using System.Security.Cryptography;

public class ElGamalOAEPKeyExchangeFormatter : AsymmetricKeyExchangeFormatter {
 private ElGamalManaged o_algorithm;
 private Random o_random;
 private PKCS1MaskGenerationMethod o_mask_generator;

The constructor creates an instance of the ElGamal implementation class, ElGamalManaged. As you
see in the SetKey method, you can import the keys from any implementation class that extends the
abstract ElGamal class using the common parameter import and export methods. The other instance

variables are related to the OAEP formatting process:

 public ElGamalOAEPKeyExchangeFormatter() {
 // create the instance of the algorithm
 o_algorithm = new ElGamalManaged();
 // init the rnd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 o_random = new Random();
 // init the mask generator
 o_mask_generator = new PKCS1MaskGenerationMethod();
 }

The Parameters property returns the parameters of the public key that will be used to encrypt the
session key; we create the result by using the ToXmlString method defined in the
AsymmetricAlgorithm class (see Chapter 15 for details):

 public override string Parameters {
 get {
 return o_algorithm.ToXmlString(false);
 }
 }

The SetKey method allows the user to specify an instance of the ElGamal algorithm that should be
used for encryption; if the class is not an instance of our abstract ElGamal class, throw an exception;
otherwise, import the public key parameters into the ElGamal instance created by the constructor:

 public override void SetKey(AsymmetricAlgorithm p_key) {
 // encure that we are dealing with an ElGamal algorithm
 if (p_key is ElGamal) {
 // export the key and push it into the algorithm
 o_algorithm.ImportParameters(((ElGamal)p_key).ExportParameters(false));
 } else {
 // we can't continue because the algorithm
 // is the one for this class
 throw new ArgumentException("Key Algorithm is not ElGamal", "p_key");
 }
 }

The CreateKeyExchange method is responsible for formatting the session key and encrypting the
result using the ElGamal implementation class; there are two overloaded versions of this method, but

they are functionality equivalent, because the differentiating argument is not currently used by the
.NET Framework:

 public override byte[] CreateKeyExchange(byte[] p_byte, Type p_type) {
 // the Type parameter is not curently supported by the
 // .NET Framework, so we just need to work with the byte array
 return CreateKeyExchange(p_byte);
 }

 public override byte[] CreateKeyExchange(byte[] p_byte) {
 // create the OAEP padded data
 byte[] x_padded_data = CreateOAEPPaddedData(p_byte);
 // create the ciphertext from the padded data
 byte[] x_ciphertext = o_algorithm.EncryptData(x_padded_data);
 // return the ciphertext
 return x_ciphertext;
 }

The remaining methods in this class are responsible for applying the OAEP formatting, which is
outside the scope of this book:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // the lHash value which is the preamble to an OAEP block
 private byte[] o_lhash
 = new BigInteger("da39a3ee5e6b4b0d3255bfef95601890afd80709", 16).getBytes();

 private byte[] CreateOAEPPaddedData(byte[] p_data) {
 // create a memory stream to hold the padded data
 MemoryStream x_stream = new MemoryStream();

 // define K
 int x_K = o_algorithm.KeySize/8 -1;

 // determine the block size
 int x_max_bytes = x_K - (2 * o_lhash.Length) - 2;
 // determine how many complete blocks there are
 int x_complete_blocks = p_data.Length / x_max_bytes;

 // run through and process the complete blocks
 int i = 0;
 byte[] x_block;
 for (; i < x_complete_blocks; i++) {
 x_block = CreateSingleOAEPBlock(p_data, i * x_max_bytes,
 x_max_bytes, x_K);
 x_stream.Write(x_block, 0, x_block.Length);
 }

 // process any remaining data
 x_block = CreateSingleOAEPBlock(p_data, i * x_max_bytes,
 p_data.Length - (i * x_max_bytes), x_K);
 x_stream.Write(x_block, 0, x_block.Length);

 // return the padded data
 return x_stream.ToArray();
 }

 private byte[] CreateSingleOAEPBlock(byte[] p_data, int p_offset,
 int p_count, int p_K) {

 // b. Generate an octet string PS consisting of
 // k - mLen - 2hLen - 2 zero octets.
 // The length of PS may be zero.
 byte[] x_PS = new byte[p_K - p_count - (2*o_lhash.Length) -2];

 // c. Concatenate lHash, PS, a single octet with
 // hexadecimal value 0x01, and the message M to form a data
 // block DB of length k - hLen - 1 octets as
 // DB = lHash || PS || 0x01 || M .
 byte[] x_DB = new byte[o_lhash.Length + x_PS.Length + 1 + p_count];
 Array.Copy(o_lhash, 0, x_DB, 0, o_lhash.Length);
 Array.Copy(x_PS, 0, x_DB, o_lhash.Length, x_PS.Length);
 x_DB[o_lhash.Length + x_PS.Length] = 0x01;
 Array.Copy(p_data, p_offset, x_DB,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 o_lhash.Length + x_PS.Length + 1, p_count);

 // d. Generate a random octet string seed of length hLen
 BigInteger x_temp = new BigInteger();
 x_temp.genRandomBits(o_lhash.Length * 8, o_random);
 byte[] x_seed = x_temp.getBytes();

 // e. Let dbMask = MGF (seed, k - hLen - 1)
 byte[] x_dbMask = o_mask_generator.GenerateMask(x_seed,
 p_K - o_lhash.Length -1);

 // f. Let maskedDB = DB XOR dbMask.
 byte[] x_maskedDB = new byte[x_DB.Length];
 byte[] x_temp_arr =
 (new BigInteger(x_DB) ^ new BigInteger(x_dbMask)).getBytes();
 Array.Copy(x_temp_arr, 0, x_maskedDB,
 x_maskedDB.Length - x_temp_arr.Length, x_temp_arr.Length);

 // g. Let seedMask = MGF (maskedDB, hLen).
 byte[] x_seedMask = o_mask_generator.GenerateMask(x_maskedDB,
 o_lhash.Length);

 // h. Let maskedSeed = seed XOR seedMask.
 byte[] x_maskedSeed
 = (new BigInteger(x_seed) ^ new BigInteger(x_seedMask)).getBytes();

 // i. Concatenate a single octet with hexadecimal value 0x00, maskedSeed,
 // and maskedDB to form an encoded message EM of length k octets as
 // EM = 0x00 || maskedSeed || maskedDB
 byte[] x_EM = new byte[1 + o_lhash.Length + x_DB.Length];
 Array.Copy(x_maskedSeed, 0, x_EM, x_EM.Length - x_DB.Length
 - x_maskedSeed.Length, x_maskedSeed.Length);
 Array.Copy(x_maskedDB, 0, x_EM, x_EM.Length - x_maskedDB.Length,
 x_maskedDB.Length);

 // return the result
 return x_EM;
 }
}

17.3.3 Defining the Key Exchange Deformatter

To complete the ElGamal implementation, define the ElGamalOAEPKeyExchangeDeformatter class,
which decrypts the exchange data; this class extends the AsymmetricKeyExchangeDeformatter

class:

using System.Security.Cryptography;
using System.IO;
using System;

public class ElGamalOAEPKeyExchangeDeformatter : AsymmetricKeyExchangeDeformatter {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private ElGamalManaged o_algorithm;
 private PKCS1MaskGenerationMethod o_mask_generator;

The constructor creates an instance of the ElGamal implementation class, ElGamalManaged. As you
see in the SetKey method, you can import the keys from any implementation class that extends the
abstract ElGamal class using the common parameter import and export methods. The other instance

variables are related to the OAEP formatting process:

 public ElGamalOAEPKeyExchangeDeformatter() {
 // create the instance of the algorithm
 o_algorithm = new ElGamalManaged();
 // init the mask generator
 o_mask_generator = new PKCS1MaskGenerationMethod();
 }

 public override void SetKey(AsymmetricAlgorithm p_key) {
 // encure that we are dealing with an ElGamal algorithm
 if (p_key is ElGamal) {
 // export the key and push it into the algorithm
 o_algorithm.ImportParameters(((ElGamal)p_key).ExportParameters(true));
 } else {
 // we can't continue because the algorithm
 // is the one for this class
 throw new ArgumentException("Key Algorithm is not ElGamal", "p_key");
 }
 }

The Parameters property returns the parameters of the private key that will be used to decrypt the
exchange data; create the result by using the ToXmlString method defined in the
AsymmetricAlgorithm class (see Chapter 15 for details). Unlike the equivalent property in the

formatter class, the deformatter implementation must also import the key to use through the
Parameters property, which you do through the FromXmlString method:

 public override string Parameters {
 get {
 return o_algorithm.ToXmlString(true);
 }
 set {
 o_algorithm.FromXmlString(value);
 }
 }

 public override byte[] DecryptKeyExchange(byte[] p_byte) {
 // decrypt the ciphertext
 byte[] x_padded = o_algorithm.DecryptData(p_byte);
 // remove the OAEP padding
 byte[] x_plaintext = RestoreOAEPPaddedData(x_padded);
 // return the ciphertext
 return x_plaintext;
 }

The remaining methods in this class are responsible for removing the OAEP formatting, which is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

outside the scope of this book:

 // the lHash value which is the preamble to an OAEP block
 private byte[] o_lhash
 = new BigInteger("da39a3ee5e6b4b0d3255bfef95601890afd80709", 16).getBytes();

 private byte[] RestoreOAEPPaddedData(byte[] p_data) {
 // create a memory stream to hold the padded data
 MemoryStream x_stream = new MemoryStream();

 // define K
 int x_K = o_algorithm.KeySize/8 -1;

 // determine how many complete blocks there are
 int x_blocks = p_data.Length / x_K;

 // run through and process the blocks blocks
 byte[] x_block;
 for (int i = 0; i < x_blocks; i++) {
 x_block = RestoreSingleOAEPBlock(p_data, i * x_K, x_K, x_K);
 x_stream.Write(x_block, 0, x_block.Length);
 }

 // return the padded data
 return x_stream.ToArray();
 }

 private byte[] RestoreSingleOAEPBlock(byte[] p_data, int p_offset,
 int p_count, int p_K) {

 // b. Separate the encoded message EM into a single octet Y,
 // an octet string maskedSeed of length hLen, and an octet
 // string maskedDB of length k - hLen - 1
 // as EM = Y || maskedSeed || maskedDB
 byte[] x_maskedSeed = new byte[o_lhash.Length];
 Array.Copy(p_data, p_offset + 1, x_maskedSeed, 0, o_lhash.Length);
 byte[] x_maskedDB = new byte[p_K - o_lhash.Length -1];
 Array.Copy(p_data, p_offset + 1 + o_lhash.Length, x_maskedDB,
 0, x_maskedDB.Length);

 // c. Let seedMask = MGF (maskedDB, hLen).
 byte[] x_seedMask
 = o_mask_generator.GenerateMask(x_maskedDB, o_lhash.Length);

 // d. Let seed = maskedSeed XOR seedMask
 byte[] x_seed = (new BigInteger(x_maskedSeed)
 ^ new BigInteger(x_seedMask)).getBytes();

 // e. Let dbMask = MGF (seed, k - hLen - 1).
 byte[] x_dbMask
 = o_mask_generator.GenerateMask(x_seed, p_K - o_lhash.Length -1);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // f. Let DB = maskedDB XOR dbMask.
 byte[] x_DB = (new BigInteger(x_maskedDB)
 ^ new BigInteger(x_dbMask)).getBytes();

 // g. Separate DB into an octet string lHash' of length hLen, a
 // (possibly empty) padding string PS consisting of octets with
 // hexadecimal value 0x00, and a message M as
 // DB = lHash' || PS || 0x01 || M .
 // If there is no octet with hexadecimal value 0x01 to separate PS from M,
 // if lHash does not equal lHash', or if Y is nonzero,
 // output "decryption error" and stop.
 for (int i = 0; i < o_lhash.Length; i++) {
 if (x_DB[i] != o_lhash[i]) {
 throw new CryptographicException("Decryption Error");
 }
 }
 if (p_data[0] != 0) {
 throw new CryptographicException("Decryption Error");
 }
 // find the index representing the start of M
 int x_index = -1;
 for (int i = o_lhash.Length; i < x_DB.Length; i++) {
 if (x_DB[i] == 0x01) {
 // the next index is the start of M
 x_index = i + 1;
 break;
 } else if (x_DB[i] != (byte)0x00) {
 throw new CryptographicException("Decryption Error");
 }
 }
 if (x_index == -1) {
 throw new CryptographicException("Decryption Error");
 }

 // extract and return M
 byte[] x_message = new byte[x_DB.Length - x_index];
 Array.Copy(x_DB, x_index, x_message, 0, x_message.Length);
 return x_message;
 }

}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part IV: .NET Application Frameworks
Discusses other aspects of .NET Framework security not specifically related to runtime security
of cryptography. These include ASP.NET application security, integration with the security-
related features of Enterprise Services (COM+), and the use of the Windows Event Log for
recording security events:

Chapter 18

Chapter 19

Chapter 20

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 18. ASP.NET Application Security
This chapter discusses the features you can use to increase the security of your ASP.NET
applications. We discuss the overall issue of ASP.NET application security, and the mechanisms the
.NET Framework provides to provide authentication, authorization, and impersonation services to
ASP.NET applications. We then discuss the use of code-access security within ASP.NET hosted
environments. We do not attempt to teach you about ASP.NET programming-a vast topic that is well
beyond the scope of this book; we assume you already have experience developing with ASP.NET.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.1 ASP.NET Security Explained

Web applications and XML web services developed using ASP.NET are the means through which many
companies provide information and services to their customers and partners. The very nature of
these services demands that they be accessible-usually located at the edge of the corporate
network-and consequently reachable by anyone with an Internet connection. To be of value, these
services must be available and reliable, meaning that authorized people can use them when they
need to, without concern that the service will crash or behave unexpectedly. In addition, depending
on the service and the type of data it processes, there may be a requirement (or possibly a legal
obligation) for the service provider to ensure that the data produced by, or stored within, the service
remains secure and secret.

Unfortunately, the reachability of ASP.NET applications, coupled with their propensity to represent
useful, valuable, or at least mildly interesting functionality, means that ASP.NET applications are
more likely to be the target of security attack than other applications that you develop. These attacks
aim to bring down the service, change its functionality, or gain access to valuable data or services. In
addition, given that ASP.NET applications often represent one of the few points of presence a
company has on the Internet, attackers may try to use the ASP.NET application as a gateway
through which to gain access to the corporate network behind, which usually contains even more
valuable and useful information.

18.1.1 ASP.NET Security Overview

ASP.NET provides a framework that dramatically simplifies the development of web applications
(including XML web services) and provides a rich set of commonly required services that
programmers would otherwise have to implement themselves. These services include state
management, caching, and device-independent UI generation. From a security perspective, ASP.NET
provides services to support user authentication, authorization, and impersonation.

ASP.NET successfully abstracts the complex development issues associated with implementing many
of its shared services, and exposes them through a mixture of simple object models, configuration
settings, and declarative program statements. As such, implementing security in ASP.NET
applications is more an issue of configuration than programming.

Fortunately, despite the efforts to provide a simplified development model, ASP.NET remains flexible.
ASP.NET applications are .NET applications that run in the CLR. Programmers can still write ASP.NET
applications in both C# and Visual Basic .NET and have access to the full capabilities of the .NET class
library. This includes access to all of the security classes we discuss elsewhere in this book.

Because ASP.NET applications run in the CLR, they are constrained by the permissions granted to
them by CAS, which we discussed in Chapter 5 through Chapter 9. Initially, it may seem odd to use
CAS (usually aimed at controlling the action of mobile code) to control the actions of server-based
applications. However, if you have a server that hosts ASP.NET applications produced by different
companies, CAS will allow you to give each company the freedom to manage its own application,
while ensuring that the code it uploads cannot affect the host server or the applications of other
companies. In addition, should hackers manage to gain control of an application, their actions will be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constrained by the permissions assigned to the application by CAS, limiting the damage they can do.

18.1.2 ASP.NET Configuration Files

ASP.NET uses XML-based configuration files as a simple and convenient mechanism through which to
configure elements of application operation. This includes important security settings, such as the
user authentication mechanism to use and the code-access security policy to apply to an ASP.NET
application. We discuss all of these security settings later this chapter, but first it is important that
you understand how ASP.NET configuration files work.

ASP.NET implements a hierarchically configurationed file structure. As with all .NET applications, the
main source of configuration information is the machine.config file, which is located in the CONFIG
folder of the .NET Framework installation directory. The machine.config file provides a central location
in which you can implement configuration settings that apply to all ASP.NET applications running on
the machine.

Each folder in an ASP.NET application's virtual path can contain a configuration file named
Web.config, which provides configuration settings for the application resources located in that folder.
Child folders inherit the configuration of their parent folder, meaning that configuration settings
cascade down through an application's virtual folder hierarchy. However, child folders can also
contain their own Web.config; the settings contained in this file override those configured higher up in
the folder hierarchy.

The configuration file hierarchy is based on an application's virtual folder
structure, not its physical folder structure.

To illustrate the behavior of configuration files, consider the folder hierarchy in Figure 18-1, which
shows a fictitious representation of the web site http://www.oreilly.com. The site contains a virtual
folder named DotNetSecurity used to contain sample applications from a book. The samples are
divided by chapter, and below that, each sample application is in its own folder (App1, App2, and so
on); each application directory is configured as an IIS application root. Application roots play an
important role in ASP.NET application configuration; though Web.config files can appear anywhere in
the ASP.NET application folder hierarchy, there are many settings that cannot be applied below the
level of an application root folder.

Figure 18-1. ASP.NET configuration file hierarchy

http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Figure 18-1, the machine.config file resides at the top of the configuration hierarchy, and its
settings apply to all folders in the hierarchy below it unless they are overridden. The top-level
DotNetSecurity folder contains a Web.config file, which will apply to all resources in all of the folders
below it; this includes the Chapter17 and Chapter18 folders and all of their child folders. Both of the
App1 and App2 folders have their own Web.config files. The Info folder contains no Web.config file
and is subject to the configuration settings specified in the following configuration files:

machine.config

DotNetSecurity/Web.config

DotNetSecurity/Chapter18/App2/Web.config

ASP.NET detects and implements changes made to Web.config files
automatically; therefore there is no need to restart IIS or your computer in
order for changes to take effect.

18.1.2.1 ASP.NET security-related configuration elements

ASP.NET configuration files contain settings that affect many aspects of the ASP.NET application. We
list the most important security-related configuration elements in Table 18-1 along with a brief
description. Each of the configuration elements listed are children of the <system.web> element,
except for the <location> element, which is a direct child of the root <configuration> element. The

result is the structure shown in the following listing. For a complete list of all ASP.NET configuration
elements, consult the .NET Framework SDK documentation.

<configuration>
 <location/>
 <system.web>
 <authenticaiton/>
 <authorization/>
 <identity/>
 <machineKey/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <processModel/>
 <securityPolicy/>
 <trust/>
 </system.web>
</configuration>

Table 18-1. ASP.NET security-related configuration elements

Element Description

<authentication>

Controls which mechanism ASP.NET uses to authenticate users who try to use
the application. This element cannot be specified in Web.config files contained
in folders below the level of application root. See Section 18.3 later in this
chapter for details.

<authorization>
Controls the users and roles that can access application resources contained in
the folder. This element can be configured at any level of the configuration
hierarchy. See Section 18.4 later in this chapter for details.

<identity>

Controls whether an ASP.NET application process runs in the context of the
ASP.NET worker process, an authenticated user, or a user specified in the
configuration file. This element can be configured at any level of the
configuration hierarchy. See Section 18.5 later in this chapter for details.

<location>

Allows a configuration file to target settings at a specific resource or folder and
allows those settings to be locked so that they cannot be overridden by a
Web.config file further down the folder hierarchy. This element can be
configured at any level of the configuration hierarchy. We provide further
details on the use of this element in Section 18.1.2.2.

<machineKey>
Specifies the keys ASP.NET should use for the encryption and decryption of
forms-authentication and view-state data. This element cannot be specified in
Web.config files contained in folders below the level of an application root.

<processModel>

Controls many aspects of the behavior of the ASP.NET process, including the
maximum number of work threads to use, thread-idle timeout, and memory
limits. From a security perspective, this element allows you to configure the
user account under which the ASP.NET worker process executes. This element
can be configured only in the machine.config file. See Section 18.2 later in this
chapter for details.

<securityPolicy>

Defines a mapping between named security levels (trust levels) and policy
files. This element cannot be specified in Web.config files contained in folders
below the level of an application root. See Section 18.6 later in this chapter for
details.

<trust>
Configures the trust level assigned to the ASP.NET application. This element
cannot be specified in Web.config files contained in folders below the level of
an application root. See Section 18.6 later in this chapter for details.

18.1.2.2 Using <location> elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Normally, the configuration settings contained in a Web.config file apply to all of the resources
contained in the folder where the Web.config file is located, as well as all child folders. The
<location> element allows you to target configuration settings at a specific folder or resource.
Specify the target of the configuration settings in the <location> element's path attribute.

The <location> element is commonly used in conjunction with the <authorization> element to
control access to individual resources (we discuss the specifics of the <authorization> element in

Section 18.4 later in this chapter). In the following Web.config located in the DotNetSecurity folder in
Figure 18-1, we specify that only members of the Admins role can access the Chapter17 folder and
only members of the Developers role can access the Chapter18/App2/Main.aspx file. Notice that a
separate <location> element encapsulates each set of configuration settings.

The allowOverride = "false" attribute of the first <location> element means that the

configuration settings cannot be overridden in the Web.config files of child folders. This is a critical
feature in order to manage the security configuration of ASP.NET applications, especially in a hosted
environment where different companies have the ability to upload their own ASP.NET applications
and configuration files:

<configuration>
 <location path="Chapter17" allowOverride="false">
 <system.web>
 <authorization>
 <allow roles="Admins"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>
 <location path="Chapter18/App2/Main.aspx">
 <system.web>
 <authorization>
 <allow roles="Developers"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>
</configuration>

If you apply the allowOverride = "false" attribute setting to a <location> element that does not
specify a path, it will completely disable the ability for Web.config files in child folders to override any

configuration settings. For example:

<configuration>
 <location allowOverride="false"/>
</configuration>

You can use the <location> element to great effect to centralize your

application configuration information into a single file. For simple applications,
this can result in a more understandable and manageable application
configuration. However, we recommend doing this only if the number of
different locations is few, and the configuration information is relatively
straightforward. Otherwise, like all XML files, your configuration file can come
become long and confusing, making it difficult to read and work with.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.2 Configuring the ASP.NET Worker Process Identity

ASP.NET uses a pool of worker processes to handle ASP.NET application requests. By default, each
worker process executes in the context of a special Windows account named ASPNET. The ASPNET
account is created when the .NET Framework and ASP.NET are installed, and is assigned a limited set
of Windows privileges and permissions. Running ASP.NET applications with reduced permissions
ensures that the applications cannot access system resources that they should not and reduces the
risks posed by an application whose security has been compromised. See the .NET Framework SDK
documentation for specific details of the permissions and privileges assigned to the ASPNET account.

You can configure ASP.NET applications to run in the context of the
authenticated user making the request. See Section 18.5 later in this chapter
for details.

You can change the account under which ASP.NET worker processes run by configuring the userName
and password attributes of the <processModel> element, which is located in the machine.config file.

This change affects all ASP.NET applications running on the machine; it is not possible to change the
process identity for select applications.

Unlike changes to the Web.config files, ASP.NET does not detect and implement
changes made to the machine.config file automatically. You must restart both
the IIS Admin Service and the World Wide Web Publishing Service in order for
changes to the <processModel> element to take effect. You can restart these

services by running Control Panel Administration Tools Services.

ASP.NET provides two preconfigured values that you can assign to the userName attribute to control

the worker process identity:

Machine

This is the default value and runs the ASP.NET application as the ASPNET account.
System

This value causes the ASP.NET worker process to run as the same account under which IIS is
running; by default this will be the built-in Windows System account.

When using either of these settings, the value of the password attribute should be set to
AutoGenerate to avoid the necessity of specifying the true password. For example, the following

extract from the machine.config file configures the ASP.NET worker process to run as the same
account used by IIS:

<configuration>
 <processModel userName="System" password="AutoGenerate"/>
</configuration>

Alternately, you can specify the name of an account under which the worker process should run. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

userName attribute specifies the account name, and the password attribute contains the account's

password in clear text. The following extract from the machine.config file configures the ASP.NET
application process to run as the account "SomeUser," which has the password "secret":

<configuration>
 <processModel userName="SomeUser" password="secret"/>
</configuration>

The obvious downside of this approach is the presence of the plaintext username and password in the
configuration file. Although by default IIS and ASP.NET are configured not to serve .config files in
response to client requests, it is never good practice to list such information in plaintext.

To avoid the need to store plaintext usernames and passwords in your configuration files, store
encrypted versions of them in the Windows registry. In the configuration file, provide a reference to
the registry keys where the encrypted information is located, as shown in the following example:

<configuration>
 <processModel userName="registry:HKLM\Software\OReilly\AspNet,Name"
 password="registry:HKLM\Software\OReilly\AspNet,Password"/>
</configuration>

The registry: keyword signals to the configuration system that it should refer to the Windows

registry to obtain the necessary username and password details. Following the colon is the registry
key path, which must be part of the local machine (HKLM) hive. The final element (following the
comma) gives the name of the registry value where the information is located.

Microsoft provides a utility named Aspnet_setreg.exe that encrypts the username and password
values, and places them into the registry. Full details of how to obtain and use this tool are available
from MSDN by searching for Microsoft Knowledge Base Article number 329290.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.3 Authentication

ASP.NET supports four authentication modes: None, Windows, Forms, and Passport. Enable these
authentication modes using a combination of IIS administration, configuration settings, and code.
Configure different authentication modes for different ASP.NET applications using settings in your
application's Web.config file; however, you cannot configure authentication modes below the level of
an application root.

Understand that before a client request reaches your ASP.NET application, it must pass through IIS
authentication. The result of IIS authentication provides the input that drives the .NET authentication
mechanism. For the Windows authentication of ASP.NET, IIS authentication provides your application
with the information about the authenticated Windows user. However, for the None, Forms, and
Passport authentication modes, it is most likely that you will want to turn off IIS authentication by
enabling anonymous access to IIS.

Unless you enable impersonation (discussed in Section 18.5 later in this chapter), ASP.NET
authentication has no effect on the Windows user context under which your ASP.NET application
executes. Your application executes in the context of the ASP.NET worker process identity, which we
discussed in the previous section. ASP.NET authentication controls the identity and principal assigned
to your ASP.NET application. We introduced the concepts of identities and principals in Chapter 10
and showed how to use them to enforce role-based security.

In the following sections, we discuss each of the ASP.NET authentication modes, but first we
summarize the IIS authentication modes, which you must configure correctly to make ASP.NET
authentication and impersonation function.

18.3.1 Configuring IIS Authentication Modes

IIS supports a variety of authentication modes, which are configured through Internet Services
Manager. IIS allows you to configure authentication down to the individual file level, and enable
multiple authentication mechanisms simultaneously.

Enabling anonymous authentication means that IIS will not force a client to
authenticate regardless of whether other authentication mechanisms are
enabled. This is often a source of confusion and unexpected behavior. For any
other form of IIS authentication to work, you must disable anonymous
authentication.

To configure the IIS authentication mode for a folder or file, you must select it in Internet Service
Manager, open its properties window, and select the Directory Security tab. From the Anonymous
access and authentication control group on this tab, click the Edit button to open the Authentication
Methods window shown in Figure 18-2. Figure 18-2 shows the Authentication Methods window as it
appears for IIS Version 5.1 running on Windows XP Professional.

Figure 18-2. Configuring IIS authentication modes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Authentication Methods window allows you to configure four of the five authentication
mechanisms supported by IIS. Except for anonymous access, each method depends on a client
application providing credentials that IIS can map to a valid Windows user account. If the credentials
do not match a valid Windows account, IIS rejects the client request. This dependency on Windows
user accounts is the key factor you must consider when deciding to implement IIS authentication and
ASP.NET Windows authentication (which we discuss later in this section). For large-scale, web-based,
and cross-platform projects, depending on a Windows user accounts database may be inappropriate.
We summarize each of the IIS authentication mechanisms here:

Anonymous access

Anonymous access is more an absence of authentication than an authentication mechanism.
IIS accepts requests from any user and does not try to authenticate them. The User name and
Password boxes allow you to specify the credentials of a Windows account under which the
ASP.NET worker process runs if impersonation is enabled, which we discuss in Section 18.5
later in this chapter.

Basic authentication

When a client requests a resource protected by Basic authentication, IIS challenges the client
to provide a username and password. The client application responds by sending the username
and password details across the network in clear text, meaning that Basic authentication is
inappropriate for secure applications unless you use Secure Sockets Layer (SSL) or Transport
Layer Security (TLS) to provide a secure connection between your server and the client.

Digest authentication

Digest authentication operates in the same way as Basic authentication, but the client passes a
hash of the user's password across the network instead of the clear text password. This makes
Digest authentication more secure than Basic authentication but requires the IIS Server to be a
member of a Windows domain that uses Active Directory to contain its user accounts. Only

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Active Directory allows IIS to access a user's password in such a way as to allow IIS to verify
the hashed password provided by the client.

Integrated Windows authentication

When IIS challenges a client to provide user credentials, the client application does not prompt
the user for account information; instead, it extracts the necessary details from the operating
system based on the currently logged-on user. Credentials are communicated using Windows
authentication protocols, which ensure that passwords are not sent across the network.
However, the dependence on client-side Windows account information and Windows
authentication protocols limits the clients with which this type of authentication can be used.

Client Certificate authentication

Client Certificate authentication requires every client to have an X509 digital certificate. Each
certificate maps to a specific Windows user account. When a client makes a request, it contains
the client's certificate. IIS validates the certificate and determines which Windows user is
making the request. Unlike the other authentication mechanisms listed here, you do not
configure Client Certificate authentication using the interface shown in Figure 18-2. Compared
to the other authentication mechanisms, Client Certificate authentication requires significant
configuration and management to implement correctly; consult the IIS documentation for
details on how to configure Client Certificate authentication.

18.3.2 No Authentication

If you are not concerned about authenticating users, or intend to use some custom authentication
mechanism implemented within your ASP.NET application, you can turn off ASP.NET authentication
with the following configuration file setting:

<configuration>
 <system.web>
 <authentication mode="None">
 </system.web>
</configuration>

Even if you are not concerned about using ASP.NET authentication mechanisms, you can still enable
IIS authentication so that you can allow only permitted Windows users to access your application. To
allow truly unrestricted access to your application, enable anonymous access to IIS.

18.3.3 Windows Authentication

Windows authentication relies on IIS to authenticate any inbound requests using one of its built-in
Basic, Digest, Integrated, or Client Certificate Certificate authentication mechanisms before the
request reaches your ASP.NET application. As long as IIS anonymous authentication is not enabled,
IIS will ensure that the requesting user has a valid Windows account and pass the authenticated
user's information to the ASP.NET application.

With Windows authentication enabled, the ASP.NET application principal is set to an instance of
System.Security.Principal.WindowsPrincipal configured to represent the authenticated
Windows user. See Chapter 10 for details on how you can use the WindowsPrincipal object to

enforce role-based security within your ASP.NET application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To enable Windows authentication, configure the <authentication> element as shown in the

following example:

<configuration>
 <system.web>
 <authentication mode="Windows">
 </system.web>
</configuration>

18.3.4 Forms Authentication

Windows authentication requires users of your ASP.NET application to have Windows user accounts.
As we have mentioned, for large web-based and cross-platform applications, this may not be feasible
or desirable. Forms authentication allows you to implement a custom authentication mechanism
where you can authenticate users against any type of authority.

To use Forms authentication, you should enable IIS anonymous access. If you
do not have anonymous access enabled, IIS will force all clients to authenticate
using whatever mechanism is enabled prior to running the Forms
authentication mechanism; this is not normally the desired behavior.

Forms authentication relies on URL authorization to trigger the authentication process; we discuss
URL authorization in Section 18.4 later in this chapter. For now, it is enough to understand that
authorization controls the application resources an authenticated user is permitted to access. The
Forms authentication process works as follows:

The client requests a resource from your ASP.NET application for which you have configured
authorization checks-for example, the Main.aspx file.

1.

ASP.NET checks for an authentication cookie in the client request. If no cookie is found, the
client is redirected to an HTML page where they can enter their credentials-usually a username
and password.

2.

The user submits her credentials to your ASP.NET application, and you authenticate them
against whatever authority you have decided to use-commonly a database or directory server.

3.

If the user's credentials are valid, ASP.NET creates an authentication cookie and sends it back
to the client along with a redirection to the resource that she originally requested.

4.

In future requests, the authentication cookie will exist, and so ASP.NET will not redirect the
client to the authentication page, as long as the cookie has not expired.

5.

Although ASP.NET provides much of the infrastructure and a number of utility classes to simplify the
Forms authentication process, much of the implementation comes down to you. In the following
sections, we implement a simple Forms authentication mechanism to demonstrate the steps required.
The example consists of three files: Web.config, Logon.aspx, and Main.aspx.

To run the application, place each of these files in a folder accessible through IIS, and configure the
folder as an application root using Internet Service Manager. In the two .aspx pages, there are only
small sections of code, which we include inline instead of in code-behind files. In any but the most

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trivial of ASP.NET application, we recommend that you use code-behind modules to improve the
readability and maintainability of your application.

During the Forms authentication process, a user's credentials are sent over the
network in clear text. You must encrypt the underlying network
communications using SSL or TLS if you want to protect the user's credentials
during authentication.

18.3.4.1 Configuring Forms authentication

The first step in implementing Forms authentication is to configure your ASP.NET application. The
following Web.config file demonstrates each of the configuration elements that affect Forms
authentication:

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms name="ProgDotNetSecurity" loginUrl="Logon.aspx" protection="All"
 timeout="180" path="/" requireSSL="false" slidingExpiration="true">
 <credentials passwordFormat="Clear">
 <user name="Alice" password="secret1"/>
 <user name="Bob" password="secret2"/>
 <user name="Eve" password="secret3"/>
 </credentials>
 </forms>
 </authentication>
 <authorization>
 <deny users="?"/>
 </authorization>
 </system.web>
</configuration>

Most essential is the <authentication mode="Forms"> element, which is the main switch to tell
ASP.NET that you want to use Forms authentication. The child <forms> element configures some

aspects of the Forms authentication process and the structure of the authentication cookie that
ASP.NET will create. The most important attribute is loginUrl, which specifies the URL to where

ASP.NET will redirect an unauthenticated client request. We specify the Logon.aspx file, which will
reside in the same folder as this Web.config file and the rest of our sample application.

The <credentials> element and its child <user> elements provide a static authority against which

you can authenticate named users. In our example, we have defined three user accounts: Alice, Bob,
and Eve. Passwords for each account can be stored in clear text, as we have done in the example, or
hashed using either SHA-1 or MD5; the passwordFormat attribute of the <credentials> element
specifies the password format. Use of the <credentials> element is optional; though it is easy to

use and useful for testing purposes, it rarely provides a suitable solution for a secure production
system.

Table 18-2 lists the attributes of the <forms>, <credentials>, and <user> elements and describes

their purpose.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 18-2. Attributes of the forms, credentials, and user elements

Attribute Description

<forms> element
attributes

name
The name of the cookie your application uses for ASP.NET Forms
authentication. Defaults to .ASPXAUTH.

loginUrl
If no authentication cookie is found in a client request, the client is
redirected to the specified URL for authentication.

protection
Specifies the type of encryption to use for cookies. Possible values are All,
None, Encryption, and Validation.

timeout

An integer value that specifies the number of minutes after creation at
which the authentication cookie expires. If slidingExpiration is true,
timeout specifies the number of minutes from when the cookie was last
used before it expires. The timeout value affects only session cookies;

persistent cookies do not time out.

path
The path for the cookie. It is best to leave this as its default value (/) to
avoid the problem of browsers not correctly returning authentication
cookies due to case-mismatch issues.

requireSSL
Specifies whether a secure connection is required to transmit the
authentication cookie. Valid values are true and false.

slidingExpiration
Specifies whether sliding expiration is enabled, which resets an
authentication cookie's expiration time each time it is used. Valid values
are true and false.

<credentials>
element attributes

passwordFormat

Specifies the algorithm used to generate the hashed passwords listed for
any contained <user> elements. Possible values are Clear, MD5, and SHA1.
Clear means that passwords are listed in clear text; MD5 and SHA1 identify

the specific hashing algorithm used to encrypt the password. For a
complete description of hashing algorithms, see Chapter 13.

<user> element
attributes

name The user's name.

password

The user's password encoded using the mechanism specified in the
passwordFormat attribute of the enclosing <credentials> element. It is

important to understand that passwords encoded using the SHA-1 or MD5
hashing algorithms cannot be converted back to their original clear-text
password. For a complete description of hashing algorithms, see Chapter
13.

Also critical to the Forms authentication configuration is the <authorization> element, which lists

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the application resources that require authorization to access. The need for authorization is what
triggers ASP.NET to enforce Forms authentication. If a client tries to access an application resource
(SomeFile.aspx), for example, that does not require authorization; the client will not be required to
have an authentication cookie. We discuss the syntax of the <authorization> element in Section

18.4 later in this chapter. For now, it is enough to know that the configuration shown here means
that all anonymous users are denied access to all files; this requires all client request to have an
authentication cookie.

18.3.4.2 Creating the logon page

Following the configuration of our ASP.NET application, the next step is to create a login page. This is
the page where ASP.NET redirects all unauthenticated user requests. Remember that client requests
containing a valid authentication cookie are routed directly to the requested application resource;
only those without an authentication cookie are redirected to the login page.

In our Web.config file in the previous section, we used the loginUrl attribute of the <forms>

elements to specify that the name of our login page is Logon.aspx, and that it is located in the
application directory; Logon.aspx displays the interface shown in Figure 18-3.

Figure 18-3. Forms authentication logon page

The following code implements the Logon.aspx page; most of the code is responsible for drawing the
static interface elements. After the user enters his credentials and clicks on Logon, the Logon_Click

method executes. We have highlighted the two lines that perform the most crucial elements of the
Forms authentication:

C#

<html>

 <script language="C#" runat="server">
 void Logon_Click(Object sender, EventArgs e) {

 // Perform authentication of the user credentials.
 // Use the static FormsAuthentication.Authenticate method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // to authenticate the credentials against those contained
 // in the <credentials> element of Web.config.
 if (FormsAuthentication.Authenticate(Name.Text,Password.Text)) {

 // Credentials OK, redirect to originally requested page.
 FormsAuthentication.RedirectFromLoginPage(Name.Text,true);
 }
 }
 </script>

 <body>
 <h2>Forms Authentication Example - Logon Page</h2>
 <form id="LogonForm" method="post" runat="server">
 <table>
 <tr align="right">
 <td>User Name : </td>
 <td><asp:TextBox id="Name" runat="server"/></td>
 </tr>
 <tr align="right">
 <td>Password : </td>
 <td><asp:TextBox id="Password" runat="server"/></td>
 </tr>
 <tr align="center">
 <td colspan="2">
 <asp:Button id="Logon" runat="server" Text="Logon"
 OnClick="Logon_Click"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Visual Basic .NET

<html>

 <script language="vb" runat="server">
 Sub Logon_Click(ByVal sender As Object, ByVal e As EventArgs)

 ' Perform authentication of the user credentials.
 ' Use the static FormsAuthentication.Authenticate method
 ' to authenticate the credentials against those contained
 ' in the <credentials> element of Web.config.
 If FormsAuthentication.Authenticate(Name.Text,Password.Text) Then

 ' Credentials OK, redirect to originally requested page.
 FormsAuthentication.RedirectFromLoginPage(Name.Text, True)
 End If
 End Sub
 </script>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <body>
 <h2>Forms Authentication Example - Logon Page</h2>
 <form id="LogonForm" method="post" runat="server">
 <table>
 <tr align="right">
 <td>User Name : </td>
 <td><asp:TextBox id="Name" runat="server"/></td>
 </tr>
 <tr align="right">
 <td>Password : </td>
 <td><asp:TextBox id="Password" runat="server"/></td>
 </tr>
 <tr align="center">
 <td colspan="2">
 <asp:Button id="Logon" runat="server" Text="Logon"
 OnClick="Logon_Click"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

The first highlighted line calls the static FormsAuthentication.Authenticate method, which looks
at the users you have defined in the <credentials> element of our Web.config file. If the supplied
username and password match one of the listed user accounts, the Authenticate method returns
true, and you should authenticate the user. Note that you could use any mechanism at this point to
authenticate the user; we have used the Web.config <credentials> element for simplicity. It would

be more common to reference a database or directory to authenticate a user in most production
systems.

The System.Web.Security.FormsAuthentication class provides a set of

static helper members for use during the processing of Forms logon requests
and the management of authentication cookies. Refer to the .NET Framework
documentation for a complete description of available functionality.

The second highlighted line calls the static FormsAuthentication.RedirectFromLoginPage method

once you have authenticated the user's credentials successfully. The first argument to the
RedirectFromLoginPage method is the name of the authenticated user. This is stored in the

authentication cookie.

On future client requests, ASP.NET extracts the username from the authentication cookie and creates
a System.Web.Security.FormsIdentity object from it; FormsIdentity implements the
System.Security.Principal.IIdentity interface. ASP.NET places the FormsIdentity inside a
System.Security.Principal.GenericPrincipal object, which it assigns to the ASP.NET process.

The second argument to the RedirectFromLoginPage method is a Boolean, which specifies whether

the authentication cookie should be persisted or remain valid only for the session. In this instance,
we have specified true in order to persist the cookie.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3.4.3 Creating the protected page

The Web.config and Logon.aspx files are all that is required to implement simple Forms
authentication. With the configuration specified, any request for an ASP.NET application resource in
the application must contain a valid authentication cookie, or ASP.NET will redirect the request to the
Logon.aspx page.

To complete our example, we create a page named Main.aspx. The Main.aspx page presents the user
with the interface shown in Figure 18-4. It shows the identity represented by the current thread's
principal (accessed using System.Threading.Thread.CurrentPrincipal.Identity.Name) and the

Windows account under which the ASP.NET worker process is executing (accessed through
System.Security.Principal.WindowsIdentity.GetCurrent().Name).

Figure 18-4. Forms authentication protected page

Example 18-1 contains the code for Main.aspx. Most of the code implements the static user interface
elements or displays the user identity details when the page is first loaded. However, we have
included a Logout button to demonstrate how to terminate a client session:

Example 18-1. Main.aspx

C#

<html>

 <script language="C#" runat="server">
 void Page_Load(Object sender, EventArgs e) {

 // Initialize the Label values to show the Identity represented
 // by the current thread's Principal and Windows access token.
 Principal.Text =
 System.Threading.Thread.CurrentPrincipal.Identity.Name;
 Token.Text =
 System.Security.Principal.WindowsIdentity.GetCurrent().Name;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 void Logout_Click(Object sender, EventArgs e) {

 // Remove the cookie
 FormsAuthentication.SignOut();

 // Redirect back to logon page
 Response.Redirect("Main.aspx");
 }
 </script>

 <body>
 <h1>Principal and Access Token Values</h1>
 <form id="Form1" method="post" runat="server">
 <table>
 <tr>
 <td>PRINCIPAL [Thread.CurrentPrincipal.Identity.Name] :</td>
 <td><asp:Label id="Principal" runat="server"/></td>
 </tr>
 <tr>
 <td>TOKEN [WindowsIdentity.GetCurrent().Name] :</asp:Label></td>
 <td><asp:Label id="Token" runat="server"/></td>
 </tr>
 <tr align="center">
 <td colspan="2">
 <asp:Button id="Logout" runat="server" Text="Logout"
 OnCLick="Logout_Click"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

Visual Basic .NET

<html>

 <script language="vb" runat="server">
 Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)

 ' Initialize the Label values to show the Identity represented
 ' by the current thread's Principal and Windows access token.
 Principal.Text = _
 System.Threading.Thread.CurrentPrincipal.Identity.Name
 Token.Text = _
 System.Security.Principal.WindowsIdentity.GetCurrent().Name
 End Sub

 Sub Logout_Click(ByVal sender As Object, ByVal e As EventArgs)

 ' Remove the cookie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FormsAuthentication.SignOut()

 ' Redirect back to logon page
 Response.Redirect("Main.aspx")
 End Sub
 </script>

 <body>
 <h1>Principal and Access Token Values</h1>
 <form id="Form1" method="post" runat="server">
 <table>
 <tr>
 <td>PRINCIPAL [Thread.CurrentPrincipal.Identity.Name] :</td>
 <td><asp:Label id="Principal" runat="server"/></td>
 </tr>
 <tr>
 <td>TOKEN [WindowsIdentity.GetCurrent().Name] :</asp:Label></td>
 <td><asp:Label id="Token" runat="server"/></td>
 </tr>
 <tr align="center">
 <td colspan="2">
 <asp:Button id="Logout" runat="server" Text="Logout"
 OnCLick="Logout_Click"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

When the user clicks the Logout button, ASP.NET executes the Logout_Click method, which

contains two highlighted lines of code that constitute our logout functionality.

The first line calls the FormsAuthentication.SignOut method, which forces the deletion of the
client's authentication cookie. In the second line, we call the Response.Redirect method to redirect
the client back to the Main.aspx page. This causes the client to reload the current page, but because

the client no longer has a valid authentication cookie, ASP.NET redirects the request to the
Logon.aspx page for authentication.

18.3.5 Passport Authentication

Microsoft Passport .NET provides a suite of web-based services designed to centralize and simplify
Internet authentication and purchasing. ASP.NET Passport authentication uses the single-sign-in
(SSI) capabilities of Passport .NET to authenticate users requesting access to your ASP.NET
applications.

SSI allows a you to use a single username and password to access all services that participate in the
Passport .NET service. This frees you from having to remember multiple usernames and passwords,
or ensuring that they are kept the same on all sites. As more web sites adopt the use of Passport
.NET, the value of SSI will grow, making your web experience simpler and more pleasurable;
however, to date the uptake has been limited.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The requirements of implementing Passport authentication make a useable demonstration beyond
the scope of this book. You must install the Passport .NET SDK on your development machine, and
learn how to use it. Then you need to license the Passport .NET service to use it from your web site,
and you must have a publicly accessible domain name that the Passport .NET service can use to
communicate with your site. Finally, all of your users need to create Passport .NET accounts to
access your system. For further details on Microsoft Passport .NET, visit its home page at
http://www.passport.net.

[Team LiB]

http://www.passport.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.4 Authorization

Authorization controls whether an authenticated identity can access the resource it requested. There
are two authorization mechanisms provided by ASP.NET: File authorization and URL authorization.

18.4.1 File Authorization

File authorization is enforced automatically when you enable ASP.NET Windows authentication, and
cannot be disabled or configured. After IIS authenticates the user, but before ASP.NET hands the
request to your application for processing, ASP.NET checks to see whether the authenticated user has
the necessary NTFS permissions to access the requested resource. If she has permission, ASP.NET
will hand the request to your application for processing; otherwise, it will refuse the request.

Understand that the NTFS checks performed during File authorization are in addition to the normal
enforcement of NTFS file permissions performed during application execution. If your ASP.NET
application accesses files during execution, they are accessed in the context of the ASP.NET worker
process identity, or the identity of the authenticated Windows user if you have enabled
impersonation. If the active identity does not have the necessary NTFS permissions to access the file,
an error will occur, which your application must handle. See Section 18.5 later in this chapter for
details of how to enable impersonation.

18.4.2 URL Authorization

URL authorization is a convenient mechanism for controlling access to resources when you are not
using Windows authentication, although it can also be used to good effect at all times. While File
authorization is based on the NTFS permissions of an authenticated Windows account, URL
authorization is based on the principal (and identity) assigned to the application by the ASP.NET
authentication process. See Chapter 10 for details about identities and principals.

The URL authorization settings are contained in the configuration files of your ASP.NET application.
You can configure URL authorization at any level including individual files, by using the <location>

configuration element. URL authorization allows you to grant or deny access to resources based on
the identity and roles of the current principal. You can also restrict access based on the type of HTTP
action attempted, such as Get or Post.

To configure URL authorization, include an <authorization> element in your configuration file. The
<authorization> element can contain two types of child elements: <allow> grants access to
resources and <deny> denies access. Both the <allow> and <deny> elements require you to specify

one or both of the users and roles, and optionally the HTTP command (or verb) to which the element
applies. The following excerpt from a Web.config file provides examples of the <authorization>

element's use:

<configuration>
 <system.web>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <authorization>
 <deny users="?"/>
 <allow users="Alice,Bob"/>
 <deny users="Eve"/>
 <allow roles="Administrators, Managers, Developers"/>
 <deny verbs="POST" roles="Users"/>
 <allow verbs="GET" roles="Users"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</configuration>

When authorizing access to a resource, ASP.NET will only search until it finds the first <allow> or
<deny> element that applies to the current identity, and so the order of the elements is important. In

addition, authorization restrictions created lower down in the application hierarchy take precedence
over those defined higher up.

In the example, we use two special characters. The "?" character represents all unauthenticated
users, and so the first thing our example does is refuse access to anyone that has not been
authenticated. The second special character is "*", which represents all users; the last thing we do is
deny access to all users that have not been granted specific or denied permission by one of the other
settings.

By default, the machine.config file contains the following configuration, meaning that all users have
access to all files:

<authorization>
 <allow users="*"/>
</authorization>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.5 Impersonation

As we discussed earlier in Section 18.2, an ASP.NET application runs in the context of a specified user
account. By default, this is a special account named ASPNET, which has very restricted access to
system resources.

Impersonation allows an ASP.NET application to run in the context of the authenticated Windows user
that made the web request. This means that all server-side resources accessed by the ASP.NET
application occur in the context of the authenticated user. Although this complicates the task of
security administration because you must configure access to individual resources for individual users
or groups, it gives you fine-grained control over who accesses what resources.

To enable impersonation, add an <identity> element to the <system.web> element of your

configuration file, as shown here:

<configuration>
 <system.web>
 <identity impersonate="true"/>
 </system.web>
</configuration>

You can configure impersonation at any level of the configuration hierarchy, and you can configure it
differently for individual applications or application resources if desired.

If impersonation is enabled in conjunction with IIS anonymous authentication, the ASP.NET
application will impersonate the user account configured in IIS for anonymous access, by default the
IUSR_MACHINENAME user account. See Section 18.3.1 earlier in this chapter for details on
configuring anonymous authentication.

It is also possible to configure an ASP.NET application to impersonate a specific Windows user by
adding username and password attributes to the <identity> element, as shown here. You should

replace the "MACHINE" element of the username with the name of your computer, or the name of
the Windows domain to which the user account belongs:

<configuration>
 <system.web>
 <identity impersonate="true" userName="MACHINE\bob" password="test"/> </
system.web>
</configuration>

To avoid the inclusion of plaintext usernames and passwords in your configuration files, the
<identity> element allows you to store encrypted credentials in the Windows registry and reference
them from the <identity> element. This is the same as we described for the <processModel>

element earlier in this chapter; refer to Section 18.2 for details.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.6 ASP.NET and Code-Access Security

Although they present a simplified development model, ASP.NET applications are fully fledged .NET
applications that run on the CLR. ASP.NET pages and associated code-behind modules are compiled
into .NET assemblies prior to execution. As such, ASP.NET applications are subject to the runtime's
code-access security controls, which we discussed in Chapter 5 through Chapter 9. However,
ASP.NET applications represent a different application model than we focused on in those chapters.

With ASP.NET applications, you are not facing the problem of protecting your machines from highly
mobile code downloaded from a variety of untrusted and potentially questionable sources. Usually,
you are dealing with a smaller number of ASP.NET applications from known sources that are being
uploaded to a shared hosting server. Your primary concerns are ensuring that the ASP.NET
application code cannot tamper with the operation of the operating system, affect other hosted
applications, or gain undesired levels of access to internal network-based resources.

Under the default code-access security policy (which we discussed in Chapter 9), all ASP.NET
applications execute with full and unrestricted access, because they run from the local machine.
Given the concerns we have just outlined, this is clearly not acceptable. ASP.NET implements code-
access security in a way that allows the capabilities of each ASP.NET application to be constrained to
a safe and secure level.

To configure the code-access permissions for an ASP.NET application, use the <trust> configuration
element, which you can configure at the machine, site, or application level. The level attribute of the
<trust> element specifies the name of a predefined trust level to assign to the application. The .NET
Framework defines five standard trust levels: Full, High, Medium, Low, and Minimal.

Each named trust level maps to a policy level definition; we discussed policy levels in Chapter 8. Each
ASP.NET application runs in its own application domain, and the runtime applies the policy level
associated with the trust level to the application domain in which the ASP.NET application is running.
This has the effect of controlling the permissions granted to the ASP.NET application.

Table 18-3 lists the names of the standard trust levels and identifies the file that contains its policy
level definition. The files are all located in the CONFIG folder of the .NET Framework installation
directory. For a complete description of the permissions granted by each trust level, consult the .NET
Framework SDK documentation, or look at the contents of the policy file itself.

Table 18-3. ASP.NET trust levels and their policy file mappings

<trustLevel> Policy file

Full
This trust level does not map to an external policy file, but represents the standard
FullTrust named permission set described in Chapter 10.

High web_hightrust.config.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<trustLevel> Policy file

Medium web_mediumtrust.config.

Low web_lowtrust.config.

Minimal web_minimaltrust.config.

The following Web.config extract from the DotNetSecurity folder shown in Figure 18-1 configures
trust levels for two folders. In the first instance, we use the <location> element to configure a Low
trust level for the Chapter17 folder. Because we also specify allowOverride="false", all applications
below the Chapter17 folder have Low trust and cannot override the setting in their own Web.config

files; this is a common approach when hosting multiple applications.

In the second instance, we specify a Medium trust level, which affects all folders and applications

below the DotNetSecurity folder (except Chapter 17):

<configuration>
 <location path="Chapter17" allowOverride="false">
 <trust level="Low"/>
 </location>
 <system.web>
 <trust level="Medium"/>
 </system.web>
</configuration>

In addition to the standard trust levels defined in Table 18-3, you can define your own using the
<securityPolicy> and <trustLevel> configuration elements. The <securityPolicy> element can
be specified at the machine, site, or application level, and contains a set of <trustLevel> elements,

each defining a mapping between a trust level name and a security policy file.

The following Web.config example shows the definition of two new trust levels named BasicService
and PremiumService. Chapter 8 contains all the information you need to build a security policy

hierarchy that you can store to disk and assign to a custom ASP.NET trust level:

<configuration>
 <system.web>
 <securityPolicy>
 <trustLevel name="BasicService" policyFile="basic_svc.config"/>
 <trustLevel name="PremiumService" policyFile="premium_svc.config"/>
 </securityPolicy>
 </system.web>
</configuration>

[Team LiB]

Medium web_mediumtrust.config.

Low web_lowtrust.config.

Minimal web_minimaltrust.config.

The following Web.config extract from the DotNetSecurity folder shown in Figure 18-1 configures
trust levels for two folders. In the first instance, we use the <location> element to configure a Low
trust level for the Chapter17 folder. Because we also specify allowOverride="false", all applications
below the Chapter17 folder have Low trust and cannot override the setting in their own Web.config

files; this is a common approach when hosting multiple applications.

In the second instance, we specify a Medium trust level, which affects all folders and applications

below the DotNetSecurity folder (except Chapter 17):

<configuration>
 <location path="Chapter17" allowOverride="false">
 <trust level="Low"/>
 </location>
 <system.web>
 <trust level="Medium"/>
 </system.web>
</configuration>

In addition to the standard trust levels defined in Table 18-3, you can define your own using the
<securityPolicy> and <trustLevel> configuration elements. The <securityPolicy> element can
be specified at the machine, site, or application level, and contains a set of <trustLevel> elements,

each defining a mapping between a trust level name and a security policy file.

The following Web.config example shows the definition of two new trust levels named BasicService
and PremiumService. Chapter 8 contains all the information you need to build a security policy

hierarchy that you can store to disk and assign to a custom ASP.NET trust level:

<configuration>
 <system.web>
 <securityPolicy>
 <trustLevel name="BasicService" policyFile="basic_svc.config"/>
 <trustLevel name="PremiumService" policyFile="premium_svc.config"/>
 </securityPolicy>
 </system.web>
</configuration>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 19. COM+ Security
COM+ is a set of component services that assist programmers in building scalable and robust
enterprise applications. COM+ services include support for managing distributed transactions and
controlling the life cycle of software components. In this chapter, we discuss the COM+ security
services and explain how you can apply them to your COM+ components.

We assume that you have some experience using COM+, and are familiar with the basic design and
implementation of its component services. Aside from a brief definition of the terms we use, we
explain those aspects of COM+ that relate to security only. For more information, see COM and .NET
Component Services by Juval Löwy (O'Reilly) as well as the .NET SDK.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.1 COM+ Security Explained

A .NET class that uses COM+ services is called a serviced component or a configured class. A COM+
application consists of one or more serviced components, which are administered together; there is
no requirement for the components within a COM+ application to interoperate, although typically a
COM+ application comprises components that offer related functionality.

A serviced component makes functionality available to a client application by implementing one or
more interfaces. The client application creates a new instance of the component class and consumes
the functionality exposed by invoking the component members. The use of COM+ is not visible to the
client, which uses a serviced component in the same way as any other .NET class.

There are three types of COM+ application, illustrated by Figure 19-1, where the application type
affects the way in which instances of serviced components are created. We summarize the application
types as follows:

Library applications

This type of application creates new instances of serviced components within the process of the
client application; the client and the component reside on the same computer.

Server applications

This type of application creates new instances of serviced components in a separate process
than that of the client application but on the same computer. The client application invokes the
methods of the serviced component using a Remote Procedure Call (RPC).

Application proxies

An application proxy allows a client application to invoke the methods of a serviced component
on another computer. Method invocations are performed with a remote procedure call
transmitted across a network, although the client application is unaware that the serviced
component resides on another computer.

The type of application affects the COM+ security services that you can apply. COM+ security
consists of role-based security (RBS) and process-access security (PAS). RBS controls access to
components and their methods, and is applicable to all types of COM+ applications, irrespective of
the number of processes or computers involved. PAS is responsible for coordinating security between
different processes, and can be applied only to server applications and application proxies.

Figure 19-1. COM+ application types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.1.1 COM+ Role-Based Security

The most widely used aspect of COM+ security is RBS, which determines which clients may access
the functionality provided by a serviced component.

Access to a serviced component is based on the identity of the user account that is executing the
client application. COM+ applications define roles, which the system administrator assigns to
Windows user accounts. Roles can grant a user access to the entire component or to individual
methods within the component. Both the component developer and the system administrator create
COM+ roles and associate them with components or component methods, as shown in Figure 19-1.
We demonstrate how to define roles programmatically in Section 19.2 and how to use the COM+
administration tool in Section 19.3.

The roles used by COM+ RBS are independent of the user groups supported by
Windows. A system administrator must assign COM+ roles to user accounts
before they can access components protected by COM+ RBS. If access to a
serviced component requires a role, say Developers, then belonging to a
Windows user group called Developers will not grant an account access to the
component; the system administrator must explicitly assign membership of the
COM+ Developers role.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The COM+ RBS system acts as a "gatekeeper" between client applications and serviced components,
as illustrated in Figure 19-2. When a client application invokes a serviced component method, COM+
determines the identity of the user account executing the application, assesses which roles have been
assigned to the account, and permits or rejects the request based on the access granted by the
assigned roles. For example, if the user account "Alice" is executing an application that invokes a
method that requires the Developer role, COM+ RBS will grant access only if the system
administrator has assigned the required COM+ role to Alice's user account.

Figure 19-2. COM+ role-based security acts as a gateway between the
client and the serviced component

Although the programmer can define COM+ RBS roles, only the system administrator is able to
assign those roles to Windows user accounts; see Section 19.3 for more details.

COM+ RBS is independent of, and incompatible with, the .NET Framework role-
based security that we introduced in Chapter 10. You should use COM+ RBS
when writing serviced components and when writing applications that
interoperate with existing COM+ applications.

19.1.2 COM+ Process-Access Security

PAS applies to server applications and application proxies only; PAS is responsible for the trust
relationship established between the processes that contain the client application and the serviced
component. There are two aspects of PAS: authentication and impersonation.

19.1.2.1 Authentication

PAS authentication verifies the identity of clients trying to invoke serviced component methods; in
the previous section, we explained that COM+ RBS uses the client identity to grant access to serviced
components, and it is essential that we are able to identify a client accurately if we are to rely on
COM+ RBS.

In COM+ server applications and application proxies, the client and component reside in separate
processes; a malicious client could attempt to assume another identity in order to bypass role-based
security. COM+ PAS provides a range of authentication levels that you can select for your project; we
summarize these options below:

None

PAS does not verify the identity claims of the client when this option is used; this option offers
the least protection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Default

PAS uses the default machine configuration to select an authentication option; the None option
will never be selected.

Connect

The client presents evidence to support its stated identity, which PAS validates. All subsequent
communication is insecure.

Call

The headers of each call from the client are cryptographically signed, but no other data
exchanged between the client and component is protected, allowing the communications to be
tampered with.

Packet

This option is similar to Call, but the headers of each data packet are signed. This is the default
PAS authentication option for .NET serviced components.

Packet Integrity

Each packet of data sent between the client and the component is signed to prevent tampering.
Packet Privacy

Each packet of data sent between the client and the component is signed and encrypted to
prevent tampering and to ensure that the entire communication between the client and the
component remains confidential.

In general, the more security provided by an authentication option, the more system resources
required to perform the authentication checks. It is important to select an authentication option that
is appropriate for your project; always selecting the most secure option results in the needless
consumption of computer resources and places an unwarranted burden on client applications.

The authentication level used between the client and component processes depends on the
configuration of the client as well as the COM+ application. The client and the serviced component
declare their desired authentication options, and the most secure option is used; for example, if a
component is configured to request Packet Integrity and the client is configured to request Packet
Privacy, then Packet Privacy will be used.

In a COM+ library application, the issue of authentication does not arise; instances of a serviced
component are created within the same process as the client application, and the identity of the caller
is always known to be the owner of the client process.

19.1.2.2 Impersonation

It is common for serviced components to perform tasks on behalf of the account that executes the
client application. For example, consider a serviced component that defines a method to write a
record to a database. The client application calls the component method to write the record; the
component may need to connect to the database and write the new record using the account identity
to gain permission to write to the database and to create the audit trail correctly. When a component
adopts the identity of a client, it is impersonating the account identity. Figure 19-3 illustrates
impersonation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 19-3. A serviced component can impersonate a client account in
order to carry out tasks on behalf of the user

COM+ PAS defines several levels of impersonation, which we summarize in the following list:

Anonymous

The client is anonymous to the component, and no identity information is available (this level of
impersonation is available only when the client process and the component process reside on
the same computer).

Identify

Allows the server to identify the client and perform access checks using the client's access
token.

Impersonate

The component can impersonate the client identity to access resources on the local computer.
Delegate

This is the highest level of impersonation and allows the component to impersonate the client
identity to access network resources.

The level of impersonation is specified by the client application and is an expression of the level of
trust that the client has in the integrity of the component. When a client specifies the Anonymous
impersonation level, the component cannot access the client identity; when specifying the Delegate

impersonation level, a client must fully trust the integrity of the component, because it can act on
behalf of the user to perform any kind of task.

There is no direct .NET support for a client application to specify a COM+ PAS impersonation level; a
native method must be used-consult the Windows Platform API for full details. In the next section,
we demonstrate how a component can specify an impersonation level for when it communicates as a
client.

For a serviced component, the value of impersonation becomes apparent when invoking the methods
of another COM+ component, where the calling component becomes, in effect, a COM+ client
application. Under these circumstances, the calling component specifies an impersonation level to
define the level of trust that is granted to the called component. In the next section, we show you
how to use the ApplicationAccessControl attribute to set the impersonation level your component

will use when acting as a client of other COM+ components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.2 Programming COM+ Security

In this section, we explain how to configure COM+ security with .NET attributes; we do this by
creating and deploying an example serviced component. We demonstrate how to use COM+ RBS and
PAS to control access to a simple component that tracks software defects for an imaginary software
product called SecurityPro . In Section 19.3 , we demonstrate an alternative approach to configuring
COM+ security.

We begin by defining the IDefectTracker interface, which contains the three methods we use to

simulate defect tracking. We briefly describe the purpose of each interface method in the list below.
We are developing this component to demonstrate COM+ security, so we do not define types to
represent defects, or specify method arguments:

ViewAllDefects

Returns all of the pending defects for the product
CreateNewDefect

Creates a new record representing a pending defect
CloseDefect

Closes a defect and removes it from the pending list

The following statements define our simple IDefectTracker interface:

C#

using System;

public interface IDefectTracker {

 void ViewAllDefects();

 void CreateNewDefect();

 void CloseDefect();
}

Visual Basic .NET

Imports System

Public Interface IDefectTracker

 Sub ViewAllDefects()

 Sub CreateNewDefect()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Sub CloseDefect()

End Interface

In the following sections, we create a serviced component that implements the IDefectTracker

interface, and apply .NET attributes to configure COM+ RBS and PAS.

19.2.1 Creating the Serviced Component

A serviced component must inherit from the System.EnterpriseServices.ServicedComponent class

and must be a member of a strong-named assembly. The following statements list the
SecurityProTracker class, which extends ServicedComponent and implements the IDefectTracker

interface.

C#

using System;
using System.EnterpriseServices;

// Specify the file containing the key for assembly signing
[assembly: System.Reflection.AssemblyKeyFile("mykey.key")]

public class SecurityProTracker: ServicedComponent, IDefectTracker {

 public void ViewAllDefects() {}

 public void CreateNewDefect() {}

 public void CloseDefect() {}
}

Visual Basic .NET

Imports System
Imports System.EnterpriseServices

' Specify the file containing the key for assembly signing
<Assembly: System.Reflection.AssemblyKeyFile("mykey.key")>

Public Class SecurityProTracker
 Inherits ServicedComponent
 Implements IDefectTracker

 Public Sub ViewAllDefects() Implements IDefectTracker.ViewAllDefects
 End Sub

 Public Sub CreateNewDefect() Implements IDefectTracker.CreateNewDefect
 End Sub

 Public Sub CloseDefect() Implements IDefectTracker.CloseDefect
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Class

We do not discuss the members of the ServicedComponent class, which is

outside the scope of this book; it is sufficient to understand that classes must
extend ServicedComponent in order to be serviced components. Consult the

.NET Framework for full details.

The emphasized statements specify the file containing the cryptographic key we use to create the
strong name for our assembly; we create this file in Section 19.2.4 . See Chapter 2 for details of
assembly strong names. We have now satisfied the two requirements for COM+ serviced components,
and we can compile and install our serviced component without any further changes.

19.2.2 Specifying the COM+ Application Type

The System.EnterpriseServices.ApplicationActivation class is the first COM+ attribute we

apply, allowing us to specify whether we want a COM+ server or library application. This attribute
accepts a single parameter, which must be a value from the
System.EnterpriseServices.ActivationOption enumeration, the values of which are detailed in

Table 19-1 . Application proxies are created with the Component Services tool; consult the Windows
documentation for details.

Table 19-1. The enumeration values

Value Description

Library Specifies that serviced components are activated in the client application process

Server Specifies that serviced components are activated in a process provided by COM+

The emphasized statements in the code fragment below demonstrate the use of the
ApplicationActivation attribute to specify a COM+ server application for our example component:

C#

using System;
using System.EnterpriseServices;

// Specify the file containing the key for assembly signing
[assembly: System.Reflection.AssemblyKeyFile("mykey.key")]
// Specify that we want a COM+ Server application
[assembly: ApplicationActivation(ActivationOption.Server)]

public class SecurityProTracker: ServicedComponent, IDefectTracker {

Visual Basic .NET

Imports System
Imports System.EnterpriseServices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Specify the file containing the key for assembly signing
<Assembly: System.Reflection.AssemblyKeyFile("mykey.key")>
' Specify that we want a COM+ Server application
<Assembly: ApplicationActivation(ActivationOption.Server)>

Public Class SecurityProTracker
 Inherits ServicedComponent
 Implements IDefectTracker

19.2.3 Applying the Security Attributes

In this section, we demonstrate how to use COM+ RBS and PAS, both of which are configured using
.NET attributes from the System.EnterpriseServices namespace. COM+ security can be configured

programmatically, as demonstrated in this part of the chapter, or administratively, as discussed in
Section 19.3 . When applying .NET attributes to configure RBS and PAS, you must bear in mind that
the system administrator can change the security configuration for your components or even disable
security completely.

19.2.3.1 The ApplicationAccessControl attribute

The first security attribute to apply is ApplicationAccessControl , which acts as a master switch for

COM+ application security and allows you to specify your PAS authentication and impersonation
levels. This attribute is always applied to an assembly, because it affects the entire COM+ application.
The ApplicationAccessControl attribute defines four properties:

Value

This is the master switch for COM+ security and is applied at the application level. As we
explained at the start of this chapter, a COM+ application is made up of one or more serviced
components, and this value enables or disables RBS and PAS security for every component in
the application. If this property is set to false , then no validation of client identity will be

performed and no access control will be enforced.
AccessChecksLevel

This property accepts a value from the AccessChecksLevelOption enumeration, which defines
two values, detailed below. If the Value property is set to false , then this property has no

effect, since COM+ security is disabled.
Application

The Application value enables PAS only; client identity will be authenticated according to the
value of the ApplicationAccessControl attribute's Authentication property (see below), but

COM+ RBS is not enforced. This is the default used if no value is specified in the attribute
declaration.

ApplicationComponent

The ApplicationComponent value specifies that PAS and RBS will be enabled.
Authentication

The Authentication property accepts a value from the AuthenticationOption enumeration,

whose seven values refer to the authentication levels we discussed in Section 19.1.2 .
ImpersonationLevel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ImpersonationLevel property accepts a value from the ImpersonationLevelOption

enumeration, whose values refer to the impersonation levels we discussed in Section 19.1.2 .

The emphasized statements below show the use of the ApplicationAccessControl attribute for our

example component. We have enabled COM+ security, specified that we wish to use PAS and RBS,
and accepted the default levels for authentication and impersonation:

C#

using System;
using System.EnterpriseServices;

// Specify the file containing the key for assembly signing
[assembly: System.Reflection.AssemblyKeyFile("mykey.key")]
// Specify that we want a COM+ Server application
[assembly: ApplicationActivation(ActivationOption.Server)]

// Specify our application level security settings
[assembly: ApplicationAccessControl(
 // Enable COM+ Security
 Value=true,
 // Enable PAS and RBS
 AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent ,
 // Use the computer default values for authentication and impersonation
 Authentication=AuthenticationOption.Default,
 ImpersonationLevel=ImpersonationLevelOption.Identify)]

public class SecurityProTracker: ServicedComponent, IDefectTracker {

Visual Basic .NET

Imports System
Imports System.EnterpriseServices

' Specify the file containing the key for assembly signing
<Assembly: System.Reflection.AssemblyKeyFile("mykey.key")>
' Specify that we want a COM+ Server application
<Assembly: ApplicationActivation(ActivationOption.Server)>

' Specify our application level security settings
<Assembly: ApplicationAccessControl(_
 Value:=True, _
 AccessChecksLevel:=AccessChecksLevelOption.ApplicationComponent, _
 Authentication:=AuthenticationOption.Default, _
 ImpersonationLevel:=ImpersonationLevelOption.Identify)>

Public Class SecurityProTracker
 Inherits ServicedComponent
 Implements IDefectTracker

19.2.3.2 The ComponentAccessControl Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ComponentAccessControl attribute enables or disables COM+ security for an individual serviced
component. This attribute accepts a single argument, which is set to true (to enable COM+ security
for a component) or false (to disable COM+ access control for a component). The emphasized

statements below demonstrate how we apply this attribute to enable COM+ security for our
SecurityProTracker component:

C#

// Enable COM+ Security for this component
[ComponentAccessControl(true)]
public class SecurityProTracker: ServicedComponent, IDefectTracker {

Visual Basic .NET

'Enable COM+ Security for this component
<ComponentAccessControl(True)> _
Public Class SecurityProTracker
 Inherits ServicedComponent
 Implements IDefectTracker

You must apply this attribute to every component that requires security services within a COM+
application. The ComponentAccessControl attribute has no effect if the ApplicationAccessControl

attribute has disabled COM+ security at the application level.

19.2.3.3 The SecurityRole attribute

The SecurityRole attribute has a different affect depending on whether it is applied to an assembly,

an interface, a class, or a method. In this section, we define some roles for our example component
and use the SecurityRole attribute to apply COM+ RBS.

We define the following roles for our component. Figure 19-4 shows how we map these roles to the
methods implemented by the SecurityProTracker component:

User

The User role can see the list of defects, but is unable to create new defects or close existing
ones.

Tester

The Tester role is able to see the list of defects and to create new defects. Testers cannot close
existing defects.

Developer

The Developer role is able to see the list of defects, and close defects. Developers are not able
to create new defects.

Manager

The Manager role is able to view defects, create new defects and close defects.

Figure 19-4. Mapping roles to the SecurityProTracker component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the SecurityRole attribute role is applied to an assembly, it has the effect of defining the role

within the COM+ application; we shall see the effect of this in Section 19.3 . When used to define
roles in this way, the attribute defines the properties described by Table 19-2 .

Table 19-2. SecurityRole attribute properties

Property Description

Role Specifies the name of the property to define

Decription Describes the role

SetEveryoneAccess Adds the Windows Everyone group to the role

The SetEveryoneAccess property is worthy of special note; the SecurityRole can be applied to an

assembly to define roles for a COM+ application, but the system administrator is responsible for
assigning the COM+ roles to Windows user accounts. If the SetEveryoneAccess property is set to
true , the Windows Everyone group will be assigned the role and all users will be able to access the

methods protected by this role.

Use the SetEveryoneAccess property with care; it has the effect of assigning a

role to all users, which may negate the benefits of COM+ RBS.

The following statement demonstrates how to define the User role by applying the SecuityRole

attribute to an assembly, specifying a description and ensuring that the Everyone group is not
assigned the role:

C#

// Define the Users role
[assembly: SecurityRole("User",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Description="Users of the Security Pro product",
 SetEveryoneAccess=false)]

Visual Basic .NET

' Define the Users role
<Assembly: SecurityRole("User", _
 Description:="Users of the Security Pro product", _
 SetEveryoneAccess:=False)>

Applying the SecurityRole attribute to an assembly only defines the role and allows you to provide a

description; it does not grant the role access to the methods defined by an interface or component.
The emphasized statements below demonstrate how we define the roles for our example component:

C#

// Define the Users role
[assembly: SecurityRole("User",
 Description="Users of the Security Pro product",
 SetEveryoneAccess=false)]
// Define the Tester role
[assembly: SecurityRole("Tester",
 Description="Security Pro product testers",
 SetEveryoneAccess=false)]
// Define the Developer role
[assembly: SecurityRole("Developer",
 Description="Security Pro product developers",
 SetEveryoneAccess=false)]
// Define the Manager role
[assembly: SecurityRole("Manager",
 Description="Security Pro product managers",
 SetEveryoneAccess=false)]

// Enable COM+ Security for this component
[ComponentAccessControl(true)]
public class SecurityProTracker: ServicedComponent, IDefectTracker {

Visual Basic .NET

' Define the Users role
<Assembly: SecurityRole("User", _
 Description:="Users of the Security Pro product", _
 SetEveryoneAccess:=False)>
' Define the Tester role
<Assembly: SecurityRole("Tester", _
 Description:="Security Pro product testers", _
 SetEveryoneAccess:=False)>
' Define the Developer role
<Assembly: SecurityRole("Developer", _
 Description:="Security Pro product developers", _
 SetEveryoneAccess:=False)>
' Define the Manager role

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Assembly: SecurityRole("Manager", _
 Description:="Security Pro product managers", _
 SetEveryoneAccess:=False)>

'Enable COM+ Security for this component
<ComponentAccessControl(True)> _
Public Class SecurityProTracker
 Inherits ServicedComponent
 Implements IDefectTracker

When applied to a component, the SecureMethod attribute grants a role access to all of the methods

defined by a component. We want to grant the Manager role access to all of the methods defined by
our example component, and we will apply the SecurityRole attribute to the SecurityProTracker

class, as shown by the emphasized statements below:

C#

// Enable COM+ Security for this component
[ComponentAccessControl(true)]
// Grant the Manager role access to the component
[SecurityRole("Manager")]
public class SecurityProTracker: ServicedComponent, IDefectTracker {

Visual Basic .NET

<ComponentAccessControl(True), _
SecurityRole("Manager")> _
Public Class SecurityProTracker
 Inherits ServicedComponent
 Implements IDefectTracker

We can grant roles permission to access individual methods by applying the SecurityRole attribute

to individual methods in either the interface or the component class. If we apply the attribute to an
interface method, the role will be able to access the method in any component that implements the
interface. If we apply the SecurityRole attribute to a method in the component, the role is granted

access to that component only, and not other components that implement the same interface. We will
apply our access controls to the interface, as shown by the emphasized statements below:

C#

public interface IDefectTracker {

 [SecurityRole("User")]
 [SecurityRole("Tester")]
 [SecurityRole("Developer")]
 void ViewAllDefects();

 [SecurityRole("Tester")]
 void CreateNewDefect();

 [SecurityRole("Developer")]
 void CloseDefect();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Visual Basic .NET

Public Interface IDefectTracker

 <SecurityRole("User"), _
 SecurityRole("Tester"), _
 SecurityRole("Developer")> _
 Sub ViewAllDefects()

 <SecurityRole("Tester")> _
 Sub CreateNewDefect()

 <SecurityRole("Developer")> _
 Sub CloseDefect()

End Interface

When we apply multiple attributes, a user identity granted any of the specified roles will be granted
access. We cannot require an identity to be assigned multiple roles in order to access a method or
component.

19.2.3.4 The SecureMethod attribute

The final attribute to apply is SecureMethod , which enables per-method access control for a

component. Without this attribute, COM+ RBS will be applied on a component level only, and the role
protection we have assigned to the IDefectTracker interface will be ignored. The emphasized

statement below demonstrates how we apply this attribute to our example class; this attribute
defines no properties:

C#

// Enable COM+ Security for this component
[ComponentAccessControl(true)]
[SecureMethod]
// Grant the Manager role access to the component
[SecurityRole("Manager")]
public class SecurityProTracker: ServicedComponent, IDefectTracker {

Visual Basic .NET

<ComponentAccessControl(True), _
SecureMethod(), _
SecurityRole("Manager")> _
Public Class SecurityProTracker
 Inherits ServicedComponent
 Implements IDefectTracker

19.2.4 Compiling and Installing the COM+ Application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the previous section, we applied .NET attributes to configure COM+ RBS and PAS for a serviced
component. In this section, we compile our example component and show you how to install a COM+
application. Our first task is to create a code file containing the statements we introduced in the
previous section; we have listed the complete C# and Visual Basic .NET definitions of the example
component below, and we have saved these statements into a file called Tracker.cs (C#) (see
Example 19-1) or Tracker.vb (Visual Basic .NET) (see Example 19-2):

Example 19-1. Tracker.cs (C#)

using System;
using System.EnterpriseServices;

// Specify the file containing the key for assembly signing
[assembly: System.Reflection.AssemblyKeyFile("mykey.key")]
// Specify that we want a COM+ Server application
[assembly: ApplicationActivation(ActivationOption.Server)]
// Specify our application level security settings
[assembly: ApplicationAccessControl(
 // Enable COM+ Security
 Value=true,
 // Enable PAS and RBS
 AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent,
 // Use the computer default values for authentication and impersonation
 Authentication=AuthenticationOption.Default,
 ImpersonationLevel=ImpersonationLevelOption.Identify)]

// Define the Users role
[assembly: SecurityRole("User",
 Description="Users of the Security Pro product",
 SetEveryoneAccess=false)]
// Define the Tester role
[assembly: SecurityRole("Tester",
 Description="Security Pro product testers",
 SetEveryoneAccess=false)]
// Define the Developer role
[assembly: SecurityRole("Developer",
 Description="Security Pro product developers",
 SetEveryoneAccess=false)]
// Define the Manager role
[assembly: SecurityRole("Manager",
 Description="Security Pro product managers",
 SetEveryoneAccess=false)]

// Enable COM+ Security for this component
[ComponentAccessControl(true)]
[SecureMethod]
// Grant the Manager role access to the component
[SecurityRole("Manager")]
public class SecurityProTracker: ServicedComponent, IDefectTracker {

 public void ViewAllDefects() {}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void CreateNewDefect() {}

 public void CloseDefect() {}
}

public interface IDefectTracker {

 [SecurityRole("User")]
 [SecurityRole("Tester")]
 [SecurityRole("Developer")]
 void ViewAllDefects();

 [SecurityRole("Tester")]
 void CreateNewDefect();

 [SecurityRole("Developer")]
 void CloseDefect();
}

Example 19-2. Tracker.vb (VB.NET)

Imports System
Imports System.EnterpriseServices

' Specify the file containing the key for assembly signing
<Assembly: System.Reflection.AssemblyKeyFile("mykey.key")>
' Specify that we want a COM+ Server application
<Assembly: ApplicationActivation(ActivationOption.Server)>

' Specify our application level security settings
<Assembly: ApplicationAccessControl(_
 Value:=True, _
 AccessChecksLevel:=AccessChecksLevelOption.ApplicationComponent, _
 Authentication:=AuthenticationOption.Default, _
 ImpersonationLevel:=ImpersonationLevelOption.Identify)>

' Define the Users role
<Assembly: SecurityRole("User", _
 Description:="Users of the Security Pro product", _
 SetEveryoneAccess:=False)>
' Define the Tester role
<Assembly: SecurityRole("Tester", _
 Description:="Security Pro product testers", _
 SetEveryoneAccess:=False)>
' Define the Developer role
<Assembly: SecurityRole("Developer", _
 Description:="Security Pro product developers", _
 SetEveryoneAccess:=False)>
' Define the Manager role
<Assembly: SecurityRole("Manager", _
 Description:="Security Pro product managers", _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SetEveryoneAccess:=False)>

<ComponentAccessControl(True), _
SecureMethod(), _
SecurityRole("Manager")> _
Public Class SecurityProTracker
 Inherits ServicedComponent
 Implements IDefectTracker

 Public Sub ViewAllDefects() Implements IDefectTracker.ViewAllDefects
 End Sub

 Public Sub CreateNewDefect() Implements IDefectTracker.CreateNewDefect
 End Sub

 Public Sub CloseDefect() Implements IDefectTracker.CloseDefect
 End Sub

End Class

Public Interface IDefectTracker

 <SecurityRole("User"), _
 SecurityRole("Tester"), _
 SecurityRole("Developer")> _
 Sub ViewAllDefects()

 <SecurityRole("Tester")> _
 Sub CreateNewDefect()

 <SecurityRole("Developer")> _
 Sub CloseDefect()

End Interface

We need to create the cryptographic key file that we specified with the AssemblyKeyFile attribute.

We will create a test key pair for our example using the Strong Name Tool (sn.exe); consult Chapter
2 for details of signing assemblies. We assume that your DOS path includes the tools provided with
the .NET Framework SDK; consult the .NET documentation for instructions. The following statement
creates the key file we specified:

sn -k mykey.key

The following statements show how to compile the code file to create SecurityProTracker.dll , which is
a library assembly with a strong name:

C#

csc /target:library /out:SecurityProTracker.dll DefectTracker.cs

Visual Basic .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vbc /target:library /out:SecurityProTracker.dll /reference:System.EnterpriseServices.
dll DefectTracker.vb

Now that we have created an assembly containing our component, we can use the .NET Services
Installation tool (regsvcs.exe) to install the component on the local computer:

regsvcs SecurityProTracker.dll

The output from the .NET Services Installation tool is shown below:

Microsoft (R) .NET Framework Services Installation Utility Version 1.0.3705.288
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Installed Assembly:
 Assembly: C:\SecurityProTracker.dll
 Application: SecurityProTracker
 TypeLib: c:SecurityProTracker.tlb

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

19.3 Administering COM+ Security

In the previous section, we compiled and installed a COM+ application that contained our example
component. We used .NET attributes to specify the COM+ security settings, but we need to complete
the component configuration before the component can be used. In this section, we demonstrate how
to assign roles to Windows user accounts and then continue to demonstrate how the COM+
administration tool can be used as an alternative to .NET attributes or as a means to alter the
security configuration specified using attributes.

19.3.1 Viewing the COM+ Catalogue

The collection of COM+ applications installed on a computer is called the COM+ Catalogue. The
catalogue is administered with the Component Services tool, which is included in the Administrative
Tools section of the Windows Control Panels. Figure 19-5 shows the Component Services tool as it
appears when first started.

Figure 19-5. The Component Services tool

Expand the Component Services tree and drill down to the COM+ catalogue for the local computer;
Figure 19-6 shows the list of COM+ services for a standalone computer. The list of applications
includes our example application (called SecurityProTracker, named after the assembly we created)
as well as system applications that operate as part of Windows.

Figure 19-6. The COM+ catalogue

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.3.2 Populating COM+ Application Roles

Expand the SecurityProTracker item, and you will see details of the COM+ application that we

created in the previous section. The Component Services explorer provides information grouped into
Components, Legacy Components, and Roles. Expanding the Roles item lists the roles defined by the
application, as shown in Figure 19-7.

Figure 19-7. The roles associated with the SecurityProTracker COM+
application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You will see icons representing the roles that we specified with the SecurityRole attribute; these

roles are Developer, Manager, Tester, and User. You will also see another role, named
Marshaler-see the sidebar for details. The COM+ system processed the attributes from our assembly
to create these roles, but they are not yet assigned to user accounts, and so clients cannot access
our component. In this section, we demonstrate the simple process of assigning roles to user
accounts in order to complete the configuration of our example component.

The COM+ Marshaler Role

When you install a serviced component that uses the SecureMethod attribute, the COM+
system will automatically create the Marshaler role. The SecureMethod attribute indicates

that you wish to apply RBS access control on individual methods defined by the
component, so that, for example, users assigned the User role are able to access only the
ViewAllDefects method.

The problem this creates is that users with this role have not been granted permission to
create new instances of the component or to manage the disposal of component instances
(because the constructor and the methods of the IDispose interface are not exposed to

the Developer role).

When assigning a role that has been applied to individual methods, you should also assign
the Marshaler role. Assigning the Marshaler role to a user account grants that account
permission to create new instances of a component, and to call the methods defined by
the System.IDisposable, System.IManagedObject, and
System.EnterpriseServices.IServicedComponentInfo interfaces; in essence, assigning

this role confers the right to create and manage instances of a serviced component.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To assign a COM+ role to a user account, expand the role to reveal the Users item, and right-click to
display the menu shown in Figure 19-8.

Figure 19-8. Adding a new user to a COM+ role

Select the User item from the New menu to display the dialog box illustrated by Figure 19-9. Assign a
role by typing the name of the user account into the text box-you can specify multiple accounts by
separating the account names with a semi-colon. A useful feature is the ability to assign a role to a
Windows group, which is equivalent to assigning the role to all of the individual accounts contained
within the group. Figure 19-9 illustrates adding the users Tim, Tom, Tammy, and the group "QA
Group" to the COM+ Tester role.

Figure 19-9. The Select Users or Groups dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pressing the OK button in the Select Users or Groups dialog assigns the roles to the specified
accounts and groups; Figure 19-10 shows the effect of adding Tim, Tom, Tammy, and the QA Group
to the Tester role.

Figure 19-10. The accounts and groups assigned the COM+ Tester role

Windows accounts or groups that have been assigned roles granting access to
individual methods must also be granted the Marshaler account; see The COM+
Marshaler Role for details.

19.3.3 Assessing and Assigning Role Scope

You can see what access has been granted to individual roles by expanding the Components section
of the COM+ application display. Our example application contains the single component we created
earlier in the chapter; expanding this item shows the Interfaces and Subscriptions items. You can see
which roles have been granted access to the SecurityProTracker component by right-clicking on

the component icon, picking the Properties menu item, and selecting the Security tab, illustrated by
Figure 19-11.

Figure 19-11. The Security tab of the SecurityProTracker Properties
window

You will see that the Manager role is checked, meaning that user accounts assigned this role are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

permitted to access all of the members defined by the SecurityProTracker component. If you
expand the Interfaces item, you will see a list of the interfaces that the SecurityProTracker

component implements; most of these are created by the COM+ system automatically. Expanding
the IDefectTracker item lists the individual methods defined by our functional interface, shown by

Figure 19-12.

Figure 19-12. The list of methods defined by an interface implemented by
the serviced component

You can see which roles are granted access to a specific method by right-clicking on a method icon,
selecting the Properties menu item and choosing the Security tab from the properties window; Figure
19-13 shows the roles granted access to the ViewAllDefects method.

Figure 19-13. Roles assigned to the ViewAllDefects method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You will see that the Developer, Tester, and User roles are checked, indicating that they are granted
explicit access to this method, which is in accordance with our application of the SecurityRole

attribute earlier in the chapter. The Manager role is listed in the Roles inherited by selected items(s)
section, because the role was assigned to a parent object-in this case, to the component itself,
which has the effect of implicitly granting access to all of the members defined by the interfaces it
implements.

You can change the role configuration for a component by adding or removing check marks from the
Security property page. For example, if you were to uncheck the Tester role for the ViewAllDefetcs

method, the Tester role would have no access to any of the methods defined by the
SecurityProTracker component, because the ViewAllDefects method was the only one to which

you applied the Tester role.

COM+ allows both the component developer and the system administrator to manage the scope and
application of RBS. In effect, this means that the configuration provided by the component developer
provides an "out of the box" baseline configuration, which can be adapted to provide a customized
configuration by the system administrator. It falls to the component developer to provide clear
documentation explaining the baseline configuration and the effect of altering it. It falls to the system
administrator to read this documentation and consider carefully the impact of making changes to the
RBS configuration.

19.3.4 Managing COM+ Security

In the final section of this chapter, we will show you how the configuration options supported by the
Component Services tool equate to the .NET attributes we used in Section 19.2.3.

19.3.4.1 Managing the application

Figure 19-14 illustrates the Security properties for our COM+ application example, which you can
view by right-clicking on the application icon, choosing the Properties menu item, and clicking on the
Security tab. These properties specify the settings for the security of the entire COM+ application,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which applies to all of the components in the application. The options displayed in this window are
equivalent to the functionality provided by the ApplicationAccessControl attribute.

Figure 19-14. The Security Properties Page for the SecurityProTracker
Application

The Enforce access checks for this application check box (indicated by the number 1 in Figure 19-14),
enabling and disabling RBS and PAS at the application level, equivalent to the Value property; bear

in mind that access controls must also be enabled individually for the components within the
application. The Security Level radio buttons (indicated by the number 2 in Figure 19-14) specify
whether PAS or PAS and RBS will be enabled for the application; this is equivalent to the
AccessChecksLevel property.

The Authentication Level for Calls and Impersonation Level combination boxes (indicated by the
numbers 3 and 4 in Figure 19-14) are equivalent to the Authentication and ImpersonationLevel
properties; the drop-down list contains the definitions represented by the AuthenticationOption
and ImpersonationLevelOption enumerations.

19.3.4.2 Managing the component

Figure 19-15 illustrates the security properties for our serviced component, which you can obtain by
right-clicking on the component icon, choosing the Properties menu item, and clicking on the Security
tab. These properties specify the security settings for the component, and each component within a
COM+ application can be configured individually.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 19-15. The Security Properties page for the component

The Enforce component level access checks (indicated by the number 1 in Figure 19-15) enables RBS
for the selected component and is equivalent to the ComponentAccessControl attribute that we
applied to the SecurityProTracker class. If this checkbox is not checked, then RBS will not be

applied to this component, irrespective of the application-wide setting.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 20. The Event Log Service
The Event Log Service (ELS) is a component of the Windows operating system used to record and
monitor significant events in a common and unified way. We begin this chapter by discussing the
overall design of the ELS and then proceed to demonstrate how to use the ELS in your programs. The
.NET Framework does not support the full functionality of the ELS, and while complete coverage of
the ELS functionality is beyond the scope of this book, we do provide enough detail for you to
understand the .NET ELS support; consult the Windows API documentation for complete coverage of
the ELS.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.1 The Event Log Service Explained

In this section, we discuss the overall structure of the ELS and introduce three important elements of
its design: event logs, event sources, and events. The principal security aspect of the ELS is as the
means to audit Windows security events, for which .NET unfortunately does not provide good
support. However, the ELS is an important tool that you should use within your own projects to
record important application events.

20.1.1 Event Logs

The ELS defines a common format for storing events persistently in log files. The details of the file
format and the location of the file on disk are not important to the programmer; the ELS acts as a
broker between the source of an event (an application, device driver, etc.) and the log file in which
the event is written. The ELS supports three default event logs, each of which has a specific purpose:

The System log

The System log records significant events that occur within components of the operating
system (for example, a failure within a device driver).

The Application log

The Application log records events from applications (for example, an unexpected application
failure).

The Security log

The Security log provides a record of audited security activity (for example, accessing a
protected file).

Additional logs may supplement the three default logs, depending on the configuration of the
Windows computer; for example, a computer configured as a Domain Name System (DNS) server
will have a DNS Server log. Windows domain controllers will have two additional logs: Directory
Service and File Replication Service. Programmers can also create custom logs that store events from
only their applications or system components; we show you how to create custom logs in Section
20.2.5 later in this chapter.

One of the most useful features of the ELS is the ability to route events over the network for storage
by the ELS running on a remote computer, as illustrated in Figure 20-1. This feature allows you to
collate related events in a single location by designating a log server to store events on behalf of a
group of computers, typically performing related tasks. This collation allows you to look for patterns
of events that may not be visible if the events were stored locally on each computer. Event collation
is especially useful for the Application log, where events that may not be significant on their own (for
example, an application process terminates unexpectedly) may take on a greater meaning when seen
alongside other events (perhaps the unexpected termination indicates a coordinated attack against a
group of related computers).

Figure 20-1. Event sources can use the ELS to write events to logs that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are stored locally or on another computer

Access to the event logs is restricted based on the account under which an application is running.
Table 20-1 summarizes the restrictions for the Application and System logs. The LocalSystem

account is used by Windows Services; consult the Windows documentation for more details.

Table 20-1. Account restrictions for the Application and System logs

Event Log Account Read events Write events Clear events

Application LocalSystem

 Administrator

 Domain administrators

 All other accounts

System LocalSystem

 Administrator

 Domain Administrators

 All other accounts

The Security log is a special case. Only operating system components can write events to this log
based on a security audit policy. Applications can read and clear events from the Security log only
when running under an account granted the "Manage Auditing and Security Log" user right; consult
the Windows documentation for details of security and auditing configuration.

20.1.2 Event Sources

An application must register an event source before using the ELS to record events. The ELS writes
the name of the event source to the event log as part of the event. Applications typically specify their
name or the name of an application component as the event source value. We demonstrate how to
create an event source in Section 20.2.2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each event source is associated with a single event log, but applications can register and use more
than one event source if they wish to write events to several logs; it is also possible to register
multiple event sources that are associated with a single event log to create events with different
event source values. Figure 20-2 illustrates how an application can register event sources to be
associated with several logs.

Figure 20-2. Applications can create several event sources in order to
write events to more than one log file

Event sources are persistent, which means that once an application has registered an event source
with the ELS, it is associated with the specified log file until the event source is deleted explicitly. We
demonstrate how to create and delete event sources in Section 20.2.

Registering an event source does not provide exclusive use, and because each event source is
associated with a specific event log, you must ensure that the event sources you use are configured
as you expect. Figure 20-3 illustrates what can happen if two applications write events using the
same event source. Application #1 has registered an event source and has specified that it should be
associated with a custom log that is intended solely for that application's events. Application #2 uses
the same event source name, and events intended for the Application event log are inadvertently
routed to Application #1's custom log. See Section 20.2.2 for details of how to check the
configuration of an event source.

Figure 20-3. Registering an event source does not guarantee exclusive
access to the registered name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Event sources provide functionality not supported in the .NET Framework; for
the purposes of this book, an event source is simply a name that is associated
with a specific log file. Consult the Windows API reference for full details of
event source features.

20.1.3 Event Structure

The ELS uses a standardized structure to represent all events, irrespective of the log in which the
event will be stored. Figure 20-4 shows the part of the event structure exposed by the .NET
Framework; we provide a brief explanation of each structural element in the following sections.

Figure 20-4. The structure of an event exposed by the .NET Framework

20.1.3.1 Event source name

This is the name of the event source used to log the event. As we explained in the previous section,
applications can register multiple event sources.

20.1.3.2 Message

The message component is a human-readable description of the event, which may be of use when
trying to determine the cause of a problem. We recommend that descriptions should be clearly
phrased and to the point, and should not contain overly technical terms; consider using the binary
data portion of an event to include detailed information about the reasons leading to the occurrence
of an event.

20.1.3.3 Event type

The ELS defines a set of event types, which we summarize in Table 20-2; the event type indicates
the severity of the issue that the event represents.

Table 20-2. Event types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Event
Type

Description

Error
Error events represent significant problems that the user or administrator should
know about immediately. Errors usually indicate a loss of data or significant
impairment of functionality.

Warning

A warning indicates a problem that is not significant in the short term, but which may
result in future problems. For example, an application may indicate that a disk is low
on space-the application can still write data to the disk, but if no action is taken, the
disk will fill and the application will fail.

Information
Information events reflect infrequent operations that have completed successfully. For
example, services may record that they have started successfully.

Success
audit

Success audit events are security events that occur when an audited access attempt
is successful. For example, a successful logon attempt is a success audit event.

Failure
audit

Failure audit events are security events that occur when an audited access attempt
fails. For example, a failed attempt to open a file is a failure audit event.

20.1.3.4 Event identifier and event category

The event identifier and category are application-specific numeric values. Applications can provide
message files that provide human-readable explanations of the event, and the reasons leading to the
event occurring; however, the .NET Framework does not support this functionality. Consult the
Windows API for details of how to use message files.

20.1.3.5 Binary data

The event may contain binary data that is of use to someone trying to resolve the problem that
caused this event to occur. The ELS does not interpret the data, and the content is dependent upon
the application; there are no standardized formats or tools available to assist with the analysis of this
data.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

20.2 Programming the Event Log Service

The .NET Framework exposes ELS functionality through the System.Diagnotics.EventLog class;
Table 20-3 summarizes the public members of the EventLog class.

Table 20-3. Public members of the EventLog class

Member Description

Properties

EnableRaisingEvents
Gets or sets a value indicating whether the EventLog instance receives
EventWritten event notifications. See Section 20.2.6 for details.

Entries Returns the contents of the event log.

Log Gets or sets the name of the event log to read from and write to.

LogDisplayName Gets the user-friendly name of the event log.

MachineName Gets or sets the name of the computer on which to read or write events.

Source
Gets or sets the name of the event source used to write events to the
log.

Methods

Clear Removes all of the event entries from an event log.

CreateEventSource Registers a new event source.

Delete Deletes a specified event log from the ELS.

DeleteEventSource Removes the registration for an event source.

Exists Determines if a specified event log exists.

GetEventLogs
Obtains an EventLog array representing all of the event logs on the local

or a remote computer. See Section 20.2.1 for details.

LogNameFromSourceName
Returns the name of the event log with which a specific event source is
associated.

SourceExists Determines if a specific event source has been registered with the ELS.

WriteEntry Writes an event to the log. See Section 20.2.4 for details.

EntryWritten
An event that occurs when an event is written to an event log. See
Section 20.2.6 for details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the following sections, we demonstrate how to use the EventLog class to program the ELS. The
EventLog class does not expose all of the ELS functionality, and some advanced features are not

available. You must use the unmanaged Windows API to gain access to the complete ELS feature set;
see the Windows API documentation for details.

Your code must be granted the EventLog permission in order to access the

Event Log Service; see Chapter 7 for details of how to use permissions.

Many of the examples that follow demonstrate how to program the ELS of a remote computer. This
functionality requires that a trust relationship is established; consult the Windows documentation for
details of how to perform this task.

20.2.1 Querying the Event Log System

The EventLog class defines members that query the ELS for information about event logs. The static
GetEventLogs method returns all of the event logs on a specified computer, represented as an array
of EventLog instances. The following statements demonstrate how to use this method to obtain a list

of event log names on the local computer:

C#

// get the event logs installed on the local machine
EventLog[] x_logs = EventLog.GetEventLogs();

// run through the array of event logs and print out the names
foreach (EventLog x_log in x_logs) {
 Console.WriteLine("Log Name: {0}", x_log.Log);
}

Visual Basic .NET

' get the event logs installed on the local machine
Dim x_logs() As EventLog = EventLog.GetEventLogs()

' run through the array of event logs and print out the names
Dim x_log As EventLog
For Each x_log In x_logs
 Console.WriteLine("Log Name: {0}", x_log.Log)
Next

The output these statements produce depends on the configuration of your computer; our results are
below, showing that our computer has only the three default logs:

Log Name: Application
Log Name: Security
Log Name: System

We can enumerate the event logs on another computer by using the overloaded version of the
GetEventLog method, which accepts the computer name as an argument, as shown below for the

computer called FILESERVER:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C#

// get the event logs installed on another computer
EventLog[] x_logs = EventLog.GetEventLogs("FILESERVER");

Visual Basic .NET

' get the event logs installed on another computer
Dim x_logs() As EventLog = EventLog.GetEventLogs("FILESERVER")

We can determine if a specific log exists by using the static Exists method; the following statements

demonstrate how to test for the existence of a log called MyEventLog-see the Section 20.2.5 for
details of how to create and delete event logs:

C#

bool x_log_exists = EventLog.Exists("MyEventLog");
Console.WriteLine("Log Exists: {0}", x_log_exists);

Visual Basic .NET

Dim x_log_exists As Boolean = EventLog.Exists("MyEventLog")
Console.WriteLine("Log Exists: {0}", x_log_exists)

The following statements determine the existence of MyEventLog on the computer called
FILESERVER, using the overloaded form of the Exists method:

C#

bool x_log_exists = EventLog.Exists("MyEventLog", "FILESERVER");
Console.WriteLine("Log Exists: {0}", x_log_exists);

Visual Basic .NET

Dim x_log_exists As Boolean = EventLog.Exists("MyEventLog", "FILESERVER")
Console.WriteLine("Log Exists: {0}", x_log_exists)

20.2.2 Using Event Sources

We register an event source with the static CreateEventSource method; this is an overloaded

method with forms that register an event source locally or on another computer. The following
statements demonstrate how to register an event source named MyEventSource, associated with the
Application event log on the local computer and a second event source named MyOtherEventSource
associated with the System event log on the FILESERVER computer:

C#

// create "MyEventSource" on the local computer
EventLog.CreateEventSource("MyEventSource", "Application");

// create "MyOtherEventSource" on the FILESERVER computer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EventLog.CreateEventSource("MyOtherEventSource", "System", " FILESERVER ");

Visual Basic .NET

' create "MyEventSource" on the local computer
EventLog.CreateEventSource("MyEventSource", "Application")

' create "MyOtherEventSource" on the FILESERVER computer
EventLog.CreateEventSource("MyOtherEventSource", "System", "FILESERVER")

If you do not specify an event log name as an argument to the CreateEventSource method (by

using the empty string ""), the event source will be associated with the Application log. Event sources
are persistent, as we explained in Section 20.1.2 of this chapter; attempting to register an event
source that already exists throws an instance of the System.ArgumentException exception class. We
can check to see if an event source has been registered using the static SourceExists method; the

following statements demonstrate how to use this method to ensure that our two example event
sources are registered and will create them if they are not:

C#

// check to see if we need to create the local event source
if (!EventLog.SourceExists("MyEventSource")) {
 // create "MyEventSource" on the local computer
 EventLog.CreateEventSource("MyEventSource", "Application");
}

// check to see if we need to create the remote event source
if (!EventLog.SourceExists("MyOtherEventSource", "FILESERVER")) {
 // create "MyOtherEventSource" on the FILESERVER computer
 EventLog.CreateEventSource("MyOtherEventSource", "System", "FILESERVER");
}

Visual Basic .NET

' check to see if we need to create the local event source
If Not EventLog.SourceExists("MyEventSource") Then
 ' create "MyEventSource" on the local computer
 EventLog.CreateEventSource("MyEventSource", "Application")
End If

' check to see if we need to create the remote event source
If Not EventLog.SourceExists("MyOtherEventSource", "FILESERVER") Then
 ' create "MyOtherEventSource" on the FILESERVER computer
 EventLog.CreateEventSource("MyOtherEventSource", "System", "FILESERVER")
End If

The static LogNameFromSourceName method determines the log with which an event source is

associated, as shown by the following statements:

C#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// obtain the name of the log associated with the local event source
string x_log_name = EventLog.LogNameFromSourceName("MyEventSource", ".");
// write out the log name
Console.WriteLine(x_log_name);

// obtain the name of the log associated with the remote event source
x_log_name = EventLog.LogNameFromSourceName("MyOtherEventSource", "FILESERVER");
// write out the log name
Console.WriteLine(x_log_name);

Visual Basic .NET

' obtain the name of the log associated with the local event source
Dim x_log_name As String = EventLog.LogNameFromSourceName("MyEventSource", ".")
' write out the log name
Console.WriteLine(x_log_name)

' obtain the name of the log associated with the remote event source
x_log_name = EventLog.LogNameFromSourceName("MyOtherEventSource", "FILESERVER")
' write out the log name
Console.WriteLine(x_log_name)

Notice that unlike the other methods covered in this section, the LogNameFromSourceName method

does not have separate overridden forms for dealing with local and remote computers; the local
machine is specified by a period.

We can remove an event source registration by using the overloaded DeleteEventSource method.

The following statements demonstrate how to remove the event sources we created earlier:

C#

// delete the local event source
EventLog.DeleteEventSource("MyEventSource");

// delete the remote event source
EventLog.DeleteEventSource("MyOtherEventSource", "FILESERVER");

Visual Basic .NET

' delete the local event source
EventLog.DeleteEventSource("MyEventSource")

' delete the remote event source
EventLog.DeleteEventSource("MyOtherEventSource", "FILESERVER")

Attempting to delete an event source that is not registered (or whose registration has already been
removed) will throw an instance of System.ArgumentException.

20.2.3 Reading Event Logs

The first step towards reading the contents of an event log is to create a new instance of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EventLog class, specifying the name of the log we want to read from as a constructor argument. The
following statements demonstrate how to create new instances of the EventLog that refer to the local

Application log and the System log on the FILESERVER computer:

C#

// create a new instance that refers to the local Application log
EventLog x_local_log = new EventLog("Application");

// create a new instance which refers to the System log on FILESERVER
EventLog x_remote_log = new EventLog("System", "FILESERVER");

Visual Basic .NET

' create a new instance that refers to the local Application log
Dim x_local_log As EventLog = New EventLog("Application")

' create a new instance which refers to the System log on FILESERVER
Dim x_remote_log As EventLog = New EventLog("System", "FILESERVER")

Once we have created an instance of the EventLog class, we can call the Entries property, which
returns an instance of the EventLogEntryCollection class, containing the events in the log. Table
20-4 summarizes the public methods of the EventLogEntryCollection class, which implements the
System.Collections.ICollection and System.Collections.IEnumerable interfaces.

Table 20-4. Public members of the EventLogEntryCollection class

Member Description

Properties

Count Returns the number of events in the log.

Item
Returns a specific event in the log, represented by the EventLogEntry class. For C#,

this is the class indexer.

Methods

CopyTo Copies the events in the event log into an EventLogEntry array.

The EventLogEntryCollection class represents the collection of events stored in a log, each of
which is represented by an instance of the EventLogEntry class. Table 20-5 summarizes the public
members of the EventLogEntry class; not all of the properties relate to ELS functionality supported
by the .NET EventLog class. Consult the Windows API documentation for details of advanced ELS

functionality.

Table 20-5. Public members of the EventLogEntry class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description

Category
Gets the category description associated with the event. Consult the
Windows API documentation for details.

CategoryNumber Gets the application-specific category value for the event.

Data Gets the binary data associated with the event.

EntryType
Gets the event type, expressed as a value from the EventLogEntryType

enumeration.

EventID Gets the application-specific identifier for the event.

Index Gets the position of this event in the event log.

MachineName Gets the name of the computer on which the event was generated.

Message Gets the human-readable message associated with this event.

ReplacementStrings
Gets the replacement strings associated with the event. Consult the
Windows API documentation for details.

Source Gets the name of the event source used to write the event.

TimeGenerated Gets the time at which the event was created.

TimeWritten Gets the time at which the event was written to the event log.

UserName Gets the name of the user responsible for generating the event.

The following statements demonstrate how to use the EventLog.Entries property to obtain an
EventLogEntryCollection for the Application log and print out details of the events using the
EventLogEntry class:

C#

// create a new instance that refers to the local Application log
EventLog x_local_log = new EventLog("Application");

// obtain a collection of the events through the Entries property
EventLogEntryCollection x_collection = x_local_log.Entries;

// write out the number of events in the log
Console.WriteLine("There are {0} entries in the event log", x_collection.Count);

// iterate through the entry collection and write out information
// about each event in turn
foreach (EventLogEntry x_entry in x_collection) {
 Console.WriteLine("Event Source: {0}, Event ID {1}, Event Message {2}",
 x_entry.Source, x_entry.EventID, x_entry.Message);
}

Visual Basic .NET

' create a new instance that refers to the local Application log

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim x_local_log As EventLog = New EventLog("Application")

' obtain a collection of the events through the Entries property
Dim x_collection As EventLogEntryCollection = x_local_log.Entries

' write out the number of events in the log
Console.WriteLine("There are {0} entries in the event log", x_collection.Count)

' iterate through the entry collection and write out information
' about each event in turn
Dim x_entry As EventLogEntry
For Each x_entry In x_collection
 Console.WriteLine("Event Source: {0}, Event ID {1}, Event Message {2}", _
 x_entry.Source, x_entry.EventID, x_entry.Message)
Next

20.2.4 Writing Events

The first step towards writing events is to create an instance of the EventLog class configured for the

log and the computer that you wish to receive your event data; the following statements
demonstrate how to use the overloaded EventLog constructor to create instances that refer to the

Application log on the local and FILESERVER computers:

C#

// create a new instance that refers to the local Application log
EventLog x_local_log = new EventLog("Application");

// create a new instance that refers to the remote Application Log
EventLog x_remote_log = new EventLog("Application", "FILESEVER");

Visual Basic .NET

' create a new instance that refers to the local Application log
Dim x_local_log As EventLog = New EventLog("Application")

' create a new instance that refers to the remote Application Log
Dim x_remote_log As EventLog = New EventLog("Application", "FILESEVER")

We can achieve the same affect by using the default EventLog constructor in conjunction with the
MachineName and Log properties, as illustrated by the following statements (had we wanted to refer
to the local machine we would have set the MachineName property to be a period):

C#

// create a new instance that refers to the local Application log
EventLog x_local_log = new EventLog();
x_local_log.MachineName = "FILESERVER";
x_local_log.Log = "Application";

Visual Basic .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' create a new instance that refers to the local Application log
Dim x_local_log As EventLog = New EventLog()
x_local_log.MachineName = "FILESERVER"
x_local_log.Log = "Application"

Having created the EventLog instance, we must specify the event source that we want to use when
writing an event; we do this with the Source property, as the following statements show:

C#

// create a new instance that refers to the local Application log
EventLog x_local_log = new EventLog("Application");

// specify the event source that we'll use to record events
x_local_log.Source = "MyEventSource";

Visual Basic .NET

' create a new instance that refers to the local Application log
Dim x_local_log As EventLog = New EventLog("Application")

' specify the event source that we'll use to record events
x_local_log.Source = "MyEventSource"

Once we have specified the computer, the event log, and the event source to use, we can use the
WriteEntry method to write an event to the log; this method is overloaded with 10 different

versions, which allows you to log an event with increasing levels of detail. The simplest version of the
WriteEntry method accepts only the human-readable message element, whereas the most complex

version accepts values for all of the event structure elements we described in Section 20.1.3. In the
following statements, we write an error message to log an unexpected process-termination event to
the Application log on the local computer:

C#

// create a new instance that refers to the local Application log
EventLog x_local_log = new EventLog();
x_local_log.MachineName = ".";
x_local_log.Log = "Application";

// specify the event source that we'll use to record events
x_local_log.Source = "MyEventSource";

// define the binary data that will assist in debugging the problem
byte[] x_debugging_data = new byte[] {0xCA, 0xFE};

// write the event
x_local_log.WriteEntry(
 "MyApplication exited unexpectedly", // this is the event message
 EventLogEntryType.Error, // specify an error message
 100, // this is the application-specific ID
 200, // this is the application-specific category
 x_debugging_data // this is the binary data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

);

Visual Basic .NET

' create a new instance that refers to the local Application log
Dim x_local_log As EventLog = New EventLog()
x_local_log.MachineName = "."
x_local_log.Log = "Application"

' specify the event source that we'll use to record events
x_local_log.Source = "MyEventSource"

' define the binary data that will assist in debugging the problem
Dim x_debugging_data() As Byte = New Byte() {&HCA, &HFE}

' write the event
x_local_log.WriteEntry(_
"MyApplication exited unexpectedly", _
EventLogEntryType.Error, _
100, _
200, _
x_debugging_data _
)

We specify the type of event we want to write by using a value from the
System.Diagnostics.EventLogEntryType enumeration; Table 20-6 lists the defined values, which

correspond to the event types detailed in Table 20-2.

Table 20-6. EventLogEntryType enumeration values

Value Description

Error Represents an error event

Warning Represents a warning event

Information Represents an informational event

SuccessAudit Represents a successful attempt to access an audited resource

FailureAudit Represents an unsuccessful attempt to access an audited resource

20.2.5 Using Custom Event Logs

You can create custom event logs by specifying the name you wish to use with the Log property of
the EventLog class. When you write the first event to the log with the WriteEntry method, the ELS
will create the custom log automatically. The event source specified by the Source property will be

registered and associated with the new custom log. The following statements demonstrate how to
create the custom log MyCustomEventLog; ELS does not create the custom log until the WriteEntry

statement is executed:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C#

// create a new instance that refers to the custom log
EventLog x_local_log = new EventLog();
x_local_log.MachineName = ".";
x_local_log.Log = "MyCustomEventLog";

// specify the event source that we'll use to record events
x_local_log.Source = "MyCustomEventSource";

// write a log entry - the custom log will not be created until this point
x_local_log.WriteEntry("MyApplication exited unexpectedly");

Visual Basic .NET

' create a new instance that refers to the custom log
Dim x_local_log As EventLog = New EventLog()
x_local_log.MachineName = "."
x_local_log.Log = "MyCustomEventLog"

' specify the event source that we'll use to record events
x_local_log.Source = "MyCustomEventSource"

' write a log entry - the custom log will not be created until this point
x_local_log.WriteEntry("MyApplication exited unexpectedly")

Custom logs can be deleted with the Delete method defined by the EventLog class, as demonstrated

by the following statements:

C#

// delete the custom event log
EventLog.Delete("MyCustomEventLog");

Visual Basic .NET

' delete the custom event log
EventLog.Delete("MyCustomEventLog")

Use the Delete method with caution; the event log will be removed and all of the entries and event
sources will be lost permanently. An instance of the System.InvalidOperationException exception
is thrown by the Delete method if you attempt to delete a log that does not exist.

The EventLog.Delete method will delete the Application and System default

event logs without warning. Deleting these logs can cause applications to
behave erratically.

20.2.6 Monitoring Event Logs

The EventLog class provides an event mechanism that allows us to monitor an event log. In this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

section, we demonstrate how to use this feature, which relies on the .NET event delegate
mechanism; consult the .NET documentation if you are unfamiliar with .NET delegates.

We can register for event notification by adding an instance of the EntryWrittenEventHandler
delegate to the EntryWritten event defined by the EventLog class, as demonstrated by the
statements below. The delegate method signature defines the EntryWrittenEventArgs class, which
makes the event that has been written available as an instance of EventLogEntry accessible through
the Entry property:

C#

using System;
using System.Diagnostics;

public class EventLogMonitor {

 public static void Main() {

 // create a new instance of the EventLog class
 EventLog x_local_log = new EventLog("MyCustomEventLog");

 // create a delegate to process events from the ELS
 EntryWrittenEventHandler x_handler
 = new EntryWrittenEventHandler(MyOnEntryWrittenMethod);

 // add the delegate to the EventLog event
 x_local_log.EntryWritten += x_handler;

 // enable event processing
 x_local_log.EnableRaisingEvents = true;

 // wait to read a lone from the console - just to stop
 // the application from exiting
 Console.ReadLine();
 }

 public static void MyOnEntryWrittenMethod(object p_source,
 EntryWrittenEventArgs p_args) {

 // extract the event object from the event arguments
 EventLogEntry x_entry = p_args.Entry;
 // write out the event details
 Console.WriteLine("Event Source: {0}, Event ID {1}, Event Message {2}",
 x_entry.Source, x_entry.EventID, x_entry.Message);

 }
}

Visual Basic .NET

Imports System.Diagnostics

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class EventLogMonitor

 Shared Sub Main()

 ' create a new instance of the EventLog class
 Dim x_local_log As EventLog = New EventLog("MyCustomEventLog")

 ' create a delegate to process events from the ELS
 AddHandler x_local_log.EntryWritten, AddressOf MyOnEntryWrittenMethod

 ' enable event processing
 x_local_log.EnableRaisingEvents = True

 ' wait to read a lone from the console - just to stop
 ' the application from exiting
 Console.ReadLine()
 End Sub

 Public Shared Sub MyOnEntryWrittenMethod(ByVal p_source As Object, _
 ByVal p_args As EntryWrittenEventArgs)

 ' extract the event object from the event arguments
 Dim x_entry As EventLogEntry = p_args.Entry
 ' write out the event details
 Console.WriteLine("Event Source: {0}, Event ID {1}, Event Message {2}", _
 x_entry.Source, x_entry.EventID, x_entry.Message)

 End Sub
End Class

Events will not be raised until the value of the EnableRaisingEvents property is set to true (C#) or
True (Visual Basic .NET). The EventWritten event is raised five seconds after an entry has been

added to the monitored event log; if several events have been written during the five-second period,
only the last event will be signaled via the delegate.

The EventLog class does not support monitoring event logs managed by other

computers-only local logs can be monitored.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part V: API Quick Reference
Provides a quick reference to all types defined in the security-related namespaces of the .NET
Framework base clase library:

Chapter 23, System.Security

Chapter 24, System.Security.Cryptography

Chapter 25, System.Security.Cryptography.X509Certificates

Chapter 26, System.Security.Cryptography.Xml

Chapter 27, System.Security.Permissions

Chapter 28, System.Security.Policy

Chapter 29, System.Security.Principal

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 21. How to Use This Quick
Reference
The quick-reference section that follows packs a lot of information into a small space. This
introduction explains how to get the most out of that information. It describes how the quick
reference is organized and how to read the individual quick-reference entries.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.1 Finding a Quick-Reference Entry

The quick reference is organized into chapters, one per namespace. Each chapter begins with an
overview of the namespace and includes a hierarchy diagram for the types (classes, interfaces,
enumerations, delegates, and structs) in the namespace. Following the overview are quick-reference
entries for all the types in the namespace.

Figure 21-1 is a sample diagram showing the notation used to depict hierarchies and their
relationships. Abstract classes are shown as slanted rectangles, and sealed classes as octagonal
rectangles. Inheritance is shown as a solid line from the subtype, ending with a hollow triangle that
points to the supertype. There are two notations that indicate interface implementation. The lollipop
notation is used most of the time because it is easier to read. In some cases, especially where many
types implement a given interface, the shaded box notation with a dashed line is used instead.

Figure 21-1. Class hierarchy notation

Important relationships between types (associations) are shown with a dashed line ending with an
arrow. The figures don't show every possible association, but only those considered most important
to developers.

Entries are organized alphabetically by type and namespace, so that related types are grouped near
each other. Thus, in order to look up a quick-reference entry for a particular type, you must also
know the name of the namespace that contains that type. Usually, the namespace is obvious from
the context, and you should have no trouble looking up the quick-reference entry you want.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

21.2 Reading a Quick-Reference Entry

Each quick-reference entry contains quite a bit of information. The sections that follow describe the
structure of a quick-reference entry, explaining what information is available, where it is found, and
what it means. While reading the descriptions that follow, you will find it helpful to flip through the
reference section itself to find examples of the features being described.

21.2.1 Type Name, Namespace, Assembly, Type Category, and Flags

Each quick-reference entry begins with a four-part title that specifies the name, namespace (followed
by the assembly in parentheses), and type category of the type. It may also specify various
additional flags that describe the type. The type name appears in bold at the upper left of the title.
The namespace and assembly appear, in smaller print, in the lower left, below the type name.

In the upper-right corner of the title, you may find a list of flags that describe the type. The possible
flags and their meanings are as follows:

ECMA

The type is part of the ECMA CLI specification.
Serializable

The type, or a supertype, implements System.Runtime.Serialization.ISerializable or
has been flagged with the System.Serializable attribute.

Marshal by reference

This class, or a superclass, derives from System.MarshalByRefObject.

Context bound

This class, or a superclass, derives from System.ContextBoundObject.

Disposable

The type implements the System.IDisposable interface.

Flag

The enumeration is marked with the System.FlagsAttribute.

The lower-right portion of the title indicates the type category of the type (class, delegate, enum,
interface, or struct). The class category may include modifiers, such as sealed or abstract.

21.2.2 Description

The title of each quick-reference entry is followed by a short description of the most important
features of the type. This description may be anywhere from a couple of sentences to several
paragraphs long.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.2.3 Synopsis

The most important part of every quick-reference entry is the synopsis, which follows the title and
description. The synopsis for a type looks a lot like its source code, except that the member bodies
are omitted, and some additional annotations are added. If you know C# syntax, you can read the
type synopsis.

The first line of the synopsis contains information about the type itself. It begins with a list of type
modifiers, such as abstract and sealed. These modifiers are followed by the class, delegate,
enum, interface, or struct keyword, and then by the name of the type. The type name may be

followed by a colon (:) and a supertype or interfaces that the type implements.

The type-definition line is followed by a list of the members that the type defines. This list includes
only those members that are explicitly declared in the type, are overridden from a base class, or are
implementations of an interface member. Members that are simply inherited from a base class aren't
shown; you will need to look up the base class definition to find those members. Once again, if you
understand basic C# syntax, you should have no trouble making sense of these lines. The listing for
each member includes the modifiers, type, and name of the member. For methods, the synopsis also
includes the type and name of each method parameter. The member names are in boldface, so it is
easy to scan the list of members looking for the one you want. The names of method parameters are
in italics to indicate that they aren't to be used literally. The member listings are printed on
alternating gray and white backgrounds to keep them visually separate.

21.2.3.1 Member availability and flags

Each member listing is a single line that defines the API for that member. These listings use C#
syntax, so their meaning is immediately clear to any C# programmer. There is some auxiliary
information associated with each member synopsis, however, that requires explanation.

The area to the right of the member synopsis displays a variety of flags that provide additional
information about the member. Some of these flags indicate additional specification details that don't
appear in the member API itself.

The following flags may be displayed to the right of a member synopsis:

Overrides

Indicates that a method overrides a method in one of its supertypes. The flag is followed by the
name of the supertype that the method overrides.

Implements

Indicates that a method implements a method in an interface. The flag is followed by the name
of the interface that is implemented.

=

For enumeration fields and constant fields, this flag is followed by the constant value of the
field. Only constants of primitive and String types and constants with the value null are

displayed. Some constant values are specification details, while others are implementation
details. The reason symbolic constants are defined, however, is so you can write code that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doesn't directly rely on the constant value. Use this flag to help you understand the type, but
don't rely on the constant values in your own programs.

21.2.3.2 Functional grouping of members

Within a type synopsis, the members aren't listed in strict alphabetical order. Instead, they are
broken into functional groups and listed alphabetically within each group. Constructors, events, fields,
methods, and properties are all listed separately. Instance methods are kept separate from static
(class) methods. Public members are listed separately from protected members. Grouping members
by category breaks a type down into smaller, more comprehensible segments, making the type
easier to understand. This grouping also makes it easier for you to find a desired member.

Functional groups are separated from one another in a type synopsis with C# comments, such as //
Public Constructors, // Protected Instance Properties, and // Events. The various functional categories
are as follows (in the order in which they appear in a type synopsis):

Constructors

Displays the constructors for the type. Public constructors and protected constructors are
displayed separately in subgroupings. If a type defines no constructor at all, the C# compiler
adds a default no-argument constructor that is displayed here. If a type defines only private
constructors, it can't be instantiated, so no constructor appears. Constructors are listed first,
because the first thing you do with most types is instantiate them by calling a constructor.

Fields

Displays all fields defined by the type, including constants. Public and protected fields are
displayed in separate subgroups. Fields are listed here, near the top of the synopsis, because
constant values are often used throughout the type as legal values for method parameters and
return values.

Properties

Lists all the properties of the type, breaking them down into subgroups for public and protected
static properties and public and protected instance properties. After the property name, its
accessors (get or set) are shown.

Static Methods

Lists the static methods (class methods) of the type, broken into subgroups for public static
methods and protected static methods.

Public Instance Methods

Contains all public instance methods.
Protected Instance Methods

Contains all protected instance methods.

21.2.4 Class Hierarchy

For any type that has a nontrivial inheritance hierarchy, the synopsis is followed by a Hierarchy
section. This section lists all the supertypes of the type, as well as any interfaces implemented by
those supertypes. It also lists any interfaces implemented by an interface. In the hierarchy listing,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

arrows indicate supertype-to-subtype relationships, while the interfaces implemented by a type follow
the type name in parentheses. For example, the following hierarchy indicates that SomeClass
implements IDisposable and extends MarshalByRefObject, which itself extends Object:

System.Object System.MarshalByRefObject SomeClass(System.IDisposable)

If a type has subtypes, the Hierarchy section is followed by a Subtypes section that lists those
subtypes. If an interface has implementations, the Hierarchy section is followed by an
Implementations section that lists those implementations. While the Hierarchy section shows
ancestors of the type, the Subtypes or Implementations section shows descendants.

21.2.5 Cross-References

The Hierarchy section of a quick-reference entry is followed by a number of optional cross-reference
sections that indicate related types and methods that may be of interest. These sections are the
following:

Passed To

This section lists all the members (from other types) that are passed an object of this type as
an argument, including properties whose values can be set to this type. This is useful when you
have an object of a given type and want to know where it can be used.

Returned By

This section lists all the members that return an object of this type, including properties whose
values can take on this type. This is useful when you want to work with an object of this type
but don't know how to obtain one.

Valid On

For attributes, this lists the attribute targets the attribute can be applied to.
Associated Events

For delegates, this lists the events it can handle.

21.2.6 A Note About Type Names

Throughout the quick reference, you'll notice that types are sometimes referred to by type name
alone and at other times referred to by type name and namespace. If namespaces were always used,
the type synopses would become long and hard to read. On the other hand, if namespaces were
never used, it would sometimes be difficult to know what type was being referred to. The rules for
including or omitting the namespace name are complex. They can be summarized approximately
however, as follows:

If the type name alone is ambiguous, the namespace name is always used.

If the type is part of the System namespace or is a commonly used type such as
System.Collection.ICollection, the namespace is omitted.

If the type being referred to is part of the current namespace (and has a quick-reference entry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the current chapter), the namespace is omitted. The namespace is also omitted if the type
being referred to is part of a namespace that contains the current namespace.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 22. Converting from C# to VB
Syntax
Although API Quick Refererence information on all types and their members is shown using C#
syntax, it is easy to mentally convert these entries to Visual Basic syntax. This chapter will provide
the information you need to convert the C# documentation for each type into the syntax used by
Visual Basic .NET programmers.

This chapter doesn't try to completely cover the syntax for each language
element it discusses. Instead, it focuses on direct translation of the syntax of
the types used in programming from C# to VB.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.1 General Considerations

The most evident difference between C# and VB syntax is that C# uses the semicolon (;) as a

statement terminator, whereas VB uses a line break. As a result, a statement in C# can occupy
multiple lines as long as it is terminated with a semicolon; a VB statement must occupy only a single
line. Multiline statements in VB must appear with the VB line-continuation character (a space followed
by an underscore) on all but the last line.

A second, and not quite so evident, difference is that C# is case-sensitive, whereas VB isn't. (Uniform
casing for VB code is enforced by the Visual Studio environment, but it is by no means required.)

Finally, all types and their members have access modifiers that determine the type or member's
accessibility. The keywords for these access modifiers are nearly identical in VB and C#, as Table 22-
1 shows.

Table 22-1. Access modifiers in C# and VB

C# keyword VB keyword

public Public

private Private

protected Protected

internal Friend

protected internal Protected Friend

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.2 Classes

C# uses the class statement along with opening and closing braces to indicate the beginning and

end of a class definition. For example:

public class DataException : SystemException {
 // member definitions
}

In VB, a class definition is indicated by the Class...End Class construct:

Public Class DataException
 Inherits SystemException
 ' member definitions
End Class

In addition, C# classes can be marked as abstract or sealed; these correspond to the VB
MustInherit and NonInheritable keywords, as shown in Table 22-2.

Table 22-2. C# and equivalent VB class modifiers

C# keyword VB keyword

abstract MustInherit

sealed NonInheritable

C# uses the colon to indicate either inheritance or interface implementation. Both the base class and
the implemented interfaces are part of the class statement. For example:

public class DataSet : MarshalByValueComponent, IListSource,
 ISupportInitialize, ISerializable

In VB, a base class and any implemented interfaces are specified on separate lines immediately
following the class statement. A class's base class is indicated by preceding its name with the
Inherits keyword; any implemented interfaces are indicated by the Implements keyword. Hence,
the previous definition of the DataSet class in C# would appear as follows in VB:

Public Class DataSet
 Inherits MarshalByValueComponent
 Implements IListSource, ISupportInitalize, ISerializable

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.3 Structures

C# uses the struct statement along with opening and closing braces to indicate the beginning and
end of a structure definition. For example, System.Windows.Forms.DataGridCell is defined in C# as

follows:

public struct DataGridCell {
 // member definitions
}

In VB, a structure definition is indicated by the Structure...End Interface construct:

Public Structure DataGridCell
 ' member definitions
End Structure

C# uses the colon with structures to indicate interface implementation. Any implemented interfaces
are part of the class statement. In VB, any implemented interfaces are specified by an Implements
statement on the line immediately following the Structure statement. However, none of the

structures documented in the reference section of this book use interface inheritance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.4 Interfaces

C# uses the interface statement along with opening and closing braces to indicate the beginning

and end of an interface definition. For example:

public interface IDataAdapter {
 // member definitions
}

In VB, an interface definition is indicated by the Interface...End Structure construct:

Public Interface IDataAdapter
 ' member definitions
End Interface

C# uses the colon with interfaces to specify any implemented interfaces. For example:

public interface IDataReader : IDisposable, IDataRecord

In VB, any implemented interfaces are specified by an Implements statement on the line immediately
following the Interface statement. The previous definition of IDataReader in C# would appear as

follows in VB:

Public Interface IDataReader
 Implements IDisposable, IDataRecord

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.5 Class, Structure, and Interface Members

Classes, structures, and interfaces can contain one or more fields, methods, properties, and events.
This section discusses converting the C# syntax for each of these constructs to VB.

Note that .NET supports both static (or shared) members (which apply to the type as a whole, and
typically don't require that an object of that type be instantiated) and instance members (which apply
only to an instance of that type). Shared or static members are indicated by using the static

keyword in C#. For example:

public static string ToString(long value);

The corresponding VB keyword is Shared, so the FromResource method, when converted to VB, has

the following syntax:

Public Shared Function ToString(value As Long) As String

22.5.1 Fields

A field is a constant or a variable that is exposed as a publicly accessible member of a type. In C#,
for example, the Value field of the System.DBNull class has the syntax:

public static readonly DBNull Value;

Note that C# indicates the data type of a field before the name of the field. (For C# data types and
their VB equivalents, see Table 22-3.) Also note that fields are frequently read-only. Constant fields,
in fact, are always read-only. As a result, the use of the C# readonly keyword and the VB ReadOnly

keyword with fields is quite common.

The syntax for the Value field in Visual Basic then becomes:

Public Shared ReadOnly Value As DBNull

22.5.2 Methods

In C#, all methods have a return value, which appears before the name of the function; in contrast,
VB differentiates between function and subprocedures. C# functions without an explicit return value
of void. For example, one of the overloads of the DataSet class's AcceptChanges method has the

following syntax in C#:

public void AcceptChanges();

C# methods that return void are expressed as subprocedures in VB. Here's the corresponding syntax
of the AcceptChanges method:

Public Sub AcceptChanges()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All C# methods other than those returning void are functions in VB. The function's return value
appears in an As clause at the end of the function declaration. C# data types and their VB
equivalents are shown in Table 22-3. Methods that return arrays are indicated by adding braces ([
]) to the return data type in C# and parentheses (())to the return data type in VB.

For example, the Copy method of the DataSet class has the C# syntax:

public bool Copy();

The VB equivalent is:

Public Function Copy() As Boolean

Table 22-3. C# data types and their VB equivalents

C# data type VB data type

bool Boolean

byte Byte

char Char

decimal Decimal

double Double

float Single

int Integer

long Long

object Object

sbyte System.SByte

short Short

string String

System.Currency Currency

System.DateTime Date

uint System.UInt32

ulong System.UInt64

ushort System.UInt16

<class_name> <class_name>

<delegate_name> <delegate_name>

<interface_name> <interface_name>

<structure_name> <structure_name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method parameters in C# take the general form:

<data_type> <parameter_name>

In VB, method parameters take the form:

<parameter_name> As <data_type>

where <data_type> is any of the data types listed in Table 22-3. If a parameter is an array, its data
type is followed by braces in C# (e.g., string[] Name), while the parameter name is followed by
parentheses in VB (e.g., Name() As String).

For example, one of the versions of the DataTable class's Select method has the following syntax in

C#:

public DataRow[] Select(string filterExpression, string sort,
 DataViewRowState recordStates);

Its VB equivalent is:

Overloads Public Function Select(ByVal filterExpression As String, _
 ByVal sort As String, ByVal recordStates As DataViewRowState _
) As DataRow()

VB allows methods to be called using either named or positional parameters. If
named parameters are used, the parameter name must correspond to that
shown in the documentation. For instance, DataTable.Select can be called as

follows using named parameters:

dr = DataTable.Select(filterexpression:=flt, _
 sort:=sd, _
 recordstates:=DataViewRowState.CurrentRows)

C# also uses a number of object-oriented qualifiers with methods. These, and their VB equivalents,
are shown in Table 22-4.

Table 22-4. C# keywords used with methods and their VB equivalents

C# keyword VB keyword

abstract MustOverride

override Overrides

sealed NotOverridable

virtual Overridable

In both C# and VB, constructors have a special syntax. In C#, constructors have the same name as
the classes whose objects they instantiate and don't indicate a return value. For example, the default

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constructor for the SqlCommand class is:

public SqlCommand();

In VB, the constructor is represented by a call to a class's New subprocedure. The equivalent call to
the SqlCommand class constructor in VB is:

Public Sub New()

22.5.3 Properties

The SqlCommand.CommandText property provides a more or less typical example of a property

definition using C# syntax:

public string CommandText {get; set;}

Like all C# type definitions, the property's data type precedes the property name. The get; and set;

property accessors indicate that this is a read-write property. Read-only properties are indicated with
a get; only, while write-only properties are indicated with a set; only.

The equivalent VB property definition is:

Public Property CommandText As String

Note that read/write properties aren't decorated with additional keywords in VB. Read-only
properties, on the other hand, are indicated with the ReadOnly keyword in front of the Property
keyword, while write-only properties have the WriteOnly keyword before the Property keyword.

Note that properties, like methods, can use the object-oriented modifiers listed in Table 22-4.

22.5.4 Events

Events are declared in C# using the event keyword, which is followed by the delegate type returned
by the event and the name of the event. For example, the RowUpdated event of the SqlDataAdapter

class has the following syntax:

public event SqlRowUpdatedEventHandler RowUpdated;

The equivalent VB syntax is:

Public Event RowUpdated As SqlRowUpdatedEventHandler

In addition, the C# event and the VB Event keywords can be preceded by the object modifiers listed

in Table 22-4.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.6 Delegates

The syntax for a delegate in C# closely follows the syntax for a method. The delegate statement is
followed by the delegate's return type (or void, if there is none) and the delegate name. This in turn

is followed by the delegate's parameter list, in which each parameter takes the form:

<parameter_type> <parameter_name>

For example:

public delegate void StateChangeEventHandler(object sender,
 StateChangeEventArgs e);

In a VB Delegate statement, the Delegate keyword is followed by the Sub keyword (if the delegate
returns a void in C#) or the Function keyword (if the delegate returns some other value). For
example, in VB, the StateChangeEventHandler delegate has the following syntax:

Public Delegate Sub StateChangeEventHandler(_
 ByVal sender As Object, ByVal e As StateChangeEventArgs)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

22.7 Enumerations

C# uses the enum statement along with opening and closing braces to indicate the beginning and end

of an enumeration definition. For example:

public enum CommandType {
 // enumeration members
}

In VB, an enumeration is defined by the Enum...End Enum construct. For example, the VB version of
the CommandType enumeration declaration is:

Public Enum CommandType
 ' enumeration members
End Enum

In both C# and VB, the member listing consists of the name of the enumerated member and its
value. These are identical in C# and VB, except that C# adds a comma to separate one member of
the enumeration from another, whereas VB requires that they be on separate lines. For example, the
full declaration of the CommandType enumeration in C# is:

public enum CommandType {
 Text = 1,
 StoredProcedure = 4,
 TableDirect = 512
}

The VB equivalent is:

Public Enum CommandType
 Text = 1
 StoredProcedure = 4
 TableDirect = 512
End Enum

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 23. The System.Security
Namespace
The System.Security namespace contains the fundamental building blocks of .NET's code-access
security framework. The classes contained in the System.Security.Policy,
System.Security.Permissions, and System.Security.Principal namespaces extend, build on,
and use the classes contained in the System.Security namespace to implement the security

framework. Figure 23-1 shows the types in this namespace.

Figure 23-1. The System.Security namespace

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

AllowPartiallyTrustedCallersAttribute

System.Security (mscorlib.dll) sealed class
public sealed class AllowPartiallyTrustedCallersAttribute : Attribute {

// Public Constructors
 public AllowPartiallyTrustedCallersAttribute();
}

Applying the AllowPartiallyTrustedCallersAttribute attribute class at the assembly level of a

strong named assembly allows partially trusted code to call the assembly's public and protected
members. Without specifying the AllowPartiallyTrustedCallersAttribute, all public and

protected members of a strong-named assembly are only accessible to fully trusted code (i.e., code
granted the FullTrust permission set during policy resolution).

The restriction is implemented through a LinkDemand for the FullTrust permission set that is
applied automatically by the compiler to every public and protected member of every public class

in an assembly.

Hierarchy

System.Object System.Attribute AllowPartiallyTrustedCallersAttribute

Valid On

Assembly

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CodeAccessPermission ECMA 1.0, serializable

System.Security (mscorlib.dll) abstract class
public abstract class CodeAccessPermission : IPermission, ISecurityEncodable, IStackWalk {

// Protected Constructors
 protected CodeAccessPermission();

// Public Static Methods
 public static void RevertAll();
 public static void RevertAssert();
 public static void RevertDeny();
 public static void RevertPermitOnly();

// Public Instance Methods
 public void Assert();

 // implements IStackWalk
 public abstract IPermission Copy();

 // implements IPermission
 public void Demand();

 // implements IStackWalk
 public void Deny();

 // implements IStackWalk

 public abstract void FromXml(SecurityElement elem);

 // implements ISecurityEncodable

 public abstract IPermission Intersect(IPermission target);

 // implements IPermission

 public abstract bool IsSubsetOf(IPermission target);

 // implements IPermission
 public void PermitOnly();

 // implements IStackWalk
 public override string ToString();

 // overrides object
 public abstract SecurityElement ToXml();

 // implements ISecurityEncodable

 public virtual IPermission Union(IPermission other);

 // implements IPermission
}

This abstract class provides the base class from which all code-access and identity permission classes are
derived. It implements the IPermission , IStackWalk , and ISecurityEncodable interfaces, but only
provides concrete implementations of the IStackWalk methods (Demand() , Assert() , Deny() , and
PermitOnly()), leaving implementation of the other interface methods to the derived classes. The
staticRevertAll() , RevertAssert() , RevertDeny() , and RevertPermitOnly() methods remove

existing stack walk overrides of the appropriate type from the caller's stack frame.

Subclasses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Multiple types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IEvidenceFactory

System.Security (mscorlib.dll) interface
public interface IEvidenceFactory {

// Public Instance Properties
 public Evidence Evidence{get; }
}

The System.Security.Policy.Evidence collection available through the Evidence property of this

interface contains the evidence assigned to an assembly or application domain by the runtime. This
evidence is used by the runtime during policy resolution to determine the assembly or application
domain's grant set.

Implemented By

System.AppDomain, System.Reflection.Assembly

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IPermission ECMA 1.0

System.Security (mscorlib.dll) interface
public interface IPermission : ISecurityEncodable {

// Public Instance Methods
 public IPermission Copy();
 public void Demand();

 public IPermission Intersect(IPermission target);

 public bool IsSubsetOf(IPermission target);

 public IPermission Union(IPermission target);
}

This IPermission interface defines the minimum set of methods that all permission classes must

implement if they are to integrate with the code-access security framework of the .NET runtime.

IPermission defines the Demand() method, which is the most fundamental mechanism used to
enforce code-access security. Demand() invokes a security demand for the implementing permission
object. This ensures that calling code has the permission; otherwise, a SecurityException is
thrown. All of the standard code-access and identity permissions implement the IStackWalk
interface, which also defines a Demand() method. The IStackWalk.Demand() method initiates a
stack-walk-based security demand, whereas IPermission.Demand() is intended for use by

permission classes that do not use stack walks-for example, the
System.Security.Permissions.PrincipalPermission class.

The exact behavior of the Copy(), Intersect(), IsSubsetOf(), and Union() methods vary
based on the nature of the implementing permission class. Copy() returns a deep copy of the
permission. Intersect() returns a new permission that represents the logical intersection of the
current and a specified IPermission, whereas Union() returns the logical union of the two
IPermission objects. IsSubsetOf() indicates whether the current IPermission represents a
subset of the specified IPermission.

Implemented By

CodeAccessPermission, System.Security.Permissions.PrincipalPermission

Returned By

Multiple types

Passed To

CodeAccessPermission.{Intersect(), IsSubsetOf(), Union()},
System.Security.Permissions.PrincipalPermission.{Intersect(), IsSubsetOf(), Union(
)}, PermissionSet.{AddPermission(), SetPermission()}, SecurityManager.IsGranted()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ISecurityEncodable

System.Security (mscorlib.dll) interface
public interface ISecurityEncodable {

// Public Instance Methods

 public void FromXml(SecurityElement e);
 public SecurityElement ToXml();
}

The ISecurityEncodable interface defines methods to support converting security object state to

and from XML representations.

Implemented By

Multiple types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ISecurityPolicyEncodable

System.Security (mscorlib.dll) interface
public interface ISecurityPolicyEncodable {

// Public Instance Methods

 public void FromXml(SecurityElement e, System.Security.Policy.PolicyLevel level);

 public SecurityElement ToXml(System.Security.Policy.PolicyLevel level);
}

This interface, like ISecurityEncodable, defines methods to support converting security object state
to and from XML representations. However, the ToXml() and FromXml() methods defined in
ISecurityPolicyEncodable include a System.Security.Policy.PolicyLevel argument, allowing

the implementing class to base the XML representation of its state on the policy level to which it
belongs.

Implemented By

System.Security.Policy.{AllMembershipCondition,
ApplicationDirectoryMembershipCondition, HashMembershipCondition,
IMembershipCondition, PolicyStatement, PublisherMembershipCondition,
SiteMembershipCondition, StrongNameMembershipCondition, UrlMembershipCondition,
ZoneMembershipCondition}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IStackWalk

System.Security (mscorlib.dll) interface
public interface IStackWalk {

// Public Instance Methods
 public void Assert();
 public void Demand();
 public void Deny();
 public void PermitOnly();
}

Permission classes that use stack walks to resolve security demands implement the IStackWalk
interface. These include the PermissionSet class, as well as the CodeAccessPermission class, from

which all standard code-access and identity permissions inherit.

IStackWalk defines the Demand() method, which duplicates the method of the same name defined
in the IPermission interface. However, the IStackWalk.Demand() method initiates a stack-walk-
based security demand, whereas IPermission.Demand() is not intended to use the call stack to
resolve security demands. The Assert(), Deny(), and PermitOnly() methods annotate the call

stack frame of the code from which they are executed, and affect the stack walk process initiated by
a Demand() call.

Assert() allows code to vouch for the permissions of the callers above it on the call stack. During a

stack walk, if a demanded permission matches, or is a subset of, the asserted permission, the stack
walk terminates successfully without evaluating further stack frames. If the asserted permissions
provide only a partial match of those demanded, the stack walk continues but only for the remaining
unasserted permissions. Code must have been granted a permission in order to assert it, and the
code must have the permission to assert defined by the
System.Security.Permissions.SecurityPermission class.

Deny() has the opposite effect of Assert(). If the demanded permission matches, or is a subset

of the denied permission, the stack walk is terminated, and the runtime throws a
SecurityException to the code that initiated the Demand().

PermitOnly() functions as an inverted Deny(). Instead of specifying the permissions that should
terminate a stack walk, PermitOnly() specifies those permissions that permit the stack walk to
continue unaffected. PermitOnly() provides a more concise way of denying large sets of
permissions without the need to specify them all in a Deny() override.

Implemented By

CodeAccessPermission, PermissionSet

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NamedPermissionSet serializable

System.Security (mscorlib.dll) sealed class
public sealed class NamedPermissionSet : PermissionSet {

// Public Constructors

 public NamedPermissionSet(NamedPermissionSet permSet);

 public NamedPermissionSet(string name);

 public NamedPermissionSet(string name, PermissionSet permSet);

 public NamedPermissionSet(string name, System.Security.Permissions.PermissionState state);

// Public Instance Properties
 public string Description{set; get; }
 public string Name{set; get; }

// Public Instance Methods

 public NamedPermissionSet Copy(string name);
 public override PermissionSet Copy();

 // overrides PermissionSet

 public override void FromXml(SecurityElement et);

 // overrides PermissionSet
 public override SecurityElement ToXml();

 // overrides PermissionSet
}

This subclass of PermissionSet allows the permission set to have a name and description assigned to it.
NamedPermissionSet is used predominantly when working programmatically with security policy.

Hierarchy

System.Object PermissionSet(ISecurityEncodable, System.Collections.ICollection ,
System.Collections.IEnumerable , IStackWalk ,

System.Runtime.Serialization.IDeserializationCallback) NamedPermissionSet

Returned By

System.Security.Policy.PolicyLevel.{ChangeNamedPermissionSet() , GetNamedPermissionSet() ,
RemoveNamedPermissionSet()}

Passed To

System.Security.Policy.PolicyLevel.{AddNamedPermissionSet() , RemoveNamedPermissionSet()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PermissionSet ECMA 1.0, serializable

System.Security (mscorlib.dll) class
public class PermissionSet : ISecurityEncodable, ICollection, IEnumerable, IStackWalk,
 System.Runtime.Serialization.IDeserializationCallback {

// Public Constructors

 public PermissionSet(PermissionSet permSet);

 public PermissionSet(System.Security.Permissions.PermissionState state);

// Public Instance Properties
 public virtual int Count{get;

 // implements ICollection
 public virtual bool IsReadOnly{get; }
 public virtual bool IsSynchronized{get;

 // implements ICollection
 public virtual object SyncRoot{get;

 // implements ICollection

// Public Static Methods

 public static byte[] ConvertPermissionSet(string inFormat, byte[] inData, string outFormat);

// Public Instance Methods

 public virtual IPermission AddPermission(IPermission perm);
 public virtual void Assert();

 // implements IStackWalk
 public bool ContainsNonCodeAccessPermissions();
 public virtual PermissionSet Copy();

 public virtual void CopyTo(Array array, int index);

 // implements ICollection
 public virtual void Demand();

 // implements IStackWalk
 public virtual void Deny();

 // implements IStackWalk

 public virtual void FromXml(SecurityElement et);

 // implements ISecurityEncodable
 public virtual IEnumerator GetEnumerator();

 // implements IEnumerable

 public virtual IPermission GetPermission(Type permClass);

 public virtual PermissionSet Intersect(PermissionSet other);
 public virtual bool IsEmpty();

 public virtual bool IsSubsetOf(PermissionSet target);
 public virtual bool IsUnrestricted();
 public virtual void PermitOnly();

 // implements IStackWalk

 public virtual IPermission RemovePermission(Type permClass);

 public virtual IPermission SetPermission(IPermission perm);
 public override string ToString();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // overrides object
 public virtual SecurityElement ToXml();

 // implements ISecurityEncodable

 public virtual PermissionSet Union(PermissionSet other);
}

The PermissionSet class is a container for groups of IPermission objects. It implements the IStackWalk interface
and independently implements the Copy() , Demand() , Intersect() , IsSubsetOf() , and Union() methods,
which mirror those defined by the IPermission interface. This functionality allows a PermissionSet object to be
treated as an individual IPermission object for imperative security operations, but the security operation is performed
on all contained IPermission objects at once.

The contents of a PermissionSet are configured using the AddPermission() , RemovePermission() , and
SetPermission() methods. Only one of each permission type can be present in a PermissionSet at a time. When
you call AddPermission() , if a permission of the same type already exists in the PermissionSet , the existing
IPermission is replaced by a new IPermission whose value is calculated as the union of the existing and new
IPermission objects. Conversely, SetPermission() replaces the existing permission with the specified one. The
GetPermission() method returns a copy of the IPermission of the specified System.Type if one exists in the
PermissionSet .

Subclasses

NamedPermissionSet

Returned By

NamedPermissionSet.Copy() , System.Security.Permissions.PermissionSetAttribute.CreatePermissionSet(
) , System.Security.Policy.PermissionRequestEvidence.{DeniedPermissions , OptionalPermissions ,
RequestedPermissions} , System.Security.Policy.PolicyStatement.PermissionSet ,
SecurityManager.ResolvePolicy()

Passed To

System.AppDomain.DefineDynamicAssembly() , System.IO.IsolatedStorage.IsolatedStorage.GetPermission(
) , System.Reflection.Emit.ConstructorBuilder.AddDeclarativeSecurity() ,
System.Reflection.Emit.MethodBuilder.AddDeclarativeSecurity() ,
System.Reflection.Emit.TypeBuilder.AddDeclarativeSecurity() ,
NamedPermissionSet.NamedPermissionSet() ,
System.Security.Policy.PermissionRequestEvidence.PermissionRequestEvidence() ,
System.Security.Policy.PolicyLevel.ChangeNamedPermissionSet() ,
System.Security.Policy.PolicyStatement.{PermissionSet , PolicyStatement()} ,
SecurityManager.ResolvePolicy() , System.Xml.XmlSecureResolver.XmlSecureResolver()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PolicyLevelType serializable

System.Security (mscorlib.dll) enum
public enum PolicyLevelType {
 User = 0,Machine = 1,Enterprise = 2,AppDomain = 3
}

This enumeration defines constants that represent the different levels of security policy configuration.
PolicyLevelType is used when working with members of the SecurityManager class.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) PolicyLevelType

Passed To

SecurityManager.{LoadPolicyLevelFromFile(), LoadPolicyLevelFromString()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SecurityElement ECMA 1.0, serializable

System.Security (mscorlib.dll) sealed class
public sealed class SecurityElement {

// Public Constructors

 public SecurityElement(string tag);

 public SecurityElement(string tag, string text);

// Public Instance Properties
 public Hashtable Attributes{set; get; }
 public ArrayList Children{set; get; }
 public string Tag{set; get; }
 public string Text{set; get; }

// Public Static Methods

 public static string Escape(string str);

 public static bool IsValidAttributeName(string name);

 public static bool IsValidAttributeValue(string value);

 public static bool IsValidTag(string tag);

 public static bool IsValidText(string text);

// Public Instance Methods

 public void AddAttribute(string name, string value);

 public void AddChild(SecurityElement child);

 public string Attribute(string name);

 public bool Equal(SecurityElement other);

 public SecurityElement SearchForChildByTag(string tag);

 public string SearchForTextOfTag(string tag);
 public override string ToString();

 // overrides object
}

This class implements a simple, lightweight XML object model for encoding .NET security objects. A
SecurityElement object represents a single XML element that can contain a tag, attributes, and
text. To build a hierarchy of XML objects, add SecurityElement objects representing the child nodes
to an existing SecurityElement object using its Children property or AddChild() method. The
ToString() method returns a string containing the XML representation of the SecurityElement

and all of its children.

Returned By

Multiple types

Passed To

Multiple types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SecurityException
CF 1.0, ECMA 1.0,

serializable

System.Security (mscorlib.dll) class
public class SecurityException : SystemException {

// Public Constructors
 public SecurityException();

 public SecurityException(string message);

 public SecurityException(string message, Exception inner);

 public SecurityException(string message, Type type);

 public SecurityException(string message, Type type, string state);

// Protected Constructors

 protected SecurityException(System.Runtime.Serialization.SerializationInfo info,

 System.Runtime.Serialization.StreamingContext context);

// Public Instance Properties
 public string GrantedSet{get; }
 public string PermissionState{get; }
 public Type PermissionType{get; }
 public string RefusedSet{get; }

// Public Instance Methods

 public override void GetObjectData(// overrides Exception

 System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context);
 public override string ToString();

 // overrides Exception
}

SecurityException is thrown when code tries to perform an action that it does not have permission to perform.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException
SecurityException

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SecurityManager

System.Security (mscorlib.dll) sealed class
public sealed class SecurityManager {

// Public Static Properties
 public static bool CheckExecutionRights{set; get; }
 public static bool SecurityEnabled{set; get; }

// Public Static Methods

 public static bool IsGranted(IPermission perm);

 public static PolicyLevel LoadPolicyLevelFromFile(string path, PolicyLevelType type);

 public static PolicyLevel LoadPolicyLevelFromString(string str, PolicyLevelType type);
 public static IEnumerator PolicyHierarchy();

 public static PermissionSet ResolvePolicy(System.Security.Policy.Evidence evidence);

 public static PermissionSet ResolvePolicy(System.Security.Policy.Evidence evidence,

PermissionSet reqdPset, PermissionSet optPset,

PermissionSet denyPset, out PermissionSet denied);

 public static IEnumerator ResolvePolicyGroups(System.Security.Policy.Evidence evidence);
 public static void SavePolicy();

 public static void SavePolicyLevel(System.Security.Policy.PolicyLevel level);
}

This class contains a set of static members that provide access to critical security system functionality and
data. It is the principal access point for code needing to manipulate security policy programmatically,
providing access to the active policy levels and allowing code to load and save policy levels.

SecurityEnabled is a master switch for all code-access security; setting it to false turns off all code-access
and identity permission checks, but does not affect role-based security. CheckExecutionRights controls

whether the runtime checks to ensure code has the
System.Security.Permissions.SecurityPermissionFlag.Execution permission from the
System.Security.Permissions.SecurityPermission class.

Though it is not possible to drive the runtime's policy resolution process programmatically, the
ResolvePolicy() and ResolvePolicyGroups() methods simulate the policy resolution process to resolve
the permissions and code groups for a specified System.Security.Policy.Evidence collection. The
IsGranted() method is a lightweight method for testing to see if the current code has been granted a
specified permission, but is not a suitable substitute for the IPermission.Demand() or
IStackWalk.Demand() methods for the general enforcement of code-access security.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SecurityZone serializable

System.Security (mscorlib.dll) enum
public enum SecurityZone {
 MyComputer = 0,Intranet = 1,Trusted = 2,Internet = 3,Untrusted = 4,NoZone = -1
}

This enumeration defines constants that represent the different Internet Explorer security zones.
System.Security.Policy.Zone evidence uses these values to identify the source zone of code. The
values of SecurityZone are used when configuring a code group's membership condition as well as

when using imperative and declarative security statements based on
System.Security.Permissions.ZoneIdentityPermission objects.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) SecurityZone

Returned By

System.Security.Permissions.ZoneIdentityPermission.SecurityZone,
System.Security.Permissions.ZoneIdentityPermissionAttribute.Zone,
System.Security.Policy.Zone.SecurityZone,
System.Security.Policy.ZoneMembershipCondition.SecurityZone

Passed To

System.Security.Permissions.ZoneIdentityPermission.{SecurityZone,
ZoneIdentityPermission()},
System.Security.Permissions.ZoneIdentityPermissionAttribute.Zone,
System.Security.Policy.Zone.Zone(),
System.Security.Policy.ZoneMembershipCondition.{SecurityZone,
ZoneMembershipCondition()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SuppressUnmanagedCodeSecurityAttribute

System.Security (mscorlib.dll) sealed class
public sealed class SuppressUnmanagedCodeSecurityAttribute : Attribute {

// Public Constructors
 public SuppressUnmanagedCodeSecurityAttribute();
}

This attribute allows managed code to call unmanaged (native) code through PInvoke or COM interop
without causing a stack walk to determine if all callers on the call stack have the
System.Security.Permissions.SecurityPermissionFlag.UnmanagedCode permission from the
System.Security.Permissions.SecurityPermission class. It is effective only when applied to

PInvoke methods, classes containing PInvoke methods, or interface definitions through which COM
interop calls are made, and will be ignored in all other instances.

When applied to frequently called methods that provide access to unmanaged code,
SuppressUnmanagedCodeSecurityAttribute offers significant timesavings. However, careless use

can easily open security holes that malicious code can use to access system resources.

Hierarchy

System.Object System.Attribute SuppressUnmanagedCodeSecurityAttribute

Valid On

Class, Method, Interface

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

UnverifiableCodeAttribute

System.Security (mscorlib.dll) sealed class
public sealed class UnverifiableCodeAttribute : Attribute {

// Public Constructors
 public UnverifiableCodeAttribute();
}

This attribute class identifies a module as containing unverifiable code. You should not use this
attribute directly, as it is applied where necessary by the compiler.

Hierarchy

System.Object System.Attribute UnverifiableCodeAttribute

Valid On

Module

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

VerificationException
CF 1.0, ECMA 1.0,

serializable

System.Security (mscorlib.dll) class
public class VerificationException : SystemException {

// Public Constructors
 public VerificationException();

 public VerificationException(string message);

 public VerificationException(string message, Exception innerException);

// Protected Constructors

 protected VerificationException(System.Runtime.Serialization.SerializationInfo info,

 System.Runtime.Serialization.StreamingContext context);
}

This exception is thrown when code that does not have permission to skip verification fails the verification
process and cannot be verified as being type-safe.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable)

System.SystemException VerificationException

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

XmlSyntaxException serializable

System.Security (mscorlib.dll) sealed class
public sealed class XmlSyntaxException : SystemException {

// Public Constructors
 public XmlSyntaxException();

 public XmlSyntaxException(int lineNumber);

 public XmlSyntaxException(int lineNumber, string message);

 public XmlSyntaxException(string message);

 public XmlSyntaxException(string message, Exception inner);
}

This exception is thrown when there are syntax errors when parsing XML.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable)

System.SystemException XmlSyntaxException

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 24. The
System.Security.Cryptography Namespace
The System.Security.Cryptography namespace provides support for managing cryptographic hash

codes, data encryption, and digital signatures. The classes form a framework that can be extended
easily to incorporate new algorithms. Figure 24-1 and Figure 24-2 show the types in this namespace.

Figure 24-1. Algorithms represented in System.Security.Cryptography

Figure 24-2. More types from System.Security.Cryptography

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

AsymmetricAlgorithm disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class AsymmetricAlgorithm : IDisposable {

// Protected Constructors
 protected AsymmetricAlgorithm();

// Protected Instance Fields
 protected int KeySizeValue;
 protected KeySizes[] LegalKeySizesValue;

// Public Instance Properties
 public abstract string KeyExchangeAlgorithm{get; }
 public virtual int KeySize{set; get; }
 public virtual KeySizes[] LegalKeySizes{get; }
 public abstract string SignatureAlgorithm{get; }

// Public Static Methods
 public static AsymmetricAlgorithm Create();

 public static AsymmetricAlgorithm Create(string algName);

// Public Instance Methods
 public void Clear();

 public abstract void FromXmlString(string xmlString);

 public abstract string ToXmlString(bool includePrivateParameters);

// Protected Instance Methods

 protected abstract void Dispose(bool disposing);
}

An asymmetric algorithm is one where the sender and the recipient do not share the same knowledge
(i.e. only one party knows the secret key). All asymmetric algorithm implementation classes inherit
from this abstract class. Implementations are instantiated using the Create() method, which
accepts the name of an implementation as a String argument; the default implementation class is

created if no name is specified; the system administrator determines the default class.

The LegalKeySizes property returns an array of the KeySizes class, specifing the set of key lengths
supported by an implementation class. The KeySize property gets or sets the key length. The
FromXmlString() and ToXmlString() methods import and export key parameters as XML strings.

Differences in the design of asymmetric algorithms mean that there is little common functionality
embodied in this type; individual algorithm classes, such as RSA and DSA, define members for data

encryption and digital signatures.

Subclasses

DSA, RSA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returned By

System.Security.Cryptography.Xml.SignedXml.{GetPublicKey(), SigningKey}

Passed To

Multiple types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

AsymmetricKeyExchangeDeformatter

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class AsymmetricKeyExchangeDeformatter {

// Public Constructors
 public AsymmetricKeyExchangeDeformatter();

// Public Instance Properties
 public abstract string Parameters{set; get; }

// Public Instance Methods

 public abstract byte[] DecryptKeyExchange(byte[] rgb);

 public abstract void SetKey(AsymmetricAlgorithm key);
}

This is the counterpart class to AsymmetricKeyExchangeFormatter and is the abstract base class

which all key exchange deformatters extend. Implementations of this class decrypt formatted key
exchange data.

The DecryptKeyExchange() method uses a private key to decrypt data encrypted with an
implementation of the AsymmetricKeyExchangeFormatter class, using the corresponding public key.
The SetKey() method specifies the AsymmetricAlgorithm instance that contains the private key.
The Parameters property returns an XML string that describes the key exchange algorithm

represented by the implementation class.

The .NET Framework class library includes the RSAOAEPKeyExchangeDeformatter and
RSAPKCS1KeyExchangeDeformatter classes, which decrypt data that has been encrypted using the

RSA algorithm after being formatted with the Optimal Asymmetric Encryption Padding (OAEP) or
PKCS #1 schemes.

Subclasses

RSAOAEPKeyExchangeDeformatter, RSAPKCS1KeyExchangeDeformatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

AsymmetricKeyExchangeFormatter

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class AsymmetricKeyExchangeFormatter {

// Public Constructors
 public AsymmetricKeyExchangeFormatter();

// Public Instance Properties
 public abstract string Parameters{get; }

// Public Instance Methods

 public abstract byte[] CreateKeyExchange(byte[] data);

 public abstract byte[] CreateKeyExchange(byte[] data, Type symAlgType);

 public abstract void SetKey(AsymmetricAlgorithm key);
}

Key exchange formatting allows a sender to encrypt a symmetric secret key value with an
asymmetric algorithm and send the result to a recipient, who uses an asymmetric private key to
decrypt the data. This process allows for the secure distribution of session keys, which are used with
a symmetric algorithm to encrypt a single message. The secret key value is formatted prior to
encryption to protect against cryptographic attack.

The abstract AsymmetricKeyExchangeFormatter class is the parent for all key exchange formatter
implementations. The CreateKeyExchange() method uses an asymmetric public key to encrypt a
symmetric secret key, expressed as a System.Byte array. The SetKey() method specifies the
AsymmetricAlgorithm instance that contains the public key. The Parameters property returns an

XML string that describes the key exchange algorithm represented by the implementation class.

The .NET Framework class library includes the RSAOAEPKeyExchangeFormatter and
RSAPKCS1KeyExchangeFormatter classes, which format a secret key value using either the OAEP or

PKCS #1 formatting schemes, prior to encryption with the RSA algorithm. The OAEP scheme has
superseded PKCS #1, which should be used only for compatibility with legacy systems.

Subclasses

RSAOAEPKeyExchangeFormatter, RSAPKCS1KeyExchangeFormatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

AsymmetricSignatureDeformatter

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class AsymmetricSignatureDeformatter {

// Public Constructors
 public AsymmetricSignatureDeformatter();

// Public Instance Methods

 public abstract void SetHashAlgorithm(string strName);

 public abstract void SetKey(AsymmetricAlgorithm key);

 public abstract bool VerifySignature(byte[] rgbHash, byte[] rgbSignature);

 public virtual bool VerifySignature(HashAlgorithm hash, byte[] rgbSignature);
}

Implementations of this abstract class verify digital signatures created by the
AsymmetricSignatureFormatter class.

The VerifySignature() method uses an asymmetric public key to verify a digital signature,
expressed as a System.Byte array. The public key value is set by the SetKey() method, which
accepts an instance of the AsymmetricAlgorithm class configured with the key parameters. The
SetHashAlgorithm() method sets the name of the hash algorithm used to create the digital

signature; this value is used in the verification process.

The .NET Framework class library includes the DSASignatureDeformatter and
RSAPKCS1SignatureDeformatter classes, which verify digital signatures created with the
DSASignatureFormatter and RSAPKCS1SignatureFormatter classes.

Subclasses

DSASignatureDeformatter, RSAPKCS1SignatureDeformatter

Returned By

SignatureDescription.CreateDeformatter()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

AsymmetricSignatureFormatter

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class AsymmetricSignatureFormatter {

// Public Constructors
 public AsymmetricSignatureFormatter();

// Public Instance Methods

 public abstract byte[] CreateSignature(byte[] rgbHash);

 public virtual byte[] CreateSignature(HashAlgorithm hash);

 public abstract void SetHashAlgorithm(string strName);

 public abstract void SetKey(AsymmetricAlgorithm key);
}

This is the abstract parent for all signature formatter implementation classes; such classes create
digital signatures by formatting a cryptographic hash code and applying an asymmetric signature
function to the formatted data.

The CreateSignature() method uses an asymmetric private key to create a digital signature,
expressed as a System.Byte array. The private key value is specified by the SetKey() method,
which accepts an instance of the AsymmetricAlgorithm class configured with the key parameters.
The SetHashAlgorithm() method sets the name of the hash algorithm used to create the data to

be signed; this value is used in the data-formatting process.

The .NET Framework class library includes the DSASignatureFormatter and
RSAPKCS1SignatureFormatter classes, which create digital signatures using the DSA and RSA

algorithm classes.

Subclasses

DSASignatureFormatter, RSAPKCS1SignatureFormatter

Returned By

SignatureDescription.CreateFormatter()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CipherMode serializable

System.Security.Cryptography
(mscorlib.dll)

enum

public enum CipherMode {
 CBC = 1,ECB = 2,OFB = 3,CFB = 4,CTS = 5
}

The SymmetricAlgorithm.Mode property gets and sets a value from the CipherMode enumeration;

the enumeration values represent different cipher modes, which affect the way in which data is
processed during encryption.

The most commonly used CipherMode values are CBC (Cipher Block Chaining), which is suitable for
most encryption tasks, and CFB (Cipher Feedback), which is suitable for encrypting data that is

processed in small chunks.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) CipherMode

Returned By

SymmetricAlgorithm.Mode

Passed To

SymmetricAlgorithm.Mode

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CryptoAPITransform disposable

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class CryptoAPITransform : ICryptoTransform, IDisposable {

// Public Instance Properties
 public bool CanReuseTransform{get;

 // implements ICryptoTransform
 public bool CanTransformMultipleBlocks{get;

 // implements ICryptoTransform
 public int InputBlockSize{get;

 // implements ICryptoTransform
 public IntPtr KeyHandle{get; }
 public int OutputBlockSize{get;

 // implements ICryptoTransform

// Public Instance Methods
 public void Clear();

 public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount,

// implements ICryptoTransform

 byte[] outputBuffer, int outputOffset);

 public byte[] TransformFinalBlock(byte[] inputBuffer,

 // implements ICryptoTransform

 int inputOffset, int inputCount);

// Protected Instance Methods
 protected override void Finalize();

 // overrides object
}

This class implements the ICryptoTransform interface and is a wrapper around the Windows Crypto

API. This is an internal class, and is not instantiated directly by the programmer.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CryptoConfig

System.Security.Cryptography
(mscorlib.dll)

class

public class CryptoConfig {

// Public Constructors
 public CryptoConfig();

// Public Static Methods

 public static object CreateFromName(string name);

 public static object CreateFromName(string name, object[] args);

 public static byte[] EncodeOID(string str);

 public static string MapNameToOID(string name);
}

This class defines the mapping between algorithm implementation classes and the String values
used to create them; the Create() methods of the AsymmetricAlgorithm and
SymmetricAlgorithm classes instantiate algorithms by name with the static CreateFromName()

method of this class.

For example, the String values SHA, SHA1 and System.Security.Cryptography.SHA1 all map to the
SHA1CryptoServiceProvider class detailed in this chapter. The mappings can be changed by editing

the Machine.config file.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CryptographicException serializable

System.Security.Cryptography
(mscorlib.dll)

class

public class CryptographicException : SystemException {

// Public Constructors
 public CryptographicException();

 public CryptographicException(int hr);

 public CryptographicException(string message);

 public CryptographicException(string message, Exception inner);

 public CryptographicException(string format, string insert);

// Protected Constructors

 protected CryptographicException(System.Runtime.Serialization.SerializationInfo info,

 System.Runtime.Serialization.StreamingContext context);
}

This exception represents a general error thrown when a cryptographic operation fails.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable)

System.SystemException CryptographicException

Subclasses

CryptographicUnexpectedOperationException

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CryptographicUnexpectedOperationException serializable

System.Security.Cryptography
(mscorlib.dll)

class

public class CryptographicUnexpectedOperationException : CryptographicException {

// Public Constructors
 public CryptographicUnexpectedOperationException();

 public CryptographicUnexpectedOperationException(string message);

 public CryptographicUnexpectedOperationException(string message, Exception inner);

 public CryptographicUnexpectedOperationException(string format, string insert);

// Protected Constructors

 protected CryptographicUnexpectedOperationException(System.Runtime.Serialization.SerializationInfo info,

 System.Runtime.Serialization.StreamingContext context);
}

This exception represents a general error thrown when a cryptographic operation fails unexpectedly.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable) System.SystemException

CryptographicException CryptographicUnexpectedOperationException

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CryptoStream
marshal by reference,

disposable

System.Security.Cryptography
(mscorlib.dll)

class

public class CryptoStream : System.IO.Stream {

// Public Constructors

 public CryptoStream(System.IO.Stream stream, ICryptoTransform transform, CryptoStreamMode mode);

// Public Instance Properties
 public override bool CanRead{get;

 // overrides System.IO.Stream
 public override bool CanSeek{get;

 // overrides System.IO.Stream
 public override bool CanWrite{get;

 // overrides System.IO.Stream
 public override long Length{get;

 // overrides System.IO.Stream
 public override long Position{set; get;

 // overrides System.IO.Stream

// Public Instance Methods
 public void Clear();
 public override void Close();

 // overrides System.IO.Stream
 public override void Flush();

 // overrides System.IO.Stream
 public void FlushFinalBlock();

 public override int Read(in byte[] buffer, int offset, int count);

// overrides System.IO.Stream

 public override long Seek(long offset, System.IO.SeekOrigin origin);

// overrides System.IO.Stream

 public override void SetLength(long value);

 // overrides System.IO.Stream

 public override void Write(byte[] buffer, int offset, int count);

// overrides System.IO.Stream

// Protected Instance Methods

 protected virtual void Dispose(bool disposing);
 protected override void Finalize();

 // overrides object
}

The CryptoStream class provides a stream-based model for encrypting and decrypting data using symmetric
algorithms. The class constructor accepts an instance of System.IO.Stream , an implementation of the
ICryptoTransform interface, and a value from the CryptoStreamMode enumeration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the CryptoStreamMode value is Read() , then data is read from System.IO.Stream and passed to the
ICryptoTransform for processing. If the CryptoStreamMode value is Write() , then data is transformed by the
ICryptoTransform implementation before being written to the System.IO.Stream . Implementations of
ICryptoTransform can be created using the SymmetricAlgorithm.CreateEncryptor() and
SymmetricAlgorithm.CreateDecryptor() methods.

This class extends System.IO.Stream , and therfore can be used as an argument in constructing a new instance of
CryptoStream itself, allowing transformations to be chained together.

Hierarchy

System.Object System.MarshalByRefObject System.IO.Stream(System.IDisposable) CryptoStream

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CryptoStreamMode serializable

System.Security.Cryptography
(mscorlib.dll)

enum

public enum CryptoStreamMode {
 Read = 0,Write = 1
}

This enumeration is used by the CryptoStream constructor to specify whether data will be read from,
or written to, the System.IO.Stream.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) CryptoStreamMode

Passed To

CryptoStream.CryptoStream()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CspParameters

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class CspParameters {

// Public Constructors
 public CspParameters();

 public CspParameters(int dwTypeIn);

 public CspParameters(int dwTypeIn, string strProviderNameIn);

 public CspParameters(int dwTypeIn, string strProviderNameIn, string strContainerNameIn);

// Public Instance Fields
 public string KeyContainerName;
 public int KeyNumber;
 public string ProviderName;
 public int ProviderType;

// Public Instance Properties
 public CspProviderFlags Flags{set; get; }
}

The asymmetric algorithm implementation classes that are wrappers around the Windows Crypto API
(RSACryptoServiceProvider and DSACryptoServiceProvider) are able to read and write key parameters

from the persistent Windows key stores. This class can be used as an argument to the implementation class
constructors in order to specify the details of which key store should be used.

Passed To

DSACryptoServiceProvider.DSACryptoServiceProvider() ,
PasswordDeriveBytes.PasswordDeriveBytes() ,
RNGCryptoServiceProvider.RNGCryptoServiceProvider() ,
RSACryptoServiceProvider.RSACryptoServiceProvider()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CspProviderFlags serializable, flags

System.Security.Cryptography
(mscorlib.dll)

enum

public enum CspProviderFlags {
 UseMachineKeyStore = 0x00000001,UseDefaultKeyContainer = 0x00000002
}

The values of this enumeration specify the location where persistent asymmetric key values are
stored; the constructor for the CspParameters class accepts a value from this enumeration.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) CspProviderFlags

Returned By

CspParameters.Flags

Passed To

CspParameters.Flags

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DeriveBytes

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class DeriveBytes {

// Protected Constructors
 protected DeriveBytes();

// Public Instance Methods

 public abstract byte[] GetBytes(int cb);
 public abstract void Reset();
}

This abstract class is the basis for implementations that derive byte sequences from input data. For
example, the .NET Framework class library includes the PasswordDeriveBytes class, which derives a

cryptographic key from an easily remembered password.

The GetBytes() method derives a number of bytes from the input, where the number of bytes to

derive is specified as the methods argument.

Subclasses

PasswordDeriveBytes

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DES disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class DES : SymmetricAlgorithm {

// Public Constructors
 public DES();

// Public Instance Properties
 public override byte[] Key{set; get;

 // overrides SymmetricAlgorithm

// Public Static Methods
 public static DES Create();

 public static DES Create(string algName);

 public static bool IsSemiWeakKey(byte[] rgbKey);

 public static bool IsWeakKey(byte[] rgbKey);
}

This class extends SymmetricAlgorithm and is the abstract representation of the Digital Encryption

Standard (DES) algorithm. Individual implementations of DES extend this class. The .NET Framework
class library includes the DESCryptoServiceProvider class, which is the default implementation.

In addition to the members defined by the parent class, DES implements the IsSemiWeakKey() and
IsWeakKey() methods, which determine if the selected cryptographic key results in a cipher that is

easy to break.

Hierarchy

System.Object SymmetricAlgorithm(System.IDisposable) DES

Subclasses

DESCryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DESCryptoServiceProvider disposable

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class DESCryptoServiceProvider : DES {

// Public Constructors
 public DESCryptoServiceProvider();

// Public Instance Methods

 public override ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV);

// overrides SymmetricAlgorithm

 public override ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV);

// overrides SymmetricAlgorithm
 public override void GenerateIV();

 // overrides SymmetricAlgorithm
 public override void GenerateKey();

 // overrides SymmetricAlgorithm
}

This subclass of DES is the default implementation of the DES algorithm and is a wrapper around the

Windows Crypto API.

Hierarchy

System.Object SymmetricAlgorithm(System.IDisposable) DES
DESCryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DSA disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class DSA : AsymmetricAlgorithm {

// Public Static Methods
 public static DSA Create();

 public static DSA Create(string algName);

// Public Instance Methods

 public abstract byte[] CreateSignature(byte[] rgbHash);

 public abstract DSAParameters ExportParameters(bool includePrivateParameters);

 public override void FromXmlString(string xmlString);

 // overrides AsymmetricAlgorithm

 public abstract void ImportParameters(DSAParameters parameters);

 public override string ToXmlString(bool includePrivateParameters);

// overrides AsymmetricAlgorithm

 public abstract bool VerifySignature(byte[] rgbHash, byte[] rgbSignature);
}

This class extends AsymmetricAlgorithm and is the abstract representation of the Digital Signature

Algorithm (DSA). Individual implementations of DSA will extend this class. The .NET Framework class
library includes the DSACryptoServiceProvider class, which is the default implementation of the

algorithm.

DSA key pairs are represented by the DSAParameters structure, and can be imported and exported
from the DSA class with the ImportParameters() and ExportParameters() methods. The
CreateSignature() method produces a digital signature for a cryptographic hash code, which can
be verified using the VerifySignature() method.

The DSA algorithm does not support data encryption.

Hierarchy

System.Object AsymmetricAlgorithm(System.IDisposable) DSA

Subclasses

DSACryptoServiceProvider

Returned By

System.Security.Cryptography.Xml.DSAKeyValue.Key

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Passed To

System.Security.Cryptography.Xml.DSAKeyValue.{DSAKeyValue(), Key}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DSACryptoServiceProvider disposable

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class DSACryptoServiceProvider : DSA {

// Public Constructors
 public DSACryptoServiceProvider();

 public DSACryptoServiceProvider(CspParameters parameters);

 public DSACryptoServiceProvider(int dwKeySize);

 public DSACryptoServiceProvider(int dwKeySize, CspParameters parameters);

// Public Static Properties
 public static bool UseMachineKeyStore{set; get; }

// Public Instance Properties
 public override string KeyExchangeAlgorithm{get;

 // overrides AsymmetricAlgorithm
 public override int KeySize{get;

 // overrides AsymmetricAlgorithm
 public override KeySizes[] LegalKeySizes{get;

 // overrides AsymmetricAlgorithm
 public bool PersistKeyInCsp{set; get; }
 public override string SignatureAlgorithm{get;

 // overrides AsymmetricAlgorithm

// Public Instance Methods

 public override byte[] CreateSignature(byte[] rgbHash);

 // overrides DSA

 public override DSAParameters ExportParameters(bool includePrivateParameters);

// overrides DSA

 public override void ImportParameters(DSAParameters parameters);

// overrides DSA

 public byte[] SignData(byte[] buffer);

 public byte[] SignData(byte[] buffer, int offset, int count);

 public byte[] SignData(System.IO.Stream inputStream);

 public byte[] SignHash(byte[] rgbHash, string str);

 public bool VerifyData(byte[] rgbData, byte[] rgbSignature);

 public bool VerifyHash(byte[] rgbHash, string str, byte[] rgbSignature);

 public override bool VerifySignature(byte[] rgbHash, byte[] rgbSignature);

// overrides DSA

// Protected Instance Methods

 protected override void Dispose(bool disposing);

 // overrides AsymmetricAlgorithm
 protected override void Finalize();

 // overrides object
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This subclass of DSA is the default implementation of the DSA and is a wrapper around the Windows

Crypto API.

This class defines several new members; the SignData() method creates a digital signature by
reading data from a stream. The VerifyData() method verifies a digital signature from the signed
data (as opposed to the cryptographic hash code). The SignHash() and VerifyHash() methods
are functionally equivalent to the CreateSignature() and VerifySignature() methods of the

parent class.

Hierarchy

System.Object AsymmetricAlgorithm(System.IDisposable) DSA
DSACryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DSAParameters serializable

System.Security.Cryptography
(mscorlib.dll)

struct

public struct DSAParameters {

// Public Instance Fields
 public int Counter;
 public byte[] G;
 public byte[] J;
 public byte[] P;
 public byte[] Q;
 public byte[] Seed;
 public byte[] X;
 public byte[] Y;
}

This structure represents the parameters of a DSA key, expressed as a set of Byte arrays. Key
parameters are exported from the DSA class with the ExportParameters() method. Keys
parameters are imported into the DSA class with the ImportParameters() method.

Hierarchy

System.Object System.ValueType DSAParameters

Returned By

DSA.ExportParameters()

Passed To

DSA.ImportParameters()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DSASignatureDeformatter

System.Security.Cryptography
(mscorlib.dll)

class

public class DSASignatureDeformatter : AsymmetricSignatureDeformatter {

// Public Constructors
 public DSASignatureDeformatter();

 public DSASignatureDeformatter(AsymmetricAlgorithm key);

// Public Instance Methods

 public override void SetHashAlgorithm(string strName);

 // overrides AsymmetricSignatureDeformatter

 public override void SetKey(AsymmetricAlgorithm key);

 // overrides AsymmetricSignatureDeformatter

 public override bool VerifySignature(byte[] rgbHash, byte[] rgbSignature)// overrides AsymmetricSignatureDeformatter
}

This child of the AsymmetricSignatureDeformatter class verifies Digital Signature Algorithm (DSA) signatures created with the
DSASignatureFormatter class.

Hierarchy

System.Object AsymmetricSignatureDeformatter DSASignatureDeformatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DSASignatureFormatter

System.Security.Cryptography
(mscorlib.dll)

class

public class DSASignatureFormatter : AsymmetricSignatureFormatter {

// Public Constructors
 public DSASignatureFormatter();

 public DSASignatureFormatter(AsymmetricAlgorithm key);

// Public Instance Methods

 public override byte[] CreateSignature(byte[] rgbHash);

 // overrides AsymmetricSignatureFormatter

 public override void SetHashAlgorithm(string strName);

 // overrides AsymmetricSignatureFormatter

 public override void SetKey(AsymmetricAlgorithm key);

 // overrides AsymmetricSignatureFormatter
}

This class extends the AsymmetricSignatureFormatter class and creates digital signatures using
the DSA. Signatures created by DSASignatureFormatter can be verified with the
DSASignatureDeformatter class.

Hierarchy

System.Object AsymmetricSignatureFormatter DSASignatureFormatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FromBase64Transform disposable

System.Security.Cryptography
(mscorlib.dll)

class

public class FromBase64Transform : ICryptoTransform, IDisposable {

// Public Constructors
 public FromBase64Transform();

 public FromBase64Transform(FromBase64TransformMode whitespaces);

// Public Instance Properties
 public virtual bool CanReuseTransform{get;

 // implements ICryptoTransform
 public bool CanTransformMultipleBlocks{get;

 // implements ICryptoTransform
 public int InputBlockSize{get;

 // implements ICryptoTransform
 public int OutputBlockSize{get;

 // implements ICryptoTransform

// Public Instance Methods
 public void Clear();

 public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount,

 byte[] outputBuffer, int outputOffset);

// implements ICryptoTransform

 public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount);

// implements ICryptoTransform

// Protected Instance Methods

 protected virtual void Dispose(bool disposing);
 protected override void Finalize();

 // overrides object
}

This implementation of the ICryptoTransform interface decodes Base64 data. This class is used in conjunction
with the CryptoStream class.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FromBase64TransformMode serializable

System.Security.Cryptography
(mscorlib.dll)

enum

public enum FromBase64TransformMode {
 IgnoreWhiteSpaces = 0,DoNotIgnoreWhiteSpaces = 1
}

This enumeration is used as an argument to the FromBase64Transform constructor to specify

whether whitespace in the Base64-encoded data should be ignored.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) FromBase64TransformMode

Passed To

FromBase64Transform.FromBase64Transform()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

HashAlgorithm disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class HashAlgorithm : ICryptoTransform, IDisposable {

// Protected Constructors
 protected HashAlgorithm();

// Protected Instance Fields
 protected int HashSizeValue;
 protected byte[] HashValue;
 protected int State;

// Public Instance Properties
 public virtual bool CanReuseTransform{get;

 // implements ICryptoTransform
 public virtual bool CanTransformMultipleBlocks{get;

 // implements ICryptoTransform
 public virtual byte[] Hash{get; }
 public virtual int HashSize{get; }
 public virtual int InputBlockSize{get;

 // implements ICryptoTransform
 public virtual int OutputBlockSize{get;

 // implements ICryptoTransform

// Public Static Methods
 public static HashAlgorithm Create();

 public static HashAlgorithm Create(string hashName);

// Public Instance Methods
 public void Clear();

 public byte[] ComputeHash(byte[] buffer);

 public byte[] ComputeHash(byte[] buffer, int offset, int count);

 public byte[] ComputeHash(System.IO.Stream inputStream);
 public abstract void Initialize();

 public int TransformBlock(byte[] inputBuffer, int inputOffset,

 int inputCount, byte[] outputBuffer, int outputOffset);

// implements ICryptoTransform

 public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount);

// implements ICryptoTransform

// Protected Instance Methods

 protected virtual void Dispose(bool disposing);

 protected abstract void HashCore(byte[] array, int ibStart, int cbSize);
 protected abstract byte[] HashFinal();
}

A hash algorithm processes data to create a fixed-length string, known as a hash code. Hash algorithms are
useful because it is difficult to find two sets of data that result in the same hash code; hash algorithms are an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

important part of the process to create digital signatures and are used to ensure data integrity.

All hash algorithm implementations inherit from this abstract class. Implementation classes are instantiated using
the Create() method, which accepts the name of an implementation as a String argument. The default

algorithm is created if no implementation name is specified; the system administrator can configure the default
algorithm.

The ComputeHash() method generates a hash code by either processing a Byte array or by reading data from a
Stream .

Subclasses

KeyedHashAlgorithm , MD5 , SHA1 , SHA256 , SHA384 , SHA512

Returned By

SignatureDescription.CreateDigest() ,
System.Security.Policy.HashMembershipCondition.HashAlgorithm

Passed To

AsymmetricSignatureDeformatter.VerifySignature() ,
AsymmetricSignatureFormatter.CreateSignature() , System.Security.Policy.Hash.GenerateHash() ,
System.Security.Policy.HashMembershipCondition.{HashAlgorithm , HashMembershipCondition()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

HMACSHA1 disposable

System.Security.Cryptography
(mscorlib.dll)

class

public class HMACSHA1 : KeyedHashAlgorithm {

// Public Constructors
 public HMACSHA1();

 public HMACSHA1(byte[] rgbKey);

// Public Instance Properties
 public string HashName{set; get; }
 public override byte[] Key{set; get;

 // overrides KeyedHashAlgorithm

// Public Instance Methods
 public override void Initialize();

 // overrides HashAlgorithm

// Protected Instance Methods

 protected override void Dispose(bool disposing);

 // overrides KeyedHashAlgorithm
 protected override void Finalize();

 // overrides KeyedHashAlgorithm

 protected override void HashCore(byte[] rgb, int ib, int cb);

// overrides HashAlgorithm
 protected override byte[] HashFinal();

 // overrides HashAlgorithm
}

This class extends the KeyedHashAlgorithm class and implements the HMAC-SHA-1 algorithm, which

uses the SHA-1 algorithm as the basis for creating keyed hash codes.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable)

KeyedHashAlgorithm HMACSHA1

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ICryptoTransform disposable

System.Security.Cryptography
(mscorlib.dll)

interface

public interface ICryptoTransform : IDisposable {

// Public Instance Properties
 public bool CanReuseTransform{get; }
 public bool CanTransformMultipleBlocks{get; }
 public int InputBlockSize{get; }
 public int OutputBlockSize{get; }

// Public Instance Methods

 public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount,

 byte[] outputBuffer, int outputOffset);

 public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount);
}

The ICryptoTransform interface defines the basic operations of a symmetric block cipher, and is used in
conjunction with the CryptoStream class to transform data. Implementations of this interface are most
commonly obtained through the SymmetricAlgorithm.CreateEncryptor() and
SymmetricAlgorithm.CreateDecryptor() methods.

Implemented By

CryptoAPITransform , FromBase64Transform , HashAlgorithm , ToBase64Transform

Returned By

SymmetricAlgorithm.{CreateDecryptor() , CreateEncryptor()}

Passed To

CryptoStream.CryptoStream()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

KeyedHashAlgorithm disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class KeyedHashAlgorithm : HashAlgorithm {

// Protected Constructors
 protected KeyedHashAlgorithm();

// Protected Instance Fields
 protected byte[] KeyValue;

// Public Instance Properties
 public virtual byte[] Key{set; get; }

// Public Static Methods
 public static KeyedHashAlgorithm Create();

 public static KeyedHashAlgorithm Create(string algName);

// Protected Instance Methods

 protected override void Dispose(bool disposing);

 // overrides HashAlgorithm
 protected override void Finalize();

 // overrides object
}

Keyed hash algorithms provide authenticated hash codes by combining a secret key with the data to
process. The recipient can validate the hash code only if he knows the secret key.

All keyed hash algorithm implementations inherit from this abstract class, which extends the
HashAlgorithm class. Implementation classes are instantiated using the Create() method, which
accepts the name of an implementation as a System.String argument. The default implementation

class is created if no name is specified; the system administrator determines the default class.

In addition to the members defined by the parent class, KeyedHashAlgorithm implements the Key
property, which gets and sets the value of the secret key, expressed as a System.Byte array.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable)
KeyedHashAlgorithm

Subclasses

HMACSHA1, MACTripleDES

Passed To

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Security.Cryptography.Xml.SignedXml.{CheckSignature(), ComputeSignature()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

KeySizes

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class KeySizes {

// Public Constructors

 public KeySizes(int minSize, int maxSize, int skipSize);

// Public Instance Properties
 public int MaxSize{get; }
 public int MinSize{get; }
 public int SkipSize{get; }
}

The KeySizes class expresses a range of cryptographic key lengths; instances of this class are
returned from the SymmetricAlgorithm.LegalKeySizes() and
AsymmetricAlgorithm.LegalKeySizes() methods.

The three class properties express the range of key lengths; MinSize specifies the shortest
supported key length, MaxSize specifies the longest supported length, and SkipSize specifies the
interval between supported lengths. For example, if MinSize is 16, MaxSize is 32, and SkipSize is 8,
then the KeySize would represent key lengths of 16, 24, and 32 bits.

Returned By

AsymmetricAlgorithm.LegalKeySizes, SymmetricAlgorithm.{LegalBlockSizes, LegalKeySizes}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

MACTripleDES disposable

System.Security.Cryptography
(mscorlib.dll)

class

public class MACTripleDES : KeyedHashAlgorithm {

// Public Constructors
 public MACTripleDES();

 public MACTripleDES(byte[] rgbKey);

 public MACTripleDES(string strTripleDES, byte[] rgbKey);

// Public Instance Methods
 public override void Initialize();

 // overrides HashAlgorithm

// Protected Instance Methods

 protected override void Dispose(bool disposing);

 // overrides KeyedHashAlgorithm
 protected override void Finalize();

 // overrides KeyedHashAlgorithm

 protected override void HashCore(byte[] rgbData, int ibStart, int cbSize);

// overrides HashAlgorithm
 protected override byte[] HashFinal();

 // overrides HashAlgorithm
}

This class extends the KeyedHashAlgorithm class and implements the MAC-Triple-DES algorithm,

which uses the Triple-DES encryption algorithm to create a keyed hash code.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable)

KeyedHashAlgorithm MACTripleDES

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

MaskGenerationMethod

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class MaskGenerationMethod {

// Protected Constructors
 protected MaskGenerationMethod();

// Public Instance Methods

 public abstract byte[] GenerateMask(byte[] rgbSeed, int cbReturn);
}

This class creates masks used in key exchange algorithms. This is an internal class and is not
instantiated directly by the programmer.

Subclasses

PKCS1MaskGenerationMethod

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

MD5 disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class MD5 : HashAlgorithm {

// Protected Constructors
 protected MD5();

// Public Static Methods
 public static MD5 Create();

 public static MD5 Create(string algName);
}

This class extends HashAlgorithm and is the abstract representation of the MD5 algorithm.

Individual implementations of MD5 will extend this class. The .NET Framework class library includes
the MD5CryptoServiceProvider class, which is the default implementation.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) MD5

Subclasses

MD5CryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

MD5CryptoServiceProvider disposable

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class MD5CryptoServiceProvider : MD5 {

// Public Constructors
 public MD5CryptoServiceProvider();

// Public Instance Methods
 public override void Initialize();

 // overrides HashAlgorithm

// Protected Instance Methods

 protected override void Dispose(bool disposing);

 // overrides HashAlgorithm
 protected override void Finalize();

 // overrides object

 protected override void HashCore(byte[] rgb, int ibStart, int cbSize);

 // overrides HashAlgorithm
 protected override byte[] HashFinal();

 // overrides HashAlgorithm
}

This subclass of MD5 is the default implementation of the MD5 algorithm and is a wrapper around the

Windows Crypto API.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) MD5
MD5CryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PaddingMode serializable

System.Security.Cryptography
(mscorlib.dll)

enum

public enum PaddingMode {
 None = 1,PKCS7 = 2,Zeros = 3
}

The PaddingMode enumeration is used with the SymmetricAlgorithm.Padding property to specify a
padding scheme for data encryption. The PKCS7 value specifies PKCS #7 padding, where the value of

the padding bytes is set to be the number of padding bytes (for example, if seven bytes of padding
are required, then the value of these bytes will be 7). The Zeros value specifies that all padding bytes

should be set to have a value of 0.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) PaddingMode

Returned By

SymmetricAlgorithm.Padding

Passed To

SymmetricAlgorithm.Padding

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PasswordDeriveBytes

System.Security.Cryptography
(mscorlib.dll)

class

public class PasswordDeriveBytes : DeriveBytes {

// Public Constructors

 public PasswordDeriveBytes(string strPassword, byte[] rgbSalt);

 public PasswordDeriveBytes(string strPassword, byte[] rgbSalt, CspParameters cspParams);

 public PasswordDeriveBytes(string strPassword, byte[] rgbSalt, string strHashName,

 int iterations);

 public PasswordDeriveBytes(string strPassword, byte[] rgbSalt, string strHashName,

 int iterations, CspParameters cspParams);

// Public Instance Properties
 public string HashName{set; get; }
 public int IterationCount{set; get; }
 public byte[] Salt{set; get; }

// Public Instance Methods

 public byte[] CryptDeriveKey(string algname, string alghashname, int keySize, byte[] rgbIV);

 public override byte[] GetBytes(int cb);

 // overrides DeriveBytes
 public override void Reset();

 // overrides DeriveBytes

// Protected Instance Methods
 protected override void Finalize();

 // overrides object
}

This class extends the abstract DeriveBytes class and generates symmetric key values by applying a hash algorithm to
a password string. The HashName property specifies the hash algorithm to use and the IterationCount property

indicates how many times the hash algorithm will be applied in order to create the symmetric key value.

Hierarchy

System.Object DeriveBytes PasswordDeriveBytes

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PKCS1MaskGenerationMethod

System.Security.Cryptography
(mscorlib.dll)

class

public class PKCS1MaskGenerationMethod : MaskGenerationMethod {

// Public Constructors
 public PKCS1MaskGenerationMethod();

// Public Instance Properties
 public string HashName{set; get; }

// Public Instance Methods

 public override byte[] GenerateMask(byte[] rgbSeed, int cbReturn);

 // overrides MaskGenerationMethod
}

This class creates masks used as part of OAEP key exchange formatting. This is an internal class, and
is not instantiated directly by the programmer.

Hierarchy

System.Object MaskGenerationMethod PKCS1MaskGenerationMethod

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RandomNumberGenerator

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class RandomNumberGenerator {

// Public Constructors
 public RandomNumberGenerator();

// Public Static Methods
 public static RandomNumberGenerator Create();

 public static RandomNumberGenerator Create(string rngName);

// Public Instance Methods

 public abstract void GetBytes(byte[] data);

 public abstract void GetNonZeroBytes(byte[] data);
}

The RandomNumberGenerator class is the abstract base from which random number generator
implementations inherit. Implementation classes are instantiated with the Create() method, which
accepts the name of an implementation as a String argument. An instance of the default algorithm

is created if no name is specified; the system administrator can configure the default algorithm.

The GetBytes() method populates a System.Byte array with random values; the array to fill is the
sole argument to the method. The GetNonZeroBytes() method populates a System.Byte array

with random values, none of which will be 0.

The .NET Framework class library includes the RNGCryptoServiceProvider class, which is the

default implementation.

Subclasses

RNGCryptoServiceProvider

Returned By

RSAOAEPKeyExchangeFormatter.Rng, RSAPKCS1KeyExchangeDeformatter.RNG,
RSAPKCS1KeyExchangeFormatter.Rng

Passed To

RSAOAEPKeyExchangeFormatter.Rng, RSAPKCS1KeyExchangeDeformatter.RNG,
RSAPKCS1KeyExchangeFormatter.Rng

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RC2 disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class RC2 : SymmetricAlgorithm {

// Public Constructors
 public RC2();

// Protected Instance Fields
 protected int EffectiveKeySizeValue;

// Public Instance Properties
 public virtual int EffectiveKeySize{set; get; }
 public override int KeySize{set; get;

 // overrides SymmetricAlgorithm

// Public Static Methods
 public static RC2 Create();

 public static RC2 Create(string AlgName);
}

This class extends SymmetricAlgorithm and is the abstract representation of the RC2 algorithm.

Individual implementations of RC2 will extend this class. The .NET Framework class library includes
the RC2CryptoServiceProvider class, which is the default implementation.

Hierarchy

System.Object SymmetricAlgorithm(System.IDisposable) RC2

Subclasses

RC2CryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RC2CryptoServiceProvider disposable

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class RC2CryptoServiceProvider : RC2 {

// Public Constructors
 public RC2CryptoServiceProvider();

// Public Instance Properties
 public override int EffectiveKeySize{set; get;

 // overrides RC2

// Public Instance Methods

 public override ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV);

 // overrides SymmetricAlgorithm

 public override ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV);

 // overrides SymmetricAlgorithm
 public override void GenerateIV();

 // overrides SymmetricAlgorithm
 public override void GenerateKey();

 // overrides SymmetricAlgorithm
}

This subclass of RC2 is the default implementation of the RC2 algorithm and is a wrapper around the

Windows Crypto API.

Hierarchy

System.Object SymmetricAlgorithm(System.IDisposable) RC2
RC2CryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Rijndael disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class Rijndael : SymmetricAlgorithm {

// Public Constructors
 public Rijndael();

// Public Static Methods
 public static Rijndael Create();

 public static Rijndael Create(string algName);
}

This class extends SymmetricAlgorithm and is the abstract representation of the Rijndael algorithm.

Individual implementations of Rijndael will extend this class. The .NET Framework class library
includes the Rijndael class, which is the default implementation.

The Rijndael algorithm is also known as the Advanced Encryption Standard (AES).

Hierarchy

System.Object SymmetricAlgorithm(System.IDisposable) Rijndael

Subclasses

RijndaelManaged

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RijndaelManaged disposable

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class RijndaelManaged : Rijndael {

// Public Constructors
 public RijndaelManaged();

// Public Instance Methods

 public override ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV);

 // overrides SymmetricAlgorithm

 public override ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV);

 // overrides SymmetricAlgorithm
 public override void GenerateIV();

 // overrides SymmetricAlgorithm
 public override void GenerateKey();

 // overrides SymmetricAlgorithm
}

This subclass of Rijndael is the default implementation of the Rijndael/AES algorithm.
RijndaelManaged is implemented in managed code, rather than acting as a wrapper around the

Windows Crypto API.

Hierarchy

System.Object SymmetricAlgorithm(System.IDisposable) Rijndael
RijndaelManaged

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RNGCryptoServiceProvider

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class RNGCryptoServiceProvider : RandomNumberGenerator {

// Public Constructors
 public RNGCryptoServiceProvider();

 public RNGCryptoServiceProvider(byte[] rgb);

 public RNGCryptoServiceProvider(CspParameters cspParams);

 public RNGCryptoServiceProvider(string str);

// Public Instance Methods

 public override void GetBytes(byte[] data);

 // overrides RandomNumberGenerator

 public override void GetNonZeroBytes(byte[] data);

 // overrides RandomNumberGenerator

// Protected Instance Methods
 protected override void Finalize();

 // overrides object
}

This subclass of RandomNumberGenerator is the default random number generator implementation,

and is a wrapper around the Windows Crypto API.

Hierarchy

System.Object RandomNumberGenerator RNGCryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSA disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class RSA : AsymmetricAlgorithm {

// Public Constructors
 public RSA();

// Public Static Methods
 public static RSA Create();

 public static RSA Create(string algName);

// Public Instance Methods

 public abstract byte[] DecryptValue(byte[] rgb);

 public abstract byte[] EncryptValue(byte[] rgb);

 public abstract RSAParameters ExportParameters(bool includePrivateParameters);

 public override void FromXmlString(string xmlString);

 // overrides AsymmetricAlgorithm

 public abstract void ImportParameters(RSAParameters parameters);

 public override string ToXmlString(bool includePrivateParameters);

 // overrides AsymmetricAlgorithm
}

This class extends AsymmetricAlgorithm and is the abstract representation of the RSA algorithm.

Individual implementations of RSA will extend this class. RSA key pairs are represented by the
RSAParameters structure, and can be imported and exported from the RSA class with the
ImportParameters() and ExportParameters() methods.

The EncryptValue() and DecryptValue() methods defined by this class are not implemented by
the RSACryptoServiceProvider class, which is the only implementation class included in the .NET

Framework class library; data encryption must be performed by using methods defined in the
implementation class.

This class does not define any members to support digital signatures; see the
RSACryptoServiceProvider or the RSAPKCS1SignatureFormatter classes in this chapter for details

of RSA digital signature support.

Hierarchy

System.Object AsymmetricAlgorithm(System.IDisposable) RSA

Subclasses

RSACryptoServiceProvider

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returned By

System.Security.Cryptography.Xml.RSAKeyValue.Key

Passed To

System.Security.Cryptography.Xml.RSAKeyValue.{Key, RSAKeyValue()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSACryptoServiceProvider disposable

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class RSACryptoServiceProvider : RSA {

// Public Constructors
 public RSACryptoServiceProvider();

 public RSACryptoServiceProvider(CspParameters parameters);

 public RSACryptoServiceProvider(int dwKeySize);

 public RSACryptoServiceProvider(int dwKeySize, CspParameters parameters);

// Public Static Properties
 public static bool UseMachineKeyStore{set; get; }

// Public Instance Properties
 public override string KeyExchangeAlgorithm{get;

 // overrides AsymmetricAlgorithm
 public override int KeySize{get;

 // overrides AsymmetricAlgorithm
 public bool PersistKeyInCsp{set; get; }
 public override string SignatureAlgorithm{get;

 // overrides AsymmetricAlgorithm

// Public Instance Methods

 public byte[] Decrypt(byte[] rgb, bool fOAEP);

 public override byte[] DecryptValue(byte[] rgb);

 // overrides RSA

 public byte[] Encrypt(byte[] rgb, bool fOAEP);

 public override byte[] EncryptValue(byte[] rgb);

 // overrides RSA

 public override RSAParameters ExportParameters(bool includePrivateParameters);

 // overrides RSA

 public override void ImportParameters(RSAParameters parameters);

 // overrides RSA

 public byte[] SignData(byte[] buffer, int offset, int count, object halg);

 public byte[] SignData(byte[] buffer, object halg);

 public byte[] SignData(System.IO.Stream inputStream, object halg);

 public byte[] SignHash(byte[] rgbHash, string str);

 public bool VerifyData(byte[] buffer, object halg, byte[] signature);

 public bool VerifyHash(byte[] rgbHash, string str, byte[] rgbSignature);

// Protected Instance Methods

 protected override void Dispose(bool disposing);

 // overrides AsymmetricAlgorithm
 protected override void Finalize();

 // overrides object
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This subclass of RSA is the default implementation of the RSA algorithm and is a wrapper around the

Windows Crypto API.

This class defines several new members in addition to those of the RSA class; the Encrypt() and
Decrypt() methods encrypt and decrypt System.Byte arrays with the RSA algorithm. The
SignHash() and VerifyHash() methods create and verify digital signatures for cryptographic hash
codes. The SignData() method creates a cryptographic hash code for data read from a
System.IO.Stream or a System.Byte array and creates a signature for the result.

RSACryptoServiceProvider does not implement the EncryptValue() and DecryptValue()
methods defined in the RSA class.

Hierarchy

System.Object AsymmetricAlgorithm(System.IDisposable) RSA
RSACryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSAOAEPKeyExchangeDeformatter

System.Security.Cryptography
(mscorlib.dll)

class

public class RSAOAEPKeyExchangeDeformatter : AsymmetricKeyExchangeDeformatter {

// Public Constructors
 public RSAOAEPKeyExchangeDeformatter();

 public RSAOAEPKeyExchangeDeformatter(AsymmetricAlgorithm key);

// Public Instance Properties
 public override string Parameters{set; get;

 // overrides AsymmetricKeyExchangeDeformatter

// Public Instance Methods

 public override byte[] DecryptKeyExchange(byte[] rgbData);

 // overrides AsymmetricKeyExchangeDeformatter

 public override void SetKey(AsymmetricAlgorithm key);

 // overrides AsymmetricKeyExchangeDeformatter
}

This is an implementation of the AsymmetricKeyExchangeDeformatter class, which decrypts
symmetric secret key values encrypted using the RSAOAEPKeyExchangeFormatter class.

Hierarchy

System.Object AsymmetricKeyExchangeDeformatter RSAOAEPKeyExchangeDeformatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSAOAEPKeyExchangeFormatter

System.Security.Cryptography
(mscorlib.dll)

class

public class RSAOAEPKeyExchangeFormatter : AsymmetricKeyExchangeFormatter {

// Public Constructors
 public RSAOAEPKeyExchangeFormatter();

 public RSAOAEPKeyExchangeFormatter(AsymmetricAlgorithm key);

// Public Instance Properties
 public byte[] Parameter{set; get; }
 public override string Parameters{get;

 // overrides AsymmetricKeyExchangeFormatter
 public RandomNumberGenerator Rng{set; get; }

// Public Instance Methods

 public override byte[] CreateKeyExchange(byte[] rgbData);

 // overrides AsymmetricKeyExchangeFormatter

 public override byte[] CreateKeyExchange(byte[] rgbData, Type symAlgType);

 // overrides AsymmetricKeyExchangeFormatter

 public override void SetKey(AsymmetricAlgorithm key);

 // overrides AsymmetricKeyExchangeFormatter
}

This is an implementation of the AsymmetricKeyExchangeFormatter class, and formats a symmetric

secret key value using the OAEP scheme. The formatted data is encrypted with the RSA algorithm.

In addition to the members defined by the parent class, RSAOAEPKeyExchangeFormatter defines the
Rng property, which gets or sets the instance of RandomNumberGenerator used in the creation of the

OAEP data.

Hierarchy

System.Object AsymmetricKeyExchangeFormatter RSAOAEPKeyExchangeFormatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSAParameters serializable

System.Security.Cryptography
(mscorlib.dll)

struct

public struct RSAParameters {

// Public Instance Fields
 public byte[] D;
 public byte[] DP;
 public byte[] DQ;
 public byte[] Exponent;
 public byte[] InverseQ;
 public byte[] Modulus;
 public byte[] P;
 public byte[] Q;
}

This structure represents the parameters of an RSA key, expressed as a set of Byte arrays. Key
parameters are exported from the RSA class with the RSA.ExportParameters() method. Key
parameters are imported into the RSA class with the RSA.ImportParameters() method.

Hierarchy

System.Object System.ValueType RSAParameters

Returned By

RSA.ExportParameters()

Passed To

RSA.ImportParameters()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSAPKCS1KeyExchangeDeformatter

System.Security.Cryptography
(mscorlib.dll)

class

public class RSAPKCS1KeyExchangeDeformatter : AsymmetricKeyExchangeDeformatter {

// Public Constructors
 public RSAPKCS1KeyExchangeDeformatter();

 public RSAPKCS1KeyExchangeDeformatter(AsymmetricAlgorithm key);

// Public Instance Properties
 public override string Parameters{set; get;

 // overrides AsymmetricKeyExchangeDeformatter
 public RandomNumberGenerator RNG{set; get; }

// Public Instance Methods

 public override byte[] DecryptKeyExchange(byte[] rgbIn);

 // overrides AsymmetricKeyExchangeDeformatter

 public override void SetKey(AsymmetricAlgorithm key);

 // overrides AsymmetricKeyExchangeDeformatter
}

This is an implementation of the AsymmetricKeyExchangeDeformatter class, which decrypts
symmetric secret key values encrypted using the RSAPKCS1KeyExchangeFormatter class.

Hierarchy

System.Object AsymmetricKeyExchangeDeformatter RSAPKCS1KeyExchangeDeformatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSAPKCS1KeyExchangeFormatter

System.Security.Cryptography
(mscorlib.dll)

class

public class RSAPKCS1KeyExchangeFormatter : AsymmetricKeyExchangeFormatter {

// Public Constructors
 public RSAPKCS1KeyExchangeFormatter();

 public RSAPKCS1KeyExchangeFormatter(AsymmetricAlgorithm key);

// Public Instance Properties
 public override string Parameters{get;

 // overrides AsymmetricKeyExchangeFormatter
 public RandomNumberGenerator Rng{set; get; }

// Public Instance Methods

 public override byte[] CreateKeyExchange(byte[] rgbData);

 // overrides AsymmetricKeyExchangeFormatter

 public override byte[] CreateKeyExchange(byte[] rgbData, Type symAlgType);

 // overrides AsymmetricKeyExchangeFormatter

 public override void SetKey(AsymmetricAlgorithm key);

 // overrides AsymmetricKeyExchangeFormatter
}

This is an implementation of the AsymmetricKeyExchangeFormatter class that formats a symmetric

secret key value using the PKCS #1 scheme. The formatted data is encrypted using the RSA
algorithm.

Hierarchy

System.Object AsymmetricKeyExchangeFormatter RSAPKCS1KeyExchangeFormatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSAPKCS1SignatureDeformatter

System.Security.Cryptography
(mscorlib.dll)

class

public class RSAPKCS1SignatureDeformatter : AsymmetricSignatureDeformatter {

// Public Constructors
 public RSAPKCS1SignatureDeformatter();

 public RSAPKCS1SignatureDeformatter(AsymmetricAlgorithm key);

// Public Instance Methods

 public override void SetHashAlgorithm(string strName);

 // overrides AsymmetricSignatureDeformatter

 public override void SetKey(AsymmetricAlgorithm key);

 // overrides AsymmetricSignatureDeformatter

 public override bool VerifySignature(byte[] rgbHash, byte[] rgbSignature);

 // overrides AsymmetricSignatureDeformatter
}

This child of the AsymmetricSignatureDeformatter class verifies RSA signatures created with the
RSAPKCS1SignatureFormatter class.

Hierarchy

System.Object AsymmetricSignatureDeformatter RSAPKCS1SignatureDeformatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSAPKCS1SignatureFormatter

System.Security.Cryptography
(mscorlib.dll)

class

public class RSAPKCS1SignatureFormatter : AsymmetricSignatureFormatter {

// Public Constructors
 public RSAPKCS1SignatureFormatter();

 public RSAPKCS1SignatureFormatter(AsymmetricAlgorithm key);

// Public Instance Methods

 public override byte[] CreateSignature(byte[] rgbHash);

 // overrides AsymmetricSignatureFormatter

 public override void SetHashAlgorithm(string strName);

 // overrides AsymmetricSignatureFormatter

 public override void SetKey(AsymmetricAlgorithm key);

 // overrides AsymmetricSignatureFormatter
}

This class extends the AsymmetricSignatureFormatter class and creates digital signatures using
the RSA algorithm. Signatures created by RSAPKCS1SignatureFormatter can be verified with the
RSAPKCS1SignatureDeformatter class.

Hierarchy

System.Object AsymmetricSignatureFormatter RSAPKCS1SignatureFormatter

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SHA1 disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class SHA1 : HashAlgorithm {

// Protected Constructors
 protected SHA1();

// Public Static Methods
 public static SHA1 Create();

 public static SHA1 Create(string hashName);
}

This class extends HashAlgorithm and is the abstract representation of the SHA-1 algorithm, which

creates a 160-bit hash code. Individual implementations of SHA-1 extend this class. The .NET
Framework class library includes the SHA1CryptoServiceProvider class, which is the default

implementation.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) SHA1

Subclasses

SHA1CryptoServiceProvider, SHA1Managed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SHA1CryptoServiceProvider disposable

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class SHA1CryptoServiceProvider : SHA1 {

// Public Constructors
 public SHA1CryptoServiceProvider();

// Public Instance Methods
 public override void Initialize();

 // overrides HashAlgorithm

// Protected Instance Methods

 protected override void Dispose(bool disposing);

 // overrides HashAlgorithm
 protected override void Finalize();

 // overrides object

 protected override void HashCore(byte[] rgb, int ibStart, int cbSize);

 // overrides HashAlgorithm
 protected override byte[] HashFinal();

 // overrides HashAlgorithm
}

This subclass of SHA1 is the default implementation of the SHA-1 algorithm and is a wrapper around

the Windows Crypto API.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) SHA1
SHA1CryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SHA1Managed disposable

System.Security.Cryptography
(mscorlib.dll)

class

public class SHA1Managed : SHA1 {

// Public Constructors
 public SHA1Managed();

// Public Instance Methods
 public override void Initialize();

 // overrides HashAlgorithm

// Protected Instance Methods

 protected override void HashCore(byte[] rgb, int ibStart, int cbSize);

 // overrides HashAlgorithm
 protected override byte[] HashFinal();

 // overrides HashAlgorithm
}

This subclass of SHA1 is a managed-code implementation of the SHA-1 algorithm.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) SHA1
SHA1Managed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SHA256 disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class SHA256 : HashAlgorithm {

// Public Constructors
 public SHA256();

// Public Static Methods
 public static SHA256 Create();

 public static SHA256 Create(string hashName);
}

This class extends HashAlgorithm and is the abstract representation of the SHA-256 algorithm,

which creates a 256-bit hash code. Individual implementations of SHA-256 extend this class. The
.NET Framework class library includes the SHA256Managed class, which is the default implementation.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) SHA256

Subclasses

SHA256Managed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SHA256Managed disposable

System.Security.Cryptography
(mscorlib.dll)

class

public class SHA256Managed : SHA256 {

// Public Constructors
 public SHA256Managed();

// Public Instance Methods
 public override void Initialize();

 // overrides HashAlgorithm

// Protected Instance Methods

 protected override void HashCore(byte[] rgb, int ibStart, int cbSize);

 // overrides HashAlgorithm
 protected override byte[] HashFinal();

 // overrides HashAlgorithm
}

This subclass of SHA256 is the default implementation of the SHA-256 algorithm. SHA256Managed is

implemented in managed code, rather than acting as a wrapper around the Windows Crypto API.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) SHA256
SHA256Managed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SHA384 disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class SHA384 : HashAlgorithm {

// Public Constructors
 public SHA384();

// Public Static Methods
 public static SHA384 Create();

 public static SHA384 Create(string hashName);
}

This class extends HashAlgorithm and is the abstract representation of the SHA-384 algorithm,

which creates a 384-bit hash code. Individual implementations of SHA-384 extend this class. The
.NET Framework class library includes the SHA384Managed class, which is the default implementation.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) SHA384

Subclasses

SHA384Managed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SHA384Managed disposable

System.Security.Cryptography
(mscorlib.dll)

class

public class SHA384Managed : SHA384 {

// Public Constructors
 public SHA384Managed();

// Public Instance Methods
 public override void Initialize();

 // overrides HashAlgorithm

// Protected Instance Methods

 protected override void HashCore(byte[] rgb, int ibStart, int cbSize);

 // overrides HashAlgorithm
 protected override byte[] HashFinal();

 // overrides HashAlgorithm
}

This subclass of SHA384 is the default implementation of the SHA-384 algorithm. SHA384Managed is

implemented in managed code, rather than acting as a wrapper around the Windows Crypto API.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) SHA384
SHA384Managed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SHA512 disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class SHA512 : HashAlgorithm {

// Public Constructors
 public SHA512();

// Public Static Methods
 public static SHA512 Create();

 public static SHA512 Create(string hashName);
}

This class extends HashAlgorithm and is the abstract representation of the SHA-512 algorithm,

which creates a 512-bit hash code. Individual implementations of SHA-512 extend this class. The
.NET Framework class library includes the SHA512Managed class, which is the default implementation.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) SHA512

Subclasses

SHA512Managed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SHA512Managed disposable

System.Security.Cryptography
(mscorlib.dll)

class

public class SHA512Managed : SHA512 {

// Public Constructors
 public SHA512Managed();

// Public Instance Methods
 public override void Initialize();

 // overrides HashAlgorithm

// Protected Instance Methods

 protected override void HashCore(byte[] rgb, int ibStart, int cbSize);

 // overrides HashAlgorithm
 protected override byte[] HashFinal();

 // overrides HashAlgorithm
}

This subclass of SHA512 is the default implementation of the SHA-512 algorithm. SHA512Managed is

implemented in managed code, rather than acting as a wrapper around the Windows Crypto API.

Hierarchy

System.Object HashAlgorithm(ICryptoTransform, System.IDisposable) SHA512
SHA512Managed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SignatureDescription

System.Security.Cryptography
(mscorlib.dll)

class

public class SignatureDescription {

// Public Constructors
 public SignatureDescription();

 public SignatureDescription(System.Security.SecurityElement el);

// Public Instance Properties
 public string DeformatterAlgorithm{set; get; }
 public string DigestAlgorithm{set; get; }
 public string FormatterAlgorithm{set; get; }
 public string KeyAlgorithm{set; get; }

// Public Instance Methods

 public virtual AsymmetricSignatureDeformatter CreateDeformatter(AsymmetricAlgorithm key);
 public virtual HashAlgorithm CreateDigest();

 public virtual AsymmetricSignatureFormatter CreateFormatter(AsymmetricAlgorithm key);
}

This class creates instances of the AsymmetricSignatureFormatter and AsymmetricSignatureDeformatter
implementation classes based on the values of the class properties. The FormatterAlgorithm and
DeformatterAlgorithm properties specify the formatting scheme; the DigestAlgorithm and the
KeyAlgorithm properties specify the algorithms to use.

Instances of the formatter and deformatter implementation classes are created with the CreateFormatter()
and CreateDeformatter() methods.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SymmetricAlgorithm disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class SymmetricAlgorithm : IDisposable {

// Public Constructors
 public SymmetricAlgorithm();

// Protected Instance Fields
 protected int BlockSizeValue;
 protected int FeedbackSizeValue;
 protected byte[] IVValue;
 protected int KeySizeValue;
 protected byte[] KeyValue;
 protected KeySizes[] LegalBlockSizesValue;
 protected KeySizes[] LegalKeySizesValue;
 protected CipherMode ModeValue;
 protected PaddingMode PaddingValue;

// Public Instance Properties
 public virtual int BlockSize{set; get; }
 public virtual int FeedbackSize{set; get; }
 public virtual byte[] IV{set; get; }
 public virtual byte[] Key{set; get; }
 public virtual int KeySize{set; get; }
 public virtual KeySizes[] LegalBlockSizes{get; }
 public virtual KeySizes[] LegalKeySizes{get; }
 public virtual CipherMode Mode{set; get; }
 public virtual PaddingMode Padding{set; get; }

// Public Static Methods
 public static SymmetricAlgorithm Create();

 public static SymmetricAlgorithm Create(string algName);

// Public Instance Methods
 public void Clear();
 public virtual ICryptoTransform CreateDecryptor();

 public abstract ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV);
 public virtual ICryptoTransform CreateEncryptor();

 public abstract ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV);
 public abstract void GenerateIV();
 public abstract void GenerateKey();

 public bool ValidKeySize(int bitLength);

// Protected Instance Methods

 protected virtual void Dispose(bool disposing);
 protected override void Finalize();

 // overrides object
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A symmetric algorithm is one where the sender and the recipient share the same knowledge (i.e. both
parties know the secret key). All symmetric algorithm implementations inherit from this abstract class.
Instances of implementation classes are created using the Create() method, which accepts the
name of an implementation as a System.String argument. An instance of the default algorithm is

created if no name is specified; the system administrator can configure the default algorithm.

The LegalKeySizes and LegalBlockSizes properties return arrays of the KeySizes class, which

specify the set of key lengths and cipher block sizes supported by an implementation class. The
KeySize and BlockSize properties get or set the current key and block lengths.

The IV and Key properties get or set the initialization vector (IV) and secret key to use for encryption
or decryption. New values for these properties are created with the GenerateIV() and
GenerateKey() methods; implementation classes will automatically create a new IV and secret key.

Subclasses of the SymmetricAlgorithm class do not perform encryption and decryption directly; the
CreateEncryptor() and CreateDecryptor() methods return instances of the ICryptoTransform

type to which these tasks are delegated.

Subclasses

DES , RC2 , Rijndael , TripleDES

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ToBase64Transform disposable

System.Security.Cryptography
(mscorlib.dll)

class

public class ToBase64Transform : ICryptoTransform, IDisposable {

// Public Constructors
 public ToBase64Transform();

// Public Instance Properties
 public virtual bool CanReuseTransform{get;

 // implements ICryptoTransform
 public bool CanTransformMultipleBlocks{get;

 // implements ICryptoTransform
 public int InputBlockSize{get;

 // implements ICryptoTransform
 public int OutputBlockSize{get;

 // implements ICryptoTransform

// Public Instance Methods
 public void Clear();

 public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount,

 byte[] outputBuffer, int outputOffset);

 // implements ICryptoTransform

 public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount);

 // implements ICryptoTransform

// Protected Instance Methods

 protected virtual void Dispose(bool disposing);
 protected override void Finalize();

 // overrides object
}

This implementation of the ICryptoTransform interface encodes data using Base64. This class is used in
conjunction with the CryptoStream class.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

TripleDES disposable

System.Security.Cryptography
(mscorlib.dll)

abstract
class

public abstract class TripleDES : SymmetricAlgorithm {

// Public Constructors
 public TripleDES();

// Public Instance Properties
 public override byte[] Key{set; get;

 // overrides SymmetricAlgorithm

// Public Static Methods
 public static TripleDES Create();

 public static TripleDES Create(string str);

 public static bool IsWeakKey(byte[] rgbKey);
}

This class extends SymmetricAlgorithm and is the abstract representation of the Triple-DES

algorithm, which is based on the DES. Individual implementations of Triple-DES will extend this class.
The .NET Framework class library includes the TripleDESCryptoServiceProvider class, which is the

default implementation.

In addition to the members defined by the parent class, TripleDES implements the IsWeakKey()

method, which determines if the selected cryptographic key results in a cipher that is easy to break.

Hierarchy

System.Object SymmetricAlgorithm(System.IDisposable) TripleDES

Subclasses

TripleDESCryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

TripleDESCryptoServiceProvider disposable

System.Security.Cryptography
(mscorlib.dll)

sealed
class

public sealed class TripleDESCryptoServiceProvider : TripleDES {

// Public Constructors
 public TripleDESCryptoServiceProvider();

// Public Instance Methods

 public override ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV);

 // overrides SymmetricAlgorithm

 public override ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV);

 // overrides SymmetricAlgorithm
 public override void GenerateIV();

 // overrides SymmetricAlgorithm
 public override void GenerateKey();

 // overrides SymmetricAlgorithm
}

This subclass of TripleDES is the default implementation of the Triple-DES algorithm and is a wrapper

around the Windows Crypto API.

Hierarchy

System.Object SymmetricAlgorithm(System.IDisposable) TripleDES
TripleDESCryptoServiceProvider

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 25. The
System.Security.Cryptography.X509Certificates
Namespace
The System.Security.Cryptography.X509Certificates namespace provides support for

Authenticode/X.509 v3 digital certificates. Figure 25-1 shows the types in this namespace.

Figure 25-1. The System.Security.Cryptography.X509Certificates namespace

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

X509Certificate CF 1.0, serializable

System.Security.Cryptography.X509Certificates
(mscorlib.dll)

class

public class X509Certificate {

// Public Constructors

 public X509Certificate(byte[] data);

 public X509Certificate(IntPtr handle);

 public X509Certificate(X509Certificate cert);

// Public Static Methods

 public static X509Certificate CreateFromCertFile(string filename);

 public static X509Certificate CreateFromSignedFile(string filename);

// Public Instance Methods

 public virtual bool Equals(X509Certificate other);
 public virtual byte[] GetCertHash();
 public virtual string GetCertHashString();
 public virtual string GetEffectiveDateString();
 public virtual string GetExpirationDateString();
 public virtual string GetFormat();
 public override int GetHashCode();

 // overrides object
 public virtual string GetIssuerName();
 public virtual string GetKeyAlgorithm();
 public virtual byte[] GetKeyAlgorithmParameters();
 public virtual string GetKeyAlgorithmParametersString();
 public virtual string GetName();
 public virtual byte[] GetPublicKey();
 public virtual string GetPublicKeyString();
 public virtual byte[] GetRawCertData();
 public virtual string GetRawCertDataString();
 public virtual byte[] GetSerialNumber();
 public virtual string GetSerialNumberString();
 public override string ToString();

 // overrides object

 public virtual string ToString(bool fVerbose);
}

The X509Certificate class represents an X509 v3 digital certificate. Instances of this class are
created using the static CreateFromCertFile() and CreateFromSignedFile() methods, which

obtain the certificate details from an X509 v3 certificate file or a signed file, respectively. The class
defines 17 methods that provide information about the certificate; for example, the GetName()

method returns the name of the principle to which the certificate was issued and the
GetIssuerName() method returns the name of the certification authority. Some methods are paired
together, returning the same data formatted in different ways; for example, the GetPublicKey()
method returns the certificate public key as an array of bytes, while the GetPublicKeyString()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method return the key as a hexadecimal string.

Returned By

System.Net.ServicePoint.{Certificate, ClientCertificate},
System.Reflection.Module.GetSignerCertificate(), X509CertificateCollection.this,
X509CertificateEnumerator.Current,
System.Security.Permissions.PublisherIdentityPermission.Certificate,
System.Security.Policy.Publisher.Certificate,
System.Security.Policy.PublisherMembershipCondition.Certificate

Passed To

Multiple types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

X509CertificateCollection serializable

System.Security.Cryptography.X509Certificates
(system.dll)

class

public class X509CertificateCollection : CollectionBase {

// Public Constructors
 public X509CertificateCollection();

 public X509CertificateCollection(X509Certificate[] value);

 public X509CertificateCollection(X509CertificateCollection value);

// Public Instance Properties
 public X509Certificate this{set; get; }

// Public Instance Methods

 public int Add(X509Certificate value);

 public void AddRange(X509Certificate[] value);

 public void AddRange(X509CertificateCollection value);

 public bool Contains(X509Certificate value);

 public void CopyTo(X509Certificate[] array, int index);
 public X509CertificateEnumerator GetEnumerator();

 public override int GetHashCode(); // overrides object

 public int IndexOf(X509Certificate value);

 public void Insert(int index, X509Certificate value);

 public void Remove(X509Certificate value);
}

This class defines a collection of X509Certificate objects, defining methods to add, remove, and

enumerate certificates.

Hierarchy

System.Object System.Collections.CollectionBase(System.Collections.IList,

System.Collections.ICollection, System.Collections.IEnumerable)
X509CertificateCollection

Returned By

System.Net.HttpWebRequest.ClientCertificates

Passed To

X509CertificateEnumerator.X509CertificateEnumerator()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

X509CertificateCollection.X509CertificateEnumerator

System.Security.Cryptography.X509Certificates
(system.dll)

class

public class X509CertificateCollection.X509CertificateEnumerator : IEnumerator {

// Public Constructors

 public X509CertificateCollection.X509CertificateEnumerator(X509CertificateCollection mappings);

// Public Instance Properties
 public X509Certificate Current{get; }

// Public Instance Methods
 public bool MoveNext();

 // implements IEnumerator
 public void Reset();

 // implements IEnumerator
}

This class implements the System.Collections.IEnumerator interface to enumerate the X509Certificate objects
contained by an X509CertificateCollection . Instances of this class are typically obtained through the
X509CertificateCollection.GetEnumerator() method.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 26. The
System.Security.Cryptography.Xml
Namespace
The System.Security.Cryptography.Xml namespace provides support for the XML Signature

standard, which specifies a mechanism for representing cryptographic signatures as XML documents.
The full specification for the XML Signature standard can be found at http://www.w3.org/TR/xmldsig-
core/. Figure 26-1 shows the types in this namespace.

Figure 26-1. The System.Security.Cryptography.Xml namespace

[Team LiB]

http://www.w3.org/TR/xmldsig-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DataObject

System.Security.Cryptography.Xml
(system.security.dll)

class

public class DataObject {

// Public Constructors
 public DataObject();

 public DataObject(string id, string mimeType, string encoding, System.Xml.XmlElement data);

// Public Instance Properties
 public XmlNodeList Data{set; get; }
 public string Encoding{set; get; }
 public string Id{set; get; }
 public string MimeType{set; get; }

// Public Instance Methods
 public XmlElement GetXml();

 public void LoadXml(System.Xml.XmlElement value);
}

The DataObject class specifies data embedded within the XML signature document; the data is signed by
creating an instance of Reference that specifies local data (where the value of the Reference.Id property begins
with "#"). Instances of this class are associated with a signature using the SignedXml.AddObject() method.

Passed To

Signature.AddObject() , SignedXml.AddObject()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

DSAKeyValue

System.Security.Cryptography.Xml
(system.security.dll)

class

public class DSAKeyValue : KeyInfoClause {

// Public Constructors
 public DSAKeyValue();

 public DSAKeyValue(System.Security.Cryptography.DSA key);

// Public Instance Properties
 public DSA Key{set; get; }

// Public Instance Methods
 public override XmlElement GetXml();

// overrides KeyInfoClause

 public override void LoadXml(System.Xml.XmlElement value);

// overrides KeyInfoClause
}

This class extends KeyInfoClause and represents a DSA key, specified by the Key property. When an
instance of this class is associated with the KeyInfo class, the resulting XML Signature document will

include the DSA public key.

Hierarchy

System.Object KeyInfoClause DSAKeyValue

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

KeyInfo

System.Security.Cryptography.Xml
(system.security.dll)

class

public class KeyInfo : IEnumerable {

// Public Constructors
 public KeyInfo();

// Public Instance Properties
 public int Count{get; }
 public string Id{set; get; }

// Public Instance Methods

 public void AddClause(KeyInfoClause clause);
 public IEnumerator GetEnumerator();

// implements IEnumerable

 public IEnumerator GetEnumerator(Type requestedObjectType);
 public XmlElement GetXml();

 public void LoadXml(System.Xml.XmlElement value);
}

The KeyInfo class is used to include information in an XML Signature that assists the recipient in

identifying the cryptographic key required for verification. Individual pieces of information are
represented by implementations of the KeyInfoClause class, instances of which are associated with
this class through the AddClause() method. The SignedXml.KeyInfo property gets or sets the
KeyInfo instance included in an XML Signature document.

Returned By

Signature.KeyInfo, SignedXml.KeyInfo

Passed To

Signature.KeyInfo, SignedXml.KeyInfo

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

KeyInfoClause

System.Security.Cryptography.Xml
(system.security.dll)

abstract
class

public abstract class KeyInfoClause {

// Public Constructors
 public KeyInfoClause();

// Public Instance Methods
 public abstract XmlElement GetXml();

 public abstract void LoadXml(System.Xml.XmlElement element);
}

This is the abstract parent for all classes representing the identity of a cryptographic key. Instances
of this class are associated with an XML Signature document through the KeyInfo class.

Subclasses

DSAKeyValue, KeyInfoName, KeyInfoNode, KeyInfoRetrievalMethod, KeyInfoX509Data,
RSAKeyValue

Passed To

KeyInfo.AddClause()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

KeyInfoName

System.Security.Cryptography.Xml
(system.security.dll)

class

public class KeyInfoName : KeyInfoClause {

// Public Constructors
 public KeyInfoName();

// Public Instance Properties
 public string Value{set; get; }

// Public Instance Methods
 public override XmlElement GetXml();

// overrides KeyInfoClause

 public override void LoadXml(System.Xml.XmlElement value);

// overrides KeyInfoClause
}

This class represents an identifier that may be used in identifying the key required to validate an XML
Signature. The Value property gets and sets the identifier value, which is dependent on the format of

the key used to create the signature.

Hierarchy

System.Object KeyInfoClause KeyInfoName

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

KeyInfoNode

System.Security.Cryptography.Xml
(system.security.dll)

class

public class KeyInfoNode : KeyInfoClause {

// Public Constructors
 public KeyInfoNode();

 public KeyInfoNode(System.Xml.XmlElement node);

// Public Instance Properties
 public XmlElement Value{set; get; }

// Public Instance Methods
 public override XmlElement GetXml();

// overrides KeyInfoClause

 public override void LoadXml(System.Xml.XmlElement value);

// overrides KeyInfoClause
}

This class allows the .NET support for XML Signatures to include information about cryptographic keys
that are not supported by the default cryptographic algorithms. The Value property gets or sets the
XML content of a KeyInfoNode instance.

Hierarchy

System.Object KeyInfoClause KeyInfoNode

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

KeyInfoRetrievalMethod

System.Security.Cryptography.Xml
(system.security.dll)

class

public class KeyInfoRetrievalMethod : KeyInfoClause {

// Public Constructors
 public KeyInfoRetrievalMethod();

 public KeyInfoRetrievalMethod(string strUri);

// Public Instance Properties
 public string Uri{set; get; }

// Public Instance Methods
 public override XmlElement GetXml();

// overrides KeyInfoClause

 public override void LoadXml(System.Xml.XmlElement value);

// overrides KeyInfoClause
}

The KeyInfoRetrievalMethod class allows an XML Signature document to refer to information
outside of the signature document that identifies the key required to verify the signature. The Value

property gets or sets the URL representing the location of the information.

Hierarchy

System.Object KeyInfoClause KeyInfoRetrievalMethod

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

KeyInfoX509Data

System.Security.Cryptography.Xml
(system.security.dll)

class

public class KeyInfoX509Data : KeyInfoClause {

// Public Constructors
 public KeyInfoX509Data();

 public KeyInfoX509Data(byte[] rgbCert);

 public KeyInfoX509Data(System.Security.Cryptography.X509Certificates.X509Certificate cert);

// Public Instance Properties
 public ArrayList Certificates{get; }
 public byte[] CRL{set; get; }
 public ArrayList IssuerSerials{get; }
 public ArrayList SubjectKeyIds{get; }
 public ArrayList SubjectNames{get; }

// Public Instance Methods

 public void AddCertificate(System.Security.Cryptography.X509Certificates.X509Certificate certificate);

 public void AddIssuerSerial(string issuerName, string serialNumber);

 public void AddSubjectKeyId(byte[] subjectKeyId);

 public void AddSubjectName(string subjectName);
 public override XmlElement GetXml();

// overrides KeyInfoClause

 public override void LoadXml(System.Xml.XmlElement element);

 // overrides KeyInfoClause
}

The KeyInfoX509Data class extends the KeyInfoClause class and specifies an X.509 v3 certificate that relates to the key
required to validate an XML Signature. The AddCertificate() method includes a certificate in the information clause,
represented by the System.Security.Cryptography.X509Certificates.X509Certificate class.

Hierarchy

System.Object KeyInfoClause KeyInfoX509Data

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Reference

System.Security.Cryptography.Xml
(system.security.dll)

class

public class Reference {

// Public Constructors
 public Reference();

 public Reference(System.IO.Stream stream);

 public Reference(string uri);

// Public Instance Properties
 public string DigestMethod{set; get; }
 public byte[] DigestValue{set; get; }
 public string Id{set; get; }
 public TransformChain TransformChain{get; }
 public string Type{set; get; }
 public string Uri{set; get; }

// Public Instance Methods

 public void AddTransform(Transform transform);
 public XmlElement GetXml();

 public void LoadXml(System.Xml.XmlElement value);
}

Instances of this class act as a reference to the signed data, expressed as a URI (using the Uri
property) or as a local reference to an instance of the DataObject class (using the Id property).
References are associated with a signature through the SignedXml.AddReference() method.

Implementations of the Transform class can be added to a reference with the AddTransform()

method; the transformations will be applied in order before the data is signed. The algorithm used to
create the cryptographic hash code is set with the DigestMethod property-the default value is

http://www.w3.org/2000/09/xmldsig#sha1, which specifies the SHA-1 hash algorithm.

Passed To

SignedInfo.AddReference(), SignedXml.AddReference()

[Team LiB]

http://www.w3.org/2000/09/xmldsig#sha1
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RSAKeyValue

System.Security.Cryptography.Xml
(system.security.dll)

class

public class RSAKeyValue : KeyInfoClause {

// Public Constructors
 public RSAKeyValue();

 public RSAKeyValue(System.Security.Cryptography.RSA key);

// Public Instance Properties
 public RSA Key{set; get; }

// Public Instance Methods
 public override XmlElement GetXml();

// overrides KeyInfoClause

 public override void LoadXml(System.Xml.XmlElement value);

// overrides KeyInfoClause
}

This class extends KeyInfoClause and represents an RSA key, specified by the Key property. When
an instance of this class is associated with the KeyInfo class, the resulting XML Signature document

will include the RSA public key.

Hierarchy

System.Object KeyInfoClause RSAKeyValue

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Signature

System.Security.Cryptography.Xml
(system.security.dll)

class

public class Signature {

// Public Constructors
 public Signature();

// Public Instance Properties
 public string Id{set; get; }
 public KeyInfo KeyInfo{set; get; }
 public IList ObjectList{set; get; }
 public byte[] SignatureValue{set; get; }
 public SignedInfo SignedInfo{set; get; }

// Public Instance Methods

 public void AddObject(DataObject dataObject);
 public XmlElement GetXml();

 public void LoadXml(System.Xml.XmlElement value);
}

This class represents an XML Signature; instances of this class are obtained through the
SignedXml.Signature property. The KeyInfo, ObjectList, and SignedInfo properties provide

information about the structure of the XML Signature document.

Returned By

SignedXml.Signature

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SignedInfo

System.Security.Cryptography.Xml
(system.security.dll)

class

public class SignedInfo : ICollection, IEnumerable {

// Public Constructors
 public SignedInfo();

// Public Instance Properties
 public string CanonicalizationMethod{set; get; }
 public int Count{get; }

// implements ICollection
 public string Id{set; get; }
 public bool IsReadOnly{get; }
 public bool IsSynchronized{get; }

// implements ICollection
 public ArrayList References{get; }
 public string SignatureLength{set; get; }
 public string SignatureMethod{set; get; }
 public object SyncRoot{get; }

// implements ICollection

// Public Instance Methods

 public void AddReference(Reference reference);

 public void CopyTo(Array array, int index);

// implements ICollection
 public IEnumerator GetEnumerator();

// implements IEnumerable
 public XmlElement GetXml();

 public void LoadXml(System.Xml.XmlElement value);
}

The SignedInfo class provides information about an XML Signature; instances of this class are
obtained through the SignedXml.SignedInfo property. The SignatureMethod property describes the
signature and hash algorithms that have been used to create a signature. The References property

provides access to the set of references contained by the signature.

Returned By

Signature.SignedInfo, SignedXml.SignedInfo

Passed To

Signature.SignedInfo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SignedXml

System.Security.Cryptography.Xml
(system.security.dll)

class

public class SignedXml {

// Public Constructors
 public SignedXml();

 public SignedXml(System.Xml.XmlDocument document);

 public SignedXml(System.Xml.XmlElement elem);

// Public Static Fields
 public const string XmlDsigCanonicalizationUrl;

// =http://www.w3.org/TR/2001/REC-xml-c14n-20010315
 public const string XmlDsigCanonicalizationWithCommentsUrl;

// =http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
 public const string XmlDsigDSAUrl;

// =http://www.w3.org/2000/09/xmldsig#dsa-sha1
 public const string XmlDsigHMACSHA1Url;

// =http://www.w3.org/2000/09/xmldsig#hmac-sha1
 public const string XmlDsigMinimalCanonicalizationUrl;

// =http://www.w3.org/2000/09/xmldsig#minimal
 public const string XmlDsigNamespaceUrl;

// =http://www.w3.org/2000/09/xmldsig#
 public const string XmlDsigRSASHA1Url;

// =http://www.w3.org/2000/09/xmldsig#rsa-sha1
 public const string XmlDsigSHA1Url;

// =http://www.w3.org/2000/09/xmldsig#sha1

// Protected Instance Fields
 protected Signature m_signature;
 protected string m_strSigningKeyName;

// Public Instance Properties
 public KeyInfo KeyInfo{set; get; }
 public XmlResolver Resolver{set; }
 public Signature Signature{get; }
 public string SignatureLength{get; }
 public string SignatureMethod{get; }
 public byte[] SignatureValue{get; }
 public SignedInfo SignedInfo{get; }
 public AsymmetricAlgorithm SigningKey{set; get; }
 public string SigningKeyName{set; get; }

// Public Instance Methods

 public void AddObject(DataObject dataObject);

 public void AddReference(Reference reference);
 public bool CheckSignature();

 public bool CheckSignature(System.Security.Cryptography.AsymmetricAlgorithm key);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public bool CheckSignature(System.Security.Cryptography.KeyedHashAlgorithm macAlg);

 public bool CheckSignatureReturningKey(out System.Security.Cryptography.AsymmetricAlgorithm signingKey);
 public void ComputeSignature();

 public void ComputeSignature(System.Security.Cryptography.KeyedHashAlgorithm macAlg);

 public virtual XmlElement GetIdElement(System.Xml.XmlDocument document, string idValue);
 public XmlElement GetXml();

 public void LoadXml(System.Xml.XmlElement value);

// Protected Instance Methods
 protected virtual AsymmetricAlgorithm GetPublicKey();
}

The SignedXml class is the principle class used to create and verify XML signatures. References to data are associated with a
signature document through the AddReference() method, while data objects are associated through the AddObject()
method. The ComputeSignature() method performs a signature operation, while the CheckSignature() method verifies an

existing XML Signature.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Transform

System.Security.Cryptography.Xml
(system.security.dll)

abstract
class

public abstract class Transform {

// Public Constructors
 public Transform();

// Public Instance Properties
 public string Algorithm{set; get; }
 public abstract Type[] InputTypes{get; }
 public abstract Type[] OutputTypes{get; }
 public XmlResolver Resolver{set; }

// Public Instance Methods
 public abstract object GetOutput();

 public abstract object GetOutput(Type type);
 public XmlElement GetXml();

 public abstract void LoadInnerXml(System.Xml.XmlNodeList nodeList);

 public abstract void LoadInput(object obj);

// Protected Instance Methods
 protected abstract XmlNodeList GetInnerXml();
}

This is the abstract parent for all transformation-implementation classes. Transformations are applied
to data prior to the generation of the cryptographic hash code used in the digital signature.
Transformations are associated with data via the Reference.AddTransform() method; multiple
transformations can be associated with a Reference, and each will be applied to the data in

sequence.

Subclasses

XmlDsigBase64Transform, XmlDsigC14NTransform, XmlDsigEnvelopedSignatureTransform,
XmlDsigXPathTransform, XmlDsigXsltTransform

Returned By

TransformChain.this

Passed To

Reference.AddTransform(), TransformChain.Add()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

TransformChain

System.Security.Cryptography.Xml
(system.security.dll)

class

public class TransformChain {

// Public Constructors
 public TransformChain();

// Public Instance Properties
 public int Count{get; }
 public Transform this{get; }

// Public Instance Methods

 public void Add(Transform transform);
 public IEnumerator GetEnumerator();
}

This class represents the sequence of transformations applied to data prior to creating a digital
signature; each transformation is represented by an implementation of the Transform class. The
number of transformations in the chain can be determined with the Count property, while individual
transformations are accessible through the Item property (which is the C# class indexer). Instances
of this class are obtained through the Reference.TransformChain property.

Returned By

Reference.TransformChain

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

XmlDsigBase64Transform

System.Security.Cryptography.Xml
(system.security.dll)

class

public class XmlDsigBase64Transform : Transform {

// Public Constructors
 public XmlDsigBase64Transform();

// Public Instance Properties
 public override Type[] InputTypes{get; }

// overrides Transform
 public override Type[] OutputTypes{get; }

// overrides Transform

// Public Instance Methods
 public override object GetOutput();

// overrides Transform

 public override object GetOutput(Type type);

// overrides Transform

 public override void LoadInnerXml(System.Xml.XmlNodeList nodeList);

 // overrides Transform

 public override void LoadInput(object obj);

// overrides Transform

// Protected Instance Methods
 protected override XmlNodeList GetInnerXml();

// overrides Transform
}

This implementation of the abstract Transform class decodes data encoded with the Base 64

scheme.

Hierarchy

System.Object Transform XmlDsigBase64Transform

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

XmlDsigC14NTransform

System.Security.Cryptography.Xml
(system.security.dll)

class

public class XmlDsigC14NTransform : Transform {

// Public Constructors
 public XmlDsigC14NTransform();

 public XmlDsigC14NTransform(bool includeComments);

// Public Instance Properties
 public override Type[] InputTypes{get; }

// overrides Transform
 public override Type[] OutputTypes{get; }

// overrides Transform

// Public Instance Methods
 public override object GetOutput();

// overrides Transform

 public override object GetOutput(Type type);

// overrides Transform

 public override void LoadInnerXml(System.Xml.XmlNodeList nodeList);

 // overrides Transform

 public override void LoadInput(object obj);

// overrides Transform

// Protected Instance Methods
 protected override XmlNodeList GetInnerXml();

// overrides Transform
}

This implementation of the abstract Transform class implements the C14N transformation, as

defined by the XMLDSIG specification. C14N refers to the word "canonicalization," which is written as
the letter C, followed by 14 other letters, followed by the letter N.

The XML Signature canonicalization transformation ensures that XML documents that have differing
element ordering (but still contain the same data) are treated as representing the same data.

Hierarchy

System.Object Transform XmlDsigC14NTransform

Subclasses

XmlDsigC14NWithCommentsTransform

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

XmlDsigC14NWithCommentsTransform

System.Security.Cryptography.Xml
(system.security.dll)

class

public class XmlDsigC14NWithCommentsTransform : XmlDsigC14NTransform {

// Public Constructors
 public XmlDsigC14NWithCommentsTransform();
}

This class extends XmlDsigC14NTransform in order to provide a C14N transformation that includes

comments in the canonical output.

Hierarchy

System.Object Transform XmlDsigC14NTransform
XmlDsigC14NWithCommentsTransform

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

XmlDsigEnvelopedSignatureTransform

System.Security.Cryptography.Xml
(system.security.dll)

class

public class XmlDsigEnvelopedSignatureTransform : Transform {

// Public Constructors
 public XmlDsigEnvelopedSignatureTransform();

 public XmlDsigEnvelopedSignatureTransform(bool includeComments);

// Public Instance Properties
 public override Type[] InputTypes{get; }

// overrides Transform
 public override Type[] OutputTypes{get; }

// overrides Transform

// Public Instance Methods
 public override object GetOutput();

// overrides Transform

 public override object GetOutput(Type type);

// overrides Transform

 public override void LoadInnerXml(System.Xml.XmlNodeList nodeList);

 // overrides Transform

 public override void LoadInput(object obj);

// overrides Transform

// Protected Instance Methods
 protected override XmlNodeList GetInnerXml();

// overrides Transform
}

This implementation of the abstract Transform class removes the Signature element that is present

when the XML Signature is within in the XML document that is being signed.

Hierarchy

System.Object Transform XmlDsigEnvelopedSignatureTransform

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

XmlDsigXPathTransform

System.Security.Cryptography.Xml
(system.security.dll)

class

public class XmlDsigXPathTransform : Transform {

// Public Constructors
 public XmlDsigXPathTransform();

// Public Instance Properties
 public override Type[] InputTypes{get; }

// overrides Transform
 public override Type[] OutputTypes{get; }

// overrides Transform

// Public Instance Methods
 public override object GetOutput();

// overrides Transform

 public override object GetOutput(Type type);

// overrides Transform

 public override void LoadInnerXml(System.Xml.XmlNodeList nodeList);

 // overrides Transform

 public override void LoadInput(object obj);

// overrides Transform

// Protected Instance Methods
 protected override XmlNodeList GetInnerXml();

// overrides Transform
}

This implementation of the abstract Transform class applies an XPATH expression to the data to be
signed; the expression is specified with the LoadInput() method.

Hierarchy

System.Object Transform XmlDsigXPathTransform

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

XmlDsigXsltTransform

System.Security.Cryptography.Xml
(system.security.dll)

class

public class XmlDsigXsltTransform : Transform {

// Public Constructors
 public XmlDsigXsltTransform();

 public XmlDsigXsltTransform(bool includeComments);

// Public Instance Properties
 public override Type[] InputTypes{get; }

// overrides Transform
 public override Type[] OutputTypes{get; }

// overrides Transform

// Public Instance Methods
 public override object GetOutput();

// overrides Transform

 public override object GetOutput(Type type);

// overrides Transform

 public override void LoadInnerXml(System.Xml.XmlNodeList nodeList);

 // overrides Transform

 public override void LoadInput(object obj);

// overrides Transform

// Protected Instance Methods
 protected override XmlNodeList GetInnerXml();

// overrides Transform
}

This implementation of the abstract Transform class applies an XSLT expression to the data to be
signed; the expression is specified with the LoadInput() method.

Hierarchy

System.Object Transform XmlDsigXsltTransform

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 27. The
System.Security.Permissions Namespace
The System.Security.Permissions namespace contains permission classes and their attribute

counterparts. Permissions are the mechanism through which the .NET runtime enforces code-access
security. Most commonly, code uses permissions to protect access to its important functionality and
resources by making security demands. A security demand raises a
System.Security.SecurityException if the grant set of the calling code (and all previous callers on

the call stack) does not include a permission equivalent to the one demanded. Other security
operations include link demands, inheritance demands, stack walk overrides, and permission
requests.

There are two ways to express security statements in code: imperative syntax and declarative
syntax. Imperative syntax uses the methods of permission objects whereas declarative syntax
involves the application of permission attributes to code elements, such as assemblies, classes, and
methods. Permission attributes result in the instantiation and use of permission objects, but this is
handled by the runtime and is transparent to both the programmer and user.

All permission classes implement the System.Security.IPermission interface, which defines the

basic functionality all permissions must implement to integrate with the runtime's code-access
security mechanisms. However, there are three distinct categories of permissions defined in the
System.Security.Permissions namespace: code-access permissions, identity permissions, and

role-based permissions. The code-access pe1rmission classes represent actions defined in, and
resources accessible through, the .NET Framework class library that are subject to code-access
security control. The identity permission classes represent the value of host evidence that an

assembly or application domain presents to the runtime; only evidence types that implement the
System.Security.Policy.IIdentityPermissionFactory have corresponding identity permission
classes. The only role-based permission (PrincipalPermission) represents the identity and roles of

a user on whose behalf code is running.

All of the code-access and identity permission classes extend the abstract
System.Security.CodeAccessPermission base class, which implements both the
System.Security.IPermission and System.Security.IStackWalk interfaces. Executing an

imperative security demand for any of these permission classes involves calling their
System.Security.IStackWalk.Demand() method, which results in a stack walk. A stack walk uses

the call stack to ensure that not only the immediate caller, but also all previous caller have the
demanded permission. Both the System.Security.IStackWalk interface and the
System.Security.CodeAccessPermission base class define methods that allow code to manipulate

the stack walk process using imperative security syntax.

Each permission class has an attribute counterpart that derives from the abstract
CodeAccessSecurityAttribute class. These attribute classes allow their corresponding permission

to be applied to code using declarative security syntax. Declarative security syntax provides access to
a broader range of security operations than imperative syntax, including link demands, inheritance
demands, and permission requests; the values of the SecurityAction enumeration represent the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

full range of declarative security statements. Because declarative security statements are stored as
assembly metadata, the runtime and security administrators can evaluate the security requirements
of an assembly without the need to load or execute the assembly. However, the content of
declarative security statements are fixed at code time, and cannot be based on runtime state, or user
input, unlike imperative statements. In addition, declarative security statements cannot use program
constructs, such as loops and conditionals, to evaluate complex security requirements.

Figure 27-1 and Figure 27-1 show the types in this namespace.

Figure 27-1. CodeAccessPermissions from this namespace

Figure 27-2. More types from this namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CodeAccessSecurityAttribute
ECMA 1.0,

serializable

System.Security.Permissions
(mscorlib.dll)

abstract
class

public abstract class CodeAccessSecurityAttribute : SecurityAttribute {

// Public Constructors

 public CodeAccessSecurityAttribute(SecurityAction action);
}

This abstract class, which extends the SecurityAttribute class, provides the base class from which

all permission attributes derive. Permission attributes provide the mechanism through which to
express declarative security statements for various program elements. By convention, all permission
attributes that derive from CodeAccessSecurityAttribute implement a constructor that takes a
value of the SecurityAction enumeration. The value of the SecurityAction argument specifies the

declarative security statement represented by the permission attribute instance.

Hierarchy

System.Object System.Attribute SecurityAttribute
CodeAccessSecurityAttribute

Subclasses

Multiple types

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

EnvironmentPermission
ECMA 1.0,

serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class EnvironmentPermission : System.Security.CodeAccessPermission : IUnrestrictedPermission,
 IBuiltInPermission {

// Public Constructors

 public EnvironmentPermission(EnvironmentPermissionAccess flag, string pathList);

 public EnvironmentPermission(PermissionState state);

// Public Instance Methods

 public void AddPathList(EnvironmentPermissionAccess flag, string pathList);
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public string GetPathList(EnvironmentPermissionAccess flag);

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission

 public void SetPathList(EnvironmentPermissionAccess flag, string pathList);
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission other);

 // overrides CodeAccessPermission
}

This code-access permission controls access to read and write environment variables, as well as the ability to call certain
members of the System.Environment class. To create an EnvironmentPermission object representing access to a specific set of

environment variables, pass a semicolon-separated list of environment variable names to the object constructor along with a
value from the EnvironmentPermissionAccess enumeration. The EnvironmentPermissionAccess enumeration contains values

that represent the type of access granted to an environment variable, such as permission to read or write.

The EnvironmentPermission class maintains separate lists of environment variables with read access
(EnvironmentPermissionAccess.Read), and those with write access (EnvironmentPermissionAccess.Write). The
EnvironmentPermission class does not treat the EnvironmentPermissionAccess.AllAccess as a separate value, and instead

assigns independent read and write access to environment variables assigned this access level.

The lists of accessible environment variables are managed using the SetPathList() and AddPathList() methods, which both
take values of the EnvironmentPermissionAccess enumeration and a semicolon-separated list of environment variable names
as arguments. SetPathList() replaces the existing list of variables with the new set; its EnvironmentPermissionAccess

http://lib.ommolketab.ir
http://lib.ommolketab.ir

argument specifies whether to replace the read or write list. AddPathList() grants access to the specified variables, adding
them to the existing list; its EnvironmentPermissionAccess argument specifies which variable list to modify.

The GetPathList() method returns a semi-colon separated list of environment variables that has access to the specified type.
GetPathList() accepts only the EnvironmentPermissionAccess.Read or EnvironmentPermissionAccess.Write values, and
will throw a System.ArgumentException if any other values is specified.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
EnvironmentPermission(IUnrestrictedPermission, IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

EnvironmentPermissionAccess
ECMA 1.0,

serializable,
flag

System.Security.Permissions
(mscorlib.dll)

enum

public enum EnvironmentPermissionAccess {
 NoAccess = 0x00000000,Read = 0x00000001,Write = 0x00000002,AllAccess = 0x00000003
}

Values of the EnvironmentPermissionAccess enumeration are used with the
EnvironmentPermission class to specify the type of access granted to a set of environment
variables by an EnvironmentPermission object. Read represents access to read an environment
variable, and Write represents access to create, delete, and change an environment variable; Write
does not encompass the permission granted by Read. AllAccess represents the combined
permissions of both Read and Write.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) EnvironmentPermissionAccess

Passed To

EnvironmentPermission.{AddPathList(), EnvironmentPermission(), GetPathList(),
SetPathList()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

EnvironmentPermissionAttribute
ECMA 1.0,

serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class EnvironmentPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public EnvironmentPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public string All{set; get; }
 public string Read{set; get; }
 public string Write{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

This attribute class provides declarative syntax support for EnvironmentPermission. The All, Read,
and Write properties take semicolon-separated lists of environment variable names to which the
EnvironmentPermissionAttribute represents access. Read specifies the environment variables to
which read access is granted, and Write specifies the environment variables to which write access is
granted. The All property contains the variables to which both read and write access is granted.
Setting Unrestricted to true represents full access to all environment variables.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute EnvironmentPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FileDialogPermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class FileDialogPermission : System.Security.CodeAccessPermission : IUnrestrictedPermission,
 IBuiltInPermission {

// Public Constructors

 public FileDialogPermission(FileDialogPermissionAccess access);

 public FileDialogPermission(PermissionState state);

// Public Instance Properties
 public FileDialogPermissionAccess Access{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission
 public override string ToString();

// overrides CodeAccessPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission
}

This code-access permission controls the ability for code to allow users to access files and folders through the
System.Windows.Forms.OpenFileDialog and the System.Windows.Forms.SaveFileDialog classes. These UI components are
useful for providing restricted access to files and folders, without the need to grant permissions with FileIOPermission . The
type of file dialog to which access is granted by a FileDialogPermission object is specified at construction using members of
the FileDialogPermissionAccess enumeration. To retrieve or modify the file dialog access represented by a
FileDialogPermission object, use its Access property.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
FileDialogPermission(IUnrestrictedPermission, IBuiltInPermission)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FileDialogPermissionAccess serializable, flag

System.Security.Permissions
(mscorlib.dll)

enum

public enum FileDialogPermissionAccess {
 None = 0x00000000,Open = 0x00000001,Save = 0x00000002,OpenSave = 0x00000003
}

This enumeration is used in conjunction with the FileDialogPermission class to specify the type of
file dialog access a FileDialogPermission object represents. Open represents the ability to call the
System.Windows.Forms.OpenFileDialog.OpenFile() method, and Save represents the ability to
call the System.Windows.Forms.SaveFileDialog.OpenFile() method. The OpenSave value
represents the combined permissions of both the Open and Save values; None represents no access.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) FileDialogPermissionAccess

Returned By

FileDialogPermission.Access

Passed To

FileDialogPermission.{Access, FileDialogPermission()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FileDialogPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class FileDialogPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public FileDialogPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public bool Open{set; get; }
 public bool Save{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

This permission attribute provides declarative syntax support for FileDialogPermission. The Open
and Save properties take Boolean values that identify the type of access granted to the file dialog UI
components. Setting Open to true represents permission to execute the
System.Windows.Forms.OpenFileDialog.OpenFile() method, and setting Save to true represents
permission to execute the System.Windows.Forms.SaveFileDialog.OpenFile() method. Setting
Unrestricted to true represents the ability to call both methods.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute FileDialogPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FileIOPermission ECMA 1.0, serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class FileIOPermission : System.Security.CodeAccessPermission : IUnrestrictedPermission,
 IBuiltInPermission {

// Public Constructors

 public FileIOPermission(FileIOPermissionAccess access, string path);

 public FileIOPermission(FileIOPermissionAccess access, string[] pathList);

 public FileIOPermission(PermissionState state);

// Public Instance Properties
 public FileIOPermissionAccess AllFiles{set; get; }
 public FileIOPermissionAccess AllLocalFiles{set; get; }

// Public Instance Methods

 public void AddPathList(FileIOPermissionAccess access, string path);

 public void AddPathList(FileIOPermissionAccess access, string[] pathList);
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public string[] GetPathList(FileIOPermissionAccess access);

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission

 public void SetPathList(FileIOPermissionAccess access, string path);

 public void SetPathList(FileIOPermissionAccess access, string[] pathList);
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission other);

 // overrides CodeAccessPermission
}

The FileIOPermission class represents the ability for code to access files and folders. The FileIOPermission class

maintains separate lists of files and folders to which different levels of access have been granted, and therefore a single
FileIOPermission object can represent different types of access to an arbitrary number of files and folders. However, only
simple configurations are possible using the FileIOPermission constructors; to create more complex FileIOPermission
configurations requires use of the AddPathList() and SetPathList() methods.

To create a FileIOPermission object representing access to a single file or folder, pass a System.String containing the
file or folder's full path to the FileIOPermission constructor along with a value from the FileIOPermissionAccess
enumeration. The FileIOPermissionAccess enumeration contains values that represent the type of access granted to a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

file or folder, such as permission to read, write, or append. A second constructor takes a System.String array containing
the names of multiple files and folders, but takes only a single FileIOPermissionAccess value, applying the same access

level to all of the files and folders.

The lists of files and folders to which each level of access is granted are managed using the SetPathList() and
AddPathList() methods. Both methods take either a single or an array of System.String values specifying the full path
names of the files and folders to grant the specified level of access. The AddPathList() method adds access of the
specified type for the set of files and folders to its current list. The SetPathList() method replaces its existing list of file
and folders of the specified access level. The AllFiles property provides a simple mechanism to specify a level of access to
all files and folders regardless of location, and the AllLocalFiles property does the same, but only for files and folders on

the local hard drive.

The GetPathList() method returns a System.String array containing the full path name of files and folders to which
access of the specified level is granted. The FileIOPermissionAccess.AllAccess and
FileIOPermissionAccess.NoAccess values are invalid in calls to GetPathList(), and will throw a
System.ArgumentException .

For performance reasons, the .NET file and folder classes check file access permissions only when they open a file or folder,
and so care must be taken when passing file and references.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
FileIOPermission(IUnrestrictedPermission, IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FileIOPermissionAccess
ECMA 1.0,

serializable, flag

System.Security.Permissions
(mscorlib.dll)

enum

public enum FileIOPermissionAccess {
 NoAccess = 0x00000000,Read = 0x00000001,Write = 0x00000002,Append = 0x00000004,
 PathDiscovery = 0x00000008,AllAccess = 0x0000000F
}

The FileIOPermissionAccess enumeration contains values that are used with the
FileIOPermission class to specify the type of access represented by a FileIOPermission object.
Read represents permission to read from a file or folder, and Write represents permission to write to,
delete, or overwrite files and folders; Write does not encompass the ability to Read. Append

represents the ability to append material to a file or folder, as well as to create new folders. The
PathDiscovery value represents the ability to access information from a file or folder's path, which

could provide username and folder structure information that would be useful to malicious code.
AllAccess includes the combined permissions of the Read, Write, Append, and PathDiscovery

values.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) FileIOPermissionAccess

Returned By

FileIOPermission.{AllFiles, AllLocalFiles}

Passed To

FileIOPermission.{AddPathList(), AllFiles, AllLocalFiles, FileIOPermission(),
GetPathList(), SetPathList()}, System.Security.Policy.FileCodeGroup.FileCodeGroup()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FileIOPermissionAttribute
ECMA 1.0,

serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class FileIOPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public FileIOPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public string All{set; get; }
 public string Append{set; get; }
 public string PathDiscovery{set; get; }
 public string Read{set; get; }
 public string Write{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

FileIOPermissionAttribute provides declarative syntax support for the FileIOPermission class.
The All, Append, PathDiscovery, Read, and Write properties take the full pathname of the file or

folder to which access of the appropriate level is granted. Each property represents access as defined
by the FileIOPermissionAccess enumeration member of the same name. Unlike
FileIOPermission, a FileIOPermissionAttribute can only represent access of each type to a

single file or folder; apply multiple attributes to a program element in order to specify access to more
than one. Setting Unrestricted to true represents full access to all files and folders.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute FileIOPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IsolatedStorageContainment serializable

System.Security.Permissions
(mscorlib.dll)

enum

public enum IsolatedStorageContainment {
 None = 0,DomainIsolationByUser = 16,AssemblyIsolationByUser = 32,
 DomainIsolationByRoamingUser = 80,AssemblyIsolationByRoamingUser = 96,
 AdministerIsolatedStorageByUser = 112,UnrestrictedIsolatedStorage = 240
}

This enumeration contains values used with the IsolatedStorageFilePermission and
IsolatedStorageFilePermissionAttribute classes to represent the level of access granted to
isolated storage. AssemblyIsolationByUser represents the ability to obtain a store isolated by
assembly and user, while DomainIsolationByUser represents the ability to obtain a store isolated by
assembly, user, and application domain. AssemblyIsolationByRoamingUser and
DomainIsolationByRoamingUser represent access to equivalent levels of isolation, but include the
ability to obtain roaming stores. AdministerIsolatedStorageByUser represents administrative
access to all stores for the current user, and UnrestrictedIsolatedStorage provides full and

unrestricted access to all of the current user's stores.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) IsolatedStorageContainment

Returned By

IsolatedStoragePermission.UsageAllowed,
IsolatedStoragePermissionAttribute.UsageAllowed

Passed To

IsolatedStoragePermission.UsageAllowed,
IsolatedStoragePermissionAttribute.UsageAllowed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IsolatedStorageFilePermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class IsolatedStorageFilePermission : IsolatedStoragePermission : IBuiltInPermission {

// Public Constructors

 public IsolatedStorageFilePermission(PermissionState state);

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission
}

The IsolatedStorageFilePermission code-access permission extends the IsolatedStoragePermission and controls
access to the methods of the System.IO.IsolatedStorage.IsolatedStorageFile class.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)

IsolatedStoragePermission(IUnrestrictedPermission)
IsolatedStorageFilePermission(IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IsolatedStorageFilePermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class IsolatedStorageFilePermissionAttribute : IsolatedStoragePermissionAttribute {

// Public Constructors

 public IsolatedStorageFilePermissionAttribute(SecurityAction action);

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

This attribute extends the IsolatedStoragePermissionAttribute and provides declarative security support for the
IsolatedStorageFilePermission code-access permission.

Hierarchy

System.Object System.Attribute SecurityAttribute CodeAccessSecurityAttribute

IsolatedStoragePermissionAttribute IsolatedStorageFilePermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IsolatedStoragePermission serializable

System.Security.Permissions
(mscorlib.dll)

abstract
class

public abstract class IsolatedStoragePermission : System.Security.CodeAccessPermission : IUnrestrictedPermission {

// Public Constructors

 public IsolatedStoragePermission(PermissionState state);

// Public Instance Properties
 public IsolatedStorageContainment UsageAllowed{set; get; }
 public long UserQuota{set; get; }

// Public Instance Methods

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission
}

This abstract class provides the base class from which all types of isolated storage permission classes derive. Currently, there is only one
concrete isolated storage permission implementation: IsolatedStorageFilePermission . The unique features of the
IsolatedStoragePermission class, which all derived classes inherit, are the UsageAllowed and UserQuota properties. The
UsageAllowed property represents the scope of store code can obtain, and UserQuota specifies the store's maximum permitted size.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
IsolatedStoragePermission(IUnrestrictedPermission)

Subclasses

IsolatedStorageFilePermission

Returned By

System.IO.IsolatedStorage.IsolatedStorage.GetPermission()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IsolatedStoragePermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

abstract
class

public abstract class IsolatedStoragePermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public IsolatedStoragePermissionAttribute(SecurityAction action);

// Public Instance Properties
 public IsolatedStorageContainment UsageAllowed{set; get; }
 public long UserQuota{set; get; }
}

IsolatedStoragePermissionAttribute is the abstract base class from which all types of isolated

storage permission attribute classes derive. It provides declarative support for the abstract
IsolatedStoragePermission class. Currently, the only isolated storage permission attribute
implementation is the IsolatedStorageFilePermissionAttribute . The UsageAllowed property
accepts a member of the IsolatedStorageContainment enumeration and represents the permitted level
of isolation. The UserQuota property configures the maximum size that a store can attain.

Hierarchy

System.Object System.Attribute SecurityAttribute CodeAccessSecurityAttribute

 IsolatedStoragePermissionAttribute

Subclasses

IsolatedStorageFilePermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IUnrestrictedPermission

System.Security.Permissions
(mscorlib.dll)

interface

public interface IUnrestrictedPermission {

// Public Instance Methods
 public bool IsUnrestricted();
}

Code-access permission classes that implement the IUnrestrictedPermission interface can

represent an unrestricted or completely restricted state. These two states represent the extremes of
a permission class's permission range. For example, the FileIOPermission class can represent

complete access to all files and folders, or no file and folder access.

By convention, a permission class that implements the IUnrestrictedPermission interface must
declare a constructor that takes a PermissionState argument. An unrestricted permission is created
by passing the value PermissionState.Unrestricted to the permission constructor, while a
completely restricted permission is created using the value PermissionState.None. The
IsUnrestricted() method indicates whether a permission object represents its unrestricted state.

Implemented By

Multiple types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PermissionSetAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class PermissionSetAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public PermissionSetAttribute(SecurityAction action);

// Public Instance Properties
 public string File{set; get; }
 public string Name{set; get; }
 public bool UnicodeEncoded{set; get; }
 public string XML{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
 public PermissionSet CreatePermissionSet();
}

The PermissionSetAttribute class supports the use of permission sets in declarative security
statements. To specify the contents of the permission set, use one of mutually exclusive File, Name,
or XML properties. File takes the name of a file that contains the permission set's XML definition.
Name specifies one of the standard immutable named permission sets defined by the .NET Framework
(FullTrust, SkipVerification, Execution, Nothing, LocalIntranet, or Internet). XML takes a
System.String containing the XML definition of the permission set. To create a permission set that
represents unrestricted access, set the Unrestricted property to true.

When required, the runtime calls the CreatePermissionSet() method to create a correctly
configured System.Security.PermissionSet from the PermissionSetAttribute.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute PermissionSetAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PermissionState ECMA 1.0, serializable

System.Security.Permissions
(mscorlib.dll)

enum

public enum PermissionState {
 None = 0,Unrestricted = 1
}

This enumeration is used when instantiating code-access permission classes that implement the
IUnrestrictedPermission interface. A code-access permission object created by passing the
Unrestricted value to its constructor represents unrestricted access to the resources and actions
controlled by the permission. A permission object created using the None value represents no access.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) PermissionState

Passed To

Multiple types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PrincipalPermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class PrincipalPermission : System.Security.IPermission,
 System.Security.ISecurityEncodable, IUnrestrictedPermission, IBuiltInPermission {

// Public Constructors

 public PrincipalPermission(PermissionState state);

 public PrincipalPermission(string name, string role);

 public PrincipalPermission(string name, string role, bool isAuthenticated);

// Public Instance Methods
 public IPermission Copy();

// implements System.Security.IPermission
 public void Demand();

// implements System.Security.IPermission

 public void FromXml(System.Security.SecurityElement elem);

// implements System.Security.ISecurityEncodable

 public IPermission Intersect(System.Security.IPermission target);

 // implements System.Security.IPermission

 public bool IsSubsetOf(System.Security.IPermission target);

 // implements System.Security.IPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission
 public override string ToString();

// overrides object
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public IPermission Union(System.Security.IPermission other);

 // implements System.Security.IPermission
}

The PrincipalPermission class is the only role-based permission provided in the .NET Framework
class library. PrincipalPermission allows code to make imperative security demands to ensure that
the current thread's System.Security.Principal.IPrincipal object represents a specific identity

or contains specified role names. Unlike the code-access and identity permission classes,
PrincipalPermission does not inherit from System.Security.CodeAccessPermission . In addition,
though PrincipalPermission implements System.Security.IPermission , it does not implement
System.Security.IStackWalk , which means that security demands against PrincipalPermission

objects do not result in stack walks.

A PrincipalPermission object must be configured during construction, as no properties are provided
to manage its state. The constructor name argument specifies the identity name, and the role

argument specifies the name of a single role of which the identity must be a member. The
isAuthneticated argument specifies whether the principal must have been authenticated.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PrincipalPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class PrincipalPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public PrincipalPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public bool Authenticated{set; get; }
 public string Name{set; get; }
 public string Role{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

The PrincipalPermissionAttribute class provides limited declarative syntax support for the
PrincipalPermission class. The PrincipalPermissionAttribute class only supports declarative

security demands and does not allow code to make declarative stack walk overrides or permission
requests. The Name, Role, and Authenticated properties provide the mechanism through which to

specify the conditions that the current thread's principal must meet to pass a security demand.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute PrincipalPermissionAttribute

Valid On

Class, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PublisherIdentityPermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class PublisherIdentityPermission : System.Security.CodeAccessPermission : IBuiltInPermission {

// Public Constructors

 public PublisherIdentityPermission(PermissionState state);

 public PublisherIdentityPermission(System.Security.Cryptography.X509Certificates.X509Certificate certificate);

// Public Instance Properties
 public X509Certificate Certificate{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission
}

The PublisherIdentityPermission class represents the System.Security.Policy.Publisher evidence that an assembly or
application domain presented to the runtime. The PublisherIdentityPermission class enables code to invoke imperative security
statements based on the publisher certificate used to sign an assembly. For example, code can use the PublisherIdentityPermission

class to ensure that only code signed by their company or a trusted third party can call the methods of their classes.

The PublisherIdentityPermission class provides a constructor that takes a
System.Security.Cryptography.X509Certificates.X509Certificate object containing an X509 certificate, which represents the
publisher that signed an assembly. The X509Certificate object can be manipulated after construction through the Certificate

property.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
PublisherIdentityPermission(IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PublisherIdentityPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class PublisherIdentityPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public PublisherIdentityPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public string CertFile{set; get; }
 public string SignedFile{set; get; }
 public string X509Certificate{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

PublisherIdentityPermissionAttribute provides declarative syntax support for the
PublisherIdentityPermission class. The publisher certificate that represents the publisher of an
assembly can be specified using three different properties. The CertFile property takes the name of a
certificate file containing the publisher's X.509 certificate. The SignedFile property takes the name of a
file that is already signed with the publisher's certificate (which will be extracted). The X509Certificate
property takes a System.String containing a hexadecimal representation of the publisher's certificate.

Hierarchy

System.Object System.Attribute SecurityAttribute CodeAccessSecurityAttribute

 PublisherIdentityPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ReflectionPermission ECMA 1.0, serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class ReflectionPermission : System.Security.CodeAccessPermission : IUnrestrictedPermission,
 IBuiltInPermission {

// Public Constructors

 public ReflectionPermission(PermissionState state);

 public ReflectionPermission(ReflectionPermissionFlag flag);

// Public Instance Properties
 public ReflectionPermissionFlag Flags{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission other);

 // overrides CodeAccessPermission
}

The ReflectionPermission code-access permission class controls the ability for code to access nonvisible type members

through .NET's reflection capabilities. This includes the ability of code to access protected and private type members, as well as
to create assemblies dynamically in memory. The functionality represented by a ReflectionPermission object is specified at
construction using members of the ReflectionPermissionFlag enumeration. To retrieve or modify the access represented by a
ReflectionPermission object, use its Flags property.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
ReflectionPermission(IUnrestrictedPermission, IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ReflectionPermissionAttribute
ECMA 1.0,

serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class ReflectionPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public ReflectionPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public ReflectionPermissionFlag Flags{set; get; }
 public bool MemberAccess{set; get; }
 public bool ReflectionEmit{set; get; }
 public bool TypeInformation{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

ReflectionPermissionAttribute provides declarative syntax support for the
ReflectionPermission class. To configure the level of reflection functionality access represented by
a ReflectionPermissionAttribute, assign values of the ReflectionPermissionFlag enumeration
to the Flags property. Alternatively, the MemberAccess, ReflectionEmit, and TypeInformation

properties take Boolean values to configure the type of access represented by the
ReflectionPermissionAttribute; these properties map to the member values defined in the
ReflectionPermissionFlag enumeration. Setting Unrestricted to true creates a
ReflectionPermissionAttribute that represents unrestricted access to reflection functionality and
is equivalent to the value ReflectionPermissionFlag.AllFlags.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute ReflectionPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ReflectionPermissionFlag
ECMA 1.0,

serializable, flag

System.Security.Permissions
(mscorlib.dll)

enum

public enum ReflectionPermissionFlag {
 NoFlags = 0x00000000,TypeInformation = 0x00000001,MemberAccess = 0x00000002,ReflectionEmit = 0x00000004,
 AllFlags = 0x00000007
}

The values of the ReflectionPermissionFlag enumeration are used to specify the level of access to .NET's reflection
capabilities that a ReflectionPermission object represents. NoFlags represents default reflection access, which includes
access to public members and type information. The MemberAccess and TypeInformation values represent the ability to use
reflection on nonpublic members and types, respectively. ReflectionEmit allows code to use the classes in the
System.Reflection.Emit namespace to create assemblies in memory. The AllFlags value represents the combination of all

values. Any level of access can be represented using logical OR operations to combine the member values.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable ,

System.IConvertible) ReflectionPermissionFlag

Returned By

ReflectionPermission.Flags , ReflectionPermissionAttribute.Flags

Passed To

ReflectionPermission.{Flags , ReflectionPermission()} , ReflectionPermissionAttribute.Flags

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RegistryPermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class RegistryPermission : System.Security.CodeAccessPermission : IUnrestrictedPermission,
 IBuiltInPermission {

// Public Constructors

 public RegistryPermission(PermissionState state);

 public RegistryPermission(RegistryPermissionAccess access, string pathList);

// Public Instance Methods

 public void AddPathList(RegistryPermissionAccess access, string pathList);
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public string GetPathList(RegistryPermissionAccess access);

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission

 public void SetPathList(RegistryPermissionAccess access, string pathList);
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission other);

 // overrides CodeAccessPermission
}

The RegistryPermission class represents the ability of code to access and manipulate the contents of the Windows registry.
More specifically, RegistryPermission controls access to secured members of the Microsoft.Win32.RegistryKey class.
RegistryPermission maintains separate lists of registry key names to which different levels of access have been granted,
and therefore a single RegistryPermission object can represent different types of access to an arbitrary number of registry

keys.

To create a RegistryPermission object, pass a System.String containing a semicolon-separated list of registry key names,
along with a value from the RegistryPermissionAccess enumeration to the RegistryPermission constructor. The
RegistryPermissionAccess enumeration contains values that represent the type of access granted to a registry key, such as

permission to read, write, or create.

To create a RegistryPermission object that represents a more complex permission set, use the AddPathList() and
SetPathList() methods. Both methods take a System.String containing a semicolon-separated list of registry key names
and a value from the RegistryPermissionAccess enumeration, which specifies the level of access to assign to the specified
registry keys. The AddPathList() method adds the newly specified key names to the list of already configured keys. The
SetPathList() method replaces its existing list of keys with the newly specified set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The GetPathList() method returns a System.String containing a semicolon-separated list of registry keys to which access
of the specified level is granted. The RegistryPermissionAccess.AllAccess and RegistryPermissionAccess.NoAccess
values are invalid in calls to GetPathList() , and will cause a System.ArgumentException to be thrown.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
RegistryPermission(IUnrestrictedPermission, IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RegistryPermissionAccess serializable, flag

System.Security.Permissions
(mscorlib.dll)

enum

public enum RegistryPermissionAccess {
 NoAccess = 0x00000000,Read = 0x00000001,Write = 0x00000002,Create = 0x00000004,
 AllAccess = 0x00000007
}

This enumeration is used to configure the type of registry access represented by a
RegistryPermission object. The Create, Read, and Write values represent the ability to create,

read, and write registry values, respectively. Each value is independent and does not include the
permissions of the others. For example, Write does not encompass the permissions of the Read
value. The AllAccess value represents the combination of Read, Write, and Create. If other

combinations are needed, the values can be combined using a logical OR operation.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) RegistryPermissionAccess

Passed To

RegistryPermission.{AddPathList(), GetPathList(), RegistryPermission(), SetPathList(
)}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

RegistryPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class RegistryPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public RegistryPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public string All{set; get; }
 public string Create{set; get; }
 public string Read{set; get; }
 public string Write{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

The RegistryPermissionAttribute attribute class provides declarative syntax support for the
RegistryPermission class. The All, Create, Read, and Write properties take semicolon-separated
lists of registry key names that the RegistryPermissionAttribute represents as the appropriate
access level. Setting Unrestricted to true represents full access to all registry keys.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute RegistryPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ResourcePermissionBase serializable

System.Security.Permissions
(system.dll)

abstract
class

public abstract class ResourcePermissionBase : System.Security.CodeAccessPermission : IUnrestrictedPermission {

// Protected Constructors
 protected ResourcePermissionBase();

 protected ResourcePermissionBase(PermissionState state);

// Public Static Fields
 public const string Any;

// =*
 public const string Local;

// =.

// Protected Instance Properties
 protected Type PermissionAccessType{set; get; }
 protected string[] TagNames{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement securityElement);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission

// Protected Instance Methods

 protected void AddPermissionAccess(ResourcePermissionBaseEntry entry);
 protected void Clear();
 protected ResourcePermissionBaseEntry[] GetPermissionEntries();

 protected void RemovePermissionAccess(ResourcePermissionBaseEntry entry);
}

The abstract ResourcePermissionBase class provides common functionality for Windows resource-oriented permission classes,
including the System.Diagnostics.EventLogPermission , System.Diagnostics.PerformanceCounterPermission ,
System.DirectoryServices.DirectoryServicesPermission , and System.ServiceProcess.ServiceControllerPermission

classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
ResourcePermissionBase(IUnrestrictedPermission)

Subclasses

System.Diagnostics.{EventLogPermission , PerformanceCounterPermission}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ResourcePermissionBaseEntry serializable

System.Security.Permissions
(system.dll)

class

public class ResourcePermissionBaseEntry {

// Public Constructors
 public ResourcePermissionBaseEntry();

 public ResourcePermissionBaseEntry(int permissionAccess, string[] permissionAccessPath);

// Public Instance Properties
 public int PermissionAccess{get; }
 public string[] PermissionAccessPath{get; }
}

ResourcePermissionBaseEntry is used in conjunction with classes that extend the ResourcePermissionBase .

It represents an administrable unit of code-access security.

Returned By

ResourcePermissionBase.GetPermissionEntries()

Passed To

ResourcePermissionBase.{AddPermissionAccess() , RemovePermissionAccess()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SecurityAction ECMA 1.0, serializable

System.Security.Permissions
(mscorlib.dll)

enum

public enum SecurityAction {
 Demand = 2,Assert = 3,Deny = 4,PermitOnly = 5,LinkDemand = 6,InheritanceDemand = 7,
 RequestMinimum = 8,RequestOptional = 9,RequestRefuse = 10
}

The SecurityAction enumeration contains values that represent the different declarative security
statements. Every permission attribute class derived from the CodeAccessSecurityAttribute class
defines a constructor that takes a value of the SecurityAction enumeration as an argument. The
value of the SecurityAction argument identifies the action that the declarative security statement

performs, and determines the program elements that are valid targets for the security attribute. The
nine values of the SecurityAction enumeration fall into three categories: security demands,

permission requests, and stack overrides. Declarative security demands and stack overrides can be
applied to classes and functional members (i.e., methods, properties, and events), whereas permission
requests are valid only at the assembly level.

The security demands include the values Demand , InheritanceDemand , and LinkDemand . Demand

initiates a security demand, which will result in a stack walk when used with an attribute whose
permission counterpart implements the System.Security.IStackWalk interfaces. This includes all
code-access and identity permissions, but not PrincipalPermission , which only implements the
System.Security.IPermission interface. The InheritanceDemand and LinkDemand statements have
no imperative syntax equivalent. InheritanceDemand ensures that code trying to inherit a class or
override a member has the demanded permission. LinkDemand ensures that the immediate calling code

has the demanded permission, without invoking a stack walk.

The permission request statements also have no imperative statement equivalent, and include the
values RequestMinimum , RequestOptional , and RequestRefuse . Permission requests provide a

mechanism for assemblies to communicate details to the runtime and security administrators about the
permissions they do and do not need. RequestMinimum specifies a set of permissions that the runtime

must grant to an assembly in order for it to function correctly. After the runtime resolves the
permissions for an assembly, if the grant set does not contain all of the requested permissions, then
the runtime will throw a System.Security.Policy.PolicyException and will not load the assembly.
The RequestOptional statement defines the maximum set of permissions that the runtime should

grant to an assembly regardless of security policy. This is often used to specify a set of nonessential
permissions that can be used if granted. The RequestRefuse statement specifies the set of permissions
that the runtime should never grant to the assembly. RequestRefuse ensures code can never by

granted permissions that it does not need, and so cannot be used by malicious code as a gateway to
access secured actions or resources.

The stack override values-Assert , Deny , and PermitOnly -have the same effect as the methods of
the same name defined in the System.Security.IStackWalk interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable , System.IConvertible) SecurityAction

Returned By

SecurityAttribute.Action

Passed To

Multiple types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SecurityAttribute ECMA 1.0, serializable

System.Security.Permissions
(mscorlib.dll)

abstract
class

public abstract class SecurityAttribute : Attribute {

// Public Constructors

 public SecurityAttribute(SecurityAction action);

// Public Instance Properties
 public SecurityAction Action{set; get; }
 public bool Unrestricted{set; get; }

// Public Instance Methods
 public abstract IPermission CreatePermission();
}

The abstract SecurityAttribute class provides a base class from which the
CodeAccessSecurityAttribute is derived. The Unrestricted property allows creation of security

attributes that represent permissions in an unrestricted state. Although all derived permission
attributes inherit Unrestricted, it is of use only when dealing with the attribute counterparts of
permissions that implement the IUnrestrictedPermission interface. When required, the runtime
calls the CreatePermission() method to create configured permission objects correctly from the

configuration defined in a security attribute.

Hierarchy

System.Object System.Attribute SecurityAttribute

Subclasses

CodeAccessSecurityAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SecurityPermission ECMA 1.0, serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class SecurityPermission : System.Security.CodeAccessPermission : IUnrestrictedPermission,
 IBuiltInPermission {

// Public Constructors

 public SecurityPermission(PermissionState state);

 public SecurityPermission(SecurityPermissionFlag flag);

// Public Instance Properties
 public SecurityPermissionFlag Flags{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission
}

This code-access permission controls access to a set of 14 discrete operations that are critical to the security of the runtime
environment. These include highly trusted operations, such as the ability of code to control evidence, create and manipulate
application domains, and skip verification. The specific operations represented by a SecurityPermission object are identified
at construction using members of the SecurityPermissionFlag enumeration. To retrieve or modify the operations
represented by a SecurityPermission object, use the Flags property.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
SecurityPermission(IUnrestrictedPermission, IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SecurityPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class SecurityPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public SecurityPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public bool Assertion{set; get; }
 public bool ControlAppDomain{set; get; }
 public bool ControlDomainPolicy{set; get; }
 public bool ControlEvidence{set; get; }
 public bool ControlPolicy{set; get; }
 public bool ControlPrincipal{set; get; }
 public bool ControlThread{set; get; }
 public bool Execution{set; get; }
 public SecurityPermissionFlag Flags{set; get; }
 public bool Infrastructure{set; get; }
 public bool RemotingConfiguration{set; get; }
 public bool SerializationFormatter{set; get; }
 public bool SkipVerification{set; get; }
 public bool UnmanagedCode{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

This permission attribute provides declarative security support for the SecurityPermission code-

access permission. To configure the set of security operations represented by a
SecurityPermissionAttribute, assign values from the SecurityPermissionFlag enumeration to
the Flags property. Alternately, SecurityPermissionAttribute provides properties that map to the
individual values defined in the SecurityPermissionFlag enumeration. Setting these properties to
true allows the configuration of a SecurityPermissionAttribute to represent any set of security
operations. Setting Unrestricted to true creates a SecurityPermissionAttribute that represents
access to all security operations and is equivalent to the SecurityPermissionFlag.AllFlags value.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute SecurityPermissionAttribute

Valid On

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SecurityPermissionFlag
ECMA 1.0,

serializable, flag

System.Security.Permissions
(mscorlib.dll)

enum

public enum SecurityPermissionFlag {
 NoFlags = 0x00000000,Assertion = 0x00000001,
 UnmanagedCode = 0x00000002, SkipVerification = 0x00000004,Execution = 0x00000008,
 ControlThread = 0x00000010, ControlEvidence = 0x00000020,ControlPolicy = 0x00000040,
 SerializationFormatter = 0x00000080, ControlDomainPolicy = 0x00000100,ControlPrincipal = 0x00000200,
 ControlAppDomain = 0x00000400, RemotingConfiguration = 0x00000800,Infrastructure = 0x00001000,
 BindingRedirects = 0x00002000,AllFlags = 0x00003FFF
}

The values of the SecurityPermissionFlag enumeration specify the security actions that a SecurityPermission or
SecurityPermissionAttribute object represents. Of the values we have discussed in this book, the most fundamental value is
Execution , without which code cannot run in the .NET Framework. SkipVerification gives unverifiable code permission to
run, and UnmanagedCode gives code the ability to run unmanaged (native) code through PInvoke or COM interoperability calls.
Assertion allows code to assert any permission that it has been granted-see the System.Security.IStackWalk interface for

details.

ControlAppDomain represents the ability to create and manipulate application domains, ControlDomainPolicy allows code to
assign security policy to an application domain, and ControlPrincipal controls the ability of code to manipulate the principal of
an application domain (used in role-based security). ControlEvidence allows code to manipulate the evidence of an application
domain as it is created or an assembly as it is loaded, and ControlPolicy means that code can view and manipulate security

policy.

The AllFlags value represents a combination of all values, and NoFlags represents no permission. Any set of security operations

can be represented using logical OR operations to combine the member values.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable, System.IFormattable ,

System.IConvertible) SecurityPermissionFlag

Returned By

SecurityPermission.Flags , SecurityPermissionAttribute.Flags

Passed To

SecurityPermission.{Flags , SecurityPermission()} , SecurityPermissionAttribute.Flags

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SiteIdentityPermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class SiteIdentityPermission : System.Security.CodeAccessPermission : IBuiltInPermission {

// Public Constructors

 public SiteIdentityPermission(PermissionState state);

 public SiteIdentityPermission(string site);

// Public Instance Properties
 public string Site{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission
}

The SiteIdentityPermission class represents the System.Security.Policy.Site evidence of an assembly or application

domain, allowing code to invoke imperative security statements based on the web site from which code originated. For
example, code could ensure that only assemblies run from the https://www.oreilly.com site have access to protected
functionality.

To create a SiteIdentityPermission object representing a specific source web site, pass a System.String containing the
site address to the SiteIdentityPermission constructor; the site can include the "*" wildcard character. To access or
modify the web site represented by a SiteIdentityPermission , use the Site property.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
SiteIdentityPermission(IBuiltInPermission)

[Team LiB]

https://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SiteIdentityPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class SiteIdentityPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public SiteIdentityPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public string Site{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

The SiteIdentityPermissionAttribute class provides declarative syntax support for the
SiteIdentityPermission. Specify the web site represented by the
SiteIdentityPermissionAttribute by assigning a System.String containing the web site name to
the Site property.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute SiteIdentityPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

StrongNameIdentityPermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class StrongNameIdentityPermission : System.Security.CodeAccessPermission : IBuiltInPermission {

// Public Constructors

 public StrongNameIdentityPermission(PermissionState state);

 public StrongNameIdentityPermission(StrongNamePublicKeyBlob blob, string name, Version version);

// Public Instance Properties
 public string Name{set; get; }
 public StrongNamePublicKeyBlob PublicKey{set; get; }
 public Version Version{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement e);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission
}

This identity permission represents the System.Security.Policy.StrongName evidence that an assembly or application domain
presented to the runtime when it was loaded or created. The StrongNameIdentityPermission class enables code to make security

decisions based on the strong name of an assembly, allowing code to ensure that only specific assemblies or versions of an
assembly can access functionality.

The StrongNameIdentityPermission class provides a constructor that takes the name, version, and public key blob of a strong
name. The Name , Version , and PublicKey properties of a StrongNameIdentityPermission object provide access to the strong-
named data of an existing StrongNameIdentityPermission object. Name is a System.String containing the simple name of the
assembly. Version uses a System.Version object to represent the four elements of a strong-named assembly version number;

these are major, minor, build, and revision. The major and minor elements are mandatory, but build and revision are optional when
specifying a strong-named assembly's version number. The PublicKey property uses a StrongNamePublicKeyBlob to contain the

public key data of the strong name.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Security.ISecurityEncodable , System.Security.IStackWalk)
StrongNameIdentityPermission(IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

StrongNameIdentityPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class StrongNameIdentityPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public StrongNameIdentityPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public string Name{set; get; }
 public string PublicKey{set; get; }
 public string Version{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

This attribute class provides declarative syntax support for the StrongNameIdentityPermission class.
The Name , PublicKey , and Version attributes all take System.String objects containing the information
that defines the strong name; the StrongNameIdentityPermissionAttribute converts these string

values to the appropriate types.

Hierarchy

System.Object System.Attribute SecurityAttribute CodeAccessSecurityAttribute

 StrongNameIdentityPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

StrongNamePublicKeyBlob serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class StrongNamePublicKeyBlob {

// Public Constructors

 public StrongNamePublicKeyBlob(byte[] publicKey);

// Public Instance Methods

 public override bool Equals(object obj);

// overrides object
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
}

The StrongNamePublicKeyBlob class is used in conjunction with the constructor and PublicKey
properties of the StrongNameIdentityPermission class. It provides a convenient container for

passing byte arrays that represent the public key component of a strong name. A byte array
containing the raw public key data must be passed to the StrongNamePublicKeyBlob constructor

because no properties or methods are provided to manipulate the data.

Returned By

StrongNameIdentityPermission.PublicKey, System.Security.Policy.StrongName.PublicKey,
System.Security.Policy.StrongNameMembershipCondition.PublicKey

Passed To

StrongNameIdentityPermission.{PublicKey, StrongNameIdentityPermission()},
System.Security.Policy.StrongName.StrongName(),
System.Security.Policy.StrongNameMembershipCondition.{PublicKey,
StrongNameMembershipCondition()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

UIPermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class UIPermission : System.Security.CodeAccessPermission : IUnrestrictedPermission,
 IBuiltInPermission {

// Public Constructors

 public UIPermission(PermissionState state);

 public UIPermission(UIPermissionClipboard clipboardFlag);

 public UIPermission(UIPermissionWindow windowFlag);

 public UIPermission(UIPermissionWindow windowFlag, UIPermissionClipboard clipboardFlag);

// Public Instance Properties
 public UIPermissionClipboard Clipboard{set; get; }
 public UIPermissionWindow Window{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public bool IsUnrestricted();

// implements IUnrestrictedPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission
}

The UIPermission class controls the ability of code to access clipboard functionality as well as various windows
elements of the user interface. Values from the UIPermissionClipboard and UIPermissionWindow enumerations are
used in the UIPermission constructor to configure the level of access represented. The Clipboard and Window

properties allow code to access and modify the configuration after construction.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
UIPermission(IUnrestrictedPermission, IBuiltInPermission)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

UIPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class UIPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public UIPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public UIPermissionClipboard Clipboard{set; get; }
 public UIPermissionWindow Window{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

The UIPermissionAttribute class provides declarative syntax support for the UIPermission class.
The Clipboard property takes a value from the UIPermissionClipboard enumeration to configure
the access granted to the clipboard, and the Window property takes a value from the
UIPermissionWindow enumeration to configure the access granted to various window elements.
Setting Unrestricted to true creates a UIPermissionAttribute that represents unrestricted access

to all window and clipboard functionality

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute UIPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

UIPermissionClipboard serializable

System.Security.Permissions
(mscorlib.dll)

enum

public enum UIPermissionClipboard {
 NoClipboard = 0,OwnClipboard = 1,AllClipboard = 2
}

Values of the UIPermissionClipboard enumeration are used to specify the type of clipboard access
represented by a UIPermission object. OwnClipboard means that code can freely place data into the
clipboard but cannot programmatically read the clipboard contents. AllClipboard represents

unrestricted clipboard access.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) UIPermissionClipboard

Returned By

UIPermission.Clipboard, UIPermissionAttribute.Clipboard

Passed To

UIPermission.{Clipboard, UIPermission()}, UIPermissionAttribute.Clipboard

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

UIPermissionWindow serializable

System.Security.Permissions
(mscorlib.dll)

enum

public enum UIPermissionWindow {
 NoWindows = 0,SafeSubWindows = 1,SafeTopLevelWindows = 2,AllWindows = 3
}

The UIPermissionWindow enumeration contains values that the UIPermission class uses to
represent the type of window elements code is permitted to use. SafeSubWindows represents the

ability to use safe subwindows such as message boxes and common dialog controls.
SafeTopLevelWindows represents permission to use top-level windows that are considered safe
because they are clearly labeled to avoid spoofing attacks. AllWindows represents the ability to

access all windows elements.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) UIPermissionWindow

Returned By

UIPermission.Window, UIPermissionAttribute.Window

Passed To

UIPermission.{UIPermission(), Window}, UIPermissionAttribute.Window

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

UrlIdentityPermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class UrlIdentityPermission : System.Security.CodeAccessPermission : IBuiltInPermission {

// Public Constructors

 public UrlIdentityPermission(PermissionState state);

 public UrlIdentityPermission(string site);

// Public Instance Properties
 public string Url{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission
}

The UrlIdentityPermission class represents the System.Security.Policy.Url evidence of an assembly or application
domain. The UrlIdentityPermission class allows code to make security decisions based on the URL from which code was
loaded using imperative security statements. UrlIdentityPermission is useful for ensuring that only the code loaded from

particular locations can execute important actions and resources. For example, only code loaded from a secure server on
the local network can run methods that manage user accounts.

To create a UrlIdentityPermission object representing a specific source URL, pass a System.String containing the URL
to the UrlIdentityPermission constructor. The URL can include the "*" wildcard character as its last element. The source
URL represented by a UrlIdentityPermission can also be configured using its Url property.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
UrlIdentityPermission(IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

UrlIdentityPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class UrlIdentityPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public UrlIdentityPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public string Url{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

The UrlIdentityPermissionAttribute attribute class provides declarative syntax support for the
UrlIdentityPermission class. The URL is specified by assigning a System.String containing the
URL to the Url property.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute UrlIdentityPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ZoneIdentityPermission serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class ZoneIdentityPermission : System.Security.CodeAccessPermission : IBuiltInPermission {

// Public Constructors

 public ZoneIdentityPermission(PermissionState state);

 public ZoneIdentityPermission(System.Security.SecurityZone zone);

// Public Instance Properties
 public SecurityZone SecurityZone{set; get; }

// Public Instance Methods
 public override IPermission Copy();

// overrides CodeAccessPermission

 public override void FromXml(System.Security.SecurityElement esd);

 // overrides CodeAccessPermission

 public override IPermission Intersect(System.Security.IPermission target);

 // overrides CodeAccessPermission

 public override bool IsSubsetOf(System.Security.IPermission target);

 // overrides CodeAccessPermission
 public override SecurityElement ToXml();

// overrides CodeAccessPermission

 public override IPermission Union(System.Security.IPermission target);

 // overrides CodeAccessPermission
}

This identity permission class represents the System.Security.Policy.Zone evidence presented by an assembly or
application domain to the runtime. The ZoneIdentityPermission class allows code to invoke imperative security statements

based on the zone from which code originated. For example, code could ensure that only assemblies run from the local
intranet have access to methods that manipulate data in an important database.

To create a ZoneIdentityPermission object representing a specific zone, pass a member of the
System.Security.SecurityZone enumeration to object constructor. The System.Security.SecurityZone enumeration

contains values that represent the standard Internet Explorer security zones. To get or set the security zone represented by
a ZoneIdentityPermission object, use its SecurityZone property.

Hierarchy

System.Object System.Security.CodeAccessPermission(System.Security.IPermission,

System.Security.ISecurityEncodable , System.Security.IStackWalk)
ZoneIdentityPermission(IBuiltInPermission)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ZoneIdentityPermissionAttribute serializable

System.Security.Permissions
(mscorlib.dll)

sealed
class

public sealed class ZoneIdentityPermissionAttribute : CodeAccessSecurityAttribute {

// Public Constructors

 public ZoneIdentityPermissionAttribute(SecurityAction action);

// Public Instance Properties
 public SecurityZone Zone{set; get; }

// Public Instance Methods
 public override IPermission CreatePermission();

// overrides SecurityAttribute
}

This attribute class provides declarative syntax support for the ZoneIdentityPermission class. The
security zone is specified by assigning a value of the System.Security.SecurityZone enumeration
to the Zone property.

Hierarchy

System.Object System.Attribute SecurityAttribute

CodeAccessSecurityAttribute ZoneIdentityPermissionAttribute

Valid On

Assembly, Class, Struct, Constructor, Method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 28. The System.Security.Policy
Namespace
The System.Security.Policy namespace contains classes that represent evidence and the key

elements of security policy, including membership conditions, code groups, and policy levels. Security
policy is the set of configurable rules that provide a mapping between evidence and permissions.
Specifically, the runtime uses security policy to determine which code-access permissions to grant to
an assembly or application domain based on the set of evidence that the assembly or application
domain presents-a process known as policy resolution.

.NET divides security policy into four policy levels: enterprise, machine, user, and application domain.
Each policy level consists of a set of code groups organized into a tree structure. There are different
types of code groups, but most contain a membership condition (based on the values of evidence
objects) and a permission set that the code group grants to assemblies and application domains that
qualify for membership. Some code groups contain a set of child code groups, which member
assemblies and application domains are also compared to for membership, thus creating a tree
structure.

During policy resolution, the runtime traverses the tree of code groups in each policy level and
compares the evidence presented by the assembly or application domain with the membership
condition of each code group. If the evidence meets the code group's membership condition, then the
runtime grants the assembly or application domain the permissions contained in the code group's
permission set. To calculate the permissions granted by a policy level, the runtime takes the union of
all the permission sets granted by the code groups to which an assembly or application domain
qualifies for membership. The final set of permissions is calculated by intersecting the permission sets
granted by each policy level. Different types of code groups and code group attributes can alter the
way that the runtime combines code group permission sets.

Figure 28-1 and Figure 28-2 show the types in this namespace.

Figure 28-1. Policy objects from this namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 28-2. Membership conditions from this namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

AllMembershipCondition serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class AllMembershipCondition : IMembershipCondition, System.Security.ISecurityEncodable,
 System.Security.ISecurityPolicyEncodable, IConstantMembershipCondition {

// Public Constructors
 public AllMembershipCondition();

// Public Instance Methods

 public bool Check(Evidence evidence);

// implements IMembershipCondition
 public IMembershipCondition Copy();

// implements IMembershipCondition

 public override bool Equals(object o);

// overrides object

 public void FromXml(System.Security.SecurityElement e);

// implements System.Security.ISecurityEncodable

 public void FromXml(System.Security.SecurityElement e,

 // implements System.Security.ISecurityPolicyEncodable

 PolicyLevel level);
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public SecurityElement ToXml(PolicyLevel level);

// implements System.Security.ISecurityPolicyEncodable
}

This membership condition matches all code. The Check() method always returns true, which means that all assemblies
and application domains, regardless of their evidence, qualify for membership of a CodeGroup for which an
AllMembershipCondition object is the membership condition

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ApplicationDirectory serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class ApplicationDirectory : IBuiltInEvidence {

// Public Constructors

 public ApplicationDirectory(string name);

// Public Instance Properties
 public string Directory{get; }

// Public Instance Methods
 public object Copy();

 public override bool Equals(object o);

// overrides object
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
}

The ApplicationDirectory evidence class represents the root installation directory of an
application. A URL representing the application installation path is passed as a System.String to the
ApplicationDirectory constructor, and is accessible through the Directory property.

The ApplicationDirectoryMembershipCondition class uses ApplicationDirectory evidence

during policy resolution to evaluate whether an assembly or application domain qualifies for
membership of a CodeGroup.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ApplicationDirectoryMembershipCondition serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class ApplicationDirectoryMembershipCondition : IMembershipCondition, System.Security.ISecurityEncodable,
 System.Security.ISecurityPolicyEncodable, IConstantMembershipCondition {

// Public Constructors
 public ApplicationDirectoryMembershipCondition();

// Public Instance Methods

 public bool Check(Evidence evidence);

// implements IMembershipCondition
 public IMembershipCondition Copy();

// implements IMembershipCondition

 public override bool Equals(object o);

// overrides object

 public void FromXml(System.Security.SecurityElement e);

// implements System.Security.ISecurityEncodable

 public void FromXml(System.Security.SecurityElement e,

 // implements System.Security.ISecurityPolicyEncodable

 PolicyLevel level);
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public SecurityElement ToXml(PolicyLevel level);

// implements System.Security.ISecurityPolicyEncodable
}

The ApplicationDirectoryMembershipCondition membership condition class uses the value of both ApplicationDirectory and Url
evidence to determine if an assembly or application domain qualifies for membership of a CodeGroup . The Check() method returns true if the
specified Evidence collection contains both Url and ApplicationDirectory evidence, and the Url.Value property represents a location that is
a child of the ApplicationDirectory.Directory property.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CodeGroup serializable

System.Security.Policy
(mscorlib.dll)

abstract
class

public abstract class CodeGroup {

// Public Constructors

 public CodeGroup(IMembershipCondition membershipCondition, PolicyStatement policy);

// Public Instance Properties
 public virtual string AttributeString{get; }
 public IList Children{set; get; }
 public string Description{set; get; }
 public IMembershipCondition MembershipCondition{set; get; }
 public abstract string MergeLogic{get; }
 public string Name{set; get; }
 public virtual string PermissionSetName{get; }
 public PolicyStatement PolicyStatement{set; get; }

// Public Instance Methods

 public void AddChild(CodeGroup group);
 public abstract CodeGroup Copy();

 public bool Equals(CodeGroup cg, bool compareChildren);

 public override bool Equals(object o);

// overrides object

 public void FromXml(System.Security.SecurityElement e);

 public void FromXml(System.Security.SecurityElement e, PolicyLevel level);
 public override int GetHashCode();

// overrides object

 public void RemoveChild(CodeGroup group);

 public abstract PolicyStatement Resolve(Evidence evidence);

 public abstract CodeGroup ResolveMatchingCodeGroups(Evidence evidence);
 public SecurityElement ToXml();

 public SecurityElement ToXml(PolicyLevel level);

// Protected Instance Methods

 protected virtual void CreateXml(System.Security.SecurityElement element, PolicyLevel level);

 protected virtual void ParseXml(System.Security.SecurityElement e, PolicyLevel level);
}

The abstract CodeGroup class provides the base class from which all concrete code group classes derive. Code

groups are the fundamental building blocks of security policy. Each of the enterprise, machine, user, and application
domain policy levels consists of a hierarchy of code groups that descend from a single root CodeGroup object. The
root CodeGroup for a policy level is accessible through the PolicyLevel.RootCodeGroup property.

Although implementation varies with each concrete subclass, the most important elements of a CodeGroup are its

membership condition, policy statement, and children. The membership condition and policy statement can be set
at creation as arguments to the CodeGroup constructor, or later through the MembershipCondition and
PolicyStatement properties.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The MembershipCondition property takes an object that implements the IMembershipCondition interface and

provides the logic that determines whether an assembly or application domain qualifies for membership of the
CodeGroup . The PolicyStatement property takes a PolicyStatement object that defines the effect the
CodeGroup has on its members, including the permissions it grants and any attributes that the CodeGroup has.

Each CodeGroup contains a set of child CodeGroup objects each child can have its own children, and so on,

establishing the code group tree structure used during policy resolution. The role of children in the policy resolution
process varies with each subclass, and in some cases, the order of children is important. The Children property
returns an ordered System.Collections.IList of child CodeGroup objects. To add and remove children, use the
AddChild() and RemoveChild() methods.

The most important method of the CodeGroup class is Resolve() , which takes an Evidence collection as an
argument. Policy resolution of an assembly or application domain consists of the runtime calling the Resolve()
method on the root CodeGroup in each policy level and passing it the assembly or application domain's Evidence

collection. Although it is not possible for a program to invoke policy resolution for an assembly or application
domain, Resolve() and ResolveMatchingCodeGroups() are useful for testing the permissions and code group
membership an assembly or application domain would be granted by the CodeGroup object. Resolve() returns a
PolicyStatement that represents the net effect of all code groups in the tree to which the assembly or application

domain qualified for membership.

Subclasses

FileCodeGroup , FirstMatchCodeGroup , NetCodeGroup , UnionCodeGroup

Returned By

FileCodeGroup.{Copy() , ResolveMatchingCodeGroups()} , PolicyLevel.{ResolveMatchingCodeGroups()
, RootCodeGroup}

Passed To

PolicyLevel.RootCodeGroup

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Evidence CF 1.0, serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class Evidence : ICollection, IEnumerable {

// Public Constructors
 public Evidence();

 public Evidence(Evidence evidence);

 public Evidence(object[] hostEvidence, object[] assemblyEvidence);

// Public Instance Properties
 public int Count{get; }

// implements ICollection
 public bool IsReadOnly{get; }
 public bool IsSynchronized{get; }

// implements ICollection
 public bool Locked{set; get; }
 public object SyncRoot{get; }

// implements ICollection

// Public Instance Methods

 public void AddAssembly(object id);

 public void AddHost(object id);

 public void CopyTo(Array array, int index);

// implements ICollection
 public IEnumerator GetAssemblyEnumerator();
 public IEnumerator GetEnumerator();

// implements IEnumerable
 public IEnumerator GetHostEnumerator();

 public void Merge(Evidence evidence);
}

The Evidence class is a specialized collection used to contain evidence objects. The Evidence class

actually contains two sets of evidence objects: a collection of host evidence and a collection of
assembly evidence. Host evidence is the primary type of evidence used as input by the runtime to
drive security policy resolution. The runtime, or possibly a trusted host, specifies the host evidence.
Host evidence is added to the Evidence collection using the AddHost() method and accessed
through the GetHostEnumerator() method.

Assembly evidence is normally specified at build time by the assembly developer and embedded in
the assembly file as a serialized resource. As the runtime loads the assembly, it deserializes any
assembly evidence and places it inside the assembly's Evidence collection. A trusted host can also
provide assembly evidence when it loads an assembly using the AddAssembly() method, although
this is uncommon. The GetAssemblyEnumerator() method provides access to the assembly
evidence contained in an Evidence collection.

Despite containing two separate collections, Evidence also provides members to manipulate the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

combined contents of both collections at once. The Count property returns the total number of
evidence objects, and the GetEnumerator() method returns a System.Collections.IEnumerator
that enumerates across all objects in the Evidence collection.

During policy resolution, the Evidence collection of an assembly or application domain is passed to
each CodeGroup through the CodeGroup.Resolve() method. The CodeGroup then passes the
Evidence collection to the IMembershipCondition.Check() method of its membership condition
object. The membership condition evaluates the Evidence collection to determine if it contains the
appropriate evidence values to qualify for CodeGroup membership.

Returned By

System.AppDomain.Evidence, System.Reflection.Assembly.Evidence,
System.Security.IEvidenceFactory.Evidence,
System.Xml.XmlSecureResolver.CreateEvidenceForUrl()

Passed To

Multiple types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FileCodeGroup serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class FileCodeGroup : CodeGroup {

// Public Constructors

 public FileCodeGroup(IMembershipCondition membershipCondition,

 System.Security.Permissions.FileIOPermissionAccess access);

// Public Instance Properties
 public override string AttributeString{get; }

// overrides CodeGroup
 public override string MergeLogic{get; }

// overrides CodeGroup
 public override string PermissionSetName{get; }

// overrides CodeGroup

// Public Instance Methods
 public override CodeGroup Copy();

// overrides CodeGroup

 public override bool Equals(object o);

// overrides CodeGroup
 public override int GetHashCode();

// overrides CodeGroup

 public override PolicyStatement Resolve(Evidence evidence);

 // overrides CodeGroup

 public override CodeGroup ResolveMatchingCodeGroups(Evidence evidence);

 // overrides CodeGroup

// Protected Instance Methods

 protected override void CreateXml(System.Security.SecurityElement element, PolicyLevel level);

 // overrides CodeGroup

 protected override void ParseXml(System.Security.SecurityElement e, PolicyLevel level);

 // overrides CodeGroup
}

This class is a subclass of the CodeGroup class. FileCodeGroup does not support attributes and does not contain a
statically defined permission set, and so there is no need to assign it a PolicyStatement . With each call to
Resolve() , the FileCodeGroup object determines if the provided Evidence collection contains Url evidence that
represents a URL with the "file://" protocol. If so, the FileCodeGroup dynamically generates a permission set that
contains a System.Security.Permissions.FileIOPermission that grants access to the directory specified in the
Url evidence. The type of file access to grant (read, write, and so on) is specified in the FileCodeGroup constructor
using a member of the System.Security.Permissions.FileIOPermissionAccess enumeration.

Members of a FileCodeGroup are tested for membership against all of its child code groups. The final permission set
granted by the FileCodeGroup is the union of its permission set and the permission sets of the children to which the

assembly or application domain also qualifies for membership.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hierarchy

System.Object CodeGroup FileCodeGroup

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

FirstMatchCodeGroup serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class FirstMatchCodeGroup : CodeGroup {

// Public Constructors

 public FirstMatchCodeGroup(IMembershipCondition membershipCondition, PolicyStatement policy);

// Public Instance Properties
 public override string MergeLogic{get; }

// overrides CodeGroup

// Public Instance Methods
 public override CodeGroup Copy();

// overrides CodeGroup

 public override PolicyStatement Resolve(Evidence evidence);

 // overrides CodeGroup

 public override CodeGroup ResolveMatchingCodeGroups(Evidence evidence);

 // overrides CodeGroup
}

The FirstMatchCodeGroup class is a concrete subclass of the CodeGroup class. Members of a
FirstMatchCodeGroup are tested for membership against its child code groups in order. After qualifying for

membership to a child group, the comparison stops, which means that the order of the children is important. The
final permission set granted by the FirstMatchCodeGroup is the union of its permission set and at most one of its

children.

Hierarchy

System.Object CodeGroup FirstMatchCodeGroup

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Hash serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class Hash : System.Runtime.Serialization.ISerializable, IBuiltInEvidence {

// Public Constructors

 public Hash(System.Reflection.Assembly assembly);

// Public Instance Properties
 public byte[] MD5{get; }
 public byte[] SHA1{get; }

// Public Instance Methods

 public byte[] GenerateHash(System.Security.Cryptography.HashAlgorithm hashAlg);

 public void GetObjectData(System.Runtime.Serialization.SerializationInfo info,

 System.Runtime.Serialization.StreamingContext context);

 // implements ISerializable
 public override string ToString();

// overrides object
}

The Hash evidence class represents the hash value of an assembly's content. Unlike the other standard
evidence classes, Hash provides multiple evidence values (hash values) from a single set of source data.
The evidence data source is a System.Reflection.Assembly object that is passed to the Hash object
constructor. The MD5 and SHA1 properties calculate and return the MD5 and SHA1 hash values for the
content of the Assembly . The GenerateHash() method allows any hashing implementation that derives
from System.Security.Cryptography.HashAlgorithm to be used to generate a hash value of the
Assembly content.

During policy resolution, the HashMembershipCondition class uses Hash evidence to evaluate whether
code qualifies for membership of a CodeGroup .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

HashMembershipCondition serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class HashMembershipCondition : IMembershipCondition,
 System.Security.ISecurityEncodable, System.Security.ISecurityPolicyEncodable {

// Public Constructors

 public HashMembershipCondition(System.Security.Cryptography.HashAlgorithm hashAlg, byte[] value);

// Public Instance Properties
 public HashAlgorithm HashAlgorithm{set; get; }
 public byte[] HashValue{set; get; }

// Public Instance Methods

 public bool Check(Evidence evidence);

// implements IMembershipCondition
 public IMembershipCondition Copy();

// implements IMembershipCondition

 public override bool Equals(object o);

// overrides object

 public void FromXml(System.Security.SecurityElement e);

// implements System.Security.ISecurityEncodable

 public void FromXml(System.Security.SecurityElement e, PolicyLevel level);

 // implements System.Security.ISecurityPolicyEncodable
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public SecurityElement ToXml(PolicyLevel level);

// implements System.Security.ISecurityPolicyEncodable
}

This membership condition class uses the value of Hash evidence to determine if an assembly or application domain
qualifies for membership of a CodeGroup . The HashValue property contains the hash value required for membership, and
the HashAlgorithm property contains a System.Security.Cryptography.HashAlgorithm object that implements the

hash algorithm used to calculate the hash value.

When policy resolution calls the Check() method, if the provided Evidence collection contains a Hash object, the
HashMembershipCondition object calls the Hash.GenerateHash() method and passes the
System.Security.Cryptography.HashAlgorithm object from its HashAlgorithm property. If the returned hash value
matches its HashValue property, then CodeGroup membership is granted.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IIdentityPermissionFactory

System.Security.Policy
(mscorlib.dll)

interface

public interface IIdentityPermissionFactory {

// Public Instance Methods

 public IPermission CreateIdentityPermission(Evidence evidence);
}

During security policy resolution, host evidence objects that implement the
IIdentityPermissionFactory result in an identity permission of the appropriate type being included

in the grant set of the assembly or application domain that presents the evidence. The runtime calls
the CreateIdentityPermission() method of the evidence object, which returns a
System.Security.IPermission object of the appropriate type. The evidence objects that implement
IIdentityPermissionFactory are Publisher, Site, StrongName, Url, and Zone.

Implemented By

Publisher, Site, StrongName, Url, Zone

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IMembershipCondition

System.Security.Policy
(mscorlib.dll)

interface

public interface IMembershipCondition : System.Security.ISecurityEncodable,
 System.Security.ISecurityPolicyEncodable {

// Public Instance Methods

 public bool Check(Evidence evidence);
 public IMembershipCondition Copy();

 public bool Equals(object obj);
 public string ToString();
}

The IMembershipCondition interface defines the functionality that all membership condition classes

must implement. Membership condition classes define the tests that assemblies and application
domains must pass in order to qualify for membership of a CodeGroup. The Check() method takes
an Evidence collection argument and returns true if it contains evidence objects that meet the set of

criteria defined within the implementing membership condition class.

Implemented By

AllMembershipCondition, ApplicationDirectoryMembershipCondition,
HashMembershipCondition, PublisherMembershipCondition, SiteMembershipCondition,
StrongNameMembershipCondition, UrlMembershipCondition, ZoneMembershipCondition

Returned By

AllMembershipCondition.Copy(), ApplicationDirectoryMembershipCondition.Copy(),
CodeGroup.MembershipCondition, HashMembershipCondition.Copy(),
PublisherMembershipCondition.Copy(), SiteMembershipCondition.Copy(),
StrongNameMembershipCondition.Copy(), UrlMembershipCondition.Copy(),
ZoneMembershipCondition.Copy()

Passed To

CodeGroup.{CodeGroup(), MembershipCondition}, FileCodeGroup.FileCodeGroup(),
FirstMatchCodeGroup.FirstMatchCodeGroup(), NetCodeGroup.NetCodeGroup(),
UnionCodeGroup.UnionCodeGroup()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

NetCodeGroup serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class NetCodeGroup : CodeGroup {

// Public Constructors

 public NetCodeGroup(IMembershipCondition membershipCondition);

// Public Instance Properties
 public override string AttributeString{get; }

// overrides CodeGroup
 public override string MergeLogic{get; }

// overrides CodeGroup
 public override string PermissionSetName{get; }

// overrides CodeGroup

// Public Instance Methods
 public override CodeGroup Copy();

// overrides CodeGroup

 public override PolicyStatement Resolve(Evidence evidence);

 // overrides CodeGroup

 public override CodeGroup ResolveMatchingCodeGroups(Evidence evidence);

 // overrides CodeGroup
}

The NetCodeGroup class is a concrete subclass of the CodeGroup class. NetCodeGroup does not

support attributes and does not contain a statically defined permission set, and so does not require a
PolicyStatement. When the Resolve() method is called, the NetCodeGroup object determines if
the specified Evidence collection contains Url evidence that represents a URL with the "http://" or
"https://" protocols. If so, the NetCodeGroup dynamically generates a permission set that contains a
System.Net.WebPermission that grants access to the web site specified in the Url evidence.

Members of a NetCodeGroup are tested for membership against all of its child code groups. The final
permission set granted by the NetCodeGroup is the union of its permission set and the permission

sets of the children to which the assembly or application domain also qualifies for membership.

Hierarchy

System.Object CodeGroup NetCodeGroup

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PermissionRequestEvidence serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class PermissionRequestEvidence : IBuiltInEvidence {

// Public Constructors

 public PermissionRequestEvidence(System.Security.PermissionSet request,

 System.Security.PermissionSet optional, System.Security.PermissionSet denied);

// Public Instance Properties
 public PermissionSet DeniedPermissions{get; }
 public PermissionSet OptionalPermissions{get; }
 public PermissionSet RequestedPermissions{get; }

// Public Instance Methods
 public PermissionRequestEvidence Copy();
 public override string ToString();

// overrides object
}

The PermissionRequestEvidence class is a special evidence class used by the runtime during policy

resolution to represent the declarative permission requests contained within an assembly. The
RequestedPermissions , OptionalPermissions , and DeniedPermissions properties each return a
System.Security.PermissionSet containing the minimal, optional, and refused permission requests
made by the assembly. An assembly's PermissionRequestEvidence is contained in the assembly's
Evidence collection during policy resolution but does not remain as part of the assembly's Evidence

collection after policy resolution is complete.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PolicyException serializable

System.Security.Policy (mscorlib.dll) class
public class PolicyException : SystemException {

// Public Constructors
 public PolicyException();

 public PolicyException(string message);

 public PolicyException(string message, Exception exception);

// Protected Constructors

 protected PolicyException(System.Runtime.Serialization.SerializationInfo info,

 System.Runtime.Serialization.StreamingContext context);
}

This exception is thrown when the runtime encounters problems processing or applying security
policy-for example, when code attempts to set an application domain's policy that has already been
set or when the minimum permission requests of an assembly cannot be fulfilled by the runtime.

Hierarchy

System.Object System.Exception(System.Runtime.Serialization.ISerializable)

System.SystemException PolicyException

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PolicyLevel serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class PolicyLevel {

// Public Instance Properties
 public IList FullTrustAssemblies{get; }
 public string Label{get; }
 public IList NamedPermissionSets{get; }
 public CodeGroup RootCodeGroup{set; get; }
 public string StoreLocation{get; }

// Public Static Methods
 public static PolicyLevel CreateAppDomainLevel();

// Public Instance Methods

 public void AddFullTrustAssembly(StrongName sn);

 public void AddFullTrustAssembly(StrongNameMembershipCondition snMC);

 public void AddNamedPermissionSet(System.Security.NamedPermissionSet permSet);

 public NamedPermissionSet ChangeNamedPermissionSet(string name, System.Security.PermissionSet pSet);

 public void FromXml(System.Security.SecurityElement e);

 public NamedPermissionSet GetNamedPermissionSet(string name);
 public void Recover();

 public void RemoveFullTrustAssembly(StrongName sn);

 public void RemoveFullTrustAssembly(StrongNameMembershipCondition snMC);

 public NamedPermissionSet RemoveNamedPermissionSet(System.Security.NamedPermissionSet permSet);

 public NamedPermissionSet RemoveNamedPermissionSet(string name);
 public void Reset();

 public PolicyStatement Resolve(Evidence evidence);

 public CodeGroup ResolveMatchingCodeGroups(Evidence evidence);
 public SecurityElement ToXml();
}

This class represents a security policy level and provides the ability to access and manipulate the objects that represent its
three key elements: fully trusted assemblies, named permission sets, and code group hierarchy.

The PolicyLevel class does not implement any constructors. PolicyLevel objects representing the current enterprise,
machine, and user policy levels are obtained through the System.Security.SecurityManager.PolicyHierarchy()
method. The System.Security.SecurityManager.PolicyHierarchy() method returns a
System.Collections.IEnumerator containing PolicyLevel objects for each of the three policy levels. To retrieve a
specific PolicyLevel , step through the enumerator and test the value of Label property against the strings "Enterprise,"

"Machine," and "User."

It is not possible to obtain a PolicyLevel representing an existing application domain's policy level, but the static
CreateAppDomainLevel() method creates a new PolicyLevel suitable for assigning to an application domain through the
System.AppDomain.SetAppDomainPolicy() method. The System.AppDomain.SetAppDomainPolicy() method can only
be called once; on subsequent calls a PolicyException is thrown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The read-only FullTrustAssemblies property returns a System.Collections.IList containing a set of
StrongNameMembershipCondition objects that represent the policy level's set of fully trusted assemblies. The
AddFullTrustAssembly() and RemoveFullTrustAssembly() methods allow for the administration of the fully trusted

assemblies list.

The read-only NamedPermissionSets property also returns a System.Collections.IList . This list contains a set of
System.Security.NamedPermissionSet objects that represent the named permission sets defined in the policy level. The
AddNamedPermissionSet() and RemoveNamedPermissionSet() methods allow for the administration of the named
permission set list. The ChangeNamedPermissionSet() method allows the contents of a specified named permission set to
be easily replaced with the contents of a System.Security.PermissionSet without the need to remove and then add.

The RootCodeGroup property gets or sets the root CodeGroup of the policy level's code group tree. Further manipulation of
the code group tree is possible only by using the methods of CodeGroup to traverse the tree. Assigning a new CodeGroup to
the RootCodeGroup property causes the old root CodeGroup to be replaced along with the existing tree. Importantly, when

set, the RootCodeGroup property makes a copy of the new root CodeGroup , which means that any modifications to the
code group tree through the original CodeGroup object are not reflected in the policy level's copy.

The Reset() method returns a policy level to its default "out-of-box" configuration, and the Recover() method returns

the policy level to its previously saved state. Although it is not possible to invoke the runtime's policy resolution process
programmatically, the Resolve() and ResolveMatchingCodeGroups() methods are useful for evaluating the permissions
a PolicyLevel would grant to an assembly or application domain.

Returned By

System.Security.SecurityManager.{LoadPolicyLevelFromFile() , LoadPolicyLevelFromString()}

Passed To

Multiple types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PolicyStatement serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class PolicyStatement : System.Security.ISecurityEncodable,
 System.Security.ISecurityPolicyEncodable {

// Public Constructors

 public PolicyStatement(System.Security.PermissionSet permSet);

 public PolicyStatement(System.Security.PermissionSet permSet, PolicyStatementAttribute attributes);

// Public Instance Properties
 public PolicyStatementAttribute Attributes{set; get; }
 public string AttributeString{get; }
 public PermissionSet PermissionSet{set; get; }

// Public Instance Methods
 public PolicyStatement Copy();

 public void FromXml(System.Security.SecurityElement et);

// implements System.Security.ISecurityEncodable

 public void FromXml(System.Security.SecurityElement et, PolicyLevel level);

 // implements System.Security.ISecurityPolicyEncodable
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public SecurityElement ToXml(PolicyLevel level);

// implements System.Security.ISecurityPolicyEncodable
}

The PolicyStatement class defines the set of permissions that a code group grants to its members, as well as the
attributes of the code group. Of the four concrete CodeGroup implementations, only the UnionCodeGroup and
FirstMatchCodeGroup classes require a PolicyStatement object. The FileCodeGroup and NetCodeGroup classes
generate their permission sets dynamically, and do not support attributes. A PolicyStatement is assigned to a
UnionCodeGroup or FirstMatchCodeGroup object as an argument of the code group's constructor, or through the
CodeGroup.PolicyStatement property.

A PolicyStatement object contains a System.Security.PermissionSet object that specifies the permissions to grant to
the code group's members and a value from the PolicyStatementAttribute enumeration that specifies the attributes
assigned to the code group. Both values can be set as arguments of the PolicyStatement constructor or after
construction through the PermissionSet and Attributes properties. The AttributeString property returns a human-
readable representation of the value held in the Attributes property.

Returned By

CodeGroup.{PolicyStatement , Resolve()} , PolicyLevel.Resolve()

Passed To

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CodeGroup.{CodeGroup() , PolicyStatement} , FirstMatchCodeGroup.FirstMatchCodeGroup() ,
UnionCodeGroup.UnionCodeGroup()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PolicyStatementAttribute serializable, flag

System.Security.Policy (mscorlib.dll) enum
public enum PolicyStatementAttribute {
 Nothing = 0x00000000,Exclusive = 0x00000001,LevelFinal = 0x00000002,All = 0x00000003
}

The PolicyStatementAttribute enumeration is used in conjunction with the PolicyStatement class.
PolicyStatementAttribute contains values that are assigned to the PolicyStatement.Attributes

property to define a code group's attributes. Code group attributes affect the policy resolution process
by controlling how the permissions granted by one code group are merged with the permissions granted
by other code groups.

The Exclusive value specifies that the permissions granted by the code group are the maximum set of

permissions that a group member can receive from the current policy level. Because the permissions
granted by each policy level intersect to determine the final grant set, a code group with the Exclusive

attribute actually defines the maximum set of permissions in the final grant set. An assembly or
application domain can be a member of at most one Exclusive code group per policy level, or the
runtime throws a PolicyException .

Policy levels are resolved in the order enterprise, machine, user, and finally application domain. The
LevelFinal value specifies that no policy levels below the current level will be evaluated. If resolving

the permissions for an assembly, the runtime always evaluates the application domain policy regardless
of whether the assembly is the member of a LevelFinal code group.

PolicyStatementAttribute values can be combined using a logical OR operator, but the enumeration
also provides the All value, which represents both the Exclusive and LevelFinal attributes. Nothing
means that no attributes are set and is the default state for a PolicyStatement .

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable , System.IConvertible) PolicyStatementAttribute

Returned By

PolicyStatement.Attributes

Passed To

PolicyStatement.{Attributes , PolicyStatement()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Publisher serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class Publisher : IIdentityPermissionFactory, IBuiltInEvidence {

// Public Constructors

 public Publisher(System.Security.Cryptography.X509Certificates.X509Certificate cert);

// Public Instance Properties
 public X509Certificate Certificate{get; }

// Public Instance Methods
 public object Copy();

 public IPermission CreateIdentityPermission(Evidence evidence);

 // implements IIdentityPermissionFactory

 public override bool Equals(object o);

// overrides object
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
}

This evidence class represents the Authenticode X.509v3 digital signature used to sign an assembly. The
digital signature is passed as a System.Security.Cryptography.X509Certificates.X509Certificate
argument to the Publisher constructor and is accessible after creation through the Certificate

property.

The PublisherMembershipCondition class uses Publisher evidence during policy resolution to evaluate
whether an assembly or application domain qualifies for membership of a CodeGroup .

Because the Publisher class implements the IIdentityPermissionFactory interface, an assembly or
application domain with Publisher evidence will contain an appropriately configured
System.Security.Permissions.PublisherIdentityPermission object in its grant set.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PublisherMembershipCondition serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class PublisherMembershipCondition : IMembershipCondition, System.Security.ISecurityEncodable,
 System.Security.ISecurityPolicyEncodable, IConstantMembershipCondition {

// Public Constructors

 public PublisherMembershipCondition(System.Security.Cryptography.X509Certificates.X509Certificate certificate);

// Public Instance Properties
 public X509Certificate Certificate{set; get; }

// Public Instance Methods

 public bool Check(Evidence evidence);

// implements IMembershipCondition
 public IMembershipCondition Copy();

// implements IMembershipCondition

 public override bool Equals(object o);

// overrides object

 public void FromXml(System.Security.SecurityElement e);

// implements System.Security.ISecurityEncodable

 public void FromXml(System.Security.SecurityElement e, PolicyLevel level);

 // implements System.Security.ISecurityPolicyEncodable
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public SecurityElement ToXml(PolicyLevel level);

// implements System.Security.ISecurityPolicyEncodable
}

The PublisherMembershipCondition class uses the X.509v3 certificate contained in Publisher evidence to determine if an assembly or
application domain qualifies for membership to a CodeGroup . The Certificate property contains the
System.Security.Cryptography.X509Certificates.X509Certificate object against which the PublisherMembershipCondition

object tests.

When policy resolution calls the Check() method, the PublisherMembershipCondition tests the Evidence collection provided to
ensure that it contains a Publisher object. If so, the PublisherMembershipCondition object compares its Certificate property with
the Publisher.Certificate property to determine if it grants CodeGroup membership.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Site serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class Site : IIdentityPermissionFactory, IBuiltInEvidence {

// Public Constructors

 public Site(string name);

// Public Instance Properties
 public string Name{get; }

// Public Static Methods

 public static Site CreateFromUrl(string url);

// Public Instance Methods
 public object Copy();

 public IPermission CreateIdentityPermission(Evidence evidence);

 // implements IIdentityPermissionFactory

 public override bool Equals(object o);

// overrides object
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
}

The Site evidence class specifies the fully qualified host name from where an assembly was
loaded-for example, www.oreilly.com. The site name is passed as a System.String to the Site
constructor, and is accessible through the Name property. The static CreateFromUrl() method
enables easy creation of Site objects from URL strings.

During policy resolution, the SiteMembershipCondition class uses Site evidence to test whether an
assembly or application domain qualifies for membership of a CodeGroup.

Because the Site class implements the IIdentityPermissionFactory interface, an assembly or
application domain with Site evidence will contain an appropriately configured
System.Security.Permissions.SiteIdentityPermission object in its grant set.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

SiteMembershipCondition serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class SiteMembershipCondition : IMembershipCondition,
 System.Security.ISecurityEncodable, System.Security.ISecurityPolicyEncodable, IConstantMembershipCondition {

// Public Constructors

 public SiteMembershipCondition(string site);

// Public Instance Properties
 public string Site{set; get; }

// Public Instance Methods

 public bool Check(Evidence evidence);

// implements IMembershipCondition
 public IMembershipCondition Copy();

// implements IMembershipCondition

 public override bool Equals(object o);

// overrides object

 public void FromXml(System.Security.SecurityElement e);

// implements System.Security.ISecurityEncodable

 public void FromXml(System.Security.SecurityElement e, PolicyLevel level);

 // implements System.Security.ISecurityPolicyEncodable
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public SecurityElement ToXml(PolicyLevel level);

// implements System.Security.ISecurityPolicyEncodable
}

This membership condition class relies on the value of Site evidence to determine if an assembly or application domain qualifies for
membership to a CodeGroup . The Site property contains a System.String that identifies the site name on which the membership test

is based. The site name can include wildcards-for example, *.oreilly.com , which will match any site in the oreilly.com domain.

When policy resolution calls the Check() method, the SiteMembershipCondition object tests the specified Evidence collection to
ensure it contains Site evidence. If so, SiteMembershipCondition determines CodeGroup membership by comparing the string
contained in its Site property with the site name contained in the Site.Name property.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

StrongName serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class StrongName : IIdentityPermissionFactory, IBuiltInEvidence {

// Public Constructors

 public StrongName(System.Security.Permissions.StrongNamePublicKeyBlob blob,

 string name, Version version);

// Public Instance Properties
 public string Name{get; }
 public StrongNamePublicKeyBlob PublicKey{get; }
 public Version Version{get; }

// Public Instance Methods
 public object Copy();

 public IPermission CreateIdentityPermission(Evidence evidence);

 // implements IIdentityPermissionFactory

 public override bool Equals(object o);

// overrides object
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
}

The StrongName evidence class represents an assembly's strong name. The PublicKey property
contains a System.Security.Permissions.StrongNamePublicKeyBlob object that contains the
public key of the assembly's strong name. The Name property holds the simple name of the assembly,
and the Version property contains a System.Version object that represents the assembly's version.

The StrongNameMembershipCondition class uses StrongName evidence during policy resolution to
evaluate whether an assembly or application domain qualifies for membership of a CodeGroup.

Because the StrongName class implements the IIdentityPermissionFactory interface, an assembly
or application domain with StrongName evidence will contain an appropriately configured
System.Security.Permissions.StrongNameIdentityPermission object in its grant set.

Passed To

PolicyLevel.{AddFullTrustAssembly(), RemoveFullTrustAssembly()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

StrongNameMembershipCondition serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class StrongNameMembershipCondition : IMembershipCondition, System.Security.ISecurityEncodable,
 System.Security.ISecurityPolicyEncodable, IConstantMembershipCondition {

// Public Constructors

 public StrongNameMembershipCondition(System.Security.Permissions.StrongNamePublicKeyBlob blob,

 string name, Version version);

// Public Instance Properties
 public string Name{set; get; }
 public StrongNamePublicKeyBlob PublicKey{set; get; }
 public Version Version{set; get; }

// Public Instance Methods

 public bool Check(Evidence evidence);

// implements IMembershipCondition
 public IMembershipCondition Copy();

// implements IMembershipCondition

 public override bool Equals(object o);

// overrides object

 public void FromXml(System.Security.SecurityElement e);

// implements System.Security.ISecurityEncodable

 public void FromXml(System.Security.SecurityElement e, PolicyLevel level);

 // implements System.Security.ISecurityPolicyEncodable
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public SecurityElement ToXml(PolicyLevel level);

// implements System.Security.ISecurityPolicyEncodable
}

This membership condition class uses StrongName evidence to determine if an assembly or application domain qualifies for
membership of a CodeGroup . The PublicKey property contains a System.Security.Permissions.StrongNamePublicKeyBlob
object that represents the public key information to base the membership test on. The Name and Version properties are optional,
but allow the StrongNameMembershipCondition to perform a more specific and accurate test for membership.

When policy resolution calls the Check() method, if the provided Evidence collection contains a StrongName object, the
StrongNameMembershipCondition compares its PublicKey , Name , and Version properties with the equivalent properties of the
StrongName object. If the values match, then membership of the CodeGroup is granted.

StrongNameMembershipCondition objects are also used in the PolicyLevel class to identify a policy level's set of fully trusted

assemblies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Passed To

PolicyLevel.{AddFullTrustAssembly() , RemoveFullTrustAssembly()}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

UnionCodeGroup serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class UnionCodeGroup : CodeGroup {

// Public Constructors

 public UnionCodeGroup(IMembershipCondition membershipCondition, PolicyStatement policy);

// Public Instance Properties
 public override string MergeLogic{get; }

// overrides CodeGroup

// Public Instance Methods
 public override CodeGroup Copy();

// overrides CodeGroup

 public override PolicyStatement Resolve(Evidence evidence);

 // overrides CodeGroup

 public override CodeGroup ResolveMatchingCodeGroups(Evidence evidence);

 // overrides CodeGroup
}

The UnionCodeGroup class is a subclass of CodeGroup and is the most commonly used type of code group.

Assemblies and application domains that qualify for membership are compared for membership against the
children of the UnionCodeGroup , and so on down through the code group tree. The final permission set
granted by the UnionCodeGroup is the union of its permission set, and the permissions granted by all child

code groups of which the assembly or application domain is also a member.

Hierarchy

System.Object CodeGroup UnionCodeGroup

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Url serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class Url : IIdentityPermissionFactory, IBuiltInEvidence {

// Public Constructors

 public Url(string name);

// Public Instance Properties
 public string Value{get; }

// Public Instance Methods
 public object Copy();

 public IPermission CreateIdentityPermission(Evidence evidence);

 // implements IIdentityPermissionFactory

 public override bool Equals(object o);

// overrides object
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
}

The Url evidence class identifies the URL from where an assembly was loaded-for example,
https://www.oreilly.com:8080/SomeFile.exe. The source URL is passed as a System.String
argument to the Url constructor and is accessible later through the Value property.

During policy resolution, the UrlMembershipCondition class uses Url evidence to determine if code
qualifies for membership of a code group. The ApplicationDirectoryMembershipCondition class
also uses Url evidence in conjunction with ApplicationDirectory evidence to determine code

group membership.

Because the Url class implements the IIdentityPermissionFactory interface, an assembly or
application domain with Url evidence will contain an appropriately configured
System.Security.Permissions.UrlIdentityPermission object in its grant set.

[Team LiB]

https://www.oreilly.com:8080/SomeFile.exe
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

UrlMembershipCondition serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class UrlMembershipCondition : IMembershipCondition, System.Security.ISecurityEncodable,
 System.Security.ISecurityPolicyEncodable, IConstantMembershipCondition {

// Public Constructors

 public UrlMembershipCondition(string url);

// Public Instance Properties
 public string Url{set; get; }

// Public Instance Methods

 public bool Check(Evidence evidence);

// implements IMembershipCondition
 public IMembershipCondition Copy();

// implements IMembershipCondition

 public override bool Equals(object o);

// overrides object

 public void FromXml(System.Security.SecurityElement e);

// implements System.Security.ISecurityEncodable

 public void FromXml(System.Security.SecurityElement e, PolicyLevel level);

 // implements System.Security.ISecurityPolicyEncodable
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public SecurityElement ToXml(PolicyLevel level);

// implements System.Security.ISecurityPolicyEncodable
}

The UrlMembershipCondition class uses Url evidence to determine if an assembly or application domain qualifies for
membership of a CodeGroup . The Url property contains the URL required to qualify for membership and can include a
wildcard as the final element-for example, http://www.oreilly.com/apps/* . The value of the Url property is initially set in
the UrlMembershipCondition constructor.

During policy resolution, the Check() method enumerates the provided Evidence collection and determines if it contains a
Url evidence object. If so, UrlMembershipCondition tests for CodeGroup membership by comparing the string contained
in its Url property with the URL contained in the Url.Value property.

[Team LiB]

http://www.oreilly.com/apps/*
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Zone serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class Zone : IIdentityPermissionFactory, IBuiltInEvidence {

// Public Constructors

 public Zone(System.Security.SecurityZone zone);

// Public Instance Properties
 public SecurityZone SecurityZone{get; }

// Public Static Methods

 public static Zone CreateFromUrl(string url);

// Public Instance Methods
 public object Copy();

 public IPermission CreateIdentityPermission(Evidence evidence);

 // implements IIdentityPermissionFactory

 public override bool Equals(object o);

// overrides object
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
}

This evidence class identifies the Internet Explorer security zone from where an assembly was
loaded. The runtime assigns Zone evidence to an assembly by comparing the URL from where the
assembly was loaded, with the security zone configuration in Internet Explorer. The type of Zone
evidence is specified by passing a value of the System.Security.SecurityZone enumeration to the
Zone constructor and can be accessed after construction through the SecurityZone property.

During policy resolution, the ZoneMembershipCondition class uses Zone evidence to evaluate
whether code qualifies for membership of a CodeGroup.

Because the Zone class implements the IIdentityPermissionFactory interface, an assembly or
application domain with Zone evidence will contain an appropriately configured
System.Security.Permissions.ZoneIdentityPermission object in its grant set.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ZoneMembershipCondition serializable

System.Security.Policy
(mscorlib.dll)

sealed
class

public sealed class ZoneMembershipCondition : IMembershipCondition, System.Security.ISecurityEncodable,
 System.Security.ISecurityPolicyEncodable, IConstantMembershipCondition {

// Public Constructors

 public ZoneMembershipCondition(System.Security.SecurityZone zone);

// Public Instance Properties
 public SecurityZone SecurityZone{set; get; }

// Public Instance Methods

 public bool Check(Evidence evidence);

// implements IMembershipCondition
 public IMembershipCondition Copy();

// implements IMembershipCondition

 public override bool Equals(object o);

// overrides object

 public void FromXml(System.Security.SecurityElement e);

// implements System.Security.ISecurityEncodable

 public void FromXml(System.Security.SecurityElement e, PolicyLevel level);

 // implements System.Security.ISecurityPolicyEncodable
 public override int GetHashCode();

// overrides object
 public override string ToString();

// overrides object
 public SecurityElement ToXml();

// implements System.Security.ISecurityEncodable

 public SecurityElement ToXml(PolicyLevel level);

// implements System.Security.ISecurityPolicyEncodable
}

The ZoneMembershipCondition class uses the value of Zone evidence to determine if an assembly or application domain
qualifies for membership of a CodeGroup . The SecurityZone property contains a member of the
System.Security.SecurityZone enumeration that identifies the security zone required for membership. The initial value of
SecurityZone is set in the ZoneMembershipCondition constructor.

When policy resolution calls the Check() method, the ZoneMembershipCondition enumerates the provided Evidence
collection to determine if it contains Zone evidence. If so, the ZoneMembershipCondition compares the value of its
SecurityZone property with the value of the Zone.SecurityZone property. If the two values match, the assembly or
application domain is granted membership of the CodeGroup .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 29. The System.Security.Principal
Namespace
The .NET runtime provides a simple role-based security mechanism that enables code to make
security decisions based on the user that is running the code, and the roles to which the user
belongs. .NET's role-based security model is independent of any underlying authentication and
authorization mechanism, and relies on two key abstractions that represent the user and their roles:
identities and principals. An identity represents an authenticated user, and the principal is a container
that holds both the identity and the set of roles to which the identity belongs. Principals are assigned
to threads and provide the information necessary for the runtime to authorize and control the actions
of the current user.

The System.Security.Principal namespace contains the interfaces that define the functionality of

identities and principals, and includes two concrete role-based security implementations. The first
implementation consists of the classes named with the prefix "Generic." The generic role-based
security implementation is simple and requires direct manipulation to configure identities and
principals, but can be used in conjunction with any user authentication and authorization mechanism.
The second implementation consists of the classes named with the prefix "Windows." The Windows
role-based security implementation integrates with the Windows user accounts mechanism and
allows code to base security decisions on Windows user accounts, and the user groups to which they
belong.

Role-based security is enforced using security demands similar to those used to enforce code-access
security. The System.Security.Permissions.PrincipalPermission class provides support for

imperative role-based security demands, and the
System.Security.Permissions.PrincipalPermissionAttribute class provides support for

declarative demands. When code invokes a role-based security demand, the runtime evaluates the
principal of the current thread to ensure that it has the demanded identity and roles. If not, the
demand raises a System.Security.SecurityException. Role-based security demands do not cause
stack walks.

Figure 29-1 shows the types in this namespace.

Figure 29-1. The System.Security.Principal namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

GenericIdentity serializable

System.Security.Principal (mscorlib.dll) class
public class GenericIdentity : IIdentity {

// Public Constructors

 public GenericIdentity(string name);

 public GenericIdentity(string name, string type);

// Public Instance Properties
 public virtual string AuthenticationType{get; }

// implements IIdentity
 public virtual bool IsAuthenticated{get; }

// implements IIdentity
 public virtual string Name{get; }

// implements IIdentity
}

This implementation of the IIdentity interface provides a generic representation of a user.
GenericIdentity objects are created using standard constructors that take either the user's name

or the user's name and a string representing the authentication mechanism used to authenticate the
user. The ability to create GenericIdentity objects with any username means that the
GenericIdentity class can be used to represent users authenticated against any authority.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

GenericPrincipal serializable

System.Security.Principal (mscorlib.dll) class
public class GenericPrincipal : IPrincipal {

// Public Constructors

 public GenericPrincipal(IIdentity identity, string[] roles);

// Public Instance Properties
 public virtual IIdentity Identity{get; }

// implements IPrincipal

// Public Instance Methods

 public virtual bool IsInRole(string role);

// implements IPrincipal
}

The GenericPrincipal class provides a generic implementation of the IPrincipal interface. The
GenericPrincipal constructor takes an IIdentity object representing the principal's user and a
System.String array containing the names of the roles to which the user belongs. The specified
IIdentity is normally an instance of GenericIdentity, but this is not mandatory. Used in
conjunction with the GenericIdentity class, GenericPrincipal provides a flexible principal

implementation that can be used with any authentication and authorization mechanism.

The IsInRole() method takes the name of a role and returns true if it was included in the array of
role names passed to the GenericPrincipal constructor. The role name comparison is case-

insensitive.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IIdentity

System.Security.Principal
(mscorlib.dll)

interface

public interface IIdentity {

// Public Instance Properties
 public string AuthenticationType{get; }
 public bool IsAuthenticated{get; }
 public string Name{get; }
}

The IIdentity interface defines the functionality that all identity classes must implement. An identity
object represents the user on whose behalf code is running. IIdentity defines three read-only
properties. Name is the most commonly used property and returns the name of the user.
IsAuthenticated returns a Boolean value indicating whether the current identity has been
authenticated. AuthenticationType returns a System.String that identifies the authentication

mechanism used to authenticate the user.

Implemented By

GenericIdentity, WindowsIdentity

Returned By

GenericPrincipal.Identity, IPrincipal.Identity, WindowsPrincipal.Identity

Passed To

GenericPrincipal.GenericPrincipal()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

IPrincipal

System.Security.Principal
(mscorlib.dll)

interface

public interface IPrincipal {

// Public Instance Properties
 public IIdentity Identity{get; }

// Public Instance Methods

 public bool IsInRole(string role);
}

This interface defines the functionality that all principal classes must implement. An IPrincipal

object is associated with a thread running in the .NET runtime to represent the user on whose behalf
the managed code is running. An IPrincipal object is a container for an IIdentity, which

represents the active user, and a set of role names of which the user is a member.

The read-only Identity property returns the IIdentity object contained in the IPrincipal. The full

set of roles for the contained identity is not accessible. It is only possible to test the set of roles to
see if it contains a specific value using the IsInRole() method.

Implemented By

GenericPrincipal, WindowsPrincipal

Returned By

System.Threading.Thread.CurrentPrincipal

Passed To

System.AppDomain.SetThreadPrincipal(), System.Threading.Thread.CurrentPrincipal

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

PrincipalPolicy serializable

System.Security.Principal (mscorlib.dll) enum
public enum PrincipalPolicy {
 UnauthenticatedPrincipal = 0,NoPrincipal = 1,WindowsPrincipal = 2
}

The values of this enumeration are used in the System.AppDomain.SetPrincipalPolicy()
method. SetPrincipalPolicy() specifies how default IIdentity and IPrincipal objects are
created for threads running in the application domain if an IPrincipal has not been assigned to the

thread by the program or host.

The value NoPrincipal means that the runtime does not create default identity or principal objects
for a thread. UnauthenticatedPrincipal means that the runtime will assign threads a
GenericPrincipal containing an empty role set and a GenericIdentity that represents an
unnamed user. The WindowsPrincipal value causes the runtime to create a WindowsPrincipal
object and assign it to the thread. The WindowsPrincipal object contains a WindowsIdentity that

represents the currently active Windows user account and a set of roles that represent the Windows
user groups to which the user belongs. UnauthenticatedPrincipal is the default value.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) PrincipalPolicy

Passed To

System.AppDomain.SetPrincipalPolicy()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

WindowsAccountType serializable

System.Security.Principal (mscorlib.dll) enum
public enum WindowsAccountType {
 Normal = 0,Guest = 1,System = 2,Anonymous = 3
}

The values of the WindowsAccountType enumeration are used in WindowsIdentity constructors to
specify the type of Windows account represented by the new WindowsIdentity object.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable, System.IConvertible) WindowsAccountType

Passed To

WindowsIdentity.WindowsIdentity()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

WindowsBuiltInRole serializable

System.Security.Principal (mscorlib.dll) enum
public enum WindowsBuiltInRole {
 Administrator = 544,User = 545,Guest = 546,PowerUser = 547,AccountOperator = 548,
 SystemOperator = 549, PrintOperator = 550,BackupOperator = 551,Replicator = 552
}

The WindowsBuiltInRole enumeration contains values used in one of the overloaded
WindowsPrincipal.IsInRole() methods. Its values represent commonly used Windows user

groups that are present in most Windows NT, Windows 2000, and Windows XP installations, and avoid
the need to specify string values for the group names. It is apparent from the names of the member
values which Windows group they represent, with the exception of SystemOperator , which

represents the Windows Server Operators group.

Hierarchy

System.Object System.ValueType System.Enum(System.IComparable,

System.IFormattable , System.IConvertible) WindowsBuiltInRole

Passed To

WindowsPrincipal.IsInRole()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

WindowsIdentity serializable

System.Security.Principal (mscorlib.dll) class
public class WindowsIdentity : IIdentity, System.Runtime.Serialization.ISerializable,
 System.Runtime.Serialization.IDeserializationCallback {

// Public Constructors

 public WindowsIdentity(IntPtr userToken);

 public WindowsIdentity(IntPtr userToken, string type);

 public WindowsIdentity(IntPtr userToken, string type, WindowsAccountType acctType);

 public WindowsIdentity(IntPtr userToken, string type, WindowsAccountType acctType, bool isAuthenticated);

 public WindowsIdentity(System.Runtime.Serialization.SerializationInfo info,

 System.Runtime.Serialization.StreamingContext context);

 public WindowsIdentity(string sUserPrincipalName);

 public WindowsIdentity(string sUserPrincipalName, string type);

// Public Instance Properties
 public virtual string AuthenticationType{get; }

// implements IIdentity
 public virtual bool IsAnonymous{get; }
 public virtual bool IsAuthenticated{get; }

// implements IIdentity
 public virtual bool IsGuest{get; }
 public virtual bool IsSystem{get; }
 public virtual string Name{get; }

// implements IIdentity
 public virtual IntPtr Token{get; }

// Public Static Methods
 public static WindowsIdentity GetAnonymous();
 public static WindowsIdentity GetCurrent();

 public static WindowsImpersonationContext Impersonate(IntPtr userToken);

// Public Instance Methods
 public virtual WindowsImpersonationContext Impersonate();

// Protected Instance Methods
 protected override void Finalize();

// overrides object
}

The WindowsIdentity class provides an IIdentity implementation that represents a Windows user. Because WindowsIdentity

is Windows-specific, it implements members useful for working with Windows user accounts in addition to the minimum
functionality defined by IIdentity .

The static GetCurrent() method returns a WindowsIdentity object representing the currently logged-on Windows user, and the
staticGetAnonymous() method returns a WindowsIdentity object representing an anonymous Windows user. The
WindowsIdentity constructors support creation of WindowsIdentity objects that represent users other than the active user.

Each constructor requires a Windows access token representing the desired user. A handle to the Windows access token is passed
to the constructor wrapped in a System.IntPtr object. The Windows access token is usually obtained through a call to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unmanaged code, such as the LogonUser() method of the advapi32.dll Win32 library. The access token for an existing
WindowsIdentity is available through its Token property. Starting with .NET 1.1, however, it is possible to construct a
WindowsIdentity using a string argument containing the user Principal Name of the user, such as the value that would be passed
to the LogonUser() API. However, this functionality is only available on Windows 2003 Server or later platforms; on any other
platform, it will throw an ArgumentException .

Calling the Impersonate() method changes the Windows access token of the current thread to that of the user represented by
the WindowsIdentity object. By creating a WindowsIdentity that represents a user other than the active Windows user,
Impersonate() allows code to perform operating system-level impersonation. The Impersonate() method returns a
WindowsImpersonationContext object representing the Windows access token prior to impersonation; this object must be kept in

order to revert to the original access token once impersonation is no longer required.

The IsAnonymous , IsGuest , and IsSystem properties provide an easy-to-use mechanism for determining if a WindowsIdentity
object represents an anonymous, guest, or system Windows user account. Determining if a WindowsIdentity represents a normal
account is a process of elimination; there is no IsNormal property.

The Name property of a WindowsIdentity object will return a name in the form DOMAINNAME\USERNAME, where DOMAINNAME

specifies the authority used to validate the user; for example, COMPANY_X\Gary or MY_MACHINE\Peter.

Passed To

WindowsPrincipal.WindowsPrincipal()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

WindowsImpersonationContext

System.Security.Principal (mscorlib.dll) class
public class WindowsImpersonationContext {

// Public Instance Methods
 public void Undo();

// Protected Instance Methods
 protected override void Finalize();

// overrides object
}

The WindowsImpersonationContext class represents the active Windows user prior to code
impersonating another Windows user through a call to the WindowsIdentity.Impersonate()
method. The WindowsIdentity.Impersonate() method returns a WindowsImpersonationContext
object. By calling the Undo() method of this object, the thread access token reverts to the one
contained in the WindowsImpersonationContext object.

Returned By

WindowsIdentity.Impersonate()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

WindowsPrincipal serializable

System.Security.Principal (mscorlib.dll) class
public class WindowsPrincipal : IPrincipal {

// Public Constructors

 public WindowsPrincipal(WindowsIdentity ntIdentity);

// Public Instance Properties
 public virtual IIdentity Identity{get; }

// implements IPrincipal

// Public Instance Methods

 public virtual bool IsInRole(int rid);

 public virtual bool IsInRole(string role);

// implements IPrincipal

 public virtual bool IsInRole(WindowsBuiltInRole role);
}

The WindowsPrincipal class provides a Windows-specific implementation of the IPrincipal
interface that contains a WindowsIdentity object representing a Windows user. The
WindowsPrincipal constructor takes only a WindowsIdentity object; the roles to which the user

belongs are determined from the user's Windows access token.

WindowsPrincipal allows code to check the Windows groups to which the represented user belongs
through its implementation of the IPrincipal.IsInRole() method, which performs a case-

insensitive comparison of the user's Windows groups with the specified role name.
WindowsPrincipal also includes two additional overloads of the IsInRole() method. The first takes

an integer specifying the Windows RID for the role. The second overload takes a member of the
WindowsBuiltInRole enumeration.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Programming .NET Security is a Smoothhound shark. The Smoothhound
shark is a harmless bottom-dwelling reef shark, which is also known as a mud shark or dogfish. It is
a moderately sized shark with two high dorsal fins and short blunt teeth. It also has small grinding
plates, which are used to crush shellfish. Besides shellfish, the Smoothhound shark forages reefs for
worms, octopuses, and small fish.

The Smoothhound shark can be found in both inshore and offshore habitats, often over tidal flats and
in shallow bays. Also, the Smoothhound shark is viviporous, which means it gives birth to live young;
inside the female body, pups hatch from eggs and remain there until they are fully developed.

Sarah Sherman was the production editor and copyeditor, and Matt Hutchinson was the proofreader
for Programming .NET Security. Claire Cloutier provided quality control. Johnna VanHoose Dinse and
Tom Dinse wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Andrew Savikas to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and
Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The
illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Sarah Sherman.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-Rc argument

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

abstract cipher function classes, ElGamal algorithm

abstract classes

 ElGamal algorithm

 hashing algorithms

 XTEA

access modifiers, C# and Visual Basic

access tokens, Windows security

activation records

AddFullTrustAssembly method

AddNamedPermissionSet method

Adler32 algorithm

administration, shared assemblies and

al.exe

algorithm classes, cryptographic key creation

algorithms [See also cipher functions]

 asymmetric

 security of

 asymmetric encryption

 ELGamal

 abstract cipher function class definition

 abstract class definition

 BigInteger class

 decryption class definition

 encryption and decryption functions

 encryption class definition

 implementation class definition

 key generation protocol

 ElGamal, testing

 encryption

 .NET Framework, symmetric encryption

 RSA

 encrypted data creation

 key length

 signing algorithm, XMLDSIG

 symmetric

 cipher modes

 instantiating

 Key and IV properties

 KeySize and BlockSize properties

 symmetric algorithms, cryptographic keys

 XTEA (Extended Tiny Encryption Algorithm) 2nd

 abstract class definition

 ICryptoTramsform interface

 implementation class definition

 XTEAMAnagedDecryptor class

 XTEAMAnagedEncryptor class

AllowPartiallyTrustedCallers attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Anakrino/Exemplar decompiler

anonymous access, IIS authentication

APIs (application programming interfaces), Windows Crypto API

AppDomain class, evidence

application domain policy level

application domains

 application isolation and

 assembly loading, evidence

 assembly management and

 CAS and

 CLR and

 configuration

 evidence

 evidence assigning

 identity and

 isolated storage

 isolated storage and

 overview

 Publisher evidence

 restricted resources, trust levels and

 runtime security and

 security policy and

application isolation

 applications domains and

 .NET Framework

Application log (ELS)

application proxies, COM+

application resources (assemblies)

application roles (COM+), populating

application types (COM+), specifying

ApplicationAccessControl attribute (COM+)

ApplicationDirectory class

applications

 COM+

 installing

 management

 COM+ types

 deployment

 execution

 monitoring

 secure applications [See secure applications]

 security testing

architect (roles)

ASP.NET

 authentication

 Forms authentication

 IIS

 impersonation and

 Passport authentication

 protected page

 turning off

 Windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 authorization

 file authorization

 URL authorization

 CAS and

 CLR and

 configuration

 files

 <location\\> element

 logon page

 security-related elements

 impersonation

 security, overview

 Web.config file

 worker processes

 <processModel\\> element

assemblies

 application domain and

 application domain policies, programming considerations

 Author assembly, trust

 AuthorMembershipCondition example

 compiling

 GAC and

 creating

 multi-file

 single file

 declarative security statements, Permissions View tool

 decompiling

 delayed signing support

 evidence

 assigning

 assigning to

 embedding in assemblies

 permissions

 viewing

 fully trusted

 deleting from list

 .NET Framework Configuration tool and

 programming considerations

 fully trusted assemblies

 GAC (Global Assembly Cache)

 installing into

 uninstalling from

 identity, evidence and

 installing

 isolated storage and

 loading, evidence

 minimum permission requests

 multi-file, distributing

 optional permission requests

 overview

 permissions

 policy resolution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private compared to shared

 publisher certificates

 refusing requests

 scope attributes

 shared

 strong named, serviced components (COM+) and

 strong names

 creating

 specifying key pairs

 verifying

 version and culture metadata

 type-safe code

Assembly class, evidence

assembly evidence 2nd

Assembly Linker tool

assembly manifest

AssemblyCulture attribute

AssemblyDelaySign attribute

assemblyEvidence argument, Evidence class

AssemblyKeyFile attribute 2nd

AssemblyKeyName attribute

AssemblyVersion attribute

Assert operations, security demands and

assigning

asymmetric algorithms

 signature function

 verification function

asymmetric encryption 2nd

 algorithm security

 decrypting data

 digital signatures

 ElGamal algorithm

 encrypted data creation

 data padding

 keys, creating

AsymmetricAlgorithm class 2nd

 digital signatures

 key-related properties

 properties and methods

AsymmetricExchangeDeformatter class

AsymmetricExchangeFormatter class

AsymmetricSignatureDeformatter class

AsymmetricSignatureFormatter class

attribute classes

 defining

attributes

 ApplicationAccessControl (COM+)

 assembly scope

 code group, policy resolution

 ComponentAccessControl (COM+)

 declarative security statements

 SecureMethod (COM+)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 security policy code groups

 SecurityRole (COM+)

AttributeUsage attribute

authentication

 ASP.NET

 Forms authentication

 impersonation and

 Passport authentication

 turning off

 Windows

 COM+ process-access security (PAS)

 cryptography

 IIS

 anonymous access

 basic authentication

 client certificate authentication

 digest authentication

 impersonation and

 integrated Windows authentication

 mode configuration

 RBS and

Authentication Methods window, Internet Service Manager

Author assembly, trust

Author evidence class 2nd

authority, RBS

authorization

 ASP.NET

 file authorization

 URL authorization

 RBS and

<authorization\\> element

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

basic authentication, IIS

batch files, Code-Access Security Policy tool

BigInteger class

birthday attacks

block cypher hash codes (keyed hashing algorithms)

block padding

BlockSize property, symmetric algorithms

brute force attacks

 cryptography

 probability and

business sponsor

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C# syntax, converting to Visual Basic syntax

call stack 2nd [See also stack walk]

CanTransformMultipleBlocks property

CAS (code-access security)

 application domains and

 ASP.NET and

 classes

 code-access permissions

 Code-Access Security Policy tool

 enforcing

 evidence

 extensions, assembly trust and

 isolated storage and

 .NET Framework Configuration tool

 overview

 permissions

 assembly scope attributes

 attribute class definitions

 creating custom

 dll creation

 enforcing security

 example custom class

 example custom class definition

 example custom class enumeration

 IPermission interface

 ISecurityEncodable interface

 IUnrestrictedPermission interface

 overview

 Permissions View tool

 security policy

 statements

 imperative security

 overview

 turning on/off

 user policy level

 Windows security and

case sensitivity, C#

Caspol.exe 2nd

 CAS, turning on/off

 execution permission checks, turning on/off

 forcing securing changes

 isolated storage security

 policy evaluation

 policy level administration

 code groups

 fully trusted assemblies

 named permission sets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 target code group

 resetting policies

catalogue (COM+), viewing

CBC (Cipher Block Chaning) cipher mode

Certificate Creation tool

certificates

 publisher

 X509, creating

CFB (Cipher Feedback) cipher mode

Check method

 IMembershipCondition interface

CheckExecutionRights property

child code groups (security policies)

Children property, CodeGroup objects

Cipher Block Chaining (CBC) cipher mode

Cipher Feedback (CFB) cipher mode

cipher functions 2nd [See also algorithms]

 block padding

 CFB (Cipher Feedback)

 cipher block chaining

 ECB

 XTEA

cipher modes

 CFB (Cipher Feedback)

 Cipher Block Chaining (CBC)

 ECB (Electronic Codebook)

 symmetric algorithms, configuring

ciphertext

class hierarchies (quick-reference)

class libraries, trust levels

classes

 AsymmetricAlgorithm

 AsymmetricExchangeDeformatter

 AsymmetricExchangeFormatter

 AsymmetricSignatureDeformatter

 AsymmetricSignatureFormatter

 attribute, defining

 AuthorMembershipCondition example

 C#/Visual Basic syntax

 code-access permission

 custom membership condition

 defining

 ElGamalOAEKeyExchangeFormatter

 ElGamalOAEPKeyExchangeDeformatter

 ElGamalPKCS1SignatureFormatter

 ElGamalSignature

 Evidence

 evidence

 implementation

 standard evidence classes

 Hash class

 identity permission

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IMembershipCondition interface and

 namespace quick reference and

 .NET Framework, COM+ and

 permission attribute

 permission statements

 permissions, programming considerations

 RandomNumberGenerator

 SecurityElement

 signature formatter classes, digital signatures

 SignedXML

 Site class

 StrongName

 Url

 XMLDSIG

 Zone

classesPublisher

client certificate authentication, IIS

CloseDefect method

CLR (Common Language Runtime)

 application domains 2nd

 configuration

 evidence

 identity

 security policy and

 application execution and

 ASP.NET

 applications

 runtime

 evidence

 application domains

 assemblies

 identities, application domains

 Internet Explorer and

 non-type-safe code

 operating system, shell command execution

 security policy, application domains and

 type-safe code

 verification, application deployment and

Code Access Security Policy tool

code groups

 attributes, policy resolution

 Caspol.exe and

 Code-Access Security Policy tool and

 creating 2nd 3rd

 creating manually

 importing, from file selects

 membership conditions, programming

 named permission sets and

 policy levels

 policy statements, programming

code-access security [See CAS]

Code-Access Security Policy tool 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 code-access security, turning on/off

 execution permission checks, turning on/off

 forcing security changes 2nd

 policy level administration

 code groups

 fully trusted assemblies

 named permission sets

 target code group

 resetting policies

CodeAccessPermission class

 interfaces

 methods

 removing stack walk overrides

CodeAccessSecurityAttribute class

CodeGroup class

 methods and properties

COM+

 application management

 application roles, populating

 application types

 specifying

 applications, installing

 attributes

 ApplicationAccessControl

 ComponentAccessControl

 SecureMethod

 SecurityRole

 catalogue, viewing

 component management

 configuration

 Maeshaller role

 PAS (process-access security)

 authentication

 impersonation

 RBS (role-based security)

 compatibility with .NET role-based security

 roles, scope

 serviced components, creating

command line, Code-Access Security Policy tool

compiling

 assemblies

 creating

 GAC and 2nd

 decompiling

 assemblies

 protecting against

Component Services explorer (COM+)

ComponentAccessControl attribute (COM+)

ComputeHash method

 streamed data

ComputeSignature method

confidentiality

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cryptography

 symmetric encryption

configuration

 application domains

 ASP.NET

 files

 <location\\> element

 logon page

 security-related configuration elements

 COM+

 forms authentication

 IIS authentication modes

 security policy 2nd

 SecurityPermissionAttribute class, properties

 shared assemblies and

 symmetric algorithms

 cipher modes

 Key and IV properties

 KeySize and BlockSize properties

 WindowsPrincipal class

configured classes (COM+)

ControlDomainPolicy permission

ControlEvidence permission

 System.Security.SecurityException

ControlPolicy permission

Copy method

 IPermission interface

cracker (roles)

Create method

 hashing algorithms

 SymmetricAlgorithm class

CreateDecryptor method

CreateDirectory method

CreateEncryptor method 2nd

CreateEventSource method, registering event sources

CreateFromUrl factory method

CreateKeyExchange method

CreateKeyPair method

CreateNewDefect method

CreatePermission method

CreateSignature method

credentials, RBS and

cryptanalysis

Crypto API (Windows)

cryptographic hash code

cryptographic key pairs

cryptographic keys

 complexity

 CreateKeyExchange method

 creating

 algorithm classes and

 key-derivation protocol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 random number generator and

 ElGamal encryption functions

 ElGamalOAEPKeyExchangeFormatter class

 key exchanges, encryption

 overview

 persistence

 session keys

 encryption

 symmetric algorithms

 symmetric key exchange

Cryptographic Service Provider (CSP)

cryptography 2nd

 attacks on, types of

 authentication

 birthday attacks

 brute force attacks

 confidentiality

 hash functions

 hashing algorithms

 creating

 hash code lengths

 message size limits

 integrity

 key management

 message collisions

 software weaknesses

Cryptography.DSA class

 CreateSignature method

 VerifySignature method

CryptoStream class

 XTEA (Extended Tiny Encryption Algorithm)

CSP (Cryptographic Service Provider)

CurrentPrincipal property, IPrincipal interface

custom event logs, creating

custom evidence

 Author assembly

 constructors

 creating

 identity permissions

 immutability

 Object.ToString method

 serializing

 uses

custom runtime hosts

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Data Encryption Standard (DES) algorithm

data sharing, isolated storage and

data types

 assemblies and

 C#/Visual Basic equivalents

declarative demands

declarative security statements

 Assert operations

 custom permission classes

 Deny operations

 inspecting

 Permissions View tool and

 PermitOnly operations

 role-based

decompiling

 assemblies

 protecting against

 reasons not to

Decrypt method

DecryptData method

decryption

 ElGamal algorithm

 ElGamalOAEPKeyExchangeDeformatter class

 RSACryptoServiceProvider class

 symmetric algorithms

DecryptValue method

delayed signing support for assemblies

delegates

 C#/Visual Basic delegates syntax

 namespace quick reference and

Delete method, custom event logs

DeleteDirectory method, isolated storage

DeleteEventSource method

DeleteFile method, isolated storage

Demand method, PrincipalPermission object

Demand statement 2nd [See also security demands]

Deny operations, security demands and

deployment, applications

DES (Data Encryption Standard) algorithm

developer role (COM+)

digest authentication, IIS

digital signatures

 algorithms

 managed algorithm class

 assembly strong names

 AsymmetricAlgorithm class

 AsymmetricSignatureDeformatter class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AsymmetricSignatureFormatter class

 byte arrays, verification

 ComputeSignature method

 CreateSignature method

 creating

 defomatter class

 DSACryptoServiceProvider class

 ElGamal signature functions

 ElGamalPKCS1SignatureDeformatter class

 ElGamalPKCS1SignatureFormatter class

 ElGamalSignature class

 forging

 key pairs, creating

 managed class methods

 overview

 PKCS #1 Helper class

 PKCS #1 protocol

 programming

 publisher certificates

 reusing

 RSACryptoServiceProvider class

 security objectives

 signature formatter classes

 signature function

 SignData method

 signed documents, altering

 SignHash method

 verification

 verification function

 VerifyData method

 VerifyHash method

 XMLDSIG

 embedding objects

 overview

 signature creation 2nd

 SignedXML class

 signing algorithm

 verification

directories

 deleting, from isolated storage

 searches, isolated storage

Directory Service log

Dispose method

distribution, multi-file assemblies

dlls, creating

DNS Server log

DSA (Digital Signature Algorithm)

DSACryptoServiceProvider class

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ECB (Electronic Codebook) cipher mode

editing security policies, manually

Electronic Codebook (ECB) cipher mode

ElGamal algorithm

 abstract cipher function class definition

 abstract class definition

 BigInteger class

 decryption class definition

 encryption and decryption functions

 encryption class definition

 encryption functions, session key exchanges

 implementation class definition

 key generation protocol

 signature functions

 testing

ElGamalAbstractCipher class

ElGamalEncryptor class

ElGamalKeyStruct structure 2nd

ElGamalManaged class

ElGamalOAEPKeyExchangeDeformatter class

ElGamalOAEPKeyExchangeFormatter class

ElGamalParameters structure

ElGamalPKCS1SignatureFormatter class

ElGamalSignature class

ElGamaPKCS1SignatureDeformatter class

ELS (Event Log Service)

 binary data in

 custom event logs

 event identifier and category

 event source name

 event source values

 event structure

 event types

 logs

 message component

 monitoring event logs

 querying

 reading event logs

 registering event sources

 writing events

email, resource restrictions

embedding

 evidence in assemblies

 objects, in digital signatures

Encrypt method

EncryptData method

encryption [See also cryptography]2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 algorithms

 asymmetric

 algorithm security

 creating keys

 ElGamal algorithm

 encrypted data creation

 ElGamal algorithm

 ElGamal encryption functions

 functions, asymmetric

 RSACryptoServiceProvider class

 session keys

 symmetric

 algorithms

 block padding

 cipher modes

 creating encrypted data

 encrypting and decrypting data

 key lengths

 .NET Framework algorithms

EncryptValue method

end-to-end security

enterprise level policy

enterprise policy level 2nd

enumerations

 C#/Visual Basic syntax

 namespace quick reference and

EnvironmentPermission object

Event Log Service [See ELS]

event logs [See ELS]

event sources (ELS)

 name

 registering

 values

event structure (ELS)

 binary data and

 event identifier and category

 event types

 message component

EventLog class

 properties and methods

 querying ELS

EventLog.Entries property

EventLogEntryCollection class

 methods

 properties

events, C#/Visual Basic syntax

evidence

 AppDomain class

 application domains

 assigning evidence to

 assemblies

 assigning evidence to 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 embedding evidence in

 permissions

 viewing

 Assembly class

 assembly evidence 2nd

 CAS and

 custom evidence

 constructors

 creating

 immutability

 Object.ToString method

 serializing

 uses

 host evidence

 ControlEvidence permission

 identity and

 inheritance

 .NET Framework, extending

 overview

 programming

 assigning to assembly

 Evidence collection

 overview

 security policies and

 standard evidence classes

 standard types

Evidence class

 assemblyEvidence argument

 constructors

 ControlEvidence permission

 hostEvidence argument

 ICollection implementation

 members

evidence classes

 ApplicationDirectory class

 Author class 2nd

 content

 custom, implementation

 Hash class

 Publisher class

 serializable

 Site class

 StrongName class

 Url class

 Zone class

Evidence collection

 adding types

 evidence objects

 objects

 copies

 shallow copies

Evidence property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exclusive attribute

 code group policies

 security policy code groups

executable assemblies

execution permission checks, turning on/off

execution, secure applications

ExecutionEngineException exception

ExportParameters method 2nd 3rd

Extended Tiny Encryption Algortihm [See XTEA]

external resources, application domains

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

factory methods, CreateFromUrl

failure strategy development

FieldCodeGroup class, Resolve method

fields, C#/Visual Basic syntax

file authorization, ASP.NET

File Replication Service log

File.Delete method

FileCodeGroup class

 constructor

FileIOPermission object 2nd

files

 deleting, from isolated storage

 IIS authentication mode

 isolated storage

 searches

 policy files

 resource restrictions

FirstMatchCodeGroup class

 Resolve method

flags, quick-reference entries

folders, authentication modes, IIS

Forms authentication, ASP.NET

 configuration

 logon page

 protected page creation

FormsAuthentication.RedirectFromLoginPage method

FormsAuthenticationAuthenticate method

FromXml method

 ISecurityEncodable interface

FromXmlString method 2nd

fully trusted assemblies 2nd

 .NET Framework Configuration tool and

 Caspol.exe and

 deleting from list

 programming considerations

fully trusted assemblies, list, adding to

functional resources, application domains

functions, ElGamal algorithm

 signature functions

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

GAC (Global Assembly Cache)

 assemblies

 installing

 uninstalling

 listing contents

 reasons to use

gacutil.exe

GenerateHash method

GenericPrincipal class, generic RBS implementation

GenericPrincipal object

GetDirectoryNames method, isolated storage

GetFileNames method, isolated storage

GetHashCode method, overriding

GetNamedPermissionSet method

GetUserStorageForDomain

GetUserStoreForAssembly method

GetUserStoreForDomain method

Global Assembly Cache [See GAC]

Global Assembly Cache tool

grant set, permissions

granting permissions

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

hacker, roles

hardware, resource restrictions

Hash class

hash codes [See also hashing algorithms]

 cryptography

 digital signatures

 generating

 from data in memory

 from streamed data

 keys

 parsing

 validating

hash functions, cryptography

HashAlgorithm class

 methods and properties

HashCore method, implementing

HashFinal method, implementing

hashing algorithms

 abstract classes

 extending .NET Framework

 generating

 from data in memory

 from streamed data

 hash codes

 creating

 lengths of

 implementation classes

 testing

 Initialize method

 instantiating

 keyed

 block cypher hash codes

 creating

 HMAC standard

 .NET Framework

 KeyedHashAlgorithm class

 creating keyed hash codes

 instantiating

 message size limits

 .NET Framework

 programming considerations

HashSize property, implementing

HMAC standard (keyed hashing algorithms)

HMACSHA1 algorithm

host evidence

 ControlEvidence permission

hostEvidence argument, Evidence class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ICollection collection, implementation

ICryptoTransform interface

 XTEA

IDefectTracker interface

identification, trust and

identities

 .NET RBS

 application domains

 assemblies, evidence

 evidence

<identity\\> element, impersonation

identity permission

 classes

identity permissions

 custom evidence and

IIdentity interface

 .NET RBS and

 WindowsIdentity class

IIdentityPermissionFactory interface

IIS (Internet Information Service)

 ASP.NET and

 authentication

 anonymous access

 basic authentication

 client certificate authentication

 digest authentication

 impersonation and

 integrated Windows authentication

 mode configuration

IMembershipCondition interface 2nd

 custom membership conditions

 member implementation

imperative demands

imperative RBS demands

imperative security statements

 Assert operations

 Deny operations

 executing with SecurityPermission objects

 PermitOnly operations

Impersonate method, WindowsIdentity object

impersonation

 ASP.NET

 COM+ process-access security (PAS)

implementation classes

 ElGamal algorithm

 hashing algorithms

 testing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XTEA

importing

 code groups, from file selects

 named permission sets

ImportParameters method 2nd 3rd

inheritance, evidence

InheritanceDemand statement

initialization vector (IV)

 symmetric algorithms, configuring

Initialize method, implementing

installation

 assemblies

 into GAC

 COM+ applications

 key pairs, into CSP container

integrated Windows authentication, IIS

integrity, cryptography

intellectual property, theft, decompiling and

interfaces

 C#/Visual Basic syntax

 CodeAccessPermission class

 identity permissions

 IPermission, imperative RBS demands

 namespace quick reference and

Internet access, resource restrictions

Internet Explorer, CLR and

Intersect method, IPermission interface

intersection permission sets

IPermission interface

 imperative RBS demands

 implementing

 methods

IPrincipal interface

 CurrentPrincipal property

 .NET RBS

 IPrincipal object

 PrincipalPolicy enumeration

 SetThreadPrincipal method

 WindowsPrincipal class

ISecurityEncodable interface

 implementing

 methods

isf argument, IsolatedStorageFile class

IsGranted method

isolated storage

 administration

 application domains and

 as primary storage

 by application domain

 by assembly

 by user

 CAS and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DeleteDirectory method

 DeleteFile method

 directories

 deleting

 GetDirectoryNames method

 searches

 files

 deleting

 GetFileNames method

 searches

 GetUserStoreForAssembly method

 GetUserStoreForDomain method

 IsolatedStorageFile class

 IsolatedStorageFileStream class

 levels of isolation

 limitations

 overview 2nd

 Remove method

 security

 Caspol.exe

 Mscorcfg.msc

 security policy configuration

 stores 2nd

 deleting

 directories

 user-level isolation

Isolated Storage tool

IsolatedStorageContainment enumeration

IsolatedStorageException

IsolatedStorageFile class, isf argument

IsolatedStorageFile instances, passing

IsolatedStorageFile.GetStore method

IsolatedStorageFileStream class, Handle property

IsSubsetOf method, IPermission interface

IStackWalk interface

 PermissionSet class

IsUnrestricted method

IUnrestrictedPermision interface, methods

IUnrestrictedPermission interface

 implementing

IV (initialization vector)

IV property, symmetric algorithm

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

key pairs

 creating

 installing in CSP container

Key property, symmetric algorithms

key-derivation protocol, cryptographic key creation

keyed hashing algorithms

 block cypher hash codes

 creating

 creating keyed hash codes

 HMAC standard

 instatiating

 .NET Framework

KeyedHashAlgorithm class

 creating keyed hash codes

 instantiating

KeyExchangeAlgorithm property

keys

 asymmetric encryption

 creating

 length of

 cryptography, management

 encryption

 hash codes

 length, symmetric encryption

 RSA algorithm, implementing

KeySize property

 symmetric algorithm

KeyStruct property

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Label property, PolicyLevel class

legal issues [See also intellectual property]

 decompiling assemblies

LegalKeySizes property

LevelFinal attribute

 code group policies

 security policy code groups

libraries, dlls, creating

library applications, COM+

library assemblies

 creating

 strong names and

line breaks (Visual Basic syntax)

LinkDemand statement

LoadAndList property, evidence viewing

<location\\> element, ASP.NET configuration

Log property

LogNameFromSourceName method

logs, ELS (Event Log Service)

 binary data

 custom event logs

 event identifier and category

 event source name

 event source values

 event structure

 event types

 message component

 monitoring event logs

 querying

 reading

 registering event sources

 writing events

luring attacks

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

machine level policy 2nd

machine policy code groups

MachineName property

makecert.exe

managed algorithm class, digital signatures and

managed class methods, digital signatures

managed code, isolated storage and

manager role (COM+)

Marshaler role (COM+)

MD5 hashing algorithm

member synopsis (quick-reference entries)

membership conditions

 AuthorMembershipCondition example assembly

 AuthorMembershipCondition example class

 implementing

 code groups

 programming

 programming considerations

 custom

 requirements

 testing

 policy resolution and

 security policy code groups

 XML representation, creating

MembershipCondition property

message collisions (cryptography)

MessageUtil class, Permissions View tool

methods

 activation records and

 AsymmetricAlgorithm class

 C#/Visual Basic syntax

 CodeAccessPermission class

 CodeGroup class

 ComputeSignature

 CreateKeyExchange

 CreateSignature

 custom CAS permissions, creating

 EventLog class

 EventLogEntryCollection class

 factory methods, CreateFromUrl

 FormsAuthentication.RedirectFromLoginPage

 FormsAuthenticationAuthenticate

 GenerateHash

 GetUserStoreForAssembly

 HashAlgorithm class

 ICryptoTransform interface

 IPermission interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IsolatedStorageFile.GetStore

 RSA class

 RSACryptoServiceProvider class

 SecurityManager class

 SecurityRole attribute

 SetThreadPrincipal

 SignData

 SignHash method

 SymmetricAlgorithm class

 VerifyData

 VerifySignature

 WindowsIdentity.GetCurrent

 WindowsPrincipal.IsInRole

Microsoft Intermediate Language (MISL)

MMC (Microsoft Management Console), .NET Framework Configuration tool

modules, assemblies

monitoring applications

Mscorcfg.msc

 isolated storage security

MSIL (Microsoft Intermediate Language)

 decompiling and

MSIL code section (assemblies)

multi-file assemblies

 creating

 delayed signing and

 distributing

 strong names, creating

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

named permission sets

 .NET Framework Configuration tool and

 Caspol.exe and

 code groups

 Code-Access Security Policy tool and

 creating

 creating manually

 importing

 permission objects

 pre-defined

 programming considerations

 security policies

NamedPermissionSet class

namespaces

 quick reference to

 type names and

native code, runtime security and

native compilation (decompiling protection)

NeedToGenerateKey method

.NET Framework

 algorithms, symmetric encryption

 application isolation

 classes, COM+ and

 EventLog class, properties and methods

 extending, evidence and

 hashing algorithms

 adding to

 keyed hashing algorithms

 large integer processing

.NET Framework Configuration tool 2nd

 CAS

 fully trusted assemblies and

 adding to list

 named permission sets and

 named permission sets, creating

 starting

NetCodeGroup class

 constructor

 Resolve method

networks, ELS logs

non-type-safe code

nonmanaged code, isolated storage and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

OAEP padding mode

obfuscation (decompiling protection)

Object.ToString method, overriding

objects, embedding, in digital signatures

operating systems, application isolation

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ParseHashCodeString method

parsing, hash codes

PAS (process-access security), COM+

 authentication

 impersonation

Passport authentication

permission attribute classes

permission classes

 CAS statements

 programming

 class functionality

 SecurityPermission class

 serialization

permission demands

 Demand statement

 InheritanceDemand statement

 LinkDemand statement

permission objects, named permission sets

permission requests

 minimum

 optional

 refusing

 types

permission sets

 creating

 named

 programming considerations

 security policies

 security policy code groups

Permission Settings dialog box

permissions

 application domain policies, programming considerations

 CAS and

 ControlEvidence

 creating custom

 assembly scope attributes

 attribute class definitions

 dll creation

 enforcing security

 example

 example class definition

 example enumeration

 IPermission interface

 ISecurityEncodable interface

 IUnrestrictedPermission interface

 grant set

 granting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 identity permissions, custom evidence

 isolated storage

 named permission sets

 .NET Framework Configuration tool and

 creating manually

 PrincipalPermission class, RBS demands

 requesting

 security policies and

 types

 code-access

 identity

 overview

Permissions View tool, CAS

Permissions View tool, declarative security statements and

PermissionSet class

PermissionSetAttribute class

PermissionState enumeration 2nd

PermitOnly operations, security demands and

Permview.exe

persistence, cryptographic keys

PKCS #! signature-formatting protocol

PKCS #1 Helper class

PKCS #7 padding

PKCS (Public Key Cryptography Standard)

plaintext, encrypting

policies

 application domain, programming considerations

 assemblies, fully trusted

 AuthorMembershipCondition assembly

 AuthorMembershipCondition example class

 implementing

 code groups

 configuration 2nd

 custom membership condition classes

 levels

 assembly trust and

 manually editing

 named permission sets

policy administration

policy evaluation, Caspol.exe and

policy files

 enterprise policy level

 fully trusted assemblies

 machine policy code groups

 named permission sets

policy levels

 Caspol.exe and

 code groups

 Code-Access Security Policy tool and

 named permission sets and

 targeting

policy resolution 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 code group attributes

 granting permissions

policy statements

 code groups, programming considerations

 programming

PolicyHierarchy method

PolicyLevel class

 members

 programming considerations

 code group tree management

 fully trusted assemblies

 named permission sets

PolicyStatementAttribute enumeration

prime numbers, key generation and

principal policy, IPrincipal interface

PrincipalPermission class

 constructors

 imperative RBS demands

 RBS demands and

PrincipalPolicy enumeration

principals, .NET RBS

private assemblies

private keys

 importance of

ProcessData method

ProcessDataBlock method

ProcessFinalDataBlock method

<processModel\\> element, ASP.NET worker processes

 userName attribute

programmer (roles)

programming

 application types (COM+), specifying

 AuthorMembershipCondition example assembly

 AuthorMembershipCondition example class

 implementing

 CAS permissions

 assembly scope attributes

 attribute class definitions

 custom

 dll creation

 enforcing security

 example custom class

 example custom class definition

 example custom class enumeration

 IPermission interface

 ISecurityEncodable interface

 IUnrestrictedPermission interface

 code groups 2nd

 membership conditions

 policy statements

 COM+

 ApplicationAccessControl attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ComponentAccessControl attribute

 SecureMethod attribute

 SecurityRole attribute

 custom membership conditions

 DefectTracker interface

 digital signatures

 ElGamal algorithm

 abstract cipher function class definition

 abstract class definition

 decryption class definition

 encryption class definition

 implementation class definition

 ELS

 custom event logs

 monitoring event logs

 querying

 reading event logs

 registering event sources

 writing events

 hash codes

 generating

 generating from streamed data

 hashing algorithms, instantiating

 implementation classes, hashing algorithms

 keyed hashing algorithms

 block cypher hash codes

 creating keyed hash codes

 HMAC standard

 instantiating

 .NET Framework

 multi-file assemblies, writing in different languages

 permission classes

 class functionality

 SecurityPermission class

 permission demands

 Demand statement

 InheritanceDemand statement

 LinkDemand statement

 permission sets

 PolicyLevel class

 code group tree management

 fully trusted assemblies

 named permission sets

 SecurityManager class

 serviced components (COM+), creating

 store directories

 SymmetircAlgorithm class, instantiating

 XTEA

 abstract classes

 ICryptoTransform interface

 implementation classes

 XTEAManagedDecryptor class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 XTEAManagedEncryptor class

project architect (roles)

properties

 ApplicationAccessControl attribute (COM+)

 AsymmetricAlgorithm class

 C#/Visual Basic syntax

 CodeGroup class

 EventLog class

 EventLogEntryCollection class

 Evidence property

 HashAlgorithm class

 ICryptoTransform interface

 LoadAndList

 RSA class

 RSACryptoServiceProvider class

 SecurityManager class

 SecurityPermissionAttribute class

 SecurityRole attribute

 symmetric algorithms

 Key and IV

 KeySize and BlockSize

 SymmetricAlgorithm class

protected page, ASP.NET applications

protocols

 ElGamal key generation

 key generation

 asymmetric encryption

 RSA algorithm

public key cryptography

public key encryption [See asymmetric encryption]

public key token

public keys

 assembly strong names

 asymmetric encryption

 delayed signing and

 viewing

publisher certificates

Publisher class

Publisher evidence, application domains, assigning to

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

queries, ELS (Event Log System)

quick reference to namespaces

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

random number generator, cryptographic key creation

RandomNumberGenerator class

RBS (role-based security)

 authentication

 authority

 authorization

 COM+

 credentials

 demands

 declarative statements

 imperative demands

 PrincipalPermission class

 generic implementation

 identities

 IIdentity interface 2nd

 IPrincipal interface 2nd

 CurrentPrincipal property

 IPrincipal object

 PrincipalPolicy enumeration

 overview

 roles

 Windows implementation

 impersonating Windows users

 WindowsIdentity class

 WindowsPrincipal class

 Windows security comparison

RC2 algorithm

reading files, isolated storage

references, XML documents, XMLDSIG signatures and

RegistryPermission object

Remove method, isolated storage

RemoveFullTrustAssembly method

RemoveNamedPermissionSet method

reports, analysis

RequestMinimum statement

RequestOptional statement

RequestRefuse statement

requests permission, types

requiring trust

Resolve method, CodeGroup class

ResolveMatchingCodeGroups method

ResolvePolicy method

ResolvePolicyGroup method

restricted resources

 trust

restricted resources, application domains

 external resources

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 functional resources

 subversion resources

 trust levels and

Rijndael algorithm

roaming-profiles, isolated storage and

role-based permissions

role-based security 2nd [See RBS]

 overview

 trust levels and

roles

 architect

 business sponsor

 cracker

 programmer

 RBS and

 security tester

 system administrator

 user

roles (COM+), scope

RSA

RSA algorithm

 decrypting data

 encrypted data creation

 encrypted data creation, data padding

 key generation protocol

 key length

 keys, implementing

 signature function

RSA class

 properties and methods

RSACryptoServiceProvider class

 encrypting and decrypting data

 instantiating

 keys, implementing

 properties and methods

RSAParameters structure

RSAParameters structure members

runtime

 custom runtime hosts

 security, application domains and

runtime security

 native code

 overview

 unverifiable code

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

SavePolicy method

scope, COM+ roles

secret data, isolated storage and

secret key encryption [See symmetric encryption]

secrets

 application design

secure applications

 definition

 deployment

 design

 failure

 development

 execution

 monitoring

 restricted resources

 secrets

 security testing

 trust levels 2nd

Secure Hash Algorithm (SHA)

SecureMethod attribute

SecureMethod attribute (COM+)

security

 cryptographic key pairs

 end-to-end

 need for

 runtime security, application domains and

 shared assemblies

security demands

 CAS and

 imperative security statements

 principles of operation

 stack walks

 Assert operations

 Deny operations

 overriding

 PermitOnly operations

 reverting overrides

Security log (ELS)

security policy [See policies]

 application domains and

 CAS and

 CLR, application domains

 levels

 policy levels

 policy resolution and

security tester

security testing, applications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SecurityAction enumeration 2nd

SecurityElement class

SecurityEnabled property

SecurityException, Assert operations and

SecurityManager class

 programming considerations

SecurityPermission class

 implementing

SecurityPermissionAttribute class

 configuration properties

SecurityPermissionFlag enumeration

SecurityProTracker (COM+), populating application roles

SecurityProTracker class

SecurityRole attribute (COM+)

SecurityRole attribute, properties

seed data, symmetric encryption

seed values, hashing algorithms

Serializable attribute

serialization

 custom membership condition classes

 evidence

 permission classes

server applications, COM+

serviced components

 creating

ServicedComponent class

services, resource restrictions

session keys, crytopgraphy

session keys, encryption

SetAppDomainPolicy method

SetEveryoneAccess property

SetThreadPrincipal method

SHA (Secure Hash Algorithm)

SHA1CryptoServiceProvider algorithm

shallow copies, collection objects

shared assemblies

sharing data, isolated storage and

side-channel attacks

Sign method

signature formatter classes

signature function

 digital signatures and

 RSA protocol

SignatureAlgorithm property

Signcodex scheme

SignData method

signed documents, altering

SignedXML class, XMLDSIG

SignHash method

signing authorities, delayed signing support for assemblies

single-file assemblies

 creating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 delayed signing and

Site class

sn.exe

Software Publisher's Certificate (SPC)

software, resource restrictions

SPC (Software Publisher's Certificate)

stack frames

stack walks

 imperative security statements

 overriding 2nd

 Assert operations

 Deny operations

 PermitOnly operations

 reverting

standard evidence classes

statement terminator (C#)

statements, CAS

 declarative security

 imperative security

 overview

storage, isolated storage

stores

 deleting

 directories, creating

 isolated storage

Strong Name tool

strong names

 assemblies

 creating

 specifying key pair

 version and culture data

 delayed signing and

 multi-file assemblies, creating

 verifying

strong-named assemblies, serviced components (COM+)

StrongName class

 constructors

StrongNameMembershipCondition objects

structs, namespace quick reference and

structures, C#/Visual Basic syntax

subversion resources, application domains

symmetric algorithms

 configuring

 cipher modes

 Key and IV properties

 KeySize and BlockSize properties

 cryptographic keys and

 instantiating

symmetric encryption 2nd

 block padding

 cipher modes

 encrypted data, creating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 initialization vector

 key lengths

 .NET Framework algorithms

symmetric key exchange, cryptographic keys

SymmetricAlgorithm class

 encrypting and decrypting data

 methods and properties

system administrator (roles)

system administrator, application deployment and

System log (ELS)

System.Security.Policy namespace, evidence classes

System.String argument, Site class constructor

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

test certificate

tester role (COM+)

testing

 applications, security applications

 certificates

 custom membership conditions

 ElGamal algorithm

 implementation classes, hashing algorithms

third-party software, benefits and risks

threads, stack walks and

ToXml method

ToXmlString method

TransformBlock method

TransformFinalBlock method

Triple-DES algorithm

trust levels

 Author assembly

 class libraries

 requiring

 restricted resources and

 role-based security and

 secure application design

trust relationships

trust, restricted resources and

trusted assemblies, fully trusted assemblies list

type-safe code

 application isolation and

 non-type-safe code

types [See also classes]

 names for

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Union method, IPermission interface

union permission sets, creating

UnionCodeGroup class

 Resolve method

unverifiable code, runtime security and

URL authorization, ASP.NET authorization

Url class

URLs (Uniform Resource Locators)

 ApplicationDirectory class

 authorization, forms authorization and

user (roles)

user groups, COM+ roles and

user level policy

user policy level

 CAS

user role (COM+)

user-level isolation, storage

userName attribute, <processModel\\> element

users, isolated storage and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ValidateHashCode method

validation, hash codes

verification function, digital signatures

verification, digital signatures, XMLDSIG

VerifyData method

VerifySignature method 2nd

ViewAllDefects method

Visual Basic syntax, converting from C# syntax

Visual Studio .NET, multi-file assemblies and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

web sites

 Anakrino/Exemplar decompiler

Web.config file, ASP.NET

Windows

 authentication, ASP.NET

 Crypto API

 security, .NET RBS comparison

Windows .NET Server, .NET Framework Configuration tool

Windows 2000 Professional, .NET Framework Configuration tool execution

Windows 2000 Server, .NET Framework Configuration tool execution

Windows Crypto API

Windows executable assemblies

Windows security, CAS and

Windows XP Professional, .NET Framework Configuration Tool

WindowsIdentity class

 impersonation and

 members

 RBS and

WindowsIdentity object, Impersonate method

WindowsIdentity.GetCurrent method

WindowsPrincipal class

 configuration

 RBS and

WindowsPrincipal.IsInRole method

 overloads

worker processes, ASP.NET

 <processModel\\> element

WriteEntry method

writing files, isolated storage

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

X509 certificates, creating

XML

 ISecurityEncodable interface and

 membership condition representation, creating

 security policies, configuration

XML documents, XMLDSIG

 signature creation

 SignedXML class

XMLDSIG

 objects, embedding in signature

 overview

 signature creation

 signature verification

 SignedXML class

 signing algorithm

 XML documents, reference creation

XTEA (Extended Tiny Encryption Algorithm) 2nd

 abstract class definition

 ICryptoTransform interface

 implementation class definition

 XTEAManagedDecryptor class

 XTEAManagedEncryptor class

XTEADecrypt method

XTEAEncrypt method

XTEAManaged.CreateDecryptor method

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Zone class

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Dedication
	Preface
	How This Book Is Organized
	Who Should Read This Book
	Assumptions This Book Makes
	Conventions Used in This Book
	How to Contact Us

	Part I: Fundamentals
	Chapter 1. Security Fundamentals
	1.1 The Need for Security
	1.2 Roles in Security
	1.3 Understanding Software Security
	1.4 End-to-End Security

	Chapter 2. Assemblies
	2.1 Assemblies Explained
	2.2 Creating Assemblies
	2.3 Shared Assemblies
	2.4 Strong Names
	2.5 Publisher Certificates
	2.6 Decompiling Explained

	Chapter 3. Application Domains
	3.1 Application Domains Explained

	Chapter 4. The Lifetime of a Secure Application
	4.1 Designing a Secure .NET Application
	4.2 Developing a Secure .NET Application
	4.3 Security Testing a .NET Application
	4.4 Deploying a .NET Application
	4.5 Executing a .NET Application
	4.6 Monitoring a .NET Application

	Part II: .NET Security
	Chapter 5. Introduction to Runtime Security
	5.1 Runtime Security Explained
	5.2 Introducing Role-Based Security
	5.3 Introducing Code-Access Security
	5.4 Introducing Isolated Storage

	Chapter 6. Evidence and Code Identity
	6.1 Evidence Explained
	6.2 Programming Evidence
	6.3 Extending the .NET Framework

	Chapter 7. Permissions
	7.1 Permissions Explained
	7.2 Programming Code-Access Security
	7.3 Extending the .NET Framework

	Chapter 8. Security Policy
	8.1 Security Policy Explained
	8.2 Programming Security Policy
	8.3 Extending the .NET Framework

	Chapter 9. Administering Code-Access Security
	9.1 Default Security Policy
	9.2 Inspecting Declarative Security Statements
	9.3 Using the .NET Framework Configuration Tool
	9.4 Using the Code-Access Security Policy Tool

	Chapter 10. Role-Based Security
	10.1 Role-Based Security Explained
	10.2 Programming Role-Based Security

	Chapter 11. Isolated Storage
	11.1 Isolated Storage Explained
	11.2 Programming Isolated Storage
	11.3 Administering Isolated Storage

	Part III: .NET Cryptography
	Chapter 12. Introduction to Cryptography
	12.1 Cryptography Explained
	12.2 Cryptography Is Key Management
	12.3 Cryptographic Attacks

	Chapter 13. Hashing Algorithms
	13.1 Hashing Algorithms Explained
	13.2 Programming Hashing Algorithms
	13.3 Keyed Hashing Algorithms Explained
	13.4 Programming Keyed Hashing Algorithms
	13.5 Extending the .NET Framework

	Chapter 14. Symmetric Encryption
	14.1 Encryption Revisited
	14.2 Symmetric Encryption Explained
	14.3 Programming Symmetrical Encryption
	14.4 Extending the .NET Framework

	Chapter 15. Asymmetric Encryption
	15.1 Asymmetric Encryption Explained
	15.2 Programming Asymmetrical Encryption
	15.3 Extending the .NET Framework

	Chapter 16. Digital Signatures
	16.1 Digital Signatures Explained
	16.2 Programming Digital Signatures
	16.3 Programming XML Signatures
	16.4 Extending the .NET Framework

	Chapter 17. Cryptographic Keys
	17.1 Cryptographic Keys Explained
	17.2 Programming Cryptographic Keys
	17.3 Extending the .NET Framework

	Part IV: .NET Application Frameworks
	Chapter 18. ASP.NET Application Security
	18.1 ASP.NET Security Explained
	18.2 Configuring the ASP.NET Worker Process Identity
	18.3 Authentication
	18.4 Authorization
	18.5 Impersonation
	18.6 ASP.NET and Code-Access Security

	Chapter 19. COM+ Security
	19.1 COM+ Security Explained
	19.2 Programming COM+ Security
	19.3 Administering COM+ Security

	Chapter 20. The Event Log Service
	20.1 The Event Log Service Explained
	20.2 Programming the Event Log Service

	Part V: API Quick Reference
	Chapter 21. How to Use This Quick Reference
	21.1 Finding a Quick-Reference Entry
	21.2 Reading a Quick-Reference Entry

	Chapter 22. Converting from C# to VB Syntax
	22.1 General Considerations
	22.2 Classes
	22.3 Structures
	22.4 Interfaces
	22.5 Class, Structure, and Interface Members
	22.6 Delegates
	22.7 Enumerations

	Chapter 23. The System.Security Namespace
	AllowPartiallyTrustedCallersAttribute
	CodeAccessPermission
	IEvidenceFactory
	IPermission
	ISecurityEncodable
	ISecurityPolicyEncodable
	IStackWalk
	NamedPermissionSet
	PermissionSet
	PolicyLevelType
	SecurityElement
	SecurityException
	SecurityManager
	SecurityZone
	SuppressUnmanagedCodeSecurityAttribute
	UnverifiableCodeAttribute
	VerificationException
	XmlSyntaxException

	Chapter 24. The System.Security.Cryptography Namespace
	AsymmetricAlgorithm
	AsymmetricKeyExchangeDeformatter
	AsymmetricKeyExchangeFormatter
	AsymmetricSignatureDeformatter
	AsymmetricSignatureFormatter
	CipherMode
	CryptoAPITransform
	CryptoConfig
	CryptographicException
	CryptographicUnexpectedOperationException
	CryptoStream
	CryptoStreamMode
	CspParameters
	CspProviderFlags
	DeriveBytes
	DES
	DESCryptoServiceProvider
	DSA
	DSACryptoServiceProvider
	DSAParameters
	DSASignatureDeformatter
	DSASignatureFormatter
	FromBase64Transform
	FromBase64TransformMode
	HashAlgorithm
	HMACSHA1
	ICryptoTransform
	KeyedHashAlgorithm
	KeySizes
	MACTripleDES
	MaskGenerationMethod
	MD5
	MD5CryptoServiceProvider
	PaddingMode
	PasswordDeriveBytes
	PKCS1MaskGenerationMethod
	RandomNumberGenerator
	RC2
	RC2CryptoServiceProvider
	Rijndael
	RijndaelManaged
	RNGCryptoServiceProvider
	RSA
	RSACryptoServiceProvider
	RSAOAEPKeyExchangeDeformatter
	RSAOAEPKeyExchangeFormatter
	RSAParameters
	RSAPKCS1KeyExchangeDeformatter
	RSAPKCS1KeyExchangeFormatter
	RSAPKCS1SignatureDeformatter
	RSAPKCS1SignatureFormatter
	SHA1
	SHA1CryptoServiceProvider
	SHA1Managed
	SHA256
	SHA256Managed
	SHA384
	SHA384Managed
	SHA512
	SHA512Managed
	SignatureDescription
	SymmetricAlgorithm
	ToBase64Transform
	TripleDES
	TripleDESCryptoServiceProvider

	Chapter 25. The System.Security.Cryptography.X509Certificates Namespace
	X509Certificate
	X509CertificateCollection
	X509CertificateCollection.X509CertificateEnumerator

	Chapter 26. The System.Security.Cryptography.Xml Namespace
	DataObject
	DSAKeyValue
	KeyInfo
	KeyInfoClause
	KeyInfoName
	KeyInfoNode
	KeyInfoRetrievalMethod
	KeyInfoX509Data
	Reference
	RSAKeyValue
	Signature
	SignedInfo
	SignedXml
	Transform
	TransformChain
	XmlDsigBase64Transform
	XmlDsigC14NTransform
	XmlDsigC14NWithCommentsTransform
	XmlDsigEnvelopedSignatureTransform
	XmlDsigXPathTransform
	XmlDsigXsltTransform

	Chapter 27. The System.Security.Permissions Namespace
	CodeAccessSecurityAttribute
	EnvironmentPermission
	EnvironmentPermissionAccess
	EnvironmentPermissionAttribute
	FileDialogPermission
	FileDialogPermissionAccess
	FileDialogPermissionAttribute
	FileIOPermission
	FileIOPermissionAccess
	FileIOPermissionAttribute
	IsolatedStorageContainment
	IsolatedStorageFilePermission
	IsolatedStorageFilePermissionAttribute
	IsolatedStoragePermission
	IsolatedStoragePermissionAttribute
	IUnrestrictedPermission
	PermissionSetAttribute
	PermissionState
	PrincipalPermission
	PrincipalPermissionAttribute
	PublisherIdentityPermission
	PublisherIdentityPermissionAttribute
	ReflectionPermission
	ReflectionPermissionAttribute
	ReflectionPermissionFlag
	RegistryPermission
	RegistryPermissionAccess
	RegistryPermissionAttribute
	ResourcePermissionBase
	ResourcePermissionBaseEntry
	SecurityAction
	SecurityAttribute
	SecurityPermission
	SecurityPermissionAttribute
	SecurityPermissionFlag
	SiteIdentityPermission
	SiteIdentityPermissionAttribute
	StrongNameIdentityPermission
	StrongNameIdentityPermissionAttribute
	StrongNamePublicKeyBlob
	UIPermission
	UIPermissionAttribute
	UIPermissionClipboard
	UIPermissionWindow
	UrlIdentityPermission
	UrlIdentityPermissionAttribute
	ZoneIdentityPermission
	ZoneIdentityPermissionAttribute

	Chapter 28. The System.Security.Policy Namespace
	AllMembershipCondition
	ApplicationDirectory
	ApplicationDirectoryMembershipCondition
	CodeGroup
	Evidence
	FileCodeGroup
	FirstMatchCodeGroup
	Hash
	HashMembershipCondition
	IIdentityPermissionFactory
	IMembershipCondition
	NetCodeGroup
	PermissionRequestEvidence
	PolicyException
	PolicyLevel
	PolicyStatement
	PolicyStatementAttribute
	Publisher
	PublisherMembershipCondition
	Site
	SiteMembershipCondition
	StrongName
	StrongNameMembershipCondition
	UnionCodeGroup
	Url
	UrlMembershipCondition
	Zone
	ZoneMembershipCondition

	Chapter 29. The System.Security.Principal Namespace
	GenericIdentity
	GenericPrincipal
	IIdentity
	IPrincipal
	PrincipalPolicy
	WindowsAccountType
	WindowsBuiltInRole
	WindowsIdentity
	WindowsImpersonationContext
	WindowsPrincipal

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X
	Index Z

