
only for RuBoard - do not distribute or recompile

Copyright
Table of Contents
Index
Full Description
About the Author
Reviews
Reader reviews
Errata

Visual Basic Shell Programming

J.P. Hamilton
Publisher: O'Reilly
First Edition July 2000

ISBN: 1-56592-670-6, 392 pages

Visual Basic Shell Programming ventures where none have gone before by showing how to develop shell
extensions that more closely integrate an application with the Windows shell, while at the same time providing an
advanced tutorial-style treatment of COM programming with Visual Basic. Each major type of shell extension gets
attention, including customized context menu handlers, per instance icons, and customized property sheets.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

Preface
 The Book's Audience
 Developing Your Own Shell Extensions
 Organization of This Book
 Software Requirements
 Obtaining the Sample Code
 The VB Shell Type Library
 Conventions Used in This Book
 Request for Comments
 Acknowledgments

I: Introduction to the Shell and the Basics of COM

1. Introduction
 1.1 COM and the Shell
 1.2 Programming for the Shell
 1.3 Kinds of Shell Extensions
 1.4 Conclusion

2. COM Basics
 2.1 What Is COM?
 2.2 Interfaces
 2.3 Classes
 2.4 Type Libraries
 2.5 IUnknown
 2.6 IDispatch
 2.7 Conclusion

3. Shell Extensions
 3.1 Folders and File Objects
 3.2 Shell Extensions
 3.3 Registry Settings
 3.4 The .rad File
 3.5 The Shell Extension Project
 3.6 Restarting the Shell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3.7 When the Shell Crashes

Shell Extensions

4. Context Menu Handlers
 4.1 Static Context Menus
 4.2 Static Context Menus in IE 5.0
 4.3 Dynamic Context Menus
 4.4 Context Menu Handler Interfaces
 4.5 Creating a Context Menu Handler

5. Icon Handlers
 5.1 How Icon Handlers Work
 5.2 Icon Handler Interfaces
 5.3 Creating an Icon Handler

6. Property Sheet Handlers
 6.1 How Property Sheet Handlers Work
 6.2 Property Sheet Handler Interface
 6.3 Creating a Property Sheet Handler
 6.4 Registering the Property Sheet Handler

7. Drop Handlers
 7.1 How Drop Handlers Work
 7.2 Drop Handler Interfaces
 7.3 Creating a Drop Handler
 7.4 Registering the Drop Handler

8. Data Handlers
 8.1 How Data Handlers Work
 8.2 Data Handler Interfaces
 8.3 Creating a Data Handler
 8.4 Adding Additional Formats

9. Copy Hook Handlers
 9.1 How Copy Hook Handlers Work
 9.2 Copy Hook Handler Interface: ICopyHook
 9.3 Implementing ICopyHook
 9.4 Registering Copy Hook Handlers
 9.5 Testing the Handler

10. InfoTip Handler
 10.1 How InfoTip Handlers Work
 10.2 InfoTip Interfaces
 10.3 The Project

III: Namespace Extensions

11. Namespace Extensions
 11.1 Namespace Fundamentals
 11.2 Explorer Architecture
 11.3 The PIDL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 11.4 Namespace Interfaces
 11.5 Creating the Namespace Extension
 11.6 The PIDL Manager
 11.7 Registering DemoSpace
 11.8 Practical Coding Examples

IV: Browser Extensions

12. Browser Extensions
 12.1 Browser Helper Objects
 12.2 Browser Extensions

13. Band Objects
 13.1 How Band Objects Work
 13.2 Band Object Interfaces
 13.3 The Project: FileSpider
 13.4 Registry
 13.5 Tool Bands

14. Docking Windows
 14.1 How Docking Windows Work
 14.2 Docking Window Interfaces
 14.3 The Project
 14.4 Registration

V: Appendixes

A. VBShell Library Listing

B. Pointers
 B.1 CopyMemory
 B.2 The Undocumented VBA Functions
 B.3 Some CopyMemory Examples

Colophon

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

Copyright © 2000 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.
The association between the image of a globigerina and Visual Basic shell programming
is a trademark of O'Reilly & Associates, Inc.

MSDN is a trademark and ActiveX, IntelliSense, Microsoft, Visual Basic, Visual C++,
Visual Studio, Win32, Windows, and Windows NT are registered trademarks of
Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Preface

Some friends and I were talking a few years back about computer books and bookstores in
general. At the time, it seemed to us like no one was writing any books for people who
already knew how to program. Every book on the shelf was a 900-page behemoth whose first
few chapters told you how to turn on your computer, why the particular language was so
great, and so on. The last eight chapters were always reference. We were convinced that if
you took any one of these two-ton masterpieces and ripped out the irrelevant information, or
information that could be found in the documentation, at best you would be left with about
200 pages of pertinence. That was our theory, anyway.

We decided it would be really great if someone would write a book that was skinny. These
skinny books would contain the juiciest tidbits of programming information-the ripest fruits
from the tree of coding knowledge. Anything superfluous would be hacked away and left by
the wayside. The skinny book would assume that you already knew why you were using a
particular programming language. Therefore, it could forego the first three chapters found in
most of the other books. It would be exciting to read cover to cover, because there would be
something for everyone in each chapter. And last, but not least, it would serve as a reference
that you could come back to again and again.

Now, there are a few such skinny books that I can think of off the top of my head. The C

Programming Language by Brian W. Kernighan and Dennis M. Ritchie (Prentice Hall) is one

of my all-time favorites. Another is Effective C++ by Scott Meyers (Addison-Wesley). I've had
both of these books for years, and they still hold a proud place on my bookshelf. They are
skinny in the true sense of the word! I say this to prove that such books do exist.

So, what does all this talk about the inherent properties of skinniness mean? Well, I have to
say it. The first motivation for writing this book was that I, too, wanted to write a skinny book.
But not so fast . . . I am not saying that I place myself in the leagues of the aforementioned
authors. You know, and I know, that that would be nothing short of blasphemy. So, make no
mistake-I am an everyday programmer, just like you. All I wanted to do was to write a book
that would be a good read, cover to cover: a book with good projects and an interesting topic.
Really, my true goal was to write a book that I would buy myself. I hope I have done that.

I picked the shell for the topic of the book because, first and foremost, I thought it was really
cool. I read an article on browser helper objects (see Chapter 12) by Scott Roberts in the
May 1998 issue of Microsoft Interactive Developer. My first thought was, "I wonder if I could
pull that off in VB?" (It seems I am always trying to "pull something off" in VB.) Well, I pulled it
off. After that I just couldn't get enough of the shell. I wrote a band object (see Chapter 13)
and then a context menu handler (see Chapter 4). In fact, most of the code for this book
was written before I had even started the book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As I was writing all this code, I realized something. I was working with some really interesting,
advanced VB code. I was using pointers like nobody's business, rewriting system-level
interfaces, and working with parts of COM that VB tries to hide away. In fact, I learned quite a
bit about COM that VB didn't really want me to know. Topics of interest seemed to lead in
unexpected directions. For instance, when I was doing the code for Chapter 11, I learned
how to link lists in VB. That's when I thought to myself that this would make a really great
book.

The material in this book pushes the perceived limits of what you can do with Visual Basic.
Visual Basic offers a powerful development environment for virtually all types of applications,
components, and tools. Yet, much of the time, all that we hear about are Visual Basic's
limitations-what you can't do. Each of these "can'ts" is used to prove the inferiority of Visual
Basic and the superiority of the critic's favorite development environment or programming
language. For instance, Visual Basic is seen as grossly inferior because it can't be used to
create standard Windows dynamic link libraries (a contention, by the way, that is completely
untrue). Also, how many times have you heard a "real" programmer complain about the
absence of pointers in Visual Basic? (This charge, by the way, is also untrue.) Similarly,
Visual Basic's strength as an application development package is turned into a weakness by
its critics; they argue that, while you can create applications quickly, these applications can't
be tightly integrated with the Windows shell, since shell extensions can only be written in
C++. Along with most Visual Basic programmers, I accepted that contention for a long time;
this book, however, shows that limitation to be false and, in the process, implicitly shows that
Visual Basic is a great tool for developing COM components of all kinds.

But I'm not going to lie to you. In order to accomplish some of the things we need to
accomplish in this book, we have to take some very, very sneaky steps. But in my opinion,
that's what makes VB so much fun. In one sense, this book is for the "hacker," the person
who likes to get under the hood and explore the dark catacombs beneath the language. In
another sense (hopefully), this book is a testament to just how flexible Visual Basic can be.

So, with that said, I have not tried to write a literary masterpiece. I just wanted to write a really
neat book. I hope you enjoy it.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

The Book's Audience

You should already be somewhat knowledgeable in Visual Basic. You don't need a black belt
in VB kung fu, but you should have already done a few projects in the language. Again, I
really need to emphasize that this is not a book for beginners. If you are a beginner, there are
many books (big, fat, heavy books) waiting for you. If you know VB but are not really up to
speed on COM, that's okay. There is a crash course on COM in Chapter 2. We'll take it step
by step from there on out.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Developing Your Own Shell Extensions

Have you ever looked at some of the standard features of the Windows family of operating
systems and wished that you could take advantage of them in the software that you're

developing with Visual Basic? Once you've finished Visual Basic Shell Programming, you'll be
able to add those standard features successfully to your software as long as they're
implemented using shell extensions. Consider the following three examples:

Context-sensitive icons

Have you ever looked at the Recycle Bin icon and thought that you'd like your
application icons to behave similarly? For instance, perhaps you'd like one icon to
appear if an application data file was backed up successfully and another if it was
modified but not backed up. Or perhaps you'd like an icon that reflects the template
from which a document was created. For these purposes, you can develop an icon
handler. The icon handler developed in this book reads a file and displays an icon
based on its content. You can easily extend this to base the displayed icon not only on
some aspect of the file's content, but also on some characteristic of the file, such as its
creation date and time, its size, or its file attributes.

Browsing namespaces

You've probably noticed that the Windows Explorer, unlike the File Manager of
Windows 3.x, does not just display classic filesystem objects. Instead, you can browse
such things as printers, Control Panel applets, and computers on the network. Perhaps
you'd like to make your application data browsable in the Explorer. By writing a
namespace extension, you can do just that. Visual Basic shell programming shows you
how to browse namespaces by developing three sample namespace extensions,
including one that allows you to browse and navigate the system registry within
Explorer.

Customized context menu items

One of the most popular features introduced in Windows 95 was the pop-up menu, the
context-sensitive menu that appears when the user right-clicks an item in the list pane
of Explorer. In fact, pop-up menus are so popular that users have come to look for them

in all applications, and Visual Basic Shell Programming will show you how to build
them. The context menu handler developed in this book displays particular menu items
based on the contents of the selected file. However, the example can be easily
extended to display a menu item based on such things as the file's attributes or its
creation date. For example, if you were to develop a namespace extension that made
your application's database browsable in the Explorer, you'd also want to allow the user
to edit the selected record by selecting an option from the context menu if the record
was not locked. After reading the chapter on context menu handlers, you'll find building

http://lib.ommolketab.ir
http://lib.ommolketab.ir

such a shell extension surprisingly easy.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Organization of This Book

This book is loosely divided into four parts. Even though each chapter contains a distinct
project, many chapters build on knowledge gained from previous chapters. So, really, the
book is best read in the order in which the chapters were written. But don't worry. If you just
have to skip ahead to Chapter 10, to find out how to write an InfoTip handler, you can do
that, too. Any information you might need from previous chapters is referenced. Here's how
the book breaks down:

Part I

Part I includes Chapter 1, Chapter 2, and Chapter 3. These chapters are designed
to introduce you to the basics of the Windows shell and to provide a jumpstart on the
Component Object Model and how it relates to writing in-process components for Visual
Basic.

Why an Imaginary File Type?

You may wonder why I've chosen to invent an imaginary file type, rather than
showing you how to develop shell extensions that work with an existing file type.
The answer is really quite simple: shell extensions change the way a particular
feature of Windows works, and I don't feel presumptuous enough to change the
way that Windows handles the files you work with day in and day out. However,
although the file type is imaginary, the examples are immediately useful. The
context menu handler and icon handler examples, for instance, show how to create
customized pop-up menu items or to display custom icons based on the contents
of the file.

Shell Extensions

Shell Extensions includes Chapter 4 through Chapter 10. In these seven chapters,
we will write seven shell extensions. These chapters are centered around a mythical file

type (called a .rad file), which contains simple data about animals. Although the focus
of these projects centers around a make-believe file type, these chapters are designed
to show you the most effective ways to build shell extensions for your own data.

In these chapters we will write the following projects:

Context menu handler

Context menus are the menus that appear when you right-click on a file. Context
menu handlers allow you to add your own items (and the code to carry out the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

commands) to this menu. Context menu handlers are discussed in Chapter 4.
Drag-and-drop handler

These are similar to context menu handlers. Drag-and-drop handlers are actually
context menus that are displayed when a file is dragged with the right mouse
button. Although we won't create any, drag-and-drop handlers are discussed
along with context menu handlers in Chapter 4.

Icon handler

Icon handlers allow files of the same type to have different icons. These icons
could indicate the state of the data contained within the files or provide other
additional feedback. Creating icon handlers is covered in Chapter 5.

Property page extension

The property page dialog appears when you select Properties from a file's context
menu. A property page extension allows you to add property tabs to this dialog.
This is a convenient way to allow users to access various elements of the data
contained within the files without starting up an application. All of Microsoft
Office's documents have property page extensions defined for them. Developing
property sheet handlers is discussed in Chapter 6.

Drop handler

Drop handlers allow your files to become drop targets. This allows files of any
type (that you wish) to be dropped on a specified file type. The drop handler can
then perform any processing that you might need on the two files-perhaps a file
comparison, for example. Creating drop handlers is covered in Chapter 7.

Data handler

Data handlers allow you to modify what happens during a copy, cut, or paste
operation for a given file type. Developing custom data handlers is discussed in
Chapter 8.

Copy hook handler

Copy hook handlers allow you to permit or prevent a given file from being copied
or renamed. Developing copy hook handlers is discussed in Chapter 9.

InfoTip handler

InfoTip handlers provide tool tips for your file. With this tool tip, you can convey
information right from the shell about the file in question, such as who wrote it or
when it was created. Creating InfoTip handlers is treated in Chapter 10.

Part III

Part III contains only Chapter 11, but it's a large chapter indeed. This chapter is
designed to introduce you to the very prodigious world of namespace extensions.
During the course of this chapter, we will build a simple namespace extension that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

displays a hierarchy of arbitrary objects. The project is a very simple one that's
designed only for the purpose of introducing you to the concepts of namespaces and of
developing namespace extensions. However, source code for two real world
examples-a registry namespace extension and running object table (ROT)
namespace extension-is also provided. By installing the registry namespace
extension, for instance, you can view and navigate your system registry just as if it were
part of your filesystem.

Part IV

Part IV includes Chapter 12 through Chapter 14. These chapters are concerned
with extending the functionality of Internet Explorer, which, as of shell version 4.71 (that
is, Internet Explorer 4.0), was basically integrated with the shell. But don't let that fool
you. Even though the focus of these chapters is developing for the Internet, these
components can be written for Explorer, too. In these three chapters, we will build the
following four projects:

Browser helper objects

Browser helper objects (or BHOs) are components that sit between the Internet
and the browser. With them, you have access to every HTML tag on every page
that you surf. Also, you can capture any event supported by the browser. This
means you can use BHOs to perform a wide variety of Internet-related tasks.
Developing BHOs is the focus of the first half of Chapter 12.

Browser extensions

Browser extensions are similar to browser helper objects, but they are only
available for Internet Explorer 5.0. Unlike BHOs, browser extensions can have an
associated menu item and toolbar button that is available from Internet Explorer.
Browser extensions are covered in the second half of Chapter 12.

Band objects

The Search, History, and Favorites windows that are part of Internet Explorer are
actually band objects. Remember the ill-fated Channel window in Windows 98?
That was a band object, too. If you have an Internet-related application that needs
a user interface, a band object is the way to go. Band objects are discussed in
Chapter 13.

Docking windows

Docking windows are basically toolbars that you can add to Explorer's client area.
These can be docked on all four borders of Explorer's client area and can provide
a means for components like namespace extensions, browser extensions, and
band objects to provide additional user interface capability. Developing docking
windows is covered in Chapter 14.

In Shell Extensions through Part IV, each chapter follows a similar format, which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

consists of the following four major sections:

How the shell extension works

This section provides critical background information on the particular shell
extension but also can be useful when debugging an application that doesn't
behave quite as expected. It covers such topics as how the shell knows that the
shell extension exists in the first place and how the shell and the extension
communicate with one another.

The interfaces and their methods

The operation of shell extensions is based on the Windows shell loading the
extension and calling methods of its interfaces. This section documents those
interfaces and their methods. You can read this section to gain an understanding
of what interfaces and which methods are used in a particular kind of shell
extension. You can also return to this section when you need a reference source
when developing your own shell extensions.

Implementing the extension

In this section, we develop our example shell extension. Here you can see how a
shell extension might be implemented, as well as look at some working Visual
Basic code.

Registering the extension

This final discussion covers the process of installing and registering the shell
extension on a particular system. The central part of this section is typically a .reg
file, which registers the extension in the system registry. In most cases, the file
need only be slightly modified to work with any shell extension that you might
build.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Software Requirements

This book assumes that you are running Windows 95, Windows 98, Windows NT (with
service pack 4 or later), or Windows 2000. Basically, I am assuming that you are running
Windows. Unless you're running Windows 2000 (where Active Desktop is enabled by
default), some of the components also require that you have installed Internet Explorer 4.0
with the Active Desktop option. Unfortunately, by design, Internet Explorer 5.0 does not give
you the option to install Active Desktop. To have IE 5.0 install it if it hasn't been installed by
IE 4.0, Microsoft's solution is to uninstall Internet Explorer 5.0 and to reinstall Internet
Explorer 4.0, selecting Active Desktop. Then once again install Internet Explorer 5.0. It's
painful, but some of the really cool examples in this book (in Chapter 13) just won't work
without it.

All the code in this book was developed with Visual Basic 6.0. But VB 5.0 will work, too. It
might be handy (but not necessary) to have Visual C++ installed as well. A few of the
chapters require access to a resource editor, and the one that comes with this product is
really good. Also, Visual C++ contains interface definitions and header files that are an
invaluable reference when you are working with COM.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Obtaining the Sample Code

All of the sample Visual Basic source code from Visual Basic Shell Programming is freely
downloadable from the O'Reilly & Associates web site at http://vb.oreilly.com. The
downloadable content itself falls into three categories:

Sample source code

Most of the examples developed in this book are intended to illustrate how to build a
particular kind of shell extension without providing a real world implementation. In this
case, you'll benefit from looking at the code and using it as the basis of the shell
extensions that you yourself would like to develop.

Working shell extensions

Several of the examples developed in this book are complete working extensions that
you may want to use. RegSpace, for example, allows you to browse the registry from
Explorer without requiring that you open RegEdit or a similar registry browsing tool.

Shell programming type library

Creating a type library that defines the interfaces and methods called by the shell in
handling shell extensions is a prerequisite for any serious (and even not so serious)
attempt to develop shell extensions. The VB Shell Library, which is described in the
following section, is also available both in its source code (IDL) and compiled forms
from the O'Reilly Visual Basic web site (http://vb.oreilly.com).

only for RuBoard - do not distribute or recompile

http://vb.oreilly.com
http://vb.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

The VB Shell Type Library

During the course of this book, we will build a type library that facilitates building shell
components. A type library is a language-independent file that contains interface definitions,
enumerations, and constants. The type library we build will contain only those definitions that
are necessary for programming components for the Windows shell. (Actually, some of the
interfaces we use could be used elsewhere.)

Type libraries are built using a scripting language called, simply enough, Interface Definition
Language, or IDL. Knowing IDL is not necessary for reading this book. In fact, you can
consider this book an IDL boot camp. IDL is actually a rich language, but because of the
environment we are in (Visual Basic), many of the more advanced features of the language
are beyond our reach. So actually, I will use only the most basic elements of the language in
this book.

The type library we will build is specific only with regards to the shell, not the book. Therefore,
you will be able to take this library with you for use in your own shell-related projects when
you are done. But even though we will focus on the shell, we do so with the idea that you will
be able to take the principles learned with you.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Conventions Used in This Book

Throughout this book, I have used the following typographic conventions:

Constant width

Indicates a language construct such as a statement, a constant, an attribute, or an
expression. Interface names and lines of code appear in constant width, as do function
and method prototypes.

Constant width bold

Indicates a highlighted section of code to be brought to the reader's attention.

Italic

Represents intrinsic and application-defined functions, the names of system elements
such as directories and files, and Internet resources such as web documents. New
terms are also italicized when they are first introduced.

Constant width italic

Indicates replaceable parameter names in prototypes, command syntax, or body text,
and indicates variable and parameter names in body text.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Request for Comments

The information in this book has been tested and verified, but you may find that features
have changed (or even find mistakes!). You can send any errors you find, as well as
suggestions for future editions, to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

booktech@oreilly.com

There is a web site for the book, where examples, errata, and any plans for future editions
are listed. You can access this page at:

http://www.oreilly.com/catalog/vbshell

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

For technical information on various aspects of Visual Basic programming, to participate in
VB discussion forums, or to acquaint yourself with O'Reilly's line of Visual Basic books, you
can access the O'Reilly Visual Basic web site at:

http://vb.oreilly.com
only for RuBoard - do not distribute or recompile

http://www.oreilly.com/catalog/vbshell
http://www.oreilly.com
http://vb.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Acknowledgments

When I approached my favorite publishers with the idea for the book, I only included O'Reilly
because I thought a rejection email from them would look really great. I had plans to frame it
and everything. The fact that I have written a book for the supreme deities of computer
publishing still has me in awe. I mean, I have a book with an animal on the cover and
everything. All I can do is say "Wow." So first and foremost, I would like to thank Tim O'Reilly
for having the faith in me to write this book. I thought it would be a great book; he did too.
They call that synergy! But ideas aside, none of this could have happened without the
greatest editor in the known Universe. Of course, you all know who it is, but I'll mention his
name anyway-Ron Petrusha. For those of you who don't know, editors are the ones who
actually know how to write books and spend an awful amount of time trying to teach people
like me to do the same. Ron, thank you for convincing me to write this book. I couldn't have
done it without you. I think I have mastered the semicolon. Next comes the apostrophe.

I must acknowledge all my friends and family who gave me much support during the course
of writing this book. But I would like to give special thanks to Kathy Duval (that's my mom!),
Glen Duval, Kara Duval, Chris Mercier (Big Chris), Bill Purvis (The Purvis), and Courtney
Lomelo (She Who Must Not Be Named) for being my teachers during this time.

I owe many thanks to my proofreader and technical advisor, Brett Lindsey. When something
just doesn't make sense, he is really good at pointing that out. For you, I give you your own
paragraph.

There are several people whom I do not know personally, but have my thanks anyway,
because without them this book would not have been possible. The first is Matt Curland, the
inventor of the vtable swapping trick that makes 99% of this book possible. I learned about
this interesting little trick while looking through code for a context menu handler that he had
written. (This code still might be available in the VB owner area on Microsoft's web site.)
Needless to say, I don't think I ever would have figured that out by myself. This guy is a
wicked coder! I also need to mention all the people on the
http://atl@discuss.microsoft.com listserv. These people really know COM, and
sometimes they actually put up with me asking specific questions about VB and COM. When
I was looking for technical reviewers, this is where I went looking. A more knowledgeable
group of COM commandos does not exist.

Finally, I want to thank Daniel Creeron for his excellent, thorough technical review of the
book.

With that said, it is time to explore the shell . . .

only for RuBoard - do not distribute or recompile

http://atl@discuss.microsoft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Part I: Introduction to the Shell and the Basics of COM

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 1. Introduction

Before I start discussing the shell, it might be a good idea to define what, exactly, the shell is
in terms of Windows. Simply put, the shell is a graphical user interface provided by Windows
that allows you to access the various components of the operating system. Sounds good,
huh? When you think about it, almost everything you do within Windows begins with the shell
(unless you do everything from a DOS window or from console mode in Windows NT and
Windows 2000). This includes running software, accessing files, configuring your system,
and so on.

This shell provided by Windows is contained within the program Explorer.exe. For those of
you who have been using Windows since the 16-bit days, you might think of Explorer as a
glorified version of File Manager, Windows 3.1's utility for accessing the filesystem. This
could not be farther from the truth. Explorer is really much more than a file manager. It
provides a view of your entire system and the means to interact with it. Not only can you
access files and create directories, you can configure your printer, schedule tasks, and even
surf the Internet. Throughout the course of this book, we will use the terms shell and Explorer
interchangeably. They really are one and the same.

You should also know that Explorer is always running. What you think of as Explorer-the
browser program that allows you to navigate directories and access your files-is actually a
secondary thread in the Explorer process. The primary instance of Explorer is the Desktop.
You really are using the shell more than you might think.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

1.1 COM and the Shell

On the surface, Explorer seems to be the Swiss Army knife of applications-the one
application that lets you do everything. But this is not really the case. In actuality, Explorer is
comprised of many different components working together to create the illusion of uniformity.

These components are built using the Component Object Model, or COM. And using this
same technology, you can use Visual Basic to write components that fit seamlessly into the
heart of Windows using documented interfaces. You actually have the power to extend the
functionality of Windows itself.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

1.2 Programming for the Shell

Suppose that every time you copied a bitmap file, its image was made available on the
clipboard. Currently, Windows does not support this functionality. But with a data handler
(see Chapter 8) you could easily add this feature yourself. Maybe you would like to navigate
into an Access database as if it were just another directory in the filesystem. You could do it
with the proper namespace extension (see Chapter 12). Or you might like to automatically
process information on a web page (say, your online brokerage account) every time you
navigated to the URL. A browser helper object is the answer (see Chapter 13).

These are just a few examples of the many things you can accomplish by programming the
shell. But all of these examples, and all shell components in general, share one common
attribute: they integrate fully with Explorer. This gives the impression that they are actually a
part of the shell itself, and technically, they are. Why is this important? Chances are, the

application that is used the most by Windows users world-wide is Explorer.exe. It is probably
familiar to more people than any other application. This means that, by integrating your
application with the shell, you automatically make at least a portion of your application's
functionality conveniently and easily available to anyone who is accustomed to working with
the shell. An excellent example is the popular WinZip program developed by Niko Mak
Computing, Inc: the two most common processes of archive management-adding and

extracting files from a .zip file-can be accomplished from the shell without directly opening
the WinZip program itself.

This shell integration in turn offers a number of advantages:

Greater ease of use

Because users of your application can work with an interface that's consistent with that
of Windows as a whole, they will find your application easier to learn and use. As a
result, users will be happy with, rather than frustrated by, your application.

A more professional application

How many times have you used a "Windows" application that just didn't seem to be
written for Windows? Perhaps it had its own printer drivers. Maybe it deleted files
outright rather than moving them to the Recycle Bin. Or possibly its windows just looked
funny. In any case, applications that fall into this category for whatever reason are
typically perceived as inelegant and amateurish. By integrating your application with the
shell, there are fewer surprises for the user, and your application succeeds in
conveying your professionalism as a programmer.

Greater programming expertise

As we'll see shortly, the Windows shell is one central area of Windows programming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that is very poorly documented. Shell programming also relies heavily on COM, which is
cloaked in obscurity for many VB (and even C++) programmers. Hence, when you're
programming the Windows shell, you're working on the cutting edge in two areas. For
those to whom programming is a passion as well as a profession, shell
programming-and the knowledge gained from it-is extremely rewarding.

Clearly there are advantages to developing shell extensions and integrating your applications
with Windows Explorer. There are also challenges. Traditionally, developing shell extensions
has been seen as a topic for experienced C and C++ programmers only; very few
programmers are aware that you can create shell extensions using Visual Basic.

In addition to the fact that few programmers know that VB can be used to create shell
extensions, the state of the documentation on programming the Windows shell is perhaps
worse than in any other area. Possibly Microsoft felt that, despite the centrality of the
Windows shell in the Windows operating system, programming the shell was too complex
and too specialized for most programmers. Hence, even for C/C++ programmers, figuring out
how to create a particular kind of shell extension and getting it to work is no easy matter.

But we'll surmount the first of these obstacles-the mistaken belief that VB cannot be used
for shell programming-by showing you how to develop shell extensions. We'll also help you
to surmount the second obstacle by providing the basic documentation on the shell and its
COM interfaces that you can use when building your own shell extensions.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

1.3 Kinds of Shell Extensions

Since our topic is the combination of shell programming and COM, we'll focus on building the
following shell extensions, all of which rely on COM interfaces to be loaded and invoked by
the shell:

Context menu handlers

A context menu is the pop-up menu that appears when you right-click on an object in
Explorer. A context menu handler allows you to customize that menu by adding your
own items to it. For instance, if you develop an application that stores thumbnails of
graphics files, you might add an "Add to Thumbnail" option to the context menu of any
supported graphics file. When the user selects the file, it is automatically added to the
application's current thumbnail.

Drag-and-drop handlers

These are specialized context menu handlers; they control the pop-up menu that
appears when a shell object is dragged and dropped using the right mouse button.

Icon handlers

Ordinarily, each file type has its own icon. For instance, every Word document is
represented by a single icon that serves to identify it. An icon handler, though, allows
you to define an icon for an individual instance of that file based on some attribute or
condition of the file (its contents, its size, the date it was created, etc.). A classic
example is the icon for the Recycle Bin: when it is empty, the Recycle Bin is
represented by an empty trash can; when it is not empty, the Recycle Bin is
represented by an overflowing trash can.

Property page extension

Every shell object has a Properties dialog that displays one or more property pages
when the user selects the Properties menu option for that object. Like many of the
features of the shell, the Properties dialog is extensible: you can write property page
extensions that add pages to the dialog. An excellent example of this-and itself a
powerful feature that can give the user greater control over his documents-is the
Custom tab of a Word document's Properties dialog, which allows the user to define
custom properties and modify their values.

Drop handler

Drop handlers allow your files to become drop targets. Once again, WinZip provides a
good example. Consider what occurs when you drop a file (or files) onto a file object of

type .zip : after you drop the files, a dialog is displayed that gives you the opportunity to

add the files to the .zip file. This functionality is achieved through a drop handler.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data handler

A data handler provides additional clipboard formats for a file object. In layman's terms,
this means you can define additional behaviors for a file object during a cut-and-paste
operation. There is almost no limit to what you can do with a data handler. When you
copy your quarterly financial report (a spreadsheet in Excel), your data handler could
place it in the clipboard as a graph. The graph would then be available from any
program (via the Paste command) that knows how to deal with bitmaps, such as
Microsoft Paint, Adobe Photoshop, Paint Shop Pro, etc.

Copy hook handler

Copy hook handlers are called by the shell before a move, delete, rename, or copy
operation. The handler merely approves or disapproves the action. This handler might
keep you from accidentally deleting your source code library!

InfoTip handler

InfoTip handlers are a nice touch for any file object. Microsoft Word documents provide

a good example. Hold your cursor over any .doc file. After a brief moment, a tooltip (or
InfoTip) listing the author of the document is displayed.

Namespace extension

My Computer, the Recycle Bin, and Network Neighborhood (to name a few) are all
namespace extensions. Namespace extensions allow you to display your hierarchical
data as if it were just another folder in the system. Imagine being to able to navigate
into an Access database file right from Explorer. Namespace extensions also allow the
creation of custom system folders, like the Fonts directory that is found in the Windows
folder. This folder contains only fonts and provides additional user interface elements
that are specific to fonts, like Print Preview.

Browser helper objects

Browser helper objects, or BHOs, give you access to every running instance of Internet
Explorer. Through the Microsoft DHTML object model, a browser helper object also has
access to every element of the web page that is currently being displayed. Maybe you
would like to automatically convert every web page you view into Spanish. Maybe you
need to restrict your customers' browsers to the corporate Intranet. You can do just
about anything Internet-related with a browser helper object.

Browser extension

Browser extensions have all the same functionality as browser helper objects, but with
two exceptions: they allow you to trigger their functionality via a menu item or toolbar
button. For instance, you might write a browser extension that allows you to highlight a
company's ticker symbol on any web page. When you press the toolbar button for the
extension, the extension could get a real-time stock quote for the symbol and display it
in a pop-up. Like browser helper objects, the only limit is your imagination.

Band objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Search, History, and Favorites windows that are a part of Internet Explorer are
actually band objects. Remember the ill-fated Channel window in Windows 98? That
was a band object, too. If you have an Internet-related application that needs a user
interface, a band object is the way to go.

Docking Windows

Docking windows are toolbars that can be added to Explorer's client area. They are a
great way to provide your other shell components with an additional user interface.

Not every aspect of the Windows shell has something to do with COM. Say, for instance, you
want to add your program icon to the system tray. You really only need a few API calls that
have nothing to do with COM in order to achieve this. Therefore, I won't discuss tray icons in
this book. While this book does deal extensively with the shell, the main purpose of this book

is to describe the mechanisms by which we can extend the functionality of the Windows
operating system by using COM. System tray icons are pretty cool, but they don't really
extend the operating system in any way. This is primarily a book on the shell. The secondary
focus of the book is writing components with COM.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

1.4 Conclusion

This book doesn't cover everything; it's really only a starting point. After all, Windows is a big
world, especially when you're talking about the shell. And even more so when you bring COM
into the picture. But hopefully, by the time you have finished reading this book, you will have
learned a little more about both and had some fun in the process. So, now that you know
where we are going, it's time to start going. Enjoy.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 2. COM Basics

The components that will be developed in this book are in-process COM servers that run in
the address space of Explorer, Internet Explorer, or both. Therefore, a discussion of COM, as
it relates to the task ahead, is in order. Because the components are in-process, every
aspect of COM will not be discussed (e.g., marshalling). The focus is the fundamental
principles of COM in Visual Basic terms. And the goal is to present these concepts in a
simple and straightforward manner, with the hope that you will understand the components
you create in Visual Basic a little better.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

2.1 What Is COM?

COM is an architecture. It is a standard for developing components that can interact with
each other, regardless of the language in which they were written. This means that
components that are written in C++, Java, and VB can all work together unaware of the

language in which the other was written. This happens because COM is a binary standard.
Simply put, when a COM component is loaded into memory, it looks a certain way. It's that
simple. COM defines the rules that components use to interact with each other and the

outside world. It is not a language. But any language that can call a function through a pointer
can be used to write COM components.

A language like C++ offers a source code standard. This allows C++ programmers to reuse
code at the source level. In other words, it provides the means for source code reusability.
COM, on the other hand, has a much loftier goal. It promises code reuse at the binary level.
Unlike C++ source code, a COM component does not need to be recompiled when it is used
with a new C++ project. It does not have to be written in C++ either, for that matter. Once that
finely tuned sorting algorithm has been placed in a COM server, it is available to any
language that supports COM. There is also no need to worry about compiler specifics.

To avoid any confusion, the terms object, component, and COM
component are all used interchangeably. One or more objects can exist
in a server, whether that server is a DLL or an EXE. COM servers will
also be referred to as ActiveX DLLs.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

2.2 Interfaces

An interface is the basic mechanism by which a COM component exposes functionality. You
can think of an interface as a contract. It describes what a component is supposed to do.
How it does it is left up to you as the creator of the interface, to a certain degree. One of the
fundamentals of COM is the idea of separating the interface from the implementation.

For instance, Example 2.1 shows an interface created in Visual Basic called Animal.

Recreating the Example

This source code is from a class module, Animal.cls, that you should add to a
standard VB EXE project named Animals. Set the Instancing property of the class
to PublicNotCreatable; this will make the class inaccessible from outside your
project and means that the Animal class must be included in the project in which it
is being used.

Example 2.1. The Animal Interface

'Animal.cls

Private Enum Kingdoms
 Mammal = 1
 Reptile = 2
 Insect = 3
 Bird = 4
 Fish = 5
End Enum

'Returns animal kingdom.
Private Function Kingdom() As Kingdoms
End Function

'Returns the name of an animal in a string.
Private Function Name() As String
End Function

'Returns the noise the animal makes in a string.
Private Function Noise() As String
End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the functions in the class module animal.cls are just empty stubs. C++

programmers would recognize this as an abstract base class. This serves only to describe
what the Animal interface looks like. By itself this does nothing. The interface must be

implemented before it becomes useful. This is done in Example 2.2, which creates a Cow
class. The Cow class implements and serves as a specific instance of the Animal class.

Example 2.2. Animal Implementation

'Cow.cls

Implements Animal

Private Function Animal_Kingdom() As Kingdoms
 Animal_Kingdom = Mammal
End Function

Private Function Animal_Name() As String
 Animal_Name = "Cow"
End Function

Private Function Animal_Noise() As String
 Animal_Noise = "Moo!"
End Function

If you have not done so, now would be a good time to register the copy of

Animals.dll that is downloadable from the O'Reilly web site

(http://vb.oreilly.com) using regsvr32.exe. This component will serve
as a reference for the remainder of the chapter. You can register it from a
DOS window using the syntax:

regsvr32.exe <path>\animals.dll

If you later want to unregister animals.dll, you can do it from a DOS
window using the following syntax:

regsvr32.exe /u <path>\animals.dll

The Animal interface is specific to a point. Animal_Kingdom can't return the string
"Mammal." It has to return one of five values defined by the Kingdoms enumeration.
Animal_Name and Animal_Noise are little more vague. Theoretically, they could return
any string value. Therefore, it's important to remember that the documentation for an
interface is a part of the contract, too. The compiler does not enforce these values.

only for RuBoard - do not distribute or recompile

http://vb.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

2.3 Classes

One of the details VB hides from the programmer is the fact that an interface and a class are
two distinct entities. This is easier to visualize once you know what a class really looks like;
Figure 2.1 attempts to depict the Cow class graphically. A class is nothing more than a
pointer to an array of function pointers (member functions), followed by public and private

data. This array of function pointers is called a virtual function table, or vtable. This
arrangement allows multiple instances of a COM component to share the same vtable, which
is very efficient in terms of memory. Of course, member variables are not shared. Every
instance of a component has its own copy of any public or private member variables. Also, if
a class such as Cow had any methods of its own or implemented any additional interfaces,
these would be added to the vtable. The order of a vtable is very important, because for all
practical purposes the vtable is the physical representation of the interfaces an object has
implemented.

Figure 2.1. The Cow class

2.3.1 Interface Identifiers

The Animal and Cow interfaces are unique. Behind the scenes, VB has assigned a globally

unique identifier (GUID) to both of these interfaces. A GUID that names an interface is called
an IID. The IID for Animal is {101E95AB-018E-11D3-BB7C-444553540000}. Well, actually

this is a string representation of an IID. An IID is a unique 128-bit number, and it is this value
that is the true name for the Animal interface. After all, there's nothing really unique about
the name Animal. What if another developer on the other side of the world wanted to create
an interface named Animal with different attributes? GUIDs are how COM guarantees that

an interface is unique, and this allows two interfaces with the same name to coexist
peacefully on the same machine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you register the Animals.dll component provided with this chapter, the
IID for Animal would be 101E95AB-018E-11D3-BB7C-444553540000. If

you were to compile the source yourself, without any version compatibility
(see the sidebar, "Version Compatibility," later in this chapter), the IID
would be something different.

You can find IIDs in the registry under HKEY_CLASSES_ROOT\Interface. Figure 2.2

shows the Animal interface in the registry.

Figure 2.2. Registered interface

Because the key name is the IID itself, you will have to do a search on the interface name to
find it.

2.3.2 Versions

Once an interface has been published, COM states that the interface is immutable. You
never modify an old interface, you just create a new interface. In other words, the IID that is
the Animal interface should always have three methods: Kingdom, Name, and Noise.

These three methods will always be argument free and always return the types Kingdoms,
String, and String, respectively. If any aspect of this interface changes, the contract is broken,
and clients that relied on that interface will be broken; therefore, old interfaces are never
modified.

If it became necessary to add functionality to the Animal interface at some future date, the
rules of COM state that a new interface should be created (i.e., Animal2). This is one of the
fundamental tenets of COM: rather than modifying an existing interface, a new interface is
created instead. It is important to note that when the new interface is created, the old
interface is left in place. Interfaces should never be deleted. This ensures that clients using
the original interface will continue to work and that clients that are aware can take advantage
of the features the new interface offers.

2.3.3 Class Identifiers

In addition to creating interface definitions, VB generates a co-class for Animal and Cow. A

co-class is similar to an interface, but instead of method and property definitions, it contains a
list of the interfaces a component supports. It is a component definition. This is what defines
the Animal and the Cow in terms of what interfaces each component supports and the

vtable order of those interface methods. Like interfaces, co-classes also have a unique GUID
that represents the object. This identifier is called a CLSID. As an IID is the true name for an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interface, a CLSID is the true name for the entire component itself. The easiest way to find a
CLSID is to first look up the programmatic identifier, or ProgID, of the component. A ProgID
is a string that VB creates from the project name and the class name. In the case of our

Animals component, the ProgID for Cow would be Animals.Cow. The ProgID and the CLSID
representing the component can be found in the HKEY_CLASSES_ROOT branch of the

registry, as shown in Figure 2.3.

Figure 2.3. ProgID and CLSID registry mappings

Once you have obtained the CLSID for an object, you can find its entry under
HKEY_CLASSES_ROOT. Notice the InprocServer32 key. This is how the ProgID, say in a

call to the VBA CreateObject function, is mapped to the physical location of the component.

Version Compatibility

Specific identifiers are used throughout this book. If you register the components
provided with each chapter, your registry settings will mirror the examples used in
this book. If you compile the code yourself, the identifiers will be different.

There is a way to enter and compile all the source and have the identifiers match
the examples found in this book. You can do this by setting the version
compatibility for your projects to Binary Compatibility.

Version compatibility settings are found on the Component tab of the Project
Properties dialog. There are three different types of version compatibility that you
can specify for your COM projects:

No Compatibility

When this setting is active, new identifiers are created for every interface and
class every time the component is compiled.

Project Compatibility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each time you compile a project, all identifiers are kept intact. Interface
identifiers are changed only when they are no longer binary-compatible with
earlier versions. This setting has changed meaning from VB 5.0 to 6.0. In
version 5.0 all identifiers were changed even if only one class was found to
be incompatible.

Binary Compatibility

With binary compatibility set, you can specify an existing component as a
template for binary compatibility. Therefore, you can use this setting to
specify a DLL provided with this chapter as a reference. When you compile
your project, all identifiers from the reference component will be used, and
your identifiers will match the examples found in this book.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

2.4 Type Libraries

The interface and co-class definitions are stored in a special file called a type library . In the
case of Animals.dll , VB creates the type library automatically and stores it as a resource
inside the component. But you can also create your own type libraries. The type libraries that
you create can then be referenced from VB. In fact, since VB does not allow us to create type
information that is suitable for our needs in developing shell extensions, we're going to have
to create our own type library. But before we do that, we will talk about what a type library is
and what goes inside of one.

A type library is a language-independent binary file that contains all the information needed
to use the component. This includes interface definitions, co-class definitions, structures
(UDTs), enumerations, and constants. It is because of type libraries that Visual Basic can
implement such great features as Auto List Members (shown in Figure 2.4), Auto Quick Info,
and the Object Browser.

Figure 2.4. Auto List Members from type library

Object Browser is really just a simple type library browser. Although it can provide some very
useful information, it does hide a number of things that Microsoft does not want VB
programmers to know about. Fortunately, there is a utility called the OLE/COM Object Viewer
(usually referred to as OLE View) that will allow us to view the type library generated for

Animals.dll without hiding a thing. This utility ships with Visual Studio but is also freely
available in the downloads section at http://www.microsoft.com/com .

Example 2.3 shows the type library listing for Animals.dll , which has been generated by OLE
View. To view the type library yourself using OLE View, select the View TypeLib option from

OLE View's File menu and use the Open dialog to navigate to the Animals.dll file.

Example 2.3. Animals Type Library

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: Animals.dll

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[
 uuid(C6A1FF39-C6B2-11D2-9FCE-00550076E06F),
 version(7.0)
]
library Animals
{
 // TLib :
 // TLib : OLE Automation : {00020430-0000-0000-C000-000000000046}
 importlib("STDOLE2.TLB");

 // Forward declare all types defined in this typelib
 interface _Animal;
 interface _Cow;

 [
 odl,
 uuid(74DAE56B-D1C9-11D2-BB7C-444553540000),
 version(1.0),
 hidden,
 dual,
 nonextensible,
 oleautomation
]
 interface _Animal : IDispatch {
 [id(0x60030003)]
 HRESULT Kingdom([out, retval] Kingdoms*);
 [id(0x60030004)]
 HRESULT Name([out, retval] BSTR*);
 [id(0x60030005)]
 HRESULT Noise([out, retval] BSTR*);
 };

 [
 uuid(C6A1FF3B-C6B2-11D2-9FCE-00550076E06F),
 version(1.0),
 noncreatable
]
 co-class Animal {
 [default] interface _Animal;
 };

 [
 odl,
 uuid(74DAE56C-D1C9-11D2-BB7C-444553540000),
 version(1.0),
 hidden,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dual,
 nonextensible,
 oleautomation
]
 interface _Cow : IDispatch {
 };

 [
 uuid(C6A1FF3E-C6B2-11D2-9FCE-00550076E06F),
 version(1.0)
]
 co-class Cow {
 [default] interface _Cow;
 interface _Animal;
 };

 typedef [uuid(74DAE568-D1C9-11D2-BB7C-444553540000), version(1.0)]
 enum {
 Mammal = 1,
 Reptile = 2,
 Insect = 3,
 Bird = 4,
 Fish = 5
 } Kingdoms;
};

Example 2.3 is obviously not Visual Basic, and it isn't C or C++ either, so what is it? Example

2.3 is in a language called IDL , or Interface Definition Language . IDL is compiled using a
special compiler, and the result in this case is a type library. This type library has the
extension .tlb and can be directly referenced from your VB projects.

2.4.1 Interface Definition Language

Just when you thought you had learned enough languages, along comes Interface Definition
Language. IDL is the standard language used to define interfaces. If all the attributes
(denoted by square brackets in Example 2.3) were removed from the listing, IDL would pretty
much look like standard C.

When you create a component in Visual Basic, the type library is automatically compiled and
stored in the component. In other environments, type libraries are usually compiled using the
Microsoft IDL (or MIDL) compiler. Unfortunately, MIDL does not ship with Visual Basic; it
ships with Visual C++. There is a utility that ships with VB, however, that can be used to
generate type libraries. This utility is called MKTYPLIB. The difference between the two is

that MKTYPLIB is an ODL (Object Definition Language) compiler. ODL is a subset of IDL, so
its feature set is limited in comparison to MIDL. Generally, you want to use MIDL for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

everything, but our circumstances are a bit different. You see, we are going to be redefining
system interfaces so that they are VB-friendly. MIDL would complain that several of these
interfaces have already been defined and abort the creation of the type library. MKTYPLIB
does not care. Therefore, we will use it instead of MIDL.

If you don't know IDL, don't worry. You will still be able to follow along with the book. When all
is said and done, you will probably know more about IDL than you ever wanted to know. But I
know some of you are probably thinking, "Why can't we just use VB to generate our
interfaces?" If only life were that simple. We can't use VB because VB doesn't generate
interfaces that look like the interfaces we need. That's the plain truth. Otherwise we would.
We'll discuss this later, so save that thought.

Knowing the general layout of a type library will also help sort out some of the confusion. The
layout is fairly simple, as Example 2.4 shows. A type library consists of a variable number of
blocks. Each block consists of an attribute section denoted by square brackets ([...]),
followed by the block type (library , interface , co-class , etc.), and the body, which is
surrounded by curly braces ({...}). These blocks can be nested, as is the case with an

interface definition inside of a library block. Don't worry about the syntax of interface method
definitions right now. You will learn about those as you work through each chapter.

Example 2.4. Type Library Structure

[
 / This is the GUID for the library, or LIBID
 uuid(xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx)
]
library Name
{
 // This is an interface block
 [
 // This is the GUID for the interface, or IID
 uuid(xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx)
]
 interface XXXX : base
 {
 //Interface methods
 HRESULT Foo(...);
 }

 // This is a co-class block
 [
 // This is the GUID for the co-class, or CLSID
 uuid(xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx)
]
 co-class XXXX
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 interface XXXX;
 }

}

2.4.1.1 Attributes

Attributes are keywords used to specify the characteristics of an interface. They describe the
data itself and how the data is transmitted. Attributes usually appear in square brackets within
an IDL file. Table 2.1 contains a list of attributes, or IDL language keywords, that are found in
Example 2.3 . (Remember, though, that it does not represent every possible attribute
recognized by IDL.) Attributes can be applied to interfaces, the methods of an interface, and
even the individual parameters of a method. In fact, most elements of an IDL file can be
tagged with attributes.

Table 2.1. Interface Attributes in Animal Type Library

Name Description

default
Indicates that the interface defined inside of a co-class is the default interface. This attribute is
for use by macro languages.

dual
Identifies an interface that exposes properties and methods through IDispatch and through

the vtable. (See Section 2.6 later in this chapter for more information.)

hidden
Indicates that the item exists but should not be displayed. This attribute is for the benefit of
programs like Object Browser.

id
Specifies a DISPID for a member function. (See Section 2.6 later in this chapter for more
information.)

nonextensible

This attribute is only valid if the [dual] and [oleautomation] attributes are present. It
specifies that the IDispatch implementation includes only the properties and methods listed

in the interface description and cannot be extended with additional members at runtime. (See
Section 2.6 later in this chapter for more information.) Now, forget about this attribute.

odl
A requirement of MKTYPLIB is that all interfaces have this attribute. It does nothing in and of
itself.

oleautomation Indicates that an interface is compatible with OLE Automation.

uuid Associates a GUID with an interface.

version Specifies the version of the type library.

The MIDL Language Reference is part of the Platform SDK (under COM
and Active X Object Services) and is available online at
http://msdn.microsoft.com/library .

Take note of how settings in VB map to attributes in the type library. For instance, the
Instancing property of the Animal class is set to PublicNotCreatable , which causes the
attribute [noncreatable] to be added to the Animal co-class. Don't focus too hard on the
[oleautomation] and [dual] attributes, though. These attributes will be discussed in

http://msdn.microsoft.com/library
http://lib.ommolketab.ir
http://lib.ommolketab.ir

detail later on.

2.4.1.2 _ Animal

Let's look at the _Animal interface in Example 2.3 for a moment. In addition to having the
[hidden] attribute, an underscore has been added to the interface name, which serves as a

signal to Object Browser to keep the interface from being displayed. This is an effort on VB's
part to make you believe that an interface and a class are one and the same. It is standard
policy to prefix interface names with an I. Had this interface been developed by anything but
VB, it most likely would have been called IAnimal .

2.4.1.3 HRESULTs

Consider the definition for the Noise method:

HRESULT Noise([out, retval] BSTR*);

The [out, retval] attribute translates into a function in VB that appears to return a String:

sNoise = Cow1.Noise

The actual return value of a method call is an HRESULT . An HRESULT is an unsigned 32-bit

value that is used to return error codes or status information back to the caller. VB manages
these values for you, which means you can never get direct access to the HRESULT except

through the Err object. This is fine if you only need to look at an error code. But this can be a
problem in situations where the documentation for the interface states that a method needs
to return a specific HRESULT . VB does not give us the power to return specific HRESULT s
from an implemented method. Also, using the Err.Raise method to generate a specific
error condition will not achieve the same result as returning an HRESULT .

Unless an error occurs, the actual return value is 0; otherwise, it is a number in the form -
214 xxxxxxx . Although VB interprets the value to be a negative number, the number is not

actually negative; VB does not handle unsigned datatypes (other than Byte). Because of this,
large numbers (that is, integer values whose high order bit of their highest order byte is set
on) appear to be negative.

As you can see, VB returns HRESULT s through the Err object in decimal format, but the rest
of the world uses hexadecimal. So, if you convert the HRESULT codes to hex using the VBA

Hex function, you should be able to locate most of the standard return codes in winerror.h .
This file also contains the specific bit mapping for an HRESULT and is a very useful resource
when debugging COM servers. Unfortunately, this file is only available with Visual C++.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

2.5 IUnknown

From looking at the type library, you can see that _Animal is derived from another interface
called IDispatch. What is not apparent is that IDispatch is derived from yet another
interface called IUnknown. Actually, all interfaces are ultimately derived from IUnknown.

This means that all COM components share a dependable commonality.

The IUnknown interface contains three methods:

QueryInterface

AddRef

Release

2.5.1 QueryInterface

The purpose of QueryInterface is to allow clients to discover whether a component

supports a given interface. It is also used to navigate between interfaces on a given
component. Before returning the requested interface (if it exists), AddRef is called to give the
object a reference count.

2.5.2 AddRef and Release

AddRef and Release are used for reference counting. All objects in memory have an

associated reference count. Every time an object is created or copied, this count is
incremented by one. Every time an object is released, the reference count is decremented by
one. When the reference count is zero, the object can safely unload itself. As a VB
programmer, you have seen this entire process many times in code fragments like the
following, probably without ever realizing precisely what was happening behind the scenes:

Dim Cow1 As Animal

'QueryInterface Animal for Cow interface and call AddRef.
'Cow1 now has a reference count of one.
Set Cow1 = New Cow

Dim Cow2 As Cow

'AddRef is called. Reference count is two.
Set Cow2 = Cow1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

'Release Cow1. Reference count is one
Set Cow1 = Nothing

'Release Cow2. Reference count is 0 so component is unloaded.
Set Cow2 = Nothing

The VB implementation of IUnknown resides in STDOLE2.TLB and looks like Example 2.5.

Example 2.5. IUnknown Interface Definition

[
 odl,
 uuid(00000000-0000-0000-C000-000000000046),
 hidden
]
interface IUnknown {
 [restricted]
 HRESULT _stdcall QueryInterface(
 [in] GUID* riid,
 [out] void** ppvObj);
 [restricted]
 unsigned long _stdcall AddRef();
 [restricted]
 unsigned long _stdcall Release();
};

Every method of IUnknown has the [restricted] attribute. This keeps you, the VB

programmer, from calling any of these methods directly. You can try, though. Run the
following code fragment:

Dim x As IUnknown
x.AddRef

When you declare the IUnknown variable, it will not be displayed in the Auto Quick Info
drop-down. This is because the interface is marked with the [hidden] attribute. If you enter

all the code in lowercase, VB will adjust the case for your entry. So we know that VB knows
about this interface; it's just not talking. But you won't be able to compile this fragment, and if
you try to run the code from the IDE, you will get a nasty message like the one shown in
Figure 2.5. Fortunately, we can work around this limitation, but we'll discuss that later.

Figure 2.5. Calling IUnknown methods is not allowed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Refer to Example 2.3 for a moment. Find the first line of IDL inside the library block that is
not a comment. It looks like this:

importlib("STDOLE2.TLB");

This line of IDL causes the Animals type library to contain all of the definitions found in
stdole2.tlb. Incidentally, stdole2.tlb contains the definition of IUnknown (among other things)
that is used by VB. If you are interested, you can use OLE View to examine this type library.
The type library is called OLE Automation (Version 2.0).

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

2.6 IDispatch

As mentioned previously, _Animal is directly derived from an interface called IDispatch .
Interfaces derived from IDispatch often have the [dual] attribute and appropriately are

called dual interfaces. This is because the interface supports vtable binding (binding at
compile time) and late binding (binding at run-time). The methods that comprise IDispatch

facilitate the process known as late binding, which results from code like that shown in
Example 2.6.

Example 2.6. Late Binding

'Late binding Cow

Dim cow1 As Object
Set cow1 = CreateObject("Animals.Cow")

MsgBox cow1.Noise

CreateObject uses the ProgID for the component and maps it to a CLSID. This allows an
instance of the component to be created. Internally, this is done by calling the
CoCreateInstanceEx API. Once the component is loaded, a call to QueryInterface is
made and a pointer to an IDispatch interface is returned. The generic Object datatype
really means IDispatch. Then late binding is used to make the call to the Noise method.

Late binding is generally avoided whenever possible for reasons of efficiency (it's extremely
slow). But in scripting languages like VBScript and JavaScript, late binding is the only choice

available. This is because type information is used at compile time to bind method calls to the
object. Code run in a scripting environment is not compiled. It is interpreted at runtime, line by
line. Therefore, there needs to be a mechanism for calling the methods of an object in
environments such as these. This is where IDispatch comes in. The four methods of
IDispatch are:

GetTypeInfoCount

GetTypeInfo

GetIDsOfNames

Invoke

2.6.1 GetTypeInfoCount

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetTypeInfoCount returns either a or a 1, depending on the availability of type
information. Since we know the Animals component contains type information, an
implementation of GetTypeInfoCount written in Visual Basic might be as simple as this:

Private Sub GetTypeInfoCount() As Long
 GetTypeInfoCount = 1
End Sub

2.6.2 GetTypeInfo

GetTypeInfo returns an ITypeInfo interface pointer, which provides the means for
accessing information in a type library. ITypeInfo is useful when no prior knowledge of a

component is available. Utilities such as Object Browser and OLE View use
IDispatch::GetTypeInfo to get information about a component from a type library.

Typically, you are familiar with the components you use in your day to day development
efforts. Therefore, this method is rarely used.

2.6.3 GetIDsOfNames

Refer back to the _Animal interface for a moment and look at the [id] attribute that

accompanies each method in the interface. This ID is called a dispatch identifier, or DISPID.
This is the value that is returned by GetIDsOfNames. Without going into detail,
GetIDsOfNames basically takes the method name (like Noise) as an argument and returns

the DISPID associated with that method. It is this number that is used in place of the function
name to make a method invocation at runtime. This is for efficiency reasons. Remember,
some COM components are out-of-process servers that might be running on another
machine. Passing an integer across a network is more efficient than passing a string.

2.6.4 Invoke

Invoke is the heart of the IDispatch interface. This method is responsible for making the
late binding call to a method or property. Invoke indirectly calls a method or property using
the DISPID returned by GetIDsOfNames. The return value, if there is one, is packed into a
VARIANT structure and returned to the caller.

Now that we have discussed IUnknown and IDispatch, you should have a better idea of
what is going on internally in a component written in Visual Basic. We now know that there is
a little more going on in the _Animal interface than was initially apparent. Figure 2.6 shows
a graphic depiction of the _Animal interface.

Figure 2.6. Animal interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

And with this last piece of information, the question "Why can't we use VB to generate the
interfaces we need?" can finally be answered. The answer is very simple. We can't use VB
because the interfaces we will need must be derived directly from IUnknown. How do we
know that they must be derived directly from IUnknown? Because that's what the Platform

SDK says they are derived from. Remember, we have contracts to abide by here!

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

2.7 Conclusion

You should have a basic understanding of the components you are creating with Visual
Basic. This chapter, far from being a comprehensive treatise on COM, is merely meant to
introduce some of the fundamental concepts that we will be dealing with throughout the
remainder of this book. It does not represent the extent of the book. Many new concepts will
be discussed as the need arises. For now, you should have a basic understanding of COM,
the architecture used by Visual Basic for creating component-based software. These
components expose their functionality through interfaces. Interface definitions are stored in a
type library, which provides information to clients that wish to use the object. Interface
definitions are written in IDL, which is the standard language for defining interfaces, and
compiled with the MIDL compiler or MKTYPLIB. The fundamental interface that all objects
have in common is IUnknown. IUnknown contains methods that allow for interface

discovery and reference counting. The interfaces of objects created with Visual Basic are
derived from IDispatch, making the process of runtime binding possible.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 3. Shell Extensions

Everything that can be viewed within the tree view of Windows Explorer represents what is

called a namespace. This namespace not only represents files and directories, but also
entities such as drives, printers, and network resources. The shell presents these items in a
singular hierarchy with the desktop at the root. Objects in the namespace fall into two
categories: folders and file objects.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

3.1 Folders and File Objects

Folders represent collections within the namespace. Many folders represent actual directories
in the filesystem, but some folders are virtual. These virtual folders include Desktop, My
Computer, Recycle Bin, Control Panel, Dial-up Networking, and Fonts. Virtual folders are not
part of the native filesystem and often are referred to as system folders. Many of these virtual
folders can only contain a specific type of file or object. For instance, the Control Panel can
only contain Control Panel applications, and the Printer folder can only contain printers.

All folders, whether virtual or not, share the same fundamental properties. Folders are file
objects that can contain other file objects. What are file objects? For the most part, file
objects represent actual files, but they can include other resources like printers and drives, as
well as other folders. The use of the word "file" is somewhat of a misnomer here, because a
file object is really any object that is part of the shell namespace. And if an item is part of the
shell namespace, a shell extension can be written for it.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

3.2 Shell Extensions

Every file object visible in the shell is a member of a file class and can be programmatically
extended by a shell extension. There are certain predefined actions that determine which
shell extensions will be invoked. These actions include things like right-clicking, copying,
moving, dragging, cutting, pasting, and even displaying an icon for a file. Shell extension
handlers are in-process COM servers that implement a variety of interfaces, depending on
the type of handler being implemented. There are five handlers that perform actions based
on a specific file type:

Context menu handlers

Icon handlers

Property sheet handlers

Drop handlers

Data handlers

There are also two types of handlers that are associated with file operations like copying,
moving, renaming, and deleting:

Copy hook handlers

Drag-and-drop handlers

3.2.1 Context Menu Handler

A context menu is the menu that appears when a file is right-clicked. A sample context menu
is shown in Figure 3.1. Every item in the shell has an associated context menu. This menu
provides the means to perform generic operations such as copying, moving, deleting, and
renaming file objects.

A context menu handler allows items to be added to this menu for a specific file object. This
allows custom processing to be performed on the file object via the menu selection.

Figure 3.1. Context menus provide a means for additional file processing from within the shell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Context menu items can be defined quite easily in the registry without writing any code
whatsoever. But there are situations where you may need to display a different menu for file

objects of the same type. This is where context menu handlers come into play. For example,
you might want to add a Backup option to a context menu for a file whose archive bit is set.
Or you might want to determine whether a file's size exceeds a floppy drive's free space
before displaying a Copy to Floppy menu option.

3.2.2 Icon Handler

Every file object has an associated icon. Icons for a given file object are specified in the
registry by a subkey called DefaultIcon under the object's application identifier key. You

could, for example, change the icon the shell displays for your hard drives by changing the
default value of the key shown in Figure 3.2. The number 8 in Figure 3.2 refers to the
index of the icon that is contained in shell32.dll.

Figure 3.2. Default icon location

Icon handlers provide a way to display different icons for the same file objects on a per
instance basis. These icons can be used to provide additional state information for a file or

resource. For instance, a .rad file (this is a made-up file type that we will use to discuss
handlers) could display an icon representing the type of animal specified by the file, as
Figure 3.3 shows.

Figure 3.3. Icon handlers provide per-instance icon support

3.2.3 Property Sheet Handler

Property sheet handlers add pages to the property dialog for a specific file object. These
additional property pages allow for additional file processing in much the same manner as a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

context menu handler. These pages can be specific to a class of file objects or to an
individual file object, depending on the needed functionality. For example, Figure 3.4 shows
the default property sheet for a text file.

Figure 3.4. Default property sheet

The Microsoft Word .doc file Properties dialog provides a good example of property sheet
handlers. The property sheet extension adds not one, but four pages in addition to the
default property sheet, as illustrated in Figure 3.5. A wide variety of document attributes can
then be changed right from the shell without the need to open Word.

Figure 3.5. .doc file property sheets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.4 Data Handler

Data handlers provide custom clipboard formats that are made available whenever a file
object is dragged from the shell or copied to the clipboard. They can be used to alter the

default copy-and-paste behavior implemented by the shell. Consider a .bmp file for a
moment. Suppose that when you copied the file from the shell, you also wanted the image

that the file represented to be made available from the clipboard. A custom .bmp data
handler would allow you to copy image data right from the shell into another program such as
Adobe Photoshop.

3.2.5 Drop Handler

A drop handler allows a file of a specific class to become a drop target. Consider one of the
most popular shareware programs around, WinZip. WinZip defines a drop handler for files of

type .zip. When files are dropped onto a .zip file, a drop handler processes the files and add
them to the archive. Drop handlers allow you to define such behaviors for your own file types.

3.2.6 Copy Hook Handler

Copy hook handlers are associated with folder objects (they are valid for folder objects only
and do not pertain to files) and are called before a folder is copied, moved, renamed, or
deleted. They do not perform the task, but rather they approve or disapprove the task. Copy
hook handlers could be used to keep your favorite source code directory from being
accidentally deleted or moved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.7 Drag-and-Drop Handler

A drag-and-drop handler is nothing more than a context menu handler that is displayed when
a file is dragged with the right mouse button. Since they are similar to context menus, drag-
and-drop handlers are discussed in Chapter 4.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

3.3 Registry Settings

The registry plays a critical role in defining the shell extensions available for particular
filesystem objects. In this section, we'll look at how the registry is used to define the shell
extensions for particular file types, as well as how it determines the scope of a particular shell
extension.

3.3.1 File Associations

There are two entries in the registry that are associated with files of a specific type: the file
association key and the application identifier key. For example, in Figure 3.6,
HKEY_CLASSES_ROOT\.rad is a file association key. The file association key merely points
to the application identifier key; that is, its default value contains the name of the application
identifier key, which in the case of Figure 3.6 is HKEY_CLASSES_ROOT\radfile. The
application identifier key contains the shellex subkey (shellex stands for "shell

extension"), which defines the specific handler types and the CLSIDs of the objects
designated to handle them. Some handlers, like context menu handlers and property page
handlers, require a named value that points to the proper CLSID. This can be any name, but
it must be unique at the level in which it resides .

Figure 3.6. Registry settings for shell extensions of a specific file type

Once Explorer has the CLSID for the component that is implementing a particular shell
extension, it can find the physical location of the component by going to the
HKEY_CLASSES_ROOT\CLSID key and finding the matching CLSID. A subkey of the CLSID
key called InProcServer32 contains the physical location of the component. Explorer can
then load the component and call methods on the appropriate interfaces. Figure 3.7 shows
the mapping from a CLSID to a physical location.

Figure 3.7. How an icon handler is mapped to a physical location

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When Explorer loads our component, it gets a pointer to its IUnknown interface. Explorer

can then call all of the methods that we have implemented for a given shell extension.

3.3.2 Scope

All file objects can have handlers associated with them. The scope is determined by where
the handlers are registered in the registry. All of these locations are direct subkeys of
HKEY_CLASSES_ROOT and themselves contain subkeys similar to those found in Figure
3.6. These include:

*

This key can be used to register context menu handlers, property sheet handlers, and
copy hook handlers that apply to all registered file objects. For example, WinZip uses a
subkey of this key to define a context menu handler that examines the type of
filesystem object and, if it is either a file or a folder, adds an "Add to Zip" context menu
item.

Drive

This key is used to register shell extensions for all drives. For example, a property sheet
handler defined by a subkey of the Drive key displays information on the free and
used space available on the designated drive.

Folder

All handlers that are registered by HKEY_CLASSES_ROOT* can also be registered

here, with the addition of drag-and-drop handlers. These handlers apply to all folders in
the system. For example, a subkey of HKEY_CLASSES_ROOT\Folder defines a

Sharing option for a folder's context menu.
Printers

Handlers for all system printers are registered here. The type of handlers that are
allowed for this key are the same as Folders, but additional extensions are provided

to handle adding and removing printers and setting the default printer.
Directory

The Directory key has the same configuration as the Folders key, but is only used

for filesystem folders. Examples of system folders include History, Favorites,

Downloaded Program Files, and Offline Web Pages. These folders can usually be
found under your Windows directory.

Directory/Background

This subkey is used to create context menu handlers that are not associated with any

http://lib.ommolketab.ir
http://lib.ommolketab.ir

particular file object, but rather with the empty area of a system folder. This can be
demonstrated with the History system folder, which is located under the Windows
directory. This folder does not contain files. It contains browsing histories. Right-clicking
in this folder supplies a context menu specific to the objects contained in the folder. It is
a slightly different context menu than you would find in a folder containing files.

AllFileSystemObjects

This key contains the same entries as Folder and pertains to all filesystem objects. It is
used to define a handler that determines whether a Send To option appears on the
object's context menu.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

3.4 The .rad File

The shell extensions discussed throughout this book will be developed for the mythical .rad
file, which is just an imaginary file type I've used to demonstrate the concepts presented in
the book. An existing file type could have been used instead, but by using a made-up type,
we get to build everything from the ground up. If I had used an existing file type, many of the
needed registry entries would already be in place, diminishing the "hands on" approach of the
book. Changing registry settings for existing file types also has a tendency to change the way
that Windows handles your applications, something you're not likely to appreciate. Also,
chances are that you will be writing these extensions for your own file types, not for someone
else's.

The format of a .rad file is exactly the same as an .ini file and looks like this:

[Animal]
Type = (dog, cat, fish, snake, cow, or armadillo)
Gender = (M or F)
Color = (Black, White, Gray, Brown, or Green)
Age = (positive integer)
Weight = (positive integer)

You can think of a .rad file as an .ini file with a specific format. The animal types and file
format have been purposefully simplified to keep the focus away from the file itself and on
the shell extensions. It's not because of laziness . . . Anyway, if you suddenly find yourself
with large amounts of free time that just can't be used productively anywhere else, by all
means extend the file in any way you wish.

3.4.1 Registering the .rad File

The file association key and the application identifier key must be added to the registry for

the .rad file. You can use rad.reg, which is included with the book's code (downloadable from
http://vb.oreilly.com), or add it by hand. The keys are as follows:

HKEY_CLASSES_ROOT\.rad = radfile

This notation signifies that the default value for .rad is radfile. This is the file
association key; it only serves as a pointer to radfile.

HKEY_CLASSES_ROOT\radfile = Rudimentary Animal Data

This is the root key for all shell extensions. The default value contains the description of
the file type that will be displayed in Explorer.

HKEY_CLASSES_ROOT\radfile\shellex

http://vb.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

All shell extensions for the .rad file will be listed under this key. This is where all of the
action takes place.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

3.5 The Shell Extension Project

All of the handlers that we will implement will be contained in a single ActiveX DLL project

called RadEx. A stub project with the appropriate settings is included with the book's
downloadable code for this chapter. The project is an ActiveX DLL project set for Apartment
threading (see Appendix A), which is a requirement for shell extensions. The component
will not load if this is not set. That's all there is to it; there is nothing more to the project.

Registering Components the Easy Way

The easiest way to register components is to associate DLL files with regsvr32.exe.
This simplifies component registration to a double click.

If the .dll file type is currently not associated with any program, you can make this
association yourself by simply double-clicking on any .dll file in the shell. This
action displays the Open With dialog box, which will allow you to select a program

for association. Just navigate to regsvr32.exe, which is located in your system
directory.

If you want to be really hard-core about it, you can add the keys for the association
yourself into the registry. This information is placed under the application identifier
for .dll files, which happens to be called dllfile, as illustrated in Figure 3.8.

Of course, the path to regsvr.exe might be different on your machine. Notice the %1
on the command line. This will be replaced by the name of the DLL that is being
registered.

The source code that is provided with this chapter in the book's sample code serves as a
template for future chapters. As the book progresses, the downloadable code for each
subsequent chapter will contain source for the extensions created up to that point and an
accompanying DLL. This is only to provide Binary Compatibility and keep the GUIDs referred
to in this book the same as the GUIDs on your system. Remember, since each chapter
contains a new component, it will have to be registered.

Figure 3.8. Associating regsvr32.exe with the dllfile file type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A type library containing all the interfaces you will need is included with the source code for
the book, which is available for download from http://vb.oreilly.com. It will be necessary to
add a reference to this library for each of the projects we will build in the book. The complete
listing for this type library is also provided in Appendix A.

Unfortunately, MKTYPLIB does not allow IDL files to be included within other IDL files.

Therefore, all our interfaces are defined within one file, called vbshell.idl. This makes for one
really gigantic file, but the interfaces will be listed in alphabetical order. It should be fairly
simple to navigate the file to examine its contents.

Incidentally, since vbshell.idl defines all of the interfaces used in building shell extensions, it
will remain a valuable resource long after you've finished reading this book. You can continue
to use it to access information about interfaces and their methods from Visual Basic for all of
the shell extensions you build.

only for RuBoard - do not distribute or recompile

http://vb.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

3.6 Restarting the Shell

Before you test any of the components that we will build throughout the course of this book, it
will be necessary to restart the shell. Restarting the shell does not mean shutting down every
instance of Explorer you have running because, even after you have done that, there is still
one more instance running: the Desktop. That's right, the Desktop is the first instance of
Explorer. You will need to restart everything. The obvious method is to just reboot. While this
works, it is a little time consuming. There are other ways to restart the shell without shutting
down.

If you are developing under Windows NT, you can simply bring up the Task Manager and kill
the Explorer process. You can then start a fresh instance by running Explorer from the Run
menu.

If you are running Windows 98, restarting the shell is not as straightforward. First, you need
to bring up the Task Manager by pressing Ctrl-Alt-Del. Select the Explorer process and then
click the End Task button. The Shut Down Windows dialog will appear. This is the same
dialog that appears when you select Shut Down from the Start menu. Now this is important:

do not press OK. Press Cancel instead. Wait a few moments. Windows will then display a
dialog box prompting you to end the task.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

3.7 When the Shell Crashes

Under NT, shell crashes are not really a problem. You can access the Run command from

the Task Manager and start up another instance of Explorer.exe.

Under Windows 98, there is no Run command that is available from the Task Manager.
When developing for the shell, you can save yourself countless headaches by keeping a
simple program running at all times during your development. This program can have a form
with one command button that executes the following line of code:

Shell "Explorer.exe"
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Part Shell Extensions

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 4. Context Menu Handlers

The shell displays a context menu for a file object when it is clicked with the right mouse
button. This context menu allows various operations to be performed on the file object from
within the shell, like printing it or opening it with another program. For example, Figure 4.1
shows the context menu that's displayed when the user clicks on a file in Windows Explorer.

Figure 4.1. A context menu

The items on context menus fall into two categories: static and dynamic. Static context menu
items are always the same for every file object of a given type. They can be associated with a
file object with just a few registry entries and require no shell extension handlers. The
"handler" in this circumstance-that is, the object that performs some action on the file object
when that particular context menu item is selected-is usually a normal executable that is
passed the name of the file as a command-line parameter. Dynamic context menus, on the
other hand, are created with the help of a shell extension handler, which, as we discussed
earlier, is a COM component that runs in-process to Explorer. This handler provides the
means to display different context menu items for file objects of the same type. The exact
appearance of the context menu typically is determined by some state internal to the file
itself. Static menus warrant a brief discussion, but the main focus of this chapter will be on
dynamic context menus.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

4.1 Static Context Menus

Static context menu items are listed under the application identifier key under a subkey called
shell (as opposed to the shellex key). These entries remain constant for every instance
of the file object and require no implementation code.

Figure 4.2 illustrates how to add an Open context menu item to the .rad file. The subkey of
shell (in this case open) is the verb value for the command. There are seven verbs, called

canonical verbs, whose meaning is automatically recognized by the shell: open, find,
explore, print, printto, openas, and properties. (The printto key is never shown
in a context menu, but allows a file to be dragged to a printer object for printing.)

Figure 4.2. Registry entry for static "Open" context menu

The default value of the verb key contains the text for the context menu; in the case of
Figure 4.2, the open verb is described in the context menu as "Open." The verb key's
subkey is the command key, whose default value contains the path of the file that will be used
to carry out the command. The %1 portion of this string in Figure 4.2 denotes the file that

was selected within the shell. Whatever file is selected will be passed to notepad.exe on the

command line. Of course, this only works because notepad.exe accepts command-line
arguments.

However, don't believe for a second that you are limited to these seven canonical verbs. You
can actually add you own commands to the context menu and call them anything you want.
For example, let's add Register and Unregister commands to the context menu for DLLs.
This will provide us with a convenient way to register and unregister components.

To accomplish this, we need to locate the application identifier key for a DLL, which happens
to be dllfile. Then, under the shell subkey, we add two other keys: Register and
Unregister. Figure 4.3 shows how the relevant portion of the registry should appear in

order to support these two static commands.

Figure 4.3. Static menu handlers to register and unregister DLLs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see from Figure 4.2, we must also add an additional subkey named command .

The default value for this key will contain the command that we actually want to execute. The

following script, DLLRegister.reg, will do everything for you:

REGEDIT4

[HKEY_CLASSES_ROOT\dllfile\shell\Unregister\command]
@="regsvr32.exe /u %1"

[HKEY_CLASSES_ROOT\dllfile\shell\Register\command]
@="regsvr32.exe %1"
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

4.2 Static Context Menus in IE 5.0

With the release of Internet Explorer 5.0, Microsoft has made it possible for you to define
your own static context menu items. It's as simple as adding a new registry key at the
following location:

HKEY_CURRENT_USER
 SOFTWARE
 Microsoft
 Internet Explorer
 MenuExt

The default value for the key can be either a URL or a program. An additional key called
contexts must also be present. This key contains a binary value that determines to which

context menu (Internet Explorer provides several, depending on the circumstances) you want
to add the new menu item. The values are:

Context Menu Value

Default 0x01

Image 0x02

ActiveX Control 0x04

Table 0x08

Selected Text 0x10

Hyperlink 0x20

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

4.3 Dynamic Context Menus

Static context menus are limited because they are the same for every file object of a given
type. Also, the number of files that can be processed through a static menu is limited by the
program that is used to carry out the command. What if you need to process 20 files? What if
you need different processing options based on the state of the file itself? There are also
situations where you might need one context menu for a group of files and another for a
single file. This is where dynamic context menus come into play.

A context menu handler is an ActiveX DLL that implements two interfaces: IShellExtInit
and IContextMenu. A third interface, IDataObject, is required to implement
IShellExtInit. It is not implemented by the object itself but exists as a method parameter
in IShellExtInit. We'll explore these interfaces in greater depth after we examine how
the shell uses a context menu handler to assemble a context menu.

The process begins when one or more files is right-clicked in Explorer. When this occurs, the
shell checks the shellex key under the application identifier key to see if a context menu

handler has been defined for the selected file type. In the case of the .rad file, the shell would
look under the following key:

HKEY_CLASSES_ROOT/
 radfile/
 shellex/
 ContextMenuHandlers/

If you select 15 files that are of all different types, there is still only one file with active focus:
the last file selected in the group. It is this file for which the shell attempts to find an
associated context menu handler.

If a context menu handler exists, the shell loads the handler and calls
IShellExtInit::Initialize. One of the parameters of Initialize is a reference to
IDataObject. The shell uses IDataObject to tell us how many files are selected and

what their names happen to be. This gives us the opportunity (as the implementors of
IShellExtInit) to save the filenames and the number of selected files for later use. This

information can be stored in private member variables within the class. Later, when a
command is actually selected from the context menu, the array of files can be referenced and
processing decisions can be made.

Next, the shell calls IContextMenu::QueryContextMenu. This method is responsible for

adding items to the context menu. The shell passes into the method a handle to the context
menu, called an HMENU. An index representing a valid insertion point for the menu item is

also passed in. Adding the menu item is simply a matter of calling the InsertMenu API .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You might want different menu items displayed based on whether one or multiple files have
been selected. Since the number of files selected can be determined in
IShellExtInit::Initialize, this becomes a trivial matter. You also have the ability to

base the menu item on the file itself. In addition to the number of files selected, you would
also already know the filenames in question. This means you could open the file, retrieve
information, and base the menu item on actual data. Or you could examine some other
attribute of the file (such as its creation date, its size, or its read-only status) and base the
menu item on that information as well.

At this point, the shell displays the context menu with the additional menu items. Once the
context menu is displayed, the shell attempts to call IContextMenu::GetCommandString

whenever the mouse is moved over the new context menu item. This allows you to provide a
help string that will be displayed in the status bar of Explorer when the context menu item is
highlighted.

When the command is actually selected, the shell calls IContextMenu::InvokeCommand

on the handler. The method allows you to determine which context menu item has been
selected, and as a result your handler can carry out the appropriate actions.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

4.4 Context Menu Handler Interfaces

The components we will write in this book will all implement any given number of system
interfaces. "System" in this context (no pun intended) means that these interfaces have
already been defined by Microsoft. They are documented, and you can read all about them in
the Platform SDK (though the details may be a little murky sometimes).

You can think of an interface as a defined functionality. When a component implements an
interface, it is really saying, "I support this functionality!" Consider a Triangle component. It
implements the interface Shape. Shape defines two methods: Draw and Color. Therefore,

you could expect to access the following functionality through Triangle:

Triangle.Draw
Triangle.Color

Because the Circle, Square, and Trapezoid components also implement Shape, you would
expect these objects to have the same functionality as well. This is what it means to
implement an interface.

The components in this book all implement some functionality that is required by the shell.
This means that when the shell loads our components, it will be able to gain access to our
component through a defined mechanism: an interface.

With that said, let's talk about the interfaces a context menu handler component needs to
implement before it can be loaded by the shell.

4.4.1 IShellExtInit

IShellExtInit contains one method (besides the IUnknown portion of the interface),
Initialize, as shown in Table 4.1.

Table 4.1. IShellExtInit

Method Description

Initialize Initializes the shell extension

IShellExtInit::Initialize is the first method called by the shell after it loads the

context menu handler; it is the context menu handler's equivalent of a class constructor in
C++ programming or the Class_Initialize event procedure of a class in VB. Typically, this
method is used by the context menu handler to determine which file objects are currently
selected within Explorer. Initialize is defined as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HRESULT Initialize(LPCITEMIDLIST pidlFolder,
 IDataObject *lpdobj,
 HKEY hkeyProgID);

All three arguments are provided by the shell and passed to the context menu handler when
it is invoked, which is indicated by the [in] notation in the following argument list. The three

arguments are:

pidlFolder

[in] A pointer to an ITEMIDLIST structure (commonly referred to in shell parlance as

a PIDL) with information about the folder containing the selected objects. If you want
more information on PIDLs and what you can do with them, see Chapter 12. We are
not going to use this member, and we are not even going to discuss it (yet), because
the topic of PIDLs is a universe unto itself. All you need to know is that a PIDL provides
a location of something (such as the path of a file or folder object) within the Windows
namespace.

lpdobj

[in] A pointer to an IDataObject interface that provides information about the
selected objects. The IDataObject interface is discussed in the following section.

hKeyProgID

[in] The handle of the registry key containing the programmatic identifier of the
selected file. For instance, if a Word .doc file was right-clicked, hKeyProgID would be

a handle to the HKEY_CLASSES_ROOT\Word.Document.8 key on systems with Office
2000 installed. Once the handle to this key is available, it is a trivial matter to find the
host application that is responsible for dealing with this file type, which in the case of
our example happens to be Microsoft Word. The context menu handler can then defer
any operations to the host application, if necessary.

The only parameter in which we are interested is the second, lpdobj, which is a pointer to

an IDataObject interface. Like the first parameter, IDataObject is also a world unto

itself. Fortunately for us, we don't need to know too much about the interface at this juncture.
In Chapter 8, when we create a data handler, we will put this interface under the knife, so to
speak, but until then let's just cover what we need to know. The shell uses this interface to
communicate to us the files that were clicked on in Explorer. We'll see how this works
momentarily.

Now that we know a little bit about this interface, let's get on to how we are actually going to
implement it. There are some problems ahead.

IShellExtInit , like most of the interfaces in this book, is a VB-unfriendly interface. An

unfriendly interface contains datatypes that are not automation compatible. You can think of
an automation-compatible type as basically anything that will fit into a Variant. Table 4.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lists all of the datatypes that are considered OLE automation compatible.

Table 4.2. OLE Automation-Compatible Types

Datatype Description

boolean Corresponds to the VB Boolean type

unsigned char 8-bit unsigned data item

double 64-bit IEEE floating-point number

float 32-bit IEEE floating-point number

int Signed integer whose size is system-dependent

long 32-bit signed integer

short 16-bit signed integer

BSTR Length-prefixed string; this is the String datatype in VB

CURRENCY 8-byte, fixed-point number

DATE
64-bit, floating-point fractional number of days since December
31, 1899

SCODE Error code for 16-bit systems

Typedef enum myenum Signed integer whose size is system-dependent

Interface IDispatch * Pointer to the IDispatch interface

Interface IUnknown * Any interface pointer that directly derives from IUnknown

dispinterface Typename * Pointer to an interface derived from IDispatch

Co-class Typename * Pointer to a co-class name

[oleautomation] interface Typename * Pointer to an interface that derives from IUnknown

SAFEARRAY(TypeName) Array of any of the preceding types

TypeName* Pointer to any of the preceding types

Decimal
96-bit unsigned binary integer scaled by a variable power of 10
that provides a size and scale for a number (as in coordinates)

Now, to implement IShellExtInit successfully, the interface will have to be redefined with

automation-compatible types and made available through a type library. This interface
contains one method, Initialize. Let's tear it apart to see what we need to do in order to

make this interface work for us.

Consider the first parameter of the Initialize method, which is an LPCITEMIDLIST. The
documentation for the interface states that this is an address of an ITEMIDLIST. (We'll talk
about ITEMIDLIST in Chapter 11.) The structure is defined like this:

typedef struct _ITEMIDLIST {
 SHITEMID mkid;
 } ITEMIDLIST;

As you can see, the one and only member of this structure is another structure called

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SHITEMID, which is not an automation-compatible type. This means we cannot define this
parameter as a pointer to an ITEMIDLIST when we define the IShellExtInit interface.

What can we do? Well, a pointer is four bytes wide, so the automation-compatible type that
can be used in place of LPCITEMIDLIST is a long. When we create our type library, we will
just redefine LPCITEMIDLIST to mean a long, like so:

typedef [public] long LPCITEMIDLIST;

When we actually define the Initialize method (see Example 4.1), we can still use
LPCITEMIDLIST for the datatype of the first parameter. Then, when VB displays the
parameters for the method via IntelliSense, rather than seeing long, we will see
LPCITEMIDLIST. This acts as a reminder of what the original definition is supposed to be.

We'll do the same thing for the third parameter, which is an HKEY. An HKEY is a handle to a
registry key. Handles to anything are four bytes, so a long works in this case, too:

typedef [public] long HKEY;

We don't have to redefine anything as far as the second parameter goes. It's an
IDataObject interface pointer. And interface pointers that are derived from IUnknown or
IDispatch are automation compatible, so this portion of the definition is fine as is.

Let's talk about these parameters we have redefined for a moment. As it turns out, we will not
need the first or the third parameters of this method in order to implement a context menu
handler. But what if we did? After all, these types have been redefined as long values. Well,
an HKEY is really a void pointer-that is, a pointer that does not point to any specific
datatype. As a long, you can use this value as is with any of the registry API functions that
take HKEYs.

How do we access the pointer to the ITEMIDLIST when all we have is a long value? We can

use the RtlMoveMemory API (a.k.a. CopyMemory) to make a local copy of the UDT. This API
call is defined like so:

Public Declare Sub CopyMemory Lib "kernel32" _
 Alias "RtlMoveMemory" (pDest As Any, _
 pSource As Any, _
 ByVal ByteLen As Long)

The code on the VB side would then look something like the following:

Private Sub IShellExtInit_Initialize(_
 ByVal pidlFolder As VBShellLib.LPCITEMIDLIST, _
 ByVal pDataObj As VBShellLib.IDataObject, _
 ByVal hKeyProgID As VBShellLib.HKEY)

 Dim idlist As ITEMIDLIST

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CopyMemory idlist, ByVal pidlFolder, len(idlist)

Notice, though, that the second parameter to CopyMemory (our ITEMIDLIST that has been
redefined as a long) is passed to the function ByVal. This is because this long value
represents a raw address. We'll talk more about this later, since we will use techniques
similar to this throughout the course of this book.

Example 4.1 shows the modified definition for the IShellExtInit interface as it exists in

our type library.

Example 4.1. IShellExtInit Interface

typedef [public] long HKEY;
 typedef [public] long LPCITEMIDLIST;

 [
 uuid(000214E8-0000-0000-C000-000000000046),
 helpstring("IShellExtInit Interface"),
 odl
]
 interface IShellExtInit : IUnknown
 {
 [helpstring("Initialize")]
 HRESULT Initialize([in] LPCITEMIDLIST pidlFolder,
 [in] IDataObject *pDataObj,
 [in] HKEY hKeyProgID);
 }

Structures and IDL

We had to redefine the ITEMIDLIST pointer for the
IShellExtInit::Initialize method because the structure contained a non-

automation-compatible type. However, there are some circumstances in which we'll

deal with pointers to structures that contain types whose members are all
automation compatible. In situations like these, we don't have to redefine the
pointer to the structure as a long like we had to for ITEMIDLIST.

Consider the POINT structure, which is defined as follows:

typedef struct {
 long x;
 long y;
} POINT;

This structure's members are all automation compatible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's assume we have an interface (this is hypothetical, of course) that contains a
GetCoordinate method. This method returns a pointer to POINT that specifies
the location of some object. In IDL, its definition looks like this:

HRESULT GetCoordinate([in] POINT *location)

If we were to implement this method in VB, we could do the following:

Private Sub IBattleShip_GetCoordinate(_
 location As POINT)

 location.x = 10
 location.y = 20

End Sub

Instead of having to use CopyMemory to create a local copy of POINT, we can

access the structure directly.

The [public] attribute used in Example 4.1 makes the typedef values available through

the type library; otherwise, they would just be available for use inside of the library itself.

The [odl] attribute is required for all interfaces compiled with MKTYPLIB. MIDL supports

this attribute as well, but only for the sake of backward compatibility. The attribute itself does
absolutely nothing.

The [helpstring] attribute, as you can probably guess, denotes the text that will be
displayed for a library or an interface from within Object Browser or the Project/References
dialog.

The [in] attribute is known as a directional attribute. This indicates that the parameter is

passed from the caller to the COM component. (In the case of our context menu handler, it
indicates that the shell is passing our COM component a parameter.) Another attribute,
[out], specifies the exact opposite, which is a parameter that is passed from the component
to the caller. All parameters to a method have a directional attribute. This is either [in],
[out], or [in, out]. But VB cannot handle [out]-only parameters. Parameters
designated as [out] usually require the caller to free memory. VB likes to shield
responsibility from the programmer whenever possible, especially when it comes to memory
management.

Look at the GUID for IShellExtInit, (000214E8-0000-0000-C000-000000000046).

This GUID comes straight from the registry. It has been defined by Microsoft as the GUID for
IShellExtInit. It is important that you use the correct GUID for interfaces already defined

by the system, because, after all, that is their true name. The GUID for the library block (see
Appendix A), on the other hand, can be anything since it's being defined by us-but not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

anything you can think of off the top of your head. Whenever you need to define your own
GUID, you should use GUIDGEN (see Figure 4.4). GUIDGEN is a program used for
generating GUIDs that guarantees them to be unique (theoretically) and copies them to the
clipboard. GUIDGEN ships with Visual Studio, but if you don't have it, you can always make
your own, as Example 4.2 demonstrates.

Figure 4.4. The GUIDGEN utility

Example 4.2. Source Code for a Self-Created GUIDGEN Utility

Option Explicit

Private Type GUID
 Data1 As Long
 Data2 As Integer
 Data3 As Integer
 Data4(7) As Byte
End Type

Private Declare Function CoCreateGuid Lib "ole32.dll" _
 (g As GUID) As Long
Private Declare Sub CopyMemory Lib "kernel32" Alias _
 "RtlMoveMemory" (pDst As Any, pSrc As Any, _
 ByVal ByteLen As Long)
Private Declare Function StringFromCLSID Lib "ole32.dll" _
 (pClsid As GUID, lpszProgID As Long) As Long

Private Sub StrFromPtrW(pOLESTR As Long, strOut As String)

 Dim ByteArray(255) As Byte
 Dim intTemp As Integer
 Dim intCount As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim i As Integer

 intTemp = 1

 'Walk the string and retrieve the first byte of each WORD.
 While intTemp <> 0
 CopyMemory intTemp, ByVal pOLESTR + i, 2
 ByteArray(intCount) = intTemp
 intCount = intCount + 1
 i = i + 2
 Wend

 'Copy the byte array to our string.
 CopyMemory ByVal strOut, ByteArray(0), intCount

End Sub

Private Sub Command1_Click()

 Dim g As GUID
 Dim lsGuid As Long
 Dim sGuid As String * 40

 If CoCreateGuid(g) = 0 Then
 StringFromCLSID g, lsGuid
 StrFromPtrW lsGuid, sGuid
 End If

 InputBox "This is your GUID!", "GUID", sGuid

End Sub

Figuring out the details of this code is an exercise for you. However, this will be much easier
to do after you have finished this book, since we will discuss all of the functions in this listing
extensively.

4.4.2 IDataObject

IDataObject is not implemented by the context menu handler directly, but rather, it is a
parameter to IShellExtInit::Initialize. Therefore, it has to be defined in the type
library. IDataObject provides the means to determine which files have been right-clicked
within the shell. IDataObject is a fairly complex interface that contains nine methods:
GetData, GetDataHere, QueryData, GetCanonicalFormat, SetData,
EnumFormatEtc, DAdvise, DUnadvise, and EnumDAdvise. This interface is the soul of

OLE data transfers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In regards to context menu handlers, there is only one method, GetData, that we will use to
implement the extension. Its syntax is:

HRESULT GetData(FORMATETC * pFormatetc, STGMEDIUM * pmedium);

Its parameters are:

pFormatetc

[in] Pointer to a FORMATETC structure. The FORMATETC structure represents a

generalized clipboard format. It's defined like this:
typedef struct {
 long cfFormat;
 long ptd;
 DWORD dwAspect;
 long lindex;
 TYMED tymed;
} FORMATETC;
pmedium

[in] Pointer to a STGMEDIUM structure. STGMEDIUM is a generalized global-memory
handle used for data-transfer operations. It is defined like this:

typedef struct tagSTGMEDIUM {
 DWORD tymed;
 union {
 HBITMAP hBitmap;
 HMETAFILEPICT hMetaFilePict;
 HENHMETAFILE hEnhMetaFile;
 HGLOBAL hGlobal;
 LPWSTR lpszFileName;
 IStream *pstm;
 IStorage *pstg;
 };
 IUnknown *pUnkForRelease;
}STGMEDIUM;

Because VB does not support unions, our type library will contain a more generalized
definition of this structure:

typedef struct {
 TYMED tymed;
 long pData;
 IUnknown *pUnkForRelease;
 } STGMEDIUM;

Admittedly, the discussion of FORMATETC and STGMEDIUM is rather cryptic here. This is
intentional. When we implement IShellExtInit later in the chapter, just understand that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the shell is using IDataObject to transfer a list of files to us. IDataObject is the primary
interface involved in OLE data transfers. That's about all you need to know right now. We will
learn much more about this interface in Chapter 8.

4.4.3 IContextMenu

As Table 4.3 shows, IContextMenu contains three methods: GetCommandString,
InvokeCommand, and QueryContextMenu. This is the core of the context menu handler.

The methods of this interface provide the means to add items to a file object's context menu,
display help text in Explorer's status bar, and execute the selected command, respectively.
We'll discuss each of these methods in turn.

Table 4.3. IContextMenu

Method Description

GetCommandString Returns the help string that Explorer will display in the status bar.

InvokeCommand Implements menu commands when the menu items are selected.

QueryContextMenu Adds items to the context menu.

4.4.3.1 GetCommandString

GetCommandString allows the handler to specify the text that will be displayed in the status

bar of Explorer. This occurs when a particular context menu item is selected. Its syntax is:

HRESULT GetCommandString(
 UINT idCmd,
 UINT uFlags,
 UINT *pwReserved,
 LPSTR pszName,
 UINT cchMax
);

Its parameters are:

idCmd

The ordinal position of the selected menu item.
uFlags

A flag specifying the information to return.
pwReserved

Unused; handlers must ignore this parameter, which should be set to NULL.
pszName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A pointer to the string buffer that holds the null-terminated string to be displayed.
cchMax

Size of the buffer defined by pszName.

When the method is invoked by the shell, the shell passes the following items of information
to the GetCommandString method:

The idCmd argument to indicate which menu item is selected.

The uFlags argument to indicate what string the method is expected to return. This can

be one of the following values:

Constant Description

GCS_HELPTEXT Returns the Help text for the context menu item.

GCS_VALIDATE Validates that the menu item exists.

GCS_VERB Returns the language-independent command name for the menu item.

The cchMax argument to indicate how many bytes of memory have been allocated for

the string that the method is to pass back to the shell.

The method can then place the desired string in the pszName buffer. As a general rule, the
string should be 40 characters or less and should not exceed cchMax.

4.4.3.2 InvokeCommand

The shell calls this method to execute the command selected in the context menu. Its syntax
is:

HRESULT InvokeCommand(LPCMINVOKECOMMANDINFO lpici);

with the following parameter:

lpici

A pointer to a CMINVOKECOMMANDINFO structure that contains information about the

command to execute when the menu item is selected.

The CMINVOKECOMMANDINFO structure is defined in the Platform SDK as follows:

typedef struct _CMInvokeCommandInfo{
 DWORD cbSize;
 DWORD fMask;
 HWND hwnd;
 LPCSTR lpVerb;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LPCSTR lpParameters;
 LPCSTR lpDirectory;
 int nShow;
 DWORD dwHotKey;
 HANDLE hIcon;
} CMINVOKECOMMANDINFO, *LPCMINVOKECOMMANDINFO;

Its members are:

cbSize

The size of the structure in bytes.
fMask

Zero, or one of the following values:

Constant Description

CMIC_MASK_HOTKEY The dwHotKey member is valid.

CMIC_MASK_ICON The hIcon member is valid.

CMIC_MASK_FLAG_NO_UI
Tells the system to refrain from displaying user-interface elements, like error
messages, while carrying out a command.

hwnd

The handle of the window that owns the context menu.
lpVerb

Contains the zero-based menu item offset in the low-order word.
lpParameters

Not used for shell extensions.
lpDirectory

Not used for shell extensions.
nShow

If the command opens a window, specifies whether it should be visible or not visible.
Can be either SW_SHOW or SW_HIDE.

dwHotKey

fMask must contain CMIC_MASK_HOTKEY for this value to be valid. It contains an

optional hot key to assign to the command.
hIcon

Icon to use for any application activated by the command.

4.4.3.3 QueryContextMenu

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method is called by the shell to allow the handler to add items to the context menu. Its
syntax is:

HRESULT QueryContextMenu(
 HMENU hmenu,
 UINT indexMenu,
 UINT idCmdFirst,
 UINT idCmdLast,
 UINT uFlags
);

with the following parameters:

hmenu

Handle of the menu.
indexMenu

Zero-based position at which to insert the first menu item.
iCmdFirst

Minimum value that the handler can use for a menu-item identifier.
iCmdLast

Maximum value that the handler can use for a menu-item identifier.
uFlags

Flags specifying how the context menu can be changed. These flags are discussed
later in this chapter.

In invoking the method, the shell provides the context menu handler with all of the
information needed to customize the context menu. The QueryContextMenu method can

then use this information when calling the Win32 InsertMenu function to modify the context
menu.

The documentation for the interface states that QueryContextMenu should return the menu

identifier of the last menu item added, plus one. This presents an interesting problem,
because VB does not allow access to the HRESULT. Fortunately, there is a workaround. We

will discuss this in detail when we actually implement the interface. The complete IDL listing
for IContextMenu is shown in Example 4.3.

Example 4.3. IContextMenu

typedef [public] long HMENU;
typedef [public] long LPCMINVOKECOMMANDINFO;
typedef [public] long LPSTRVB;
typedef [public] long UINT;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[
 uuid(000214e4-0000-0000-c000-000000000046),
 helpstring("IContextMenu Interface"),
 odl
]
interface IContextMenu : IUnknown
{
 HRESULT QueryContextMenu([in] HMENU hmenu,
 [in] UINT indexMenu,
 [in] UINT idCmdFirst,
 [in] UINT idCmdLast,
 [in] QueryContextMenuFlags uFlags);

 HRESULT InvokeCommand([in] LPCMINVOKECOMMANDINFO lpcmi);

 HRESULT GetCommandString([in] UINT idCmd,
 [in] UINT uType,
 [in] UINT pwReserved,
 [in] LPSTRVB pszName,
 [in] UINT cchMax);
}

Notice the last parameter of QueryContextMenu, which takes a type of
QueryContextMenuFlags. This is actually an enumeration defined within the type library.

Enumerations are a good way to restrict the range of values that can be accepted as a
method parameter. We will define many such enumerations throughout the course of this
book. This provides some type safety for this method, though not much. The enum does not
require an attributes block, although you could add one if you wanted.
QueryContextMenuFlags is defined as follows:

typedef enum {
 CMF_NORMAL = 0x00000000,
 CMF_DEFAULTONLY = 0x00000001,
 CMF_VERBSONLY = 0x00000002,
 CMF_EXPLORE = 0x00000004,
 CMF_NOVERBS = 0x00000008,
 CMF_CANRENAME = 0x00000010,
 CMF_NODEFAULT = 0x00000020,
 CMF_INCLUDESTATIC = 0x00000040,
 CMF_RESERVED = 0xffff0000
} QueryContextMenuFlags;
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

4.5 Creating a Context Menu Handler

Let's put all of this into action and actually implement a context menu handler for the .rad file.
We'll add a context menu item that displays the noise an animal makes in a message box.
The menu item itself will be displayed in the format (Animal Name) Noise . Animal Name

will be determined from the .rad file in question. Let's begin.

4.5.1 Type Library

The first step to creating the .rad file context menu handler is to compile the type library
containing the interface definitions and constants that will be needed from VB. Constants and
UDTs will also be put into the type library with their associated interfaces. But only the groups
of constants that are needed will be put in the library. For instance, we need the menu
constants MF_BYPOSITION , MF_STRING , and MF_SEPARATOR . Therefore, the library will
contain all of the MF_ constants. We don't need any of the menu state constants (MFS_), so

they will not be included with the library.

The complete listing for the type library that will be used throughout the course of this book
can be found in Appendix A . To compile the library, you need to have MKTYPLIB in your

path. MKTYPLIB takes one argument on the command line, the name of the ODL file
containing the type library definition. To compile, simply type:

mktyplib vbshell.odl

from the command line. If everything is in order, this should produce a file named vbshell.tlb .
This is the type library.

To use this library from Visual Basic, you should select Project References . . . from the

main menu. You should then browse to the location of the .tlb file and select it. This will do
two things. First, it will register the type library at that location; second, it will make it available
to the References dialog for all future projects.

4.5.2 The Project

The context menu handler begins life as an ActiveX DLL project called RadEx. Our first step
is to register the type library so that interface definitions are available for us to implement.
That is done by selecting Project References from VB and then Browse (the library is not
registered, so it will not be in the list). Navigate to the library that is associated with this
chapter and add the reference. The library will be available in the References list box from
this point on.

Next, add the class that will implement the handler to the project. Call this class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

clsContextMenu. With the class added to the project, IShellExtInit and IContextMenu
can be implemented as follows:

Option Explicit

Implements IContextMenu
Implements IShellExtInit

4.5.2.1 Implementing IShellExtInit

Let's implement IShellExtInit::Initialize first. Notice that, in the code shell that
Visual Basic creates for the Initialize method, the parameters are prefixed with the
name of the library in which their definitions are located:

Private Sub IShellExtInit_Initialize(_
 ByVal pidlFolder As VBShellLib.LPCITEMIDLIST, _
 ByVal pDataObj As VBShellLib.IDataObject, _
 ByVal hKeyProgID As VBShellLib.HKEY)

In some cases, you might want to add a private variable to your class to hold the
IDataObject reference passed in by the shell, since from it you can determine how many
files are selected in the user interface and what the names of those files happen to be. We
will use IDataObject to get the selected files from IShellExtInit::Initialize

immediately, but it may be preferable to wait until a menu item is actually selected before the
selected files are determined (possibly for performance reasons). In this particular case,
saving the IDataObject reference is not necessary. Rather than hold a reference to
IDataObject , we will use pDataObj directly and build an array containing the names of

the selected files. This array will be kept as private data. The entire listing for the
Initialize method is shown in Example 4.4 .

Example 4.4. Implementing IShellExtInit::Initialize

'handler.bas

Public Declare Function DragQueryFile Lib "shell32.dll" _
 Alias "DragQueryFileA" (ByVal HDROP As Long, _
 ByVal pUINT As Long, ByVal lpStr As String, _
 ByVal ch As Long) As Long

Public Declare Function ReleaseStgMedium Lib "ole32.dll" _
 (pMedium As STGMEDIUM) As Long

'clsContextMenu.cls

Option Explicit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implements IContextMenu
Implements IShellExtInit

Private m_sFiles() As String
Public m_nFiles As Byte

Private Sub IShellExtInit_Initialize(_
 ByVal pidlFolder As VBShellLib.LPCITEMIDLIST, _
 ByVal pDataObj As VBShellLib.IDataObject, _
 ByVal hKeyProgID As VBShellLib.HKEY)

 Dim FmtEtc As FORMATETC
 Dim pMedium As STGMEDIUM
 Dim i As Long
 Dim lresult As Long
 Dim sTemp As String

 With FmtEtc
 .cfFormat = CF_HDROP
 .ptd = 0
 .dwAspect = DVASPECT_CONTENT
 .lindex = -1
 .TYMED = TYMED_HGLOBAL
 End With

 pDataObj.GetData FmtEtc, pMedium

 m_nFiles = DragQueryFile(pMedium.pData, &HFFFFFFFF, _
 vbNullString, 0)

 ReDim m_sFiles(m_nFiles - 1)

 For i = 0 To (m_nFiles - 1)
 sTemp = String(1024, 0)
 lresult = DragQueryFile(pMedium.pData, i, sTemp, _
 Len(sTemp))
 If (lresult > 0) Then
 m_sFiles(i) = Left$(sTemp, lresult)
 End If
 Next

 ReleaseStgMedium pMedium

End Sub

There's quite a bit going here, so let's just take it from the top, starting with the call to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetData. GetData takes two parameters: an [in] parameter containing a pointer to a
FORMATETC structure, and an [in, out] parameter that returns a pointer to a STGMEDIUM

structure. The function is called like so:

pDataObj.GetData FmtEtc, pMedium

The parameters are as follows:

FORMATETC

FORMATETC is a generalized clipboard format used by OLE wherever data format

information is required. The structure contains the clipboard format, a pointer to a target
device, the view of the data, how much of the data should be transferred, and the
medium used to transfer the data. The members of the structure are assigned values in
the following code fragment from Example 4.4 :

With FmtEtc
 .cfFormat = CF_HDROP
 .ptd = 0
 .dwAspect = DVASPECT_CONTENT
 .lindex = -1
 .TYMED = TYMED_HGLOBAL
 End With

In this case, the data transferred will be a handle to a drop structure (our list of files) specified
by CF_HDROP . The target device (specified by ptd) is 0, because we don't care about its

value; it's actually device-independent. DVASPECT_CONTENT means we want the actual data.

A clipboard format can support more than one aspect or view. Here, we don't need a view,
we just need the data. lindex is unimportant to the discussion. Last is the

TYMED_HGLOBAL flag, which means the transfer will take place using global memory (as
opposed to a file or structured storage objects). The TYMED member specifies which member
of the STGMEDIUM union will be valid.

Pointers

There are three undocumented functions that allow the use of pointers from Visual

Basic. These functions are VarPtr , StrPtr , and ObjPtr . VarPtr will return the

address of all VB datatypes (even UDTs), except for Strings. StrPtr is used to get

the address of a String. ObjPtr is used to get the address of an Object. Internally,

these three functions are all mapped to one function, VarPtr . But use these
functions with caution. StrPtr and VarPtr will not return the same value for a String.

StrPtr returns a pointer to the Unicode string value, and VarPtr returns the address
where VB stores the pointer to the Unicode BSTR. For more information on VB's
undocumented pointer functions, see Appendix B .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

STGMEDIUM

The second parameter to GetData is a pointer to a STGMEDIUM union. The union is
based on the type of medium, which in this case is TYMED_HGLOBAL (specified by
FORMATETC). Therefore, under normal circumstances, the union member hGlobal

would contain the handle to the drop structure. However, since this structure has been
redefined, the pData member will always point to the data. This handle can be passed

directly to the Win32 DragQueryFile function, which then allows us to find out how
many files have been selected:

nFiles = DragQueryFile(pMedium.pData, &HFFFFFFFF, vbNullString, 0)

Passing DragQueryFile the value &HFFFFFFFF tells it that we want the number of files
selected. We can also pass it a number between and the total number of files selected to get
the name of the file itself.

The value for nFiles allows us to redimension our file array. DragQueryFile can then be

called in a loop with the index of the requested file supplied as the second argument to the
function. The filename (which is written to the buffer that passed as the third argument to the
function) is retrieved and stored in the file array. If multiple files of different types are selected
and the file with primary focus is a .rad file, our handler will still be called. But we have to filter
these extraneous types if necessary. To do this, we can have
IContextMenu::InvokeCommand loop through this array and process the context menu
command for every valid file that is selected.

Here's one last detail: the STGMEDIUM structure has been allocated by the call to GetData. It
is common to see this structure populated by a "provider" outside of the code in which it is
being used, as is the case in Example 4.4 . This means freeing the memory is our

responsibility, and that is what the final call to ReleaseStgMedium (a routine found in

Ole32.dll) is doing.

4.5.2.2 Implementing IContextMenu

The IContextMenu interface is responsible for displaying the text of the menu item, for

showing help text associated with the menu item, and for defining the action to be performed
if the menu item is selected. In this section, we'll examine the code for the methods
responsible for those operations.

GetCommandString

The source code for the GetCommandString method is shown in Example 4.5 . GetCommandString is called

by the shell for the purpose of retrieving help text for a context menu item. This help text is then displayed in the
status bar. This method is notable in that this is the first time we have to worry about implementing a method
that will run under both Windows 98 and Windows NT. As you might guess, this has to do with how both
platforms deal with strings. Windows 98 uses ANSI strings internally; Windows NT uses Unicode. VB uses
Unicode strings internally, regardless of what platform is being used. Confusing, to say the least.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The menu item in question is determined by the idCmd parameter passed in by the shell. uType indicates the

flags that inform us of the information being requested. We will return the same string regardless of these flags.
The only distinction we are interested in is whether the values should be ANSI or Unicode. (There are separate
ANSI and Unicode versions of each constant stored to uType .) A buffer for the help string is provided through
the pszName parameter. cchMax is the size of this buffer.

The ANSI portion of the listing uses StrConv to convert the string from Unicode to ANSI. From this point
forward, a common tactic is used. The string is copied into a byte array, and its starting address is copied to the
memory location provided by the shell.

Example 4.5. GetCommandString Listing

Private Sub IContextMenu_GetCommandString(_
 ByVal idCmd As VBShellLib.UINT, _
 ByVal uType As VBShellLib.UINT, _
 ByVal pwReserved As VBShellLib.UINT, _
 ByVal pszName As VBShellLib.LPSTRVB, _
 ByVal cchMax As VBShellLib.UINT)

 Dim szName As String
 Dim bszName() As Byte

 Dim sMenuHelp As String

 Select Case idCmd
 Case 0 'Noise
 szName = "Display Animal Noise"

 'Other menu items would be added like so:

 'Case 1 'Menu item 2
 ' szName = "Menu Item 2"

 'Case 2 'Menu item 3
 ' szName = "Menu Item 3"
 End Select

 szName = Left$(szName, cchMax) & vbNullChar

 Select Case uType
 Case GCS_VERBA, GCS_HELPTEXTA, GCS_VALIDATEA
 If (szName <> "") Then
 bszName = StrConv(szName, vbFromUnicode)
 CopyMemory ByVal pszName, _
 bszName(0), _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 UBound(bszName) + 1
 End If
 Case GCS_VERBW, GCS_HELPTEXTW, GCS_VALIDATEW
 If (szName <> "") Then
 bszName = szName
 CopyMemory ByVal pszName, _
 bszName(0), _
 UBound(bszName) + 1
 End If
 End Select

End Sub

InvokeCommand

InvokeCommand is called when the shell is ready to execute the context menu command. Its source code is
shown in Example 4.6 . The implementation of this method is fairly straightforward. Of interest is the pointer to
the CMINVOKECOMMANDINFO structure that is passed in by the shell. CMINVOKECOMMANDINFO is one of those
structures that mean something different depending on the context in which it is used. Check the Platform SDK
for full details on this one.

This structure, while weighty as far as information goes, contains only one member that is of interest to us:
lpVerb . The low-order word of lpVerb contains the menu identifier of the command being invoked.

By the time the shell calls InvokeCommand , we already have an array of the selected files stored as private

data within our component. This allows us to grab every file in a loop, to find out the animal type of the file with

a call to GetPrivateProfileString , and to display the appropriate information.

Example 4.6. InvokeCommand Listing

Private Sub IContextMenu_InvokeCommand(ByVal lpcmi As VBShellLib.LPCMINVOKECOMMANDINFO)

 Dim cmi As CMINVOKECOMMANDINFO
 CopyMemory cmi, ByVal lpcmi, Len(cmi)

 Dim i As Long
 Dim sNoise As String
 sNoise = Space(255)

 If LOWORD(cmi.lpVerb) = 0 Then
 For i = 0 To m_nFiles - 1

 GetPrivateProfileString "Animal", _
 "Noise", _
 "Unknown", _
 sNoise, _
 Len(sNoise), _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 m_sFiles(i)

 MsgBox Trim(sNoise), vbOKOnly, "Animal Noise"

 Next i
 End If

End Sub

The LOWORD function is defined in handler.bas . There is also a HIWORD function thrown in for good measure. The
two functions look like this:

Public Function LOWORD(ByVal lVal As Long) As Integer
LOWORD = lVal And &HFFFF&
End Function

Public Function HIWORD(ByVal lVal As Long) As Integer
HIWORD = 0
If lVal Then
HIWORD = lVal \ &H10000 And &HFFFF&
End If
End Function

QueryContextMenu

QueryContextMenu is used to add menu items to a file object's context menu. Implementing
IContextMenu::QueryContextMenu is going to be a tricky process. The Platform SDK states that this

method must return a positive integer representing the menu identifier of the last menu item added plus one.
You might have noticed that these interface methods are implemented as subs, not functions. Even though we
are dealing with a sub, VB still returns a value for each of these methods: a if everything is okay or an error
code that is available through the Err object. We have no direct access to the value returned from these
methods.

There is a solution to this dilemma. We will write a replacement function for QueryContextMenu and put it in a
code module located in the project. Then we will find the vtable entry for QueryContextMenu in our object

(see Chapter 1). We will use the AddressOf operator, in conjunction with CopyMemory , and swap the two

addresses. Our new function, QueryContextMenuVB , will be called instead of the class implementation. Of

course, QueryContextMenuVB will be a function, and we can return any value we want. When the object is
released, the two addresses will be swapped back for posterity's sake. Our troubles are solved.

The addresses of the two functions need to be swapped as quickly as possible. Therefore, the Initialize and
Terminate events (which are shown in Example 4.7 and Example 4.9 , respectively) of the context menu
handler class are used for this purpose.

Example 4.7. Swapping vtable Entries

Private m_pOldQueryCtxMenu As Long

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub Class_Initialize()

 Dim pVtable As IContextMenu
 Set pVtable = Me

 m_pOldQueryCtxMenu = SwapVtableEntry(ObjPtr(pVtable), _
 4, AddressOf QueryContextMenuVB)

End Sub

A variable of type IContextMenu is set to Me . This gives us a pointer to the IContextMenu portion of the vtable.
This memory location is copied into pVtable , effectively giving us a pointer to the IContextMenu portion of our

object's vtable. Then, SwapVtableEntry (shown in Example 4.8) is called with the address of the first method of
IContextMenu (this is the portion of the vtable where IContextMenu begins), the relative position in the vtable of

the method we want to replace (in this case, 4-we'll see why in a few moments), and the address of the new
function. One thing of interest in SwapVtableEntry is the call to VirtualProtect . VB has marked the object memory as
protected. This call changes the access permissions, allowing us to swap the addresses.

Example 4.8. SwapVtableEntry Listing

Public Function SwapVtableEntry(pObj As Long, _
 EntryNumber As Integer, _
 ByVal lpfn As Long) As Long

 Dim lOldAddr As Long
 Dim lpVtableHead As Long
 Dim lpfnAddr As Long
 Dim lOldProtect As Long

 CopyMemory lpVtableHead, ByVal pObj, 4
 lpfnAddr = lpVtableHead + (EntryNumber - 1) * 4
 CopyMemory lOldAddr, ByVal lpfnAddr, 4

 Call VirtualProtect(lpfnAddr, 4, _
 PAGE_EXECUTE_READWRITE, _
 lOldProtect)

 CopyMemory ByVal lpfnAddr, lpfn, 4
 Call VirtualProtect(lpfnAddr, 4, lOldProtect, lOldProtect)

 SwapVtableEntry = lOldAddr

End Function

How do we know where QueryContextMenu is located in relation to this address? Well, we can't look at our class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

file for clues, because VB just displays all of the implemented methods in alphabetical order. This is not an accurate
representation of our object.

To determine the vtable order of the method in question, look at the ODL listing. The methods are listed in the order
in which they appear in the vtable. You can also use OLE View to get this information (should ODL be unavailable).
Object Browser, however, does not provide it; it just lists the methods in alphabetical order. If you examine the
IContextMenu interface definition in this manner, you will see that QueryContextMenu is the first method listed in
the interface. Taking into consideration that the interface is derived from IUnknown , which contains three methods,

QueryContextMenu is the fourth method. Thus, we pass 4 to SwapVtableEntry .

When the object terminates, the addresses can be switched back in the same manner, as shown in the class
Terminate event handler in Example 4.9 .

Example 4.9. Restoring vtable Entries

Private Sub Class_Terminate()
 Dim pVtable As IContextMenu
 Set pVtable = Me
 m_pOldQueryCtxMenu = SwapVtableEntry(ObjPtr(pVtable), _
 4, m_pOldQueryCtxMenu)
End Sub

QueryContextMenuVB

QueryContextMenuVB gives us some insight into just how a class works. We already know that a class keeps
track of its member functions with the vtable. But once we are inside one of those member functions, how is it
that we can have access back to the class? To the other methods? To Private and Public data members? Well,
when a member function is called, a pointer to the class is also passed with the parameters to the function. VB
(also C++) handles this behind the scenes, making everything look nice and smooth. C++ programmers refer to
the parameter as the this pointer. VB can use this pointer to resolve all references back to the object.

QueryContextMenuVB must make allowances for this parameter, because it is not a part of a class; it is a
function defined in a code module. This means we have to add our own this pointer to the parameter list.
Example 4.10 shows how we can then define a local copy of clsContextMenu and use the this pointer to get a

reference back to our class. This is really cool, because we don't have to use a global variable to get at our
class now.

Example 4.10. QueryContextMenuVB Implementation

'ContextMenu.bas

Public Function QueryContextMenuVB (ByVal this As IContextMenu, _
 ByVal hMenu As Long, _
 ByVal indexMenu As Long, _
 ByVal idCmdFirst As Long, _
 ByVal idCmdLast As Long, _
 ByVal uFlags As Long) As Long

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim ctxMenu As clsContextMenu
 Set ctxMenu = this

The main task of QueryContextMenuVB (which we seem to have ignored for a while) is to add menu items to the
context menu. First, the circumstance in which the context menu is activated needs to be determined. This is
accomplished with the uFlags parameter that is passed in by the shell. The following code fragment shows the

various situations in which the context menu can be activated. The flag we are primarily interested in is
CMF_EXPLORE :

If (uFlags And &HF) = CMF_NORMAL Then

 'Implement this for Drag-and-Drop handler.

ElseIf (uFlags And CMF_VERBSONLY) Then

 'This is a context menu for a shortcut item.

ElseIf (uFlags And CMF_EXPLORE) Then

 'Right-click on file in Explorer.
 'This is what we are interested in for our context
 'menu.

ElseIf (uFlags And CMF_DEFAULTONLY) Then

 'Indicates a default action is being performed (typically a
 'user is double-clicking on the file).

End If

Once it has been determined that files have been right-clicked in Explorer, the context menu
item can be added accordingly. The menu item added is based on the number of files
selected and the type of animal represented by the file. The animal type is determined with a

call to GetPrivateProfileString :

ElseIf (uFlags And CMF_EXPLORE) Then

 'Right-click on file in Explorer

 If ctxMenu.FileCount > 1 Then
 sMenuItem = "Bunches o' Animal noises"
 Else
 GetPrivateProfileString "Animal", _
 "Type", _
 "Unknown", _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sAnimal, _
 Len(sAnimal), _
 ctxMenu.FileName

 sAnimal = Trim(sAnimal)
 sAnimal = Left$(sAnimal, Len(sAnimal) - 1)

 sMenuItem = sAnimal & "Noise"

 End If

 Call InsertMenu(hMenu, _
 indexMenu, _
 MF_STRING Or MF_BYPOSITION, _
 idCmd, _
 sMenuItem)

 idCmd = idCmd + 1
 indexMenu = indexMenu + 1

 'If you want to add another item just repeat the following code.
 '
 'sMenuItem = "Animal Name"
 'Call InsertMenu(hMenu, _
 ' indexMenu, _
 ' MF_STRING Or MF_BYPOSITION, _
 ' idCmd, _
 ' sMenuItem)
 '
 'idCmd = idCmd + 1
 'indexMenu = indexMenu + 1

 'etc. , etc., etc.
 '
 'Do not increment idCmd for separators!
 'IndexMenu is always incremented.

 Set ctxMenu = Nothing

 'Lastly, the number of menu items added + 1 is returned.
 QueryContextMenuVB = indexMenu

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Drag-and-Drop Handlers

Drag-and-drop handlers are displayed when a user drags a file with the right
mouse button. They are really just specialized context menu handlers; therefore,
they don't get a chapter of their own.

To implement one, you would need to insert menu items based on the context
menu flag being equal to CMF_NORMAL , and only equal to CMF_NORMAL . It cannot
be AND ed with any other value. In addition, you would have to add the handler to
the registry as shown in Figure 4.5 .

The handler is also added to the approved shell extensions list in the registry (see
Chapter 2).

Figure 4.5. Defining a drag-and-drop handler in the registry

4.5.3 Registration and Operation

Last but not least, the handler needs to be registered. As always, the file rad.reg that is
included with this chapter's downloadable code contains the appropriate registry entries.
Example 4.11 contains the entire listing. Note that items in square brackets must exist on the
same line (the listing is formatted to fit on the page).

Example 4.11. rad.reg

REGEDIT4

[HKEY_CLASSES_ROOT\.rad]
@ = "radfile"

[HKEY_CLASSES_ROOT\radfile]

[HKEY_CLASSES_ROOT\radfile]
@ = "Rudimentary Animal Data"

[HKEY_CLASSES_ROOT\radfile\shellex]

[HKEY_CLASSES_ROOT\radfile\shellex\ContextMenuHandlers]
@ = "RadFileMenu"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[HKEY_CLASSES_ROOT\radfile\shellex\ContextMenuHandlers\RadFileMenu]
@ = "{D4F9CECF-E84E-11D2-BB7C-444553540000}"

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved]
"{D4F9CECF-E84E-11D2-BB7C-444553540000}" = "RAD file context menu extension"

These are the same entries that were discussed in Chapter 3 . Review the entries until you
become familiar with them. It shouldn't take too long. If you want to register the extension by
hand, you will need to find the CLSID for the object. The easiest way to do that is to search
under HKEY_CLASSES_ROOT for the programmatic identifier , or ProgID, of the extension

object. The ProgID is formed by appending the class name to the project name with a period
in the middle. So look for "RadEx.clsContextMenu," and there should be a CLSID subkey
with the needed value.

After you have registered the handler, kill off any instances of Explorer you might have
running. The handler, which is shown in Figure 4.6 , will be available with the next instance

you run. There are sample .rad files included with the source of this book that you can use to
test the handler.

Figure 4.6. Context menu in action

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 5. Icon Handlers

Icons are defined for a particular file class by adding a DefaultIcon key under the files

association key in the registry. DefaultIcon is then set to a path containing the .exe or .dll

that contains the icon to be displayed and the zero-based index of that icon within the file, if
multiple icons are present. Figure 5.1, for example, shows the relevant registry keys for our
example .rad file type, which is configured to use the second icon in notepad.exe. Every icon
for the file class in question will have the same icon when this key is registered.

Figure 5.1. Registering the default icon for a file class

Icon handlers allow file objects of the same type to display different icons on a per-instance
basis. This means that such things as the value of particular file attributes or state

information internal to the file can be conveyed to the user through the shell. Take the .rad
file, for instance. Using an icon handler, we could display a picture of the animal represented
by the file (for a limited number of animals, of course), the age of the animal, the gender, or
whatever.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

5.1 How Icon Handlers Work

Icon handlers are required to implement two interfaces: IPersistFile and
IExtractIcon. These interfaces are interesting from a programmatic standpoint for several
reasons. IPersistFile is not directly derived from IUnknown; it's derived from IPersist.

And as luck would have it, VB doesn't like to implement interfaces that are not directly
derived from IUnknown or IDispatch.

IExtractIcon is the general name given to one of two interfaces: IExtractIconA or
IExtractIconW. These interfaces contain the ANSI and Unicode versions, respectively, of
IExtractIcon. As fate would have it, we will have to implement both of them. The
interfaces are defined almost the same (typedefs aside). The only difference is how the
methods will be implemented. Also, one of the methods, IExtractIcon::Extract, has to
return the value S_FALSE (1). In other words, a vtable swap is in order.

Here's how custom icon handlers work. When the shell is about to display an icon for a file
object (for the first time), it checks for the following registry key to determine if there is an icon
handler for that particular type:

HKEY_CLASSES_ROOT\
 radfile\
 shellex\
 IconHandler

If an icon handler is present, the shell loads it and attempts to call IPersistFile::Load.
One of the parameters to the Load method is a pointer to the name of the file whose icon the
shell is requesting. Typically, an implementor of IPersistFile would store the name of the

file object in a private member variable for later use. The other five methods of
IPersistFile are ignored.

The shell then calls IExtractIcon::GetIconLocation to get the icon for the file object
in question. If GetIconLocation fails, the shell will use the icon specified by the
DefaultIcon registry key. If it succeeds, then the shell examines the pwFlags parameter

of GetIconLocation to determine if the GIL_NOTFILENAME bit is turned on. If it is, the

shell assumes that the icon handler wants to extract its own icon and calls
IExtractIcon::Extract.

Basically, if the icon to be displayed resides in a file, GetIconLocation can provide all the

necessary details for displaying the icon. If the icons exist in an image list control or you want
to handle loading the icons yourself, Extract is used for this purpose. Extract provides
the icons for Explorer in the form of two handles, or HICONs. One handle is the small icon (16

 16). The other is for the normal-sized icon (32 32).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

5.2 Icon Handler Interfaces

Now that you know how an icon handler works, let's discuss the interfaces involved in a little
more detail.

5.2.1 IPersistFile

IPersistFile inherits one method, GetClassID , from IPersist . IPer-sistFile
contains an additional five methods (see Table 5.1): IsDirty , Load , Save ,
SaveCompleted , and GetCurFile . Typically, IPersistFile is implemented when you
want to read or write information from a file. There are many more scenarios. You are
encouraged to learn more about this interface, because in the world of COM, this interface
gets some major game time. In our case, however, we are only interested in one method,
and that's Load .

We do have a small problem with IPersistFile . It's derived from IPersist , and VB
does not like interfaces that are derived from anything other than IUnknown or IDispatch .

This is because Microsoft believes that Visual Basic objects should always support late
binding and, hence, should always be derived from IDispatch . So what do we do? Before
addressing this question, let's look at the IDL in Example 5.1 , which shows that
IPersistFile is derived from IPersist . IPersistFile has inherited the IPersist
method GetClassID .

Example 5.1. VB Will Not Accept This Definition of IPersistFile

[
 uuid(0000010c-0000-0000-C000-000000000046),
 helpstring("IPersist Interface"),
 odl
]
interface IPersist : IUnknown
{
 HRESULT GetClassID([in, out] CLSID *lpClassID);
}

[
 uuid(0000010b-0000-0000-C000-000000000046),
 helpstring("IPersistFile Interface"),
 odl
]
interface IPersistFile : IPersist

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{

 HRESULT IsDirty();

 HRESULT Load([in] LPCOLESTR pszFileName,
 [in] DWORD dwMode);

 HRESULT Save([in] LPCOLESTR pszFileName,
 [in] BOOL fRemember);

 HRESULT SaveCompleted([in] LPCOLESTR pszFileName);

 HRESULT GetCurFile([in, out] LPOLESTR *ppszFileName);

}

Fortunately, the solution to this problem is very easy. We will simulate the inheritance by
deriving IPersistFile from IUnknown . Then we add the method from IPersist that
would have been a part of the interface via inheritance directly to the definition listing for
IPersistFile . In other words, we remove the inheritance. The resulting IDL file is shown
in Example 5.2 .

Example 5.2. IPersist Is Added to IPersistFile to Simulate Inheritance

[
 uuid(0000010b-0000-0000-C000-000000000046),
 helpstring("IPersistFile Interface"),
 odl
]

// original - interface IPersistFile : IPersist

interface IPersistFile : IUnknown
{

 // IPersist is added to IPersistFile definition
 HRESULT GetClassID([in, out] CLSID *lpClassID);

 //IPersistFile starts here
 HRESULT IsDirty();

 HRESULT Load([in] LPCOLESTR pszFileName,
 [in] DWORD dwMode);

 HRESULT Save([in] LPCOLESTR pszFileName,
 [in] BOOL fRemember);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HRESULT SaveCompleted([in] LPCOLESTR pszFileName);

 HRESULT GetCurFile([in, out] LPOLESTR *ppszFileName);

}

Table 5.1 shows the methods supported by IPersistFile . We'll look at only one of these,
the Load method, in detail, since it's the only method that we'll actually have to write any
code for.

Table 5.1. IPersistFile

Method Description

GetClassID This method is inherited from IPersist . It should return the CLSID of an object.

IsDirty Checks an object for changes since it was last saved.

Load Opens the selected file and initializes the object.

Save Saves the object into the selected file.

SaveCompleted Notifies the object that it can write to its file.

GetCurFile Gets the name of the file that is currently associated with the object.

5.2.1.1 Load

The Load method is invoked by the shell immediately after the icon handler is loaded. The
Load method is responsible for providing the icon handler with the name of the file that is to
be displayed.

The documentation for the Load method states that its purpose is to open a specified file and
initialize an object from the file contents. This is an important distinction to remember. Load

does not load a file. It loads an object based on the contents of a file. The how and the why is
left to the implementor. This function is only used for initialization. It does not return the
object to the caller. Its syntax is as follows:

HRESULT Load(LPCOLESTR pszFileName, DWORD dwMode);

Its parameters are:

pszFileName

A pointer to the name of the file for which the shell is requesting an icon to display.
dwMode

The access mode (which is ignored in the case of icon handlers).

Because the first parameter actually comes to us as a 4-byte address, we will have to use the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CopyMemory API and the undocumented StrPtr function to retrieve the actual string value of
the filename. This will be discussed in more detail in the implementation section of this
chapter.

5.2.2 IExtractIcon

IExtractIcon is actually IExtractIconA or IExtractIconW , depending upon the

circumstance. The original definition of this interface is found in a header file named shlobj.h .
For those of you with Visual C++ installations, take a look at the file. It contains most of the
interfaces used by the shell with liberal commenting, making it a really good source of
information. It also will show you how to define an interface in straight C++. That's right;
there's no IDL in this file.

Preprocessor definitions in the file are used to determine whether IExtractIcon is being

compiled for Windows 9x or Windows NT and Windows 2000. The appropriate interface,
IExtractIconA or IExtractIconW , is then used. Typically, interface names ending in

"A" denote the Windows 9x version and the interface names ending in "W" are for Windows
NT and Windows 2000. We do not have the luxury of a preprocessor in VB. We will have to
define both interfaces (each has a distinct GUID) and implement both interfaces, as well. The
complete listing for IExtractIcon is shown in Example 5.3 .

Example 5.3. IExtractIconA and IExtractIconW

typedef [public] long HICON;
typedef [public] long LPSTRVB;
typedef [public] long UINT;

typedef enum {
 GIL_SIMULATEDOC = 0x0001,
 GIL_PERINSTANCE = 0x0002,
 GIL_PERCLASS = 0x0004,
 GIL_NOTFILENAME = 0x0008,
 GIL_DONTCACHE = 0x0010
} GETICONLOCATIONRETURN;

[
 uuid(000214eb-0000-0000-c000-000000000046),
 helpstring("IExtractIconA Interface"),
 odl
]
interface IExtractIconA : IUnknown
{
 HRESULT GetIconLocation([in] UINT uFlags,
 [in] LPSTRVB szIconFile,
 [in] UINT cchMax,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in,out] long *piIndex,
 [in,out] GETICONLOCATIONRETURN *pwFlags);

 HRESULT Extract([in] LPCSTRVB pszFile,
 [in] UINT nIconIndex,
 [in,out] HICON *phiconLarge,
 [in,out] HICON *phiconSmall,
 [in] UINT nIconSize);
}

[
 uuid(000214fa-0000-0000-c000-000000000046),
 helpstring("IExtractIconW"),
 odl
]
interface IExtractIconW : IUnknown
{
 HRESULT GetIconLocation([in] UINT uFlags,
 [in] LPWSTRVB szIconFile,
 [in] UINT cchMax,
 [in,out] long *piIndex,
 [in,out] GETICONLOCATIONRETURN *pwFlags);

 HRESULT Extract([in] LPWSTRVB pszFile,
 [in] long nIconIndex,
 [in,out] HICON *phiconLarge,
 [in,out] HICON *phiconSmall,
 [in] UINT nIconSize);
}

As its name indicates, IExtractIcon is concerned with retrieving the icon to be displayed
by the context icon handler. The methods of this interface are shown in Table 5.2 .

Table 5.2. IExtractIcon

Method Description

Extract Specifies the location of an icon.

GetIconLocation Retrieves the location and index of an icon.

5.2.2.1 GetIconLocation

GetIconLocation is used by the shell to retrieve the location and index of an icon from the
icon handler. If the icon is in a DLL or EXE, then GetIconLocation returns the filename

and the index of the icon as it resides in the resource section of that file; otherwise, the
method returns a value of GIL_NOTFILENAME in the pwFlags parameter. Its syntax is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HRESULT GetIconLocation(UINT uFlags, LPSTR szIconFile, INT cchMax,
LPINT piIndex, UINT *pwFlags);

Its parameters are the following:

uFlags

[in] Icon state flags. This value is supplied by the shell.
szIconFile

[in, out] The address that receives the name and location of the icon file from the

icon handler. This is a null-terminated string.
cchMax

[in] Size of the buffer that receives the icon location. This is usually set to the value of
MAX_PATH and defines the total number of characters that the icon handler can write to
szIconFile .

piIndex

[in, out] The zero-based ordinal position of the icon in the file whose path and name
are written to the szIconFile buffer. The icon handler provides the shell with this

value if the icon is to be extracted from a file.
pwFlags

[in, out] A value from the GETICONLOCATIONRETURN enumeration. This parameter

tells the shell how it should handle the icon file that is returned.

The first parameter, uFlags , is of no concern to us, so we can skip it for now. It will come

into play later when we create namespace extensions (see Chapter 12).

The second parameter, szIconFile , is a pointer. If the icon handler uses
GetIconLocation (as opposed to Extract) to provide the icon file, szIconFile should

point to a buffer that contains a valid filename upon successful completion. This is a long
value. We can't assign a string directly to szIconFile . You should start getting used to the

idea of using pointers now. Out of necessity, we will be using pointers to strings, rather than
the strings themselves, for most of the book.

The third parameter, cchMax , is merely the size of the buffer that contains the icon

filename.

Upon successful completion, the fourth parameter contains the index of the icon to be
displayed. This is the index of the icon as it appears in the resource section of the file
specified by szIconFile .

The icon handler should assign the fifth parameter one or more of the values from the
GETICONLOCATIONRETURN enumeration defined in Table 5.3 . These can be OR ed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

together.

Table 5.3. The GETICONLOCATIONRETURN Enumeration

Constant Description

GIL_DONTCACHE The physical image bits of the icon should not be cached by the caller.

GIL_NOTFILENAME
The location of the icon is not a filename/index pair. If this flag is set when the method
returns, the shell will then call the Extract method for the icon location.

GIL_PERCLASS
All objects of this class have the same icon. There is no need to use this flag, since it defeats
the purpose of an icon handler.

GIL_PERINSTANCE Each object of this class has its own icon.

GIL_SIMULATEDOC The icon is the one registered for the file object's document type.

5.2.2.2 Extract

Extract is called by the shell after the icon handler supplies a value of GIL_NOTFILENAME for
the pwFlags parameter of the GetIconLocation method and is used to provide the

location of an icon (or the handle to an icon) that does not reside as a resource in a file.
There are various reasons for returning a handle rather than the filename and index at which
the icon can be found. For example, in Chapter 12 , when we implement a namespace
extension, the icons used will reside in an image list. This is for reasons of speed.
Repeatedly opening and closing a file to retrieve an icon is very slow. If you have to access a
file a few hundred times just to get an icon, you might consider using the Extract method
instead. The syntax for Extract is as follows:

HRESULT Extract(LPCSTR pszFile, UINT nIconIndex, HICON *phiconLarge, HICON *phiconSmall, UINT nIconSize);

Its parameters are:

pszFile

[in] The icon filename. This is the same value returned by the GetIconLocation

method.
nIconIndex

[in] The icon's index. This is the same value returned by the GetIconLocation

method.
phiconLarge

[in, out] Handle to the large icon.
phiconSmall

[in, out] Handle to the small icon.
nIconSize

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[in] Size of the icon being requested by the shell. Icons are always square, so only
one dimension needs to be specified.

pszFile and nIconIndex are the same values returned by GetIconLocation . If

Extract returns S_FALSE (an OLE-defined error), then these values must contain a valid
filename/index pair. Otherwise, phiconLarge and phiconSmall should contain valid

handles to icons, such as from a call to the Win32 LoadIcon function or the

ImageList_GetIcon function in COMCTL32.DLL .

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

5.3 Creating an Icon Handler

Our icon handler is going to be very impractical, but it is going to be a great example. We are
going to create icons for several animal types, including dogs, cats, fish, cows, and
armadillos. There will also be an icon representing an unknown animal. Our icon handler will
allow us to determine which animal we are dealing with and display the appropriate icon in
the shell. The icons will be stored in a resource file that we will include in the server. Each
animal will have a 16 16 icon that will be displayed by the shell for the file object and a 32

 32 icon that is used by the Property Page for the file. We have a little bit of work to do, so
let's get started.

We aren't going to create a new project for the icon handler (although you may if you wish).
We are simply going to continue with the project we started in Chapter 4 . This brings up an
interesting point. Our server can contain as many objects as we wish. There doesn't have to
be a one-to-one relationship between the COM server and the server object (in this case a
shell extension). In fact, every shell extension we create in the book will reside in one COM
server. Each shell extension in the book will have its own class. But you don't have to
implement separate classes, either. You could have just one class with all the appropriate
interfaces implemented inside of it to support multiple shell extensions. It would be
gargantuan and hard to get around in, but you could do it!

Let's begin the project by adding a new class module called clsExtractIcon. clsExtractIcon will
implement three interfaces: IPersistFile , IExtractIconA , and IExtractIconW , as
follows:

Option Explicit

Implements IPersistFile
Implements IExtractIconA
Implements IExtractIconW

5.3.1 Implementing IPersistFile

IPersistFile represents one of the few breaks we're going to get throughout the course of
this book. First of all, IPersistFile contains five methods, but we only have to implement
one of them, Load . Second, the implementation is the same every time we use it. Third, it's

only two lines of code. It will not get this easy again! Example 5.4 contains the full listing for
Load .

Example 5.4. Load Implementation

Private m_sFile As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub IPersistFile_Load(_
 ByVal pszFileName As VBShellLib.LPCOLESTR, _
 ByVal dwMode As VBShellLib.DWORD)

 m_sFile = Space(255)
 CopyMemory ByVal StrPtr(m_sFile), _
 ByVal pszFileName, _
 Len(m_sFile)

End Sub

As stated earlier, pszFileName is a pointer. It contains an address of a filename. This is a
Long value, not a String. We can't just assign pszFileName to m_sFile . That's a type
mismatch. We need to copy the string from the location pointed to by pszFileName into
our private variable, m_sFile . We can do that with a call to CopyMemory (See Appendix B

). StrPtr is used to provide the address of our target, m_sFile . Notice that m_sFile has

been preallocated with 255 spaces. Pointers to any local memory that are passed to

CopyMemory must be preallocated. You cannot pass a pointer to a string that has no size.
The shell will crash.

m_sFile will be used later by IExtractIcon::GetIconLocation to determine the icon

that needs to be displayed for the given file. That's all there is to this method.

There is one more thing we need to do to finish our IPersistFile implementation.

Remember, every method in an interface needs to be implemented even if the methods are
not used. Fortunately for us, all we need to do is add one line of code to the remaining
methods of IPersistFile :

Err.Raise E_NOTIMPL

Should the method be called (in our situation, it will not), the client will be informed that the
method has not been implemented.

We can return OLE Automation error codes that begin with E_ in this
manner, but this will not work for codes beginning with S_ , such as
S_FALSE . Codes beginning with E_ specify an error condition.

Therefore, raising an error would be valid in this circumstance. Codes
beginning with S_ mean that the method was successful, but that the
desired result was not achieved. To return SCODE values, we need to

swap the function address of the desired method in the vtable with our
own implementation.

5.3.2 Implementing IExtractIcon

IExtractIcon will provide the shell with the location of an icon to display for a single

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instance of a .rad file object. The icons that we use reside inside of our server in a resource
file. GetIconLocation will provide the shell with all the information necessary to display our
icons. Even so, the shell will still call Extract . Extract must return S_FALSE to indicate

that it already has enough information to display the icon (as a result of the previous call to
GetIconLocation). We cannot directly return the HRESULT S_FALSE from Extract , so

we will swap the class implementation with our own. (See the discussion of swapping
routines in "Implementing IContextMenu" in Chapter 4 .)

Our icon handler will implement the following methods of IExtractIcon :

GetIconLocation

The source for GetIconLocationW (NT Version) is shown in Example 5.5 , and the
source for GetIconLocationA (ANSI version) is shown in Example 5.6 . These

functions are almost identical. The differences will be noted in the listing. Basically, the
string representing the pathname to the icon file must be converted from Unicode to
ANSI in GetIconLocationA . This is similar to what we had to do with the
IContextMenu::GetCommandString method (see Chapter 4). The string just

needs to be converted from Unicode in the ANSI version. The difference between these
two listings is only one line of code.

Here's how it works. The full path to the icon file (our server) will be built using the App
object and our filename. This path is copied to the address pointed to by szIconFile
, and the index of the icon is assigned to piIndex . The icons used for the handler will

reside in a resource file in the server. The index passed back to the shell is the zero-
based position of the icon in this resource file. pwFlags is used to tell the shell that

each file of this type has its own icon (GIL_PERINSTANCE) and that it should not
cache the icons (GIL_DONTCACHE).

Example 5.5. GetIconLocationW Listing

Private Sub IExtractIconW_GetIconLocation(_
 ByVal uFlags As VBShellLib.UINT, _
 ByVal szIconFile As VBShellLib.LPWSTRVB, _
 ByVal cchMax As VBShellLib.UINT, _
 piIndex As Long, pwFlags As VBShellLib.GETICONLOCATIONRETURN)

 Dim szName As String
 Dim szType As String
 Dim sType As String
 Dim bszName() As Byte

 szName = App.Path & "\" & App.Title & ".dll"
 szName = Left$(szName, cchMax) & vbNullChar
 bszName = szName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CopyMemory ByVal szIconFile, ByVal StrPtr(szName), _
 UBound(bszName) + 1

 szType = Space(255)

 GetPrivateProfileString "Animal", _
 "Type", _
 "Unknown", _
 szType, _
 Len(szType), _
 m_sFile

 sType = Trim(LCase(szType))
 sType = Left(sType, Len(sType) - 1)

 If sType = "armadillo" Then
 piIndex = 0
 ElseIf sType = "cat" Then
 piIndex = 1
 ElseIf sType = "cow" Then
 piIndex = 2
 ElseIf sType = "dog" Then
 piIndex = 3
 ElseIf sType = "fish" Then
 piIndex = 4
 Else
 piIndex = 5 'Unknown
 End If

 pwFlags = pwFlags Or GIL_PERINSTANCE Or GIL_DONTCACHE

End Sub

Example 5.6. GetIconLocationA Listing

Private Sub IExtractIconA_GetIconLocation(_
 ByVal uFlags As VBShellLib.UINT, _
 ByVal szIconFile As VBShellLib.LPSTRVB, _
 ByVal cchMax As VBShellLib.UINT, _
 piIndex As Long, pwFlags As VBShellLib.GETICONLOCATIONRETURN)

 Dim szName As String
 Dim szType As String
 Dim sType As String
 Dim bszName() As Byte

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 szName = App.Path & "\" & App.Title & ".dll"
 szName = Left$(szName, cchMax)
 bszName = StrConv(szName, vbFromUnicode) & vbNullChar
 CopyMemory ByVal szIconFile, bszName(0), UBound(bszName) + 1

 szType = Space(255)

 GetPrivateProfileString "Animal", _
 "Type", _
 "Unknown", _
 szType, _
 Len(szType), _
 m_sFile

 sType = Trim(LCase(szType))
 sType = Left(sType, Len(sType) - 1)

 If sType = "armadillo" Then
 piIndex = 0
 ElseIf sType = "cat" Then
 piIndex = 1
 ElseIf sType = "cow" Then
 piIndex = 2
 ElseIf sType = "dog" Then
 piIndex = 3
 ElseIf sType = "fish" Then
 piIndex = 4
 Else
 piIndex = 5 'Unknown
 End If

 pwFlags = pwFlags Or GIL_PERINSTANCE Or GIL_DONTCACHE

End Sub

Extract

Extract provides the shell with a means to get an icon from an alternate location, say

an image list or perhaps a call to the Win32 LoadIcon function. Since a location has
been provided by GetIconLocation , this method is simply supposed to return
S_FALSE (1) . Here we run into the problem of not being able to specify an HRESULT
to return. So, once again, a vtable entry must be swapped (see the discussion in
"Implementing IContextMenu" in Chapter 4). We swap the vtable for both the ANSI and
Unicode version of the interface. Since both versions of Extract just return S_FALSE ,
we can swap both versions of Extract with the same function. This is done in the icon

handler's Class_Initialize event procedure, as Example 5.7 shows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5.7. The Class_Initialize Event Procedure

Private Sub Class_Initialize()

 Dim pVtable1 As IExtractIconA
 Set pVtable1 = Me
 m_pOldExtractA = SwapVtableEntry(ObjPtr(pVtable1), 5, _
 AddressOf ExtractVB)

 Dim pVtable2 As IExtractIconW
 Set pVtable2 = Me
 m_pOldExtractW = SwapVtableEntry(ObjPtr(pVtable2), 5, _
 AddressOf ExtractVB)

End Sub

The value 5 is passed to SwapVtableEntry because Extract is the second method defined
in the interface (IUnknown [3] + Extract [2] = 5). This can be verified by looking directly at the
IDL listing for IExtractIcon or using OLE View.

Class_Terminate merely swaps the function addresses back in a similar fashion (see
"Implementing IContextMenu" in Chapter 4). ExtractVB , which is shown in Example 5.8 ,
simply returns S_FALSE .

Example 5.8. ExtractVB

Public Function ExtractVB(ByVal this As IExtractIconA, _
 ByVal pszFile As LPCSTRVB, _
 ByVal nIconIndex As UINT, _
 phiconLarge As HICON, _
 phiconSmall As HICON, _
 ByVal nIconSize As UINT) As Long

 ExtractVB = S_FALSE

End Function

Notice that the this pointer is of type IExtractIconA . Since it is not being used, we can

get away with using this function for both versions of the interface. If we did need to use it,
however, we would have to write two separate functions.

5.3.2.1 [in, out] parameters

If you look at the listing for IExtractIcon (see Example 5.3), you will notice that several
method parameters have been marked as [in, out] . The [in] attribute means that the

parameter is being passed from the client (the shell, in the case of a shell extension) to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

called method. The [out] attribute says that the parameter is a pointer and that the client
(our server) should use this pointer to return any values. Basically, it gives us the power to
use the parameter directly and not have to mess around with CopyMemory . The pwFlags
and piIndex parameters in GetIconLocation (see Example 5.5 and Example 5.6) are

good examples of this technique. We use it just as we would a parameter passed ByRef .
Consider the following code fragment. piIndex and pwFlags are defined as [in, out]

parameters in the IExtractIcon IDL. You can think of this as being equivalent to the shell
passing us an argument ByRef . We can use these values directly to return information back

to the shell:

Private Sub IExtractIconW_GetIconLocation(
 ByVal uFlags As VBShellLib.UINT, _
 ByVal szIconFile As VBShellLib.LPWSTRVB, _
 ByVal cchMax As VBShellLib.UINT, _
 piIndex As Long, _
 pwFlags As VBShellLib.GETICONLOCATIONRETURN)
.
.
.
 pwIndex = 5
 pwFlags = pwFlags Or GIL_PERINSTANCE Or GIL_DONTCACHE

End Sub

5.3.3 Stubs

Every method of an interface must be implemented. The server will not compile otherwise. In
this book, all methods not implemented will be marked as such with a comment:

Private Sub IPersistFile_GetClassID(lpClassID As VBShellLib.CLSID)
'Not implemented
End Sub

VB automatically returns an HRESULT of S_OK (0) in instances such as these. In COM
programming (in C++), it is common to see methods like this return E_NOTIMPL
(&H80004001) , S_FALSE (1), or E_FAIL (&H80004005)-in other words, some indicator
that the method is not actually implemented. Returning S_OK for an empty method (like we
will be doing) is somewhat misleading. Someone calling the method may wonder why it is
returning successfully when nothing is happening! Returning S_OK is not entirely clear, but

swapping vtable entries for every function that we do not implement is simply too much work.
So, we will take the easy way out and let VB do its thing.

5.3.4 Registration

The icon handler is a little easier to register because there can be only one per file type (as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

opposed to context menu handlers). Add an IconHandler key under the shellex key and
assign its default value the CLSID of the component. Remember, the CLSID for the
component can be found under its ProgID, RadEx.clsIconHandler :

HKEY_CLASSES_ROOT
 radfile
 shellex
 IconHandler = {B3213FAC-EB84-11D2-9FD9-00550076E06F}

Of course, the icon handler's CLSID must also be added to the list of approved shell
extensions. That key is as follows:

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Windows
 CurrentVersion
 Shell Extensions
 Approved

After the component is registered, the icons for the individual .rad files will be displayed, as
Figure 5.2 illustrates. You might need to refresh the shell's display by pressing F5, but other
than that, everything is ready to go.

Figure 5.2. Each .rad file displays a different icon

The following script registers the component that is included with this chapter:

REGEDIT4

[HKEY_CLASSES_ROOT\.rad]
@ = "radfile"

[HKEY_CLASSES_ROOT\radfile]

[HKEY_CLASSES_ROOT\radfile]
@ = "Rudimentary Animal Data"

[HKEY_CLASSES_ROOT\radfile\shellex]

 [HKEY_CLASSES_ROOT\radfile\shellex\IconHandler]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

@ = "{B3213FAC-EB84-11D2-9FD9-00550076E06F}"

 [HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved]
"{61E9A1D1-5985-11D3-BB7C-444553540000}" = "RAD file icon handler"

Resource Files

The resource file in this book was created with Visual C++ and compiled using the

resource compiler, RC.EXE . If you do not have a resource editor such as the one

that is part of Visual C++, you can create these files by hand. RC.EXE does ship
with Visual Basic, so compiling resource scripts should not be a problem. The
resource script for the icon handler is very simple:

#define IDI_ARMADILLO 101
#define IDI_CAT 102
#define IDI_COW 103
#define IDI_DOG 104
#define IDI_FISH 105
#define IDI_UNKNOWN 106

IDI_ARMADILLO ICON DISCARDABLE "armadill.ico"

IDI_CAT ICON DISCARDABLE "cat.ico"
IDI_COW ICON DISCARDABLE "cow.ico"
IDI_DOG ICON DISCARDABLE "dog.ico"
IDI_FISH ICON DISCARDABLE "fish.ico"
IDI_UNKNOWN ICON DISCARDABLE "unknown.ico"

Every resource is assigned a unique identifier, and this identifier is then mapped to
the actual file containing the icon. Using the Visual C++ resource editor is the best
option, because it will do everything for you. Writing your own resource scripts can
be tedious. There is nothing to be ashamed of by using a tool to do it for you.

Visual Basic 6.0 does have an add-in called the VB Resource Editor. It will allow
you to create a resource file of icons that can be used in this chapter. What it will

not do is allow you to create dialog box templates. Dialog box templates will be
necessary when we create property page extensions in the next chapter.

Your options are limited to getting a resource editor or coding the script by hand.
Writing your own resource script is a little trickier where dialogs are concerned, but
it is not out of the question. As you can see, the script for icons is very
straightforward.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 6. Property Sheet Handlers

A standard set of properties is available for every file object via the Properties context menu
or by selecting File Properties from Explorer's main menu. These properties include things
like file attributes, size, location, date created, and so on. The information is made available
in a tabbed dialog, as shown in Figure 6.1, providing the user with an opportunity to change
a file's attributes (in the most generic implementation). Property sheet handlers permit
additional pages to be added to this dialog, allowing the possibility of additional file
processing.

Microsoft Word is a good example of this functionality in action, as it adds four additional
property pages to the standard dialog for its .doc file type. These additional property pages

allow users to modify .doc file attributes like title, author, and subject of a document without
having to start Microsoft Word. Figure 6.2, for instance, shows the Summary property sheet

of a Microsoft Word .doc file, an interface element added by Word's property sheet handler.

Figure 6.1. Property page dialog

Figure 6.2. Word Summary property sheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

6.1 How Property Sheet Handlers Work

Property sheet handlers are required to implement two interfaces: IShellExtInit and
IShellPropSheetExt. You are already familiar with IShellExtInit (see Chapter 4).
IShellPropSheetExt contains only two methods: AddPages, which is called to add a
page to a property dialog, and ReplacePage, which, as you might guess, replaces an
existing property page. A property sheet handler implements AddPages only. ReplacePage

is not implemented, since it applies only to Control Panel objects.

When the Properties menu item is selected for a file object, Explorer initializes the handler by
calling IShellExtInit::Initialize. The selected file is passed to the handler via an
IDataObject interface. Typically, the property sheet handler would save the name of the
file in a private member variable for later use.

Then the shell calls IShellPropSheetExt::AddPages. The implementor of AddPages is
required to fill out a PROPSHEETPAGE structure that contains information about the new

property page. The structure is then passed to the CreatePropertySheetPage API, and a
handle to the newly created property page is returned if the call was successful.

One of the parameters passed in by the shell to AddPages is a function address. The

function specified by this address must then be called with the handle to the newly created
page as its only parameter. If you are confused, don't worry. We'll go over this in detail when
we implement IShellPropSheetExt.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

6.2 Property Sheet Handler Interface

Now that you know how a property sheet handler works, let's discuss the interfaces involved
in a little more detail.

6.2.1 IShellExtInit

The implementation of IShellExtInit is exactly the same as it was in Chapter 4. (For the
details of the IShellExtInit interface, see Section 4.4 in Chapter 4.) Well, almost. The
functionality provided by IShellExtInit-which is used to determine which files are
selected in the Explorer-is generic enough to be wrapped in a class. All future extensions
that must implement IShellExtInit in this book will use this class. The class is called
clsDropFiles, and the complete class listing is shown in Example 6.1.

Example 6.1. clsDropFiles Class

Option Explicit

Private m_nFiles As Long
Private m_sDropFiles() As String

Public Sub GetDropFiles(pDataObj As IDataObject, _
 ByVal sExtension As String)

 Dim FmtEtc As FORMATETC
 Dim pMedium As STGMEDIUM
 Dim i As Long
 Dim lresult As Long
 Dim sTemp As String
 Dim lIndex As Long

 With FmtEtc
 .cfFormat = CF_HDROP
 .ptd = 0
 .dwAspect = DVASPECT_CONTENT
 .lIndex = -1
 .TYMED = TYMED_HGLOBAL
 End With

 pDataObj.GetData FmtEtc, pMedium
 m_nFiles = DragQueryFile(pMedium.pData, &HFFFFFFFF, _
 vbNullString, 0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lIndex = 0
 For i = 0 To m_nFiles - 1
 sTemp = Space(255)
 lresult = DragQueryFile(pMedium.pData, i, sTemp, Len(sTemp))
 If (lresult > 0) Then
 sTemp = Left$(sTemp, lresult)
 If LCase(Right(sTemp, 4)) = sExtension Then
 ReDim Preserve m_sDropFiles(lIndex + 1)
 m_sDropFiles(lIndex) = sTemp
 lIndex = lIndex + 1
 End If
 End If
 Next i

 m_nFiles = lIndex

 ReleaseStgMedium pMedium

End Sub

Public Property Get Count() As Integer
 Count = m_nFiles
End Property

Public Property Get Files(nIndex As Integer) As String

 Files = ""

 If (m_nFiles) Then
 If (nIndex >= 0) And (nIndex < m_nFiles) Then
 Files = m_sDropFiles(nIndex)
 End If
 End If

End Property

Public Property Get SelectedFile() As String

 SelectedFile = ""

 If (m_nFiles) Then
 SelectedFile = m_sDropFiles(0)
 End If

End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that we have a class that handles the extraction of filenames from IDataObject,
implementing IShellExtInit becomes a little easier. The complete listing for
IShellExtInit::Initialize is shown in Example 6.2.

Example 6.2. New Initialize Implementation

Private m_clsDropFiles As clsDropFiles

Private Sub IShellExtInit_Initialize(_
 ByVal pidlFolder As VBShellLib.LPCITEMIDLIST, _
 ByVal pDataObj As VBShellLib.IDataObject, _
 ByVal hKeyProgID As VBShellLib.HKEY)

 Set m_clsDropFiles = New clsDropFiles
 m_clsDropFiles.GetDropFiles pDataObj, ".rad"

End Sub

All IShellExtInit::Initialize needs to do is declare an instance of clsDropFiles and
call the member function, GetDropFiles. GetDropFiles takes as parameters an
IDataObject reference and a file filter and creates an internal array holding all of the

filenames contained within the data object that have the extension .rad.

6.2.2 IShellPropSheetExt

IShellPropSheetExt contains two methods, AddPages and ReplacePage, for adding

and replacing property sheets (see Table 6.1). There is really nothing unusual about this
interface; we don't have to do anything crazy like vtable swapping! The implementation of this
interface, on the other hand, is a wild ride, to say the least. But we'll talk about that later. For
now, let's familiarize ourselves with the interface and the methods it contains.

Table 6.1. IShellPropSheetExt

Method Description

AddPages Adds a page(s) to a property sheet for a file object.

ReplacePage
Replaces a page in a property sheet for a Control Panel applet. Not used for shell property sheet
extensions.

6.2.2.1 AddPages

AddPages is the method responsible for adding a property sheet to an existing property page
dialog. When a property sheet is about to be displayed, the shell calls AddPages for each

handler registered to the selected file type. Its syntax is as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HRESULT STDMETHODCALLTYPE AddPages(
 LPFNADDPROPSHEETPAGE lpfnAddPage,
 LPARAM lParam
);

The parameters are as follows:

lpfnAddPage

[in] The address of a function that the property sheet extension must call to display a

property page.
lParam

[in] Parameter to pass to the function specified by lpfnAddPage.

6.2.2.2 ReplacePage

ReplacePage is used to replace property sheet pages for a Control Panel object. It is not
used for property sheet handlers. Its syntax is as follows:

HRESULT STDMETHODCALLTYPE ReplacePage(UINT uPageID,
 LPFNADDPROPSHEETPAGE lpfnReplacePage,
 LPARAM lParam);

The parameters to ReplacePage are the same as AddPages, with the exception of one

parameter:

uPageID

This is the identifier of the page to replace. Since ReplacePage is used exclusively

with Control Panel applets, the valid values for this parameter can be found in the

Cplext.h header file in the Platform SDK.

6.2.2.3 Implementing IShellPropSheetExt

The IDL listing for IShellPropSheetExt is shown in Example 6.3.

Example 6.3. IShellPropSheetExt Interface Listing

typedef struct {
 long x;
 long y;
 } POINT;

typedef struct MSG {
 HWND hwnd;
 UINT message;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WPARAM wParam;
 LPARAM lParam;
 DWORD time;
 POINT pt;
} MSG;

typedef struct {
 HWND hwndFrom;
 UINT idFrom;
 UINT code;
} NMHDR;

typedef enum {
 PSPCB_RELEASE = 1,
 PSPCB_CREATE = 2
} PROPSHEETCALLBACKMSG;

typedef enum {
 PSP_DEFAULT = 0x00000000,
 PSP_DLGINDIRECT = 0x00000001,
 PSP_USEHICON = 0x00000002,
 PSP_USEICONID = 0x00000004,
 PSP_USETITLE = 0x00000008,
 PSP_RTLREADING = 0x00000010,
 PSP_HASHELP = 0x00000020,
 PSP_USEREFPARENT = 0x00000040,
 PSP_USECALLBACK = 0x00000080,
 PSP_PREMATURE = 0x00000400,
 PSP_HIDEHEADER = 0x00000800,
 PSP_USEHEADERTITLE = 0x00001000,
 PSP_USEHEADERSUBTITLE = 0x00002000
} PROPERTYSHEETFLAG;

typedef enum {
 PSN_SETACTIVE = -200,
 PSN_KILLACTIVE = -201,
 PSN_APPLY = -202,
 PSN_RESET = -203,
 PSN_QUERYCANCEL = -209
} PROPSHEETNOTIFYMSG;

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 HINSTANCE hInstance;
 LPCSTRVB pszTemplate;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HICON hIcon;
 LPCSTRVB pszTitle;
 DLGPROC pfnDlgProc;
 LPARAM lParam;
 LPFNPSPCALLBACK pfnCallback;
 long pcRefParent;
 LPCTSTRVB pszHeaderTitle;
 LPCTSTRVB pszHeaderSubTitle;
} PROPSHEETPAGE;

[
 uuid(000214e9-0000-0000-c000-000000000046),
 helpstring("IShellPropSheetExt Interface"),
 odl
]
interface IShellPropSheetExt : IUnknown
{
 HRESULT AddPages([in] LPFNADDPROPSHEETPAGE lpfnAddPage,
 [in] LPARAM lParam);

 HRESULT ReplacePage([in] UINT uPageID,
 [in] LPFNADDPROPSHEETPAGE lpfnReplaceWith,

 [in] LPARAM lParam);
}
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

6.3 Creating a Property Sheet Handler

In this chapter, we will create a property sheet extension that will allow us to modify every

aspect of a .rad file: animal type, gender, color, age, weight, and noise. The property sheet
we will create is shown in Figure 6.3 .

Figure 6.3. RAD property sheet

6.3.1 Implementing IShellExtInit

We will continue to use the RadEx project. But the first thing we need to do is to add the
clsDropFiles class to the project (See Example 6.1). This class will handle the
implementation of IShellExtInit . If you look at the class listing, you will see that it
contains the code that was used previously in our implementation of IShellExtInit (see

Chapter 4). The code is very generic. In fact, we will reuse the clsDropFiles class when we
discuss drop handlers in Chapter 8 .

After clsDropFiles has been included in the project, we need to add another class to the
project called clsPropSheet. This class will contain everything necessary to implement a
property sheet handler. Once this has been done, we can implement IShellExtInit in the
clsPropSheet class module as follows:

'clsPropSheet

Option Explicit

Implements IShellExtInit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implements IShellPropSheetExt

Private m_clsDropFiles As clsDropFiles

Private Sub IShellExtInit_Initialize(_
 ByVal pidlFolder As VBShellLib.LPCITEMIDLIST, _
 ByVal pDataObj As VBShellLib.IDataObject, _
 ByVal hKeyProgID As VBShellLib.HKEY)

 Set m_clsDropFiles = New clsDropFiles
 m_clsDropFiles.GetDropFiles pDataObj, ".rad"

End Sub

6.3.2 Creating a Dialog Resource

Before we actually implement IShellPropSheetExt , we need to add a resource file to the

project that contains the dialog that will be our property sheet. People who program Windows
in C/C++ do this every day. To a VB programmer, this might be a new experience.

The property sheet dialog will be defined as a resource that will be stored in our COM server
along with the icons that were used for the icon handler. The resource file created for this
book was done with the editor in Visual C++ shown in Figure 6.4 , but feel free to use any
tool you wish if you plan to create your own resource file. Be warned, coding dialog resources
by hand is tedious, because you have to enter in the position of all the dialog items yourself,
which is a guessing game at best. If you don't have Visual C++, find another resource editor.
They are out there.

Figure 6.4. Creating a dialog template with Visual C++ resource editor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For the masochists out there, Example 6.4 is the complete listing for handler.rc , the resource

file used for this chapter. It can be compiled into an .res file by using a program called
RC.EXE . This program ships with Visual Basic. You can compile from the command line
(provided RC.EXE is in your path) as follows:

C:\>rc handler.rc

handler.rc makes reference to the icons used for our icon hander (see
Chapter 5). These files need to be in the directory where the resource
file is being compiled.

Example 6.4. Handler.rc Listing

//Microsoft Developer Studio generated resource script.
//
#include "resource.h"

#define APSTUDIO_READONLY_SYMBOLS
///
//
// Generated from the TEXTINCLUDE 2 resource.
//
#include "afxres.h"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

///
#undef APSTUDIO_READONLY_SYMBOLS

///
// English (U.S.) resources

#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
#pragma code_page(1252)
#endif //_WIN32

///
//
// Icon
//

// Icon with lowest ID value placed first to ensure application icon
// remains consistent on all systems.
IDI_ARMADILLO ICON DISCARDABLE "armadill.ico"
IDI_CAT ICON DISCARDABLE "cat.ico"
IDI_COW ICON DISCARDABLE "cow.ico"
IDI_DOG ICON DISCARDABLE "dog.ico"
IDI_FISH ICON DISCARDABLE "fish.ico"
IDI_UNKNOWN ICON DISCARDABLE "unknown.ico"

#ifdef APSTUDIO_INVOKED
///
//
// TEXTINCLUDE
//

1 TEXTINCLUDE DISCARDABLE
BEGIN
 "resource.h\0"
END

2 TEXTINCLUDE DISCARDABLE
BEGIN
 "#include ""afxres.h""\r\n"
 "\0"
END

3 TEXTINCLUDE DISCARDABLE
BEGIN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "\r\n"
 "\0"
END

#endif // APSTUDIO_INVOKED

///
//
// Dialog
//

IDD_RADPROPDLG DIALOG DISCARDABLE 0, 0, 210, 154
STYLE WS_CHILD | WS_VISIBLE | WS_BORDER
FONT 8, "MS Sans Serif"
BEGIN
 LTEXT "Type",IDC_STATIC,21,18,20,10
 LTEXT "Color",IDC_STATIC,21,76,22,8
 LTEXT "Age",IDC_STATIC,21,95,18,9
 LTEXT "Weight",IDC_STATIC,21,114,25,8
 LTEXT "Noise",IDC_STATIC,21,131,32,8
 COMBOBOX IDC_TYPE,60,17,73,69,CBS_DROPDOWN | CBS_HASSTRINGS |
 WS_TABSTOP
 GROUPBOX "Gender",IDC_STATIC,21,37,112,32,WS_GROUP
 CONTROL "Male",IDC_MALE,"Button",BS_AUTORADIOBUTTON,31,50,32,9
 CONTROL "Female",IDC_FEMALE,"Button",BS_AUTORADIOBUTTON,79,50,40,
 9
 EDITTEXT IDC_COLOR,53,74,80,13,ES_AUTOHSCROLL
 COMBOBOX IDC_AGE,53,92,32,55,CBS_DROPDOWN | WS_VSCROLL |
 WS_TABSTOP
 COMBOBOX IDC_WEIGHT,53,111,32,55,CBS_DROPDOWN | WS_VSCROLL |
 WS_TABSTOP
 EDITTEXT IDC_NOISE,53,129,80,13,ES_AUTOHSCROLL
END

///
//
// DESIGNINFO
//

#ifdef APSTUDIO_INVOKED
GUIDELINES DESIGNINFO DISCARDABLE
BEGIN
 IDD_RADPROPDLG, DIALOG
 BEGIN
 LEFTMARGIN, 7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RIGHTMARGIN, 203
 TOPMARGIN, 7
 BOTTOMMARGIN, 147
 END
END
#endif // APSTUDIO_INVOKED

///
//
// Dialog Info
//

IDD_RADPROPDLG DLGINIT
BEGIN
 IDC_TYPE, 0x403, 10, 0
0x7241, 0x616d, 0x6964, 0x6c6c, 0x006f,
 IDC_TYPE, 0x403, 4, 0
0x6143, 0x0074,
 IDC_TYPE, 0x403, 4, 0
0x6f43, 0x0077,
 IDC_TYPE, 0x403, 4, 0
0x6f44, 0x0067,
 IDC_TYPE, 0x403, 5, 0
0x6946, 0x6873, "\000"
 0
END

#endif // English (U.S.) resources
///

#ifndef APSTUDIO_INVOKED
///
//
// Generated from the TEXTINCLUDE 3 resource.
//

///
#endif // not APSTUDIO_INVOKED

After you have handler.res in your possession (hopefully you just used the copy provided),
include it in the project.

6.3.3 Implementing IShellPropSheetExt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IShellPropSheetExt contains two methods named AddPages and ReplacePage , as
Table 6.1 shows. ReplacePage functions similarly to AddPages , but we will not write any
code for this method; we'll just have the method return E_NOTIMPL . This is because
ReplacePage is used to replace property sheet pages in Control Panel applications, not
shell extensions. That leaves us with one method, and implementing it is no walk in the park,
because we have to handle all the messages for the property sheet through a dialog
procedure. This means that we have to deal with raw window messages. No events here.
Tedious, to say the least. But we'll talk about this later.

6.3.3.1 AddPages

The implementation for this method is fairly involved, so let's slow way down. The first thing
we need to do is populate a PROPSHEETPAGE structure that will describe our property sheet.
Other than the specifics of this structure, AddPages is almost always implemented the same.
This is handy to know should you want to come up with a more generic implementation later.
The PROPSHEETPAGE is defined as follows in the Platform SDK:

typedef struct _PROPSHEETPAGE {
 DWORD dwSize;
 DWORD dwFlags;
 HINSTANCE hInstance;
 union {
 LPCSTR pszTemplate;
 LPCDLGTEMPLATE pResource;
 };
 union {
 HICON hIcon;
 LPCSTR pszIcon;
 };
 LPCSTR pszTitle;
 DLGPROC pfnDlgProc;
 LPARAM lParam;
 LPFNPSPCALLBACK pfnCallback;
 UINT FAR * pcRefParent;

#if (_WIN32_IE >= 0x0400)
 LPCTSTR pszHeaderTitle;
 LPCTSTR pszHeaderSubTitle;
#endif
} PROPSHEETPAGE, FAR *LPPROPSHEETPAGE;

Notice the two union blocks in the structure. As VB programmers, many of you probably have
never seen a union before. In C/C++, they are quite common. A union is simply two or more
members of a structure that occupy the same address in memory. VB does not have the
concept of a union, but there is a simple solution to this problem (in this case). We can just

http://lib.ommolketab.ir
http://lib.ommolketab.ir

flatten out the structure. This means that we keep the member of the union that we need and
toss out the rest. This is easy to do here; actually, it doesn't matter which member we keep,
because both unions contain members that are of the same datatype (as far as we are
concerned)-pointers. The final IDL version of this structure (from Example 6.3) looks like
this:

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 HINSTANCE hInstance;
 LPCSTRVB pszTemplate; // from union
 HICON hIcon; // from union
 LPCSTRVB pszTitle;
 DLGPROC pfnDlgProc;
 LPARAM lParam;
 LPFNPSPCALLBACK pfnCallback;
 long pcRefParent;
 LPCTSTRVB pszHeaderTitle;
 LPCTSTRVB pszHeaderSubTitle;
} PROPSHEETPAGE;

Table 6.2 provides information on the members of this structure. Before we continue,
familiarize yourself with the structure (see also Table 6.3). If you are also a C/C++
programmer, you can probably tell what most of the parameters are just by looking at them. If
not, don't worry. We'll discuss each member in detail during the implementation of AddPages
.

Table 6.2. PROPSHEETPAGE Structure

Member Description

dwSize Size of this structure.

dwFlags
Option flags used when creating a property sheet page. (See Table 6.3 .) These values
may be Or ed together.

hInstance Instance handle from which to load the icon or title string resource.

pszTemplate
Dialog box template used to create the property sheet. This can be a resource ID or the
address of a string that points to the name of the template.

hIcon
If the PSP_USEHICON flag is specified, this should contain the handle of an icon to use in
the property sheet. If PSP_USEICONID is specified, then this should be the resource ID of

an icon to use in the property sheet.

pszTitle Title of the property sheet.

pfnDlgProc Address of the dialog procedure for the property sheet.

lParam Application-defined data that will be passed to the dialog procedure.

pfnCallback
Address of an application-defined callback function that is called when the page is created
and when it is about to be destroyed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pcRefParent
Address of the reference count value. This value is ignored if the PSP_USEPARENT flag is

not specified.

pszHeaderTitle Title of the header area.

pszHeaderSubTitle Subtitle of the header area.

Table 6.3. dwFlags for PROPSHEETPAGE

Flag Description

PSP_DEFAULT The default meaning is used for all structure members.

PSP_DLGINDIRECT
Creates the page from the dialog box template in memory pointed to by pResource

. pResource is actually pszTemplate in the VB version of PROPSHEETPAGE .

PSP_HASHELP Enables the property sheet help button.

PSP_HIDEHEADER Causes the header area to be hidden in a wizard property sheet.

PSP_PREMATURE
Causes the page to be created when the property sheet is created. Otherwise, the
page will not be created until it is selected the first time.

PSP_RTLREADING
Causes the property sheet to display pszTitle using right-to-left reading order on

Hebrew or Arabic systems.

PSP_USECALLBACK
Calls the function specified by pfnCallback when creating or destroying the

property sheet page.

PSP_USEHEADERSUBTITLE Displays the text in pszHeaderSubTitle as the subtitle of the header area.

PSP_USEHEADERTITLE Displays the text in pszHeaderTitle as the title of the header area.

PSP_USEICONID
Uses pszIcon as the name of the icon resource to load and use as the small icon

on the tab for the page.

PSP_USEREFPARENT
Maintains the reference count specified by pcRefParent for the lifetime of the

property sheet page.

PSP_USETITLE
Uses pszTitle as the title of the property sheet dialog box instead of the title

stored in the dialog box template.

Now that you are somewhat familiar with PROPSHEETPAGE , let's implement AddPages . The
first thing we need to do is populate a PROPSHEETPAGE structure and define the behavior of

our property sheet. Example 6.5 starts us off.

Example 6.5. AddPages

Private Sub IShellPropSheetExt_AddPages(_
 ByVal lpfnAddPage As VBShellLib.LPFNADDPROPSHEETPAGE, _
 ByVal lParam As VBShellLib.lParam)

 Dim psp As PROPSHEETPAGE
 Dim sTitle As String
 Dim lAddPage As Long

 sTitle = StrConv("RAD Settings", vbFromUnicode)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 With psp
 .dwSize = Len(psp)
 .dwFlags = PSP_USECALLBACK Or PSP_USETITLE
 .hInstance = App.hInstance
 .lParam = ObjPtr(Me)
 .pfnDlgProc = GetAddress(AddressOf PropSheetDlgProc)
 .pfnCallback = GetAddress(AddressOf PropSheetCallbackProc)
 .pszTemplate = IDD_RADPROPDLG
 .pszTitle = StrPtr(sTitle)
 End With

There is quite a bit more going on here than you might realize. Let's examine the
pfnDlgProc and pfnCallback members of the PROPSHEETPAGE structure more

closely. See the call to GetAddress ? This is a simple function that exists just to work around

the fact that AddressOf cannot be used in an assignment. GetAddress is a simple hack and
looks like this:

'Called like this:
'lpAddr = GetAddress(AddressOf SomeFunc)

Public Function GetAddress(ByVal lpfn As Long)
 GetAddress = lpfn
End Function

In direct terms, GetAddress provides the address of a function for the right-hand side of an
assignment. So, referring to Example 6.5 , pfnDlgProc and pfnCallback are assigned

the addresses of two functions: PropSheetDlgProc and PropSheetCallbackProc . These two

functions are known as callback functions.

This is where things get tricky. In the world of VB, forms are created just by adding a form
object to your project. Predefined events are provided for. Everything is nice and simple. All

you need to do is add code for a specific event and presto , when you click on a command
button your code is executed. If you have never programmed Windows in C, you probably
don't realize how incredibly easy VB makes your life. You are about to get a glimpse of what
it is like to program Windows in another language. We'll be using VB, of course, but the code
will look more like something that is found in a C program. Why?

Remember, we have added a dialog template to the project that will be our property sheet. It
would have been nice to use a VB form, but we just can't do that. We are restricted by the
PROPSHEETPAGE structure, which requires us to provide a resource identifier to a dialog
template. Because of this, we don't have access to the event procedures VB normally
provides for us when we use forms. In order for this to work, we will have to handle event
processing for the property sheet ourselves, without the benefit of VB events. This is where

the two functions PropSheetDlgProc and PropSheetCallbackProc come in. (We'll discuss
these two functions in detail in a moment.) All events for the dialog will be processed by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

these two functions. So, looking back at Example 6.5 , the assignment to pfnDlgProc

indicates that the function called PropSheetDlgProc will handle all the events for the dialog.

Let's get back to the PROPSHEETPAGE structure.

dwSize is set to the size of the structure itself. hInstance is set to the instance handle
provided by the App object. dwFlags is set to PSP_USECALLBACK and PSP_USETITLE .
This means the callback function specified by the pfnCallback member will be called

twice, once when the page is created and once when it is destroyed. This also means that
the string pointed to by the pszTitle member should be used as the title for the property

sheet. Notice that the string is converted from Unicode to ANSI before the assignment.

lParam is an interesting member because it functions like the Tag property on many VB

controls. It can hold any long value that we wish or none at all. We can do whatever we want
with this parameter. In our case, it is assigned a pointer to our object. This is very fortunate
for us, because once the property sheet is created, the events will be handled by our two

callback procedures, PropSheetDlgProc and PropSheetCallbackProc . These two functions
exist in a code module outside of our class. By assigning a pointer to our object to lParam ,

we can get a reference back to our object (should we actually need to) once the property
sheet is up and running. This will become more evident when we actually code these two
functions.

pszTemplate is assigned to IDD_RADPROPDLG , a constant that equals 106. Why 106?

106 just happens to be the resource identifier for the dialog template. If you were to open the
copy of handler.rc provided with the book's downloadable source in the Visual C++ IDE, you
would see that the value corresponds to the dialog. In any event, this value should represent
the resource identifier of the dialog being used as the property sheet.

That's it for PROPSHEETPAGE . The next thing we need to do is to call AddRef on our
property sheet handler. We do this to counteract a call to Release that the shell will call on

our object. If we don't increase the reference count of our object, it will be destroyed before
we ever even see the property sheet. Presumably, the shell does this so that the handler can
be unloaded if the creation of the property sheet fails. Regardless, the burden is on us to
keep our component alive.

Remember, though, that the methods of IUnknown are restricted. We can't simply call
AddRef directly. One way around this problem is to declare a private member variable of

type clsPropSheet. Then we could do something like this:

Private m_refObject As clsPropSheet

Private Sub IShellPropSheetExt_AddPages(_
 ByVal lpfnAddPage As VBShellLib.LPFNADDPROPSHEETPAGE, _
 ByVal lParam As VBShellLib.lParam)

.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

.

.

.
 Set m_refObject = Me

This will add a reference to our object. But this is not too clear. We can do things the right
way with a little workaround. What we need to do is to add our own version of IUnknown to
the type library. This version of IUnknown , which we'll call IUnknownVB , will be used any
time we need to call IUnknown methods on our objects.

This brings up an interesting point. One of the reasons we are using the older MKTYPLIB to
compile our type library is that we can have duplicate entries like this in the type library. Since
IUnknown is already defined in the type library with the inclusion of stdole2.tlb (see Appendix

A), MIDL will complain that the interface is already defined. MKTYPLIB will not. Thus, we
use MKTYPLIB. The listing for IUnknownVB is shown in Example 6.6 .

Example 6.6. IUnknownVB Interface

[
 uuid(00000000-0000-0000-C000-000000000046),
 helpstring("IUnknownVB Interface"),
 odl
]
interface IUnknownVB
{
 HRESULT QueryInterface([in] REFIID priid,
 [in, out] VOID *ppvObject);

 long AddRef();
 long Release();
};

Now that we have an IUnknown that we can use, calling AddRef on our object is a trivial

matter. It's also a little clearer than the first method. This is shown in Example 6.7 , which is
the continuation of our AddPages implementation.

Example 6.7. AddPages, Continued

'AddRef
Dim pUnk As IUnknownVB
Set pUnk = Me
pUnk.AddRef

Okay, now we are ready to create the property sheet. We do this by calling the Win32
function CreatePropertySheetPage , which is found in comctl32.dll . The function is declared
as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Declare Function CreatePropertySheetPage _
 Lib "comctl32.dll" Alias "CreatePropertySheetPageA" _
 (p As PROPSHEETPAGE) As Long

Moving API Declarations to a Type Library

Although it is not done in this book, it is possible to declare API functions in a type

library. Consider GetWindowText and SetWindowText . Both of these functions are

defined in user32.dll . Their IDL definitions might look like this:

[
 dllname("user32.dll")
]
module User32
{
 [entry("GetWindowTextA")]
 int _stdcall GetWindowText(
 [in] long hwnd,
 [in,out] LPSTR lpsz,
 [in] int cbMax
);

 [entry("SetWindowTextA")]
 void _stdcall SetWindowText(
 [in] long hwnd,
 [in, out] LPSTR lpsz
);

}

The listing is fairly self explanatory. The [dllname] attribute defines the location

of the exported functions listed in the module block. This is nice, because you only
have to define this location once, unlike using Declare statements in a module.

The [entry] attribute is analogous to the Alias keyword in Visual Basic. If you

happen to have the ordinal of the exported function, you can use that in place of
the string value.

The functions are defined exactly as they have been listed in the Platform SDK. Be
careful if you are reverse-engineering definitions from your module files.
Remember, an int here is 4 bytes, unlike VB, in which it is 2 bytes (for backward
compatibility). Also, notice how Strings are declared as LPSTR . That's a pointer,
hence the [out] attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using this paradigm, you could also define module blocks for the GDI and Kernel
functions as well. It was not done in this book because we wanted to keep the type
library as simple as possible and to leave the focus on the interfaces being
defined.

The CreatePropertySheetPage function takes the PROPSHEETPAGE structure we have just

finished populating as its only parameter. Upon successful completion of the call, we are
returned a handle to the newly created property sheet, as Example 6.8 demonstrates.

We now have a handle to our newly created property sheet, if all has gone well.

Now things get strange. Look at the first parameter to AddPages , lpfnAddPage . This is a
pointer to a function that we are supposed to call with hPage . There is no way to call a
function through a pointer in VB. This function, which is pointed to by lpfnAddPage,

actually displays the property sheet.

Although there is no way to call a function through a pointer in VB, it can be done in C++, and
that is what we will do.

Example 6.8. AddPages, Continued

 Dim hPage As Long
 hPage = CreatePropertySheetPage(psp)

 If hPage Then
 lAddPage = AddPropertyPage(lpfnAddPage, hPage, lParam)

 If lAddPage = 0 Then
 DestroyPropertySheetPage hPage
 End If
 End If

End Sub

There is a DLL included with the source in this chapter called propext.dll . You need to be
move this to your system directory in order for the property sheet handler to function properly.

This DLL contains one exported function, AddPropertyPage (shown in Example 6.9) , that

will allow us to call the function given to us by the shell. The code for AddPropertyPage is
shown in Example 6.6 .

Example 6.9. AddPropertyPage (in C++)

BOOL WINAPI AddPropertyPage(LPFNADDPROPSHEETPAGE lpfnAddPage,
 HPROPSHEETPAGE hPage,
 LPARAM lParam)
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // In C++ you can call a function through
 // an address.
 return(lpfnAddPage(hPage, lParam));
}

If a nonzero result is returned, DestroyPropertySheetPage is called to free memory
associated with the property sheet.

6.3.4 PropSheetCallbackProc

This function is called once when the property sheet is being created and once right before it
is to be destroyed. It is not called by us, but by Explorer. It is defined as follows:

UINT CALLBACK PropSheetPageProc(HWND hwnd,
 UINT uMsg,
 LPPROPSHEETPAGE ppsp);

with the following parameters:

hwnd

This parameter is reserved. It should be NULL .
uMsg

This is the action flag. It will be equal to one of two values: PSPCB_CREATE (2) upon
creation of the property sheet or PSPCB_RELEASE (1) when the property sheet is

being destroyed.
ppsp

This is a pointer to the PROPSHEETPAGE structure used to create the property sheet.

The implementation of this function is fairly simple. We do not need to process any
messages in this function. It will be used only to get a reference to the property sheet object
over to the module file. What does this mean exactly? Well, once the property sheet is up
and running, we will not have access to the property sheet handler object anymore. This is
because the two callback functions that handle all of the property sheet messages are
located in a code module outside of the class.

Remember the lParam member of our PROPSHEETPAGE structure (see Example 6.5)? It's

a pointer to our object. The ppsp parameter of PropSheetPageProc is a pointer to our

original PROPSHEETPAGE structure. Therefore, we have access back to our object through

this parameter. This is good because it keeps us from having to resort to a global variable. It
also provides a good opportunity to show you how to copy an object without incrementing its
reference count. These are good tricks to know if you find yourself doing any advanced COM
programming in the future. Example 6.10 details PropSheetCallbackProc , which is located in

a code module called PropSheet.bas . All of the items specific to our property sheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implementation will be located in this file.

Example 6.10. The PropSheetCallbackProc Function

'Property Sheet object reference
Private m_pPropSheet As clsPropSheet

Public Function PropSheetCallbackProc(ByVal hwnd As hwnd, _
 uMsg As MSG, _
 ByVal ppsp As Long) As Long

 Dim psp As PROPSHEETPAGE
 CopyMemory psp, ByVal ppsp, Len(psp)

 'Get reference to object. No AddRef!!!!!
 CopyMemory m_pPropSheet, psp.lParam, 4

 Select Case uMsg

 Case PSPCB_CREATE
 'Return non-zero to create page. 0 prevents it.

 Case PSPCB_RELEASE:
 'Page is being destroyed. Return value is ignored.

 End Select

 PropSheetCallbackProc = 1

End Function

We are given a pointer to a PROPSHEETPAGE structure, ppsp , as a parameter to the

callback. This pointer is copied to a local instance of PROPSHEETPAGE using CopyMemory .

This technique should be very familiar to you now. Once we have a local copy of
PROPSHEETPAGE , we can get access to the lParam member of the structure. The lParam
member of ppsp contains a pointer to our property sheet extension. This pointer can be

used to create a copy of our object. There will be no call to AddRef . We have a copy of the
object, and its reference count is one. This is a very important distinction. Because we have a
copy of the object itself, we cannot set the object equal to Nothing when we are done with

it. I will talk about how to free this copy when I discuss PropSheetDlgProc , the second
callback function, later in the chapter.

The rest of this function is very straightforward. There are only two messages this callback
will receive: PSPCB_CREATE and PSPCB_RELEASE . This callback is called only twice, once

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for each message. These messages are not important to us, since VB provides us with
Initialize and Terminate events to handle startup and shutdown operations. In addition to
those two events, we also have access to the Window procedure for the dialog box itself,
which means we can process WM_INITDIALOG and WM_DESTROY messages ourselves.

6.3.5 PropSheetDlgProc

This function is responsible for processing all of the events for the property sheet. It is known
as a DLGPROC , and its syntax is as follows:

BOOL CALLBACK DialogProc(HWND hwndDlg,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);

DialogProc is just a generic name for a dialog procedure. When you create your own dialog

procedures, you can name them whatever you want (i.e., PropSheetDlgProc).

The parameters to the DialogProc function are:

hwndDlg

Handle of the property sheet.
uMsg

The message being received by the property sheet.
wParam

Additional message-specific information.
lParam

Additional message-specific information.

The real action for the property sheet extension happens in PropSheetDlgProc , which is the
message handler for the entire dialog box. This function is more complex than

PropSheetCallbackProc only in that we are dealing with a few more Windows messages. We
are not dealing with events here, but rather with raw Windows messages. These messages
are passed in to us and processed by a Select statement, as Example 6.11 illustrates.

Windows programs written in C process messages in this exact way. They are notorious for
having gigantic switch (the C version of Select Case) statements - sometimes

hundreds of lines long. Fortunately for us, there are only three messages we are interested
in: WM_INITDIALOG (sent when the property page is created), WM_NOTIFY (sent for all
control events), and WM_DESTROY (sent when the property sheet is destroyed). This makes

our life somewhat easier.

Example 6.11. Dialog Procedure for Property Sheet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Function PropSheetDlgProc(ByVal hwndDlg As hwnd, _
 ByVal uMsg As UINT, _
 ByVal wParam As wParam, _
 ByVal lParam As lParam) As BOOL

 Select Case uMsg

 Case WM_INITDIALOG
 InitDialog hwndDlg

 Case WM_NOTIFY
 Notify hwndDlg, lParam

 Case WM_DESTROY
 'DO NOT DO THIS: Set m_pPropSheet = Nothing.
 CopyMemory m_pPropSheet, 0&, 4

 End Select

 PropSheetDlgProc = 0

End Function

Let's discuss the messages we are processing. Notice how these messages correspond to
VB events. This is no coincidence. Under the hood, VB traps these same messages and
provides events for you. It probably works something like this (ignoring the fact that VB is not
actually coded in VB):

Select Case uMsg

 Case WM_INITDIALOG
 Call Form_Load
.
.
.

6.3.5.1 WM_INITDIALOG

The first message we will process is WM_INITDIALOG , which is analogous to the

Form_Load event. We use this opportunity to populate drop-down lists with their appropriate
values, read Animal data, and configure the dialog so that it displays the information found in

the currently selected .rad file. As you can see, the handler for the message has been

farmed out to a helper function called InitDialog . By creating helper functions to handle the
messages, the dialog procedure remains less cluttered and is easier to work with (should we
want to handle additional messages).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's take a peek at InitDialog , which is shown in Example 6.12 . It's pretty tedious and
repetitive, but it should make you more than a little grateful that you don't have to code your
dialogs like this every day (unlike you C/C++ programmers out there). Take note of the

SendDlgItemMessage and SetWindowText calls. These two API functions are the

workhorses of InitDialog .

SendDlgItemMessage is how we send messages to "windows" (as opposed to Windows
sending messages to us). Functions like SendDlgItemMessage and SendMessage are how
the various "properties" of controls and windows get set. Even though many of these controls
are COM objects themselves, under the covers, the work gets done by a call to

SendMessage somewhere. This function is responsible for things like adding items to list
boxes or combo boxes, removing items from list boxes or combo boxes, and setting and
clearing checkboxes and radio buttons. The list goes on and on. There are literally hundreds
of messages that various controls can receive. It is definitely the Swiss Army knife of the API

world. For our property sheet, SendDlgItemMessage will be used to populate the Animal,
age, and weight drop-downs.

SetWindowText does just what it says. Whenever you set the caption of a form, a label,
button, or text box, you can bet that a call to this function is being made somewhere.

SetWindowText will be used to populate all of the textboxes on our property sheet.

Because the .rad file mimics the format of an .ini file, retrieving data from the file is as simple
as using a call to GetPrivateProfileString .

Example 6.12. WM_INITDIALOG Handler

Public Sub InitDialog(ByVal hwndDlg As hwnd)

 Dim c As Byte
 Dim sz As String
 Dim hwnd As hwnd

 'Populate Animal type dropdown
 sz = StrConv("Armadillo", vbFromUnicode)
 SendDlgItemMessage hwndDlg, IDC_TYPE, CB_ADDSTRING, 0, StrPtr(sz)
 sz = StrConv("Cat", vbFromUnicode)
 SendDlgItemMessage hwndDlg, IDC_TYPE, CB_ADDSTRING, 0, StrPtr(sz)
 sz = StrConv("Cow", vbFromUnicode)
 SendDlgItemMessage hwndDlg, IDC_TYPE, CB_ADDSTRING, 0, StrPtr(sz)
 sz = StrConv("Dog", vbFromUnicode)
 SendDlgItemMessage hwndDlg, IDC_TYPE, CB_ADDSTRING, 0, StrPtr(sz)
 sz = StrConv("Fish", vbFromUnicode)
 SendDlgItemMessage hwndDlg, IDC_TYPE, CB_ADDSTRING, 0, StrPtr(sz)
 sz = StrConv("Unknown", vbFromUnicode)
 SendDlgItemMessage hwndDlg, IDC_TYPE, CB_ADDSTRING, 0, StrPtr(sz)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'Populate Age dropdown
 For c = 1 To 20
 sz = StrConv(str(c), vbFromUnicode)
 SendDlgItemMessage hwndDlg, IDC_AGE, CB_ADDSTRING, 0, StrPtr(sz)
 Next c

 'Populate Weight dropdown
 For c = 1 To 200
 sz = StrConv(Str(c), vbFromUnicode)
 SendDlgItemMessage hwndDlg, IDC_WEIGHT, CB_ADDSTRING, _
 0, StrPtr(sz)
 Next c

 'Set Animal type
 sz = Space(255)
 GetPrivateProfileString "Animal", "Type", "Unknown", sz, _
 Len(sz), m_pPropSheet.SelectedFile
 sz = TrimNull(sz) 'chop off NULL and convert to ANSI

 hwnd = GetDlgItem(hwndDlg, IDC_TYPE)
 SetWindowText hwnd, sz

 'Set Animal Age
 sz = Space(255)
 GetPrivateProfileString "Animal", "Age", "1", sz, _
 Len(sz), m_pPropSheet.SelectedFile

 'Set combo = animal age
 SendDlgItemMessage hwndDlg, IDC_AGE, CB_SETCURSEL, _
 Int(sz) - 1, 0

 'Set Animal Weight
 sz = Space(255)
 GetPrivateProfileString "Animal", "Weight", "1", sz, _
 Len(sz), m_pPropSheet.SelectedFile

 'Set combo = animal weight
 SendDlgItemMessage hwndDlg, IDC_WEIGHT, CB_SETCURSEL, _
 Int(sz) - 1, 0

 'Set Animal gender
 sz = Space(255)
 GetPrivateProfileString "Animal", "Gender", "M", sz, _
 Len(sz), m_pPropSheet.SelectedFile
 If UCase(Left(sz, 1)) = "M" Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SendDlgItemMessage hwndDlg, IDC_MALE, BM_SETCHECK, 1, 0
 Else
 SendDlgItemMessage hwndDlg, IDC_FEMALE, BM_SETCHECK, 1, 0
 End If

 'Get Animal color
 sz = Space(255)
 GetPrivateProfileString "Animal", "color", "unknown", sz, _
 Len(sz), m_pPropSheet.SelectedFile
 sz = LCase(TrimNull(sz))

 hwnd = GetDlgItem(hwndDlg, IDC_COLOR)
 SetWindowText hwnd, sz

 'Set Animal noise
 sz = Space(255)
 GetPrivateProfileString "Animal", "Noise", "unknown", sz, _
 Len(sz), m_pPropSheet.SelectedFile
 sz = LCase(TrimNull(sz))

 hwnd = GetDlgItem(hwndDlg, IDC_NOISE)
 SetWindowText hwnd, sz

End Sub

6.3.5.2 WM_NOTIFY

Notification messages are sent by controls to the parent window for a variety of reasons.
When the property sheet is selected, a notification is sent. When it is deselected, a
notification is sent. Notifications are also sent when OK, Cancel, and Apply are pressed. And
finally, a notification is sent right before the property sheet is about to be destroyed. Basically,
a WM_NOTIFY message is sent whenever the control needs to notify its parent (our property

sheet) of an event.

When a WM_NOTIFY message is sent, lParam contains a pointer to an NMHDR structure.

CopyMemory can then be used to copy this address into a local instance of NMHDR . The

structure is defined as follows:

typedef struct {
 HWND hwndFrom;
 UINT idFrom;
 UINT code;
} NMHDR;

with the following members:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hwndFrom

The Windows handle of the control sending the message.
idFrom

The ID of the control.
code

The message being sent.

We will ignore every member except for code in our WM_NOTIFY event handler, which is

shown in Example 6.13 .

Example 6.13. WM_NOTIFY Handler

Public Sub Notify(ByVal hwndDlg As hwnd, ByVal lParam As lParam)

 Dim nh As NMHDR

 CopyMemory nh, ByVal lParam, Len(nh)

 Select Case nh.code
 Case PSN_APPLY
 'OK and Apply
 SaveProperties hwndDlg

 Case PSN_QUERYCANCEL
 'Cancel has been clicked. Return 1 to prevent. 0 to allow.

 Case PSN_SETACTIVE
 'sent when property tab is selected for first time

 Case PSN_KILLACTIVE
 'sent when another property tab is selected

 Case PSN_RESET
 'Cancel has been allowed. About to be destroyed

 End Select

End Sub

The various messages that will be processed are listed with comments about their meaning,
but the only message we are interested in is PSN_APPLY . This message is sent when OK or

Apply has been pressed. We are not implementing Apply, so this distinction is not important.

When OK is pressed, SaveProperties is called, and all the information from the dialog is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

written back into the .rad file.

SaveProperties , which is shown in Example 6.14 , is very similar to InitDialog . In fact, it is

almost its inverse. Where we used SetWindowText before, now we use GetWindowText .

WritePrivateProfileString (alias WPPString) handles writing the information back to the .rad
file.

Example 6.14. SaveProperties

Public Sub SaveProperties(ByVal hwndDlg As hwnd)

 Dim lret As Long
 Dim sz As String
 Dim hwnd As hwnd

 'Save animal type
 sz = Space(255)
 hwnd = GetDlgItem(hwndDlg, IDC_TYPE)
 GetWindowText hwnd, sz, Len(sz)
 sz = Trim(sz)
 'WritePrivateProfileString
 WPPString "Animal", "Type", sz, m_pPropSheet.SelectedFile

 'Save gender
 lret = SendDlgItemMessage(hwndDlg, IDC_MALE, BM_GETCHECK, 0, 0)
 If lret Then
 WPPString "Animal", "Gender", "M", m_pPropSheet.SelectedFile
 Else
 WPPString "Animal", "Gender", "F", m_pPropSheet.SelectedFile
 End If

 'Save color
 sz = Space(255)
 hwnd = GetDlgItem(hwndDlg, IDC_COLOR)
 GetWindowText hwnd, sz, Len(sz)
 sz = Trim(sz)
 WPPString "Animal", "Color", sz, m_pPropSheet.SelectedFile

 'Save age
 lret = SendDlgItemMessage(hwndDlg, IDC_AGE, CB_GETCURSEL, 0, 0)
 sz = str(lret + 1)
 WPPString "Animal", "Age", sz, m_pPropSheet.SelectedFile

 'Save weight
 lret = SendDlgItemMessage(hwndDlg, IDC_WEIGHT, CB_GETCURSEL, 0, 0)
 sz = str(lret + 1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WPPString "Animal", "Weight", sz, m_pPropSheet.SelectedFile

 'Save noise
 sz = Space(255)
 hwnd = GetDlgItem(hwndDlg, IDC_NOISE)
 GetWindowText hwnd, sz, Len(sz)
 sz = Trim(sz)
 WPPString "Animal", "Noise", sz, m_pPropSheet.SelectedFile

End Sub

6.3.5.3 WM_DESTROY

The last message we are interested in is WM_DESTROY , which provides us with an

opportunity to free the reference to our object. But remember, we are dealing with a copy of
the object (see Example 6.7). It has a reference count of 1. Explorer has a valid reference to
the property sheet extension. When Explorer is shut down, it will try to call
IUnknown::Release to free the reference it is holding. If we set m_pPropSheet equal to

Nothing , it will be released from memory, and the reference held by Explorer will no longer
be valid. This translates into a crash the next time Explorer is closed. Instead of setting m_
pPropSheet equal to Nothing , will be copied to its address to mark the memory as free.

This is demonstrated in Example 6.8 .

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

6.4 Registering the Property Sheet Handler

Property sheet extensions are registered in the same manner as context menus. The shell
allows multiple property sheets to be defined for any given file class. These property sheets
can exist in one server or across multiple servers. It's up to you. The default property sheet is
determined by setting the default value for the PropertySheetHandlers key, as shown in

Figure 6.5. Additional property sheets do not need to be defined in this manner. They can
just be added under PropertySheetHandlers.

Figure 6.5. Property sheet handlers in the registry

After you add the property sheet to the approved extension section of the registry, the

property sheet can be accessed by right-clicking on a .rad file. When the property sheet
appears, it should contain a RAD Settings dialog like the one shown in Figure 6.6.

Don't forget to copy propext.dll to your system directory!

Figure 6.6. RAD property sheet allows every property of the file to be modified

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With the property sheet extension in place, you can now change every attribute of the file.
When you change the animal type, notice how our icon handler updates the shell to display
the new icon for the animal. The shell extensions work together well.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 7. Drop Handlers

Drop handlers allow file objects to become drop targets-that is, to define a custom behavior
when one or more files are dropped on them. When a file is dropped on another file, the
handler is provided with the names of both the target and source file(s). The files can then be
processed in any manner appropriate to the situation. Consider the popular WinZip archive

program. When a file is dropped onto an existing .zip file, it is added to the archive. This
behavior is accomplished with the help of a drop handler.

Drop handlers are easy to implement. They implement two interfaces (IDropTarget and
IPersistFile), one of which is already familiar to us.

The drop handler we will implement in this chapter offers no practical functionality other than
to show you how one works. It will allow you to drop one or more files onto a .rad file object.
The drop handler will report the names of the source file(s), the target file, and
keyboard/mouse states.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

7.1 How Drop Handlers Work

When one file (the source file) is dragged over another file (the target file), the shell checks
under the target file's application identifier key to see if a drop handler has been registered
for that particular file class. This key is in the following location (assuming we are talking

about .rad files):

HKEY_CLASSES_ROOT\
 radfile\
 shellex\
 DropHandler = {CLSID}

As you can see from the registry setting, there can be only one drop
handler registered for a file class.

If a drop handler for the target file exists, the shell will load it and pass it the name of the
target file through IPersistFile::Load. Once this occurs, the shell will start calling
methods on the IDropTarget portion of the handler object.

The drop handler will be notified via IDropTarget several times during the drag-and-drop
operation: once when the files enter the target area (IDropTarget::DragEnter), once
when the files exit the target area (IDropTarget::DragLeave), and every time the mouse
is moved within the target area (IDropTarget::DragOver). There is also a notification
when the files are dropped (IDropTarget::Drop).

As the drop operations occur, the handler is given the opportunity to notify the shell of the
drop operation status. This allows the shell to visually notify the user of what is happening by

changing the cursor. For instance, if our drop handler only accepts .txt files and we drag a

.zip file over the target, the drop handler can tell the shell that the operation will not work. The
shell can then display the No Drop cursor (see Figure 7.1) to inform the user that files of

type .zip are not acceptable for this particular drop target.

When a successful drop operation occurs, the shell will pass the name of the source files via
an IDataObject interface to the drop handler. As you saw in Chapter 5, it's a simple

matter to extract the names of the files from the data object and process the files in a manner
befitting the situation.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

7.2 Drop Handler Interfaces

Now that you know how a drop handler works, let's discuss the interfaces involved in a little
more detail.

7.2.1 IDropTarget

As Table 7.1 shows, IDropTarget contains four methods: DragEnter, DragOver,
DragLeave, and Drop.

Table 7.1. IDropTarget

Method Description

DragEnter Determines whether a drop is valid.

DragOver Provides drop information as object is dragged over the target.

DragLeave Called when object leaves drop target.

Drop Called when object is dropped on the target.

7.2.1.1 DragEnter

DragEnter is used to determine whether a drop is acceptable. For instance, if the file being

dropped is not of a particular type, the operation could be cancelled (we will not do this here).
This method also provides us with some minimal keyboard state information, such as
whether the Alt, Shift, or Ctrl keys were pressed during the drop. Left- and right-mouse button
states are also provided.

The syntax of the DragEnter method is as follows:

HRESULT DragEnter(IDataObject *pDataObj,
 DWORD grfKeyState,
 POINTL pt,
 DWORD *pdwEffect);

The method's parameters are:

pDataObj

[in] A pointer to an IDataObject interface on a data object. This object contains the

data being transferred via the drag-and-drop operation.
grfKeyState

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[in] The current state of the keyboard. It can contain one or more of the following
values:

Constant Description

MK_LBUTTON Left mouse button is pressed.

MK_RBUTTON Right mouse button is pressed.

MK_SHIFT Shift key is pressed.

MK_CONTROL Ctrl key is pressed.

MK_MBUTTON Middle mouse button is pressed.

MK_ALT Alt key is pressed.

You should never compare grfKeyState for equality with one of these
KEYSTATES values, as in the following code fragment:

'Do not check for equality
If grfKeyState = MK_CONTROL Then
.
.
.

Always mask for the desired values using the And operator, as follows:

'This is the proper way to determine mouse/key state
If grfKeyState And MK_CONTROL Then
.
.
.

pt

[in] The current cursor coordinates. This a POINTL structure that is defined as follows
(it's really the same as the POINTAPI structure):

typedef struct _POINTL {
 long x;
 long y;
} POINTL;
pdwEffect

[in, out] Upon return, this parameter should contain one or more of the following
values from the DROPEFFECT enumeration:

typedef enum tagDROPEFFECT {
 DROPEFFECT_NONE = 0,
 DROPEFFECT_COPY = 1,
 DROPEFFECT_MOVE = 2,
 DROPEFFECT_LINK = 4,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DROPEFFECT_SCROLL = 0x80000000
}DROPEFFECT;

These values have the following meaning:

Constant Description

DROPEFFECT_NONE Drop target cannot accept the data.

DROPEFFECT_COPY Drop results in a copy. Original data is unmodified.

DROPEFFECT_MOVE Drag source should remove the data.

DROPEFFECT_LINK Drag source should create a link to the original data.

DROPEFFECT_SCROLL
Scrolling is about to start or is currently occurring at the target. This value is used in
addition to the other values.

As with the grfKeyState parameter, these values should never be checked for equality.

Mask the values using the And operator.

7.2.1.2 DragOver

DragOver is implemented in a similar manner to DragEnter. It is called whenever a drag

occurs over a respective target, not just upon entry. We will not implement this method, since
DragEnter provides all the functionality that we will need. The syntax of DragOver is:

HRESULT DragOver(
 DWORD grfKeyState,
 POINTL pt,
 DWORD * pdwEffect
);

The parameters to this method are the same as those for DragEnter.

7.2.1.3 DragLeave

DragLeave provides a means to free any references to IDataObject that were possibly
held as a result of a DragEnter or DragOver call. We do not store any references to
IDataObject; therefore, this method is not necessary for our drop handler to function

properly. Its syntax is:

HRESULT DragLeave(void);

7.2.1.4 Drop

This method is where the actual drop takes place. Its syntax is as follows:

HRESULT Drop(
 IDataObject * pDataObject,
 DWORD grfKeyState,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 POINTL pt,
 DWORD * pdwEffect
);

The parameters for this method are exactly the same as DragEnter.

7.2.2 IPersistFile

IPersistFile is used to get the target file of the drop. It is implemented exactly as it was in
our icon handler. Load is the only method that is implemented. The name of the target file is
stored in a private data member, which allows it to be accessed from Drop. See Chapter 5

for an explanation of this interface.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

7.3 Creating a Drop Handler

We need to add a new class to the RadEx project that will implement IPersistFile and
IDropTarget. Call the file clsDropHandler.cls. Its declarations section begins as follows:

'clsDropHandler.cls

Implements IDropTarget
Implements IPersistFile

7.3.1 Implementing IPersistFile

The only method that we need to implement on this interface is Load. The code is the same
as the code we used to create the icon handler back in Chapter 5. Example 7.1 contains
the implementation.

Example 7.1. IPersistFile::Load Implementation

'clsDropHandler.cls

Private m_sTargetFile As String

Private Sub IPersistFile_Load(
 ByVal pszFileName As VBShellLib.LPCOLESTR, _
 ByVal dwMode As VBShellLib.DWORD)

 m_sTargetFile = Space(255)
 CopyMemory ByVal StrPtr(m_sTargetFile), _
 ByVal pszFileName, _
 Len(m_sTargetFile)

End Sub

7.3.2 Implementing IDropTarget

The most interesting aspect of implementing the IDropTarget interface (and, in particular,
its DragEnter method) concerns the POINTL parameter to the DragEnter method. Notice
from our earlier presentation of the method's syntax that it is an [in] parameter; therefore, it

is not a pointer. We have a slight problem here, because Visual Basic does not allow UDTs
to be passed ByVal, which is what is going on here. POINTL is a structure that contains the

location of the mouse in the drop area. It is defined like this:

typedef struct _POINTL {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LONG x;
 LONG y;
} POINTL;

Fortunately, we do not need this point information, so there is a simple workaround. Instead
of passing a point, we can use two Longs, which will occupy the same space on the stack as
a POINTL structure. The final definition for DragEnter looks like this:

HRESULT DragEnter
(
 [in] IDataObject *pDataObj,
 [in] KEYSTATES grfKeyState,
 [in] long x,
 [in] long y,
 [in, out] DROPEFFECT *pdwEffect
);

DragOver and Drop will also use two Long values in place of POINTL.

7.3.2.1 DragEnter

With that said, let's get on to the actual implementation of IDropTarget. We only need to
implement two methods (DragEnter and Drop) to satisfy our needs. Let's look at the
DragEnter implementation, which is shown in Example 7.2, and then we'll discuss how it

works.

Example 7.2. DragEnter Implementation

Private m_dwDropKey As KEYSTATES
Private m_dwMouseKey As KEYSTATES

Private Sub IDropTarget_DragEnter(
 ByVal pDataObj As VBShellLib.IDataObject, _
 ByVal grfKeyState As VBShellLib.KEYSTATES, _
 ByVal x As Long, _
 ByVal y As Long, _
 pdwEffect As VBShellLib.DROPEFFECT)

 pdwEffect = DROPEFFECT_COPY

 'Get keyboard state

 'Does NOT take into account multiple keys being held down

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If grfKeyState And MK_CONTROL Then
 m_dwDropKey = MK_CONTROL
 ElseIf grfKeyState And MK_SHIFT Then
 m_dwDropKey = MK_SHIFT
 ElseIf grfKeyState And MK_ALT Then
 m_dwDropKey = MK_ALT
 Else
 m_dwDropKey = 0
 End If

 'Get mouse state
 If grfKeyState And MK_LBUTTON Then
 m_dwMouseKey = MK_LBUTTON
 ElseIf grfKeyState And MK_RBUTTON Then
 m_dwMouseKey = MK_RBUTTON
 End If

End Sub

The first parameter given to us by the shell is an IDataObject reference. Remember
clsDropFiles? This is the class we used in Chapter 6, to implement
IShellExtInit::Initialize. We could pass this IDataObject reference to an
instance of clsDropFiles to get a list of all the source filenames for our Drop implementation.

But we won't, because in this instance it would be a little slow. It would be called every time
we enter the drop target, which is way too often. Instead, we'll wait until Drop is actually
called to get a list of the source filenames. So, for now, we can ignore the pDataObj
parameter. The parameters we are really interested in are pdwEffect and grfKeyState.

The pdwEffect parameter is set to one of the DROPEFFECT enumeration values and is used

to visually indicate what the result of a drop operation would be. The shell conveys this by
changing the cursor to one of the shapes shown in Figure 7.1. As the cursor moves over a
drop target, the shell changes the cursor to visually show what type of drop operation is
occurring. To cancel a drop operation, pdwEffect is set to DROPEFFECT_NONE.

Figure 7.1. DROPEFFECT operations

The grfKeyState parameter contains keyboard- and mouse-state information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Our implementation sets pdwEffect to DROPEFFECT_COPY regardless of the keys pressed.

This will cause the cursor to change (as shown in Figure 7.1), giving us a visual cue that the
files can be dropped. Keyboard and mouse states are stored in two separate private data
members. These values will be used when we implement Drop.

7.3.2.2 Drop

Drop is where all the action takes place. This is the method that is called when a file is
dropped on a drop target. Our implementation, which is shown in Example 7.3, is fairly
straightforward. Let's take a look.

Example 7.3. Drop Implementation

Private Sub IDropTarget_Drop(
 ByVal pDataObj As VBShellLib.IDataObject, _
 ByVal grfKeyState As VBShellLib.KEYSTATES, _
 ByVal x As Long, _
 ByVal y As Long, _
 pdwEffect As VBShellLib.DROPEFFECT)

 Dim i As Integer
 Dim sMsg As String

 Set m_clsDropFiles = New clsDropFiles
 m_clsDropFiles.GetDropFiles pDataObj, ".rad"

 If (m_clsDropFiles.Count = 0) Then
 MsgBox "Only RAD files can be dropped here!", _
 vbOKOnly, _
 "RAD Drop Handler"
 Exit Sub
 End If

 If m_dwMouseKey = MK_LBUTTON Then
 sMsg = "MK_LBUTTON" & vbCrLf
 End If

 If m_dwMouseKey = MK_RBUTTON Then
 sMsg = "MK_RBUTTON" & vbCrLf
 End If

 Select Case m_dwDropKey
 Case MK_CONTROL
 sMsg = sMsg & "Drop + CTRL"
 Case MK_SHIFT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sMsg = sMsg & "Drop + SHIFT"
 Case MK_ALT
 sMsg = sMsg & "Drop + ALT"
 Case Else
 sMsg = sMsg & "Normal Drop"
 End Select

 sMsg = sMsg & vbCrLf & vbCrLf
 sMsg = sMsg & "Drop File(s):" & vbCrLf

 For i = 0 To m_clsDropFiles.Count - 1
 sMsg = sMsg & m_clsDropFiles.Files(i) & vbCrLf
 Next i

 sMsg = sMsg & vbCrLf
 sMsg = sMsg & "Target File: " & m_sTargetFile

 MsgBox sMsg, vbOKOnly, "RAD Drop Handler"

End Sub

The shell passes in a reference to IDataObject, which we in turn pass on to an instance of

clsDropFiles (see Chapter 5). If our file count is at this point, we know that the files dropped

were not .rad files, and we can display an error message. Otherwise, a list of the target files,
the name of the drop file, and the keyboard and mouse states are displayed in a message
box like the one shown in Figure 7.2.

Figure 7.2. Drop handler info

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

7.4 Registering the Drop Handler

There can be only one drop handler for a file type; therefore, drop handlers are registered in
a similar manner to icon handlers, as Figure 7.3 illustrates. The default value points to the
CLSID of the drop handler, and the CLSID is added to the approved extensions list.

Figure 7.3. Registering a drop handler in the registry

The following registry script will properly register the example for this chapter. As always,
lines contained within square brackets must be on the same line:

REGEDIT4

[HKEY_CLASSES_ROOT\.rad]
@ = "radfile"

[HKEY_CLASSES_ROOT\radfile]

[HKEY_CLASSES_ROOT\radfile]
@ = "Rudimentary Animal Data"

[HKEY_CLASSES_ROOT\radfile\shellex]

[HKEY_CLASSES_ROOT\radfile\shellex\DropHandler]
@ = "{A48EE3D7-F33D-11D2-9FDD-00550076E06F}"

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved]
"{A48EE3D7-F33D-11D2-9FDD-00550076E06F}" = "RAD drop handler"
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 8. Data Handlers

Data handlers allow you to define custom handling for copy-and-paste operations involving
files of a given type. Normally, when you select a file and press Ctrl-C or select Copy from
the Explorer menu, the shell copies the name of the file using the CF_HDROP format. This is

evident in the clsDropFiles class that we used to implement the
IShellExtInit::Initialize and IDropTarget::Drop methods in Chapter 7. But
what if we want to change this behavior for our file type? Take a bitmap file for instance.
What if, instead of copying the file, we want to copy the actual image contained within the
file? Then you would be able to highlight the file in Explorer and make it available to any
program that knows how to handle CF_BITMAP information (Microsoft Paint, Adobe
Photoshop, etc.). Or what if we want to copy information from the file, say in CF_TEXT

format, to the clipboard? We might want to copy its dimensions, for example, or the color
depth of the file. This would allow us to select a file in the shell, press Ctrl-C, and copy
pertinent information directly from the file into other programs like Microsoft Word or Excel.

Data handlers are required to implement two interfaces. These interfaces are
IPersistFile and IDataObject. The IPersistFile implementation serves the same
purpose it did for our icon handler and drop handler. We will just implement Load to get the
name of the file in question.

We have used IDataObject before, but we have never implemented it. Admittedly, when
IDataObject was last discussed (see Chapter 4), all you got was a really glossed

overview of the interface. In this chapter, we will talk more about this interface and get a little
better idea of how it works. But by no means will the discussion be complete. To write a data
handler, we need to implement only three of nine available methods. But after we implement
these methods, you should be able to explore the rest of IDataObject with better
understanding.

Our data handler will be fairly simple, although the implementation is somewhat involved.

When a .rad file is copied in the shell, the data handler will determine the type of animal

represented by the file and build the string "The (animal name) is on the clipboard." This
string is then made available to any program that allows for text transfers (CF_TEXT format)

over the clipboard via the Paste command. Figure 8.1, for example, shows a string

generated by the data handler for .rad files that has been pasted into Notepad.

Figure 8.1. Accessing the .rad file data handler from Notepad

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

8.1 How Data Handlers Work

Data handlers are activated when a file is copied in the shell. Selecting Copy from Explorer's
File menu, selecting Copy from the context menu of the file object itself, pressing Ctrl-C, or
pressing Ctrl-Insert will all initiate a registered data handler if one exists. To do this, the shell
looks under the following key:

HKEY_CLASSES_ROOT\
 {application identifier}\
 shellex\
 DataHandler

Once loaded, the shell passes the name of the file being copied to the data handler via the
IPersistFile::Load method. We've seen this functionality a few times already (icon

handlers and drop handlers). Nothing's different here. Like before, the filename can be stored
in a private class member until it is needed at a later time.

The shell then calls IDataObject::QueryGetData repeatedly in an attempt to figure out
all of the formats a data handler can use. Each time QueryGetData is called, a pointer to a
FORMATETC structure is passed in by the shell. The FORMATETC structure describes the
format of the data that will be involved in the data transfer: text, bitmaps, metafiles, etc. We'll
talk about this structure later.

Every time the shell calls QueryGetData, it is saying, "If I call GetData with this format, will
the call be successful?" In other words, will GetData be able to provide me the data
described by this FORMATETC structure? The QueryGetData method is provided by data
objects (objects that implement IDataObject) as a way for the caller to determine what

formats the data object can provide. However, the fact that the shell calls this method seems
a little odd, because IDataObject has another method called EnumFormatEtc.

EnumFormatEtc provides a way for the shell to retrieve all of the formats that are supported
by the data handler. In fact, it is this method that the shell calls right after QueryGetData.

This is strange behavior because, rather than ask what formats a data object supports, the
shell could just ask for the formats.

After the shell has received all of the valid formats that the data object supports, it will then
call IDataObject::GetData to retrieve the data. Whatever this "data" happens to be is
completely arbitrary. The data handler can provide whatever it wants when GetData is

called. For instance, the example for the chapter will retrieve the name of the animal inside of

a .rad file and create a string that says "The (animal name) is on the clipboard." We could
have just as easily provided a bitmap of the animal or a short biography of the animal's life
thus far. The point is that whatever you want to provide is up to you, and GetData is where

the work gets done.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

So after GetData has been called, the handler is out of the picture. But the show is not over

. . .

At this point (with regard to our chapter example), the Paste menu of any program supporting
text (CF_TEXT) clipboard transfers will be active. Programs supporting CF_TEXT include

Notepad and Microsoft Word. When Paste is selected from the menu of one of these
programs or a similar program, the contents of the clipboard are transferred to the
application.

Programs supporting formats other than CF_TEXT, such as Microsoft Paint, would display a

grayed out Paste menu.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

8.2 Data Handler Interfaces

Data handlers implement two interfaces: IPersistFile andIDataObject . Everything that
needs to be said about IPersistFile has already been said (see Section 5.2.1 in Chapter
5). Conversely, we know almost nothing about IDataObject . And even when we are done

with this chapter, there will still be much that has not been said about this interface. The
world of IDataObject is huge. It is one of the fundamental interfaces involved in OLE data

transfers.

8.2.1 IDataObject

Table 8.1 shows all nine methods of IDataObject , but only three are required when writing
data handlers in Visual Basic: QueryGetData , EnumFormatEtc , and GetData .

Table 8.1. The IDataObject Interface

Method Description

GetData
Retrieves data from a data object, as defined by a FORMATETC structure. The data is
then transferred through a STGMEDIUM structure.

GetDataHere
Similar to GetData except the caller is responsible for allocating and freeing all
memory associated with FORMATETC and STGMEDIUM .

QueryGetData
Given a FORMATETC structure, this method determines if a resulting call to GetData

will be successful.

GetCanonicalFormatEtc
Determines if two different FORMATETC structures would produce the same data,
providing a means to eliminate a second call to GetData .

SetData Allows another object to send data to the data object.

EnumFormatEtc
Provides a means to enumerate all the ways a data object can describe data in a
FORMATETC structure.

DAdvise
Creates an event sink between the caller and the data object, allowing the data
object to be notified when data changes.

DUnadvise Releases the event sink created by DAdvise .

EnumDAdvise Enumerates the active event sinks between the caller and the data object.

8.2.1.1 QueryGetData

This method determines whether the data handler is capable of providing data in the format
that is being requested by the shell. This method has the following syntax:

HRESULT QueryGetData(FORMATETC *pFormatEtc);

When a data handler is first loaded, the shell calls QueryGetData several times in order to

determine what formats the handler can provide. You can picture the shell asking the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handler, "Do you support text? Do you support bitmaps? Do you support wave files?" The
query comes in the form of a FORMATETC structure. This structure is used to describe data

that will be involved in a transfer. It is defined like this:

typedef struct tagFORMATETC {
 CLIPFORMAT cfFormat;
 DVTARGETDEVICE *ptd;
 DWORD dwAspect;
 LONG lindex;
 DWORD tymed;
}FORMATETC, *LPFORMATETC;

Its members are as follows:

cfFormat

Contains the particular clipboard format of interest. This can be one of the following
values in the CLIPFORMAT enumeration (this is defined in vbshell.odl) :

typedef enum {
 CF_TEXT = 1, 'Text format
 CF_BITMAP = 2, 'Handle to a bitmap
 CF_METAFILEPICT = 3, 'Handle to a metafile picture format
 CF_SYLK = 4, 'Microsoft Symbolic Link format
 CF_DIF = 5, 'Software Art's data interchange format
 CF_TIFF = 6, 'Tagged-image file format
 CF_OEMTEXT = 7, 'Text format in OEM character set
 CF_DIB = 8, 'Memory object containing BITMAPINFO
 CF_PALETTE = 9, 'Handle to a color palette
 CF_PENDATA = 10, 'Data for pen extensions
 CF_RIFF = 11, 'Audio data
 CF_WAVE = 12, 'Audio data in WAV format
 CF_UNICODETEXT = 13, 'Unicode text format
 CF_ENHMETAFILE = 14, 'Handle to enhanced metafile
 CF_HDROP = 15, 'Handle that identifies list of files
 CF_LOCALE = 16, 'Handle to locale identifier
 CF_MAX = 17, 'Undocumented????
 CF_OWNERDISPLAY = 0x0080, 'Owner display format
 CF_DSPTEXT = 0x0081, 'Text in private format
 CF_DSPBITMAP = 0x0082, 'Bitmap display in private format
 CF_DSPMETAFILEPICT = 0x0083, 'Metafile in private format
 CF_DSPENHMETAFILE = 0x008E 'Enhanced metafile in private format
} CLIPFORMAT;
ptd

This member is a pointer to a DVTARGETDEVICE structure that contains information

about the target device for which the data is being readied. We will not discuss this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parameter for two reasons. First, it would really complicate our discussion. If you need to
write a data handler that dumps data to a printer, then you would need this parameter
(see the documentation for the Platform SDK). Second, the data handler we will write
(and most of the ones you will probably write) are device-independent, so this parameter
is meaningless. It will most likely always be 0.

dwAspect

This member can be one of the following values from the DVASPECT enumeration, which

is defined like so:
typedef enum tagDVASPECT {
 DVASPECT_CONTENT = 1,
 DVASPECT_THUMBNAIL = 2,
 DVASPECT_ICON = 4,
 DVASPECT_DOCPRINT = 8
} DVASPECT;

A single clipboard format can support multiple views, or aspects. Think about Explorer when
the view is configured as "View as Web Page." If you select a graphics file in the shell, a
thumbnail image is shown to the left of the files listing. The data handler involved in this
process most likely received a request for the data with this parameter set to
DVASPECT_THUMBNAIL .

The members of this enumeration have the following meaning:

Constant Description

DVASPECT_CONTENT Returns the data in a format that is ready for the screen or the printer.

DVASPECT_THUMBNAIL Presents the data in a 120 120, 16-color, device-independent bitmap.

DVASPECT_ICON Provides an iconic representation of the data.

DVASPECT_DOCPRINT
Provides a view of the data on the screen as though it were printed on a printer using the
File Print command. The data might represent a series of pages.

lindex

Part of the aspect when the data is split across page boundaries. The most common
value is -1, which identifies all of the data. For the aspects DVASPECT_THUMBNAIL and
DVASPECT_ICON , this value is ignored.

tymed

One of the TYMED enumeration constants used to indicate the type of storage medium
being used to facilitate a data transfer. The enumeration is defined like so:

typedef enum tagTYMED {
 TYMED_HGLOBAL = 1,
 TYMED_FILE = 2,
 TYMED_ISTREAM = 4,
 TYMED_ISTORAGE = 8,
 TYMED_GDI = 16,
 TYMED_MFPICT = 32,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TYMED_ENHMF = 64,
 TYMED_NULL = 0 }
TYMED;

We will use the value TYMED_HGLOBAL to tell the shell that our data transfers will take place

via global memory. But as you can see, there are many more options.

8.2.1.2 EnumFormatEtc

Before the shell can get data from the data object, it must retrieve the formats that the object
supports. It does this by calling IDataObject::EnumFormatEtc . This method has the

following definition:

HRESULT EnumFormatEtc(DWORD dwDirection,
 IEnumFORMATETC ** ppenumFormatetc);

Its parameters are:

dwDirection

This is a value from the following enumeration:
typedef enum tagDATADIR {DATADIR_GET = 1,
 DATADIR_SET = 2,
} DATADIR;

If the value of dwDirection is DATADIR_GET , the shell is asking the data handler to

supply all of the formats that can be passed to GetData successfully. Conversely, if
dwDirection equals DATADIR_SET , then the shell wants to know which formats will work
with a call to SetData . A data handler will not be asked for SetData formats.

ppenumFormatetc

This is an IEnumFORMATETC reference provided by the data object that the shell will

use to enumerate all of the formats that the object supports.

8.2.1.3 GetData

Called when the client (Explorer) is ready to receive the data. The function is defined as:

HRESULT GetData(FORMATETC * pFormatetc, STGMEDIUM * pmedium);

GetData returns the data in the format described by pFormatetc and transfers this data
through pmedium .

FORMATETC should already be familiar to you from the discussion of the IDataObject
interface's QueryGetData method. STGMEDIUM , however, requires some explanation. The

structure looks like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

typedef struct tagSTGMEDIUM {
 DWORD tymed;
 union {
 HBITMAP hBitmap;
 HMETAFILEPICT hMetaFilePict;
 HENHMETAFILE hEnhMetaFile;
 HGLOBAL hGlobal;
 LPWSTR lpszFileName;
 IStream *pstm;
 IStorage *pstg;
 };
 IUnknown *pUnkForRelease;
}STGMEDIUM;

Here's how the structure works: the tymed member contains a value from the TYMED

enumeration, which has already been seen in our discussion of QueryGetData . This value
determines which value of the union is valid. So if tymed is equal to TYMED_HGLOBAL , the
hGlobal member of the union should contain the data for the transfer. If tymed is equal to

TYMED_ISTREAM , the data should be made available through the IStream * member of
the structure.

There is a problem with this structure, however: VB does not support unions. Remember,
though, that members of a union occupy the same physical address in memory, so a
workaround is fairly simple. We can define the structure like this:

typedef struct {
 TYMED tymed;
 long pData;
 IUnknown *pUnkForRelease;
} STGMEDIUM;

This works because, naturally, every member of the union is essentially a 4-byte value (a
pointer or a handle).

The last member of this structure that needs to be discussed is pUnkForRelease .

Remember the ReleaseStgMedium function (see Chapter 4)? This function is called to free
the storage allocated by STGMEDIUM . Well, if pUnkForRelease is NULL , then

ReleaseStgMedium uses its default methods to release this memory. If it's not NULL , then

ReleaseStgMedium uses the IUnknown pointer specified by this member to free the storage.
It does this by calling IUnknown::Release .

The IDL listing for IDataObject is shown in Example 8.1 .

Example 8.1. IDataObject IDL Definition

//---

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// IDataObject
//---
typedef enum {
 DV_E_FORMATETC = 0x80040064,
 DV_E_DVTARGETDEVICE = 0x80040065,
 DV_E_STGMEDIUM = 0x80040066,
 DV_E_STATDATA = 0x80040067,
 DV_E_LINDEX = 0x80040068,
 DV_E_TYMED = 0x80040069,
 DV_E_CLIPFORMAT = 0x8004006A,
 DV_E_DVASPECT = 0x8004006B,
 DV_E_DVTARGETDEVICE_SIZE = 0x8004006C,
 DV_E_NOIVIEWOBJECT = 0x8004006D
} DV_ERROR;

typedef enum tagDATADIR
{
 DATADIR_GET = 1,
 DATADIR_SET = 2
} DATADIR;

[
 uuid(0000010e-0000-0000-C000-000000000046),
 helpstring("IDataObject Interface"),
 odl
]
interface IDataObject : IUnknown
{
 HRESULT GetData(
 [in] FORMATETC *pformatetcIn,
 [in,out] STGMEDIUM *pmedium);

 HRESULT GetDataHere(
 [in] FORMATETC *pformatetc,
 [in,out] STGMEDIUM *pmedium);

 HRESULT QueryGetData(
 [in] FORMATETC *pformatetc);

 HRESULT GetCanonicalFormatEtc(
 [in] FORMATETC *pformatectIn,
 [in,out] FORMATETC *pformatetcOut);

 HRESULT SetData(
 [in] FORMATETC *pformatetc,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in] STGMEDIUM *pmedium,
 [in] BOOL fRelease);

 HRESULT EnumFormatEtc(
 [in] long dwDirection,
 [in,out] IEnumFORMATETC **ppenumFormatEtc);

 HRESULT DAdvise(
 [in] FORMATETC *pformatetc,
 [in] long advf,
 [in] long pAdvSink,
 [in] long pdwConnection);

 HRESULT DUnadvise(
 [in] long dwConnection);

 HRESULT EnumDAdvise(
 [in] long ppenumAdvise);
}

Notice that throughout the IDL listing for IDataObject , explicit pointers
to FORMATETC and STGMEDIUM are used as parameters to several of the
methods. This is possible because the members of both of these
structures are all automation compatible.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

8.3 Creating a Data Handler

We begin the data handler by adding a new class module to the RadEx Project called
clsDataHandler. The handler will implement IDataObject and IPersistFile , which
have already been defined in the type library from previous chapters. We should add the
following code to the general declarations section of clsDataHandler:

'clsDataHandler.cls

Implements IDataObject
Implements IPersistFile

8.3.1 Implementing IPersistFile

The first thing we want to do is implement IPersistFile . Although IPersistFile
supports a number of methods (GetCurFile , IsDirty , Load , Save , and
SaveCompleted), there is only one method with which we are concerned, Load .

8.3.1.1 Load

The Load method is implemented exactly as it was in Chapter 5 . All we are doing is getting
the name of the file being copied, which is passed to the Load method as its pszFileName

argument. Example 8.2 shows the code to do this.

Example 8.2. The IPersistFile_Load Method

'clsDataHandler.cls

Implements IDataObject
Implements IPersistFile

Private m_sFile As String

Private Sub IPersistFile_Load(ByVal pszFileName As LPCOLESTR, _
 ByVal dwMode As DWORD)

 m_sFile = Space(255)
 CopyMemory ByVal StrPtr(m_sFile), ByVal pszFileName, Len(m_sFile)

End Sub

8.3.2 Implementing IDataObject

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With that out of the way, we can focus on our IDataObject implementation. Of the nine
methods supported by IDataObject , we need to implement just three: QueryGetData ,
EnumFormatEtc , and GetData .

8.3.2.1 QueryGetData

The first method we are concerned with is QueryGetData . Remember, the shell calls
QueryGetData and passes in a pointer to a FORMATETC structure. QueryGetData must
determine if the format indicated by the FORMATETC structure is valid for the data handler. If
it is, QueryGetData returns S_OK ; otherwise, it returns DV_E_FORMATETC , which signals

an invalid format.

Because we are dealing with HRESULT s in this function, we will need to replace the
QueryGetData method in clsDataHandler with our own implementation, QueryGetDataVB .

Swapping vtable entries (see Chapter 4) should be familiar to you by now. Just so you know,
we'll have to swap the vtable entries for every method we implement for IDataObject , so

get ready. The code to swap the QueryGetData method with the QueryGetDataVB function

is as follows:

'clsDataHandler.cls

Implements IDataObject
Implements IPersistFile

Private m_sFile As String

Private m_pOldQueryGetData As Long

Private Sub Class_Initialize()

 Dim pVtable As IDataObject
 Set pVtable = Me

 'QueryGetData is method 6 in the vtable.
 m_pOldQueryGetData = SwapVtableEntry(ObjPtr(pVtable), _
 6, _
 AddressOf QueryGetDataVB)

End Sub

QueryGetDataVB , which resides in handler.bas and is shown in Example 8.3 , is a very
simple function. It just checks the members of FORMATETC and returns S_OK if they match
our data format. Otherwise, it returns DV_E_FORMATETC .

Example 8.3. QueryGetDataVB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

'handler.bas

Public Function QueryGetDataVB(ByVal this As IDataObject, _
 pformatetc As FORMATETC) As Long

 'Default return value
 QueryGetDataVB = DV_E_FORMATETC

 'Text format
 If (fmtEtc.cfFormat And CF_TEXT) And _
 (fmtEtc.dwAspect = DVASPECT_CONTENT) And _
 (fmtEtc.tymed = TYMED_HGLOBAL) And _

 QueryGetDataVB = S_OK

 End If

End Function

As you can see, only three members of the structure participate in this interchange. The
cfFormat member can contain more than one format; therefore, we need to use the And

operator to determine if the format we are looking for is being described. Don't check for
equality here. The shell will always group together several formats with Or . dwAspect and
tymed , however, must be explicit values.

8.3.2.2 EnumFormatEtc

EnumFormatEtc will need to return HRESULT s back to the shell. Therefore, we will swap

this method with the EnumFormatEtcVB function, which lives in DataHandler.bas . We will
add the code to achieve the swap to our Class_Initialize function:

Private m_pOldQueryGetData As Long
Private m_pOldEnumFormatEtc As Long

Private Sub Class_Initialize()

 Dim pVtable As IDataObject
 Set pVtable = Me
 m_pOldQueryGetData = SwapVtableEntry(ObjPtr(pVtable), _
 6, _
 AddressOf QueryGetDataVB)

 m_pOldEnumFormatEtc = SwapVtableEntry(ObjPtr(pVtable), _
 9, _
 AddressOf EnumFormatEtcVB)
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Remember, the shell calls this method in order to retrieve all of the formats that are
supported by the data object. The request is fulfilled by providing the shell with another object
that supports the IEnumFORMATETC interface. We will not discuss this interface in detail
here. All you need to know is that this interface supports four methods: Next , Reset , Skip
, and Clone . Once the enumerator has been given to the shell, the Next method will be
called repeatedly. This is Explorer's way of saying, "Next format, please." The data object
must provide the shell with a new format every time this method is called. Once all the
formats have been provided, the method must return S_FALSE .

Fortunately for us, we don't have to create an enumeration object. As it turns out, we can
register all the formats our object supports in the registry. Then we can call

OleRegEnumFormatEtc. OleRegEnumFormatEtc returns a reference to an
IEnumFORMATETC interface that is implemented somewhere deep in the bowels of ole32.dll .
After we pass this interface pointer back to the shell, the shell will use it to enumerate all of
the formats that have been stored in the registry. Example 8.4 demonstrates the process.

Example 8.4. EnumFormatEtcVB

'handler.bas
Public Declare Function OleRegEnumFormatEtc Lib "ole32.dll" (_
 refclsid As GUID, _
 ByVal dwDirection As DATADIR, _
 lpEnumFormatEtc As IEnumFORMATETC) As Long
'DataHandler.bas
Public Function EnumFormatEtcVB(_
 ByVal this As IDataObject, _
 ByVal dwDirection As Long, _
 ppenumFormatEtc As IEnumFORMATETC) As Long

 Dim clsid As GUID
 CLSIDFromProgID ByVal StrPtr("RadEx.clsDataHandler"), clsid

 EnumFormatEtcVB = OleRegEnumFormatEtc(clsid, _
 DATADIR_GET Or DATADIR_SET, ppenumFormatEtc)

End Function

The first parameter to OleRegEnumFormatEtc is a REFCLSID , or a reference to a class

identifier. This is a fancy way of saying a pointer to a GUID. We need an actual GUID here,
and since there is no datatype that is 128 bits wide, we make our own. GUID is defined in
handler.bas , not the type library, for reasons of automation compatibility. (It contains an
array of bytes which is incompatible.) The definition looks like this:

'handler.bas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Type GUID
 Data1 As Long
 Data2 As Integer
 Data3 As Integer
 Data4(7) As Byte
End Type

OleRegEnumFormatEtc is expecting a reference to our data handler's CLSID. The easiest

way to get this value is by calling CLSIDFromProgID , which will populate the GUID structure
we need when passed the programmatic identifier of our data handler, which is
Radex.clsDataHandler . CLSIDFromProgID is found in ole32.dll and is declared as
follows:

Public Declare Function CLSIDFromProgID Lib "ole32.dll" _
 (ByVal lpszProgID As Long, pCLSID As GUID) As Long

The second parameter can be either DATADIR_GET or DATADIR_SET or both.
DATADIR_GET causes the function to enumerate all of the formats that can be passed to
IDataObject::GetData ; DATADIR_SET enumerates the formats that could be passed to
IDataObject::SetData .

Make Your Own Enumerator

You can create a class that implements IEnumFORMATETC yourself, if you want to

provide your own enumerator. The implementation must be separate from the data
object. For more details, see the discussion of IEnumIDList in Chapter 11 . (All
of the IEnum XXXX interfaces contain the same methods and implement the same

behavior. Chapter 11 should provide you with enough details.) The
IEnumFORMATETC definition is included in the type library for this purpose. Once
you have created your own enumerator, implementing EnumFormatEtc would

simply be a matter of passing your own enumerator back to the shell:

Public Function EnumFormatEtcVB(_
 ByVal this As IDataObject, _
 ByVal dwDirection As Long, _
 ppenumFormatEtc As IEnumFORMATETC) As Long

 Dim ef As clsEnumFormatEtc 'Your enumerator
 Set ef = New clsEnumFormatEtc

 Set ppenumFormatEtc = ef

End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The third parameter is a pointer to a pointer to an IEnumFORMATETC interface. Conveniently,
we can just pass in the value provided to us by Explorer.

The last thing we need to do to make sure that EnumFormatEtc will work properly is to
actually register the data format(s) that we can provide, in our case CF_TEXT . The data

format is registered under the CLSID of our data handler as shown in Figure 8.2 .

Figure 8.2. Data format registry settings

The string "1,1,1,3" is the format itself and corresponds to the values <format, aspect,
medium, direction> . In our case CF_TEXT = 1, DVASPECT_CONTENT = 1, and

TYMED_HGLOBAL = 1. The direction value comes from the DATADIR enumeration, which is
simply defined as:

typedef enum tagDATADIR {
 DATADIR_GET = 1,
 DATADIR_SET = 2
} DATADIR;

Therefore, (DATADIR_GET Or DATADIR_SET) = 3. This value implies that the format is
valid for get and set operations.

8.3.2.3 GetData

GetData is a little more complex than QueryGetData , but basically here's how it works: the
shell passes in a pointer to a FORMATETC structure and a pointer to a STGMEDIUM structure.
If the FORMATETC structure describes the format that we can provide, then the STGMEDIUM

structure can be populated with a pointer to the data we want to make available-in our case,
a string describing the Animal type contained in the .rad file. As is the case with
QueryGetData , if the format queried is invalid, we return DV_E_FORMATETC . This means
we need to swap the GetData in clsDataHandler with our own function so we can return
HRESULT s. The Class_Initialize event for clsDataHandler does this, as the following code

shows:

'clsDataHandler.cls

Private m_pOldGetData As Long
Private m_pOldQueryGetData As Long
Private m_pOldEnumFormatEtc As Long

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub Class_Initialize()

 Dim pVtable As IDataObject
 Set pVtable = Me

 m_pOldQueryGetData = SwapVtableEntry(ObjPtr(pVtable), _
 6, _
 AddressOf QueryGetDataVB)

 m_pOldEnumFormatEtc = SwapVtableEntry(ObjPtr(pVtable), _
 9, _
 AddressOf EnumFormatEtcVB)

 m_pOldGetData = SwapVtableEntry(ObjPtr(pVtable), _
 4, _
 AddressOf GetDataVB)

 'AddRef
 Dim pUnk As IUnknownVB
 Set pUnk = Me
 pUnk.AddRef

End Sub

Take note that the data handler needs to make a call to AddRef ; otherwise, the handler will

terminate before the data can be transferred.

Now, let's break down GetDataVB , the first portion of which is shown in the following code
fragment:

'handler.bas

Public Function GetDataVB(ByVal this As IDataObject, _
 pformatetcIn As FORMATETC, _
 pmedium As STGMEDIUM) As Long

 GetDataVB = DV_E_FORMATETC

 Dim b() As Byte
 Dim dataObj As clsDataHandler
 Dim hGlobalMem As HGLOBAL
 Dim pGlobalMem As Long
 Dim szType As String
 Dim szMsg As String

 Set dataObj = this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (pformatetcIn.cfFormat = CF_TEXT) And _
 (pformatetcIn.dwAspect = DVASPECT_CONTENT) And _
 (pformatetcIn.tymed = TYMED_HGLOBAL) Then _

The first thing we will do is get a reference to our class object. By setting dataObj equal to
this , we are calling QueryInterface on our object. This returns a reference back to our

object (an IDispatch pointer) that we can use from handler.bas . This alleviates the need

for a global variable.

We then compare the cfFormat , dwAspect , and tymed members of the FORMATETC

structure to make sure it is the format we are looking to provide data for. If it is, we are good
to go. Since we have a reference back to clsDataHandler that allows us to easily retrieve the

name of our .rad file, we can then use GetPrivateProfileString to get the animal type from the
selected file, as the next fragment from the GetDataVB method shows:

'Get Animal type
szType = Space(255)
GetPrivateProfileString "Animal", _
 "Type", _
 "Unknown", _
 szType, _
 Len(szType), _
 dataObj.FileName

We have the animal type, so now what? Remember that the shell is expecting the format of
text being transferred in global memory. What we need to do is copy the string into global
memory. Before we do that, we actually need to lay our hands on some global memory. We
can do that by calling GlobalAlloc , which is defined like this:

Public Declare Function GlobalAlloc Lib "kernel32" _
 (ByVal wFlags As Long, ByVal dwBytes As Long) As Long

Using the HGLOBAL (handle to global memory) returned to us by GlobalAlloc , we can get a
pointer to global memory itself and copy our string into that location. This is accomplished

using GlobalLock , CopyMemory , and GlobalUnlock , as the next code fragment from the
GetDataVB method shows:

'Allocate global memory.
hGlobalMem = GlobalAlloc(GMEM_MOVEABLE, 1024)

'Get a pointer to the global memory.
pGlobalMem = GlobalLock(hGlobalMem)

'Copy Animal type into global memory.
szType = TrimNull(szType)
szMsg = "The " & szType & " is on the clipboard." & vbCrLf

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b = StrConv(szMsg, vbFromUnicode) & vbNullChar
CopyMemory ByVal pGlobalMem, b(0), UBound(b) + 1

'Unlock global memory.
GlobalUnlock hGlobalMem

We are not quite done yet. Now that the global memory we have allocated contains our
string, we need to make it available to the clipboard. We do this by populating a STGMEDIUM

structure and copying it to the location passed in by the shell:

stgMed.pData = hGlobalMem
stgMed.TYMED = TYMED_HGLOBAL
Set stgMed.pUnkForRelease = this
GetDataVB = S_OK

8.3.3 Registration and Operation

Lastly, we have to register the data handler (and make sure the data format is registered,
too). There can be only one data handler per file object, so registration is fairly simple (see
Figure 8.3).

Figure 8.3. Data handler registry settings

Don't forget to add the CLSID to the approved shell extensions section!

If the data handler is not working at this point, try restarting the shell.
Data handlers can be really picky!

The following registry script will handle registering this chapter's example. Note that
statements appearing inside of square brackets must reside on the same line:

REGEDIT4

[HKEY_CLASSES_ROOT\radfile\shellex\DataHandler]
@ = "{5BE98B48-FD84-11D2-9FE5-00550076E06F}"

[HKEY_CLASSES_ROOT\CLSID\{5BE98B48-FD84-11D2-9FE5-00550076E06F}\DataFormats\GetSet\0]
@ = "1,1,1,3"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[HKEY_CLASSES_ROOT\CLSID\{5BE98B48-FD84-11D2-9FE5-00550076E06F}\DataFormats\GetSet\1]
@ = "2,1,16,3"

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved]
"{5BE98B48-FD84-11D2-9FE5-00550076E06F}" = "RAD data handler"

Select a .rad file and select the Copy command from Explorer's Edit menu. The clipboard
now contains our string. Open up Notepad or Word. The Paste command should be available
because both of these programs support the CF_TEXT format. Microsoft Paint, on the other
hand, cannot get the data because it wants CF_BITMAP .

As an exercise, you might want to modify the data handler to copy a picture of the animal to
the clipboard using CF_BITMAP . Instead of TYMED_HGLOBAL , specify TYMED_GDI . The
FORMATETC structure you are interested in looks like this:

FORMATETC

cfFormat = CF_BITMAP
ptd = 0
dwAspect = DVASPECT_CONTENT
lIndex = -1
TYMED = TYMED_GDI

The bitmaps for the various animals could be stored in a resource file. You don't have to
mess around with GlobalAlloc , because you only need a handle to a bitmap, which is easily

attained by calling the LoadIcon API.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

8.4 Adding Additional Formats

Since it sounds so easy to add support for bitmaps, let's go ahead and do it. The first thing
we want to do is add the bitmap format to the registry. The previous script already has the
entry we need:

[HKEY_CLASSES_ROOT\CLSID\{5BE98B48-FD84-11D2-9FE5-00550076E06F}\DataFormats\GetSet\1]
@ = "2,1,16,3"

As stated earlier, these values correspond to <format , aspect , medium , direction

>, in this case CF_BITMAP , DVASPEC

T_CONTENT , TYMED_GDI , and DATADIR_GET OR ed with DATADIR_SET .

Next, we need to modify QueryGetData in order to recognize the new format. When the
shell asks if we can provide bitmaps, we need to be able to tell it "yes." Example 8.5 contains
the modified version of the method.

Example 8.5. QueryGetData with Bitmap Format Added

Public Function QueryGetDataVB(ByVal this As IDataObject, _
 pformatetc As FORMATETC) As Long

 QueryGetDataVB = DV_E_FORMATETC

 'Text
 If (pformatetc.cfFormat And CF_TEXT) And _
 (pformatetc.dwAspect = DVASPECT_CONTENT) And _
 (pformatetc.TYMED = TYMED_HGLOBAL) Then

 QueryGetDataVB = S_OK

 End If

 'Bitmap
 If (pformatetc.cfFormat And CF_BITMAP) And _
 (pformatetc.dwAspect = DVASPECT_CONTENT) And _
 (pformatetc.TYMED = TYMED_GDI) Then

 QueryGetDataVB = S_OK

 End If

End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Good news: we don't have to do a thing with EnumFormatEtc . Everything there is already

in place.

This leaves us with GetData . Since we are providing data in two formats now, it might be a

good idea to clean up our implementation somewhat. We can move all of the code that deals
with the text format into a Private method called GetText . All the code for bitmaps can go
into GetBitmap . Now our GetData implementation, which is shown in Example 8.6 , is a

little more streamlined. We can now add formats without getting in the way of the
implementation.

Example 8.6. GetData with Bitmap Support

Public Function GetDataVB(ByVal this As IDataObject, _
 pformatetcIn As FORMATETC, _
 pmedium As STGMEDIUM) As Long

 GetDataVB = DV_E_FORMATETC

 If (pformatetcIn.cfFormat And CF_TEXT) And _
 (pformatetcIn.dwAspect = DVASPECT_CONTENT) And _
 (pformatetcIn.TYMED = TYMED_HGLOBAL) Then

 GetDataVB = GetText(this, pmedium)

 End If

 If (pformatetcIn.cfFormat And CF_BITMAP) And _
 (pformatetcIn.dwAspect = DVASPECT_CONTENT) And _
 (pformatetcIn.TYMED = TYMED_GDI) Then

 GetDataVB = GetBitmap(this, pmedium)

 End If

End Function

Of course, now we have to actually provide the data for both of our formats. We'll look at
GetText first (see Example 8.7), simply because it makes the chapter more suspenseful

that way. Anyway, we have already discussed this code. There is nothing new, other than the
fact that its implementation has been moved outside of GetData .

Example 8.7. GetText

Private Function GetText(ByVal pDataObject As IDataObject, _
 pmedium As STGMEDIUM) As Long

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 GetText = DV_E_FORMATETC

 Dim b() As Byte
 Dim dataObj As clsDataHandler
 Dim hGlobalMem As HGLOBAL
 Dim pGlobalMem As Long
 Dim szType As String
 Dim szMsg As String

 Set dataObj = pDataObject

 'Get Animal type.
 szType = Space(255)
 GetPrivateProfileString "Animal", _
 "Type", _
 "Unknown", _
 szType, _
 Len(szType), _
 dataObj.FileName

 'Allocate global memory.
 hGlobalMem = GlobalAlloc(GMEM_MOVEABLE, 1024)

 'Get a pointer to the global memory.
 pGlobalMem = GlobalLock(hGlobalMem)

 'Copy Animal type into global memory.
 szType = TrimNull(szType)
 szMsg = "The " & szType & " is on the clipboard." & vbCrLf

 b = StrConv(szMsg, vbFromUnicode) & vbNullChar
 CopyMemory ByVal pGlobalMem, b(0), UBound(b) + 1

 'Unlock global memory.
 GlobalUnlock hGlobalMem

 pmedium.pData = hGlobalMem
 pmedium.TYMED = TYMED_HGLOBAL
 Set pmedium.pUnkForRelease = pDataObject

 Set dataObj = Nothing

 GetText = S_OK

End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now, the moment we have all been waiting for. Inside of the resource file that contains the
icons for our icon handler (Chapter 5) and the dialog for our property sheet extension
(Chapter 6), there are five bitmaps. These bitmaps are all pictures of O'Reilly books that

have animals on the cover matching our .rad file animal types. The resource identifiers are
defined like so:

Private Const IDB_ARMADILLO = 101
Private Const IDB_CAT = 102
Private Const IDB_COW = 103
Private Const IDB_DOG = 104
Private Const IDB_FISH = 105

Now that you have this bit of background information, we can look at the GetBitmap
function. Don't get excited, though. The function is so simple it's almost anti-climatic.
Example 8.8 contains the listing.

Example 8.8. GetBitmap

Private Declare Function LoadBitmap Lib "user32" Alias _
 "LoadBitmapA" (ByVal hInstance As Long, _
 ByVal lpBitmapName As Long) As Long

Private Function GetBitmap(ByVal pDataObject As IDataObject, _
 pmedium As STGMEDIUM) As Long

 GetPicture = DV_E_FORMATETC

 Dim dataObj As clsDataHandler
 Dim szType As String
 Dim lBitmap As Long

 Set dataObj = pDataObject

 'Get Animal type.
 szType = Space(255)
 GetPrivateProfileString "Animal", _
 "Type", _
 "Unknown", _
 szType, _
 Len(szType), _
 dataObj.FileName

 szType = TrimNull(szType)

 Select Case UCase$(szType)
 Case "ARMADILLO"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lBitmap = IDB_ARMADILLO
 Case "CAT"
 lBitmap = IDB_CAT
 Case "COW"
 lBitmap = IDB_COW
 Case "DOG"
 lBitmap = IDB_DOG
 Case "FISH"
 lBitmap = IDB_FISH
 Case Else
 Exit Function
 End Select

 pmedium.pData = LoadBitmap(App.hInstance, lBitmap)
 pmedium.tymed = TYMED_GDI
 Set pmedium.pUnkForRelease = pDataObject

 Set dataObj = Nothing

 GetPicture = S_OK

End Function

GetBitmap 's first duty is to retrieve a reference back to our data object and get the name of

the .rad file that has just been copied. Then, based on the type of animal, the local variable
lBitmap is assigned to one of the resource identifiers representing the picture of an animal.

Providing the bitmap to the shell is as simple as calling LoadBitmap with the resource
identifier of the animal that we want.

It should be mentioned that the declaration of LoadBitmap has been
modified somewhat. The datatype of the last parameter has been
changed from String to Long in order to allow us to pass the resource
identifier to the function. We're not going to talk about why this works.
Just know that it does.

Lastly, the tymed member of the STGMEDIUM structure needs to be set to TYMED_GDI in

order to inform the shell that the data is a GDI component-in other words, a handle to a
bitmap.

Now, we have two formats available for one copy operation. The original text string will be
available to any program that can handle CF_TEXT data, and, as Figure 8.4 illustrates,
programs that can manipulate CF_BITMAP data are provided for as well.

Figure 8.4. Armadillo data in CF_BITMAP format

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 9. Copy Hook Handlers

Copy hook handlers are invoked every time a shell folder or printer object is moved, deleted,
copied, or renamed. Their sole purpose is either to approve or to disapprove the operation in
question. They take no part in the operations themselves, and they don't care about the
results. When one of the aforementioned processes is initiated, the shell provides the name
of the source object, the name of the destination object, and the action being performed to
the copy hook handler. The handler merely says, "Yeah, go ahead," or "Stop right there!"
That's it. In fact, the copy hook handler is not even notified of whether the action was
successful. It is merely a sentry that stands guard over a particular folder or printer.

Copy hook handlers are a little different from the other shell extensions we have discussed.
First and foremost, they are not associated with file types, but rather with shell folders and
printer objects. Second, they implement only one interface, ICopyHook. If you remember,
the previous shell extensions were first initialized either through IShellExtInit or
IPersistFile. In contrast, copy hook handlers depend on neither interface. ICopyHook
contains one method, CopyCallback, that provides everything the handler will need,
initialization and all. There is another major difference, but we'll need to look at the definition
for ICopyHook::CopyCallback to see it:

UINT CopyCallback(
 HWND hwnd,
 UINT wFunc,
 UINT wFlags,
 LPCSTR pszSrcFile,
 DWORD dwSrcAttribs,
 LPCSTR pszDestFile,
 DWORD dwDestAttribs
);

Notice that CopyCallback returns a UINT instead of an HRESULT. All interface methods, by
convention, are supposed to return an HRESULT. Who knows what the designers of this

interface were thinking? One thing is certain, there is definitely something suspicious going
on here. This is going to cause us a problem later when we try to implement the interface
because VB will not accept a method definition that does not return an HRESULT. Of course,
by now you can probably guess that we will redefine the interface to return an HRESULT
instead of a UINT. Each is 4 bytes wide, so this is feasible, but not without problems. But
we'll cross that bridge when we get to it.

Before we can add an interface definition to the type library, we'll need its IID. Herein lies a
problem. If you search the Platform SDK for ICopyHook, you will find a description of the

interface, a short discourse on copy hook handlers, and so on. But if you search for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ICopyHook in the registry (or with OLE View), you will not find it. It seems we have a little bit
of a mystery going on here.

Let's search for the interface in shlobj.h. If you don't remember, this is the C/C++ header file
that contains most of the interface definitions used by the shell. In this file, you will find
references to both ICopyHookA and ICopyHookW. As you should know by now, these

represent the ANSI and wide versions of the interface, respectively. Now we're on to
something. But we still need the IID.

Most of the IIDs for the shell interfaces are found in a file called shlguid.h. But if you do a
search for ICopyHookA or ICopyHookW, you won't find a thing. What is going on here?

There's nothing in OLE View either! Apparently, what we have found is a lack of consistency.

Maybe if we search for CopyHook, we will have some luck. Sure enough, if you inspect
shlguid.h closely, you will find references to IShellCopyHookA and IShellCopyHookW,

along with the IIDs. Whew!

I refer to the interface as ICopyHook throughout the remainder of this
chapter. I only distinguish between ICopyHookA and ICopyHookW
when necessary.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

9.1 How Copy Hook Handlers Work

A copy hook handler is a system-wide component. Whenever a folder or printer is about to
be moved, copied, deleted, or renamed, Explorer looks under the following keys in the
registry for any copy hook handlers:

HKEY_CLASSES_ROOT\
 Directory\
 shellex\
 CopyHookHandlers\

and:

HKEY_CLASSES_ROOT\
 Printers\
 shellex\
 CopyHookHandlers\

All registered handlers are called one after the other until every handler has been called or
until one of the handlers cancels the operation being performed. The shell loads the
component directly and calls ICopyHook::CopyCallback, passing in all the values the

handler will need in order to make a decision about the operation in question. These values
include such things as the source of the operation (a pathname or printer name), the
destination (where the object is being moved, what it is being renamed, etc.), and the type of
operation being performed (moving, deleting, copying, or renaming).

The copy hook handler takes all of these values into consideration and returns one of three
values. It will return IDYES if the operation is allowed, IDNO if it is not allowed, or IDCANCEL

to prevent the current operation and cancel any remaining operations.

Because a copy hook handler is global, a few things must be taken into consideration. First, a
copy hook handler cannot be associated with a specific folder or printer. It is up to the
handler to determine if the operation taking place is of any interest. Second, it is possible to
write a copy hook handler that conflicts with another handler. For instance, Handler A tells

the shell to ignore the delete operation on the folder c:\source_code. Handler B says that it is
okay. Guess who wins? The answer is Handler A. Once an operation has been disallowed,
subsequent return values are ignored by the shell.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

9.2 Copy Hook Handler Interface: ICopyHook

Now that we are somewhat familiar with copy hook handlers, let's talk about ICopyHook.
This interface is the only interface a copy hook handler needs to implement. It contains one
method, CopyCallback. Don't let the simplicity fool you, though. Implementing a copy hook

handler is much more difficult than it seems at first glance (as you will soon see). As Table
9.1 shows, ICopyHook contains one method called CopyCallback. This is the only

method ever called on a copy hook handler.

Table 9.1. ICopyHook

Method Description

CopyCallback
Determines whether the shell will be allowed to move, copy, delete, or rename a folder or printer
object.

The syntax of the CopyCallback method is as follows:

UINT CopyCallback(
 HWND hwnd,
 UINT wFunc,
 UINT wFlags,
 LPCSTR pszSrcFile,
 DWORD dwSrcAttribs,
 LPCSTR pszDestFile,
 DWORD dwDestAttribs
);

Table 9.2 lists the parameters that the shell passes to the copy hook handler and their
meaning.

Table 9.2. CopyCallback Parameters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parameter Datatype Description

hwnd HWND
Handle to a window that the copy hook handler should use to display any
user-interface elements.

wFunc UINT Operation to be performed (see Table 9.3).

wFlags UINT This value can be ignored for copy hook handlers.

pszSrcFile LPCSTR/LPCWSTR Address of a string that contains the name of the source folder or printer.

dwSrcAttribs DWORD Attributes of the source folder or printer (see Table 9.3).

pszDestFile LPCSTR/LPCWSTR
Address of a string that contains the name of the destination folder or
printer.

dwDestAttribs DWORD
Attributes of the source folder or printer. These can be any of the file
attribute flags that begin with FILE_ATTRIBUTE_* and are available from

the API Viewer.

Table 9.3. wFunc Values

Name Description

FO_COPY Copy

FO_MOVE Move

FO_DELETE Delete

FO_RENAME Rename

CopyCallback can return one of three values:

IDYES

The operation is allowed.
IDNO

Prevents the operation on this folder. The shell can continue with any other operations
that are pending.

IDCANCEL

Prevents the current operation and cancels all pending operations.

The IDL listing for both ICopyHookA and ICopyHookW is shown in Example 9.1.

Example 9.1. ICopyHook Interface

typedef enum {
 FO_MOVE = 0x0001,
 FO_COPY = 0x0002,
 FO_DELETE = 0x0003,
 FO_RENAME = 0x0004
} FO;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[
 uuid(000214EF-0000-0000-C000-000000000046),
 helpstring("ICopyHookA Interface"),
 odl
]
interface ICopyHookA : IUnknown
{
 HRESULT CopyCallback([in] HWND hwnd,
 [in] UINT wFunc,
 [in] UINT wFlags,
 [in] LPCSTRVB pszSrcFile,
 [in] DWORD dwSrcAttribs,
 [in] LPCSTRVB pszDestFile,
 [in] DWORD dwDestAttribs);
}

[
 uuid(000214FC-0000-0000-C000-000000000046),
 helpstring("ICopyHookW Interface"),
 odl
]
interface ICopyHookW : IUnknown
{
 HRESULT CopyCallback([in] HWND hwnd,
 [in] UINT wFunc,
 [in] UINT wFlags,
 [in] LPCWSTRVB pszSrcFile,
 [in] DWORD dwSrcAttribs,
 [in] LPCWSTRVB pszDestFile,
 [in] DWORD dwDestAttribs);
}
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

9.3 Implementing ICopyHook

Before we begin implementation of ICopyHook, we need to add a new class to the RadEx
project called clsCopyHook. The class needs to implement both ICopyHookA and

ICopyHookW:

'clsCopyHook.cls

Implements ICopyHookA
Implements ICopyHookW

Also, the address of CopyCallback for both versions of ICopyHook will need to be
swapped out in the vtable. We have to do this because CopyCallback will need to return
one of three values: IDYES, IDNO, or IDCANCEL. This code, which should be very familiar to

you by now, is shown in Example 9.2.

Example 9.2. Class_Initialize Event for Copy Hook Handler

'clsCopyHook.cls

Private m_pOldCopyCallbackA As Long
Private m_pOldCopyCallbackW As Long

Private Sub Class_Initialize()

 Dim pCopyHookA As ICopyHookA
 Set pCopyHookA = Me

 m_pOldCopyCallbackA = SwapVtableEntry(_
 ObjPtr(pCopyHookA), _
 4, _
 AddressOf CopyCallbackA)

 Dim pCopyHookW As ICopyHookW
 Set pCopyHookW = Me

 m_pOldCopyCallbackW = SwapVtableEntry(_
 ObjPtr(pCopyHookW), _
 4, _
 AddressOf CopyCallbackW)
End Sub

The preceding code is something we've seen before.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All that remains now (this is a lie, of course) is to implement CopyCallbackA and
CopyCallbackW. For now, our copy hook handler will do nothing but display a message box
that says "Access Denied" and then it will return IDNO. Later, we will reimplement the

function to display all of the parameters passed in by the shell.

Example 9.3 shows our implementation of CopyCallback. The code is self-explanatory.
All it does is display a message and return IDNO. All of the parameters to the method are

ignored (for now).

Example 9.3. CopyCallback Implementation

Public Const IDCANCEL = 2
Public Const IDYES = 6
Public Const IDNO = 7

Public Function CopyCallbackA(ByVal this As ICopyHookA, _
 ByVal hwnd As hwnd, _
 ByVal wFunc As UINT, _
 ByVal wFlags As UINT, _
 ByVal pszSrcFile As LPCSTRVB, _
 ByVal dwSrcAttribs As DWORD, _
 ByVal pszDestFile As LPCSTRVB, _
 ByVal dwDestAttribs As DWORD) As Long

 MsgBox "Access Denied", vbOKOnly, "CopyCallbackA"
 CopyCallbackA = IDNO

End Function

Public Function CopyCallbackW(ByVal this As ICopyHookW, _
 ByVal hwnd As hwnd, _
 ByVal wFunc As UINT, _
 ByVal wFlags As UINT, _
 ByVal pszSrcFile As LPCWSTRVB, _
 ByVal dwSrcAttribs As DWORD, _
 ByVal pszDestFile As LPCWSTRVB, _
 ByVal dwDestAttribs As DWORD) As Long

 MsgBox "Access Denied", vbOKOnly, "CopyCallbackW"
 CopyCallbackW = IDNO

End Function

We are ready to compile the component. After you finish compiling, all that is left to do is to
register the component.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

9.4 Registering Copy Hook Handlers

Copy hook handlers are registered in two locations, depending on whether they are for shell
folders or printer objects.

If the handler is for a shell folder, it is registered like so:

HKEY_CLASSES_ROOT\
 Directory\
 shellex\
 CopyHookHandlers\
 {Copy Hook Name} = {CSLID}

If the handler is for a printer object, it is registered in the following location:

HKEY_CLASSES_ROOT\
 Printers\
 shellex\
 CopyHookHandlers\
 {Copy Hook Name} = {CSLID}

{Copy Hook Name } can be any name that you wish, and {CLSID } is, of course, the class

identifier of the copy hook handler.

Also, both types of copy hook handlers need to be registered as approved shell extensions at
the following location:

HKEY_LOCAL_MACHINE\
 Software\
 Microsoft\
 Windows\
 CurrentVersion\
 Shell Extensions\
 Approved = {CLSID}

Example 9.3 contains the registry script that will register the copy hook handler developed in
this chapter under the Directory key. Remember, when entering registry scripts, lines

enclosed in square brackets must be on one line:

REGEDIT4

[HKEY_CLASSES_ROOT\Directory\shellex\CopyHookHandlers\RadCopyHook]
@ = "{FAE14EFA-03DA-11D3-BB7C-444553540000}"

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"{FAE14EFA-03DA-11D3-BB7C-444553540000}" = "RAD Copy Hook"
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

9.5 Testing the Handler

We're going to do something a little different in this chapter. We're going to test the handler
we have just created. Why? Because it doesn't work. Oh, we wrote it correctly; it just doesn't
work. And it's not even our fault. Let's take a look.

First, restart the shell. Now, move a folder somewhere on your system. You should see the
dialog shown in Figure 9.1 .

Figure 9.1. The first attempt to move a folder

Everything looks good so far. "So what's the problem?" you ask. Move the folder back to its
original location, and then you'll see.

9.5.1 Boom!

As you can see from Figure 9.2 , the component crashes the shell the second time around.

Figure 9.2. A second, unsuccessful attempt to move a folder

If you have compiled RadEx with symbolic debugging info and you have Visual C++ installed
on your machine, Windows will give you the option to debug the component. Looking at a
bunch of assembly code won't really do the average programmer any good, but the debugger
does give you the option to look at the call stack. The call stack will show you where the
crash occurred and what functions were called before it. Typically, when the copy hook
handler we have created crashes, the call stack looks something like this:

0045fe24()
SHELL32! 7fd1f771()
SHELL32! 7fd1cdd9()
SHELL32! 7fd1de1a()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SHELL32! 7fd1ec79()

The function specified by address 0045fe24() is located in Explorer. You know this

because the debugger will tell you that the exception occurred in Explorer when it loaded. As
you can see, the previous four functions are somewhere in shell32.dll . What this means is
that the crash occurred nowhere near our code. But that still doesn't mean it's not our fault.
Let's examine one more thing before we jump to any conclusions.

Let's look at some of the values the shell passes in to the copy hook handler on the first pass
(when the crash doesn't happen). This will require a small rewrite of CopyCallbackA . It

should now look as follows:

Public Function CopyCallbackA(ByVal this As ICopyHookA, _
 ByVal hwnd As hwnd, _
 ByVal wFunc As UINT, _
 ByVal wFlags As UINT, _
 ByVal pszSrcFile As LPCSTRVB, _
 ByVal dwSrcAttribs As DWORD, _
 ByVal pszDestFile As LPCSTRVB, _
 ByVal dwDestAttribs As DWORD) As Long

 Dim strOut As String * 255

 StrFromPtrA pszSrcFile, strOut
 MsgBox strOut

 CopyCallbackA = IDNO

End Function

If you are testing under Windows NT or Windows 2000, change

StrFromPtrA to StrFromPtrW .

After you compile this code, restart the shell, and move a folder somewhere on your system.
You should see a message box like the one in Figure 9.3 that displays the name of the folder
you just attempted to move.

Figure 9.3. Displaying the name of the folder to be moved

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The pszSrcFile parameter is pointing to valid data. Also, if you were to check the hwnd

parameter, you would also find that it is equal to the handle assigned to Explorer. This is
easily verified by running Spy++, a utility that ships with Visual Studio. Another clue is that
there is still a reference count on the component. This is easily determined by putting a
MsgBox statement in the Class_Terminate event of the handler. It will not be displayed,

meaning the component is still loaded in memory.

What does this all mean? For one thing it means that our component is getting called at least
one time with valid data. What is happening after the first call to the handler is anyone's
guess.

The short of it is that there is nothing wrong with the component itself, but there seems to be
some erroneous handling of the ICopyHook interface pointer after the first call.

9.5.2 The Workaround

Fortunately, there is a workaround, and we don't have to modify any of the code we have just
written. Unfortunately, we will have to use an additional component written in C++ to
accomplish the task. This certainly doesn't look good, seeing that this is a VB book, but at
this point, we are out of options (several more bizarre attempts to handle this error were
made before this chapter was written, but nothing else seemed to work).

The saving grace is that the component can be used with any copy hook handler that you
write. It's completely generic. This component is called CopyHook.Factory, and it lives in
copyhook.dll .

For those of you who are familiar with C++, the code for this DLL is
included with the source for this chapter and can be downloaded from
http://vb.oreilly.com .

Here's how it works: CopyHook.Factory implements both ICopyHookA and ICopyHookW . It,

and not VB, will be responsible for loading our copy hook handler. The shell will load
CopyHook.Factory and call CopyCallback . CopyHook.Factory's implementation of
CopyCallback will load our component and call CopyCallback on our implementation,

passing it whatever parameters the shell passed it. CopyHook.Factory will simply return
whatever value our CopyCallback implementation returns. Basically, CopyHook.Factory is
a wrapper around our component.

Instead of adding the CLSID of our copy hook handler under the Directory or Printers

key in the registry, we will add the CLSID of CopyHook.Factory, regardless of how many copy
hook handlers we have installed:

HKEY_CLASSES_ROOT\
 Directory\
 shellex\

http://vb.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CopyHookHandlers\
 CopyHook_1 = {CLSID-CopyHook.Factory}
 CopyHook_2 = {CLSID-CopyHook.Factory}
 CopyHook_3 = {CLSID-CopyHook.Factory}

As you can see, every copy hook handler registered here is pointing to the same component,
CopyHook.Factory.

When CopyHook.Factory is loaded the first time (in this example, when the shell calls
CopyHook_1), it looks under the following key for the available copy hook handlers:

HKEY_CLASSES_ROOT\
 CopyHook.Factory\
 CopyHookHandlers\
 {CLSID-CopyHook_1}
 {CLSID-CopyHook_2}
 {CLSID-CopyHook_3}

These are the CLSID identifiers of the copy hook handlers that have been written in VB.
(Actually, they could be written in anything. It doesn't matter.)

It will then enumerate all of the CLSIDs it finds under this key and store the list internally in a
linked list. As the shell calls each copy hook handler (CopyHook_2, CopyHook_3, etc.),
CopyHook.Factory will load the component next in its internal list and pass the parameters
that were given to it by the shell.

9.5.3 Revisiting CopyCallback

Now that our problem has been solved, let's implement CopyCallback for real this time

(see Example 9.4). This implementation will merely display a message box that contains all
of the parameters involved in the operation. Not quite practical, but a good example
nonetheless.

Example 9.4. Final Implementation of CopyCallback

Public Function CopyCallbackA(ByVal this As ICopyHookA, _
 ByVal hwnd As hwnd, _
 ByVal wFunc As UINT, _
 ByVal wFlags As UINT, _
 ByVal pszSrcFile As LPCSTRVB, _
 ByVal dwSrcAttribs As DWORD, _
 ByVal pszDestFile As LPCSTRVB, _
 ByVal dwDestAttribs As DWORD) As Long

 Dim strMsg As String
 Dim sTemp As String * MAX_PATH

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim sOut As String

 strMsg = "HWND: " & hwnd & vbCrLf
 strMsg = strMsg & "wFunc: " & wFunc & vbCrLf
 strMsg = strMsg & "wFlags: " & wFlags & vbCrLf
 strMsg = strMsg & "wFunc: " & wFunc & vbCrLf

 StrFromPtrA pszSrcFile, sTemp
 sOut = Left(sTemp, InStr(sTemp, vbNullChar) - 1)

 strMsg = strMsg & "Source: " & sOut & vbCrLf
 strMsg = strMsg & "Source Attributes: " & dwSrcAttribs & vbCrLf

 StrFromPtrA pszDestFile, sTemp
 sOut = Left(sTemp, InStr(sTemp, vbNullChar) - 1)

 strMsg = strMsg & "Destination: " & sOut & vbCrLf

 strMsg = strMsg & "Dest Attributes: " & dwDestAttribs & vbCrLf

 MsgBox strMsg

 CopyCallbackA = IDYES

End Function

Public Function CopyCallbackW(ByVal this As ICopyHookW, _
 ByVal hwnd As hwnd, _
 ByVal wFunc As UINT, _
 ByVal wFlags As UINT, _
 ByVal pszSrcFile As LPCWSTRVB, _
 ByVal dwSrcAttribs As DWORD, _
 ByVal pszDestFile As LPCWSTRVB, _
 ByVal dwDestAttribs As DWORD) As Long

 Dim strMsg As String
 Dim sTemp As String * MAX_PATH
 Dim sOut As String

 strMsg = "HWND: " & hwnd & vbCrLf
 strMsg = strMsg & "wFunc: " & wFunc & vbCrLf
 strMsg = strMsg & "wFlags: " & wFlags & vbCrLf
 strMsg = strMsg & "wFunc: " & wFunc & vbCrLf

 StrFromPtrW pszSrcFile, sTemp
 sOut = Left(sTemp, InStr(sTemp, vbNullChar) - 1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 strMsg = strMsg & "Source: " & sOut & vbCrLf
 strMsg = strMsg & "Source Attributes: " & dwSrcAttribs & vbCrLf

 StrFromPtrW pszDestFile, sTemp
 sOut = Left(sTemp, InStr(sTemp, vbNullChar) - 1)

 strMsg = strMsg & "Destination: " & sOut & vbCrLf

 strMsg = strMsg & "Dest Attributes: " & dwDestAttribs & vbCrLf

 MsgBox strMsg

 CopyCallbackW = IDYES

End Function

9.5.4 Reregister Everything

To finish things up, we need to make sure everything is properly registered. So, in the
registry, remove all the entries you previously made under the Directory key when we first
registered the component. You can also remove the entry under the approved shell
extensions key as well.

Next, register copyhook.dll . When this component is registered, one entry for
CopyHook.Factory is added under the Directory key, and one entry is added to the
Printers key. If you require more copy handlers in the future, you can add additional

references to CopyHook.Factory under either key.

Now, the only thing left to do is to add the CLSID for our VB component at the following
location:

HKEY_CLASSES_ROOT\
 CopyHook.Factory\
 CopyHookHandlers\
 {FAE14EFA-03DA-11D3-BB7C-444553540000}

If you wish, you can run the following registry script, which will handle this task for you:

REGEDIT4

[HKEY_CLASSES_ROOT\CopyHook.Factory\CopyHookHandlers\{FAE14EFA-03DA-11D3-BB7C-444553540000}]
@ = "Rad Copy Hook"

Restart the shell, and you are all set.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 10. InfoTip Handler

InfoTip handlers display tool tips, or "info" tips, for a file object on a per-instance basis. You
can view this behavior for yourself if you have Microsoft Word installed on your machine. Find

a .doc file and select it. Hold the cursor over the file and an InfoTip displaying the author of
the document should appear momentarily. Figure 10.1 demonstrates the InfoTip in action.

Figure 10.1. InfoTip handler for Microsoft Word

InfoTip handlers are usually not considered shell extensions (the Platform SDK says nothing
about them), but they are, in fact, just that. They are also very easy to implement.

InfoTip handlers implement IPersistFile (we only have to implement the Load method)
and IQueryInfo. IQueryInfo has two methods, but we need to implement only one of

them. There are no hoops to jump through this time around. Everything is very
straightforward. What a nice change! This chapter will also end our discussion of shell
extensions and the RadEx project on which we have been working in the last seven chapters.
So let's get on with it! The InfoTip handler we create will display the animal type associated

with the .rad file in the format "Type: (Animal Type)."

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

10.1 How InfoTip Handlers Work

When the cursor is placed over a file object in Explorer, the shell checks the registry under
the following key to see if there are any registered InfoTip handlers for that particular file
object:

HKEY_CLASSES_ROOT\
 .rad\
 shellex\
 {00021500-0000-0000-C000-000000000046}

The .rad key is replaceable with the file object of your choice, of course. But notice the
CLSID. This key will be the same for every InfoTip handler that you write. It is the GUID of
IQueryInfo, the primary interface that is implemented by all InfoTip handlers. Also, notice
that unlike the other shell extensions, this handler is registered under the file association key,
as opposed to the application identifier.

If a handler exists, the shell passes the name of the file object to the handler via
IPersistFile::Load. This allows the InfoTip handler to examine the contents of the file,

extract pertinent information, and construct a meaningful InfoTip for the shell to display.

After Load, the shell calls IQueryInfo::GetInfoTip, passing in a buffer. The handler will
copy the InfoTip string into this buffer, and the shell will display the tip. It's that simple.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

10.2 InfoTip Interfaces

InfoTip handlers implement two interfaces: IPersistFile and IQueryInfo. We have
discussed IPersistFile several times already, most notably in Chapter 5, so we will jump
straight into IQueryInfo. Let's examine the interface definition, which is shown in Example

10.1. Table 10.1 gives a brief description of each of the methods.

Example 10.1. IQueryInfo

//--
// IQueryInfo
//--
 [
 uuid(00021500-0000-0000-C000-000000000046),
 helpstring("IQueryInfo Interface"),
 odl
]
 interface IQueryInfo : IUnknown
 {
 HRESULT GetInfoTip([in] DWORD dwFlags,
 [in,out] LPWSTRVB *ppwszTip);

 HRESULT GetInfoFlags([in,out] DWORD *pdwFlags);
 }

Table 10.1. IQueryInfo

Method Description

GetInfoFlags[1] Retrieves the information flags for an item.

GetInfoTip Gets the InfoTip text for the file object.

[1] This method is not currently used-not here, and according to the Platform SDK, not anywhere.

IQueryInfo is a very basic interface that contains two methods: GetInfoTip and
GetInfoFlags. GetInfoFlags is not currently used by the shell, so it will not be
discussed. That leaves GetInfoTip.

10.2.1 GetInfoTip

GetInfoTip is called by the shell to request an InfoTip string from the handler. Its syntax is:

HRESULT GetInfoTip(DWORD dwFlags, LPWSTR *ppwszTip);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with the following parameters:

dwFlags

[in] This parameter is not used currently by the shell.
ppwszTip

[in, out] The address of a wide-character string that will receive the pointer to the
InfoTip string.

If you haven't figured it out yet, this is the simplest interface in the book. All we need to worry
about is one method and one parameter. The shell is basically giving us a buffer and saying,
"Put a string in here!" That's all that is happening.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

10.3 The Project

We start by adding a class called clsQueryInfo to the RadEx project. The class implements
IQueryInfo and IPersistFile. Example 10.2 is the project listing. It's really short, so
let's walk through the whole thing.

Example 10.2. Project Listing

'clsQueryInfo.cls

Implements IPersistFile
Implements IQueryInfo

Private m_sFile As String

Private Sub IPersistFile_Load(
 ByVal pszFileName As VBShellLib.LPCOLESTR, _
 ByVal dwMode As VBShellLib.DWORD)

 m_sFile = Space(255)
 CopyMemory ByVal StrPtr(m_sFile), ByVal pszFileName, Len(m_sFile)

End Sub

Private Sub IQueryInfo_GetInfoTip(
 ByVal dwFlags As VBShellLib.DWORD, _
 ppwszTip As VBShellLib.LPWSTRVB)

 Dim b() As Byte

 Dim sTemp As String
 sTemp = Space(255)

 Dim sMsg As String

 GetPrivateProfileString "Animal", _
 "Type", _
 "Unknown", _
 sTemp, _
 Len(sTemp), _
 m_sFile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sMsg = "Type: " & sTemp & vbCrLf

 ppwszTip = StrPtr(sMsg)

End Sub

First, let's get IPersistFile::Load out of the way. This should be very familiar to you,
since we have already implemented Load for icon handlers, drop handlers, and data

handlers. InfoTip handlers are no different: we simply copy the name of the selected file,
which is passed to the Load method in the pszFileName argument, to a local variable,
m_sFile.

To complete the implementation of IPersistFile, you can just add the following line of

code for the remainder of the methods:

Err.Raise E_NOTIMPL

After you have implemented the remaining methods of IPersistFile, we can begin
implementing IQueryInfo. And for once, we can breathe easy, because IQueryInfo
could not be simpler to implement. Here's what happens: the shell calls GetInfoTip and
passes us a pointer to a buffer that we can copy the InfoTip into.

The pointer to the tool tip function is declared with the [in, out] attribute, so we can just
assign the pointer to our InfoTip right to ppwszTip. We don't have to use CopyMemory.

That's all there is to it.

10.3.1 Registration and Operation

Well, we actually have to register the handler, and that's done a little bit differently than in
previous chapters. The handler is registered under the file association key, not the
application identifier. Also, the handler is not named. It uses the CLSID for IQueryInfo as

the key name. The default value of this key points to our InfoTip handler. Figure 10.2 shows
the appropriate entries.

Figure 10.2. Registering InfoTip handler

This is the only entry that needs to be made for the InfoTip handler. It does not have to be
added to the approved shell extensions list. The following registry script will register the
example for this chapter:

REGEDIT4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[HKEY_CLASSES_ROOT\.rad]
@ = "radfile"

[HKEY_CLASSES_ROOT\.rad\shellex\
{00021500-0000-0000-C000-000000000046}]
@ = "{1CBC449C-065A-11D3-BB7C-444553540000}"

For some strange reason, the InfoTip handler will not be displayed if the
shell is in web view. But have no fear, the tip is displayed in the lefthand
portion of the view.

Before trying out the handler, you should restart the shell.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Part III: Namespace Extensions

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 11. Namespace Extensions

The Windows namespace is similar to the directory structure of a filesystem, but in addition
to files, it also contains other objects, like printers, storage devices, and network resources.
As Figure 11.1 shows, this namespace is a single hierarchy that begins with the Desktop
and contains everything that is visible within Explorer. Namespace extensions provide the
means for you to insert your own objects into this hierarchy. This allows you to browse your
data as if it were just another object in the system, but it also provides the means for you to
manipulate that data in a manner that is specific to your needs.

Figure 11.1. The namespace

Consider the desktop for a moment (see Figure 11.1). The Desktop contains My Computer,
Network Neighborhood, My Briefcase, and the Recycle Bin. My Computer in turn contains
Printers, Control Panel, and Dial-Up Networking. If you examine the registry's
HKEY_CLASSES_ROOT\CLSID key for each of these objects, you will see that each of them

is mapped to shell32.dll. In other words, these are all namespace extensions. Actually,
everything you can see that is displayed in Explorer is being handled by a namespace
extension-even the directories and files. Nothing is built-in. Explorer is literally a shell that's
a namespace browser.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

11.1 Namespace Fundamentals

The topic of namespaces is monumental, to say the least. This chapter is the longest in the
book; even so, consider this a crash course. But before we dive in and start discussing how
namespace extensions work, let's spend some more time discussing some of the
fundamentals.

11.1.1 Rooted vs. Non-rooted

There are two types of namespace extensions: rooted and non-rooted. There is no difference
code-wise between these two types. The difference is just how they are used.

A rooted extension has its own root. In other words, you can't navigate to a level above it,
and only its branches are available. For an example of this, right-click on the task bar and
select Properties from the Context menu. Select the Start Menu Programs tab and then press
Advanced. A rooted view of the Start menu will be displayed with the Start menu selected
(see Figure 11.2). Notice that the level-up button on the tool bar is disabled.

Probably everything you can find discussing rooted extensions uses this same example.
That's how rare they are. But to be fair, a rooted view might be good if you are creating a

namespace extension that allows you to navigate into a file (such as a .zip file or an Access
database), and "upward" navigation from it makes little sense. But then again, even this is
arguable. A rooted namespace should only be used if your data really does need to stand
alone.

Figure 11.2. Rooted view of Start menu

Non-rooted extensions, on the other hand, are aware of the entire namespace. Their root is
the desktop. You can freely navigate to other parts of the namespace in a non-rooted view.

11.1.2 Junction Points

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A namespace extension for all intents and purposes is a folder. Therefore, it needs to have a

specific location in the shell. This location is called a junction point.

There are four ways to create a junction point:

Associate the namespace extension with a file type.

Use desktop.ini in a directory.

Use a directory with a CLSID.

Associate a folder with an existing namespace.

I'll now talk about each of these methods in detail.

11.1.2.1 Using a file type

Suppose you want to create a namespace extension that allows you to actually navigate into

the contents of a file. Several file types that could take advantage of this come to mind- .zip,
.cab, .ini, and .mdb files, to name just a few. These files contain data that exists in a format
that could easily be viewed hierarchically within the namespace.

Associating a namespace extension with a file involves making a few entries in the registry
under the file's application identifier key. Let's pretend we are associating a namespace

extension with the .rad file type. The registry entries involved would look like this:

HKEY_CLASSES_ROOT\
 \radfile
 \shell
 \{verb}
 \command = "explorer /root, {CLSID}, %1"

The value verb can be any thing we want. You might choose "Browse," "Navigate," or

something similar. Whatever you choose, this value will be displayed in the context menu for
the file object. But the system defines seven of these as canonical verbs: open , find ,
explore, print, printto, openas, and properties. Each of these verbs, except for
printto, corresponds to a context menu item for the file. (The advantage of these canonical

verbs is that they automatically appear in mixed case and in the default language used on
the host system.) You can also define the verb that is automatically executed when the file is
double-clicked. The default value of the shell key is where this done. If no default value has
been defined, the command defined by the verb open will be executed.

The /root command line parameter tells Explorer to use a rooted view with the namespace
extension as the root. {CLSID}, of course, is the CLSID of the namespace that the shell will

use for the file object, and the %1 is merely a placeholder for the filename Explorer will pass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the namespace extension.

11.1.2.2 Using a directory desktop.ini

Namespace extensions can be associated with a physical directory in the filesystem. You
probably have seen this before without realizing that it was being done by a namespace

extension. Consider the following folders: Fonts, Downloaded Program Files, and History
(each of these is a subdirectory under Windows). Each of the folders has a physical location
in the filesystem. But instead of containing a standard file list like a normal directory, they
contain a custom view that is handled by a namespace extension.

There are two ways to associate a namespace extension with a physical directory in the
filesystem-that is, to have a designated namespace extension (rather than the default one)
handle the display of filesystem information. The first technique involves creating the

directory and placing a hidden file in the directory called desktop.ini. The basic format of the
file is as follows:

[.ShellClassInfo]
CLSID={CLSID}

The display name of this folder can be set by changing the default value of the following key:

HKEY_CLASSES_ROOT
 \CLSID
 \{CLSID} = "Folder Name"

Additionally, you can specify the default icon for this folder with the following key:

HKEY_CLASSES_ROOT
 \CLSID
 \{CLSID}
 \DefaultIcon = "filename, icon index"

where icon index is the zero-based position of the icon in the file named filename.

Consider the folder called My Documents; it contains a desktop.ini file that looks like the
following:

[.ShellClassInfo]
CLSID={450d8fba-ad25-11d0-98a8-0800361b1103}
InfoTip=Stores your documents, graphics, and other files.

The [.ShellClassInfo] section can also contain the following additional entries:

ConfirmFileOp

When this value is set to 0, the "You Are Deleting a System Folder" message will not be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

displayed when you attempt to delete or move the folder.
NoSharing

Setting this value to 1 prevents the folder from being shared.
IconFile

This is the name of the custom icon file for the folder. Files with the .ico and .bmp

extensions are acceptable. It is also possible to specify an .exe or a .dll. For the latter
option, it is necessary to use the IconIndex setting as well.

IconIndex

The zero-based index of an icon if it is contained in a .dll or .exe (which is specified by
IconFile).

InfoTip

Allows you to create an InfoTip for the folder.

11.1.2.3 Using a directory and the CLSID

The second method involving associating a directory with a namespace is very simple and
requires no registry settings. You merely create a folder with the following naming
convention:

FolderName.{CLSID}

The CLSID portion of this name will be invisible once the folder is created.

Here's a neat trick that demonstrates this idea. Right-click on the Start button in the task bar
and select Explore. Create a folder with the following name:

Control Panel.{21EC2020-3AEA-1069-A2DD-08002B30309D}

This will add the Control Panel to your Start menu, as Figure 11.3 demonstrates.

Figure 11.3. Control Panel namespace from Start menu

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1.2.4 Using an existing namespace

The last method for creating a junction point involves inserting the extension into an existing
namespace-into Desktop, My Computer, Network Neighborhood, or Internet Explorer.

To insert a namespace extension in one of these locations, you need to find the following
key:

HKEY_LOCAL_MACHINE\
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \Namespace
 \Namespace
 \{CLSID } = "Folder Name"

The value Namespace (the key that's a direct subkey of Explorer) should be replaced with

one of the following values: Desktop, MyComputer, NetworkNeighborhood,
ControlPanel, RemoteComputer, or Internet. {CLSID }, of course, should be replaced

with the CLSID of your component that is implementing the namespace extension.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

11.2 Explorer Architecture

As Figure 11.4 illustrates, there are five distinct parts to Explorer: the menu, the toolbar, the
tree view, the content pane (or view), and the status bar.

Figure 11.4. Explorer architecture

When Explorer finds a namespace extension at a junction point (as defined in any of the four
ways discussed in Section 11.1.2 earlier in this chapter), it loads the extension and queries
for IShellFolder. This interface represents the folder in the tree view and basically acts as

a liaison to the rest of the namespace extension. Everything a namespace extension needs
is generated through this interface.

Explorer then asks the extension for an IShellView interface. This interface is provided by
IShellFolder and is responsible for creating the view window in the content pane. The

view in turn is responsible for displaying the data. Something that might not be so obvious is

that Explorer does not provide the list view that is usually found in the content pane. It is the
responsibility of the object implementing IShellView to create this window. Also, it must be

noted that a namespace extension must be prepared to create multiple views. For example,
Explorer provides five views: Large Icons, Small Icons, Details, List, and View as Web Page.
But you can also provide custom views. Consider the Fonts namespace extension. It
provides a view called List Fonts by Similarity that allows you to see groups of fonts that are
similar in appearance. Because several views are possible, the object implementing
IShellFolder is distinct from the object implementing IShellView. This is a one-to-many
relationship.

Explorer provides the object implementing IShellView with a reference to an interface
called IShellBrowser. This interface can be used by the view object to manipulate the

menu, toolbar, and status bar of Explorer to add new menu items and toolbar buttons, and to
manage text in the status bar.

Once the content pane has been made ready to receive data, the shell asks the namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

extension to enumerate the contents of the folder. This is handled by a third object that
implements the IEnumIDList interface. This object is separate from IShellFolder
because, like IShellView, it must be called multiple times throughout the lifetime of the

extension.

Every time a branch of the extension is opened, an instance of IEnumIDList is created. In

the tree view, the enumerated items that have the "folder" attribute are displayed. If these
folders have the "has subfolders" attribute, a "+" node is displayed. The "+" nodes, of course,
can be opened, and the entire process begins again.

IShellFolder provides services to handle the display text for each item. Additional user
interface elements such as icons, context menus, and InfoTips are provided for as well.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

11.3 The PIDL

Explorer needs a way to uniquely identify each item in the namespace unambiguously in
relation to other items in the namespace. It must be able to enumerate these items in a
consistent, generic manner, even though these items represent a wide variety of data. It does
this with a PIDL.

A PIDL is a pointer to an item identifier list, or ITEMIDLIST. An ITEMIDLIST is an array of

shell item IDs. Each one of these identifiers is an array of bytes that contains information that
is specific to the namespace extension using it.

How can Explorer use PIDLs if they are different in respect to every extension? Well, as it
turns out PIDLs are pretty simple creatures. Let's look at how a PIDL is defined, and you'll be
able to see this for yourself. Here is what an ITEMIDLIST (just remember a PIDL is a pointer

to one of these) looks like, as defined by the Platform SDK:

typedef struct _ITEMIDLIST {
 SHITEMID mkid;
} ITEMIDLIST, * LPITEMIDLIST;

As you can see, an ITEMIDLIST is nothing more than a structure that contains one member
of type SHITEMID. This structure looks like so:

typedef struct _SHITEMID {
 USHORT cb;
 BYTE abID[1];
} SHITEMID, * LPSHITEMID;

The first member of SHITEMID, cb, contains the number of bytes of the SHITEMID structure.
SHITEMID is a variable-length structure, and cb contains two bytes specifying its size. For

those of you who have never done any C programming, you probably have never seen this
technique before: the first member of a structure is used to define the total length of a
variable-length structure. The abID parameter is not a pointer, of course, because it is only 1

byte. It is a placeholder. It marks the first byte of an unknown number of bytes. One member
of a variable length structure contains the number of bytes that begins at the location
abID[0]. This is an efficient way to maintain a collection (a linked list perhaps) of like

structures that are of different sizes. Without this technique, you would have to reallocate
memory like this:

typedef struct _SHITEMID {
 USHORT cb;
 BYTE abID[1024];
} SHITEMID, * LPSHITEMID;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is very inefficient, because you may have one instance of this structure that contains
1024 bytes of data and several hundred that contain only 10 bytes. Also, you are limited as to
how large your structure can be. Because SHITEMID is of variable length, it can be as large

or as small as needed.

Anyway, the data that follows can be in any format that is required by the namespace
extension. Well, almost, but we'll talk about that in a second. This format allows
IEnumIDList to enumerate a list of PIDLs in a generic fashion.

A PIDL is just a pointer to one or more ITEMIDLISTs that is terminated by an empty
ITEMIDLIST (two 0s). Some PIDLs point to only one ITEMIDLIST, followed by an empty
ITEMIDLIST. These are called simple PIDLs. A PIDL that points to more than one

ITEMIDLIST is called a complex PIDL. Regardless of the type, the last ITEMIDLIST must
contain all NULL values. This is shown in Figure 11.5.

Figure 11.5. Simple and complex PIDLs

A PIDL always points to at least two ITEMIDLISTs (remember, there's always an empty
ITEMIDLIST at the end). In other words, it's an array. So if you read something like "the last
item in the PIDL," this means the last ITEMIDLIST in the array. So don't just think of a PIDL
as a pointer to an ITEMIDLIST. It's easier to think about it in terms of an array, because

that's what it really is. There is never just one ITEMIDLIST. Also, not to make things more

confusing, but, by convention, the term PIDL is often used when referring to the underlying
ITEMIDLIST structure. For instance, you'll never hear someone say, "What is the format of
your ITEMIDLIST ?" They'll just call it a PIDL. So when you read about the "format of a
PIDL," you now know that what is being discussed is the ITEMIDLIST itself. With that said,

let's talk about the format of a PIDL.

There is an important rule that must be followed when creating a PIDL. The data contained in
your PIDLs (ITEMIDLISTs) cannot contain pointers. This is because PIDLs can be persisted

(saved to disk) and then read back into memory at some point in the future (shortcut files are
persisted ID lists). ITEMIDLISTs can also be copied into another memory block before they

are used by Explorer. So a PIDL cannot contain a handle to an icon, for example; it must
contain all the actual bits that make up the icon. A PIDL can't contain a pointer to a path, it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

must contain the actual path itself. Everything a PIDL needs to describe itself must be
contained within it.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

11.4 Namespace Interfaces

There are four primary interfaces that must be implemented when working with a namespace
extension. These are:

IPersistFolder

IShellFolder

IShellView

IEnumIDList

Let's briefly discuss these interfaces. We'll go into more detail as we implement each one.

11.4.1 IPersistFolder

This interface is used to initialize shell folder objects. This interface contains one method
inherited from IPersist , GetClassID , and one native method called Initialize .
Initialize is used when the contents of the folder need a fully qualified PIDL in relation to

the junction point of the extension. These methods are described in Table 11.1 .

Table 11.1. IPersistFolder Methods

Method Description

GetClassID Returns the CLSID of the object implementing IPersistFolder .

Initialize Instructs the object to initialize itself based on the PIDL that is passed in by the shell.

The IDL for IPersistFolder is shown in Example 11.1 .

Example 11.1. IPersistFolder

typedef [public] long CLSID;
typedef [public] long LPCITEMIDLIST;

[
 uuid(000214ea-0000-0000-c000-000000000046),
 helpstring("IPersistFolder Interface"),
 odl
]
interface IPersistFolder : IUnknown
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // IPersist methods
 HRESULT GetClassID([in, out] CLSID *lpClassID);

 // IPersistFolder methods
 HRESULT Initialize([in] LPCITEMIDLIST pidl);
}

11.4.1.1 GetClassID

This method returns the CLSID of the object implementing IPersistFolder . This method
is inherited from IPersist , and its syntax is as follows:

HRESULT GetClassID(CLSID *pClassID);

Its single parameter is:

pClassID

This is an [in, out] parameter that should contain the class identifier of the object
that is implementing IPersistFolder .

11.4.1.2 Initialize

This tells the object to initialize itself based on the PIDL that is passed in. Its syntax is:

HRESULT Initialize(LPCITEMIDLIST pidl);

with the following parameter:

pidl

Address of an ITEMIDLIST structure that contains the location of the folder.

When a folder's location in the namespace does not matter, this function can simply return
S_OK .

11.4.2 IShellFolder

IShellFolder contains ten methods that are used to manage shell folders. This is really

considered the primary interface of the namespace extension, because the shell uses this
interface to communicate all of its requests to the extension object.

IShellFolder is responsible for creating references to IShellView for managing the view
and to IEnumIDList for enumerating the folder's contents. In addition, IShellFolder
provides references to IExtractIcon (so the shell can display icons for each item in the
namespace) and to IContextMenu for any context menu support the namespace might
need. The methods of IShellFolder are described in Table 11.2 . Note that the methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that require vtable swapping are in boldface. Methods marked with an asterisk (*) do not
need to be implemented for namespace extensions. Because we already have enough things
to remember, we will focus only on the methods that require implementation.

Table 11.2. IShellFolder Methods

Method Description

BindToObject Returns the IShellFolder interface for the specified subfolder.

BindToStorage * Not currently implemented.

CompareIDs Determines the relative order of two file objects or folders, given their item identifier lists.

CreateViewObject
Creates a view object of the folder. This method is responsible for creating an instance of an
object that implements the IShellView interface.

EnumObjects
Creates an instance of an object that implements the IEnumIDList interface. The primary
function of this object is to enumerate the contents of a folder.

GetAttributesOf
Returns the attributes of the specified file object or subfolder. This method informs the shell
whether an item is folder, has subfolders, etc.

GetDisplayNameOf Returns the display name of a file object or subfolder.

GetUIObjectOf
Creates an interface that can be used to carry out operations on a file object or subfolder.
Interfaces returned by this method include IExtractIcon and IContextMenu.

ParseDisplayName
*

Translates a display name into an item identifier list.

SetNameOf * Sets the display name of the specified file object or subfolder.

The IDL for IShellFolder is shown in Example 11.2 .

Example 11.2. IShellFolder

// IShellFolder::GetDisplayNameOf/SetNameOf uFlags
typedef enum {
 SHGDN_NORMAL = 0,
 SHGDN_INFOLDER = 1,
 SHGDN_INCLUDE_NONFILESYS = 0x2000,
 SHGDN_FORADDRESSBAR = 0x4000,
 SHGDN_FORPARSING = 0x8000,
} SHGNO;

// IShellFolder::EnumObjects
typedef enum {
 SHCONTF_FOLDERS = 32,
 SHCONTF_NONFOLDERS = 64,
 SHCONTF_INCLUDEHIDDEN = 128,
} SHCONTF;

// IShellFolder::GetAttributesOf flags

http://lib.ommolketab.ir
http://lib.ommolketab.ir

typedef enum {
 SFGAO_CANCOPY = 0x00000001,
 SFGAO_CANMOVE = 0x00000002,
 SFGAO_CANLINK = 0x00000004,
 SFGAO_CANRENAME = 0x00000010,
 SFGAO_CANDELETE = 0x00000020,
 SFGAO_HASPROPSHEET = 0x00000040,
 SFGAO_DROPTARGET = 0x00000100,
 SFGAO_CAPABILITYMASK = 0x00000177,
 SFGAO_LINK = 0x00010000,
 SFGAO_SHARE = 0x00020000,
 SFGAO_READONLY = 0x00040000,
 SFGAO_GHOSTED = 0x00080000,
 SFGAO_HIDDEN = 0x00080000,
 SFGAO_DISPLAYATTRMASK = 0x000F0000,
 SFGAO_FILESYSANCESTOR = 0x10000000,
 SFGAO_FOLDER = 0x20000000,
 SFGAO_FILESYSTEM = 0x40000000,
 SFGAO_HASSUBFOLDER = 0x80000000,
 SFGAO_CONTENTSMASK = 0x80000000,
 SFGAO_VALIDATE = 0x01000000,
 SFGAO_REMOVABLE = 0x02000000,
 SFGAO_COMPRESSED = 0x04000000,
 SFGAO_BROWSABLE = 0x08000000,
 SFGAO_NONENUMERATED = 0x00100000,
 SFGAO_NEWCONTENT = 0x00200000,
}SFGAO;

[
 uuid(000214e6-0000-0000-c000-000000000046),
 helpstring("IShellFolder Interface"),
 odl
]
interface IShellFolder : IUnknown
{
 HRESULT ParseDisplayName([in] HWND hwndOwner,
 [in] LPBC pbcReserved,
 [in] LPOLESTR lpszDisplayName,
 [in] ULONG * pchEaten,
 [in, out] LPITEMIDLIST * ppidl,
 [in, out] ULONG *pdwAttributes);
 HRESULT EnumObjects([in] HWND hwndOwner,
 [in] DWORD grfFlags,
 [in, out] LPENUMIDLIST * ppenumIDList);
 HRESULT BindToObject([in] LPCITEMIDLIST pidl,
 [in] LPBC pbcReserved,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in] REFIID riid,
 [in, out] LPVOID * ppvOut);
 HRESULT BindToStorage([in] LPCITEMIDLIST pidl,
 [in] LPBC pbcReserved,
 [in] REFIID riid,
 [in,out] LPVOID * ppvObj);
 HRESULT CompareIDs([in] LPARAM lParam,
 [in] LPCITEMIDLIST pidl1,
 [in] LPCITEMIDLIST pidl2);
 HRESULT CreateViewObject([in] HWND hwndOwner,
 [in] REFIID riid,
 [in,out] LPVOID * ppvOut);
 HRESULT GetAttributesOf([in] UINT cidl,
 [in,out] LPCITEMIDLIST * apidl,
 [in,out] ULONG * rgfInOut);
 HRESULT GetUIObjectOf([in] HWND hwndOwner,
 [in] UINT cidl,
 [in,out] LPCITEMIDLIST * apidl,
 [in] REFIID riid,
 [in,out] UINT * prgfInOut,
 [in,out] LPVOID * ppvOut);
 HRESULT GetDisplayNameOf([in] LPCITEMIDLIST pidl,
 [in] DWORD uFlags,
 [in] LPSTRRET lpName);
 HRESULT SetNameOf([in] HWND hwndOwner,
 [in] LPCITEMIDLIST pidl,
 [in] LPCOLESTR lpszName,
 [in] DWORD uFlags,
 [in,out] LPITEMIDLIST * ppidlOut);
}

11.4.2.1 BindToObject

This function retrieves the IShellFolder interface for a subfolder. BindToObject is called

by the shell whenever a folder is opened. The major responsibility of this function is to
provide the shell with an interface pointer to IShellFolder (for the subfolder). It is defined

like so:

HRESULT BindToObject(LPCITEMIDLIST pidl,
 LPBC pbcReserved,
 REFIID riid,
 LPVOID *ppvOut);

with the following parameters:

pidl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[in] Is the PIDL of the parent folder.
pbcReserved

[in] Reserved; will be NULL.
riid

[in] Points to the interface identifier for IShellFolder .
ppvOut

[in, out] Gives the shell the IShellFolder interface for the subfolder.

11.4.2.2 CompareIDs

This function determines the display order of two folders or items. Its definition is as follows:

HRESULT CompareIDs(LPARAM lParam,
 LPCITEMIDLIST pidl1,
 LPCITEMIDLIST pidl2);

with the following parameters:

lParam

[in] This value will always be when this function is called by the shell.
pidl1 /pidl2

[in] These two PIDLs uniquely identify items or folders for comparison.

The method of comparison performed by this function is entirely up to the implementer. It will
be different for every namespace extension, because the PIDL will most likely have a
different format across extensions.

The function must return one of the following values:

< 0

The first PIDL should be displayed first (pidl1 < pidl2).

> 0

The second PIDL should be displayed first (pidl1 > pidl2).

= 0

The two items are the same (pidl1 = pidl2).

11.4.2.3 CreateViewObject

This method is responsible for creating the view object for a shell folder. Its syntax is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HRESULT CreateViewObject(HWND hwndOwner, REFIID riid, LPVOID *ppvOut);

It has the following parameters:

hwndOwner

[in] The handle of the window that is the parent to the view object.
riid

[in] The IShellView interface identifier.
ppvOut

[in, out] The address of the view object that will be returned to the shell.

The important thing to remember when implementing this method is that the object
implementing IShellView must be different than the object that is implementing
IShellFolder . This is to accommodate support for multiple views.

11.4.2.4 EnumObjects

This method creates an enumeration object (an object that implements IEnumIDList) that
the shell will use to enumerate, and consequently display, the contents of a folder. It is
defined as:

HRESULT EnumObjects(HWND hwndOwner, DWORD grfFlags,
 LPENUMIDLIST *ppenumIDList);

with the following parameters:

hwndOwner

[in] Handle to the owner window a client should use to display a dialog or message
box. The VB MsgBox function does not have an hWnd parameter (unlike the

MessageBox API function), so this parameter can be ignored.
grfFlags

[in] Items that should be included in the enumeration. This value can be one or more

of the following values:

Constant Description

SHCONTF_FOLDERS Include folders.

SHCONTF_NONFOLDERS Include non-folders (items).

SHCONTF_INCLUDEHIDDEN Include hidden items.

ppenumIDList

[out, retval] Address that receives a pointer to the IEnumIDList interface of the

enumeration object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As is the case with the view object, the enumeration object needs to be implemented in a
separate object.

11.4.2.5 GetAttributesOf

This function retrieves the attributes of one or more folders or items. In terms of namespace
extensions, the primary purpose of this method is to determine if a given item is a folder and,
if so, whether it has subfolders. Its definition is:

HRESULT GetAttributesOf(UINT cidl, LPCITEMIDLIST *apidl, ULONG *rgfInOut);

with the following parameters:

cidl

[in] The number of PIDLs that are being pointed to by apidl .
apidl

[in, out] A pointer to an array of PIDLs.
rgfInOut

[in, out] One or more constants from the SFGAO enumeration (see Appendix A),

shown upon returning from this method. When implementing namespace extensions,
however, the primary values of concern for this flag are:

Constant Description

SFGAO_FOLDER The item is a folder.

SFGAO_HASSUBFOLDER The item contains subfolders.

If the SFGAO_HASSUBFOLDER bit has been set, the shell will draw a "+" node next to

the folder.

11.4.2.6 GetDisplayNameOf

Provides a display name for a given PIDL. Its syntax is:

HRESULT GetDisplayNameOf(LPCITEMIDLIST pidl, DWORD uFlags, LPSTRRET lpName);

Its parameters are:

pidl

[in] The PIDL for which a display name is being requested.
uFlags

[in] Flags indicating the type of display name being requested. These values come

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from the SHGNO enumeration, which contains the following values:

Constant Description

SHGDN_NORMAL The full path of the PIDL from the root.

SHGDN_INFOLDER The name is relative to the folder that is processing the name.

SHGDN_FORADDRESSBAR The name will be used for display in the address bar combo box.

SHGDN_FORPARSING This flag can be ignored for this discussion.

SHGDN_INCLUDE_NONFILESYS This flag can be ignored for this discussion.

lpName

[in] The address of an STRRET structure, which is defined like this:
typedef struct _STRRET {
 UINT uType;
 union {
 LPWSTR pOleStr;
 LPSTR pStr;
 UINT uOffset;
 char cStr[MAX_PATH];
 } DUMMYUNIONNAME;
} STRRET, *LPSTRRET;

As you can see, this structure contains a union, which has no analogue in Visual Basic. If you
consider that, internally, all strings in VB are in Unicode, then the following redefinition makes
sense (regardless of your platform):

Public Type STRRET
 uType As UINT
 pOLESTR As Long
End Type

The uType member can be one of the following values, although it should always equal

STRRET_WSTR (in terms of the above definition of STRRET):

Constant Description

STRRET_CSTR The string is returned in the cStr member of the structure.

STRRET_OFFSET
The uOffset member value indicates the number of bytes from the beginning of the item

identifier list where the string is located.

STRRET_WSTR
The string is at the address pointed to in the pOleStr member. This is a pointer to a Unicode

string.

pOLESTR will point to a string that contains the display name.

11.4.2.7 GetUIObjectOf

The shell will call this method for any additional interfaces it might need to complete its
functionality. For instance, the icons that are displayed for the namespace extension are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

managed by an object that implements IExtractIcon . When the shell is ready to display
icons, it will call this method for the object. If the namespace has a context menu, the shell
will call this method, asking for an object that implements IContextMenu . Maybe your

extension provides InfoTips. If that is the case, the shell would call this method requesting an
object that supports IQueryInfo .

GetUIObjectOf has the following definition:

HRESULT GetUIObjectOf(
 HWND hwndOwner,
 UINT cidl,
 LPCITEMIDLIST *apidl,
 REFIID riid,
 UINT *prgfInOut,
 LPVOID *ppvOut);

Its parameters are:

hwndOwner

[in] Handle to the owner window that a client should use to display a dialog or
message box. The VB MsgBox function does not have an hWnd parameter (unlike the

MessageBox API function), so this parameter can be ignored.
cidl

[in] The number of PIDLs that are being pointed to by apidl .
apidl

[in, out] A pointer to an array of PIDLs.
riid

[in] A pointer to the GUID of the interface being requested.
prgfInOut

[in, out] Reserved.
ppvOut

[in] The address that receives the interface pointer.

The most common interfaces requested by the shell are shown in the following table:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface Identifier Allowed cidl Value

IContextMenu >=1

IContextMenu2 >=1

IDataObject >=1

IDropTarget =1

IExtractIcon =1

IQueryInfo =1

The only interface on this list that we have not discussed is IContextMenu2 . This interface

provides additional methods that allow the context menu to contain owner-drawn items.

11.4.3 IShellView

IShellView , which is derived from IOleWindow , is responsible for creating the view
object and maintaining communication between the view and Explorer's frame window. This
communication involves translating window messages, adding menu items and toolbar
buttons, providing help text in the status bar, and maintaining the state of the view window.
IShellView is composed of 12 methods, which are listed in Table 11.3 . Methods marked

with an asterisk do not need to be implemented.

Table 11.3. IShellView Methods

Method Description

AddPropertySheetPages

*
Adds pages to the Options property sheet.

CreateViewWindow Creates the view window.

ContextSensitiveHelp *
Determines whether context-sensitive help mode should be entered during an in-
place activation session.

DestroyViewWindow Destroys the view window.

EnableModeless * Is not currently in use by Explorer.

EnableModelessSV * Is not currently in use.

GetCurrentInfo
Returns the current folder settings. This is basically the type of view currently in use:
Large Icons, Small Icons, List, or Details. This is how view state is maintained
between the different namespace extensions that are grouped by the shell.

GetItemObject * Is not used by namespace extensions.

GetWindow Is inherited from IOleWindow . It should return the handle to the view object.

Refresh
Refreshes the display in response to a View Refresh menu selection or to
pressing F5.

SaveViewState *
Saves the shell's view settings so the current state can be restored during a future
session.

SelectItem * Changes the selection state of items within the shell view window.

TranslateAccelerator *
Translates accelerator keystrokes when a namespace extension's view has the
focus.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UIActivate
Called whenever the activation state of the view window is changed by an event
external to the view object itself.

The IDL for IShellView is contained in Example 11.3 .

Example 11.3. IShellView

// shellview select item flags
typedef enum {
 SVSI_DESELECT = 0x0000,
 SVSI_SELECT = 0x0001,
 SVSI_EDIT = 0x0003,
 SVSI_DESELECTOTHERS = 0x0004,
 SVSI_ENSUREVISIBLE = 0x0008,
 SVSI_FOCUSED = 0x0010,
 SVSI_TRANSLATEPT = 0x0020,
} SVSI;

// shellview get item object flags
typedef enum {
 SVGIO_BACKGROUND = 0x00000000,
 SVGIO_SELECTION = 0x00000001,
 SVGIO_ALLVIEW = 0x00000002,
} SVGIO;

// uState values for IShellView::UIActivate
typedef enum {
 SVUIA_DEACTIVATE = 0,
 SVUIA_ACTIVATE_NOFOCUS = 1,
 SVUIA_ACTIVATE_FOCUS = 2,
 SVUIA_INPLACEACTIVATE = 3
} SVUIA_STATUS;

[
 uuid(000214e3-0000-0000-c000-000000000046),
 helpstring("IShellView Interface"),
 odl
]
interface IShellView: IUnknown
{
 // IOleWindow
 HRESULT GetWindow([out, retval] HWND * lphwnd);
 HRESULT ContextSensitiveHelp([in] BOOL fEnterMode);

 // IShellView
 HRESULT TranslateAccelerator([in] LPMSG lpmsg);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HRESULT EnableModeless([in] BOOL fEnable);
 HRESULT UIActivate([in] UINT uState);
 HRESULT Refresh();
 HRESULT CreateViewWindow([in,out] IShellView *lpPrevView,
 [in] LPCFOLDERSETTINGS lpfs,
 [in,out] IShellBrowser *psb,
 [in] LPRECT prcView,
 [in,out] HWND *phWnd);
 HRESULT DestroyViewWindow();
 HRESULT GetCurrentInfo([in] LPFOLDERSETTINGS lpfs);
 HRESULT AddPropertySheetPages([in] DWORD dwReserved,
 [in] LPFNADDPROPSHEETPAGE lpfn,
 [in] LPARAM lparam);
 HRESULT SaveViewState();
 HRESULT SelectItem([in] LPCITEMIDLIST pidlItem,
 [in] UINT uFlags);
 HRESULT GetItemObject([in] UINT uItem,
 [in] REFIID riid,
 [out, retval] IUnknown **ppv);
}

Of the methods shown in Table 11.3 , the six discussed in the following sections must be
implemented.

11.4.3.1 CreateViewWindow

This method is responsible for creating the view window. It is defined as follows in the
Platform SDK:

HRESULT CreateViewWindow(
 ISHELLLINK *lpPrevView,
 LPFOLDERSETTINGS lpfs,
 IShellBrowser *psb,
 RECT *prcView,
 HWND *phWnd);

But the documentation is in error. The first parameter should be a pointer to an IShellView

interface:

HRESULT CreateViewWindow(
 IShellView *lpPrevView,
 LPFOLDERSETTINGS lpfs,
 IShellBrowser *psb,
 RECT *prcView,
 HWND *phWnd);

The parameters of the correct version of the method prototype are:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lpPrevView

[in, out] A pointer to the IShellView interface of the view object that is being
closed. This value can also be NULL .

lpfs

[in] Address of a FOLDERSETTINGS structure, which is defined as:
typedef struct {
 UINT ViewMode;
 UINT fFlags;
}FOLDERSETTINGS;

This structure is not used by the namespace directly, so a discussion is not in order. The
shell will use this structure to communicate the current view to the namespace extension
(Large Icons, Details, List, etc.). The namespace extension should cache this structure, so it
can return it when the shell calls GetCurrentInfo .

psb

[in, out] Address of the current instance of the IShellBrowser interface. The view
should call AddRef on this interface and keep the interface pointer to allow

communication with Explorer's frame window.
prcView

[in] Dimension of the view window in client coordinates.
phWnd

[in, out] Address of the window handle being created.

11.4.3.2 DestroyViewWindow

This method is called when the view window (or Explorer) is being closed. Its syntax is
simply:

HRESULT DestroyViewWindow();

11.4.3.3 GetCurrentInfo

This method is called by the shell to retrieve the current folder settings. The folder settings
that were passed to CreateViewWindow can be returned to the shell via this method. Its

syntax is:

HRESULT GetCurrentInfo(LPFOLDERSETTINGS lpfs);

It has a single parameter:

lpfs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[in] The address of a FOLDERSETTINGS structure. For information on the
FOLDERSETTINGS structure, see the description of the CreateViewWindow method.

11.4.3.4 GetWindow

This method, which is inherited from IOleWindow , should return the window handle of the

view object. Its syntax is:

HRESULT GetWindow(HWND *phwnd);

Its single parameter is:

phwnd

[out, retval] The address of the view object's window handle.

11.4.3.5 Refresh

This method refreshes the view object when the Refresh menu item is selected from
Explorer's menu (or F5 is pressed). Its syntax is simply:

HRESULT Refresh();

11.4.3.6 UIActivate

This method is called when the activation state of the view window is changed by an event
outside of the shell. For example, if the Tab key is pressed when the tree has the focus, the
view window should be given the focus. The syntax of UIActivate is:

HRESULT UIActivate(UINT uState);

The method has the following parameters:

uState

[in] Contains flags specifying the activation state of the window. This can be one of
the following values:

Constant Description

SVUIA_ACTIVATE_FOCUS The view window has the input focus.

SVUIA_ACTIVATE_NOFOCUS The view is losing the input focus.

SVUIA_DEACTIVATE Explorer is about to destroy the view window.

SVUIA_INPLACEACTIVATE This is not used for this interface.

11.4.4 IEnumIDList

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IEnumIDList enumerates the contents of a shell folder. The methods that compose this
interface are listed in Table 11.4 .

Table 11.4. IEnumIDList Methods

Method Description

Clone Creates a clone of the current enumeration object.

Next Retrieves the specified number of item identifiers.

Reset Returns to the beginning of the enumeration.

Skip Skips the specified number of items.

The primary method of this interface is Next . The namespace object is responsible for
creating PIDLs that identify the contents of the currently selected folder. When the shell is
ready for these PIDLs, it repeatedly calls Next . This method simply returns the next PIDL in

an internal list of PIDLs that is maintained by the namespace extension. The complete IDL
listing for IEnumIDList can be found in Example 11.4 .

Example 11.4. IEnumIDList

[
 uuid(000214f2-0000-0000-c000-000000000046),
 helpstring("IEnumIDList Interface"),
 odl
]
interface IEnumIDList: IUnknown
{
 HRESULT Next([in] ULONG celt,
 [in,out] LPITEMIDLIST *rgelt,
 [in,out] ULONG *pceltFetched);
 HRESULT Skip([in] ULONG celt);
 HRESULT Reset();
 HRESULT Clone([in,out] IEnumIDList **ppenum);
}

11.4.5 Additional Interfaces

There are two additional interfaces that you will use (as opposed to implement) when you
create a namespace extension: IShellBrowser and IMalloc . IShellBrowser is
derived from IOleWindow and is used to add menu items and toolbar buttons to the

Explorer frame window, as well as to display text in the status bar (among other things).

IMalloc is used to allocate and manage memory associated with PIDLs. For those of you

who program in C/C++, you can think of this interface as the COM version of malloc and

realloc .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We will not get into the gory details of these two interfaces except where necessary. Table
11.5 and Table 11.6 summarize these two interfaces.

Table 11.5. IMalloc Interface

Method Description

Alloc Allocates a block of memory.

Realloc Reallocates a block of memory.

Free Frees an allocated block of memory.

GetSize Returns the size of a block of allocated memory.

DidAlloc Determines whether IMalloc was used to allocate the specified block of memory.

HeapMinimize Minimizes the heap by releasing unused blocks of memory.

Table 11.6. IShellBrowser Interface

Method Description

BrowseObject Tells Explorer to browse in another folder.

EnableModelessSB Enables or disables Explorer's modeless windows.

GetControlWindow Gets the window handle to an Explorer control such as the tree view or status bar.

GetViewStateStream Returns a stream that can be used to read and write the persistent data for a view.

InsertMenusSB Inserts Explorer's menu items to an empty menu created by the view.

OnViewWindowActive Notifies Explorer that the view was activated.

QueryActiveShellView Returns the currently activated view object.

RemoveMenusSB
Notifies the container to remove its items from Explorer's menu. This is in contrast
to InsertMenusSB .

SendControlMsg Sends messages to Explorer controls such as the tree view or status bar.

SetMenuSB Installs a composite menu in Explorer.

SetStatusTextSB Sets and displays status bar text.

SetToolbarItems Adds toolbar items to Explorer's toolbar.

TranslateAcceleratorSB Translates accelerator keystrokes while the view is active.

Example 11.5 contains the IDL for both interfaces.

Example 11.5. IMalloc and IShellBrowser

[
 uuid(00000002-0000-0000-C000-000000000046),
 helpstring("IMalloc Interface"),
 odl
]
interface IMalloc : IUnknown
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 long Alloc([in] ULONG cb);
 long Realloc ([in] VOID *pv, [in] ULONG cb);
 void Free([in] VOID *pv);
 ULONG GetSize([in] VOID *pv);
 int DidAlloc([in] VOID *pv);
 void HeapMinimize();
}

 //---
 // IShellBrowser
 //
 // (this interface is actually derived from IOleWindow)
 //---
 typedef enum {
 SBSP_DEFBROWSER = 0x0000,
 SBSP_SAMEBROWSER = 0x0001,
 SBSP_NEWBROWSER = 0x0002,
 SBSP_DEFMODE = 0x0000,
 SBSP_OPENMODE = 0x0010,
 SBSP_EXPLOREMODE = 0x0020,
 SBSP_ABSOLUTE = 0x0000,
 SBSP_RELATIVE = 0x1000,
 SBSP_PARENT = 0x2000,
 SBSP_NAVIGATEBACK = 0x4000,
 SBSP_NAVIGATEFORWARD = 0x8000,
 SBSP_ALLOW_AUTONAVIGATE = 0x10000,
 SBSP_INITIATEDBYHLINKFRAME = 0x80000000,
 SBSP_REDIRECT = 0x40000000,
 SBSP_WRITENOHISTORY = 0x08000000,
 SBSP_NOAUTOSELECT = 0x04000000
 } SBSP_BROWSER;

 [
 uuid(000214e2-0000-0000-c000-000000000046),
 helpstring("IShellBrowser Interface"),
 odl
]
 interface IShellBrowser : IUnknown
 {
 // IOleWindow
 HRESULT GetWindow([out, retval] HWND * lphwnd);
 HRESULT ContextSensitiveHelp([in] BOOL fEnterMode);

 // IShellBrowser
 HRESULT InsertMenusSB(
 [in] HMENU hmenuShared,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in] LPOLEMENUGROUPWIDTHS lpMenuWidths);

 HRESULT SetMenuSB([in] HMENU hmenuShared,
 [in] HOLEMENU holemenuReserved,
 [in] HWND hwndActiveObject);

 HRESULT RemoveMenusSB([in] HMENU hmenuShared);

 HRESULT SetStatusTextSB([in] LPCOLESTR lpszStatusText);

 HRESULT EnableModelessSB([in] BOOL fEnable);

 HRESULT TranslateAcceleratorSB([in] LPMSG lpmsg,
 [in] WORD wID);

 HRESULT BrowseObject([in] LPCITEMIDLIST pidl,
 [in] SBSP_BROWSER wFlags);

 HRESULT GetViewStateStream([in] DWORD grfMode,
 [in, out] LPSTREAM *ppStrm);

 HRESULT GetControlWindow([in] UINT id,
 [out, retval] HWND * lphwnd);

 HRESULT SendControlMsg([in] UINT id,
 [in] UINT uMsg,
 [in] WPARAM wParam,
 [in] LPARAM lParam,
 [out, retval] LRESULT * pret);

 HRESULT QueryActiveShellView(
 [out, retval] IShellView ** ppshv);

 HRESULT OnViewWindowActive([in] IShellView * ppshv);

 HRESULT SetToolbarItems([in] LPTBBUTTON lpButtons,
 [in] UINT nButtons,
 [in] UINT uFlags);
 }

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

11.5 Creating the Namespace Extension

The extension we will build in this chapter is far more contrived than the previous examples.
It does absolutely nothing. The point of this project is to learn how to build a namespace
extension. Because most of the code in a namespace extension can be of a proprietary
nature, it is best that we use an example that is fairly easy to implement yet covers all of the
major features of a namespace extension.

Our project, which we'll call DemoSpace, begins with a junction point under My Computer

called Root . Root will contain five "folders" numbered through 4. Each folder will contain
"items" numbered through the current folder number. DemoSpace is shown in Figure 11.6 .

Figure 11.6. DemoSpace

When we wrote shell extensions, each extension mapped to one object. That object
implemented all the interfaces that were required by the extension. But in this case, things
work a little differently. Folders operate independently of the view. It is perfectly legal for a
namespace extension to provide several views. So theoretically, folders and views represent
a one-to-many relationship.

Namespace extensions will contain several objects, not just one. One object will implement
IShellFolder and IPersistFolder . This object can be associated with the action that
takes place in the tree view. Another object will implement IShellView , which of course,

represents the content or view pane on the right side of Explorer. A third will implement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IEnumIDList and is responsible for maintaining and providing the "items" in both the tree
view and the content pane.

We will also add a few more classes when the time is right, but for now, let's create a new
ActiveX DLL project called DemoSpace. We'll begin by adding three classes. Table 11.7
describes the classes and the interfaces they will implement. Add these to the project.

Table 11.7. Required Namespace Classes

Class Implemented Interfaces

ShellFolder IShellFolder , IPersistFolder

ShellView IShellView

EnumIDList IEnumIDList

We're going to have to write more than just a few lines of code to "wire" up this namespace
extension. Previously, we were able to discuss one class at a time, write the code for it, enter
in a few registry entries, and we were done. Not so in this case. Things won't make sense if
we do it that way. A namespace extension has a certain flow, and we need to follow that flow
to make the best sense of it all. Therefore, we will be doing some jumping around between
these (and other) classes. Also, as mentioned previously, there is some code in a
namespace extension that is generic, and there is more of it that is not. This distinction will
be noted whenever applicable.

11.5.1 ShellFolder

As you might expect, we have some vtable swaps for this class. In this case, there are two
methods that need to be swapped: CompareIDs and GetUIObjectOf . But this time we
have a variation of the swap. Remember, each of these objects operates independently of
the others. There might be a case in which two instances of ShellFolder exist at one time.
This presents a little problem, which, fortunately, has a simple solution.

If you remember, vtables are shared between every instance of a class. All addresses of the

methods that comprise a class are the same for each instance. What does this mean to us?
Well, if you haven't noticed, we have been swapping these functions in the Initialize and
Terminate events of the class. When a second instance of ShellFolder is instantiated, the
functions will be swapped again. Consider this call:

m_pOldCompareIDs = SwapVtableEntry(ObjPtr(pFolder), _
 8, _
 AddressOf CompareIDsX)

The first time this function is called, the address of the CompareIDs method is swapped out

with the CompareIDsX function defined in Demospace.bas . Now, if a second instance of
ShellFolder is instantiated before the first instance terminates, this call will be made again.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

But remember, vtables are global for every instance of a class. So, on the second call, the

vtable for the class already contains the address of CompareIDsX . Basically, all that
happens in this case is that the same address is copied into the vtable. So our address
swapping in the Initialize event is not a problem.

The problem lies in the Terminate event, when we swap the addresses back. If the first
instance terminates, swapping the functions back, the second instance is no longer bound to
the proper methods. A crash is sure to result.

We will get around this by actually reference counting ShellFolder ourselves. We will

maintain a public counter declared in the Demospace.bas code module that is incremented
every time Initialize is called and is decremented every time Terminate is called. If the
counter is when we terminate, we'll know it's safe to swap the methods back. There are four
methods that need to be swapped: BindToObject , CompareIDs , CreateViewObject ,
and GetUIObjectOf . Let's look at the code for Class_Initialize and Class_Terminate, which

is shown in Example 11.6 .

Example 11.6. ShellFolder Class_Initialize/Class_Terminate

'Declared in Demospace.bas
Public g_FolderSwapRef As Long

'ShellFolder.cls
Private m_pOldBindToObject As Long
Private m_pOldCompareIDs As Long
Private m_pOldCreateViewObj As Long
Private m_pOldGetUIObjectOf As Long

Private Sub Class_Initialize()

 Set m_pMalloc = GetMalloc

 If g_FolderSwapRef = 0 Then
 Dim pFolder As IShellFolder
 Set pFolder = Me
 m_pOldBindToObject = SwapVtableEntry(ObjPtr(pFolder), _
 6, AddressOf BindToObjectX)
 m_pOldCompareIDs = SwapVtableEntry(ObjPtr(pFolder), _
 8, AddressOf CompareIDsX)
 m_pOldCreateViewObj = SwapVtableEntry(ObjPtr(pFolder), _
 9, AddressOf CreateViewObjectX)
 m_pOldGetUIObjectOf = SwapVtableEntry(ObjPtr(pFolder), _
 11, AddressOf GetUIObjectOfX)
 End If

 g_FolderSwapRef = g_FolderSwapRef + 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

Private Sub Class_Terminate()

 g_FolderSwapRef = g_FolderSwapRef - 1

 If (g_FolderSwapRef = 0) Then
 Dim pFolder As IShellFolder
 Set pFolder = Me
 m_pOldBindToObject = SwapVtableEntry(ObjPtr(pFolder), _
 6, m_pOldBindToObject)
 m_pOldCompareIDs = SwapVtableEntry(ObjPtr(pFolder), _
 8, m_pOldCompareIDs)
 m_pOldCreateViewObj = SwapVtableEntry(ObjPtr(pFolder), _
 9, m_pOldCreateViewObj)
 m_pOldGetUIObjectOf = SwapVtableEntry(ObjPtr(pFolder), _
 11, m_pOldGetUIObjectOf)
 End If

 Set m_pMalloc = Nothing

End Sub

We will use this same reference counting technique for ShellView and EnumIDList, as well.
Each of the Class_Initialize and Class_Terminate events for both of these classes will
increment and decrement a counter. Class_Terminate will only swap back the methods in the
vtable when the counter is equal to zero.

We will come back to BindToObject , CompareIDs , CreateViewObject and
GetUIObjectOf later, since they are significant methods in the grand scheme of things.

For now, take note of the private member variable m_ pMalloc . All of the primary classes
in the namespace extension will use IMalloc to allocate memory for PIDLs. In the

Class_Initialize event, we call GetMalloc to retrieve a reference to this interface. GetMalloc is
shown in Example 11.7 .

Example 11.7. GetMalloc

Public Function GetMalloc() As IMalloc

 Dim pMalloc As IMalloc
 Dim lpMalloc As Long
 Dim hr As Long

 hr = SHGetMalloc(lpMalloc)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (hr = S_OK) Then

 CopyMemory pMalloc, lpMalloc, 4

 Set GetMalloc = pMalloc

 End If

End Function

GetMalloc primarily wraps the function SHGetMalloc , which returns the IMalloc reference

to us. SHGetMalloc is found in shell32.dll and is defined like so:

Public Declare Function SHGetMalloc Lib "shell32.dll" _
 (lpMalloc As Long) As Long

We used CopyMemory before when we had to deal with raw interface addresses. The
difference here is that an AddRef is actually being performed when the function returns using
Set . So it is safe to set the interface equal to Nothing when we are finished with it.

Now that we have laid the groundwork for ShellFolder, let's continue with implementing the
methods the object will need to support. We'll start with GetClassID, only because it stands in
the way of more important matters, and then move on from there.

11.5.1.1 GetClassID

The action (albeit there's not much of it) begins with IPersistFolder .

IPersistFolder contains one method, Initialize , that will not be implemented. But
the method must return S_OK , or the whole works come tumbling down. In order to return
S_OK , we can just leave the method empty. VB handles the rest:

Private Sub IPersistFolder_Initialize(_
 ByVal pidl As VBShellLib.LPCITEMIDLIST)
 'Must return S_OK
End Sub

Because IPersistFolder is "derived" from IPersist , it also contains GetClassID .
We've seen this method more than a few times now (see Section 5.3.1 in Chapter 5), but
we've never actually implemented it. Let's do that now. Example 11.8 contains the
implementation.

Example 11.8. IPersistFolder::GetClassID

Private Sub IPersistFolder_GetClassID(lpClassID As VBShellLib.clsid)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim clsid As GUID
 Dim sProgID As String
 sProgID = "DemoSpace.ShellFolder"

 CLSIDFromProgID StrPtr(sProgID), clsid

 lpClassID = VarPtr(clsid)

End Sub

This method is quite simple. It is just required to return the CLSID for the object implementing
IShellFolder . Not a string representation of the CLSID, mind you, but the actual 128-bit

number. This is accomplished by calling CLSIDFromProgID , which is declared as follows:

Public Declare Function CLSIDFromProgID Lib "ole32.dll" _
 (ByVal lpszProgID As Long, pClsid As GUID) As Long

This method takes a pointer to a program identifier and to a GUID structure, which, as you
might recall, is defined like so:

Public Type GUID
 Data1 As Long
 Data2 As Integer
 Data3 As Integer
 Data4(7) As Byte
End Type

With that out of the way, we are ready to create the view object.

11.5.1.2 CreateViewObject

This function is responsible for creating the object that will manage the view. For the most
part, this function is generic. Example 11.9 shows the function in its entirety. The most
exciting thing about this method is that it is one of the few times we actually have to call
IUnknown::QueryInterface ourselves. It has that "I just got my hands dirty" feel to it,
doesn't it? This method, like BindToObject , is also passed a reference to an IID. Under
Windows 9x and NT, this IID always appears to be IShellView . However, under Windows
2000, the shell sometimes asks for IShellLink . We haven't discussed this latter interface,
and we're not going to. But the gist of the IShellLink interface is that it is used for

shortcuts. Specifically, this is used to accommodate distributed link tracking, which is a
feature of Windows 2000 that enables client applications to track link sources that have
moved. CreateViewObject needs to return E_OUTOFMEMORY in the event the shell
requests an interface other than IShellView . Therefore, this method is swapped in the
vtable with a replacement function.

Example 11.9. CreateViewObject

http://lib.ommolketab.ir
http://lib.ommolketab.ir

'Demospace.bas

Public Const IID_IShellView = "{000214E3-0000-0000-C000-000000000046}"

Public Function CreateViewObjectX(ByVal this As IShellFolder, _
 ByVal hwndOwner As hWnd, _
 ByVal riid As REFIID, _
 ppvOut As LPVOID) As Long

 CreateViewObjectX = E_OUTOFMEMORY

 Dim iid As String

 iid = GetIID(riid)

 If iid = IID_IShellView Then

 'Get reference to current shell folder.
 Dim pShellFolder As ShellFolder
 Set pShellFolder = this

 'Create new view.
 Dim pShellView As ShellView
 Set pShellView = New ShellView

 'Pass folder info to view.
 pShellView.Initialize pShellFolder, pShellFolder.pidl

 'Query view for IShellFolder.
 Dim pUnk As IUnknownVB
 Set pUnk = pShellView
 pUnk.QueryInterface riid, ppvOut

 Set pUnk = Nothing
 Set pShellView = Nothing
 Set pShellFolder = Nothing

 CreateViewObjectX = S_OK

 End If

End Function

This quite possibly could be a generic implementation, but look at the call to
ShellView.Initialize (not to be confused with Class_Initialize). This call is the equivalent of a
C++ constructor. Note, though, that Initialize is not a method defined by the IShellView

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interface; we've implemented it purely to pass information to the view object class right when
it is created. So in this case, we pass an object reference to ShellFolder and a PIDL. PIDLs
should contain everything needed to describe the items they represent, so this
implementation might suffice (it does for all three example extensions). But there might be
times when your own Initialize event will require something a little more exotic. It's up to you.
Whatever your view object might need, this is the place to pass it. Anyway, this version
passes a PIDL to the view. The view object will use this PIDL to populate its list view control
with folders and items.

After we have created an instance of ShellView, we get a reference to IUnknownVB (our no-
holds-barred version of IUnknown which is discussed in detail in Chapter 6), and we call
QueryInterface with the riid and ppvOut parameters given to us by the shell. With

this done, the shell now has a reference to our view object and will call
IShellView::CreateViewWindow , which is the method that actually creates the view

window and places it in the content pane.

11.5.2 Creating the View

We need to add the Initialize method to ShellView so that the view object can receive

the object reference to ShellFolder and the PIDL that represents that folder. We'll do that
first, then we will implement CreateViewWindow. Initialize is shown at the bottom of Example
11.10 .

Example 11.10. ShellView Initialize

'ShellView.cls
Private m_pidl As LPITEMIDLIST
Private m_parentFolder As ShellFolder
Private m_pidlMgr As pidlMgr

Private Sub Class_Initialize()

 Set m_pidlMgr = New pidlMgr

End Sub

Private Sub Class_Terminate()

 Set m_pidlMgr = Nothing

End Sub

Public Sub Initialize(f As ShellFolder, ByVal pidl As LPITEMIDLIST)
 Set m_ parentFolder = f

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 m_ pidl = m_ pidlMgr.Copy(pidl)
End Sub

Don't worry about the code pertaining to pidlMgr. For now, just know that it is a class we will
use to help us work with PIDLs. We'll get to the pidlMgr class when I talk about EnumIDList.

11.5.2.1 CreateViewWindow

The purpose of this function could not be clearer. Its name gives it away. CreateViewWindow
is responsible for creating the view window and returning the handle of that window back to
the shell. The function is fairly easy to implement, but there is quite a bit going on. The syntax
of this method is as follows:

HRESULT CreateViewWindow(
 IShellView *lpPrevView,
 LPFOLDERSETTINGS lpfs,
 IShellBrowser *psb,
 RECT *prcView,
 HWND *phWnd
);

The first parameter, lpPrevView , is a pointer to the view window that was exited before

our view object was created. This could be any view window, depending on where we were in
the namespace before our extension was activated. This could also be a previous instance of
our view object. The Platform SDK also says that this value could be NULL . In any case, we

will not use the value. But it could come in handy if you want to communicate with the
previous view in your own extension, possibly as an optimization.

The second parameter, lpfs , is very important. It's the address of a FOLDERSETTINGS

structure. We don't need to go into details with this structure, but it is important. We will
cache this value for later and give it right back to the shell. This parameter is how the shell
maintains the state of the view-which, in this case, means one of the views (Web Page,
Large Icons, Small Icons, List, and Details) defined by Explorer-when jumping between
namespace extensions.

The third parameter, psb , is a reference to IShellBrowser . We will cache this value, as

well. Later, we'll use it for a variety of tasks, such as adding menu items and displaying text in
Explorer's status bar. The view object will also make use of this parameter to handle
browsing into folders from the view pane side of things (versus the tree view side).

The fourth parameter, prcView , is the address of a RECT structure that contains the

coordinates of the view pane. We'll create a local instance of this structure using
CopyMemory and size our view window to these values.

Last, but not least, we have an HWND , which is an [in, out] parameter. So, when the view

window has been created, we will use this parameter to pass the handle back to the shell.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateViewWindow is shown in Example 11.11 . Take a look, and then we'll discuss the
details.

Example 11.11. CreateViewWindow

'ShellFolder.cls

Private m_folderSettings As FOLDERSETTINGS

Private Sub IShellView_CreateViewWindow(_
 ByVal lpPrevView As VBShellLib.IShellView, _
 ByVal lpfs As VBShellLib.LPCFOLDERSETTINGS, _
 ByVal psb As VBShellLib.IShellBrowser, _
 ByVal prcView As VBShellLib.LPRECT, phWnd As VBShellLib.hWnd)

 Dim dwStyle As DWORD
 Dim parentWnd As hWnd
 Dim rc As RECT

 'Save folder settings
 CopyMemory m_folderSettings, ByVal lpfs, Len(m_folderSettings)

 'Get window rect
 CopyMemory rc, ByVal prcView, Len(rc)

 Set m_frmView = New frmView

 parentWnd = psb.GetWindow

 dwStyle = GetWindowLong(m_frmView.hWnd, GWL_STYLE)
 dwStyle = dwStyle Or WS_CHILD Or WS_CLIPSIBLINGS
 SetWindowLong m_frmView.hWnd, GWL_STYLE, dwStyle
 SetParent m_frmView.hWnd, parentWnd

 MoveWindow m_frmView.hWnd, rc.Left, rc.Top, _
 rc.Right - rc.Left, rc.bottom - rc.Top, True

 ShowWindow m_frmView.hWnd, SW_SHOW

 phWnd = m_frmView.hWnd

 Set m_pShellBrowser = psb
 Set m_frmView.ShellBrowser = m_pShellBrowser

 FillList

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

After the FOLDERSETTINGS have been saved and the view window has been created and
sized to the RECT structure, things get a little interesting.

First, we call IShellBrowser::GetWindow (IShellBrowser is actually derived from
IOleWindow) to get the handle to the content pane window in Explorer. Once we have that,

we can use GetWindowLong and SetWindowLong Win32 API functions to actually change

the style bits of our window and transform it into a child window. The SetParent API function
allows us to set the parent of our newly born child to the window given to us by
IShellBrowser . Once this has all been accomplished, we can position our view according

to prcView using MoveWindow and then use ShowWindow to display our view.

But we are not quite done. Before we exit the method, we need to give the handle to our view
back to the shell. We will also save a private copy of IShellBrowser and give another copy

to the view window. Finally, we call FillList to populate our view with items (we'll come back to

this function in Section 11.6.9 later in this chapter). FillList is a function we will create to
handle populating of the list view.

11.5.2.2 The View window

Of course, for any of the code in Example 11.12 actually to work, we need a view window.
This is easy enough. Add a Form to the project called frmView and do the following:

Set its BorderStyle property equal to "None."1.

Add a list view control called "ListView."2.

Add a column header to the list view called "Items."3.

Add an ImageList control.4.

Now, we need to add a ShellBrowser property to the form, which CreateViewWindow will use
to provide the form with a reference to IShellBrowser . The list view also needs to be

resized to the form whenever Explorer is resized, so we'll use the MoveWindow API in a
resize event to handle the job. Also, the form will eventually need to work with PIDLs, so we'll
add a private instance of the mysterious pidlMgr class to the form as well (we'll talk about this
class in Section 11.6 later in this chapter). The code for frmView is shown in Example 11.12 .

Example 11.12. frmView

Option Explicit

Private m_pidlMgr As pidlMgr
Private m_pShellBrowser As IShellBrowser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub Form_Load()
 Set m_pidlMgr = New pidlMgr
End Sub

Private Sub Form_Resize()
 MoveWindow ListView.hWnd, 0, 0, Me.Width, Me.Height, 1
End Sub

Private Sub Form_Unload(Cancel As Integer)
 Set m_pidlMgr = Nothing
 Set m_pShellBrowser = Nothing
End Sub

Public Property Set ShellBrowser(sb As IShellBrowser)
 Set m_pShellBrowser = sb
End Property

11.5.2.3 Back to ShellView

The remaining methods of IShellView , with the exception of UIActivate , can now be
implemented. UIActivate , though, will have to remain until later, because it will be
different for every namespace that you create.

The last of the IShellView methods are very simple to implement. Each requires a few

lines of code. Let's get them out of the way, then we can get to the EnumList class.

11.5.2.4 DestroyWindow

This method is called when Explorer wants to terminate the view window. When this happens
we simply unload the form:

Private Sub IShellView_DestroyViewWindow()
 Unload m_frmView
 Set m_frmView = Nothing
End Sub

11.5.2.5 GetCurrentInfo

This method is called when the shell wants the current folder settings. These folder settings
were cached in IShellView::CreateViewWindow (Example 11.12), so all we have to do

is pass them back to the shell:

Private Sub IShellView_GetCurrentInfo(_
 ByVal lpfs As VBShellLib.LPFOLDERSETTINGS)
 CopyMemory ByVal lpfs, m_folderSettings, Len(m_folderSettings)
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.5.2.6 GetWindow

The only responsibility of this method is to return the handle to the view object:

Private Function IShellView_GetWindow() As VBShellLib.hWnd
 IShellView_GetWindow = m_frmView.hWnd
End Function

11.5.2.7 Refresh

This method is called whenever the view is refreshed (i.e., View Refresh is selected from
Explorer's menu, or F5 is pressed). This method is fairly generic, but it is possible your needs
could be greater. This implementation merely clears the list view and repopulates it:

Private Sub IShellView_Refresh()
 SendMessage m_frmView.ListView.hWnd, LVM_DELETEALLITEMS, 0, 0&
 FillList
End Sub

The remaining methods (with the exception of UIActivate) are not implemented.

11.5.3 Enumerating Shell Items

The shell tells the namespace extension to prepare the data that it wants displayed by calling
IShellFolder::EnumObjects . The primary responsibility of this method is to create an
object that implements IEnumIDList , which it will pass back to the shell. This object, in our

case EnumIDList, is responsible for maintaining the list of PIDLs that represent the items the
shell will display in either the tree view or the list view. Let's implement
IShellFolder::EnumObjects ; then we will move on to the EnumIDList class and see
how that works. Enum-Objects is shown in Example 11.13 .

Example 11.13. IShellFolder::EnumObjects

'ShellFolder.class

Private m_iLevel As Integer

Private Function IShellFolder_EnumObjects(_
 ByVal hwndOwner As VBShellLib.hWnd, _
 ByVal grfFlags As VBShellLib.DWORD) As VBShellLib.IEnumIDList

 Dim e As New EnumIDList
 e.CreateEnumList m_iLevel, grfFlags

 Set IShellFolder_EnumObjects = e

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Function

To implement EnumObjects, all we have to do is create an instance of Enum-IDList, which is
our class that implements IEnumIDList . Then we pass this object back to Explorer.

Look at the call to EnumIDList::CreateEnumLis t. Before we give EnumIDList over to the

shell, we need to actually create the list of items that it will wrap. CreateEnumList is not a
method of IEnumIDList , it is a public function we'll add to EnumIDList for the purpose of

creating the list of items.

It works like this: CreateEnumList will build a linked list of PIDLs that will be maintained
internally by the EnumIDList class. This list of PIDLs contains one or more folders or items
for a particular level of the namespace hierarchy. When the shell is ready for these items, it
will call IEnumIDList::Next for a PIDL. Our implementation of IEnumIDList::Next will

give the shell a PIDL from this internally maintained linked list. This happens repeatedly until
there are no more PIDLs left in the list.

The two parameters to CreateEnumList require some explanation. m_iLevel is the current

"level" where we are in the hierarchy. Look back at Figure 11.6 for a moment. The folders
and items are in the following format: Type/Level/Index. The m_iLevel parameter
represents this level. The second parameter, grfFlags , which is given to us by the shell, is

quite important. This will be a value from the following SHCONTF enumeration:

typedef enum tagSHCONTF{
 SHCONTF_FOLDERS = 32,
 SHCONTF_NONFOLDERS = 64,
 SHCONTF_INCLUDEHIDDEN = 128,
} SHCONTF;

This flag lets us know whether the shell wants "folders" or "items" when it asks us to build the
PIDL list. We will use this information to make sure we comply with the shell's request.

11.5.3.1 CreateEnumList

Before we actually implement CreateEnumList , let's get the Class_Initialize and
Class_Terminate events out of the way. They are shown in Example 11.14 . Once again,
ignore the references to the pidlMgr class and the IMalloc reference. We will discuss these

two items momentarily.

Example 11.14. EnumIDList Class_Initialize/Terminate

'EnumIDList.cls
Implements IEnumIDList

Private m_pMalloc As IMalloc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private m_pidlMgr As pidlMgr
Private m_pOldNext As Long

Private Sub Class_Initialize()

 Set m_pMalloc = GetMalloc
 Set m_pidlMgr = New pidlMgr

 'Swap
 If (g_EnumSwapRef = 0) Then

 Dim pEnumIDList As IEnumIDList
 Set pEnumIDList = Me

 m_pOldNext = SwapVtableEntry(ObjPtr(pEnumIDList), 4, _
 AddressOf NextX)

 End If

 g_EnumSwapRef = g_EnumSwapRef + 1

End Sub

Private Sub Class_Terminate()

 DeleteList

 Set m_pidlMgr = Nothing
 Set m_pMalloc = Nothing

 g_EnumSwapRef = g_EnumSwapRef - 1

 If (g_EnumSwapRef = 0) Then
 Dim pEnumIDList As IEnumIDList
 Set pEnumIDList = Me

 m_pOldNext = SwapVtableEntry(ObjPtr(pEnumIDList), 4, _
 m_pOldNext)
 End If

End Sub

Notice the call to DeleteList in the Class_Terminate event. We'll talk about this function in
Section 11.5.3 later in this chapter, but for now, just know that it is a function that will be
called to free the linked list we will create for the PIDLs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now on to CreateEnumList. This function will be different for every namespace extension.
But its purpose is always the same: to build a list of PIDLs that will be used by
IEnumIDList::Next . Let's look at the function, which is shown in Example 11.15 ; then

we'll discuss its nuances.

Example 11.15. CreateEnumList

'DemoSpace.bas
Public Const g_nMaxLevels = 5

'EnumIDList.class
Public Function CreateEnumList(ByVal iLevel As LPITEMIDLIST, _
 ByVal dwFlags As DWORD) As Boolean

 Dim i As Integer
 Dim pidlNew As LPITEMIDLIST

 CreateEnumList = False

 If iLevel < g_nMaxLevels Then

 For i = 0 To iLevel
 pidlNew = m_pidlMgr.Create(PT_FOLDER, iLevel, i)
 If (pidlNew) Then
 AddToEnumList pidlNew
 End If
 CreateEnumList = True
 Next i

 End If

 'Enumerate the non-folder items (values)
 If (dwFlags And SHCONTF_NONFOLDERS) Then

 iLevel = iLevel - 1

 If iLevel <= g_nMaxLevels Then
 For i = 0 To iLevel - 1
 pidlNew = m_pidlMgr.Create(PT_ITEM, iLevel, i)
 If (pidlNew) Then
 AddToEnumList pidlNew
 End If
 Next i
 CreateEnumList = True
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

End Function

First, the level is checked for validity. The hierarchy is restricted to five levels in this example
by the constant g_nMaxLevels . If you look at Figure 11.6 , you will see that the hierarchy

contains folders with the levels 0–4.

We will use a For...Next loop to create the folders and items based on this level number

that was passed in to the function. But keep this in mind: the implementation of this function
is completely arbitrary. If you look at the example code for the sample RegSpace application,
this function is implemented in a totally different manner. It uses the registry enumeration API
functions to build the list of PIDLs.

The PIDL itself is created with a call to pidlMgr::Create . We will talk about this method
in detail in Section 11.6 later in this chapter. For now just look at the call itself. If you examine
the parameters to this function, you will see three values: the PIDL type (folder or item), the
level of the PIDL item, and the index of the PIDL item. This is the format of our PIDL. If you
remember, the PIDL is nothing more than two bytes that specify the size of the PIDL's data,
followed by whatever data we want (terminated by an empty ITEMIDLIST). Therefore, our

PIDL format is the following:

size/type/level/index

pidlMgr::Create will create a PIDL in this format for us. We determine whether we are
creating folders or non-folders by the dwFlags parameter.

Once we have the PIDL, we need to maintain it in a list of some sort.

11.5.3.2 A linked list in VB?

We will use an internal linked list to maintain our PIDLs. To understand how it works, you
need to look at the following structure:

Public Type PIDLLIST
 pNext As Long
 pidl As LPITEMIDLIST
End Type

The pidl member is easy to understand-it contains the PIDL we want to keep track of.
The pNext member contains a pointer to another structure of type PIDLLIST , which is the

next PIDL in the list. Using this method, we can chain a list of PIDLs together (see Figure
11.7). This is much more efficient than using ReDim Preserve to build a variable length

array, so don't just limit the linked lists to a namespace extension. They are good any time
you have a variable-length list of data that needs to be searched efficiently.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11.7. The linked list

11.5.3.3 AddToEnumList

Our EnumIDList class will contain three private member variables that correspond to the first
member of the list, the current member of the list, and the last member of the list.
AddToEnumList uses this information to determine where the next PIDL will go into the list

and adjusts these list pointers accordingly. Let's examine the AddToEnumList function, which
is shown in Example 11.16 .

Example 11.16. AddToEnumList

'EnumIDList.cls

Public m_pFirst As Long
Public m_pCurrent As Long
Public m_pLast As Long

Public Function AddToEnumList(ByVal pidl As LPITEMIDLIST) As Boolean

 Dim aPidlList As PIDLLIST
 Dim pNewItem As Long

 AddToEnumList = False

 'Allocate memory for enum linked list item
 pNewItem = m_pMalloc.Alloc(Len(aPidlList))

 If (pNewItem > 0) Then

 aPidlList.pNext = 0&
 aPidlList.pidl = pidl

 CopyMemory ByVal pNewItem, aPidlList, Len(aPidlList)

 If (m_pFirst = 0) Then
 m_pFirst = pNewItem
 m_pCurrent = m_pFirst
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (m_pLast > 0) Then
 CopyMemory aPidlList, ByVal m_pLast, Len(aPidlList)
 aPidlList.pNext = pNewItem
 CopyMemory ByVal m_pLast, aPidlList, Len(aPidlList)
 End If

 m_pLast = pNewItem

 AddToEnumList = True

 End If

End Function

We'll use the shell's memory allocator for the first time to allocate the memory for the new
linked list item.

The PIDL is assigned to the PIDLLIST structure, and pNext is set to 0& . Note that the

ampersand in the assignment statement is important. This is a long value that is a NULL
address. This marks the end of the list.

The first time AddToEnumList is called, m_ pFirst and m_ pCurrent are both assigned
to the PIDLLIST link item. Thereafter, the pNext member of m_ pLast is assigned to the

new item, and the new item is added to the end of the list. When the shell starts calling
IEnumIDList::Next for PIDLs, we will pass back whatever PIDL is pointed to by m_
pCurrent . m_ pCurrent will then be adjusted to point to the next item in the linked list.

Because we have allocated the memory for the linked list ourselves, when Enum-IDList
terminates, we free the list using a call to DeleteList (see Example 11.14). DeleteList is
shown in Example 11.17 .

Example 11.17. DeleteList

Private Sub DeleteList()

 Dim aPidlList As PIDLLIST

 Do While (m_pFirst > 0)

 CopyMemory aPidlList, ByVal m_pFirst, Len(aPidlList)
 m_pFirst = aPidlList.pNext

 If (aPidlList.pidl > 0) Then
 m_pidlMgr.Delete aPidlList.pidl
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Loop

 m_pFirst = 0
 m_pCurrent = 0
 m_pLast = 0

End Sub

Starting with m_ pFirst , DeleteList merely copies the PIDL into a local instance of
PIDLLIST , adjusts m_ pFirst to point to the next PIDL in the list, then frees the current
PIDL (which is now in aPidlList) by calling pidlMgr::Delete . This function merely

wraps a call to IMalloc::Free .

11.5.3.4 Next

Shortly after we have built our linked list of PIDLs, the shell begins to call several functions
repeatedly in an effort to display the PIDL appropriately. It will call IEnumIDList::Next for
the PIDL itself. It will call IShellFolder::GetAttributesOf to find out whether this PIDL
is a folder or an item. It will call IShellFolder::GetDisplayNameOf for the display text
of the PIDL. And it will call IShellFolder::CompareIDs to determine in which order it
should display the PIDLs. Then it will call IEnumIDList::Next again. This process repeats

until there are no more PIDLs. The process looks like this:

Get PIDL.1.

Determine attributes: is it a "File" or a "Folder?"2.

Get the display name of the PIDL.3.

Compare this PIDL to a previous PIDL to determine the display order.4.

Start over.5.

As we mentioned earlier, when the shell calls the Next method, we will give it the next PIDL
in our linked list via the rgelt parameter; this is whatever is pointed to by m_ pCurrent .
m_ pCurrent is then adjusted to point to the next item in the list. If m_ pCurrent is equal
to 0, we know that we are at the end of the list, so we return S_FALSE . The shell will also

expect us to tell it how many PIDLs we are returning. Although we will not do this, this
method can be written to accommodate returning several PIDLs at once. This process is
demonstrated in Example 11.18 . Remember, this method has undergone a vtable swap;
therefore, it exists in a code module.

Example 11.18. NextX

http://lib.ommolketab.ir
http://lib.ommolketab.ir

'DemoSpace.bas

Public Function NextX(ByVal this As IEnumIDList, _
 ByVal celt As ULONG, _
 rgelt As LPITEMIDLIST, _
 pceltFetched As ULONG) As Long

 Dim cEnumIDList As EnumIDList
 Set cEnumIDList = this

 NextX = S_FALSE
 pceltFetched = 0
 rgelt = 0

 If cEnumIDList.m_pCurrent = 0 Then
 Exit Function
 End If

 Dim aPidlList As PIDLLIST
 CopyMemory aPidlList, _
 ByVal cEnumIDList.m_pCurrent, _
 Len(aPidlList)

 rgelt = aPidlList.pidl

 cEnumIDList.m_pCurrent = aPidlList.pNext
 pceltFetched = 1

 NextX = S_OK

End Function
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

11.6 The PIDL Manager

Before we continue, we really need to discuss pidlMgr.cls . This class is a helper class that
we will use to manage functions involving PIDLs. These helper functions include things like
creating, copying, and deleting PIDLs, getting the last PIDL in a list of PIDLs, getting the next
PIDL in a list of PIDLs, as well as additional functions that are more specific to our particular
namespace extension.

So add a new class to the project called pidlMgr.cls , and let's start implementing some of the
functionality of this class.

11.6.1 Delete

We have used three functions from this class so far: Delete , Copy , and Create . Delete is by
far the easiest of the functions to implement. It just wraps a call to IMalloc::Free . Delete

looks like this:

'pidlMgr.cls

Private m_ pMalloc As IMalloc

Private Sub Class_Initialize()
 Set m_ pMalloc = GetMalloc
End Sub

Private Sub Class_Terminate()
 Set m_ pMalloc = Nothing
End Sub

Public Sub Delete(ByVal pidl As LPITEMIDLIST)
 m_ pMalloc.Free pidl
End Sub

11.6.2 Copy

Copy is used to make a copy of the PIDL:

Public Function Copy(ByVal pidlSource As LPITEMIDLIST) As LPITEMIDLIST
 Dim pidlTarget As LPITEMIDLIST
 Dim cbSource As UINT

 Copy = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (pidlSource = 0) Then
 Exit Function
 End If

 cbSource = GetSize(pidlSource)

 pidlTarget = m_pMalloc.Alloc(cbSource)
 If (pidlTarget > 0) Then
 CopyMemory ByVal pidlTarget, ByVal pidlSource, cbSource
 Copy = pidlTarget
 End If

End Function

11.6.3 Create

This method is a little more involved, but the reason for this requires some background
information. We have already discussed the format of the PIDL with which we will be dealing
in this example. It looks like this:

size/type/level/index

Therefore, you might expect to create a UDT to represent this PIDL. Perhaps something like
the following:

Type PIDL
 iSize As Integer
 pType As Long
 iLevel As Integer
 iIndex As Integer
End Type

Unfortunately, we cannot do this. The data that comprises the PIDL must be sequential. That
is, the PIDL data must immediately follow the two bytes indicating the size of the PIDL itself.
The UDT that has been described will not work, because VB aligns UDTs on 4-byte
boundaries (Long values). What does this mean exactly? Well, look at the UDT for a
moment. The first member, iSize , is an Integer. In VB, for backward-compatibility reasons,

that is a 2-byte value. When we talk about aligning data on 4-byte boundaries, this means VB
will place two empty bytes immediately after iSize to pad the member to 4-bytes. The
same is done with iLevel and iIndex . So, rather than having sequential data, we have

data with holes in it, as Figure 11.8 illustrates.

Figure 11.8. PIDL aligned on 4-byte boundaries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The simple solution to this problem is to use CopyMemory and to build our PIDL in memory
as if it were a 0-byte aligned structure. Let's step through Create a few lines at a time,
starting with the beginning of the method in Example 11.19 , and discuss the function.

Example 11.19. Create from pidlMgr

Public Enum PIDLTYPE
 PT_FOLDER = 0
 PT_ITEM = 1
End Enum

Public Function Create(ByVal pt As PIDLTYPE, ByVal iLevel As Integer, ByVal iIndex As Integer) As LPITEMIDLIST

 Dim iSize As Integer
 Dim pidl As LPITEMIDLIST

 'pidl size bytes (2) + pt(4) + iLevel(2) + iIndex(2)
 iSize = 10

 'Allocate memory for PIDL + a NULL ITEMIDLIST entry.
 pidl = m_pMalloc.Alloc(iSize + 2)

The first thing that happens is that the memory for the PIDL is allocated. The size of our PIDL
is 10 bytes. That's 2 bytes for the size, 4 bytes for the type, 2 bytes for the "level," and 2
bytes for the "index." Therefore, we use IMalloc to allocate 10 bytes for our PIDL :

If (pidl > 0) Then

 CopyMemory ByVal pidl, iSize, 2

If the memory was allocated successfully (it is always prudent to check for this), then the size
of the PIDL is copied into the first 2 bytes (the size) of the memory that will hold the PIDL. We
can then use pointer arithmetic to copy the remaining values into the proper locations. Since
we know our PIDL size is 2 bytes, we can skip 2 bytes forward in memory (PIDL + 2) and get
the address for the PIDLTYPE . PIDLTYPE is 4 bytes, so jumping forward 6 bytes (PIDL + 6)

will give us the address of the PIDLs level, and so on:

 'Copy data into pidl
 CopyMemory ByVal pidl + 2, pt, 4 'PIDLTYPE
 CopyMemory ByVal pidl + 6, iLevel, 2 'PIDL level
 CopyMemory ByVal pidl + 8, iIndex, 2 'PIDL index

Finally, we need to terminate the PIDL with a NULL , ITEMIDLIST . We could just terminate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the PIDL with 2 bytes containing 0s, specifying a PIDL of no size. But to be technically
accurate, we will end the PIDL with 2 NULL bytes (refer back to the SHITEMID structure). We

then return the PIDL back to the caller:

 'Add empty ITEMIDLIST to end of PIDL
 CopyMemory ByVal pidl + iSize, 0, 2

 End If

 Create = pidl

End Function

Because we have created the PIDL in this manner, we will write several helper functions in

PidlMgr to help us extract these values: GetPidlSize , GetPidlType , GetPidlLevel , and
GetPidlIndex . Of the four functions, only one, GetPidlSize , can ever be used again. After all,
the PIDL's size will always be the first 2 bytes of the structure. Even so, when you write your
own namespace extensions, you will have to write similar functions to retrieve information
from the PIDL. The rest are specific to the extension. These functions are shown in Example
11.20 . They are self-explanatory.

Example 11.20. pidlMgr Helper Functions

'pidlMgr.cls

Public Function GetPidlSize(ByVal pidl As LPITEMIDLIST) As Integer
 Dim iSize As Integer
 GetPidlSize = 0
 If (pidl = 0) Then
 Exit Function
 End If
 'Size is the first 2 bytes of the pidl
 CopyMemory iSize, ByVal pidl, 2
 GetPidlSize = iSize
End Function

Public Function GetPidlType(ByVal pidl As LPITEMIDLIST) As PIDLTYPE
 Dim pt As Integer
 GetPidlType = 0
 If (pidl = 0) Then
 Exit Function
 End If
 'The "level" of the pidl is stored in bytes 3-6
 CopyMemory pt, ByVal pidl + 2, 4
 GetPidlType = pt
End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Function GetPidlLevel(ByVal pidl As LPITEMIDLIST) As Integer
 Dim iLevel As Integer
 GetPidlLevel = 0
 If (pidl = 0) Then
 Exit Function
 End If
 'The "level" of the pidl is stored in bytes 7-8.
 CopyMemory iLevel, ByVal pidl + 6, 2
 GetPidlLevel = iLevel
End Function

Public Function GetPidlIndex(ByVal pidl As LPITEMIDLIST) As Integer
 Dim iIndex As Integer
 GetPidlIndex = 0
 If (pidl = 0) Then
 Exit Function
 End If
 'The "index" of the pidl is stored in bytes 9-10.
 CopyMemory iIndex, ByVal pidl + 8, 2
 GetPidlIndex = iIndex
End Function

We will add new functions to PidlMgr as needed. But for now let's see what happens after
our list has been built and the shell has called IEnumIDList::Next .

11.6.4 GetAttributesOf

Now that the shell has one of our PIDLs (as a result of calling IEnumIDList::Next) it

needs to determine whether that PIDL is a folder or not. It does this by asking us, by way of a
call to IShellFolder::GetAttributesOf . This method is defined as follows:

HRESULT GetAttributesOf(UINT cidl, LPCITEMIDLIST *apidl, ULONG *rgfInOut);

The first parameter, cidl , is the length of the PIDL array that is being pointed to by the

second parameter. This is important. We are not getting a PIDL here. We are getting a
pointer to an array of PIDLs. This method should be coded to handle more than one PIDL,
even though it will not come into play in the example. It merely provides us the opportunity to
write some really dangerous code involving pointer arithmetic. The second parameter,
rgfInOut , is an [in, out] parameter that will be assigned one or more values from the

SFGAO enumeration. We are only concerned with two of these values, SFGAO_FOLDER and
SFGAO_HASSUBFOLDER . Let's look at the implementation, which begins at Example 11.21 .

Example 11.21. IShellFolder::GetAttributesOf

Private Sub IShellFolder_GetAttributesOf(_

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByVal cidl As VBShellLib.UINT, _
 aPidl As VBShellLib.LPCITEMIDLIST, _
 rgfInOut As VBShellLib.ULONG)

 Dim i As UINT
 Dim dwAttribs As DWORD
 Dim pidl As LPITEMIDLIST

 dwAttribs = dwAttribs Or 0
 rgfInOut = -1

 For i = 0 To cidl - 1
 CopyMemory pidl, aPidl + (i * 4), 4

Everything here is fairly straightforward until we get to the call to CopyMemory . This just
increments the address of aPidl by 4 (the size of a pointer to an ITEMIDLIST which is a
PIDL) every time we iterate the loop. This will happen cidl times:

 If m_pidlMgr.GetPidlType(pidl) = PT_FOLDER Then
 dwAttribs = dwAttribs Or SFGAO_FOLDER

Now that we have the PIDL, we can call PidlMgr::GetPidlType to retrieve the type of the
PIDL. If it is a folder, then we add SFGAO_FOLDER to our attributes DWORD :

 If m_pidlMgr.GetPidlLevel(pidl) < g_nMaxLevels Then
 dwAttribs = dwAttribs Or SFGAO_HASSUBFOLDER
 End If

 End If

 Next i

 rgfInOut = rgfInOut And dwAttribs

End Sub

Next, we'll get the PIDL level. If it's less than g_nMaxLevels , we know that is has

subfolders beneath it. Therefore, we turn on the SFGAO_HASSUBFOLDER bits in the attributes
DWORD . This will cause Explorer to draw the "+" node next to the folder.

When all is said and done, we return the PIDL attributes by way of rgfInOut .

Of course, this is all very specific to the example for the chapter. When you write your own
namespace extensions, the format that you decide to create for your PIDL needs to take

functions like GetAttributesOf into consideration. A good rule of thumb is that a PIDL should
be able to describe its name and location. Go through the additional sample code that is
provided with this chapter and see how this method is implemented in those examples. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

should give you a better feel for writing extensions of your own.

11.6.5 GetDisplayNameOf

The shell also needs a way to determine the text to display for a PIDL. It does this by calling
IShellFolder::GetDisplayNameOf . Its syntax is as follows:

HRESULT GetDisplayNameOf(LPCITEMIDLIST pidl, DWORD uFlags,
 LPSTRRET lpName);

The first parameter, pidl , is the PIDL for which the shell wants display information.

The second parameter, uFlags , is a value from the SHGDN enumeration. This value tells us

how the shell is trying to display the name. Table 11.8 describes the values from this
enumeration. Our chapter example does not use these values, but the additional examples
do. If you want more details, check them out. Here, we're just going to return the same string
no matter what the circumstances.

Table 11.8. SHGDN Enumeration

Constant Description

SHGDN_NORMAL The name is a full name relative to the desktop and not to any specific folder.

SHGDN_INFOLDER The name is relative to the folder that is processing the name.

SHGDN_NORMAL The name will be used for generic display.

SHGDN_FORADDRESSBAR The name will be used for display in the address bar combo box.

SHGDN_FORPARSING The name will be used for parsing. It can be passed to ParseDisplayName .

The last parameter, lpName , is the address of an STRRET structure, which is defined as

follows:

Public Const STRRET_WSTR = &H0

Public Type STRRET
 uType As UINT
 pOLESTR As Long
End Type

This parameter is how we'll return the display name to the shell.

Let's examine the implementation for GetDisplayNameOf , which is shown in Example 11.22
.

Example 11.22. IShellFolder::GetDisplayNameOf

Private Sub IShellFolder_GetDisplayNameOf(_

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByVal pidl As VBShellLib.LPCITEMIDLIST, _
 ByVal uFlags As VBShellLib.DWORD, _
 ByVal lpName As VBShellLib.LPSTRRET)

 Dim pString As Long
 Dim szText As String
 Dim szID As String
 Dim dwFlags As DWORD
 dwFlags = uFlags And &HFF00

 szText = m_ pidlMgr.GetPidlName(pidl) & vbNullChar

 pString = m_pMalloc.Alloc(LenB(szText))
 If (pString) Then
 CopyMemory ByVal pString, ByVal StrPtr(szText), LenB(szText)
 End If

 Dim sret As STRRET
 sret.uType = STRRET_WSTR
 sret.pOLESTR = pString

 CopyMemory ByVal lpName, sret, Len(sret)

End Sub

The first interesting thing that happens is that we call PidlMgr::GetPidlName to build the

display name of the PIDL. This function merely uses the helper functions we talked about

earlier (GetPidlType , GetPidlLevel , GetPidlLevel , and GetPidlIndex) to build a string in the
following format:

Folder/Item Level-Index.

Next, memory for the string is allocated using IMalloc , and the contents of the string are
copied into that location. This makes it "global" to the shell's address space. If we didn't do
this, szText would go out of scope as soon as the method terminated.

Finally, we populate the STRRET structure. The first member is set to STRRET_WSTR to

inform the shell that the pointer we are giving it is to a wide character string. Then the second
member is assigned a string pointer.

There is something very important worth mentioning at this point. The lpName parameter is

being used to return information back to the shell, yet the parameter is defined as [in] in
the type library. This is done with a purpose in mind. If we had defined this as an [in, out]

parameter, we could have coded the last part of this method like so:

Dim sret As STRRET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sret.uType = STRRET_WSTR
sret.pOLESTR = pString

lpName = VarPtr(sret)

This sure looks better than the CopyMemory call, doesn't it? The problem is that the shell
now has a pointer to a structure that is about to go out of scope. So the information
contained in this structure is literally destroyed moments later. We could kludge this by
declaring the structure as a private member to the shell folder class; then it would stay in
scope for as long as the class was alive. But if we do this for every structure we need to pass
back to the shell, things start to get confusing (as if they aren't confusing enough with us
hacking the vtables of all these classes).

By defining this parameter as [in] , VB declares it as ByVal , which forces us to actually
copy the contents of the structure to the address specified by lpName . Therefore, every
time we have a pointer to a structure, we will always define it as [in] .

11.6.6 CompareIDs

IShellFolder::CompareIDs is called by the shell to give the namespace an opportunity

to sort the PIDLs that are about to be displayed. If you look at a directory in Explorer, the
Details view contains four columns: Name, Size, Type, and Modified. Explorer sorts the list
based on the column you select. This is CompareIDs at work.

When CompareIDs is called, the shell passes us two PIDLs, and our implementation needs
to determine which one should be displayed first:

If PIDL #1 is displayed first, we return –1.

If PIDL #2 is displayed first, we return a number > 0.

If the PIDLs are the same, we return 0.

Our implementation is simple. First, we make sure folders are displayed first, then we sort on
the level, and finally we sort on the index (see Figure 11.6). Before we jump into the code,
here is an important concept to remember. The PIDLs we will be getting here will not always
contain one item. The PIDL really does represent a path back to the root of the extension.
We will get PIDLs that look like this:

Folder 1-1/Folder 2-2/Folder 3-1/Folder 4-1/Item 1-1

This list contains five ITEMIDLIST s. The PIDL is the pointer to this list. This is an important

concept (which is why we're going over it again and again). A PIDL is not one thing. It is a
pointer to a list such as this.

What the shell will give us here is a pointer to the first item in the array of ITEMIDLIST

http://lib.ommolketab.ir
http://lib.ommolketab.ir

s-Folder 1-1. The value we want for sorting purposes, however, is Item 1-1. Therefore,
CompareIDs will use a method in the PidlMgr class called GetLastItem to get this value.

This method is defined in Example 11.23 .

Example 11.23. The GetLastItem Method

Public Function GetLastItem(ByVal pidl As LPITEMIDLIST) _
 As LPITEMIDLIST

 Dim pidlLast As LPITEMIDLIST
 Dim pidlTemp As LPITEMIDLIST
 pidlTemp = pidl
 Dim iSize As Integer

 iSize = GetPidlSize(pidlTemp)

 Do While (iSize > 0)
 pidlLast = pidlTemp
 pidlTemp = GetNextItem(pidlTemp)
 iSize = GetPidlSize(pidlTemp)
 Loop

 GetLastItem = pidlLast

End Function

PidlMgr::GetLastItem makes use of a helper function, GetNextItem , which retrieves the

next shell identifier in a PIDL. This function is defined in Example 11.24 .

Example 11.24. The GetNextItem Method

Public Function GetNextItem(ByVal pidl As LPITEMIDLIST) _
 As LPITEMIDLIST

 GetNextItem = 0

 If (pidl > 0) Then

 Dim iSize As Integer
 iSize = GetPidlSize(pidl)

 'Pointer arithmetic in BASIC (scary, huh?)
 GetNextItem = pidl + iSize

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Function

And finally, here we get to CompareIDs. It has been swapped in the vtable because we need
to return specialized values. Example 11.25 contains the implementation.

Example 11.25. CompareIDsX

'DemoSpace.bas

Public Function CompareIDsX(ByVal this As IShellFolder, _
 ByVal lParam As lParam, _
 ByVal pidl1 As LPCITEMIDLIST, _
 ByVal pidl2 As LPCITEMIDLIST) As Long

 Dim pidlMgr As pidlMgr
 Set pidlMgr = New pidlMgr

 Dim pidlTemp1 As LPITEMIDLIST
 Dim pidlTemp2 As LPITEMIDLIST

 Dim pt1 As PIDLTYPE
 Dim pt2 As PIDLTYPE
 Dim iLvl1 As Integer
 Dim iLvl2 As Integer
 Dim iIndex1 As Integer
 Dim iIndex2 As Integer

 'Default - pidls are equal
 CompareIDsX = 0

 pidlTemp1 = pidlMgr.GetLastItem(pidl1)
 pidlTemp2 = pidlMgr.GetLastItem(pidl2)

 pt1 = pidlMgr.GetPidlType(pidlTemp1)
 pt2 = pidlMgr.GetPidlType(pidlTemp2)
 If (pt1 <> pt2) Then
 CompareIDsX = pt1 - pt2
 Exit Function
 End If

 iLvl1 = pidlMgr.GetPidlLevel(pidlTemp1)
 iLvl2 = pidlMgr.GetPidlLevel(pidlTemp2)

 If (iLvl1 <> iLvl2) Then
 CompareIDsX = iLvl1 - iLvl2
 Exit Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 iIndex1 = pidlMgr.GetPidlIndex(pidlTemp1)
 iIndex2 = pidlMgr.GetPidlIndex(pidlTemp2)
 CompareIDsX = iIndex1 - iIndex2

End Function

This is the first function to check if you write a namespace extension and
items are not getting displayed in the proper order or the behavior of the
extension seems odd.

This is one of the most crucial functions you must write when
implementing a namespace. If this function does not work, nothing will.

11.6.7 GetUIObjectOf

When the shell requires additional interfaces to carry out tasks for the namespace extension,
it calls IShellFolder::GetUIObjectOf . For instance, when the shell needs to display
icons for the namespace extension, it calls GetUIObjectOf and asks for an IExtractIcon
interface. If the shell wants to display a context menu, it will ask for an IContextMenu
interface. In this way, GetUIObjectOf is sort of a specialized QueryInterface. Its syntax is:

HRESULT GetUIObjectOf(HWND hwndOwner, UINT cidl,
 LPCITEMIDLIST *apidl, REFIID riid,
 UINT *prgfInOut, LPVOID *ppvOut);

The first parameter, hwndOwner , is the parent window to use if the extension needs to

display a message box. This is of no consequence to the VB programmer, because the
MsgBox function supplied by Visual Basic does not allow one to specify the parent.

The second parameter, cidl , is the count of the PIDLs in the third parameter, apidl .
This method can be coded similarly to IShellFolder::GetAttributesOf to handle

more than one PIDL if that functionality is needed. It is usually not, however.

The third parameter, apidl , is a pointer to a GUID that represents the interface the shell is

interested in acquiring from us. We will write a function that will take this pointer and convert
it into a string that represents this interface. This will allow us to use simple comparisons to
figure out which interface the shell is asking for.

The fourth parameter, prgfInOut , is reserved and is not used.

The fifth parameter, ppvOut , is the address that will receive the interface pointer.

To implement this method, we will rely heavily on a function that we will write called GetIID .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This function takes a pointer to a GUID and returns a string representation of the GUID. This
function is shown Example 11.26 .

Example 11.26. GetIID Function

Public Function GetIID(ByVal riid As REFIID) As String

 Dim aGuid As GUID
 CopyMemory aGuid, ByVal riid, Len(aGuid)

 Dim pClsid As Long
 StringFromCLSID aGuid, pClsid

 Dim strOut As String * 255
 StrFromPtrW pClsid, strOut

 Dim iid As String
 GetIID = Left(strOut, InStr(strOut, vbNullChar) - 1)

End Function

GetIID makes use of a function called StringFromCLSID , which is found in ole32.dll . The
function is declared as follows:

Public Declare Function StringFromCLSID Lib "ole32.dll" _
 (pClsid As GUID, lpszProgID As Long) As Long

The function doesn't return an actual string that can be used by VB, but rather a pointer to a
string. Therefore, we need a function that will take this pointer and return us a string. This

function is called StringFromPointer , and it is shown in Example 11.27 .

Example 11.27. StringFromPointer Function

Public Sub StringFromPointer(pOLESTR As Long, strOut As String)

 Dim b(255) As Byte
 Dim iTemp As Integer
 Dim iCount As Integer
 Dim i As Integer

 iTemp = 1

 'Walk the string and retrieve the first byte of each WORD.
 While iTemp <> 0
 CopyMemory iTemp, ByVal pOLESTR + i, 2
 b(iCount) = iTemp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 iCount = iCount + 1
 i = i + 2
 Wend

 'Copy the byte array to our string.
 CopyMemory ByVal strOut, b(0), iCount

End Sub

Working with a CLSID

There are four helper functions found in ole32.dll that can be very helpful when working with a CLSID. They are declared as follows:

Public Declare Function CLSIDFromProgID Lib
"ole32.dll" (ByVal lpszProgID As Long, pClsid As GUID) As Long

Public Declare Function CLSIDFromString Lib "ole32.dll" (ByVal
lpszProgID As Long, pClsid As GUID) As Long

Private Declare Function ProgIDFromCLSID Lib "ole32.dll" (pCLSID As
GUID, lpszProgID As Long) As Long

Public Declare Function StringFromCLSID Lib "ole32.dll" (pClsid As GUID, lpszProgID As Long) As Long

These four functions allow you to use CLSIDs in almost any circumstance. The functions all take pointers to strings as parameters, so

you will have to use StrPtr to provide these values. For the functions that return pointers to strings, use the StrFromPtrW function
shown in this chapter.

Now we're ready to discuss GetUIObjectOf . The address for this method has been

swapped in the vtable for a function called GetUIObjectOf X . This is done because we need
to be able to return E_NOINTERFACE if the shell asks us for an interface that we cannot

provide. Example 11.28 shows our implementation of GetUIObjectOf X .

Example 11.28. GetUIObjectOfX

'DemoSpace.bas

Public Const IID_IExtractIconA = _
 "{000214EB-0000-0000-C000-000000000046}"
Public Const IID_IExtractIconW = _
 "{000214FA-0000-0000-C000-000000000046}"

Public Function GetUIObjectOfX(ByVal this As IShellFolder, _
 ByVal hwndOwner As hWnd, ByVal cidl As UINT, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aPidl As LPCITEMIDLIST, _
 ByVal riid As REFIID, _
 prgfInOut As UINT, ByVal ppvOut As LPVOID) As Long

 GetUIObjectOfX = E_NOINTERFACE

 Dim pUnk As IUnknownVB
 Dim pidl As LPITEMIDLIST
 Dim clsShellFolder As ShellFolder

 Dim szIID As String
 szIID = GetIID(riid)

The first thing we need to do is figure out which interface the shell is asking for by calling
GetIID with the riid parameter. Next, we will check to see if the interface is
IExtractIconA (Windows 98) or IExtractIconW (NT). All other requests will be ignored:

 If (szIID = IID_IExtractIconA) Then

 Set clsShellFolder = this
 Dim extIconA As ExtractIcon
 Set extIconA = New ExtractIcon

 extIconA.pidl = aPidl

 Dim iExtIconA As IExtractIconA
 Set iExtIconA = extIconA
 Set pUnk = iExtIconA
 pUnk.AddRef

 CopyMemory ByVal ppvOut, iExtIconA, 4

 GetUIObjectOfX = S_OK

 ElseIf (szIID = IID_IExtractIconW) Then

Once it has been determined that the shell is asking for IExtractIcon , we can declare an
instance of our ExtractIcon class (which implements both IExtractIconA and
IExtractIconW) and pass it the PIDL that was given to us by the shell through the aPidl

parameter:

 Set clsShellFolder = this
 Dim extIconW As ExtractIcon
 Set extIconW = New ExtractIcon

 'Pass pidl to IExtractIcon.
 extIconW.pidl = aPidl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, we'll query our ExtractIcon class for the IExtractIcon itself. But before we pass the
interface back to the shell, we need to do an AddRef so the interface will still be valid once
this method terminates. We'll do that using IUnknownVB . Once this has been accomplished,
the interface is copied to the address ppvOut :

 Dim iExtIconW As IExtractIconW
 Set iExtIconW = extIconW
 Set pUnk = iExtIconW
 pUnk.AddRef

 CopyMemory ByVal ppvOut, iExtIconW, 4

 GetUIObjectOfX = S_OK

 End If

End Function

If all is well, the method should return S_OK .

11.6.8 ExtractIcon

ExtractIcon is a class we will use to provide the shell with icons for our namespace extension.
You should already be familiar with IExtractIcon (see Chapter 5), so we will not discuss

these interfaces again. But we will implement the interface a little bit differently than we did in
Chapter 5 . For one thing, our icons are not located in a file this time around. They will be
stored in an image list. Therefore, we will implement Extract to provide the icons from an
image list. GetIconLocation will only be used to specify the index of the icon in the image

list.

If you recall from Example 11.28 , we passed a PIDL to ExtractIcon. This is done through a
property in the class called PIDL. This is shown in Example 11.29 .

Example 11.29. ExtractIcon

Implements IExtractIconA
Implements IExtractIconW

Private m_pidl As LPITEMIDLIST
Private m_pidlMgr As pidlMgr
Private m_pMalloc As IMalloc
Private m_hWnd As Long

Private Const ILD_TRANSPARENT = 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub Class_Initialize()
 Set m_pMalloc = GetMalloc
 Set m_pidlMgr = New pidlMgr
End Sub

Private Sub Class_Terminate()
If (m_pidl > 0) Then
 m_pidlMgr.Delete m_pidl
 End If
Set m_pidlMgr = Nothing
End Sub

Public Property Let pidl(ByVal p As LPITEMIDLIST)
 m_ pidl = m_ pidlMgr.Copy(p)
End Property

11.6.8.1 GetIconLocation

GetIconLocation will only provide the index for the icon, not its location. Because of this,
the shell will expect Extract to provide the actual location of the icon. Let's take a peek at
GetIconLocation , which is shown in Example 11.30 . We'll implement this method first,
and then we'll tackle Extract . We'll only look at the IExtractIconW functions, but this

should not be a problem. If you remember from Chapter 5 , the difference between
IExtractIconW and IExtractIconA is how the string containing the path to the icon

must be handled. We will not be providing the shell a path for the icon location, so both
interfaces can be implemented with the same code.

Example 11.30. IExtract::GetIconLocation

Private Sub IExtractIconW_GetIconLocation(_
 ByVal uFlags As VBShellLib.UINT, _
 ByVal szIconFile As VBShellLib.LPWSTRVB, _
 ByVal cchMax As VBShellLib.UINT, _
 piIndex As Long, pwFlags As VBShellLib.GETICONLOCATIONRETURN)

 pwFlags = GIL_NOTFILENAME

 'pidl is either a value or a folder
 Dim pidlTemp As LPITEMIDLIST

 pidlTemp = m_pidlMgr.GetLastItem(m_pidl)

 If m_pidlMgr.GetPidlType(pidlTemp) = PT_ITEM Then

 piIndex = ICON_ITEM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Else
 If (uFlags And GIL_OPENICON) Then
 piIndex = ICON_OPEN
 Else
 piIndex = ICON_CLOSED
 End If
 End If
End Sub

The first thing we need to do is get the last item in the PIDL. This makes sense if you think of
the PIDL as a file path. You want to display an icon for the item at the end of the "path," not
the beginning, right? Once we have the last item in the PIDL, we determine its type by calling
PidlMgr::GetPidlType . Then we will know whether it is a "folder" or an "item."

If we have a folder, we need to check the uFlags parameter for GIL_OPENICON . This will

tell us whether the folder is opened or closed.

The values denoted by ICON_ are merely constants describing the index of a particular icon
in the image list that is located on frmView . They are simply:

Public Const ICON_OPEN = 0
Public Const ICON_CLOSED = 1
Public Const ICON_ITEM = 2

11.6.8.2 Extract

Extract is short and sweet. It is shown in Example 11.31 .

Example 11.31. IExtractIcon::Extract

Private Sub IExtractIconW_Extract(_
 ByVal pszFile As VBShellLib.LPWSTRVB, _
 ByVal nIconIndex As VBShellLib.UINT, _
 phiconLarge As VBShellLib.HICON, _
 phiconSmall As VBShellLib.HICON, _
 ByVal nIconSize As VBShellLib.UINT)

 Dim hImgList As Long
 hImgList = frmView.ImageList.hImageList

 phiconSmall = ImageList_GetIcon(_
 hImgList, nIconIndex, ILD_TRANSPARENT)

 phiconLarge = ImageList_GetIcon(_
 hImgList, nIconIndex, ILD_TRANSPARENT)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

Since our view will never change, we only need to provide small icons to the shell. Therefore,
phiconSmall and phiconLarge can both point to the same icons. The function

ImageList_GetIcon , which actually returns the handle to the icons, is located in comctl32.dll
and is declared as follows:

Public Declare Function ImageList_GetIcon Lib "comctl32.dll" _
 (ByVal himl As Long, ByVal i As Integer, ByVal flags As UINT) _
 As HICON

11.6.9 FillList

We need to get back to ShellView and finish it up. We have one function left that handles

populating the view object with items, called FillList . Every namespace extension you write
will have a FillList function, but as you can probably imagine, the implementation of this
function is highly dependent on the format of the PIDL being used.

Here's how the function works. If you remember, we wrote a function called Initialize in
ShellView which we used to pass in an instance of ShellFolder and a PIDL to the class.
FillList relies on this instance of ShellFolder for calling EnumObjects. It will call EnumObjects,
which will return an IEnumIDList interface. Once FillList has the IEnumIDList interface, it
calls IEnumIDList::Next repeatedly in a loop until no more PIDLs are returned. As each

PIDL is returned, we determine if the PIDL is a folder or an item and populate the list view

accordingly. FillList is shown in Example 11.32 . Let's go through it slowly.

Example 11.32. FillList

Public Sub FillList()

 Dim pEnumIDList As IEnumIDList
 Dim pShellFolder As IShellFolder
 Dim pidl As LPITEMIDLIST
 Dim dwFetched As DWORD
 Dim szPidlName As String
 Dim lIconIndex As Long

 Dim lv As ListView
 Set lv = m_frmView.ListView

 SendMessage lv.hWnd, LVM_DELETEALLITEMS, 0, 0

The first significant thing that happens is that all the items in the list view are cleared. This is

done using SendMessage in this example, but it doesn't have to be done this way. You could
also call lv.ListItems.Clear . It's just a matter of personal preference:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim hr As Long
 Set pShellFolder = m_parentFolder
 Set pEnumIDList = pShellFolder.EnumObjects _
 (m_frmView.hWnd, SHCONTF_NONFOLDERS)

Then we call IShellFolder::EnumObjects to get an IEnumIDList interface. This call is

a little misleading here. It looks like we are asking for only non-folders (items), but this is not

the case. If you examine CreateEnumList (Example 11.14), which is the function that builds

the list for us, you will see that folders will always be added to the list (this is an
implementation decision, not something that has to be done this way). By specifying
SHCONTF_NONFOLDERS , we are asking for items in addition to folders:

 If (ObjPtr(pEnumIDList) > 0) Then

 'Turn off listview redraw
 SendMessage lv.hWnd, WM_SETREDRAW, 0, 0

 pEnumIDList.Next 1, pidl, dwFetched

After we have checked to make sure that our IEnumIDList interface is valid, SendMessage
is used to turn off the drawing on the list view. This minimizes flickering when the list view is
being populated with items. Once the drawing is off, we call IEnumIDList::Next for the
first PIDL. IEnumIDList is interesting in this example, because it is the first (and only) time

that we directly use an interface that has been implemented by us:

 Do While (dwFetched > 0)

 Dim li As ListItem
 Dim pidlTemp As LPITEMIDLIST

 szPidlName = m_pidlMgr.GetPidlName(pidl)

 If (m_pidlMgr.GetPidlType(pidl) = PT_FOLDER) Then
 lIconIndex = 2
 ElseIf (m_pidlMgr.GetPidlType(pidl) = PT_ITEM) Then
 lIconIndex = 3
 End If

When a PIDL has been returned to us, we get its display name and type. We could have
called IShellFolder::GetDisplayNameOf for the name, but this would have been
overkill. GetDisplayNameOf calls PidlMgr::GetPidlName , so we can just get to the

point and call it ourselves.

The icon index is determined by the type. An interesting point to make here is that we
ourselves are determining which icon should be displayed. Technically, we could call
IShellFolder::GetUIObjectOf to get an IExtractIcon interface, and call

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetIconLocation for this index value. Our implementation is so simple in this example,
though, that it's easier just to do it this way.

Another reason that we do this ourselves is that we would have to write additional code to
determine under which version of Windows we are running so we could return the
appropriate interface (IExtactIconA or IExtractIconW):

 Set li = lv.ListItems.Add(, , szPidlName, , lIconIndex)
 li.Tag = Str(pidl)

 pEnumIDList.Next 1, pidl, dwFetched

 Loop

After the item is added to the list, we store the PIDL in the Tag property of the list item. This
is done for one reason only. Our example will allow folder browsing from the view object. This
means that when a folder item is double-clicked in the list view, navigation will take place. We
need this PIDL so that we can determine whether a "folder" or an "item" was selected.

This happens repeatedly until there are no more PIDLs:

 'Turn on listview redraw
 SendMessage lv.hWnd, WM_SETREDRAW, 1, 0

 End If

 Set pEnumIDList = Nothing

End Sub

After the list view has been filled, drawing is turned back on, and our IEnumIDList interface

is released.

11.6.10 Finishing the View Object

We have one more detail left on the view object. We need to allow for the browsing of
folders. When a folder is double-clicked in the list view, we should navigate to that folder.
Fortunately for us, this is a simple process. Everything is handled by IShellBrowser . To

add this functionality, we add code for the DblClick event in list view. This code is shown in
Example 11.33 .

Example 11.33. ListView_DblClick

Private Sub ListView_DblClick()

 Dim pidl As LPITEMIDLIST

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim li As ListItem
 Set li = ListView.SelectedItem

 pidl = CLng(li.Tag)

 If (m_pidlMgr.GetPidlType(pidl) = PT_FOLDER) Then
 m_pShellBrowser.BrowseObject pidl, SBSP_DEFBROWSER Or _
 SBSP_RELATIVE
 End If

 Set li = Nothing

End Sub

The PIDL is extracted from the Tag property of the list item that was double-clicked and
converted back to a Long. Its type is then determined. If the list item is a folder,
IShellBrowser::BrowseObject is called. This has the same effect as if we were to

double-click on the item in the tree view ourselves.

11.6.11 BindToObject

We have one more method left in IShellFolder that we need to implement. This method,
BindToObject , is called when a folder is opened in the tree view. Its syntax is as follows:

HRESULT BindToObject(LPCITEMIDLIST pidl, LPBC pbcReserved,
 REFIID riid,LPVOID *ppvOut);

BindToObject acts similarly to QueryInterface. The shell will ask for an interface via the
riid parameter, and it will be our job to provide the interface through ppvOut . In fact, we'll
just forward this request to IUnknownVB::QueryInterface . Under Windows 9x and
Windows NT, the shell will always ask for IShellFolder . But not so for Windows 2000. In

the event that the shell asks for another interface, we need to be prepared to return
E_OUTOFMEMORY -which is why this method has been swapped in the vtable with a

replacement function. The remaining code for the ShellFolder class in shown in Example
11.34 .

Example 11.34. IShellFolder::BindToObject

'Demospace.bas

Public Const IID_IShellFolder = _
 "{000214E6-0000-0000-C000-000000000046}"

Public Function BindToObjectX(ByVal this As IShellFolder, _
 ByVal pidl As LPCITEMIDLIST, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByVal pbcReserved As LPBC, _
 ByVal riid As REFIID, _
 ppvOut As LPVOID) As Long

 BindToObjectX = E_OUTOFMEMORY

 Dim iid As String
 iid = GetIID(riid)

 If iid = IID_IShellFolder Then

 'Current shell folder.
 Dim pParentShellFolder As ShellFolder
 Set pParentShellFolder = this

 'New child shell folder.
 Dim pShellFolder As ShellFolder
 Set pShellFolder = New ShellFolder

 'Pass current pidl and folder reference.
 'to child folder
 Set pShellFolder.Parent = pParentShellFolder
 pShellFolder.pidl = pidl

 'Give new shell folder back to the shell.
 Dim pUnk As IUnknownVB
 Set pUnk = pShellFolder

 pUnk.QueryInterface riid, ppvOut

 Set pUnk = Nothing
 Set pShellFolder = Nothing
 Set pParentShellFolder = Nothing

 BindToObjectX = S_OK

 End If

End Function

'ShellFolder.cls
Public Property Set Parent(p As ShellFolder)
 Set m_parentFolder = p
End Property

Public Property Let pidl(ByVal p As LPITEMIDLIST)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 m_pidl = m_pidlMgr.Copy(p)

 Dim pidlTemp As LPITEMIDLIST
 pidlTemp = m_pidlMgr.GetLastItem(m_pidl)

 m_iLevel = m_pidlMgr.GetPidlLevel(pidlTemp) + 1

End Property

When BindToObject terminates, the IShellFolder interface that we

have passed back to the shell is still valid even though we have not
called AddRef implicitly. This is because QueryInterface calls AddRef

for us. In fact, this behavior is a rule for properly implementing
QueryInterface.

Basically, opening another folder repeats the entire process we have just walked through.
When BindToObject is called, we create an instance of ShellFolder ourselves, passing it a
reference to the current ShellFolder and the current PIDL. The IShellFolder interface is
then given back to the shell, and the process begins again.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

11.7 Registering DemoSpace

The last thing we need to do is register the namespace extension. The registry information
shown in Example 11.35 will insert our namespace extension under My Computer.
Remember, if you type this listing in, everything inside of the square brackets must be on the
same line.

Example 11.35. DemoSpace.reg

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{DAE49F45-660D-11D3-BB7C-444553540000}]
@="Root"

[HKEY_CLASSES_ROOT\CLSID\{DAE49F45-660D-11D3-BB7C-444553540000}\ShellFolder\]
"Attributes"=dword:a0000000

[HKEY_CLASSES_ROOT\CLSID\{DAE49F45-660D-11D3-BB7C-444553540000}\DefaultIcon\]
@="shell32.dll,46"

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Explorer
\MyComputer\Namespace\{DAE49F45-660D-11D3-BB7C-444553540000}\]
@ = "Nothing Special Namespace Extension"

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\
ShellExtensions\Approved\]
"{DAE49F45-660D-11D3-BB7C-444553540000}"="Demo namespace in VB"

The CLSID in the listing is the same CLSID you would find under the
HKEY_CLASSES_ROOT\DemoSpace.ShellFolder key. This is important. Everything starts
with IShellFolder .

Also, notice the Attributes setting. This value is created by OR ing the SFGAO constants
(See Example 11.2). The value A0000000 is a result of SFGAO_FOLDER ORed with
SFGAO_HASSUBFOLDERS . This attribute is for the junction point of our namespace

extension. Without this key, we wouldn't be able to open our namespace extension at all.

You might also decide that you would like to insert this example under the Desktop. This is as
simple as changing My Computer to Desktop in the registry script. If you do this, you might
also want to change the attributes to A0000020. This value is the result of OR ing together
SFGAO_FOLDER , SFGAO_HASSUBFOLDERS , and SFGAO_CANDELETE . When you add a

namespace extension under the Desktop, an icon is added to the Desktop. By adding the
SFGAO_CANDELETE attribute, the Delete command is available from the context menu of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespace extension. Otherwise, it would be impossible to remove the icon from the
Desktop.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

11.8 Practical Coding Examples

Writing a namespace extension is a pretty big undertaking, and most of the code in a
namespace extension is specific to the extension itself. This is due to the fact that PIDLs are
different for every extension. As it turns out, a majority of the code in a practical namespace
extension involves managing a PIDL in one way or another. Therefore, we did things a little
differently in this chapter: the example code for this chapter was not designed to be practical
in any sense of the word. Rather, it was designed to be simple so we could focus on how to
implement a namespace rather than have to wade through large volumes of proprietary code.

However, once you've worked through this generic example of implementing a namespace
extension, you'll want to take a careful look at the downloadable code samples, which contain
two "real world" namespace extensions: RegSpace, which allows you to browse the keys and
value entries of the registry as if they were part of the filesystem, and ROTSpace, which
similarly presents the Running Object Table (ROT) as a part of the shell namespace.

11.8.1 RegSpace

The first is based on the RegView example (a namespace extension implemented in C++) in
the MSDN library. As you might be able to guess from the name, this extension provides a
view of the registry from within Explorer. The VB version of RegView, which we'll call
RegSpace, can be seen in action in Figure 11.9. RegSpace is an example of a namespace
extension with a fairly complex hierarchy.

Figure 11.9. RegSpace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.8.2 ROTSpace

The second extension, ROTSpace, is a view of the ROT . The ROT is a globally accessible
table that keeps track of all running COM objects that can be identified with a moniker. A

moniker acts like a name that uniquely identifies a COM object much in the same way that a
path identifies a file in the filesystem. IMoniker is what makes a moniker a moniker, and the

interesting thing about monikers is that they support what is known as binding. Binding
means locating an object named by the moniker, activating it, and returning a pointer to a
requested interface on the object. What's even more interesting is that if the moniker is
already running, you can attach to the running instance (but we're not going to talk about
that). ROTSpace is shown in Figure 11.10.

Figure 11.10. ROTSpace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Part IV: Browser Extensions

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 12. Browser Extensions

Remember when VB 5.0 came out? It was the first appearance of the Microsoft Internet
Control. A great control, really, that basically represented an instance of Internet Explorer. At
the time, it seemed like there were articles everywhere exclaiming, "Write a browser in FOUR
lines of code!" or "Write Your Own Internet Applications Now!" Yes, it's true, you can write a
browser with just a few lines of code or create a host of other standalone Internet
applications very quickly with this control. But standalone? Wouldn't it be cooler to write an
Internet application that was integrated with Explorer automatically? Yes, it would, and this is
where browser helper objects come in. Browser helper objects, or BHOs, are very similar to
shell extensions. They run in-process to Explorer and are loaded every time a new instance
of Explorer is started. But unlike shell extensions, they can perform a wide variety of tasks.
You are limited only by your imagination in what you can do with BHOs. Why? Because once
loaded, the BHO has full access to IE's event sink. This means that, as you surf the Internet,
the browser helper is right there every step of the way. BHOs can log on to your favorite web-
based email site automatically as soon as you navigate to the URL, or they can automatically
retrieve information from your online brokerage account. They can do just about whatever
you want them to do, because BHOs have complete access to every piece of HTML that
passes through your browser. They can access it before you see it or before you leave it.

You might have seen a BHO in action if you frequently visit Yahoo! They have a toolbar that
can be added to Internet Explorer called Yahoo! Companion, which provides quick access to
many of the features at their web site. This component is a BHO.

We'll discuss Browser Extensions in this chapter as well. They are implemented just like
BHOs, but are specific to Internet Explorer 5.0. The advantage of using browser extensions is
that you can add menu items and toolbar buttons for the extension to Explorer.

Speaking of Explorer, let's clarify something at the outset: in this chapter, Explorer and
Internet Explorer are the same, as far as we're concerned. Sure, there are differences
between the two programs, but don't sweat the small stuff. We'll use the term Explorer to
mean both programs. We can do that because browser helper objects are loaded by both of
these programs. You see, the term "browser" here doesn't necessarily mean a web browser.

Explorer proper is also a browser. Its tree view allows you to browse the Windows
namespace. So, even though we will be discussing BHOs in the context of the Internet (and
Internet Explorer) in this chapter, keep in mind that they can be written for Explorer as well.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

12.1 Browser Helper Objects

Before looking at developing Browser Extensions for IE 5.0, we'll look at developing BHOs.

12.1.1 How BHOs Work

Browser helper objects are simple components, really. Once you know what you are doing,
you could probably build one in about five minutes (minus any functionality, of course).

When Explorer first loads, it examines the following key for any browser helper objects that
might be registered:

HKEY_LOCAL_MACHINE\
 Software\
 Microsoft\
 Windows\
 CurrentVersion\
 Explorer\
 Browser Helper Objects

Chances are, if you look in your registry right now, this key is not there, or if it does exist, it is
empty. That's because Internet Explorer does not install a default set of browser helpers.

When BHOs are loaded, Explorer passes to the component what is known as a site pointer,
which is actually an IUnknown interface pointer that the BHO can use to communicate with

Explorer. Beyond this point, everything a BHO does is application-dependent. Typically,
though, the BHO will be used to gain access to the current instance of Internet Explorer by
querying the site pointer for IWebBrowser2. Once it has this interface, it has access to all of

IE's events, as well as full access to Microsoft's Dynamic HTML Object Model. This means
that whatever is being displayed in the browser is fully accessible to the BHO. So, as you
might guess, BHOs can evolve from a very simple components into complex entities rather
quickly.

12.1.2 Browser Helper Interfaces

Browser helper objects are only required to implement one interface: IObjectWithSite.
IObjectWithSite consists of two methods, SetSite and GetSite, as Table 12.1
shows.

Table 12.1. IObjectWithSite

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Description

GetSite Returns the last site set with SetSite.

SetSite Provides the IUnknown site pointer of Explorer.

12.1.2.1 GetSite

This function returns the last site set with SetSite. Its syntax is:

HRESULT GetSite(REFIID riid, void** ppvSite);

with the following parameters:

riid

[in] The interface identifier whose pointer should be returned in ppvSite.
ppvSite

[in, out] Address of the interface pointer described by riid.

The job of GetSite is simply to return the site pointer passed in by Explorer via SetSite. It

is provided as a means for additional objects to gain access to the site pointer; it is a hooking
mechanism.

The interesting thing about this method is that its arguments look very much like those of

QueryInterface. This is no coincidence. The only thing this method needs to do is forward the
riid and ppvSite parameters to a QueryInterface call and return the result.

12.1.2.2 SetSite

When an instance of Explorer is fired up, the BHO is loaded and Explorer calls SetSite,

passing in an IUnknown interface pointer. This is known as a site pointer. The syntax of the
SetSite method is:

HRESULT SetSite(IUnknown* pUnkSite);

Its single parameter is:

pUnkSite

[in] Site pointer.

A BHO typically will query the site pointer for the IWebBrowser2 interface. When you
declare a variable as type Internet Explorer, this is really a reference to IWebBrowser2 (but
we'll talk about that soon enough). This gives the browser helper access to the current
instance of the web browser, including IE's event sink.

The IDL to define the IObjectWithSite interface is shown in Example 12.1. Notice that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the IUnknown pointer has been replaced with IUnknownVB in the IDL definition. Here, this
is done "just in case" for flexibility. Later, you might want to call QueryInterface, AddRef, or
even Release on the site pointer. Who knows? Here, though, it's not really necessary.
When we implement SetSite, we'll cache a copy of the site pointer in a private member that
will be declared as IUnknownVB. Our private member will give us access to all of
IUnknown's methods (which is necessary to properly implement GetSite).

Example 12.1. IDL for the IObjectWithSite Interface

[
 uuid(FC4801A3-2BA9-11CF-A229-00AA003D7352),
 helpstring("IObjectWithSite Interface"),
 odl
]
interface IObjectWithSite : IUnknown
{
 HRESULT SetSite([in] IUnknownVB* pSite);
 HRESULT GetSite([in] REFIID priid,
 [in, out] VOID * ppvObj);
}

12.1.3 The Project

We begin by creating a new ActiveX DLL project called BHO and adding three references to
our project:

Our type library

Microsoft Internet Controls

Microsoft HTML Object Library

The Microsoft HTML Object Library will most likely have to be added manually. It is in the
system directory in a DLL named mshtml.dll.

We will call our class clsInetSpeak for reasons that will be apparent later, and the first thing
we will do is implement IObjectWithSite:

'clsInetSpeak
Implements IObjectWithSite

Next we implement SetSite. First, we add two private member variables to the class. The
first is of type IUnknownVB. This is used to save the site pointer passed into us by Explorer.

The second is of type Internet Explorer. This is used to manipulate the current running
instance of Explorer. This is demonstrated in Example 12.2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 12.2. SetSite Implementation

'clsInetSpeak

Implements IObjectWithSite

Private m_pUnkSite As IUnknownVB
Private WithEvents m_ie As InternetExplorer

Private Sub IObjectWithSite_SetSite(_
 ByVal pSite As VBShellLib.IUnknownVB)

 If ObjPtr(pSite) = 0 Then
 CopyMemory m_ie, 0&, 4
 Exit Sub
 End If

 Set m_ pUnkSite = pSite 'Save the site pointer for GetSite
 Set m_ie = pSite 'QueryInterface for IWebBrowser2

End Sub

SetSite is also called when Explorer is closed, and the value of the pSite argument,

instead of containing the site pointer, contains a null pointer. When this happens, we need to
overwrite the address of m_ie with and exit the sub. We do not set m_ie equal to Nothing.
This is speculation, but it appears that setting m_ie equal to Nothing here does not

immediately release the component. Explorer thinks that it still has a valid reference and
crashes. Overwriting the address with a prevents this from happening.

Notice in Example 12.2 that m_ie is declared WithEvents. This gives us access to a wide

variety of events that are fired by Explorer. We'll talk about that shortly, but let's implement
GetSite first. It's one line of code, so let's get it out of the way. Example 12.3 contains the

code.

Example 12.3. GetSite

Private Sub IObjectWithSite_GetSite(
 ByVal priid As VBShellLib.REFIID,
 ppvObj As VBShellLib.VOID)

 m_pUnkSite.QueryInterface priid, ppvObj

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Can life get simpler than this? All we need to do here is call QueryInterface on the site pointer
with the parameters passed in by the shell. We are done.

If we stop right here, the code we have so far is the minimal skeleton required to implement
any BHO. You might want to save this somewhere as a template for creating future BHOs.

12.1.4 Registration

Registering browser helper objects is quite easy. Figure 12.1 shows the appropriate entry.
{x x x x x x x x-x x x x-x x x x-x x x x-x x x x x x x x x x x x}

represents the CLSID of the BHO.

Figure 12.1. Registering BHOs

Example 12.4 shows the registry script for the BHO that will be created in this chapter. It
only contains one entry. You can modify this script easily for your own helper objects.

Example 12.4. Registry Script for BHO

REGEDIT4

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
\CurrentVersion\Explorer\Browser Helper Objects\
{D6862A22-1DD6-11D3-BB7C-444553540000}\]

12.1.5 IWebBrowser2

We are actually going to do something with this BHO we are building, but first we need to
discuss this Internet Explorer reference we have and all the things we can do with it. This
should give you a better idea of the types of projects you can create with BHOs.

That reference we're holding to Internet Explorer is actually an IWebBrowser2 interface.

Why is it important that you know this? Well, for one thing, the documentation for
IWebBrowser2 is much better than for the Microsoft Internet Control, and the methods of
the IWebBrowser2 interface correspond to the methods and properties of Internet Explorer.

This is important because the interfaces we will be working with contain so many methods
(over 70 of them) that it would be impractical to list them all here. But since the
documentation for this interface is good, you should be able to figure out what most of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods are for. These interfaces are all documented in the Platform SDK and are listed as
IHTMLxxxx. You can access them and view their type information in the Object Browser by

adding a reference to the Microsoft HTML Object Library (MSHTML.TLB) to your project.

Most of the methods of IWebBrowser2 deal with explicit settings of the Explorer program

itself: status bar text, menu visibility, view mode, current URL, etc. But there is one property
that is especially important to us: Document. This property returns a reference to an
IHTMLDocument2 interface. From this interface, we can navigate the entire Dynamic HTML

object model, which is depicted in Figure 12.2. This means that our BHO has access to any
element on a given web page. If we want to change the href property of an anchor tag that
is nested four frames deep inside the third form on the page, no problem. If we want to
execute JavaScript against the currently loaded page, we can do that too. In fact, we can
programmatically change any element we want or strip information from any page we desire.

Figure 12.2. HTML object model

Let's take some of the confusion out of navigating the object model. We start by retrieving the
value of the Document property of IWebBrowser2, which gives us an IHTMLDocument2

interface. From here, we can get the parent window of the document, the collection of frames
inside of a document, or an object that is a part of the current document itself. Think about it
in terms of a web page. A web page contains a main window. This window contains the
document. The document can contain a collection of frames. Each one of these frames
contains a window. Taking this frame window as a Window object brings us back to the top of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the hierarchy.

Once we have an IHTMLDocument2 interface, we can get to any element (<BODY>, <A>,
<TABLE>, etc.) on a page. Each of these elements has a corresponding interface that is in
the format IHTMLxxxx. As Figure 12.1 illustrates, there are several collections available to

us. Let's take the "all" collection for example. The all property returns an
IHTMLElementsCollection interface that will allow us to iterate through every element on

a web page. Once we have a specific element, we can then get any number of the
IHTMLxxxx interfaces. The code fragment in Example 12.5 demonstrates this.

Example 12.5. Traversing an HTML Document

Private WithEvents m_ie As InternetExplorer
.
.
.
Dim pDocument as IHTMLDocument2
Dim pElements as IHTMLElementsCollection
Dim pElement as IHTMLElement

Set pDocument = m_ie.Document
Set pElements = pDocument.all

'Loop through each element
For i = 0 to pElements.length - 1
 Set pElement = pElements.item(i)
 if pElement.tagName = "a" Then
 Dim pAnchor as IHTMLAnchorElement
 Set pAnchor = pElement
 pAnchor.href="http://www.oreilly.com"
 .
 .
 .

As we loop through each element, we check the tag name. If the tag is equal to "a," then we
can QueryInterface for IHTMLAnchorElement. The code fragment in Example 12.5 would
actually change the href of each anchor it came across to http://www.oreilly.com. You

would be redirected to this URL if you were to then click on the link.

There are over 100 IHTMLxxxx interfaces documented in the Platform SDK, and each has

methods specific to its function. It is well beyond the scope of this book to document them all.
A good place to start is IHTMLWindow2 and IHTMLDocument2. You can navigate the entire

Dynamic HTML Object Library from these two interfaces. Oddly enough, if you are running IE
4.0, these two interfaces are marked [hidden] in the library. If you have installed IE 5.0, all

of the interfaces are visible.

http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1.6 Events

The Microsoft Internet Control provides 18 events for which we can add our code. Table
12.2 contains a complete list of the events provided by Internet Explorer. These events
seemingly cover just about every situation you might envision. The events typically used in a
browser extension are marked with an asterisk.

There is no event for a refresh. But the flexibility is there for you to
handle this situation yourself. The NavigateComplete2 event is passed a
parameter, URL, that identifies the resource to which the browser has

navigated. You can store the value of this argument to a Private member
variable. Then you can check the URL argument in the BeforeNavigate2

event against the stored value. If they are the same, a refresh has
occurred.

Table 12.2. DWebBrowserEvents2 Methods

Method Fired When . . .

StatusTextChange The status bar text has changed.

ProgressChange Information on the progress of a download is updated.

CommandStateChange The enabled state of a menu command changes.

DownloadBegin*
A navigation operation is starting, shortly after the BeforeNavigate2 event, unless the
navigation is canceled.

DownloadComplete* A navigation operation finishes, is stopped, or has failed.

TitleChange The title of a document in the Web Browser control becomes available or has changed.

PropertyChange The IWebBrowser2::PutProperty method changes the value of a property.

BeforeNavigate2* The Web Browser control is about to navigate to a new URL.

NewWindow2 A new window is created for displaying a resource.

NavigateComplete2* The browser has completed navigation to a new location.

DocumentComplete* The document being navigated to has finished loading.

OnQuit The Internet Explorer application is ready to quit.

OnVisible The window for the WebBrowser should be shown or hidden.

OnToolBar The ToolBar property has changed.

OnMenuBar The MenuBar property has changed.

OnStatusBar The StatusBar property has changed.

OnFullScreen The FullScreen property has changed.

OnTheaterMode The TheaterMode property has changed.

Okay, let's add some code to our BHO skeleton. This is going to be temporary code that we
will rip out later. The purpose is just to show you some object model navigation techniques.
This exercise will also demonstrate how one task can be accomplished several different
ways.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have IE 5.0, undoubtedly you have seen the new feature that remembers values that
have been entered previously. Say you go to log in to your Hotmail account. IE 5.0 will ask
you if you would like to save the password information. If you say "yes," the next time you
come to Hotmail, your previously entered information is available, and then you can log in
automatically.

We're not going to do anything that fancy, but this example could be the foundation for such
a component. All this component will do is fill in our login name when we go to Hotmail.
Everything is hardcoded. This is just a beta, after all!

The first thing we need to do is to add a private member variable to our class, called m_b
GoingToHotmail. Then we add some code to the BeforeNavigate2 event, as Example

12.6 shows.

Example 12.6. BeforeNavigate2 Example

Private Sub m_ie_BeforeNavigate2(ByVal pDisp As Object, _
 URL As Variant, _
 Flags As Variant, _
 TargetFrameName As Variant, _
 PostData As Variant, _
 Headers As Variant, _
 Cancel As Boolean)

 If URL = "http://www.hotmail.com/" Then
 m_bGoingToHotmail = True
 Else
 m_bGoingToHotmail = False
 End If

End Sub

The reason we are testing for this URL in the BeforeNavigate2 event is that at the time of this
writing, when you go to Hotmail, you are immediately redirected to another URL.
BeforeNavigate2 will allow us to capture the URL http://www.hotmail.com before the
redirection, so we'll know we're at the right place. The result of this event procedure is that
when you navigate to Hotmail, a flag indicating this fact is set. Hotmail can redirect us to
wherever, and we still know we are heading there.

Now we just have to implement one more event, DocumentComplete. This event is called
when the page has finished loading and the document is available. The HTML source for the
Hotmail login page indicates that there is one form on the page, and that the login text box
we are interested in is on the form. Example 12.7 shows one possible way of navigating to
the text box and setting its value.

http://www.hotmail.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 12.7. DocumentComplete Event Procedure

Private Sub m_ie_DocumentComplete(ByVal pDisp As Object, _
 URL As Variant)

 If (m_bGoingToHotmail = True) Then

 Dim i As Long

 Dim pDoc As IHTMLDocument2
 Set pDoc = m_ie.Document

 Dim pForms As IHTMLElementCollection
 Set pForms = pDoc.Forms

 Dim pForm As IHTMLFormElement
 Set pForm = pForms.Item(0)

 Dim pElements As Object
 Set pElements = pForm.elements

 Dim pElement As IHTMLElement
 Set pElement = pElements.Item("login")

 Dim pInput As IHTMLInputTextElement
 Set pInput = pElement
 pInput.Value = "oreilly"

 End If

End Sub

Wow, that's a bunch of code for one simple task! Don't worry, we'll trim it down to size in a
little while, but for now let's walk through it.

First, we get the current document by calling the Document property of m_ie and assigning
the resulting object reference to pDoc. Then we get the collection of all the forms on the page
and assign it to pForms. Since we have looked at the source to the page, we know there is

only one form, so we can get the form directly without looping through the collection by
calling:

Set pForm = pForms.Item(0)

Now we get to an inconsistency in the model. We want to grab a collection of all the elements
on the form, so we call the elements property of IHTMLFormElement. You might expect this
to return an IHTMLElementsCollection reference, but it does not. It returns an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDispatch interface.

Once we have all the elements on the form, we can get the element we are looking for by
name with the call:

Set pElement = pElements.Item("login")

We can then query pElement for IHTMLInputTextElement and set the value of the text

box with the call:

Dim pInput As IHTMLInputTextElement
Set pInput = pElement
pInput.Value = "oreilly"

Wait, don't run away. That was the convoluted, horribly inefficient way to achieve this task.
Achieving this goal is really is much easier than Example 12.7 shows.

Okay, delete the DocumentComplete code, and we'll try this again. Let's look at Example
12.8.

Example 12.8. Easier DocumentCompleteevent Procedure

Private Sub m_ie_DocumentComplete(ByVal pDisp As Object, _
 URL As Variant)

 If (m_bGoingToHotmail = True) Then

 Dim pDoc As IHTMLDocument2
 Set pDoc = m_ie.Document

 Dim pElements As IHTMLElementCollection
 Set pElements = pDoc.All

 Dim pInput As IHTMLInputTextElement
 Set pInput = pElements.Item("login")

 pInput.Value = "oreilly"

 End If

End Sub

Once again, we get the current document by calling the Document property. But this time,
instead of getting the elements of a form, we just grab the whole page by calling All. Once we
have all the elements, we can get the element we are interested in directly by name.

We can also use JavaScript to achieve our goal. Example 12.9 illustrates this point.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 12.9. Yet Another DocumentComplete Event Procedure

Private Sub m_ie_DocumentComplete(ByVal pDisp As Object, _
 URL As Variant)

 If (m_bGoingToHotmail = True) Then

 Dim pDoc As IHTMLDocument2
 Set pDoc = m_ie.Document

 Dim pWnd As IHTMLWindow2
 Set pWnd = pDoc.parentWindow

 Dim strJava As String
 strJava = "document.passwordform.login.value = 'oreilly';"

 pWnd.execScript strJava

 End If

End Sub

That's kind of slick, isn't it? We get the current document as before. Then we get the current
window by calling parentWindow. This returns an IHTMLWindow2 interface. IHTMLWindow2
is [hidden], by the way, if you're still running IE 4.0. Once we have that, we can execute

JavaScript directly against the page by calling execScript. execScript takes a string that
contains either JavaScript or VBScript, which can be specified by a second, optional
parameter to the method.

You can execute two whole pages of JavaScript if you want. As long as each statement is
delimited by a semicolon, the whole two pages could be shoved into a string and sent to

execScript. But that's a little unwieldy. The easy way would be to chop up the string into
manageable chunks and execute them one at a time:

strJava = "document.passwordform.login.value = 'oreilly';"
pWnd.execScript strJava
strJave = "document.submit();"
pWnd.execScript strJava
.
.
.

Before we continue, delete the code for BeginNavigate2 and DocumentComplete, so we can
have a fresh start. Ahhh, that's better.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

12.2 Browser Extensions

We can take the code we have so far a step further . . . but only if you have Internet Explorer
5.0 installed on your box. IE 5.0 provides us with the means to add a menu item and toolbar
button for our component. There is some grunt work involved, but it's not too bad. Basically,
we have to add a bunch of settings to the registry, and our component needs to implement
an additional interface, IOleCommandTarget .

We are also going to become somewhat familiar what another new interface called
IServiceProvider . This is because we cannot query the site pointer for IWebBrowser2
like we did for BHOs. We will get access to an IServiceProvider interface that we can
use to request the IWebBrowser2 . As you will see in Section 12.2.2 later in this chapter, we
will have to jump through a few hoops to do this.

Just to keep things a little suspenseful, we'll wait until the component is wired up and ready to
go before we actually discuss its purpose. Exciting, huh?

12.2.1 How Browser Extensions Work

For the most part, browser extensions work just like browser helper objects. But there are
some minor differences. For one thing, they are registered differently. When Explorer loads a
browser extension, it looks under the following key:

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 InternetExplorer\
 Extensions\

There are also some additional registry entries that will provide the toolbar icons and the
menu item text, but we'll discuss them later.

12.2.2 Browser Extension Interfaces

Like BHOs, browser extensions implement IObjectWithSite . They are also required to
implement another interface called IOleCommandTarget . This interface is used to execute
menu and toolbar commands. In addition to IOleCommandTarget , browser extensions
must be aware of another interface called IServiceProvider . Browser extension are a

little different than BHOs in that they cannot query for IE directly from the site pointer. Rather,
they are given a pointer to an IServiceProvider interface. IServiceProvider , in turn,
supplies the browser extension with a reference to IWebBrowser2 .

We've already discussed IObjectWithSite in the section on BHOs. In the following

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sections, we'll discuss the IOleCommandTarget and IServiceProvider interfaces.

12.2.2.1 IOleCommandTarget

In terms of browser extensions, IOleCommandTarget allows us to process menu and

toolbar commands that we have added to Explorer. This interface contains two methods,
which are described in Table 12.3 .

Table 12.3. IOleCommandTarget

Method Description

QueryStatus Returns the status of one or more commands generated by user-interface events.

Exec Executes a command from the menu or the toolbar.

12.2.2.1.1 QueryStatus

The shell calls this method to determine which commands are supported by the BHO and
which commands are enabled or disabled, and to provide the name or status of a command:

HRESULT QueryStatus(GUID *pguidCmdGroup, ULONG cCmds,
 OLECMD *prgCmds, OLECMDTEXT *pCmdText);

Its parameters are:

pguidCmdGroup

[in] A NULL for browser extensions.
cCmds

[in] The number of commands in the prgCmds array.
prgCmds

[in] An array of OLECMD structures that indicate the commands for which Explorer
needs information. OLECMD is defined as follows:

typedef struct _tagOLECMD {
 ULONG cmdID;
 DWORD cmdf;
} OLECMD;

Its members are as follows:

cmdID

This is the ID of one of Explorer's commands, which is taken from the following
enumeration:

typedef enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{
 OLECMDID_OPEN = 1,
 OLECMDID_NEW = 2,
 OLECMDID_SAVE = 3,
 OLECMDID_SAVEAS = 4,
 OLECMDID_SAVECOPYAS = 5,
 OLECMDID_PRINT = 6,
 OLECMDID_PRINTPREVIEW = 7,
 OLECMDID_PAGESETUP = 8,
 OLECMDID_SPELL = 9,
 OLECMDID_PROPERTIES = 10,
 OLECMDID_CUT = 11,
 OLECMDID_COPY = 12,
 OLECMDID_PASTE = 13,
 OLECMDID_PASTESPECIAL = 14,
 OLECMDID_UNDO = 15,
 OLECMDID_REDO = 16,
 OLECMDID_SELECTALL = 17,
 OLECMDID_CLEARSELECTION = 18,
 OLECMDID_ZOOM = 19,
 OLECMDID_GETZOOMRANGE = 20
 OLECMDID_UPDATECOMMANDS = 21
 OLECMDID_REFRESH = 22
 OLECMDID_STOP = 23
 OLECMDID_HIDETOOLBARS = 24
 OLECMDID_SETPROGRESSMAX = 25
 OLECMDID_SETPROGRESSPOS = 26
 OLECMDID_SETPROGRESSTEXT = 27
 OLECMDID_SETTITLE = 28
 OLECMDID_SETDOWNLOADSTATE = 29
 OLECMDID_STOPDOWNLOAD = 30
 OLECMDID_ONTOOLBARACTIVATED = 31,
 OLECMDID_FIND = 32,
 OLECMDID_DELETE = 33,
 OLECMDID_HTTPEQUIV = 34,
 OLECMDID_HTTPEQUIV_DONE = 35,
 OLECMDID_ENABLE_INTERACTION = 36,
 OLECMDID_ONUNLOAD = 37
} OLECMDID;
cmdf

This is the type of support provided by the BHO for the command that is specified by
cmdID . It can be one value from the following enumeration:

typedef enum
{
 OLECMDF_SUPPORTED = 1,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OLECMDF_ENABLED = 2,
 OLECMDF_LATCHED = 4,
 OLECMDF_NINCHED = 8
} OLECMDF;

The OME_CMDF_SUPPORTED and OLECMDF_ENABLED items are fairly obvious.
OLECMDF_LATCHED means the command is an on-off toggle that is currently on. The
meaning of OLECMD_NINCHED is somewhat mysterious. The Platform SDK says that the

value is reserved for future use. However, the value supposedly represents the undefined
state of a three-state control.

pCmdTest

[in] Pointer to an OLECMDTEXT structure that is used to return name/status
information to Explorer for one command. This value can be NULL , indicating that the

caller does not need the information. The structure is defined as follows:
typedef struct _tagOLECMDTEXT
{
 DWORD cmdtextf;
 ULONG cwActual;
 ULONG cwBuf;
 wchar_t rgwz[1];
}OLECMDTEXT;

The members of OLECMDTEXT are:

cmdtextf

Value that determines whether the rgwz member contains status text or a command

name. This value is defined in the OLECMDTEXTF enumeration:
typedef enum
{
 OLECMDTEXTF_NONE = 0,
 OLECMDTEXTF_NAME = 1,
 OLECMDTEXTF_STATUS = 2
} OLECMDTEXTF;
cwActual

The number of characters actually written to the rgwz buffer before QueryStatus

returns.
cwBuf

The number of elements in the rgwz buffer.
rgwz

A wide-character buffer (two bytes per character) that receives the status text or
command name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.2.2.1.2 Exec

This method is used to execute a command. It can also be used to display help for a
command. Its syntax is:

HRESULT Exec(GUID *pguidCmdGroup, DWORD nCmdID, DWORD nCmdExecOpt,
 VARIANTARG *pvaIn, VARIANTARG *pvaOut);

with the following parameters:

pguidCmdGroup

[in] A NULL for browser extensions.
nCmdID

[in] Command to be executed.
nCmdExecOpt

[in] One or more values from the OLECMDEXECOPT enumeration that describe how

the command should be executed. This parameter should be ignored for browser
extensions.

pvaIn

[in] Pointer to a VARIANTARG (same as a Variant) structure that contains input
arguments. This parameter can also be NULL .

pvaOut

[in, out] Pointer to a VARIANTARG structure that returns command output. This
parameter can also be NULL .

Example 12.10 contains the interface definition for IOleCommandTarget .

Example 12.10. IOleCommandTarget Interface

[
 uuid(B722BCCB-4E68-101B-A2BC-00AA00404770),
 helpstring("IOleCommandTarget Interface"),
 odl
]
interface IOleCommandTarget : IUnknown
{

 typedef enum OLECMDF {
 OLECMDF_SUPPORTED = 0x00000001,
 OLECMDF_ENABLED = 0x00000002,
 OLECMDF_LATCHED = 0x00000004,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OLECMDF_NINCHED = 0x00000008,
 } OLECMDF;

 typedef struct _tagOLECMD {
 ULONG cmdID;
 DWORD cmdf;
 } OLECMD;

 typedef struct _tagOLECMDTEXT{
 DWORD cmdtextf;
 ULONG cwActual;
 ULONG cwBuf;
 wchar_t *rgwz;
 } OLECMDTEXT;

 typedef enum OLECMDID {
 OLECMDID_OPEN = 1,
 OLECMDID_NEW = 2,
 OLECMDID_SAVE = 3,
 OLECMDID_SAVEAS = 4,
 OLECMDID_SAVECOPYAS = 5,
 OLECMDID_PRINT = 6,
 OLECMDID_PRINTPREVIEW = 7,
 OLECMDID_PAGESETUP = 8,
 OLECMDID_SPELL = 9,
 OLECMDID_PROPERTIES = 10,
 OLECMDID_CUT = 11,
 OLECMDID_COPY = 12,
 OLECMDID_PASTE = 13,
 OLECMDID_PASTESPECIAL = 14,
 OLECMDID_UNDO = 15,
 OLECMDID_REDO = 16,
 OLECMDID_SELECTALL = 17,
 OLECMDID_CLEARSELECTION = 18,
 OLECMDID_ZOOM = 19,
 OLECMDID_GETZOOMRANGE = 20,
 OLECMDID_UPDATECOMMANDS = 21,
 OLECMDID_REFRESH = 22,
 OLECMDID_STOP = 23,
 OLECMDID_HIDETOOLBARS = 24,
 OLECMDID_SETPROGRESSMAX = 25,
 OLECMDID_SETPROGRESSPOS = 26,
 OLECMDID_SETPROGRESSTEXT = 27,
 OLECMDID_SETTITLE = 28,
 OLECMDID_SETDOWNLOADSTATE = 29,
 OLECMDID_STOPDOWNLOAD = 30,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OLECMDID_ONTOOLBARACTIVATED = 31,
 OLECMDID_FIND = 32,
 OLECMDID_DELETE = 33,
 OLECMDID_HTTPEQUIV = 34,
 OLECMDID_HTTPEQUIV_DONE = 35,
 OLECMDID_ENABLE_INTERACTION = 36,
 OLECMDID_ONUNLOAD = 37,
 OLECMDID_PROPERTYBAG2 = 38,
 OLECMDID_PREREFRESH = 39,
 } OLECMDID;

 typedef enum OLECMDTEXTF {
 OLECMDTEXTF_NONE = 0,
 OLECMDTEXTF_NAME = 1,
 OLECMDTEXTF_STATUS = 2,
 } OLECMDTEXTF;

 typedef enum OLECMDEXECOPT {
 OLECMDEXECOPT_DODEFAULT = 0,
 OLECMDEXECOPT_PROMPTUSER = 1,
 OLECMDEXECOPT_DONTPROMPTUSER = 2,
 OLECMDEXECOPT_SHOWHELP = 3
 } OLECMDEXECOPT;

 HRESULT QueryStatus([in] LPGUID pguidCmdGroup,
 [in] ULONG cCmds,
 [in,out] LPOLECMD *prgCmds,
 [in,out] LPOLECMDTEXT *pCmdText);

 HRESULT Exec([in] LPGUID pguidCmdGroup,
 [in] DWORD nCmdID,
 [in] DWORD nCmdExecOpt,
 [in] VARIANT *pvaIn,
 [in,out] VARIANT *pvaOut);
}

12.2.2.2 IServiceProvider

IServiceProvider contains one method (which is very much like QueryInterface)
called QueryService , as the following table shows:

Method Description

QueryService Creates or accesses the specified service and returns an interface pointer to it.

12.2.2.2.1 QueryService

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This method is very similar to QueryInterface in form and function. It takes a pointer to
the GUID of the service we are looking for, namely IWebBrowserApp , and a pointer to the
interface we want from that service (in our case, IWebBrowser2). It returns the interface we

have requested (hopefully). Its syntax is:

HRESULT QueryService(REFGUID guidService, REFIID riid, void** ppvOut);

Its parameters are as follows:

guidService

[in] Identifier for the requested service.
riid

[in] Identifier for the interface on the request service.
ppvOut

[out, retval] Address that receives the interface pointer requested by riid .

Example 12.11 contains the complete listing for IServiceProvider .

Example 12.11. IServiceProvider Interface

[
 uuid(6d5140c1-7436-11ce-8034-00aa006009fa),
 helpstring("IServiceProvider Interface"),
 odl
]
interface IServiceProvider : IUnknown
{
 HRESULT QueryService([in] LPGUID guidService,
 [in] REFIID riid,
 [out, retval] IDispatch **ppvObject);
}

12.2.3 SetSite Revisited

As stated earlier, we are going to have to implement SetSite a little bit differently. Let's take
the code piece by piece. The following code fragment should look familiar. It's the same code
you would implement for a BHO:

Private Sub IObjectWithSite_SetSite(_
 ByVal pSite As VBShellLib.IUnknownVB)

 If ObjPtr(pSite) = 0 Then
 CopyMemory m_ie, 0&, 4
 Exit Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 Set m_pUnkSite = pSite 'Save the site pointer for GetSite

Here's where things get a little different. Instead of asking for IWebBrowser2 , we need to
get IServiceProvider . So, we'll query the site pointer for this interface:

Dim pServiceProvider As IServiceProvider
Set pServiceProvider = m_pUnkSite

Now, QueryService takes a pointer to a GUID for both of its arguments. To get these
GUIDs, we need to declare a couple of constants in clsInetSpeak that represent the

string values of the GUIDs we are interested in. They are as follows:

Private Const IID_IWebBrowserApp = _
 "{0002DF05-0000-0000-C000-000000000046}"
Private Const IID_IWebBrowser2 = _
 "{D30C1661-CDAF-11D0-8A3E-00C04FC9E26E}"

We are going to use an API function found in ole32.dll to map these string values to an

actual GUID. This function is called CLSIDFromString , and it is declared as follows:

Public Declare Function CLSIDFromString Lib "ole32.dll" _
 (ByVal lpszProgID As Long, pCLSID As GUID) As Long

Its parameters are:

lpszProgId

This is a pointer to the string representation of a CLSID.
pCLSID

This is a pointer to a GUID structure defined as so:
Public Type GUID
 Data1 As Long
 Data2 As Integer
 Data3 As Integer
 Data4(7) As Byte
End Type

Now, back to SetSite . Continuing on with our implementation, we declare two variables to
hold the IIDs, clsidWebApp and clsidWebBrowser2 , and then we call

CLSIDFromString to populate those structures:

Dim clsidWebApp As GUID
Dim clsidWebBrowser2 As GUID

CLSIDFromString StrPtr(IID_IWebBrowserApp), clsidWebApp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CLSIDFromString StrPtr(IID_IWebBrowser2), clsidWebBrowser2

Now all we have to do is call QueryService and release IServiceProvider . We have to

use VarPtr , because QueryService needs the pointer to the GUID:

Set m_ie = pServiceProvider.QueryService(
 VarPtr(clsidWebApp), VarPtr(clsidWebBrowser2))

Set pServiceProvider = Nothing

We now have our IWebBrowser2 interface. The good news here is that GetSite is the
same, so we don't have to worry about it at all. The complete listing for SetSite can be
found in Example 12.12 .

Example 12.12. SetSite for Browser Extension

Private Sub IObjectWithSite_SetSite(ByVal pSite As IUnknownVB)

 If ObjPtr(pSite) = 0 Then
 CopyMemory m_ie, 0&, 4
 Exit Sub
 End If

 Set m_pUnkSite = pSite 'Save the site pointer for GetSite

 Dim pServiceProvider As IServiceProvider
 Set pServiceProvider = m_pUnkSite

 Dim clsidWebApp As GUID
 Dim clsidWebBrowser2 As GUID

 'Query service provider to get IWebBrowser2 (Internet Explorer)
 CLSIDFromString StrPtr(IID_IWebBrowserApp), clsidWebApp
 CLSIDFromString StrPtr(IID_IWebBrowser2), clsidWebBrowser2

 Set m_ie = pServiceProvider.QueryService(_
 VarPtr(clsidWebApp), VarPtr(clsidWebBrowser2))

 Set pServiceProvider = Nothing

End Sub

12.2.4 Adding the Menu Item

To add a menu item for our component, we need to add several values to the registry. They

http://lib.ommolketab.ir
http://lib.ommolketab.ir

all reside under the key shown in Figure 12.3 . Take a look, then we'll talk about it.

Figure 12.3. Browser extension key

All values for our browser extension will go under the
HKEY_LOCAL_MACHINE\Software\Microsoft\Internet Explorer\Extension\<
GUID > key. This is important. The GUID denoted by the x es in Figure 12.3 is not the

CLSID of our component. It is just a randomly generated GUID that uniquely identifies this
key. This value exists nowhere else in the registry. So, use GUIDGEN to create this key.

Once you have added this key to the registry, we need to add several values, which are
shown in Figure 12.4 .

Figure 12.4. Browser extension menu values

The CLSID {1FBA04EE-3024-11d2-8F1F-0000F87ABD16} is a fixed value. Every
browser extension you write needs that exact clsid value; it's not some made up value. If

you search the registry for the value, you will find the entry, "Toolbar Extension for
Executable."

ClsidExtension , however, is the registry value that points to our browser extension.
MenuStatusBar contains the text that will be displayed in the status bar when our menu
item is selected, and MenuText contains the text of our menu item.

You cannot use an ampersand (&) to define hotkeys for this menu

because there is nothing in place to prevent conflicts with other menu
items.

Browser extension commands are located under the Tools menu in Internet Explorer 5.0.
They are also available from Explorer, but only when browsing the Web.

Finally, there is another optional value you can add called MenuCustomize . If you create a
string value with this name and set it equal to "help" (case doesn't matter), your menu item
will appear under the Help menu instead of the Tools menu. If the MenuCustomize key

does not exist or its value is set to anything other than "help," the menu item will appear

http://lib.ommolketab.ir
http://lib.ommolketab.ir

under the Tools menu.

12.2.5 Adding the Toolbar Button

Adding a toolbar button is as simple as adding three more string values to the registry and
creating a couple of icons. See Figure 12.5 for the additional registry values. You must create
four icons for the button. These include a 20 20 icon and a 16 16 icon that represent the
default state of the button, and two more icons of the same dimensions that represent the
"hot" image that is displayed when the mouse is over the button.

Figure 12.5. Registry settings for a toolbar button

The icon values in the registry can point to an .ico file or, as you can see in Figure 12.5 , a
resource in a Windows executable. The format for the latter option is:

Executable, Resource ID

If you opt to store the icons in a DLL, you should probably register your components in the
system directory. This will free you from having to map a path for these entries.

After you have added these entries, you will need to select View Toolbars Customize
from Internet Explorer's main menu. A dialog will present you with the opportunity to add the
button to the toolbar.

12.2.6 QueryStatus

The shell calls IOleCommandTarget::QueryStatus to inquire about the status of a menu

or toolbar command (i.e., whether the command is enabled or disabled). The funny thing is, if
we do not supply the status information, Explorer will disable any toolbar buttons we may
have added (this does not affect menu items) after we use them for the first time. So, to keep
things working properly, we will need to implement this method.

Actually, this behavior is interesting because after our browser extension has been called
once, QueryStatus will be called every time any command is issued. It will also be called

when the user just clicks on a web page! This means you can write code to enable or disable
your extension based on existing Explorer commands like Refresh, Home, or Print.

QueryStatus is defined as follows:

HRESULT QueryStatus(const GUID *pguidCmdGroup, ULONG cCmds,
 OLECMD *prgCmds, OLECMDTEXT *pCmdText);

The first parameter, pguidCmdGroup , is a pointer to the GUID that represents the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

command group. In terms of our extension, we do not care about this value; it is going to be
NULL .

The second parameter, cCmds , is the count of OLECMD structures in the array pointed to by
the third parameter, prgCmds . These two parameters are the ones that concern us most.

Our implementation of QueryStatus will loop through these commands and merely tell the

shell that the commands are supported and enabled.

The last parameter, pCmdText , is a pointer to an OLECMDTEXT structure that is used to

return command name and status information back to the shell. We do not need to worry
about this parameter for browser extensions.

The code for QueryStatus is shown in Example 12.13 .

Example 12.13. QueryStatus

Private Sub IOleCommandTarget_QueryStatus(_
 ByVal pguidCmdGroup As VBShellLib.LPGUID, _
 ByVal cCmds As VBShellLib.ULONG, _
 ByVal prgCmds As VBShellLib.LPOLECMD, _
 ByVal pCmdText As VBShellLib.LPOLECMDTEXT)

 Dim i As Integer

 For i = 0 To cCmds - 1
 Dim cmd As OLECMD

 CopyMemory cmd, ByVal prgCmds + (Len(cmd) * i), Len(cmd)
 cmd.cmdf = OLECMDF_SUPPORTED Or OLECMDF_ENABLED
 CopyMemory ByVal prgCmds + (Len(cmd) * i), cmd, Len(cmd)

 Next i

End Sub

In the case of our example, when QueryStatus is called, cCmds will always be 1, since our

extension only adds a single command to the Explorer menu. Regardless, the method has
been coded to demonstrate how you would handle more than one command. Since prgCmds

is a pointer to an array, pointer arithmetic is used to calculate the offset of the command
structure in memory. A local copy of the structure is created, and the appropriate values are
added to the structure. The local instance of the command is then copied back into the array.

12.2.7 Exec

Yes, it's time to actually accomplish something with this component. The extension in this
chapter performs an important service. It translates Internet-speak into plain English.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Remember the first time you got on the Web and saw a sentence like this: "Well, IMHO, I
think this book rocks!" IMHO? What the heck is IMHO? Well, with our handy translator
installed, you will be able to highlight these bizarre acronyms and watch as IMHO is
translated into, "In my honest/humble opinion," right on the page. That's sort of practical,
right?

The code to accomplish this amazing feat goes into IOleCommandTarget::Exec , which is
shown in Example 12.14 . Once we get the IHTMLDocument2 interface, its Selection

property will give us the text that is selected on the current page in the form of an
IHTMLSelectionObject interface pointer. A method of this interface gives us the text

range of the current selection, and from there we are able to get to the text itself. Then we
are free to modify it in any way we see fit. The translation is accomplished with a humongous
Select...Case block. If any of your favorite goofy acronyms have been left out, go ahead

and add them.

Example 12.14. Exec Implementation

Private Sub IOleCommandTarget_Exec(_
 ByVal pguidCmdGroup As VBShellLib.LPGUID, _
 ByVal nCmdID As VBShellLib.DWORD, _
 ByVal nCmdExecOpt As VBShellLib.DWORD, _
 pvaIn As Variant, _
 pvaOut As Variant)

 Translate

End Sub

Private Sub Translate()

 Dim pDoc As IHTMLDocument2
 Dim pTextRange As IHTMLTxtRange
 Dim sDef As String

 Set pDoc = m_ie.Document
 Set pTextRange = pDoc.selection.createRange

 Select Case Trim(pTextRange.Text)
 Case "IMHO"
 sDef = "[In My Honest/Humble Opinion]"
 Case "FYI"
 sDef = "[For Your Information]"
 Case "AFAIK"
 sDef = "[As Far As I Know]"
 Case "LOL"
 sDef = "[Laughing Out Loud/Lots Of Laughs]"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Case "BTW"
 sDef = "[By The Way]"
 Case "TIA"
 sDef = "[Thanks In Advance]"
 Case "RTM"
 sDef = "Read The Manual"
 Case "RTFM"
 sDef = "Read The Fine Manual"
 Case ":)", ":-)"
 sDef = "[Smile]"
 Case ";)", ";-)"
 sDef = "[Wink]"
 Case ":(", ":-("
 sDef = "[Boo-hoo]"
 Case Else
 sDef = pTextRange.Text
 End Select

 pTextRange.Text = sDef

 Set pTextRange = Nothing
 Set pDoc = Nothing

End Sub

If you followed along with the chapter, the browser extension should already have the
appropriate entries in the registry. But you will need to move the extension into your system
directory if you want the icons for the toolbar button to be displayed properly. After you move
the extension, register it using regsvr32.exe . Also, don't forget that in order for the toolbar
button to show up, you will have to add it to the toolbar yourself by selecting View
Toolbars Customize from IE 5.0's menu.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 13. Band Objects

If you need to extend the shell and a GUI is a must, band objects are the way to go. Band
objects are only available with shell versions 4.71 and later. This means that to use them,

you need to have installed Internet Explorer 4.0 or later with the shell integration option
selected (this is built into Windows 2000 by default). Well, actually, that isn't entirely true. If
you haven't installed shell integration, you are limited to using band objects with Internet
Explorer. In other words, you're restricted to Internet-only applications. But, hey, that might
not be so bad, right? The Internet is a big place. Just be aware that with the shell integration
installed, you have the ability to write band objects that take advantage of your "local" needs
as well.

Band objects come in several flavors: Explorer bands (also called Explorer bars),
Communication bands, and Desk bands. There is also an additional band type called a Tool
band. All four bands are implemented in exactly the same way. The distinction between them
lies in where the bands are displayed. Explorer bars are displayed vertically on the left side of
Explorer. Examples of system-defined Explorer bands include the Search, Favorites, History,
and Folders bands. These can be accessed by selecting View Explorer Bar in Explorer's
main menu. The remaining band objects are:

Communication bands

An example of a Communication band is the Tip of the Day band, which is accessed
from the same menu.

Desk bands

These are not displayed in Explorer proper, but rather in the task bar (actually, the
desktop is a running instance of Explorer).

Tool bands

These were introduced with Internet Explorer Version 5.0. The radio band is an
example of such a band (yes, IE 5.0 has a radio). This band type is basically an
addition to Explorer's toolbar.

Illustrations of all four band types can be seen in Figure 13.1 through Figure 13.4.

Figure 13.1. Explorer band

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 13.2. Communication band

Figure 13.3. Desk band

Figure 13.4. Tool band

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

13.1 How Band Objects Work

Talking about band objects can get a little confusing, so let's get some terminology straight

before we continue. Band object refers to the component that is implementing the band.

Each registered band object has a corresponding menu item under the View Explorer Bar
menu on Explorer's frame window. Band objects are registered under the CLSID key in the
registry like so:

HKEY_CLASSES_ROOT\
 CLSID\
 {CLSID}\ Default = Menu Name
 Implemented Categories\
 {CATID}

{CLSID}, in this instance, is the CLSID of the band object. {CATID}, on the other hand, is a

component category identifier that designates the band as either a Desk Band, an Explorer
band, or a Communication band.

When the menu item specified by the default value of {CLSID} is selected, Explorer loads
the band object and initializes it through IObjectWithSite by passing a site pointer to the

band object (see Chapter 12). The site pointer allows the band object to communicate with
the site in the container (the container being the actual band Explorer will create for the band
object window).

The band object's first priority, after it has grabbed its own copy of the site pointer, is to
obtain the window handle for the container in which it will live. Explorer creates the container
for the band object automatically (thus saving us much toil), so all the band object needs to
do is query the site pointer for IOleWindow. This interface contains a method, GetWindow,

that will provide the band object with a handle to the container window. Armed with the
window handle, the band object merely needs to create an instance of its window (this is a
normal VB form without a border). Once this has been accomplished, it can use the Windows
API to make it a child window of the window returned by GetWindow.

Explorer will begin calling methods on the band object's primary interface, IDeskBand. It will
determine the dimensions of the band by calling IDeskBand::GetBandInfo, which it will

use in order to construct a band that is the proper size ("proper size" most likely meaning the
size of the VB form).

It will also call IDeskBand::GetWindow, which is kind of interesting, because this is the
same method the band object calls to get Explorer's container window handle. (IDeskBand
is derived from IOleWindow.) Explorer is now turning around and asking the band object for

its window. The band object then passes the handle to its window (i.e., to the VB form).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When Explorer is ready to show or hide the window, it will call IDeskBand::ShowDW, and
when it is ready to destroy the window, it will call IDeskBand::CloseDW. In case you're

wondering, the "DW" at the end of these two methods stands for "docking window."

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

13.2 Band Object Interfaces

Band objects are required to implement IDeskband and IObjectWithSite . The Platform
SDK says that they must also implement IPersist and IPersistStream , but this is not
the case. Optionally, if the band accepts user input, it needs to implement IInputObject .
Bands can also provide context menus by implementing IContextMenu . We have already
discussed IObjectWithSite and IContextMenu , so basically all we need to do is get up
to speed with IDeskband and IInputObject . So, let's get to it.

13.2.1 IDeskband

IDeskband , the primary interface of the band object, is derived from IDockingWindow ,
which, in turn, is derived from IOleWindow .

IDeskband contains only one native method: GetBandInfo . There are three methods that
are inherited from IDockingWindow , and two that have been inherited from IOleWindow .
We have already seen IOleWindow while discussing IShellBrowser in Chapter 11 , so
we will forego another discussion. Table 13.1 describes all the methods of the IDeskband
interface. The methods that have been marked with an asterisk do not have to be
implemented.

Table 13.1. IDeskband Methods

IOleWindow

GetWindow
Returns the window handle to one of the windows participating in in-place activation
(frame, document, parent, or in-place object window).

ContextSensitiveHelp

*
Determines whether context-sensitive help mode should be entered during an in-
place activation session.

IDockingWindow

ShowDW Called when the docking window is supposed to be shown or hidden.

CloseDW Called when the docking window is about to be closed.

ResizeBorderDW *
Notifies the docking window object that the frame's border space has changed. This
method is never called for any band object.

IDeskband

GetBandInfo Gets information for a band object.

13.2.1.1 ShowDW

Tells the band object to show or hide itself. Its syntax is:

HRESULT ShowDW(BOOL bShow);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Its single parameter is:

bShow

[in] If this value is 0, the band object should be hidden; otherwise, it should be

displayed.

13.2.1.2 CloseDW

Called when the band object is about to be closed. The band object should use this method
to save persistent information (if necessary). Its syntax is:

HRESULT CloseDW(DWORD dwReserved);

Its single parameter is:

dwReserved

[in] This is reserved and should always be zero.

13.2.1.3 GetBandInfo

This method retrieves band object information that includes the view mode and size of the
band. Its syntax is:

HRESULT GetBandInfo(DWORD dwBandID, DWORD dwViewMode, DESKBANDINFO* pdbi);

with the following parameters:

dwBandID

[in] The identifier of the band. This value is assigned by the shell.
dwViewMode

[in] The view mode of the band object, which is one of the following values:

DBIF_VIEWMODE_NORMAL

The band is being displayed horizontally.
DBIF_VIEWMODE_VERTICAL

The band is being displayed vertically.
DBIF_VIEWMODE_FLOATING

The band is floating.
DBIF_VIEWMODE_TRANSPARENT

The band is being displayed transparently.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pdbi

[in] This is a pointer to a DESKBANDINFO structure. This structure contains everything
a band object will need to display itself. Its definition is:

typedef struct {
 DWORD dwMask;
 POINTL ptMinSize;
 POINTL ptMaxSize;
 POINTL ptIntegral;
 POINTL ptActual;
 WCHAR wszTitle[256];
 DWORD dwModeFlags;
 COLORREF crBkgnd;
} DESKBANDINFO;
dwMask

Contains flags that determine which members of the structure are being requested.
This can be one or more of the following values:

DBIM_MINSIZE

ptMinSize is being requested.

DBIM_MAXSIZE

ptMaxSize is being requested.

DBIM_INTEGRAL

ptIntegral is being requested.

DBIM_ACTUAL

ptActual is being requested.

DBIM_TITLE

wszTitle is being requested.

DBIM_MODEFLAGS

dwModeFlags is being requested.

DBIM_BKCOLOR

crBkgnd is being requested.
ptMinSize

This is a POINTL structure (same as POINTAPI with Long members) containing the

minimum size of the band object.
ptMaxSize

This is the maximum size of the band object. Like ptMinSize , this is also a POINTL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

structure. If there is no limit for either the x or y values, -1& should be used.
ptIntegral

This is a POINTL structure containing the sizing step of the band object. This member
is only valid if dwModeFlags contains DBIMF_VARIABLEHEIGHT .

ptActual

This is a POINTL structure that contains the ideal size of the band object. This size is

not guaranteed.
wszTitle

This is the title of the band object.
dwModeFlags

These flags determine the mode of operation for a band object. They can be one or
more of the following values:

DBIMF_NORMAL

The band is normal and the other mode flags modify this flag.
DBIMF_VARIABLEHEIGHT

The height of the band object can be modified, and the ptIntegral member

defines the increment by which the band object can be resized.
DBIMF_DEBOSSED

The band object is displayed with a sunken look.
DBIMF_BKCOLOR

The band will be displayed with the background color crBkgnd .
crBkgnd

This is the background color of the band object. This is only valid if dwModeFlags

contains DBIMF_BKCOLOR .

Example 13.1 contains the IDL listing for IDeskband .

Example 13.1. IDeskband Interface

typedef [public] long DESKBANDINFO;

[
 uuid(eb0fe172-1a3a-11d0-89b3-00a0c90a90ac),
 helpstring("IDeskband Interface"),
 odl
]
interface IDeskBand : IUnknown

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{
 //IOleWindow
 HRESULT GetWindow([out, retval] long *phWnd);
 HRESULT ContextSensitiveHelp([in] boolean fEnterMode);

 //IDockingWindow
 HRESULT ShowDW([in] boolean fShow);
 HRESULT CloseDW([in] long dwReserved);
 HRESULT ResizeBorderDW([in] long prcBorder,
 [in] long punkToolbarSite,
 [in] boolean fReserved);

 //IDeskBand
 HRESULT GetBandInfo ([in] long dwBandID,
 [in] long dwViewMode,
 [in] LPDESKBANDINFO pdbi);
}

Notice that the DESKBANDINFO pointer in the GetBandInfo method has been redefined as
a long. That's because the structure contains members that are not automation compatible.
To access this parameter from VB when we implement this method, we'll have to use

CopyMemory to get a local instance before we can do anything with the structure.

13.2.2 IInputObject

IInputObject is used to process accelerators and change UI activation for a band object.

It contains three methods which are summarized in Table 13.2 . Note that the methods
marked with an asterisk more often than not do not need to be implemented.

Table 13.2. IInputObject

Method Description

HasFocusIO * Determines if one of the object's windows has the keyboard focus.

TranslateAcceleratorIO * Passes keyboard accelerators to the object.

UIActivateIO Activates or deactivates the object.

13.2.2.1 HasFocusIO

The syntax of HasFocusIO is very simple:

HRESULT HasFocusIO();

If the band object has keyboard focus this method should return S_OK ; otherwise, it should
return S_FALSE .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.2.2.2 TranslateAcceleratorIO

This method should return S_OK if the accelerator was translated; otherwise, it should return
S_FALSE . Its syntax is:

HRESULT TranslateAcceleratorIO(LPMSG lpMsg);

Its single parameter is:

lpMsg

[in] A pointer to a MSG structure, which is defined like so:
typedef struct tagMSG {
 HWND hwnd;
 UINT message;
 WPARAM wParam;
 LPARAM lParam;
 DWORD time;
 POINT pt;
} MSG;

This structure will contain the keyboard message that is being translated. Its members are
defined like so:

hwnd

The handle of the window receiving the message.
message

The message number.
wParam and lParam

These parameters specify additional information about a message and are different
depending on the message number.

time

The time the message was posted.
pt

A POINT structure containing the cursor position in screen coordinates at the time the

message was posted.

13.2.2.3 UIActivateIO

This method is called when the band is being activated or deactivated. Its syntax is:

HRESULT UIActivateIO(BOOL fActivate, LPMSG lpMsg);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Its parameters are:

fActivate

[in] This value is nonzero if the band is being activated; otherwise, it is zero.
lpMsg

[in] This is a pointer to a MSG structure that contains the message that caused the
change in activation states.

The IDL for IInputObject is defined in Example 13.2 .

Example 13.2. IInputObject Interface

typedef [public] long LPMSG;

[
 uuid(68284faa-6a48-11d0-8c78-00c04fd918b4),
 helpstring(("IInputObject Interface"),
 odl
]
interface IInputObject : IUnknown
{
 HRESULT UIActivateIO([in] boolean fActivate, [in] LPMSG lpMsg);
 HRESULT HasFocusIO();
 HRESULT TranslateAcceleratorIO([in] LPMSG lpMsg);
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

13.3 The Project: FileSpider

In this chapter, we are actually going to build a very useful band object. Believe it or not, you
might end up using this band object all the time. It's that cool. So what does it do?

Okay, imagine this scenario: you are surfing the Web and you come across a page that has
several files you wish to download. Normally, you would have to download one file at a time.
Once the file is downloaded, you click on the next file, wait, click on the next file, and so on.
Of course, you would also have to wait on this page or bookmark it if you wanted to continue
surfing while the files were downloading. Pretty lame, right? Well, FileSpider fixes all of that.

FileSpider "crawls" a web page and makes a list of all files that are available for downloading.
You select the files you want to download, and FileSpider downloads them one at a time in
the background, freeing you up to surf to your heart's content. You can also build your list of
files from several pages. There are no limits here. The file list is persistent, which means that
you can download the files at a later time should you wish to do so. Everything is
automatically saved in the registry. All of FileSpider's commands can be accessed from a
toolbar in the band window. We'll also throw in a context menu just to say we did. This should
give you an idea how context menus are handled outside of context menu handlers (see
Chapter 4). Figure 13.5 shows FileSpider in action.

Figure 13.5. FileSpider band object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We are ready to begin the project. We need to create a new ActiveX DLL project named
FileSpider. Once this is done we need to do several things:

Add a class module to project called SpiderBand.cls .1.

Add two modules named BandObject.bas and ContextMenu.bas . Code relevant to the
Band Object will go in the first module. Context menu-specific code will go in the
second.

2.

Add a reference to our shell library, as well as to MSHTML.DLL (the HTML Object
Model).

3.

FileSpider will additionally contain five forms, but we'll discuss those as we get to them. For
now, though, let's concentrate on getting the code together for a minimal band object.

We'll start in SpiderBand.cls by implementing the interfaces we need:

'SpiderBand.cls

Implements IDeskBand
Implements IInputObject
Implements IObjectWithSite
Implements IContextMenu

We now have some serious work ahead of us because we need to implement all of these
interfaces. We'll do everything in order of familiarity. So let's start with IContextMenu (which
we've known about since Chapter 4), and take it from there. To implement this interface
properly, we'll need to swap out the vtable entry for QueryContextMenu , so there is a little

busy work up front. Then we'll implement the method, which involves simply adding menu
items using the Windows API. This is really no different from the last time we implemented it.
We will also implement InvokeCommand , the method that actually carries out the menu

commands, by forwarding all calls from the context menu to the band form. We do this so the
context menu and the toolbar can use the same code.
IContextMenu::GetCommandString is not implemented, so we'll just ignore it and
pretend it doesn't exist.

13.3.1 Class_Initialize/Class_Terminate

The Initialize and Terminate events for the class should look very familiar. All we are going to
use them for is to swap out vtable entries for IContextMenu::QueryContextMenu (see
Chapter 4). A Private member variable named m_ pOldQueryContextMenu is added to
the class to store the original function address of QueryContextMenu . The Initialize and

Terminate events are shown in Example 13.3 .

Example 13.3. Initialize and Terminate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private m_pOldQueryContextMenu As Long

Private Sub Class_Initialize()

 Dim pContextMenu As IContextMenu
 Set pContextMenu = Me

 m_pOldQueryContextMenu = SwapVtableEntry(_
 ObjPtr(pContextMenu), _
 4, _
 AddressOf QueryContextMenuX)

End Sub

Private Sub Class_Terminate()

 Dim pContextMenu As IContextMenu
 Set pContextMenu = Me

 m_pOldQueryContextMenu = SwapVtableEntry(_
 ObjPtr(pContextMenu), _
 4, _
 m_pOldQueryContextMenu)

End Sub

The replacement function, QueryContextMenuX , is fairly straightforward compared to the

last time we visited this function in Chapter 4 . QueryContextMenuX is located in

ContextMenu.bas . This function provides context menu support for the four commands that
FileSpider will need: Crawl, Download, Preferences, and About. These commands will
accomplish the following:

Command Description

Crawl Crawls a web page and makes a list of files that were found.

Download
Starts downloading (one file at time) all of the files that have been selected in the band's main
window.

Preferences Displays the Preferences dialog, which allows configuration information for the band to be entered.

About Displays an about box.

The entire listing for this module is shown in Example 13.4 .

Example 13.4. ContextMenu.bas

Public Declare Function InsertMenu Lib "user32" _
 Alias "InsertMenuA" (ByVal HMENU As Long, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByVal nPosition As Long, ByVal wFlags As Long, _
 ByVal wIDNewItem As Long, _
 ByVal lpNewItem As String) As Long

'Menu Constants
Public Const MF_BYPOSITION = &H400&
Public Const MF_STRING = &H0&
Public Const MF_SEPARATOR = &H800&

Public Function QueryContextMenuX(_
 ByVal This As IContextMenu, _
 ByVal HMENU As Long, _
 ByVal indexMenu As Long, _
 ByVal idCmdFirst As Long, _
 ByVal idCmdLast As Long, _
 ByVal uFlags As Long) As Long

 Dim sMenuItem As String
 Dim idCmd As Long

 idCmd = idCmdFirst

 sMenuItem = "&Crawl"
 Call InsertMenu(HMENU, indexMenu, MF_STRING Or MF_BYPOSITION, _
 idCmd, sMenuItem)
 idCmd = idCmd + 1
 indexMenu = indexMenu + 1

 sMenuItem = "&Download"
 Call InsertMenu(HMENU, indexMenu, MF_STRING Or MF_BYPOSITION, _
 idCmd, sMenuItem)
 idCmd = idCmd + 1
 indexMenu = indexMenu + 1

 sMenuItem = "&Preferences"
 Call InsertMenu(HMENU, indexMenu, MF_STRING Or MF_BYPOSITION, _
 idCmd, sMenuItem)
 idCmd = idCmd + 1
 indexMenu = indexMenu + 1

 sMenuItem = "&About"
 Call InsertMenu(HMENU, indexMenu, MF_STRING Or MF_BYPOSITION, _
 idCmd, sMenuItem)
 idCmd = idCmd + 1
 indexMenu = indexMenu + 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'Always return number of items added to the menu
 'indexMenu will equal that in this instance, but not
 'others....like adding to an existing context menu
 QueryContextMenuX = indexMenu

End Function

Just for a refresher, let's briefly discuss QueryContextMenu . This is a method of
IContextMenu that adds items to the context menu. It is defined like so:

HRESULT QueryContextMenu(
 HMENU hmenu,
 UINT indexMenu,
 UINT idCmdFirst,
 UINT idCmdLast,
 UINT uFlags
);

Its parameters are:

hmenu

[in] The handle of the context menu to which we will be adding items.
indexMenu

[in] The zero-based position at which the first menu item is to be inserted.
idCmdFirst

[in] The minimum value that can be specified as a menu identifier, or simply a

number that uniquely identifies the menu item.
idCmdLast

[in] The maximum value that can be specified as a menu identifier.
uFlags

[in] This value can be ignored. For a description, see the discussion of
QueryContextMenu in Chapter 4 .

The parameters we are concerned with in this instance are hMenu , indexMenu , and
idCmdFirst .

As you can see from the listing, each of these relevant items go hand in hand with the

parameters that we need to call the InsertMenu API, which is defined like so:

Public Declare Function InsertMenu Lib "user32" _
 Alias "InsertMenuA" (ByVal HMENU As Long, _
 ByVal nPosition As Long, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByVal wFlags As Long, _
 ByVal wIDNewItem As Long, _
 ByVal lpNewItem As String) As Long

As each item is added to the context menu, the command ID and the menu index are both
incremented. Also, it should be mentioned that the command identifier is not incremented if a
separator is being added.

Next, we need to implement the InvokeCommand method. If you recall from Chapter 4 , this

method is called when an item is selected from a context menu. Our implementation is very
simple. All we are going to do is to forward the InvokeCommand calls to the band object

form. We do this because each context menu item corresponds to a toolbar item on the band

form. If we put all the command code in the band form, we can keep SpiderBand.cls generic
enough to use in our future band object projects. Example 13.5 details our implementation of
InvokeCommand and also shows the handler that is found in our band form, frmBand.frm .

Example 13.5. InvokeCommand

'SpiderBand.cls

Private Sub IContextMenu_InvokeCommand(_
 ByVal lpcmi As VBShellLib.LPCMINVOKECOMMANDINFO)

 'Let the band handle the menu implementation
 frmBand.MenuHandler lpcmi

End Sub

'frmBand.frm

Public Sub MenuHandler(lpcmi As Long)

 Dim cmi As CMINVOKECOMMANDINFO
 CopyMemory cmi, ByVal lpcmi, Len(cmi)

 Select Case cmi.lpVerb
 Case 0 'Crawl
 cmdCrawl = True
 Case 1 'Download
 cmdDL = True
 Case 2 'Preferences
 cmdPrefs = True
 Case 3 'About
 cmdAbout = True
 End Select

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

Once MenuHandler is called, CopyMemory is used to get a local instance of
CMINVOKECOMMANDINFO from lpcmi , the pointer passed to the function. We can then
check the lpVerb member of the structure to determine the index of the context menu item

that has been selected. As you can see from the listing, we are not using a toolbar control for
the band object, but rather four individual buttons. Setting a command equal to True is just

like clicking on the button with the mouse. Routing the commands to one place keeps us
from having to duplicate code.

13.3.2 IObjectWithSite

Our IObjectWithSite::SetSite implementation is very similar to a browser extension
(see Chapter 12). Once again, we need to use IServiceProvider to get the current

instance of Internet Explorer. This will be passed on to our band form and made available to
the Crawl command (the command that actually crawls a web page looking for downloadable
files). But there are a few additional actions that must be performed. Let's go through
Example 13.6 , which contains the code that implements the SetSite method, now.

Example 13.6. SetSite

Private m_pSite As IUnknownVB
Private m_ContainerWnd As Long
Private m_bandWnd As Long
Private m_pOldQueryContextMenu As Long

Private Const IID_IWebBrowserApp = _
 "{0002DF05-0000-0000-C000-000000000046}"
Private Const IID_IWebBrowser2 = _
 "{D30C1661-CDAF-11D0-8A3E-00C04FC9E26E}"

Private Sub IObjectWithSite_SetSite(ByVal pUnkSite As IUnknownVB)

 Dim isp As IServiceProvider
 Dim oleWnd As IOleWindow

 Dim wba As GUID 'IWebBrowserApp
 Dim wb2 As GUID 'IWebBrowser2

 Dim dwStyle As Long

 If Not (pUnkSite Is Nothing) Then

 If Not (m_pSite Is Nothing) Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Set m_pSite = Nothing
 End If

 Set m_pSite = pUnkSite
 Set oleWnd = pUnkSite ' QueryInterface for IOleWindow

 'QueryInterface for IServiceProvider
 Set isp = pUnkSite

 'Query service provider to get IWebBrowser2 (InternetExplorer)
 CLSIDFromString StrPtr(IID_IWebBrowserApp), wba
 CLSIDFromString StrPtr(IID_IWebBrowser2), wb2

 'Get IWebBrowser2
 Set frmBand.InternetExplorer = _
 isp.QueryService(VarPtr(wba), VarPtr(wb2))

 Set isp = Nothing

 If Not (oleWnd Is Nothing) Then

 m_ContainerWnd = oleWnd.GetWindow
 m_bandWnd = frmBand.hwnd

 dwStyle = GetWindowLong(m_bandWnd, GWL_STYLE)
 dwStyle = dwStyle Or WS_CHILD Or WS_CLIPSIBLINGS
 SetWindowLong m_bandWnd, GWL_STYLE, dwStyle
 SetParent m_bandWnd, m_ContainerWnd

 End If

 Set oleWnd = Nothing

 Else
 Set m_pSite = Nothing
 End If

End Sub

If the site pointer passed in by the shell is valid, we do two things. First, we save the site
pointer in a private member variable named m_ pSite . This will be used later when we

implement GetSite . As you can see, we have declared a local instance of IOleWindow .
We also need to query the site pointer for IOleWindow . This will allow us to get the
container window for our band object. We can also query the site pointer to get
IServiceProvider . Once we have IServiceProvider , we can get IWebBrowser2

and pass this directly to our band form.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If our IOleWindow interface is valid, then we can get the container window. We are also

going to store the handle of our band form in a private member variable. Instead of using VB
commands like Show and Hide, we will use the API to manipulate the form through its
handle.

What's all the business with GetWindowLong and SetWindowLong ? Well, our band form
needs to be a child window, so we need to get the window's style information and add
WS_CHILD and WS_CLIPSIBLINGS . We use GetWindowLong to reapply the style to the

window. These two functions are declared like this:

Public Declare Function GetWindowLong Lib "user32" Alias _
 "GetWindowLongA" (ByVal hwnd As Long, _
 ByVal nIndex As Long) As Long

Public Declare Function SetWindowLong Lib "user32" Alias _
 "SetWindowLongA" (ByVal hwnd As Long, _
 ByVal nIndex As Long, _
 ByVal dwNewLong As Long) As Long

Once we have done that, we can call SetParent to actually make our band form a child of
the container window. If we did not do this extra step, the band object would still work, but
Explorer would lose focus when we click on the band object. By doing this, the band object
will appear to be a contiguous part of Explorer.

Our GetSite implementation is the same as always, as shown in Example 13.7 .

Example 13.7. GetSite

Private Sub IObjectWithSite_GetSite(_
 ByVal priid As LPGUID, _
 ppvSite As LPVOID)

 m_pSite.QueryInterface priid, ppvSite

End Sub

13.3.3 IInputObject

We only need to implement one method for IInputObject , and that is UIActivateIO .

All we need to do with this method is give focus to our band form when the shell tells us. We
do not need to discuss this interface in any more detail, because we are not going to use
accelerators. The UIActivate implementation is shown in Example 13.8 .

Example 13.8. UIActivate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub IInputObject_UIActivateIO(_
 ByVal fActivate As Boolean, _
 ByVal lpMsg As lpMsg)

 If (fActivate) Then
 SetFocus m_bandWnd
 End If

End Sub

13.3.4 IDeskBand

Implementing IDeskBand is a simple and straightforward process. We already have
everything we need to implement this interface in place, and most of the methods require
only a line of code. Let's implement these one-liners first. We'll start with CloseDW :

Private Sub IDeskBand_CloseDW(ByVal dwReserved As Long)

 Unload frmBand

End Sub

Could things be simpler? It should be noted that you do not even have to implement this
method. We do because our band form has code in its Unload event. If we do not close the
form here, Unload will not be called.

GetWindow is equally as simple:

Private Function IDeskBand_GetWindow() As Long

 IDeskBand_GetWindow = m_bandWnd

End Function

That's it. All we need to do is return the handle to our band form.

ShowDW is not exactly a one-liner, but it is just as easy to implement. The shell passes in a
Boolean value. If this value is True , we show the window; if not, we hide it. We will use the

ShowWindow API to achieve the desired results:

Private Sub IDeskBand_ShowDW(ByVal fShow As Boolean)
 If (fShow) Then
 ShowWindow m_bandWnd, SW_SHOW
 Else
 ShowWindow m_bandWnd, SW_HIDE
 End If
End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The only method with any substance, really, is GetBandInfo . GetBandInfo is where we

get a chance to tell Explorer some band-specific information, such as the minimum,
maximum, and ideal size of our band, and the title of our band. This method is shown in
Example 13.9 .

Example 13.9. GetBandInfo

Private Sub IDeskBand_GetBandInfo(_
 ByVal dwBandID As Long, _
 ByVal dwViewMode As Long, _
 ByVal pdbi As VBShellLib.DESKBANDINFO)

 Dim dbi As DESKBANDINFO

 If pdbi = 0 Then
 Exit Sub
 End If

 CopyMemory dbi, ByVal pdbi, Len(dbi)

 If (dbi.dwMask And DBIM_MINSIZE) Then
 dbi.ptMinSize.x = 10&
 dbi.ptMinSize.y = 50&
 End If

 If (dbi.dwMask And DBIM_MAXSIZE) Then
 dbi.ptMaxSize.x = -1&
 dbi.ptMaxSize.y = -1&
 End If

 If (dbi.dwMask And DBIM_INTEGRAL) Then
 dbi.ptIntegral.x = 1&
 dbi.ptIntegral.y = 1&
 End If

 If (dbi.dwMask And DBIM_ACTUAL) Then
 dbi.ptActual.x = 0&
 dbi.ptActual.y = 0&
 End If

 If (dbi.dwMask And DBIM_TITLE) Then
 Dim title() As Byte
 title = "FileSpider" & vbNullChar
 CopyMemory dbi.wszTitle(0), title(0), UBound(title) + 1
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (dbi.dwMask And DBIM_MODEFLAGS) Then
 dbi.dwModeFlags = DBIMF_VARIABLEHEIGHT
 End If

 If (dbi.dwMask And DBIM_BKCOLOR) Then
 'Use the default background color by removing
 'DBIM_BKCOLOR flag and setting crBkgnd
 End If

 CopyMemory ByVal pdbi, dbi, Len(dbi)

End Sub

13.3.5 The Band Form

Now that the band object is wired up, the remainder of the action either starts or ends in the
band form. The band form is shown in Figure 13.6 .

Figure 13.6. Band object form

If we discuss every single line of code in frmBand and the other forms, we are going to get

way off track. And besides, nothing is more lame than a computer book with a bunch of
pages of GUI settings. Just look at the downloadable code provided for this chapter. We'll
discuss the good stuff, but much of the code remaining involves saving settings and URL
information to the registry and retrieving that information.

The code we are most interested in at this point (and the code most open for improvement by
you) is the Crawl function. Let's take a look:

'frmBand.frm

Private m_ie As InternetExplorer

Private Sub Crawl()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim i As Long
 Dim pDoc As IHTMLDocument2
 Dim pRootWnd As IHTMLWindow2
 Dim pWnd As IHTMLWindow2
 Dim pFrames As IHTMLFramesCollection2
 Dim nFrames As Long

 Set pDoc = m_ie.Document
 Set pWnd = pDoc.parentWindow
 Set pRootWnd = pWnd.top
 Set pFrames = pRootWnd.frames

 'Get number of frames on page
 nFrames = pFrames.length

Here's what's going on. First, we grab the current document from our private instance of
Internet Explorer. The problem is that the current document might not be the top-level
document. It might be a document embedded in a frame somewhere deep in the document.
So, we need to get the parent window of the document. Once we have that, we can get the
top-level window. When we get the top-level window, we can get a collection of all the frames
on the page. (Confused? There is a picture of the object model in Figure 12.2). This is
important, because we want the Crawl function to work across frames. With the frames
collection in hand, we can loop through each frame and search the corresponding document
for files. If there are no frames, our job is even easier:

If (nFrames > 1) Then

 For i = 0 To nFrames - 1

 Dim pFrameDoc As IHTMLDocument2
 Dim pFrameWnd As IHTMLWindow2

 Set pFrameWnd = pFrames.Item(i)
 Set pFrameDoc = pFrameWnd.Document

 Call FindFiles(pFrameDoc)

 Set pFrameDoc = Nothing
 Set pFrameWnd = Nothing

 Next i

 Else

 Call FindFiles(pDoc)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 Set pFrames = Nothing
 Set pRootWnd = Nothing
 Set pWnd = Nothing
 Set pDoc = Nothing

End Sub

Crawl delegates to a function called FindFiles . It is FindFile 's job to search a document for

files. How does it know which files to look for? WAV ? EXE ? JPG ? That is left entirely up to
the user and is determined by the settings in the Preferences dialog. Some background

information that you'll need to know when we discuss FindFiles is that there is a private
variable that contains an array of types in which we are interested (.exe , .wav , .jpg , etc.).
This variable is called m_sTypes . There is also another member variable that contains the
number of types, called m_nTypes .

FindFiles is quite a beast, so rather than dump a gargantuan listing on you, we'll step through
it slowly:

Private Sub FindFiles(doc As IHTMLDocument2)

 On Error GoTo FindFiles_Err

 Dim i, j, nElements As Long
 Dim pElements As IHTMLElementCollection
 Dim pElement As IHTMLElement
 Dim nPos As Integer
 Dim sUrl As String

 'Get all the BODY elements of the current page
 Set pElement = doc.body
 Set pElements = pElement.All

 'Get number of elements on the current page
 nElements = pElements.length

This block of code retrieves the <BODY> element, then gets all the elements that are part of

the body (which could really be quite a few). Now, we know the number of elements in the
collection, so we can loop through each individual element in the collection looking for <A >
tags. If we have an anchor, then we can get the href portion of the tag, which will contain
the filename:

For i = 0 To nElements - 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim sTag As String

 Set pElement = pElements.Item(i)

 'Check every "anchor" for file type
 sTag = UCase(pElement.tagName)

 If sTag = "A" Then
 Dim pAnchor As IHTMLAnchorElement
 Dim sHref As String

 Set pAnchor = pElement
 sHref = LCase(pAnchor.href)

Now that we have a filename, we need to check to see if we are interested in its type. To
accomplish this, we loop through the m_sTypes array, which contains all of the file

extensions for which we are looking. If so, we pass the URL to a function called ParseURL .
We will not discuss this function, but here is what it does: it merely separates the address
portion of the URL from the filename. The URL is stored in an invisible list box on the band
form, and the filename is added to the main list box. A list of filenames in the main window
just looks better than the full URL, and it's easier to read:

For j = 0 To m_nTypes - 1
 nPos = InStr(sHref, m_sTypes(j))
 If nPos Then
 sUrl = ParseURL(sHref)
 'Just show file name in list box, but store
 'the rest of the URL in a hidden list box
 nPos = InStrRev(sUrl, "/")
 If (nPos) Then
 lstURL.AddItem Left(sUrl, nPos)
 lstFiles.AddItem Right(sUrl, Len(sUrl) - nPos)
 Else
 lstFiles.AddItem sUrl
 End If
 End If
 Next j

 Set pAnchor = Nothing

 End If

 Next i

 Set pElement = Nothing
 Set pElements = Nothing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

13.3.6 The Preferences Dialog

The Preferences dialog, which is shown in Figure 13.7 , is used mainly to configure the
FileSpider band object. Most of the code only sets and retrieves registry settings. But there is
one interesting aspect of this form that is worth discussing, and that is the directory dialog.
FileSpider requires that a download directory be specified. This, of course, is the directory
where FileSpider will dump all downloaded files.

Figure 13.7. Preferences dialog

To specify a directory accurately, we need a way to navigate directories. Fortunately, the
shell itself provides us with a ready-made dialog that will allow us to navigate directories. This
dialog is shown in Figure 13.8 .

Figure 13.8. Directory browser

First things first. We need two functions from the Shell API and one from the Windows API
before we can get started. They are declared as follows:

' Displays a dialog box that allows you to select a directory
Private Declare Function SHBrowseForFolder Lib "shell32" _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (lpbi As BROWSEINFO) As Long

' Converts a PIDL into a readable path string
Private Declare Function SHGetPathFromIDList Lib "shell32" _
 (ByVal pidList As Long, ByVal lpBuffer As String) As Long

' Copies a string
Private Declare Function lstrcat Lib "kernel32" Alias "lstrcatA" _
 (ByVal lpString1 As String, ByVal lpString2 As String) As Long

As you can see, SHBrowseForFolder takes a BROWSEINFO structure, so we'll need one of

those. Here's the declaration:

Private Type BROWSEINFO
 hWndOwner As Long ' Handle to the owner of the dialog
 pIDLRoot As Long ' Location of the root folder
 pszDisplayName As Long ' Pointer to a buffer for display name
 lpszTitle As Long ' Text above tree control in the dialog
 ulFlags As Long ' Should contain BIF_RETURNONLYFSDIRS,
 ' BIF_DONTGOBELOWDOMAIN
 lpfnCallback As Long ' Address of a callback (not needed)
 lParam As Long ' Value passed to callback (not needed)
 iImage As Long ' Image associated with selected folder
End Type

Now we are ready to implement the function. In the FileSpider band, the code lies in the
cmdDir_Click event, which is shown in Example 13.10 . A more efficient way is to wrap this
code into a class to make it more portable. But if the book did everything for you, you would
have nothing to do on those lonely, rainy nights, right?

Example 13.10. The cmdDir_Click Event Procedure

Private Sub cmdDir_Click()

 Dim pidl As LPITEMIDLIST
 Dim tBrowseInfo As BROWSEINFO
 Dim sBuffer As String
 Dim szTitle As String

 szTitle = "Select Download Directory"
 With tBrowseInfo
 .hWndOwner = Me.hwnd
 .lpszTitle = lstrcat(szTitle, "")
 .ulFlags = BIF_RETURNONLYFSDIRS + BIF_DONTGOBELOWDOMAIN
 End With

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 pidl = SHBrowseForFolder(tBrowseInfo)

 If (pidl) Then
 sBuffer = Space(MAX_PATH)
 SHGetPathFromIDList pidl, sBuffer
 sBuffer = Left(sBuffer, InStr(sBuffer, vbNullChar) - 1)
 txtDir = sBuffer
 End If

End Sub

We sure know what PIDLs are at this point in the game, don't we? (If not, you must have
totally skipped Chapter 11 !) This function looks fairly simple. BROWSEINFO contains the

handle to the parent responsible for the directory dialog and the title of the directory. When it
is passed to SHBrowseForFolder , the directory dialog is displayed appropriately. When a
directory is selected, we are returned a PIDL. We can pass the PIDL to

SHGetPathFromIDList to get the path. With our knowledge of PIDLs, it's possible that we

could write our own SHGetPathFromIDList function (if we were so inclined).

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

13.4 Registry

Here's the big question. How do we distinguish our band object as an Explorer band versus a
Communication band or a Desk band? We do this by assigning our component to the

Explorer Band component category . Component categories are used to group functionality.
For instance, when you create an ActiveX DLL component in Visual Basic, a registry setting
is added that specifies the component to be in the category "Automation Objects." Verify this
for yourself. Look up any of the CLSIDs for the components we have created in this book
under its HKEY_CLASSES_ROOT\CLSID entry. You will find a subkey named Implemented
Categories . Here you will find the following key:

{40FC6ED5-2438-11CF-A3DB-080036F12502}

Now, search for this key under the following key:

HKEY_CLASSES_ROOT\Component Categories

You will find that this CLSID represents a category called "Automation Objects." OLE View
groups components by category. Take a look. If you ever work on a project containing
several components that implement common interfaces, you might want to create your own

component category. It's as simple as creating a GUID with GUIDGEN.EXE and adding it to:

HKEY_CLASSES_ROOT\Component Categories

This mechanism allows the shell to quickly find the components it requires, in our case,
Explorer Bands. Table 13.3 lists the CLSIDs for the three types of band objects.

Table 13.3. CLSIDs of Band Categories

Band Category CLSID

Desk Band {00021492-0000-0000-C000-000000000046}

Explorer Band {00021493-0000-0000-C000-000000000046}

Communication Band {00021494-0000-0000-C000-000000000046}

So, in order to implement our component as an Explorer Band, we need to implement the
category {00021493-0000-0000-C000-000000000046}. The default value for the
HKEY_CLASSES_ROOT\CLSID key becomes the name that will be displayed in Explorer's

menu for the band object. These settings are shown in Figure 13.9 .

Figure 13.9. FileSpider registry settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Something to Know About Desk Bands

When implementing a desk band, there is something you need to know if you
happen to be running Windows 2000 (also Windows 98 Second Edition).

It seems Windows 2000 keeps a category cache that updates itself only if it has
determined that an installation has been run or if the cache location in the registry
is not present. Restarting the shell will do nothing in terms of getting the shell to
recognize the band.

The solution is to delete the following key from the registry:

HKEY_CLASSES_ROOT\
 Component Categories\
 {00021492-0000-0000-C000-000000000046}\
 Enum

The CLSID under Component Categories is the category for desk bands (see
Table 13.3).

You can read more about this feature in KnowledgeBase article Q214842.

Now that the band object is compiled and registered, it can be activated by selecting it from
Explorer's View menu, as shown in Figure 13.10 .

Figure 13.10. Opening FileSpider from the Explorer menu

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The complete listing for the FileSpider registry script is shown in Example 13.11 .

Example 13.11. FileSpider Registry Script

REGEDIT4

[HKEY_CLASSES_ROOT\CLSID\{8DA95148-3C75-11D3-BB7C-444553540000}]
@ = "FileSpider"

[HKEY_CLASSES_ROOT\CLSID\{8DA95148-3C75-11D3-BB7C-444553540000}\Implemented Categories\{00021493-0000-0000-C000-000000000046}]
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

13.5 Tool Bands

Before signing off, we really need to discuss tool bands. There is an additional registry setting
you must be aware of in order to implement this band properly:

HKEY_LOCAL_MACHINE\
 Software\
 Microsoft\
 Internet Explorer\
 Toolbar = '{CLSID}'

Other than that, tool bands are registered just as you would an Explorer band.

Unfortunately, at the time of this writing, tool bands are not really ready for prime time; there
are some problems.

For one (see Knowledge Base article Q23161), the shell seems to ignore your menu title for
the tool band. It'll just use the same name as whatever tool band was registered first. And
chances are that's going to be "Radio" if you installed the Windows Media Player with IE 5.0.

The problems don't stop there, either. It seems that somewhere between turning your tool
band on and off and opening and closing Explorer, the Radio band will disappear from the
menu altogether; you will have to reinstall from the IE 5.0 CD. This is a real bummer if you
happen to like this Radio band. No tunes! But guess what? Even after the Radio band is
gone, you're tool band might still be there; it'll be called "Radio," though.

We all know how fast problems get addressed in this business, so it'll be no surprise at all if
these problems are fixed by the time this book comes to print. Consider this a heads up.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Chapter 14. Docking Windows

Like band objects, docking windows provide a way for you to add your own user interface
elements to Explorer. They share another similarity with band objects in that they can exist in
several locations-either at the top or bottom of Explorer's client area as a horizontal window
(see Figure 14.1) or to the left or right of the client area as a vertical window. Unlike band
objects, however, you do not have to have Active Desktop installed in order to use them from
both Explorer and Internet Explorer.

But there are a few drawbacks. They're not too bad, but worth mentioning. Docking windows
have no associated menu item or toolbar button. So turning them on and off will require you
to write some custom code, which could possibly be a problem. This gets trickier because
docking window forms must be borderless. Borderless windows cannot have menus. If you
define one, VB will add a title bar to the window. So you will not even be able to define a pop-
up menu. Also, docking windows don't have the innate ability to be resized like Explorer and
Communication bands. If you remember (think way back to the last chapter), a band object's
container is automatically sized in response to Explorer being resized. Docking windows have
no such luxury. While Explorer does provide size information to the docking window, the
docking window itself must take responsibility for positioning itself. In fact, a majority of a
docking window's time is spent figuring out its own position in Explorer's frame.

Something else you should know is that docking windows are not standalone components.
That is, you don't create a "docking window component" that must be configured in the
registry. Docking windows are created by existing components that wish to have a user
interface. We have already discussed many of these components: namespace extensions,
browser helper objects, browser extensions, and, yes, even band objects. Figure 14.1
shows a docking window that is docked at the bottom of the browser; this is the browser
helper object from Chapter 12, which now has a user interface.

Figure 14.1. Docking window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

14.1 How Docking Windows Work

It takes a least two objects to create a functional docking window. The first is the primary
object-the object that wants to display a docking window (a namespace extension, BHO,
band, etc.). The second object is the docking window itself. It contains all of the
implementation code specific to docking windows. In this way, the relationship between the
primary object and the docking window is similar to the one between a shell folder and a

view; it allows the possibility of a one-to-many relationship.

The docking window object is very much like a band object in that it implements
IObjectWithSite and IDockingWindow. IDeskband, which is the primary interface for
band objects, is derived from IDockingWindow. So essentially, a docking window must

implement the same core functionality as a band object; it must be able to respond to the
shell's requests to show, close, and resize the window. Additionally, it must also be able to
provide a window handle (of the docking window) to Explorer. This behavior is no different
from that of band objects. Well, actually, there is one difference, which we've already talked
about: band objects do not have to provide resize information to the shell. Docking windows
do.

In order for the primary object to create a docking window, it must first get its hands on an
IServiceProvider interface. Depending on the circumstances, this is done in one of two
ways. If the component implements IObjectWithSite, as is the case with BHOs, browser
extensions, or band objects, all it has to do is query the site pointer passed in by the shell.
(See the discussion of site pointers in Chapter 12.) If the component is a namespace
extension, it can get to IServiceProvider by means of the IShellBrowser interface
that is passed to the component in the IShellView::CreateViewWindow method.

Once the primary object has an IServiceProvider interface pointer, it can then call the
QueryService method to get IDockingWindowFrame; this contains a method called
AddToolbar. AddToolbar is the method that is used to add a docking window to Explorer.
When the component calls AddToolBar, it passes a reference to an object that implements
IDockingWindow (and IObjectWithSite). This object, of course, is the docking window.
From this point, control is transferred from the primary component to the docking window.

Once the shell has access to the docking window object, it calls
IObjectWithSite::SetSite. The docking window object uses the site pointer in order to
obtain a reference to IDockingWindowSite. This interface will help the docking window

negotiate its border space within the client area of Explorer.

After the docking window determines its position, it is displayed.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

14.2 Docking Window Interfaces

Docking windows require the use of four interfaces: IObjectWithSite , IDockingWindow
, IDockingWindowFrame , and IDockingWindowSite . In the remainder of this section,
we'll discuss the four interfaces and their members that are relevant to developing docking
windows.

14.2.1 IObjectWithSite

The shell provides a site pointer to the docking window via the IObjectWithSite interface
in a manner similar to browser helper objects or band objects. The primary object-that is,
the object that will create the docking window-uses IObjectWithSite to obtain
references to IServiceProvider and, optionally, IWebBrowser2 . The secondary
component, which is the actual docking window implementation, uses IObjectWithSite to
obtain IDockingWindowFrame . IObjectWithSite is summarized in Table 14.2 , but for

a more complete discussion, please refer to Chapter 12 .

Table 14.1. IObjectWithSite Methods

Method Description

GetSite Returns the last site set with SetSite .

SetSite Provides the IUnknown site pointer of Explorer.

14.2.2 IDockingWindow

We have already discussed IDockingWindow . If you remember our discussion of band
objects, the IDeskband interface is derived from IDockingWindow . There is nothing new

that we need to discuss concerning this interface. Table 14.1 provides a refresher course on
the interface and on IOleWindow , the interface from which it is derived, but if you would like

more detail, see Chapter 13 . Methods marked with an asterisk are not implemented.

Table 14.2. IDockingWindow Methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IOleWindow

GetWindow
Returns the window handle to one of the windows participating in in-place activation
(frame, document, parent, or in-place object window).

ContextSensitiveHelp

*
Determines whether context-sensitive help mode should be entered during an in-
place activation session.

IDockingWindow

ShowDW Called when the docking window is supposed to be shown or hidden.

CloseDW Called when the docking window is about to be closed.

ResizeBorderDW
Notifies the docking window object that the frame's border space has changed. This
method is not implemented for band objects, but for docking windows it is a must.

14.2.3 IDockingWindowFrame

This interface is implemented by Explorer and provides all the methods necessary to add
docking windows to a frame (see Table 14.3). It too is derived from IOleWindow .

Table 14.3. IDockingWindowFrame Methods

IOleWindow

(See Table 14.1 for IOleWindow

methods)

IDockingWindowFrame

AddToolbar Used to add a docking window to the frame.

FindToolbar *
Finds the specified docking window in the frame and returns a
reference to it.

RemoveToolbar * Removes a docking window from the frame.

14.2.3.1 AddToolbar

Adds a docking window to Explorer or Internet Explorer's frame. The docking window must
implement IDockingWindow . The component that creates the docking window calls this
method once it has retrieved a pointer to the IDockingWindowFrame interface by calling
IServiceProvider::QueryService . The syntax of AddToolbar is as follows:

HRESULT AddToolbar(IUnknown* punkSrc, LPCWSTR pwszItem,
 DWORD dwAddFlags);

with the following parameters:

punkSrc

[in] A reference to the object implementing IDockingWindow (i.e., a reference to the

docking window).
pwszItem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[in] The address of a null-terminated UNICODE string that will be used to identify the

docking window. This string can be used later, if necessary, to locate a docking window

by calling FindToolbar .
dwAddFlags

[in] A flag that defines the visibility of the docking window being added. This should

either be zero, which specifies that the docking window should be visible, or
DWFAF_HIDDEN .

14.2.3.2 FindToolbar

Finds a docking window in the frame. The method is declared as follows:

HRESULT FindToolbar(LPCWSTR pwszItem, REFIID riid,
 LPVOID* ppvObj);

Its parameters are:

pwszItem

[in] This is a pointer to the same string that was passed to AddToolbar .
riid

[in] This is a pointer to the GUID that identifies IDockingWindow .
ppvOut

[in, out] If the call is successful, this will contain the IDockingWindow interface of

the requested docking window.

This method is not necessary for implementing docking windows. The primary component
should keep all references to docking windows cached as private member variables; it would
never need to call this method in that circumstance. Presumably, an object that implements a
docking window might provide the name of the window (as specified in the call to
AddToolbar) by means of a Public property. Additional components having an interest in
the docking window could then locate it in the frame by calling FindToolbar .

14.2.3.3 RemoveToolbar

Removes the specified docking window from the frame. Its syntax is as follows:

HRESULT RemoveToolbar(IUnknown* punkSrc, DWORD dwRemoveFlags);

Its parameters are as follows:

punkSrc

[in] This is the address of the docking window object. The shell will call

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDockingWindow::CloseDW in response to this call.
dwRemoveFlags

[in] Option flags for removing the docking window object. These flags have no
meaning in terms of implementing a docking window. Because the Platform SDK does
not document the meaning of these flags, it is assumed they are used by internal
Microsoft implementations of the interface. This parameter can be one or more of the
following values:

Constant Description

DWFRF_NORMAL The default delete processing is performed.

DWFRF_DELETECONFIGDATA In addition to deleting the toolbar, any configuration data is removed as well.

Most likely, this method would not be called under normal circumstances. That's because the
docking window itself should have access to the information that the primary component
does; it should be able to remove itself. This method is used when the docking window is not
your own (well, most likely).

14.2.4 IDockingWindowSite

This interface, which is implemented by Explorer, is used to manage the border space for
one or more docking windows. A docking window component can use this interface to obtain
its real estate within Explorer's client area. IDockingWindowSite is derived from
IOleWindow ; its members are listed in Table 14.4 .

Table 14.4. IDockingWindowSite

IOleWindow

(See Table 14.1 for
IOleWindow methods)

IDockingWindowSite

GetBorderDW

Gets the border space that has been allocated for the docking window. Note, that
this method is in no way tied to SetBorderSpaceDW . The two methods operate

independently of each other. The only requirement is that this method is only valid
after an initial call to RequestBorderSpaceDW .

RequestBorderSpaceDW

Requests border space for the docking window. The space is not actually allocated
until SetBorderSpaceDW is called. The space returned might be different from the

requested amount. The request can also be refused altogether. After calling this
method, GetBorderDW should be called to get the actual space that was

allocated.

SetBorderSpaceDW
Allocates space for the docking window. Usually, this method is called immediately
after RequestBorderSpaceDW to finalize the request for space.

14.2.4.1 GetBorderDW

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Retrieves the border space that has been requested by the docking window.
RequestBorderSpaceDW must be called first. After a request is made, this method gets the

actual space allotted to the docking window. It is important to note that the space requested
may be different than the space that is actually reserved. The syntax of GetBorderDW is:

HRESULT GetBorderDW(IUnknown* punkSrc, LPRECT prcBorder);

with the following parameters:

punkSrc

[in] Address of the docking window interface for the object that has requested space

(that is, for the docking window).
prcBorder

[in] Address of a RECT structure that will contain border coordinates to be used by the

docking window upon the successful return of this method.

14.2.4.2 RequestBorderSpaceDW

This method is called to request border space for the docking window; it is either approved,
denied, or adjusted to accommodate the shell. If the request is approved or modified the
method will return zero. Otherwise, an OLE error will be raised.

The actual space is not allocated until SetBorderSpaceDW is called. Here is the syntax for

this method:

HRESULT RequestBorderSpaceDW(IUnknown* punkSrc, LPCBORDERWIDTHS pbw);

with the following parameters:

punkSrc

[in] The address of the docking window interface for the object that is requesting

space.
pbw

[in] A pointer to a BORDERWIDTHS structure (which is the same thing as a RECT

structure) that contains the requested border space.

14.2.4.3 SetBorderSpaceDW

Allocates border space for the docking window. Its syntax is:

HRESULT SetBorderSpaceDW(IUnknown* punkSrc, LPCBORDERWIDTHS pbw);

with the following parameters:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

punkSrc

[in] Address of the docking window interface for which border space is being
assigned.

pbw

[in] Address of a BORDERWITHS (RECT) structure containing the coordinates for the

space that is being allocated.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

14.3 The Project

The project for this chapter is fairly straightforward. We are going to start with the browser
helper object that we built in Chapter 12 and give it a user interface. Not too creative, but
that's not really the point. The point is to show you how you can take a simple component like
a BHO and give it a user interface. Coming up with a creative way to use this knowledge will
be your job. Now, how's that for passing the buck? You might be saying to yourself, "The
component in Chapter 12 already has a user interface." True, but browser extensions (as
opposed to BHOs) are for IE 5.0 and up. A BHO with a docking window is backwards
compatible to IE 4.0.

14.3.1 Primary Component

Let's start with the IObjectWithSite::SetSite method of the component we built in

Example 12.2. We'll add the code necessary for the docking window and then discuss the
details. We only need to add a few new lines of code, which appear in boldface in Example
14.1.

Example 14.1. SetSite in Primary Object

Private Const IID_IShellBrowser = _
 "{000214e2-0000-0000-c000-000000000046}"

Private Const IID_IDockingWindowFrame = _
 "{47d2657a-7b27-11d0-8ca9-00a0c92dbfe8}"

Private szToolbar As String

Private Sub Class_Initialize()
 szToolbar = "IEDockingWindow"
End Sub

Private Sub IObjectWithSite_SetSite(ByVal pSite As IUnknownVB)

 If ObjPtr(pSite) = 0 Then
 CopyMemory m_ie, 0&, 4
 Exit Sub
 End If

 Set m_pUnkSite = pSite 'Save the site pointer for GetSite

 Dim pServiceProvider As IServiceProvider

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Set pServiceProvider = m_pUnkSite

 Dim clsidWebApp As GUID
 Dim clsidWebBrowser2 As GUID
 Dim clsidShellBrowser As GUID
 Dim clsidDockWndFrame As GUID

 'Query service provider to get IWebBrowser2 (InternetExplorer)
 CLSIDFromString StrPtr(IID_IWebBrowserApp), clsidWebApp
 CLSIDFromString StrPtr(IID_IWebBrowser2), clsidWebBrowser2
 CLSIDFromString StrPtr(IID_IShellBrowser), _
 clsidShellBrowser
 CLSIDFromString StrPtr(IID_IDockingWindowFrame), _
 clsidDockWndFrame

 Set m_ie = pServiceProvider.QueryService(_
 VarPtr(clsidWebApp), VarPtr(clsidWebBrowser2))

 Set m_pDockingWindowFrame = _
 pServiceProvider.QueryService _
 (VarPtr(clsidShellBrowser), _
 VarPtr(clsidDockWndFrame))

 Dim pDockWnd As clsDockWindow
 Set pDockWnd = New clsDockWindow

 pDockWnd.Initialize DW_BOTTOM

 Set pDockWnd.InternetExplorer = m_ie
 Set pDockWnd.InetSpeak = Me

 m_pDockingWindowFrame.AddToolbar pDockWnd, _
 ByVal StrPtr(szToolbar), _
 0

 Set pServiceProvider = Nothing

End Sub

The first thing that is added are two new constants that contain the string representations of
the CLSIDs for IShellBrowser and IDockingWindowFrame. We will use them in

conjunction with the CLSIDFromString API to obtain their actual numerical equivalents. After
we have the CLSIDs, we can then query the "Shell Browser Service" to obtain a pointer to
IDockingWindowFrame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have been wondering what other "services" are provided by the
shell through IServiceProvider, you are not alone. This information

does not seem to exist in the Platform SDK.

Now that we have access to IDockingWindowFrame, we can create an instance of

clsDockWindow. This is our class that will implement all the specifics of the docking window;
it implements IObjectWithSite and IDockingWindow. But before we pass the object to
AddToolbar, we'll need to do some initialization work first. This includes telling the docking

window where it will be displayed and providing it with references to Internet Explorer and our
InetSpeak object.

The first thing we do is call the Initialize method of clsDockWindow (not to be confused

with Class_Initialize, which is, of course, called automatically). This is a method of the class
itself, created for our own convenience. It takes a location parameter; either DW_TOP,
DW_BOTTOM , DW_LEFT, or DW_RIGHT. The docking window will use this information in order

to position itself in the proper location within Explorer's frame window. Basically, this function
sets a Private member variable in clsDockWindow. The
IDockingWindow::ResizeBorderDW will make use of this parameter when it requests
border space for the window. Ignore the implementation details of Initialize for now; we'll

look at the actual method in the next section.

Next, we pass the docking window a reference to Internet Explorer and to clsInetSpeak, our
BHO. This gives the docking window access to all those Internet goodies as well as access
back to the primary component, which it will need to execute commands.

Finally, we call IDockingWindowFrame::AddToolbar to display the docking window. At
this point the shell calls IObjectWithSite::SetSite on the docking window, transferring
control away from the primary component.

14.3.2 Docking Window Component

The first thing we need to do in order to create our docking window component is to add a
new class module to the project called clsDockWindow and make sure that it is implementing
the appropriate interfaces:

Implements IDockingWindow
Implements IObjectWithSite

Before we start implementing any interfaces, let's get our class methods out of the way. If
you remember from Example 14.1, we have three such methods: Initialize,
InternetExplorer, and InetSpeak.

The first method, Initialize, which we've already discussed in the previous section, is just

used to pass position and size information to the docking window. This information will be
used when the docking window negotiates its border space within Explorer's client area. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function is simply:

Public Enum DW_LOCATION
 DW_TOP = 1
 DW_LEFT = 2
 DW_BOTTOM = 3
 DW_RIGHT = 4
End Enum

Private m_location As DW_LOCATION
Private m_nSize As Integer

Public Sub Initialize(ByVal Location As DW_LOCATION)
 m_location = Location
 m_nSize = size
End Sub

The class is also going to need a subroutine that the docking window form can call in order to
specify its dimensions. That function looks like so:

Private m_nWidth As Integer
Private m_nHeight As Integer

Friend Sub SetSize(ByVal x As Integer, ByVal y As Integer)
 m_nWidth = x
 m_nHeight = y
End Sub

The next two functions are used to pass object references to the docking window. These two
functions are self-explanatory and are defined like so:

Public Property Set InternetExplorer(ie As InternetExplorer)
 Set m_ie = ie
 Set frmDock.InternetExplorer = m_ie
End Property

Public Property Set InetSpeak(ins As clsInetSpeak)
 Set m_iis = ins
 Set frmDock.InetSpeak = m_iis
End Property

As you can see, these properties are also mirrored within the docking window form. This will
give the form access to these objects as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With the exception of the InetSpeak property, clsDockWindow is generic.
There are no other specific references used in the class. Should you
want to reuse the class, you could merely replace the InetSpeak property
with one that accepts objects of your own type.

14.3.2.1 SetSite

Now, the easiest thing to do is get the IObjectWithSite implementation out of the way.
The docking window's version of SetSite is much simpler than our other implementations.
All we need to do is query the site pointer for the IDockingWindowSite interface. We'll
cache it away in a private member variable. Later, the docking window will use it to negotiate
its border space.

Another thing we need to be aware of is that SetSite will be called again when Explorer

shuts down. This is no different than any other time we have implemented
IObjectWithSite, so just consider this a reminder. It's easy enough to determine whether

Explorer has been shut down. All we need to do is examine the cached site pointer. If its
address is not zero, then we know SetSite has already been called. If that's the case, we'll

need to exit. Example 14.2 contains the details.

Example 14.2. The Docking Window's SetSite Method

Private m_pDockSite As IDockingWindowSite

Private Sub IObjectWithSite_SetSite(_
 ByVal pSite As VBShellLib.IUnknownVB)

 If (ObjPtr(m_pDockSite)) Then
 Set m_pDockSite = Nothing
 Exit Sub
 End If

 If ObjPtr(pSite) Then
 Set m_pDockSite = pSite
 End If

End Sub

14.3.2.2 GetSite

There is nothing new to GetSite. It is implemented like we have always done before:

Private Sub IObjectWithSite_GetSite(_
 ByVal priid As VBShellLib.REFIID, _
 ppvObj As VBShellLib.VOID)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim pUnknown As IUnknownVB

 Set pUnknown = m_pDockSite
 pUnknown.QueryInterface priid, ppvObj

End Sub

14.3.2.3 The docking window form

Now before we continue, let's actually design the docking window. We need to add a new
form to the project called frmDock. As with all docking windows you write, it needs to be

borderless. Also, you want to size the form approximately to the size you want it be when it is
displayed. The band has a height of 600. 600/15 = 40, which is the height in pixels that we
want for display.

After adding the form, you can add a command button called cmdInetSpeak to the form. This
button will carry out our command. The band is shown in Figure 14.2.

Figure 14.2. Docking window design

We need to add a few properties to the docking window that will allow the component to pass
references into the form for IWebBrowser2, clsInetSpeak , and IDockingWindow.

These properties look like this:

Private m_dw As clsDockWindow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private WithEvents m_ie As InternetExplorer
Private m_iis As clsInetSpeak

Friend Property Set InternetExplorer(ie As InternetExplorer)
 Set m_ie = ie
End Property

Friend Property Set InetSpeak(iis As clsInetSpeak)
 Set m_iis = iis
End Property

Friend Property Set DockingWindow(dw As clsDockWindow)
 Set m_dw = dw
End Property

Now that the form has a valid reference to clsInetSpeak, we can add code to the command
button that actually fires the command. This is simply:

Private Sub cmdInetSpeak_Click()
 m_iis.Translate
End Sub

Also, this is an Internet-specific component. It doesn't really apply to file objects. So we need
a way to disable the browser when we are not browsing the Web. We can capture the
BeforeNavigate2 event from our IE reference to accomplish the task. The code looks like
this:

Private Sub m_ie_BeforeNavigate2(ByVal pDisp As Object, _
 URL As Variant, _
 Flags As Variant, _
 TargetFrameName As Variant, _
 PostData As Variant, _
 Headers As Variant, _
 Cancel As Boolean)

 'Need to make sure command does not get
 'executed against non-HTML
 If InStr(URL, "http") Then
 cmdInetSpeak.Enabled = True
 Else
 cmdInetSpeak.Enabled = False
 End If

End Sub

Last but not least, we need to add some code to the Form_Load and Form_Unload events.
When the form is loaded, its size information becomes valid. We'll use this opportunity to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inform the docking window class about the form's size:

Private Sub Form_Load()
 m_dw.SetSize Me.Width / Screen.TwipsPerPixelX, _
 Me.Height / Screen.TwipsPerPixelY
End Sub

The Form_Unload event will merely be used to clean up after ourselves; we'll free up our
object references here:

Private Sub Form_Unload(Cancel As Integer)
 Set m_dw = Nothing
 Set m_ie = Nothing
 Set m_iis = Nothing
End Sub

Okay, we have the docking window designed, so let's get back to clsDockWindow and our
IDockingWindow implementation. The big action happens in
IDockingWindow::ResizeBorderDW and IDockingWindow::ShowDW, so we'll save

those methods for last. For now, we'll get the easier methods out of the way.

14.3.2.4 CloseDW

Some things never change. Just as was the case with band objects, this method's only
responsibility is to unload the docking window:

Private Sub IDockingWindow_CloseDW(ByVal dwReserved As Long)
 Unload frmDock
End Sub

14.3.2.5 GetWindow

This method also performs the same duty that it did when we were discussing band objects.
All it needs to do is return with a window handle for our docking window:

Private Function IDockingWindow_GetWindow() As Long
 IDockingWindow_GetWindow = frmDock.hwnd
End Function

14.3.2.6 ResizeBorderDW

Okay, now we're ready to get down to business. We need to implement ResizeBorderDW,

which we have not done before. All we had to do for bands was capture the Resize event and
perform any resizing that might be necessary. The container was able to handle itself as far
as size and position. This is not the case here. Whenever Explorer is resized, the docking
window has to renegotiate its border space and resize itself accordingly. Let's take a peek at

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the implementation for this method (see Example 14.3).

Example 14.3. ResizeBorderDW Implementation

Private Sub IDockingWindow_ResizeBorderDW(_
 ByVal prcBorder As Long, _
 ByVal punkToolbarSite As VBShellLib.IUnknownVB, _
 ByVal fReserved As Boolean)

 If NegotiateBorderSpace Then
 IDockingWindow_ShowDW True
 End If

End Sub

Well, that looks innocuous, doesn't it? That's because all the work is being done by a private

helper function called NegotiateBorderSpace. If the border space is obtained successfully,
the function then calls ShowDW to display the docking window. We'll talk about ShowDW

soon, but now, let's get into NegotiateBorderSpace, which is shown in Example 14.4.

Example 14.4. NegotiateBorderSpace

Private m_rcDisplay As RECT

Private Function NegotiateBorderSpace() As Boolean

 NegotiateBorderSpace = False

 Dim pDockingWindow As IDockingWindow
 Dim bw As RECT 'BORDERWIDTHS
 Dim rcBorder As RECT
 Dim rcTemp As RECT
 Dim nSize As Integer

 Select Case m_location
 Case DW_TOP
 nSize = m_nHeight
 bw.Top = nSize
 Case DW_LEFT
 nSize = m_nWidth
 bw.Left = nSize
 Case DW_BOTTOM
 nSize = m_nHeight
 bw.bottom = nSize
 Case DW_RIGHT
 nSize = m_nWidth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bw.Right = nSize
 End Select

 Set pDockingWindow = Me
 m_pDockSite.RequestBorderSpaceDW pDockingWindow, _
 ByVal VarPtr(bw)

 m_pDockSite.SetBorderSpaceDW pDockingWindow, _
 ByVal VarPtr(bw)

 m_pDockSite.GetBorderDW pDockingWindow, ByVal VarPtr(rcBorder)

 Select Case m_location
 Case DW_RIGHT
 m_rcDisplay.Left = rcBorder.Right - m_nSize
 m_rcDisplay.Top = rcBorder.Top
 m_rcDisplay.Right = rcBorder.Right
 'Accomodate Status Bar
 m_rcDisplay.bottom = rcBorder.bottom - 82

 Case DW_LEFT
 m_rcDisplay.Left = rcBorder.Left
 m_rcDisplay.Top = rcBorder.Top
 m_rcDisplay.Right = rcBorder.Left + m_nSize
 'Accomodate Status Bar
 m_rcDisplay.bottom = rcBorder.bottom - 82

 Case DW_TOP
 m_rcDisplay.Left = rcBorder.Left
 m_rcDisplay.Top = rcBorder.Top
 m_rcDisplay.Right = rcBorder.Right - rcBorder.Left
 m_rcDisplay.bottom = m_nSize

 Case DW_BOTTOM
 m_rcDisplay.Left = rcBorder.Left
 m_rcDisplay.Top = rcBorder.bottom - m_nSize
 m_rcDisplay.Right = rcBorder.Right - rcBorder.Left
 ' -1 leaves beveled edge on Status Bar
 m_rcDisplay.bottom = m_nSize - 1

 End Select

 NegotiateBorderSpace = True

End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's step through this nice and easy; it's actually much easier than it looks. The first thing
that happens is that a RECT structure, bw, is filled out based on the parameters we passed to
the Initialize function of the class. In terms of the chapter example, we asked for a

docking window on the bottom of Explorer's frame window. Earlier, when our window was
loaded, its size (converted from twips to pixels) was passed back to clsDockWindow. Since

the form's height is 600, and 600 divided by Screen.TwipsPerPixelY (15) equals 40, we will
end up with a RECT structure whose bottom member is set to 40. All the other values of the

RECT will contain 0.

Next, we get a reference to our own IDockingWindow interface pointer. This is passed to
IDockingWindowSite::RequestBorderSpaceDW along with a pointer to bw. Translation:

allocate border space that is 40 pixels tall at the bottom of your client area. This object is

going to need it.

Next, we finalize the request by calling SetBorderSpaceDW. This actually allocates and

reserves the space for our docking window.

Now, things get a little confusing. We call GetBorderDW, which returns to us another RECT
structure, rcBorder, that supposedly contains the dimensions of the space that has been

allocated for our docking window. In practice, the method seems to return the dimensions of
the entire client area. So the rest of this function is dedicated to determining the actual
location of the docking window based on the size of the client area and the location and size
that we have asked for. When all is said and done, we have a private member variable,
m_rcDisplay, that contains the actual coordinates of the window.

14.3.2.7 ShowDW

The last thing on our list for clsDockWindow is ShowDW. As you might remember from

Chapter 13, Thi method is called when the window is about to be either displayed or
destroyed. Example 14.5 contains the code listing.

Example 14.5. ShowDW

Private m_hwnd As hwnd

Private Sub IDockingWindow_ShowDW(ByVal fShow As Boolean)

 Dim pDockingWindow As IDockingWindow
 Dim rcBorderWidths As RECT
 Dim dwStyle As DWORD

 If Not m_hwnd Then
 m_hwnd = frmDock.hwnd
 dwStyle = GetWindowLong(m_hwnd, GWL_STYLE)
 dwStyle = dwStyle Or WS_CHILD Or WS_CLIPSIBLINGS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SetWindowLong m_hwnd, GWL_STYLE, dwStyle
 SetParent frmDock.hwnd, m_pDockSite.GetWindow
 End If

 If (fShow) Then

 ShowWindow frmDock.hwnd, SW_SHOW
 MoveWindow frmDock.hwnd, m_rcDisplay.Left, _
 m_rcDisplay.Top, m_rcDisplay.Right, _
 m_rcDisplay.bottom, True

 Else

 ShowWindow frmDock.hwnd, SW_HIDE
 Set pDockingWindow = Me

 'Release border space - rcBorderWidths is empty
 m_pDockSite.SetBorderSpaceDW pDockingWindow, _
 ByVal VarPtr(rcBorderWidths)

 End If

End Sub

The docking window, like the band object, also needs to have some style bits changed and
have its parent window set to the container window. Remember, we do this so that when the

docking window gets the focus, Explorer will not lose the focus. The idea here is that the
docking window is fully integrated, right? But since ShowDW will be called many times
throughout the docking window's life, we need to make sure this does not happen more than
once.

If fShow is True, we simply show the window and move its position to coordinates specified
by the RECT m_rcDisplay (the coordinates were determined in NegotiateBorderSpace).

If fShow is False, we hide the window and release the border space. To release the border

space, IDockingWindowSite::SetBorderSpaceDW is called with the address of an
empty RECT.

That's it; we have done everything we need in order to implement a docking window.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

14.4 Registration

Good news! There is nothing you have to do registry-wise in order to implement a docking
window. Registry entries are specific to the types of components that implement them. To
register the component for this chapter, just run the registry script for Chapter 12.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Part V: Appendixes

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Appendix A. VBShell Library Listing

This appendix lists the IDL source code for the VB Shell Library-the type library used in
developing the examples for this book-which you can use when developing your own shell
extensions:

[
 uuid(39898EB0-DE1B-11d2-9FD6-00550076E06F),
 version(1.0),
 helpstring("VB Shell Library")
]
library VBShellLib
{

 importlib("stdole2.tlb");

 //---
 // Forward declaration of interfaces
 //---
 interface IContextMenu;
 interface ICopyHookA;
 interface ICopyHookW;
 interface IDataObject;
 interface IDeskband;
 interface IDockingWindow;
 interface IDockingWindowFrame;
 interface IDockingWindowSite;
 interface IDropTarget;
 interface IEnumFORMATETC;
 interface IEnumIDList;
 interface IExtractIconA;
 interface IExtractIconW;
 interface IFileViewerA;
 interface IFileViewerSite;
 interface IFileViewerW;
 interface IInputObject;
 interface IMalloc;
 interface IObjectWithSite;
 interface IOleCommandTarget;
 interface IOleWindow;
 interface IPersist;
 interface IPersistFile;
 interface IPersistFolder;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 interface IQueryInfo;
 interface IServiceProvider;
 interface IShellBrowser;
 interface IShellExtInit;
 interface IShellFolder;
 interface IShellLinkA;
 interface IShellLinkW;
 interface IShellPropSheetExt;
 interface IShellView;
 interface IStream;
 interface IUnknownVB;

 //---
 // Types
 //---
 typedef [public] long BOOL;
 typedef [public] unsigned char BYTE;
 typedef [public] long CLSID;
 typedef [public] long COLORREF;
 typedef [public] long DESKBANDINFO;
 typedef [public] long DLGPROC;
 typedef [public] long DWORD;
 typedef [public] long HANDLE;
 typedef [public] long HBITMAP;
 typedef [public] long HGLOBAL;
 typedef [public] long HICON;
 typedef [public] long HINSTANCE;
 typedef [public] long HKEY;
 typedef [public] long HMENU;
 typedef [public] long HOLEMENU;
 typedef [public] long HWND;
 typedef [public] double LARGE_INTEGER;
 typedef [public] long LPBC;
 typedef [public] long LPARAM;
 typedef [public] long LPCBORDERWIDTHS;
 typedef [public] long LPCFOLDERSETTINGS;
 typedef [public] long LPCITEMIDLIST;
 typedef [public] long LPCMINVOKECOMMANDINFO;
 typedef [public] long LPCOLESTR;
 typedef [public] long LPDESKBANDINFO;
 typedef [public] long LPFNADDPROPSHEETPAGE;
 typedef [public] long LPFNPSPCALLBACK;
 typedef [public] long LPFOLDERSETTINGS;
 typedef [public] long LPFORMATETC;
 typedef [public] long LPGUID;
 typedef [public] long LPITEMIDLIST;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 typedef [public] long LPOLECMD;
 typedef [public] long LPOLECMDTEXT;
 typedef [public] long LPOLEMENUGROUPWIDTHS;
 typedef [public] long LPOLESTR;
 typedef [public] long LPPROPSHEETPAGE;
 typedef [public] long LPRECT;
 typedef [public] long LPSTRVB;
 typedef [public] long LPTSTRVB;
 typedef [public] long LPCSTRVB;
 typedef [public] long LPCTSTRVB;
 typedef [public] long LPFVSHOWINFO;
 typedef [public] long LPMSG;
 typedef [public] long LPWSTRVB;
 typedef [public] long LPCWSTRVB;
 typedef [public] long LPSHITEMID;
 typedef [public] long LPSTGMEDIUM;
 typedef [public] long LPSTREAM;
 typedef [public] long LPSTRRET;
 typedef [public] long LPTBBUTTON;
 typedef [public] long LPTSTR;
 typedef [public] long LPUNKNOWN;
 typedef [public] long LPVARIANTARG;
 typedef [public] long LPWIN32_FIND_DATA;
 typedef [public] long LPVOID;
 typedef [public] long LRESULT;
 typedef [public] long REFGUID;
 typedef [public] long REFIID;
 typedef [public] long UINT;
 typedef [public] double ULARGE_INTEGER;
 typedef [public] long ULONG;
 typedef [public] long VOID;
 typedef [public] long WPARAM;
 typedef [public] short WORD;

 //---
 // C O M M O N T Y P E S
 //---

 //typedef struct {
 // DWORD data1;
 // short data2;
 // short data3;
 // BYTE data4[8];
 //} GUID;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 typedef enum {
 FCIDM_SHVIEWFIRST = 0x0000,
 FCIDM_SHVIEWLAST = 0x7fff,
 FCIDM_BROWSERFIRST = 0xa000,
 FCIDM_BROWSERLAST = 0xbf00,
 FCIDM_GLOBALFIRST = 0x8000,
 FCIDM_GLOBALLAST = 0x9fff,
 } FCIDM;

 //#define FCIDM_GLOBALLAST 0x9fff
 typedef enum {
 FCIDM_MENU_FILE = (0x9fff+0x0000),
 FCIDM_MENU_EDIT = (0x9fff+0x0040),
 FCIDM_MENU_VIEW = (0x9fff+0x0080),
 FCIDM_MENU_VIEW_SEP_OPTIONS = (0x9fff+0x0081),
 FCIDM_MENU_TOOLS = (0x9fff+0x00c0),
 FCIDM_MENU_TOOLS_SEP_GOTO = (0x9fff+0x00c1),
 FCIDM_MENU_HELP = (0x9fff+0x0100),
 FCIDM_MENU_FIND = (0x9fff+0x0140),
 FCIDM_MENU_EXPLORE = (0x9fff+0x0150),
 FCIDM_MENU_FAVORITES = (0x9fff+0x0170),
 } FCIDM_MENU;

 typedef struct tagFILETIME {
 DWORD dwLowDateTime;
 DWORD dwHighDateTime;
 } FILETIME;

 typedef enum {
 MK_LBUTTON = 0x0001,
 MK_RBUTTON = 0x0002,
 MK_SHIFT = 0x0004,
 MK_CONTROL = 0x0008,
 MK_MBUTTON = 0x0010,
 MK_ALT = 0x0020
 } KEYSTATES;

 typedef enum {
 MIIM_STATE = 0x00000001,
 MIIM_ID = 0x00000002,
 MIIM_SUBMENU = 0x00000004,
 MIIM_CHECKMARKS = 0x00000008,
 MIIM_TYPE = 0x00000010,
 MIIM_DATA = 0x00000020,
 } MIIM;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 typedef struct {
 UINT cbSize;
 MIIM fMask;
 UINT fType;
 UINT fState;
 UINT wID;
 HMENU hSubMenu;
 HBITMAP hbmpChecked;
 HBITMAP hbmpUnchecked;
 DWORD dwItemData;
 LPTSTR dwTypeData;
 UINT cch;
 } MENUITEMINFO;

 typedef struct {
 long width[6];
 } OLEMENUGROUPWIDTHS;

 typedef struct {
 long x;
 long y;
 } POINT;

 typedef [public] POINT POINTL;

 typedef struct {
 long left;
 long top;
 long right;
 long bottom;
 } RECT;

 //---
 // I N T E R F A C E S
 //---

 //---
 //
 // IContextMenu
 //
 //---
 typedef enum {
 CF_TEXT = 1,
 CF_BITMAP = 2,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CF_METAFILEPICT = 3,
 CF_SYLK = 4,
 CF_DIF = 5,
 CF_TIFF = 6,
 CF_OEMTEXT = 7,
 CF_DIB = 8,
 CF_PALETTE = 9,
 CF_PENDATA = 10,
 CF_RIFF = 11,
 CF_WAVE = 12,
 CF_UNICODETEXT = 13,
 CF_ENHMETAFILE = 14,
 CF_HDROP = 15,
 CF_LOCALE = 16,
 CF_MAX = 17,
 CF_OWNERDISPLAY = 0x0080,
 CF_DSPTEXT = 0x0081,
 CF_DSPBITMAP = 0x0082,
 CF_DSPMETAFILEPICT = 0x0083,
 CF_DSPENHMETAFILE = 0x008E
 } CLIPFORMAT;

 typedef struct {
 DWORD cbSize;
 DWORD fMask;
 HWND hwnd;
 LPCSTRVB lpVerb;
 LPCSTRVB lpParameters;
 LPCSTRVB lpDirectory;
 int nShow;
 DWORD dwHotKey;
 HANDLE hIcon;
 } CMINVOKECOMMANDINFO;

 typedef enum {
 DVASPECT_CONTENT = 1,
 DVASPECT_THUMBNAIL = 2,
 DVASPECT_ICON = 4,
 DVASPECT_DOCPRINT = 8
 } DVASPECT;

 typedef enum {
 GCS_VERBA = 0x00000000,
 GCS_HELPTEXTA = 0x00000001,
 GCS_VALIDATEA = 0x00000002,
 GCS_VERBW = 0x00000004,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 GCS_HELPTEXTW = 0x00000005,
 GCS_VALIDATEW = 0x00000006,
 GCS_UNICODE = 0x00000004,
 } GETCOMMANDSTRINGFLAGS;

 typedef enum {
 MF_INSERT = 0x00000000,
 MF_CHANGE = 0x00000080,
 MF_APPEND = 0x00000100,
 MF_DELETE = 0x00000200,
 MF_REMOVE = 0x00001000,
 MF_BYCOMMAND = 0x00000000,
 MF_BYPOSITION = 0x00000400,
 MF_SEPARATOR = 0x00000800,
 MF_ENABLED = 0x00000000,
 MF_GRAYED = 0x00000001,
 MF_DISABLED = 0x00000002,
 MF_UNCHECKED = 0x00000000,
 MF_CHECKED = 0x00000008,
 MF_USECHECKBITMAPS = 0x00000200,
 MF_STRING = 0x00000000,
 MF_BITMAP = 0x00000004,
 MF_OWNERDRAW = 0x00000100,
 MF_POPUP = 0x00000010,
 MF_MENUBARBREAK = 0x00000020,
 MF_MENUBREAK = 0x00000040,
 MF_UNHILITE = 0x00000000,
 MF_HILITE = 0x00000080,
 MF_DEFAULT = 0x00001000,
 MF_SYSMENU = 0x00002000,
 MF_HELP = 0x00004000,
 MF_RIGHTJUSTIFY = 0x00004000,
 MF_MOUSESELECT = 0x00008000,
 MF_END = 0x00000080
 } MENUFLAGS;

 typedef enum {
 TYMED_HGLOBAL = 1,
 TYMED_FILE = 2,
 TYMED_ISTREAM = 4,
 TYMED_ISTORAGE = 8,
 TYMED_GDI = 16,
 TYMED_MFPICT = 32,
 TYMED_ENHMF = 64,
 TYMED_NULL = 0
 } TYMED;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 typedef struct {
 long cfFormat;
 long ptd;
 DWORD dwAspect;
 long lindex;
 TYMED tymed;
 } FORMATETC;

 // This is really a union
 // This is a generic definition
 typedef struct {
 TYMED tymed;
 long pData;
 IUnknown *pUnkForRelease;
 } STGMEDIUM;

 typedef enum {
 CMF_NORMAL = 0x00000000,
 CMF_DEFAULTONLY = 0x00000001,
 CMF_VERBSONLY = 0x00000002,
 CMF_EXPLORE = 0x00000004,
 CMF_NOVERBS = 0x00000008,
 CMF_CANRENAME = 0x00000010,
 CMF_NODEFAULT = 0x00000020,
 CMF_INCLUDESTATIC = 0x00000040,
 CMF_RESERVED = 0xffff0000
 } QUERYCONTEXTMENUFLAGS;

 [
 uuid(000214e4-0000-0000-c000-000000000046),
 helpstring("IContextMenu Interface"),
 odl
]
 interface IContextMenu : IUnknown
 {
 HRESULT QueryContextMenu(
 [in] HMENU hmenu,
 [in] UINT indexMenu,
 [in] UINT idCmdFirst,
 [in] UINT idCmdLast,
 [in] QueryContextMenuFlags uFlags);

 HRESULT InvokeCommand([in] LPCMINVOKECOMMANDINFO lpcmi);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HRESULT GetCommandString([in] UINT idCmd,
 [in] UINT uType,
 [in] UINT pwReserved,
 [in] LPSTRVB pszName,
 [in] UINT cchMax);
 }

 //---
 // ICopyHook
 //---

 typedef enum {
 FO_MOVE = 0x0001,
 FO_COPY = 0x0002,
 FO_DELETE = 0x0003,
 FO_RENAME = 0x0004
 } FO;

 [
 uuid(000214EF-0000-0000-C000-000000000046),
 helpstring("ICopyHookA Interface"),
 odl
]
 interface ICopyHookA : IUnknown
 {
 HRESULT CopyCallback([in] HWND hwnd,
 [in] UINT wFunc,
 [in] UINT wFlags,
 [in] LPCSTRVB pszSrcFile,
 [in] DWORD dwSrcAttribs,
 [in] LPCSTRVB pszDestFile,
 [in] DWORD dwDestAttribs);
 }

 [
 uuid(000214FC-0000-0000-C000-000000000046),
 helpstring("ICopyHookW Interface"),
 odl
]
 interface ICopyHookW : IUnknown
 {
 HRESULT CopyCallback([in] HWND hwnd,
 [in] UINT wFunc,
 [in] UINT wFlags,
 [in] LPCWSTRVB pszSrcFile,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in] DWORD dwSrcAttribs,
 [in] LPCWSTRVB pszDestFile,
 [in] DWORD dwDestAttribs);
 }

 //---
 // IDataObject
 //---
 typedef enum {
 DV_E_FORMATETC = 0x80040064,
 DV_E_DVTARGETDEVICE = 0x80040065,
 DV_E_STGMEDIUM = 0x80040066,
 DV_E_STATDATA = 0x80040067,
 DV_E_LINDEX = 0x80040068,
 DV_E_TYMED = 0x80040069,
 DV_E_CLIPFORMAT = 0x8004006A,
 DV_E_DVASPECT = 0x8004006B,
 DV_E_DVTARGETDEVICE_SIZE = 0x8004006C,
 DV_E_NOIVIEWOBJECT = 0x8004006D
 } DV_ERROR;

 typedef enum tagDATADIR
 {
 DATADIR_GET = 1,
 DATADIR_SET = 2
 } DATADIR;

 [
 uuid(0000010e-0000-0000-C000-000000000046),
 helpstring("IDataObject Interface"),
 odl
]
 interface IDataObject : IUnknown
 {
 HRESULT GetData(
 [in] FORMATETC *pformatetcIn,
 [in,out] STGMEDIUM *pmedium);

 HRESULT GetDataHere(
 [in] FORMATETC *pformatetc,
 [in,out] STGMEDIUM *pmedium);

 HRESULT QueryGetData(
 [in] FORMATETC *pformatetc);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HRESULT GetCanonicalFormatEtc(
 [in] FORMATETC *pformatectIn,
 [in,out] FORMATETC *pformatetcOut);

 HRESULT SetData(
 [in] FORMATETC *pformatetc,
 [in] STGMEDIUM *pmedium,
 [in] BOOL fRelease);

 HRESULT EnumFormatEtc(
 [in] long dwDirection,
 [in,out] IEnumFORMATETC **ppenumFormatEtc);

 HRESULT DAdvise(
 [in] FORMATETC *pformatetc,
 [in] long advf,
 [in] long pAdvSink,
 [in] long pdwConnection);

 HRESULT DUnadvise(
 [in] long dwConnection);

 HRESULT EnumDAdvise(
 [in] long ppenumAdvise);
 }

 //---
 // IDockingWindow (derived from IOleWindow)
 //---
 [
 uuid(012dd920-7b26-11d0-8ca9-00a0c92dbfe8),
 helpstring("IDockingWindow Interface"),
 odl
]
 interface IDockingWindow : IUnknown
 {

 //IOleWindow
 HRESULT GetWindow([out, retval] long *phWnd);
 HRESULT ContextSensitiveHelp([in] boolean fEnterMode);

 //IDockingWindow
 HRESULT ShowDW([in] boolean fShow);
 HRESULT CloseDW([in] long dwReserved);
 HRESULT ResizeBorderDW([in] long prcBorder,
 [in] IUnknownVB *punkToolbarSite,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in] boolean fReserved);
 }

 //---
 // IDockingWindowFrame (derived from IOleWindow)
 //---
 [
 uuid(47d2657a-7b27-11d0-8ca9-00a0c92dbfe8),
 helpstring("IDockingWindowFrame Interface"),
 odl
]
 interface IDockingWindowFrame : IUnknown
 {

 //IOleWindow
 HRESULT GetWindow([out, retval] long *phWnd);
 HRESULT ContextSensitiveHelp([in] boolean fEnterMode);

 //IDockingWindowFrame
 HRESULT AddToolbar([in] IUnknown *punkSrc,
 [in] LPCWSTRVB pwszItem,
 [in] DWORD dwAddFlags);

 HRESULT RemoveToolbar([in] IUnknown *punkSrc,
 [in] DWORD dwRemoveFlags);

 HRESULT FindToolbar([in] LPCWSTRVB pwszItem,
 [in] REFIID riid,
 [in,out] LPVOID* ppvObj);

 }

 //---
 // IDockingWindowSite (derived from IOleWindow)
 //---
 [
 uuid(2a342fc2-7b26-11d0-8ca9-00a0c92dbfe8),
 helpstring("IDockingWindowSite Interface"),
 odl
]
 interface IDockingWindowSite : IUnknown
 {

 //IOleWindow
 HRESULT GetWindow([out, retval] long *phWnd);
 HRESULT ContextSensitiveHelp([in] boolean fEnterMode);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //IDockingWindowSite
 HRESULT GetBorderDW([in] IUnknown* punkObj,
 [in] LPRECT prcBorder);

 HRESULT RequestBorderSpaceDW([in] IUnknown* punkObj,
 [in] LPCBORDERWIDTHS pbw);

 HRESULT SetBorderSpaceDW([in] IUnknown* punkObj,
 [in] LPCBORDERWIDTHS pbw);

 }

 //---
 // IDeskband (derived from IDockingWindow)
 //---
 typedef enum {
 DBIM_MINSIZE = 0x0001,
 DBIM_MAXSIZE = 0x0002,
 DBIM_INTEGRAL = 0x0004,
 DBIM_ACTUAL = 0x0008,
 DBIM_TITLE = 0x0010,
 DBIM_MODEFLAGS = 0x0020,
 DBIM_BKCOLOR = 0x0040
 } DBIM;

 // DESKBANDINFO dwModeFlags values
 typedef enum {
 DBIMF_NORMAL = 0x0000,
 DBIMF_VARIABLEHEIGHT = 0x0008,
 DBIMF_DEBOSSED = 0x0020,
 DBIMF_BKCOLOR = 0x0040
 } DBIMF;

 // GetBandInfo view mode values
 typedef enum {
 DBIF_VIEWMODE_NORMAL = 0x0000,
 DBIF_VIEWMODE_VERTICAL = 0x0001,
 DBIF_VIEWMODE_FLOATING = 0x0002,
 DBIF_VIEWMODE_TRANSPARENT = 0x0004
 } DBIF;

 [
 uuid(eb0fe172-1a3a-11d0-89b3-00a0c90a90ac),
 helpstring("IDeskBand Interface"),
 odl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

]
 interface IDeskBand : IUnknown
 {

 //IOleWindow
 HRESULT GetWindow([out, retval] long *phWnd);
 HRESULT ContextSensitiveHelp([in] boolean fEnterMode);

 //IDockingWindow
 HRESULT ShowDW([in] boolean fShow);
 HRESULT CloseDW([in] long dwReserved);
 HRESULT ResizeBorderDW([in] long prcBorder,
 [in] long punkToolbarSite,
 [in] boolean fReserved);

 //IDeskBand
 HRESULT GetBandInfo([in] long dwBandID,
 [in] long dwViewMode,
 [in] LPDESKBANDINFO pdbi);
 }

 //---
 // IDropTarget
 //---

 typedef enum {
 DROPEFFECT_NONE = 0,
 DROPEFFECT_COPY = 1,
 DROPEFFECT_MOVE = 2,
 DROPEFFECT_LINK = 4,
 DROPEFFECT_SCROLL = 0x80000000
 } DROPEFFECT;
 [
 uuid(00000122-0000-0000-C000-000000000046),
 helpstring("IDropTarget Interface"),
 odl
]
 interface IDropTarget : IUnknown
 {

 typedef IDropTarget *LPDROPTARGET;

 HRESULT DragEnter
 (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in] IDataObject *pDataObj,
 [in] KEYSTATES grfKeyState,
 [in] long x,
 [in] long y,
 [in, out] DROPEFFECT *pdwEffect
);

 HRESULT DragOver
 (
 [in] KEYSTATES grfKeyState,
 [in] long x,
 [in] long y,
 [in, out] DROPEFFECT *pdwEffect
);

 HRESULT DragLeave(void);

 HRESULT Drop
 (
 [in] IDataObject *pDataObj,
 [in] KEYSTATES grfKeyState,
 [in] long x,
 [in] long y,
 [in, out] DROPEFFECT *pdwEffect
);
 }

 //--
 // IEnumFORMATETC
 //--
 [
 uuid(00000103-0000-0000-C000-000000000046),
 helpstring("IEnumFORMATETC Interface"),
 odl
]
 interface IEnumFORMATETC : IUnknown
 {
 HRESULT Next([in] ULONG celt,
 [in, out] FORMATETC *rgelt,
 [in, out] ULONG *pceltFetched);
 HRESULT Skip([in] ULONG celt);
 HRESULT Reset();
 HRESULT Clone([in, out] IEnumFORMATETC **ppenum);
 }

 //--

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // IEnumIDList
 //--
 [
 uuid(000214f2-0000-0000-c000-000000000046),
 helpstring("IEnumIDList Interface"),
 odl
]
 interface IEnumIDList : IUnknown
 {
 HRESULT Next([in] ULONG celt,
 [in, out] LPITEMIDLIST *rgelt,
 [in, out] ULONG *pceltFetched);
 HRESULT Skip([in] ULONG celt);
 HRESULT Reset();
 HRESULT Clone([in, out] IEnumIDList **ppenum);
 }

 //--
 // IExtractIcon
 //--

 // GetIconLocation input flags
 typedef enum {
 GIL_OPENICON = 0x0001,
 GIL_FORSHELL = 0x0002,
 GIL_ASYNC = 0x0020
 } GETICONLOCATIONINPUT;

 // GetIconLocation return flags
 typedef enum {
 GIL_SIMULATEDOC = 0x0001,
 GIL_PERINSTANCE = 0x0002,
 GIL_PERCLASS = 0x0004,
 GIL_NOTFILENAME = 0x0008,
 GIL_DONTCACHE = 0x0010
 } GETICONLOCATIONRETURN;

 [
 uuid(000214eb-0000-0000-c000-000000000046),
 helpstring("IExtractIconA Interface"),
 odl
]
 interface IExtractIconA : IUnknown
 {

 HRESULT GetIconLocation(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in] UINT uFlags,
 [in] LPSTRVB szIconFile,
 [in] UINT cchMax,
 [in, out] long *piIndex,
 [in, out] GETICONLOCATIONRETURN *pwFlags);

 HRESULT Extract([in] LPCSTRVB pszFile,
 [in] UINT nIconIndex,
 [in, out] HICON *phiconLarge,
 [in, out] HICON *phiconSmall,
 [in] UINT nIconSize);
 }

 [
 uuid(000214fa-0000-0000-c000-000000000046),
 helpstring("IExtractIconW"),
 odl
]
 interface IExtractIconW : IUnknown
 {
 HRESULT GetIconLocation(
 [in] UINT uFlags,
 [in] LPWSTRVB szIconFile,
 [in] UINT cchMax,
 [in, out] long *piIndex,
 [in, out] GETICONLOCATIONRETURN *pwFlags);

 HRESULT Extract([in] LPWSTRVB pszFile,
 [in] UINT nIconIndex,
 [in, out] HICON *phiconLarge,
 [in, out] HICON *phiconSmall,
 [in] UINT nIconSize);
 }

 //---
 // IFileViewer
 //---
 typedef enum {
 FVSIF_RECT = 0x00000001,
 FVSIF_PINNED = 0x00000002,
 FVSIF_NEWFAILED = 0x08000000,
 FVSIF_NEWFILE = 0x80000000,
 FVSIF_CANVIEWIT = 0x40000000
 }FVSIF;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [
 uuid(000214f0-0000-0000-c000-000000000046),
 helpstring("IFileViewerA Interface"),
 odl
]
 interface IFileViewerA : IUnknown
 {
 HRESULT ShowInitialize([in] IFileViewerSite *lpfsi);
 HRESULT Show([in] LPFVSHOWINFO pvsi);
 HRESULT PrintTo([in] LPSTRVB pszDriver,
 [in] BOOL fSuppressUI);
 }

 [
 uuid(000214f8-0000-0000-c000-000000000046),
 helpstring("IFileViewerW Interface"),
 odl
]
 interface IFileViewerW : IUnknown
 {
 HRESULT ShowInitialize([in] IFileViewerSite *lpfsi);
 HRESULT Show([in] LPFVSHOWINFO pvsi);
 HRESULT PrintTo([in] LPWSTRVB pszDriver,
 [in] BOOL fSuppressUI);
 }

 //---
 // IFileViewerSite
 //---
 [
 uuid(000214f3-0000-0000-c000-000000000046),
 helpstring("IFileViewerSite Interface"),
 odl
]
 interface IFileViewerSite : IUnknown
 {
 HRESULT SetPinnedWindow([in] HWND hwnd);
 HRESULT GetPinnedWindow([out, retval] HWND *phwnd);
 }

 //---
 //IInputObject
 //---
 [
 uuid(68284faa-6a48-11d0-8c78-00c04fd918b4),
 helpstring("IInputObject Interface"),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 odl
]
 interface IInputObject : IUnknown
 {
 HRESULT UIActivateIO([in] boolean fActivate,
 [in] LPMSG lpMsg);
 HRESULT HasFocusIO();
 HRESULT TranslateAcceleratorIO([in] LPMSG lpMsg);
 }

 //---
 //IMalloc
 //---
 [
 uuid(00000002-0000-0000-C000-000000000046),
 helpstring("IMalloc Interface"),
 odl
]

 interface IMalloc : IUnknown
 {

 //void *Alloc([in] ULONG cb);
 long Alloc([in] ULONG cb);

 //void *Realloc ([in] void *pv,
 // [in] ULONG cb);
 long Realloc ([in] VOID *pv, [in] ULONG cb);

 void Free([in] VOID *pv);

 ULONG GetSize([in] VOID *pv);

 int DidAlloc([in] VOID *pv);

 void HeapMinimize();
 }

 //---
 //IObjectWithSite
 //---
 [
 uuid(FC4801A3-2BA9-11CF-A229-00AA003D7352),
 helpstring("IObjectWithSite Interface"),
 odl
]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 interface IObjectWithSite : IUnknown
 {
 HRESULT SetSite([in] IUnknownVB* pSite);
 HRESULT GetSite([in] REFIID priid,
 [in, out] VOID * ppvObj);
 }

 //---
 //IOleCommandTarget
 //---

 [
 uuid(B722BCCB-4E68-101B-A2BC-00AA00404770),
 helpstring("IOleCommandTarget Interface"),
 odl
]
 interface IOleCommandTarget : IUnknown
 {

 typedef enum OLECMDF {
 OLECMDF_SUPPORTED = 0x00000001,
 OLECMDF_ENABLED = 0x00000002,
 OLECMDF_LATCHED = 0x00000004,
 OLECMDF_NINCHED = 0x00000008,
 } OLECMDF;

 typedef struct _tagOLECMD {
 ULONG cmdID;
 DWORD cmdf;
 } OLECMD;

 typedef struct _tagOLECMDTEXT{
 DWORD cmdtextf;
 ULONG cwActual;
 ULONG cwBuf;
 long rgwz;
 } OLECMDTEXT;

 typedef enum OLECMDID {
 OLECMDID_OPEN = 1,
 OLECMDID_NEW = 2,
 OLECMDID_SAVE = 3,
 OLECMDID_SAVEAS = 4,
 OLECMDID_SAVECOPYAS = 5,
 OLECMDID_PRINT = 6,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OLECMDID_PRINTPREVIEW = 7,
 OLECMDID_PAGESETUP = 8,
 OLECMDID_SPELL = 9,
 OLECMDID_PROPERTIES = 10,
 OLECMDID_CUT = 11,
 OLECMDID_COPY = 12,
 OLECMDID_PASTE = 13,
 OLECMDID_PASTESPECIAL = 14,
 OLECMDID_UNDO = 15,
 OLECMDID_REDO = 16,
 OLECMDID_SELECTALL = 17,
 OLECMDID_CLEARSELECTION = 18,
 OLECMDID_ZOOM = 19,
 OLECMDID_GETZOOMRANGE = 20,
 OLECMDID_UPDATECOMMANDS = 21,
 OLECMDID_REFRESH = 22,
 OLECMDID_STOP = 23,
 OLECMDID_HIDETOOLBARS = 24,
 OLECMDID_SETPROGRESSMAX = 25,
 OLECMDID_SETPROGRESSPOS = 26,
 OLECMDID_SETPROGRESSTEXT = 27,
 OLECMDID_SETTITLE = 28,
 OLECMDID_SETDOWNLOADSTATE = 29,
 OLECMDID_STOPDOWNLOAD = 30,
 OLECMDID_ONTOOLBARACTIVATED = 31,
 OLECMDID_FIND = 32,
 OLECMDID_DELETE = 33,
 OLECMDID_HTTPEQUIV = 34,
 OLECMDID_HTTPEQUIV_DONE = 35,
 OLECMDID_ENABLE_INTERACTION = 36,
 OLECMDID_ONUNLOAD = 37,
 OLECMDID_PROPERTYBAG2 = 38,
 OLECMDID_PREREFRESH = 39,
 } OLECMDID;

 typedef enum OLECMDTEXTF {
 OLECMDTEXTF_NONE = 0,
 OLECMDTEXTF_NAME = 1,
 OLECMDTEXTF_STATUS = 2,
 } OLECMDTEXTF;

 typedef enum OLECMDEXECOPT {
 OLECMDEXECOPT_DODEFAULT = 0,
 OLECMDEXECOPT_PROMPTUSER = 1,
 OLECMDEXECOPT_DONTPROMPTUSER = 2,
 OLECMDEXECOPT_SHOWHELP = 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } OLECMDEXECOPT;

 HRESULT QueryStatus([in] LPGUID pguidCmdGroup,
 [in] ULONG cCmds,
 [in] LPOLECMD prgCmds,
 [in] LPOLECMDTEXT pCmdText);

 HRESULT Exec([in] LPGUID pguidCmdGroup,
 [in] DWORD nCmdID,
 [in] DWORD nCmdExecOpt,
 [in] VARIANT *pvaIn,
 [in, out] VARIANT *pvaOut);

 }

 //---
 //IOleWindow
 //---
 [
 uuid(00000114-0000-0000-C000-000000000046),
 helpstring("IOleWindow Interface"),
 odl
]
 interface IOleWindow : IUnknown
 {
 HRESULT GetWindow([out, retval] long *phwnd);
 HRESULT ContextSensitiveHelp([in] boolean fEnterMode);
 };

 //---
 //IPersist
 //---
 [
 uuid(0000010c-0000-0000-C000-000000000046),
 helpstring("IPersist Interface"),
 odl
]
 interface IPersist : IUnknown
 {
 HRESULT GetClassID([in, out] CLSID *lpClassID);
 }

 //---
 //
 // IPersistFile
 //

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // (this interface is actually derived from
 // IPersist not IUnknown)
 //---

 [
 uuid(0000010b-0000-0000-C000-000000000046),
 helpstring("IPersistFile Interface"),
 odl
]
 interface IPersistFile : IUnknown
 {

 //IPersist
 HRESULT GetClassID([in, out] CLSID *lpClassID);

 //IPersistFile
 HRESULT IsDirty();

 HRESULT Load([in] LPCOLESTR pszFileName,
 [in] DWORD dwMode);

 HRESULT Save([in] LPCOLESTR pszFileName,
 [in] BOOL fRemember);

 HRESULT SaveCompleted([in] LPCOLESTR pszFileName);

 HRESULT GetCurFile([in, out] LPOLESTR *ppszFileName);

 }

 //---
 // IPersistFolder
 //
 // (this interface is actually derived from
 // IPersist not IUnknown)
 //---
 [
 uuid(000214ea-0000-0000-c000-000000000046),
 helpstring("IPersistFolder Interface"),
 odl
]
 interface IPersistFolder : IUnknown
 {
 // IPersist methods
 HRESULT GetClassID([in, out] CLSID *lpClassID);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // IPersistFolder methods
 HRESULT Initialize([in] LPCITEMIDLIST pidl);
 }

 //---
 // IQueryInfo
 //---
 [
 uuid(00021500-0000-0000-C000-000000000046),
 helpstring("IQueryInfo Interface"),
 odl
]
 interface IQueryInfo : IUnknown
 {
 HRESULT GetInfoTip([in] DWORD dwFlags,
 [in, out] LPWSTRVB *ppwszTip);
 HRESULT GetInfoFlags([in, out] DWORD *pdwFlags);
 }

 [
 uuid(6d5140c1-7436-11ce-8034-00aa006009fa),
 helpstring("IServiceProvider Interface"),
 odl
]

 //---
 // IServiceProvider
 //---
 interface IServiceProvider : IUnknown
 {

 HRESULT QueryService(
 [in] REFGUID guidService,
 [in] REFIID riid,
 [out, retval] IUnknown** ppvObject);
 }

 //---
 // IShellBrowser
 //
 // (this interface is actually derived from
 // IOleWindow)
 //---
 typedef enum {
 SBSP_DEFBROWSER = 0x0000,
 SBSP_SAMEBROWSER = 0x0001,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SBSP_NEWBROWSER = 0x0002,
 SBSP_DEFMODE = 0x0000,
 SBSP_OPENMODE = 0x0010,
 SBSP_EXPLOREMODE = 0x0020,
 SBSP_ABSOLUTE = 0x0000,
 SBSP_RELATIVE = 0x1000,
 SBSP_PARENT = 0x2000,
 SBSP_NAVIGATEBACK = 0x4000,
 SBSP_NAVIGATEFORWARD = 0x8000,
 SBSP_ALLOW_AUTONAVIGATE = 0x10000,
 SBSP_INITIATEDBYHLINKFRAME = 0x80000000,
 SBSP_REDIRECT = 0x40000000,
 SBSP_WRITENOHISTORY = 0x08000000,
 SBSP_NOAUTOSELECT = 0x04000000
 } SBSP_BROWSER;

 [
 uuid(000214e2-0000-0000-c000-000000000046),
 helpstring("IShellBrowser Interface"),
 odl
]
 interface IShellBrowser : IUnknown
 {
 // IOleWindow
 HRESULT GetWindow([out, retval] HWND * lphwnd);
 HRESULT ContextSensitiveHelp([in] BOOL fEnterMode);

 // IShellBrowser
 HRESULT InsertMenusSB(
 [in] HMENU hmenuShared,
 [in] LPOLEMENUGROUPWIDTHS lpMenuWidths);

 HRESULT SetMenuSB([in] HMENU hmenuShared,
 [in] HOLEMENU holemenuReserved,
 [in] HWND hwndActiveObject);

 HRESULT RemoveMenusSB([in] HMENU hmenuShared);

 HRESULT SetStatusTextSB([in] LPCOLESTR lpszStatusText);

 HRESULT EnableModelessSB([in] BOOL fEnable);

 HRESULT TranslateAcceleratorSB([in] LPMSG lpmsg,
 [in] WORD wID);

 HRESULT BrowseObject([in] LPCITEMIDLIST pidl,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in] SBSP_BROWSER wFlags);

 HRESULT GetViewStateStream([in] DWORD grfMode,
 [in, out] LPSTREAM *ppStrm);

 HRESULT GetControlWindow([in] UINT id,
 [out, retval] HWND * lphwnd);

 HRESULT SendControlMsg([in] UINT id,
 [in] UINT uMsg,
 [in] WPARAM wParam,
 [in] LPARAM lParam,
 [out, retval] LRESULT * pret);

 HRESULT QueryActiveShellView(
 [out, retval] IShellView ** ppshv);

 HRESULT OnViewWindowActive([in] IShellView * ppshv);

 HRESULT SetToolbarItems([in] LPTBBUTTON lpButtons,
 [in] UINT nButtons,
 [in] UINT uFlags);
 }

 //---
 // IShellExtInit
 //---

 [
 uuid(000214E8-0000-0000-C000-000000000046),
 helpstring("IShellExtInit Interface"),
 odl
]
 interface IShellExtInit : IUnknown
 {
 HRESULT Initialize(
 [in] LPCITEMIDLIST pidlFolder,
 [in] IDataObject *pDataObj,
 [in] HKEY hKeyProgID);
 }

 //---
 // IShellFolder
 //---

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // IShellFolder::GetDisplayNameOf/SetNameOf uFlags
 typedef enum {
 SHGDN_NORMAL = 0,
 SHGDN_INFOLDER = 1,
 SHGDN_INCLUDE_NONFILESYS = 0x2000,
 SHGDN_FORADDRESSBAR = 0x4000,
 SHGDN_FORPARSING = 0x8000,
 } SHGNO;

 // IShellFolder::EnumObjects
 typedef enum {
 SHCONTF_FOLDERS = 32,
 SHCONTF_NONFOLDERS = 64,
 SHCONTF_INCLUDEHIDDEN = 128,
 } SHCONTF;

 // IShellFolder::GetAttributesOf flags
 typedef enum {
 SFGAO_CANCOPY = 0x00000001, // DROPEFFECT_COPY
 SFGAO_CANMOVE = 0x00000002, // DROPEFFECT_MOVE
 SFGAO_CANLINK = 0x00000004, // DROPEFFECT_LINK
 SFGAO_CANRENAME = 0x00000010,
 SFGAO_CANDELETE = 0x00000020,
 SFGAO_HASPROPSHEET = 0x00000040,
 SFGAO_DROPTARGET = 0x00000100,
 SFGAO_CAPABILITYMASK = 0x00000177,
 SFGAO_LINK = 0x00010000,
 SFGAO_SHARE = 0x00020000,
 SFGAO_READONLY = 0x00040000,
 SFGAO_GHOSTED = 0x00080000,
 SFGAO_HIDDEN = 0x00080000,
 SFGAO_DISPLAYATTRMASK = 0x000F0000,
 SFGAO_FILESYSANCESTOR = 0x10000000,
 SFGAO_FOLDER = 0x20000000,
 SFGAO_FILESYSTEM = 0x40000000,
 SFGAO_HASSUBFOLDER = 0x80000000,
 SFGAO_CONTENTSMASK = 0x80000000,
 SFGAO_VALIDATE = 0x01000000,
 SFGAO_REMOVABLE = 0x02000000,
 SFGAO_COMPRESSED = 0x04000000,
 SFGAO_BROWSABLE = 0x08000000,
 SFGAO_NONENUMERATED = 0x00100000,
 SFGAO_NEWCONTENT = 0x00200000,
 }SFGAO;

 typedef struct _SHITEMID {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 short cb;
 BYTE abID[1];
 } SHITEMID;

 typedef struct _ITEMIDLIST {
 SHITEMID mkid;
 } ITEMIDLIST;

 [
 uuid(000214e6-0000-0000-c000-000000000046),
 helpstring("IShellFolder Interface"),
 odl
]
 interface IShellFolder : IUnknown
 {
 HRESULT ParseDisplayName([in] HWND hwndOwner,
 [in] LPBC pbcReserved,
 [in] LPOLESTR lpszDisplayName,
 [in] ULONG * pchEaten,
 [in, out] LPITEMIDLIST * ppidl,
 [in, out] ULONG *pdwAttributes);

 HRESULT EnumObjects(
 [in] HWND hwndOwner,
 [in] DWORD grfFlags,
 [out, retval] IEnumIDList ** ppenumIDList);

 HRESULT BindToObject([in] LPCITEMIDLIST pidl,
 [in] LPBC pbcReserved,
 [in] REFIID riid,
 [in, out] LPVOID *ppvOut);

 HRESULT BindToStorage([in] LPCITEMIDLIST pidl,
 [in] LPBC pbcReserved,
 [in] REFIID riid,
 [in, out] LPVOID * ppvObj);

 HRESULT CompareIDs([in] LPARAM lParam,
 [in] LPCITEMIDLIST pidl1,
 [in] LPCITEMIDLIST pidl2);

 HRESULT CreateViewObject([in] HWND hwndOwner,
 [in] REFIID riid,
 [in, out] LPVOID * ppvOut);

 HRESULT GetAttributesOf([in] UINT cidl,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in, out] LPCITEMIDLIST * apidl,
 [in, out] ULONG * rgfInOut);

 HRESULT GetUIObjectOf([in] HWND hwndOwner,
 [in] UINT cidl,
 [in, out] LPCITEMIDLIST * apidl,
 [in] REFIID riid,
 [in, out] UINT * prgfInOut,
 [in] LPVOID ppvOut);

 HRESULT GetDisplayNameOf([in] LPCITEMIDLIST pidl,
 [in] DWORD uFlags,
 [in] LPSTRRET lpName);

 HRESULT SetNameOf([in] HWND hwndOwner,
 [in] LPCITEMIDLIST pidl,
 [in] LPCOLESTR lpszName,
 [in] DWORD uFlags,
 [in, out] LPITEMIDLIST * ppidlOut);
 }

 //---
 // IShellLinkA
 //---
 [
 uuid(000214EE-0000-0000-C000-000000000046),
 helpstring("IShellLinkA Interface"),
 odl
]
 interface IShellLinkA : IUnknown {

 HRESULT GetPath([in] LPSTRVB pszFile,
 [in] int cchMaxPath,
 [in] LPWIN32_FIND_DATA pfd,
 [in] DWORD fFlags);

 HRESULT GetIDList([out, retval] LPITEMIDLIST * ppidl);

 HRESULT SetIDList([in] LPCITEMIDLIST pidl);

 HRESULT GetDescription([in] LPCSTRVB pszName,
 [in] int cchMaxName);

 HRESULT SetDescription([in] LPCSTRVB pszName);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HRESULT GetWorkingDirectory([in] LPCSTRVB pszDir,
 [in] int cchMaxPath);

 HRESULT SetWorkingDirectory([in] LPCSTRVB pszDir);

 HRESULT GetArguments([in] LPSTRVB pszArgs,
 [in] int cchMaxPath);

 HRESULT SetArguments([in] LPCSTRVB pszArgs);

 HRESULT GetHotkey([out, retval] WORD *pwHotkey);

 HRESULT SetHotkey([in] WORD wHotkey);

 HRESULT GetShowCmd([out, retval] int *piShowCmd);

 HRESULT SetShowCmd([in] int iShowCmd);

 HRESULT GetIconLocation([in] LPSTRVB pszIconPath,
 [in] int cchIconPath,
 [out, retval] int *piIcon);

 HRESULT SetIconLocation([in] LPCSTRVB pszIconPath,
 [in] int iIcon);

 HRESULT SetRelativePath([in] LPCSTRVB pszPathRel,
 [in] DWORD dwReserved);

 HRESULT Resolve([in] HWND hwnd, [in] DWORD fFlags);

 HRESULT SetPath([in] LPCSTRVB pszFile);
 }

 //---
 // IShellLinkW
 //---
 [

 uuid(000214F9-0000-0000-C000-000000000046),
 helpstring("IShellLinkW Interface"),
 odl
]
 interface IShellLinkW : IUnknown {

 HRESULT GetPath([in] LPWSTRVB pszFile,
 [in] int cchMaxPath,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [in] LPWIN32_FIND_DATA pfd,
 [in] DWORD fFlags);

 HRESULT GetIDList([out, retval] LPITEMIDLIST * ppidl);

 HRESULT SetIDList([in] LPCITEMIDLIST pidl);

 HRESULT GetDescription([in] LPCWSTRVB pszName,
 [in] int cchMaxName);

 HRESULT SetDescription([in] LPCWSTRVB pszName);

 HRESULT GetWorkingDirectory([in] LPCWSTRVB pszDir,
 [in] int cchMaxPath);

 HRESULT SetWorkingDirectory([in] LPCWSTRVB pszDir);

 HRESULT GetArguments([in] LPCWSTRVB pszArgs,
 [in] int cchMaxPath);

 HRESULT SetArguments([in] LPCWSTRVB pszArgs);

 HRESULT GetHotkey([out, retval] WORD *pwHotkey);

 HRESULT SetHotkey([in] WORD wHotkey);

 HRESULT GetShowCmd([out, retval] int *piShowCmd);

 HRESULT SetShowCmd([in] int iShowCmd);

 HRESULT GetIconLocation([in] LPCWSTRVB pszIconPath,
 [in] int cchIconPath,
 [out, retval] int *piIcon);

 HRESULT SetIconLocation([in] LPCWSTRVB pszIconPath,
 [in] int iIcon);

 HRESULT SetRelativePath([in] LPCSTRVB pszPathRel,
 [in] DWORD dwReserved);

 HRESULT Resolve([in] HWND hwnd, [in] DWORD fFlags);

 HRESULT SetPath([in] LPCWSTRVB pszFile);
 }

 //---

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // IShellPropSheetExt
 //---

 typedef struct MSG {
 HWND hwnd;
 UINT message;
 WPARAM wParam;
 LPARAM lParam;
 DWORD time;
 POINT pt;
 } MSG;

 typedef struct {
 HWND hwndFrom;
 UINT idFrom;
 UINT code;
 } NMHDR;

 typedef enum {
 PSPCB_RELEASE = 1,
 PSPCB_CREATE = 2
 } PROPSHEETCALLBACKMSG;

 typedef enum {
 PSP_DEFAULT = 0x00000000,
 PSP_DLGINDIRECT = 0x00000001,
 PSP_USEHICON = 0x00000002,
 PSP_USEICONID = 0x00000004,
 PSP_USETITLE = 0x00000008,
 PSP_RTLREADING = 0x00000010,
 PSP_HASHELP = 0x00000020,
 PSP_USEREFPARENT = 0x00000040,
 PSP_USECALLBACK = 0x00000080,
 PSP_PREMATURE = 0x00000400,
 PSP_HIDEHEADER = 0x00000800,
 PSP_USEHEADERTITLE = 0x00001000,
 PSP_USEHEADERSUBTITLE = 0x00002000
 } PROPERTYSHEETFLAG;

 typedef enum {
 PSN_SETACTIVE = -200,
 PSN_KILLACTIVE = -201,
 PSN_APPLY = -202,
 PSN_RESET = -203,
 PSN_QUERYCANCEL = -209
 } PROPSHEETNOTIFYMSG;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 HINSTANCE hInstance;
 LPCSTRVB pszTemplate;
 HICON hIcon;
 LPCSTRVB pszTitle;
 DLGPROC pfnDlgProc;
 LPARAM lParam;
 LPFNPSPCALLBACK pfnCallback;
 long pcRefParent;
 LPCTSTRVB pszHeaderTitle;
 LPCTSTRVB pszHeaderSubTitle;
 } PROPSHEETPAGE;

 [
 uuid(000214e9-0000-0000-c000-000000000046),
 helpstring("IShellPropSheetExt Interface"),
 odl
]
 interface IShellPropSheetExt : IUnknown
 {
 HRESULT AddPages([in] LPFNADDPROPSHEETPAGE lpfnAddPage,
 [in] LPARAM lParam);

 HRESULT ReplacePage(
 [in] UINT uPageID,
 [in] LPFNADDPROPSHEETPAGE lpfnReplaceWith,
 [in] LPARAM lParam);
 }

 //---
 // IShellView
 //
 // (this interface is actually derived from
 // IOleWindow not IUnknown)
 //---

 typedef enum {
 FCW_STATUS = 0x0001,
 FCW_TOOLBAR = 0x0002,
 FCW_TREE = 0x0003,
 FCW_INTERNETBAR = 0x0006,
 FCW_PROGRESS = 0x0008,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } FCW;

 typedef struct {
 UINT ViewMode;
 UINT fFlags;
 }FOLDERSETTINGS;

 typedef struct _LVITEM {
 UINT mask;
 int iItem;
 int iSubItem;
 UINT state;
 UINT stateMask;
 LPTSTR pszText;
 int cchTextMax;
 int iImage;
 LPARAM lParam;
 int iIndent;
 } LVITEM;

 // shellview select item flags
 typedef enum {
 SVSI_DESELECT = 0x0000,
 SVSI_SELECT = 0x0001,
 SVSI_EDIT = 0x0003,
 SVSI_DESELECTOTHERS = 0x0004,
 SVSI_ENSUREVISIBLE = 0x0008,
 SVSI_FOCUSED = 0x0010,
 SVSI_TRANSLATEPT = 0x0020,
 } SVSI;

 // shellview get item object flags
 typedef enum {
 SVGIO_BACKGROUND = 0x00000000,
 SVGIO_SELECTION = 0x00000001,
 SVGIO_ALLVIEW = 0x00000002,
 } SVGIO;

 // uState values for IShellView::UIActivate
 typedef enum {
 SVUIA_DEACTIVATE = 0,
 SVUIA_ACTIVATE_NOFOCUS = 1,
 SVUIA_ACTIVATE_FOCUS = 2,
 SVUIA_INPLACEACTIVATE = 3
 } SVUIA_STATUS;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [
 uuid(000214e3-0000-0000-c000-000000000046),
 helpstring("IShellView Interface"),
 odl
]
 interface IShellView : IUnknown
 {
 // IOleWindow
 HRESULT GetWindow([out, retval] HWND * lphwnd);
 HRESULT ContextSensitiveHelp([in] BOOL fEnterMode);

 // IShellView
 HRESULT TranslateAccelerator([in] LPMSG lpmsg);

 HRESULT EnableModeless([in] BOOL fEnable);

 HRESULT UIActivate([in] SVUIA_STATUS uState);

 HRESULT Refresh();

 HRESULT CreateViewWindow(
 [in, out] IShellView *lpPrevView,
 [in] LPCFOLDERSETTINGS lpfs,
 [in, out] IShellBrowser * psb,
 [in] LPRECT prcView,
 [in, out] HWND *phWnd);

 HRESULT DestroyViewWindow();

 HRESULT GetCurrentInfo([in] LPFOLDERSETTINGS lpfs);

 HRESULT AddPropertySheetPages(
 [in] DWORD dwReserved,
 [in] LPFNADDPROPSHEETPAGE lpfn,
 [in] LPARAM lparam);

 HRESULT SaveViewState();

 HRESULT SelectItem([in] LPCITEMIDLIST pidlItem,
 [in] UINT uFlags);

 HRESULT GetItemObject([in] UINT uItem,
 [in] REFIID riid,
 [in] LPVOID *ppv);

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 //---
 // IStream
 //
 // (this interface is actually derived from
 // ISequentialStream)
 //---
 [
 uuid(0000000c-0000-0000-C000-000000000046),
 helpstring("IStream Interface"),
 odl
]
 interface IStream : IUnknown
 {

 // ISequentialStream Methods
 HRESULT Read([in, out] void *pv,
 [in] ULONG cb,
 [out, retval] ULONG *pcbRead);

 HRESULT Write([in] LPVOID *pv,
 [in] ULONG cb,
 [out, retval] ULONG *pcbWritten);

 //IStream

 typedef struct tagSTATSTG
 {
 LPOLESTR pwcsName;
 DWORD type;
 ULARGE_INTEGER cbSize;
 FILETIME mtime;
 FILETIME ctime;
 FILETIME atime;
 DWORD grfMode;
 DWORD grfLocksSupported;
 CLSID clsid;
 DWORD grfStateBits;
 DWORD reserved;
 } STATSTG;

 typedef enum tagSTGTY
 {
 STGTY_STORAGE = 1,
 STGTY_STREAM = 2,
 STGTY_LOCKBYTES = 3,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 STGTY_PROPERTY = 4
 } STGTY;

 typedef enum tagSTREAM_SEEK
 {
 STREAM_SEEK_SET = 0,
 STREAM_SEEK_CUR = 1,
 STREAM_SEEK_END = 2
 } STREAM_SEEK;

 typedef enum tagLOCKTYPE
 {
 LOCK_WRITE = 1,
 LOCK_EXCLUSIVE = 2,
 LOCK_ONLYONCE = 4
 } LOCKTYPE;

 HRESULT Seek(
 [in] LARGE_INTEGER dlibMove,
 [in] DWORD dwOrigin,
 [out, retval] ULARGE_INTEGER *plibNewPosition);

 HRESULT SetSize([in] ULARGE_INTEGER libNewSize);

 HRESULT CopyTo([in] IStream *pstm,
 [in] ULARGE_INTEGER cb,
 [in, out] ULARGE_INTEGER *pcbRead,
 [in, out] ULARGE_INTEGER *pcbWritten);

 HRESULT Commit([in] DWORD grfCommitFlags);

 HRESULT Revert();

 HRESULT LockRegion(
 [in] ULARGE_INTEGER libOffset,
 [in] ULARGE_INTEGER cb,
 [in] DWORD dwLockType);

 HRESULT UnlockRegion(
 [in] ULARGE_INTEGER libOffset,
 [in] ULARGE_INTEGER cb,
 [in] DWORD dwLockType);

 HRESULT Stat(
 [in, out] STATSTG *pstatstg,
 [in] DWORD grfStatFlag);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HRESULT Clone(
 [out, retval] IStream **ppstm);

 }

 // IUnknown implementation
 [
 uuid(00000000-0000-0000-C000-000000000046),
 helpstring("IUnknownVB Interface"),
 odl
]
 interface IUnknownVB
 {
 HRESULT QueryInterface([in] REFIID priid,
 [in, out] VOID *ppvObject);

 long AddRef();

 long Release();

 };

}
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Appendix B. Pointers

CopyMemory is used a great deal throughout the course of this book to copy memory from
one location to another. Without this function, it would be impossible to use pointers in Visual
Basic. Since the function does exist, it is possible to write some very dangerous VB code. A
short course on CopyMemory and pointers is definitely in order.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

B.1 CopyMemory

There is really no function called CopyMemory. CopyMemory is merely an alias for the Win32
function RtlMoveMemory. Bruce McKinney, the author of Hardcore Visual Basic (Microsoft

Press), was probably the first to use the alias CopyMemory. Now it is quite common to see
RtlMoveMemory declared in this fashion. Its syntax (as reflected in a Visual Basic Declare

statement) is:

Public Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" _
 (pDest As Any, pSource As Any, ByVal ByteLen As Long)

where pDest is a pointer to the starting target address to which data is to be copied,
pSource is a pointer to the starting address from which data is to be copied, and ByteLen is

the number of bytes to be copied.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

B.2 The Undocumented VBA Functions

CopyMemory does not do the job alone. Without the help of three undocumented
functions-VarPtr, StrPtr, and ObjPtr, this function would be useless. These functions return
pointers to variables, strings, and objects, respectively. One or more of these functions

usually gets the source or destination address that make up the arguments to CopyMemory.
All three of these functions are located in the VB runtime DLL. Incidentally, all three functions

are internally mapped to the same function, VarPtr, but you should use each function as it
was designed to be used or you will have some problems.

B.2.1 VarPtr

This function is used to return a pointer to a variable. Not only does this include variables of
all native VB datatypes, but UDTs as well. The function returns a Long value, which is the
address of the variable. Do not use this function to get pointers to Strings; you will not get the
value that you expect. Use StrPtr instead.

The following code fragment uses VarPtr to return the starting address of a user-defined
type:

Dim ft As FILETIME
Dim pft As Long
pft = VarPtr(ft)

B.2.2 StrPtr

This function is used exclusively to return pointers to Strings. Never use VarPtr when you
want the address of a String, since it returns a pointer to the ANSI buffer VB creates when
passing Strings to API functions.

The following code fragment uses StrPtr to return the starting address of a Visual Basic
string:

Dim str As String
 str = "Hello, Kara!"

Dim pstr As Long
 pstr = StrPtr(str)

B.2.3 ObjPtr

Use this function when you need to return the address of an Object. This is useful if you need

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to get at the vtable for a class (and quite dangerous, too). You can also use this function to
determine whether an instance of a class is valid.

For example, the following code fragment determines whether adoConnection is a valid

object reference and, if it is, calls its Close method and releases the object reference:

If ObjPtr(adoConnection) <> 0 Then
 adoConnection.Close
 Set adoConnection = Nothing
End If
only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

B.3 Some CopyMemory Examples

When looking at the following examples, note the distinction between passing an argument
by reference (ByRef) versus passing an argument by value (ByVal). Remember, when you
pass an argument ByVal, you are passing the actual value. When you pass an argument
ByRef (also designated by the absence of the ByRef keyword, since this is Visual Basic's

default method of parameter passing), you are really passing a pointer to that value. Keep
this in mind as you look at the following examples.

B.3.1 Example 1

Private Type SomeUDT
 Field1 As String * 256
 Field2 As String * 256
 Field3 As String * 256
End Type

Public Sub CopyUDT()

 Dim udtA As SomeUDT 'This is a user-defined type
 Dim udtB As SomeUDT

 udtA.Field1 = "Bill Purvis"
 udtA.Field2 = "Chris Mercier"
 udtA.Field3 = "Kelly Christopher"

 CopyMemory udtB, udtA, Len(udtB)

End Sub

This example shows a nice way to a copy a user-defined type. This is much more efficient
than doing the following:

udtB.Field1 = udtA.Field1
udtB.Field2 = udtA.Field2
udtB.Field3 = udtA.Field3

Examine the call to CopyMemory for a moment. Notice that both UDTs are passed by
reference. In fact, UDTs will always be passed by reference. This is enforced by the compiler
itself. So, essentially, there is nothing to remember here. If you forget that UDTs are always
passed by reference, the compiler will remind you. Also, note that this example works
because the members of the UDT are fixed-length strings. If they were not, chances are this
code would cause a protection fault.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.3.2 Example 2

In the previous example, we had direct access to both the source and destination variables
(both UDTs were declared locally). But many times throughout the course of this book, we
have had only the raw address to some value. This was the case in Chapter 8, when we
created a data handler. The shell called the IDataObject::GetData method in our
component and passed a pointer to a FORMATETC structure and a pointer to a STGMEDIUM

structure:

Public Sub IDataObject_GetData(ByVal pFmtEtc As FORMATETC, _
 ByVal pmedium as STGMEDIUM)

 Dim fmtEtc As FORMATETC

 CopyMemory fmtEtc, ByVal pFmtEtc, Len(fmtEtc)
.
.
.

In this example, we are copying a FORMATETC structure from the address pFmtEtc into a
local instance that we can directly address within the function. As you can see, fmtEtc, our

local instance of FORMATETC, is passed to CopyMemory by reference. Remember that all
UDTs are always passed by reference, so this is why we do this.

Our source parameter to CopyMemory, however, is being passed ByVal. Why? Think about

t h i s -CopyMemory copies a specified amount of data from one address to another address.
Well, the value of pFmtEtc is an address itself. It is the address from which we want to copy.

So if we did this as:

'This is wrong
CopyMemory fmtEtc, pFmtEtc, Len(fmtEtc)

we would be passing the address of an address! In other words, a pointer to a pointer. We
want CopyMemory to copy data from the address specified by pFmtEtc ; therefore we pass
it ByVal.

B.3.3 Example 3

This example is the exact opposite of Example 2 (as far as the direction of the copy). In this
example, a pointer to some address far, far away is being passed into the function. The
function then copies an Integer value to that address:

Public Function Foo(ByVal pInteger As Long)
 Dim nValue As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 nValue = 1138
 CopyMemory ByVal pInteger, nValue, 2
End Function

There are several things to note in this example. The first is that the parameter to the function
is a pointer to an integer. Any address is always 4-bytes wide on a 32-bit machine. An Integer
is 2-bytes wide. The moral of this story? It's really stupid to go around passing pointers to
integers because they are bigger than the datatype itself. So keep in mind that this is just an
example, okay?

Our destination in this example is pInteger. It is an address, so it needs to be passed
ByVal, as was stated in Section B.3.2. But nValue is passed by reference. Why? Well,

nValue equals 1138. If we passed nValue ByVal, this would tell CopyMemory to copy 2

bytes from the address 1138 to the location pointed to by pInteger. Who knows what value

is at the address 1138? This is not what we want. We want to copy the actual value, 1138, to
the location pInteger ; therefore, it is passed by reference. This tells CopyMemory to copy
2 bytes of data from the address of nValue (which contains 1138) to the address pInteger.

Typically, though, you should not have to use any of the pointer functions when you are

working with your day-to-day code. Consider, the SetWindowText API function:

BOOL SetWindowText(HWND hWnd, LPCTSTR lpString);

Parameter two is a pointer to a string, yet in Visual Basic this function is declared as follows:

Public Declare Function SetWindowText _
 Lib "user32" Alias "SetWindowTextA" (ByVal hwnd As Long, _
 ByVal lpString As String) As Long

Even though the function requires a pointer, we can pass a string to it directly from VB. This
is because VB really handles passing the address of the string to the API function for us.

Even API calls that require UDTs, like GetWindowRect, allow us to pass a UDT directly to the
function. This is because, once again, VB handles passing the address to the UDT for us.
And this is the case for 99.9% of the coding you will do.

The point is, if you find yourself using these pointer functions, chances are, you are doing so
unnecessarily. Nothing is worse for a developer than having to look at miles and miles of
convoluted code. These pointer functions are only useful in the extreme cases where there is
no other way to achieve the desired results. Consider the PROPSHEETPAGE structure (in IDL):

typedef [public] long LPCSTRVB;

typedef struct {
 DWORD dwSize;
 DWORD dwFlags;
 HINSTANCE hInstance;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LPCSTRVB pszTemplate;
 HICON hIcon;
 LPCSTRVB pszTitle;
 DLGPROC pfnDlgProc;
 LPARAM lParam;
 LPFNPSPCALLBACK pfnCallback;
 long pcRefParent;
 LPCTSTRVB pszHeaderTitle;
 LPCTSTRVB pszHeaderSubTitle;
 } PROPSHEETPAGE;

The pszTitle member of this structure is really a Long value-an address. Without StrPtr,

there is no way at all to provide the address of a string to populate this structure. This is a
valid reason to use the function. This structure also contains a member called lParam ,

which is also a 4-byte value. By using ObjPtr, we can store the address of our object in this
parameter. When this structure is passed back to us in a callback procedure, we are able to
retrieve the reference and gain access back to our object. It's a very handy and very

appropriate use of ObjPtr. And it's very rare, too, so you probably won't use it more than once
or twice.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Visual Basic Shell Programming is a sea urchin (globigerina

foraminifer). The name "sea urchin" is derived from an Old English word for the spiny
hedgehog, a land animal similar to the American porcupine; they have been referred to as
the "porcupines of the sea." Like a porcupine's quills, the sea urchin counts on its long spines
to deter hungry predators.

The sea urchin's outer skeleton, called a test, is composed of ten fused plates that encircle
the sea urchin's inner organs. Every other section has holes through which the sea urchin
can extend its tubed feet. These feet are controlled by a water vascular system. By changing
the amount of water inside, the animal can extend or contract its feet to move about. Sea
urchins primarily use their feet to hang on to the bottom while feeding, but they can move
quickly if necessary, moving on their feet, spines, or even their teeth. The sea urchin uses its
teeth to scrape rocks clean of algae. Due to such wear, the animal's teeth frequently grow
and replace worn ones.

The sea urchin is sought out as food for birds, sea stars, cod, lobsters, and humans. Sea
urchin eggs, commonly known as roe, are considered a delicacy in Asia and the United
States and are a main component of sushi.

Jeffrey Holcomb was the production editor for Visual Basic Shell Programming. Clairemarie
Fisher O'Leary was the copyeditor. Mary Sheehan, Nancy Kotary, and Madeleine Newell
provided quality control. Mary Sheehan and Emily Quill provided production assistance.
Nancy Crumpton wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial Archive.
Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond
font.

Alicia Cech and David Futato designed the interior layout based on a series design by Nancy
Priest. Mike Sierra implemented the design in FrameMaker 5.5.6. The text and heading fonts
are ITC Garamond Light and Garamond Book. The illustrations that appear in the book were
produced by Robert Romano and Rhon Porter using Macromedia FreeHand 8 and Adobe
Photoshop 5. This colophon was written by Maureen Dempsey.

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

A
 abstract base class

 ActiveX DLLs, as context menu handlers

 AddPages method , 2nd , 3rd

 implementing (example)

 AddRef method

 AddToEnumList function

 AddToolbar method , 2nd

 AllFileSystemObjects subkey

 ANSI strings

 API functions, declaring in type libraries

APIs
 CLSIDFromString

 CreatePropertySheetPage

 InsertMenu

 MoveWindow

 RtMoveMemory

 application identifier key

 asterisk subkey

 attributes, IDL

 automation-compatible datatypes

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

A
 abstract base class

 ActiveX DLLs, as context menu handlers

 AddPages method , 2nd , 3rd

 implementing (example)

 AddRef method

 AddToEnumList function

 AddToolbar method , 2nd

 AllFileSystemObjects subkey

 ANSI strings

 API functions, declaring in type libraries

APIs
 CLSIDFromString

 CreatePropertySheetPage

 InsertMenu

 MoveWindow

 RtMoveMemory

 application identifier key

 asterisk subkey

 attributes, IDL

 automation-compatible datatypes

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

B
 band objects

 for downloading files

 in Windows 98/2000

 distinguishing

 how they work

 interfaces implemented by

 Preference dialog and

 BHOs (browser helper objects) , 2nd

 how they work

 interfaces implemented by

 navigation techniques (example)

 registering (example)

 binary standard

 binding, late/vtable

 BindToObject method , 2nd

 bitmaps, adding support for

 border space for docking windows

 BROWSEINFO structure

 browser extensions , 2nd

 interfaces for

 user interface for (example)

 See : BHOs browser helper objects

 browsers

 navigating with BHOs (example)

 refreshing pages

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

C
 canonical verbs

 classes

 clsDockWindow

clsDropFiles
 limitations of

 EnumIDList

 ExtractIcon

 identifiers

 interface identifiers

 ShellFolder

 versions

 clipboard formats

 custom , 2nd

 FORMATETC

 clsDockWindow class

 clsDropFiles class , 2nd

 limitations of

 CLSID subkey

 band objects and

 namespace extensions and

 CLSIDFromProgID function

 CLSIDFromString API

 CLSIDFromString function

 CLSIDs

 of object implementing IPersistFolder

 browser extensions and

 defined in registry

 GetClassID method and

 helper functions

 namespace extensions and

 co-classes

 COM (Component Object Model) , 2nd

 components

 combo boxes, adding items to

 command subkey

commands
 executing, method for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 in context menu, implementing , 2nd

 supported by BHO, method for determining

 communication bands

 CompareIDs method , 2nd

 compiling example, type libraries

 See : COM Component Object Model

components
interfaces implemented by
 method for determining

 registering

 constants, type libraries and

 content pane (Explorer), creating views in

 context menu handlers , 2nd , 3rd

 creating (example)

 interfaces implemented by

registering
 example

 context menus , 2nd

items in
 static , 2nd , 3rd , 4th

 contexts subkey

 Control Panel objects, replacing Properties pages with

 Copy function

 copy hook handlers , 2nd , 3rd

 how they work

 interfaces implemented by

registering
 example

 testing

 Copy/Paste commands , 2nd

 altering behavior of , 2nd , 3rd

 CopyCallback method

 CopyHook.Factory component (C++)

 CopyHookHandlers subkey

 CopyMemory function

 examples

 undocumented functions for

 Crawl function

 Create function

 CreateEnumList function

 CreatePropertySheetPage API

 CreatePropertySheetPage function

 CreateViewObject method , 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateViewWindow method
 docking windows and

 namespace extensions and , 2nd

creating
 drop handlers (example)

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

D
 data handlers , 2nd , 3rd , 4th

 creating (example)

 how they work

 interfaces implemented by

 registering (example)

 data, hierarchical

datatypes
 automation-compatible

 non-automation-compatible

 DefaultIcon subkey , 2nd , 3rd

 Delete function

 desk bands

 DESKBANDINFO structure

 desktop.ini, namespace extensions and

 DestroyViewWindow method

 DestroyWindow method

 Details view (Explorer)

 dialog procedures

 dialog resource, creating (example)

 DialogProc function

directories
 as junction points for namespace extensions

 navigating, dialog for

 Directory subkey

 Directory/Background subkey

 DISPID (dispatch identifier), method for returning

 DLL files, associating with regsvr32.exe

 docking windows

 how they work

 implementing (example)

 interfaces implemented by

 limitations of

 drag-and-drop handlers , 2nd , 3rd

 registering

 DragEnter method , 2nd

 DragOver method

 DragQueryFile function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Drive subkey

 drop handlers , 2nd , 3rd

 creating (example)

 how they work

 interfaces implemented by

 registering (example)

 Drop method , 2nd

 drop targets, files as , 2nd , 3rd

 dual interfaces

 dynamic context menu items , 2nd

 Dynamic HTML Object Library, navigating from IHTMLDocument interfaces

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

E
 enumerators, creating

 EnumFormatEtc method , 2nd

 EnumIDList class

 EnumObjects method , 2nd

 Exec method

 implementation (example)

 Explorer

 architecture of

 status bar, displaying strings on , 2nd

views in
 managing

 Explorer bands

 component category

 See : Explorer bands Explorer bars

 Explorer.exe , 2nd

 Extension subkey

Extract method
 icon handlers and , 2nd

 namespace extensions and

 ExtractIcon class

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

F
 file association key

 file classes

 file objects

 displaying icons for

 scope of handlers

 selected, method for determining

 file types, as junction points for namespace extensions

 filenames, providing to icon handlers

 See : also file objectsfiles
 zzz

as drop targets
 retrieving

 associations of

 downloading, band object for

 selected, determining number of

filesystem objects
 as junction points for namespace extensions

 registering

 FillList function

 FindFiles function

 folder objects , 2nd

 browsing

 copy hook handlers and

 PIDLs of, creating

 settings of, retrieving

 views and

 Folder subkey

 FORMATETC structure , 2nd , 3rd , 4th

formats
 bitmap, adding support for

 clipboard , 2nd , 3rd

 registering

 supported by data handlers

functions
 AddToEnumList

 allowing use of pointers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CLSIDFromProgID

 CLSIDFromString

 Copy

CopyMemory
 undocumented functions for

 Crawl

 Create

 CreateEnumList

 CreatePropertySheetPage

 Delete

 DialogProc

 FillList

 FindFiles

 for CLSIDs

 GetData

 GetWindowLong/SetWindowLong

 helper

 NegotiateBorderSpace

 ObjPtr

 OleRegEnumFormatEtc

 PropSheetCallbackProc

 PropSheetDlgProc

 pUnkForRelease

 QueryContextMenu , 2nd

 QueryGetData

 QueryInterface

 QueryInterface, GetSite method and

 SaveProperties

 SendDlgItemMessage

 SendMessage

 SHBrowseForFolder

 StringFromCLSID

 StrPtr

 SwapVtableEntry

 VarPtr

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

G
 GetAttributesOf method , 2nd

 GetBandInfo method , 2nd

 implementing (example)

 GetBorderDW method

 GetClassID method , 2nd

 GetCommandString method , 2nd , 3rd

 GetCurrentInfo method , 2nd

 GetData function

GetData method
 bitmap support added to

 context menu handlers and , 2nd

 data handlers and , 2nd , 3rd

 GetDisplayNameOf method , 2nd

GetIconLocation method
 icon handlers and , 2nd

 namespace extensions and

 GetIDsOfNames method

 GetInfoTip method

 GetMalloc method

 GetSite method

 implementing (example) , 2nd

 GetTypeInfo method

 GetTypeInfoCount method

 GetUIObjectOf method , 2nd

GetWindow method
 band objects and

 namespace extensions and

 GetWindowLong/SetWindowLong functions

 global memory, handle to

 See : GUIDs globally unique identifier

 GUIDGEN utility

 GUIDs (globally unique identifiers)

 generating

 pointers to

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

H
 HasFocusIO method

help text, associated with
 commands

 menu items

 helper functions

 HKEY_CLASSES_ROOT key

 context menu handlers and

 copy hook handlers and

 data handlers and

 drop handlers and

 icon handlers and

 InfoTip handlers and

 HKEY_CURRENT_USER key

 HMENU handle

 HRESULTs

 IDL

 not returned by interface

 HTML documents, traversing

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

I
 icon handlers , 2nd

 creating (example)

 how they work

 interfaces implemented by

 registering (example)

 icons , 2nd

 defining

 determining location/index of

 displaying

 IContextMenu interface , 2nd , 3rd

 implementing (example) , 2nd

 ICopyHook interface , 2nd

 implementing (example)

 IDataObject interface , 2nd , 3rd

 IDL listing for

 implementing (example)

 pointer to

 IDeskBand interface , 2nd

 IDL for

 implementing (example)

 IDispatch interface

 IDL (Interface Definition Language)

 attributes

 HRESULTs

 IDeskBand interface

 IEnumIDList interface

 IInputObject interface

 IObjectWithSite interface

 IPersistFolder interface

 IShellFolder interface

 IShellView interface

 structures and

 VBShell Library source code

 IDockingWindow interface , 2nd

 IDockingWindowFrame interface

 IDockingWindowSite interface

 IDropTarget interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 implementing (example)

 IEnumFORMATETC interface

 IEnumIDList interface , 2nd

 IDL for

 IExtractIcon interface , 2nd

 implementing (example)

 IHTMLDocument interfaces , 2nd

 IID
 IInputObject interface

 IDL for

 implementing (example)

 IMalloc interface

implementation examples
 AddPages method

 Exec method

 GetBandInfo method

 GetSite method , 2nd

 IContextMenu interface , 2nd

 ICopyHook interface

 IDataObject interface

 IDeskBand interface

 IDropTarget interface

 IExtractIcon interface

 IInputObject interface

 IObjectWithSite interface , 2nd

 IPersistFile interface , 2nd

 IShellExtInit interface , 2nd

 IShellPropSheetExt interface

 Load method

 QueryStatus method

 ResizeBorder method

 SetSite method , 2nd , 3rd

 InfoTip handlers , 2nd

 how they work

 interfaces implemented by

 registering

 Initialize method

 context menus and , 2nd

 docking windows and

 namespace extensions and

 InsertMenu API

 See : IDL Interface Definition Language

 interface definitions, adding to type libraries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 interfaces , 2nd

 for browser extensions

 band objects

 BHOs

 changing

 context menu handlers

 copy hook handlers

 docking windows

 drop handlers , 2nd

 dual

 icon handlers

IContextMenu
 context menu handlers example

ICopyHook
 implementing (example)

IDataObject
 pointer to

IDeskBand
 implementing (example)

 IDispatch

 IDockingWindow , 2nd

 IDockingWindowFrame

 IDockingWindowSite

IDropTarget
 implementing (example)

 IEnumFORMATETC

IEnumIDList
 IDL for

IExtractIcon
 implementing (example)

 IHTMLDocument

IInputObject
 implementing (example)

 IMalloc

 implementing, method for determining

 InfoTip handlers

IObjectWithSite
 IDL for

 IOleCommandTarget

 IOleWindow

IPersistFile
 InfoTip handler example

IPersistFolder
 IDL for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IQueryInfo

IServiceProvider
 docking windows and

IShellBrowser
 namespace extensions and , 2nd

IShellExtInit
 property sheet handler example

IShellFolder
 IDL for

IShellPropSheetExt
 implementing (example)

IShellView
 IDL for

 IUnknown

 IWebBrowser2

 namespace extensions

 navigating between, method for

 property sheet handlers

Internet Explorer
 band objects and

 BHOs and , 2nd

Internet Explorer v4.0
 docking windows and

 IHTMLDocument interfaces and

 shell integration option

Internet Explorer v5.0
 browser extensions and

 IHTMLDocument interfaces and

 static context menus in

 tool bands and

 Invoke method

InvokeCommand method
 band objects and

 context menu handlers and , 2nd , 3rd

IObjectWithSite interface
band objects and
 example

 BHOs and

docking windows and
 example

 IDL for

 IOleCommandTarget interface

 IOleWindow interface

IPersistFile interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 drop handlers and

icon handlers and
 example

 InfoTip handler example

 methods for

 IPersistFolder interface

 IDL for

 IQueryInfo interface

IServiceProvider interface
 browser extensions and

 docking windows and

IShellBrowser interface
 docking windows and

 namespace extensions and , 2nd

 IShellExtInit interface , 2nd , 3rd

 context menu handler example

 GUID for

 property sheet handler example

 IShellFolder interface , 2nd

 IDL for

 IShellPropSheetExt interface , 2nd

 implementing (example)

 IShellView interface , 2nd

 IDL for

 ITEMIDLIST structure

 PIDLs and

 pointer to, accessing

 IUnknown interface

 BHOs and

 IWebBrowser2 interface

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

J
JavaScript
 executing against browser pages

 late binding and

 junction points of namespace extensions

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

K
 keyboards, state information on

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

L
 late binding

 calls to methods/properties

 list boxes, adding items to

 Load method , 2nd

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

M
 member variables

 memory, associated with PIDLs, managing

menu items, adding
 browser extension for

 for extension to Internet Explorer

 method for

messages
 sending to windows

 WM_DESTROY

 WM_INITDIALOG

 WM_NOTIFY

methods
AddPages
 implementing (example)

 AddRef

 AddToolbar , 2nd

 BindToObject , 2nd

 CompareIDs , 2nd

 CopyCallback

 CreateViewObject , 2nd

CreateViewWindow
 namespace extensions and , 2nd

 DestroyViewWindow

 DestroyWindow

 DragEnter , 2nd

 DragOver

 Drop , 2nd

 EnumFormatEtc , 2nd

 EnumObjects , 2nd

Exec
 implementation (example)

Extract
 namespace extensions and

 for IPersistFile interface

 GetAttributesOf , 2nd

GetBandInfo
 implementing (example)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 GetBorderDW

 GetClassID , 2nd

 GetCommandString , 2nd , 3rd

 GetCurrentInfo , 2nd

GetData
 data handlers and , 2nd , 3rd

 GetDisplayNameOf , 2nd

GetIconLocation
 namespace extensions and

 GetIDsOfNames

 GetInfoTip

 GetMalloc

GetSite
 docking window example

 GetTypeInfo

 GetTypeInfoCount

 GetUIObjectOf , 2nd

GetWindow
 namespace extensions and

 HasFocusIO

 implementing

Initialize
 namespace extensions and

 Invoke

InvokeCommand
 context menu handlers and , 2nd , 3rd

 IWebBrowser interface

Load
 implementing (example)

 Next , 2nd

QueryContextMenu
 swapping vtable for

QueryGetData
 bitmap formats added to

QueryService
 docking windows and

QueryStatus
 implementation (example)

 reference counting

 Refresh

 Release

 RemoveToolbar

 ReplacePage , 2nd

 RequestBorderSpace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 requiring vtable swapping

ResizeBorder
 implementing (example)

 SetBorderSpaceDW

SetSite
 docking windows and , 2nd , 3rd

 ShowDW

 TranslateAcceleratorIO

 UIActivate

 UIActivateIO , 2nd

 Microsoft Dynamic HTML Object Model

 Microsoft HTML Object Library (MSHTML.TLB), for documentation of IWebBrowser2 methods

 Microsoft IDL (MIDL) compiler

 Microsoft Internet Control, events provided by

 MIDL Language Reference

 MKTYPLIB utility

 mouse, state information on

 MoveWindow API

 MSG structure

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

N
 namespace extensions , 2nd

 creating (example)

 interfaces implemented by

 junction points

 registering (example)

 rooted/nonrooted

 namespaces

 NegotiateBorderSpace function

 Next method , 2nd

 nonrooted namespace extensions

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

O
 Object Definition Language (ODL)

 See : components objects

 ObjPtr function , 2nd

 ODL (Object Definition Language)

 OLE Automation type library

 OLE View utility

 OLE/COM Object Viewer

 ole32.dll, helper functions in

 OLECMD structures , 2nd

 OleRegEnumFormatEtc function

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

P
 Paste/Copy commands , 2nd

 altering behavior of , 2nd , 3rd

 PIDL manager

 PIDLLIST structure

 pidlMgr.cls

 PIDLs , 2nd

 creating, method for

 functions involving, managing

 memory associated with

 UDTs and

 pointers

 functions allowing use of

 PIDLs and

 POINTL structure

 pop-up menus

 Preferences dialog, band objects and

printers
 copy hook handlers and

 registering

 Printers subkey

 ProgID , 2nd

 See : ProgID programmatic identifer

Properties dialog
 adding pages to , 2nd , 3rd

 replacing pages for Control Panel objects

 property page extensions

 property sheet handlers

 creating (example)

 how they work

 interfaces implemented by

registering
 example

 PropSheetCallbackProc function

 PropSheetDlgProc function

 PROPSHEETPAGE structure , 2nd

 pUnkForRelease function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

Q
 QueryContextMenu function , 2nd

QueryContextMenu method
 band objects and

 context menu handlers and , 2nd , 3rd

 swapping vtable for

 QueryGetData function

 QueryGetData method , 2nd , 3rd

 bitmap formats added to

 QueryInterface function

 GetSite method and

QueryService method
 browser extensions and

 docking windows and

 QueryStatus method

 implementation (example)

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

R
 radio band

 RECT structure, docking windows and

 reference counting, methods for

 Refresh method

registering
 BHOs (example)

 components

context menu handlers
 example

copy hook handlers
 example

 data handlers (example)

 drag-and-drop handlers

 drop handlers (example)

 filesystem objects

 formats

 icon handlers (example)

 InfoTip handlers

 namespace extensions (example)

 printers

property sheet handlers
 example

 shell extensions

 type libraries (example)

 registry settings

 regsvr32.exe, associating with DLL files

 Release method

 RemoveToolbar method

 ReplacePage method , 2nd

 RequestBorderSpace method

 ResizeBorder method

 implementing (example)

 resource files, creating by hand

 rooted namespace extensions

 RtlMoveMemory API

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

S
 SaveProperties function

 Send To option

 SendDlgItemMessage function

 SendMessage function

 service providers, QueryService method

 SetBorderSpaceDW method

 SetSite method

 browser extension example , 2nd

docking windows and
 implemention example

 SHBrowseForFolder function

 shell

 crashing/restarting

 extension handlers

extensions
 registering

 integrating applications with

 integration option (IE v4.0)

 subkey

 versions of, band objects and

 zzzz

 shellex subkey

 context menu handlers and

 ShellFolder class

 SHITEMID structure

 shlobj.h, for information on IExtractIcon interface

 ShowDW method

 site pointers

 band objects and

 queried by BHOs

 returning, method for

 static context menu items , 2nd

 in IE 5.0

 limitations of

status bar, displaying
 help text on

 strings on , 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 STGMEDIUM structure , 2nd , 3rd

 StringFromCLSID function

 strings, Windows 98/NT and

 StrPtr function , 2nd

 STRRET structure

structures
 BROWSEINFO

 DESKBANDINFO

 FORMATETC , 2nd , 3rd , 4th

 IDL and

ITEMIDLIST
 pointer to, accessing

 MSG

 OLECMD

 PIDLLIST

 POINTL

 PROPSHEETPAGE , 2nd

 RECT, docking windows and

 SHITEMID

 STGMEDIUM , 2nd , 3rd

 STRRET

 VARIANTARG

 SwapVtableEntry function

 system folders

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

T
 task bar, desk bands and

 testing copy hook handlers

 Tip of the Day band

 tool bands , 2nd

 toolbars

buttons, adding
 method for

 tooltips

 TranslateAcceleratorIO method

 traversing HTML documents

 type libraries

 accessing information in

 adding interface definitions to

 compiling (example)

 declaring API functions in

 OLE Automation

 registering (example)

 structure of

 VBShell, IDL source code for

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

U
 UDTs

 limitations of

 PIDLs and

 UIActivate method

 UIActivateIO method

 UIActiveIO method

 Unicode strings

 unions

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

V
 variables, private

 VARIANTARG structure

 VarPtr function , 2nd

 VBScript, late binding and

 VBShell Library, IDL source code for

 vbshell.tlb

 version compatibility

 virtual folders

 vtable (virtual function table) , 2nd

 binding

 class instances and

 order of methods

swapping
 QueryContextMenu method

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

W

 See : browsers web browsers

 web pages, BHOs and

 See : docking windowswindows
 docking , 2nd

 sending messages to

Windows 2000
 band objects and

 IExtractIcon interface and

Windows 98
 band objects and

 shell crashing/restarting , 2nd

 strings and

 See : Explorer Windows Explorer

Windows NT
 IExtractIcon interface and

 shell crashing/restarting

 strings and

 See : shell Windows shell

 WinZip program

 WM_DESTROY message

 WM_INITDIALOG message

 WM_NOTIFY message

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only for RuBoard - do not distribute or recompile

Visual Basic Shell Programming

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][Y]

Y
 Yahoo! Companion

only for RuBoard - do not distribute or recompile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Starting Page
	Table of Content
	Front Matter
	Preface
	The Book's Audience
	Developing Your Own Shell Extensions
	Organization of This Book
	Software Requirements
	Obtaining the Sample Code
	The VB Shell Type Library
	Conventions Used in This Book
	Request for Comments
	Acknowledgments

	Part I: Introduction to the Shell and the Basics of COM
	Chapter 1. Introduction
	1.1 COM and the Shell
	1.2 Programming for the Shell
	1.3 Kinds of Shell Extensions
	1.4 Conclusion

	Chapter 2. COM Basics
	2.1 What Is COM?
	2.2 Interfaces
	2.3 Classes
	2.4 Type Libraries
	2.5 IUnknown
	2.6 IDispatch
	2.7 Conclusion

	Chapter 3. Shell Extensions
	3.1 Folders and File Objects
	3.2 Shell Extensions
	3.3 Registry Settings
	3.4 The .rad File
	3.5 The Shell Extension Project
	3.6 Restarting the Shell
	3.7 When the Shell Crashes

	Part Shell Extensions
	Chapter 4. Context Menu Handlers
	4.1 Static Context Menus
	4.2 Static Context Menus in IE 5.0
	4.3 Dynamic Context Menus
	4.4 Context Menu Handler Interfaces
	4.5 Creating a Context Menu Handler

	Chapter 5. Icon Handlers
	5.1 How Icon Handlers Work
	5.2 Icon Handler Interfaces
	5.3 Creating an Icon Handler

	Chapter 6. Property Sheet Handlers
	6.1 How Property Sheet Handlers Work
	6.2 Property Sheet Handler Interface
	6.3 Creating a Property Sheet Handler
	6.4 Registering the Property Sheet Handler

	Chapter 7. Drop Handlers
	7.1 How Drop Handlers Work
	7.2 Drop Handler Interfaces
	7.3 Creating a Drop Handler
	7.4 Registering the Drop Handler

	Chapter 8. Data Handlers
	8.1 How Data Handlers Work
	8.2 Data Handler Interfaces
	8.3 Creating a Data Handler
	8.4 Adding Additional Formats

	Chapter 9. Copy Hook Handlers
	9.1 How Copy Hook Handlers Work
	9.2 Copy Hook Handler Interface: ICopyHook
	9.3 Implementing ICopyHook
	9.4 Registering Copy Hook Handlers
	9.5 Testing the Handler

	Chapter 10. InfoTip Handler
	10.1 How InfoTip Handlers Work
	10.2 InfoTip Interfaces
	10.3 The Project

	Part III: Namespace Extensions
	Chapter 11. Namespace Extensions
	11.1 Namespace Fundamentals
	11.2 Explorer Architecture
	11.3 The PIDL
	11.4 Namespace Interfaces
	11.5 Creating the Namespace Extension
	11.6 The PIDL Manager
	11.7 Registering DemoSpace
	11.8 Practical Coding Examples

	Part IV: Browser Extensions
	Chapter 12. Browser Extensions
	12.1 Browser Helper Objects
	12.2 Browser Extensions

	Chapter 13. Band Objects
	13.1 How Band Objects Work
	13.2 Band Object Interfaces
	13.3 The Project: FileSpider
	13.4 Registry
	13.5 Tool Bands

	Chapter 14. Docking Windows
	14.1 How Docking Windows Work
	14.2 Docking Window Interfaces
	14.3 The Project
	14.4 Registration

	Part V: Appendixes
	Appendix A. VBShell Library Listing
	Appendix B. Pointers
	B.1 CopyMemory
	B.2 The Undocumented VBA Functions
	B.3 Some CopyMemory Examples

	Colophon
	Index
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index Y

