
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents

Chapter 1: What Are Comet and Reverse Ajax? 1

The Tmiihle with HTTP>............................,.................................. 2

Some Common Use Cases... 5

Monitoring and Data Feeds 5
Progress Updates 6
Chat and Collaboration 8

Siimmaiy..^

Chapter 2: Simple Ways to Achieve Push 11

The Magnetic Poetry Appiicatkm... i I

Creating New Words 15
Reading Words 15
Updating Words 17
Deleting Words 18

Ifttroiinemg Push Using Polling.. 19

Improving Efficiency Using Piggyhaeiiing.. 25

Sinmmijy...^

Chapter 3: Introducing Comet 33

Implementing a Comet Feed Using XHR ..33

Script Tags, Iframes, ami Comei.. 40

Comet and Reverse Aiax firstPress i

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Long Polling •. 41

Issues with Naive Comet Implementations 47

Request Limits in the Browser 48
Server-Side Performance Concerns 50
Network Infrastructure 50

Summary 51

Chapter 4: Comet the Easy Way 53

The Emergence of Comet Tools .••. 53

Direct Web Remoting • 54

DWR in Action 55

DWRServlet 58

DWR and Comet. ...- •..•.. ..62

Magnetic Poetry Meets DWR on the Client Side 62
Magnetic Poetry and DWR on the Server Side 64
Routing Magnetic Poetry Events 66
Wrapping Up This Implementation 68

Summary 69

Chapter 5: Scaling Comet in Java 71

Thread Management for the Web 71

wait/notify 72
Difficulties in Using wait/notify with Comet 76

Jetty 6... ..-. 77

Using Jetty Continuations 77
Understanding the Continuation Mechanism 80
Drawbacks of Continuations 82

ii firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Jetty Continuations and DWR...• .-.. .-.•... *•....-. 83

Future Comet Support in Java 84

Summary............85

Chapter 6: Introducing Bayeux 87

HTTP Request Management..... 88

Naming Channels 90

Message Format .91

Standard Channels.... 94

Transport Negotiation 95

Client-Side Implementations 98

Server-Side Implementations 102

Using Bayeux with Dojo and Jetty104

Server-Side Messaging.. Ill

Summary..114

Chapter 7: Combining Comet with CRUD 117

Revisiting Magnetic Poetry.... 119

Client-Side Initialization Code 120

Server-Side Initialization Code 125

Creating Domain Objects.128

Comet and Reverse Aiax firstPress iii I

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Updating Domain Ot)je€is... 130

Deleting Domain ()hjecis...^

Using Comeidfor Progress Repfpris... 133

Additionai Resonrces.. 136

Further Reading 136
Further Implementations 137
Emerging Standards 137

SMnijmirv^^^^^^*^^^^^^^^^^^^^^^^^>^^^^^^^^^*^^^^^^^*^^^^^^^*^^^^^^^^^^ i3S

iv firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Comet and Reverse Ajax: The
Next-Generation Ajax 2.0

by Dave Crane and Phil McCarthy

This is a small book about a big subject.

As a technology, Ajax was small enough to be described in a few sentences, but it
catalyzed huge changes in how we use web technologies (and communities, and
business models). The full ramifications of those changes are still unfolding.

And in the middle of this change and upheaval, along comes Comet. Comet,
simply put, allows you to send information from the server to the browser without
the browser having to ask for it first. That 5 //—simple and itself very catalytic!
Comet is still in its early days, but we believe that it's going to have a big impact
on the way the Web unfolds over the next few years.

We 're lucky enough to have our names on the front of this book, in exchange for
which we spent the prescribed number of late nights in our lonely garrets,
putting electronic pen to paper. However, a host of talented people behind us
have made this possible. We 'd like to extend our thanks to Tom Welsh, Richard
Dal Porto, and Heather Lang of Apress for keeping us on schedule (and being
patient when we weren 't!) and for turning our rough drafts into flowing prose.
We 'd also like to thank Joe Walker of the DWR project, Greg Wilkins of the Jetty
Web Server project, and Dylan Schiemann of the Dojo toolkit for answering our
questions and for being generally supportive of our efforts to write this book—
and, of course, for their broader support of the Ajax and Comet communities and
turning out such interesting Open Source code in the first place.

Our friends, families, colleagues, and household pets have also been extremely
patient and understanding, and we W like to thank everyone in the Crane and
McCarthy households, at Historic Futures, and Skillsmatter for their support.

Comet and Reverse Aiax firstPress v

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1: What Are Comet and Reverse
Ajax?
The term "Comet" was coined by Alex Russell of the Dojo project to
describe exchanges between a client and a server in which the server, rather
than the client, initiates the contact. Joe Walker of the Direct Web
Remoting (DWR) project refers to a similar mechanism as "Reverse Ajax."
Much like when the term "Ajax" was coined in 2005, the name "Comet"
has served as a rallying point around a number of previously disconnected
technological projects, such as the nonblocking I/O introduced into Java in
2002, message queue technologies, and, further back, HTTP l.l 's
persistent connections and the push technologies of the late 1990s.

These technologies have in common an interest in initiating
communication between a client and a server from the server's end.
Conventional web-based applications are all about client-led
communication, but there has been a repeated need to discuss server-led
communication within the web development community and to provide a
name for it. To understand the phenomenon of Comet and Reverse Ajax,
we need to consider why there is a need for it and why it is so out of the
ordinary as to require a label of its own.

In this short book, you're going to address two tasks. You're going to learn
the techniques being used to deliver Comet and Reverse Ajax in today's
cutting-edge web toolkits. You're also going to cut your way through the
various tangled incamations of Comet, Reverse Ajax, and push to figure
out why developers persist in trying to tum the HTTP request-response
sequence on its head. What business need is there that only Comet (a.k.a.
Reverse Ajax) can deliver? And is Comet always the best way to meet
these needs?

Comet and Reverse Aiax firstPress l

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Trouble with HTTP
To understand Comet, first you need to understand HTTP. As web
developers, we're all somewhat familiar with HTTP—mostly as a part of
the infrastructure that we take for granted and generally don't need to pay
much attention to. Let's stop to give it our full attention for a moment.

HTTP was designed as a protocol for retrieving documents from remote
servers, as illustrated in Figure 1-1. As such, it has two important
characteristics:

• Communication between the client and the server is always initiated by the
client and never by the server.

• Connections between the client and server are transient, and the server does
not maintain any long-term state information regarding the client.

At least, this was the state of play with version 1.0 of the HTTP
specification. By version 1.1, more application-like features, such as

12 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

conversational state and persistent connections, were being talked about.
We'll get to those shortly.

Figure 1-1. In a coi^ventional HTTP request and response^ the client
initiates the communication.

Comet challenges that first assumption and allows the server to decide
when it should contact the client, as illustrated in Figure 1-2. According to
the ground rules of HTTP then, Comet is already kicking up a storm.

Figure 1-2. In a Comet or Reverse Ajax exchange communication is
initiated by the server.

Comet and Reverse Aiax firstPress 3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-2 illustrates a single Comet exchange between server and client.
Unlike the classic HTTP exchange depicted in Figure 1-1, the
communication is only one-way, and it starts at the server. This is
analogous to Steps 3 and 4 in Figure 1-1. Typically, the client won't
respond to the server as part of this exchange, although within the larger
life cycle of the application, the client will probably also talk to the server
by initiating conventional HTTP requests.

Although Comet doesn't agree with HTTP, a number of workarounds can
be used to implement Comet. In fact, we shouldn't really be bothered about
breaking the ground rules of HTTP at all. If you look at the second rule
stated previously, you can see that that is challenged by another common
piece of infrastructure that we take for granted, namely the HTTP session.
HTTP was never designed to preserve conversational state on the server,
and in fact, the continuity of a session is ensured by the client (by passing a
header or cookie to the server every time it makes a request to remind the
server who it is).

At the time of its introduction, the HTTP session was seen as a clever hack
of the HTTP model and as a catalyst that opened up many new use cases
for the web, spawning the first generation of web applications. The concept
of HTTP sessions is now well supported by all but the simplest of web
servers and by all major web programming tools. Perhaps in time. Comet
will become a standard part of the infrastructure that we can take for
granted too. As you'll see in Chapters 6 and 7, work is already underway in
reengineering web servers to better support Comet. For now, though, know
that Reverse Ajax will suffice, so let's consider the reasons why you want
to make use of this technique.

4 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Some Common Use Cases
Let's assume for now that Comet can be made to work. Before starting to
look at the technical details, we should perhaps ask why you're considering
Comet at all. As you'll see in Chapter 2, there are several technical ways to
address the problem, and you need to understand the nature of the problem
correctly in order to pick the most suitable solution. Why, then, should you
want the server to be able to contact the client? There are, in fact, several
common use cases, so let's look at each one in turn.

Monitoring and Data Feeds
Most applications are designed to let the user actively engage with a
domain model, for instance, by querying and updating it. On a desktop PC,
applications that interact with the domain model include word processors,
spreadsheets, file system browsers, and most of the functionality of e-mail
clients. On the web, we include e-commerce applications and search
engines in this category.

However, in a smaller but important class of application, the domain model
is active, and the client takes on the role of a dashboard or monitor. E-mail
clients function this way when they automatically check for new mail, as
do utilities such as battery monitors. Within vertical industries, there is
often strong demand for monitoring applications of this type, including
applications to monitor specialized hardware in science/engineering and
security applications, and stock ticker and other market data feeds in the
financial arena. Message queue technologies, a standard part of the
enterprise developer's toolkit, have been developed around these types of
applications.

If we were to sketch the communication pattem between client and server
for such an application, we might come up with something very similar to
Figure 1-2.

Comet and Reverse Aiax firstPress 5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Progress Updates
A second category in which Comet has a useful role to play is
communicating progress on long-running server-side activities. In most
web applications, contact with the server initiates server-side activity that is
relatively brief, typically the execution of some business logic followed by
a commit of the results to a database. In these cases, it is reasonable to
make the user wait until the activity is completed before offering any
feedback.

In some situations, however, contacting the server will initiate a longer
running process. In this case, the process is best executed in a different
thread, as illustrated in Figure 1-3. In this case, the user ought to be kept up
to date as the long-running process unfolds, and the server may need to
send several messages up to the client, possibly stating what percentage of
the task is complete or listing key milestones.

6 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure I-J; l/sing Comet to report progress on a long-running server
task

When reporting progress on a long-running server-side task, the connection
may be kept open while the task executes, with response data being drip-
fed to the client as significant milestones are reached.

Comet and Reverse Aiax firstPress 7

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chat and Collaboration
In the applications that we have described so far, a single user has sole
access to the domain model. While this is still true of the majority of
desktop applications, on the web, multiple users frequently share a larger
domain model (e.g., e-commerce and photo-sharing sites and chat
systems). In these types of applications, the majority of traffic between
client and server is still client-driven, but situations will arise in which one
user has modified the shared model in such a way that it will affect other
users' views of the model, as illustrated in Figure 1-4.

Figure l-A: Mixing conventional Ajax and Reverse Ajax in a
collaborative application

8 firstPress Comet and Reverse Max

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The sequence of events in this situation combines conventional Ajax HTTP
calls with reverse Ajax. When one user submits an update, in a client-
initiated exchange, the server may decide that other clients need to receive
that update immediately. Reverse Ajax is then used to communicate these
updates.

You don't always need Comet to deal with this situation. If the urgency of
communicating the changes to the other users is low, you can simply wait
for them to refresh their views and issue a waming if they try to commit
updates that are no longer appropriate. Altemately, you may elect to notify
them by an alternate route, such as sending e-mail.

These approaches may work for photo-sharing sites, for example, in which
the timing of receiving an update is not critical. However, in other
collaborative applications, for example, live chat systems and auctions, the
entire workflow depends on instantaneous updates, so Comet has a
significant role to play.

Summary
We've outlined three common scenarios in web application development in
which we perceive a need for Comet. In the next chapter, you'll look at
ways of implementing Comet and see how they fit the requirements that
we've outlined here.

Comet and Reverse Aiax firstPress 9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2: Simple Ways to Achieve Push
In Chapter 1, we identified three common use cases that could benefit from
using Comet. In this chapter, weMl cover some simple techniques that
might address these use cases, without having to resort to Comet. In
Chapter 3, you'll move on to look at simple implementations of Comet
itself If you want to really understand Comet, then you'll need to evaluate
the alternatives and recognize the situations in which Comet is the best
solution.

The Magnetic Poetry Application
As you're starting to delve into the nitty-gritty aspects of coding at this
point, an example application would be useful. The application that you'll
work with in this section (and through much of this book) is an online
version of a magnetic 'fridge poetry set, in which words can be placed onto
a surface and rearranged to make (hopefully) humorous or insightful
phrases.

To add a Web 2.0-style twist to our application, we've decided to share the
workspace among all users who are logged on. In terms of the use cases
described in the "Common Use Cases" section of Chapter 1, you're
creating a collaborative application in which multiple users will be
manipulating a shared domain model at the same time.

You'll see the implementation details of our application in more detail as
we proceed. For now. Figure 2-1 presents a screenshot of the application.

Comet and Reverse Ajax firstPress 11 j

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2 - 1 . User interface of the magnetic poetry application

The UI of the application is fairly simple. The shared workspace on which
the words appear occupies the majority of the screen space. The box on the
left provides a drop-down form that allows users to add new words to the
workspace and specify the text and the color. When first created, each word
will be placed randomly on the workspace. Users position words (those
they create themselves or those created by others— t̂here's no permissions
system!) using drag and drop. Finally, users can remove words from the

12 firstPress Comet and Reverse Max

http://lib.ommolketab.ir
http//lib.ommolketab.ir

workspace by dragging them into the trash can, which is situated near the
bottom-left comer of the virtual refrigerator.

To implement the application in a single-user form (i.e., ignoring issues of
collaboration for the moment), you need to provide Ajax callbacks for the
basic CRUD methods-creating, reading, updating, and deleting elements.
You'll make use of these in the following order:

1. When you first load the application, you'll make a call to the server to read
the contents of the workspace (at this stage, reading could just as easily
happen while loading the page, but we've made it a separate Ajax call
because we know you'll need it to be that way as soon as you introduce
collaboration).

2. When the user adds a new word to the workspace, you'll make an Ajax call to
create the entity on the server-side domain model.

3. When the user moves a word, you'll update the coordinates in the domain
model.

4. When the user drags a word into the trash can, you'll delete it from the
domain model.

We've implemented the server side using Groovy on Grails, simply
because that system is very well suited to quickly setting up this sort of
application. On the client side, you'll be using the Prototype and
Scriptaculous libraries to implement the application to make easy work of
creating the drag-and-drop features. We've chosen to send data between
the client and server using the JavaScript Object Notation (JSON) format,
because Grails and Prototype both support it very well and because it is
simple to use. We also cheated and read the rest of this book first, so we
know that the Comet community is standardizing on JSON for the Bayeux
protocol, which we discuss in Chapters 6 and 7.

Comet and Reverse Aiax firstPress 13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We won't run through the entire codebase of the Magnetic Poetry
appHcation in detail here; you'll just cover the basic CRUD methods. The
full source code is available from the Source Code/Download link on the
Apress web site, and we want to get back to the topic at hand in pretty short
order.

14 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating New Words
The user of the appHcation can create a new word simply by filling in the
form and submitting it. You're intercepting the form programmatically and
making an Ajax call to the server, as follows:

function addWord(){
var text=$F('word_text');
var color=$F('word_color');
var x=Math.floor(Math.random()*350);
var y=Math.floor(Math.random()*420);
var paramsObj={ text:text, coloricolor, x:x, y:y };
new Ajax.Request(

"simple/create",
{ parameters: paramsObj,
evalJSON:"force",
onSuccess:function(response){
new Word(response.responseJSON.created);

}

}

Reading Words
As we noted in our discussion of Figure 2-1, the user supplies the text and
color for the word, and the word's initial position is randomly allocated by
the client. The server will return a JSON expression that evaluates to an
object that contains the full set of data for our new word, including the
database ID. You can use this to define a client-side word object that then
renders itself onscreen using Prototype's DOM helper and string
interpolation methods. Here are the constructor and the render () method
of the Word object:

Comet and Reverse Aiax firstPress 15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var Word=Class.create({
initialize:function(props){
Object.extend(this,props);
Words ["__" +this . id] =this ;
this.render();

render:function(){
var tmpl="<div id='note_#{id}* class='note' "
+"style='top:#{y}px;left:#{x}px;"
+"background-color:#{color}'>"
+"#{text}</div>";

var html=tmpl.interpolate(this)
$("board").insert({top:html});
this.body=$ ("note__"+this . id) ;
this.body.word=this;
new Draggable(this.body);

}
}

Note that you don't create the client-side object until the server has
responded, so that you can assign the ID of the object. You'll need that ID
when you update or delete the object later.

You can use a similar JSON format when the application initializes to read
the set of words stored in the database. The callback function from this
Ajax call is similar, except that you need to iterate through an array of
result items. Here's the implementation of the getwords () function:

function getWords(){
new Aj ax.Request(

"simple/read",
{ evalJSON: "force",
onComplete:function(response){
var results=response.responseJSON.results;
results.each(
function(result){ new Word(result); }

) ;

16 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}
) ;

Updating Words
Now that you've sorted out the "C" and "R" of CRUD, you need to
implement update and delete functionality. You can add these as methods
of the Word object rather than top-level functions. When the user moves a
word, you call Word. update ():

update:function(dx,dy){
this.x=parselnt(this.x)+dx;
this.y=parselnt(this.y)+dy;
var params={

id: this.id,
x: this.x,
y: this.y

};
new Ajax.Request(

"simple/update",
{ parameters: params,
evalJSON: "force",
onSuccess:function(response){
var updated=response.responseJSON.updated;

}.bind(this)

) ;

In this implementation, update () is essentially a fire-and-forget method.
The response lists a few properties of the updated item, but you have no
real need to read them at this point.

Comet and Reverse Aiax firstPress 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deleting Words
Your implementation of delete is similar. The function is called
deleteMe (), because "delete" is a reserved word in Internet Explorer's
JScript. You can also treat deleteMe () as a fire-and-forget method for
now and not worry about parsing the server response:

deleteMe:function(){
this.pendingDeletion=true;
new Ajax.Request(

"simple/delete",
{ parameters: { id: this.id },
evalJSON: "force",
onSuccess: function(response){
var deleted=response.responseJSON.deleted;
if (deleted.id==this.id){
this.body.style.zlndex=3;
new Effeet.Puff(this.body);
Words["_"+this.attr.id]=null;

}
}.bind(this)

}
) ;

}
You've now created the basic CRUD functionality for your application, but
it's a single-user application, and composing magnetic poetry on the
refrigerator door only really becomes fun when your family or housemates
join in. To support a shared workspace in which several users can add
words simultaneously, you'll need to introduce some form of push into our
application. In the next section, you'll see how to modify the application to
do that.

18 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introdyclng Push Using Polling
Ideally, you want several users to be able to log in to our application at
once. When one user adds a new word, moves a word, or drags a word to
the trash can, you want every client to be updated. In terms of the use cases
for push that we described in Chapter 1, you're effectively describing a
collaborative application.

The simplest way to implement this collaborative ability is by polling the
server, as illustrated in Figure 2-2. The client makes a regular request to the
server asking for updates, and the server responds—often simply reporting
that there's nothing to report. Polling tends to be wasteful of network and
server resources, but it's an easy place to start, so let's see how you get on
with it.

Figure 2-2. I/i simple poiling^r the client repeatedly contacts the
server to check for changes in the domain model. Updates initiated
by the user do not affect the polling schedule.

Comet and Reverse Aiax firstPress 19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

First, you need to handle the business of setting up the repeated requests to
the server. You can do this using JavaScript's built-in timeout mechanism,
as illustrated in the following code:

var poll={
timer m u l l ,
i n t e r v a l : 3 ,
run:function(){

t h i s . s t o p 0 ;
this. t imer=setTimeout(

funct ion0{ getWords(); } .b ind(th is) ,
th is . in terval*1000

) ;

stop:funct ion(){
if (th i s . t imer){

c learTimeout(th is . t imer) ;
}

}
} ;

Here, you define a little helper with two methods: run () and stop ().
When you invoke run (), you set up a timer that will call the get words ()
function in the future, and you take a reference to the timer, so that you can
clear it by calling the stop () method.

JavaScript has a built-in method set in te rva l (), which can be used to
invoke a function repeatedly. That sounds ideal for a polling interval, so
why haven't you used it? The answer lies in the fact that the network is
inherently unreliable. In order for your updates to be received in a timely
fashion, you want to set a short polling interval, a few seconds at most. If
network conditions are bad, it might take an equivalent time to receive a
response from the server, so you'd be firing multiple requests
simultaneously. Instead, you will fire a new request when you receive the
response from the previous one. Hence, modify the read method as follows:

120 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

function getWords(){
var versions=$H(Words).collect(

function(pair){
var word=pair.valued-
return word.id+"="+word.version;

}
) .joinC ") ;
new Aj ax.Request(

"poll/read",
{ evalJSON: "force",
parameters: { "versions": versions },
onComplete:function(response){
var results=response.responseJSON.results;
results.each(
function(result){
if (Words["_"+result.id]) {
var word=Words["_"+result.id];
if (result.deleted){
word.deleteUI();

}else{
word.updateUI(result.x,result.y,
result.version);

}
}else{
new Word(result);

}
}

) ;

poll.run 0;

) ;

}

Note that you call poll. run () in the callback function that you pass to the

Aj ax. Request () when you create it.

Comet and Reverse Ajax firstPress 21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This function also introduces the change that you need to make to your
domain model and to the data you send in the request and response. When
you ask the server for updates, it needs to know how much you already
know. In a very naive implementation, you could send all the information
about every word on the board whenever you respond and let the client
figure out what had changed. In such a setup, most of the data would be
redundant. You can tighten up the exchange of information in one of two
ways:

• Assign a version number to each entity, and increment it when you update. If
the client tells the server the current version of each element it knows about,
the server can compare version numbers and send only entities for which a
newer version exists.

• Assign a last-updated timestamp to each entity, and send the time of the last
update with each request for updates. The server can then send data for
entities updated since the client last called.

Both approaches fulfill your basic requirements of ensuring data integrity
and managing concurrency. We've opted to use the version number
approach here, partly because the domain objects created by Grails are
automatically assigned a version number that gets updated for you
whenever the underlying data is changed. If you were to code either
solution from scratch, you'd need to manually manage the version or
timestamp fields. By leveraging Grails existing version numbers, you
simply need to assemble a lookup object and send it to the server as an
additional parameter when we make a read request.

When the response comes back, you can no longer simply create a new
word for each entry. If you already have a word with a matching ID, you
will update it instead, by calling the update () method, which now accepts
a version number too. Further, you may have passed down a version
number for a word that no longer exists, if another user has deleted it from

22 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the system. In this case, the server will return a JSON object with two
properties, the ID and a property deleted set to t rue.

To accommodate these updates, you've pulled the Ul-updating code in
your Word object out into separate methods: de le teui () and updateui (;
The implementation for the Word object now looks like this:

var Word=Class.create({
initialize:function(props){ /* no change*/ },
render:function(){ /* no change */ },
update:function(dx,dy){

this.x=parselnt(this.x)+dx;
this.y=parselnt(this.y)+dy;
var params={

id: this.id,
X: this.x,
y: this.y

};
new Ajax.Request(

"poll/update",
{ parameters: params,
evalJSON: "force",
onSuccess:function(response){
var updated=response.responseJSON.updated;

}.bind(this)
}

) ;

updateUI:function(x,y,version){
this.x=x;
this.y=y;
if (version)! this.version=version; }
this.body.setStyle({

"left":x+"px","top":y+"px"

});

Comet and Reverse Ajax firstPress 23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

deleteMe:function(){
this.pendingDeletion=true;
new Ajax.Request(

"poll/delete",
{ parameters: { id: this.id },
evalJSON: "force",
onSuccess: function(response){
var deleted=response.responseJSON.deleted;
if (deleted.id==this.id){
this.deleteUI();

}
}.bind(this)

}
) ;

deleteUI:function(){
this.body.style.zlndex=3;
new Effect.Puff(this.body);
Words["_"+this.attr.id]=null;

}
});

The update () method is still fire-and-forget. A word that has been moved
is already visually up to date, before you even contact the server. In the
case of the deleteMe () call, though, you update the UI when the server
returns a response and use the same dele teui () call that the getwords ()
method uses when it receives notification that another user has dragged a
word to the trash can.

You've now got a working collaborative application. If you set the poll
interval low enough, the responsiveness of the application is good enough
to count as a live update of the other users' activities. Unfortunately, setting
a short poll interval also results in heavier network and server load. Any
polling solution faces this trade-off between responsiveness and overuse of
resources.

124 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Improving Efficiency Using Piggybacl<ing
A polling strategy faces a stark trade-off between heavy use of resources
and poor response time. You can improve the situation to some extent if
you consider that you're not currently making much use of the response
when you perform an update or delete action. If you send the version
information with all calls to the server and expect updates in the response,
you can cut down on the number of requests made purely to poll the server.

This technique is often referred to as piggybacking data, as the contents of
the response aren't strictly related to the nature of the request but are being
carried along with it anyway. Figure 2-3 illustrates piggybacking at work.
We'll conclude this chapter by looking at how we'd implement this
approach.

Figure 2-3. In piggybacking^ responses to updates initiated by the
user will also contain any changes to the domain model and will
reset the polling schedule.

Comet and Reverse Max firstPress 25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

First, you're going to break out the code that generates the version numbers
on the client into a separate method:

var getVersions=function(){
return $H(Words).collect(

function(pair){
var word=pair.value/
return word.id+"="+word.version;

}

}
).join(

Second, you'll define a common Ajax callback function, so that all your
responses will have the same format whether you're reading, creating,
updating, or deleting:

var callback=function(response){
var results=response.responseJSON.results;
results.each(

function(result) {
if (Words["_"+result.id]){
var word=Words["_"+result.id];
if (result.deleted){
word.deleteUI();

}else{
word.updateUI(result.x,result.y,

result.version);

}
}else{
new Word(result);

}
}

poll.run();

126 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You're still triggering the next call to the polling mechanism when the
response comes in. When you create, update, or delete, you need to do
three things:

• Stop the polling thread, because you're going to receive an update from the
current request. You'll restart it again when you receive the response.

• Gather information on current versions, and add it as an extra request
parameter

• Pass the common callback function to the request object

The read method now looks like this:

function getWords(){
poll.stop();
new Ajax.Request(

"piggy/read",
{ evalJSON
parameters:
onComplete:

'force",
: { "versions": getVersions() },
callback

}

}
) ;

Your create method has a similarly-formed Ajax request now too:

function addWord(){
poll.stop () ;
var text=$F('word_text');
var color=$F('word_color');
var x=Math.floor(Math.random()*350);
var y=Math.floor(Math.random()*42 0);
var paramsObj={ text:text, color:color,

x:x, y:y, versions: getVersions() };

Comet and Reverse Aiax firstPress 27

http://lib.ommolketab.ir
http//lib.ommolketab.ir

new Ajax.Request(
"piggy/create",
{ parameters: paramsObj,
evalJSON:"force",
onSuccess:callback

}
) ;

}
And the update method does too:

update:function(dx,dy){
pol l .s topO ;
t h i s .x=parselnt (th is .x) 4-dx;
th i s .y=parse ln t (th i s .y)+dy;
var params={

id: t h i s . i d ,
X: t h i s . x ,
y: t h i s . y ,
versions: getVersions()

};
new Ajax.Request(

"piggy/update",
{ parameters: params,
evalJSON: "force",
onSuccess:callback

}.
)

}

And, finally, here's the delete method:

deleteMe:function(){
poll .stopO ;
this.pendingDeletion=true;
new Aj ax.Request(

"piggy/delete",
{ parameters: { id: this.id,
versions:getVersions() },

28 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

evalJSON: "force",
onSuccess: callback

) ;

You've tidied your code up quite a bit in the process and made better use of
the network, particularly if the users are busily engaged in modifying the
board. On the server side, you need to modify your code in a similar way:
break out a generic method to compute the updates and have every server-
side method ultimately call that method. To illustrate this, let's look at the
difference between the delete method for the polling and the piggybacking
solutions.

In the simple polling example, you delete the entity and render a JSON
response directly:

def dele te = {
def id=params['id']
def word=Word.get(id)
word.delete()
render(contentType:"text/json"){
deleted(
id:word.id.

}
}

)

The JSON is generated by the call to render (). The closures within the
render () call will generate a nested data structure. If you're not familiar
with Groovy's Builder objects, just take our word for it for now that the
preceding code works. More information about Groovy Builders can be
found at h t t p : / /groovy. codehaus . org/Builders.

When you move to the piggybacking solution, the read () method
generates a comprehensive update, so you just invoke that:

Comet and Reverse Aiax firstPress 29

http://lib.ommolketab.ir
http//lib.ommolketab.ir

def delete = {
def id=params['id']
def word=Word.get(id)
word.delete()
read()

}

The generic update will automatically include the element that you've
deleted, just as if it had been deleted by another user, so you don't need to
worry about adding any custom response to cover that.

Summary
You've now taken your collaborative application about as far as you can
using traditional Ajax requests and responses. In the next chapter, we'll
start to address Comet proper and see what it has to offer; but for now, let's
review how far we've come.

The simplest approach to pushing data from the server was to poll the
server repeatedly. While this approach works, it places a heavy load on
available resources of both the server itself and the network. Every
connected client is continually transmitting data—usually to be told by the
server that nothing has changed—and the server must handle each of these
connections. You can lighten the load by increasing the interval between
polls, but that decreases the system's responsiveness to updates, which is
often one of the fundamental requirements of a collaborative application.

Piggybacking provides a partial salve to these problems but will only really
help in situations where the user frequently sends updates to the server
anyway. In the case of passive monitoring of the server-side data model,
we see no gain.

The results so far can, at best, be described as satisfactory, but certainly not
exciting. Looking at the other side of the equation, we need to consider
how much effort we have expended to provide this minimal amount of

30 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

push. One simple metric is file size. Compared with the noncollaborative
codebase, the piggybacking code contains roughly 25 percent more
JavaScript, and the increase in size of the controller code on the server side
is similar. You're adding a lot of additional plumbing code by hand to
manage the push-based updates of your model.

Wouldn't it be nice if some of that additional code could be omitted? To
that end, you'll continue rolling your own code in the next section and take
your first steps towards using Comet.

Comet and Reverse Ajax firstPress 31

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3: Introducing Comet
In Chapter 2, you looked at polling and piggybacking techniques to see
how far you could get with creating an interactive collaborative
application. Along the way, you found yourself juggling timeout periods,
responsiveness, and server/network loads, without reaching a satisfactory
balance between the various factors.

Using Comet techniques, you can simplify matters. In this section, you're
going to look at the basic building blocks of Comet and implement those
building blocks from scratch yourself within a standard web application
framework (Groovy on Grails). Along the way, you'll see how Comet can
improve your applications' responsiveness, and you'll discover a whole
new set of issues. The examples that we present here are designed to
illustrate the issues surrounding Comet.

In this chapter, you'll be replacing your polling/piggybacking mechanism
with Comet and using it to update your domain model on the fly. First,
though, we're going to introduce a somewhat simpler feature that will
allow you to come to grips with coding Comet on the client.

Later, in Chapters 4 through 7, we'll look at a couple of best of breed
implementations—^the dedicated support for Comet offered by DWR and
Cometd/Bayeux.

Implementing a Comet Feed Using XHR
Recall that in a normal HTTP call to the server, the response is completed
very soon after the arrival of the request, and the arrival of the response can
generally be treated as a single event on the client side. With Comet, we
keep the response stream open for a significantly longer time and typically
send several pieces of data back in the response, each of which is treated as
a discrete event on the client. Figure 3-1 illustrates the process.

Comet and Reverse Aiax firstPress 33

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 3-1. The Comet request is held open on t l ie serwer for a
while^ during which time multiple discrete changes are
communicated back to the client

In Chapter 1, we identified several use cases for Comet. Throughout
Chapter 2, we focused on the collaborative application, arguably the most
complex of the lot. We also identified Comet as being well suited to long-
running server-side processes, and in the latest version of our application,
you'll introduce just such a feature.

Assume the Magnetic Pottery service allows the user of our interactive
refrigerator door to order a custom set of real ceramic refrigerator magnets
matching the online content of the application. Of course, firing up the kiln,
shaping the clay, and baking all the items can't be accomplished in a matter
of milliseconds, so you'll want to keep the user informed as the various
stages of the process occur.

To do this, you're going to set up a server-side process that won't release
the response immediately but rather keep it open until the entire operation
has completed, which could take several days! We know that you're busy

34 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

people, though, so for the sake of the examples in this book, we've cut the
baking down to 30 to 40 seconds, which is still an unusually long time for a
web request.

How do you keep the request alive? The simplest approach is to put the
servlet thread to sleep and continue processing when you wake it up. The
implementation of our server-side code shows this process:

def bake={
response.contentType='text/plain'
def writer=response.getWriter()
writeText(writer,"firing up the oven",2000)
def words=Word.findAll()
for (w in words){
writeText(writer,

"shaping clay for '"
+w.text+"'",1000)

}
writeText(writer,"baking. . . ",6000)
writeText(writer,"still baking...",4000)
writeText(writer,

"turn de turn, nice day today?",3000)
writeText(writer,"still baking...",6000)
writeText(writer,"nearly done now",2000)
writeText(writer,"there - baked!",1000)
writeText(writer,"cooling. . . ",2000)
writeText(writer,"wrapping parcel",2000)
writeText(writer,"sending to dispatch",2000)

}

def writeText(writer,text,sleeptime){
writer.write(text+"\n");
writer.flush()
Thread.currentThread().sleep(sleeptime)

}

Comet and Reverse Ajax firstPress 35

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The entry point for the request is the method called bake. You prime the
response by setting a MIME type and repeatedly call the writeText ()
method. writeText () takes three arguments. The first is a Java wr i te r
object (i.e., a character-based output stream) belonging to the response
object; anything written to this stream will end up in the HTTP response.
The remaining two arguments are the text to write to the output stream and
the amount of time to suspend the thread for after the text is written. In a
richer example, you'd have a message bus connected to the kiln, delivering
new inputs, but let's keep it simple for now.

In this implementation of writeText (), you need to do two unusual
things. First, you explicitly flush () the stream after writing to it to ensure
that the part of the response that youVe just written actually crosses the
network immediately, rather than being stored in a local buffer on the
server. Second, you get a reference to and suspend the current thread.
While the thread is suspended, the servlet cannot exit, and the response
doesn't complete until after the last call to writeText () has returned.

Were you to watch the response, you would see several small pieces of text
being returned to the client throughout its lifetime. Many of the common
HTTP debugging tools, such as Firebug, won't actually show you this, as
they update the display only when the request is completed (since you're
using HTTP in an unusual way here, you can't expect all the tools and
APIs that you encounter to be ideal for our purposes).

We come across similar issues, in fact, when you look at your client-side
code. If you look at the design of the XMLHttpRequest object (XHR for
short) that underpins most Ajax calls in web browsers, you'll see that it
supports a number of ready states, representing the points in the life cycle
of the request or response. Any callback ftxnction that you assign to the XHR
object will be invoked when each of these ready states is reached. The
ready states are defined in the following table.

36 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

READY STATE

Uninitialized

Loading

Loaded

Interactive

Complete

DESCRIPTION

The request hasn't been sent yet

The request is underway. We're awaiting a response.

The response has started to come back.

The response has come back sufficiently for us to begin
reading it.

The response has completed.

The ready states provide a fairly complete description of the life cycle of a
request and response, but unfortunately, they don't cover a prolonged
response very evenly. The most interesting time is when you've received
some data but are waiting for more data to come in. So you'll hit the
interactive state fairly quickly, when the first message reaches the browser,
and won't be notified again until the last message comes in. Actually, this
is a worst-case scenario. In some browsers, you'll get notified more
frequently, but you can't rely on that. Once you hit the interactive state,
you'll need to set up your own timer to repeatedly check for new data. The
JavaScript code required to update the user on the progress of his
refrigerator magnet set follows:

var baker={
localPollInterval:0.5,
start:function{){
this.output=$("bake_status");
$ ("bake__button") . hide () ;
this.output,show();
new Ajax,Request(

"comet/bake",
{ method: "get",
onlnteractive:function(response){
this.xhr=response.request.transport;
this.listen 0;

}.bind(this),

Comet and Reverse Aiax firstPress 37

http://lib.ommolketab.ir
http//lib.ommolketab.ir

onComplete:function(){
this.done();

}.bind(this)

}
) ;

listen:function(){
if (this.timer){ clearTimeout(this.timer); }
this.timer=setTimeout(

function(){
var text=this.xhr.responseText;
var lines=text.split("\n");
var latest=(lines.length>l)

? lines[lines.length-2]
: "waiting for server";

this.output.innerHTML=latest;
this.listen();

}.bind(this),
this.localPollInterval^lOOO

) ;

done:function(){
if (this.timer){ clearTimeout(this.timer); }
this.output.hide();
$("bake_button").show();

}
}

The baker object has three methods representing the Hfe cycle of the
Comet request. The s t a r t () method hides the button to prevent multiple
submits, identifies the output element on screen, and initiates the call to the
server. You're using Prototype's Ajax.Request object here. Idiomatic use
of Aj ax. Request typically involves adding only one callback when the
request completes, but the object does accept callbacks corresponding to
any ready state. Here, you've added callbacks to both the interactive and
the complete stages.

38 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When the request hits the interactive state, you call the baker object's
l i s t e n () method. First, though, you get a reference from the
Aj ax. Request to the underlying XHR object. Again, you're encountering a
mismatch between the expected use of HTTP and Comet. Prototype's Ajax
classes construct an Aj ax. Response object that they pass back as an
argument to callback functions, decorated with a number of extra useful
features. Normally, to read the response body, you simply look at the
response. responseText property. However, this property is set when
the interactive stage is first reached, and response. responseText won't
update as further data comes in. To read the latest data, you need to bypass
Prototype's abstractions and grab the underlying XHR object itself.

The l i s t e n () method sets up a timer and calls itself repeatedly, reading
the XHR responseText. You're polling here, but only locally on the client,
not across the network, so you can afford to set a much shorter polling
interval. We've chosen half a second here, because you're displaying
human-readable output. Anything shorter would be less than the average
human reaction time!

The format of the data is quite simple in this case, with each message
returned by the server being a single line of text. Whenever you read
XHR. responseText, you get back the total response to date, not just the
last message sent, so you need to do a bit of string manipulation to extract
the last line.

The onComplete () callback to the Aj ax. Request simply cancels the
timer and tidies up the user interface, allowing the user to click the button
again.

As this section illustrates, you can handle Comet using the standard XHR
object that underpins most Ajax frameworks. Support for Comet is far from
ideal, particularly in the way that we had to identify the latest piece of
content to arrive. There are other mechanisms for receiving Comet feeds on

Comet and Reverse Aiax firstPress 39

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the client, which we'll address briefly before we get back to Cometizing
the main part of our application.

Script Tags, Iframes, and Comet
The fundamental problem with XHR and Comet is that XHR is designed
around the notion that the response will retum quickly and can be treated as
a single event. We come across this assumption in many HTTP clients and
within web browsers, but by a stroke of luck, one mechanism within the
browser doesn't make this assumption. That is the humble <script> tag.

Whenever a web browser encounters a <script> tag, whether in the head
or body of a document, it will execute the script immediately, without
waiting for the rest of the document to load. This behavior is most familiar
to web developers as a mild annoyance, requiring code to be wrapped in a
callback to the window, onload event to prevent it from executing until
DOM nodes are properly resolved. But it makes a first-rate transport for
Comet.

If you were to port your progress report to using this technique, rather than
setting up an XHR object, you would create a hidden if rame pointing at the
server-side resource:

<iframe s ty l e= 'wid th :Opx ; he ight :Opx '
s rc= 'comet /bake '></ i f rame>

Set s ize to Opx rather than setting display:none, because some browsers
optimize the rendering of a nondisplaying iframe by not fetching its
contents from the server.

You would also need to modify your server-side writeText () method as
follows to emit <script > tags rather than plain text:

40 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

def writeText(writer,text,sleeptime){
writer.write(

"<script>top.baker.output(\""
+text
+"\")</script>\n"

) ;

writer, f lushO
Thread.currentThreadO .sleep(sleeptime)

}
Each script tag references the JavaScript baker object as top. baker and
invokes an output () method on it defined as follows:

baker:function(msg){
this.output.innerHTML=msg;

}

You'll continue to work with the XHR object in this chapter, but if you
prefer a script-centric approach, iframes offer a useful transport mechanism
for Comet.

Long Polling
You've taken your first steps with Comet now, but the core of our
application is still running on a combination of piggybacking and old-
fashioned polling. It's time to replace those features with a Comet-like
technique. You're going to maintain an open request to the server at all
times.

While running, this request will scan the domain model for changes, using
the same version number technique as before and retum only when it
detects a change. You could leave the response open for further updates,
potentially for several minutes or even hours, but assume you've elected to
retum on the first change. This is a variation on Comet often referred to as
long polling, and it's illustrated in Figure 3-2. In traditional polling, the

Comet and Reverse Aiax firstPress 41

http://lib.ommolketab.ir
http//lib.ommolketab.ir

request is open only for a very short time during the polHng interval,
whereas in long polling the request is open almost continually.

Figure 3-2. I n long pollirtg^ the request only returns one response
but is made well ahead of time and kept open until something
interesting happens on the serwer.

Let's take a look at the server-side code required to support long polling
First, you've provided a couple of configuration parameters in the
controller:

def tries=600
def blink=100

The variable t r i e s specifies the maximum number of reads of the data
model before returning, blink specifies the sleep time between reading the
data model. So, your default setting is to keep the request open for a
maximum of 60 seconds and poll (locally, on the server) the data model

42 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

every 100 milliseconds. You'll make use of these parameters now in the
read method that gets executed when you fire the request:

def read = {
def writer=response.getWriter()
def versions = [:]
def knownVersions=params['versions']
versions= [:]
if (knownVersions!=null &&

knownVersions.length()>0){
for (pair in knownVersions.split(" ")){
def bits=pair.split("=")
versions [bits [0]]=Integer.parseint(bits[1] ,10)

}
}
response.contentType='text/j son'
def counter=0
checkChanges: while (counter<tries){
def changes=getChanges(versions);
if (changes,size()>0){
def content="{ 'tick':"+counter

+ ", 'results' : ["+changes. joinC , ")+"] }"
render(content)
break checkChanges

}else{
Thread.currentThread().sleep(blink)
counter+=l

}
}
i f (coun te r>= t r i e s){

render ("{ ' t i c k ' : " + t r i e s + " , ' r e s u l t s ' : [] }");
}

}
First, you unpack the latest known version numbers sent to us by the client,
as before. You next enter a named while loop called checkChanges,
which runs on a counter that will execute up to the maximum specified in
the t r i e s variable. Within this loop, you repeatedly hit a second method

Comet and Reverse Max firstPress 43

http://lib.ommolketab.ir
http//lib.ommolketab.ir

called get Changes () and sleep for the specified time if no changes are
encountered. If you do encounter changes, you render some JSON data and
exit the loop. Finally, if you've used up all your tries and encountered
nothing, you render an empty result set and exit the loop.

What does the get changes () method do? Let's look at the code:

def getChanges(versions){
def words=Word.findAll()
def knownIds=new ArrayList(versions.keySet())
def entries= []
for (w in words){
w.refresh 0
def key=""+w.id
def known=versions[key]
knownlds.remove(key)
def upToDate=(known!=null && known==w.version)
if (lupToDate){
entries.add("{'id':'"+w.id

+ "
+"', 'text':'"+w
+"', 'color':'"+w.color

'"+w.version
text

}"

'X'
.y.

I II + W.X
'+w.y

}

}
}
knownlds.clone 0.each{ id ->

entries.add("{'id':'"+id+"•
}
return entries

d e l e t e d ' : t r u e } ")

You retrieve all the words in the data model using f indAll (). You iterate
through each word, refreshing it against the database and comparing it with
the latest known version. If you encounter a newer version of a word, you
build up some JSON code to capture the latest data. You also keep a list of

44 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

words that you think you know about in the knownids variable. You
remove IDs from this list as you encounter them, so that you can flag any
remaining IDs as no longer being in the database. You then retum the list
of JSON expressions that represents the updated or deleted changes.

Throughout this chapter, you've seen abstractions in framework code that
make assumptions about HTTP that no longer hold true when you're using
Comet. You've run into two more in the getchanges () method.

First, Grails follows a common practice in web frameworks of isolating a
request within a database transaction. That is, between the start and end of
the request, it will see no changes to the data model other than those it
makes itself, and its own changes will be committed only at the end of the
request. For short-lived requests, that provides a sensible layer of
transaction demarcation, but for our long-polling technique or a continuous
Comet feed, it could present a problem. With Comet, you are deliberately
preventing the request from completing while polling for changes to the
model that have occurred within the request's lifetime, and therefore within
the current transaction. Fortunately, Grails's object-relational mapping
(ORM) layer provides a refresh () method on the domain objects that
allows us explicitly to request changes from the database, rather than using
the cached values presented at the start of the request.

The second abstraction that you run up against is in the way Grails renders
data. If you're an astute reader, you will have noticed that we indulged in
some rather prehistoric behavior: assembling JSON data by hand using
string concatenation, rather than using the Grails JSONBuilder to construct
data programmatically, as you have done elsewhere. The reason for this is
that the Grails render method helpfully flushes and closes the output
stream for us after rendering the data. Normally, this is a nice touch, as it
saves us from a little extra housekeeping, but in the case of Comet, you
may want to flush without closing. We have chosen to write the data
manually rather than refactoring the Grails renderers here.

Comet and Reverse Aiax firstPress 45

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Leaving these issues to the side, we have now covered everything that you
need to retrieve updates from the server using Comet. You don't need to
modify the read, update, or delete methods, because you'll continue to use
ordinary Ajax to handle them. Let's take a look at the client-side code:

function getWords(){
new Ajax.Request(

"comet/read",
{ evalJSON: "force",
parameters: { "versions": getVersions() },
onComplete:function(response){
var j sonObj =response.responseJSON;
var results = j sonObj.results;
results.each(

function(result) {
if (Words["_"+result.id]) {
var word=Words["_"+result.id] ;
if (result.deleted){
word.deleteUI();

}else{
word.updateUI(result.x,result.y,

result.version)/

}
}else{
new Word(result);

}
}

poll.run();

}

The client-side code required to implement long polling is actually quite
minimal and should familiar from your early experiments with polling in
Chapter 2. You need to respond only when the request has completed, and

46 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

you need to parse the results as before. There's no need to catch the
interactive status as you did for the Magnetic Poetry example, because the
long poll will return only one piece of data.

The create, update, and delete methods of your Word object have reverted
to using the Po l icon t ro l l e r that we presented in Chapter 2, so you've
now successfully implemented a Comet-based version of our Magnetic
Poetry application, using both multipart Comet and long polling. Along the
way, you've encountered a lot of interesting technical challenges, so let's
wrap up by reviewing them.

Issues with Naive Comet Implementations
On the server-side, you came across several mismatches between the
expectations of the web framework you were using and the way you're
using HTTP to support Comet. Specifically, the database abstraction layer
in Grails was based on the Session in View pattern (see
http:/ /www.hibernate.org/4 3 .html for a very detailed discussion on
Session in View). You had to take extra steps to see changes made to the
database during the lifetime of the request. Second, Grails's rendering
mechanism was at odds with keeping the output stream open after
rendering structured data. Grails isn't doing anything out of the ordinary
here, and you'd be likely to encounter similar issues in a number of popular
web frameworks.

On the client side, you saw similar mismatches with the Prototype
Javascript library's Ajax utility objects. Rather than handing back the raw
XHR object. Prototype provides an artificially generated Response object,
which contains a number of extra convenience methods not found in the
native XHR object. The r e s p o n s e T e x t property of this A jax . Response

object fails to keep up to date as more data arrives through the Comet
transport, forcing us to cut through the abstraction to the raw XHR object

Comet and Reverse Aiax firstPress 47

http://www.hibernate.org/4
http://3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

beneath. This issue appHes only when using Comet, not with the long
polling approach.

In addition to these difficulties that you've already experienced, you should
also be prepared for a few more: request limits in the browser, server-side
performance concems, and network infrastructure limitations.

Request Limits in the Browser
Playing with the application for any length of time will highlight another
issue that is endemic to Comet and potentially more serious. In most
modem web browsers, the number of concurrent HTTP connections to a
given domain is limited to two. On an ordinary web site, this limit serves to
queue requests in an orderly fashion without overwhelming the server, but
when you're keeping requests open for long periods of time, it can have
unexpected side effects.

Our Magnetic Poetry application will be making three types of request:

• Long polls to receive updates on the domain model, which may take up to a
minute to retum

• Comet requests to track the progress of the pottery baking process, which will
take 30 seconds or more to complete

• Ordinary Ajax calls to notify the server of update, create, and delete
operations that we have preformed

The long polls will be triggered automatically, and you can expect one of
these requests to be running most of the time. If the user also orders a set of
baked goods, she will be using up both her allotted HTTP connections for
the next 30 seconds or so. Any create, update, or delete actions that you try
to accomplish during this time will be suspended on the browser until an
HTTP connection is free, making the application feel extremely sluggish
and unresponsive. In Figure 3-3, we've captured this blocked Ajax request
in the Firebug HTTP console. The first two open requests are a long poll

48 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and a Comet request, but the third is an ordinary Ajax request that is being
blocked.

Figure 3-3. If more than one Comet request is being field open
against a particular server^ ordinary Ajax requests to that server
will be blocked until one of the Comet requests closes.

When using Comet, then, being careful about when you open Comet
connections is imperative, and ideally, you should publish all Comet

Comet and Reverse Aiax firstPress 49

http://lib.ommolketab.ir
http//lib.ommolketab.ir

updates through a single common channel. You'll look at how to achieve
this when we discuss DWR's implementation of Comet in Chapters 4 and 5
and the Bayeux protocol in Chapters 6 and 7.

Server-Side Performance Concerns
For both Comet and long polling, you kept your requests alive by
suspending the thread in which the servlet was running. This will minimize
the CPU load, but even while suspended, the servlet is still using memory.
Further, each connected client will be making use of a servlet instance
nearly all the time. You will need to provision your pool of servlets
accordingly, thereby limiting the number of concurrent users that you can
support.

Also note that the naive implementation of Comet required localized
polling on both the client and the server. You can achieve a high level of
responsiveness by setting very short polling intervals, if we gloss over the
fact that you might be overusing expensive resources within the loop.

On the client, you polled the XHR object after it had achieved the interactive
ready state. In itself, doing so doesn't present a problem. However, on the
server, you polled the database frequently enough to give your DBA cause
for concern about scalability. If you were to implement an efficient,
scalable implementation of Comet, you would need to consider an event-
driven mechanism, such as a message queue, for passing information on
updates in a timely fashion.

Network Infrastructure
As if the preceding points weren't inconveniences enough, even the
network infrastructure may misunderstand us when we're using Comet!
Specifically, some proxy servers optimize performance by chunking
responses (i.e., holding on to the data returned from the server until a
sufficient volume has accumulated and then sending everything to the

50 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

browser at once). If you're trying to drip-feed data along a Comet
connection, chunking proxies can prove to be a great inconvenience.

Some of the more sophisticated Comet toolkits will attempt to diagnose the
presence of proxies that behave in this way by sending test packets. If they
find any, they fall back to a long-polling mechanism, but that functionality
is quite out of the league of the naive Comet implementations introduced in
this chapter.

To implement Comet properly, a comprehensive rethink about the
architecture of our server, as well as the client, is required. An event-driven
mechanism for communicating updates begins to look like a necessity, and
ideally, you would like a more efficient means of suspending servlet
instances and reducing their footprint while they are asleep. You're looking
at changes not only to the application architecture but to the design of the
web server itself.

Fortunately, work on these issues is underway, and the web server
technologies required to implement scalable Comet are maturing rapidly.
We'll turn to these issues in the remainder of this book, looking at the
DWR toolkit in Chapters 4 and 5, and the Jetty server's Cometd
implementation in Chapters 6 and 7.

Suminarf
In this chapter, you implemented a working Comet-based system from
scratch. It was a heroic effort, but you encountered a number of interesting
issues along the way that leave doubts about the robustness of such a
solution. The effort that you've undertaken has been worthwhile, though, in
bringing these issues to light. In the remainder of this book, you'll use this
knowledge to understand how mature Comet implementations can achieve
robustness and scalability.

Comet and Reverse Ajax firstPress 51

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4: Comet the Easy Way
In the first chapter of this book, you were introduced to the basic concepts
behind Comet and subsequently learned about the individual building
blocks that fit together to form a working Comet stack. You saw in Chapter
2 how to open long-lived requests using XmlHTTPRequest or an if rame.
Chapter 3 demonstrated how to keep requests open on the server and push
out data as it arrives.

However, you also leamed about some of Comet's complexities, such as
the limit of two concurrent requests imposed by certain browsers, and some
of the server-side scalability obstacles that long-lived requests present.

If you were feeling adventurous, you could now develop your own Comet
application from scratch. Inevitably though, you'd spend at least as much
time developing and debugging your Comet stack as you would on your
application logic. Comet is a fairly outrageous hack, exploiting browser
behavior and the HTTP protocol in ways that were never intended at their
inception. As a result, pioneering Comet developers exploring this
unfamiliar territory can expect to battle against browser quirks and
oddities, misbehaving HTTP implementations, and a host of comer cases
and unforeseen consequences.

In this chapter, we'll show you that there is an easier way using tools like
Direct Web Remoting (DWR) that deal with many of the headaches of
Comet development.

The Emergence of Comet Tools
Only a few years ago, Ajax was in a similar situation to that of Comet
today—^Ajax was a roll-your-own solution, and you had to worry about
details like browser-dependent implementations of the XmlHTTPRequest
object, how to construct requests, and how to parse responses. Fortunately,

Comet and Reverse Aiax firstPress 53

http://lib.ommolketab.ir
http//lib.ommolketab.ir

smart people very quickly built easy-to-use JavaScript libraries that
abstracted away all of these worries, and today, very few developers would
consider writing an Ajax application without relying on Dojo, Prototype,
jQuery, and friends to take care of the heavy lifting.

With Comet, we can thankfully turn to these smart people again. Several
libraries take care of the intricacies of parts of the Comet stack. On the
client side, Dojo and jQuery offer Comet features, while the Meteor
(h t tp : / /meteorserver .org/) and Liberator
(h t tp : / / f r ee l ibe ra to r . com/) servers are dedicated primarily to
serving Comet requests. The Cometd project is also hard at work creating
interoperable server-side and client-side Comet libraries based on the
Bayeux protocol. You can learn about Bayeux in Chapter 6.

Arguably the most comprehensive and easy-to-use Comet implementation
currently available is Getahead's DWR framework for the Java platform
(ht tp: / /directwebremoting.org/) . DWR integrates Comet
transparently into existing Java logic, allowing you to concentrate on
simply writing your application functionality. It's a great choice when you
need to have Comet closely integrated with your application logic—a setup
that DWR's author Joe Walker calls onboard Comet.

We're going to use DWR to demonstrate how simply you can develop a
Comet application when you don't have to worry about all of the
complexity under the hood.

Direct Web demoting
Before we begin, though, let's take a quick look into the history of DWR.
DWR first emerged in early 2005 as a web remoting tool built on Ajax. In
Java, the standard way of exposing behavior to the web is to write servlets,
basically the Java equivalent of CGI scripts. Servlets parse HTTP request
parameters, perform operations on server-side objects as required, and

54 firstPress Comet and Reverse Ajax

http://teorserver.org/
http://freeliberator.com/
http://directwebremoting.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

return an HTTP response representing the results of these operations,
usually in the form of an HTML document.

Conceptually, DWR does away with the servlet layer and provides access
directly from JavaScript calls in the web browser to methods on server-side
Java objects. Therefore, developers using DWR can simply place all of
their logic in server-side classes, rather than in script-like servlet code.
They then configure DWR to expose the methods of these classes and
automatically generate JavaScript representations of them to include in the
application's web pages.

DWR in Action
To demonstrate the use of DWR, let's create a Java class called
DwrMagPoetryCont ro l l e r . This cut-down version of the Magnetic Poetry
example application you encountered earlier in this book simply allows
Word objects to be stored and retrieved. Here's the source code for the
DwrMagPoetryController class:

pub l i c c l a s s DwrMagPoetryController {

pub l i c void addWord(Word word) {
word . s ave () ;

}

public Collection<Word> findAllWords() {
return Word.findAll();

}
}

As you can see, there isn't much to it. The Word class incorporates methods
that deal with the persistence concerns here. It's sufficient to know that we
can either add a new Word object or retrieve all existing Word objects from
the datastore.

Comet and Reverse Aiax firstPress 55

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now, to expose these methods to calls from the browser, we need to
configure DWR via the dwr. xml file. Here is the dwr. xml configuration
for this example:

<dwr>
<allow>

<crea te creator="new" scope="app l i ca t ion"
j avascript="DwrMagPoetry">

<param name="class"
value="comet.magpoetry.DwrMagPoetryControl ler"/>

<include method="addWord"/>
<include method="findAllWords"/>

< /c rea te>

<convert conver ter="bean"
match="comet.magpoetry.word.Word"/>

</allow>
</dwr>

Inside the top-level dwr element is an allow element that tells DWR
explicitly what its remoting mechanism should permit access to. Anything
not included in the allow element is protected, meaning that you don't
need to worry about accidentally exposing unintended functionality to
hackers.

Two elements are nested inside allow: create and convert. The crea te
element is how we tell DWR to expose a class for remoting, and it has
three attributes: creator , scope, and javascr ip t . The first attribute,
creator , tells DWR how to instantiate the class in question; possible
options include calls to factory classes or integration with Spring. Here, we
simply want DWR to call DwrMagPoetryController's constructor, so we
specify new. We also only need a single instance of the class, which will
live for the lifetime of the web application, so we set the scope attribute to
appl icat ion. Other possibilities here are to bind the created instance to a
client's HttpSession or to create a new instance for each individual

56 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

request. The final attribute, javascr ip t , defines the name of the generated
JavaScript object that web cHent code will interface with.

Enclosed within the crea te element is a parameter to tell DWR the fully
qualified name of the class we're talking about and include elements to
explicitly define which methods should be exposed. The include elements
form a white list, meaning that any other methods on the class should not
be remoted.

Now, if you look back to the signatures of the methods we are exposing,
you'll see that one takes a word instance as a parameter, and the other
retums a Collection of Word instances. When it comes to passing objects
back and forth between JavaScript code and Java code, DWR is pretty
smart. Any of the basic Java types, like the primitives and s t r ing , are
converted automatically, and Collection types are converted into
JavaScript arrays. We do need to explain to DWR how to convert a custom
type like Word, however.

Since Word follows the standard JavaBean semantics, all we have to do is
specify that DWR should use its built-in introspection-based bean
converter to bind values to and from web calls. In more complex cases,
where bean introspection isn't sufficient to serialize the data from your
objects, you can implement a custom converter yourself

That's the DWR configuration dealt with. The only remaining task is to
deploy the servlet component of DWR.

Comet and Reverse Aiax firstPress 57

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWRServlet
DWRServlet is the intermedia^ between DWR's JavaScript code and your
Java objects.

Here's the pertinent snippet from our web. xml configuration to set up
DWR:

<servlet>
<servlet-name>dwr-invoker</servlet-name>
<servlet-class>
org.directwebremoting.servlet.DwrServlet

</servlet-class>
<init-param>

<param-name>debug</param-name>
<param-value>true</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>dwr-invoker</servlet-name>
<url-pattern>/dwr/*</url-pattern>

</servlet-mapping>

As well as mapping the DwrServlet to the /dwr/ URL, we've also
enabled DWR's debug mode, which provides a very useful snapshot of the
classes and methods that DWR is remoting and is invaluable during
development. You just need to navigate to <your-web-app>/dwr/, where
you will be presented with a list of remoted classes, as defined in dwr. xml.
Clicking a class name takes you to a test page that looks like the one shown
in Figure 4-1.

58 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 4-1. DWR's test page for DwrMagPoetry

The first thing to note on the test page is the list of methods on the remoted
class that specify whether access to each is permitted or denied. As
expected, only addword () and f indAllwords () can be invoked. The test
page allows you to make calls to these methods and see their return values
too.

Where a method takes arguments, input boxes are provided to pass in
JavaScript literals, which may be strings or numbers in simple cases. Since
addWord expects a Word object, we can pass in a JavaScript object literal
defining the properties of a Word, for instance, {text: ^Hello' , color:
^ # f f O ' }.

Comet and Reverse Ajax firstPress 59

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Clicking the Execute button invokes the method remotely. Since the
addword () method is void, DWR displays the retum value nul l next to
the method name once the call completes.

We can also call findAllwords () to ensure that the word was correctly
added to the datastore. Since this method retums a Collect ion of word
objects, DWR won't display its retum value inline, and instead uses an
alert dialogue, which is shown in Figure 4-2.

Figure 4-2. JSON output from findAIIWords

The debug screen also provides the scripts tags you need to include in your
web pages to make calls on the remoted class:

<script t ype= ' t ex t / j avasc r ip t '
src='/magpoetry/dwr/interface/DwrMagPoetry.js'>

</script>
<script t ype= ' t ex t / j avasc r ip t '

src='/magpoetry/dwr/engine.j s'>
</script>

DWR's engine. j s contains the core client-side DWR functionality. The
other JavaScript include, DwrMagPoetry. j s, is automatically generated by

160 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWRServlet. It contains remote proxy objects representing each of the
classes remoted by DWR.

When cHent-side code makes a function call on one of these JavaScript
proxies, DWR's client-side engine is transparently invoked to make an
HTTP call, via Ajax, to DWRServlet, which calls the corresponding Java
object's method and returns its response wrapped in a JSON packet. Back
in the browser, DWR unpacks the JSON response and passes the method's
retum value to a callback function. To the client, all of this looks like a
simple asynchronous function call.

Here's an example that invokes the remoted getAllWords () function on
our DwrMagPoetry instance from JavaScript:

DwrMagPoetry.getAl1Words(funct ion(words)
for (var word in words) {

a l e r t (w o r d . t e x t) ;
}

}) ;

{

DWR adds an optional callback parameter to the end of each remoted
method's parameter list. This allows you to specify a function that the Java
method's returned value will be passed to. In this case, the method retums
a Collection of Word instances, which DWR converts into a JavaScript
array of untyped JSON objects.

DWR also provides a simple call-batching mechanism to allow multiple
Ajax calls to be executed in a single request, avoiding the two-connections-
per-domain limitation.

DWREngine.beginBatch();
DwrMagPoetry.addWord({text:'Yellow',color:'#ff0'});
DwrMagPoetry.addWord({text:'Red',color:'#f00'});
DwrMagPoetry.addWord({text:'Green',color:'#0f0'});
DWREngine.endBatch();

Comet and Reverse Aiax firstPress 61

http://lib.ommolketab.ir
http//lib.ommolketab.ir

None of these calls will be sent to the server until endBatch () is called. If
the three batched remote calls included callbacks to handle return values,
they would be invoked as normal, in order—DWR deals with multiplexing
the batched responses transparently.

DWR and Comet
Version 2.0 of DWR introduces the concept of Reverse Ajax, in other
words, the ability to invoke client-side behavior from the server side.
Reverse Ajax is conceptually broader in scope than Comet, since its
implementation in DWR allows the simulation of server push behavior
with regular polling, request piggybacking, or Comet-style long polls.
Indeed, one of the many benefits of using DWR over a nuts-and-bolts
approach to Comet is that the chosen server push mechanism can be
switched with a simple configuration change. Should you decide, for
instance, that a 30-second interval between updates to your dynamic web
page is perfectly acceptable, you can easily switch over to DWR's polling
mechanism and reduce your server's traffic burden. The decision is just as
easily reversed, without impacting your application design or architecture.

Magnetic Poetry Meets DWR on the Client Side
Let's now implement the Magnetic Poetry application from Chapter 2
using Reverse Ajax. Following on from our DwrMagPoetryController
example, we will reuse the existing functionality of the word class,
allowing words to be saved and retrieved from storage. However, we will
also add the ability to update or delete existing words. A new controller
class called ReverseAjaxCont r o l l e r will encapsulate all of our business
logic.

ReverseAjaxCont r o l l e r keeps the f indAllWords () method from
DwrMagPoetryController. Client web pages will call this method when
they first load up to get the current state of the word datastore:

62 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

public Collection<Word> findAllWords() {
return Word.findAll();

}

Users can then manipulate the virtual refrigerator door by adding new
words, changing the properties of words already present, or deleting words.
Here is a snippet of our Magnetic Poetry JavaScript code that illustrates
calls on ReverseAjaxContro l ler ' s methods:

function initWords(){
ReverseAjaxController.findAllWords(function(words)

for (var i=0/ i<words.length; i++) {
new Word(words[i]);

{

}

}
) ;

}

function addWord(){
var text=$F('word_text');
var color=$F('word_color');
var x=Math.floor(Math.random()*350;
var y=Math.floor(Math.random()*420;

ReverseAjaxController.addWord(
{ text:text, color:color, x:x, y:y }

) ;

}

The initWords () function is called on load, populating the client's view
with all of the existing words in the Magnetic Poetry datastore. When the
user adds a new word, we invoke DWR to make an Ajax call to
ReverseAjaxControl ler ' s addWord () method. Deletion and
modification of existing words are handled similarly.

Comet and Reverse Aiax firstPress 63

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Magnetic Poetry and DWR on the Server Side
On the server side, ReverseAjaxController responds to these events
from the client with the methods addword () , deleteWord () , and
updateWord (). These methods persist the client's changes and notify all
connected Magnetic Poetry clients of what happened. It's this notification
step that relies on DWR's Reverse Ajax technology.

Here's ReverseAjaxCont r o l l e r in full:

public class ReverseAjaxController {
public Collection<Word> findAllWords() {

return Word.findAll();
}

public void addWord(Word word) {
word.save();
notifyAllClients("wordAdded",word);

}

public void deleteWord(Word word) {
word.delete();
notifyAllClients("wordDeleted",word);

}
public void updateWord(Word word) {
word.save();
notifyAllClients("wordUpdated",word);

}

private void notifyAllClients(String eventType,
Word word) {

getScriptProxy0 .addFunctionCall(eventType, word);

}

private ScriptProxy getScriptProxy() {
WebContext ctx = WebContextFactory.get();

64 firstPress Comet and Reverse Max

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Collection sessions =
ctx.getScriptSessionsByPage(ctx.getCurrentPage0);

return new ScriptProxy(sessions);
}

}
The Reverse Ajax magic is all in the two private methods:
no t i fyAl lc i ien ts () and getScriptProxy (). Each time a change
occurs that needs to be communicated to all connected clients, we call
notif yAl lc i ien ts () with a Str ing representing the change event and
the Word affected by the change.

In not i f yAl lc i ien ts (), the first action is to obtain a ScriptProxy, a
DWR object that allows JavaScript to be pushed to multiple clients. The
getScriptProxy () method uses DWR's WebContext to obtain a
Script Session for each browser currently viewing the Magnetic Poetry
web page. Scr iptsess ion provides the underlying functionality for
passing scripts to a single client, but wrapping a collection of
ScriptSessions in a ScriptProxy provides convenience methods for
sending script to them all at once.

Two approaches can be used with ScriptProxy to execute JavaScript on
clients. ScriptProxy can be provided with the raw JavaScript in a
ScriptBuf f er, which is essentially a stringBuf f er with some DWR
niceties to convert Java data types into JSON literals. Altematively, a
sequence of client-side JavaScript functions to be invoked can be specified
via calls to S c r i p t Proxy's addFunct ionCal l () method.

Our not i f yAl lc i ien ts () uses the function-call approach. Our client-side
JavaScript code contains functions whose names correspond to the types of
word event that can occur: wordAdded (), wordDeleted (), and
wordUpdated (). Using ScriptProxy, a function call is generated
corresponding to the eventType parameter, and the affected Word object is
passed as an argument to that JavaScript function.

Comet and Reverse Aiax firstPress 65

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here are our JavaScript implementations of these functions, each updating
the user interface in response to the server's notification:

function wordAdded(wordProps) {
new Word(wordProps);

}

function wordDeleted(wordProps) {
var deleteMe = Words.getWordByld(wordProps.id) ,•
deleteMe.deleteUI0 ;

}

function wordUpdated(wordProps) {
var updateMe = Words.getWordByld(wordProps.id)
updateMe.updateUI(wordProps.x,wordProps.y,

wordProps.version);

}

In each case, wordProps is a JSON representation of a server-side Java
Word object that is automatically marshaled by DWR. This JSON
representation is used to create or modify a corresponding JavaScript word
object.

Routing Magnetic Poetry Events
There's a design pattern here that is worth noting: while the user can
manipulate controls on the page to create or modify words, his input does
not directly modify the view. Instead, all that happens is that the
ReverseAjaxController is notified of the user's intentions. Once the
server-side model has been updated, the change event is pushed out to all
clients, including the client that instigated the change. The user interface
itself is only modified in response to calls on wordAdded (),
wordDeleted (), and wordUpdated (). This series of interactions is
illustrated in Figure 4-3.

66 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 4-3. Routing of ewents in the Rewerse Ajax Magnetic Poetry
appiication

The advantage of the approach illustrated in Figure 4-3 is that it allows all
clients to be treated uniformly, with no special cases for the client that
instigated the changes. There's no special logic on either the client or
server to differentiate the client making a change from clients that should
be informed of the change. This technique also guarantees that all clients
will be kept in sync, allowing conflicts between concurrent changes to be
resolved on the server.

There's one small but vital detail of Reverse Ajax that we haven't
discussed yet. Earlier, we showed how Webcontext's
getScriptSessionsByPage () method allows US to push JavaScript code
out to all clients currently connected to the Magnetic Poetiy page. But how

Comet and Reverse Aiax firstPress 67

http://lib.ommolketab.ir
http//lib.ommolketab.ir

does DWR know who these cUents are? The answer is that all Reverse
Ajax clients need to make a single DWR call when the page first loads:

dwr.engine.setActiveReverseAjax(true);

This call registers the client with DWR for push notifications. Under the
hood, making this call initiates the long-lived requests that Comet relies on.

Wrapping Up This Implementation
To wrap up, let's take a look at our server-side configuration files for the
Reverse Ajax example. First, here's dwr .xml:

<dwr>
<allow>
<create creator="new" scope="application"
javascript="ReverseAjaxController" >
<param name="class"
value="comet.magpoetry.ReverseAj axController"/>
< include method="f indAl1Words"/>
<include method="addWord"/>
<include method="updateWord"/>
<include method="deleteWord"/>

</create>

<convert converter="bean"
match="comet.magpoetry.word.Word"/>

</allow>
</dwr>

There is nothing out of the ordinary here; we just need to ensure that all of
the server-side functions we require are exposed using the allow element.
The convert element again informs DWR that Word should be serialized
to JSON using standard JavaBean semantics.

Finally, one special change needs to be made in web.xml:

68 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<servlet>
<servlet-name>dwr-invoker</servlet-name>
<servlet-class>
org.directwebremoting.servlet.DwrServlet

</servlet-class>
<init-param>
<param~name>activeReverseAjaxEnabled</param-name>
<param-value>true</param-value>

</init-param>
</servlet>

The activeReverseAj axEnabled parameter determines what type of
Reverse Ajax DWR will use. When the parameter is false , DWR will rely
on piggybacking and will only publish server-side changes to clients when
those clients themselves make an Ajax call to the server. In the Magnetic
Poetry case, piggybacked events would mean that a user would only see
other users' changes when she herself made a change.

That approach might be suitable for certain types of web applications,
where prompt delivery of updates to clients isn't a priority. In our case,
however, we need to enable active Reverse Ajax. In this mode, DWR will
implement Reverse Ajax using Comet.

Summary
Comet is still an immature technology, based on unorthodox usage of the
HTTP protocol that runs counter to many of the inherent assumptions in the
conventional web stack. As a result, few of the web tools and libraries
available are designed around implementing long-poll Comet applications,
and developing your own stack is hard. However, Comet-centric tools are
beginning to appear. In the Java world, DWR provides a simple and easy-
to-use approach to general Ajax application development, providing good
integration with existing Java technologies and automatically generating
intuitive JavaScript code to call on the client side. Reverse Ajax takes this

Comet and Reverse Aiax firstPress 69

http://lib.ommolketab.ir
http//lib.ommolketab.ir

further, and makes Comet-based applications possible with only a few lines
of configuration.

70 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5: Scaling Comet in Java
You've now seen how DWR integrates with Java applications to
implement server push using Comet. But we haven't yet addressed scaling.
In this chapter, we'll begin by examining why traditional web servers scale
poorly to the demands of a Comet application. We'll then look at the Jetty
server, which offers an alternative approach to serving Comet requests, and
demonstrate how to write scalable Comet applications using this
proprietary approach.

Thread Management for the Web
As you saw earlier in this book, traditional servers allocate a thread to each
incoming HTTP request. The idea is that the thread should perform any
necessary work to service the request and send a response as quickly as
possible, after which it is allocated to another inbound request. This design
works well when serving a large volume of short-lived requests—when
quickly rendering simple dynamic web pages, for instance—and is
commonly used with PHP, Ruby on Rails, and ASP, among many others.

Comet's traffic pattern is completely at odds with this approach, however.
Long polls, by nature, are held open for a considerable length of time, and
each Comet client will spend most of its time with a long-poll request in
progress. This means that a Comet server needs to deal with as many
concurrent requests as it has clients, and since every thread consumes
considerable resources, the thread-per-request model is generally unable to
scale to large numbers of clients. Consider also that a long-polling Comet
request spends most of its life cycle in an idle state, merely waiting for an
event to occur. No real work is being performed for that request, so tying
up a thread only to do nothing with it is clearly inefficient.

Comet and Reverse Ajax firstPress 71

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Normally, Java servers use the thread-per-connection model. That is, each
incoming HTTP connection is bound to a Java thread, and that thread is
used to perform all work related to that connection. Once the connection is
closed, the thread can be retumed to a pool for reuse. Recently, servers
have taken advantage of Java's asynchronous I/O APIs in order to move to
event-driven connection handling. This allows a single thread to maintain
many open connections, queuing their requests until they can be handled by
servlet code (remember that in HTTP 1.1, several requests can be sent
consecutively over a single connection).

However, the Java servlet model itself is inherently a thread-per-request
design. When an HTTP request arrives at the servlet container, a thread is
assigned to that request and is used to execute a servlet's instructions.
Servlets lack any mechanism to pause, pending a server-side event, other
than halting their thread of execution using the Java language's built-in
wai t /not i fy lock semantics.

Let's take a look at using wai t /not i fy to suspend a request until a server-
side event occurs. This is at the heart of any Comet-like long-polling call.

wait/notify
Returning to the Magnetic Pottery text-to-ceramics service you saw earlier,
we'll start with a servlet that pulls a s t r i n g parameter, word, from the
HttpServletRequest and creates a BakeryOrder object from it. It then
sends the order to the bakery and waits until the ceramic word is "baked."

public class MagneticPotteryServlet
extends HttpServlet {

public void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, lOException {

String wordToBake = req.getParameter("word");

72 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

res.setContentType("text/plain");
res.getWriter().printIn(

new Date()+": Word to bake: "+wordToBake);
res.flushBuffer();

BakeryOrder order =
new WaitNotifyBakeryOrder(wordToBake);

Word baked = order.sendToBakery();

res.getWriter().printIn(new Date()+": Done!");
}

}
As you can see, nothing special is going on here: a synchronous call,
order. sendToBakery (), is surrounded by some timestamps to show how
long the process takes. Note that we flush the response buffer before
making the sendToBakery {) call, so that the first timestamp is output
immediately.

Bakery itself runs in a constant loop, baking a fresh batch of words every
10 seconds. To have Bakery bake a Word for you, you call its
placeOrder () method, passing in a BakeryOrder. When the Word that
you ordered is baked. Bakery invokes orderComplete () on the
BakeryOrder. Here are the interesting bits of Bakery's implementation:

public class Bakery implements Runnable {

private Set<BakeryOrder> nextBatch =
new HashSet<BakeryOrder>0;

void placeOrder(BakeryOrder order) {

synchronized (nextBatch) {
nextBatch.add(order);

}
}

Comet and Reverse Aiax firstPress 73

http://lib.ommolketab.ir
http//lib.ommolketab.ir

public void run() {
while (true) {

Set<BakeryOrder> currentBatch;
synchronized(nextBatch) {
currentBatch = nextBatch;
nextBatch = new HashSet<BakeryOrder>();

}
try {

// Simulate baking time
Thread.sleep(lOOOO);

} catch (InterruptedException e) {}

for (BakeryOrder order : currentBatch) {
Word freshBakedWord =

new Word(order.getTextToBake());
order.orderComplete(freshBakedWord);

}

}
}

}

Again, this snippet is fairly straightforward. The Order objects passed to
the placeOrder () method are accumulated in the nextBatch variable
until the current batch is baked. After that, nextBatch becomes
currentBatch; currentBatch is sent to bake for 10 seconds; and finally
Order objects are notified that their fresh-baked words are ready. We just
need to take care to synchronize on the nextBatch variable, because it is
accessed by Bakery's own thread, as well as from client threads invoking
placeOrder () .

Finally, let's look at the implementation of waitNotifyBakeryOrder.
This class is responsible for adding itself to the Bakery's next batch of
BakeryOrder objects and blocking until its orderComplete () callback is
invoked by the Bakery.

74 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here's the code, with some minor details omitted:

class WaitNotifyBakeryOrder implements BakeryOrder {

private Word bakedWord;
private Object mutex = new Object();
public Word sendToBakery() {

synchronized (mutex) {
Bakery.getInstance().placeOrder(this);

while (bakedWord == null) {
try {
mutex.wait () ;

} catch (InterruptedException e) {}

}
}

}
return bakedWord;

public void orderComplete(Word bakedWord) {
synchronized (mutex) {

this.bakedWord = bakedWord;
mutex,notify();

}

When sendToBakery () is called, WaitNotifyBakeryOrder passes itself
to the Bakery's placeOrder () method and waits on the mutex object until
bakedWord is set. Meanwhile, in the Bakery's execution thread, the order
will be processed and the orderComplete method called with the baked
Word object. This callback initializes the bakedWord member before using
mutex. notify () to signal the waiting thread to continue. Back in the
resumed sendToBakery () method, the baked word is returned to the
caller, in our case MagneticPotteryServlet.

Comet and Reverse Ajax firstPress 75

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here's the output from a call to MagneticPotteryServlet:

$ l inks
http://localhost:8080/magpoetry/pottery?word=WaitNotify

Sun Mar 02 22:02:49 GMT 2008: Word to bake: 'WaitNotify'
Sun Mar 02 22:03:05 GMT 2008: Done!

As you can see, in this particular case, it took 16 seconds for the request to
be processed—6 seconds waiting for the Bakery to complete its previous
batch and 10 seconds in the oven. This wai t /not i fy approach works
perfectly well for any given request being processed. The problem is one of
scalability.

Difficulties in Using wait/notify with Comet
A servlet's thread is tied up for several seconds while the word is being
baked, even though that thread is not doing any useful work. It's merely
hanging around until it receives notification that the Bakery has completed
its task, and it's not able to service other requests in the meantime. A large
number of simultaneous requests to the Bakery class from Comet clients
would therefore quickly exhaust the server's thread pool, resulting in long
waits for threads to become available. You might conclude, therefore, that
the thread-per-request Java servlet model is inherently unsuitable for large-
scale Comet-type applications, because it doesn't scale well.

The root of the issue is that the Java servlet model was developed to serve a
very different traffic profile, long before anyone had conceived of Comet-
style asynchronous event delivery to the browser. Moreover, this thread-
per-request model remains suitable for the vast majority of web
applications, so there is little incentive to drastically alter it.

However, efforts have been made recently in the Java community to
provide more Comet-friendly server architectures. Among these are Jetty 6,
Grizzly (part of the GlassFish project), and Tomcat 6, each of which

176 firstPress Comet and Reverse Aiax

http://localhost:8080/magpoetry/pottery?word=WaitNotify
http://lib.ommolketab.ir
http//lib.ommolketab.ir

provides proprietary extensions to the regular servlet model to provide
nonblocking, event-driven request processing. In the longer term, the Java
Servlet specification itself will be enhanced with Comet-friendly features
in version 3.0. You can read about the Servlet 3.0 proposals later in this
chapter, but for now let's take a look at the Comet features in Jetty.

Jetty 6
Version 6 of WebTide's venerable Jetty server
(http:/ /www.mortbay.org/jetty-6/) introduced several innovations
aimed at scaling long-lived requests. Many of these are under-the-hood
implementation details, but the headline feature for any aspiring Comet
developer is what WebTide calls continuations. Now, the term
"continuation" is fairly loaded. Some people are familiar with
continuations as language-level features (for instance, in Scheme and
Ruby) that allow the current state of a computation to be encapsulated as a
first-class data type. Meanwhile, in the Java world. Spring WebFlow uses
the term to describe its mechanism for tracking conversational state in a
web application. Jetty's use of the continuation is quite distinct from either
of these: in simple terms, a Jetty continuation simply provides an
altemative wai t /not i fy mechanism that doesn't consume a server thread.

Using Jetty Continuations
However, employing continuations is a little more complex than using
wait /notify, SO let's take a look at how Jetty continuations are
implemented. First of all, let's revisit the earlier
MagneticPotteryServlet example—^rewritten to use continuations. This
example will work exactly like the earlier version except that the servlet's
thread will be retumed to the pool when the Bakery begins to process an
order, and only when the order is complete will a thread again be consumed
to continue servicing the request.

Comet and Reverse Aiax firstPress 77

http://www.mortbay.org/jetty-6/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here is the updated MagneticPotteryServlet code:

public class MagneticPotteryServlet
extends HttpServlet {

public void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, lOException {

String wordToBake = req.getParameter("word");

res.setContentType("text/plain");
res.getWriter().println(new DateO +

": Word to bake: '"+wordToBake+"'\n");
res.flushBuffer();

Continuation c =
ContinuationSupport.getContinuation(req,null);

BakeryOrder order =
new ContinuationBakeryOrder(c,wordToBake);

Word baked = order.sendToBakery();
res.getWriter().printIn(new Date()+": Done!");

}
}

The main difference from the original that you can see here is the extra step
to obtain a Continuation instance from HttpServletRequest. You need
this step because Continuation instances are intrinsically tied to the
servlet request cycle, rather than being a general-purpose concurrency tool
that can be conjured anywhere in your code. We've also implemented a
new type of BakeryOrder, ContinuationBakeryOrder, which is
initialized with the Continuation that we just obtained. Here's the
implementation of ContinuationBakeryOrder, again with some details
omitted:

78 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

class ContinuationBakeryOrder implements BakeryOrder {

Continuation continuation;

public Word sendToBakery() {

if (!continuation.isPending0) {
Bakery.getInstance().placeOrder(this);

}

continuation.suspend(0) ;

return (Word)continuation.getObject();

}

public void orderComplete(Word bakedWord) {
continuation.setObject(bakedWord);
continuation.resume();

}
}

Let's examine the differences between this code and the earlier
WaitNotif yBakeryOrder. First of all, the calls to wait () and n o t i f y ()
are replaced by calls to suspend () and resume () on the c o n t i n u a t i o n
member variable. The argument supplied to the suspend () call is a
timeout parameter. Passing in zero means that the suspend () operation
will never time out and should wait to be explicitly resumed. The
synchronized blocks are gone too, as you don't need to obtain the
monitor of a Continuation as you would before invoking a Java object's
wait () or notify () method. Instead, a Continuation employs its own
alternative to Java's threading mechanisms, as you'll learn shortly.

Also, in the orderComplete () callback, note that a Continuation
instance has a handy way to store a context object, with setobject ().
Using this context eliminates the need for a separate bakedWord property
on the ContinuationBakeryOrder, as the Word can be passed between

Comet and Reverse Aiax firstPress 79

http://lib.ommolketab.ir
http//lib.ommolketab.ir

threads inside the Continuation—^the word is retrieved after the
suspend () call using getob j ect (). Finally, and most significantly, the
continuation-based approach requires a check of the Continuation's
isPending () method prior to the sendToBakery () call. Before we look
into why that is, let's first consider the output from this reconfigured
servlet, which provides some insight:

$ l inks
localhost:8080/magpoetry/pottery?word=Continuation

Sun Mar 02 22:06:28 GMT 2008: Word to bake: Continuation
Sun Mar 02 22:06:45 GMT 2008: Word to bake: Continuation
Sun Mar 02 22:06:45 GMT 2008: Done!

You'll no doubt spot that the first line of output is repeated, with a different
timestampjust before the "Done!" message is generated. This repetition is
a big clue to how continuations are implemented.

Understanding the Continuation Meclianism
Like much of the Comet stack, continuations are actually something of a
hack, bending the rules of existing technologies to provide the necessary
functionality. Here's the trick behind a Continuation's behavior: calling
suspend () actually aborts processing of the servlet thread altogether, by
throwing the Jetty-specific runtime exception RetryRequest. This
exception propagates up into Jetty's internals, where the Continuation is
extracted from the RetryRequest and put on ice in a queue with other
suspended Continuation objects. Jetty is then able to use a single
housekeeping thread to periodically run through all of the suspended
Continuation objects in its queue, checking each to see whether each
one's resume () method has been called from another thread.

When Jetty finds that a Continuation has been resumed, it replays the
Continuation's associated request: a thread is obtained fi:*om the pool and

80 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

is used to invoke the servlet's doGet () (or doPost ()) method exactly as it
was when the request was initially received. This explains the double
output from the servlet: this line of servlet code was executed twice.

Now, we obviously don't want the replayed request to do exactly what it
did before, or we'll end up resubmitting our word to the Bakery—^this is
where the Continuation's ispending () method comes in. It is used to
distinguish requests that are being replayed from ones that are making their
first visit to the servlet. The rule is that i spending () retums t rue if and
only if suspend has already been called. In ContinuationBakeryOrder,
we check for this condition and skip sending the order to the Bakery,
retuming the baked Word instead.

The key word here is "idempotence," meaning to have the same effect
whether applied once or multiple times. An operation in Java is generally
idempotent if multiple calls to it produce the same result each time, and the
call doesn't have side effects. For instance, the call to
request . getParameter ("word") is idempotent here, since the result is
exactly the same no matter how many times the operation is repeated.
However, the status message output is not idempotent. It has the side effect
of adding text to the servlet response stream, so performing it many times
causes a different outcome than performing it only once. Strictly speaking,
we should have made that status message conditional on the
Continuation's isPending () State too. So, the general rule of thumb
with continuations is that any code prior to your suspend () call must
either be idempotent or conditional on isPending ().

Look back to the output of the continuation-enabled
MagneticPotteryServlet, and you'll see that it took 17 seconds to
process. However, between the first timestamp at 22:06:28 and the second
at 22:06:45, this request was suspended and not consuming a servlet thread.
During this 17-second interval, a thread that would otherwise have been

Comet and Reverse Aiax firstPress 81

http://lib.ommolketab.ir
http//lib.ommolketab.ir

tied up idling in a wait () call was instead available to process other
incoming requests or other continuations as they were resumed.

Using a Jetty Continuation means that a waiting request only consumes a
slot in Jetty's pending continuations queue, rather than tying up an entire
thread. This is great for Comet applications, as the number of requests
waiting on events is no longer limited by the number of available threads.

Drawbacks of Continuations
Measurements of Jetty's Comet performance by WebTide developer Greg
Wilkins reveal what a major difference continuations can make. In
Wilkins's test, generating 10,600 concurrent requests without continuations
caused Jetty to spawn 10,600 threads, with a consumption of 694MB of
stack memory. Enabling continuations in the same scenario allowed Jetty
to service the same number of requests with only 875 threads and 57MB of
stack memory, while still servicing 5,000 requests per second. Clearly, this
kind of scalability makes Java a viable solution for Comet after all.

However, there are a few drawbacks to using continuations in your web
application. First of all, the continuation abstraction leaks slightly, meaning
that your application code becomes polluted with continuation-related
concerns. As you've seen, idempotence needs to be considered, and code
made conditional on a Continuation's state where appropriate, which
makes continuations-based code somewhat tricky to write.

There is also the issue of portability. The Continuations API is proprietary
to Jetty, so you can't take continuations-dependent code and deploy to just
any server. Technically, you can distribute the Jetty Continuations library
with your web application, but in a non-Jetty environment, continuations
fall back to providing a simple wrapper around wait /notify; it's Jetty's
own servlet container that provides the true nonblocking continuation
mechanism. Another approach is to use Java's Reflection API to detect
whether continuations are available at runtime and dynamically switch

82 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

between using a continuation or wai t /not i fy semantics. This makes
your code truly portable, as the Continuations API is not required at
runtime.

Jetty Continuations and DWR
While the extra programming overhead threatens to spoil the continuations
party somewhat, a Comet solution makes continuations very easy to use:
DWR. That's right; DWR's Reverse Ajax technology uses the reflection
trick to transparently detect and use continuations for long polling when
available, with no changes required to your application code. You don't
need to worry about idempotence or portability; just write your Reverse
Ajax application, and let DWR take care of the rest.

We now have all of the pieces in place to build a scalable Comet
application using Reverse Ajax and Jetty continuations. All that's needed is
to configure DWR and Jetty correctly, and the Reverse Ajax Magnetic
Poetry example can scale to handle many simultaneous clients.

As you have already seen, only a single parameter needs to be set in
web.xml for DWR to USe Comet: act iveReverseAjaxEnabled.

<serv le t>
<servlet-name>dwr-invoker</servlet-name>
<servlet-class>
org.directwebremoting.servlet.DwrServlet

</servlet-class>
<init-param>

<param-name>activeReverseAjaxEnabled</param-name>
<param-value>true</param-value>

</init-param>
</servlet>

On the Jetty side, we just need to check that the server is configured to use
nonblocking I/O, with the SelectChannelConnector. This is defined in
Jetty's e tc / je t ty .xml configuration file:

Comet and Reverse Aiax firstPress 83

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<Call name="addConnector">
<Arg>
<New class=
"org.mortbay.j etty.nio.SelectChannelConnector">
<Set name="host">
<SystemProperty name="jetty.host" />

</Set>
<Set name="port">
<SystemProperty name="j etty.port"
default="8080"/>

</Set>
<Set name="maxIdleTime">30000</Set>
<Set name="Acceptors">2</Set>
<Set name="StatsOn">false</Set>
<Set name="confidentialPort">8443</Set>
<Set name="lowResourcesConnections">5000</Set>
<Set name="lowResourcesMaxIdleTime">5000</Set>

</New>
</Arg>

</Call>

These settings are actually taken from the default setup on our build of
Jetty, so no change was needed. The Magnetic Poetry application should
now be able to scale to many hundreds of clients without breaking sweat.

Future Comet Support in Java
Earlier, we mentioned that other server vendors have also been looking into
the scalability problems posed by Comet. In addition to WebTide's Comet
work with continuations in Jetty, Sun's Grizzly project
(h t t p s : / / g r i zz ly .dev . j ava .ne t /) and Tomcat 6
(h t tp : / / tomcat . apache. org/) both offer Comet support using their
own proprietary APIs. For Java developers wishing to create scalable
Comet applications, using a proprietary API is less than ideal, as Comet
code written against Tomcat, Jetty, or Grizzly will not be portable to one of
the other servers.

84 firstPress Comet and Reverse Aiax

http://grizzly.dev.java.net/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

One of the goals of the Servlet 3.0 proposal, currently working its way
through the Java Community Process as JSR 315, is to finally standardize
asynchronous I/O and Comet support. Once the specification is finalized,
nonblocking Comet support should become widespread among all Java
server vendors, and most likely. Grizzly, Tomcat, and Jetty will all
implement Servlet 3.0 too.

JSR 315 still has a long way to go, however. In the meantime, using DWR
as an abstraction over the underlying Comet technology provides insulation
from ongoing change. At the time of this writing, DWR 2 implements only
Jetty 6's proprietary Continuations API for nonblocking Comet. However,
DWR 3 will be available later in 2008 and will also provide support for
both nonblocking Comet in Tomcat 6 and Grizzly. DWR will also work
with Servlet 3.0 servers, once the specification is finished.

WebTide is preparing a major new release of Jetty (version 7). Currently
available as an early prerelease. Jetty 7 offers an altemative to its tricky
exception-based Continuations API. The Jetty 6-style API is still available
in Jetty 7, however, so DWR will continue to be compatible with Jetty.

Summary
Comet traffic is inherently at odds with the conventional web paradigm
where requests are short-lived and dealt with as quickly as possible by the
server. Instead, Comet requests often need to be held open for a long time,
albeit in an idle state. As a result, you've seen that conventional Java
servlet engines do not scale efficiently to the traffic pattem peculiar to
long-polling Comet applications.

However, efforts are underway to provide mechanisms to circumvent the
blocking-thread-per-request model. You've seen Jetty 6's approach in
continuations, which provide a highly scalable, if somewhat quirky,
method of implementing event-driven web code.

Comet and Reverse Aiax firstPress 85

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Combining the strengths of DWR with Jetty 6 results in probably the best-
integrated Comet implementation in Java, allowing us to concentrate on
writing business logic while the details of long-polling schemes, data
exchange protocols, and scalability are all dealt with almost transparently.

As Comet technology becomes more widespread, the Servlet 3.0
specification promises to unite server vendors under a common API. Until
that time, the DWR project is working toward compatibility with the major
Comet implementations in Jetty, Tomcat, and Grizzly.

86 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6: Introducing Bayeux
The technologies that we looked at in the previous chapter, Jetty
continuations and DWR, simplify Comet enormously, and make it more
robust than our hand-rolled efforts in Chapters 1 through 3. Yet these are
proprietary stacks. If you want to use DWR's Reverse Ajax features, you
need to adopt DWR as a central part of your architecture.

To some extent, using proprietary stacks is inevitable, and we certainly
don't want to criticize projects that use them. However, there is a strong
culture of open standards within the web development community.
Standards promise freedom from vendor lock-in and real interoperability
(and sometimes deliver on those promises!).

There is an emerging de facto standard for Comet. It is called Bayeux and
has a formal specification document, the gruesome details of which can be
found at
ht tp: / /svn.xantus.org/shortbus/ t runk/bayeux/bayeux.html.
The Bayeux specification itself is very generic, but there is also a reference
implementation known as Cometd, for which working code is available in a
variety of server-side languages. The Bayeux specification and some of the
reference implementations of Cometd are provided by the people at
Sitepen, who also gave us the Dojo JavaScript toolkit. We're going to look
at Bayeux in this chapter (and rub shoulders with Dojo a bit along the
way).

Comet and Reverse Aiax firstPress 87

http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first thing you need to know about this standard is what it covers and
what it leaves out. What aspects of Comet does Bayeux standardize? We'll
start by running through the specification itself and then move on to look at
implementations.

HTTP Request Management
In Chapter 3, you encountered the limit of two concurrent HTTP
connections to a server imposed by most web browsers. Because Comet
request streaming and long-polling techniques keep requests open for a
significant amount of time, ad hoc use of Comet requests can easily
consume both these requests indefinitely, preventing images and other
resources from loading and blocking ordinary Ajax calls (see Figure 3-3).

We suggested at the time that if you wished to support multiple Comet
requests, you could channel them all through a single request. DWR's
Reverse Ajax does this for you under the hood, but you didn't need to look
at the implementation details.

Bayeux adopts exactly the same approach and provides a flexible, scalable
API based around a publish-subscribe model. But there's only one HTTP
request present, so what exactly do you subscribe to?

Data sent over Bayeux is always assigned a notional "channel." In reality,
the channel is just a property assigned to each chunk of data (we'll look at
the message format shortly), but you can think of the channels as discrete
streams of data being carried within the single Comet request or response.

What does this look like in practice, then? Let's return to the Magnetic
Poetry example, as presented in Figure 2-1, in which you wanted to receive
Comet notifications for two purposes: getting updates on the progress of
the ceramic bakery and being notified of changes that other users have
made to the board.

88 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the overall design of the application, these two requirements are
orthogonal. That is, you should be able to present a bakery component or a
board component to the user independently of each other. Although they
are required to share an HTTP transport, you can represent this
orthogonality by assigning them to separate data channels. So, the bakery
component will subscribe to a bakery channel, and see only bakery-related
messages from the server, and the board component will subscribe to a
board channel, and see only board-related messages.

On the server, you can send messages to either component simply by
publishing them to a specific channel and be assured that only the
appropriate component will receive them. On the client, the Bayeux
implementation will serve as a shared dispatch mechanism for requests,
and on the server, a similar shared dispatch mechanism will be needed.
Behind these, you can produce a well-factored codebase on both client and
server, as illustrated in Figure 6-1.

Comet and Reverse Aiax firstPress 89

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6-1. Bayeux^s concept of channels allows multiple decoupled
conversations on top of a single HTTP connection. The client-side
Cometd object and server-side Bayeux implementation
communicate ower several notional channels all bundled within a
single HTTP request-response pair.

Naming Channels
Bayeux is very flexible and allows you free choice in naming channels,
though the convention is to name channels in the style of Unix file paths.
For example, we could call our bakery channel /magpoetry/bakery and
the board updates channel /magpoe try/board.

The path-style convention allows us to organize channels hierarchically.
Further, simple globbing-style wildcards are permitted. For example, a
client could subscribe to the channel /magpoetry/*, in order to receive
updates on /magpoetry/bakery, /magpoetry/board, and any Other
channels that started with that root. A single wildcard will only match one

90 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

extra leg to the path. If we wanted to receive messages from
/magpoetry/bakery/cake and magpoetry/bakery/danish/pastry,
for example, we could do so using a double wildcard by subscribing to
/magpoetry/**.

It's worth noting that channel names, like Unix paths and URLs, are case-
sensitive. Messages to channel /magPoetry/fridge will not be received
by a client subscribed only to /magpoetry/*.

Message Format
So we like the high-level abstraction of channels, but in reality, as we
noted, all messages are flowing over a single transport and are assigned to
channels purely by a property. What does a Bayeux message look like
then? At this point, we're going to stick our heads under the hood of the
Cometd engine to see what makes it tick. If you're curious about how
Bayeux is designed, keep on reading. If you just want to get coding now,
skip to the next section on Cometd implementations and come back here
later.

The first thing to note about Bayeux is that it has standardized on JSON as
the low-level serialization format for messages. JSON is a simple, flexible
text-based markup that is well supported by JavaScript and its cousins
ActionScript and ECMAScript and is currently very popular in the Ajax
world.

JSON is sent in both directions: in the HTTP request and in the response.
When publishing a message from a browser, the outgoing message is sent
as a POST variable with name message. The JSON will typically detail the
following fields:

Comet and Reverse Aiax firstPress 91

http://lib.ommolketab.ir
http//lib.ommolketab.ir

• The message data, which may be an arbitrarily complex JSON data structure

• The channel that the message is being sent to, as a string

• A unique ID assigned to the client for the duration of a session

• A second unique ID for the message itself, usually a simple counter.

Let's look at a simple example. If we send some information about this
book to the channel /apress / f i r s tP res s , we might see the following:

[
{
"data":{
"title":"Comet & Reverse Ajax",
"authors": ["Dave", "Phil"]

"channel":"/apress/firstPress",
"clientld":"chcwmd0jx3nu",
"id":"4"

}
]

The top-level object is an array, containing a single object with the four
properties mentioned previously. The data property is moderately complex,
but the others are simple strings.

In response to publishing this message, we might receive a response of this
type:

[
{

"id":"4",
"successful":true,
"channel":"/stuff/specific"

{
"id":"4",
"data":{

92 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

"title":"Comet & Reverse Ajax",
"authors": ["Dave", "Phil"]

"channel":"/apress/firstPress",

}
]

Note that the response contains an array of two objects: a header and a
body. The header contains details of the transaction, such as the unique
message ID and whether the message succeeded in being published. The
body, in this case, simply retums the data that was published to the
channel, along with the ID and channel. These might look to be repeats of
the data in the header, but that's only the case when we're receiving
notification of a message that we published ourselves.

The same JSON format will be used when we connect to a Comet server in
order to receive updates. If you look at the response received from such a
request, you can see that the header information refers to the sender, and
the body to the recipients. Here's a simple example.

[
{

}
]

"id":"18",
"successful":true,
"channel":"/meta/connecf

•id":"15",
'data":"hello world",
'channel":"/apress/firstPress"

The sender is the Comet process running on the server side, responding to
the subscription via the channel /meta/connect (more on the
metachannels in the next section), with the same message ID that you sent
when you connected to the channel. Note that these message IDs will

Comet and Reverse Aiax firstPress 93

http://lib.ommolketab.ir
http//lib.ommolketab.ir

increment every time a new connection is made and are usually simple
integers. Each instance of a Bayeux client is also assigned a unique client
ID, which it maintains throughout its lifetime. Together, the message ID
and client ID serve to uniquely identify a message.

In the body of the message, you receive the data that has been forwarded to
you from another client, along with the message ID used by that client to
publish the data, and the channel on which it published it. So, the header
gives you information about which of your subscriptions the server is
responding to, and the body gives information about the sender of the
message.

Standard Channels
Within the flexible naming scheme provided by Bayeux, there is one
reserved area. Any channel beginning with the word /meta is deemed to be
used by the protocol itself, to perform connection handshaking,
establishing subscriptions, and so on. We've already seen a response on the
/meta/connect channel, being returned from a subscription to a channel.

In fact, whenever we open a Comet connection, we are sending a message
to the /meta/connect channel. The POST body of a Comet request might
look like this:

[
{
"channel":"/meta/connect",
"connectionType":"long-polling",
"clientld":"chcwmdOjx3nu",
"id":"18"

}
]

94 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The properties channel, c l i en t ld , and messageld are familiar to us
already. The fourth parameter, connectionType, is used to instruct the
server on what type of Comet connection we are seeking to establish. In
this case, we're requesting the long polling technique that we discussed in
Chapter 3. The current specification mentions four connection types. Long
polHng and callback polling must be supported by all clients. Use of
alternative transports such as iframes (see Chapter 3) and the binary Flash
remoting protocol built into recent versions of Adobe's Flash and Flex
products are cited as optional.

Transport Negotiation
In addition to the /meta/connect channel, the specification defines a
/meta/handshake channel, through which a Comet client and server first
establish communication, and negotiate the best kind of connection that
they can support (this may depend on limitations in the client and server
implementations themselves, factors related to their environment, and
characteristics of the network such as the presence of proxy servers).

When connecting to a Cometd server, a client exchanges two messages
over the /meta/handshake channel. First, it tells the server what
capabilities it supports:

[

{
"vers ion":"1.0" ,
"minimumVersion":"0.9",
"channel":"/meta/handshake",
"id":"0",
"ext":{

"json-comment-filtered":true

Comet and Reverse Alax firstPress 95

http://lib.ommolketab.ir
http//lib.ommolketab.ir

]
}

"supportedConnectionTypes":[
"long-polling",
"callback-polling"

]

The server replies by telling the client what its own version number is and
what transports it supports. It also assigns it a unique client ID for the
duration of the session and offers advice on how to connect. In the
following example, the advice object is telling the client to connect for up
to 4 minutes at a time (i.e., 240,000 milliseconds), without an interval
between closing one connection and opening another:

[
{

"id":"0",
"minimumVersion":"0.9",
"supportedConnectionTypes":[
"long-polling",
"callback-polling"

"successful":true,
"channel":"/meta/handshake",
"advice":{

"reconnect":"retry",
"interval":0,
"timeout":240000

"clientld":"chcwmdOjxSnu",
"version":"1.0"

]
}

The client will then reply with a second message to /meta/handshake, in
which it informs the server of its chosen connection method, usually by
picking the best of the connection types offered by the server's previous

96 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

response. It uses the c l i en t id assigned by the server and will continue to
do so in all future interactions:

[

"channel":"/meta/connect",
"clientld":"chcwmdOjxBnu",
"connectionType":"long-polling",
"id":"1"

]
}

If the server responds with a successful message, the connection between
the client and server has been established, and the client can begin to
subscribe to channels and publish to them. Here is the server's final
response in the handshake:

[
{

]
}

"id":"1",
"successful":true,
"advice":{
"reconnect":"retry",
"interval":0,
"timeout":240000

"channel":"/meta/connect"

The server simply repeats its advice to the client at this stage, and the
handshake is completed.

We've given you enough details about the specification. Now let's have a
look at some real-world implementations.

Comet and Reverse Aiax firstPress 97

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Client-Side Implementations
Bayeux provides us with a complete protocol for passing data along Comet
connections, but the protocol on its own is quite complex, and few of us
would relish sitting down to write an implementation (or two, if we
consider the client and server!) before being able to exchange any data.
Fortunately, the Cometd project gives us off-the-shelf implementations that
can transparently handle the handshaking, client IDs, and connection types,
leaving us free to concentrate on the business data. In the remainder of this
chapter, we'll look at two of the most popular Cometd implementations and
see how we can use them to get some real work done with minimum effort.

Starting on the client side, we're going to look at the Cometd client that
ships with the Dojo JavaScript framework. Dojo and Comet have a long
shared history, both having sprung from the pen of Alex Russell and his
colleagues at Sitepen. Dojo has something of a reputation as a large and
complex client-side library. However, especially since version 0.9, Dojo
has had an extremely modular structure, and the Cometd authors have been
kind enough not to link their implementation too deeply into many other
features of the toolkit. As a result, the Dojo Cometd client can be used
successfully without a deep understanding of Dojo, and it plays well with
other JavaScript libraries such as Prototype and jQuery.

You'll learn to need a little Dojo to get started, however, so let's get
coding. First, you need to import the Dojo core libraries into your page,
using a script tag, like so:

<script type="text/javascript"
src="j s/doj o/doj o/doj o.j s.uncompressed.j s">

</script>

We've referenced a copy of dojo. j s on your local server in order to keep
the downloadable code for this book complete. However, the full Dojo
library is available on AOL's content delivery network, so you may choose

98 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to reference that and Comet-enable your application without having to
install any Dojo on your server at all. The full URL to Dojo version 1.0 is

http://o.aolcdn.com/dojo/l.0.0/dojo/dojo.xd.j s

This loads the basic Dojo capabilities into your browser but no Cometd
client. To get hold of that code, you need a second script tag, but not one
pointing to another external URL. Rather, you should call Dojo's
require () method, which will load the extra code using Ajax, pulling in
any dependencies needed (in this case, there are none), and evaluate it for
you.

Once you have loaded Dojo's Comet implementation in this way, we can
initialize it in one line of code, at which point it will perform the handshake
for us:

<script type="text/javascript">
dojo.require("dojox.cometd");
dojox.cometd.init("cometd");
//do some more comet

</script>

Dojo's codebase is well organized into a number of namespaces. The
namespace dojo covers core capabilities, and dojox the nonstandard
extensions, in much the same way that the Sun JRE's j ava. * and j avax. *
packaging conventions work. The Cometd classes are found under the
namespace do j ox. comet.

The argument that you pass to the i n i t () method of the dojox. cometd
object is a URL at which the Cometd server can be found. In this case,
that's a very simple relative URL.

Using the dojox. comet object, you can now subscribe to and unsubscribe
from channels, and publish messages. The first thing you'll want to do with
your Comet capabilities is to subscribe to a channel. The subscription
operation is essentially asynchronous and will therefore require you to
provide callback code to handle messages delivered on the channel once

Comet and Reverse Aiax firstPress 99

http://o.aolcdn.com/dojo/l.0.0/dojo/dojo.xd.j
http://lib.ommolketab.ir
http//lib.ommolketab.ir

you have subscribed. In many JavaScript libraries, callbacks are handled by
passing a Function object as an argument, but the Dojo comet classes take
a slightly different approach. The easiest way to see how this works is by
example, so let's get started.

The doj ox. comet object provides a subscribe () method that takes four
arguments. The first is the name of the channel that you want to subscribe
to, which is what we expect. The second and third handle the callback: they
are the object that will handle the callback and the name of the method of
the object that should be called, respectively. The fourth argument is a
configuration object allowing you to set properties of the message. This can
be left as null in most ordinary cases.

Let's look at an example subscription:

doj ox.cometd.subscribe(
* / a p r e s s / f i r s t P r e s s ' ,
myObject,
'handleMessage'

)

To complete the code, you need to supply an object with an appropriately
named method, so we could write one like this:

var myObject={
handleMessage:function(msg){
alert(msg.channel+" says "+dojo.toJson(msg.data));

}
}

Let's stop to examine the argument passed into the callback ftmction. You
can see from the preceding example that it has data and channel
properties. Looking back to our earlier discussion of Bayeux message
types, you can see that this is in fact the body of the Bayeux message (that
is, the second element in the array). In most cases, though, the interesting
property will be the data, which, as we saw earlier, can be as simple or as
complex as you like it to be.

1100 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Note that the callback function provided here will be called when another
client publishes a message to the channel, not in response to the
subscription being made over the /meta/connect channel. We did discuss
what that response looked like in terms of the Bayeux protocol, but the
details of it are hidden from you when you use the doj ox. comet classes.

Now you can publish messages to the channel. Let's do that next.
Unsurprisingly, you can find a method on doj ox. comet called
publish (). It takes two arguments: the channel to publish over and the
data to send. As with subscribe (), a third argument can be provided if
you want to configure the transmission, but stick with the defaults for now.

The second argument is a JavaScript object, as simple or as complex as you
want it to be. You should, however, note that the object should contain only
data, not behavior, as it's going to be serialized using JSON. So, a quick
call to publish () might look like this:

doj ox.cometd.publi sh(
"/apress/firstPress",
{

" t i t l e " : " C o m e t & Reverse Ajax",
" a u t h o r s " : ["Dave", "Ph i l "]

}
) ;

publish () is essentially a fire-and-forget operation. It neither retums a
value nor expects a callback. If you want to see whether your message has
been sent, you should subscribe to the channel that you're publishing to.

The third thing that you might want to do is to unsubscribe from a channel.
The subscribe () method retums a handle object that you should pass to
the unsubscribe () method. So, in a simple case, you can write this:

Comet and Reverse Aiax firstPress 101

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var subscription = dojox.cometd.subscribe
'/apress/firstPress',
myObject,
'handleMessage'

//do some comet

dojox.cometd.unsubscribe(subscription);

Finally, if you want to close connection to a Comet server altogether, you
can call the disconnect () method. It takes no arguments and simply
cleans up any outstanding connections and notifies the server that you are
no longer interested in using its services.

So, dojox. cometd provides an easy-to-use client-side library for Comet.
To get a full stack though, you need a working server too, so let's take a
look at what's out there.

Serwer-Side Implementations
In the early days of Cometd, the predominant servers were written in Perl
and Python. Over the course of 2007, though, the Java-based Jetty web
server made its way to the front of the pack and is currently the most active
Cometd server in the open-source arena. Recent versions of Jetty include a
Java-based server-side implementation of the Bayeux protocol.

We already discussed Jetty's support for continuations in the previous
chapter, in the context of DWR. Jetty's Bayeux implementation is defined
in terms of a set of abstract base classes (the org. mortbay .cometd
package), on top of which sits an implementation based around Jetty's
continuations mechanism (the org .mortbay. cometd. c o n t i n u a t i o n
package). Most of the time that we're using Bayeux on the server, we can
talk in terms of the abstract base classes but will actually be using
continuations-based implementations.

102 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To get a simple Comet demonstration running using Jetty and Bayeux,
though, you don't need to write any server-side code. We'll show you how
to use the Jetty Bayeux API in more detail in Chapter 7, but for our current
purposes, you can use the Cometd servlet provided as part of Jetty. The
class in question is
org.mortbay.cometd.continuation.ContinuationCometdServlet.
It's a bit of a mouthful but very simple to set up. All you need to do is
assign a URL to an instance of the servlet in your web. xml file.

Because our main examples are using Grails, which generates the web. xml
file for us, adding this servlet is a little bit complicated. So, before we look
at Grails, let's consider the generic case. First, you would need to declare
the servlet:

<servlet>
<servlet-name>cometd</servlet-name>
<servlet-class>
org.mortbay.cometd.continuation. \
ContinuationCometdServlet \

</servlet-class>
<load-on-startup>l</load-on-startup>

</servlet>

Then, you need to map a URL pattern onto the servlet:

<servlet-mapping>
<servlet-name>cometd</servlet-name>
<ur1-pattern>/cometd/*</url-pattern>

</servlet-mapping>

In this case, you're assigning our servlet to map to all URLs under the path
/cometd/, which corresponds with our client-side code earlier.

To assemble a working web application from here, you simply need to add
the Dojo client libraries (or point to the AOL CDN), add a page to call the

Comet and Reverse Aiax firstPress 103

http://lib.ommolketab.ir
http//lib.ommolketab.ir

doj ox. cometd classes, and make sure the Bayeux and Cometd JAR files
are on your classpath, typically by putting them in the l i b folder of your
WAR file. In the final section of this chapter, you're going to use Grails to
build a working Cometd application.

Using Bayeux with Dojo and Jetty
So far, we've talked through the theory of getting up and running with
Cometd and presented some sample snippets of code. To round off this
chapter, you're going to build a working demonstration. We'll stick to
using Grails, because in Chapter 7, we're going to rework our Magnetic
Poetry example to use Cometd.

The first change that you'll need to make in your development approach is
to modify the web. xml file. As we noted, Grails generates this for you,
and, unfortunately, a standard Grails application can't alter web .xml.
However, Grails has a mechanism for writing plug-ins, which can modify
web. xml, and a plug-in can also be run as a stand-alone web application.
So you're going to write your demonstration as a plug-in.

You'll create a new Grails plug-in project called comet. The project layout
is mostly the same as for an ordinary Grails application, with server-side
components arranged under the gra i l s -app folder and client-side
resources under web-app. In addition, there is a top-level script called
CometGrailsPlugin. groovy, which provides you with a way in to the
web. xml file. Within the method called doWithWebDescriptor, you can
modify web. xml as a XML document. Here's your code for adding the
Jetty Cometd servlet:

104 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

def doWithWebDescriptor = { xml ->
def servletElement = xml.'servlet'
servletElement[0] + {

'servlet' {
'servlet-name'("cometd")
'servlet-class'(
"org.mortbay.cometd.continuation,
ContinuationCometdServlet"

)

}

\

\

\

'load-on-startup'("1")

def mappingElement = xml.'servlet-mapping'
mappingElement[0] + {

'servlet-mapping' {
'servlet-name'("cometd")
'url-pattern'("/cometd/*")

}
}

}

If you're not familiar with Groovy and its Builder mechanisms, the code
here may look rather odd. You're working with the XML document as an
object model, building up extra XML elements as a series of nested
statements. First of all, you look for an existing < se rv le t > element and
append the new servlet reference to the Jetty Cometd servlet after it. You
then insert the <servlet-mapping> element in a similar way.

OK, let's get on to the code. You're going to add a laboratory page in
which we can put the Cometd object through its paces. Figure 6-2 shows
what this lab looks like.

Comet and Reverse Aiax firstPress 105

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6-2. The Cometd lab page

The interface is fairly basic. You've provided two text entry boxes for
naming a channel and a message, respectively. Beside these, you have four
buttons: the ''subscribe'' and "unsubscribe" buttons for your channels and
two publish buttons marked as "client" and "server". You'll use the
"clienf button to publish using dojox. cometd, and we'll return to what
the "server" button does later.

Underneath these controls is a black output pane, in which you're going to
write messages.

When your lab page loads, you load up Dojo and the Cometd extensions
and initialize the Cometd client to point at the Jetty-based server that
you've set up in web. xml:

dojo . require ("dojox. cometd") ;
dojox.cometd.init("cometd");

106 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You then instantiate an object called lab that's going to contain most of
your interactions with the Cometd client. First, let's look at managing
subscriptions. You provide the lab object with a lookup of subscription
handles and subscribe () and unsubscribe () methods:

var lab={
subs:{},
subscribe:function(channel){

if (this.subs[channel]){
this.output(

"already subscribed to channel "^channel);
}else{
this.subs[channel]=dojox.cometd.subscribe(

channel, this, "publishHandler"
) ;

}

publishHandler:function(msg) {
var reply=msg.channel+" >>> "+dojo.toJson(msg.data);
this.output(reply);

unsubscribe:function(channel){
if (!this.subs[channel]){
this.output("not subscribed to channel "

+channel+" :: can't unsubscribe");
}else{
dojox.cometd.unsubscribe(this.subs[channel]);

}

The publishHandler () method is referenced as the callback to any
subscription operation, regardless of channel, and simply calls an
output () method to write to the console area below the buttons. Calls to
doj ox. cometd. subscribe () Store the returned handle objects in
lab. subs (), from which they can be retrieved to provide the arguments

Comet and Reverse Aiax firstPress 107

http://lib.ommolketab.ir
http//lib.ommolketab.ir

for doj ox. cometd. unsubscribe (). The remaining core operation to
perform is to publish messages:

publish:function(channel,msg){
dojox.cometd.publish(channel, {"message":msg});

l ab . publish () is a very straightforward wrapper around
dojox. cometd.publish (). You wrap the string entered by the user into
an object with a single property called message. Note that one needn't be
subscribed to a channel to publish on it.

The output () function does some routine DOM manipulation in order to
display a message on the console:

output:function(msg){
var output=doj o.byId('output');
var div=document.createElement("div");
var txt=document.createTextNode(msg);
div.appendChild(txt);
output.appendChiId(div);

Finally, you define a ui object as a property of the lab, which contains
bindings for the UI buttons. Mostly, these are very straightforward, simply
reading values from the text fields and calling the main lab methods. In the
case of the publish () method, though, a little more is going on, but we'll
defer a discussion of that to the next section:

108 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ui : {
subscribe:function{){
var chan=dojo.byId("channel")
lab,subscribe(chan);

value;

unsubscribe:function(){
var chan=dojo.byId("channel").value;
lab.unsubscribe(chan);

publish:function(clientSide){
var chan=dojo.byId("channel").value;
var msg=dojo.byId("message").value;
if (clientSide){

lab.publish(chan,msg);
}else{
dojo.xhrPost({
url:"laboratory/serverEvent",
content:{

"channel":chan,
"message":msg

load:function(data){
console.output("server says "+data);

}
}) ;

}
}

}
}

You can now run your lab page through its paces. In Figure 6-3, you've
pointed two different browsers at the page and can publish and subscribe
across several channels in order to create a primitive sort of chat system.

Comet and Reverse Aiax firstPress 109

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6-3. The iab page in actiarir with two different web browsers
exchanging messages o¥er Cometd

This sort of Cometd communication is trivial to set up, but do note that the
capabilities of the lab as it stands only support one of the three main use
cases for Comet that we outlined in Chapter 1. Let's recap those use cases
in terms of the lab:

• Allow multiple clients to collaborate by immediately seeing each other's
updates: Yes, we can support that.

110 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

• Let the server report progress on long-running jobs: Hmm, we can't really
support that.

• Provide a highly responsive feed that lets us monitor server-side events:
Nope, we definitely can't support that.

What's missing? Our two browsers are using the servlet as a pipe to talk
directly to one another, but the server can't talk to them. If you want to be
able to use Bayeux effectively, you need to be able to originate messages
on both the client and the server.

Server-Side Messaging
At this point, things become a Httle more complex, and you'll need to look
at the Comet servlet that Jetty has kindly provided us with. We won't show
the code directly here—you can download it from h t t p : //mortbay. org if
you're interested—but we'll talk through the architectural principles.

The object responsible for looking after the channels and client
subscriptions to them is an instance of the Java class
doj ox. cometd. Bayeux. The Bayeux object can receive messages and
assign them to clients based on channel matching but defers the HTTP
transport implementation to the servlet.

As the keeper of the links between clients and channels, every servlet must
have a reference to the same Bayeux instance; otherwise, not all clients
would be able to communicate with one another reliably (see Figure 3-4).
The core challenge for a server-side implementation, then, is how to
enforce the singleton pattern on the Bayeux instance.

Figure 6-4 depicts a situation in which you have two instances of a Cometd
servlet running on a server, each with a reference to its own Bayeux object.
Clients connecting to the Cometd URL will obtain an instance randomly,
so that clients A and B are connected to Bayeux instance 1, and client C to
Bayeux instance 2. In spite of connecting to different Bayeux instances.

Comet and Reverse Aiax firstPress i l l

http://lib.ommolketab.ir
http//lib.ommolketab.ir

clients A through C are all subscribed to the same channel. Other servlet
types, such as servlet 2, may wish to publish to this channel. Here, servlet 2
has obtained a reference to Bayeux instance 1, so clients A and B will be
notified, but client C will not. In the general case, multiple Bayeux
instances will lead to random and incomplete communications, unless we
adopt the overhead of somehow synchronizing the multiple instances.

Figure 6-4. Importance of enforcing a singleton pattern on ttie
server-side Bayeux object

In the current implementation, the Singleton pattem is enforced by setting
Bayeux as an attribute of the servlet context. Within the Java servlet
specification, the servlet context represents the container in which the
servlet is running. The Servlet specification guarantees a single servlet
context for each Java Virtual Machine (JVM). So, we can guarantee a
singleton Bayeux up to the point at which we're clustering or load-
balancing across multiple servers. At that point, we'd need to adopt a more
heavyweight approach, such as accessing the Bayeux through a networked

112 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

directory such as the Java Naming and Directory Interface (JNDI) used by
Enterprise Java Beans. We'd expect to see solutions of this sort as
implementations of server-side Cometd mature.

OK, now let's retum to your lab page. What were you doing in the
lab . ui .publish 0 method? If the argument c l i en t s ide is set to t rue,
you publish using the do j ox. cometd client. If set to false—as it is when
you click the mysterious "publish (server)" button—^you make an ordinary
Ajax request to a server-side resource. Within that resource, you're going
to generate a Comet event from the server, and understanding the singleton
mechanism is crucial to achieving that.

Let's take a look at the code in the Groovy controller that handles the Ajax
request:

class LaboratoryController{
de f s e rve rEvent ={
def chan=params['channel']
def mess=params['message']
def bayeux=servletContext
.getAttribute(

do j ox. cometd. Bayeux. DO JOX_COMETD__BAYEUX
)

def cllent=bayeux.newCllent("serv")
def channel=bayeux.getChannel(chan,true)
channel.publish(client,mess,"1234")
render(contentType:"text/plain",content:"ok")

}
}

Things start off reasonably enough, reading the request parameters to find
out what message you're going to send down what channel. Then you get
hold of a Bayeux object from the servlet context, using the key that the
servlet used to place it there. (Under Grails, the variable servle tcontext

Comet and Reverse Aiax firstPress 113

http://lib.ommolketab.ir
http//lib.ommolketab.ir

is populated for you. In a plain servlet environment, you'd need to use the
servlet. getServletContext () method).

The Java Bayeux object looks pretty much like the client-side one. First,
you use it to create a new client. You're going to be lazy here and create a
new client every time you send a message, but you could keep a reference
to a client within the controller.

Next, you acquire a Channel object, passing in the channel name, and a
true flag that tells the Bayeux to create the channel if it doesn't already
exist.

In the server-side API, publish 0 is a method of the channel, and you
pass in the client object and your message to it, along with a bogus client
ID. The controller then returns with a simple acknowledgement. It is not
responsible for passing the message on to any subscribed clients; Bayeux
will now take care of that.

That's it then. You've built a working proof of concept using Jetty and
Cometd. In the next chapter, you'll tackle the Magnetic Poetry example
again using these new skills, but first, let's review what we've covered in
this chapter.

Summary
Bayeux provides a very nice abstraction on top of the Comet transport, by
casting the transfer of data in terms of channels, to which clients can
publish and subscribe. Published messages can be free-form data structures
of arbitrary complexity.

On the client-side, the Dojo Cometd cHent is the only horse in town and a
very agreeable one at that. It provides a simple, sensible API that lets us
subscribe to and unsubscribe from channels and publish messages.

On the server-side, we looked in detail at the Jetty implementations of
Comet. Jetty provides an out-of-the-box servlet for enabling Dojo clients to

114 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chat to one another as well as a programmable API that allows Comet
clients on the HTTP server to publish messages and subscribe to channels.
This capability offers the possibility of much richer types of Comet-based
architecture, as we shall see in the final chapter when we attempt to marry
comet to a traditional CRUD application.

Comet and Reverse Ajax firstPress 115

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7: Combining Comet witli CRUD
Comet's event-driven architecture is new and exciting. The majority of
web appUcations, however, are centered around a CRUD (create, read,
update, and delete) architecture for managing entities.

Now that we're all fired up to use Comet, how do we integrate it into a
CRUD-style application. We've already referred to CRUD in Chapter 3, in
the naive implementation of the Magnetic Poetry application. Let's briefly
review the typical features of a CRUD-based web application:

• Domain data is stored in a relational database

• In the business logic tier of the application, this data is represented
by an object model, describing the domain in terms of entities with
properties and behavior.

• Often, an "object-relational mapping" framework is used to manage
the translation between object model and database table. The open-
source Hibernate project (h t tp : //www.hibernate. org) is a
popular example.

• We interact with these entities in four principal ways: creating them,
reading their properties, updating their properties, and deleting
them— t̂hat is, using the CRUD operations.

• A separate presentation tier of code controls how the user can
interact with this domain model and defines the workflow on top of
the raw domain model, following the classic Model-View-Controller
(MVC) software design pattem.

Prior to Ajax, the presentation tier would typically retum fully fledged
HTML web pages. Although Ajax is a radical departure from the fiall-
page-refresh approach to web development, we can still use a combination
of MVC and CRUD to deliver data as JSON or XML. The Grails

Comet and Reverse Aiax firstPress 117

http://www.hibernate
http://lib.ommolketab.ir
http//lib.ommolketab.ir

framework that we used to develop our magnetic poetry examples is
designed around the MVC and CRUD concepts and is ideally suited for
developing applications in which an object domain model is persisted to a
database.

In Chapter 6, we covered the basic principles of the Bayeux specification
and its Cometd implementation. Let's recap the key principles:

• All comet-based messages go over a single HTTP connection.

• Communication can be targeted between specific clients using channels.

• Clients publish messages to channels and subscribe to channels to receive the
messages published by others.

• Clients can be created both on the web browser and on the server, allowing
true two-way communication.

The application that we developed to demonstrate this was a simple chat
room, in which several clients are transmitting transient data directly to one
another, simply using the server as a conduit for their communications.
Nothing gets persisted to a database. Chat rooms are the "Hello World"
applications of Comet, providing a simple backdrop to demonstrating the
plumbing of a particular Comet stack. As such, they are very useful, but
they are also atypical of the web applications that most of us spend our
time developing.

We want to round this book off with a demonstration of how the mature
Comet technologies can be put to work within the more familiar context of
a CRUD-based application. In this chapter, you're going to reimplement
the Magnetic Poetry application using the Dojo and Jetty Cometd stack.

118 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Revisiting Magnetic Poetry
Let's begin by reviewing the design of the Magnetic Poetry appHcation.
First of all, it's a CRUD application. The words on the magnet board are all
stored in a database via an object-relational mapping (ORM) toolkit called
GORM, a Grails ORM built on top of Hibernate.

Secondly, it's a collaborative application. When several users are logged in
to the application, they should all receive rapid updates as to the changes in
the underlying entity model made by any user.

So, each interaction with the data model on the server has to do two things:

• Update the database

• Notify other connected users of the changes

In the implementation in Chapter 3, the first goal was achieved by making
conventional Ajax requests. The second goal was faked by having a
separate long-lived request running on the server that polled the data model
for changes. While considerably more responsive than polling over the
network, this solution still put an unnecessary load on the database.

At the end of Chapter 6, you saw how you could publish to Bayeux
channels from the server as well as the client. If you want to improve on
the notification side of your architecture, you can make use of this facility.
So, as a first cut at the design of a controller, you could consider the
following strategy:

• Update the data model.

• Post a notification to a Cometd channel (from the server).

• Return an acknowledgement.

The acknowledgements in Chapter 3 consisted of small JSON objects,
containing acknowledgements of deletes, updates in the version numbers

Comet and Reverse Ajax firstPress 119

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that you needed to use to support our server-side polling, and so on. In
short, they were fairly rich pieces of data.

Now that you have a proper event-based mechanism, you can reduce this
acknowledgement to little more than a curt nod. Remember, each client
connected to a Bayeux channel has a unique c l i en t id, and all other
clients subscribed to that channel will receive the published message. As
you are publishing from a server-side Bayeux client, your own browser-
based client (i.e., the one on the browser that initiated the request) will
receive the same notification as other browser-based clients, and you can
extract any rich details that you need from that.

You can support your magnetic board application by running all clients
over a shared Bayeux channel and publishing updates from the server when
the user posts changes. It sounds good in theory, so let's have a look at the
implementation.

Client-Side Initialization Code
You'll start off by setting up the client-side infrastructure. Out of a
combination of laziness and familiarity, you decide to stick with the
Prototype and Scriptaculous libraries to support DOM manipulation, Ajax,
drag and drop, and a number of other common tasks. In Chapter 6, we
looked at the Dojo toolkit's support for cometd, for which Prototype and
Scriptaculous have no equivalent.

Dojo can do everything that you're using Prototype and Scriptaculous for,
but you don't really want to get caught up in a ground-up reimplementation,
so let's see whether you can get the two libraries to cooperate or at least
coexist peacefully. You can do so, provided you introduce them in the right
order. Here's what we came up with after a little juggling:

120 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<script type="text/javascript"
src="j s/doj o/doj o/doj o.j s.uncompressed.j s">

</script>
<script type="text/javascript"
src="js/prototype/prototype.js"></script>

<script type="text/javascript"
src="j s/prototype/effects.j s"></script>

<script type="text/javascript"
src="j s/prototype/dragdrop.j s"></script>

<script type="text/javascript"
src="js/application.js"></script>

<script type="text/j avascript"
src="js/poetry.comet.js"></script>

<script type="text/javascript">
dojo.require("dojox.cometd");

</script>
<script type="text/j avascript">
Event.observe(
window,
"load",
function(){
initComet();
initUI0;
initDragDrop{);

}
) ;

</script>

Among the key points to note are that you need to introduce Dojo before
Prototype and Scriptaculous, but defer loading the Dojo cometd classes
until afterward. Also, we found that you couldn't use the Scriptaculous
wrapper script (scr ip taculous . j s), which normally inserts extra script
tags for you programmatically, to load the effects, drag and drop, and other
components. You must manually pull in the parts of Scriptaculous that you
need; after that, you're ready to go.

Comet and Reverse Aiax firstPress 121

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With all the third-party Hbraries in place, you need to initialize your own
application code, which you do in the final script tag. Prior to initializing
the UI or the drag-drop events, you need to set up your comet client.
initcomet () is defined in poetry. comet. j s . Let's see what we need to
do.

function initComet(){
dojox.cometd.init("cometd");
var listener={

callback:function(msg) {
var data=dojo.fromJson(msg.data);
processUpdate(data);

}
}
debug("init cometd");
var subscription=dojox.cometd.subscribe(

"/magnetic/poetry",
listener,
"callback"

) ;

subscription.addCallback(
function(){
debug("subscribed to /magnetic/poetry ready");
initWords()/

}

}
) ;

First, you initialize the dojox. cometd subsystem itself. Then you set up a
listener object containing a callback function and subscribe it to a Cometd
channel. In Bayeux/Cometd applications, the use of channels is a key
design decision, as it determines who can see what. Here, you want all
connected clients to see the same information, so you can just decide on a
hard-coded channel name. In our case, /magnetic/poetry seems
appropriate.

122 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once subscribed, you call the initwords () function to load up the initial
set of words to the client. You need to take a few extra steps here, because
the request to subscribe to the Cometd channel is asynchronous. That is,
subscribe () will return before the subscription has been fully established.
The Dojo toolkit has a generic mechanism for dealing with asynchronous
events, called the Deferred object. Doj ox. cometd. subsc r ibe () returns
a Deferred object.

Think of a Deferred object as a promise to execute some code in the
future. You can pass functions to the Deferred object, and they will be
executed when the Deferred object is ready. In this particular case, the
Deferred object will be ready when the Cometd subscription is established
by our client. We won't discuss the broader topic of Deferred objects any
further here. More information can be found at
h t t p : / / a p i . d o j o t o o l k i t . o r g / j sdoc/dojo/HEAD/dojo.Deferred.

To interact with the Deferred object, then, you need to add a callback to it
using addCallback (). The callback you provide is simply an anonymous
function that invokes your initwords () function.

Following from our previous implementation, you've defined a client-side
Word object that reflects the basic CRUD operations. Once subscribed to
the Cometd channel, you may expect to receive updates on the following
events via the callback passed to subscribe () (as opposed to the callback
passed to the Deferred object, which is only called once when the
subscription is ready):

• Creating a new word

• Updating the position of an existing word

• Deleting a word

Comet and Reverse Ajax firstPress 123

http://api.dojotoolkit.org/j
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The callback function passed to subscribe () needs to handle all of these
operations, handing them off to the appropriate CRUD handler on your
client-side word object:

function processUpdate(data){
var word=Words["_"+data.id];
if (word){

if ('da ta .de le ted){
word.updateUI(data.x,data.y);

}else{
word.deleteUI();

}
}else if (!data.deleted){
new Word(data);

}
}

First, you look to see if you have an existing word. If so, you either delete
it (if the deleted property is set) or update it. If no matching word already
exists on the client, you create one. We'll look at how the CRUD method
implementations have changed from the pre-Bayeux implementation in a
minute, but first, let's look at the initialization code. After subscribing to
the /magnetic/poetry channel, you called a method initWords (). What
does it look like?

function initWords(){
debug("initWords()");
getWords();

}
function getWords(){
new Aj ax.Request(

"comet/initialRead"
) ; ,

}
initWords () is just a wrapper around the getwords () function, then.
getwords () makes an ordinary Ajax request—and look, you aren't even

124 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

using the Dojo toolkit to do this. The request is still a Prototype
Aj ax. Request object, but it's greatly reduced in size compared to its
counterpart from Chapter 3. Specifically, there's no callback function;
you're just executing a fire-and-forget strategy, because you'll use the
Cometd channels to deliver the richer acknowledgement. In order to
understand how this works, you'll need to look at the server.

Server-Side Initialization Code
Let's step into the Grails code, now. You've defined a Comet Cent r o l l e r
class as before, and the URL you requested will map to the in i t ia lRead
method, defined below:

def initialRead = {
def words=Word.findAll()
for (w in words){
publishToChannel("/magnetic/poetry",w)

}
render(text:"ok")

}
You read all the words in the database and publish each one to the Cometd
channel. You then retum with a simple ok to say that the request
succeeded. If you were being a bit more robust, you'd provide a simple
client-side callback to check for the ok. If the check fails, you'd try again
after an interval of time. But to prove the point here, let's dispense with the
callback altogether. As each word is published, you'll pick it up on the
client from the Comet channel, in the callback that you assigned to that
role.

While we're here, let's run through our server-side mechanism for
publishing objects. Here's the code for the core helper methods in your
controller:

Comet and Reverse Max firstPress 125

http://lib.ommolketab.ir
http//lib.ommolketab.ir

def bayeux=null
def bayeuxClient=null
def msgld=0

def getCometChannel(channelld){
if (bayeux==null){
bayeux=servletContext.getAttribute(

doj ox.cometd.Bayeux.DOJOX_COMETD_BAYEUX
)

}
if (bayeuxClient==null){
bayeuxClient=bayeux.newClient(

"magpoetry_"+Math.floor(Math.random()*le9)
)

def channel=bayeux.getChannel(channelld,true;
return channel

}

def publishToChannel(channelld,obj){
def channel=getCometChannel(channelld)
channel.publish(
bayeuxClient,
obj ,
"c ome t Cont roller"+msgId

)

msgld++
def json=new grails.converters.JSON(obj)
log.error("published [${msgld}] :: ${json}")

}

First, you define some instance members, namely a Bayeux transport
object, a client connected to that Bayeux, and a unique message ID for the
client to use when generating unique identifiers for each message that it
sends.

126 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

get Comet Channel () returns a channel object for a given name, creating
one if necessary. You can use the ServletContext, as in Chapter 6, to
ensure that you get a singleton Bayeux (i.e., the same one that all other
connected clients, whether on client or server) will see. You then call its
newciient () method, this time being a bit more rigorous in ensuring that
each client has a unique ID. So, all controllers will share the same Bayeux
object, but each will have its own client, which it will reuse for every
object that it publishes.

To publish an object, as in your in i t ia lRead () method, you call
publishToChannel (), specifying the channel name and the object to
publish, which can be any Java object.

Jetty provides a set of utilities for converting POJOs into the JSON format
specified by the Bayeux protocol. By default, a Java object is converted
into a string by calling its t o s t r i ng () method, which even the official
JavaDocs admit is a bit dubious! You can override this behavior by
registering a JSONConvertor object against a class or interface. Several
useful convertors are provided, including a reflection-based convertor for
objects. When initializing your application, then, register a convertor for
any classes that you wish to serialize. Here's the code for the Magnetic
Poetry application, which you can find in g r a i l s -
app/conf/Bootstrap.groovy!

def blackList=["class","metaClass"]
.toArray(new String [1])

def convertor=new org.mortbay.util.ajax
.JSONObjectConvertor(true,blackList)

org.mortbay.ut i1.aj ax.JSON
.registerConvertor(Word.class,convertor)

You want to serialize instances of the Word domain object, so register a
convertor for the Word class. Here, a customized JSONObjectConvertor
has been registered by passing in a list of names of properties that you
don't wish to appear in the serialized form.

Comet and Reverse Aiax firstPress 127

http://lib.ommolketab.ir
http//lib.ommolketab.ir

So, once the appropriate convertor is set up, you can pass the Word object
directly into the channel.publish () method. You assign a unique
message ID to each message that you send, incrementing the count each
time.

Creating Domain Objects
As with previous implementations of the client-side code, you've defined a
Word object type, and you initialize one for each word on the board. You
need to create JavaScript Word objects in response to create notifications
and call their update () and dele te () methods too.

Here's the addword () method, for creating a new Word:

function addWord(){
var text=$F (»word___text *) ;
var color=$F('word_color');
var x=Math.floor(Math.random0*350);
var y=Math.floor(Math.random0*420);
var paramsObj={ text:text, color:color, x:x, y:y };
new Aj ax.Request(

"comet/create",
{ parameters: paramsObj } //fire and forget

) ;

}
Again, note that your Ajax method has no callback, as you're going to
receive that via the comet channel. Here's the server-side code that handles
the create operation:

128 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

def create = {
def newWord=new Word(
text rparams['text'],
color:params['color'],
xrparams['x'],
y:params['y']

)

newWord.save()
publishToChannel ("/niagnetic/poetry" ,newWord)
render(text:"ok")

}
Just as in our discussion at the start of the chapter, you create a newWord
object, persist it to the database, pubUsh it to the Comet channel, and then
exit with a brief acknowledgement. So, if we plot this from end to end, you
can see the following sequence:

5. The user submits form to create a new word.

6. The client makes Ajax submission to the server.

7. The domain model is created and persisted.

8. The domain model published to Comet channel.

9. The clients receive notification.

10. The clients create JavaScript Word object.

11. The clients render the new word on the magnetic board.

Note that the client creating the word is notified of its existence and renders
it (steps 4 through 7) in exactly the same way as all other clients subscribed
to that channel. You don't need to code separately for each case. Doing
things this way also ensures that the client doesn't update locally until after
the data is safely stored on the server, a good rule for any Ajax application.

Comet and Reverse Aiax firstPress 129

http://lib.ommolketab.ir
http//lib.ommolketab.ir

updating Domain Objects
The next CRUD operation to look at is updating. When your user drags a
word across the board, you fire it's update () method, defined as follows:

update:function(dx,dy){
th i s .x=parse ln t (th i s .x)+dx;
th i s .y=parse ln t (th i s .y)+dy;
var params={

id: t h i s . i d ,
X: t h i s . x ,
y: t h i s . y

} ;
new Ajax.Request(

"comet/update",

{ parameters: params } //fire and forget
) ;

All that has changed from previous implementations is the removal of the
callback function. You'll get notified by the server of the update over the
Comet channel:

def update = {
def id=params['id']
log.debug("id="+id)
def word=Word.get(id)
log.debug("word="+word)
if (params['x']){ word.x=params['x'].tolnteger() }
if (params['y']){ word.y=params['y'].tolnteger() }
word.save()
publishToChannel("/magnetic/poetry",word)
render(text:"ok")

}

Again, your code can follow a simple enough process of updating the
domain object and then publishing it the Comet channel. The final

130 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

operation, delete () , also follows this pattern but with a slight twist, so
let's look at that.

Deleting Domain Objects
Dragging an object to the trash can fires the deleteMe () operation on the
JavaScript word object. (Since dele te is a reserved word in Microsoft's
JScript, we had to add the cute suffix.) Once more, you can implement a
fire-and-forget Ajax call on the client:

deleteMe:function(){
this.pendingDeletion=true/
new Ajax.Request(

"comet/delete",
{ parameters: { id: this.id } }

) ;

On the server, you delete the domain model using the built-in dele te ()
method provided to all Grails domain entities:

def delete = {
def id=params['id']
def word=Word.get(id)
word.delete()
publishToChannel(

"/magnetic/poetry",
[id:id,deleted:true]

)

render(text:"ok")

}

Rather than publishing the deleted object, though, you want to send a token
containing the flag deleted=true and the ID of the deleted object. The
Java Comet classes let us publish any object, so we'll simply create a
HashMap and send that. The JSON serializer will turn it into a JSON object
for us, with no need to register any special convertor objects this time.

Comet and Reverse Ajax firstPress 131

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Grails is built on Groovy, and Groovy provides nice shortcuts for building
up Java Collections objects. The square parentheses and colons simply
indicate keys and values in a HashMap. In Java, building the HashMap
would be a bit more verbose, but the effect would be the same.

You've now built a complete CRUD application on top of the Comet stack,
using a common pattem of retuming very simple acknowledgements from
your Ajax requests and feeding back the richer data to all clients at once
using the shared Cometd channel. That approach is ideal for building a
collaborative application, which we identified in Chapter 1 as one of the
three core types of "killer applications'' for Comet and Reverse Ajax. We
also identified two other types, namely monitoring or dashboard
applications and long-term progress reports. Let's consider each of these in
terms of Bayeux channels. As we suggested earlier in this chapter, a key
part of designing any Cometd application is in determining how many
channels we need and what we need them to do.

Monitoring and dashboard applications will, in a simple use case, share all
information over a single channel and pass all updates through a central
dispatch function on the client. In a more complex use case, where you
wish to enforce different access levels, or integrate multiple views or
modules into a single dashboard, you must create multiple channels to
deliver the application.

For example, in a flight-monitoring feed at an airport, you might wish to
establish two channels, / f l igh ts /a r r iva ls and /flights/departures,
to allow us to subscribe to each one individually. In a trading system
handling multiple account types, you might wish to establish separate
channels for different types of instruments or different levels of risk.

The third type of application is the progress report on long-running jobs.
Our Magnetic Poetry application from Chapter 3 implemented an example
of this, namely the magnetic pottery store through which users could order
a real ceramic set of the words currently on the board and receive feedback

132 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

of the manufacture process in real time. Let's take a look at implementing
this feature using Cometd.

Using Cometd for Progress Reports
When you submit a job to the Magnetic Poetry bakery, you can use Cometd
to report back on the progress of your job. In this case, though, there is no
collaborative element to the application. You don't want other users to see
updates on your batch of baked goods, and receiving updates on other users
would be confusing. Hence, you would like to define a unique channel for
each client.

Let's take a look at the implementation. On the client side, you have a
baker object that handles the process, as before:

var baker={
start:function(){
this.output=$("bake_status");
$("bake_button").hide();
this.output.show();
var uid=Math.floor(Math.random0*1000000000)
this.sub=doj ox.cometd.subscribe(

"/niagnetic/bakery/"+uid, this, "callback"
) ;

new Ajax.Request ("comet/bake", {
parameters: { "chanUid": uid }

}); //fire and forget

callback:function(msg){
var data=msg.data
if (data=="done"){
this.done();

}else{
this.output.innerHTML=data;

}

Comet and Reverse Aiax firstPress 133

http://lib.ommolketab.ir
http//lib.ommolketab.ir

done:function(){
dojox.comet.unsubscribe(this.sub);
this.output.hide();
$("bake_button").show();

}
}

The baker has three methods, s t a r t () initiaHzes the process, generating a
random number to append to the channel name to which you will
subscribe. Hence, you should create a personalized channel, with a name
like /magnetic/bakery/123456789. Separating the random element out
with a slash will allow you to listen to all bakery channels, if you wished to
create a monitoring application of some sort, by subscribing to
/magnetic/bakery/*. You can then kick off the baking process with a
fire-and-forget Ajax call.

The callback () function simply extracts the text from incoming messages
and displays them, unless the special token done is sent, in which case you
call baker. done () to tidy up the UI and show the button again.

On the server side, you can use most of the plumbing that you already
developed for the collaborative side of your application. In order to create a
real fire-and-forget Ajax call, though, youMl need to spawn a separate
thread in which to run your bakery process. So, the actual bake () method
in the Controller is relatively small.

def bake={
spawnBakerThread(params['chanUid'])
render(text:"ok")

}

Most of the serious work is handed over to the spawnBakerThread ()
method, which creates a new Thread, which can continue to publish
messages to the Cometd channel after the servlet response has completed.

134 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

def spawnBakerThread{channelUid){
def channel=getCometChannel(

"/magnetic/bakery/"+channelUid
) ;

def bakerThread=new Thread({
writeText(channel,"firing up the oven",2000)
def words=Word.findAll()
for (w in words){
writeText(channel,

"shaping clay for ' "-i-w. text+" ' ",
1000

)

}
writeText
writeText
writeText

3000)
writeText
writeText
writeText
writeText
writeText
writeText
writeText

});
bakerThread

}

(channel,"baking...",6000)
(channel,"still baking...",4000)
(channel,"turn de turn, nice day today?",

(channel,"still baking. . . ",6000)
(channel,"nearly done now",2000)
(channel,"there - baked!",1000)
(channel,"cooling...",2000)
(channel,"wrapping parcel",2000)
(channel,"sending to dispatch",2000)
(channe1,"done",0)

.start();

The body of the Thread is defined in the code block passed in as an
argument to the Thread constructor. Note that you need to get a reference
to the Cometd channel before starting the thread, because you require the
ServletContext to do SO, and the Thread will be running after the servlet
instance has returned to the pool. Having done this, though, you can refer
to the channel in the writeText () method as follows and publish
messages on it.

Comet and Reverse Ajax firstPress 135

http://lib.ommolketab.ir
http//lib.ommolketab.ir

def writeText(channel,text,sleeptime){
channel.publish(
bayeuxCllent,
text,
"cometController"+msgId

)

msgld++
log.error("baker published [${msgld}] :: ${text}")
if (sleeptime>0){
Thread.currentThread().sleep(sleeptime)

}
}

And that's all there is to it. You've migrated all Comet functionality in the
application over to the Jetty and Cometd stack.

Additional Resources
Before we conclude our exploration of Comet, we will leave you with a
few pointers toward additional resources. Comet is developing rapidly at
the time of writing, and a number of new implementations of Comet, both
commercial and open source, are appearing. The world of web standards
also promises some interesting developments toward integrating Comet
into the mainstream. We hope these sources of information will help you
keep up to date in this exciting field as it continues to evolve.

Further Reading
These are the best web sites for reporting news on Comet technologies:

• Comet Daily (h t tp : / /cometdai ly . com) is a dedicated resource for the
Comet community.

• Ajaxian (h t tp : / / a j axian. com/by/topic/comet) is a broader Ajax
news site that frequently reports on Comet issues.

136 firstPress Comet and Reverse Aiax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You might also want to check out the cometd-users dedicated mailing list
at Google groups (h t t p : / / g r o u p s . google . com/group/cometd-
users/) , which is frequented by both the Jetty and Dojo people, as well as
your authors.

Further Implementations
In the short space of this book, we've had to limit our focus on a small
number of Comet implementations, namely DWR, Jetty, and Dojo. These
are, in our opinion, currently the most popular implementations and the
best of breed. However, there are a number of other quality up-and-coming
implementations out there, and we'd be doing you a disservice to ignore
them completely. In no particular order, here are a few Comet projects and
technologies to watch out for:

• Grizzly (h t tps : / / g r i z z l y . dev. j ava. net) is an HTTP connector in the
Glassfish Java EE server designed for scalability. The project includes an
implementation of the Bayeux protocol that we discussed in Chapter 7.

• Apache Tomcat (h t tp : / / tomcat . apache. org/tomcat-6 . Odoc/
a io . html) has built-in support for Comet from version 6.0 onward.

• Kaazing Enterprise Comet (h t tp : //www. kaazing. com) is a highly
scalable, commercial Comet server implemented in Java.

• Lightstreamer (h t tp : //www. 1 ightstreamer. com) is another commercial
application server with support for Comet.

Emerging Standards
As with many emerging technologies, early pioneers of Comet have been
concerned simply with getting the thing to work. As the technology has
caught on with a broader market, discussion of standardization is
inevitable, and that discussion is starting to take place. Here are two of the
emerging Comet standards to keep an eye on:

Comet and Reverse Aiax firstPress 137

http://lib.ommolketab.ir
http//lib.ommolketab.ir

• Web sockets (ht tp: //www. what wg. org/specs/web-apps/cur rent -
work/mult ipage/comms . html#web-sockets) are a part of the proposed
HTML 5 specification. One day, we may even see native Comet support built
into the browser.

• Java Community Process JSR 315
(ht tp: / / j cp .org /en / j s r /de ta i l? id=315) is developing the Servlet
3.0 specification. This includes support for asynchronous nonblocking
notification from the server, which would enable Comet-like architectures.

Summary
At the end of Chapter 3, we discussed a number of performance issues with
the naive version of the Magnetic Poetry application that we'd developed.
Let's see how your Jetty and Cometd implementation addresses these.

On the client side, we had found that most browsers will only run two
concurrent HTTP requests to a given server, which resulted in blocking of
ordinary Ajax requests. In this chapter, however, you've used a single
Cometd connection to establish a collaborative magnetic board and report
on the progress of your online bakery, with a satisfactorily low degree of
coupling between the two components. All the while, you've left the
second HTTP connection allowed by the browser open for fetching images
and for your conventional Ajax requests.

On the server side, we suspended servlet threads but didn't release the
servlet back to the pool. This limited the number of clients that we could
support and increased the resource footprint of our application
considerably. Here, our CRUD functionality is employing Jetty
continuations to release servlets, as discussed in Chapter 5.

Because the bakery is not pausing the servlet thread but a secondary thread
that references very few resources, you've also reduced the load on your
servlet pool considerably.

138 firstPress Comet and Reverse Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Overall, then, this feels like a much more resilient, scalable basis on which
to build our application. For those of you who like to see hard numbers,
Greg Wilkins, lead developer of Jetty, has conducted some large-scale
experiments on Comet scalability using Amazon's compute cloud
infrastructure and has written up some of his findings at h t t p : / /
cometdaily.com/2 008/01/07/2 0000-reasons-that-comet-scales/ .

Comet and Reverse Ajax firstPress 139

http://cometdaily.com/2
http://008/01/07/2
http://0000-reasons-that-comet-scales/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Copyright
Comet and Reverse Ajax: The Next-Generation Ajax 2.0

© 2008 by Dave Crane, Phil McCarthy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (electronic): 978-1-4302-0864-8

ISBN-13 (paperback): 978-1-59059-998-3

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233
Spring Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-
Verlag GmbH & Co. KG, Tiergartenstr. 17,69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail
orders@springer-ny •com, or visit http://www.springer-ny.com. Outside the United States: fax
+49 6221 345229, e-mail orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2855 Telegraph Ave, Suite
600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or
visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor Apress
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the information contained in this work.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	cover-large.tif
	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	back-matter.pdf

