
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Apache Cookbook

By Rich Bowen, Ken Coar

Publisher: O'Reilly

Pub Date: November 2003

ISBN: 0-596-00191-6

Pages: 254

The Apache Cookbook is a collection of problems, solutions, and practical examples for webmasters,
web administrators, programmers, and everyone else who works with Apache. Instead of poking
around mailing lists, online documentation, and other sources, you can rely on the Apache Cookbook
for quick solutions to common problems, and then you can spend your time and energy where it
matters most.

[Team LiB]

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

Apache Cookbook

By Rich Bowen, Ken Coar

Publisher: O'Reilly

Pub Date: November 2003

ISBN: 0-596-00191-6

Pages: 254

 Copyright

 Preface

 What's in This Book

 Platform Notes

 Other Books

 Other Sources

 How This Book Is Organized

 Conventions Used in This Book

 We'd Like to Hear from You

 Acknowledgments

 Chapter 1. Installation

 Recipe 1.1. Installing from Red Hat Linux's Packages

 Recipe 1.2. Installing Apache on Windows

 Recipe 1.3. Downloading the Apache Sources

 Recipe 1.4. Building Apache from the Sources

 Recipe 1.5. Installing with ApacheToolbox

 Recipe 1.6. Starting, Stopping, and Restarting Apache

 Recipe 1.7. Uninstalling Apache

 Chapter 2. Adding Common Modules

 Recipe 2.1. Installing a Generic Third-Party Module

 Recipe 2.2. Installing mod_dav on a Unixish System

 Recipe 2.3. Installing mod_dav on Windows

 Recipe 2.4. Installing mod_perl on a Unixish System

 Recipe 2.5. Installing mod_php on a Unixish System

 Recipe 2.6. Installing mod_php on Windows

 Recipe 2.7. Installing the mod_snake Python Module

 Recipe 2.8. Installing mod_ssl

 Chapter 3. Logging

 Recipe 3.1. Getting More Details in Your Log Entries

 Recipe 3.2. Getting More Detailed Errors

 Recipe 3.3. Logging POST Contents

 Recipe 3.4. Logging a Proxied Client's IP Address

 Recipe 3.5. Logging Client MAC Addresses

 Recipe 3.6. Logging Cookies

 Recipe 3.7. Not Logging Image Requests from Local Pages

 Recipe 3.8. Logging Requests by Day or Hour

 Recipe 3.9. Rotating Logs on the First of the Month

 Recipe 3.10. Logging Hostnames Instead of IP Addresses

 Recipe 3.11. Maintaining Separate Logs for Each Virtual Host

 Recipe 3.12. Logging Proxy Requests

 Recipe 3.13. Logging Errors for Virtual Hosts to Multiple Files

 Recipe 3.14. Logging Server IP Addresses

 Recipe 3.15. Logging the Referring Page

 Recipe 3.16. Logging the Name of the Browser Software

 Recipe 3.17. Logging Arbitrary Request Header Fields

 Recipe 3.18. Logging Arbitrary Response Header Fields

 Recipe 3.19. Logging Activity to a MySQL Database

 Recipe 3.20. Logging to syslog

 Recipe 3.21. Logging User Directories

 Chapter 4. Virtual Hosts

 Recipe 4.1. Setting Up Name-Based Virtual Hosts

 Recipe 4.2. Designating One Name-Based Virtual Host as the Default

 Recipe 4.3. Setting Up Address-Based Virtual Hosts

 Recipe 4.4. Creating a Default Address-Based Virtual Host

 Recipe 4.5. Mixing Address-Based and Name-Based Virtual Hosts

 Recipe 4.6. Mass Virtual Hosting with mod_vhost_alias

 Recipe 4.7. Mass Virtual Hosting Using Rewrite Rules

 Recipe 4.8. SSL and Name-Based Virtual Hosts

 Recipe 4.9. Logging for Each Virtual Host

 Recipe 4.10. Splitting Up a LogFile

 Recipe 4.11. Port-Based Virtual Hosts

 Recipe 4.12. Displaying the Same Content on Several Addresses

 Chapter 5. Aliases, Redirecting, and Rewriting

 Recipe 5.1. Showing Highlighted PHP Source Without Symlinking

 Recipe 5.2. Mapping a URL to a Directory

 Recipe 5.3. Creating a New URL for Existing Content

 Recipe 5.4. Giving Users Their Own URL

 Recipe 5.5. Aliasing Several URLs with a Single Directive

 Recipe 5.6. Mapping Several URLs to the Same CGI Directory

 Recipe 5.7. Creating a CGI Directory for Each User

 Recipe 5.8. Redirecting to Another Location

 Recipe 5.9. Redirecting Several URLs to the Same Destination

 Recipe 5.10. Permitting Case-Insensitive URLs

 Recipe 5.11. Replacing Text in Requested URLs

 Recipe 5.12. Rewriting Path Information to CGI Arguments

 Recipe 5.13. Denying Access to Unreferred Requests

 Recipe 5.14. Rewriting Based on the Query String

 Recipe 5.15. Redirecting All-or Part-of Your Server to SSL

 Recipe 5.16. Turning Directories into Hostnames

 Recipe 5.17. Redirecting All Requests to a Single Host

 Recipe 5.18. Turning Document Names into Arguments

 Chapter 6. Security

 Recipe 6.1. Using System Account Information for Web Authentication

 Recipe 6.2. Setting Up Single-Use Passwords

 Recipe 6.3. Expiring Passwords

 Recipe 6.4. Limiting Upload Size

 Recipe 6.5. Restricting Images from Being Used Off-Site

 Recipe 6.6. Requiring Both Weak and Strong Authentication

 Recipe 6.7. Managing .htpasswd Files

 Recipe 6.8. Making Password Files for Digest Authentication

 Recipe 6.9. Relaxing Security in a Subdirectory

 Recipe 6.10. Lifting Restrictions Selectively

 Recipe 6.11. Authorizing Using File Ownership

 Recipe 6.12. Storing User Credentials in a MySQL Database

 Recipe 6.13. Accessing the Authenticated Username

 Recipe 6.14. Obtaining the Password Used to Authenticate

 Recipe 6.15. Preventing Brute-Force Password Attacks

 Recipe 6.16. Using Digest Versus Basic Authentication

 Recipe 6.17. Accessing Credentials Embedded in URLs

 Recipe 6.18. Securing WebDAV

 Recipe 6.19. Enabling WebDAV Without Making Files Writable by the Web User

 Recipe 6.20. Restricting Proxy Access to Certain URLs

 Recipe 6.21. Protecting Files with a Wrapper

 Recipe 6.22. Protecting All Files Except a Subset

 Recipe 6.23. Protecting Server Files from Malicious Scripts

 Recipe 6.24. Setting Correct File Permissions

 Recipe 6.25. Running a Minimal Module Set

 Recipe 6.26. Restricting Access to Files Outside Your Web Root

 Recipe 6.27. Limiting Methods by User

 Recipe 6.28. Restricting Range Requests

 Chapter 7. SSL

 Recipe 7.1. Installing SSL

 Recipe 7.2. Generating SSL Certificates

 Recipe 7.3. Generating a Trusted CA

 Recipe 7.4. Serving a Portion of Your Site via SSL

 Recipe 7.5. Authenticating with Client Certificates

 Chapter 8. Dynamic Content

 Recipe 8.1. Enabling a CGI Directory

 Recipe 8.2. Enabling CGI Scripts in Non-ScriptAliased Directories

 Recipe 8.3. Using Windows File Extensionsto Launch CGI Programs

 Recipe 8.4. Using Extensions to Identify CGI Scripts

 Recipe 8.5. Testing That CGI Is Set Up Correctly

 Recipe 8.6. Reading Form Parameters

 Recipe 8.7. Invoking a CGI Program for Certain Content Types

 Recipe 8.8. Getting SSIs to Work

 Recipe 8.9. Displaying Last Modified Date

 Recipe 8.10. Including a Standard Header

 Recipe 8.11. Including the Output of a CGI Program

 Recipe 8.12. Running CGI Scripts as a Different User with suexec

 Recipe 8.13. Installing a mod_perl Handler from CPAN

 Recipe 8.14. Writing a mod_perl Handler

 Recipe 8.15. Enabling PHP Script Handling

 Recipe 8.16. Verifying PHP Installation

 Chapter 9. Error Handling

 Recipe 9.1. Handling a Missing Host Field

 Recipe 9.2. Changing the Response Status for CGI Scripts

 Recipe 9.3. Customized Error Messages

 Recipe 9.4. Providing Error Documents in Multiple Languages

 Recipe 9.5. Redirecting Invalid URLs to Some Other Page

 Recipe 9.6. Making Internet Explorer Display Your Error Page

 Recipe 9.7. Notification on Error Conditions

 Chapter 10. Proxies

 Recipe 10.1. Securing Your Proxy Server

 Recipe 10.2. Preventing Your Proxy Server from Being Used as an Open Mail Relay

 Recipe 10.3. Forwarding Requests to Another Server

 Recipe 10.4. Blocking Proxied Requests to Certain Places

 Recipe 10.5. Proxying mod_perl Content to Another Server

 Recipe 10.6. Configuring a Caching Proxy Server

 Recipe 10.7. Filtering Proxied Content

 Recipe 10.8. Requiring Authentication for a Proxied Server

 Chapter 11. Performance

 Recipe 11.1. Determining How Much Memory You Need

 Recipe 11.2. Benchmarking Apache with ab

 Recipe 11.3. Tuning Keepalive Settings

 Recipe 11.4. Getting a Snapshot of Your Site's Activity

 Recipe 11.5. Avoiding DNS Lookups

 Recipe 11.6. Optimizing Symbolic Links

 Recipe 11.7. Minimizing the Performance Impact of .htaccess Files

 Recipe 11.8. Disabling Content Negotiation

 Recipe 11.9. Optimizing Process Creation

 Recipe 11.10. Tuning Thread Creation

 Recipe 11.11. Caching Frequently Viewed Files

 Recipe 11.12. Sharing Load Between Servers Using mod_proxy

 Recipe 11.13. Distributing Load Evenly Between Several Servers

 Recipe 11.14. Caching Directory Listings

 Recipe 11.15. Speeding Up Perl CGI Programs with mod_perl

 Chapter 12. Miscellaneous Topics

 Recipe 12.1. Placing Directives Properly

 Recipe 12.2. Renaming .htaccess Files

 Recipe 12.3. Generating Directory/Folder Listings

 Recipe 12.4. Solving the "Trailing Slash" Problem

 Recipe 12.5. Setting the Content-Type According to Browser Capability

 Recipe 12.6. Handling Missing Host: Header Fields

 Recipe 12.7. Alternate Default Document

 Recipe 12.8. Setting Up a Default "Favicon"

 Appendix A. Using Regular Expressions in Apache

 Section A.1. What Directives Use Regular Expressions?

 Appendix B. Troubleshooting

 Section B.1. Troubleshooting Methodology

 Section B.2. Debugging the Configuration

 Section B.3. Debugging Premature End of Script Headers

 Section B.4. Common Problems on Windows

 Section B.5. Fixing Build-Time Error Messages

 Section B.6. Getting Server-Side Includes to Work

 Section B.7. Debugging Rewrites That Result in "Not Found" Errors

 Section B.8. .htaccess Files Having No Effect

 Section B.9. Address Already in Use

 Colophon

 Index

[Team LiB]

[Team LiB]

Copyright

Copyright © 2004 Ken Coar and Rich Bowen.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of a moose and the topic of Apache is a trademark of
O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com

[Team LiB]

Preface
The Apache web server is a remarkable piece of software. The basic package distributed by the
Apache Software Foundation is quite complete and very powerful, and a lot of effort has gone into
keeping it from suffering software bloat. One facet of the package makes it especially remarkable: it
includes extensibility by design. In short, if the Apache package right out of the box does not do what
you want, you can generally extend it so that it does. Dozens of extensions (called modules) are
included as part of the package distributed by the Apache Software Foundation. And if one of these
doesn't meet your needs, with several million users out there, there is an excellent chance someone
else has already done your work for you, who has concocted a recipe of changes or enhancements to
the server that will satisfy your requirements.

This book is a collection of these recipes. Its sources include tips from the firehose of the USENET
newsgroups, the Apache FAQ, Apache-related mailing lists, mail containing "how-to" questions,
questions and problems posed on IRC chat channels, and volunteered submissions.

All of the items in this book come from real-life situations, encountered either by us or by other
people who have asked for our help. The topics range from basic compilation of the source code to
complex problems involving the treatment of URLs that require SSL encryption.

We've collected more than a hundred different problems and their solutions, largely based on how
often they occurred, and have grouped them roughly by subject as shown in What's in This Book.

Primarily, these recipes are useful to webmasters who are responsible for the entire server; however,
many are equally applicable to users who want to customize the behavior in their own web directories
through the use of .htaccess files.

We've written Apache Cookbook to be a practical reference, rather than a theoretical discourse:
reading it recipe by recipe, chapter by chapter, isn't going to reveal a plot ("Roy Fielding in the
Library with an RFC!"[1]). It's intended to provide point solutions to specific problems, located
through the table of contents or the index.

[1] An obscure reference to a board game called Clue and an obscure developer of HTTP.

[Team LiB]

[Team LiB]

What's in This Book

Because much of the material in this book is drawn from question-and-answer discussions and
consultations, we have tried to make it as complete as possible. Of course, this means that we have
included "recipes" for some questions to which there are currently no satisfactory answers (or at
least to our knowledge). This has not been done to tease, annoy, or frustrate you; such recipes are
included to provide completeness, so that you will know those problems have been considered rather
than ignored.

Very few problems remain insoluble forever, and these incomplete recipes are the ones that will
receive immediate attention on the book's web site and in revisions of the book. If a reader has
figured out a way to do something the book mentions but doesn't explain, or omits mentioning
entirely, our research team can be notified, and that solution will go on the web site and in the next
revision.

Who knows, you may be the one to provide such a solution!

[Team LiB]

[Team LiB]

Platform Notes

The recipes in this book are geared toward two major platforms: Unixish ones (such as Linux,
FreeBSD, and Solaris) and Windows. There are many that have no platform-specific aspects, and for
those any mention of the underlying operating system or hardware is gratefully omitted. Due to the
authors' personal preferences and experiences, Unixish coverage is more complete than that for the
Windows platforms. However, contributions, suggestions, and corrections for Windows-specific
recipes will be gladly considered for future revisions and inclusion on the web site.

[Team LiB]

[Team LiB]

Other Books

There are a number of books currently in print that deal with the Apache web server and its
operation. Among them are:

Apache: The Definitive Guide, Third Edition (O'Reilly)

Apache Unleashed (Macmillan)

Apache Administrator's Handbook (Macmillan)

You can also keep an eye on a couple of web pages that track Apache titles:

http://Apache-Server.Com/store.html

http://httpd.apache.org/info/apache_books.html

[Team LiB]

http://Apache-Server.Com/store.html
http://httpd.apache.org/info/apache_books.html

[Team LiB]

Other Sources

In addition to books, there is a wealth of information available online. There are web sites, mailing
lists, and USENET newsgroups devoted to the use and management of the Apache web server. The
web sites are limitless, but here are some active and useful sources of information.

The comp.infosystems.www.servers.unix and comp.infosystems.www.servers.ms-dos USENET
newsgroups. Although these aren't dedicated to Apache specifically, there is a lot of traffic
concerning it, and experienced Apache users hang out here. If you don't have access to news,
or know how to reach USENET, check out http://groups.google.com/.

The Apache Today web site, run by Internet.Com. This site regularly lists articles about the web
server and making the most of it. The URL is http://ApacheToday.Com/.

The users@httpd.apache.org mailing list is populated with people who have varying degrees of
experience with the Apache software, and some of the Apache developers can be found there,
too. Posting is only permitted to subscribed participants. To join the list, visit
http://httpd.apache.org/userslist.html.

The #apache IRC channel on the irc.freenode.net network-or on many other IRC networks, for
that matter. However, your chances of encountering us are most likely on the freenode
network.

We must point out that none of these is an "official" support medium for the web server. In fact,
there is no "official" support path, since the software is largely developed by volunteers and is free.
However, these informal support forums successfully answer many questions.

[Team LiB]

http://groups.google.com/
http://ApacheToday.Com/
http://httpd.apache.org/userslist.html

[Team LiB]

How This Book Is Organized

This book is broken up into twelve chapters and two appendixes, as follows:

Chapter 1 covers the basics of installing the vanilla Apache software, from source on Unixish systems,
and on Windows from the Microsoft Software Installer (MSI) package built by the Apache developers.

Chapter 2 describes the details of installing some of the most common third-party modules, and
includes generic instructions that apply to many others that have less complex installation needs.

Chapter 3 includes recipes about recording the visits to your web site(s), and Apache's error logging
mechanism.

Chapter 4 tells you how to run multiple web sites using a single Apache server and set of
configuration files.

Chapter 5 describes how to manipulate URLs, how to control which files they refer to, how to change
them from one thing to another, and how to make them point to other web sites.

Chapter 6 covers some of the basic issues of securing your Apache server against penetration and
exposure by the nefarious elements on the Internet.

Chapter 7 addresses the issues of making your Apache web server capable of handling secure
transactions with SSL-capable browsers-a must if you're going to be handling sensitive data such as
money transfers or medical records.

Chapter 8 tells you how to enhance your server with runtime scripts and make them operate as a
particular user.

Chapter 9 describes how to customize the web server's error messages to give your site its own
unique flavor.

Chapter 10 describes how to configure your Apache server to act as a proxy between users and web
pages and make the processes as transparent and seamless as possible.

Chapter 11 includes a number of recipes for addressing performance bottlenecks and improving the
overall function of your Apache server.

Chapter 12 covers a variety of miscellaneous topics that didn't seem to fit into any of the other
chapters.

Appendix A explains how regular expressions are used for pattern-matching in Apache directives.

Appendix B covers some basic troubleshooting techniques, where to look for messages, common
configuration problems, etc.

[Team LiB]

[Team LiB]

Conventions Used in This Book

Throughout this book certain stylistic conventions are followed. Once you are accustomed to them,
you can easily distinguish between comments, commands you need to type, values you need to
supply, and so forth.

In some cases, the typeface of terms in the main text will be different and likewise in code examples.
The details of what the different styles (italic, boldface, etc.) mean are described in the following
sections.

Programming Conventions

In this book, most case examples of code will be in the form of excerpts from scripts, rather than
actual application code. When commands need to be issued at a command-line prompt (such as an
xterm for a Unixish system or a DOS command prompt for Windows), they will look something like
this:

% find /usr/local -name apachectl -print
/usr/local/apache/bin/apachectl graceful
C:>cd "\Program Files\Apache Group\Apache\bin"
C:\Program Files\Apache Group\Apache\bin>apache -k stop

On Unixish systems, command prompts that begin with # indicate that you need to be logged in as
the superuser (root username); if the prompt begins with %, then the command can be used by any

user.

Typesetting Conventions

The following typographic conventions are used in this book:

Italic

Used for commands, filenames, abbreviations, citations of books and articles, email addresses,
URLs, and USENET group names.

Bold

Used for labeling menu choices in a graphical interface.

Constant Width

Used for function names, command options, computer output, environment variable names,
literal strings, and code examples.

Constant Width Bold

Used for user input in computer dialogues and examples.

Constant Width Italic

Used for replaceable parameters, filesystem paths, and variable names.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Documentation Conventions

Since this book deals with a general topic rather than a specific one (such as the Perl language),
there are additional sources of information to which it will refer you. The most common ones are:

The online manual ("man") pages on a Unixish system

References to the manpages will appear something like, "For more information, see the kill(1)
manpage." The number in parentheses is the manual section; you can access this page with a
command such as:

% man 1 kill

The Apache web server documentation

Such a reference may appear as "See the mod_auth documentation for details." This refers to a web
page like:

http://httpd.apache.org/docs/mod/mod_auth.html

http://httpd.apache.org/docs/mod/mod_auth.html

In some cases, the reference will be to a specific Apache directive rather than an actual module; in
cases like this, you can locate the appropriate web page by looking up the directive name on:

http://httpd.apache.org/docs/mod/directives.html

This page lists all of the directives available in the standard Apache package. In some situations, the
directive may be specific to a nonstandard or third-party module, in which case the documentation
should be located wherever the module itself was found. The links above are for the documentation
for Version 1.3 of the software. To access the documentation for Version 2.0, replace "docs/" with
"docs-2.0/" in the URLs.

[Team LiB]

http://httpd.apache.org/docs/mod/directives.html

[Team LiB]

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (which may in fact resemble bugs). Please let us know about any errors
you find, as well as your suggestions for future editions, by writing to:

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/apacheckbk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

We have a web site for the book, where we'll list errata and plans for future editions. Here you'll also
find the source code from the book available for download so you don't have to type it all in:

http://Apache-Cookbook.Com/

[Team LiB]

http://www.oreilly.com/catalog/apacheckbk
http://www.oreilly.com
http://Apache-Cookbook.Com/

[Team LiB]

Acknowledgments

Originally, each recipe was going to be individually attributed, but that turned out to be logistically
impossible.

Many people have helped us during the writing of this book, by posing a problem, providing a
solution, proofreading, reviewing, editing, or just (!) providing moral support. This multitude, to each
of whom we are profoundly grateful, includes Nat Torkington (our project editor and demonstrator of
Herculean feats of patience), Sharco and Guy- from #apache on irc.freenode.net, Mads Toftum,
Morbus Iff (known to the FBI under the alias Kevin Hemenway), and Andy Holman.

Ken Coar

I dedicate this book to my father, Richard J. Coar, for all the various kinds of support he has provided
over the years.

My sincere thanks go out to the crew at O'Reilly, including Paula and Nat, who apparently never gave
up hope regardless of how many deadlines whooshed past unmet. Thanks also to the WriterBase
Authors Support Group and Cabal mailing lists, whereon much balm and advice was offered. Our
technical reviewers Morbus and Quasi provided much excellent feedback and helped make this a
better book. The VMware software package was very useful, and I'm grateful to its makers for their
help and support.

The people who have worked on the Apache web server documentation, and the people who develop
the software itself, get a big note of thanks, too; without the former, collating a lot of the information
in this book would have been a whole lot more difficult, and without the latter, the book wouldn't
have happened at all.

The users of the software, whose frequently challenging questions populate the mailing lists, the IRC
channels, and our inboxes, deserve thanks for all the inspiration they unwittingly provided for the
recipes in this book.

But foremost among those to whom I owe gratitude is my significantly better half, Cathy, without
whose patience, support, and constructive criticism I would never have achieved what I have.

Rich Bowen

I dedicate this book to Sarah, who is the motivation for all the important things I do.

While it would be impossible to adequately thank all the folks who made this book possible, there are
some people, in addition to those already mentioned, that I'd like to especially thank.

A huge thank you to our technical reviewers. You created a huge quantity of additional work for us,
made our lives miserable, and made the book late. I don't think I've ever had such a thorough tech

review, and the comments that you made served to make this a much better book than it otherwise
would have been. Without quasi, large parts of the book would have been significantly less
complete-and less correct. And Morbus gave the entire project the sort of surreal, other-worldly
aura that you expect from...well, from Morbus. Thank you both and to the many other people who
made various remarks about what we'd written.

To my wonderful family, thank you all. You have helped me through a very difficult time, and shown
more love, patience, and acceptance than I deserve. Mom and Dad, I love you. Ruth, you have given
me the courage to plough on. Andy, you are my hero.

Thanks to the folks on the Apache web server documentation project. The Apache documentation is
some of the best in the world of free software. Thanks to the dedication and attention to detail.

To the folks on irc.freenode.net, you are the ones who made this book happen. The recipes in this
book are answers to questions that you asked, refined over time by dozens and dozens of people who
asked them again and again and again.

And, finally, thanks to the members of the Geocachers of Central Kentucky (http://www.geocky.org/)
for getting me hooked on Geocaching, and placing the caches around the area, giving me something
to go out and do when my sanity was stretched a little thin.

[Team LiB]

http://www.geocky.org/

[Team LiB]

Chapter 1. Installation
For this cookbook to be useful, you need to install the Apache web server software. So what better
way to start than with a set of recipes that deal with the installation?

There are many ways of installing this package; one of the features of open software like Apache is
that anyone may make an installation kit. This allows vendors (such as Debian, FreeBSD, Red Hat,
Mandrake, Hewlett-Packard, and so on) to customize the Apache file locations and default
configuration settings so that these settings fit with the rest of their software. Unfortunately, one of
the consequences of customization is that the various prepackaged installation kits are almost all
different from one another.

In addition to installing it from a prepackaged kit, of which the variations are legion, there's always
the option of building and installing it from the source yourself. This has both advantages and
disadvantages; on the one hand you know exactly what you installed and where you put it, but on
the other hand, it's likely that binary add-on packages will expect files to be in locations different than
those you have chosen.

If setting up the web server is something you're going to do once and never again, using a packaged
solution prepared by your system vendor is probably the way to go. However, if you anticipate
applying source patches, adding or removing modules, or just fiddling with the server in general,
building it yourself from the ground up is probably the preferred method. (The authors of this book,
being confirmed bit-twiddlers, always build from source.)

This chapter covers some of the more common prepackaged installation varieties and also how to
build them from the source yourself.

Throughout the chapter, we assume that you will be using dynamic shared objects (DSOs) rather
than building modules statically into the server. The DSO approach is highly recommended; it not
only makes it easy to update individual modules without having to rebuild the entire server, but it
also makes adding or removing modules from the server's configuration a simple matter of editing
the configuration file.

DSOs on Unixish systems typically have a .so extension; on Windows they end with a .dll suffix.

[Team LiB]

[Team LiB]

Recipe 1.1 Installing from Red Hat Linux's Packages

Problem

You have a Red Hat Linux server and want to install or upgrade the Apache web server on it using
the packages that Red Hat prepares and maintains.

Solution

If you are a member of the Red Hat Network (RHN), Red Hat's subscription service, you can use Red
Hat's up2date tool to maintain your Apache package:

up2date -ui apache apache-devel apache-manual

If you're running a more recent version:

up2date -ui httpd httpd-devel httpd-manual

If you aren't a member of RHN, you can still download the packages from one of Red Hat's servers
(either ftp://ftp.redhat.com/ or ftp://updates.redhat.com/), and install it with the following
command:

rpm -Uvh apache

Discussion

The -Uvh option to the rpm command tells it to:

Upgrade any existing version of the package already on the system or install it for the first time
if it isn't.

Explain the process, so you can receive positive feedback that the installation is proceeding
smoothly.

Display a pretty line of octothorpes (#) across the screen, marking the progress of the

installation.

If you use the packages Red Hat maintains for its own platform, you will benefit from a simple and
relatively standard installation. However, you can only update versions that Red Hat has put together
an RPM package for, which typically means that you may be lagging weeks to months behind the
latest stable version.

There is also the issue of platform compatibility; for instance, at some point the version of Apache

provided for Red Hat Linux changed from 1.3 to 2.0, and newer versions of the operating system will
probably only have the 2.0 packages available. Similarly, if you run an older version of Red Hat Linux,
the newer packages will probably not install properly on your system.

It's a good idea to install the apache-devel package as well. It's quite small, so it won't have much
impact on your disk usage; however, it includes files and features that a lot of third-party modules
will need to install properly.

See Also

Red Hat's full platform release archive at ftp://ftp.redhat.com/

Red Hat's incremental update (errata) archive at ftp://updates.redhat.com/

[Team LiB]

[Team LiB]

Recipe 1.2 Installing Apache on Windows

Problem

You want to install the Apache web server software on a Windows platform.

If you already have Apache installed on your Windows system, remove it before
installing a new version. Failure to do this results in unpredictable behavior. See
Recipe 1.7.

Solution

Primarily, Windows is a graphically oriented environment, so the Apache install for Windows is
correspondingly graphical in nature.

The simplest way to install Apache is to download and execute the Microsoft Software Installer (MSI)
package from the Apache web site at http://httpd.apache.org/download. The following screenshots
come from an actual installation made using this method.

Each step of the installation process is distinct in the process and you can revise earlier decisions,
until the files are installed. The first screen (Figure 1-1) simply confirms what you're about to do and
the version of the package you're installing.

Figure 1-1. First screen of Apache MSI install

http://httpd.apache.org/download

The second screen (Figure 1-2) presents the Apache license. Its basic tenets boil down to the
following: do what you want with the software, don't use the Apache marks (trademarks like the
feather or the name Apache) without permission, and provide proper attribution for anything you
build based on Apache software. (This only applies if you plan to distribute your package; if you use it
strictly on an internal network, this isn't required.) You can't proceed past this screen until you agree
to the license terms.

Figure 1-2. License agreement

Figure 1-3 shows the recommended reading for all new users of the Apache software. This describes
special actions you should take, such as making configuration changes to close security exposures, so

read it closely.

Figure 1-3. Recommended reading for new users

If you are installing Apache for the first time, the installation process asks for some information so it
can make an initial configuration for your server (Figure 1-4). If you already have a version of
Apache installed, anything you enter on this screen will not override your existing configuration.

Figure 1-4. Initial server configuration information

The Server Name in the figure is filled with the same value as the Network Domain field; this is a nod

to the growing tendency to omit the "www" prefix of web sites and use the domain name (e.g.,
http://oreilly.com/ instead of http://www.oreilly.com/). What name you specify for the server is just
advisory, allowing the installation process to configure some initial values; you can change them later
by editing the configuration file. The important thing is that the Server Name value be resolvable into
an IP address.

Next comes a screen asking what portions of the package you want to install, as shown in Figure 1-5.
Just go with Complete unless you're an advanced user. The Custom option allows you to choose
whether to install the Apache documentation.

Figure 1-5. Installation type

Figure 1-6 asks where you want the software installed. The screen shot shows the default location,
which will become the ServerRoot.

Figure 1-6. ServerRoot directory

http://oreilly.com/
http://www.oreilly.com/

Once you've answered all the questions, a screen similar to Figure 1-7 will come up. This is your last
chance to go back and change anything; once you click the Install button on this screen, the
installation puts the pieces of the package in place on your system.

Figure 1-7. The last chance to change your mind

Figure 1-8 and Figure 1-9 show the last screens for the Windows MSI install; they show the progress
of the installation. When they're finished, Apache has been installed (and started, if you have chosen
the Start as a service option shown in Figure 1-4).

Figure 1-8. The installation progress

Figure 1-9. MSI installation finished

Discussion

A lot of effort has been put into making the Apache server run well on Windows and be managed like
other Windows applications. As a consequence, the primary installation method (InstallShield or MSI)
should be familiar to Windows users.

If you've never run Apache before, accept the defaults the first time you install it. This makes it

easier for others to provide assistance if you need help, because the files will be in predictable
locations.

If you chose to start the Apache server as a service (see Figure 1-4), then you can modify the
conditions for it to start, such as the user it should run as or whether it should start automatically,
just as you would any other service. Figure 1-10 shows one way to do this; bring up the window by
right-clicking on the My Computer icon on the desktop and choose Manage from the pop-up menu.

Figure 1-10. Modifying the Apache service

See Also

The Apache license at http://www.apache.org/LICENSE

Recipe 1.7

[Team LiB]

http://www.apache.org/LICENSE

[Team LiB]

Recipe 1.3 Downloading the Apache Sources

Problem

You want to build the Apache web server yourself from the sources directly (see Recipe 1.4), but
don't know how to obtain them.

Solution

There are a number of ways to obtain the sources. You can access the latest version in close to real-
time by using CVS, the tool used by the Apache developers for source control, you can download a
release tarball, or you can install a source package prepared by a distributor, among others.

From a prepackaged tarball, download the tarball from http://httpd.apache.org/dist/, and then:

% tar xzvf apache_1.3.27.tar.gz

If your version of tar doesn't support the z option for processing zipped archives, use this command

instead:

% gunzip -c < apache_1.3.27.tar.gz | tar xvf -

From the very latest up-to-the-minute Apache 1.3 source repository (not guaranteed to be
completely functional), use:

% cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic login
 Password: anoncvs
% cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic checkout apache-1.3

You can fetch a particular release version instead of the bleeding edge code if you know the name the
developers gave it. For example, this will pull the sources of the 1.3.27 release, which is expected to
be stable, unlike the up-to-the-minute version:

% cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic checkout -r APACHE_1_3_27
 apache-1.3

From the very latest up-to-the-minute Apache 2.0 source repository (not guaranteed to be
completely functional), use:

% cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic login
 Password: anoncvs
% cvs -d :pserver:anoncvs@CVS.Apache.Org:/home/cvspublic checkout -r
 APACHE_2_0_BRANCH httpd-2.0
% cd httpd-2.0/srclib

http://httpd.apache.org/dist/

% cvs checkout apr apr-util

As with the method for the 1.3 version of the server, you can fetch a particular release of the 2.0
code if you know the name assigned to it in CVS.

You can find the names of the tags used in the source tree by visiting either
http://cvs.apache.org/viewcvs.cgi/apache-1.3/ or http://cvs.apache.org/viewcvs.cgi/httpd-2.0/ and
pulling down the Show files using tag list at the bottom of the page.

All sorts of tags are used by the developers for various purposes. The tags used
to label versions of files used for a release are always of the form
APACHE_n_m_e, so use these to work with a particular release version.

Discussion

No matter how you install the source, the directory tree will be ready for configuration and building.
Once the source is in place, you should be able to move directly to building the package (see Recipe
1.4).

If you chose to install the sources using the CVS method, you can keep your sources up-to-date by
simply executing the following command from the top level of the source directory:

% cvs update -Pd

This will update or fetch any files that have been changed or added by the developers since the last
time you downloaded or updated.

If you update to the latest version of the sources, you're getting whatever the developers are
currently working on, which may be only partially finished. If you want reliability, stick with the
released versions, which have been extensively tested.

See Also

Recipe 1.4

[Team LiB]

http://cvs.apache.org/viewcvs.cgi/apache-1.3/
http://cvs.apache.org/viewcvs.cgi/httpd-2.0/

[Team LiB]

Recipe 1.4 Building Apache from the Sources

Problem

You want to build your Apache web server from the sources directly rather than installing it from a
prepackaged kit.

Solution

Assuming that you already have the Apache source tree, whether you installed it from a tarball, CVS,
or some distribution package, the following commands, executed in the top directory of the tree,
builds the server package with most of the standard modules as DSOs:

Apache 1.3:

% ./configure --prefix= /usr/local/apache --with-layout=Apache
 --enable-shared=max--enable-module=most
% make
make install

For Apache 2.0:

% ./buildconf

% ./configure --prefix= /usr/local/apache --with-layout=Apache --enable-
 modules=most --enable-mods-shared=all
% make
make install

If you want more detailed information about the various options and their meanings, you can use the
following command:

% ./configure --help

Discussion

Building the server from the sources can be complex and time-consuming, but it's required if you
intend to make any changes to the source code. It gives you much more control over things, such as
the use of shareable object libraries and the database routines available to modules. Building from
source is also de rigeur if you're developing your own Apache modules.

The options to the configure script are many and varied; if you haven't used it before to build
Apache, locate some online tutorials (such as those at http://Apache-Server.Com/tutorials/ or
http://httpd.apache.org/docs-2.0/install.html) when you want to change the defaults. The default

http://Apache-Server.Com/tutorials/
http://httpd.apache.org/docs-2.0/install.html

options generally produce a working server, although the filesystem locations and module choices
may not be what you'd like; they may include modules you don't want or omit some you do. (See
Chapter 2 for some examples.)

See Also

Recipe 1.3

http://Apache-Server.Com/tutorials/

http://httpd.apache.org/docs-2.0/install.html

[Team LiB]

http://Apache-Server.Com/tutorials/
http://httpd.apache.org/docs-2.0/install.html

[Team LiB]

Recipe 1.5 Installing with ApacheToolbox

Problem

You have a complicated collection of modules you want to install correctly.

Solution

Download ApacheToolbox from http://www.apachetoolbox.com/. (Note that the version numbers will
probably be different than these, which were the latest available when this section was written.)
Unpack the file:

% bunzip2 Apachetoolbox-1.5.65.tar.bz2

% tar xvf Apachetoolbox-1.5.65.tar

(Depending on your version of tar, you may be able to combine these operations into a single tar

xjvf command.)

Then run the installation script:

cd Apachetoolbox-1.5.65
./install.sh

Discussion

ApacheToolbox is developed and maintained by Bryan Andrews. It is a shell script that assists in the
configuration and installation of Apache. It includes support for over 100 commonly used or standard
modules.

When you run the script, you select modules from lists appearing on various screens. Once you have
decided on your list of modules, ApacheToolbox downloads the third-party modules you have selected
and the tools that you don't have installed, and then runs the Apache configure script with any
arguments needed to create the combination you have requested.

The main screen (see Figure 1-11) lists the most popular third-party modules that ApacheToolbox
can install. Select or deselect a particular module by typing the number next to that module's name.

Figure 1-11. Main screen of ApacheToolbox install

http://www.apachetoolbox.com/

Typing apache moves you to the second screen (see Figure 1-12), which lists the standard Apache

modules. Add or remove individual modules by typing the number next to their module names.

Figure 1-12. ApacheToolbox screen for standard Apache modules

You can choose options for configuring the modules on additional menus, and you can build an RPM
on your installation configuration, which you can then install on multiple machines without requiring
that ApacheToolbox be installed.

Once you have made all your module selections, type go to tell ApacheToolbox to start the

configuration process.

Your preferences are saved to a file (etc/config.cache) so that if you want to reinstall Apache with the
same configuration, you merely need to run ApacheToolbox again, and it will start up with the
selections from the last run. To upgrade to a new version of Apache, get the latest version of
ApacheToolbox, and ask it to run the installation script with your last selections (without going
through the menu process), by typing the following commands:

./install.sh --update
./install.sh --fast

The -update option requires that you have lynx installed.

Once ApacheToolbox has completed its work, you can edit the configuration script to insert or modify
arguments. Once you are satisfied and ApacheToolbox has run the configuration script, go into the
Apache source subdirectory and run make and make install to compile and install Apache:

cd apache_1.3.27
make
make install

ApacheToolbox, as of this writing, is only available for Apache 1.3. We expect
that it will be available for Apache 2.0 as soon as there are enough third-party
modules to warrant the necessary development time.

See Also

http://ApacheToolbox.Com/

[Team LiB]

http://ApacheToolbox.Com/

[Team LiB]

Recipe 1.6 Starting, Stopping, and Restarting Apache

Problem

You want to be able to start and stop the server at need, using the appropriate tools.

Solution

On Unixish systems, use the apachectl script; on Windows, use the options in the Apache folder of
the Start menu.

Discussion

The basic Apache package includes tools to make it easy to control the server. For Unixish systems,
this is usually a script called apachectl, but prepackaged distributions may replace or rename it. It
can only perform one action at a time, and the action is specified by the argument on the command
line. The options of interest are:

apachectl start

This will start the server if it isn't already running. If it is running, this option has no effect and
may produce a warning message.

apachectl graceful

This option causes the server to reload its configuration files and gracefully restart its
operation. Any current connections in progress are allowed to complete. The server will be
started if it isn't running.

apachectl restart

Like the graceful option, this one makes the server reload its configuration files. However,
existing connections are terminated immediately. If the server isn't running, this command will
try to start it.

apachectl stop

This shuts the server down immediately. Any existing connections are terminated at once.

For Windows, the MSI installation of Apache includes menu items for controlling the server, as shown
in Figure 1-13.

Figure 1-13. Using the Start menu to control Apache

Both of the solutions shown (for Unixish and Windows systems) illustrate the basic server control
operations: start, stop, and restart. The purpose of the start and stop functions should be self-
evident. Any time you modify the server-wide configuration files (such as httpd.conf), you must
restart the server for the changes to take effect.

See Also

Recipe 1.1

Recipe 1.2

[Team LiB]

[Team LiB]

Recipe 1.7 Uninstalling Apache

Problem

You have the Apache software installed on your system, and you want to remove it.

Solution

On Red Hat Linux, to remove an Apache version installed with the RPM tool, use:

rpm -ev apache

Other packaging systems may provide some similar mechanism.

On Windows, Apache can be typically removed like any other MSI-installed software (see Figure 1-
14).

Figure 1-14. Uninstalling the Apache software

Discussion

Unfortunately, there is no generic works-for-all removal method for Apache installations on Unixish
systems. Some packages, such as Red Hat's RPM, do remember what they installed so they can
remove all the pieces, as shown in the solution. However, if the software was installed by building
from the sources (see Recipe 1.4), the burden of knowing where files were put rests with the person
who did the build and install. The same applies if the software was installed from source on a
Windows system; it's only the MSI or InstallShield packages that make the appropriate connections
to allow the use of the Add/Remove Software control panel.

See Also

Recipe 1.4

[Team LiB]

[Team LiB]

Chapter 2. Adding Common Modules
There are a number of extremely popular modules for the Apache web server that are not included in
the basic distribution. Most of these are separate because of licensing or support reasons; some are
not distributed by the Apache Software Foundation because of a decision by the Apache developers;
and some are integral parts of other projects. For instance, mod_ssl for Apache 1.3 is developed and
maintained separately not only because of the U.S. export control laws (which were more restrictive
when the package was originally developed), but because it requires changes to the core software
that the Apache developers chose not to integrate.

This chapter provides recipes for installing some of the most popular of these third-party modules;
when available, there are separate recipes for installation on Unixish systems and on Windows.

The most comprehensive list of third-party modules can be found in the Apache Module Registry at
http://modules.apache.org/. Some modules are so popular-or complex-that they have entire sites
devoted to them, as do the ones listed in this chapter.

Although hundreds of third-party modules are available, many module developers are only concerned
with their single module. This means that there are potentially as many different sets of installation
instructions as there are modules. The first recipe in this chapter describes an installation process
that should work with many Apache 1.3 modules, but you should check with the individual packages'
instructions to see if they have a different or more detailed process.

Many of the modules are available from organizations that prepackage or distribute Apache software,
such as in the form of an RPM from Mandrake or Red Hat, but such prebuilt module packages include
the assumptions of the packager. In other words, if you build the server from source and use custom
locations for the files, don't be surprised if the installation of a packaged module fails.

All of the modules described in this chapter are supported with Apache 1.3 on Unixish systems. Status
of support with Apache 2.0 on Windows is shown in Table 2-1.

Table 2-1. Module support status

Module name Windows Support on Apache 2.0

mod_dav Yes Included; no installation necessary

mod_perl Yes Yes

mod_php Yes Yes

mod_snake No Unknown

mod_ssl No Included; no installation necessary

[Team LiB]

http://modules.apache.org/

[Team LiB]

Recipe 2.1 Installing a Generic Third-Party Module

Problem

You have downloaded a third-party module that isn't listed in this chapter, and you want to install it.

Solution

Move to the directory where the module's source file was unpacked, and then:

% /path/to/apache/ bin/apxs -cia module.c

Discussion

In the case of a third-party module that consists of a single .c file, there is a good chance that it can
be built and installed using the Solution. Modules that involve multiple source files should provide
their own installation instructions.

The -cia options mean to compile, install, and activate. The first is pretty straightforward; install

means put the .so file in the place Apache expects to find it, and activate means to add the module to
the httpd.conf file.

See Also

The apxs manpage, typically ServerRoot/man/man8/apxs.8

[Team LiB]

[Team LiB]

Recipe 2.2 Installing mod_dav on a Unixish System

Problem

You want to add or enable WebDAV capabilities to your server. WebDAV permits specific documents to be reliably and
securely manipulated by remote users without the need for FTP, to perform such tasks as adding, deleting, or updating
files.

Solution

If you're using Apache 2.0, mod_dav is automatically available, although you may need to enable it at compile time with
-enable-dav .

If you are using Apache 1.3, download and unpack the mod_dav source package from http://webdav.org/mod_dav/ , and
then:

% cd mod_dav-1.0.3-1.3.6

% ./configure --with- apxs=/usr/local/ apache/bin/apxs
% make
make install

Restart the server, and be sure to read Recipe 6.18 .

Discussion

mod_dav is an encapsulated and well-behaved module that is easily built and added to an existing server. To test that it
has been properly installed, you need to enable some location on the server for WebDAV management and verify access
to that location with some WebDAV-capable tool. We recommend cadaver , which is an open source command-line
WebDAV tool. (The URL for the cadaver tool is found at the end of this recipe.)

To enable your server for WebDAV operations, you need to add at least two directives to your httpd.conf file. The first
identifies the location of the locking database used by mod_dav to keep WebDAV operations from interfering with each
other; it needs to be in a directory that is writable by the server. For example:

cd /usr/local/apache
mkdir var
chgrp nobody var
chmod g+w var

Now add the following line to your httpd.conf file, outside any containers:

<IfModule mod_dav.c>
 DAVLockDB var/DAVlock
</IfModule>

The DAVLockDB location must not be on an NFS-mounted filesystem, because NFS doesn't
support the sort of locking mod_dav requires. Putting the lock database on an NFS filesystem may
result in unpredictable results.

Next, create a temporary directory for testing WebDAV functionality:

cd /usr/local/apache
mkdir htdocs/dav-test
chgrp nobody htdocs/dav-test
chmod g+w htdocs/dav-test

Add a stanza to your httpd.conf file that will enable this directory for WebDAV operations:

<Directory "/usr/local/apache/htdocs/dav-test">
 DAV On
</Directory>

Now restart your server. It should be ready to handle WebDAV operations directed to the /dav-test local URI. To test it
with the cadaver tool, try the following commands; your output should look very similar to that shown:

% cd /tmp
% echo "Plain text" > dav-test.txt
% cadaver
dav:!> open http://localhost/dav-test
Looking up hostname... Connecting to server... connected.
dav:/dav-test/> put dav-test.txt
Uploading dav-test.txt to '/dav-test/dav-test.txt': (reconnecting...done)
Progress: [= == == == == == == == == == == == == == ==>] 100.0% of 11 bytes succeeded.
dav:/dav-test/> propset dav-test.txt MyProp 1023
Setting property on 'dav-test.txt': (reconnecting...done) succeeded.
dav:/dav-test/> propget dav-test.txt MyProp
Fetching properties for 'dav-test.txt':
Value of MyProp is: 1023
dav:/dav-test/> propdel dav-test.txt MyProp
Deleting property on 'dav-test.txt': succeeded.
dav:/dav-test/> close
Connection to 'localhost' closed.
dav:!> exit
% rm dav-test.txt

Properties are attributes of a WebDAV resource. Some are managed by the system, such as the resource's size, but others
can be arbitrary and added, changed, and removed by the user.

Once you have verified that mod_dav is working correctly, remove the htdocs/dav-test directory, and the corresponding
<Directory> stanza in your httpd.conf file, and follow the guidelines in Recipe 6.18 .

See Also

Recipe 6.18

http://webdav.org/mod_dav/

http://webdav.org/cadaver/

[Team LiB]

http://webdav.org/mod_dav/
http://webdav.org/cadaver/

[Team LiB]

Recipe 2.3 Installing mod_dav on Windows

Problem

You want to enable WebDAV capabilities on your existing Apache 1.3 server with mod_dav.

Solution

Apache 2.0 includes mod_dav as a standard module, so you do not need to download and build it.

Download and unpack the mod_dav Windows package from http://webdav.org/mod_dav/win32/.
Verify that your Apache installation already has the xmlparse.dll and xmltok.dll files in the ServerRoot
directory; if they aren't there, check through the Apache directories to locate and copy them to the
ServerRoot. mod_dav requires the Expat package, which is included with versions of the Apache web
server after 1.3.9; these files hook into Expat, which mod_dav will use.

Put the mod_dav DLL file into the directory where Apache keeps its modules:

C:\>cd mod_dav-1.0.3-dev
C:\mod_dav-1.0.3-dev>copy mod_dav.dll C:\Apache\modules
C:\mod_dav-1.0.3-dev>cd \Apache

Add the following lines to your httpd.conf file:

LoadModule dav_module modules/mod_dav.dll

You may also need to add an AddModule line if your httpd.conf file includes a ClearModuleList
directive and re-adds the other modules. Alternatively, you can insert the LoadModule for mod_dav
after the ClearModuleList directive.

Discussion

mod_dav is an encapsulated and well-behaved module that is easily built and added to an existing
server. To test that it has been properly installed, you need to enable some location on the server for
WebDAV management and verify access to that location with some WebDAV-capable tool, or browse
to it in Windows Explorer, which knows how to access WebDAV locations (as of Windows 2000), or
access it from a different system where cadaver or another WebDAV tool is available.

To enable your server for WebDAV operations, you need to add at least two directives to your
ServerRoot/conf/httpd.conf file. The first identifies the location of the locking database used by
mod_dav to keep WebDAV operations from interfering with each other; it needs to be in a directory
that is writable by the server. For example:

http://webdav.org/mod_dav/win32/

C:\Apache-1.3>mkdir var

Now add the following lines to your httpd.conf file to enable WebDAV:

<IfModule mod_dav.c>
 DAVLockDB "C:/Apache-1.3/var/dav-lock"
</IfModule>

Create a temporary directory for testing mod_dav's ability to function:

C:\Apache-1.3>mkdir htdocs\dav-test

Modify the <IfModule> container to enable WebDAV operations for this test directory:

<IfModule mod_dav.c>
 DAVLockDB "C:/Apache-1.3/var/dav-lock"
 <Directory "C:/Apache-1.3/htdocs/dav-test">
 DAV On
 </Directory>
</IfModule>

Now restart your server and try accessing the /dav-test location with a WebDAV client. If you're
using cadaver from another system, see Recipe 2.2 for detailed instructions. If you want to use
Windows Explorer to test mod_dav, read the following section.

Using Windows Explorer to test mod_dav

After enabling the htdocs\dav-test directory for WebDAV operations and restarting your server, start
up Windows Explorer. Follow the steps below to access the directory using WebDAV. This can be done
on the local system or on another Windows system that can access your server system.

Click on Network Places.1.

In the righthand pane of the Windows Explorer window, you should see an item named Add
Network Place. Double-click on this item.

2.

When prompted for a location, enter:3.

http://127.0.0.1/dav-test/

If you are executing these steps on a different system, replace the 127.0.0.1 with the

correct name of the server on which you installed mod_dav.

After clicking on Next, give this location any name you like or keep the default.4.

After completing the dialog, Windows Explorer should open a new window with the name you
selected in the previous step. The window should be empty, which makes sense since the
directory is.

5.

In the main Windows Explorer window, navigate to a directory (any directory) with files in it.6.

7.

http://127.0.0.1/dav-test/

6.

Ctrl-drag a file (any file) from the main Windows Explorer window to the window that was
opened by step 5.

7.

Windows should briefly display a progress dialog window, and then the file should appear in the
destination window.

8.

Congratulations! The file was uploaded to your web server using WebDAV.

After your testing is complete, don't forget to remove the htdocs\dav-test directory and the
<Directory "C:/Apache-1.3/htdocs/dav-test"> stanza in your configuration file, or else anyone can
upload files to your server.

See Also

Recipe 6.18

http://webdav.org/mod_dav/

[Team LiB]

http://webdav.org/mod_dav/

[Team LiB]

Recipe 2.4 Installing mod_perl on a Unixish System

Problem

You want to install the mod_perl scripting module to allow better Perl script performance and easy
integration with the web server.

Solution

Download and unpack the mod_perl source package from http://perl.apache.org/. Then use the
following command:

% perl Makefile.PL \
> USE_APXS=1 \

> WITH_APXS= /usr/local/apache/bin/apxs \
> EVERYTHING=1 \
> PERL_USELARGEFILES=0
% make
% make install

Restart your server.

Discussion

mod_perl is quite a complex module, and there are several different ways to add it to your server.
This recipe is the fastest and lowest-impact one; if it doesn't suit your needs, check the various
README.* files in the package directory after unpacking. Because its primary language is Perl rather
than C, the installation instructions are significantly different from those for most other modules.

Once you have restarted your server successfully, mod_perl should be available and configured as
part of it. You can test it by making some changes to the httpd.conf file, adding a few scripts, and
seeing whether the server processes them correctly. Here is a sample set of steps to test mod_perl's
operation.

Create a directory where your mod_perl scripts can live:1.

cd ServerRoot
mkdir lib lib/perl lib/perl/Apache

Create a file named startup.pl in your server's conf/ directory that will give mod_perl some
startup instructions:

2.

http://perl.apache.org/

2.

#! /usr/bin/perl
BEGIN {
 use Apache ();
 use lib Apache->server_root_relative('lib/perl');
}
use Apache::Registry ();
use Apache::Constants ();
use CGI qw(-compile :all);
use CGI::Carp ();
1;

Next, create the lib/perl/Apache/HelloWorld.pm file that will be used for our test:3.

package Apache::HelloWorld;
use strict;
use Apache::Constants qw(:common);
sub handler {
 my $r = shift;
 $r->content_type('text/plain; charset=ISO-8859-1');
 $r->send_http_header;
 $r->print("Hello, world! Love, mod_perl.\n");
 return OK;
}
1;

Next, edit the server's configuration file to add the directives that will enable mod_perl to locate
all the pieces it needs, and tell it when to invoke the test script. Add the following lines to the
httpd.conf file:

4.

<IfModule mod_perl.c>
 PerlRequire conf/startup.pl
 <Location /mod_perl/howdy>
 SetHandler perl-script
 PerlHandler Apache::HelloWorld
 </Location>
</IfModule>

Now restart your server and request the script using http://localhost/mod_perl/howdy.5.

If your configuration is valid, the response should be a page containing simply the words, "Hello,
world! Love, mod_perl."

See Also

http://perl.apache.org/

Writing Apache Modules with Perl and C by Doug MacEachern and Lincoln Stein (O'Reilly)

http://localhost/mod_perl/howdy
http://perl.apache.org/

mod_perl Developer's Cookbook by Simon Cozens (O'Reilly)

[Team LiB]

[Team LiB]

Recipe 2.5 Installing mod_php on a Unixish System

Problem

You want to add the mod_php scripting module to your existing Apache web server.

Solution

Download the mod_php package source from the web site at http://php.net/ (follow the links for
downloading) and unpack it. Then:

% cd php-4.3.2
% ./configure \

> --with-apxs= /usr/local/apache/bin/ apxs
% make
make install

Restart the server.

Discussion

To test that your installation was successful, create a file named info.php in your server's
DocumentRoot; the file should contain the single line:

<?php phpinfo(); ?>

Add the following lines to your server's httpd.conf file:

<IfModule mod_php4.c>
 AddType application/x-httpd-php .php
 AddHandler application/x-httpd-php .php
</IfModule>

After restarting your server, try fetching the document info.php using a browser. You should see a
detailed description of the PHP options that are active.

There are numerous additional options and extensions available for PHP; the recipe given here is only
for the most basic installation.

See Also

http://php.net/

Recipe 8.15

Recipe 8.16

http://php.net/

[Team LiB]

http://php.net/

[Team LiB]

Recipe 2.6 Installing mod_php on Windows

Problem

You want to add the mod_php scripting module to your existing Apache server on Windows.

Solution

This recipe needs to be described largely in terms of actions rather than explicit commands to be
issued.

Download the PHP Windows binary .zip file with API extensions (not the .exe file) from
http://php.net/.

1.

Unpack the .zip file into a directory where you can keep its contents indefinitely (such as
C:\PHP4). If you use WinZip, be sure to select the Use folder names checkbox to preserve the
directory structure inside the .zip file.

2.

Copy the PHP4\SAPI\php4apache.dll to the \modules\ directory under your Apache installation's
ServerRoot.

3.

In a command-prompt window, change to the PHP4 directory where you unpacked the .zip file,
and type:

4.

...\PHP4>copy php.ini-dist %SYSTEMROOT%\php.ini

...\PHP4>copy php4ts.dll %SYSTEMROOT%

(If installing on Windows 95 or Windows 98, use %WINDOWS% instead of %SYSTEMROOT%.)

Edit the %SYSTEMROOT%\php.ini file, locate the line that starts with extensions_dir, and

change the value to point to the PHP4\extensions directory. For instance, if you unpacked the
.zip file into C:\PHP4, this line should look like:

5.

extensions_dir = C:\PHP4\extensions

Edit the conf\httpd.conf file under the Apache ServerRoot and add the following lines near the
other LoadModule lines:

6.

LoadModule php4_module modules/php4apache.dll

Add the following lines in some scope where they will apply to your .php files:

http://php.net/

<IfModule mod_php4.c>
 AddType application/x-httpd-php .php
</IfModule>

Restart the Apache server, and the PHP module should be active.7.

Discussion

The PHP module installation on Windows requires a lot of nit-picky manual steps. To test that your
installation was successful, create a file named info.php in your server's DocumentRoot; the file
should contain the single line:

<?php phpinfo(); ?>

After restarting your server, try fetching the document info.php from it using a browser. You should
see a detailed description of the PHP options that are active.

There are numerous additional options and extensions available for PHP; the recipe given here is only
the most basic installation. See the install.txt file in the PHP4 directory and the documentation on the
web site for more details.

See Also

http://php.net/

[Team LiB]

http://php.net/

[Team LiB]

Recipe 2.7 Installing the mod_snake Python Module

Problem

You want to add the mod_snake Python scripting module to your existing Apache server.

Solution

To install mod_snake on a Unixish system, download the source from the
http://modsnake.sourceforge.net/ web site (follow the link for downloading), unpack it, and then:

% cd mod_snake-0.5.0

% ./configure --with-apxs= /usr/local/apache/bin/apxs
% make
make install

Restart the server.

At the time of this writing, mod_snake cannot be installed on Windows.

Discussion

mod_snake is a fairly standard Apache module; it can be added to an existing Apache installation
without any source-level changes. It requires that you have Python installed, and that the apxs script
has been properly configured and installed as part of the web server package.

See the README and INSTALL files in the unpacked package directory, and the HTML documentation
in the examples/tut/ directory, for additional information, examples, and ways to test that your
installation was successful.

See Also

Recipe 2.1

http://modsnake.sourceforge.net/

[Team LiB]

http://modsnake.sourceforge.net/
http://modsnake.sourceforge.net/

[Team LiB]

Recipe 2.8 Installing mod_ssl

Problem

You want to add SSL support to your Apache server with the mod_ssl secure HTTP module.

Solution

Windows

At the time of this writing, there is no supported means of installing mod_ssl on Windows.
Apache 2.0

mod_ssl is included with 2.0, although it is not automatically compiled nor installed when you
build from source. You need to include the -enable-ssl option on your ./configure line, and
enable it with LoadModule and AddModule directives.

Apache 1.3

To install mod_ssl on a Unixish system, download the tarball package from the
http://www.modssl.org/ web site and unpack it. Then:

% cd mod_ssl-2.8.14-1.3.27
% ./configure \

> --with-apache=.. /apache_1.3.27 \
> --with-ssl=SYSTEM \

> --prefix= /usr/local/apache
% cd ../apache_1.3.27
% make
% make certificate

Discussion

The mod_ssl package requires source-level changes to the base Apache code, and so the version of
the mod_ssl package you install must match the version of the Apache distribution you have. If your
Apache installation doesn't include the source (such as if you installed a binary-only RPM or other
vendor distribution), you won't be able to add mod_ssl to it.

In addition to the Apache source, mod_ssl requires that you have Perl and the OpenSSL libraries
installed. The -with-ssl option on the build configuration statement indicates where this is located; if
it is in a vendor distributed directory, the special keyword SYSTEM tells the build to look for it, and you

don't have to find it yourself.

Unlike most other Apache modules, when adding mod_ssl you run the ./configure script that's in
mod_ssl's directory rather than the one in the Apache source directory; the module's script makes

http://www.modssl.org/

changes to Apache's and then invokes it directly.

This recipe is the bare basics; there are many optional components and features that mod_ssl allows
you to specify at configuration time. For more information, consult the README and INSTALL files in
the mod_ssl source directory, or the mod_ssl web site at http://www.modssl.org/.

See Also

Recipe 7.2

http://www.modssl.org/

[Team LiB]

http://www.modssl.org/
http://www.modssl.org/

[Team LiB]

Chapter 3. Logging
Apache can, and usually does, record information about every request it processes. Controlling how
this is done and extracting useful information out of these logs after the fact is at least as important
as gathering the information in the first place.

The logfiles may record two types of data: information about the request itself, and possibly one or
more messages about abnormal conditions encountered during processing (such as file permissions).
You, as the webmaster, have a limited amount of control over the logging of error conditions, but a
great deal of control over the format and amount of information logged about request processing
(activity logging). The server may log activity information about a request in multiple formats in
mulitple log files, but it will only record a single copy of an error message.

One aspect of activity logging you should be aware of is that the log entry is formatted and written
after the request has been completely processed. This means that the interval between the time a
request begins and when it finishes may be long enough to make a difference.

For example, if your logfiles are rotated while a particularly large file is being downloaded, the log
entry for the request will appear in the new logfile when the request completes, rather than in the old
logfile when the request was started. In contrast, an error message is written to the error log as soon
as it is encountered.

The web server will continue to record information in its logfiles as long as it's running. This can result
in extremely large logfiles for a busy site and uncomfortably large ones even for a modest site. To
keep the file sizes from growing ever larger, most sites rotate or roll over their logfiles on a semi-
regular basis. Rolling over a logfile simply means persuading the server to stop writing to the current
file and start recording to a new one. Due to Apache's determination to see that no records are lost,
cajoling it to do this according to a specific timetable may require a bit of effort; some of the recipes
in this chapter cover how to accomplish the task successfully and reliably (see Recipe 3.8 and Recipe
3.9).

The log declaration directives, CustomLog and ErrorLog, can appear inside <VirtualHost> containers,
outside them (in what's called the main or global server, or sometimes the global scope), or both.
Entries will only be logged in one set or the other; if a <VirtualHost> container applies to the request
or error and has an applicable log directive, the message will be written only there and won't appear
in any globally declared files. On the other hand, if no <VirtualHost> log directive applies, the server
will fall back on logging the entry according to the global directives.

However, whichever scope is used for determining what logging directives to use, all CustomLog
directives in that scope are processed and treated independently. That is, if you have a CustomLog
directive in the global scope and two inside a <VirtualHost> container, both of these will be used.
Similarly, if a CustomLog directive uses the env= option, it has no effect on what requests will be
logged by other CustomLog directives in the same scope.

Activity logging has been around since the Web first appeared, and it didn't take long for the original
users to decide what items of information they wanted logged. The result is called the common log
format (CLF). In Apache terms, this format is:

"%h %l %u %t \"%r\" %>s %b"

That is, it logs the client's hostname or IP address, the name of the user on the client (as defined by
RFC 1413 and if Apache has been told to snoop for it with an IdentityCheck On directive), the
username with which the client authenticated (if weak access controls are being imposed by the
server), the time at which the request was received, the actual HTTP request line, the final status of
the server's processing of the request, and the number of bytes of content that were sent in the
server's response.

Before long, as the HTTP protocol advanced, the common log format was found to be wanting, so an
enhanced format, called the combined log format, was created:

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

The two additions were the Referer (it's spelled incorrectly in the specifications) and the User-
agent. These are the URL of the page that linked to the document being requested, and the name

and version of the browser or other client software making the request.

Both of these formats are widely used, and many logfile analysis tools assume log entries are made
in one or the other.

The Apache web server's standard activity logging module allows you to create your own formats; it
is highly configurable and is called (surprise!) mod_log_config. Apache 2.0 has an additional module,
mod_logio, which enhances mod_log_config with the ability to log the number of bytes actually
transmitted or received over the network. If these doesn't meet your requirements, though, there
are a significant number of third-party modules available from the module registry at
http://modules.apache.org/.

The status code entry in the common and combined log formats deserve some mention, because its

meaning is not immediately clear. The status codes are defined by the HTTP protocol specification
documents (currently RFC 2616 at ftp://ftp.isi.edu/in-notes/rfc2616.txt). Table 3-1 gives a brief
description of the codes defined at the time of this writing.

Table 3-1. HTTP status codes

Code Abstract

Informational 1xx

100 Continue

101 Switching protocols

Successful 2xx

200 OK

201 Created

202 Accepted

203 Nonauthoritative information

http://modules.apache.org/

Code Abstract

204 No content

205 Reset content

206 Partial content

Redirection 3xx

300 Multiple choices

301 Moved permanently

302 Found

303 See other

304 Not modified

305 Use proxy

306 (Unused)

307 Temporary redirect

Client error 4xx

400 Bad request

401 Unauthorized

402 Payment required

403 Forbidden

404 Not found

405 Method not allowed

406 Not acceptable

407 Proxy authentication required

408 Request timeout

409 Conflict

410 Gone

411 Length required

412 Precondition failed

413 Request entity too large

414 Request-URI too long

415 Unsupported media type

416 Requested range not satisfiable

417 Expectation failed

204 No content

205 Reset content

206 Partial content

Redirection 3xx

300 Multiple choices

301 Moved permanently

302 Found

303 See other

304 Not modified

305 Use proxy

306 (Unused)

307 Temporary redirect

Client error 4xx

400 Bad request

401 Unauthorized

402 Payment required

403 Forbidden

404 Not found

405 Method not allowed

406 Not acceptable

407 Proxy authentication required

408 Request timeout

409 Conflict

410 Gone

411 Length required

412 Precondition failed

413 Request entity too large

414 Request-URI too long

415 Unsupported media type

416 Requested range not satisfiable

417 Expectation failed

Code Abstract

Server error 5xx

500 Internal server error

501 Not implemented

502 Bad gateway

503 Service unavailable

504 Gateway timeout

505 HTTP version not supported

The one-line descriptions shown in Table 3-1 are sometimes terse to the point of being confusing, but
they should at least give you an inkling of what the server thinks happened. The first digit is used to
separate the codes into classes or categories; for example, all codes starting with 5 indicate there is a

problem handling the request, and the server thinks the problem is on its end rather than on the
client's end.

For a complete description of the various status codes, you'll need to read a document about the
HTTP protocol or the RFC itself.

[Team LiB]

Server error 5xx

500 Internal server error

501 Not implemented

502 Bad gateway

503 Service unavailable

504 Gateway timeout

505 HTTP version not supported

The one-line descriptions shown in Table 3-1 are sometimes terse to the point of being confusing, but
they should at least give you an inkling of what the server thinks happened. The first digit is used to
separate the codes into classes or categories; for example, all codes starting with 5 indicate there is a

problem handling the request, and the server thinks the problem is on its end rather than on the
client's end.

For a complete description of the various status codes, you'll need to read a document about the
HTTP protocol or the RFC itself.

[Team LiB]

[Team LiB]

Recipe 3.1 Getting More Details in Your Log Entries

Problem

You want to add a little more detail to your access log entries.

Solution

Use the combined log format, rather than the common log format:

CustomLog logs/access_log combined

Discussion

The default Apache logfile enables logging with the common log format, but it also provides the
combined log format as a predefined LogFormat directive.

The combined log format offers two additional pieces of information not included in the common log
format: the Referer (where the client linked from) and the User-agent (what browser they are

using).

Every major logfile parsing software package is able to handle the combined format as well as the
common format, and many of them give additional statistics based on these added fields. So you lose
nothing by using this format and potentially gain some additional information.

See Also

http://httpd.apache.org/docs/mod/mod_log_config.html

http://httpd.apache.org/docs-2.0/mod/mod_log_config.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_log_config.html
http://httpd.apache.org/docs-2.0/mod/mod_log_config.html

[Team LiB]

Recipe 3.2 Getting More Detailed Errors

Problem

You want more information in the error log in order to debug a problem.

Solution

Change (or add) the LogLevel line in your httpd.conf file. There are several possible arguments, which
are enumerated below:

For example:

LogLevel Debug

Discussion

There are several hierarchical levels of error logging available, each identified by its own keyword. The
default value of LogLevel is warn . Listed in descending order of importance, the possible values are:

emerg

Emergencies; web server is unusable
alert

Action must be taken immediately
crit

Critical conditions
error

Error conditions
warn

Warning conditions
notice

Normal but significant condition
info

Informational
debug

Debug-level messages

emerg results in the least information being recorded and debug in the most. However, at debug level

a lot of information will probably be recorded that is unrelated to the issue you're investigating, so it's
a good idea to revert to the previous setting when the problem is solved.

Even though the various logging levels are hierarchical in nature, one oddity is that notice level
messages are always logged regardless of the setting of the LogLevel directive.

The severity levels are rather loosely defined and even more loosely applied. In other words, the
severity at which a particular error condition gets logged is decided at the discretion of the developer
who wrote the code-your opinion may differ.

Here are some sample messages of various severities:

[Thu Apr 18 01:37:40 2002] [alert] [client 64.152.75.26] /home/smith/public_html/
 test/.htaccess: Invalid command 'Test', perhaps mis-spelled or defined by a
 module not included in the server configuration
[Thu Apr 25 22:21:58 2002] [error] PHP Fatal error: Call to undefined function:
 decode_url() in /usr/apache/htdocs/foo.php on line 8
[Mon Apr 15 09:31:37 2002] [warn] pid file /usr/apache/logs/httpd.pid overwritten --
 Unclean shutdown of previous Apache run?
[Mon Apr 15 09:31:38 2002] [info] Server built: Apr 12 2002 09:14:06
[Mon Apr 15 09:31:38 2002] [notice] Accept mutex: sysvsem (Default: sysvsem)

These are fairly normal messages that you might encounter on a production web server. If you set the
logging level to Debug , however, you might see many more messages of cryptic import, such as:

[Thu Mar 28 10:29:50 2002] [debug] proxy_cache.c(992): No CacheRoot, so no caching.
 Declining.
[Thu Mar 28 10:29:50 2002] [debug] proxy_http.c(540): Content-Type: text/html

These are exactly what they seem to be: debugging messages intended to help an Apache developer
figure out what the proxy module is doing.

See Also

At the time of this writing, there is an effort underway to provide a dictionary of Apache error
messages, what they mean, and what to do about the conditions they report, but it doesn't have
anything concrete to show at this point. When it does, it should be announced at the Apache server
developer site:

http://httpd.apache.org/dev/

It will be mentioned on this book's companion web site, as well:

http://Apache-Cookbook.Com/

In addition, see the detailed documentation of the LogLevel directive at the Apache site:

http://httpd.apache.org/docs/mod/core.html#loglevel

[Team LiB]

http://httpd.apache.org/dev/
http://Apache-Cookbook.Com/
http://httpd.apache.org/docs/mod/core.html#loglevel

[Team LiB]

Recipe 3.3 Logging POST Contents

Problem

You want to record data submitted with the POST method, such as from a web form.

Solution

Generally not possible in Apache 1.3 unless the POST-handling module explicitly records the data;
possible in Apache 2.0 via input filter functionality, but no such filters are available at the time of this
writing.

Discussion

In Version 1.3 of Apache, only one module receives the chance to process the message body of a
request, which contains the POST variable settings, and it's up to this module to record them. The
request information is read from the network exactly once by the module chosen by the server to
handle the response, and therefore, the information isn't available to the logging phase, which follows
the content handling phase.

For example, if you're using mod_perl, you may be able to record the information if the content
handler that delivers the response is a Perl script being handled by mod_perl.

See Also

Watch this book's web site for updates about the availability of an input filter to do this:

http://Apache-Cookbook.Com/

See various articles on the Web about Apache 2.0 filters, such as:

http://OnLAMP.Com/apache/
http://ApacheToday.Com/

[Team LiB]

http://Apache-Cookbook.Com/
http://OnLAMP.Com/apache/
http://ApacheToday.Com/

[Team LiB]

Recipe 3.4 Logging a Proxied Client's IP Address

Problem

You want to log the IP address of the actual client requesting your pages, even if they're being
requested through a proxy.

Solution

None.

Discussion

Unfortunately, the HTTP protocol itself prevents this from being possible. From the client side, proxies
are intended to be completely transparent; from the side of the origin server, where the content
actually resides, they are meant to be almost utterly opaque, concealing the identity of a request.

Your best option is to log the IP address from which the request came. If it came directly from a
browser, it will be the client's address; if it came through one or more proxy servers, it will be the
address of the one that actually contacts your server.

Both the combined and common log formats include the %h format effector, which represents the
(remote) client's identity. However, this may be a hostname rather than an address, depending on
the setting of your HostNameLookups directive, among other things. If you always want the client's
IP address to be included in your logfile, use the %a effector instead.

See Also

The HTTP protocol specification at ftp://ftp.isi.edu/in-notes/rfc2616.txt

[Team LiB]

[Team LiB]

Recipe 3.5 Logging Client MAC Addresses

Problem

You want to record the MAC (hardware) address of clients that access your server.

Solution

This cannot be logged reliably in most network situations and not by Apache at all.

Discussion

The MAC address is not meaningful except on local area networks (LANs) and is not available in wide-
area network transactions. When a network packet goes through a router, such as when leaving a
LAN, the router will typically rewrite the MAC address field with the router's hardware address.

See Also

The TCP/IP protocol specifications (see http://www.rfc-editor.org/cgi-bin/rfcsearch.pl and
search for "TCP" in the title field)

[Team LiB]

http://www.rfc-editor.org/cgi-bin/rfcsearch.pl

[Team LiB]

Recipe 3.6 Logging Cookies

Problem

You want to record all the cookies sent to your server by clients and all the cookies your server asks
clients to set in their databases; this can be useful when debugging web applications that use cookies.

Solution

To log cookies received from the client:

CustomLog logs/cookies_in.log "%{UNIQUE_ID}e %{Cookie}i"
CustomLog logs/cookies2_in.log "%{UNIQUE_ID}e %{Cookie2}i"

To log cookie values set and sent by the server to the client:

CustomLog logs/cookies_out.log "%{UNIQUE_ID}e %{Set-Cookie}o"
CustomLog logs/cookies2_out.log "%{UNIQUE_ID}e %{Set-Cookie2}o"

Using the %{Set-Cookie}o format effector for debugging is not recommended if multiple cookies are (or
may be) involved. Only the first one will be recorded in the logfile. See the Discussion text for an
example.

At the time of this writing, the Apache package includes no way to record all
cookie values, but one of the authors of this book is working on one. When it's
available, it should be mentioned on this book's web site, http://Apache-
Cookbook.Com /.

Discussion

Cookie fields tend to be very long and complex, so the previous statements will create separate files for
logging them. The cookie log entries can be correlated against the client request access log using the
server-set UNIQUE_ID environment variable (assuming that mod_unique_id is active in the server and

that the activity log format includes the environment variable with a %{UNIQUE_ID}e format effector).

At the time of this writing, the Cookie and Set-Cookie header fields are most commonly used. The
Cookie2 and corresponding Set-Cookie2 fields are newer and have been designed to correct some of

the shortcomings in the original specifications, but they haven't yet achieved much penetration.

Because of the manner in which the syntax of the cookie header fields has changed over time, these
logging instructions may or may not capture the complete details of the cookies.

Bear in mind that these logging directives will record all cookies, and not just the ones in which you may
be particularly interested. For example, here is the log entry for a client request that included two
cookies, one named RFC2109-1 and one named RFC2109-2 :

PNCSUsCoF2UAACI3CZs RFC2109-1="This is an old-style cookie, with space characters
 embedded"; RFC2109-2=This_is_a_normal_old-style_cookie

Even though there's only one log entry, it contains information about two cookies.

On the cookie-setting side, here are the Set-Cookie header fields sent by the server in its response

header:

Set-Cookie: RFC2109-1="This is an old-style cookie, with space characters embedded";
 Version=1; Path=/; Max-Age=60; Comment="RFC2109 demonstration cookie"
Set-Cookie: RFC2109-2=This_is_a_normal_old-style_cookie; Version=1; Path=/; Max-
 Age=60; Comment="RFC2109 demonstration cookie"

And here's the corresponding log entry for the response:

PNCSUsCoF2UAACI3CZs RFC2109-1="This is an old-style cookie, with space characters
 embedded"; Version=1; Path=/; Max-Age=60; Comment="RFC2109 demonstration cookie"

As you can see, the logging of the Cookie field in the request header was handled correctly, but only

one of the Set-Cookie fields in the response header was logged.

See Also

RFC 2109, "HTTP State Management Mechanism " (IETF definition of Cookie and Set-Cookie

header fields) at ftp://ftp.isi.edu/in-notes/rfc2109.txt

RFC 2165, "HTTP State Management Mechanism " (IETF definition of Cookie2 and Set-Cookie2

header fields) at ftp://ftp.isi.edu/in-notes/rfc2165.txt

The original Netscape cookie proposal at http://home.netscape.com/newsref/std/cookie_spec.html

[Team LiB]

[Team LiB]

Recipe 3.7 Not Logging Image Requests from Local
Pages

Problem

You want to log requests for images on your site, except when they're requests from one of your own
pages. You might want to do this to keep your logfile size down, or possibly to track down sites that
are hijacking your artwork and using it to adorn their pages.

Solution

Use SetEnvIfNoCase to restrict logging to only those requests from outside of your site:

<FilesMatch \.(jpg|gif|png)$>
 SetEnvIfNoCase Referer "^http://www.example.com/" local_referrer=1
</FilesMatch>
CustomLog logs/access_log combined env=!local_referrer

Discussion

In many cases, documents on a web server include references to images also kept on the server, but
the only item of real interest for log analysis is the referencing page itself. How can you keep the
server from logging all the requests for the images that happen when such a local page is accessed?

The SetEnvIfNoCase will set an environment variable if the page that linked to the image is from the
www.example.com site (obviously you should replace that site name with your own) and the request
is for a GIF, PNG, or JPEG image.

SetEnvIfNoCase is the same as SetEnvIf except that variable comparisons are
done in a case-insensitive manner.

The CustomLog directive will log all requests that do not have that environment variable set, i.e.,
everything except requests for images that come from links on your own pages.

This recipe only works for clients that actually report the referring page. Some people regard the URL
of the referring page to be no business of anyone but themselves, and some clients permit the user
to select whether to include this information or not. There are also "anonymising" sites on the
Internet that act as proxies and conceal this information.

See Also

Recipe 6.5

[Team LiB]

[Team LiB]

Recipe 3.8 Logging Requests by Day or Hour

Problem

You want to automatically roll over the Apache logs at specific times without having to shut down and
restart the server.

Solution

Use CustomLog and the rotatelogs program:

CustomLog "| /path/to/rotatelogs /path/to/logs/access_log.%Y-%m-%d 86400" combined

Discussion

The rotatelogs script is designed to use an Apache feature called piped logging, which is just a fancy
name for sending log output to another program rather than to a file. By inserting the rotatelogs
script between the web server and the actual logfiles on disk, you can avoid having to restart the
server to create new files; the script automatically opens a new file at the designated time and starts
writing to it.

The first argument to the rotatelogs script is the base name of the file to which records should be
logged. If it contains one or more % characters, it will be treated as a strftime(3) format string;
otherwise, the rollover time (in seconds since 1 January 1970), in the form of a 10-digit number, will
be appended to the base name. For example, a base name of foo would result in logfile names like

foo.1020297600, whereas a base name of foo.%Y-%m-%d would cause the logfiles to be named
something like foo.2002-04-29.

The second argument is the interval (in seconds) between rollovers. Rollovers will occur whenever
the system time is a multiple of this value. For instance, a 24-hour day contains 86,400 seconds; if
you specify a rollover interval of 86400, a new logfile will be created every night at midnight-when
the system time, which is based at representing midnight on 1 January 1970, is a multiple of 24
hours.

Note that the rollover interval is in actual clock seconds elapsed, so when time
changes because of daylight savings, this does not in any way affect the
interval between rollovers.

See Also

The rotatelogs manpage; try
% man -M /path/to/ServerRoot /man rotatelogs.8

replacing the /path/to/ServerRoot with the actual value of your installation's ServerRoot

directive in httpd.conf

[Team LiB]

[Team LiB]

Recipe 3.9 Rotating Logs on the First of the Month

Problem

You want to close the previous month's logs and open new ones on the first of each month.

Solution

The Apache distribution doesn't include a canned script to perform this duty, but you can find one on
this book's companion site at http://Apache-Cookbook.Com/sources/Chapter04/rotate-log-
monthly.pl.

You use it by piping the desired activity log through the script, such as with:

CustomLog "| rotate-log-monthly.pl logs/access_log-%Y-%M" CLF

The argument to the script is the name of the logfile; the special sequences beginning with % are
passed to strftime(3) to form the new logfile name.

Discussion

As with the other logging solutions in this chapter, the solution given here addresses a single specific
need. If you want to combine functions, such as splitting logfiles according to virtual host and rotating
them on the first of each month, you are going to need to use custom scripts.

The rotate-log-monthly.pl script is a rather brute-force approach and may not be appropriate for
extremely high traffic servers due to its sampling of the system time at each log entry. However, it
illustrates the technique.

See Also

http://httpd.apache.org/docs/logs.html#piped

[Team LiB]

http://Apache-Cookbook.Com/sources/Chapter04/rotate-log-
http://httpd.apache.org/docs/logs.html#piped

[Team LiB]

Recipe 3.10 Logging Hostnames Instead of IP Addresses

Problem

You want to see hostnames in your activity log instead of IP addresses.

Solution

You can let the web server resolve the hostname when it processes the request by enabling runtime
lookups with the Apache directive:

HostnameLookups On

Or, you can let Apache use the IP address during normal processing and let a piped logging process
resolve them as part of recording the entry:

HostnameLookups Off

CustomLog "| /path/to/logresolve -c >> /path/to/logs/access_log.resolved" combined

Or, you can let Apache use and log the IP addresses, and resolve them later when analyzing the
logfile. Add this to http.conf:

CustomLog /path/to/logs/access_log.raw combined

And analyze the log with:

% /path/to/logresolve -c < access_log.raw > access_log.resolved

Discussion

The Apache activity logging mechanism can record either the client's IP address or its hostname (or
both). Logging the hostname directly requires that the server spend some time to perform a DNS
lookup to turn the IP address (which it already has) into a hostname. This can have some serious
impact on the server's performance, however, because it needs to consult the name service in order
to turn the address into a name; and while a server child or thread is busy waiting for that, it isn't
handling client requests. One alternative is to have the server record only the client's IP address and
resolve the address to a name during logfile postprocessing and analysis. At the very least, defer it to
a separate process that won't directly tie up the web server with the resolution overhead.

In theory this is an excellent choice; in practice, however, there are some pitfalls. For one thing, the
logresolve application included with Apache (usually installed in the bin/ subdirectory under the
ServerRoot) will only resolve IP addresses that appear at the very beginning of the log entry, and so

it's not very flexible if you want to use a nonstandard format for your logfile. For another, if too much

time passes between the collection and resolution of the IP addresses, the DNS may have changed
sufficiently so that misleading or incorrect results may be obtained. This is especially a problem with
dynamically allocated IP addresses such as those issued by ISPs.

An additional shortcoming becomes apparent if you feed your log records directly to logresolve
through a pipe: as of Apache 1.3.24 at least, logresolve doesn't flush its output buffers immediately,
so there's the possibility of lost data if the logging process or the system should crash.

See Also

The logresolve manpage:
% man -M /path/to/ServerRoot /man/logresolve.8

[Team LiB]

[Team LiB]

Recipe 3.11 Maintaining Separate Logs for Each Virtual
Host

Problem

You want to have separate activity logs for each of your virtual hosts, but you don't want to have all
the open files that multiple CustomLog directives would use.

Solution

Use the split-logfile program that comes with Apache. To split logfiles after they've been rolled over
(replace /path/to/ServerRoot with the correct path):

cd /path/to /ServerRoot
mv logs/access_log logs/access_log.old
bin/apachectl graceful

 [wait for old logfile to be completely closed]
cd logs
../bin/split-logfile < access_log.old

To split records to the appropriate files as they're written, add this line to your httpd.conf file:

CustomLog "| /path/to/split-logfile /usr/local/Apache/logs" combined

Discussion

In order for split-logfile to work, the logging format you're using must begin with "%v " (note the
blank after the v). This inserts the name of the virtual host at the beginning of each log entry; split-

logfile will use this to figure out to which file the entry should be written. The hostname will be
removed from the record before it gets written.

There are two ways to split your access logfile: after it's been written, closed, and rolled over, or as
the entries are actually being recorded. To split a closed logfile, just feed it into the split-logfile script.
To split the entries into separate files as they're actually being written, modify your configuration to
pipe the log messages directly to the script.

Each method has advantages and disadvantages. The rollover method requires twice as much disk
space (for the unsplit log plus the split ones) and that you verify that the logfile is completely closed.
(Unfortunately there is no guaranteed, simple way of doing this without actually shutting down the
server or doing a graceless restart; it's entirely possible that a slow connection may keep the old
logfile open for a considerable amount of time after a graceful restart.) Splitting as the entries are
recorded is sensitive to the logging process dying-although Apache will automatically restart it, log

messages waiting for it can pile up and constipate the server.

See Also

Recipe 3.10

[Team LiB]

[Team LiB]

Recipe 3.12 Logging Proxy Requests

Problem

You want to log requests that go through your proxy to a different file than the requests coming
directly to your server.

Solution

Use the SetEnv directive to earmark those requests that came through the proxy server, in order to
trigger conditional logging:

<Directory proxy:*>
 SetEnv is_proxied 1
</Directory>
CustomLog logs/proxy_log combined env=is_proxied

Discussion

Apache 1.3 has a special syntax for the <Directory> directive, which applies specifically to requests
passing through the proxy module. Although the * makes it appear that wildcards can be used to

match documents, it's misleading; it isn't really a wildcard. You may either match explicit paths, such
as proxy:http://example.com/foo.html, or use * to match everything. You can not do something like

proxy:http://example.com/*.html.

If you want to apply different directives to different proxied paths, you need to take advantage of
another module. Because you're dealing with requests that are passing through your server rather
than being handled by it directly (i.e., your server is a proxy rather than an origin server), you can't
use <Files> or <FilesMatch> containers to apply directives to particular proxied documents. Nor can
you use <Location> or <LocationMatch> stanzas, because they can't appear inside a <Directory>
container. You can, however, use mod_rewrite's capabilities to make decisions based on the path of
the requested document. For instance, you can log proxied requests for images in a separate file with
something like this:

<Directory proxy:*>
 RewriteEngine On
 RewriteRule "\.(gif|png|jpg)$" "-" [ENV=proxied_image:1]
 RewriteCond "%{ENV:proxied_image}" "!1"
 RewriteRule "^" "-" [ENV=proxied_other:1]
</Directory>
CustomLog logs/proxy_image_log combined env=proxied_image
CustomLog logs/proxy_other_log combined env=proxied_other

Directives in the <Directory proxy:*> container will only apply to requests going through your
server. The first RewriteRule directive sets an environment variable if the requested document ends
in .gif, .png, or .jpg. The RewriteCond directive tests to see if that envariable isn't set, and the
following RewriteRule will set a different envariable if so. The two CustomLog directives send the
different types of requests to different logfiles according to the environment variables.

See Also

The mod_rewrite and mod_log_config documentation

[Team LiB]

[Team LiB]

Recipe 3.13 Logging Errors for Virtual Hosts to Multiple
Files

Problem

Unlike access logs, Apache only logs errors to a single location. You want Apache to log errors that
refer to a particular virtual host to the host's error log, as well as to the global error log.

Solution

There are at least two possible ways of doing this:

Use piped logging to send entries to a custom script that will copy and direct error messages to
the appropriate files.

1.

Use piped logging to duplicate log entries:2.

ErrorLog "| tee logfile1 | tee logfile2 > logfile3"

Discussion

Unlike activity logs, Apache will log error messages only to a single location. If the error is related to
a particular virtual host and this host's <VirtualHost> container includes an ErrorLog entry, the error
will be logged only in this file, and it won't appear in any global error log. If the <VirtualHost> does
not specify an ErrorLog directive, the error will be logged only to the global error log. (The global
error log is the last ErrorLog directive encountered that isn't in a <VirtualHost> container.)

Currently, the only workaround to this is to have the necessary duplication performed by a separate
process (i.e., by using piped logging to send the error messages to the process as they occur). Of the
two solutions given above, the first, which involves a custom script you develop yourself, has the
most flexibility. If all you want is simply duplication of entries, the second solution is simpler but
requires that your platform have a tee program (Windows does not). It may also be subject to
lagging messages if your tee program doesn't flush its buffers after each record it receives. This could
also lead to lost messages if the pipe breaks or the system crashes.

See Also

http://httpd.apache.org/docs/logs.html#piped

http://httpd.apache.org/docs/logs.html#piped

[Team LiB]

[Team LiB]

Recipe 3.14 Logging Server IP Addresses

Problem

You want to log the IP address of the server that responds to a request, possibly because you have
virtual hosts with multiple addresses each.

Solution

Use the %A format effector in a LogFormat or CustomLog directive:

CustomLog logs/served-by.log "%{UNIQUE_ID}e %A"

Discussion

The %A effector signals the activity logging system to insert the local IP address-that is, the address
of the server-into the log record at the specified point. This can be useful when your server handles
multiple IP addresses. For example, you might have a configuration that includes elements such as
the following:

Listen 10.0.0.42
Listen 192.168.19.243
Listen 263.41.0.80
<VirtualHost 192.168.19.243>
 ServerName Private.Example.Com
</VirtualHost>
<VirtualHost 10.0.0.42 263.41.0.80>
 ServerName Foo.Example.Com
 ServerAlias Bar.Example.Com
</VirtualHost>

This might be meaningful if you want internal users to access Foo.Example.Com using the 10.0.0.42

address rather than the one published to the rest of the network (such as to segregate internal from
external traffic over the network cards). The second virtual host is going to receive requests aimed at
both addresses even though it has only one ServerName; using the %A effector in your log format
can help you determine how many hits on the site are coming in over each network interface.

See Also

The mod_log_config documentation

[Team LiB]

[Team LiB]

Recipe 3.15 Logging the Referring Page

Problem

You want to record the URL of pages that refer clients to yours, perhaps to find out how people are
reaching your site.

Solution

Add the following effector to your activity log format:

%{Referer}i

Discussion

One of the fields that a request header may include is called the Referer. Referer is the URL of the

page that linked to the current request. For example, if file a.html contains a link such as:

another page

When the link is followed, the request header for b.html will contain a Referer field that has the URL

of a.html as its value.

The Referer field is not required nor reliable; some users prefer software or anonymising tools that
ensure that you can't tell where they've been. However, this is usually a fairly small number and may
be disregarded for most web sites.

See Also

Recipe 3.17

Recipe 6.5

[Team LiB]

[Team LiB]

Recipe 3.16 Logging the Name of the Browser Software

Problem

You want to know the software visitors use to access your site, for example, so you can optimize its
appearance for the browser that most of your audience uses.

Solution

Add the following effector to your activity log format:

%{User-Agent}i

Discussion

Request headers often include a field called the User-agent. This is defined as the name and version
of the client software being used to make the request. For instance, a User-agent field value might

look like this:

User-Agent: Mozilla/4.77 [en] (X11; U; Linux 2.4.4-4GB i686)

This tells you that the client is claiming to be Netscape Navigator 4.77, run on a Linux system and
using X-windows as its GUI.

The User-agent field is neither required nor reliable; many users prefer software or anonymising

tools that ensure that you can't tell what they're using. Some software even lies about itself so it can
work around sites that cater specifically to one browser or another; users have this peculiar habit of
thinking it's none of the webmaster's business which browser they prefer. It's a good idea to design
your site to be as browser-agnostic as possible for this reason, among others. If you're going to
make decisions based on the value of the field, you might as well believe it hasn't been
faked-because there's no way to tell if it has.

See Also

Recipe 3.17

[Team LiB]

[Team LiB]

Recipe 3.17 Logging Arbitrary Request Header Fields

Problem

You want to record the values of arbitrary fields clients send to their request header, perhaps to tune
the types of content you have available to the needs of your visitors.

Solution

Use the %{...}i log format variable in your access log format declaration. For example, to log the
Host header, you might use:

%{Host}i

Discussion

The HTTP request sent by a web browser can be very complex, and if the client is a specialized
application rather than a browser, it may insert additional metadata that's meaningful to the server.
For instance, one useful request header field is the Accept field, which tells the server what kinds of

content the client is capable of and willing to receive. Given a CustomLog line such as this:

CustomLog logs/accept_log "%{UNIQUE_ID}e \"%{Accept}i\""

a resulting log entry might look like this:

PNb6VsCoF2UAAH1dAUo "text/html, image/png, image/jpeg, image/gif,
 image/x-xbitmap, */*"

This tells you that the client that made that request is explicitly ready to handle HTML pages and
certain types of images, but, in a pinch, will take whatever the server gives it (indicated by the
wildcard */* entry).

See Also

Recipe 3.15

Recipe 3.17

[Team LiB]

[Team LiB]

Recipe 3.18 Logging Arbitrary Response Header Fields

Problem

You want to record the values of arbitrary fields the server has included in a response header,
probably to debug a script or application.

Solution

Use the %{...}o log format variable in your access log format declaration. For example, to log the
Last-Modified header, you would do the following:

%{Last-Modified}o

Discussion

The HTTP response sent by Apache when answering a request can be very complex, according to the
server's configuration. Advanced scripts or application servers may add custom fields to the server's
response, and knowing what values were set may be of great help when trying to track down an
application problem.

Other than the fact that you're recording fields the server is sending rather than receiving, this recipe
is analogous to Recipe 3.17 in this chapter; refer to that recipe for more details. The only difference
in the syntax of the logging format effectors is that response fields are logged using an o effector,
and request fields are logged using i.

See Also

Recipe 3.17

[Team LiB]

[Team LiB]

Recipe 3.19 Logging Activity to a MySQL Database

Problem

Rather than logging accesses to your server in flat text files, you want to log the information directly
to a database for easier analysis.

Solution

Install the latest release of mod_log_sql from http://www.grubbybaby.com/mod_log_sql/ according
to the modules directions (see Recipe 2.1), and then issue the following commands:

mysqladmin create apache_log
mysql apache_log
mysql apache_log < access_log.sql
mysql> grant insert,create on apache_log.* to webserver@localhost identified by
 'wwwpw';

Add the following lines to your httpd.conf file:

<IfModule mod_log_mysql.c>
 MySQLLoginInfo localhost webserver wwwpw
 MySQLDatabase apache_log
 MySQLTransferLogTable access_log
 MySQLTransferLogFormat huSUsbTvRA
</IfModule>

Discussion

Note that there is currently a difference between the name of the web location, the tarball, and the
actual module. The module file and directory retain the "mysql" name, but the directory and the
tarball have moved to a more generic "sql" naming convention.

See Also

http://www.grubbybaby.com/mod_log_sql/

[Team LiB]

http://www.grubbybaby.com/mod_log_sql/
http://www.grubbybaby.com/mod_log_sql/

[Team LiB]

Recipe 3.20 Logging to syslog

Problem

You want to send your log entries to syslog.

Solution

To log your error log to syslog, simply tell Apache to log to syslog:

ErrorLog syslog:user

Some syslog reporting class other than user, such as local1, might be more
appropriate in your environment.

Logging your access log to syslog takes a little work. Add the following to your configuration file:

CustomLog |/usr/local/apache/bin/apache_syslog combined

where apache_syslog is a program that looks like the following:

#!/usr/bin/perl
use Sys::Syslog qw(:DEFAULT setlogsock);

setlogsock('unix');
openlog('apache', 'cons', 'pid', 'user');

while ($log = <STDIN>) {
 syslog('notice', $log);
}

closelog;

(Note that this script is only a skeleton; an actual production quality version should include code to
check for errors, etc.)

Discussion

There are two main reasons for logging to syslog. The first of these is to have many servers log to a
central logging facility. The second is that there are many existing tools for monitoring syslog and

sending appropriate notifications on certain events. Allow Apache to take advantage of these tools,
and your particular installation may benefit.

Apache supports logging your error log to syslog by default. This is by far the more useful log to
handle this way, because syslog is typically used to track error conditions rather than merely
informational messages.

The syntax of the ErrorLog directive allows you to specify syslog as an argument or to specify a
particular syslog facility. In the previous example, the user syslog facility was specified. In your

/etc/syslog.conf file, you can specify where a particular log facility should be sent-whether to a file
or to a remote syslog server.

Since Apache does not support logging your access log to syslog by default, you need to accomplish
this with a piped logfile directive. The program that we use to accomplish this is a simple Perl
program using the Sys::Syslog module, which is a standard module with your Perl installation.
Because the piped logfile handler is launched at server startup and merely accepts input on STDIN for
the life of the server, there is no performance penalty for using Perl.

If you have several web servers and want them all to log to one central logfile, this can be
accomplished by having all of your servers log to syslog and pointing that syslog facility to a central
syslog server. Note that this may cause your log entries to be in nonsequential order, which should
not really matter but may appear strange at first. This effect can be reduced by ensuring that your
clocks are synchronized via NTP.

Consult your syslogd manual for further detail on setting up a networked syslog server.

See Also

The manpages for syslogd and syslog.conf

[Team LiB]

[Team LiB]

Recipe 3.21 Logging User Directories

Problem

You want each user directory web site (i.e., those accessed via http://servername/~username) to

have its own logfile.

Solution

In httpd.conf, add the directive:

CustomLog "|/usr/local/apache/bin/userdir_log" combined

Then, in the file /usr/local/apache/bin/userdir_log, place the following code:

#!/usr/bin/perl

my $L = '/usr/local/apache/logs'; # Log directory

my %is_open = (); # File handle cache
$|=1;
open(F, ">>$L/access_log"); # Default error log

while (my $log = <STDIN>) {
 if ($log =~ m!\s/~(.*?)/!) {
 my $u = $1;
 unless ($is_open{$u}) {
 my $fh;
 open $fh, '>>' . $L . '/'. $u;
 $is_open{$u} = $fh;
 }
 select ($is_open{$u});
 $|=1;
 print $log;
 }
 else {
 select F;
 $|=1;
 print F $log;
 }
}

close F;
foreach my $h (keys %is_open) {

http://servername/~

 close $h;
}

(Note that this script is only a skeleton; an actual production quality version should include code to
check for errors, etc.)

Discussion

Usually, requests to user directory web sites are logged in the main server log, with no differentiation
between one user's site and another. This can make it very hard for a user to locate log messages for
his personal web site.

The Solution allows you to break out those requests into one logfile per user, with requests not going
to a userdir web site but going to the main logfile. The log handler can, of course, be modified to put
all log messages in the main logfile as well as in the individual logfiles.

File handles are cached to decrease the amount of disk activity necessary, rather than opened and
closed with each access. This results in a larger number of file handles open at any given time. Sites
with a very large number of user web sites may run out of system resources.

Because Perl buffers output by default, we need to explicitly tell our script not to buffer the output, so
that log entries make it into the logfile immediately. This is accomplished by setting the autoflush
variable, $|, to a true value. This tells Perl not to buffer output to the most recently selected file

handle. Without this precaution, output will be buffered, and it will appear that nothing is being
written to your log files.

See Also

http://httpd.apache.org/docs/mod/mod_log_config.html

http://httpd.apache.org/docs-2.0/mod/mod_log_config.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_log_config.html
http://httpd.apache.org/docs-2.0/mod/mod_log_config.html

[Team LiB]

Chapter 4. Virtual Hosts
A web server system supports multiple web sites in a way similar to a person who responds to her
given name, as well as her nickname. In the Apache configuration file, each alternate identity, and
probably the "main" one as well, is known as a virtual host (sometimes written as vhost) identified
with a <VirtualHost> container directive. Depending on the name used to access the web server,
Apache responds appropriately, just as someone might answer differently depending on whether she
is addressed as "Miss Jones" or "Hey, Debbie!" If you want to have a single system support multiple
web sites, you must configure Apache appropriately.

There are two different types of virtual host supported by Apache. The first type, called address-
based or IP-based, is tied to the numeric network address used to reach the system. Bruce Wayne
never answered the parlour telephone with "Batman here!" nor did he answer the phone in the
Batcave by saying, "Bruce Wayne speaking." However, it's the same person answering the phone,
just as it's the same web server receiving the request.

The other type of virtual host is name-based, because the server's response depends on what it is
called. To continue the telephone analogy, consider an apartment shared by multiple roommates;
you call the same number whether you want to speak to Dave, Joyce, Amaterasu, or George. Just as
multiple people may share a single telephone number, multiple web sites can share the same IP
address. However, all IP addresses shared by multiple Apache virtual hosts need to be declared with
a NameVirtualHost directive.

In the most simple of Apache configurations, there are no virtual hosts. Instead, all of the directives
in the configuration file apply universally to the operation of the server. The environment defined by
the directives outside any <VirtualHost> containers is sometimes called the default server or perhaps
the global server. There is no official name for it, but it can become a factor when adding virtual
hosts to your configuration.

But what happens if you add a <VirtualHost> container to such a configuration? How are those
directives outside the container interpreted, and what is their effect on the virtual host?

The answer is not a simple one: essentially, the effect is specific to each configuration directive.
Some get inherited by the virtual hosts, some get reset to a default value, and some pretend they've
never been used before. You'll need to consult the documentation for each directive to know for sure.

There are two primary forms of virtual hosts: IP-based virtual hosts, where each virtual host has its
own unique IP address; and name-based virtual hosts, where more than one virtual host runs on the
same IP address but with different names. This chapter will show you how to configure each one and
how to combine the two on the same server. You'll also learn how to fix common problems that occur
with virtual hosts.

[Team LiB]

[Team LiB]

Recipe 4.1 Setting Up Name-Based Virtual Hosts

Problem

You have only one IP address, but you want to support more than one web site on your system.

Solution

Use the NameVirtualHost * directive in conjunction with <VirtualHost> sections:

ServerName 127.0.0.1
NameVirtualHost *

<VirtualHost *>
 ServerName TheSmiths.name
 DocumentRoot "C:/Apache/Sites/TheSmiths"
</VirtualHost>

<VirtualHost *>
 ServerName JohnSmith.name
 DocumentRoot "C:/Apache/Sites/JustJohnSmith"
</VirtualHost>

Discussion

With IP addresses increasingly hard to come by, name-based virtual hosting is the most common
way to run multiple web sites on the same Apache server. The previous recipe works, for most users,
in most virtual hosting situations.

The * in the previous rules means that the specified hosts run on all addresses. For a machine with

only a single address, this means that it runs on that address but will also run on the loopback, or
localhost address. Thus if you are sitting at the physical server system, you can view the web site.

The argument to the <VirtualHost> container directive is the same as the argument to the
NameVirtualHost directive. Putting the hostname here may ignore the virtual host on server startup,
and requests to this virtual host may unexpectedly go somewhere else. If your name server is down
or otherwise unresponsive at the time that your Apache server is starting up, then Apache can't
match the particular <VirtualHost> section to the NameVirtualHost directive to which it belongs.

Requests for which there is not a virtual host listed will go to the first virtual host listed in the
configuration file. In the case of the previous example, hostnames that are not explicitly mentioned in
one of the virtual hosts will be served by the TheSmiths.name virtual host.

It is particularly instructive to run httpd -S and observe the virtual host configuration as Apache
understands it, to see if it matches the way that you understand it. httpd -S returns the virtual host
configuration, showing which hosts are name-based, which are IP-based, and what the defaults are.

Multiple names can be listed for a particular virtual host using the ServerAlias directive, as shown
here:

ServerName TheSmiths.name
ServerAlias www.TheSmiths.name Smith.Family.name

It is important to understand that virtual hosts render the server listed in the main body of your
configuration file no longer accessible-you must create a virtual host section explicitly for that host.
List this host first, if you want it to be the default server.

Adding name-based virtual hosts to your Apache configuration does not magically add entries to your
DNS server. You must still add records to your DNS server so that the names resolve to the IP
address of the server system. When users type your server name(s) into their browser location bars,
their computers first contact a DNS server to look up that name and resolve it to an IP address. If
there is no DNS record, then their browsers can't find your server.

For more information on configuring your DNS server, consult the documentation for the DNS
software you happen to be running, or talk to your ISP if you're not running your own DNS server.

See Also

http://httpd.apache.org/docs/vhosts/

[Team LiB]

http://httpd.apache.org/docs/vhosts/

[Team LiB]

Recipe 4.2 Designating One Name-Based Virtual Host as
the Default

Problem

You want all requests, whether they match a virtual host or use an IP address, to be directed to a
default host, possibly with a "host not found" error message.

Solution

Add the following <VirtualHost> section, and list it before all of your other ones:

<VirtualHost *>
 ServerName default
 DocumentRoot /www/htdocs
 ErrorDocument 404 /site_list.html
</VirtualHost>

Discussion

Note that this recipe is used in the context of name-based virtual hosts, so it is assumed that you
have other virtual hosts that are also using the <VirtualHost *> notation, and that there is also an
accompanying NameVirtualHost * appearing above them. We have used the default name for

clarity; you can call it whatever you want.

Setting the ErrorDocument 404 to a list of the available sites on the server directs the user to useful
content, rather than leaving him stranded with an unhelpful 404 error message. You may wish to set
DirectoryIndex to the site list as well, so that users who go directly to the front page of this site also
get useful information.

It's a good idea to list explicitly all valid hostnames either as ServerNames or ServerAliases, so that
nobody ever winds up at the default site. However, if someone accesses the site directly by IP
address, or if a hostname is added to the address in question before the appropriate virtual host is
created, the user still gets useful content.

See Also

Recipe 4.4

[Team LiB]

[Team LiB]

Recipe 4.3 Setting Up Address-Based Virtual Hosts

Problem

You have multiple IP addresses assigned to your system, and you want to support one web site on
each.

Solution

Create a virtual host section for each IP address you want to list on:

ServerName 127.0.0.1

<VirtualHost 10.0.0.1>
 ServerName TheSmiths.name
 DocumentRoot "C:/Apache/Sites/TheSmiths"
</VirtualHost>

<VirtualHost 10.0.0.2>
 ServerName JohnSmith.name
 DocumentRoot "C:/Apache/Sites/JustJohnSmith"
</VirtualHost>

Discussion

The virtual hosts defined in this example catch all requests to the specified IP addresses, regardless
of what hostname is used to get there. Requests to any other IP address not listed go to the virtual
host listed in the main body of the configuration file.

The ServerName specified is used as the primary name of the virtual host, when needed, but is not
used in the process of mapping a request to the correct host. Only the IP address is consulted to
figure out which virtual host to serve requests from, not the Host header field.

See Also

http://httpd.apache.org/docs/vhosts/

[Team LiB]

http://httpd.apache.org/docs/vhosts/

[Team LiB]

Recipe 4.4 Creating a Default Address-Based Virtual Host

Problem

You want to create a virtual host to catch all requests that don't map to one of your address-based
virtual hosts.

Solution

Use the _default_ keyword to designate a default host:

<VirtualHost _default_>
 DocumentRoot /www/htdocs
</VirtualHost>

Discussion

The _default_ keyword creates a virtual host that catches all requests for any address:port
combinations for which there is not a virtual host configured.

The _default_ directive may be used in conjunction with a particular port number, such as:

<VirtualHost _default_:443>

Using this syntax means that the specified virtual host catches all requests to port 443, on all
addresses for which there is not an explicit virtual host configured. This is the usual way to set up
SSL, which you see in the default SSL configuration file.

default typically does not work as people expect in the case of name-based virtual hosts. It does
not match names for which there are no virtual host sections, only address:port combinations for
which there are no virtual hosts configured. If you wish to create a default name-based host, see
Recipe 4.2.

See Also

Recipe 4.2

[Team LiB]

[Team LiB]

Recipe 4.5 Mixing Address-Based and Name-Based
Virtual Hosts

Problem

You have multiple IP addresses assigned to your system, and you want to support more than one
web site on each address.

Solution

Provide a NameVirtualHost directive for each IP address, and proceed as you did with a single IP
address:

ServerName 127.0.0.1
NameVirtualHost 10.0.0.1
NameVirtualHost 10.0.0.2

<VirtualHost 10.0.0.1>
 ServerName TheSmiths.name
 DocumentRoot "C:/Apache/Sites/TheSmiths"
</VirtualHost>

<VirtualHost 10.0.0.1>
 ServerName JohnSmith.name
 DocumentRoot "C:/Apache/Sites/JustJohnSmith"
</VirtualHost>

<VirtualHost 10.0.0.2>
 ServerName TheFergusons.name
 DocumentRoot "C:/Apache/Sites/TheFergusons"
</VirtualHost>

<VirtualHost 10.0.0.2>
 ServerName DoriFergusons.name
 DocumentRoot "C:/Apache/Sites/JustDoriFerguson"
</VirtualHost>

Discussion

Using the address of the server, rather than the wildcard * argument, makes the virtual hosts listen

only to that IP address. However, you should notice that the argument to <VirtualHost> still must
match the argument to the NameVirtualHost with which they are connected.

See Also

http://httpd.apache.org/docs/vhosts/

[Team LiB]

http://httpd.apache.org/docs/vhosts/

[Team LiB]

Recipe 4.6 Mass Virtual Hosting with mod_vhost_alias

Problem

You want to host many virtual hosts, all of which have exactly the same configuration.

Solution

Use VirtualDocumentRoot and VirtualScriptAlias provided by mod_vhost_alias.

VirtualDocumentRoot /www/vhosts/%-1/%-2.1/%-2/htdocs
VirtualScriptAlias /www/vhosts/%-1/%-2.1/%-2/cgi-bin

Discussion

This recipe uses directives from mod_vhost_alias, which you may not have installed when you built
Apache, as it is not one of the modules that is enabled by default.

These directives map requests to a directory built up from pieces of the hostname that was
requested. Each of the variables represents one part of the hostname, so that each hostname is be
mapped to a different directory.

In this particular example, requests for content from www.example.com is served from the directory
/www/vhosts/com/e/example/htdocs, or from /www/vhosts/com/e/example/cgi-bin (for CGI
requests). The full range of available variables is shown in Table 4-1.

Table 4-1. mod_vhost_alias variables

Variable Meaning

%% insert a %

%p insert the port number of the virtual host

%M.N insert (part of) the name

M and N may have positive or negative integer values, which have the following meanings (see Table
4-2).

Table 4-2. Meanings of variable values

Value Meaning

0 The whole name

1 The first part of the name

-1 The last part of the name

2 The second part of the name

-2 The next-to-last part of the name

2+ The second, and all following, parts

-2+ The next-to-last, and all proceeding, parts

When the value is placed in the first part of the argument-in the M part of %M.N-it refers to parts
of the hostname itself. When used in the second part-the N-refers to a particular letter from that
part of the hostname. For example, in hostname www.example.com, the meanings of the variables
are as shown in Table 4-3.

Table 4-3. Example values for the hostname www.example.com

Value Meaning

%0 www.example.com

%1 www

%2 example

%3 com

%-1 com

%-2 example

%-3 www

%-2.1 e

%-2.2 x

%-2.3+ ample

Depending on the number of virtual hosts, you may wish to create a directory structure subdivided
alphabetically by domain name, by top-level domain, or simply by hostname.

See Also

http://httpd.apache.org/docs/mod/mod_vhost_alias.html

http://httpd.apache.org/docs/vhosts/

[Team LiB]

http://httpd.apache.org/docs/mod/mod_vhost_alias.html
http://httpd.apache.org/docs/vhosts/

[Team LiB]

Recipe 4.7 Mass Virtual Hosting Using Rewrite Rules

Problem

Although there is a module-mod_vhost_alias-which is explicitly for the purpose of supporting large
numbers of virtual hosts, it is very limiting and requires that every virtual host be configured exactly
the same way. You want to support a large number of vhosts, configured dynamically, but, at the
same time, you want to avoid mod_vhost_alias.

Solution

Use directives from mod_rewrite to map to a directory based on the hostname:

RewriteEngine on
RewriteCond %{HTTP_HOST} ^(www\.)?([^.]+)\.com$
RewriteRule ^(.*)$ /home/%2$1

Discussion

mod_vhost_alias is useful, but it is best for settings where each virtual host is identical in every way
but hostname. Using mod_vhost_alias precludes the use of other URL-mapping modules, such as
mod_userdir, mod_rewrite, and mod_alias, and it can be very restrictive. Using mod_rewrite is less
efficient, but it is more flexible.

For example, when using mod_vhost_alias, you must do all of your hosts with mod_vhost_alias;
whereas with this alternate approach, you can do some of your hosts using the rewrite rules and
others using conventional virtual host configuration techniques.

The directives in the Solution map requests for www.something.com (or without the www) to the
directory /home/something.

See Also

Recipe 5.16

http://httpd.apache.org/docs/vhosts/

http://httpd.apache.org/docs/vhosts/

http://httpd.apache.org/docs/mod/mod_rewrite.html

http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

[Team LiB]

Recipe 4.8 SSL and Name-Based Virtual Hosts

Problem

You want to have multiple SSL web sites on the same server.

Solution

In most common implementations of SSL, you are limited to one SSL host per address and port
number. Thus, either you need to have a unique IP address for each SSL host or run them on
alternate ports to get more than one on a particular IP address:

Listen 443
Listen 444

<VirtualHost 10.0.1.2:443>
 ServerName secure1.example.com
 DocumentRoot /www/vhosts/secure1

 SSLEngine On
 SSLCertificateFile /www/conf/ssl/secure1.crt
 SSLCertificateKeyFile /www/conf/ssl/secure1.key
</VirtualHost>

<VirtualHost 10.0.1.3:443>
 ServerName secure2.example.com
 DocumentRoot /www/vhosts/secure2

 SSLEngineOn
 SSLCertificateFile /www/conf/ssl/secure2.crt
 SSLCertificateKeyFile /www/conf/ssl/secure2.key
</VirtualHost>

<VirtualHost 10.0.1.3:444>
 ServerName secure3.example.com
 DocumentRoot /www/vhosts/secure3

 SSLEngineOn
 SSLCertificateFile /www/conf/ssl/secure3.crt
 SSLCertificateKeyFile /www/conf/ssl/secure3.key
</VirtualHost>

Discussion

The limitation that restricts you to one SSL host per IP address is not a limitation imposed by Apache
but by the way that SSL works. When the browser connects to the server, the first thing that it does
is negotiate for a secure connection. During this process, the server sends its certificate to the client,
which indicates that the rest of the transaction will be encrypted.

Because this happens before the browser tells the server what resource it wants, this part of the
conversation can be based only on the IP address on which the client connected. By the time the
server receives the Host header field, it is too late-the certificate has already been sent.

It is possible to run SSL hosts on ports other than port 443, if the port number is explicitly specified in
the URL. This would allow you to get around this limitation, but it would put an additional burden on
the end user to type the correct URL with the port number.

See Also

Recipe 4.11

[Team LiB]

[Team LiB]

Recipe 4.9 Logging for Each Virtual Host

Problem

You want each virtual host to have its own logfiles.

Solution

Specify Errorlog and CustomLog within each virtual host declaration:

<VirtualHost *>
 ServerName waldo.example.com
 DocumentRoot /home/waldo/www/htdocs

 ErrorLog /home/waldo/www/logs/error_log
 CustomLog /home/waldo/www/logs/access_log combined
</VirtualHost>

Discussion

The various logging directives can be placed either in the main body of your configuration file or
within a <VirtualHost> section. When it is placed within a virtual host, log entries for that virtual host
go in the specified logfile, rather than into the log file(s) defined in the main server configuration.

Each logfile counts against the total number of files and network connections
your server is allowed to have. If you have 100 virtual hosts, each with its own
error and activity log, that's 200 open channels-and if the server's quota is
256, you can only handle 56 concurrent requests at any one time.

In the recipe given here, the logfiles are placed within the home directory of a particular user, rather
than in the main log directory. This gives you easier access to those files, but you still need to take
adequate precautions to set the permissions on the directory in question. Consult Chapter 6 for a
discussion on file permissions.

See Also

Chapter 3

Chapter 6

[Team LiB]

[Team LiB]

Recipe 4.10 Splitting Up a LogFile

Problem

Due to a large number of virtual hosts, you want to have a single logfile and split it up afterwards.

Solution

LogFormat "%v %h %l %u %t \"%r\" %>s %b" vhost
CustomLog logs/vhost_log vhost

Then, after rotating your logfile:

split-logfile < logs/vhost_log

Discussion

The LogFormat directive in this recipe creates a logfile that is similar to the common log file format but

additionally contains the name of the virtual host being accessed. The split-logfile utility splits up this
logfile into its constituent virtual hosts.

See Also

Recipe 3.11

[Team LiB]

[Team LiB]

Recipe 4.11 Port-Based Virtual Hosts

Problem

You want to present different content for HTTP connections on different ports.

Solution

Explicitly list the port number in the <VirtualHost> declaration:

 Listen 8080

 <VirtualHost 10.0.1.2:8080>
 DocumentRoot /www/vhosts/port8080
 </VirtualHost>

 Listen 9090

 <VirtualHost 10.0.1.2:9090>
 DocumentRoot /www/vhosts/port9090
 <VirtualHost>

Discussion

Port-based virtual hosting is somewhat less common than other techniques shown in this chapter.
However, there are a variety of situations in which it can be useful. If you have only one IP address,
have no ability to add hostnames to DNS, or if your ISP blocks in-bound traffic on port 80, it may be
useful to run virtual hosts on other ports.

Visitors to your web site must list the port number in the URL that they use. For example, to load
content from the second virtual host previously listed, the following URL might be used:

http://server.example.com:9090/

See Also

http://httpd.apache.org/docs/vhosts/

[Team LiB]

http://server.example.com:9090/
http://httpd.apache.org/docs/vhosts/

[Team LiB]

Recipe 4.12 Displaying the Same Content on Several
Addresses

Problem

You want to have the same content displayed on two of your addresses.

Solution

Specify both addresses in the <VirtualHost> directive:

NameVirtualHost 192.168.1.1
NameVirtualHost 172.20.30.40

<VirtualHost 192.168.1.1 172.20.30.40>
 DocumentRoot /www/vhosts/server
 ServerName server.example.com
 ServerAlias server
</VirtualHost>

Discussion

This setup is most useful on a machine that has addresses that are internal to your network, as well
as those that are accessible only from outside your network. If these are the only addresses, you
could use the * notation introduced in Recipe 4.1. However, if there are more addresses, this allows

you to specify what content appears on what address.

See Also

http://httpd.apache.org/docs/vhosts/

[Team LiB]

http://httpd.apache.org/docs/vhosts/

[Team LiB]

Chapter 5. Aliases, Redirecting, and
Rewriting
When Apache receives a request, it is assumed that the client will be served a file out of the
DocumentRoot directory. However, there will be times when you want these resources to be served
from some other location. For example, if you wanted to place a set of documents on your web site,
it may be more convenient to leave them where they are, rather than to move them to a new
location.

In this chapter, we deal with three general categories of these sort of cases. Aliasing refers to
mapping a URL to a particular directory. Redirecting refers to mapping a URL to another URL. And
Rewriting refers to using mod_rewrite to alter the URL in some way.

Other recipes in this chapter are related because they map URLs to resources that are at unexpected
places in the filesystem.

These topics are particularly interesting to webmasters who want to avoid link-rot or have sites that
are periodically subject to upheaval (files or directories are moved around, or even moved from
server to server). The redirection and rewriting capabilities of the Apache web server allow you to
conceal such ugly behind-the-scenes disturbances from the eyes of your Internet visitors.

[Team LiB]

[Team LiB]

Recipe 5.1 Showing Highlighted PHP Source Without
Symlinking

Problem

You want to be able to see the syntax-enhanced source to your PHP scripts without having to set up
symbolic links for all of them.

Solution

Add a line such as the following to your httpd.conf file:

RewriteRule "^(.*\.php)s$" "/cgi-bin/show.php?file=$1" [PT,L]

Create a file named show.php as shown below, and put it in your server's /cgi-bin/ directory:

<?php
/*
 * Show the highlighted source of a PHP script without a symlink or copy.
 */
if ((! isset($_GET))
 || (! isset($_GET['file']))
 || (! ($file = $_GET['file']))) {
 /*
 * Missing required arguments, so bail.
 */
 return status('400 Bad Request',
 "Data insufficient or invalid.\r\n");
}

$file = preg_replace('/\.phps$/', '.php', $file);
if (! preg_match('/\.php$/', $file)) {
 return status('403 Forbidden',
 "Invalid document.\r\n");
}
$docroot = $_SERVER['DOCUMENT_ROOT'];
if ((! preg_match(";^$docroot;", $file))
 || (! preg_match(";^/home/[^/]+/public_html;", $file))) {
 return status('403 Forbidden',
 "Invalid document requested.\r\n");
}
Header('Content-type: text/html; charset=iso-8859-1');
print highlight_file($file);

return;

function status($msg, $text) {
 Header("Status: $msg");
 Header('Content-type: text/plain; charset=iso-8859-1');
 Header('Content-length: ' . strlen($text));
 print $text;
}
?>

Discussion

The script in the solution uses a built-in PHP function to display the script's source in highlighted
form. The preg_match against $docroot verifies the requested file is under the server's
DocumentRoot. The next preg_match also permits files in users' public_html directories.

See Also

Recipe 2.5

[Team LiB]

[Team LiB]

Recipe 5.2 Mapping a URL to a Directory

Problem

You want to serve content out of a directory other than the DocumentRoot directory. For example,
you may have an existing directory of documents, which you want to have on your web site that you
do not want to move into the Apache document root.

Solution

Alias /desired-URL-prefix /path/to/other/directory

Discussion

The example given maps URLs starting with /desired-URL-prefix to files in the
/path/to/other/directory directory. For example, a request for the URL:

http://example.com/desired/something.html

results in the file /path/to/other/directory/something.html being sent to the client.

This same effect could be achieved by simply creating a symbolic link from the main document
directory to the target directory and turning on the Options +FollowSymLinks directive.[1] However,
using Alias explicitly allows you to keep track of these directories more easily. Creating symlinks to
directories makes it hard to keep track of the location of all of your content. Additionally, a stray
symlink may cause you to expose a portion of your filesystem that you did not intend to.

[1] See the documentation for the Option directive at http://httpd.apache.org/docs/mod/core.html#options.

You may also need to add a few configuration directives to permit access to the directory that you
are mapping to. An error message (in your error_log file) saying that the request was "denied by
server configuration" usually indicates this condition. It is fairly common-and recommended in the
documentation (http://httpd.apache.org/docs/misc/security_tips.html#protectserverfiles) - t o
configure Apache to deny all access, by default, outside of the DocumentRoot directory. Thus, you
must override this for the directory in question, with a configuration block as shown below:

<Directory /path/to/other/directory>
 Order allow,deny
 Allow from all
</Directory>

This permits access to the specified directory.

Note that the Alias is very strict with respect to slashes. For example, consider an Alias directive as

http://example.com/desired/something.html
http://httpd.apache.org/docs/mod/core.html#options
http://httpd.apache.org/docs/misc/security_tips.html#protectserverfiles

follows:

Alias /puppies/ /www/docs/puppies/

This directive aliases URLs starting with /puppies/ but does not alias the URL /puppies. This may
result in a trailing slash problem. That is, if a user attempts to go to the URL
http://example.com/puppies he gets a 404 error, whereas if he goes to the URL
http://example.com/puppies/ with the trailing slash, he receives content from the desired directory.
To avoid this problem, create Aliases without the trailing slash on each argument.

Finally, make sure that if you have a trailing slash on the first argument to Alias, you also have one
on the second argument. Consider the following example:

Alias /icons/ /usr/local/apache/icons

A request for http://example.com/icons/test.gif results in Apache attempting to serve the file
/usr/local/apache/iconstest.gif rather than the expected /usr/local/apache/icons/test.gif.

See Also

http://httpd.apache.org/docs/mod/mod_alias.html

http://httpd.apache.org/docs/mod/core.html#options

[Team LiB]

http://example.com/puppies
http://example.com/puppies/
http://example.com/icons/test.gif
http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/core.html#options

[Team LiB]

Recipe 5.3 Creating a New URL for Existing Content

Problem

You have an existing directory which you want to access using a different name.

Solution

Use an Alias directive in httpd.conf:

Alias /newurl /www/htdocs/oldurl

Discussion

While Alias is usually used to map URLs to a directory outside of the DocumentRoot directory tree,
this is not necessarily required. There are many times when it is desirable to have the same content
accessible via a number of different names. This is typically the case when a directory has its name
changed, and you wish to have the old URLs continue to work, or when different people refer to the
same content is by different names.

Remember that Alias only affects the mapping of a local URI (the /foo/bar.txt part of
http://example.com/foo/bar.txt); it doesn't affect or change the hostname part of the URL (the
http://example.com/ part). To alter that portion of the URL, use the Redirect or RewriteRule
directives.

See Also

Recipe 5.2

http://httpd.apache.org/docs/mod/mod_alias.html

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://example.com/foo/bar.txt
http://example.com/
http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.4 Giving Users Their Own URL

Problem

You want to give each user on your system his own web space.

Solution

If you want users' web locations to be under their home directories, add this to your httpd.conf file:

UserDir public_html

To put all users' web directories under a central location:

UserDir /www/users/*/htdocs

If you have mod_perl installed, you can do something more advanced like this (again, added to your
httpd.conf file):

<Perl>
Folks you don't want to have this privilege
my %forbid = map { $_ => 1 } qw(root postgres bob);
opendir H, '/home/';
my @dir = readdir(H);
closedir H;
foreach my $u (@dir) {
 next if $u =~ m/^\./;
 next if $forbid{$u};
 if (-e "/home/$u/public_html") {
 push @Alias, "/$u/", "/home/$u/public_html/";
 }
}
</Perl>

Discussion

The first solution is the simplest and most widely used of the possible recipes we present here. With
this directive in place, all users on your system are able to create a directory called public_html in
their home directories and put web content there. Their web space is accessible via a URL starting
with a tilde (~), followed by their usernames. So, a user named bacchus accesses his personal web

space via the URL:

http://www.example.com/~bacchus/

http://www.example.com/~bacchus/

If you installed Apache from the standard source distribution, your default configuration file includes
an example of this configuration. It also contains a <Directory> section referring to the directory
/home/*/public_html, with various options and permissions turned on. You need to uncomment that
section in order for anyone to have access to these user web sites. This section should look
something like the following:

<Directory /home/*/public_html>
 AllowOverride FileInfo AuthConfig Limit
 Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
 <Limit GET POST OPTIONS PROPFIND>
 Order allow,deny
 Allow from all
 </Limit>
 <LimitExcept GET POST OPTIONS PROPFIND>
 Order deny,allow
 Deny from all
 </LimitExcept>
</Directory>

Make sure you understand what each of these directives is enabling before you uncomment this
section in your configuration.

The second solution differs in that the argument to UserDir is given as a full pathname and so is not
interpreted as relative to the user's home directory, but as an actual file path. The * in the file path is

replaced by the username. For example, http://example.com/~smith/ is translated to
/www/users/smith/htdocs. This directory structure needs to be configured in a manner similar to the
previous example.

The third solution requires mod_perl and provides alias mappings for all top directories under the
/home hierarchy (typically user directories). It differs from the first two by not including the tilde
prefix; user smith's web location would be specified as http://example.com/smith/ instead of
http://example.com/~smith/ but is still the filesystem location /home/smith/public_html.

In each case, the directory in question, and directories in the path leading up to it, need to be
readable for the Apache user (usually nobody or www or httpd), and also have the execute bit set for
that user, so the Apache server can read content out of that directory. The execute bit is needed in
order to get a directory listing. Thus, for user bob, the directories /, /home, /home/bob, and
/home/bob/public_html (or the corresponding directory paths for the other solutions) all need to
execute access, and the last one also requires read access.

On Unixish systems, you would set these permissions by issuing the following commands:

% chmod o+x / /home /home/bob
% chmod o+rx /home/bob/public_html

The files within the directory need only be readable:

% chmod 644 /home/bob/public_html/*

If you use the first solution, many users may be concerned about these file permissions, and rightly
so, as it usually allows all other users read access to these directories. Make sure that your users are
aware of this, and that they keep personal files in directories that are not world readable.

http://example.com/~smith/
http://example.com/smith/
http://example.com/~smith/

The advantage of this approach over the previous one is that these files are stored in a location that
is not inside the user's home directory, and so the user may keep sensible file permissions on her
home directory. This lets her store personal files there without concern that other users may have
free access to them.

The last Solution is completely different and requires that you have mod_perl installed. The list of
directives previously mentioned goes in your configuration file, using the <Perl> configuration
directive supplied by mod_perl, which allows you to put Perl code in your configuration file to
dynamically add things to the configuration file at server startup.

At server startup, the code shown looks in the /home/ directory for any user that has a public_html
directory and creates an Alias for them. This has the advantage over the previous two solutions
because the URLs no longer contain that annoying tilde character, which people tend to think
unprofessional. So user bacchus is now able to access his personal web space via the URL
http://www.example.com/bacchus/.

The %forbid list at the top of the code provides a list of users who should not be given this special

alias for one reason or another. This allows you to eliminate users for which this feature may cause a
security risk, such as root, or users who have shown that they can't be trusted with such privileges.

As with the previous examples, this should be accompanied by a <Directory> section that enables
read access for the directory /home/*/public_html.

And, of course, you can have this code point these aliases at any location, if you want to serve
content out of some other location rather than the home directories of the users.

See Also

http://httpd.apache.org/docs/mod/mod_userdir.html

[Team LiB]

http://www.example.com/bacchus/
http://httpd.apache.org/docs/mod/mod_userdir.html

[Team LiB]

Recipe 5.5 Aliasing Several URLs with a Single Directive

Problem

You want to have more than one URL map to the same directory but don't want multiple Alias
directives.

Solution

Use AliasMatch in http.conf to match against a regular expression:

AliasMatch ^/pupp(y|ies) /www/docs/small_dogs

Discussion

The AliasMatch directive allows you to use regular expressions to match arbitrary patterns in URLs
and map anything matching the pattern to the desired URL. Think of it as Alias with a little more
flexibility.

This example causes URLs starting with /puppy, as well as URLs starting with /puppies, to be mapped
to the directory /www/docs/small_dogs.

Apache's regular expression syntax is discussed in much greater detail in Appendix A.

See Also

Appendix A

Mastering Regular Expressions by Jeffrey Friedl (O'Reilly)

[Team LiB]

[Team LiB]

Recipe 5.6 Mapping Several URLs to the Same CGI
Directory

Problem

You want to have a number of URLs map to the same CGI directory but don't want to have multiple
ScriptAlias directives.

Solution

Use ScriptAliasMatch in httpd.conf to match against a regular expression:

ScriptAliasMatch ^/([sS]cripts?|cgi(-bin)?)/ /www/cgi-bin/

Discussion

This is a more complicated recipe than the previous one and may require that you read Appendix A.
This directive maps requests starting with /script/, /scripts/, /Script/, /Scripts/, /cgi/, and /cgi-bin/ to
the directory /www/cgi-bin/, and it causes all files in that directory to be treated as CGI programs.

This kind of directive is generally used to clean up a mess that you have made. If you design your
web site well from the start, this sort of thing is never necessary, but the first time you redesign, or
otherwise rearrange your web site, you'll find the necessity for these sorts of contortions.

See Also

Recipe 5.5

Appendix A

[Team LiB]

[Team LiB]

Recipe 5.7 Creating a CGI Directory for Each User

Problem

You want each user to have their own cgi-bin directory rather than giving them all access to the main
server CGI directory.

Solution

Put this in your httpd.conf:

<Directory /home/*/public_html/cgi-bin/>
 Options ExecCGI
 SetHandler cgi-script
</Directory>

Discussion

You can't use ScriptAlias in this case, because for each user, the first argument to ScriptAlias would
be different. Using ScriptAliasMatch would also be impossible. The second argument to
ScriptAliasMatch must be a constant string.

This recipe lets each user put CGI scripts in her own personal web space. Files accessed via URLs
starting with:

http://www.example.com/~username/cgi-bin/

are treated as CGI scripts.

If you have suexec enabled, CGI programs run from this target directory will be run with the userid

of the user specified in the URL. For example, a CGI program accessed via the URL
http://www.example.com/~rbowen/cgi-bin/example.cgi would be run as the user rbowen.

See Also

Recipe 8.1

[Team LiB]

http://www.example.com/~
http://www.example.com/~rbowen/cgi-bin/example.cgi

[Team LiB]

Recipe 5.8 Redirecting to Another Location

Problem

You want requests to a particular URL to be redirected to another server.

Solution

Use a Redirect directive in httpd.conf, and give an absolute URL on the second argument:

Redirect /example http://www.other.server/new/location

Discussion

Whereas Alias maps a URL to something in the local filesystem, Redirect maps a URL to another URL,
usually on another server. The second argument is a full URL and is sent back to the client (browser),
which makes a second request for the new URL.

It is also important to know that the Redirect directive preserves path information, if there is any.
Therefore, this recipe redirects a request for http://original.server/example/something.html to
http://www.other.server/new/location/something.html.

Redirections come in several different flavors, too; you can specify which particular type of redirect
you want to use by inserting the appropriate keyword between the Redirect directive and the first
URL argument. All redirects instruct the client where the requested document is now; the different
types of redirection inform where the client should look for the document in the future.

temp

A temporary redirection is used when the document is not in the originally requested location

at the moment, but is expected to be there again some time in the future. So the client
remembers the URL it used on the original request and will use it on future requests for the
same document.

permanent

A permanent redirection indicates that not only is the requested document not in the location

specified by the client, but that the client should never look for it there again. In other words,
the client should remember the new location indicated in the redirect response and look there

http://original.server/example/something.html
http://www.other.server/new/location/something.html

in all subsequent requests for the resource.

gone

This keyword means that the document doesn't exist in this location, and it shouldn't bother
asking any more. This differs from the 404 Not Found error response in that the gone

redirection admits that the document was once here, even though it isn't any more. It's not
considered an error, unlike the 404 status.

seeother

A seeother redirection tells the client that the original document isn't located here any more

and has been superseded by another one in a different location. That is, the original request
might have been for:

http://example.com/chapter2.html

but the server answers with a seeother redirection to:

http://bookname.com/edition-2/chapter2.html

indicating not only a new location, but that the original Chapter 2 has been superseded by the
content of the second edition.

By default, if no keyword is present, a temporary redirection is issued.

Here's an example of the various directive formats, including the HTTP status code number in case
you want to use an ErrorDocument to customize the server's response text:

#
These are equivalent, and return a response with a 302 status.
#
Redirect /foo.html http://example.com/under-construction/foo.html
Redirect temp /foo.html http://example.com/under-construction/foo.html
RedirectTemp /foo.html http://example.com/under-construction/foo.html
#
These are equivalent to each other as well, returning a 301 status
#
Redirect permanent /foo.html http://example.com/relocated/foo.html
RedirectPermanent /foo.html http://example.com/relocated/foo.html
#
This tells the client that the old URL is dead, but the document
content has been replaced by the specified new document. It
returns a 303 status.
#
Redirect seeother /foo.html http://example.com/relocated/bar.html
#
Returns a 410 status, telling the client that the document has been
intentionally removed and won't be coming back. Note that there

http://example.com/chapter2.html
http://bookname.com/edition-2/chapter2.html

is no absoluteURL argument.
#
Redirect gone /foo.html

See Also

http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

Recipe 5.9 Redirecting Several URLs to the Same
Destination

Problem

You want to redirect a number of URLs to the same place. For example, you want to redirect requests
for /fish and /Fishing to http://fish.example.com/.

Solution

Use RedirectMatch in httpd.conf to match against a regular expression:

RedirectMatch ^/[fF]ish(ing)? http://fish.example.com

Discussion

This recipe redirects requests on one server for URLs starting with fish or fishing, with either an
upper-case or lower-case f, to a URL on another server, fish.example.com. As with Redirect, the path
information, if any, is preserved. That is, a request for http://original.server/Fishing/tackle.html is
redirected to http://fish.example.com/tackle.html so that existing relative links continue to work.

As with several of the earlier examples, RedirectMatch uses regular expressions to provide arbitrary
text pattern matching.

See Also

Appendix A

[Team LiB]

http://fish.example.com/
http://original.server/Fishing/tackle.html
http://fish.example.com/tackle.html

[Team LiB]

Recipe 5.10 Permitting Case-Insensitive URLs

Problem

You want requested URLs to be valid whether uppercase or lowercase letters are used.

Solution

Use mod_speling to make URLs case-insensitive:

CheckSpelling On

Discussion

The mod_speling module is part of the standard Apache distribution but is not enabled by default, so
you need to explicitly enable it.

In addition to making URLs case-insensitive, mod_speling, as the name implies, provides simple
spellchecking capability. In particular, in the case of a "not found" error, mod_speling attempts to find
files that may have been intended, based on similar spelling, transposed letters, or perhaps letters
swapped with similar-looking numbers, like O for o and i for 1.

When mod_speling is installed, it may be turned on for a particular scope (such as a directory, virtual
host, or the entire server) by setting the CheckSpelling directive to On.

And, yes, that is the correct spelling of the module name.

See Also

http://httpd.apache.org/docs/mod/mod_speling.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_speling.html

[Team LiB]

Recipe 5.11 Replacing Text in Requested URLs

Problem

You want to change all occurrences of string1 to string2 in a request's URI.

Solution

RewriteCond %{REQUEST_URI} "string1"

RewriteRule "(.*)string1(.*)" "$1string2$2" [N,PT]

Discussion

The [N] flag tells Apache to rerun the rewrite rule. This rule will get run repeatedly until the

RewriteCond fails. Thus, it will get rerun as long as the URL contains the string that you want to
replace. As soon as all occurrences of this string have been replaced, the RewriteCond will fail, and
the rule will stop. The [PT] tells mod_rewrite to pass the rewritten URL on to the rest of Apache for

any additional processing once the rewriting is done.

See Also

Appendix A

[Team LiB]

[Team LiB]

Recipe 5.12 Rewriting Path Information to CGI Arguments

Problem

You want to pass arguments as part of the URL but have these components of the URL rewritten as
CGI QUERY_STRING arguments.

Solution

This is just an example, of course; make appropriate changes to the RewriteRule line to fit your own
environment and needs:

RewriteEngine on
RewriteRule ^/book/([^/]*)/([^/]*) /cgi-bin/book.cgi?author=$1&subject=$2 [PT]

Discussion

One reason you might want or need to do this is if you're gluing together two legacy systems that do
things in different ways, such as a client application and a vendor script.

For example, the RewriteRule in the Solution will cause:

http://www.example.com/book/apache/bowen

to be rewritten as:

http://www.example.com/cgi-bin/book.cgi?subject=apache&author=bowen

The [PT] flag on the RewriteRule directive instructs Apache to keep processing the URL even after it

has been modified; without the flag, the server would directly try to treat the rewritten URL as a
filename, instead of continuing to the step at which it determines it's a CGI script. It also allows
multiple RewriteRule directives to make additional refinements to the URL.

If the URL being rewritten already has a query string, or might, change the [PT] to [QSA,PT]. The

QSA means "query string add" and will cause the query string generated by the rewrite to be added
to the query string in the original URL. Without QSA, the original query string will be replaced.

See Also

http://httpd.apache.org/docs/mod/mod_rewrite.html

http://www.example.com/book/apache/bowen
http://www.example.com/cgi-bin/book.cgi?subject=apache&author=bowen
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

[Team LiB]

Recipe 5.13 Denying Access to Unreferred Requests

Problem

You want to prevent other web sites from using your images (or other types of documents) in their
pages and allow your images to be accessed only if they were referred from your own site.

Solution

Put this in your httpd.conf:

RewriteEngine On
RewriteCond %{HTTP_REFERER} !=""
RewriteCond %{HTTP_REFERER} "!^http://mysite.com/.*$" [NC]
RewriteCond %{REQUEST_URI} "\.(jpg|gif|png)$"
RewriteRule .* - [F]

Discussion

This recipe is a series of RewriteCond directives, designed to determine whether an image file is

requested from within a document on your site or if it is embedded in a page from another server. If
the the latter, then the other site is stealing your images and needs to be stopped.

The first rule checks to see if the referer is even set. Some clients don't send a referer, and some
browsers can be configured not to send referers. If we deny requests from all clients that don't send
a referer, we'll deny a lot of valid requests; so we let these ones in.

Next, we check to see if the referer appears to be from some site other than our own. If so, we keep
going through the rules. Otherwise, we'll stop processing the rewrite.

Finally, we check to see if this is a request for an image file. If the file is a nonimage file, such as an
HTML file, then we want to allow people to link to these files from somewhere offsite.

If we've reached this point in the ruleset, we know that we have a request for an image file from
within a page on another web site. The RewriteRule matches a request and returns Forbidden to

the client.

See Also

http://httpd.apache.org/docs/mod/mod_rewrite.html

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

[Team LiB]

Recipe 5.14 Rewriting Based on the Query String

Problem

You want to translate one URI into another based on the value of the query string.

Solution

Put this in your httpd.conf:

RewriteCond "%{QUERY_STRING}" "^user=([^=]*)"
RewriteRule "/userdirs" "http://%1.users.example.com/" [R]

Discussion

mod_rewrite does not consider the query string as part of the URI for matching and rewriting
purposes, so you need to treat it separately. The given example translates requests of the form:

http://example.com/people?user=jones
http://jones.users.example.com/

The [R] tells mod_rewrite to direct the browser to the URL constructed by the RewriteRule directive.

See Also

http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

http://example.com/people?user=jones
http://jones.users.example.com/
http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

Recipe 5.15 Redirecting All-or Part-of Your Server to
SSL

Problem

You want certain parts of your non-SSL web space to be redirected to a secured area.

Solution

You can redirect everything that is attached to port 80 with the following RewriteRule:

RewriteCond "%{SERVER_PORT}" "^80$"
RewriteRule "^(.*)$" "https://%{SERVER_NAME}$1" [R,L]

You can redirect particular URLs to a secure version:

RewriteRule "^/normal/secure(/.*)" "https://%{HTTP_HOST}$1" [R,L]

You can check to see whether the HTTPS environment variable is set:

RewriteCond %{HTTPS} !=on
RewriteRule "^(/secure/.*)" "https://%{HTTP_HOST}$1" [R,L]

Or, you can simply use the Redirect directive in the http section of httpd.conf file to to cause a URL to
be served as HTTPS:

Redirect / https://secure.example.com/

Make sure that this appears only in in the http scope and not in the https scope, or all https

requests will loop.

Discussion

The first solution causes all requests that come in on port 80 (normally the unencrypted HTTP port) to
be redirected to the same locations on the current server but accessed through SSL. Note the use of
SERVER_NAME; because this is a complete site redirection, it's simplest to use the server's official

name for itself.

The directive shown in the second solution causes all portions of the server's web space under
http://myhost/normal/secure to be redirected to the SSL location rooted at https://myhost/. The use
of HTTP_HOST rather than SERVER_NAME means that only the location and the scheme in the visitor's

browser, not the server name.

https://

Note that the paths to the SSL and non-SSL locations differ; if you want the paths to be the same
except for the security, you can use something like the directives given in the third solution.

See Also

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.16 Turning Directories into Hostnames

Problem

You want to migrate pathnames under a single hostname to distinct hostnames.

Solution

Use RewriteRule in httpd.conf:

RewriteRule "^/(patha|pathb|pathc)(.*)" "http://$1.example.com$2" [R]
RewriteRule "^/([^./]*)(.*)" "http://$1.example.com$2" [R]
RewriteRule "^/~([^./]*)(.*)" "http://$1.example.com$2" [R]

Discussion

The first recipe redirects requests of the form http://example.com/pathseg/some/file.html to a

different host, such as http://pathseg.example.com/some/file.html, but only for those requests in

which pathseg is patha, pathb, or pathc.

The second recipe does the same thing, except that any top-level path segment is redirected in this
manner.

The third recipe splits the difference, redirecting all "user" requests to distinct hosts with the same
name as the user.

See Also

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://example.com
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.17 Redirecting All Requests to a Single Host

Problem

You want all requests made of your system to be redirected to a specific host.

Solution

Put this in your httpd.conf:

RewriteCond "%{HTTP_HOST}" "!^www.example.com$" [NC,OR]
RewriteCond "%{SERVER_NAME}" "!^www.example.com$" [NC]
RewriteRule "(.*)" "http://www.example.com$1" [R]

Discussion

Any request handled by your server within the scope of the directives in the Solution (which aren't
directed to the www.example.com host) is redirected there.

The two different RewriteCond directives are used to catch all requests made by some host other
than www.example.com, regardless of the redirection method.

The NC (No Case) flag makes the regular expression case-insensitive. That is, it makes it match

regardless of whether letters are upper- or lowercase.

The OR flag is a logical "or," allowing the two conditions to be strung together so that either one being

true is a sufficient condition for the rule to be applied.

Finally, the R flag causes an actual Redirect to be issued, so that the browser will make another

request for the generated URL.

See Also

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 5.18 Turning Document Names into Arguments

Problem

You want to redirect requests for documents to a CGI script, or other handler, that gets the
document names as an argument.

Solution

Use RewriteRule in httpd.conf:

RewriteRule "^/dir/([^./]*)\.html" "/dir/script.cgi?doc=$1" [PT]

Discussion

This solution causes all requests for HTML documents in the specified location to be turned into
requests for a handler script that receives the document name as an argument in the QUERY_STRING

environment variable.

The PT flag should be included to allow any appropriate subsequent URL rewriting or manipulation to
be performed.

See Also

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Chapter 6. Security
In this chapter, security means allowing people to see what you want them to see and preventing
them from seeing what you don't want them to see. Additionally, there are the issues of what
measures you need to take on your server in order to restrict access via non-Web means. This
chapter illustrates the precautions you need to take to protect your server from malicious access and
modification of your web site.

The most common questions ask how to protect documents and restrict access. Unfortunately, due to
the complexity of the subject and the nature of the web architecture, these questions tend to also
have the most complex answers or often no convenient answers at all.

Normal security nomenclature and methodology separate the process of applying access controls into
two discrete steps; in the case of the Web, they may be thought of as the server asking itself these
questions:

Are you really who you claim to be?

Are you allowed to be here?

These steps are called authentication and authorization, respectively. Here's a real-world example: a
flight attendant checks your photo identification (authentication) and your ticket (authorization)
before permitting you to board an airplane.

Authentication can be broken down into what might be called weak and strong. Weak authentication
is based on the correctness of credentials that the end user supplies (which therefore may have been
stolen from the real owner-hence the name "weak"), whereas strong authentication is based on
attributes of the request over which the end user has little or no control, and it cannot change from
request to request-such as the IP address of his system.

Although checking authentication and authorization are clearly separate activities, their application
gets a bit blurred in the context of the Apache web server modules. Even though the main difference
between the many security modules is how they store the credentials (in a file, a database, an LDAP
directory, etc.), they nevertheless have to provide the code to retrieve the credentials from the
store, validate those supplied by the client, and check to see if the authenticated user is authorized to
access the resource. In other words, there's a lot of functionality duplicated from module to module,
and although there are frequently similarities between their behavior and directives, the lack of
shared code means that sometimes they're not quite as similar as you'd hope. This overloading of
functionality has been somewhat addressed in the next version of the web server after 2.0 (still in
development at the time of this writing).

In addition to the matter of requiring a password to access certain content from the web server,
there is the larger issue of securing your server from attacks. As with any software, Apache has, at
various times in its history, been susceptible to conditions that would allow an attacker to gain
inappropriate control of the hosting server. For example, they may have been able to access, or
modify, files that the site administrator had not intended to give access to, or they may have been

able to execute commands on the target server. Thus, it is important that you know what measures
need to be taken to ensure that your server is not susceptible to these attacks.

The most important measure that you can take is to keep apprised of new releases, and read the
CHANGES file to determine if the new version fixes a security hole to which you may be subject.
Running the latest version of the Apache server is usually a good measure in the fight against
security vulnerabilities.

Recipes in this chapter show you how to implement some of the frequently requested password
scenarios, as well as giving you the tools necessary to protect your server from external attacks.

Authentication and Authorization

When checking for access to restricted documents, there are actually two different
operations involved: checking to see who you are and checking to see if you're allowed to
see the document.

The first part, checking to see who you are, is called authentication. The web server
doesn't know who you are, so you need to provide some proof of your identity, such as a
username and matching password. When the server successfully compares these bits of
information (called credentials) with those in its databases, the server will proceed, but if
you're not in the list, or the information doesn't match, the server will turn you away with
an error status.

Once you have convinced the server you are who you say you are, it will look at the list of
people allowed to access the document and see if you're on it; this is called authorization.
If you are on the list, access proceed normally; otherwise, the server returns an error
status and denies access.

The two different operations do not differentiate in the errors they return; it is always a
401 (unauthorized) code, even if the failure was in authentication. This is to prevent would-
be attackers from being able to tell when they have valid credentials.

[Team LiB]

[Team LiB]

Recipe 6.1 Using System Account Information for Web
Authentication

Problem

You want all the users on your Unixish system to be able to authenticate themselves over the Web
using their already-assigned usernames and passwords.

Solution

Set up a realm using mod_auth and name /etc/passwd as the AuthUserFile:

<Directory "/home">
 AuthType Basic
 AuthName HomeDir
 AuthUserFile /etc/passwd
 Require valid-user
 Satisfy All
</Directory>

Discussion

We must stress that using system account information for web authentication is a very bad idea,
unless your site is also secured using SSL. For one thing, any intruder who happens to obtain one of
your users' credentials not only can access the protected files over the Web, but can actually log onto
your system where it's possible to do significant damage. For another, web logins don't have the
same security controls as most operating systems; over the Web, an intruder can keep hammering
away at a username with password after password without the system taking any defensive
measures; all mod_auth will do is record a message in the Apache error log.However, most operating
systems will enter a paranoid mode and at least ignore login attempts for a while after some number
of failures.

If you still want to do this, either because you consider the risk acceptable or because it doesn't apply
in your situation, the httpd.conf directives in the Solution will do the trick. The syntax and order of
the fields in a credential record used by mod_auth happens (and not by accident) to match the
standard layout of the /etc/passwd lines. mod_auth uses a simple text file format in which each line
starts with a username and password and may optionally contain additional fields, with the fields
delimited by colons. For example:

smith:$apr1$GLWeF/..$8hOXRFUpHhBJHpOUdNFe51

mod_auth ignores any additional fields after the password, which is what allows the /etc/passwd file

to be used. Note that the password in the example is encrypted.

You can manage Apache mod_auth credential files with the htpasswd utility, but don't use this utility
on the /etc/passwd file! Use the normal account maintenance tools for that.

Note that this technique will not work if shadow passwords are in use, because the password field of
/etc/passwd contains nothing useful in that situation. Instead, the passwords are stored in the file
/etc/shadow, which is readable only by root, while Apache runs as an unprivileged user. Furthermore,
most modern Unixish operating systems use the /etc/shadow means of user authentication by
default.

See Also

Authentication and Authorization

HTTP, Browsers, and Credentials

Weak and Strong Authentication

The htpasswd manpage

The passwd(5) manpage

[Team LiB]

[Team LiB]

Recipe 6.2 Setting Up Single-Use Passwords

Problem

You want to be able to provide credentials that will allow visitors into your site only once.

Solution

No solution is available with standard Apache features.

Discussion

As described in HTTP, Browsers, and Credentials, the concept of being "logged in" to a site is an
illusion. In order to achieve the desired one-time-only effect, the server needs to complete the
following steps:

Note the first time the user successfully presents valid credentials.1.

Somehow, associate that fact with the user's "session."2.

Never allow those credentials to succeed again if the session information is different from the
first time they succeeded.

3.

The last step is not a simple task, and it isn't a capability provided in the standard Apache
distribution. To complicate matters, there is the desire to start a timeout once the credentials have
succeeded, so that the user doesn't authenticate once and then leave his browser session open for
days and retain access.

Fulfilling this need would require a custom solution. Unfortunately, we are not aware of any open or
public modules that provide this capability; however, search and watch the module registry for
possible third-party implementations.

See Also

Recipe 6.3

http://modules.apache.org/

http://modules.apache.org/

[Team LiB]

[Team LiB]

Recipe 6.3 Expiring Passwords

Problem

You want a user's username and password to expire at a particular time or after some specific
interval.

Solution

No solution is available with standard Apache features, but a few third-party solutions exist.

Discussion

Refer to HTTP, Browsers, and Credentials . In order for Apache to provide this functionality, it would
need to store more than just the valid username and password; it would also have to maintain
information about the credentials' expiration time. No module provided as part of the standard
Apache distribution does this.

There are several third-party solutions to this problem, including the Perl module
Apache::Htpasswd::Perishable and the mod_perl handler Apache::AuthExpire .

There are two slightly different ways to look at this problem, which will influence your choice of a
solution. You may want a user's authentication to be timed out after a certain amount of time, or
perhaps after a certain period of inactivity, forcing them to log in again. Or you may want a particular
username/password pair to be completely expired after a certain amount of time, so that it no longer
works. The latter might be used instead of a single-use password, which is impractical to implement in
HTTP.

Apache::Htpasswd::Perishable partially implements the latter interpretation of the problem by adding
expiration information to the password file. Inheriting from the Apache::Htpasswd module, it adds
two additional methods, expire and extend , which set an expiration date on the password and extend
the expiration time, respectively.

For example, the following code will open a password file and set an expiration date on a particular
user entry in that file:

use Apache::Htpasswd::Perishable;

my $pass = Apache::Htpasswd::Perishable->new("/usr/local/apache/passwords/user.pass")
 or die "Could not open password file.";
$pass->expire('waldo',5); # Set the expiration date 5 days in the future

Such a mechanism is only useful if expired passwords are removed from the password file
periodically. This can be accomplished by running the following cron script every day. This will delete
those users for whom the expiration date has passed:

#!/usr/bin/perl
use Apache::Htpasswd::Perishable;

my $password_file = '/usr/local/apache/passwords/user.pass';

open (F,$password_file) or die "Could not open password file.";
my @users;
while (my $user = <F>) {
 $user =~ s/^([^:])+:.*$/$1/;
 push @users, $user;
}
close F;

my $pass = Apache::Htpasswd::Perishable->new($password_file) or die
"Could not open password file.";
foreach my $user (@users) {
 $pass->htDelete($user) unless $pass->expire($user) > 0;
}

Apache::AuthExpire , on the other hand, implements timeouts on "login sessions." That is, a user
must reauthenticate after a certain period of inactivity. This gives you protection against the user who
steps away from her computer for a few moments, leaving herself "logged in."

As previously discussed, HTTP is stateless and so does not really have a concept of being logged in.
However, by watching repeated connections from the same address, such a state can be simulated.

To use the expiring functionality offered by Apache::AuthExpire , download the module from CPAN,
and install it:

perl -MCPAN -e shell
cpan> install Apache::AuthExpire

Then configure your Apache server to use this module for your authentication handler.

PerlAuthenHandler Apache::AuthExpire
PerlSetVar DefaultLimit 7200

The given example will time out idle connections after 7200 seconds, which is 2 hours.

See Also

Recipe 6.2

http://modules.apache.org/

http://search.cpan.org/author/JJHORNER/Apache-AuthExpire/AuthExpire.pm

http://search.cpan.org/author/ALLENDAY/Apache-Htpasswd-Perishable/Perishable.pm

[Team LiB]

http://modules.apache.org/
http://search.cpan.org/author/JJHORNER/Apache-AuthExpire/AuthExpire.pm
http://search.cpan.org/author/ALLENDAY/Apache-Htpasswd-Perishable/Perishable.pm

[Team LiB]

Recipe 6.4 Limiting Upload Size

Problem

With more and more web hosting services allowing customers to upload documents, uploads may
become too large. With a little creativity, you can put a limit on uploads by using the security
capabilities of the server.

Solution

Assume you want to put a limit on uploads of ten thousand (10,000) bytes. Here's how you could do
that for your /upload location:

SetEnvIf Content-Length "^[1-9][0-9]{4,}" upload_too_large=1
<Location /upload>
 Order Deny,Allow
 Deny from env=upload_too_large
 ErrorDocument 403 /cgi-bin/remap-403-to-413
</Location>

You can tailor the response by making the /cgi-bin/remap-403-to-413 script look something like this:

#! /usr/local/bin/perl
#
Perl script to turn a 403 error into a 413 IFF
the forbidden status is because the upload was
too large.
#
if ($ENV{'upload_too_large'}) {
 #
 # Constipation!
 #
 print <<EOHT
Status: 413 Request Entity Too Large
Content-type: text/plain; charset=iso-8859-1
Content-length: 84

Sorry, but your upload file exceeds the limits
set forth in our terms and conditions.
EOHT
}
else {
 #
 # This is a legitimate "forbidden" error.

 #
 my $uri = $ENV{'REDIRECT_REQUEST_URI'};
 my $clength = 165 + length($uri);
 print <<EOHT
Status: 403 Forbidden
Content-type: text/html; charset=iso-8859-1
Content-length: $clength

<html>
 <head>
 <title>Forbidden</title>
 </head>
 <body>
 <h1>Forbidden</h1>
 <p>
 You don't have permission to access $uri
 on this server.
 </p>
 </body>
</html>
EOHT
}
exit(0);

Discussion

This script is invoked when a request results in a 403 Forbidden error (which is what the Deny
directive causes if it's triggered). It checks to see if it's a real forbidden condition, or whether the
upload file is too large, displaying an appropriate error page.

Note that both paths issue a Status CGI response header field; this is necessary to propagate the

correct status back to the client. Without this, the status code would be 200 OK because the script
would have been invoked successfully, which is hardly the appropriate status. An incorrect status
code may cause the browser to report to the user that the file was uploaded successfully, which
might generate confusion, as this may be in conflict with the message of the error page.

Actually there is a status value that corresponds to "you sent me something too large" (413), so we
remap the Deny's 403 (Forbidden) status to it.

The same Content-length field is used to indicate the amount of data included
in a POST request, such as from a web form submission, so be careful not to set

your maximum too low or your forms may start getting this error!

See Also

Chapter 9

[Team LiB]

[Team LiB]

Recipe 6.5 Restricting Images from Being Used Off-Site

Problem

Other sites are linking to images on your system, stealing bandwidth from you and incidentally
making it appear as though the images belong to them. You want to ensure that all access to your
images is from documents that are on your server.

Solution

Add the following lines to the .htaccess file in the directory where the images are, or to the
appropriate <Directory> container in the httpd.conf file. Replace the myserver.com with your domain

name:

<FilesMatch "\.(jpg|jpeg|gif|png)$">

 SetEnvIfNoCase Referer "^http://([^/]*\.)?myserver.com/" local_referrer=1
 Order Allow,Deny
 Allow from env=local_referrer
</FilesMatch>

In fact, by using the following recipe, you can even go one step further, and return a different image
to users accessing your images via an off-site reference:

SetEnvIfNoCase Referer "^http://([^/]*\.)?myserver.com/" local_referrer=1
RewriteRule %ENV{local_referer| !1 /Stolen-100x100.png [L]

Discussion

The first solution will cause all requests for image files to be refused with a 403 Forbidden status
unless the link leading to the request was in one of your own documents. This means that anyone
linking to your images from a different web site system will get the error instead of the image,
because the referer does not match the approved server name.

Note that this technique can cause problems for requests that do not include a Referer request

header field, such as people who visit your site through an anonymising service or who have their
browser configured not to send this information.

The second solution is similar to the first, except that it substitutes an image of your choice for the
one requested, rather than denying the request. Using the values in the Solution, you can construct a
Stolen-100x100.png that has whatever admonitory message or perhaps just some picture that will
deter the visitor from "stealing" your images.

See Also

Recipe 6.21

[Team LiB]

[Team LiB]

Recipe 6.6 Requiring Both Weak and Strong
Authentication

Problem

You want to require both weak and strong authentication for a particular resource. For example, you
wish to ensure that the user accesses the site from a particular location and to require that he
provides a password.

Solution

Use the Satisfy directive to require both types of authentication:

<Directory /www/htdocs/sensitive>

 # Enforce all restrictions
 Satisfy All

 # Require a password
 AuthType Basic
 AuthName Sensitive
 AuthUserFile /www/passwords/users
 AuthGroupFile /www/passwords/groups
 Require group salesmen

 # Require access from a certain network
 Order deny,allow
 Deny from all
 Allow from 192.168.1
</Directory>

Discussion

In this example, a user must provide a login, identifying him as a member of the salesmen group, and
he must also use a machine on the 192.168.1 network.

The Satisfy All directive requires that all access control measures be enforced for the specified scope.
A user accessing the resource from a nonmatching IP address will immediately receive a Forbidden

error message in his browser, while, in the logfile, the following error message is logged:

[Sun May 25 15:31:53 2003] [error] [client 208.32.53.7] client denied by server
configuration: /usr/local/apache/htdocs/index.html

Users who are in the required set of IP addresses, however, receive a password dialog box and are
required to provide a valid username and password.

See Also

Recipe 6.9

[Team LiB]

[Team LiB]

Recipe 6.7 Managing .htpasswd Files

Problem

You wish to create password files for use with Basic HTTP authentication.

Solution

Use the htpasswd utility to create your password file, as in Table 6-1.

Table 6-1. Managing password files with htpasswd

Command Action

% htpasswd -c user.pass
waldo

Create a new password file called user.pass with this one new
entry for user waldo. Will prompt for password.

% htpasswd user.pass ralph
Add an entry for user ralph in password file user.pass. Will prompt
for password.

% htpasswd -b user.pass
ralph mydogspot

Add a user ralph to password file user.pass with password
mydogspot.

Or, use the Perl module Apache::Htpasswd to manage the file programmatically:

use Apache::Htpasswd;
$pass = new Apache::Htpasswd("/usr/local/apache/passwords/user.pass") or
die "Couldn't open password file.";

Add an entry
$pass->htpasswd("waldo", "emerson");

Delete entry
$pass->htDelete("waldo");

Discussion

The htpasswd utility, which comes with Apache, is located in the bin subdirectory.

On some third-party distributions of Apache, the htpasswd program has been
copied into a directory in your path, but ordinarily it will not be in your path;
you will either have to put it there, or provide the full path to the program in
order to run it, such as /usr/local/apache/bin/htpasswd.

The first line of the Solution creates a new password file at the specified location. That is, in the
example given, it creates a new password file called user.pass, containing a username and password
for a user waldo. You will be prompted to enter the desired password, and then prompted to repeat
the password for confirmation.

The -c flag creates a new password file, even if a file of that name already exists, so make sure that

you only use this flag the first time. After that, using it causes your existing password file to be
obliterated and replaced with the (almost empty) new one.

The second line in the Solution adds a password to an existing password file. As before, the user is
prompted to enter the desired password, and then prompted to confirm it by typing it again.

The examples given here create a password file using the crypt algorithm by default on all platforms

other than Windows, Netware, and TPF. On those platforms, the MD5 algorithm is used by default.

For platforms that use crypt, each line of the password file looks something like:

waldo:/z32oW/ruTI8U

The portion of the line following the username and colon is the encrypted password. Other usernames
and passwords appear one per line.

The htpasswd utility provides other options, such as the ability to use the MD5 algorithm to encrypt
the password (the -m flag), provide the password on the command line rather than being prompted
for it (the -b flag), or print the results to stdout, rather than altering the password file (the -n flag).

The -b flag can be particularly useful when using the htpasswd utility to create passwords in some
scripted fashion, rather than from an interactive prompt. The third line of the recipe above illustrates
this syntax.

As of Apache 2.0.46, the -D flag lets you delete an existing user from the password file:

% htpasswd -D user.pass waldo

whereas in previous versions, you would need to use some alternate method to remove lines from
the file. For example, you could remove a line using grep, or simply open the file in a text editor:

% egrep -v '^waldo:' user.pass >! user.pass

Apache::Htpasswd, written by Kevin Meltzer, is available from CPAN (http://cpan.org/) and gives a
Perl interface to Apache password files. This allows you to modify your password files from CGI
programs or via other mechanisms, using just a few lines of Perl code as shown in the recipe.

In addition to the methods demonstrated in this recipe, there are also methods for checking a
particular password against the contents of the password file, obtaining a list of users from the file, or
retrieving the encrypted password for a particular user, among other things. See the documentation
for this fine module for the full details on its many features.

http://cpan.org/

One final note about your password file. We strongly recommend that you store your password file in
some location that is not accessible through the Web (i.e., outside of your document directory). By
putting it in your document directory, you run the risk of someone downloading the file and running a
brute-force password cracking algorithm against it, which will eventually yield your passwords for
them to use.

See Also

Recipe 6.7

http://search.cpan.org/author/KMELTZ/Apache-Htpasswd/Htpasswd.pm

[Team LiB]

http://search.cpan.org/author/KMELTZ/Apache-Htpasswd/Htpasswd.pm

[Team LiB]

Recipe 6.8 Making Password Files for Digest
Authentication

Problem

You need to create a password file to be used for Digest authentication.

Solution

Use the following command forms to set up a credential file for a realm to be protected by Digest

authentication:

% htdigest -c "By invitation only" rbowen

% htdigest "By invitation only" krietz

Discussion

Digest authorization, implemented by mod_auth_digest, uses an MD5 hash of the username,
password, and authentication realm to check the credentials of the client. The htdigest utility, which
comes with Apache, creates these files for you.

The syntax for the command is very similar to the syntax for the htpasswd utility, except that you
must also specify the authentication realm that the password will be used for. The resulting file
contains one line per user, looking something like the following:

rbowen:By invitation only:23bc21f78273f49650d4b8c2e26141a6

Note that, unlike entries in the password files created by htpasswd, which can be used anywhere,
these passwords can be used only in the specified authentication realm, because the encrypted hash
includes the realm.

As with htpasswd, the -c flag creates a new file, possibly overwriting an existing file. You will be

prompted for the password and then asked to type it again to verify it.

htdigest does not have any of the additional options that htpasswd does.

See Also

Recipe 6.7

[Team LiB]

[Team LiB]

Recipe 6.9 Relaxing Security in a Subdirectory

Problem

There are times when you might want to apply a tight security blanket over portions of your site,
such as with something like:

<Directory /usr/local/apache/htdocs/BoD>
 Satisfy All
 AuthUserFile /usr/local/apache/access/bod.htpasswd
 Require valid-user
</Directory>

Due to Apache's scoping rules, this blanket applies to all documents in that directory and in any
subordinate subdirectories underneath it. But suppose you want to make a subdirectory, such as
BoD/minutes, available without restriction?

Solution

The Satisfy directive is the answer. Add the following to either the .htaccess file in the subdirectory or
in an appropriate <Directory> container:

Satisfy Any
Order Deny,Allow
Allow from all

HTTP, Browsers, and Credentials

It is easy to draw incorrect conclusions about the behavior of the Web; when you have a
page displayed in your browser, it is natural to think that you are still connected to that
site. In actuality, however, that's not the case-once your browser fetches the page from
the server, both disconnect and forget about each other. If you follow a link, or ask for
another page from the same server, a completely new exchange has begun.

When you think about it, this is fairly obvious. It would make no sense for your browser to
stay connected to the server while you went off to lunch or home for the day.

Each transaction that is unique and unrelated to others is called stateless, and it has a
bearing on how HTTP access control works.

When it comes to password-protected pages, the web server doesn't remember whether
you've accessed them before or not. Down at the HTTP level where the client (browser)

and server talk to each other, the client has to prove who it is every time; it's the client
that remembers your information.

When accessing a protected area for the first time in a session, here's what actually gets
exchanged between the client and the server:

The client requests the page.1.

The server responds, "You are not authorized to access this resource (a 401
unauthorized status). This resource is part of authentication realm XYZ." (This
information is conveyed using the WWW-Authenticate response header field; see RFC

2616 for more information.)

2.

If the client isn't an interactive browser, at this point it probably goes to step 7. If it is
interactive, it asks the user for a username and password, and shows the name of
the realm the server mentioned.

3.

Having gotten credentials from the user, the client reissues the request for the
document-including the credentials this time.

4.

The server examines the provided credentials. If they're valid, it grants access and
returns the document. If they aren't, it responds as it did in step 2.

5.

If the client receives the unauthorized response again, it displays some message
about it and asks the user if he wants to try entering the username and password
again. If the user says yes, the client goes back to step 3.

6.

If the user chooses not to reenter the username and password, the client gives up
and accepts the "unauthorized" response from the server.

7.

Once the client has successfully authenticated with the server, it remembers the
credentials, URL, and realm involved. Subsequent requests that it makes for the same
document or one "beneath" it (e.g., /foo/bar/index.html is "beneath" /foo/index.html)
causes it to send the same credentials automatically. This makes the process start at step
4, so even though the challenge/response exchange is still happening between the client
and the server, it's hidden from the user. This is why it's easy to get caught up in the
fallacy of users being "logged on" to a site.

This is how all HTTP weak authentication works. One of the common features of most
interactive web browsers is that the credentials are forgotten when the client is shut
down. This is why you need to reauthenticate each time you access a protected document
in a new browser session.

Discussion

This tells Apache that access is granted if the requirements of either the weak (user credentials) or
strong protection (IP address) mechanisms are fulfilled. Then it goes on to say that the strong
mechanism will always be happy regardless of the visitor's origin.

Be aware that this sets a new default security condition for all subdirectories below the one affected.

In other words, you are not just unlocking the one subdirectory but all of its descendants as well.

See Also

Recipe 6.6

Recipe 6.10

[Team LiB]

[Team LiB]

Recipe 6.10 Lifting Restrictions Selectively

Problem

You want most documents to be restricted, such as requiring a username and password, but want a
few to be available to the public. For example, you may want index.html to be publicly accessible,
while the rest of the files in the directory require password authentication.

Solution

Use the Satisfy Any directive in the appropriate place in your .htaccess or httpd.conf file:

<Files index.html>
 Order Deny,Allow
 Allow from all
 Satisfy Any
</Files>

Discussion

Regardless of what sorts of restrictions you may have on other files, or on the directory as a whole,
the <Files> container in the solution makes the index.html file accessible to everyone without
limitation. Satisfy Any tells Apache that any of the restrictions in place may be satisfied, rather than
having to enforce any particular one. In this case, the restriction in force will be Allow from all, which
permits access for all clients.

Weak and Strong Authentication

The basic Apache security model for HTTP is based upon the concepts of weak and strong
authentication mechanisms. Weak mechanisms are those that rely on information
volunteered by the user; strong ones use credentials obtained without asking him. For
instance, a username and password constitute a set of weak credentials, while the IP
address of the user's client system is regarded as a strong one.

One difference between the two types lies in how Apache handles an authentication failure.
If invalid weak credentials are presented, the server will respond with a 401 Unauthorized
status, which allows the user to try again. In contrast, a failure to authenticate when
strong credentials are required will result in a 403 Forbidden status-for which there is no
opportunity to retry.

In addition, strong and weak credentials can be required in combination; this is controlled
by the Satisfy directive. The five possible requirements are:

None. No authentication required.

Only strong credentials are needed.

Only weak credentials are required.

Both strong and weak credentials are accepted; if either is valid, access is permitted.

Both strong and weak credentials are required.

See Also

Recipe 6.9

Recipe 6.6

[Team LiB]

[Team LiB]

Recipe 6.11 Authorizing Using File Ownership

Problem

You wish to require user authentication based on system file ownership. That is, you want to require
that the user that owns the file matches the username that authenticated.

Solution

Use the Require file-owner directive:

<Directory /home/*/public_html/private>
 AuthType Basic
 AuthName "MyOwnFiles"
 AuthUserFile /some/master/authdb
 Require file-owner
</Directory>

Discussion

The goal here is to require that username jones must authenticate in order to access the
/home/jones/public_html/private directory.

The user does not authenticate against the system password file but against the AuthUserFile
specified in the example. Apache just requires that the name used for authentication matches the
name of the owner of the file or directory in question. Note also that this is a feature of mod_auth
and is not available in other authentication modules.

This feature was added in Apache 1.3.22.

See Also

The Require file-group keyword at http://httpd.apache.org/docs/mod/mod_auth.html#require

[Team LiB]

http://httpd.apache.org/docs/mod/mod_auth.html#require

[Team LiB]

Recipe 6.12 Storing User Credentials in a MySQL
Database

Problem

You wish to use user and password information in your MySQL database for authenticating users.

Solution

For Apache 1.3, use mod_auth_mysql:

Auth_MySQL_Info db_host.example.com db_user my_password
Auth_MySQL_General_DB auth_database_name

<Directory /www/htdocs/private>
 AuthName "Protected directory"
 AuthType Basic
 require valid-user
</Directory>

For Apache 2.1 and later, use mod_authn_dbi:

 AuthnDbiDriver Config1 mysql
 AuthnDbiHost Config1 db.example.com
 AuthnDbiUsername Config1 db_username
 AuthnDbiPassword Config1 db_password
 AuthnDbiName Config1 auth_database_name
 AuthnDbiTable Config1 auth_database_table
 AuthnDbiUsernameField Config1 user_field
 AuthnDbiPasswordField Config1 password_field
 AuthnDbiIsActiveField Config1 is_active_field

 AuthnDbiConnMin Config1 3
 AuthnDbiConnSoftMax Config1 12
 AuthnDbiConnHardMax Config1 20
 AuthnDbiConnTTL Config1 600

<Directory "/www/htdocs/private">
 AuthType Digest
 AuthName "Protected directory>
 AuthBasicProvider dbi
 AuthnDbiServerConfig Config1
 Require valid-user

</Directory>

Discussion

There are a number of modules called mod_auth_mysql. The module used in the previous example is
the mod_auth_mysql from http://www.diegonet.com/support/mod_auth_mysql.shtml. For the full
explanation of the database fields that you will need to create, and the additional options that the
module affords, you should consult the documentation on the web site.

If you are running Apache 2.1 or later, you will want to take advantage of the new authentication
framework, and use the module mod_authn_dbi, available from
http://open.cyanworlds.com/mod_authn_dbi/. Due to the new authentication API in Apache 2.1, a
number of things are possible that were not possible in earlier versions. For example, a single
module, such as mod_authn_dbi, can be used for either Basic or Digest authentication, by simply
changing the AuthType directive from Basic to Digest. (AuthBasicProvider would also become
AuthDigestProvider in the previous example.)

mod_authn_dbi uses libdbi, which is a generic database access library, allowing you to use your
favorite database server to provide authentication services. libdbi drivers are available for most
popular database servers. For a more complete description of mod_authn_dbi, you should consult the
documentation on the web site.

See Also

http://www.diegonet.com/support/mod_auth_mysql.shtml

http://open.cyanworlds.com/mod_authn_dbi/

[Team LiB]

http://www.diegonet.com/support/mod_auth_mysql.shtml
http://open.cyanworlds.com/mod_authn_dbi/
http://www.diegonet.com/support/mod_auth_mysql.shtml
http://open.cyanworlds.com/mod_authn_dbi/

[Team LiB]

Recipe 6.13 Accessing the Authenticated Username

Problem

You want to know the name of the user who has authenticated.

Solution

Consult the environment variable REMOTE_USER.

In a Server-Side Include (SSI) directive, this may look like:

Hello, user <!--#echo var="REMOTE_USER" -->. Thanks for visiting.

In your CGI code, it might look like:

my $username = $ENV{REMOTE_USER};

Discussion

When a user has authenticated, the environment variable REMOTE_USER is set to the name with which

she authenticated. You can access this variable in CGI programs, SSI directives, PHP files, and a
variety of other methods. The value will also appear in your access_log file.

Note that, while it is the convention for an authentication module to set this variable, there are
reportedly some third-party authentication modules that do not set it, but provide other methods for
accessing that information.

See Also

Recipe 6.14

[Team LiB]

[Team LiB]

Recipe 6.14 Obtaining the Password Used to Authenticate

Problem

You want to get the password that the user authenticated with.

Solution

Standard Apache modules do not make this value available. It is, however, available from the Apache
API if you wish to write your own authentication methods.

In the Apache 1.3 API, you need to investigate the ap_get_basic_auth_pw function. In the 2.0 API,
look at the get_basic_auth function.

If you write an authentication handler with mod_perl, you can retrieve the username and password
with the get_username function:

 my ($username, $password) = get_username($r);

Discussion

For security reasons, although the username is available as an environment variable, the password
used to authenticate is not available in any simple manner. The rationale behind this is that it would
be a simple matter for unscrupulous individuals to capture passwords so that they could then use
them for their own purposes. Thus the decision was made to make passwords near to impossible to
attain.

The only way to change this is to rebuild the server from the sources with a particular (strongly
discouraged) compilation flag. Alternately, if you write your own authentication module, you would of
course have access to this value, as you would need to verify it in your code.

See Also

Recipe 6.13

[Team LiB]

[Team LiB]

Recipe 6.15 Preventing Brute-Force Password Attacks

Problem

You want to disable a username when there are repeated failed attempts to authenticate using it, as
if it is being attacked by a password-cracker.

Solution

There is no way to do this with standard Apache authentication modules. The usual approach is to
watch your logfile carefully. Or you can use something like Apache::BruteWatch to tell you when a
user is being attacked:

 PerlLogHandler Apache::BruteWatch
 PerlSetVar BruteDatabase DBI:mysql:brutelog
 PerlSetVar BruteDataUser username
 PerlSetVar BruteDataPassword password

 PerlSetVar BruteMaxTries 5
 PerlSetVar BruteMaxTime 120
 PerlSetVar BruteNotify rbowen@example.com

Discussion

Due to the stateless nature of HTTP and the fact that users are not, technically, "logged in" at all (see
HTTP, Browsers, and Credentials), there is no connection between one authentication attempt and
another. This makes it possible to repeatedly attempt to log in with a particular username.

Apache::BruteWatch is one way to watch the logfile and send notification when a particular account is
being targeted for a brute-force password attack. With the configuration shown previously, if a given
account fails authentication 5 times in 2 minutes, the server administrator will be notified of the
situation, so that she can take appropriate measures, such as blocking the offending address from
the site.

See Also

HTTP, Browsers, and Credentials

[Team LiB]

[Team LiB]

Recipe 6.16 Using Digest Versus Basic Authentication

Problem

You want to understand the distinction between the Basic and Digest authentication methods.

Solution

Use AuthType Basic and the htpasswd tool to control access using Basic authentication. Use
AuthType Digest and the htdigest tool for the Digest method.

Discussion

Basic web authentication is exactly that: primitive and insecure. It works by encoding the user

credentials with a reversible algorithm (essentially base-64 encoding) and transmitting the result in
plaintext as part of the request header. Anyone (or anything) that intercepts the transmission can
easily crack the encoding of the credentials and use them later. As a consequence, Basic

authentication should only be used in environments where the protected documents aren't truly
sensitive or when there is no alternative.

In contrast, Digest authentication uses a more secure method that is much less susceptible to

credential theft, spoofing, and replay attacks. The exact details don't matter; the essential ingredient
is that no username or password traverses the network in plaintext.

Preparing a realm to use Basic authentication consists of simply storing the username/password pair

and telling the server where to find them. The password may or may not be encrypted. The same
credentials may be applied to any realm on the server, or even copied to a completely different
server and used there. They may be stored in a variety of databases; multiple modules exist for
storing Basic credentials in flat text files, GDBM files, MySQL databases, LDAP directories, and so on.

Setting up Digest authentication is a little more involved. For one thing, the credentials are not

transportable to other realms; when you generate them, you specify the realm to which they apply.
For another, the only storage mechanism currently supported directly by the Apache package is flat
text files; if you want to keep your Digest credentials in an LDAP directory or Oracle database,

you're going to have to look for third-party modules to do it or else write one yourself.

In addition to the more complex setup process, Digest authentication currently suffers from a lack of

market penetration. That is, even though Apache supports it, not all browsers and other web clients
do; so you may end up having to use Basic authentication simply, because there's nothing else

available to your users.

See Also

Recipe 6.18

[Team LiB]

[Team LiB]

Recipe 6.17 Accessing Credentials Embedded in URLs

Problem

You know people access your site using URLs with embedded credentials, such as
http://user:password@host/, and you want to extract them from the URL for validation or other
purposes.

Solution

None; this is a nonissue that is often misunderstood.

Discussion

For nonproxy requests, this doesn't even exist; the browser dissects the URL and turns it into the
appropriate request header fields (i.e., WWW-Authenticate). For proxy requests, who knows?

[Team LiB]

http://user:password@host/

[Team LiB]

Recipe 6.18 Securing WebDAV

Problem

You want to allow your users to upload and otherwise manage their web documents with WebDAV,
but without exposing your server to any additional security risks.

Solution

Require authentication to use WebDAV:

<Directory "/www/htdocs/dav-test">
 Order Allow,Deny
 Deny from all
 AuthDigestFile /www/acl/.htpasswd-dav-test
 AuthDigestDomain /dav-test/
 AuthName "DAV access"
 Require
 Satisfy any
</Directory>

Discussion

Because WebDAV operations can modify your server's resources and mod_dav runs as part of the
server, locations that are WebDAV-enabled need to be writable by the user specified in the server's
User directive. This means that the same location is writable by any CGI scripts or other modules that
run as part of the Apache server. To keep remote modification operations under control, you should
enable access controls for WebDAV-enabled locations. If you use weak controls, such as user-level
authentication, you should use Digest authentication rather than Basic, as shown in the Solution.

The contents of the <Directory> container could be put into a dav-test/.htaccess file, as well. Note
that the authentication database (specified with the AuthDigestFile directive) is not within the server's
URI space, and so it cannot be fetched with a browser nor with any WebDAV tools.

Your authentication database and .htaccess files should not be modifiable by the server user; you
don't want them getting changed by your WebDAV users!

See Also

Recipe 6.16

[Team LiB]

[Team LiB]

Recipe 6.19 Enabling WebDAV Without Making Files
Writable by the Web User

Problem

You want to run WebDAV but don't want to make your document files writable by the Apache server
user.

Solution

Run two web servers as different users. The DAV-enabled server, for example, might run as User
dav, Group dav, while the other server, which is responsible for serving your content, might run as
User nobody, Group nobody. Make the web content writable by the dav user, or the dav group.

Remember that only a single web server can be handling a particular port/IP
address combination. This means that your WebDAV-enabled server will have
to be using either a different address, a different port, or both than the non-
WebDAV server.

Discussion

A big security concern with DAV is that the content must be modifiable by the web server user for
DAV to be able to update that content. This means that any content can also be edited by CGI
programs, SSI directives, or other programs running under the web server. While the Apache security
guidelines caution against having any files writable by the web server user, DAV requires it.

By running two Apache servers, you can move around this limitation. The DAV-enabled web server,
running on an alternate port, has the User and Group directives set to an alternate user and group,
such as:

User dav
Group dav

which is the owner of the web content in question. The other web server, which will be responsible for
serving content to users, runs as a user who does not have permission to write to any of the
documents.

The DAV-enabled web server should be well authenticated, so that only those who are permitted to
edit the site can access that portion of the server. You should probably also set up this server to be
very lightweight, both in the modules that you install as well as in the number of child processes (or

threads) that you run.

Finally, it should be noted that the perchild MPM, under Apache 2.0, supports the idea of running
different virtual hosts with different user ids, so that this recipe could be accomplished by enabling
DAV just for the one particular vhost. However, as of this writing, the perchild MPM is not working
yet.

See Also

http://httpd.apache.org/docs-2.0/mod/mod_dav.html

http://httpd.apache.org/docs-2.0/mod/perchild.html

[Team LiB]

http://httpd.apache.org/docs-2.0/mod/mod_dav.html
http://httpd.apache.org/docs-2.0/mod/perchild.html

[Team LiB]

Recipe 6.20 Restricting Proxy Access to Certain URLs

Problem

You don't want people using your proxy server to access particular URLs or patterns of URLs (such as
MP3 or streaming video files).

Solution

You can block by keyword:

ProxyBlock .rm .ra .mp3

You can block by specific backend URLs:

<Directory proxy:http://other-host.org/path>
 Order Allow,Deny
 Deny from all
 Satisfy All
</Directory>

Or you can block according to regular expression pattern matching:

<Directory proxy:*>
 RewriteEngine On
 #
 # Disable proxy access to Real movie and audio files
 #
 RewriteRule "\.(rm|ra)$" "-" [F,NC]
 #
 # Don't allow anyone to access .mil sites through us
 #
 RewriteRule "^[a-z]+://[-.a-z0-9]*\.mil($|/)" "-" [F,NC]
</Directory>

Discussion

All of these solutions will result in a client that attempts to access a blocked URL receiving a 403
Forbidden status from the server.

The first solution uses a feature built into the proxy module itself: the ProxyBlock directive. It's
simple and efficient, and it catches the results so that future accesses to the same URL are blocked
with less effort; however, the pattern matching it can perform is extremely limited and prone to

confusion. For instance, if you specify:

ProxyBlock .mil

the server denies access to both http://www.navy.mil/ and http://example.com/spec.mil/list.html.
This is probably not what was intended!

The second method allows you to impose limitations based on the URL being fetched (or gateway, in
the case of a ProxyPass directive).

The third method, which allows more complex what-to-block patterns to be constructed, is both more
flexible and more powerful, and somewhat less efficient. Use it only when the other methods prove
insufficient.

<DirectoryMatch> containers work as well, so more complex patterns may be
used.

The flags to the RewriteRule directive tell it, first, that any URL matching the pattern should result in
the server returning a 403 Forbidden error (F or forbidden), and second that the pattern match is
case-insensitive (NC or nocase).

One disadvantage of the mod_rewrite solution is that it can be too specific. The first RewriteRule
pattern can be defeated if the client specifies path-info or a query string, or if the origin server uses a
different suffix naming scheme for these types of files. A little cleverness on your part can cover
these sorts of conditions, but beware of trying to squeeze too many possibilities into a single regular
expression pattern. It's generally better to have multiple RewriteRule directives than to have a single
all-singing all-dancing one that no one can read-and is hence prone to error.

See Also

The mod_proxy and mod_rewrite documentation at
http://httpd.apache.org/docs/mod/mod_proxy.html and
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://www.navy.mil/
http://example.com/spec.mil/list.html
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 6.21 Protecting Files with a Wrapper

Problem

You have files to which you want to limit access using some method other than standard web
authentication (such as a members-only area).

Solution

In httpd.conf, add the following lines to a <Directory> container whose contents should be accessed
only through a script:

RewriteEngine On
RewriteRule "\.(dll|zip|exe)$" protect.php [NC]
RewriteCond %{REMOTE_ADDR} "!^my.servers.ip"
RewriteRule "\.cgi$" protect.php [NC]

And an example protect.php that just displays the local URI of the document that was requested:

<?php
/*
 * The URL of the document actually requested is in
 * $_SERVER['REQUEST_URI']. Appropriate decisions
 * can be made about what to do from that.
 */
Header('Content-type: text/plain');
$body = sprintf("Document requested was: %s\n", $_SERVER['REQUEST_URI']);
Header('Content-length: ' . strlen($body));
print $body;
?>

Discussion

In the situation that prompted this recipe, authentication and authorization were completed using a
cookie rather than the standard mechanisms built into the web protocols. Any request for a
document on the site was checked for the cookie and redirected to the login page if it wasn't found,
was expired, or had some other problem causing its validity to be questioned.

This is fairly common and straightforward. What is needed in addition to this is a way to limit access
to files according to the cookie and ensure that no URL-only request could reach them.

To this end, a wrapper is created (called protect.php in the Solution), which is invoked any time one
of the protected document types is requested. After validating the cookie, the protect.php script

figures out the name of the file from the environment variables, determines the content-type from
the extension, and opens the file and sends the contents.

This is illustrated in the Solution. Any time a document ending in one of the extensions .dll, .zip, .exe,
or .cgi is requested from the scope covered by the mod_rewrite directives, and the request comes
from some system other than the web server system itself (i.e., from a client system), the
protect.php script will be invoked instead. In the Solution, the script simply displays the local URI of
the document that is requested; applying additional access control or other functionality is easily
developed from the example.

If access control is the main purpose of the wrapper and the access is granted, the wrapper needs to
send the requested document to the client. In this case, the wrapper could either determine the
filesystem path to the desired document and use the PHP routine fpassthru() to open it and send it
to the client, or it could access the document using PHP's ability to open a URL as though it were a
file with the fopen(http://docurl) function call. (This latter method is necessary if the document

requires server processing, such as if it's a script.)

This would ordinarily trigger the wrapper on the dynamic document again, causing a loop. To prevent
this, the wrapper is only applied to dynamic documents if the requesting host isn't the server itself. If
it is the web server making the request, we know the wrapper has already been run and you don't
need to run it again. The server processes the document as usual and sends the contents back to the
wrapper, which is still handling the original request, and it dutifully passes it along to the client. This
is handled by the RewriteCond directive, which says "push requests for scripts through the wrapper
unless they're coming from the server itself."

This method is perhaps a little less than perfectly elegant and not the best for performance, because
each CGI request involves at least two concurrent requests, but it does address the problem.

See Also

Chapter 5

[Team LiB]

[Team LiB]

Recipe 6.22 Protecting All Files Except a Subset

Problem

You want to deny all web access to files in a directory, except for those with a particular extension
(i.e., a directory with HTML files in it, where you don't want other files to be accessible).

Solution

Use a Files container in a Directory container to limit where authentication is required:

<Directory "/usr/local/apache/htdocs">
 Satisfy All
 Order allow,deny
 Deny from all
 <Files *.html>
 Order deny,allow
 Allow from all
 Satisfy Any
 </Files>
</Directory>

Discussion

This method can be easily extended to apply to arbitrary filename patterns using shell global
characters. To extend it to use regular expressions for the filename, use the <FilesMatch> directive
instead.

See Also

http://httpd.apache.org/docs/mod/mod_access.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_access.html

[Team LiB]

Recipe 6.23 Protecting Server Files from Malicious
Scripts

Problem

Scripts running on your web server may access, modify, or destroy files located on your web server if
they are not adequately protected. You want to ensure that this cannot happen.

Solution

Ensure that none of your files are writable by the nobody user or the nobody group, and that

sensitive files are not readable by that user and group:

find / -user nobody
find / -group nobody

Discussion

The User and Group directives specify a user and group under whose privileges the web server will
run. These are often set to the values of nobody and nobody, respectively, but they can vary in

different setups. It is often advisable to create a completely new user and group for this purpose, so
that there is no chance that the user has been given additional privileges of which you are not aware.

Because everything runs with these privileges, any files or directories that are accessible by this user
and/or group will be accessible from any script running on the server. This means that a script
running under one virtual host may possibly modify or delete files contained within another virtual
host, either intentionally or accidentally, if those files have permissions making this possible.

Ideally, no files anywhere on your server should be owned by, or writable by, the server user, unless
for the explicit purpose of being used as a datafile by a script. And, even for this purpose, it is
recommended that a real database be used, so that the file itself cannot be modified by the server
user. And if files simply must be writable by the server, they should definitely not be in some web-
accessible location, such as /cgi-bin/.

See Also

Recipe 8.12

Recipe 6.24

[Team LiB]

[Team LiB]

Recipe 6.24 Setting Correct File Permissions

Problem

You want to set file permissions to provide the maximum level of security.

Solution

The bin directory under the ServerRoot should be owned by user root, group root, and have file
permissions of 755 (rwxr-xr-x). Files contained therein should also be owned by root.root and be

mode 755.

Document directories, such as htdocs, cgi-bin, and icons, will have to have permissions set in a way
that makes the most sense for the development model of your particular web site, but under no
circumstances should any of these directories or files contained in them be writable by the web server
user.

The solution provided here is specific to Unixish systems. Users of other
operating systems should adhere to the principles laid out here, although the
actual implementation will vary.

The conf directory should be readable and writable only by root, as should all the files contained
therein.

The include and libexec directories should be readable by everyone, writable by no one.

The logs directory should be owned and writable by root. You may, if you like, permit other users to
read files in this directory, as it is often useful for users to be able to access their logfiles, particularly
for troubleshooting purposes.

The man directory should be readable by all users.

Finally, the proxy directory should be owned by and writable by the server user.

On most Unixish file systems, a directory must have the x bit set in order for

the files therein to be visible.

Discussion

You should be aware that if you ask 12 people for the correct ways to set file permissions on your
Apache server, you will get a dozen different answers. The recommendations here are intended to be
as paranoid as possible. You should feel free to relax these recommendations, based on your
particular view of the world and how much you trust your users. However, if you set file permissions
any more restrictive than this, your Apache server is likely not to function. There are, of course,
exceptions to this, and cases in which you could possibly be more paranoid are pointed out later.

The most important consideration when setting file permissions is the Apache server user-the user
as which Apache runs. This is configured with the User and Group directives in your httpd.conf file,
setting what user and group the Apache processes will run as. This user needs to have read access to
nearly everything but should not have write access to anything.

The recommended permissions for the bin directory permit anyone to run programs contained
therein. This is necessary in order for users to create password files using the htpasswd and htdigest
utilities, run CGI programs using the suexec utility, check the version of Apache using httpd -v, or
use any of the other programs in this directory. There is no known security risk of permitting this
access. The web server itself cannot be stopped or started by an unprivileged user under normal
conditions. These files, or the directory, should never be writable by nonroot users, as this would
allow compromised files to be executed with root privileges.

Extra-paranoid server administrators may wish to make the bin directory, and its contents, readable
and executable only by root. However, the only real benefit to doing so is that other users cannot run
the utilities or httpd server, such as on a different port. Some of those utilities, such as htpasswd and
htdigest, are intended to be run by content providers (i.e., users) in addition to the webmaster.

The conf directory, containing the server configuration files, can be locked down as tightly as you like.
While it is unlikely that reading the server configuration files will allow a user to gain additional
privileges on the server, more information is always useful for someone trying to compromise your
server. You may, therefore, wish to make this directory readable only by root. However, most people
will consider this just a little too paranoid.

Document directories are particularly problematic when it comes to making permission
recommendations, as the recommended setting will vary from one server to another. On a server
with only one content provider, these directories should be owned by that user and readable by the
Apache user. On a server with more than one content developer, the files should be owned by a
group of users who can modify the files but still be readable by the Apache user. The icons directory
is a possible exception to this rule, because the contents of that directory are rarely modified and do
not need to be writable by any users.

The include and libexec directories contain files that are needed by the Apache executable at runtime
and only need to be readable by root, which starts as root, and by no other users. However, since the
include directory contains C header files, it may occasionally be useful for users to have access to
those files to build applications that need those files.

The logs directory should under no circumstances ever be writable by anyone other than root. If the
directory is ever writable by another user, it is possible to gain control of the Apache process at start
time and gain root privileges on the server. Whether you permit other users to read files in this
directory is up to you and is not required. However, on most servers, it is very useful for users to be
able to access the logfiles-particularly the error_log file, in order to troubleshoot problems without
having to contact the server administrator.

The man directory contains the manpages for the various utilities that come with Apache. These need

to be readable by all users. However, it is recommended that you move them to the system man
path, or install them there when you install Apache by providing an argument to the -mandir
argument specifying the location of your system man directory.

Finally, the proxy directory should be owned by, and writable by, the server user. This is the only
exception to the cardinal rule that nothing should be writable by this user. The proxy directory
contains files created by and managed by mod_proxy, and they need to be writable by the
unprivileged Apache processes. If you are not running a proxy server with mod_proxy, you may
remove this directory entirely.

See Also

Learning the Unix Operating System, Fifth Edition, by Jerry Peek, Grace Todino, and John
Strang (O'Reilly)

http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html

[Team LiB]

http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html

[Team LiB]

Recipe 6.25 Running a Minimal Module Set

Problem

You want to eliminate all modules that you don't need in order to reduce the potential exposure to
security holes. What modules do you really need?

Solution

For Apache 1.3, you can run a bare-bones server with just three modules. (Actually, you can get
away with not running any modules at all, but it is not recommended.)

% ./configure --disable-module=all --enable-module=dir \
> --enable-module=mime --enable-module=log_config \

For Apache 2.0, this is slightly more complicated, as you must individually disable modules you don't
want:

% ./configure --disable-access \
> --disable-auth --disable-charset-lite \
> --disable-include --disable-log-config --disable-env --disable-setenvif \
> --disable-mime --disable-status --disable-autoindex --disable-asis \
> --disable-cgid --disable-cgi --disable-negotiation --disable-dir \
> --disable-imap --disable-actions --disable-alias --disable-userdir

Note that with 2.0, as with 1.3, you may wish to enable mod_dir, mod_mime, and mod_log_config,
by simply leaving them off of this listing.

Discussion

A frequent security recommendation is that you eliminate everything that you don't need; if you
don't need something and don't use it, then you are likely to overlook security announcements about
it or forget to configure it securely. The question that is less frequently answered is exactly what you
do and don't need.

A number of Apache package distributions come with everything enabled, and people end up running
modules that they don't really need-or perhaps are not even aware that they are running.

This recipe is an attempt to get to the very smallest Apache server possible, reducing it to the
minimum set of modules that Apache will run. That is, if you take any of these out, Apache will not
even start up, let alone serve a functional web site.

Apache 1.3

With Apache 1.3, this question is fairly easy to answer. We've reduced it to a set of three modules,
and, actually, you can eliminate all of the modules if you really want to, as long as you're aware of
the implications of doing so.

mod_dir is the module that takes a request for / and turns it into a request for /index.html, or
whatever other file you have indicated with the DirectoryIndex directive as the default document for a
directory. Without this module, users typing just your hostname into their browser will immediately
get a 404 error, rather than a default document. Granted, you could require that users specify a
hostname and filename in their URL, in which case you could dispense with this module requirement.
This would, however, make your web site fairly hard to use.

mod_mime enables Apache to determine what MIME type a particular file is, and send the
appropriate MIME header with that file, enabling the browser to know how to render that file. Without
mod_mime, your web server will treat all files as having the MIME type set by the DefaultType
directive. If this happens to match the actual type of the file, well and good; otherwise, this will cause
the browser to render the document incorrectly. If your web site consists only of one type of files,
you can omit this module.

Finally, mod_log_config, while not technically required at all, is highly recommended. Running your
web server without any activity logfiles will leave you without any idea of how your site is being used,
which can be detrimental to the health of your server. However, you should note that it is not
possible to disable the ErrorLog functionality of Apache, and so, if you really don't care about the
access information of your web site, you could feasibly leave off mod_log_config and still have error
log information.

The default distributed configuration file will need some adjustment to run
under these reduced conditions. In particular, you will probably need to remove
Order, Allow, and Deny directives (provided by mod_access), and you will need
to remove LogFormat and CustomLog directives if you remove mod_log_config.
Many other sections of the configuration files are protected by <IfModule>
sections and will still function in the absence of the required modules.

Apache 2.0

With Apache 2.0, a new configuration utility is used, and so the command-line syntax is more
complicated. In particular, there is no single command-line option to let you remove all modules, and
so every module must be specified with a -disable directive.

The list of modules that are minimally required for Apache 2.0 is the same as that for 1.3. mod_dir,
mod_mime, and mod_log_config are each recommended, but not mandated, for the same reasons
outlined previously.

[Team LiB]

[Team LiB]

Recipe 6.26 Restricting Access to Files Outside Your Web
Root

Problem

You want to make sure that files outside of your web directory are not accessible.

Solution

For Unixish systems:

<Directory />
 Order deny,allow
 Deny from all
 AllowOverride None
 Options None
</Directory>

For Windows systems:

<Directory C:/>
 Order deny,allow
 Deny from all
 AllowOverride None
 Options None
</Directory>

Repeat for each drive letter on the system.

Discussion

Good security technique is to deny access to everything, and then selectively permit access where it
is needed. By placing a Deny from all directive on the entire filesystem, you ensure that files cannot
be loaded from any part of your filesystem unless you explicitly permit it, using a Allow from all
directive applied to some other <Directory> section in your configuration.

If you wanted to create an Alias to some other section of your filesystem, you would need to explicitly
permit this with the following:

Alias /example /var/example
<Directory /var/example>
 Order allow,deny

 Allow from all
</Directory>

See Also

http://httpd.apache.org/docs/mod/mod_access.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_access.html

[Team LiB]

Recipe 6.27 Limiting Methods by User

Problem

You want to allow some users to use certain methods but prevent their use by others. For instance,
you might want users in group A to be able to use both GET and POST but allow everyone else to use
only GET.

Solution

Apply user authentication per method using the Limit directive:

AuthName "Restricted Access"
AuthType Basic

AuthUserFile filename
Order Deny,Allow
Allow from all
<Limit GET>
 Satisfy Any
</Limit>
<LimitExcept GET>
 Satisfy All
 Require valid-user
</Limit>

Discussion

It is often desirable to give general access to one or more HTTP methods, while restricting others. For
example, while you may wish any user to be able to GET certain documents, you may wish for only
site administrators to POST data back to those documents.

It is important to use the LimitExcept directive, rather than attempting to enumerate all possible
methods, as you're likely to miss one.

See Also

http://httpd.apache.org/docs/mod/mod_auth.html

http://httpd.apache.org/docs/mod/mod_access.html

http://httpd.apache.org/docs/mod/mod_auth.html
http://httpd.apache.org/docs/mod/mod_access.html

http://httpd.apache.org/docs/mod/core.html#limit

http://httpd.apache.org/docs/mod/core.html#limitexcept

[Team LiB]

http://httpd.apache.org/docs/mod/core.html#limit
http://httpd.apache.org/docs/mod/core.html#limitexcept

[Team LiB]

Recipe 6.28 Restricting Range Requests

Problem

You want to prevent clients from requesting partial downloads of documents within a particular
scope, forcing them to request the entire document instead.

Solution

You can overload ErrorDocument 403 to make it handle range requests. To do this, put the following
into the appropriate <Directory> container in your httpd.conf file or in the directory's .htaccess file:

SetEnvIf "Range" "." partial_requests
Order Allow,Deny
Allow from all
Deny from env=partial_requests
ErrorDocument 403 /forbidden.cgi

Then put the following into a file named forbidden.cgi in your server's DocumentRoot:

#! /usr/bin/perl -w
use strict;
my $message;
my $status_line;
my $body;
my $uri = $ENV{'REDIRECT_REQUEST_URI'} || $ENV{'REQUEST_URI'};
my $range = $ENV{'REDIRECT_HTTP_RANGE'} || $ENV{'HTTP_RANGE'};
if (defined($range)) {
 $body = "You don't have permission to access "
 . $ENV{'REQUEST_URI'}
 . " on this server.\r\n";
 $status_line = '403 Forbidden';
}
else {
 $body = "Range requests disallowed for document '"
 . $ENV{'REQUEST_URI'}
 . "'.\r\n";
 $status_line = '416 Range request not permitted';
}
print "Status: $status_line\r\n"
 . "Content-type: text/plain;charset=iso-8859-1\r\n"
 . "Content-length: " . length($body) . "\r\n"
 . "\r\n"
 . $body;

exit(0);

Or use mod_rewrite to catch requests with a Range header. To do this, put the following into the

appropriate <Directory> container in your httpd.conf file or in the directory's .htaccess file:

RewriteEngine On
RewriteCond "%{HTTP:RANGE}" "."
RewriteRule "(.*)" "/range-disallowed.cgi" [L,PT]

Then put the following into a file named range-disallowed.cgi in your server's DocumentRoot:

#! /usr/bin/perl -w
use strict;
my $message = "Range requests disallowed for document '"
 . $ENV{'REQUEST_URI'}
 . "'.\r\n";
print "Status: 416 Range request not permitted\r\n"
 . "Content-type: text/plain;charset=iso-8859-1\r\n"
 . "Content-length: " . length($message) . "\r\n"
 . "\r\n"
 . $message;
exit(0);

Discussion

Both of these solutions are a bit sneaky about how they accomplish the goal.

The first overloads an ErrorDocument 403 script so that it handles both real "access forbidden"
conditions and range requests. The SetEnvIf directive sets the partial_request environment
variable if the request header includes a Range field, the Deny directive causes the request to be

answered with a 403 Forbidden status if the environment variable is set, and the ErrorDocument
directive declares the script to handle the 403 status. The script checks to see whether there was a
Range field in the request header so it knows how to answer-with a "you can't do Range requests

here" or with a real "document access forbidden" response.

The second solution uses mod_rewrite to rewrite any requests in the scope that include a Range

header field to a custom script that handles only this sort of action; it returns the appropriate status
code and message. The "sneaky" aspect of this solution is rewriting a valid and successful request to
something that forces the response status to be unsuccessful.

See Also

http://httpd.apache.org/docs/mod/mod_setenvif.html

http://httpd.apache.org/docs/mod/mod_access.html

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_setenvif.html
http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Chapter 7. SSL
Secure Socket Layers (SSL) is the standard way to implement secure web sites. By encrypting the
traffic between the server and the client, which is what SSL does, that content is protected from a
third party listening to the traffic going past.

The exact mechanism by which this encryption is accomplished is discussed extensively in the SSL
specification, which you can read at http://wp.netscape.com/eng/ssl3/. For a more user-friendly
discussion of SSL, we recommend looking through the mod_ssl manual, which you can find at
http://www.modssl.org/docs/2.8/index.html. This document discusses not only the specific details of
setting up mod_ssl, but also covers the general theory behind SSL it and has pictures illustrating the
concepts.

In this chapter, we talk about some of the common things that you might want to do with your
secure server, including how to install it.

[Team LiB]

http://wp.netscape.com/eng/ssl3/
http://www.modssl.org/docs/2.8/index.html

[Team LiB]

Recipe 7.1 Installing SSL

Problem

You want to install SSL on your Apache server.

Solution

The solutions to this problem fall into several categories, depending on how you installed Apache in
the first place (or whether you are willing to rebuild Apache to get SSL).

If you installed a binary distribution of Apache, your best bet is to return to the place from which you
acquired that binary distribution, and try to find the necessary files for adding SSL to it.

If you built Apache yourself from source, then the solution will depend on whether you are running
Apache 1.3 or Apache 2.0.

In Apache 1.3, SSL is an add-on module, which you must acquire and install from a different location
than that from where you obtained Apache. There are two main choices available: mod_ssl
(http://www.modssl.org/) and Apache-SSL (http://www.apache-ssl.org/); the installation procedure
will vary somewhat depending on which one of these you choose.

If you are building Apache 2.0 from source, the situation is somewhat simpler; just add -enable-ssl
to the ./configure arguments when you build Apache to include SSL as one of the built-in modules.

Consult Chapter 1 and Chapter 2 for more information on installing third-party modules, particularly
if you have installed a binary distribution of Apache rather than building it yourself from the source
code.

If you are attempting to install SSL on Apache for Windows, there is a discussion of this in the
Compiling on Windows document, which you can find at http://httpd.apache.org/docs-
2.0/platform/win_compiling.html for Apache 2.0. Or, if you are using Apache 1.3 on Windows and
wish to install SSL, you should consult the file INSTALL.Win32, which comes with the SSL distribution,
or look at the HowTo at http://tud.at/programm/apache-ssl-win32-howto.php3.

Finally, note that the Apache SSL modules are an interface between Apache and the OpenSSL
libraries, which you must install before any of this can work. You can obtain the OpenSSL libraries
from http://www.openssl.org/. Although you may already have these libraries installed on your
server, it is recommended that you obtain the latest version of the libraries to have the most recent
security patches and to protect yourself from exploits.

Discussion

http://www.modssl.org/
http://www.apache-ssl.org/
http://httpd.apache.org/docs-
http://tud.at/programm/apache-ssl-win32-howto.php3
http://www.openssl.org/

So, why is this so complicated? Well, there are a variety of reasons, most of which revolve around
the legality of encryption. For a long time, encryption has been a restricted technology in the U.S..
Since Apache is primarily based out of the U.S., there is a great deal of caution regarding distributing
encryption technology with the package. Even though major changes have been made in the laws,
permitting SSL to be shipped with Apache 2.0, there are still some gray areas that make it
problematic to ship compiled binary distributions of Apache with SSL enabled.

This makes the situation particularly unpleasant on Microsoft Windows, where most people do not
have a compiler readily available to them, and so must attempt to acquire binary builds from third
parties to enable SSL on their Apache server on Windows. The URL given previously for compiling
Apache 2.0 with SSL on Windows assumes that you do have a compiler, and the document telling you
how to build Apache 1.3 with SSL takes great pains to encourage you not to use Apache 1.3 on
Windows, where it does not have comparable performance to Apache on Unixish operating systems.

See Also

http://httpd.apache.org/docs-2.0/platform/win_compiling.html

http://tud.at/programm/apache-ssl-win32-howto.php3

http://www.openssl.org/

http://www.modssl.org/

http://www.apache-ssl.org/

[Team LiB]

http://httpd.apache.org/docs-2.0/platform/win_compiling.html
http://tud.at/programm/apache-ssl-win32-howto.php3
http://www.openssl.org/
http://www.modssl.org/
http://www.apache-ssl.org/

[Team LiB]

Recipe 7.2 Generating SSL Certificates

Problem

You want to generate certificates to use on your SSL server.

Solution

Use the openssl command-line program that comes with OpenSSL:

% openssl genrsa -out hostname.key 1024
% openssl req -new -key hostname.key -out hostname.csr

At this point, you can either send your Certificate Signing Request (CSR) off to one of the certificate
authority companies, such as Thawte or Entrust, for them to sign, or, if you prefer, you can sign the
key yourself:

% openssl x509 -req -days 365 -in hostname.csr -signkey hostname.key
 -out hostname.crt

Then move these files to your Apache server's configuration directory, such as /www/conf/, and then
add the following lines in your httpd.conf configuration file:

SSLCertificateFile /www/conf/hostname.crt
SSLCertificateKeyFile /www/conf/hostname.key

Discussion

The SSL certificate is a central part of the SSL conversation and is required before you can run a
secure server. Thus, generating the certificate is a necessary first step to configuring your secure
server.

Generating the key is a multistep process, but it is fairly simple.

Generating the private key

In the first step, we generate the private key. SSL is a private/public key encryption system, with the
private key residing on the server and the public key going out with each connection to the server
and encrypting data sent back to the server.

The first argument passed to the openssl program tells openssl that we want to generate an RSA key
(genrsa), which is an encryption algorithm that all major browsers support.

The next argument gives openssl something to use as the source of randomness. The -rand flag will
accept one or more filenames, which will be used as a key for the random number generator. If no -
rand argument is provided, OpenSSL will attempt to use /dev/urandom by default if that exists, and
it will try /dev/random if /dev/urandom does not exist. It is important to have a good source of
randomness in order for the encryption to be secure. If your system has neither /dev/urandom nor
/dev/random, you should consider installing a random number generator, such as egd. You can find
out more information about this on the OpenSSL web site at
http://www.openssl.org/docs/crypto/RAND_egd.html.

The -out argument specifies the name of the key file that we will generate. This file will be created in
the directory in which you are running the command, unless you provide a full path for this
argument. Naming the key file after the hostname on which it will be used will help you keep track of
the file, although the name of the file is not actually important.

And, finally, an argument of 1024 is specified, which tells openssl how many bytes of randomness to
use in generating the key.

Generating the certificate signing request

The next step of the process is to generate a certificate signing request. The reason it is called this is
because the resultant file is usually sent to a certificate authority (CA) for signing and is, therefore, a
signing request. (A certificate is just a signed key, showing that someone certifies it to be valid and
owned by the right entity.)

A certificate authority is some entity that can sign SSL certificates. What this usually means is that it
is one of the few dozen companies whose business it is to sign SSL certificates for use on SSL
servers. When a certificate is signed by one of these certificate authorities browsers will automatically
accept the certificate as being valid. If a certificate is signed by a CA that is not listed in the browser's
list of trusted CAs, then the browser will generate a warning, telling you that the certificate was
signed by an unknown CA and asking you if you are sure that you want to accept the certificate.

This is a bit of an oversimplification of the process but conveys enough of it for the purposes of this
recipe.

The arguments to this command specify the key for which the certificate is being generated (the -key
argument) and the name of the file that you wish to generate (the -out argument).

If you want a certificate that will be accepted by all major browsers, you will send the csr file, along
with a check or credit card information, to one of these CAs.

Signing your key

On the other hand, you can sign your own public key (also called "signing your own certificate," since
signing your public key results in a self-signed certificate), which will result in a perfectly usable
certificate, and save you a little money. This is especially useful for testing purposes, but it may also
be sufficient if you are running SSL on a small site or a server on your internal network.

The process of signing a key means that the signer trusts that the key does indeed belong to the
person listed as the owner. If you pay Entrust or one of the other commercial CAs for a certificate,

http://www.openssl.org/docs/crypto/RAND_egd.html

they will actually do research on you and verify, to some degree of certainty, that you really are who
you claim to be. They will then sign your public key and send you the resulting certificate, putting
their stamp of approval on it and verifying to the world that you are legitimate.

In the example given, we sign the key with the key itself, which is a little silly, as it basically means
that we trust ourselves. However, for the purposes of the actual SSL encryption, this is sufficient.

If you prefer, you can use the CA.pl script that comes with OpenSSL to generate a CA certificate of
your own. The advantage of this approach is that you can distribute this CA certificate to users, who
can install it in their browsers, enabling them to automatically trust this certificate and any other
certificates that you create with that same CA. This is particularly useful for large companies where
you might have several SSL servers using certificates signed by the same CA.

Of the arguments listed in the command, one of the most important ones is the -days argument,
which specifies how many days the certificate will be good for. If you are planning to purchase a
commercial certificate, you should generate your own self-signed key that is good for perhaps 30
days, so that you can use it while you are waiting for the commercial certificate to arrive. If you are
generating a key for actual use on your server, you may want to make this a year or so, so that you
don't have to generate new keys very often.

The -signkey argument specifies what key will be used to sign the certificate. This can be either the
private key that you generated in the first step or a CA private key generated with the CA.pl script,
as mentioned above.

Configuring the server

Having generated the key and certificate, you can use them on your server using the two lines of
configuration shown in the previous solution.

The easy way

Now that we've gone through the long and painful way of doing this, you should know that there is a
simpler. OpenSSL comes with a handy script, called CA.pl, which simplifies the process of creating
keys. The use of CA.pl is described in Recipe 7.3 so you can see it in action. It is useful, however, to
know some of what is going on behind the script. At least, we tend to think so.

See Also

The manpage for the openssl tool

The manpage for the CA.pl script

CA.pl documentation, at http://www.openssl.org/docs/apps/CA.pl.html

[Team LiB]

http://www.openssl.org/docs/apps/CA.pl.html

[Team LiB]

Recipe 7.3 Generating a Trusted CA

Problem

You want to generate SSL keys that browsers will accept without a warning message.

Solution

Issue the following commands:

% CA.pl -newca
% CA.pl -newreq
% CA.pl -signreq
% CA.pl -pkcs12

Discussion

Recipe 7.2 discusses the lengthy steps that are required to create keys and sign them. Fortunately,
OpenSSL comes with a script to automate much of this process, so that you don't have to remember
all of those arguments. This script, called CA.pl, is located where your SSL libraries are installed, for
example, /usr/share/ssl/misc/CA.pl.

The lines in the Solution hide a certain amount of detail, as you will be asked a number of questions
in the process of creating the key and the certificate. Note also that you will probably need to be in
the directory where this script lives to get successful results from this recipe.

If you want to omit the passphrase on the certificate so that you don't have to provide the
passphrase each time you start up the server, use -newreq-nodes rather than -newreq when
generating the certificate request.

After running this sequence of commands, you can generate more certificates by repeating the -
newreq and -signreq commands.

Having run these commands, you will have generated a number of files. The file newcert.pem is the
file you specify in your SSLCertificateFile directive, the file newreq.pem is your SSLCertificateKeyFile,
and the file demoCA/cacert.pem is the CA certificate file, which will need to be imported into your
users' browsers (for some browsers) so that they can automatically trust certificates signed by this
CA. And, finally, newcert.p12 serves the same purpose as demoCA/cacert.pem for certain other
browsers.

Importing the CA

If your users are using Internet Explorer, you need to create a special file for them to import. Use the
following command:

openssl X509 -demoCA/cacert.pem -out cacert.crt -outform DER

Then you can send them the cacert.crt file.

Clicking on that file will launch the SSL certificate wizard and guide the user through installing the CA
certificate into their browser.

Other browsers, such as Mozilla, expect to directly import the cacert.pem file. Users will navigate
through their menus (Edit xxxrarrxxx Preferences xxxrarrxxx Privacy and Security xxxrarrxxx
Certificates), then click on Manage Certificates, then on the Authorities tab, and finally on Import, to
select the certificate file.

After importing a CA certificate, all certificates signed by that CA should be usable in your browser
without receiving any kind of warning.

See Also

The manpage for the CA.pl script

CA.pl documentation at http://www.openssl.org/docs/apps/CA.pl.html

[Team LiB]

http://www.openssl.org/docs/apps/CA.pl.html

[Team LiB]

Recipe 7.4 Serving a Portion of Your Site via SSL

Problem

You want to have a certain portion of your site available via SSL exclusively.

Solution

This is done by making changes to your httpd.conf file.

For Apache 1.3, add a line such as the following:

Redirect /secure/ https://secure.domain.com/secure/

For Apache 2.0:

<Directory /www/secure>
 SSLRequireSSL
</Directory>

Or, with mod_rewrite:

RewriteEngine On
RewriteCond %{HTTPS} !=on
RewriteRule ^/(.*) https://%{SERVER_NAME}/$1 [R,L]

Discussion

It is perhaps best to think of your site's normal pages and its SSL-protected pages as being handled
by two separate servers, rather than one. While they may point to the same content, they run on
different ports, are configured differently, and, most importantly, the browser considers them to be
completely separate servers. So you should too.

Don't think of enabling SSL for a particular directory; rather, you should think of it as redirecting
requests for one directory to another.

Note that the Redirect directive preserves path information, which means that if a request is made
for /secure/something.html, then the redirect will be to
https://secure.domain.com/secure/something.html.

Be careful where you put this directive. Make sure that you only put it in the HTTP (non-SSL) virtual
host declaration. Putting it in the global section of the config file may cause looping, as the new URL
will match the Redirect requirement and get redirected itself.

https://secure.domain.com/secure/
https://secure.domain.com/secure/something.html

Finally, note that if you want the entire site to be available only via SSL, you can accomplish this by
simply redirecting all URLs, rather than a particular directory:

Redirect / https://secure.domain.com/

Again, be sure to put that inside the non-SSL virtual host declaration.

You will see various solutions proposed for this situation using RedirectMatch or various RewriteRule
directives. There are special cases where this is necessary, but in most cases, the simple solution
offered here works just fine.

It it important to understand that this Redirect must appear only in the non-SSL virtual host,
otherwise it will create a condition where the Redirect will loop. This implies that you do in fact have
the HTTP (non-SSL) site set up as a virtual host. If you do not, you may need to set it up as one in
order to make this recipe successful.

Thus, the entire setup might look something like this:

NameVirtualHost *

<VirtualHost *>
 ServerName regular.example.com
 DocumentRoot /www/docs

 Redirect /secure/ https://secure.example.com/secure/
</VirtualHost>

<VirtualHost _default_:443>
 SSLEngine On
 SSLCertificateFile /www/conf/ssl/ssl.crt
 SSLCertificateKeyFile /www/conf/ssl/ssl.key

 ServerName secure.example.com
 DocumentRoot /www/docs
</VirtualHost>

This is, of course, an oversimplified example and is meant only to illustrate the fact that the Redirect
must appear only in the non-SSL virtualhost to avoid a redirection loop.

The other two solutions are perhaps more straightforward, although they each have a small
additional requirement for use.

The second recipe listed, using SSLRequireSSL, will work only if you are using Apache 2.0. It is a
directive added specifically to address this need. Placing the SSLRequireSSL directive in a particular
<Directory> section will ensure that non-SSL accesses to that directory are not permitted.

The third recipe, using RewriteCond and RewriteRule directives, requires that you have mod_rewrite
installed and enabled. Using the RewriteCond directive to check if the client is already using SSL, the
RewriteRule is invoked only if they are not; in which case, the request is redirected to a request for
the same content but using HTTPS instead of HTTP.

See Also

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html

http://httpd.apache.org/docs/mod/mod_alias.html

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html
http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 7.5 Authenticating with Client Certificates

Problem

You want to use client certificates to authenticate access to your site.

Solution

Add the following mod_ssl directives to your httpd.conf file:

SSLVerifyClient require
SSLVerifyDepth 1
SSLCACertificateFile conf/ssl.crt/ca.crt

Discussion

If you happen to be lucky enough to have a small, closed user community, such as an intranet, or a
web site for a group of friends or family, it is possible to distribute client certificates so that each user
can identify himself.

Create client certificates, signing them with your CA certificate file, and then specify the location of
this CA certificate file using the CACertificateFile directive, as shown above.

See Also

Recipe 7.2

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html

[Team LiB]

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html

[Team LiB]

Chapter 8. Dynamic Content
CGI programs are one of the simplest ways to provide dynamic content for your web site. They tend
to be easy to write, because you can write them in any language. Thus, you don't have to learn a
new language to write CGI programs.

Other dynamic content providers, such as PHP and mod_perl, also enjoy a great deal of popularity,
because they provide many of the same functions as CGI programs but typically execute faster.

Very few web sites can survive without some mechanism for providing dynamic content-content that
is generated in response to the needs of the user. The recipes in this chapter guide you through
enabling various mechanisms for producing this dynamic content and help you troubleshoot possible
problems that may occur.

[Team LiB]

[Team LiB]

Recipe 8.1 Enabling a CGI Directory

Problem

You want to designate a directory that contains only CGI scripts.

Solution

Add the following to your httpd.conf file:

ScriptAlias /cgi-bin/ /www/cgi-bin/

Discussion

A CGI directory will usually be designated and enabled in your default configuration file when you
install Apache. However, if you want to add additional directories where CGI programs are permitted,
the ScriptAlias directive does this for you. You may have as many ScriptAlias'ed directories as you
want.

The one line previously introduced is equivalent to these directive lines:

Alias /cgi-bin/ /www/cgi-bin/

<Location /cgi-bin/>
 Options ExecCGI
 SetHandler cgi-script
</Location>

Note that URLs that map to the directory in question via some other
mechanism, such as another Alias or a RewriteRule, will not benefit from the
ScriptAlias setting, as this mapping is by URL (<Location>), not by directory.

As a result, accessing the scripts in this directory through some other URL path
may result in their code being displayed rather than the script being executed.

See Also

Chapter 5

Recipe 8.2

http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_alias.html

[Team LiB]

Recipe 8.2 Enabling CGI Scripts in Non-ScriptAliased
Directories

Problem

You want to put a CGI program in a directory that contains non-CGI documents.

Solution

Use AddHandler to map the CGI handler to the particular files that you want to be executed:

<Directory "/foo">
 Options +ExecCGI
 AddHandler cgi-script .cgi .py .pl
</Directory>

Discussion

Enabling CGI execution via the ScriptAlias directive is preferred, for a number of reasons, over
permitting CGI execution in arbitrary document directories. The primary reason is security auditing.
It is much easier to audit your CGI programs if you know where they are, and storing them all in a
single directory ensures that.

However, there are cases where it is desirable to have this functionality. For example, you may want
to keep several files together in one directory-some of them static documents, and some of them
scripts-because they are part of a single application.

Using the AddHandler directive maps certain file extensions to the cgi-script handler so they can be
executed as CGI programs. In the case of the aforementioned example, programs with a .cgi, .py, or
.pl file extension will be treated as CGI programs, while all other documents in the directory will be
served up with their usual MIME type.

Note that the +ExecCGI argument is provided to the Options directive, rather than the ExecCGI
argument-that is, with the + sign rather than without. Using the + sign adds this option to any
others already in place, whereas using the option without the + sign will replace the existing list of
options. You should use the argument without the + sign if you intend to have only CGI programs in
the directory, and with the + sign if you intend to also serve non-CGI documents out of the same

directory.

See Also

Recipe 8.1

[Team LiB]

[Team LiB]

Recipe 8.3 Using Windows File Extensionsto Launch CGI
Programs

Problem

You want to have CGI programs on Windows executed by the program associated with the file
extension. For example, you want .pl files to be executed by perl.exe without having to change the
#! line to point at the right location.

Solution

Add the following line to your httpd.conf file:

ScriptInterpreterSource registry

Discussion

Since Apache has its roots in the Unixish world, there are a number of things that are done the
Unixish way, even on Microsoft Windows. CGI execution is one of these things, but the
ScriptInterpreterSource directive allows you to have Apache behave more in the way that Windows
users are accustomed to.

Usually, on Windows, a file type is indicated by the file extension. For example, a file named
example.pl is associated with the Perl executable; when a user clicks on this file in the file explorer,
Perl is invoked to execute this script. This association is created when you install a particular
program, such as Perl or MS Word, and the association is stored in the Windows registry.

On Unixish systems, on the other hand, most scripts contain the location of their interpreter in the
first line of the file, which starts with the characters #!. This line is often called the shebang line

(short for sharp bang, which are the shorthand names for the two characters).

For example, a Perl program might start with the line:

#!/usr/bin/perl

The shell running the script looks in this first line and uses the program at the indicated path to
interpret and execute the script. In this way, files with arbitrary file extensions (or no extension at
all) may be invoked with any interpreter desired. In the case of Perl, for example, one might have
several versions of Perl installed, and the particular version desired may be invoked by using the
appropriate #! line.

However, you may be accustomed to the operating system's innate way of executing a program, and
this can be somewhat nonintuitive. Thus, in the early days of Apache on Windows, the

ScriptInterpreterSource directive was added to make Apache behave the way that Windows users
expected.

ScriptInterpreterSource may have one of two values. When set to the default value, script, Apache
will look in the script itself for the location of the interpreter that it is to use. When it is set to
registry, it will look in the Windows registry for the mapping that is associated with the file's
extension and use this to execute the script.

This feature can be very useful for users who are running multiple servers, some on Unixish
operating systems and others on Windows, but who want the same CGI programs to run both places.
Because Perl is unlikely to be located at /usr/bin/perl on your Windows machine, using the
ScriptInterpreterSource directive allows you to run the script unedited on Windows, simply by virtue
of it having a .pl file extension.

See Also

Recipe 8.2

Recipe 8.4

[Team LiB]

[Team LiB]

Recipe 8.4 Using Extensions to Identify CGI Scripts

Problem

You want Apache to know that all files with a particular extension should be treated as CGI scripts.

Solution

Add the following to your httpd.conf file in a scope covering the areas where it should apply, or in an
.htaccess file for the appropriate directory:

AddHandler cgi-script .cgi

Discussion

The AddHandler directive shown in this solution tells Apache that any files that have a .cgi extension
should be treated as CGI scripts, and it should try to execute them rather than treat them as content
to be sent.

The directive only affects files with that extension in the same scope as the directive itself. You may
replace the common .cgi extension with another, or even with a list of space-separated extensions.

Note the use of the term extension rather than suffix; a file named foo.cgi.en is treated as a CGI
script unless a handler with the .en extension overrides it.

See Also

Recipe 8.2

[Team LiB]

[Team LiB]

Recipe 8.5 Testing That CGI Is Set Up Correctly

Problem

You want to test that you have CGI enabled correctly. Alternatively, you are receiving an error
message when you try to run your CGI script and you want to ensure the problem doesn't lie in the
web server before you try to find a problem in the script.

Solution

#! /usr/bin/perl
print "Content-type: text/plain\r\n\r\n";
print "It's working.\n";

And then, if things are still not working, look in the error log.

Discussion

Because Perl is likely to be installed on any Unixish system, this CGI program should be a pretty safe
way to test that CGI is configured correctly. In the event that you do not have Perl installed, an
equivalent shell program may be substituted:

#! /bin/sh
echo Content-type: text/plain
echo
echo It\'s working.

And, if you are running Apache on Windows, so that neither of the above options works for you, you
could also try this with a batch file:

echo off
echo Content-type: text/plain
echo.
echo It's working.

Make sure that you copy the program code exactly, with all the right punctuation, slashes, etc., so that
you don't introduce additional complexity by having to troubleshoot the program itself.

In either case, once the program is working, you should see something like the following screen
capture (see Figure 8-1).

Figure 8-1. Your CGI program worked

The idea here is to start with the simplest possible CGI program to ensure that problems are not
caused by other complexities in your code. We want to ensure that CGI is configured properly, not to
verify the correctness of a particular CGI program.

There are a variety of reasons why a particular CGI program might not work. In very general terms, it
can be in one of three categories: misconfiguration of the web server, an error in the program itself, or
incorrect permissions on the files and directories in question.

Fortunately, when something goes wrong with one of your CGI programs, an entry is made in your
error log. Knowing where your error log is located is a prerequisite to solving any problem you have
with your Apache server. The error messages that go to the browser, while vaguely useful, tend to be
catch-all messages and usually don't contain any information specific to your actual problem.

Ideally, if you have followed the recipes earlier in this chapter, you will not be having configuration
problems with your CGI program, which leaves the other two categories of problems.

If your problem is one of permissions, you will see an entry in your logfile that looks something like the
following:

[Sun Dec 1 20:31:16 2002] [error] (13)Permission denied: exec of /usr/local/apache/
 cgi-bin/example1.cgi failed

The solution to this problem is to make sure that the script itself is executable:

chmod a+x /usr/local/apache/cgi-bin/example1.cgi

If the problem is an error in the program itself, then there are an infinite number of possible solutions,
as there are an infinite number of ways to make any given program fail. If the example program given
above works correctly, you can be fairly assured that the problem is with your program, rather than
with some other environmental condition.

The error message Premature end of script headers , which you will see frequently in your career,

means very little by itself. You should always look for other error messages that augment this
message. Any error in a CGI program will tend to cause the program to emit warnings and error
message prior to the correctly formed HTTP headers, which will result in the server perceiving
malformed headers, resulting in this message. The suexec wrapper can also confuse matters if it's
being used.

One particularly common error message, which can be rather hard to track down if you don't know
what you're looking for, is the following:

[Sat Jul 19 21:39:47 2003] [error] (2)No such file or directory: exec of /usr/local/
 apache/cgi-bin/example.cgi failed

This error message almost always means one of two things: an incorrect path or a corrupted file.

In many cases, particularly if you have acquired the script from someone else, the #! line of the script

may point to the wrong location (such as #!/usr/local/bin/perl , when perl is instead located at
/usr/bin/perl). This can be confirmed by using the which command and comparing it to the #! line.

For example, to find the correct location for Perl, you would type:

% which perl

The other scenario is that the file has been corrupted somehow so that the #! line is illegible. The most

common cause of this second condition is when a script file is transferred from a Windows machine to
a Unixish machine, via FTP, in binary mode rather than ASCII mode. This results in a file with the
wrong type of end of line characters, so that Apache is unable to read correctly the location of the
script interpreter.

To fix this, you should run the following one-liner from the command line:

% perl -pi.bak -le 's/\r//;' example.cgi

This will remove all of the Windows-style end-of-line characters, and your file will be executable.

See Also

"Debugging `premature end of script headers'"

Appendix B

[Team LiB]

[Team LiB]

Recipe 8.6 Reading Form Parameters

Problem

You want your CGI program to read values from forms for use in your program.

Solution

First, look at an example in Perl, which uses the popular CGI.pm module:

#!/usr/bin/perl
use CGI;
use strict;
use warnings;

my $query = CGI->new;

Load the various form parameters
my $name = $form->param("name");

Multi-value select lists will return a list
my @foods = $form->param("favorite_foods");

Output useful stuff
print "Content-type: text/html\n\n";
print "Name: " . $form->{name} . "n";
print "Favorite foods: ";
foreach my $food (@foods) {
 print "$food";
}
print "\n";

Next, look at the same program in C, which uses the cgic C library:

#include "cgic.h"
/* Boutell.com's cgic library */

int cgiMain() {
 char name[100];

 /* Send content type */
 cgiHeaderContentType("text/html");

 /* Load a particular variable */

 cgiFormStringNoNewlines("name", name, 100);
 fprintf(cgiOut, "Name: ");
 cgiHtmlEscape(name);

 return 0;
}

For this example, you will also need a Makefile, which looks something like this:

CFLAGS=-g -Wall
CC=gcc
AR=ar
LIBS=-L./ -lcgic

libcgic.a: cgic.o cgic.h
 rm -f libcgic.a
 $(AR) rc libcgic.a cgic.o

example.cgi: example.o libcgic.a
 gcc example.o -o example.cgi ${LIBS}

Discussion

The exact solution to this will vary from one programming language to another, and so examples are
given here in two languages. Note that each of these examples uses an external library to do the
actual parsing of the form content. This is important, because it is easy to parse forms incorrectly. By
using one of these libraries, you ensure that all of the form-encoded characters are correctly
converted to usable values, and then there's the simple matter of code readability and simplicity. It's
almost always better to utilize an existing library than to reimplement functionality yourself.

The Perl example uses Lincoln Stein's CGI.pm module, which is a standard part of the Perl distribution
and will be installed if you have Perl installed. The library is loaded using the use keyword and is used
via the object-oriented (OO) interface.

The param function returns the value of a given form field. When called with no arguments, params(
) returns a list of the form field names. When called with the name of a multivalue select form field, it
will return a list of the selected values. This is illustrated in the example for a field named
favorite_foods.

The example in C uses the cgic C library, which is available from http://boutell.com/. You will need to
acquire this library and install it in order to compile the aforementioned code. The Makefile provided
is to assist in building the source code into a binary file that you can run. Type make example.cgi to
start the compile. Note that if you are doing this on Windows, you will probably want to replace .cgi
with .exe in the example Makefile.

In either case, an HTML form pointed at this CGI program, containing a form field named name, will

result in the value typed in that field being displayed in the browser. The necessary HTML to test
these programs is as follows:

<html><head>
 <title>Example CGI</title>
</head>

http://boutell.com/

<body>

 Form:

 <form action="/cgi-bin/example.cgi" method="POST">
 Name: <input name="name">

 <input type="submit">
 </form>

</body>
</html>

The examples given in this recipe each use CGI libraries, or modules, for the actual functionality of
parsing the HTML form contents. While many CGI tutorials on the Web show you how to do the form
parsing yourself, we don't recommend it. One of the great virtues of a programmer is laziness, and
using modules, rather than reinventing the wheel, is one of the most important manifestations of
laziness. And it makes good sense, too, since these modules tend to get it right. It's very easy to
parse form contents incorrectly, winding up with data that has been translated from the form
encoding incompletely or just plain wrong. These modules have been developed over a number of
years, extensively tested, and are much more likely to handle the various cases that you have not
thought about.

Additionally, modules handle file uploads, multiple select lists, reading and setting cookies, returning
correctly formatted error messages to the browser, and a variety of other functions that you might
overlook if you were to attempt to do this yourself. Furthermore, in the spirit of good programming
technique, reusing existing code saves you time and tends to prevent errors.

See Also

http://search.cpan.org/author/LDS/CGI.pm/CGI.pm

http://www.boutell.com/cgic/

[Team LiB]

http://search.cpan.org/author/LDS/CGI.pm/CGI.pm
http://www.boutell.com/cgic/

[Team LiB]

Recipe 8.7 Invoking a CGI Program for Certain Content
Types

Problem

You want to invoke a CGI program to act as a sort of content filter for certain document types. For
example, a photographer may wish to create a custom handler to add a watermark to photographs
served from his web site.

Solution

Use the Action directive to create a custom handler, which will be implemented by a CGI program.
Then use the AddHandler directive to associate a particular file extension with this handler:

Action watermark /cgi-bin/watermark.cgi
AddHandler watermark .gif .jpg

Discussion

This recipe creates a watermark handler that is called whenever a .gif or .jpg file is requested.

A CGI program, watermark.cgi, takes the image file as input and attaches the watermark image on
top of the photograph. The path to the image file that was originally requested in the URL is available
in the PATH_TRANSLATED environment variable, and the program needs to load that file, make the

necessary modifications, and send the resulting content to the client, along with the appropriate HTTP
headers.

Note that there is no way to circumvent this measure, as the CGI program will be called for any .gif
or .jpg file that is requested.

This same technique may be used to attach a header or footer to HTML pages in an automatic way,
without having to add any kind of SSI directive to the files. This can be extremely inefficient, as it
requires that a CGI program be launched, which can be a very slow process. It is, however,
connstructive to see how it is done. What follows is a very simple implementation of such a footer
script:

#! /usr/bin/perl

print "Content-type: text/html\r\n\r\n";

my $file = $ENV{PATH_TRANSLATED};

open FILE, "$file";
print while <FILE>;
close FILE;
print qq~

<p>
FOOTER GOES HERE
~;

The requested file, located at PATH_TRANSLATED, is read in and printed out, unmodified. Then, at the

end of it, a few additional lines of footer are output. A similar technique might be used to filter the
contents of the page itself. With Apache 2.0, this may be better accomplished with mod_ext_filter.

See Also

Recipe 8.10

Recipe 10.7

[Team LiB]

[Team LiB]

Recipe 8.8 Getting SSIs to Work

Problem

You want to enable Server-Side Includes (SSIs) to make your HTML documents more dynamic.

Solution

There are at least two different ways of doing this.

Specify which files are to be parsed by using a filename extension such as .shtml. For Apache 1.3,
add the following directives to your httpd.conf in the appropriate scope:

<Directory /www/html/example>
 Options +Includes
 AddHandler server-parsed .shtml
 AddType "text/html; charset=ISO-8859-1" .shtml
</Directory>

Or, for Apache 2.0:

<Directory /www/html/example>
 Options +Includes
 AddType text/html .shtml
 AddFilter INCLUDES .shtml
</Directory>

Add the XBitHack directive to the appropriate scope in your httpd.conf file and allow the file
permissions to indicate which files are to be parsed for SSI directives:

XBitHack On

Discussion

SSIs provide a way to add dynamic content to an HTML page via a variety of simple tags. This
functionality is implemented by the mod_include module, which is documented at
http://httpd.apache.org/docs/mod/mod_include.html. There is also a howto-style document available
at http://httpd.apache.org/docs/howto/ssi.html.

The first solution provided here tells Apache to parse all .shtml files for SSI directives. So, to test that
the solution has been effective, create a file called something.shtml, and put the following line in it:

File last modified at '<!--#echo "LAST_MODIFIED" -->'.

http://httpd.apache.org/docs/mod/mod_include.html
http://httpd.apache.org/docs/howto/ssi.html

Note the space between the last argument and the closing "-->". This space is

surprisingly important; many SSI failures can be traced to its omission.

Accessing this document via your server should result in the page displaying the date and time when
you modified (or created) the file.

If you wish to enable SSIs, but do not wish to permit execution of CGI scripts, or other commands
using the #exec or the #include virtual SSI directives, substitute IncludesNoExec for Includes in the
Options directive in the solution.

Some webmasters like to enable SSI parsing for all HTML content on their sites by specifying .html
instead of .shtml in the AddType, AddHandler, and AddFilter directives.

If, for some reason, you do not wish to rename documents to .shtml files, merely because you want
to add dynamic content to those files, XBitHack gives you a way around this. Of course, you could
enable SSI parsing for all .html files, but this would probably result in a lot of files being parsed for no
reason, which can cause a performance hit.

The XBitHack directive tells Apache to parse files for SSI directives if they have the execute bit set on
them. So, when you have this directive set to On for a particular directory or virtual host, you merely
need to set the execute bit on those files that contain SSI directives. This way, you can add SSI
directives to existing documents without changing their names, which could potentially break links
from other pages, sites, or search engines.

The simplest way of setting (or clearing) the execute permission bit of a file is:

chmod a+x foo.html # turns it on
chmod a-x foo.html # turns it off

The XBitHack method only works on those platforms that support the concept of execute access to
files; this includes Unixish systems but does not include Windows.

See Also

Recipe 8.11

Recipe 8.10

[Team LiB]

[Team LiB]

Recipe 8.9 Displaying Last Modified Date

Problem

You want your web page to indicate when it was last modified but not have to update the date every
time.

Solution

Use SSI processing by putting a line in the HTML file for which you want the information displayed:

<--#config timefmt="%B %e, %Y" -->
This document was last modified on <!--#echo var="LAST_MODIFIED" -->

Discussion

The config SSI directive allows you to configure a few settings governing SSI output formats. In this
case, we're using it to configure the format in which date/time information is output. The default
format for date output is 04-Dec-2037 19:58:15 EST which is not the most user-friendly message.
The recipe provided changes this to the slightly more readable format December 4, 2002. If you want
another output format, the timefmt attribute can take any argument accepted by the C strftime(3)
function.

See Also

Recipe 8.8

The strftime(3) documentation

[Team LiB]

[Team LiB]

Recipe 8.10 Including a Standard Header

Problem

You want to include a header (or footer) in each of your HTML documents.

Solution

Use SSI by inserting a line in all your parsed files:

<--#include virtual="/include/headers.html" -->

Discussion

By using the SSI include directive, you can have a single header file that can be used throughout
your web site. When your header needs to be modified, you can make this change in one place and
have it go into effect immediately across your whole site.

The argument to the virtual attribute is a local URI and subject to all normal Alias, ScriptAlias,
RewriteRule, and other commands, which means that:

<--#include virtual="/index.html" -->

will include the file from your DocumentRoot, and:

<--#include virtual="/cgi-bin/foo" -->

will include the output from the foo script in your server's ScriptAlias directory.

If the argument doesn't begin with a / character, it's treated as being relative to the location of the

document using the #include directive.

Be aware that URIs passed to #include virtual may not begin with ../, nor may
they refer to full URLs such as http://example.com/foo.html. Documents
included using relative syntax (i.e., those not beginning with /) may only be in
the same location as the including file, or in some sublocation underneath it.
Server processing of the URI may result in the actual included document being
located somewhere else, but the restrictions on the #include virtual SSI
command syntax permit only same-location or descendent-location URIs.

See Also

http://example.com/foo.html

Recipe 8.7

Recipe 8.8

[Team LiB]

[Team LiB]

Recipe 8.11 Including the Output of a CGI Program

Problem

You want to have the output of a CGI program appear within the body of an existing HTML document.

Solution

Use SSIs by adding a line such as the following to the document (which must be enabled for SSI
parsing):

<--#include virtual="/cgi-bin/content.cgi" -->

Discussion

The SSI #include directive, in addition to being able to include a plain file, can also include other
dynamic content, such as CGI programs, other SSI documents, or content generated by any other
method.

The #exec SSI directive may also be used to produce this effect, but for a variety of historical and
security-related reasons, its use is deprecated. The #include directive is the preferred way to produce
this effect.

Note that Options IncludeNoExec, in addition to disabling the #exec SSI directive, also forbids the
inclusion of CGI programs using the #include virtual syntax. Thus, this method cannot be used to
circumvent the restriction.

See Also

Recipe 8.8

[Team LiB]

[Team LiB]

Recipe 8.12 Running CGI Scripts as a Different User with
suexec

Problem

You want to have CGI programs executed by some user other than nobody. For example, you may

have a database that is not accessible to anyone except a particular user, so the server needs to
temporarily assume that user's identity to access it.

Solution

When building Apache, enable suexec by passing the -enable-suexec argument to configure.

Then, in a virtual host section, specify which user and group you'd like to use to run CGI programs:

User rbowen
Group users

Also, suexec will be invoked for any CGI programs run out of username-type URLs for the affected
virtual host.

Discussion

The suexec wrapper is a suid (runs as the user ID of the user that owns the file) program that allows
you to run CGI programs as any user you specify, rather than as the nobody user which Apache runs

as. suexec is a standard part of Apache and is enabled by default.

The suexec concept does not fit well into the Windows environment, and so
suexec is not available under Windows.

When suexec is installed, there are two different ways that it can be invoked, as shown in the
Solution.

A User and Group directive may be specified in a VirtualHost container, and all CGI programs
executed within the context of that virtual host are executed as that user and group. Note that this
only applies to CGI programs. Documents are still accessed as the user and group specified in the
User and Group directives in the main server configuration, not those in the virtual host, and need to
be readable by that user and group.

Second, any CGI program run out of a UserDir directory is run with the permissions of the owner of
that directory. That is, if a CGI program is accessed via the URL http://example.com/~rbowen/cgi-
bin/test.cgi, then that program will be executed, via suexec, with a userid of rbowen, and a groupid
of rbowen's primary group.

If UserDir points to a nonstandard location, you must tell suexec about this
when you build it. In a default configuration, suexec is invoked when CGI
programs are invoked in a directory such as /home/username/public_html/ for

some username. If, however, you move the UserDir directory somewhere else,

such as, for example, /home/username/www/, then you could configure suexec

to be invoked in that directory instead, using the following argument when you
build Apache 1.3:

--suexec-userdir=www

And, for Apache 2.0, you would specify the following:

--with-suexec-userdir=www

Running CGI programs via suexec eliminates some of the security concerns surrounding CGI
programs. By default, CGI programs run with the permissions of the user and group specified in the
User and Group directives, meaning that they have rather limited ability to do any damage. However,
it also means that CGI programs on one part of your web server run with all the same permissions as
those on another part of your server, and any files that are created or modified by one will be
modifiable by another.

By running a CGI program under suexec, you allow each user to exercise a little more control over
her own file permissions, and in the event that a malicious CGI program is written, it can only
damage the files owned by the user in question, rather than having free rein over the entire web
server.

In Apache 2.0, the perchild MPM may largely do away with the need for suexec, but, as of this
writing, perchild does not work correctly.

PHP scripts that are run as CGI programs, rather than under the mod_php handler, may be run as
suexec processes in the same way as any other CGI program.

See Also

User directive at http://httpd.apache.org/docs/mod/core.html#user or
http://httpd.apache.org/docs-2.0/mod/core.html#user

Group directive at http://httpd.apache.org/docs/mod/core.html#group or
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#group

The suexec documentation at http://httpd.apache.org/docs/programs/suexec.html or
http://httpd.apache.org/docs-2.0/programs/suexec.html

http://example.com/~rbowen/cgi-
http://httpd.apache.org/docs/mod/core.html#user
http://httpd.apache.org/docs-2.0/mod/core.html#user
http://httpd.apache.org/docs/mod/core.html#group
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#group
http://httpd.apache.org/docs/programs/suexec.html
http://httpd.apache.org/docs-2.0/programs/suexec.html

[Team LiB]

[Team LiB]

Recipe 8.13 Installing a mod_perl Handler from CPAN

Problem

You want to install one of the many mod_perl handler modules available on CPAN. For example, you
want to install the Apache::Perldoc module, which generates HTML documentation for any Perl
module you happen to have installed.

Solution

Assuming you already have mod_perl installed, you'll just need to install the module from CPAN, and
then add a few lines to your Apache configuration file.

To install the module, run the following command from the shell as root:

perl -MCPAN -e 'install Apache::Perldoc'

Then, in your Apache configuration file, add:

<Location /perldoc>
 SetHandler perl-script
 PerlHandler Apache::Perldoc
</Location>

After restarting Apache, you can access the handler by going to a URL such as
http://example.com/perldoc/Apache/Perldoc.

Discussion

The CPAN shell, which is installed when Perl is installed, gives you an easy way to install Perl modules
from CPAN. CPAN, if you're not familiar with it, is the Comprehensive Perl Archive Network, at
http://cpan.org, a comprehensive archive of Perl stuff, including Perl modules for every purpose you
can imagine and several you can't. This includes a substantial number of mod_perl handlers.

The module specified in this recipe is a very simple one that gives you HTML documentation for any
Perl module you have installed, accessible via your Apache server. Other ones provide photo albums,
weblog handlers, and DNS zone management, among other things.

The first time you run the CPAN shell, you will need to answer a series of questions about your
configuration, what CPAN server you want to get modules from, where it should find your FTP clients,
and so on. This only happens once, then it just works.

The specific way that you need to configure Apache to use your newly-installed module will vary from

http://example.com/perldoc/Apache/Perldoc
http://cpan.org

one module to another, but many of them will look like the example given. The SetHandler perl-script
directive tells Apache that the content will be handled by mod_perl, while the PerlHandler directive
specifies what Perl module contains the actual handler code.

See Also

http://cpan.org/

http://search.cpan.org/author/RBOW/Apache-Perldoc/

http://apachegallery.dk/

http://dnszone.org/

[Team LiB]

http://cpan.org/
http://search.cpan.org/author/RBOW/Apache-Perldoc/
http://apachegallery.dk/
http://dnszone.org/

[Team LiB]

Recipe 8.14 Writing a mod_perl Handler

Problem

You want to write your own mod_perl handler.

Solution

Here's a simple handler:

package Apache::Cookbook::Example;

sub handler {
 my $r = shift;
 $r->send_http_header('text/plain');
 $r->print("Hello, World.");
}

1;

Place this code in a file called Example.pm, in a directory Apache/Cookbook/, somewhere that Perl
knows to look for it.

Discussion

The example handler given is fairly trivial and does not do anything useful. More useful examples
may be obtained from the mod_perl web site (http://perl.apache.org/) and from Geoffrey Young's
(et al.) excellent book mod_perl Developer's Cookbook. Also, although it is somewhat dated, the
"Eagle book" (Writing Apache modules with Perl and C) by Lincoln Stein and Doug MacEachern
(O'Reilly) is an excellent introduction to mod_perl and the Apache API.

The real question here, however, is how and where you should install the file that you've created.
There are two answers to this question, and which one you choose will be largely personal
preference.

When Perl looks for a module, it looks through the list called @INC for directories where that module
might be. You can either put your module in one of those directories, or you can add a directory to
the list.

To find out where Perl is looking, you can examine the values stored in @INC with the following:

perl -le 'print join "\n", @INC;'

http://perl.apache.org/

This will give you a listing that will look something like:

/usr/local/lib/perl5/5.8.0/i686-linux
/usr/local/lib/perl5/5.8.0
/usr/local/lib/perl5/site_perl/5.8.0/i686-linux
/usr/local/lib/perl5/site_perl/5.8.0
/usr/local/lib/perl5/site_perl
.

This will of course vary from one system to another, from one version of Perl to another, but will bear
some resemblance to that listing.

To install a module called Apache::Cookbook::Example, you might put the file Example.pm at the
location /usr/local/lib/perl5/site_perl/5.8.0/Apache/Cookbook/Example.pm.

Alternately, you can tell Perl to look in some other directory by adding a value to the @INC list. The
best way to do this is to add the following to your startup.pl file:

use lib '/home/rbowen/perl_libs/';

startup.pl should then be loaded by Apache at startup, using the directive:

PerlRequire /path/to/startup.pl

This tells Perl to also look in that directory for Perl modules. This time, if your module is called
Apache::Cookbook::Example, you would now place it at the location
/home/rbowen/perl_libs/Apache/Cookbook/Example.pm

See Also

mod_perl Developer's Cookbook by Geoffrey Young, et al, at http://modperlcookbook.org/.

[Team LiB]

http://modperlcookbook.org

[Team LiB]

Recipe 8.15 Enabling PHP Script Handling

Problem

You want to enable PHP scripts on your server.

Solution

If you have mod_php installed, use AddHandler to map .php and .phtml files to the PHP handler:

AddHandler application/x-httpd-php .phtml .php

Discussion

This recipe maps all files with .phtml or .php to the PHP handler. You must ensure that the mod_php
module is installed.

See Also

Recipe 2.5

Installation instructions on the mod_php web site at
http://www.php.net/manual/en/install.apache.php for Apache 1.3 or
http://www.php.net/manual/en/install.apache2.php for Apache 2.0

[Team LiB]

http://www.php.net/manual/en/install.apache.php
http://www.php.net/manual/en/install.apache2.php

[Team LiB]

Recipe 8.16 Verifying PHP Installation

Problem

You want to verify that you have PHP correctly installed and configured.

Solution

Put the following in your test PHP file:

<?php phpinfo(); ?>

Discussion

Place the above text in a file called something.php in a directory where you believe you have enabled
PHP script execution. Accessing that file should give you a list of all configured PHP system variables.
The first screen of the output should look something like Figure 8-2.

Figure 8-2. Sample phpinfo() output

See Also

Recipe 8.15

[Team LiB]

[Team LiB]

Chapter 9. Error Handling
When you're running a web site, things go wrong. And when they do, it's important that they are
handled gracefully, so that the user experience is not too greatly diminished. In this chapter, you'll
learn how to handle error conditions, return useful messages to the user, and capture information
that will help you fix the problem so that it does not happen again.

[Team LiB]

[Team LiB]

Recipe 9.1 Handling a Missing Host Field

Problem

You have multiple virtual hosts in your configuration, and at least one of them is name-based. For
name-based virtual hosts to work properly, the client must send a valid Host field in the request

header. This recipe describes how you can deal with situations in which the field is not included.

Solution

Add the following lines to your httpd.conf file:

Alias /NoHost.cgi /usr/local/apache/cgi-bin/NoHost.cgi
RewriteEngine On
RewriteCond "%{HTTP_HOST}" "^$"
RewriteRule "(.*)" "/NoHost.cgi$1" [PT]

The file NoHost.cgi can contain something like the following:

#! /usr/bin/perl -Tw

my $msg = "To properly direct your request, this server requires that\n"
 . "your Web client include the HTTP 'Host' request header field.\n"
 . "The request which caused this response did not include such\n"
 . "a field, so we cannot determine the correct document for you.\n";
print "Status: 400 Bad Request\r\n\"
 . "Content-type: text/plain\r\n\"
 . 'Content-length: ' . length($msg) . "\r\n\"
 . "\r\n\"
 . $msg;
exit(0);

Discussion

Once the directives in the solution are in place, all requests made of the server that do not include a
Host: field in the request header are redirected to the specified CGI script, which can take

appropriate action.

The solution uses a CGI script so that the response text can be tailored according to the attributes of
the request and the server's environment. For instance, the script might respond with a list of links to
valid sites on the server, determined by the script at runtime by examining the server's own
configuration files. If all you need is a "please try again, this time with a Host: field" sort of message,

a static HTML file would suffice:

RewriteRule .* /nohost.html [PT]

A more advanced version of the script approach could possibly scan the httpd.conf file for
ServerName directives, construct a list of possibilities from them, and present links in a 300 Multiple
Choices response. Of course, there's an excellent chance they wouldn't work, because the client
would still not be including the Host: field.

See Also

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 9.2 Changing the Response Status for CGI Scripts

Problem

There may be times when you want to change the status for a response-for example, you want 404
Not Found errors to be sent back to the client as 403 Forbidden instead.

Solution

Point your ErrorDocument to a CGI script instead of a static file. The CGI specification permits scripts
to specify the response status code.

In addition to the other header fields the script emits, like the Content-type: field, include one
named Status: with the value and text of the status you want to return:

#! /bin/perl -w
print "Content-type: text/html;charset=iso-8859-1\r\n";
print "Status: 403 Access denied\r\n";
 :

Discussion

If Apache encounters an error processing a document, such as not being able to locate a file, by
default it will return a canned error response to the client. You can customize this error response with
the ErrorDocument directive, and Apache will generally maintain the error status when it sends your
custom error text to the client.

However, if you want to change the status to something else, such as hiding the fact that a file
doesn't exist by returning a Forbidden status, you need to tell Apache about the change.

This requires that the ErrorDocument be a dynamic page, such as a CGI script. The CGI specification
provides a very simple means of specifying the status code for a response: the Status: CGI header

field. The Solution shows how it can be used.

See Also

Chapter 8

http://httpd.apache.org/docs/mod/core.html#errordocument

http://CGI-Spec.Golux.Com/

http://httpd.apache.org/docs/mod/core.html#errordocument
http://CGI-Spec.Golux.Com/

[Team LiB]

[Team LiB]

Recipe 9.3 Customized Error Messages

Problem

You want to display a customized error message, rather than the default Apache error page.

Solution

Use the ErrorDocument directive in httpd.conf:

ErrorDocument 405 /errors/notallowed.html

Discussion

The ErrorDocument directive allows you to create your own error pages to be displayed when
particular error conditions occur. In the previous example, in the event of a 405 status code (Method
Not Allowed), the specified URL is displayed for the user, rather than the default Apache error page.

The page can be customized to look like the rest of your web site. When an error document looks
significantly different from the rest of the site, this can leave the user feeling disoriented, or she may
feel as if she has left the site that she is currently on.

See Also

http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

Recipe 9.4 Providing Error Documents in Multiple
Languages

Problem

On a multilingual (content negotiated) web site, you want your error documents to be content
negotiated as well.

Solution

The Apache 2.0 default configuration file contains a configuration section, initially commented out, that
allows you to provide error documents in multiple languages customized to the look of your web site,
with very little additional work.

Uncomment those lines. You can identify the lines by looking for the following comment in your
default configuration file:

The internationalized error documents require mod_alias, mod_include
and mod_negotiation. To activate them, uncomment the following 30 lines.

In Apache 1.3 this is harder, but there's a solution in the works, as of this writing, that will make it
similar to the 2.0 implementation. Check the Apache Cookbook web site for more information.

Discussion

The custom error documents provided with Apache 2.0 combine a variety of techniques to provide
internationalized error messages. As of this writing, these error messages are available in German,
English, Spanish, French, Dutch, Swedish, Italian and Portuguese. Based on the language preference
set in the client browser, the error message is delivered in the preferred language of the end-user.

Using content negotiation, the correct variant of the document (i.e., the right language) is selected
for the user, based on their browser preference settings. For more information about content
negotiation, see the content negotiation documentation at http://httpd.apache.org/docs-2.0/content-
negotiation.html (for Apache 2.0) or http://httpd.apache.org/docs/content-negotiation.html (for
Apache 1.3).

In addition to delivering the error message in the correct language, this functionality also lets you
customize the look of these error pages so that they resemble the rest of your web site. To facilitate
this, the files top.html and bottom.html, located in the include subdirectory of the error directory,
should be modified to look like the standard header and footer content that appears on your web site.
The body of the error message documents is placed between the header and the footer to create a

http://httpd.apache.org/docs-2.0/content-
http://httpd.apache.org/docs/content-negotiation.html

page that is less jarring to users when they transition from your main site to the error pages that are
generated.

You will also note that the error documents themselves contain SSI directives, which are used to
further customize the error documents for the user. For example, in the case of the 404 (file not
found) error document, the page will provide a link back to the page that the user came from, if the
environment variable HTTP_REFERER is defined, and if that variable is not found, the page will merely

notify the user that the URL was not found. Other SSI directives may be put in these documents, if
you wish, to further customize them.

See Also

http://httpd.apache.org/docs/content-negotiation.html

http://httpd.apache.org/docs-2.0/content-negotiation.html

http://Apache-Cookbook.Com/

[Team LiB]

http://httpd.apache.org/docs/content-negotiation.html
http://httpd.apache.org/docs-2.0/content-negotiation.html
http://Apache-Cookbook.Com/

[Team LiB]

Recipe 9.5 Redirecting Invalid URLs to Some Other Page

Problem

You want all "not found" pages to go to some other page instead, such as the front page of the site,
so that there is no loss of continuity on bad URLs.

Solution

Use the ErrorDocument to catch 404 (Not Found) errors:

ErrorDocument 404 /index.html

DirectoryIndex index.html /path/to/notfound.html

Discussion

The recipe given here will cause all 404 errors-every time someone requests an invalid URL-to
return the URL /index.html, providing the user with the front page of your web site, so that even
invalid URLs still get valid content. Presumably, users accessing an invalid URL on your web site will
get a page that helps them find the information that they were looking for.

On the other hand, this behavior may confuse the user who believes she knows exactly where the
URL should take her. Make sure that the page that you provide as the global error document does in
fact help people find things on your site, and does not merely confuse or disorient them. You may, as
shown in the example, return them to the front page of the site. From there they should be able to
find what they were looking for.

When users get good content from bad URLs, they will never fix their bookmarks and will continue to
use a bogus URL long after it has become invalid. You will continue to get 404 errors in your log file for
these URLs, and the user will never be aware that they are using an invalid URL. If, on the other
hand, you actually return an error document, they will immediately be aware that the URL they are
using is invalid and will update their bookmarks to the new URL when they find it.

Note that, even though a valid document is being returned, a status code of 404 is still returned to the
client. This means that if you are using some variety of tool to validate the links on your web site,
you will still get good results, if the tool is checking the status code, rather than looking for error
messages in the content.

See Also

http://httpd.apache.org/docs/mod/core.html#errordocument

http://httpd.apache.org/docs/mod/mod_dir.html

[Team LiB]

http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs/mod/mod_dir.html

[Team LiB]

Recipe 9.6 Making Internet Explorer Display Your Error
Page

Problem

You have an ErrorDocument correctly configured, but IE is displaying its own error page, rather than
yours.

Solution

Make the error document bigger-at least 512 bytes.

Discussion

Yes, this seems a little bizarre, and it is. In this case, Internet Explorer thinks it knows better than the
web site administrator. If the error document is smaller than 512 bytes, it will display its internal error
message page, rather than your custom error page, whenever it receives a 400 or 500 series status
code. This size is actually configurable in the browser, so this number may in fact vary from one
client to another. "Friendly error messages" can also be turned off entirely in the browser
preferences.

This can be extremely frustrating the first time you see it happen, because you just know you have it
configured correctly and it seems to work in your other browsers. Furthermore, when some helpful
person tells you that your error document just needs to be a little larger, it's natural to think that he
is playing a little prank on you, because this seems a little too far-fetched.

But it's true. Make the page bigger. It needs to be at least 512 bytes, or IE will ignore it and gleefully
display its own "friendly" error message instead.

Exactly what you fill this space with is unimportant. You can, for example, just bulk it up with
comments. For example, repeating the following comment 6 times would be sufficient to push you
over that minimum file size:

<!-- message-obscuring clients are an abomination
 and an insult to the user's intelligence -->

See Also

http://httpd.apache.org/docs/mod/core.html#errordocument

http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

[Team LiB]

Recipe 9.7 Notification on Error Conditions

Problem

You want to receive email notification when there's an error condition on your server.

Solution

Point the ErrorDocument directive to a CGI program that sends mail, rather than to a static
document:

ErrorDocument 404 /cgi-bin/404.cgi

404.cgi looks like the following:

#!/usr/bin/perl
use Mail::Sendmail;
use strict;

my $message = qq~
Document not found: $ENV{REQUEST_URI}
Link was from: $ENV{HTTP_REFERER}
~;

my %mail = (
 To => 'admin@server.com',
 From => 'website@server.com',
 Subject => 'Broken link',
 Message => $message,
);
sendmail(%mail);

print "Content-type: text/plain\n\n";
print "Document not found. Admin has been notified";

Discussion

This recipe is provided as an example, rather than as a recommendation. On a web site of any
significant size or traffic level, actually putting this into practice generates a substantial quantity of
email, even on a site that is very well maintained. This is because people mistype URLs, and other
sites, over which you have no control, will contain incorrect links to your site. It may be educational,
however, to put something like this in place, at least briefly, to gain an appreciation for the scale of
your own web site.

The ErrorDocument directive will cause all 404 (Document Not Found) requests to be handled by the
specified URL, and so your CGI program gets run and is passed environment variables that will be
used in the script itself to figure out what link is bad and where the request came from.

The script used the Mail::Sendmail Perl module to deliver the email message, and this module should
work fine on any operating system. The module is not a standard part of Perl, so you may have to
install it from CPAN (http://www.cpan.org/). A similar effect can, of course, also be achieved in PHP
or any other programming language.

The last two lines of the program display a very terse page for the user, telling him that there was an
error condition. You may wish, instead, to have the script redirect the user to some more informative
and attractive page elsewhere on your web site. This could be accomplished by replacing those last
two lines with something like the following:

print "Location: http://server.name/errorpage.html\n\n";

This would send a redirect header to the client, which would display the specified URL to the user.

See Also

http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

http://www.cpan.org/
http://httpd.apache.org/docs/mod/core.html#errordocument

[Team LiB]

Chapter 10. Proxies
Proxy means to act on behalf of another. In the context of a web server, this means one server
fetching content from another server, then returning it to the client. For example, you may have
several web servers that hide behind a proxy server. The proxy server is responsible for having
requests end up going to the right backend server.

mod_proxy, which comes with Apache, handles proxying behavior. The recipes in this chapter cover
various techniques that can be used to take advantage of this capability. We discuss securing your
proxy server, caching content proxied through your server, and ways to use mod_proxy to map
requests to services running on alternate ports.

Additional information about mod_proxy can be found at
http://httpd.apache.org/docs/mod/mod_proxy.html for Apache 1.3, or http://httpd.apache.org/docs-
2.0/mod/mod_proxy.html for Apache 2.0.

Please make sure you don't enable proxying until you understand the security concerns involved and
have taken steps to secure your proxy server. (See Recipe 6.20 for details.)

You may also wish to consider a dedicated proxy server, such as Squid (http://www.squid-
cache.org/), which is focused entirely on one task, and thus has more options related to this task.

[Team LiB]

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs-
http://www.squid-

[Team LiB]

Recipe 10.1 Securing Your Proxy Server

Problem

You want to enable proxying, but you don't want an open proxy that can be used by just anyone at
all.

Solution

For Apache 1.3:

<Directory proxy:*>
 Order deny,allow
 Deny from all

 Allow from .yourdomain.com
</Directory>

For Apache 2.0:

<Proxy *>
 Order Deny,Allow
 Deny from all

 Allow from .yourdomain.com
</Proxy>

Discussion

Running an open proxy is a concern because it permits users from the Internet to use your proxy
server to cover their tracks as they visit web sites. This can be a problem for a variety of reasons.
The user is effectively stealing your bandwidth and is certainly part of the problem. However, perhaps
more concerning is the fact that you are probably enabling people to circumvent restrictions that
have been put in place by their network administrators, or perhaps you are providing users with
anonymity while they visit a web site, and as a consequence, these visits appear to come from your
network.

In these recipes, .yourdomain.com should be replaced by the name of your particular domain, or,

better yet, the network address(es) that are on your network. (IP addresses are harder to fake than
host and domain names.) For example, you might use, rather than the line appearing in the recipe, a
line such as:

Allow from 192.168.1

Note that every request for resources that goes through your proxy server generates a logfile entry,
containing the address of the client and the resource that they requested through your proxy server.
For example, one such request might look like:

192.168.1.5 - - [26/Feb/2003:21:26:13 -0500] "GET http://httpd.apache.org/docs/mod/
 mod_proxy.html HTTP/1.1" 200 49890

Your users, if made aware of this fact, will no doubt find it invasive, because this will show all HTTP
traffic through the proxy server.

It is possible to configure your server not to log these requests. The technique for doing this is to set
an environment variable for proxied requests:

<Directory proxy:*>
 SetEnv PROXIED 1
</Directory>

Then, in your log directive, specify that these requests are not to be logged:

CustomLog /www/logs/access_log common env=!PROXIED

See Also

http://httpd.apache.org/docs/mod/mod_proxy.html

http://httpd.apache.org/docs/mod/mod_log_config.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_log_config.html

[Team LiB]

Recipe 10.2 Preventing Your Proxy Server from Being
Used as an Open Mail Relay

Problem

If your Apache server is set up to operate as a proxy, it is possible for it to be used as a mail relay
unless precautions are taken. This means that your system may be functioning as an "open relay"
even though your mail server software is actually securely configured.

Solution

Use mod_rewrite to forbid proxy requests to port 25 (SMTP):

<Directory proxy:*>
 RewriteEngine On
 RewriteRule "^proxy:[a-z]*://[^/]*:25(/|$)" "-" [F,NC,L]
</Directory>

Discussion

To use the Apache proxy as an SMTP relay is fairly trivial, but then so is preventing it. The solution
simply tells the server to respond with a 403 Forbidden to any attempts to use it to proxy to a remote
mail server (port 25). Other ports, such as HTTP (port 80), HTTPS (port 443), and FTP (ports 20 and
21), which are commonly permitted proxy access, will not be affected.

See Also

http://httpd.apache.org/docs/mod/mod_proxy.html

http://httpd.apache.org/docs/mod/core.html#directory

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/core.html#directory
http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 10.3 Forwarding Requests to Another Server

Problem

You want requests for particular URLs to be transparently forwarded to another server.

Solution

Use ProxyPass and ProxyPassReverse directives in your httpd.conf:

ProxyPass /other/ http://other.server.com/
ProxyPassReverse /other/ http://other.server.com/

Discussion

Use this recipe when you have a frontend server and one or more backend servers, inaccessible from
the Internet, and you wish to serve content from them. In the example given, when a request is
made for a URL starting with /other/, Apache makes a request for the URL

http://other.server.com/, and returns the content obtained by the client. For example, a request for
the URL /other/example.html results in a request for the URL

http://other.server.com/example.html.

The ProxyPassReverse directive ensures that any header fields returned by the secondary server
(which contain the name of the server, such as Location headers) will be rewritten to contain the

URL that the end user will actually be using, ensuring that the redirect actually functions as desired.

Note that links within HTML documents on the secondary site should all be relative, rather than
absolute, so that these links work for users using the content via the proxy server. In the recipe
given, for example, a link to /index.html removes the /other/ portion of the URL, causing the

request to no longer hit the proxied portion of the server.

Using this technique, you can have content for one web site actually served by multiple web server
machines. This can be used as a means to traverse the border of your network, or it can be used as a
load-sharing technique to lessen the burden on your primary web server.

See Also

http://httpd.apache.org/docs/mod/mod_proxy.html

[Team LiB]

http://other.server.com/
http://other.server.com/example.html
http://httpd.apache.org/docs/mod/mod_proxy.html

[Team LiB]

Recipe 10.4 Blocking Proxied Requests to Certain Places

Problem

You want to use your proxy server as a content filter, forbidding requests to certain places.

Solution

Use ProxyBlock in the httpd.conf to deny access to particular sites:

ProxyBlock forbiddensite.com www.competitor.com monster.com

Discussion

This example forbids proxied requests to the sites listed. These arguments are substring matches;
example.com will also match www.example.com, and an argument of example would match both.

If you want more fine-grained control of what content is requested through your proxy server, you
may want to use something more sophisticated, such as Squid, which is more full-featured in that
area.

See Also

The Squid proxy server, found at http://www.squid-cache.org/

[Team LiB]

http://www.squid-cache.org/

[Team LiB]

Recipe 10.5 Proxying mod_perl Content to Another Server

Problem

You want to run a second HTTPD server for dynamically generated content and have Apache
transparently map requests for this content to the other server.

Solution

First, install Apache, running on an alternate port, such as port 90, on which you will generate this
dynamic content. Then, on your main server:

ProxyPass /dynamic/ http://localhost:90/
ProxyPassReverse /dynamic/ http://localhost:90/

Discussion

Most dynamic content generation techniques use a great deal more system resources than serving
static content. This can slow down the process of serving static content from the same server,
because child processes will be consumed with producing this dynamic content, and thus unable to
serve the static files.

By giving the dynamic content its own dedicated server, you allow the static content to be served
much more rapidly, and the dynamic content has a dedicated server. Each of the servers can have a
smaller set of modules installed than they would otherwise require, because they will be performing a
smaller subset of the functionality needed to do both tasks.

This technique can be used for a mod_perl server, a PHP server, or any other dynamic content
method. Or you could reverse the technique and have, for example, a dedicated machine for serving
image files using mod_mmap_static to serve the files very rapidly out of an in-memory cache.

In the example given, all URLs starting with /dynamic/ will be forwarded on to the other server,
which will, presumably, handle only requests for dynamic content. URLs that do not match this URL,
however, will fall through and be handled by the frontend server.

[Team LiB]

[Team LiB]

Recipe 10.6 Configuring a Caching Proxy Server

Problem

You want to run a caching proxy server.

Solution

Configure your server to proxy requests, and provide a location for the cached files to be placed:

ProxyRequests on
CacheRoot /var/spool/httpd/proxy

Discussion

Running a caching proxy server allows users on your network to have more rapid access to content
that others have already requested. They will, perhaps, not be getting the most recent version of the
document in question, but, because they are retrieving the content from a local copy rather than
from the remote web server, they will get it much more quickly.

With the contents of the WWW growing ever more dynamic, running a caching proxy server perhaps
makes less sense than it once did, when most of the Web was composed of static content. However,
since mod_proxy is fairly smart about what it caches and what it does not cache, this sort of setup
will still speed things up by caching the static portions of documents, such as the image files, while
retrieving the freshest version of those documents that change over time.

The directory specified in the CacheRoot directive specifies where cached content will be stored. This
directory must be writable by the user that Apache is running as (typically nobody), so that it is able
to store these files there.

Finally, note that, while in Apache 1.3, the functions discussed here are provided by mod_proxy; in
Apache 2.0, the proxying and caching functionality have been split into the modules mod_proxy and
mod_cache, respectively. In either case, these modules are not enabled by default.

See Also

http://httpd.apache.org/docs/mod/mod_proxy.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_proxy.html

[Team LiB]

Recipe 10.7 Filtering Proxied Content

Problem

You want to apply some filter to proxied content, such as altering certain words.

Solution

In Apache 2.0 and later, you can use mod_ext_filter to create output filters to apply to content before
it is sent to the user:

ExtFilterDefine naughtywords mode=output intype=text/html
 cmd="/bin/sed s/darned/blasted/g"

<Proxy *>
 SetOutputFilter naughtywords
</Proxy>

Discussion

The recipe offered is a very simple-minded "naughty word" filter, replacing the naughty word
"darned" with the sanitized alternate "blasted." This could be expanded to a variety of more
sophisticated content modification, because the cmd argument can be any command line, such as a
Perl script, or arbitrary program, which can filter the content in any way you want. All proxied
content will be passed through this filter before it is delivered to the client.

Note that this recipe will work only in Apache 2.0, as the module mod_ext_filter, the SetOutputFilter
directive, and the <Proxy> directive are available only in Apache 2.0.

Note also that there are ethical and legal issues surrounding techniques like this, which you may need
to deal with. We don't presume to take a position on any of them. In particular, modifying proxied
content that does not belong to you may be a violation of the owner's copyright and may be
considered by some to be unethical. Thankfully, this is just a technical book, not a philosophical one.
We can tell you how to do it, but whether you should is left to your conscience and your lawyers.

See Also

http://httpd.apache.org/docs-2.0/mod/mod_proxy.html

http://httpd.apache.org/docs-2.0/mod/mod_ext_filter.html

http://httpd.apache.org/docs-2.0/mod/mod_proxy.html
http://httpd.apache.org/docs-2.0/mod/mod_ext_filter.html

[Team LiB]

[Team LiB]

Recipe 10.8 Requiring Authentication for a Proxied Server

Problem

You wish to proxy content from a server, but it requires a login and password before content may be
served from this proxied site.

Solution

Use standard authentication techniques to require logins for proxied content:

ProxyPass "/secretserver/" "http://127.0.0.1:8080"
<Directory "proxy:http://127.0.0.1:8080/">
 AuthName SecretServer
 AuthType Basic

 AuthUserFile /path/to/secretserver.htpasswd
 Require valid-user
</Directory>

Discussion

This technique can be useful if you are running some sort of special-purpose or limited-function web
server on your system, but you want to apply Apache's rich set of access control and its other
features to access it. This is done by using the ProxyPass directive to make the special-purpose
server's URI space part of your main server, and using the special proxy:path <Directory> container

syntax to apply Apache settings only to the mapped URIs.

See Also

Recipe 6.7

[Team LiB]

[Team LiB]

Chapter 11. Performance
Your web site can probably be made to run faster, if you are willing to make a few tradeoffs, and
spend a little time benchmarking your site to see what is really slowing it down.

There are a number of things that you can configure differently to get a performance boost.
Although, there are other things to which you may have to make more substantial changes. It all
depends on what you can afford to give up and what you are willing to trade off. For example, in
many cases, you may need to trade performance for security, or vice versa.

In this chapter, we make some recommendations of things that you can change, and we warn
against things that can cause substantial slow-downs. Be aware that web sites are very individual,
and what may speed up one web site may not necessarily speed up another web site.

Topics covered include hardware considerations, configuration file changes, and dynamic content
generation, which can all be factors in getting every ounce of performance out of your web site.

Very frequently, application developers develop programs in conditions that
don't nearly enough reflect the conditions under which they will be run in
production. Consequently, the application that seemed to run adequately fast
with the test database of 100 records, runs painfully slowly with the production
database of 200,000 records.

By ensuring that your test environment is at least as demanding as your
production environment, you greatly reduce the chances that your application
will perform unexpectedly slowly when you roll it out.

[Team LiB]

[Team LiB]

Recipe 11.1 Determining How Much Memory You Need

Problem

You want to ensure that you have sufficient RAM in your server.

Solution

Find the instances of Apache in your process list, and determine an average memory footprint for an
Apache process. Multiply this number by your peak load (maximum number of concurrent web clients
you'll be serving).

Discussion

Because there is very little else that you can do at the hardware level to make your server faster,
short of purchasing faster hardware, it is important to make sure that you have as much RAM as you
need.

Determining how much memory you need is an inexact science, to say the least. In order to take an
educated guess, you need to observe your server under load, and see how much memory it is using.

The amount of memory used by one Apache process will vary greatly from one server to another,
based on what modules you have installed and what the server is being called upon to do. Only by
looking at your own server can you get an accurate estimate of what this quantity is for your
particular situation.

Tools such as top and ps may be used to examine your process list and determine the size of
processes. The server-status handler, provided by mod_status, may be used to determine the total
number of Apache processes running at a given time.

If, for example, you determine that your Apache processes are using 4 MB of memory each, and
under peak load, you find that you are running 125 Apache processes, then you will need, at a bare
minimum, 500 MB of RAM in the server to handle this peak load. Remember that memory is also
needed for the operating system, and any other applications and services that are running on the
system, in addition to Apache, and so in reality you will need more than this amount.

If, on the other hand, you are unable to add more memory to the server, for whatever reason, you
can use the same technique to figure out the maximum number of child processes that you are
capable of serving at any one time, and use the MaxClients directive to limit Apache to that many
processes:

MaxClients 125

See Also

http://httpd.apache.org/docs/misc/perf-tuning.html

[Team LiB]

http://httpd.apache.org/docs/misc/perf-tuning.html

[Team LiB]

Recipe 11.2 Benchmarking Apache with ab

Problem

You want to benchmark changes that you are making to verify that they are in fact making a
difference in performance.

Solution

Use ab (Apache bench), which you will find in the bin directory of your Apache installation:

ab -n 1000 -c 10 http://www.example.com/test.html

Discussion

ab is a command-line utility that comes with Apache and lets you do very basic performance testing
of your server. It is especially useful for making small changes to your configuration and testing
server performance before and after the change.

The arguments given in the previous example tell ab to request the resource
http://servername.com/test.html 1000 times (-n 1000 indicates the number of requests) and to
make these requests 10 at a time (-c 10 indicates the concurrency level).

Other arguments that may be specified can be seen by running ab with the -h flag. Of particular
interest is the -k flag, which enables keepalive mode. See the following keepalive recipe for additional
details on this matter.

There are a few things to note about ab when using it to evaluate performance.

ab does not mimic web site usage by real people. It requests the same resource repeatedly to test
the performance of that one thing. For example, you may use ab to test the performance of a
particular CGI program, before and after a performance-related change was made to it. Or you may
use it to measure the impact of turning on .htaccess files, or content negotiation, for a particular
directory. Real users, of course, do not repeatedly load the same page, and so performance
measurements made using ab may not reflect actual real-world performance of your web site.

You should probably not run the web server and ab on the same machine, as this will introduce more
uncertainty into the measurement. With both ab and the web server itself consuming system
resources, you will receive significantly slower performance than if you were to run ab on some other
machine, accessing the server over the network. However, also be aware that running ab on another
machine will introduce network latency, which is not present when running it on the same machine as
the server.

http://servername.com/test.html

Finally, there are many factors that can affect performance of the server, and you will not get the
same numbers each time you run the test. Network conditions, other processes running on the client
or server machine, and a variety of other things, may influence your results slightly one way or
another. The best way to reduce the impact of environmental changes is to run a large number of
tests and average your results. Also, make sure that you change as few things as possible-ideally,
just one-between tests, so that you can be more sure what change has made any differences you
can see.

Finally, you need to understand that, while ab gives you a good idea of whether certain changes have
improved performance, it does not give a good simulation of actual users. Actual users don't simply
fetch the same resource repeatedly, but they obtain a variety of different resources from various
places on your site. Thus, actual site usage conditions may produce different performance issues than
those revealed by ab.

See Also

The manpage for the ab tool

[Team LiB]

[Team LiB]

Recipe 11.3 Tuning Keepalive Settings

Problem

You want to tune the keepalive-related directives to the best possible setting for your web site.

Solution

Turn on the KeepAlive setting, and set the related directives to sensible values:

KeepAlive On
MaxKeepAliveRequests 0
KeepAliveTimeout 15

Discussion

The default behavior of HTTP is for each document to be requested over a new connection. This
causes a lot of time to be spent opening and closing connections. KeepAlive allows multiple requests
to be made over a single connection, thus reducing the time spent establishing socket connections.
This, in turn, speeds up the load time for clients requesting content from your site.

In addition to turning keepalive on, using the KeepAlive directive, there are two directives that allow
you to adjust the way that it is done.

The first of these, MaxKeepAliveRequests, indicates how many keepalive requests should be
permitted over a single connection. There is no reason to have this number set low. The default value
for this directive is 100, and this seems to work pretty well for most sites. Setting this value to 0
means that an unlimited number of requests will be permitted over a single connection. This might
allow users to load all of their content from your site over a single connection, depending on the
value of KeepAliveTimeout and how quickly they went through the site.

KeepAliveTimeout indicates how long a particular connection will be held open when no further
requests are received. The optimal setting for this directive depends entirely on the nature of your
web site. You should probably think of this value as the amount of time it takes users to absorb the
content of one page of your site before they move on to the next page. If the users move on to the
next page before the KeepAliveTimeout has expired, when they click on the link for the next page of
content, they will get that next document over the same connection. If, however, that time has
already expired, they will need to establish a new connection to the server for that next page.

You should also be aware that if users load a resource from your site and then go away, Apache will
still maintain that open connection for them for KeepAliveTimeout seconds, which makes that child
process unable to serve any other requests during that time. Therefore, setting KeepAliveTimeout too
high is just as undesirable as setting it too low.

In the event that KeepAliveTimeout is set too high, you will see (i.e., with the server-status
handler-see Recipe 11.4) that a significant number of processes are in keepalive mode, but are
inactive. Over time, this number will continue to grow, as more child processes are spawned to take
the place of child processes that are in this state.

Conversely, setting KeepAliveTimeout too low will result in conditions similar to having KeepAlive
turned off entirely, when a single client will require many connections over the course of a brief visit.
This is less easy to detect than the opposite condition. In general, it is probably better to err on the
side of setting it too high, rather than too low.

Since the length of time that any given user looks at any given document on your site is going to be
as individual as the users themselves, and varies from page to page around your web site, it is very
difficult to determine the best possible value of this directive for a particular site. However, it is
unlikely that this is going to make any large impact on your overall site performance, when compared
to other things that you can do. Leaving it at the default value of 15 tends to work pretty well for most
sites.

See Also

http://httpd.apache.org/docs/mod/core.html#keepalive

http://httpd.apache.org/docs/mod/core.html#maxkeepaliverequests

http://httpd.apache.org/docs/mod/core.html#keepalivetimeout

[Team LiB]

http://httpd.apache.org/docs/mod/core.html#keepalive
http://httpd.apache.org/docs/mod/core.html#maxkeepaliverequests
http://httpd.apache.org/docs/mod/core.html#keepalivetimeout

[Team LiB]

Recipe 11.4 Getting a Snapshot of Your Site's Activity

Problem

You want to find out exactly what your server is doing.

Solution

Enable the server-status handler to get a snapshot of what child processes are running and what
each one is doing. Enable ExtendedStatus to get even more detail:

<Location /server-status>
 SetHandler server-status
</Location>

ExtendedStatus On

Then, view the results at the URL http://servername/server-status.

Discussion

Provided by mod_status, which is enabled by default, the server-status handler provides a snapshot
of your server's activity. This snapshot includes some basic details, such as when the server was last
restarted, how long it has been up, and how much data it has served in that time. Following that,
there will be a list of the child processes and what each one is doing. At the bottom of the page is a
detailed explanation of the terms used and what each column of the table represents.

The server status display shows activity across the entire server-including
virtual hosts. If you are providing hosting services for others, you may not want
them to be able to see this level of detail about each other.

It is recommended that, as in the default configuration file that comes with Apache, you restrict
access to this handler. Part of the information contained on this page is a list of client addresses and
the document that they are requesting. Some users feel that it is a violation of their privacy for you
to make this information readily available on your web site. Additionally, it may provide information
such as QUERY_STRING variables, PATH_INFO variables, or simply URLs, which you wished to not be

made public. It is therefore recommended that you add to the above recipe some lines such as:

Order deny,allow
Deny from all
Allow from 192.168.1

http://servername/server-status

This configuration allows access only from the 192.168.0 network, or whatever network you put in
there, and denies access from unauthorized Internet users.

See Also

http://httpd.apache.org/docs/mod/mod_status.html

http://httpd.apache.org/server-status/

[Team LiB]

http://httpd.apache.org/docs/mod/mod_status.html
http://httpd.apache.org/server-status/

[Team LiB]

Recipe 11.5 Avoiding DNS Lookups

Problem

You want to avoid situations where you have to do DNS lookups of client addresses, as this is a very
slow process.

Solution

Always set the HostNameLookups directive to Off:

HostNameLookups Off

And make sure that, whenever possible, Allow from and/or Deny from directives use the IP address,
rather than the hostname of the hosts in question.

Discussion

DNS lookups can take a very long time and should be avoided at all costs. In the event that a client
address cannot be looked up at all, it can take up to a minute for the lookup to time out, during
which time the child process that is doing the lookup cannot do anything else.

There are a number of cases in which Apache will need to do DNS lookups, and so the goal here is to
completely avoid those situations.

HostNameLookups

Prior to Apache 1.3, HostNameLookups, which determines whether Apache logs client IP addresses or
hostnames, defaulted to on, meaning that each Apache log entry required a DNS lookup to convert
the client IP address to a hostname to put in the logfile. Fortunately, that directive now defaults to
off, and so this is primarily an admonition to leave it alone.

If you need to have these addresses converted to hostnames, then this should be done by another
program, preferably running on a machine other than your production web server. That is, you really
should copy the file to some other machine for the purpose of processing, so that the effort required
to do this processing does not negatively effect your web server's performance.

Apache comes with a utility called logresolve, which will process your logfile, replacing IP addresses
with hostnames. Additionally, most logfile analysis tools will also do this name resolution as part of
the log analysis process.

Allow and Deny from hostnames

When you do host-based access control, using the Allow from and Deny from directives, Apache takes
additional precautions to make sure that the client is not spoofing its hostname. In particular, it does
a DNS lookup on the IP address of the client to obtain the name to compare against the access
restriction. It then looks up the name that was obtained, just to make sure that the DNS record is not
being faked.[1]

[1] For example, the owner of the IP address could very easily put a PTR record in their reverse-DNS zone,
pointing their IP address at a name belonging to someone else.

For the sake of better performance, therefore, it is much better to use an IP address, rather than a
name, in Allow and Deny directives.

See Also

Chapter 3

[Team LiB]

[Team LiB]

Recipe 11.6 Optimizing Symbolic Links

Problem

You wish to balance the security needs associated with symbolic links with the performance impact of
a solution, such as using Options SymLinksIfOwnerMatch, which causes a server slowdown.

Solution

For tightest security, use Options SymlinksIfOwnerMatch, or Options -FollowSymLinks if you seldom
or never use symlinks.

For best performance, use Options FollowSymlinks.

Discussion

Symbolic links are an area in which you need to weigh performance against security and make the
decision that makes the most sense in your particular situation.

In the normal everyday operation of a Unixish operating system, symbolic links are considered to be
the same as the file to which they link.[2] When you cd into a directory, you don't need to be aware
of whether that was a symlink or not. It just works.

[2] Of course, this is not true at the filesystem level, but we're just talking about the practical user level.

Apache, on the other hand, has to consider whether each file and directory is a symlink or not, if the
server is configured not to follow symlinks. And, additionally, if Option SymlinksIfOwnerMatch is
turned on, Apache not only has to check if the particular file is a symlink, but also has to check the
ownership of the link itself and of the target, in the event that it is a symlink. While this enforces a
certain security policy, it takes a substantial amount of time and so slows down the operation of your
server.

In the tradeoff between security and performance, in the matter of symbolic links, here are the
guidelines.

If you are primarily concerned about security, never permit the following of symbolic links. It may
permit someone to create a link from a document directory to content that you would not want to be
on a public server. Or, if there are cases where you really need symlinks, use Options
SymlinksIfOwnerMatch, which requires that someone may only link to files that they own and will
presumably protect you from having a user link to a portion of the filesystem that is not already
under their control.

If you are concerned about performance, then always use Options FollowSymlinks, and never use

Options SymlinksIfOwnerMatch. Options FollowSymlinks permits Apache to follow symbolic links in
the manner of most Unixish applications-that is, Apache does not even need to check to see if the
file in question is a symlink or not.

See Also

http://httpd.apache.org/docs/mod/core.html#options

[Team LiB]

http://httpd.apache.org/docs/mod/core.html#options

[Team LiB]

Recipe 11.7 Minimizing the Performance Impact of
.htaccess Files

Problem

You want per-directory configuration but want to avoid the performance hit of .htaccess files.

Solution

Turn on AllowOverride only in directories where it is required, and tell Apache not to waste time
looking for .htaccess files elsewhere:

AllowOverride None

Then use <Directory> sections to selectively enable .htaccess files only where needed.

Discussion

.htaccess files cause a substantial reduction in Apache's performance, because it must check for a

.htaccess in every directory along the path to the requested file to be assured of getting all of the
relevant configuration overrides. This is necessary because Apache configuration directives apply not
only to the directory in which they are set, but also to all subdirectories. Thus, we must check for
.htaccess files in parent directories, as well as in the current directory, to find any directives that
would trickle down the current directory.

For example, if, for some reason, you had AllowOverride All enabled for all directories and your
DocumentRoot was /usr/local/apache/htdocs, then a request for the URL
http://example.com/events/parties/christmas.html would result in the following files being looked for
and, if found, opened and searched for configuration directives:

/.htaccess
/usr/.htaccess
/usr/local/.htaccess
/usr/local/apache/.htaccess
/usr/local/apache/htdocs/.htaccess
/usr/local/apache/htdocs/events/.htaccess
/usr/local/apache/htdocs/events/parties/.htaccess

Now, hopefully, you would never have AllowOverride All enabled for your entire filesystem, so this is
a worst-case scenario. However, occasionally, when people do not adequately understand what this
configuration directive does, they will enable this option for their entire filesystem and suffer poor

http://example.com/events/parties/christmas.html

performance as a result.

The recommended solution is by far the best way to solve this problem. The <Directory> directive is
specifically for this situation, and .htaccess files should really only be used in the situation where
configuration changes are needed and access to the main server configuration file is not readily
available.

For example, if you have a .htaccess file in /usr/local/apache/htdocs/events containing the directive:

AddEncoding x-gzip tgz

You should instead simply replace this with the following in your main configuration file:

<Directory /usr/local/apache/htdocs/event>
 AddEncoding x-gzip tgz
</Directory>

Which is to say, anything that appears in a .htaccess can, instead, appear in a <Directory> section,
referring to that same directory.

If you are compelled to permit .htaccess files somewhere on your web site, you should only permit
them in the specific directory where they are needed. For example, if you particularly need to permit
.htaccess files in the directory /www/htdocs/users/leopold/, then you should explicitly allow then for
only this directory:

<Directory /www/htdocs/users/leopold>
 AllowOverride All
</Directory>

One final note about the AllowOverride directive: this directive lets you be very specific about what
types of directives you permit in .htaccess files, and you should make an effort only to permit those
directives that are actually needed. That is, rather than using the All argument, you should allow
specific types of directives as needed. In particular, the Options argument to AllowOverride should be
avoided, if possible, as it may enable users to turn on features that you have turned off for security
reasons.

See Also

http://httpd.apache.org/docs/howto/htaccess.html

http://httpd.apache.org/docs-2.0/howto/htaccess.html

[Team LiB]

http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html

[Team LiB]

Recipe 11.8 Disabling Content Negotiation

Problem

Content negotiation causes a big reduction in performance.

Solution

Disable content negotiation where it is not needed. If you do require content negotiation, use the
type-map handler, rather than the MultiViews option:

Options -MultiViews

AddHandler type-map var

Discussion

If at all possible, disable content negotiation. However, if you must do content negotiation-if, for
example, you have a multilingual web site-you should use the type-map handler, rather than the
MultiViews method.

When MultiViews is used, Apache needs to get a directory listing each time a request is made. The
resource requested is compared to the directory listing to see what variants of that resource might
exist. For example, if index.html is requested, the variants index.html.en and index.html.fr might
exist to satisfy that request. Each matching variant is compared with the user's preferences,
expressed in the various Accept headers passed by the client. This information allows Apache to

determine which resource is best suited to the user's needs.

However, this process can be very time-consuming, particularly for large directories or resources with
large numbers of variants. By putting the information in a .var file and allowing the type-map handler
to be used instead, you eliminate the requirement to get a directory listing, and greatly reduce the
amount of work that Apache must do to determine the correct variant to send to the user.

The .var file just needs to contain a listing of the variants of a particular resource and describe their
important attributes.

If you have, for example, English, French, and Hebrew variants of the resource index.html, you may
express this in a .var file called index.html.var containing information about each of the various
variants. This file might look like the following:

URI: index.html.en
Content-language: en
Content-type: text/html

URI: index.html.fr
Content-language: en
Content-type: text/html

URI: index.html.he.iso8859-8
Content-language: he
Content-type: text/html;charset=ISO-8859-8

This file should be placed in the same directory as the variants of this resource, which are called
index.html.en, index.html.fr, and index.html.he.iso8859-8.

Note that the Hebrew variant of the document indicates an alternate character set, both in the name
of the file itself, and in the Content-type header field.

Enable the .var file by adding a AddHandler directive to your configuration file, as follows:

AddHandler type-map .var

Each of the file extensions used in these filenames should have an associated
directive in your configuration file. This is not something that you should have
to add-these should appear in your default configuration file. Each of the
language indicators will have an associated AddLanguage directive, while the
character set indicator will have an AddCharset directive.

In contrast to MultiViews, this technique gets all of its information from this .var file instead of from a
directory listing, which is much less efficient.

You can further reduce the performance impact of content negotiation by indicating that negotiated
documents can be cached. This is accomplished by the directive:

CacheNegotiatedDocs On

Caching negotiated documents can cause unpleasant results, such as people getting files in a
language that they cannot read or in document formats that they don't know how to render.

If possible, you should completely avoid content negotiation in any form, as it will greatly slow down
your server no matter which technique you use.

See Also

http://httpd.apache.org/docs/mod/mod_negotiation.html

http://httpd.apache.org/docs/mod/mod_mime.html#addhandler

http://httpd.apache.org/docs/mod/mod_mime.html#addcharset

http://httpd.apache.org/docs/mod/mod_mime.html#addlanguage

http://httpd.apache.org/docs/mod/core.html#optionsr

http://httpd.apache.org/docs/mod/mod_negotiation.html
http://httpd.apache.org/docs/mod/mod_mime.html#addhandler
http://httpd.apache.org/docs/mod/mod_mime.html#addcharset
http://httpd.apache.org/docs/mod/mod_mime.html#addlanguage
http://httpd.apache.org/docs/mod/core.html#optionsr

[Team LiB]

[Team LiB]

Recipe 11.9 Optimizing Process Creation

Problem

You're using Apache 1.3, or Apache 2.0 with the prefork MPM, and you want to tune MinSpareServers
and MaxSpareServers to the best settings for your web site.

Solution

Will vary from one site to another. You'll need to watch traffic on your site and decide accordingly.

Discussion

The MinSpareServers and MaxSpareServers directives control the size of the server pool, so that
incoming requests will always have a child process waiting to serve them. In particular, if there are
fewer than MinSpareServers idle processes, Apache will create more processes until that minimum is
reached. Similarly, if there are ever more than MaxSpareServers processes, Apache will kill off
processes until there are fewer than that maximum. These things will happen as the site traffic
fluctuates on a normal day.

The best values for these directives for your particular site depends on the amount and the rate at
which traffic fluctuates. If your site is prone to large spikes in traffic, MinSpareServers needs to be
large enough to absorb those spikes. The idea is to never have a situation where requests come in to
your site, and there are no idle server processes waiting to handle the request. If traffic patterns on
your site are fairly smooth curves with no abrupt spikes, the default values may be sufficient.

The best way to watch exactly how much load there is on your server is by looking at the server-
status handler output. (See Recipe 11.4.)

You should also set MaxClients to a value such that you don't run out of server resources during
heavy server loads. For example, if your average Apache process consumes 2 MB of memory and
you have a total of 256 MB of RAM available, allowing a little bit of memory for other processes, you
probably don't want to set MaxClients any higher than about 120. If you run out of RAM and start
using swap space, your server performance will abruptly go downhill and will not recover until you
are no longer using swap. You can watch memory usage by running a program such as top, which
shows running processes and how much memory each is using.

See Also

Setting the number of threads on single-child MPMs in Recipe 11.10

Number of threads when using the worker MPM in Recipe 11.10

[Team LiB]

[Team LiB]

Recipe 11.10 Tuning Thread Creation

Problem

You're using Apache 2.0 with one of the threaded MPMs, and you want to optimize the settings for the
number of threads.

Solution

Will vary from server to server.

Discussion

The various threaded MPMs on Apache 2.0 handle thread creation somewhat differently. In Apache
1.3, the Windows and Netware versions are threaded, while the Unixish version is not. Tuning the
thread creation values will vary from one of these versions to another.

Setting the number of threads on single-child MPMs

On MPMs that run Apache with a single threaded child process, such as the Windows MPM
(mpm_winnt), and the Windows and Netware versions of Apache 1.3, there are a fixed number of
threads in the child process. This number is controlled by the ThreadsPerChild directive and must be
large enough to handle the peak traffic of the site on any given day. There really is no performance
tuning that can be done here, as this number is fixed throughout the lifetime of the Apache process.

Number of threads when using the worker MPM

The worker MPM has a fixed number of threads per child process but has a variable number of child
processes, so that increased server load can be absorbed. A typical configuration might look like the
following:

StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
ServerLimit 16

The MinSpareThreads and MaxSpareThreads directives control the size of the idle pool of threads, so

that incoming clients will always have an idle thread waiting to serve their request. The
ThreadsPerChild directive indicates how many threads are in each child process, so when the number
of available idle threads drops below MinSpareThreads, Apache will launch a new child process,
populated with ThreadsPerChild threads. Similarly, when server load is reduced and the number of
idle threads is greater than MaxSpareThreads, Apache will kill off one or more child processes to
reduce the idle pool to that number or less.

The goal, when setting these values, is to ensure that there are always idle threads ready to serve
any incoming client's request, without having to create a new one. The previous example will work for
most sites, as it will ensure that there is at least one completely unused child process, populated with
25 threads, waiting for incoming requests. As soon as threads within this process start to be used, a
new child process will be launched for future requests.

The values of MaxClients and ServerLimit should be set so that you will never run out of RAM when a
new child process is launched. Look at your process list, using top, or a similar utility, and ensure that
ServerLimit, multiplied by the size of an individual server process, does not exceed your available
RAM. MaxClients should be less than, or equal to, ServerLimit multiplied by ThreadsPerChild.

Setting the number of threads when using Netware or the perchild MPM

Whereas with most of the other MPMs the MinSpareThreads and MaxSpareThreads directives are
server-wide, in the perchild and netware MPMs, these directives are assessed per child process. Of
course, with the netware MPM, there is only one child process, so it amounts to the same thing.

With the netware MPM, threads are created and reaped as needed, to keep the number of spare
threads between the limits imposed by MinSpareThreads and MaxSpareThreads. The total number of
threads must be kept at all times below the limit imposed by the MaxThreads directive.

On the perchild MPM, these limits are set per child process, with each child process monitoring its
number of idle threads, and keeping that number between MinSpareThreads and MaxSpareThreads,
while keeping at all times the total number of threads below MaxThreadsPerChild.

Because creating additional threads consumes far fewer resources than creating new child processes,
it is seldom necessary to adjust these values from their default settings. With the perchild MPM,
however, you may wish to adjust the NumServers directive so that you don't run out of RAM. Note
that the number set in NumServers is the number of child processes that run all the time, as the
perchild MPM does not create and kill child processes, but rather tunes capacity by creating and
killing threads.

See Also

http://httpd.apache.org/docs-2.0/mpm.html

[Team LiB]

http://httpd.apache.org/docs-2.0/mpm.html

[Team LiB]

Recipe 11.11 Caching Frequently Viewed Files

Problem

You want to cache files that are viewed frequently, such as your site's front page, so that they don't
have to be loaded from the filesystem every time.

Solution

Use mod_mmap_static or mod_file_cache (for Apache 1.3 and 2.0, respectively) to cache these files
in memory:

MMapFile /www/htdocs/index.html
MMapFile /www/htdocs/other_page.html

For Apache 2.0, you can use either module or the CacheFile directive. MMapFile caches the file
contents in memory, while CacheFile caches the file handle instead, which gives slightly poorer
performance but uses less memory:

CacheFile /www/htdocs/index.html
CacheFile /www/htdocs/other_page.html

Discussion

For files that are frequently accessed, it is desirable to cache that file in some fashion to save disk
access time. The MMapFile directive loads a file into RAM, and subsequent requests for that file are
served directly out of RAM, rather than from the filesystem. The CacheFile directive, on the other
hand, opens the file and caches the file handle, saving time on subsequent file opens.

In Apache 1.3, this functionality is available with the mod_mmap_static module, which is labelled as
experimental and is not built into Apache by default. To enable this module, you need to specify the
-enable-module=mmap_static flag to configure when building Apache. mod_mmap_static provides
only the MMapFile directive.

In Apache 2.0, this functionality is provided by the mod_file_cache module, which is labelled as
experimental, and is not built into Apache by default. To enable this module, you need to specify the
-enable-file_cache flag to configure when building Apache. mod_file_cache provides both the
MMapFile and CacheFile directives.

These directives take a single file as an argument, and there is not a provision for specifying a
directory or set of directories. If you wish to have the entire contents of a directory mapped into
memory, the documentation provides the following suggestion. For the directory in question, you
would run the following command:

% find /www/htdocs -type f -print \
> | sed -e 's/.*/mmapfile &/' > /www/conf/mmap.conf

In your main server configuration file, you would then load the file created by that command, using
the Include directive:

Include /www/conf/mmap.conf

This would cause every file contained in that directory to have the MMapFile directive invoked on it.

Note that when files are cached using one of these two directives, any changes to the file will require
a server restart before they become visible.

See Also

http://httpd.apache.org/docs/mod/mod_mmap_static.html

http://httpd.apache.org/docs-2.0/mod/mod_file_cache.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_mmap_static.html
http://httpd.apache.org/docs-2.0/mod/mod_file_cache.html

[Team LiB]

Recipe 11.12 Sharing Load Between Servers Using
mod_proxy

Problem

You want to have a certain subset of your web site served from another machine, in order to share
the load of the site.

Solution

Use ProxyPass and ProxyPassReverse to have Apache fetch the content from another server:

ProxyPass /other/ http://other.server.com/
ProxyPassReverse /other/ http://other.server.com/

Discussion

These directives will cause requests to URLs starting with /other/ to be forwarded to the server
other.server.com, with the path information preserved. That is to say, a request for
http://www.server.com/other/something.html will be translated into a request for
http://other.server.com/something.html. Content obtained from this other server will be returned to
the client, which will be unable to determine that any such technique was employed. The
ProxyPassReverse directive ensures that any redirect headers sent from the backend server (in this
case, other.server.com) will be modified so that they appear to come from the main server.

This method is often used to have the dynamic portion of the site served by a server running
mod_perl-often even on the same machine, but on a different port-while the static portions of the
site are served from the main server, which can be lighter weight, and so run faster.

Note that URLs contained within documents are not rewritten as they pass through the proxy, and
links within documents should be relative, rather than absolute, so that they work correctly.

See Also

http://httpd.apache.org/docs/mod/mod_proxy.html

http://httpd.apache.org/docs-2.0/mod/mod_proxy.html

[Team LiB]

http://www.server.com/other/something.html
http://other.server.com/something.html
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs-2.0/mod/mod_proxy.html

[Team LiB]

Recipe 11.13 Distributing Load Evenly Between Several
Servers

Problem

You want to serve the same content from several servers and have hits distributed evenly among the
servers

Solution

Use DNS round-robin to have requests distributed evenly, or at least fairly evenly, among the
servers:

www.example.com. 86400 IN A 192.168.10.2
www.example.com. 86400 IN A 192.168.10.3
www.example.com. 86400 IN A 192.168.10.4
www.example.com. 86400 IN A 192.168.10.5
www.example.com. 86400 IN A 192.168.10.6
www.example.com. 86400 IN A 192.168.10.7

Discussion

This example is an excerpt from a BIND zone file. The actual syntax may vary, depending on the
particular name server software you are running.

By giving multiple addresses to the same hostname, you cause hits to be evenly distributed among
the various servers listed. The name server, when asked for this particular name, will give out the
addresses listed in a round-robin fashion, causing requests to be sent to one server after the other.
The individual servers need be configured only to answer requests from the specified name.

Running the host command on the name in question will result in a list of possible answers, but each
time you run the command, you'll get a different answer first:

% host www.example.com
www.example.com has address 192.168.10.2
www.example.com has address 192.168.10.3
www.example.com has address 192.168.10.4
www.example.com has address 192.168.10.5
www.example.com has address 192.168.10.6
www.example.com has address 192.168.10.7
% host www.example.com
www.example.com has address 192.168.10.7

www.example.com has address 192.168.10.2
www.example.com has address 192.168.10.3
www.example.com has address 192.168.10.4
www.example.com has address 192.168.10.5
www.example.com has address 192.168.10.6

Make sure that when you update your DNS zone file, you also update the serial
number, and restart or reload your DNS server.

See Also

DNS and Bind by Paul Albitz and Cricket Liu (O'Reilly)

[Team LiB]

[Team LiB]

Recipe 11.14 Caching Directory Listings

Problem

You want to provide a directory listing but want to reduce the performance hit of doing so.

Solution

Use the TrackModified argument to IndexOptions to allow browsers to cache the results of an auto-
generated directory index:

IndexOptions +TrackModified

Discussion

When sending a directory listing to a client, Apache has to open that directory, obtain a directory
listing, and determine various attributes of the files contained therein. This is very time consuming,
and it would be nice to avoid this when possible.

By default, the Last Modified time sent with a directory listing is the time that the content is being
served. Thus, when a client, or proxy server, makes a HEAD or conditional GET request to determine
if it can use the copy that it has in cache, it will always decide to get a fresh copy of the content. The
TrackModified option to IndexOptions cause mod_autoindex to send a Last Modified time
corresponding to the file in the directory that was most recently modified. This enables browsers and
proxy servers to cache this content, rather than retrieving it from the server each time, and also
ensures that the listing that they have cached is in fact the latest version.

Note that clients that don't implement any kind of caching will not benefit from this directive. In
particular, testing with ab will show no improvement from turning on this setting, as ab does not do
any kind of content caching.

See Also

The manpage for the ab tool

[Team LiB]

[Team LiB]

Recipe 11.15 Speeding Up Perl CGI Programs with
mod_perl

Problem

You have existing functional Perl CGI programs and want them to run faster.

Solution

If you have the mod_perl module installed, you can configure it to run your Perl CGI programs,
instead of running mod_cgi. This gives you a big performance boost, without having to modify your
CGI code.

There are two slightly different ways to do this.

For Apache 1.3 and mod_perl Version 1:

Alias /cgi-perl/ /usr/local/apache/cgi-bin/
<Location /cgi-perl>
 Options ExecCGI
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 PerlSendHeader On
</Location>

Alias /perl/ /usr/local/apache/cgi-bin/
<Location /perl>
 Options ExecCGI
 SetHandler perl-script
 PerlHandler Apache::Registry
 PerlSendHeader On
</Location>

For Apache 2.0 and mod_perl Version 2, the syntax changes slightly:

PerlModule ModPerl::PerlRun
Alias /cgi-perl/ /usr/local/apache2/cgi-bin/
<Location /cgi-perl>
 SetHandler perl-script
 PerlResponseHandler ModPerl::PerlRun
 Options +ExecCGI
</Location>

PerlModule ModPerl::Registry
Alias /perl/ /usr/local/apache2/cgi-bin/
<Location /perl>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 Options +ExecCGI
</Location>

Discussion

By using mod_perl's CGI modes, you can improve the performance of existing CGI programs without
modifying the CGI code itself in any way. Given the previous configuration sections, a CGI program
that was previously accessed via the URL http://www.example.com/cgi-bin/program.cgi will now be
accessed via the URL http://www.example.com/cgi-perl/program.cgi to run it in PerlRun mode or via
the URL http://www.example.com/perl/program.cgi to run it in Registry mode.

The primary difference between PerlRun and Registry is that, in Registry, the program code itself is
cached after compilation, whereas in PerlRun mode, it is not. While this means that code run under
Registry is faster than that executed under PerlRun, it also means that a greater degree of code
quality is required. In particular, global variables and other careless coding practices may cause
memory leaks, which, if run in cached mode, could eventually cause the server to run out of available
memory.

When writing Perl CGI code to run under mod_perl, and, in general, when writing any Perl code, it is
recommended that you place the following two lines at the top of each program file, following the #!

line:

use strict;
use warnings;

Code that runs without error messages, with these two lines in them, runs without problems under
Registry.

strict is not available prior to Perl 5, and warnings is not available prior to Perl
5.6. In versions of Perl earlier than 5.6, you can get behavior similar to
warnings by using the -w flag to Perl. This is accomplished by adding it to the
#! line of your Perl programs:

#!/usr/bin/perl -w

See Also

Programming Perl, Third Edition, by Larry Wall, Tom Christiansen, and Jon Orwant (O'Reilly)

[Team LiB]

http://www.example.com/cgi-bin/program.cgi
http://www.example.com/cgi-perl/program.cgi
http://www.example.com/perl/program.cgi

[Team LiB]

Chapter 12. Miscellaneous Topics
With its hundreds of configuration directives, and dozens upon dozens of modules providing additional
functionality, the Apache web server can be terrifically complex. So too can the questions about how
to use it. We have collected many of the most common questions we have seen and categorized
them, putting related topics into their own chapters when there were enough of them.

However, some of the things that come up don't fall readily into one of the categories we have
chosen, or perhaps are more fundamental and we've collected them into this catch-all chapter of
"things that don't belong anywhere else."

[Team LiB]

[Team LiB]

Recipe 12.1 Placing Directives Properly

Problem

You know what directive you need but aren't sure where to put it.

Solution

If you wish the scope of the directive to be global (i.e., you want it to affect all requests to the web
server), then it should be put in the main body of the configuration file or it should be put in the
section starting with the line <Directory /> and ending with </Directory>.

If you wish the directive to affect only a particular directory, it should be put in a <Directory> section
that specifies that directory. Be aware that directives specified in this manner also affect
subdirectories of the stated directory.

Likewise, if you wish the directive to affect a particular virtual host or a particular set of URLs, then
the directive should be put in a <VirtualHost> section, <Location> section, or perhaps a <Files>
section, referring to the particular scope in which you want the directive to apply.

In short, the answer to "Where should I put it?" is "Where do you want it to be in effect?"

Discussion

This question is perhaps the most frequently asked question in every Apache help venue. It is usually
answered in a way that is relevant to the specific situation but not in a general all-purpose kind of
way.

The situation is further complicated by the fact that the configuration file is frequently split over
several files, which are loaded via Include directives, and the (usually) mistaken impression that it
will make a difference whether a directive is put in one file or another.

Knowing exactly where to put a particular directive comes from understanding how Apache deals with
sections (such as <Directory> and <Location>). There is seldom one magic place that a directive
must be placed to make it work. However, there are usually a number of places where you can put a
directive and have it produce an undesired effect.

There are two main situations in which a directive, when added to your configuration file, will not
have the desired effect. These are when a directive is overridden by a directive appearing in the
same scope but later in the configuration, and when there is a directive in a more specific scope.

For the first of these two situations, it is important to understand that the Apache configuration file is
parsed from top to bottom. Files that are Include'ed are considered to appear in their entirety in the

location where the Include directive appears. Thus, if you have the same directive appearing twice
but with different values, the last one appearing will be the one that is actually in effect.

In the other situation, it's important to understand that, while directives in one directory apply to
subdirectories, a <Directory> section referring to a more specific or "deeper" directory will have
precedence over sections referring to "shallower" directories. For example, consider the following
configuration:

<Directory /www/docs>
 Options ExecCGI
</Directory>

<Directory /www/docs/mod>
 Options Includes
</Directory>

Files accessed from the directory /www/docs/mod/misc/ will have Options Includes in effect but will
not have Options ExecCGI in effect, because the more specific directory section is the configuration
that applies.

Finally, you must consider .htaccess files as well, which can override settings in the main server
configuration file, and cause situations that are confusing and difficult to be tracked down.

See Also

For .htaccess files:

http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html

For directories:

http://httpd.apache.org/docs/mod/core.html#directory
http://httpd.apache.org/docs/mod/core.html#directorymatch
http://httpd.apache.org/docs-2.0/mod/core.html#directory
http://httpd.apache.org/docs-2.0/mod/core.html#directorymatch

For location:

http://httpd.apache.org/docs/mod/core.html#location
http://httpd.apache.org/docs/mod/core.html#locationmatch
http://httpd.apache.org/docs-2.0/mod/core.html#location
http://httpd.apache.org/docs-2.0/mod/core.html#locationmatch

For Apache:

http://httpd.apache.org/docs/mod/core.html#files
http://httpd.apache.org/docs/mod/core.html#filesmatch
http://httpd.apache.org/docs-2.0/mod/core.html#files
http://httpd.apache.org/docs-2.0/mod/core.html#filesmatch

[Team LiB]

http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html
http://httpd.apache.org/docs/mod/core.html#directory
http://httpd.apache.org/docs/mod/core.html#directorymatch
http://httpd.apache.org/docs-2.0/mod/core.html#directory
http://httpd.apache.org/docs-2.0/mod/core.html#directorymatch
http://httpd.apache.org/docs/mod/core.html#location
http://httpd.apache.org/docs/mod/core.html#locationmatch
http://httpd.apache.org/docs-2.0/mod/core.html#location
http://httpd.apache.org/docs-2.0/mod/core.html#locationmatch
http://httpd.apache.org/docs/mod/core.html#files
http://httpd.apache.org/docs/mod/core.html#filesmatch
http://httpd.apache.org/docs-2.0/mod/core.html#files
http://httpd.apache.org/docs-2.0/mod/core.html#filesmatch

[Team LiB]

Recipe 12.2 Renaming .htaccess Files

Problem

You want to change the default name of per-directory configuration files to something else, such as
on a Windows system, because filenames beginning with a dot can cause problems.

Solution

Use the AccessFileName directive to specify the new name:

AccessFileName ht.access

Discussion

In addition to the server-wide configuration files, you can add directives to special files in individual
directories. These are called .htaccess (aitch tee access) files because that's the default name for
them.

However, the Unixish convention of filenames that begin with a dot doesn't play well on all platforms;
on Windows in particular it can be difficult to edit files with such names.

Apache allows you to change the name it will use when looking for these per-directory files with the
AccessFileName directive (which can only appear in the server-wide configuration files). You can use
any name that's valid on your platform.

If you use the AccessFileName directive, be sure to make any additional appropriate changes to your
configuration such as the <FilesMatch "^\.ht"> container that keeps the files from being fetchable
over the Web:

<FilesMatch "^ht\.">
 Order deny,allow
 Deny from all
</FilesMatch>

See Also

Recipe 11.7

http://httpd.apache.org/docs/howto/htaccess.html

http://httpd.apache.org/docs-2.0/howto/htaccess.html

http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html

[Team LiB]

[Team LiB]

Recipe 12.3 Generating Directory/Folder Listings

Problem

You want to see a directory listing when a directory is requested.

Solution

Turn on Options Indexes for the directory in question:

<Directory /www/htdocs/images>
 Options +Indexes
</Directory>

Discussion

When a URL maps to a directory or folder in the filesystem, Apache will respond to the request in one
of three ways:

If mod_dir is part of the server configuration, and the mapped directory is within the scope of a
DirectoryIndex directive, and the server can find one of the files identified in that directive, then
the file will be used to generate the response.

If mod_autoindex is part of the server configuration and the mapped directory is within the
scope of an Options directive that has enabled the Indexes keyword, then the server will
construct a directory listing at runtime and supply it as the response.

The server will return a 404 (Resource Not Found) status.

Enabling directory listings

The real keys to enabling the server's ability to automatically generate a listing of files in a directory
are the inclusion of mod_autoindex in the configuration and the Indexes keyword to the Options
directive. This can be done either as an absolute form, as in:

Options FollowSymLinks Indexes

or in a selective or relative form such as:

Options -ExecCGI +Indexes

Enabling directory listings should be done with caution. Because of the scope inheritance mechanism,
directories farther down the tree will also be affected; and because the server will apply the sequence
of rules listed at the beginning of this section in an effort to provide some sort of response, a single
missing file can result in the inadvertent exposure of your filesystem's contents.

Disabling directory indexing below an enabled directory

There are essentially two ways to work around this issue and ensure that the indexing applies only to
the single directory:

Add an Options -Indexes to .htaccess files in each subdirectory.

Add an Options -Indexes to a <Directory> container that matches all the subdirectories.

For example, to permit directory indexes for directory /usr/local/htdocs/archives but not any
subdirectories, use:

<Directory /usr/local/htdocs/archives>
 Options +Indexes
</Directory>

<Directory /usr/local/htdocs/archives/*>
 Options -Indexes
</Directory>

See Also

http://httpd.apache.org/docs/mod/core.html#options

http://httpd.apache.org/docs/mod/mod_dir.html

http://httpd.apache.org/docs/mod/mod_autoindex.html

[Team LiB]

http://httpd.apache.org/docs/mod/core.html#options
http://httpd.apache.org/docs/mod/mod_dir.html
http://httpd.apache.org/docs/mod/mod_autoindex.html

[Team LiB]

Recipe 12.4 Solving the "Trailing Slash" Problem

Problem

Loading a particular URL works with a trailing slash but does not work without it.

Solution

Make sure that ServerName is set correctly and that none of the Alias directives have a trailing slash.

Discussion

The "trailing slash" problem can be caused by one of two configuration problems: an incorrect or
missing value of ServerName, or an Alias with a trailing slash that doesn't work without it.

Incorrect ServerName

An incorrect or missing ServerName seems to be the most prevalent cause of the problem, and it
works something like this: when you request a URL such as http://example.com/something, where
something is the name of a directory, Apache actually sends a redirect to the client telling it to add
the trailing slash.

The way that it does this is to construct the URL using the value of ServerName and the requested
URL. If ServerName is not set correctly, then the resultant URL, which is sent to the client, will
generate an error on the client end when it can't find the resulting URL.

If, on the other hand, ServerName is not set at all, Apache will attempt to guess a reasonable value
when you start it up. This will often lead it to guess incorrectly, using values such as 127.0.0.1 or
localhost, which will not work for remote clients. Either way, the client will end up getting a URL that
it cannot retrieve.

Invalid Alias directive

In the second incarnation of this problem, a slightly malformed Alias directive may cause a URL with
a missing trailing slash to be an invalid URL entirely.

Consider, for example, the following directive:

Alias /example/ /home/www/example/

http://example.com/something

The Alias directive is very literal, and aliases URLs starting with /example/, but it does not alias URLs
starting with /example. Thus, the URL http://example.com/example/ will display the default
document from the directory /home/www/example/, while the URL http://example.com/example will
generate a "file not found" error message, with an error log entry that will look something like:

File does not exist: /usr/local/apache/htdocs/example

The solution to this is to create Alias directives without the trailing slash, so that they will work
whether or not the trailing slash is used:

Alias /example /home/www/example

See Also

http://httpd.apache.org/docs/misc/FAQ-E.html#set-servername

[Team LiB]

http://example.com/example/
http://example.com/example
http://httpd.apache.org/docs/misc/FAQ-E.html#set-servername

[Team LiB]

Recipe 12.5 Setting the Content-Type According to
Browser Capability

Problem

You want to set Content-Type headers differently for different browsers, which may render the

content incorrectly otherwise.

Solution

Check the Accept headers with RewriteCond and then set the Contend-Type header with a T flag:

RewriteCond "%{HTTP_ACCEPT}" "application/xhtml\+xml"
RewriteCond "%{HTTP_ACCEPT}" "!application/xhtml\+xml\s*;\s*q=0+(?:\.0*[^0-9])"
RewriteRule . - [T=application/xhtml+xml;charset=iso-8859-1]

Discussion

Different browsers tend to deal with content differently and sometimes need a nudge in the right
direction. In this example, for browsers that specify (using the HTTP_ACCEPT header) that they prefer
XHTML content, we want to send a Content-Type header specifying that the content we are sending

fulfills that requirement.

The T (Type) flag sets the Content-Type for the response.

See Also

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_rewrite.html

[Team LiB]

Recipe 12.6 Handling Missing Host: Header Fields

Problem

You want to treat differently all requests that are made without a Host: request header field.

Solution

SetEnvIf Host "^$" no_host=1
Order Allow,Deny
Allow from all
Deny from env=no_host
RewriteCond "%{HTTP_HOST}" "^$"
RewriteRule ".*" - [F,L]

Discussion

The Host: request header field is essential to correct handling of name-based virtual hosts (see

Recipe 4.1). If the client doesn't include it, the chances are very good that the request will be
directed to the wrong virtual host. All modern browsers automatically include this field, so only
custom-written or very old clients are likely to encounter this issue.

The solutions given will cause such requests to be rejected with a 403 Forbidden status; the exact
text of the error page can be tailored with an ErrorDocument 403 directive.

The first solution is slightly more efficient.

See Also

Recipe 4.1

[Team LiB]

[Team LiB]

Recipe 12.7 Alternate Default Document

Problem

You want to have some file other than index.html appear by default.

Solution

Use DirectoryIndex to specify the new name:

DirectoryIndex default.htm

Discussion

When a directory is requested-that is, a URL ending in a / rather than in a file name- mod_dir will
select the index document from that directory and serve that file in response. By default, the index
file is assumed to be index.html, but this can be configured to something else with the DirectoryIndex
directive.

Note also that DirectoryIndex can be set to several files, which are listed in order of precedence:

DirectoryIndex index.html index.htm index.php default.htm

Finally, note that you can also provide a relative URL if you want to load content from some other
directory, such as a CGI program:

DirectoryIndex /cgi-bin/index.pl

See Also

http://httpd.apache.org/docs/mod/mod_dir.html

[Team LiB]

http://httpd.apache.org/docs/mod/mod_dir.html

[Team LiB]

Recipe 12.8 Setting Up a Default "Favicon"

Problem

You want to define a default favorite icon, or "favicon," for your site, but allow individual sites or
users to override it.

Solution

Put your default favicon.ico file into the /icons/ subdirectory under your ServerRoot, and add the

following lines to your server configuration file in the scope where you want it to take effect (such as
inside a particular <VirtualHost> container or outside all of them):

AddType image/x-icon .ico
<Files favicon.ico>
 ErrorDocument 404 /icons/favicon.ico
</Files>

Discussion

favicon.ico files allow web sites to provide a small (16 x 16 pixels) image to clients for use in labeling
pages; for instance, the Mozilla browser will show the favicon in the location bar and in any page
tabs. These files are typically located in the site's DocumentRoot or in the same directory as the
pages that reference them.

What the lines in the solution do is trap any references to favicon.ico files that don't exist and supply
a default instead. An ErrorDocument is used instead of a RewriteRule, because we want the default to
be supplied only if the file isn't found where expected. A rewrite, unless carefully crafted, would force
the specified file to be used regardless of whether a more appropriate one existed.

See Also

Chapter 5

[Team LiB]

[Team LiB]

Appendix A. Using Regular Expressions in
Apache
A number of the Apache web server's configuration directives permit (or require!) the use of what are
called regular expressions. Regular expressions are used to determine if a string, such as a URL or a
user's name, matches a pattern.

There are numerous resources that cover regular expressions in excruciating detail, so this appendix
is not designed to be a tutorial for their use. Instead, it documents the specific features of regular
expressions used by Apache-what's available and what isn't. Even though there are quite a number
of regular expression packages, with differing feature sets, there are some commonalities among
them. The Perl language, for instance, has a particularly rich set of regular expressions but only a
small subset of them are available in the Apache regex library, which is different from Perl's.

Regular expressions, as mentioned, are a language that allows you to determine if a particular string
or variable looks like some pattern. For example, you may wish to determine if a particular string is
all uppercase, or if it contains at least 3 numbers, or perhaps if it contains the word "monkey" or
"Monkey." Regular expressions provide a vocabulary for talking about these sort of tests. Most
modern programming languages contain some variety of regular expression library, and they tend to
have a large number of things in common, although they may differ in small details.

Apache 1.3 uses a regular expression library called hsregex, so called because it was developed by
Henry Spencer. Note that this is the same regular expression library used in egrep, which is the same
thing as grep on many Unixish platforms.

Apache 2.0 uses a somewhat more full-featured regular expression library called Perl Compatible
Regular Expressions (PCRE), so called because it implements many of the features available in the
regular expression engine that comes with the Perl programming language. While this appendix does
not attempt to communicate all the differences between these two implementations, you should know
that hsregex is a subset of PCRE, as far as functionality goes, so everything you can do with regular
expressions in Apache 1.3, you can do in 2.0, but not necessarily the other way around.

To grossly simplify, regular expressions implement two kinds of characters. Some characters mean
exactly what they say (for example, a G appearing in a regular expression will usually mean the literal

character G), while some characters have special significance (for example, the period (.) will match
any character at all-a wildcard character). Regular expressions can be composed of these characters
to represent (almost) any desired pattern appearing in a string.

[Team LiB]

[Team LiB]

A.1 What Directives Use Regular Expressions?

Two main categories of Apache directives use regular expressions. Any directive with a name
containing the word Match, such as FileMatch, can be assumed to use regular expressions in its
arguments. And directives supplied by the module mod_rewrite use regular expressions to
accomplish their work.

For more about mod_rewrite, see Chapter 5.

SomethingMatch directives each implement the same functionality as their counterpart without the

Match. For example, the RedirectMatch directive does essentially the same thing as the Redirect
directive, except that the first argument, rather than being a literal string, is a regular expression,
which will be compared to the incoming request URL.

A.1.1 Regular Expression Basics

To get started in writing your own regular expressions, you'll need to know a few basic pieces of
vocabulary, such as shown in Table A-1 and Table A-2. These constitute the bare minimum that you
need to know. Although this will hardly qualify you as an expert, it will enable you to solve many of
the regex scenarios you will find yourself faced with.

Table A-1. A basic regex vocabulary

Character Meaning

. Matches any character. This is the wildcard character.

+
Matches one or more of the previous character. For example, M+ would match one or
more Ms; "+" would match one or more characters of any kind.

*

Matches zero or more of the previous character. For example, M* would match zero or
more Ms. This means that it will not only match M, MM, and MMM, but it will also match a
string that doesn't have any Ms in it at all.

?

Makes the previous character optional. For example, the regular expression monkeys?
will match a string containing either monkey or monkeys. Note that the ? applies only to

a single character in the absence of any enclosing parentheses.

^

Indicates that the following characters must appear at the beginning of the string being
tested. Thus, a regular expression of ̂ zim requires that the string being tested start
with the characters zim. ^ is referred to as an anchor, because it anchors the match to
the beginning of the string. In the context of a character class (see below), the ̂

character has another special meaning.

Character Meaning

$

Indicates that the characters to be matched must appear at the end of the string.
Thus, a regular expression of gif$ requires that the string being tested end with the
characters gif. $ is referred to as an anchor, because it anchors the match to the end

of the string.

\
Escapes the following character, meaning that it removes the "specialness" of the
character. For example, a pattern containing \. would match a literal . character, since
the \ removes the special meaning of the . character.

[]

Character class. Match one of the things contained in the square brackets. For
example, [abc] will match either an a, or b, or c. [abc]+, on the other hand, would
match a sequence of a's, b's, and c's, or any combination of them. Note that within a
character class, the ^ character doesn't have its normal anchor status but means any
character except those in the class. Thus, a character class of [^abc] will match any
character that is not an a, b, nor c.

A character class containing a - between two characters means an entire range of
characters. For example, the character class [a-q] means all of the lowercase letters
starting from a and ending with q. [a-zA-Z] would be all uppercase, and all lowercase

letters.

In addition to character classes that you form yourself, there are a number of special
predefined character classes to represent commonly used groups of characters. See
Table A-2 for a list of these predefined character classes.

()

Groups a set of characters together. This allows you to consider them as a single unit.
For example, you could apply a + or ? to an entire group of characters, rather than just
a single character. The expression (monkeys)?, for example, would make the entire
word monkeys an optional part of the match. In some regular expression libraries, the
() characters also capture the contents of the match so that they can be used later.

Table A-2. Predefined regular expression character classes

Character class Meaning

[[:alnum:]] Any alphanumeric character

[[:alpha:]] Any alphabetical character

[[:blank:]] A space or horizontal tab

[[:ctrl:]] A control character

[[:digit:]] A decimal digit

[[:graph:]] A nonspace, noncontrol character

[[:lower:]] A lowercase letter

[[:print:]] Same as graph, but also space and tab

[[:punct:]] A punctuation character

$

Indicates that the characters to be matched must appear at the end of the string.
Thus, a regular expression of gif$ requires that the string being tested end with the
characters gif. $ is referred to as an anchor, because it anchors the match to the end

of the string.

\
Escapes the following character, meaning that it removes the "specialness" of the
character. For example, a pattern containing \. would match a literal . character, since
the \ removes the special meaning of the . character.

[]

Character class. Match one of the things contained in the square brackets. For
example, [abc] will match either an a, or b, or c. [abc]+, on the other hand, would
match a sequence of a's, b's, and c's, or any combination of them. Note that within a
character class, the ^ character doesn't have its normal anchor status but means any
character except those in the class. Thus, a character class of [^abc] will match any
character that is not an a, b, nor c.

A character class containing a - between two characters means an entire range of
characters. For example, the character class [a-q] means all of the lowercase letters
starting from a and ending with q. [a-zA-Z] would be all uppercase, and all lowercase

letters.

In addition to character classes that you form yourself, there are a number of special
predefined character classes to represent commonly used groups of characters. See
Table A-2 for a list of these predefined character classes.

()

Groups a set of characters together. This allows you to consider them as a single unit.
For example, you could apply a + or ? to an entire group of characters, rather than just
a single character. The expression (monkeys)?, for example, would make the entire
word monkeys an optional part of the match. In some regular expression libraries, the
() characters also capture the contents of the match so that they can be used later.

Table A-2. Predefined regular expression character classes

Character class Meaning

[[:alnum:]] Any alphanumeric character

[[:alpha:]] Any alphabetical character

[[:blank:]] A space or horizontal tab

[[:ctrl:]] A control character

[[:digit:]] A decimal digit

[[:graph:]] A nonspace, noncontrol character

[[:lower:]] A lowercase letter

[[:print:]] Same as graph, but also space and tab

Character class Meaning

[[:punct:]] A punctuation character

[[:space:]] Any whitespace character, including newline and return

[[:upper:]] An uppercase letter

[[:xdigit:]] A valid hexadecimal digit

[[:<:]] The boundary between the left end of a word and nonword characters

[[:>:]] The boundary between the right end of a word and nonword characters

A.1.2 Examples

The previous concepts can best be illustrated by a few examples of regular expressions in action.

A.1.2.1 Redirecting several URLs

We'll start with something fairly simple. In this scenario, we're getting a new web server to handle
the customer support portion of our web site. So, all requests that previously went to
http://www.example.com/support/ will now go to the new server, http://support.example.com/.
Ordinarily, this could be accomplished with a simple Redirect statement, but it appears that our web
site developer has been careless and has been using mod_speling (see Recipe 5.10), so there are
links throughout the site to both http://www.example.com/support/ and to
http://www.example.com/Support/, which would actually require not one but two Redirect
statements.

So, instead of using the two Redirect statements, we will use the following one RedirectMatch
directive:

RedirectMatch ^/[sS]upport/ http://support.example.com/

The square brackets indicate a character class, causing this one statement to match requests with
either the upper- or lowercase s.

Note also the ^ on the front of the argument, causing this directive to apply only to URLs that start

with the specified pattern, rather than URLs that simply happen to contain that pattern somewhere in
them.

A.1.2.2 Catching common misspellings

While watching the logfiles, we see that a number of people are misspelling support as suport. This

is easily fixed by slightly altering our RedirectMatch directive:

RedirectMatch ^/[sS]upp?ort/ http://support.example.com/

The ? makes the second p optional, thus catching those requests that are misspelled and redirecting

them to the appropriate place anyway.

[[:punct:]] A punctuation character

[[:space:]] Any whitespace character, including newline and return

[[:upper:]] An uppercase letter

[[:xdigit:]] A valid hexadecimal digit

[[:<:]] The boundary between the left end of a word and nonword characters

[[:>:]] The boundary between the right end of a word and nonword characters

A.1.2 Examples

The previous concepts can best be illustrated by a few examples of regular expressions in action.

A.1.2.1 Redirecting several URLs

We'll start with something fairly simple. In this scenario, we're getting a new web server to handle
the customer support portion of our web site. So, all requests that previously went to
http://www.example.com/support/ will now go to the new server, http://support.example.com/.
Ordinarily, this could be accomplished with a simple Redirect statement, but it appears that our web
site developer has been careless and has been using mod_speling (see Recipe 5.10), so there are
links throughout the site to both http://www.example.com/support/ and to
http://www.example.com/Support/, which would actually require not one but two Redirect
statements.

So, instead of using the two Redirect statements, we will use the following one RedirectMatch
directive:

RedirectMatch ^/[sS]upport/ http://support.example.com/

The square brackets indicate a character class, causing this one statement to match requests with
either the upper- or lowercase s.

Note also the ^ on the front of the argument, causing this directive to apply only to URLs that start

with the specified pattern, rather than URLs that simply happen to contain that pattern somewhere in
them.

A.1.2.2 Catching common misspellings

While watching the logfiles, we see that a number of people are misspelling support as suport. This

is easily fixed by slightly altering our RedirectMatch directive:

RedirectMatch ^/[sS]upp?ort/ http://support.example.com/

The ? makes the second p optional, thus catching those requests that are misspelled and redirecting

them to the appropriate place anyway.

http://www.example.com/support/
http://support.example.com/
http://www.example.com/support/
http://www.example.com/Support/
http://www.example.com/support/
http://support.example.com/
http://www.example.com/support/
http://www.example.com/Support/

A.1.3 For More Information

By far the best resources for learning about regular expressions are Jeffrey Friedl's book Mastering
Regular Expressions and Tony Stubblebind's book Regular Expression Pocket Reference, both
published by O'Reilly. They cover regular expressions in many languages, as well as the theory
behind regular expressions in general.

For a free resource on regular expressions, you should see the Perl documentation on the topic. Just
type perldoc perlre on any system that has Perl installed. Or you can view this documentation

online at http://www.perldoc.com/perl5.6.1/pod/perlre.html. But be aware that there are subtle
(and not-so-subtle) differences between the regular expression vocabulary of Perl and that of
Apache.

[Team LiB]

http://www.perldoc.com/perl5.6.1/pod/perlre.html

[Team LiB]

Appendix B. Troubleshooting
The Apache web server is a very complex beast. In the vanilla package it includes over 30 functional
modules and more than 12 dozen configuration directives. This means that there are significant
opportunities for interactions that produce unexpected or undesirable results. This appendix covers
some of the more common issues that cause problems, as culled from various support forums.

[Team LiB]

[Team LiB]

B.1 Troubleshooting Methodology

B.1.1 In the Error Log

The Apache software does quite a reasonable job of reporting the details when it encounters
problems. The reports are recorded in the server's error log, which is usually stored in one of the
following places:

/usr/local/apache/logs/error_log

/var/log/apache/error_log

/var/log/httpd-error.log

/var/log/httpd/error_log

C:\Program Files\Apache Group\error.log

Where the error log is put depends upon how you installed and configured the server; the wealth of
possible locations in the list above is because popular prepackaged installation kits (from Red Hat,
SuSE, etc.) each has its own preferred location. Of course, the definitive location can be determined
by examining your httpd.conf file for the ErrorLog directive(s).

So the very first thing you should do when Apache appears to be misbehaving is see if the server has
any comments to make.

If the messages in the error log don't make the cause of the problem immediately clear, or if there
aren't any messages that seem to relate to the problem, it's a good idea to crank the logging level up
by changing the LogLevel setting in the httpd.conf file:

LogLevel debug

The debug setting enables all possible error messages and makes the server extremely verbose, so
it's a good idea to set it back to warning or error after it has helped you locate the cause of your

problem.

B.1.2 Characterize the Problem

When you're trying to diagnose a problem, here is a question you should ask yourself: "What is the
current behavior, and in what ways is it different from the expected or desired behavior?"

If you ask this question, a natural successive question is, "What could cause the current behavior?"

Between the answers to these two questions often lies a "Eureka!" moment. At the very least, they

narrow your area of research.

[Team LiB]

[Team LiB]

B.2 Debugging the Configuration

When diagnosing a problem by examining your server's configuration, be sure to examine all of the
files involved. In particular, look for files identified in Include directives, as well as those in the main
httpd.conf file and in .htaccess files.

If you're editing the server-wide configuration files, be sure to restart the server afterward to make
the changes take effect!

If editing a configuration or .htaccess file seems to have no effect, test that it's actually being
processed by putting a line of gibberish into the file and trying again.

If it seems that an .htaccess file is being ignored, even when you insert gibberish, it indicates that it's
within the scope of an AllowOverride None directive.

[Team LiB]

[Team LiB]

B.3 Debugging Premature End of Script Headers

When you're working with CGI scripts, certain messages can quickly become extremely familiar and
tiresome; typically the output in the browser window will be either a blank page or an Internal Server
Error page.

This message has several different possible causes. These include, but are not necessarily limited to:

The CGI script is either not emitting any output at all, or it is emitting content before the
required header lines, or it's neglecting to emit the obligatory blank line between the header and
the content.

The script encountered an error and emitted the error message instead of its expected output.

You're using suexec and one or more of the suexec constraints has been violated.

To test to see if the problem is an error condition or improper CGI response formatting, run the script
interactively from the command line to verify that it is emitting content in compliance with the CGI
rules.

If you're using suexec, check the suexec logfile to see if there are security constraints being violated.

You can tell if you're using suexec with the following command:

% httpd -l
Compiled-in modules:
 http_core.c
 mod_so.c
suexec: disabled; invalid wrapper /var/www/apache/bin/suexec

If you get a message that says that suexec is disabled, you can ignore that as a possible cause of the
script's execution problems.

If suexec is enabled, though, you should look at its logfile to get more details about the problem. You
can find the logfile with:

suexec -V
 -D DOC_ROOT="/usr/local/apache/htdocs"
 -D GID_MIN=100
 -D HTTPD_USER="www"
 -D LOG_EXEC="/usr/local/apache/logs/suexec.log"
 -D SAFE_PATH="/usr/local/bin:/usr/bin:/bin"
 -D UID_MIN=100
 -D USERDIR_SUFFIX="public_html"

The important line is -D LOG_EXEC="/usr/local/apache/logs/suexec.log"; it tells you exactly

where suexec is recording its errors.

You can find out more about CGI and suexec here:

The CGI specification, http://CGI-Spec.Golux.Com/

Recipe 8.12

The suexec manpage

[Team LiB]

http://CGI-Spec.Golux.Com/

[Team LiB]

B.4 Common Problems on Windows

Windows has its own distinct set of problem areas that don't apply to Unixish environments.

B.4.1 Cannot Determine Hostname

When trying to start Apache from a DOS window, you receive a message like "Cannot determine
hostname. Use ServerName directive to set it manually."

If you don't explicitly supply Apache with a name for your system, it tries to figure it out. This
message is the result of that process failing.

The cure for this is really quite simple: edit your conf\httpd.conf file, look for the string ServerName,

and make sure there's an uncommented directive such as:

ServerName localhost

or:

ServerName www.foo.com

in the file. Correct it if there is one there with wrong information, or add one if you don't already have
one.

Also, make sure that your Windows system has DNS enabled. See the TCP/IP setup component of
the Networking or Internet Options control panel.

After verifying that DNS is enabled and that you have a valid hostname in your ServerName
directive, try to start the server again.

B.4.2 Finding WS2_32.DLL on Windows

When trying to start Apache on Windows 95, a message like Unable To Locate WS2_32.DLL...
appears. This file is necessary for Apache to function properly.

Prior to Version 1.3.9, Apache for Windows used Winsock 1.1. Beginning with Version 1.3.9, Apache
began using Winsock 2 features (specifically, WSADuplicateSocket()). WS2_32.DLL implements the
Winsock 2 API. Winsock 2 ships with Windows NT 4.0 and Windows 98. Some of the earlier releases of
Windows 95 did not include Winsock 2.

To fix it, install Winsock 2, available at http://www.microsoft.com/windows95/downloads/. Then
restart your server, and the problem should be gone.

http://www.microsoft.com/windows95/downloads/

B.4.3 Fixing WSADuplicateSocket Errors

If, when trying to start Apache on Windows, it fails and the Apache error log contains this message:

[crit] (10045) The attempted operation is not supported for the type of object
referenced: Parent: WSADuplicateSocket failed for socket ###

it indicates that your system is using a firewall product that has inserted itself into the network
software but doesn't fully provide all the functionality of the native network calls.

To get rid of the problem, you need to reconfigure, disable, or remove the firewall product that is
running on the same box as the Apache server.

This problem has been seen when Apache is run on systems along with Virtual Private Networking
(VPN) clients such as Aventail Connect. Aventail Connect is a Layered Service Provider (LSP) that
inserts itself, as a shim, between the Winsock 2 API and Windows' native Winsock 2 implementation.
The Aventail Connect shim does not implement WSADuplicateSocket, which is the cause of the
failure.

The shim is not unloaded when Aventail Connect is shut down. Once observed, the problem persists
until the shim is either explicitly unloaded or the machine is rebooted.

Another potential solution (not tested) is to add apache.exe to the Aventail Connect exclusion list
(see below).

Apache is affected in a similar way by any firewall program that isn't correctly configured. Assure you
exclude your Apache server ports (usually port 80) from the list of ports to block. Refer to your
firewall program's documentation for the how-to.

Relevant information specific to Aventail Connect can be found at How to Add an Application to
Aventail Connect's Application Exclusion List at http://support.aventail.com/akb/article00586.html.

B.4.4 Handling System Error 1067

Sometimes, when starting Apache on Windows, you might get a message like "System error 1067
has occurred. The process terminated unexpectedly." This unfortunately uninformative message
means that the Web server was unable to start correctly as a service for one reason or another.

As with any error, the first step should be to check your Apache error log. If that doesn't reveal
anything useful, try checking the Windows application event log to find out why Apache won't start. If
that doesn't help, try:

D:\>c:
C:\>cd "\Program Files\Apache Group\Apache"
C:\Program Files\Apache Group\Apache>apache

(If you don't get the prompt back, hit Ctrl-C to cause Apache to exit.)

This will run Apache interactively rather than as a service; any error messages should show up on
your screen rather than being concealed behind a System Error 1067 alert box.

http://support.aventail.com/akb/article00586.html

[Team LiB]

[Team LiB]

B.5 Fixing Build-Time Error Messages

B.5.1 __inet Symbols

If you have installed BIND-8, then this is normally due to a conflict between your include files and
your libraries. BIND-8 installs its include files and libraries in /usr/local/include/ and /usr/local/lib/,
while the resolver that comes with your system is probably installed in /usr/include/ and /usr/lib/.

If your system uses the header files in /usr/local/include/ before those in /usr/include/ but you do not
use the new resolver library, then the two versions will conflict. To resolve this, you can either make
sure you use the include files and libraries that came with your system, or make sure to use the new
include files and libraries.

If you're using Apache 2.0 or later, or Apache 1.3 with the APACI build script, you can make changes

to the library search lists by defining them on the ./configure command line:

% LIBS=-lbind ./configure ...

If you're using Apache 1.3 or earlier and controlling the build process by editing the Configuration file
directly, just add -lbind to the EXTRA_LDFLAGS line in the file.

After making the appropriate change to your build configuration process, Apache should build with
the correct library.

Apache Versions 1.2 and earlier use EXTRA_LFLAGS in the Configuration file
instead.

As of BIND 8.1.1, the bind libraries and files are installed under /usr/local/bind by default, so you
should not run into this problem. Should you want to use the bind resolvers, you'll have to add the
following to the respective lines:

For Apache 1.3 with APACI, or 2.0 and later:
% CFLAGS=-I/usr/local/bin/include \
> LDFLAGS=/usr/local/bind/lib LIBS=-lbind \

> ./configure ...

For Apache 1.2 or 1.3 with direct editing of Configuration, add/change the following lines in the
file:
EXTRA_CFLAGS=-I/usr/local/bind/include
EXTRA_LDFLAGS=-L/usr/local/bind/lib
EXTRA_LIBS=-lbind

[Team LiB]

[Team LiB]

B.6 Getting Server-Side Includes to Work

The solution is to make sure that Options Includes is turned on and that either XBitHack is turned On,
or that you have the appropriate AddHandler directives set on the file type that you are using.

As discussed in Recipe 8.8, there are a number of ways to enable SSI. If the unparsed SSI directives
are appearing in the HTML when the page is loaded, this is a clear indication that SSI execution is not
enabled for the document in question.

If the server has difficulty parsing an SSI directive, it will substitute the phrases "An error occurred
while processing this directive" in its place in the response. If this happens, the cause of the problem
should be listed in the server's error log. See also Recipe 8.12.

[Team LiB]

[Team LiB]

B.7 Debugging Rewrites That Result in "Not Found" Errors

If your RewriteRule directives keep resulting in 404 Not Found error pages, add the PT (PassThrough) flag to the RewriteRule

line. Without this flag, Apache won't process a lot of other factors that might apply, such as Alias settings.

You can verify that this is the cause of your problem by cranking the mod_rewrite logging level up to 9 and seeing that the
entries relating to the RewriteRule mention something about prefixes with document_root:

RewriteLog logs/rewrite-log
RewriteLogLevel 9

% tail logs/rewrite_log

ip-address - - [date] [reqid] (2) prefixed with document_root to /usr/local/apache/htdocs/robots.text

ip-address - - [date] [reqid] (1) go-ahead with /usr/local/apache/htdocs/robots.text [OK]

Don't forget to turn off the RewriteLog directive, or possibly just turn down the logging level, after
you've done your checking! Otherwise your disk space may disappear like the snows of yesteryear.

Without the PT flag, mod_rewrite assumes that any rewriting it does will be the last URL manipulation the server needs to do

for the request. Since mod_rewrite directives are handled very early in request processing, this can mean that Alias ,
ScriptAlias , and other URL manipulations may not get executed. Specifying the flag tells mod_rewrite to not short-circuit
processing, but let it continue as usual.

[Team LiB]

[Team LiB]

B.8 .htaccess Files Having No Effect

Make sure that AllowOverride is set to an appropriate value. Then, to make sure that the .htaccess
file is being parsed at all, put the following line in the file and ensure that it causes a server error
page to show up in your browser:

Garbage Goes Here

.htaccess files override the settings in the main server configuration file. Because this is frequently an
undesired thing, .htaccess files are frequently disabled, which will cause your .htaccess file to be
ignored.

.htaccess files are enabled using the AllowOverride directive, which lists categories of directives that
may appear in an .htaccess file. For example, if you wish to put authentication-related directives in
an .htaccess file, you will need to put the following line in the main server configuration file:

AllowOverride AuthConfig

AllowOverride All permits any directive to be put in the .htaccess file, while the directive
AllowOverride None means, "Please ignore my .htaccess files."

Thus, the most common cause of an .htaccess file being ignored is simply that your configuration file
tells Apache to ignore it.

If you put garbage in your .htaccess file, this should generate a Server Error message in the browser,
which will verify that Apache is indeed looking at the contents of your file. However, if such a
message is not displayed, this is a sure sign that your .htaccess file is being completely ignored.

[Team LiB]

[Team LiB]

B.9 Address Already in Use

If, when attempting to start your Apache server, you get the following error message:

[Thu May 15 01:23:40 2003] [crit] (98)Address already in use: make_sock: could not
bind to port 80

One of three things is happening:

You are attempting to start the server as a nonroot user. Become the root user and try again.

There is already some process running (perhaps another Apache server) using port 80. Run
netstat , or perhaps look at the process list and kill any process that seems to fill this role.

You have more than one Listen directive in your configuration file pointing to the same port
number. Find the offending duplicate directive and remove it.

In the case of the first condition, you will need to become the root user in order to start Apache. By
long tradition, only the root user may bind to any port lower than 1025. Since Apache typically runs
on port 80, this requires root privileges.

The second condition can be a little trickier. Sometimes a child process will refuse to die and will
remain running after Apache has been shut down. There are numerous reasons this might happen.
Most of the time, you can kill this process forcibly using kill or kill -9 while logged in as root. As long
as this process is running and has the port occupied, you will be unable to start anything else wanting
to bind to that same port.

In the case of the third condition, the second Listen directive attempts to bind to port 80, which has
already been taken by the first Listen directive. Simply removing one of the Listen directives will clear
up this problem.

[Team LiB]

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Apache Cookbook is a moose. The moose roams the forests of North
America, Europe, and Russia. It's the largest of the deer family, and the largest moose of all, Alces
alces gigas, is found throughout Alaska. This particular moose, in fact, is so ubiquitous that it's played
an important role in the development of the state-though the relationship between moose and men is
often adversarial.

Moose have a high reproductive potential and can quickly fill a range to capacity. And in Alaska, the
removal of mature timber through logging and fire has benefited them by providing new stands of
young timber-high-quality moose food. Moose get to be a pain when they eat crops, stand on
airfields, wander the city streets, and collide with cars and trains.

But in general, these animals are good for the state's economy. Moose are an essential part of the
Alaskan landscape, providing tourist photo opportunities when they feed along the highway. Residents
and out-of-state hunters harvest 6,000 to 8,000 moose annually-approximately 3.5 million pounds of
meat. The future for these animals in Alaska is reasonably bright because humans are learning how
to manage moose habitat with wildlife and how to mitigate factors that affect moose populations,
such as hunting and predation by wolves and bears.

Sarah Sherman was the production editor and copyeditor, and Marlowe Shaeffer was the proofreader
for Apache Cookbook. Matt Hutchinson and Claire Cloutier provided quality control. Julie Hawks wrote
the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is an original engraving from The Illustrated Natural History: Mammalia. Emma Colby produced
the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9
and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon
was written by Ed Stephenson.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

#apache IRC channel

#exec SSI directive

#include directive

#include virtual, URIs passed to

%a format effector

%A format effector

%d format effector

%h format effector

%i format effector

%m format effector

%M format effector

%v logging format

%Y format effector

<Directory proxy:*> section

<Directory> directive 2nd

<Directory> section

<Files> section

 directives and

<FilesMatch> section 2nd

<Location> section

 directives and

<LocationMatch> section

<Proxy> directive

<VirtualHost> section

 directives 2nd

 displaying same content on several addresses

 log

 name-based virtual host

.cgi files

.gif files

.htaccess files [See also configuration]2nd

 having no effect

 minimizing performance impact

 renaming

 restricting access

 Satisfy Any directive

 WebDAV

.htpasswd files

.shtml files

default <Virtual Host> keyword

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

ab (Apache bench)

Accept header field

access

 denying to unreferred requests

 restricted documents

AccessFileName directive

account information

Action directive

activity logging 2nd

AddCharset directive

AddFilter directive

AddHandler directive 2nd 3rd 4th

 identifying extensions

AddLanguage directive

addModule directive

address already in use error

address-based virtual hosts

 default

 name-based and

 setting up

AddType directive

alert log level

Alias directive

 invalid

 trailing slash

aliasing

 several URLs with single directive

AliasMatch directive

Allow directive

Allow from all directive

Allow from directive

AllowOverride directive

Andrews, Bryan

Apache

 building from sources

 modules

 mod_auth

 mod_auth_digest

 mod_auth_mysql

 mod_authn_dbi

 mod_autoindex 2nd

 mod_cache

 mod_cgi

 mod_dav [See mod_dav module]

 mod_dir 2nd

 mod_ext_filter

 mod_file_cache

 mod_log_config 2nd

 mod_log_sql

 mod_logio

 mod_mime

 mod_mmap_static 2nd

 mod_perl [See mod_perl modules]

 mod_php [See mod_php module]

 mod_proxy [See mod_proxy module]

 mod_rewrite [See mod_rewrite module]

 mod_snake [See mod_snake module]

 mod_speling

 mod_ssl [See mod_ssl module]

 mod_status module

 mod_unique_id

 mod_vhost_alias [See mod_vhost_alias module]

 online tutorials

 parsing configuration file

 performance [See performance]

 running as service on Windows

 sources of information

 sources, downloading [See downloading Apache sources]

 starting and stopping

 uninstalling

 version 1.3, required modules

 version 2.0, required modules

 web site

Apache Module Registry

Apache Today web site

Apache-SSL module

Apache::AuthExpire mod_perl handler

Apache::Constants

Apache::Cookbook::Example

Apache::Htpasswd::Perishable CPAN module

Apache::Perldoc module

Apache::PerlRun

Apache::Registry 2nd

apachectl script

 options

ApacheToolbox

 installing with

 versions compatability

AuthDigestFile directive

authentication

 accessing username

 based on system file ownership

 Basic versus Digest

 client certificates

 Digest

 MySQL database

 passwords

 preventing brute-force password attacks

 usernames and passwords

 weak and strong 2nd 3rd

authorization 2nd

AuthType directive

Aventail Connect

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

bandwidth, stealing

Basic versus Digest authentication methods

benchmarking

bin directory 2nd

BIND-8 and build-time error messages

books (Apache web server)

browser software, logging

browsers

 Content-Type headers

 credentials and

building Apache from sources

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

CA, importing

CA.pl script

CACertificateFile directive

CacheFile directive

CacheNegotiatedDocs directive

CacheRoot directive

caching files

cadaver

cannot determine host name error (Windows)

case-insensitive URLs

certificate signing request

certificates

 signing

 SSL

 authentication

 keys

CGI programs

 arguments, rewriting path information

 directories

 creating one for each user

 mapping several URLs to same

 not-script aliased

 only CGI scripts

 identifying by extension

 making content filters

 outputting to HTML files

 reading from parameters

 redirecting document requests to

 running as different user

 testing

 Windows

CGI.pm module

CGI::Carp

cgic C library

CheckSpelling directive

ClearModuleList directive

combined log format 2nd

common log format 2nd

conf directory 2nd

config SSI directive

configuration [See also .htaccess file]

 debugging

 directives

 file, parsing process

content

 creating URL for existing

 dynamic [See dynamic content]

 filters

 negotiation, disabling

 serving out of directory rather than DocumentRoot

Content-length field

Content-Type header field, setting according to browser

Cookie header field

cookies

 logging

 Netscape proposal

CPAN shell

credentials

 browsers and

 embedded in URLs

 single use

crit log level

CustomLog directive 2nd

 logging proxy requests

 logging server IP addresses

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

dates, last modified

DAVLockDB location

debug log level

debugging [See troubleshooting]

DefaultType directive

Deny directive 2nd

Deny from all directive

Deny from directive

Digest authentication

 versus Basic

directives

 #exec SSI directive

 #include directive

 <Directory> 2nd

 <FilesMatch>

 <Proxy>

 <VirtualHost> log

 <VirtualHost> section [See <VirtualHost> section directive]

 AccessFileName

 Action

 AddCharset

 AddFilter

 AddHandler [See AddHandler]

 AddLanguage

 addModule

 AddType

 Alias [See Alias directive]

 aliasing several URLs

 AliasMatch

 Allow

 Allow from

 Allow from all

 AllowOverride

 AuthDigestFile

 AuthType

 CACertificateFile

 CacheFile

 CacheNegotiatedDocs

 CacheRoot

 CheckSpelling

 ClearModuleList

 config SSI

 configuration

 CustomLog [See CustomLog directive]

 DefaultType

 Deny 2nd

 Deny from

 Deny from all

 ErrorDocument [See ErrorDocument directive]

 ErrorDocument 403

 ErrorDocument 404

 ErrorLog [See ErrorLog directive]

 FollowSymLinks

 in <Directory proxy:*> section

 Include 2nd

 keepalive-related

 Limit

 LimitExcept

 LoadModule

 LogFormat [See LogFormat directive]

 LogLevel [See LogLevel directive]

 MaxClients

 MaxSpareServers 2nd

 MinSpareServers

 MinSpareThreads

 MMapFile 2nd

 NameVirtualHost [See NameVirtualHost directive]

 not having a direct effect

 NumServers

 Options [See Options directive]

 Order

 outside any <VirtualHost>

 PerlHandler

 placing properly

 ProxyBlock 2nd

 ProxyPass 2nd 3rd

 ProxyPassReverse 2nd

 Redirect [See Redirect directive]

 RedirectMatch 2nd 3rd

 regular expressions and

 Require file-owner directive

 RewriteCond [See RewriteCond directive]

 RewriteRule [See RewriteRule directive]

 Satisfy [See Satisfy directive]

 scope

 ScriptAlias 2nd

 ScriptAliasMatch

 ScriptInterpreterSource 2nd

 sections and

 ServerAlias

 ServerName

 ServerRoot

 SetEnv

 SetEnvIf

 SetOutputFilter

 SSI [See SSI directive]

 SSI #include

 SSI include

 SSLCertificateFile

 SSLRequireSSL

 ThreadsPerChild

 User [See User directive]

 UserDir

 various formats including HTTP status codes

 VirtualDocumentRoot

 VirtualScriptAlias

directories

 CGI (see CGI programs

 directories)

 listings

 caching

 disabling indexing

 enabling

 generating

 ScriptAlias'ed

 setting file permissions

 turning into hostnames

DirectoryIndex directive 2nd 3rd

DNS

 lookups

 round-robin

 server, name-based virtual hosts and

document

 directories 2nd

 names, turning into argument

downloading Apache sources

dynamic content 2nd [See also CGI programs]

 giving its own dedicated server

 HTML files

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

email notification, receiving when error occurs

emerg log level

encryption technology, distributing

end of script headers, debugging

error

 conditions, notification

 documents in multiple languages

 handling

 log level

 logging

 logs

 messages

 customized

 fixing build-time

 Premature end of script headers

 pages

 404 Not Found

 IE displaying its own

ErrorDocument

 as a dynamic page

ErrorDocument 403 directive

ErrorDocument 404 directive

 setting to a list of available sites on server

ErrorDocument directive 2nd 3rd

 notification on error conditions

ErrorLog directive

 syslog and

 virtual hosts and

extensions

 protecting all files except for certain

 using to identify CGI scripts

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

favicon

files

 access outside web root

 caching

 permissions

 protecting all except for certain extensions

 protecting server

filtering proxied content

folder listings

 disabling indexing

 enabling

 generating

FollowSymLinks directive

footers, including in HTML files

FTP port

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

GDBM files

global scope

gone redirection

Group directive 2nd

 protecting server files

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

header fields

 Accept

 Cookie

 Host:

 logging arbitrary request

 logging arbitrary response

 Set-Cookie

 Status CGI response

 User-agent

headers

 debugging premature end of script

 including in HTML files

home page, setting something other than index.html as

Host field, handling missing

Host: header fields

HostNameLookups directive 2nd

hostnames

 logging instead of IP addresses

 turning directories into

hsregex

htdigest utility

HTML files

 dynamic content

 including CGI output

 including headers and footers

htpasswd utility

HTTP

 (secure) module, installing

 access control

 port

HTTP status codes

 301

 302

 303

 400 series status code

 401 (unauthorized) code

 403 Forbidden error 2nd 3rd

 Deny directive and

 open mail relay, preventing

 404 Not Found error 2nd 3rd 4th

 sent as 403 Forbidden instead

 SSI directives and

 using ErrorDocument to catch

 405 status code (Method Not Allowed)

 410

 500 series status code

 list of

 various directive formats and

HTTPS port

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

icons directory

IdentityCheck On directive

IE error pages

images

 files

 logging requests

 restricting from being used off-site

Include directive 2nd

include directory 2nd

index.html

 language variants

 setting other file as default

info log level

installing Apache

 ApacheToolbox [See ApacheToolbox, installing with]

 prepackaged kits

 Red Hat Linux

 Windows [See Windows, installing Apache]

Internal Server Error page

Internet.Com

IP addresses [See also address-based vitual hosts]

 logging hostnames instead of

 logging proxied

 logging server

IP-based virtual hosts [See address-based virtual hosts]

IRC channel, #apache

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

keepalive-related directives

key, private

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

LDAP directories

libexec directory 2nd

Limit directive

LimitExcept directive

load

 distributing evenly

 sharing between servers

LoadModule directive

localhost address

lock databases on NFS filesystem

logfiles [See also logging]

 error logs

 maintaining separate logs for each virtual host

 misspellings

 rotating

 first of month

 rotatelogs program

 splitting up

LogFormat directive

 logging server IP addresses

 splitting up a logfile

logging 2nd [See also logfiles]

 activity [See activity logging]

 arbitrary request header fields

 arbitrary response header fields

 browser software

 combined log format

 common log format

 cookies

 errors

 errors for virtual hosts to multiple files

 hostnames instead of IP addresses

 HTTP status codes

 image requests

 MAC (hardware) address

 more detailed errors

 more details in entries

 MySQL database activity

 POST contents

 proxied IP address

 proxy requests

 referring page

 requests by day or hour

 server IP address

 syslog

 types of data

 user directories

 vistual hosts

LogLevel directive

 documentation

LogLevel, default value

logresolve application

logs directory 2nd

loopback address

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

MAC (hardware) address, logging

Mail::Sendmail

Mail::Sendmail CPAN module

mailing lists

man directory 2nd

MaxClients directive

MaxSpareServers directive

MaxSpareThreads directive

memory, determining how much you need

methods, limiting by user

Microsoft Software Installer (MSI) package

MIME type

MinSpareServers directive

MinSpareThreads directive

misspellings in log files

MMapFile directive 2nd

mod_auth module

mod_auth_digest module

mod_auth_mysql module

mod_authn_dbi module

mod_autoindex module 2nd

mod_cache module

mod_cgi module

mod_dav module

 Unix

 enabling

 installing

 Windows

 enabling

 installing

mod_dir module 2nd

mod_ext_filter module

mod_file_cache module

mod_log_config module 2nd

mod_log_sql module

mod_logio module

mod_mime module

mod_mmap_static module 2nd

mod_perl modules

 Apache::AuthExpire

 Apache::Constants

 Apache::Cookbook::Example

 Apache::Htpasswd::Perishable

 Apache::Perldoc

 Apache::PerlRun

 Apache::Registry 2nd

 CGI::Carp

 dynamic content

 handler

 modules

 writing

 installing on Unix

 Mail::Sendmail

 ModPerl::PerlRun

 ModPerl::Registry

 proxying content to another server

 speeding up Perl CGI programs with

 Sys::Syslog

 using instead of mod_cgi

mod_php module

 installing on Unix

 installing on Windows

mod_proxy module 2nd

 proxy directory

mod_rewrite module 2nd

 range requests

 using to map to directory based on hostname

mod_snake module

 installing

mod_speling module

mod_ssl module 2nd 3rd

 installing

mod_status module

 server-status handler 2nd

mod_unique_id module

mod_vhost_alias module

 variables

ModPerl::PerlRun

ModPerl::Registry

modules [See also Apache, modules]

 running minimal set

 Apache 1.3

 Apache 2.0

 support status

 third-party [See third-party modules]

MPMs

 netware

 perchild

 prefork

 worker

MPMs, threaded

MultiViews method

MySQL

 database for authenticating users

 databases

 logging database activity

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

name-based virtual hosts

 address-based and

 default

 DNS server and

 setting up

 SSL and

NameVirtualHost directive 2nd

 name-based virtual host

Netscape cookie proposal

netware MPM

NFS filesystem, lock databases on

non-script aliased directories

notice log level

NumServers directive

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

online tutorials (Apache)

open mail relay

Options directive 2nd

 +ExecCGI argument and

 -FollowSymLinks

 SymlinksIfOwnerMatch

Order directive

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

parsing Apache configuration file

partial downloads

passwords

 authentication 2nd

 expiring

 managing .htpasswd files

 password file for Digest authentication

 preventing brute-force attacks

 single use

PCRE (Perl Compatible Regular Expressions)

perchild MPM

performance

 minimizing impact of .htaccess files

Perl CGI programs, speeding up

Perl Compatible Regular Expressions (PCRE)

PerlHandler directive

PerlRun mode

permanent redirection

PHP

 dynamic content

 module installation on Windows

 script handling, enabling

 seeing syntax-enhanced source without setting up symbolic links

 verifying installation

port-based virtual hosting

ports

POST logging

prefork MPM

private key, generating

process creation, optimizing

proxies [See also proxy servers]2nd

 filtering proxied content

 logging IP address

 logging requests

 restricting access to URLs

proxy directory 2nd

proxy servers

 authorization

 configuring caching

 content filter, using as

 forwarding requests to

 preventing being used as open relay

 securing

ProxyBlock directive 2nd

ProxyPass directive 2nd 3rd

ProxyPassReverse directive 2nd

Python module, installing

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

RAM, determining how much you need

range requests

Red Hat Linux

 installing Apache

 up2date tool

Redirect directive 2nd

 preserving path information

 URL served as HTTPS

redirecting 2nd

 all requests to single host

 document requests to CGI script

 several URLs to same destination

 to secure area

RedirectMatch directive 2nd 3rd

Registry mode

regular expressions

 character classes

 directives

 examples

 library

 resources

 vocabulary

releases, tags used to label versions

Require file-owner directive

response status, changing

restricted documents

restrictions, removing selectively

RewriteCond directive 2nd

 logging proxy requests

 NC (No Case) flag

 wrappers

RewriteRule directive 2nd 3rd 4th 5th

 [PT] flag

 404 Not Found error pages and

 logging proxy requests

 multiple

rewriting

 based on query string

RFC 2109

RFC 2165

RFC 2616

rotate-log-monthly.pl script

rotatelogs program

round robin, DNS

RSA key (genrsa)

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Satisfy directive 2nd

 requiring both weak and strong authentication

ScriptAlias directive

ScriptAlias directives

ScriptAlias'ed directories

ScriptAliasMatch directive

ScriptInterpreterSource directive 2nd

sections and directives

secure HTTP module, installing

Secure Socket Layers [See SSL]

security [See also authentication; authorization] 2nd

 relaxing in subdirectories

 removing restrictions selectively

seeother redirection

server-side includes

server-status handler

ServerAlias directive

ServerName

 directives

 incorrect or missing

ServerRoot directive

servers

 activity

 protecting files

 proxy [See proxy servers]

Set-Cookie header field

SetEnv directive

SetEnvIf directive

SetHandler perl-script directive

SetOutputFilter directive

size restrictions on documents

slash, trailing

SMTP relay

Spencer, Henry

split-logfile program 2nd

Squid proxy server

SSI #include directive

SSI directive 2nd 3rd 4th

 parsing for

SSI include directive

SSIs, enabling

SSL (Secure Socket Layers)

 authenticating with client certificates

 generating certificates

 keys

 installing

 name-based virtual hosts

 redirecting to

 serving a portion of site via

 support

SSLCertificateFile directive

SSLRequireSSL directive

starting and stopping Apache

Status CGI response header field

status for a response, changing

stealing bandwidth

Stein, Lincoln

strict setting in Perl

subdirectories, relaxing security in

suexec

 disabled message

symbolic links

 seeing syntax-enhanced source without setting up

symbolic links, optimizing

Sys::Syslog

syslog, logging

system error 1067

system file ownership

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

temporary redirection 2nd

third-party modules, installing

thread creation, tuning

ThreadsPerChild directive

trailing slash

troubleshooting

 .htaccess files

 address already in use error

 cannot determine host name error

 premature end of script headers

 server-side includes

 system error 1067

 Windows

 WSADuplicateSocket errors

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

unintalling Apache

unreferred requests, denying access to

up2date tool (Red Hat Linux)

upload documents, limiting

URIs passed to #include virtual

URLs

 accessing credentials embedded in

 aliasing with single directive

 case-insensitive

 creating for existing content

 giving each user own

 logging referring page

 mapping

 several to same CGI directory

 to directories

 redirecting [See redirecting]

 replacing text in

 restricting proxy access

 rewriting path information in CGI arguments

User directive 2nd

 protecting server files

user directories, logging

User-agent field

UserDir directive

usernames

 authentication

users@httpd.apache.org mailing list

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

versions, tags used to label

virtual hosts

 address-based [See address-based virtual hosts]

 displaying same content on several addresses

 hosting multiple with same configuration

 using rewrite rules

 logging

 logging errors to multiple files

 maintaining separate logfiles

 name-based [See name-based virtual hosts]

 port-based

 splitting up a logfile

Virtual Private Networking (VPN)

VirtualDocumentRoot directive

VirtualScriptAlias directive

VPN (Virtual Private Networking)

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

warn log level

warnings setting in Perl

watermark.cgi file

WebDAV

 enabling server for

 enabling without making files writable

 securing

 tools

 Unix capabilities

 Windows capabilities

Windows

 cannot determine host name error

 CGI programs

 installing Apache

 first time

 module support status

 PHP module installation

 running Apache as service

 troubleshooting

Winsock 2

worker MPM

wrappers

WS2_32.DLL

WSADuplicateSocket errors

[Team LiB]

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

XBitHack directive

[Team LiB]

	Main Page
	Table of content
	Copyright
	Preface
	What's in This Book
	Platform Notes
	Other Books
	Other Sources
	How This Book Is Organized
	Conventions Used in This Book
	We'd Like to Hear from You
	Acknowledgments

	Chapter 1. Installation
	Recipe 1.1 Installing from Red Hat Linux's Packages
	Recipe 1.2 Installing Apache on Windows
	Recipe 1.3 Downloading the Apache Sources
	Recipe 1.4 Building Apache from the Sources
	Recipe 1.5 Installing with ApacheToolbox
	Recipe 1.6 Starting, Stopping, and Restarting Apache
	Recipe 1.7 Uninstalling Apache

	Chapter 2. Adding Common Modules
	Recipe 2.1 Installing a Generic Third-Party Module
	Recipe 2.2 Installing mod_dav on a Unixish System
	Recipe 2.3 Installing mod_dav on Windows
	Recipe 2.4 Installing mod_perl on a Unixish System
	Recipe 2.5 Installing mod_php on a Unixish System
	Recipe 2.6 Installing mod_php on Windows
	Recipe 2.7 Installing the mod_snake Python Module
	Recipe 2.8 Installing mod_ssl

	Chapter 3. Logging
	Recipe 3.1 Getting More Details in Your Log Entries
	Recipe 3.2 Getting More Detailed Errors
	Recipe 3.3 Logging POST Contents
	Recipe 3.4 Logging a Proxied Client's IP Address
	Recipe 3.5 Logging Client MAC Addresses
	Recipe 3.6 Logging Cookies
	Recipe 3.7 Not Logging Image Requests from Local Pages
	Recipe 3.8 Logging Requests by Day or Hour
	Recipe 3.9 Rotating Logs on the First of the Month
	Recipe 3.10 Logging Hostnames Instead of IP Addresses
	Recipe 3.11 Maintaining Separate Logs for Each Virtual Host
	Recipe 3.12 Logging Proxy Requests
	Recipe 3.13 Logging Errors for Virtual Hosts to Multiple Files
	Recipe 3.14 Logging Server IP Addresses
	Recipe 3.15 Logging the Referring Page
	Recipe 3.16 Logging the Name of the Browser Software
	Recipe 3.17 Logging Arbitrary Request Header Fields
	Recipe 3.18 Logging Arbitrary Response Header Fields
	Recipe 3.19 Logging Activity to a MySQL Database
	Recipe 3.20 Logging to syslog
	Recipe 3.21 Logging User Directories

	Chapter 4. Virtual Hosts
	Recipe 4.1 Setting Up Name-Based Virtual Hosts
	Recipe 4.2 Designating One Name-Based Virtual Host as the Default
	Recipe 4.3 Setting Up Address-Based Virtual Hosts
	Recipe 4.4 Creating a Default Address-Based Virtual Host
	Recipe 4.5 Mixing Address-Based and Name-Based Virtual Hosts
	Recipe 4.6 Mass Virtual Hosting with mod_vhost_alias
	Recipe 4.7 Mass Virtual Hosting Using Rewrite Rules
	Recipe 4.8 SSL and Name-Based Virtual Hosts
	Recipe 4.9 Logging for Each Virtual Host
	Recipe 4.10 Splitting Up a LogFile
	Recipe 4.11 Port-Based Virtual Hosts
	Recipe 4.12 Displaying the Same Content on Several Addresses

	Chapter 5. Aliases, Redirecting, and Rewriting
	Recipe 5.1 Showing Highlighted PHP Source Without Symlinking
	Recipe 5.2 Mapping a URL to a Directory
	Recipe 5.3 Creating a New URL for Existing Content
	Recipe 5.4 Giving Users Their Own URL
	Recipe 5.5 Aliasing Several URLs with a Single Directive
	Recipe 5.6 Mapping Several URLs to the Same CGI Directory
	Recipe 5.7 Creating a CGI Directory for Each User
	Recipe 5.8 Redirecting to Another Location
	Recipe 5.9 Redirecting Several URLs to the Same Destination
	Recipe 5.10 Permitting Case-Insensitive URLs
	Recipe 5.11 Replacing Text in Requested URLs
	Recipe 5.12 Rewriting Path Information to CGI Arguments
	Recipe 5.13 Denying Access to Unreferred Requests
	Recipe 5.14 Rewriting Based on the Query String
	Recipe 5.15 Redirecting All—or Part—of Your Server to SSL
	Recipe 5.16 Turning Directories into Hostnames
	Recipe 5.17 Redirecting All Requests to a Single Host
	Recipe 5.18 Turning Document Names into Arguments

	Chapter 6. Security
	Recipe 6.1 Using System Account Information for Web Authentication
	Recipe 6.2 Setting Up Single-Use Passwords
	Recipe 6.3 Expiring Passwords
	Recipe 6.4 Limiting Upload Size
	Recipe 6.5 Restricting Images from Being Used Off-Site
	Recipe 6.6 Requiring Both Weak and Strong Authentication
	Recipe 6.7 Managing .htpasswd Files
	Recipe 6.8 Making Password Files for Digest Authentication
	Recipe 6.9 Relaxing Security in a Subdirectory
	Recipe 6.10 Lifting Restrictions Selectively
	Recipe 6.11 Authorizing Using File Ownership
	Recipe 6.12 Storing User Credentials in a MySQL Database
	Recipe 6.13 Accessing the Authenticated Username
	Recipe 6.14 Obtaining the Password Used to Authenticate
	Recipe 6.15 Preventing Brute-Force Password Attacks
	Recipe 6.16 Using Digest Versus Basic Authentication
	Recipe 6.17 Accessing Credentials Embedded in URLs
	Recipe 6.18 Securing WebDAV
	Recipe 6.19 Enabling WebDAV Without Making Files Writable by the Web User
	Recipe 6.20 Restricting Proxy Access to Certain URLs
	Recipe 6.21 Protecting Files with a Wrapper
	Recipe 6.22 Protecting All Files Except a Subset
	Recipe 6.23 Protecting Server Files from Malicious Scripts
	Recipe 6.24 Setting Correct File Permissions
	Recipe 6.25 Running a Minimal Module Set
	Recipe 6.26 Restricting Access to Files Outside Your Web Root
	Recipe 6.27 Limiting Methods by User
	Recipe 6.28 Restricting Range Requests

	Chapter 7. SSL
	Recipe 7.1 Installing SSL
	Recipe 7.2 Generating SSL Certificates
	Recipe 7.3 Generating a Trusted CA
	Recipe 7.4 Serving a Portion of Your Site via SSL
	Recipe 7.5 Authenticating with Client Certificates

	Chapter 8. Dynamic Content
	Recipe 8.1 Enabling a CGI Directory
	Recipe 8.2 Enabling CGI Scripts in Non-ScriptAliased Directories
	Recipe 8.3 Using Windows File Extensionsto Launch CGI Programs
	Recipe 8.4 Using Extensions to Identify CGI Scripts
	Recipe 8.5 Testing That CGI Is Set Up Correctly
	Recipe 8.6 Reading Form Parameters
	Recipe 8.7 Invoking a CGI Program for Certain Content Types
	Recipe 8.8 Getting SSIs to Work
	Recipe 8.9 Displaying Last Modified Date
	Recipe 8.10 Including a Standard Header
	Recipe 8.11 Including the Output of a CGI Program
	Recipe 8.12 Running CGI Scripts as a Different User with suexec
	Recipe 8.13 Installing a mod_perl Handler from CPAN
	Recipe 8.14 Writing a mod_perl Handler
	Recipe 8.15 Enabling PHP Script Handling
	Recipe 8.16 Verifying PHP Installation

	Chapter 9. Error Handling
	Recipe 9.1 Handling a Missing Host Field
	Recipe 9.2 Changing the Response Status for CGI Scripts
	Recipe 9.3 Customized Error Messages
	Recipe 9.4 Providing Error Documents in Multiple Languages
	Recipe 9.5 Redirecting Invalid URLs to Some Other Page
	Recipe 9.6 Making Internet Explorer Display Your Error Page
	Recipe 9.7 Notification on Error Conditions

	Chapter 10. Proxies
	Recipe 10.1 Securing Your Proxy Server
	Recipe 10.2 Preventing Your Proxy Server from Being Used as an Open Mail Relay
	Recipe 10.3 Forwarding Requests to Another Server
	Recipe 10.4 Blocking Proxied Requests to Certain Places
	Recipe 10.5 Proxying mod_perl Content to Another Server
	Recipe 10.6 Configuring a Caching Proxy Server
	Recipe 10.7 Filtering Proxied Content
	Recipe 10.8 Requiring Authentication for a Proxied Server

	Chapter 11. Performance
	Recipe 11.1 Determining How Much Memory You Need
	Recipe 11.2 Benchmarking Apache with ab
	Recipe 11.3 Tuning Keepalive Settings
	Recipe 11.4 Getting a Snapshot of Your Site's Activity
	Recipe 11.5 Avoiding DNS Lookups
	Recipe 11.6 Optimizing Symbolic Links
	Recipe 11.7 Minimizing the Performance Impact of .htaccess Files
	Recipe 11.8 Disabling Content Negotiation
	Recipe 11.9 Optimizing Process Creation
	Recipe 11.10 Tuning Thread Creation
	Recipe 11.11 Caching Frequently Viewed Files
	Recipe 11.12 Sharing Load Between Servers Using mod_proxy
	Recipe 11.13 Distributing Load Evenly Between Several Servers
	Recipe 11.14 Caching Directory Listings
	Recipe 11.15 Speeding Up Perl CGI Programs with mod_perl

	Chapter 12. Miscellaneous Topics
	Recipe 12.1 Placing Directives Properly
	Recipe 12.2 Renaming .htaccess Files
	Recipe 12.3 Generating Directory/Folder Listings
	Recipe 12.4 Solving the 'Trailing Slash' Problem
	Recipe 12.5 Setting the Content-Type According to Browser Capability
	Recipe 12.6 Handling Missing Host: Header Fields
	Recipe 12.7 Alternate Default Document
	Recipe 12.8 Setting Up a Default 'Favicon'

	Appendix A. Using Regular Expressions in Apache
	A.1 What Directives Use Regular Expressions?

	Appendix B. Troubleshooting
	B.1 Troubleshooting Methodology
	B.2 Debugging the Configuration
	B.3 Debugging Premature End of Script Headers
	B.4 Common Problems on Windows
	B.5 Fixing Build-Time Error Messages
	B.6 Getting Server-Side Includes to Work
	B.7 Debugging Rewrites That Result in 'Not Found' Errors
	B.8 .htaccess Files Having No Effect
	B.9 Address Already in Use

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X

