
Ant: The Definitive Guide, 2nd Edition

By Steve Holzner

...

Publisher: O'Reilly

Pub Date: April 2005

ISBN: 0-596-00609-8

Pages: 334

Table of Contents | Index | Errata

As the most widely used tool for cross-platform development, Ant has undergone a number of important changes in its functionality and

use since its launch. Ant: The Definitive Guide, 2nd Edition has been reworked to reflect these changes for Java developers

everywhere. Topics covered include everything from downloading and installing, to using Ant to build Web applications, to using Ant to

test code.

Ant: The Definitive Guide, 2nd Edition

By Steve Holzner

...

Publisher: O'Reilly

Pub Date: April 2005

ISBN: 0-596-00609-8

Pages: 334

Table of Contents | Index | Errata

 Copyright

 Preface

 What's Inside

 Conventions Used in This Book

 What You'll Need

 Using Code Examples

 We'd Like to Hear from You

 Chapter 1. Getting Started

 Section 1.1. Ant's Origins

 Section 1.2. Getting Ant

 Section 1.3. Ant at Work

 Section 1.4. Anatomy of a Build File

 Section 1.5. Running Ant

 Chapter 2. Using Properties and Types

 Section 2.1. Using Properties to Control Tasks

 Section 2.2. Using Property Files

 Section 2.3. Handling Data Using Types

 Chapter 3. Building Java Code

 Section 3.1. Compiling Code

 Section 3.2. Getting Input from the User

 Section 3.3. Calling Other Ant Tasks

 Section 3.4. Importing Other Build Files

 Section 3.5. Documenting Code

 Section 3.6. Creating JAR Files

 Section 3.7. Setting Build Numbers

 Section 3.8. Setting Timestamps

 Chapter 4. Deploying Builds

 Section 4.1. Packaging Applications for Deployment

 Section 4.2. Preparing to Deploy

 Section 4.3. Deploying Applications

 Section 4.4. Scheduling Automatic Builds

 Chapter 5. Testing Builds with JUnit

 Section 5.1. Using JUnit

 Section 5.2. Running Test Cases

 Section 5.3. Testing in Batches

 Section 5.4. Running the Build File

 Section 5.5. Extending JUnit

 Chapter 6. Getting Source Code from CVS Repositories

 Section 6.1. Source Control and Ant

 Section 6.2. Logging In

 Section 6.3. Working with the Server

 Section 6.4. Getting Version Data

 Section 6.5. Creating Change Logs

 Section 6.6. Finding Changes Between Versions

 Section 6.7. Creating Patches

 Chapter 7. Executing External Programs

 Section 7.1. Executing Java Code

 Section 7.2. Executing External Programs

 Section 7.3. Performing Batch Execution

 Section 7.4. Multithreading Tasks

 Section 7.5. Setting Execution Order

 Chapter 8. Developing for the Web

 Section 8.1. Creating WAR Archives

 Section 8.2. Creating CAB Files

 Section 8.3. Creating Simple Web Deployment

 Section 8.4. Deploying with SCP

 Section 8.5. Deploying to Tomcat

 Section 8.6. Deploying to Tomcat

 Section 8.7. Compiling JSPs

 Section 8.8. Deploying to EJB Containers

 Chapter 9. XML and XDoclet

 Section 9.1. Validating XML Documents

 Section 9.2. Loading Properties from XML Files

 Section 9.3. Creating Ant Task DTDs

 Section 9.4. Transforming XML Using XSLT

 Section 9.5. Using XDoclet

 Section 9.6. Developing Enterprise JavaBeans

 Chapter 10. Optional Tasks

 Section 10.1. Using Sound

 Section 10.2. Creating Splash Screens

 Section 10.3. Subtituting Text Using Regular Expressions

 Section 10.4. Handling Dependencies

 Chapter 11. Integrating Ant with Eclipse

 Section 11.1. Introducing Eclipse

 Section 11.2. Running Ant Build Files

 Section 11.3. Using a Different Version of Ant

 Section 11.4. Using the Ant View

 Chapter 12. Extending Ant

 Section 12.1. Creating a Simple Custom Ant Task

 Section 12.2. Extending the Task Class

 Section 12.3. Creating Custom Listeners

 Section 12.4. Creating Custom Loggers

 Section 12.5. Creating Custom Filters

 Section 12.6. Creating Custom Selectors

 Section 12.7. Creating New Types

 Colophon

 Index

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Ant: The Definitive Guide, the image of a horned lizard, and related trade dress
are trademarks of O'Reilly Media, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly Media, Inc. is independent of
Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com

Preface
Welcome to Ant, today's premiere build tool. Ant is an extraordinary tool, and it fills a long-standing
need among developers. No longer do you have to try to remember the 50 steps to build your project
and make sure you do them in the right order or try to get finicky makefiles just right. Now you've
got a true build tool that's genuinely easy to work withand outstandingly powerful. If you've never
used Ant, you're in for a treat.

We're going to push the envelope in this book, working from the basics through the advanced, doing
nearly everything that Ant can do. This book was designed to open up Ant and make it more
accessible than any other book on the subject. It's a programmer-to-programmer book, written to
make you an Ant pro without wasting time.

If you're a programmer, this book is written to give you exactly what you want to see, which is the
good stuff and only the good stuff. There's as much Ant crammed into this book as you need to
master the topic, and mastering Ant is the goal.

What's Inside

From cover to cover, this book is pure Ant, covering hundreds of topics and techniques. We start
from the most basic Java© development up to extending Ant yourself; it's all here. Here are a few of
the topics in this book:

Getting and installing Ant

Creating build files

Running a build

Handling build failures

Specifying build targets

Using property files

Handling datatypes and properties

Handling filesets

Using selectors, filtersets, and filter chains

Working with mappers

Creating conditional targets

Packaging applications

Moving, copying, and deleting files

Building documentation

Creating JAR files

Deploying applications

Using FTP

Handling remote deployment

Getting and installing JUnit

Using JUnit assertions

Creating a test case

Running a test case

Using CVS and Ant

Accessing CVS

Initializing CVS

Running external programs and continuous integration

Running code in a new JVM

Calling other programs

Setting environment variables

Scheduling Ant builds automatically

Scheduling builds in Unix and Windows

Using scripting

Using AntHill

Creating email notifications

Working with XDoclet and XML

Creating XML build logs

Handling web development

Compiling JSP pages

Using Ant's EJB tasks

Using XDoclet for EJB development

Connecting Ant to Eclipse

Configuring Ant in Eclipse

Writing Ant tasks

Handling errors

Writing custom filters and selectors

Writing custom Ant loggers and listeners

Here's an overview, chapter by chapter:

Chapter 1

This chapter is all about the basics, including all the details on how to create Ant build files and
how to run them.

Chapter 2, Using Properties and Types

This chapter is about two central Ant topics: properties and types. Properties let you configure
Ant tasks, and types hold data used by tasks.

Chapter 3, Building Java Code

This chapter focuses on the Java build process, from compiling Java code with the javac task
through compressing and packaging the results with tasks such as jar.

Chapter 4, Deploying Builds

This chapter covers tasks to package applications for deployments such as tar, gzip, and zip;
tasks to prepare directories for deployment such as delete and mkdir; and tasks to deploy
applications such as copy and move for local and network deployment, as well as ftp, telent,
sshexec, and mail for remote deployment.

Chapter 5, Testing Builds With JUnit

It doesn't make much sense to deploy code that has been broken by a new build. This chapter
using the JUnit framework with Ant, during which you can run tests on your code and deploy it
if it satisfies those tests.

Chapter 6, Getting Source Code from CVS Repositories

There's a lot of support built in for Concurrent Version System (CVS) in Ant, and this chapter is
all about making code sharing in teams with CVS happen.

Chapter 7, Executing External Programs

Part of the build process involves testing what you've built, and an obvious way of doing that is
to run the results of a build. Doing so from Ant involves using the major tasks in this chapter:
java, exec, and apply.

Chapter 8, Developing for the Web

This chapter covers the tasks specifically designed for packaging web applications, such as war,
cab, ear, and jspc, and for deploying them, such as get, serverdeploy, and scp. I'll also cover
the custom Ant tasks targeted to specific servers such as deploy, reload, and undeploy.

Chapter 9, XML and XDoclet

You can validate XML documents using XML DTDs and schema using the xmlvalidate task. You
can read properties from an XML document using xmlproperty. You can use the xslt/style
task to transform XML documents using XSLT. In this chapter, I discuss XDoclet, an open
source code generation engine designed to run in Ant. XDoclet can generate code, deployment
descriptors such as web.xml, and other artifacts for web and EJB applications.

Chapter 10, Optional Tasks

Ant comes with a number of optional tasks, and this chapter covers the highlights, including
tasks that create sounds to indicate where you are in a build, tasks that display splash screens,
tasks that work with regular expressions to match text, and more.

Chapter 11, Integrating Ant with Eclipse

Eclipse is the premiere integrated development environment (IDE) for Java programmers.
Eclipse is great at visual development, whereas Ant is great for builds. Eclipse comes with Ant
built in, and there's an extensive Ant interface in Eclipse. The Ant/Eclipse connection is
extremely useful to Java developers, and it's covered in this chapter.

Chapter 12, Extending Ant

This chapter covers how to create new Ant tasks, handle task attributes, access property
values, work with nested text and elements, make builds fail, work with filesets, use custom
tasks as wrappers for external programs, and more.

Conventions Used in This Book

There are some conventions I'll use that you should know about. When there's a new piece of code
under discussion, it will appear highlighted; when there's more code to come, you'll see three dots.
Here's what that looks like:

import org.apache.tools.ant.Task;
import org.apache.tools.ant.BuildException;

public class Project extends Task
{
 private String language;

 public void execute() throws BuildException
 {
 System.out.println("The language is " + language);
 }

 public void setLanguage(String language)
 {
 this.language = language;
 .
 .
 .
 }
}

Note that I'll use the standard convention for selecting menu items in this book when menu items
come into play (as when we use Ant in the Eclipse IDE). For instance, to create a new project in
Eclipse, you use the File New Project menu item.

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators.

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width

Indicates commands, options, switches, variables, types, classes, namespaces, methods,
modules, properties, parameters, values, objects, events, event handlers, or XML tags.

Constant width italic

Shows text that should be replaced with user-supplied values.

Constant width bold

This icon signifies a tip, suggestion, or general note.

This icon signifies a caution or warning.

What You'll Need

All the software you'll need in this book can be downloaded from the Internet for free. You'll need
Antthis book was written using Ant 1.6.1and I'll discuss where to get Ant in Chapter 1. Other software
packages are used at various points in the book, such as the AntHill build server or the Eclipse IDE
(Chapter 11 is on using Ant in Eclipse), and I'll show where to download all the requisite software as
it's needed. It's all free.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact O'Reilly for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Ant: The Definitive Guide, Second Edition by Steve Holzner.
Copyright 2005 O'Reilly Media, Inc., 0-596-00609-8."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

O'Reilly maintains a web page for this book, which lists errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/<BOOK>

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
the following web site:

http://www.oreilly.com

http://www.oreilly.com/catalog/<BOOK>
http://www.oreilly.com

Chapter 1. Getting Started
Build tools are one of the most boring items developers must have available in their development
cycle. They aren't sexy, they aren't going to impress your friends, and you'll hardly notice a build tool
at all until it's time to redeploy that 1,000-class Java application you've been working on. Then, all the
interesting code, killer IDEs, and amazing design patterns aren't worth nearly as much as typing ant
and calmly watching your boring build tool handle complicated dependencies, deployment onto
multiple servers via FTP and SSH, and log errors. It is here that build tools like Ant truly shine.

At its most basic, all a good build tool does is take source code, compile it, and create a working
application. When you're writing a single-class application, this isn't a big deal; in fact, it can be
annoying to manage a build system instead of typing javac. But it's a different story when you start
working with multiple source files, with multiple dependencies, need to check code out of a central
repository automatically, test the code, and deploy it to some remote destination. You can end up
with dozens of tasks to complete each time you want to build your application, which is the last thing
you want to spend time on when you're already brain-dead from an all-night debugging session.
When new members join your team, you'll have to walk through this whole process again, showing
them the ropes and hoping they don't break anything in the process. It's for all of these reasons that
developersand especially Java programmersturn to Ant.

Though there are still powerful alternatives to Ant like make, Jam, Cons, gnumake, and nmake, nothing
is as integrated into the Java programming language. Ant is pure Java; you'll find line after line of
Java code and .java files if you obtain a source release of the tool. Further, some of the most popular
projects in the Java universe are built using Ant; everything from Tomcat to JBoss to Turbine can go
from source to binary by typing ant.

1.1. Ant's Origins

Ant was originally the brainchild of James Duncan Davidson, and the word Ant stands for "Another
Neat Tool," a fact that relatively few developers realize. Ant 1.0 first appeared in March 2000. James'
original inspiration was to create a build tool that used a simple XML-based format for build files, as
opposed to the shell commands and involved formatting that Makefiles used. Ant caught on rapidly,
and newer versions followedAnt 1.1 (July 2000), 1.2 (October 2000), 1.3 (March 2001), 1.4
(September 2001), and 1.5 (July 2003). The version this book usesversion 1.6.1appeared in
February of 2004. Although James Davidson has moved on to work with other build tools, Ant
continues to evolve on an almost daily basis.

Ant is an open source, Apache community project, and its home page is at http://ant.apache.org.
Because it's an open source project, it's always developing. There are multiple authors, called
committers, which can write to Ant's source code repositories. However, officially sanctioned Ant
versions don't appear too rapidly, and when they do, they're usually backward compatible enough to
make sure your build files aren't broken.

One notable exception to this practice is Ant 2.0, which may be out sometime in
the next year or so. When it does come out, the Apache Ant team plans on
releasing an automated migration tool that will translate 1.x build files to Ant
2.0.

http://ant.apache.org

1.2. Getting Ant

Ant comes in two editions: binary and source. The binary release is ready to use: just download,
uncompress, and go. The source release allows you to see what makes Ant run and to make
modifications of your own if you choose. To download either, go to http://ant.apache.org/ and click a
link under the Download title (either Binary Distributions or Source Distributions).

Downloading a binary edition is easiest: Just click the Binary Distributions link and download the
.tar.gz or .zip compressed file.

If you want bleeding-edge Ant, you can get the nightly builds from
http://cvs.apache.org/builds/ant/nightly/.

1.2.1. Installing Ant

To install the binary distribution of Ant, expand it. Here's the resulting directory layout (only the bin
and lib directories are needed to run Ant):

 ant
 |___ bin Ant launch scripts
 |
 |___ lib Ant jars
 |
 |___ docs Ant documentation
 |
 |___ etc XSL for formatting Ant XML output

You need to perform the following steps to complete the setup process:

Add the Ant bin directory to your path.1.

Set the ANT_HOME environment variable to the directory where you installed Ant.

On some operating systems, the Ant scripts can guess ANT_HOMEspecifically
in Unix and Windows NT/2000but it's better not to rely on them doing so
accurately.

2.

Set the JAVA_HOME environment variable to the directory where your JDK is installed.3.

http://ant.apache.org/
http://cvs.apache.org/builds/ant/nightly/

3.

If you've expanded Ant in c:\ant on Windows, you'll end up with a new directory, c:\ant\apache-ant-
1.6.1. If you've installed the JDK in c:\jdk1.4 (and the Java bin directory is C:\jdk1.4\bin), set the
environment variables like this:

set ANT_HOME=C:\ant\apache-ant-1.6.1
set JAVA_HOME=C:\jdk1.4
set PATH=%PATH%;%ANT_HOME%\bin

In Unix (bash), assume Ant is installed in /usr/local/ant. Here's how you'd set up the environment:

export ANT_HOME=/usr/local/ant
export JAVA_HOME=/usr/local/jdk1.4
export PATH=${PATH}:${ANT_HOME}/bin

In Unix (csh), you'd do something like this:

setenv ANT_HOME /usr/local/ant
setenv JAVA_HOME /usr/local/jdk1.4
set path=($path $ANT_HOME/bin)

There are great instructions on how to set environment variables on many
different systems in the installation documentation for the Java JDK.

To compile Java code, you'll need a working JDK on your machine. If you only have a Java Runtime
Environment (JRE), Ant won't be able to do many things you need it to do. Also note that the
Microsoft JVM/JDK is not supported.

In Windows 95, Windows 98, and Windows ME, the batch file used to launch Ant
will not work if ANT_HOME holds a long filename (a filename which is not in the 8.3
format). It's best to install Ant in a short 8.3 path, such as c:\Ant. If you're
using one of these operating systems, you'll need to configure more
environment space. Update the following line in your config.sys file:

shell=c:\command.com c:\ /p /e:32768

1.2.2. Testing Ant

With Ant in your path, you should be able to run it at the command line. To test this, type ant -
version, which should display the current Ant version:

%ant -version
Apache Ant version 1.6.1 compiled on February 12 2004

If Ant's not working, you'll see something along these lines:

-bash-2.05b$ ant
-bash: ant: command not found

Here's the Windows version of the same error:

C:\>ant
'ant' is not recognized as an internal or external command,
operable program or batch file.

In that case, go back over the installation instructions, and look at the Ant documentation for
troubleshooting issues.

1.3. Ant at Work

Rather than go on and on about what Ant can do for you, an example can illustrate how easy Ant
makes the build process. Assume that you have a Java file called Project.java, as shown in Example
1-1.

Example 1-1. A simple Java class

public class Project
{
 public static void main(String args[])
 {
 System.out.println("No worries.");
 }
}

Assume you want to compile this code and store the results, Project.class, in a JAR file, Project.jar.
With Ant and a build file, this is a piece of cake. By default, Ant looks for a build file named build.xml.
That file is a valid XML document; Example 1-2 shows the build file for this example.

Example 1-2. A simple Ant build file

<?xml version="1.0" ?>
<project default="main">

 <target name="main" depends="compile, compress">
 <echo>
 Building the .jar file.
 </echo>
 </target>

 <target name="compile">
 <javac srcdir="."/>
 </target>

 <target name="compress">
 <jar jarfile="Project.jar" basedir="." includes="*.class" />
 </target>

</project>

To run this Ant build file, make sure it's in the same directory as Project.java, and enter ant at the

command-line prompt. Ant has been tested on many platforms, including Linux; Unix versions from
Solaris to HP-UX; Windows 9x, NT, 2000, and XP; OS/2 Warp, Novell Netware 6, and MacOS X.

When you run Ant on this first build file, here's what you'd see in Unix (using the bash shell):

-bash-2.05b$ ant
Buildfile: build.xml

compile:
 [javac] Compiling 1 source file

compress:
 [jar] Building jar: /home/httpd/vhosts/builder/Project.jar

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 2 seconds

You'll get the same results in any supported operating system. For example, here's what you'd see in
Windowsverything except the build time is identical:

C:\ant\ch01>ant
Buildfile: build.xml

compile:
 [javac] Compiling 1 source file

compress:
 [jar] Building jar: C:\ant\ch01\Project.jar

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 4 seconds

For the most part, Ant builds are independent of operating system, and for that reason, % is used as a
generic command prompt in this book. If anything is operating-system-dependent, it will be listed
explicitly.

When Ant finishes executing the build file, you'll have build.xml, Project.java, the compiled
Project.class, and Project.jar, all in the same directory. Project.jar will contain a manifest file and
Project.class. Fortunately, Ant handles 10, 20, or 100 source files in this same way, making your life
easy at build time.

1.4. Anatomy of a Build File

Ant projects all revolve around one or more build files. By default, Ant looks for a build file named
build.xml. Because Ant files are XML documents, they start with an XML declaration, as all valid XML
documents must:

<?xml version="1.0" ?>
 .
 .
 .

For the complete XML 1.0 syntax, look at http://www.w3.org/TR/REC-xml/.
XML 1.1 is out now as well, but Ant build files are based on XML 1.0, and the
difference between these versions is small anyway, centering mostly on the
manner in which certain Unicode characters are supported.

1.4.1. Projects

Every Ant build file contains exactly one project. You set up an Ant project in a build file with the
project element, which is the document elementi.e., the element that contains all other elements:

<?xml version="1.0" ?>
<project>
 .
 .
 .
</project>

As Ant build files are just XML, you'll need to know which attributes are allowed on the top-level
project element.

You'll also want to know about the elements that can be nested within project.
Those are dealt with throughout the rest of this chapter and in Chapter 2.

The three allowed attributes for the project element are shown in Table 1-1.

Table 1-1. The project element's supported attributes

http://www.w3.org/TR/REC-xml/

Attribute Description Required

name Defines the project name No

default The target to invoke if no target is explicitly specified Yes

basedir The base directory from which all relative paths are resolved No

Note that the default attribute is required. This attribute points to the Ant target that you want run
by default; in other words, this controls what happens when you type ant at the command prompt,
without any other special instructions. In the following case, the default target is main:

<?xml version="1.0" ?>
<project default="main">
 .
 .
 .
</project>

1.4.2. Targets

An Ant target is a group of tasks that you want Ant to perform. These tasks are grouped together
into one easily remembered unit, which is the target. For example, you might have a target deploy
which opens an FTP connection to a remote server, uploads various files, and closes the connection.
Though multiple tasks may be involved (opening the connection, performing an upload, closing the
connection, and perhaps checking for error messages), it's easiest to think of this as one unit of
work. Considering this as a single target makes it reusable and easily accessed from various portions
of your build file.

Another example might be a target named init that initializes a build by deleting output directories
and recreating them so they'll be empty, as well as copying over license files that should be a part of
every build. You might use a target named compile to compile dozens of source files across various
directories and store the results in various output directories. In all these cases, the target handles
piecing together various individual tasks.

Ant build files are made up of targets like these. For example, to create the main target, you use the
target element, along with the name attribute:

<?xml version="1.0" ?>
<project default="main">

 <target name="main">
 .
 .
 .
 </target>

</project>

You can see the possible attributes for the target element in Table 1-2.

Table 1-2. The target element's attributes

Attribute Description Required

name Defines the target name Yes

depends Comma-separated list of targets to execute before this target No

if Name of a property needed to run this task No

unless Name of a property that can not be set before running this task No

description Description of this target's purpose No

1.4.3. Tasks

You populate an Ant target with tasks; a task is an XML element that Ant can execute to make
something happen. For example, the echo task echoes text messages to the console:

<?xml version="1.0" ?>
<project default="main">

 <target name="main">
 <echo>
 Building the .jar file.
 </echo>
 </target>

</project>

To create an Ant target, you place Ant tasks like echo inside a target element; in this case, the main
target only has one task, but you can include hundreds.

1.4.3.1 Built-in tasks

As you'd expect, Ant comes with a large number of built-in tasks, and you can see them all in Table
1-3 (many of these tasks may contain subelements).

In cases where a task is listed and followed by another task name in brackets
(as in apply [execon]), the first task is the current name you should use; the
second task is an older name that performs similar functionality but is now
deprecated. Always use the task not in brackets to ensure your code is current.

Table 1-3. Core Ant tasks

Task name Description

ant Executes Ant

antcall Executes a target from the current build file

antstructure
From a given build file, creates a DTD reflecting all of the tasks Ant
currently knows about

apply [execon] Invokes a native executable

available
Sets a Boolean value in a property according to the availability of desired
resource

basename
Sets a property to the last element of a specified path in an effort to
determine a file's name without directory structure

buildnumber Manages build numbers

bunzip2 Expands GZip or BZip2 archives

bzip2 Packs GZip or BZip2 archives

checksum Creates checksums for one or more files

chmod Modifies file permissions on Unix

concat Concatenates multiple files

condition Checks the result of a condition and sets the result to in a property

copy [copydir,

copyfile]
Copies files

cvs Interacts with a CVS repository

cvschangelog Converts a series of CVS change logs into an XML report

cvspass Adds entries to a .cvspass file

cvstagdiff Creates an XML report highlighting the differences between tags

cvsversion Finds the CVS software version

defaultexcludes
Modifies the list of default exclude patterns, affecting which files are
automatically excluded from processing by file-related tasks

delete [deltree] Delete files and folders

Task name Description

dependset Deletes target files that are older than new source files

dirname Assigns a file's directory path to a property

ear
Extends the jar task to support handling files for an Enterprise Application
archive (EAR)

echo Echoes text to System.out or to a file

exec Invokes a native executable

fail Halts and exits a build by throwing a BuildException

filter Sets a token filter that can be used by filter-related tasks such as copy

fixcrlf
Adds or remove tabs, carriage returns, linefeeds, and EOF characters from a
set of files

genkey Adds a new key to a given keystore

get Retrieves files using FTP, HTTP, and more from a URL

gunzip Unpacks a GZip file

gzip Packs a GZip file

import Allows the use of other Ant files

input
Displays a message and reads a line of input from the console, allowing for
user input during the build process

jar Creates a JAR archive similar to Java's jar command

java Executes the Java interpreter to run a class or application

javac Compiles the specified source file(s)

javadoc [javadoc2] Invokes the javadoc tool to create documentation

loadfile Sets a property file to the entire contents of a text file

loadproperties Loans an entire property file into Ant properties

macrodef Defines a new task as a macro built-up upon other tasks

mail Sends SMTP mail messages

manifest Creates an archive's manifest file

mkdir Makes a new directory

move [rename] Moves a file to another directory

parallel
Contains other Ant tasks that can be run simultaneously by multiple Java
threads

patch
Uses the patch command (assuming it is on the path) to apply diff files to a
source file (or files)

pathconvert Converts paths between platforms

dependset Deletes target files that are older than new source files

dirname Assigns a file's directory path to a property

ear
Extends the jar task to support handling files for an Enterprise Application
archive (EAR)

echo Echoes text to System.out or to a file

exec Invokes a native executable

fail Halts and exits a build by throwing a BuildException

filter Sets a token filter that can be used by filter-related tasks such as copy

fixcrlf
Adds or remove tabs, carriage returns, linefeeds, and EOF characters from a
set of files

genkey Adds a new key to a given keystore

get Retrieves files using FTP, HTTP, and more from a URL

gunzip Unpacks a GZip file

gzip Packs a GZip file

import Allows the use of other Ant files

input
Displays a message and reads a line of input from the console, allowing for
user input during the build process

jar Creates a JAR archive similar to Java's jar command

java Executes the Java interpreter to run a class or application

javac Compiles the specified source file(s)

javadoc [javadoc2] Invokes the javadoc tool to create documentation

loadfile Sets a property file to the entire contents of a text file

loadproperties Loans an entire property file into Ant properties

macrodef Defines a new task as a macro built-up upon other tasks

mail Sends SMTP mail messages

manifest Creates an archive's manifest file

mkdir Makes a new directory

move [rename] Moves a file to another directory

parallel
Contains other Ant tasks that can be run simultaneously by multiple Java
threads

patch
Uses the patch command (assuming it is on the path) to apply diff files to a
source file (or files)

pathconvert Converts paths between platforms

Task name Description

presetdef
Defines a new task based on an existing task with certain options preset as
defaults

property Sets one or more properties to new values

record Runs a listener that records the logging output of the build process to a file

replace Replaces a string with another in all files in a directory

rmic Invokes the rmic compiler

sequential A container task that can contain other Ant tasks and run them in sequence

signjar Uses the JarSigner to securely sign ZIP and JAR archives

sleep Suspends execution for a specified period of time

sql Runs SQL statements against a database

subant Runs Ant within all subdirectories of the project directory

sync Synchronizes two directory trees

tar Makes a new TAR archive

taskdef Creates a new task definition and adds it to the current project

tempfile Sets a temporary filename to an Ant property

tstamp Sets time-based properties to the current time

typedef Creates a new task or data type for use in the current project

unjar Unpacks a JAR file

untar Unpacks a TAR file

unwar Unpacks a WAR file

unzip Unpacks a ZIP file

uptodate
Sets a property value to true if a given target file is newer than a set of
source files

waitfor Halts a build and continues when specified conditions are met

war Creates WAR archive files (an extension of the jar task)

whichresource
Locates a class or resource, either on the current class path or the system
class path

xmlproperty Loads Ant properties from an XML property file

xslt [style] Transforms a set of documents via XSLT

zip Creates and packs a new ZIP archive

1.4.3.2 Optional tasks

presetdef
Defines a new task based on an existing task with certain options preset as
defaults

property Sets one or more properties to new values

record Runs a listener that records the logging output of the build process to a file

replace Replaces a string with another in all files in a directory

rmic Invokes the rmic compiler

sequential A container task that can contain other Ant tasks and run them in sequence

signjar Uses the JarSigner to securely sign ZIP and JAR archives

sleep Suspends execution for a specified period of time

sql Runs SQL statements against a database

subant Runs Ant within all subdirectories of the project directory

sync Synchronizes two directory trees

tar Makes a new TAR archive

taskdef Creates a new task definition and adds it to the current project

tempfile Sets a temporary filename to an Ant property

tstamp Sets time-based properties to the current time

typedef Creates a new task or data type for use in the current project

unjar Unpacks a JAR file

untar Unpacks a TAR file

unwar Unpacks a WAR file

unzip Unpacks a ZIP file

uptodate
Sets a property value to true if a given target file is newer than a set of
source files

waitfor Halts a build and continues when specified conditions are met

war Creates WAR archive files (an extension of the jar task)

whichresource
Locates a class or resource, either on the current class path or the system
class path

xmlproperty Loads Ant properties from an XML property file

xslt [style] Transforms a set of documents via XSLT

zip Creates and packs a new ZIP archive

1.4.3.2 Optional tasks

Besides these built-in tasks, called the core tasks, Ant supports many optional tasks, which you can
see in Table 1-4. These tasks may require the support of additional JAR files, which you load into the
Ant lib directory. For example, ftp uploads files to remote servers; you need to place the JAR files
jakarta-oro.jar and commons-net.jar in your Ant lib directory to use the task. Another optional task
is csc, which compiles Microsoft C# code:

<csc optimize="true" debug="false"
 warnLevel="4"
 unsafe="false" targetType="exe" incremental="false"
 mainClass = "Main" destFile="app.exe" >
 <src dir="src" includes="*.cs" />
 <reference file="${testCSC.dll}" />
 <define name="RELEASE" />
</csc>

To determine which additional JAR files an optional task needs, see
http://ant.apache.org/docs/manual/index.html#librarydependencies, which
lists the needed libraries for each optional taskand where to get them.

Table 1-4. Optional Ant tasks

Task name Description

antlr Runs the ANTLR Translator Generator Language Tool.

attrib Changes the permissions and/or attributes of a file.

cab Creates CAB files (Microsoft archives).

chgrp Changes file groups on Unix.

chown Changes file ownership.

depend Determines which class files are out-of-date compared to their source.

echoproperties Lists the project's properties.

ftp Supports a basic FTP client.

icontract Generates a property file for iContract, an application for controlling assertions.

image Performs bulk image manipulation.

jarlib-available Checks for the presence of an extension.

jarlib-display
Displays the "Optional Package" and "Package Specification" information for JAR
files.

jarlib-manifest Generates a manifest with required dependencies.

http://ant.apache.org/docs/manual/index.html#librarydependencies

Task name Description

jarlib-resolve Searches for the location of a JAR file, setting the location to an ANT property.

javacc Invokes the JavaCC compiler.

javah Generates C header and source files for the Java Native Interface (JNI).

JPCoverage Runs the JProbe coverage analyzer.

JcovMerge Merges JProbe coverage snapshots.

JcovReport Takes a JProbe coverage snapshot and creates a report.

jdepend Uses the JDepend parser to generate code quality metrics.

jjdoc Invokes the JJDoc documentation generator (used with JavaCC).

jjtree
Inserts parse tree building actions into source code using the JJTree
preprocessor for the JavaCC compiler.

jlink
Deprecated. Merges archive contents. Use the zip and jar tasks with the
zipfileset and zipgroupfileset attributes instead.

jprobe Runs various tools from the JProbe suite.

jspc
Deprecated. Compiles JSP pages to Java source code. Use Tomcat's jspc task
instead.

junit Runs unit tests using JUnit.

junitreport Merges separate XML files generated by the JUnit task into a single XML file.

maudit
Highlights stylistic and potential execution problems using the Metamata
Metrics/WebGain Quality Analyzer.

mimemail Deprecated. You can still send mail using the mail task.

mmetrics Generates metrics using the WebGain's Metameta Metrics Quality Analyzer.

mparse Takes a grammar file, and compiles it with MetaMata's MParse compiler.

native2ascii Takes a native encoded file and converts it to ASCII.

netrexxc Compiles all NetRexx source files.

propertyfile Creates or modifies property files.

pvcs Gets latest source code from a PVCS repository.

renameextensions
Deprecated. You can achieve the same results by using the move task and using
a glob mapper.

replaceregexp Replaces matched text with new text.

rexec Controls a rexec session from Ant.

rpm Builds Linux RPM installation files.

scp Moves files to and from a remote SSH server.

script Executes an Apache BSF script.

jarlib-resolve Searches for the location of a JAR file, setting the location to an ANT property.

javacc Invokes the JavaCC compiler.

javah Generates C header and source files for the Java Native Interface (JNI).

JPCoverage Runs the JProbe coverage analyzer.

JcovMerge Merges JProbe coverage snapshots.

JcovReport Takes a JProbe coverage snapshot and creates a report.

jdepend Uses the JDepend parser to generate code quality metrics.

jjdoc Invokes the JJDoc documentation generator (used with JavaCC).

jjtree
Inserts parse tree building actions into source code using the JJTree
preprocessor for the JavaCC compiler.

jlink
Deprecated. Merges archive contents. Use the zip and jar tasks with the
zipfileset and zipgroupfileset attributes instead.

jprobe Runs various tools from the JProbe suite.

jspc
Deprecated. Compiles JSP pages to Java source code. Use Tomcat's jspc task
instead.

junit Runs unit tests using JUnit.

junitreport Merges separate XML files generated by the JUnit task into a single XML file.

maudit
Highlights stylistic and potential execution problems using the Metamata
Metrics/WebGain Quality Analyzer.

mimemail Deprecated. You can still send mail using the mail task.

mmetrics Generates metrics using the WebGain's Metameta Metrics Quality Analyzer.

mparse Takes a grammar file, and compiles it with MetaMata's MParse compiler.

native2ascii Takes a native encoded file and converts it to ASCII.

netrexxc Compiles all NetRexx source files.

propertyfile Creates or modifies property files.

pvcs Gets latest source code from a PVCS repository.

renameextensions
Deprecated. You can achieve the same results by using the move task and using
a glob mapper.

replaceregexp Replaces matched text with new text.

rexec Controls a rexec session from Ant.

rpm Builds Linux RPM installation files.

scp Moves files to and from a remote SSH server.

script Executes an Apache BSF script.

Task name Description

Scripdef Defines Ant tasks from scripts.

serverdeploy Runs a hot-deployment tool for a J2EE server.

setproxy Configures web proxy properties.

sound
After a build, plays a sound file letting you know whether the build succeeded or
failed.

splash Displays a splash screen.

sshexec Executes a command on a remote server using SSH.

stylebook Uses Apache Stylebook to generate book documentation.

symlink Makes, deletes, or edits Unix symbolic links.

telnet Controls a Telnet session from ANT.

test Executes a JUnit test.

translate Translates keywords in files using values in resource bundles.

vajload Loads files for Visual Age for Java source control.

vajexport Exports packages for Visual Age for Java source control.

vajimport Imports files for Visual age for Java source control.

wljspc Compiles JSP pages using Weblogic's JSP compiler.

xmlvalidate Validates XML files and reports any errors.

In addition to these tasks, specific Ant tasks for .NET are shown in Table 1-5.

Table 1-5. .NET Ant tasks

Task name Description

Csc Invokes the C# compiler.

vbc Invokes the VB.NET compiler.

jsharpc Invokes the J# compiler.

ildasm Disassembles from .NET intermediate language back to source code.

ilasm Assembles code into .NET intermediate language.

WsdlToDotNet Given a WSDL file, this task will generate C# or VB code.

ImportTypelib COM library importer.

Scripdef Defines Ant tasks from scripts.

serverdeploy Runs a hot-deployment tool for a J2EE server.

setproxy Configures web proxy properties.

sound
After a build, plays a sound file letting you know whether the build succeeded or
failed.

splash Displays a splash screen.

sshexec Executes a command on a remote server using SSH.

stylebook Uses Apache Stylebook to generate book documentation.

symlink Makes, deletes, or edits Unix symbolic links.

telnet Controls a Telnet session from ANT.

test Executes a JUnit test.

translate Translates keywords in files using values in resource bundles.

vajload Loads files for Visual Age for Java source control.

vajexport Exports packages for Visual Age for Java source control.

vajimport Imports files for Visual age for Java source control.

wljspc Compiles JSP pages using Weblogic's JSP compiler.

xmlvalidate Validates XML files and reports any errors.

In addition to these tasks, specific Ant tasks for .NET are shown in Table 1-5.

Table 1-5. .NET Ant tasks

Task name Description

Csc Invokes the C# compiler.

vbc Invokes the VB.NET compiler.

jsharpc Invokes the J# compiler.

ildasm Disassembles from .NET intermediate language back to source code.

ilasm Assembles code into .NET intermediate language.

WsdlToDotNet Given a WSDL file, this task will generate C# or VB code.

ImportTypelib COM library importer.

Specific tasks for the Clearcase version control system are listed in Table 1-6.

Table 1-6. Clearcase Ant tasks

Task name Description

CCCheckin
Checks in files.

CCCheckout
Checks out files.

CCUnCheckout
Un-checks out files.

CCUpdate
Executes cleartool update.

CCMklbType
Executes cleartool mklbtyle.

CCMklabel
Executes cleartool mklabel.

CCRmtype
Executes cleartool rmtype.

CCLock
Executes cleartool lock.

CCUnluck
Executes cleartool unlock.

CCMkbl
Executes cleartool mkbl.

CCMkattr
Executes cleartool mkattr.

CCMkdir
Executes cleartool mkdir.

CCMkelem
Executes cleartool mkelem.

Many EJB specific tasks are shown in Table 1-7.

Table 1-7. EJB-related Ant tasks

Task name Description

blgenclient
Generates a client JAR for Borland application servers.

ddcreator Creates EJB deployment descriptors, given a group of WebLogic deployment
descriptors.

ejbc
Invokes WebLogic's ejbc tool.

Iplanet-ejbc
Invokes iPlanet's ejbc tool.

ejbjar
Invokes the ejbjar tool (used for many application servers).

wlrun
Starts a WebLogic server.

Wlstop
Stops a WebLogic server.

The Perforce source control tasks are shown in Table 1-8.

Table 1-8. Perforce Ant tasks

Task
name

Description

P4Sync Synchronizes files with the Perforce server.

P4Change Gets a list of current changes from the Perforce server.

P4Edit Checks out files for editing.

P4Submit Checks in files.

P4Have Lists all client-viewable files.

P4Label Makes a label based on the files in the current workspace.

P4Labelsync Syncs with a label.

P4Counter
Gets or sets a counter value. (Counters can be used to keep track of build events,
such as the number of builds that have been executed.)

P4Reopen Reopens a checked-out file.

P4Revert Reverts file(s) that have been changed to their original content.

P4Add Adds file(s) to the list to be submitted to the server.

Task
name

Description

P4Delete Deletes file(s).

P4Integrate Integrates file(s). You must specify the source file(s) and the target file(s).

P4resolve
Resolves file(s) in case others have made changes to the file(s) when you were
working on it.

P4Fstat Views differences with the server.

Many tasks for Microsoft Visual Source Safe are detailed in Table 1-9.

Table 1-9. Visual Source Safe tasks

Task name Description

vssget Gets a copy of a particular VSS file.

Vsslabel Makes a new label for the current version of a file.

Vsshistory Displays a file's history in the project.

Vsscheckin Checks in files to VSS.

Vsscheckout Checks out files from VSS.

Vssadd Adds a new file to VSS.

Vsscp Changes the project considered the current project by VSS.

Vsscreate Makes a new project.

Continuing with source control repository tasks, Table 1-10 shows tasks for working with Starteam
source control.

Table 1-10. Starteam Ant tasks

Task name Description

STCheckout Checks out files from StarTeam projects

STCheckin Checks in files to StarTeam projects

STLabel Creates a new label for this project

STList Displays a list of files in the project

P4Delete Deletes file(s).

P4Integrate Integrates file(s). You must specify the source file(s) and the target file(s).

P4resolve
Resolves file(s) in case others have made changes to the file(s) when you were
working on it.

P4Fstat Views differences with the server.

Many tasks for Microsoft Visual Source Safe are detailed in Table 1-9.

Table 1-9. Visual Source Safe tasks

Task name Description

vssget Gets a copy of a particular VSS file.

Vsslabel Makes a new label for the current version of a file.

Vsshistory Displays a file's history in the project.

Vsscheckin Checks in files to VSS.

Vsscheckout Checks out files from VSS.

Vssadd Adds a new file to VSS.

Vsscp Changes the project considered the current project by VSS.

Vsscreate Makes a new project.

Continuing with source control repository tasks, Table 1-10 shows tasks for working with Starteam
source control.

Table 1-10. Starteam Ant tasks

Task name Description

STCheckout Checks out files from StarTeam projects

STCheckin Checks in files to StarTeam projects

STLabel Creates a new label for this project

STList Displays a list of files in the project

Table 1-11 shows tasks for the Continuous source control server.

Table 1-11. Continuous/Synergy Ant tasks

Task name Description

CCMCheckin Checks in files to the source manager

CCMCheckout Checks out files from the source manager

CCMCheckinTask Checks in all files in the current task

CCMReconfigure Reconfigures an existing command

CCMCreateTask Creates a task

Finally, Table 1-12 lists optional tasks for supporting SourceGear's SourceOffSite Visual Source Safe
plug-in.

Table 1-12. SourceOffSite Ant tasks

Task name Description

Sosget Gets a read-only copy of a file

Soslabel Creates a label for the current project

Soscheckin Checks in files to the source manager

Soscheckout Checks out files from the source manager

In addition to the built-in and the optional tasks, Ant supports third-party and custom tasks (yes,
that's a large number of tasks you can use!). As you'd expect, third-party tasks add functionality to
Ant; as an example, take a look at the third-party tasks available for free at http://ant-
contrib.sf.net/, which includes a set of tasks for use with Ant and C++. Creating Ant tasks is easier
than you might think, and you're going to create your own in Chapter 11.

1.4.4. Dependent Tasks

Typically, you create an Ant build file with a default target named something like main; this target
then acts as a master target, handling program flow for the entire build process. It tells Ant to run
other targets and specifies their ordering. This is accomplished through the target element's depends
attribute.

For example, you might want to add a target named compile to compile your code and add another

http://ant-

target called compress to put the compiled code into a JAR file:

<?xml version="1.0" ?>
<project default="main">

 <target name="main">
 <echo>
 Building the .jar file.
 </echo>
 </target>

 <target name="compile">
 <javac srcdir="."/>
 </target>

 <target name="compress">
 <jar jarfile="Project.jar" basedir="." includes="*.class" />
 </target>

</project>

Ensure that the compile and compress targets runin that orderby assigning the string "compile,
compress" to the default target's depends attribute:

<?xml version="1.0" ?>
<project default="main">

 <target name="main" depends="compile, compress">
 <echo>
 Building the .jar file.
 </echo>
 </target>

 <target name="compile">
 <javac srcdir="."/>
 </target>

 <target name="compress">
 <jar jarfile="Project.jar" basedir="." includes="*.class" />
 </target>

</project>

When you run Ant, it'll look for build.xml and execute the default target, which the project element
indicates is main. The main target's depends attribute tells Ant to run the compile target and then run
the compress target before running the body of the main target.

Though you use this attribute to indicate the order targets should run in,
targets can still fail, which means you're not guaranteed that they will all
behave as expected. Generally, a failed target will stop the Ant build process,
but that's not always the case.

Bear in mind that dependencies can be nested inadvertently. For example, take a look at this build
file fragment:

<target name="find"/>
<target name="inspect" depends="find"/>
<target name="test" depends="inspect"/>
<target name="purchase" depends="test, inspect, find"/>

If target purchase was the default target, you might think that targets test, inspect, find, and
purchase were executed in that order. However, target test depends on target inspect, which
depends on find, and so on. An Ant target gets executed once even when multiple targets depend on
it. Because the dependencies of a task are executed before the task, the actual order of execution
here is find, inspect, test, and then purchase.

1.4.5. Properties

In addition to targets and tasks, the third pillar of an Ant build file is its properties. Properties are
name-value pairs that act much like constants in Java code. You set the value of a property with the
property element and can refer to that property by name throughout your build file. You can insert
the value of a property in task attributes by dereferencing the property name with ${property-name}.

For example, if you had a property named bin corresponding to the output directory of your build
and wanted to refer to that directory, you could refer to it as ${bin} when you assign it to task
attributes in your build file. If you wanted to refer to the archives subdirectory in that output
directory, you could refer to it as ${bin}/archives. The advantages to this approach should be
obvious to anyone who's had to change a directory name in 300 different places throughout an
application.

A forward slash will work as a directory delimiter even on Windows systems;
Ant is smart enough to know what you mean.

1.4.5.1 Property attributes

Properties are used the same way as constants are in Java: they let you collect definitions in one
centralized place rather than having them dispersed throughout a build file. When you want to
change property values, you can make changes in one location and know that they will propagate
throughout the build file. You can see the attributes of the property element in Table 1-13.

Table 1-13. The property element's attributes

Attribute Description Required

classpath The classpath to use when looking for a resource. No

classpathref

The classpath to use when looking for a resource, which
can then be given as a reference to a path element later in
the build file.

No

environment

The prefix to use when retrieving environment variables.
For example, if you specify environment="env", you will be
able to access operating-system-specific environment
variables as property names like ${env.PATH}.

A resource, file, url,
or environment attribute
is required when not
using the name attribute.

file The name of a property file to load values from.

A resource, file, url,
or environment attribute
is required when not
using the name attribute.

location

Sets the property to the absolute filename of the given file.
If an absolute path is supplied, it's left unchanged (with /
and \ characters converted for the current platforms).
Otherwise, the supplied filename is taken as a path relative
to the project's base directory and then expanded.

A value, location, or
refid element is
required when using the
name attribute.

name The name of the property to set. No

prefix
The prefix to add to properties loaded from a file or a
resource. A . is appended to the prefix if none is specified.

No

refid A reference to a (previously) defined object.

A value, location, or
refid element is
required when using the
name attribute.

resource
The resource name of the property file, used for searching
the classpath.

A resource, file, url,
or environment attribute
is required when not
using the name attribute.

url The URL from which to read properties.

A resource, file, url,
or environment attribute
is required when not
using the name attribute.

value The value of this property.

A value, location, or
refid element is
required when using the
name attribute.

As an example, you can store a message that displays "Building the .jar file." in a property named
message:

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 .
 .
 .
</project>

You declare properties outside your targets. As of Ant 1.6, all tasks can be
declared outside of targets (earlier versions only allowed property, typedef and
taskdef to be used outside of a target element). When you define tasks
external to a specific target, those tasks are evaluated before any targets are
executed.

You can echo the message to the console like this:

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 .
 .
 .
 <target name="main" depends="compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

</project>

Properties are frequently used to hold pathnames, and the property element's location attribute is
useful in this context. Suppose you're storing your source code in a subdirectory of the current
directory named source and want to deploy the .jar file created by this build file to a directory named
bin. You can create properties corresponding to these directories:

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}

 </echo>
 </target>
 .
 .
 .
</project>

The default target in this build file, main, depends on an init target where the mkdir task (detailed in
Chapter 3) is used to create the output directory:

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>
 .
 .
 .
</project>

Now you can compile the Java source code from the ${src} directory, placing the created .class file in
the ${output} directory, and create the Project.jar file in the ${output} directory, all using properties:

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

<target name="compile"> <javac srcdir="${src}" destdir="${output}" /> </target> <target
name="compress"> <jar destfile="${output}/Project.jar" basedir="${output}"

includes="*.class" /> </target> </project>

The relative paths used will be expanded in a platform-specific way, something like this in Unix:

-bash-2.05b$ ant -f properties.xml
Buildfile: properties.xml

init:
 [mkdir] Created dir: /home/steve/bin

compile:
 [javac] Compiling 1 source file to /home/steve/bin

compress:
 [jar] Building jar: /home/steve/bin/Project.jar

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 2 seconds

Here's the Windows version:

C:\ant\ch01>ant -f properties.xml
Buildfile: properties.xml

init:
 [mkdir] Created dir: C:\ant\ch01\bin

compile:
 [javac] Compiling 1 source file to C:\ant\ch01\bin

compress:
 [jar] Building jar: C:\ant\ch01\bin\Project.jar

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 4 seconds

1.4.5.2 Built-in properties

Ant gives you access to the same system properties you'd have access to in Java code, as if they
were Ant properties. For example, if you want to determine the name of the operating system, you
can refer to ${os.name} in your build file.

For a list of system properties, see the Java documentation of the
System.getProperties() method.

Ant has some additional Ant-specific properties:

ant.file

Contains the absolute path of the build file

ant.java.version

Contains the JVM version Ant is using (can hold only 1.1, 1.2, 1.3, 1.4 and [as of Ant 1.6] 1.5)

ant.project.name

Holds the name of the project that is executing (set with the name attribute of project)

ant.version

Contains the version of Ant running

basedir

Holds the absolute path of the project's base directory (set with the basedir attribute of
project)

1.5. Running Ant

Running Ant from the command-line is simple:

%ant [options] [target [target2 [target3] ...]]

1.5.1. Command-Line Options

options are one or more of the command-line options that begin with a hyphen, listed in Table 1-14;
target, target2, etc., are the specific targets you want to run in the event you don't want to defer to

the project element's default target.

Entering ant -help on the command line generates a list of command-line

options.

Table 1-14. Ant command-line options

Name Description

-buildfile file, or -f file, or
-file file

Runs the build file specified by file.

-Dproperty=value Sets a property called property with a value of value, and passes

it to Ant.

-debug, -d
Prints debugging information.

-diagnostics
Prints diagnostics about Ant.

-emacs, -e
Creates plain, emacs-friendly logging information.

-find file, or -s file
Searches for the build file (named file) along the directory

structure towards the root.

-help, -h
Prints help information.

Name Description

-inputhandler class
Specifies the class that will handle user text input.

-keep-going, -k Continues to execute targets even if prior targets fail. Only targets
that do not depend on failed targets are attempted.

-l file, or -l file Uses file to log to.

-lib path Specifies the classpath on which to search for JARs and library
classes.

-listener classname
Adds an instance of classname as a listener, which is alerted when

build events occur (e.g., starting and stopping of the build
process).

-logger classname
Specifies the class to handle logging of Ant's output.

-noinput
Turns off interactive input.

-projecthelp, -p
Prints the project's help information (if there is any).

-propertyfile file
Loads properties from the specified file.

-quiet, -q
Reduces Ant messages to the minimum possible.

-verbose, -v
Specifies verbose output.

-version
Prints the version of Ant being used.

-inputhandler class
Specifies the class that will handle user text input.

-keep-going, -k Continues to execute targets even if prior targets fail. Only targets
that do not depend on failed targets are attempted.

-l file, or -l file Uses file to log to.

-lib path Specifies the classpath on which to search for JARs and library
classes.

-listener classname
Adds an instance of classname as a listener, which is alerted when

build events occur (e.g., starting and stopping of the build
process).

-logger classname
Specifies the class to handle logging of Ant's output.

-noinput
Turns off interactive input.

-projecthelp, -p
Prints the project's help information (if there is any).

-propertyfile file
Loads properties from the specified file.

-quiet, -q
Reduces Ant messages to the minimum possible.

-verbose, -v
Specifies verbose output.

-version
Prints the version of Ant being used.

Ant Is Just Java

Ultimately, Ant is just Java code, and can be run with java like any other Java class:

java -Dant.home=/home/steven/ant org.apache.tools.ant.Main
 [options] [target [target2 [target3] ...]]

You can use the Ant Launcher, which first appeared in Ant 1.6:

java -Dant.home=/home/steven/ant org.apache.tools.ant.launch.Launcher
 [options] [target [target2 [target3] ...]]

1.5.2. Executing Ant

If you want to use a build file named build.xml and want to run the default target, enter ant in the
directory containing the build file:

%ant

For example, if you ran the build file from Example 1-2, that command gives this result:

-bash-2.05b$ ant
Buildfile: build.xml

compile:
 [javac] Compiling 1 source file

compress:
 [jar] Building jar: /home/httpd/vhosts/builder/Project.jar

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 2 seconds

Each build file requires a default target, but you can specify the target(s) you want Ant to run via the
command line. For example, add a target named clean to the build file (using Example 1-2 as a
starting point):

<project default="main">

 <target name="main" depends="compile, compress">
 <echo>
 Building the .jar file.
 </echo>
 </target>

 <target name="compile">
 <javac srcdir="."/>
 </target>

 <target name="compress">
 <jar jarfile="Project.jar" basedir="." includes="*.class" />
 </target>

 <target name="clean">
 <delete file="*.class"/>
 <delete file="*.jar"/>
 </target>
</project>

You can then specify the clean target from the command line:

%ant clean

If you want to run multiple targets, you can list them (in the order they should be run):

%ant clean compile compress

If you don't want to allow a target to be run from the command line, you can
start the target name with a hyphen (e.g., -clean). This will make Ant think the
target is a command-line option, and since -clean isn't a valid command-line
option, Ant will refuse to run that target directly.

By default, the build file that Ant looks for is build.xml, but you can name the file as you want.

The downloadable example code for Ant has multiple build filenames to make
the separation of examples clearer.

For example, if you have a build file named project.xml that you want to use, you can specify that
Ant should use that build file with -f (or -file or -buildfile):

%ant -f project.xml

If you use the -find file option, Ant will search for a build file first in the

current directory, then in the parent directory, and so on, until a build file with
the supplied name is found or the root of the filesystem is reached.

1.5.3. Customizable Environment Variables

Ant scripts, which start Ant, use some customizable environment variables:

JAVACMD

Holds the full path of the Java executable. Use this to launch a different JVM than
JAVA_HOME/bin/java(.exe).

ANT_OPTS

Command-line arguments that should be passed to the JVM unchanged.

ANT_ARGS

Ant command-line arguments. These may be used, for example, to point to a different logger,
a new listener, or to include the -find flag in all invocations of Ant.

The Ant wrapper script for Unix will read the file ~/.antrc before it starts
running. On Windows, the Ant wrapper batchfile ant.bat invokes
%HOME%\antrc_pre.bat at the start of the Ant process and %HOME%\antrc_post.bat
at the end of that process. You can use these files to set or unset environment
variables that should only be used during the execution of Ant.

1.5.4. Failed Builds

Every Ant developer has builds that fail for one reason or another. Ant does its best to pinpoint the
problem. For example, say you misspelled the name of the javac task:

<?xml version="1.0" ?>
<project default="main">
 <target name="main" depends="compile, compress">
 <echo>
 Building the .jar file.
 </echo>
 </target>

 <target name="compile">
 <jjavac srcdir="."/>
 </target>
 .
 .
 .

Ant will diagnose this problem when it runs and give you some feedback:

%ant
build.xml:10: Could not create task or type of type: jjavac.

Ant could not find the task or a class this task relies upon.

This is common and has a number of causes; the usual
solutions are to read the manual pages then download and
install needed JAR files, or fix the build file:
 - You have misspelt 'jjavac'.
 Fix: check your spelling.
 - The task needs an external JAR file to execute
 and this is not found at the right place in the classpath.
 Fix: check the documentation for dependencies.
 Fix: declare the task.
 - The task is an Ant optional task and optional.jar is absent
 Fix: look for optional.jar in ANT_HOME/lib, download if needed
 - The task was not built into optional.jar as dependent
 libraries were not found at build time.
 Fix: look in the JAR to verify, then rebuild with the needed
 libraries, or download a release version from apache.org
 - The build file was written for a later version of Ant
 Fix: upgrade to at least the latest release version of Ant
 - The task is not an Ant core or optional task
 and needs to be declared using <taskdef>.

Remember that for JAR files to be visible to Ant tasks implemented
in ANT_HOME/lib, the files must be in the same directory or on the
classpath

Please neither file bug reports on this problem, nor email the
Ant mailing lists, until all of these causes have been explored,
as this is not an Ant bug.

Total time: 0 seconds

Sometimes errors won't stop a build, and you may want to change that behavior so the build will
terminate when there's been any kind of problem. Most tasks have a failonerror attribute, which is
set to false by default. Setting this attribute's value to true makes the build fail if the task encounters
an error, allowing you to stop a build if a specific task generates errors .

Keep in mind that this won't affect your build in the case where you've previously executed the build
and your output files are up to date. By default, Ant tasks check to see if the output files they're
supposed to create are current (i.e., the output file is more recent than the files used to create it); if
they are, Ant tasks won't recreate them because Ant considers the target executed. For example,
here's what you'd see when you run the example build file a second timeAnt displays the names of
the various targets but, because they're up to date, it doesn't execute them:

%ant
Buildfile: build.xml

compile:

compress:

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 3 seconds

Ant doesn't come with a built-in debugger, which can make it tough to
troubleshoot build files. However, one of the items under development in the
Java Eclipse IDE is an Ant build file debugger. Chapter 11 has more on
integrating Ant into Eclipse.

1.5.5. Verbose Output

You can control the amount of output Ant gives you when it runs with the -verbose, -quiet, and -
debug command-line options. If you ask Ant to be quiet, it won't display anything except for build
failure or success, total build time, and any text you specifically output via the echo task. Here's an
example of a quiet build:

%ant -quiet
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 2 seconds

On the other side of the coin, the -verbose option gives you a lot more information than normal,
including whether Ant is skipping up-to-date output files, what OS or JDK you're using, and a lot
more. Here's what you might see from a verbose build on Unix:

-bash-2.05b$ ant -verbose

Apache Ant version 1.6.1 compiled on February 12 2004
Buildfile: build.xml
Detected Java version: 1.4 in: /opt/j2sdk1.4.2_02/jre
Detected OS: Linux
parsing buildfile /home/build.xml
Project base dir set to: /home
Build sequence for target `main' is [compile, compress, main]
Complete build sequence is [compile, compress, main, clean,]

compile:
 [javac] Project.class skipped - don't know how to handle it
 [javac] Project.jar skipped - don't know how to handle it
 [javac] Project.java omitted as Project.class is up to date.
 [javac] build.xml skipped - don't know how to handle it

compress:
 [jar] Project.class omitted as Project.class is up to date.

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 1 second

This output shows that Ant is skipping up-to-date output targets. Here's similar output in Windows:

%ant -verbose
Apache Ant version 1.6.1 compiled on February 12 2004
Buildfile: build.xml
Detected Java version: 1.4 in: C:\jdk1.4
Detected OS: Windows 2000
parsing buildfile C:\ant\ch01\build.xml with URI = file:///C:/ant/ch01/build.xml

Project base dir set to: C:\ant\ch01
Build sequence for target `main' is [compile, compress, main]
Complete build sequence is [compile, compress, main, clean,]

compile:
 [javac] Project.class skipped - don't know how to handle it
 [javac] Project.jar skipped - don't know how to handle it
 [javac] Project.java omitted as Project.class is up to date.
 [javac] build.xml skipped - don't know how to handle it

compress:
 [jar] Project.class omitted as Project.class is up to date.

main:
 [echo]
 [echo] Building the .jar file.

 [echo]

BUILD SUCCESSFUL
Total time: 2 seconds

The -debug options prints out even more informationoften pages of itwhich isn't reproduced here.
Included in a debugging build is information about classes as they're loaded, classes that Ant looked
for but couldn't find, the locations where Ant is picking up library files, and almost everything else
you could think of.

Another useful command-line option for displaying information is the -projecthelp option, which
prints out a list of the build file's targets. Targets that include a description attribute are listed as
Main targets; those without a description are listed as "Subtargets", and then the "Default" target is
listed.

Here's the example build file, with the addition of a description attribute for each target element:

<?xml version="1.0" ?>
<project default="main">
 <target name="main" depends="compile, compress" description="Main target">
 <echo>
 Building the .jar file.
 </echo>
 </target>

 <target name="compile" description="Compilation target">
 <javac srcdir="."/>
 </target>

 <target name="compress" description="Compression target">
 <jar jarfile="Project.jar" basedir="." includes="*.class" />
 </target>
</project>

Here's what you'd see when running Ant with the -projecthelp option:

%ant -projecthelp
Buildfile: build.xml

Main targets:

 compile Compilation target
 compress Compression target
 main Main target
Default target: main

1.5.6. Logging and Libraries

You can log the output of running Ant using the -logfile option. For example, here's how you'd sent
output to a file named file.log:

%ant -logfile file.log

You can log part of a build file's results with the record task; for example, if you were using the javac
task to compile code and wanted to log the output of this task to a file named log.txt, you could start
and stop that logging this way:

<record name="log.txt" action="start"/>
 <javac ... />
<record name="log.txt" action="stop"/>

Another handy option is the -lib option, which adds additional directories to be searched for .jar or
.class files. Here's an example, which adds /home/ant/morejars to the library search path:

%ant -lib /home/ant/morejars

The -lib option is useful when you're working on a system where you don't have access to the Ant
lib directory as is often the case when dealing with Internet Service Providers (ISPs). Using this
option, you can make sure Ant has access to JAR files needed for Ant's optional tasks without having
to load them into directories you don't have permission to access.

Before Ant 1.6, all JARS in the ANT_HOME/lib would be added to the CLASSPATH
used to run Ant. Since Ant 1.6, two directories are scannedANT_HOME/lib and
.ant/libin the Java user home directory. You can place additional library files in
this directory if you don't have access to ANT_HOME/lib. The location of the Java
user home directory depends on your JVM settings. In Unix, it's usually your
home directory (so you'd store additional Ant libraries in, for example,
/home/username/.ant/lib). In Windows, it's usually C:\Documents and
Settings\username (so you'd store additional Ant libraries in C:\Documents and
Settings\username\.ant\lib). To determine where your Java user home is, use

this element in a build file:

<echo>${user.home}</echo>

Chapter 2. Using Properties and Types
In Chapter 1, you learned about properties and tasks in Ant. However, long tables with short
descriptions do not an Ant expert make. In this chapter, you begin to get the details on using Ant's
extensive feature set, which relies on two conerstones: properties and types. You received an
introduction to them in the previous chapter, but here's where to get a real working knowledge.

In the examples from last chapter, building was a linear process: you compiled some files, you
JARred them up, and then you were done. In the real world, things are almost never so
straightforward. You need to be able to check for specific files and perform different tasks depending
on the existence of those files. You need to respond to error conditions, and let the user know what
has happened when errors do occur. You often need to deal with groups of files, copy them over en
masse, and more. These kinds of tasks involve using properties and types.

2.1. Using Properties to Control Tasks

Ant provides extensive support for controlling the build process; though Ant is not a programming
language, it has a number of control structures, and those control structures rely on properties. As if
and TRy/catch allow you to handle several logic paths in Java, Ant's control tasks allow you the same
flexibility within the context of a build process.

2.1.1. Setting Conditions

The foundation to any type of control processing is some form of the if statement. This typically
involves two steps:

Check or determine if a certain condition is true.1.

If the condition is true, perform one action; if it is false, perform another.2.

In Java, this all happens in a single line of code; in Ant, the condition must be set in one step, and
the evaluation of that condition occurs in another step. First, you need to set a condition based on
some criteria; not surprisingly, condition is the name of the task Ant provides. condition allows you
to specify one or more true/false tests (sometimes called criteria). If all the criteria evaluate to true,
a property, supplied to the condition task, is set to TRue; if one or more of the criteria evaluate to
false, the property is assigned a false value. You can check that property's value later in the build
file.

In this example, the build file checks to see if two files exist using the available task (covered later
in the chapter) and sets the property all.set (to true) if the files are found:

 <condition property="all.set">
 <and>
 <available file="file1.java"/>
 <available file="file2.java"/>
 </and>
 </condition>

Here's another example where the build file checks to see if it's running on Mac OS but not Mac OS X,
which Ant treats as part of the Unix family:

 <condition property="MacOs.Not.MacOsX">
 <and>
 <os family="mac"/>
 <not>
 <os family="unix"/>
 </not>

 </and>
 </condition>

Here's how you can set a property; in this case, called do.abort--if the do.delete property value
equals "yes":

<condition property="do.abort">
 <equals arg1="yes" arg2="${do.delete}"/>
</condition>

You can see the attributes of the condition task in Table 2-1.

Table 2-1. The condition task's attributes

Attribute Description Required Default

property The property you want to set. Yes

value The value you want to set the property to. No true

This task depends on nested elements for evaluation; you can see the possibilities in Table 2-2.

Table 2-2. Elements that can be nested within the condition task

Nested
element

Functionality

and True if all of its contained conditions are true.

available Identical to the available task, which checks for the availabilty of files.

checksum

Identical to the Ant checksum task, which generates a checksum for files. If you
compare two files that you think are the same, but their checksums are different,
the files are different as well.

contains

Checks if one string (string) contains another (substring). Optionally, you can
make the test case sensitive with the casesensitive attribute. The default is to
make comparisons case insensitive.

equals
Checks whether two strings are identical. The strings are given using the (required)
attributes arg1 and arg2. The optional attributes are casesensitive and TRim.

filesmatch
Checks to see whether two files have identical contents. The required attributes are
file1 and file2.

Nested
element

Functionality

http

Checks for a valid response from a web server at the specified URL. The required
attribute is url, and the optional attribute is errorsBeginAt (the lowest HTTP
response code that is an error).

isfalse Behaves the same as istrue but returns the logically opposite value.

isreference

Checks if a particular reference has been defined. The required attribute is refid;
the optional attribute is type, which holds the name of the datatype or task you
expect this reference to be.

isset Checks if a given property has been set. The required attribute is property.

istrue
Checks if a string equals any of the strings Ant considers true, that is, true, yes, or
on. There is one required attribute: value (holds the value to test).

not Logically negates the results of a condition.

or True if at least one of the contained conditions is true.

os

True if the operating system matches the attributes you specify. The attributes (all
optional) of this element are family ("windows", "dos", "unix", "mac", win9x,
sunOS, etc.), name, arch (meaning architecture), and version.

socket
Checks for the existence of a TCP/IP listener. The required attributes are server (an
IP address or DNS name) and port.

uptodate

Identical to the uptodate task. True if the target file is at least as up-to-date as its
source code. The required attributes are property (the property to set), srcfile
(source file to check), and targetfile (the file you want to check for up-to-
dateness).

Here's an example that sets the property omit.debug.info to true if the property build.type contains
either of the words "release" or "gold" and if the property explicitly.include.debug.info is false:

<condition property="omit.debug.info">
 <and>
 <or>
 <contains string="${build.type}" substring="release"/>
 <contains string="${build.type}" substring="gold"/>
 </or>
 <isfalse value="${explicitly.include.debug.info}"/>
 </and>
</condition>

Here's another example, which sets the property use.property.file true if the files build.properties
and version.properties are available, or if the file core.jar is not current:

<condition property="use.property.file">
 <or>
 <and>

http

Checks for a valid response from a web server at the specified URL. The required
attribute is url, and the optional attribute is errorsBeginAt (the lowest HTTP
response code that is an error).

isfalse Behaves the same as istrue but returns the logically opposite value.

isreference

Checks if a particular reference has been defined. The required attribute is refid;
the optional attribute is type, which holds the name of the datatype or task you
expect this reference to be.

isset Checks if a given property has been set. The required attribute is property.

istrue
Checks if a string equals any of the strings Ant considers true, that is, true, yes, or
on. There is one required attribute: value (holds the value to test).

not Logically negates the results of a condition.

or True if at least one of the contained conditions is true.

os

True if the operating system matches the attributes you specify. The attributes (all
optional) of this element are family ("windows", "dos", "unix", "mac", win9x,
sunOS, etc.), name, arch (meaning architecture), and version.

socket
Checks for the existence of a TCP/IP listener. The required attributes are server (an
IP address or DNS name) and port.

uptodate

Identical to the uptodate task. True if the target file is at least as up-to-date as its
source code. The required attributes are property (the property to set), srcfile
(source file to check), and targetfile (the file you want to check for up-to-
dateness).

Here's an example that sets the property omit.debug.info to true if the property build.type contains
either of the words "release" or "gold" and if the property explicitly.include.debug.info is false:

<condition property="omit.debug.info">
 <and>
 <or>
 <contains string="${build.type}" substring="release"/>
 <contains string="${build.type}" substring="gold"/>
 </or>
 <isfalse value="${explicitly.include.debug.info}"/>
 </and>
</condition>

Here's another example, which sets the property use.property.file true if the files build.properties
and version.properties are available, or if the file core.jar is not current:

<condition property="use.property.file">
 <or>
 <and>

 <available file="build.properties"/>
 <available file="version.properties"/>
 </and>
 <not>
 <uptodate srcfile="core.java" targetfile="core.jar"/>
 </not>
 </or>
</condition>

2.1.2. Performing Conditional Actions

Actions can be conditionally executed based on two factors: if a certain condition has been met (using
the if attribute) and if a certain condition has not been met (using the unless attribute). You can
determine if a task runs using if and unless to check the values of properties. Three elements
support if and unless attributes: target, patternset (which can group file-matching patterns like
"*.java", "*.class", and so on. See "Working with Patterns" in this chapter); fail target is the
simplest, as shown here:

<target name="buildModule" if="code.complied.OK"/>
 .
 .
 .
</target>

The buildModule target is executed only if the code.complied.OK property is true.

Example 2-1 demonstrates the unless attribute. In this case, the build file won't compile the source
files if the file enduser.agreement exists, which sets a property named final.version.

Example 2-1. Using the unless attribute (ch02/if/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />
 <available file="${output}/enduser.agreement" property="final.version"/>

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile" unless="final.version">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}"
 includes="*.class" />
 </target>
</project>

2.1.3. Stopping Builds

You can make a build fail at runtime using property values and the fail task.

The fail task has been made more useful since Ant 1.5 with the addition of
support for the if and unless attributes.

For example, this build will fail with a message unless the specified classes are found in the classpath:

<target name=
 <condition property="classes.available">
 <and>
 <available classname="org.steven.SAXparser" />
 <available classname="org.steven.DOMparser" />
 </and>
 </condition>
 <fail message="Could not find all classes." unless="classes.available" />
 .
 .
 .
</target>

You can see the available attributes of fail in Table 2-3.

Table 2-3. The fail task's attributes

Attribute Description Required Default

message A message indicating why the build exited No

if
Fails if the property of the given name is true in the current
project

No

Attribute Description Required Default

unless Fails if a property of the given name is false in the current project No

2.1.4. Property-Setting Tasks

A few tasks allow you to indirectly set properties; that is, you specify a task (like available) and
assign the result of that task's processing to a property. These function are like the condition task,
though the syntax is different.

2.1.4.1 Availability of resources

The available task sets a property to true if a resource is available at runtime. The resource can be a
file, a directory, a class in the classpath, or a JVM system resource. If the resource is available, the
property value is set to true; otherwise, the property is not set.

For example, the following build fragment will set the property Math.present to true if org.steve.Math
is in Ant's classpath:

<available classname="org.steve.Math" property="Math.present"/>

Here's another example, which sets file.present to true if the file build.properties exists in the
current directory:

<available file="build.properties" property="file.present"/>

You can see the attributes of this task in Table 2-4. You can set the property value to something
other than the default by using the value attribute.

This task is handy for setting properties that avoid or allow target execution
depending on system parameters or the presence of various files. For example,
you may want to load in properties from a property file (see Section 2.2 in this
chapter) rather than use default values if that property file exists.

Table 2-4. The available task's attributes

Attribute Description Required Default

classname Class to search for.
One of
classname, file,
or resource

unless Fails if a property of the given name is false in the current project No

2.1.4. Property-Setting Tasks

A few tasks allow you to indirectly set properties; that is, you specify a task (like available) and
assign the result of that task's processing to a property. These function are like the condition task,
though the syntax is different.

2.1.4.1 Availability of resources

The available task sets a property to true if a resource is available at runtime. The resource can be a
file, a directory, a class in the classpath, or a JVM system resource. If the resource is available, the
property value is set to true; otherwise, the property is not set.

For example, the following build fragment will set the property Math.present to true if org.steve.Math
is in Ant's classpath:

<available classname="org.steve.Math" property="Math.present"/>

Here's another example, which sets file.present to true if the file build.properties exists in the
current directory:

<available file="build.properties" property="file.present"/>

You can see the attributes of this task in Table 2-4. You can set the property value to something
other than the default by using the value attribute.

This task is handy for setting properties that avoid or allow target execution
depending on system parameters or the presence of various files. For example,
you may want to load in properties from a property file (see Section 2.2 in this
chapter) rather than use default values if that property file exists.

Table 2-4. The available task's attributes

Attribute Description Required Default

Attribute Description Required Default

classname Class to search for.
One of
classname, file,
or resource

classpath
Classpath to use when searching for classname
or resource.

No

classpathref
A reference to the classpath to use for
searches.

No

file The file to search for.
One of
classname, file,
or resource

filepath The path to use when searching for a file. No

ignoresystemclasses

Set to true to ignore Ant's runtime classes in
searches, using only the specified classpath
instead. Affects the classname attribute.

No false

property
The name of the property to set with the results
of the search.

Yes

resource The resource to look for.
One of
classname, file,
or resource

type
The type of file to look for. Set this to a
directory (type="dir") or a file (type="file").

No

value
Specifies the value you want to set the property
to for a successful match.

No TRue

2.1.4.2 Checking file modification dates

The uptodate task sets a property to true under certain conditions. In this case, the property is set to
true if a target file, or set of target files, is more current than a source file or set of source files. You
can specify the file you want to check with the targetfile attribute and the source file that is used to
create it with the srcfile attribute. If you want to check a set of source files, use nested srcfiles
elements. If the target (or targets) is current, based on the source file or files, the property whose
name you specify will be set to true.

In this example, the property Do.Not.Build will be set to true if the target file, classes.jar, is current
when compared to its source .java files:

<uptodate property="Do.Not.Build" targetfile="classes.jar" >
 <srcfiles dir= "${src}" includes="*.java"/>
</uptodate>

You can use the ** wildcard to stand for the current directory and any subdirectory of that directory,

classname Class to search for.
One of
classname, file,
or resource

classpath
Classpath to use when searching for classname
or resource.

No

classpathref
A reference to the classpath to use for
searches.

No

file The file to search for.
One of
classname, file,
or resource

filepath The path to use when searching for a file. No

ignoresystemclasses

Set to true to ignore Ant's runtime classes in
searches, using only the specified classpath
instead. Affects the classname attribute.

No false

property
The name of the property to set with the results
of the search.

Yes

resource The resource to look for.
One of
classname, file,
or resource

type
The type of file to look for. Set this to a
directory (type="dir") or a file (type="file").

No

value
Specifies the value you want to set the property
to for a successful match.

No TRue

2.1.4.2 Checking file modification dates

The uptodate task sets a property to true under certain conditions. In this case, the property is set to
true if a target file, or set of target files, is more current than a source file or set of source files. You
can specify the file you want to check with the targetfile attribute and the source file that is used to
create it with the srcfile attribute. If you want to check a set of source files, use nested srcfiles
elements. If the target (or targets) is current, based on the source file or files, the property whose
name you specify will be set to true.

In this example, the property Do.Not.Build will be set to true if the target file, classes.jar, is current
when compared to its source .java files:

<uptodate property="Do.Not.Build" targetfile="classes.jar" >
 <srcfiles dir= "${src}" includes="*.java"/>
</uptodate>

You can use the ** wildcard to stand for the current directory and any subdirectory of that directory,

which makes it easy to work with a directory hierarchy in depth. For example, if you want to check
the ${src} directory for .java files, as in the previous example, and any subdirectory of ${src}, you
could set includes to **/*.java. Doing so would match the .java files in the ${src} directory and in
any subdirectories of ${src}. Here's how that might look:

<uptodate property="Do.Not.Build" targetfile="classes.jar" >
 <srcfiles dir= "${src}" includes="**/*.java"/>
</uptodate>

Here's an example checking against a single source file, using the srcfile attribute:

<uptodate property="Do.Not.Build" targetfile="classes.jar" >
 <srcfile includes="/usr/local/bin/classes.java"/>
</uptodate>

You can see attributes for the uptodate task in Table 2-5.

Table 2-5. The uptodate task's attributes

Attribute Description Required Default

property
The name of the property to set with the
results of this task

Yes.

value
The value you want to set the property to
if the target is current

No. true

srcfile
The file you want to check against the
target file(s)

Yes, unless a nested srcfiles
element is present

targetfile
The file you want to check for current
status

Yes, unless a nested mapper
element is present

2.2. Using Property Files

In larger build files, you might be working with dozens of properties, and storing them in property files is
common. Setting tens, or hundreds, of properties all within a build file is a bad habit to get into and
almost impossible to maintain.

Using property files means that you can quickly tailor a build file to different sets of circumstances by
swapping property files. And you can store property values; though we've been using mostly true/false
properties to make conditional processing easier, they can hold all kinds of textual data, such as
copyright notices and legal information, in a central repository everyone can share.

You can specify a property file to use on the command line with the -propertyfile
option.

Take a look at Example 2-2 , which uses a property file to hold a property named message . This example
points to the property file with the property task's file attribute, which can hold the fully qualified
name of the file. You can use the property task's url attribute to point to a property file.

Example 2-2. Using a property file (ch02/properties/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property file="build.properties" />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}" includes="*.class" />

 </target>
</project>

Here are the entire contents of another sample file, build.properties , which uses a name = value format

for each property:

message=Building the .jar file.

Using the build file from Example 2-2 , here's the output from running Ant; note the value of the message
property was picked up correctly from build.properties :

%ant
Buildfile: build.xml

init:
 [mkdir] Created dir: /home/steve/ch02/properties/bin

compile:
 [javac] Compiling 1 source file to /home/steve/ch02/properties/bin

compress:
 [jar] Building jar: /home/steve/ch02/properties/bin/Project.jar

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 3 seconds

Properties in external files are stored as text strings, suitable for properties of the kind you'd set with
the property task's value attribute.

Ant has an optional task, propertyfile , that lets you edit property files. This can
be useful when you need to make unattended modifications to configuration files
when deploying to servers.

2.2.1. Loading Text

You can use the loadfile task to load a text file into a single property. Here's an example that loads the
property message with the text in the file message.txt :

<loadfile property="message"
 srcFile="message.txt"/>

You can see the attributes of this task in Table 2-6 .

Table 2-6. The loadfile task's attributes

Attribute Description Required Default

srcFile Indicates the source file Yes

property Indicates the property you want to store the text in Yes

encoding
Indicates the encoding you want to use when reading text from the
file

No

failonerror Set to true if you want to halt the build if this task failed No TRue

2.2.2. Overriding Properties

Take a look at Example 2-3 , defining a property named message twice ("Building the .jar file.") and then
redefining it ("Compiling and compressing.").

Example 2-3. Overriding a property (ch02/overriding/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />
 <property name="message" value="Compiling and compressing." />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}" includes="*.class" />
 </target>
</project>

This attempts to override the property with a new definition. Once you define a property in a build file, it
behaves much like a constantie., you can't redefine it inside the build file. So, when you run Ant using
this build file, you'll see the first version of the property:

init:
 [mkdir] Created dir: /home/steve/ch02/properties/bin

compile:
 [javac] Compiling 1 source file to /home/steve/ch02/properties/bin

compress:
 [jar] Building jar: /home/steve/ch02/properties/bin/Project.jar

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 3 seconds

When Ant sees a property defined, whether in a build or a property file, it considers that property
defined. You can't change it.

Except in one way. (Of course! Who wants a language without exceptions?)

If you want to override a property in a build file, you can set properties on the command line. That can
be done with the -Dproperty=value option, where property is the name of the property and value is the
value for that property. If you specify a property set in the build file, the value specified on the
command line will override the value specified in the build file.

Here's how to do that:

%ant -Dmessage="Compiling and compressing"
Buildfile: build.xml

init:
 [mkdir] Created dir: /home/steve/ch02/properties/bin

compile:
 [javac] Compiling 1 source file to /home/steve/ch02/properties/bin

compress:
 [jar] Building jar: /home/steve/ch02/properties/bin/Project.jar

main:
 [echo]
 [echo] Compiling and compressing
 [echo]

BUILD SUCCESSFUL
Total time: 3 seconds

The value on the command line overrides both of the values within the build file.

2.2.3. Setting Properties Using Environment Variables

You can access environment variables with the property element's environment attribute, which sets the
prefix to use for environment variables ("env" is customary in Ant files); after you set that prefix, you
can reference environment variables by name using that prefix. Here's an example build file that
displays the value of ANT_HOME :

<project default="main">

 <property file="build.properties" />
 <property name="src" location="source" />
 <property name="output" location="bin" />
 <property environment="env" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${env.ANT_HOME}
 </echo>
 </target>
 .
 .
 .

Here's the result of running Ant using this build file:

%ant
Buildfile: build.xml

init:

compile:

compress:

main:
 [echo]
 [echo] C:\ant\apache-ant-1.6.1
 [echo]

BUILD SUCCESSFUL
Total time: 2 seconds

It's easy to pass environment variables from the command line as well; use -D VAR
=% ENV_VAR % (Windows) or -D VAR =$ ENV_VAR (Unix). You can then access these
variables inside your build file as ${ VAR } .

You've got a good handle on properties at this point, and they're a major building block of Ant build files.
The next step up is to work with the built-in Ant types .

2.3. Handling Data Using Types

Ant supports a number of types, and the rest of this chapter is devoted to understanding them and
how to work with them. These types work much like data types in programming languages, and as
you're going to see, types and properties are intertwined. The data structures you create using types
can be assigned to properties, and the data you use to set up those data structures is often stored in
properties. Now that you've got properties under your belt, it's time to move on to types.

Much of what a build tool like Ant does is work with files in directory structures, so you might expect
that many of the Ant types have to do with handling files and directories. You can see the available
Ant core (that is, built-in) types in Table 2-7.

Table 2-7. Core Ant types

Type Description

Assertions Enables, or disables, Java 1.4 assertions

Description
Holds a description of the project that can be viewed if you use the Ant -
projecthelp command

DirSet Contains a group of directories

FileList Contains a named list of files

FileSet Contains a groups of files

File mappers Maps original filenames to a new set of names

FilterChains Contains a group of ordered FilterReaders

FilterSet Contains a group of filters

PatternSet Contains a group of filename-matching patterns

Path-like
structures

Includes a wide variety of support for specifying file paths

Permissions
Contains the security permissions given to the code as executed in the JVM
where Ant is currently running

PropertySet Groups a set of properties together

Selectors
Groups files in a fileset selected using criteria other than filename, as provided
by the include and exclude tags

XMLCatalog Contains a catalog of public XML resources, such as DTDs or entities

ZipFileSet Contains a special form of a fileset, using ZIP files

Many Ant tasks in the upcoming chapters depend on the types you see in Table 2-7, so it's worth
going through them in detail, especially the ones that handle files. Understanding Ant types is central
to using Ant; if you don't understand paths and FileSets, for example, you'll be severely hampered
by what you can do with Ant.

2.3.1. Path-Like Structures

In Ant, paths are often handled by the path type, called a path-like structure. As you can imagine,
you have to work with paths frequently. For example, a task like javac supports the path attributes
srcdir, classpath, sourcepath, bootclasspath, and exTDirs, all of which are handled as path-like
structures. That means you can set them as attributes:

 <javac destdir="${build}"
 classpath="classes.jar"
 srcdir="${src}"/>
 debug="on">
 </javac>

You can set paths as nested elements, not just as attributes, and you do that with the src,
classpath, sourcepath, bootclasspath and exTDirs elements. For the javac task, the srcdir attribute
becomes the src element. Nested elements are a good idea when you have multiple paths you want
to work with that would otherwise be assigned to the same attribute. Here's an example:

 <javac destdir="${build}"
 classpath="classes.jar"
 debug="on">
 <src path="${src}"/>
 <src path="${src2}"/>
 </javac>

In addition, when you want to specify path-like values, a nested element can be used with internal
pathelement elements, which specify paths, like this:

 <javac destdir="${build}"
 classpath="classes.jar"
 debug="on">
 <src path="${src}"/>
 <src>
 <pathelement path="${src2}"/>
 <pathelement path="${src3}"/>
 </src>
 </javac>

In pathelement, the location attribute specifies a single file or directory relative to the project's base
directory (or an absolute filename), while the path attribute holds colon-separated or semicolon-

separated lists of locations (such as "classes.jar;classes2.jar").

You can separate directories with a / or a \ on any platform.

If you want to build your own paths and reference them later, you can use the path element with
enclosed pathelement elements. For example, to create a new path and give it the ID
build.classpath, you can use this path element and then refer to the new path with the refid
attribute that path-like structure elements support:

<path id="build.classpath">
 <pathelement path="${classes}"/>
 <pathelement path="${classes2}"/>
</path>

<target name="compile">
 <javac destdir="${build}"
 classpath="classes.jar"
 debug="on">
 <src path="${src}"/>
 <classpath refid="build.classpath"/>
 </javac>
</target>

If a task supports path-like structures, you can specify paths using the
attributes of the task, nested elements with names that correspond to those
attributes, or with a reference to a path you've explicitly created with path.

2.3.2. Working with Groups of Files

FileSet s are types that represent groups of files, and they're common in Ant because handling a
group of files is a common thing to do. The fileset element can contain nested include,
includesfile, exclude and excludesfile elements; here's an example using fileset, as well as
include and exclude:

<fileset dir="${source}">
 <include name="**/*.java"/>
 <exclude name="**/*test*"/>
</fileset>

Here's an example that lets you include certain files using the filename selector (more on selectors
later in this chapter):

<fileset dir="${source}">

 <filename name="**/*.java"/>
 <filename name="test.cpp"/>
</fileset>

Many Ant tasks support file sets, such as the copy task (see Chapter 4); here's an example, which
copies all but .java files from the src directory to the dest directory:

<copy todir="../dest">
 <fileset dir="src">
 <exclude name="**/*.java"/>
 </fileset>
</copy>

You can see the attributes of the fileset type in Table 2-8.

FileSets can appear inside tasks that support file sets or at the same level as
target (as when you want to assign a file set to a property).

Table 2-8. The fileset type's attributes

Attribute Description Required Default

casesensitive
Specifies whether the include and exclude patterns
be treated in a case-sensitive way.

No. true

defaultexcludes

Specifies whether default excludes will be used or
not (yes or no). Default excludes are used when
omitted.

No. TRue

dir
Specifies the root of the directory tree used to
create this FileSet..

dir or file must
be specified.

excludes
Specifies a list (comma- or space-separated) of
patterns of files that you want to exclude.

No.

excludesfile
Specifies a file; each line of this file is used as an
exclude pattern.

No.

file A shortcut for creating a single file fileset.

followsymlinks
Specifies whether you want symbolic links to be
followed. Defaults to true.

No.

includes
Specifies a list of patterns for files that you want
included. Comma- or space-separated.

No.

includesfile
Specifies the name of a file; each line in the file will
be used as an include pattern.

No.

As mentioned, the fileset element can contain include, includesfile, exclude and excludesfile
elements, and you can see the allowed attributes of these elements in Table 2-9. The fileset
element can contain patternset and selector elements, which you'll see later in this chapter.

Table 2-9. The include, includesfile, exclude and excludesfile type's
attributes

Attribute Description Required Default

If If the corresponding property is true, use this pattern. No

Name

Pattern to include/exclude (for include and exclude types) or the
name of the file holding the patterns to include/exclude (for
includesfile and excludesfile types).

Yes

unless If the corresponding property is not set, use this pattern. No

Some tasks form implicit file sets, such as the javac task. This means that a task supports all
attributes of fileset (see Table 2-8). You don't have to use a nested fileset element at all if you
don't want to because the built-in attributes of the task give you all the support you need. Each time
we come across such a task, I'll be sure to mention this.

The FileSet dir attribute becomes srcdir in the javac task because a dir
attribute would be ambiguous in the javac task:Is it the source or destination
directory?

2.3.2.1 Default excludes

Some files are excluded by default from file sets since they correspond to system or temporary files
of various kinds. Here are the patterns excluded by default (recall that ** means the current
directory, or any subdirectory of the current directory):

**/*~

**/#*#

**/.#*

**/%*%

**/._*

**/CVS

/CVS/

**/.cvsignore

**/SCCS

/SCCS/

**/vssver.scc

**/.svn

/.svn/

**/.DS_Store

If you do not want these default excludes applied, you can disable them with
defaultexcludes="no" in types such as FileSets. You can modify the list of
default excludes by using the defaultexcludes task.

2.3.3. Working with Groups of Directories

Directory sets (DirSets) are types corresponding to groups of directories. This type is great for
grouping directories together and handling them at one time with various tasks. DirSets can appear
inside various tasks or at the same level as target; like file sets, directory sets can contain nested
include, includesfile, exclude, excludesfile, and patternset elements. Here's an example:

<dirset dir="${build.dir}">
 <include name="apps/**/classes"/>
 <exclude name="apps/**/*Test*"/>
</dirset>

You can find the attributes of this type in Table 2-10.

Table 2-10. The dirset type's attributes

Attribute Description Required Default

casesensitive Specifies whether you want to use case sensitivity. No true

dir Contains the root of the directory tree you want to use. Yes

excludes
A list of the patterns matching directories you want exluded.
Comma- or space-separated list.

No

excludesfile
Specifies a name of a file; each line of the file is interpreted
as an exclude pattern.

No

Attribute Description Required Default

followsymlinks Set to true if you want symbolic links to be followed. No true

includes
A list of the patterns matching directories you want included.
Comma- or space-separated list.

No

includesfile
Specifies a name of a file; each line of the file is interpreted
as an include pattern.

No

2.3.4. Creating Lists of Files

FileLists are types corresponding to explicitly named lists of files. While FileSets act as filters,
returning only those files that exist in the filesystem and match specified patterns, FileLists are useful
for specifying files individually. Here's an example:

<filelist
 id="docfiles"
 dir="${doc}"
 files="type.html,using.html"/>

You can see the filelist attributes in Table 2-11.

FileLists are not supported by as many tasks as FileSets are. You might try
using a FileSet with nested filename elements to add individual files to the
FileSet.

Table 2-11. The filelist type's attributes

Attribute Description Required

dir The base directory you want to use for this file list Yes

files A comma-separated list of filenames to include in the file list Yes

2.3.5. Working with Patterns

A powerful way of working with multiple files is to use patterns, such as the pattern "*.java", which
will match all files with the extension .java, "*.class", which matches files with the extension .class,
and so on. If you want to work with multiple patterns simultaneously in Ant, patterns can be grouped
into sets and later referenced by their id attribute. These sets are defined with the patternset type,
which can appear nested into a FileSet or an implicit FileSet.

Here's an example, where I'm creating a file set, using a pattern set, that will match all of a project's

followsymlinks Set to true if you want symbolic links to be followed. No true

includes
A list of the patterns matching directories you want included.
Comma- or space-separated list.

No

includesfile
Specifies a name of a file; each line of the file is interpreted
as an include pattern.

No

2.3.4. Creating Lists of Files

FileLists are types corresponding to explicitly named lists of files. While FileSets act as filters,
returning only those files that exist in the filesystem and match specified patterns, FileLists are useful
for specifying files individually. Here's an example:

<filelist
 id="docfiles"
 dir="${doc}"
 files="type.html,using.html"/>

You can see the filelist attributes in Table 2-11.

FileLists are not supported by as many tasks as FileSets are. You might try
using a FileSet with nested filename elements to add individual files to the
FileSet.

Table 2-11. The filelist type's attributes

Attribute Description Required

dir The base directory you want to use for this file list Yes

files A comma-separated list of filenames to include in the file list Yes

2.3.5. Working with Patterns

A powerful way of working with multiple files is to use patterns, such as the pattern "*.java", which
will match all files with the extension .java, "*.class", which matches files with the extension .class,
and so on. If you want to work with multiple patterns simultaneously in Ant, patterns can be grouped
into sets and later referenced by their id attribute. These sets are defined with the patternset type,
which can appear nested into a FileSet or an implicit FileSet.

Here's an example, where I'm creating a file set, using a pattern set, that will match all of a project's

documentation files, excluding beta documentation:

<fileset dir="${src}" casesensitive="yes">
 <patternset>
 <include name="docs/**/*.html"/>
 <include name="prof/**/*.html" if="professional"/>
 <exclude name="**/*beta*"/>
 </patternset>
</fileset>

You can see the attributes of this type in Table 2-12.

Table 2-12. The patternset type's attributes

Attribute Description

excludes
A list of the patterns matching files you want exluded. Comma- or space-separated
list.

excludesfile Specifies a name of a file; each line of the file is interpreted as an exclude pattern.

includes
A list of the patterns matching files you want included. Comma- or space-separated
list.

includesfile Specifies a name of a file; each line of the file is interpreted as an include pattern.

PatternSets can include nested include, includesfile, exclude, and excludesfile elements, and you
can nest PatternSets within one another.

2.3.6. Selectors

Besides all the types we've seen, selectors are powerful types and go far beyond selecting files based
on filenames. They let you select files that make up a file set based on many criteria, such as what
text a file contains, the date a file was modified, the size of a file, and more. Selectors have become
one of the coolest things in Ant, and you can see Ant's core selectors, which come built into Ant, in
Table 2-13.

Table 2-13. The core selectors

Selector Means

contains Selects files that contain particular text

containsregexp Selects files whose contents contain text that matches a given regular expression

Selector Means

date
Selects files that were modified before a particular date and time, or that date and
time

depend Selects files that were modified more recently than files you compare them to

depth Selects files based on how far down they appear in a directory tree

different Selects files that are different from a set of target files you specify

filename Selects files using a pattern to match filenames

modified Selects files if an algorithm gives a different result from that stored

present Selects files based on their presence, or absence, at some other location

size Selects files larger or smaller than a particular size

type Selects files based on their type: regular files or directories

You can nest selectors inside file sets to select the files you want. For example, here's how to create
a file set of HTML documentation files that contain the text "selector" using the contains selector:

<fileset dir="${docs}" includes="**/*.html">
 <contains text="selector" casesensitive="no"/>
</fileset>

The date selector lets you choose file sets based on date, as here, where I'm selecting all
documentation files before 1/1/2005:

<fileset dir="${docs}" includes="**/*.html">
 <date datetime="01/01/2005 12:00 AM" when="before"/>
</fileset>

You can use the filename selector much like the include and exclude tags inside a fileset. Here's an
example:

<fileset dir="${source}" includes="**/*">
 <filename name="**/*.cpp"/>
</fileset>

The containsregexp selector limits the files in a fileset to only those whose contents contain a
match to the regular expression specified by the expression attribute:

<fileset dir="${source}" includes="*.java">
 <containsregexp expression="$println(.);"/>
</fileset>

The type tag selects files of a certain type: directory or regular. Here's an example:

date
Selects files that were modified before a particular date and time, or that date and
time

depend Selects files that were modified more recently than files you compare them to

depth Selects files based on how far down they appear in a directory tree

different Selects files that are different from a set of target files you specify

filename Selects files using a pattern to match filenames

modified Selects files if an algorithm gives a different result from that stored

present Selects files based on their presence, or absence, at some other location

size Selects files larger or smaller than a particular size

type Selects files based on their type: regular files or directories

You can nest selectors inside file sets to select the files you want. For example, here's how to create
a file set of HTML documentation files that contain the text "selector" using the contains selector:

<fileset dir="${docs}" includes="**/*.html">
 <contains text="selector" casesensitive="no"/>
</fileset>

The date selector lets you choose file sets based on date, as here, where I'm selecting all
documentation files before 1/1/2005:

<fileset dir="${docs}" includes="**/*.html">
 <date datetime="01/01/2005 12:00 AM" when="before"/>
</fileset>

You can use the filename selector much like the include and exclude tags inside a fileset. Here's an
example:

<fileset dir="${source}" includes="**/*">
 <filename name="**/*.cpp"/>
</fileset>

The containsregexp selector limits the files in a fileset to only those whose contents contain a
match to the regular expression specified by the expression attribute:

<fileset dir="${source}" includes="*.java">
 <containsregexp expression="$println(.);"/>
</fileset>

The type tag selects files of a certain type: directory or regular. Here's an example:

<fileset dir="${src}">
 <type type="dir"/>
</fileset>

FileSets are no longer about filenames. Now you've got access to more data, including what's inside
files.

Selectors can be defined outside of any target by using the selector tag and
using them as references.

2.3.7. File Filters

Filters let you filter the data in files, modifying that data if you want to. FilterSets are groups of
filters, and you can use filters to replace tokens in files with new content. For example, say that your
files contain a token, like @DATE@; you can use filters and a filter set to copy those files with the copy
task, while replacing that token with the current date. You can find the attributes of the filter set
type in Table 2-14; to use FilterSets, you can use the filter task, which is coming up next (with
examples).

When a filter set is used in an operation, the files are processed in text mode
and the filters applied line by line. This means that the copy operations will
typically corrupt binary files.

Table 2-14. The filter set type's attributes

Attribute Description Required Default

begintoken
The string, usually a character, that specifies the beginning of a
token (e.g., @ in @AUTHOR#)

No
@

endtoken
The string, usually a character, that specifies the end of a token
(e.g., # in @AUTHOR#)

No
@

id The ID you want to use for this filter set No

refid The ID of a filter set you want to use while creating this filter set No

You specify the filters inside a filter set with the filter task, coming up next.

2.3.7.1 Using the filter task

The filter task supports the actual filters in a filter set. Here's a filter set example where the build
file instructs Ant to copy build.java from the ${archives} directory to the ${source} directory, and
replace the token @DATE@ in the files with today's date:

<copy file="${archives}/build.java" toFile="${source}/build.java">
 <filter set>
 <filter token="DATE" value="${TODAY}"/>
 </filter set>
</copy>

Here's the same example where the token to replace is %DATE;:

<copy file="${archives}/build.java" toFile="${source}/build.java">
 <filter set begintoken="%" endtoken=";">
 <filter token="DATE" value="${TODAY}"/>
 </filter set>
</copy>

You can define a FilterSet and reference it later:

<filter set id="today.filter" begintoken="%" endtoken=";">
 <filter token="DATE" value="${TODAY}"/>
</filter set>

<copy file="${archives}/build.java" toFile="${source}/build.java">
 <filter set refid="today.filter"/>
</copy>

If you just want to replace text in a file, you can use the Ant replace task.
Here's an example:

<replace file="${src}/index.html"
 token="author" value="Ted"/>

You can use the concat task, designed to concatenate files together, to
concatenate text to the end of a file, like this:

<concat
 destfile="readme.txt">Copyright (C) 2005</concat>

You can see the attributes of this task in Table 2-15.

Table 2-15. The filter task's attributes

Attribute Description Required

filtersfile

The file from which you want filters to be
read (you format this file like a property
file).

Token and value attributes must be
provided, or only the filtersfile
attribute.

token
The token string to match (omit the
beginning and end tokens).

Token and value attributes must be
provided, or only the filtersfile
attribute.

value The string to replace the token with.
Token and value attributes must be
provided, or only the filtersfile
attribute.

2.3.8. Filtering and Modifying Text with FilterChains and FilterReaders

A FilterReader filters text and can modify that text. A FilterChain is a group of FilterReaders,
applied in order, and functions much like piping one command to another in Unix. Using
FilterReaders and FilterChains, you can process text data in advanced ways. A number of Ant tasks
support filterchain elements:

concat

copy

loadfile

loadproperties

move

You can create filter chains with your own Java classes or with one of the elements you see in Table
2-16.

Table 2-16. FilterChain nested elements

Element Does this

classconstants Filters and outputs constants as defined in a Java class.

concatfilter

Appends a file to the filtered file, or prepends a file to the filtered file. Two
optional attributes: prepend (name of the file to prepend) and append (name
of the file to append).

deletecharacters
Deletes characters that you specify in the filtered content. The required
attribute, chars, holds the characters to delete.

Element Does this

escapeunicode
Changes non US-ASCII characters into the matching Unicode escape
sequence (\ plus 4 digits).

expandproperties Replaces Ant properties (of the form ${...}) with the property's actual value.

filterreader
Defines a generic filter. Has one parameter, the required classname attribute.
Supports classpath and param nested elements.

headfilter

Reads the header, that is, the first few lines, from the filtered data. Supports
two optional attributes: lines (number of lines to read) and skip (number of
lines from the beginning to skip).

linecontains
Filters out those lines that don't include lines that contain specified strings.
One required attribute: contains (the substring to search for).

linecontainsregexp
Filters out lines that don't contain text-matching specified regular expressions.
One required attribute: regexp (Pattern of the substring to be searched for).

prefixlines Adds a prefix to every line. Required attribute: prefix (the prefix to use).

replacetokens
Filters text and replaces text between begintoken and endtoken with the text
you specify.

stripjavacomments Strips Java comments.

striplinebreaks
Strips line breaks from the filtered data. Set the optional linebreaks attribute
to the line break text.

striplinecomments
Filters out lines that start with comments, as you specify. Set the comment
attribute to the string that starts the line.

tabstospaces Filters out tabs and replaces them with spaces (default is 8).

tailfilter

Reads the tail of the text, that is, the last few lines from the filtered text.
Supports two optional attributes: lines (number of lines to read) and skip
(number of lines from the end to skip).

tokenfilter
Tokenizes the filtered text into strings. One optional attribute: delimOutput
(overrides the tokendelimiter returned by the tokenizer).

Each of these filters correspond to a Java class; for example, the head filter corresponds to
org.apache.tools.ant.filters.HeadFilter. Here are a few examples: Suppose you want to read the
first three lines of the file given by ${sourcefile} into the property sourcefile.header. You could use
filterreader and the Ant filter reader class org.apache.tools.ant.filters.HeadFilter:

<loadfile srcfile="${sourcefile}" property="sourcefile.header">
 <filterchain>
 <filterreader classname="org.apache.tools.ant.filters.HeadFilter">
 <param name="lines" value="3"/>
 </filterreader>
 </filterchain>
</loadfile>

escapeunicode
Changes non US-ASCII characters into the matching Unicode escape
sequence (\ plus 4 digits).

expandproperties Replaces Ant properties (of the form ${...}) with the property's actual value.

filterreader
Defines a generic filter. Has one parameter, the required classname attribute.
Supports classpath and param nested elements.

headfilter

Reads the header, that is, the first few lines, from the filtered data. Supports
two optional attributes: lines (number of lines to read) and skip (number of
lines from the beginning to skip).

linecontains
Filters out those lines that don't include lines that contain specified strings.
One required attribute: contains (the substring to search for).

linecontainsregexp
Filters out lines that don't contain text-matching specified regular expressions.
One required attribute: regexp (Pattern of the substring to be searched for).

prefixlines Adds a prefix to every line. Required attribute: prefix (the prefix to use).

replacetokens
Filters text and replaces text between begintoken and endtoken with the text
you specify.

stripjavacomments Strips Java comments.

striplinebreaks
Strips line breaks from the filtered data. Set the optional linebreaks attribute
to the line break text.

striplinecomments
Filters out lines that start with comments, as you specify. Set the comment
attribute to the string that starts the line.

tabstospaces Filters out tabs and replaces them with spaces (default is 8).

tailfilter

Reads the tail of the text, that is, the last few lines from the filtered text.
Supports two optional attributes: lines (number of lines to read) and skip
(number of lines from the end to skip).

tokenfilter
Tokenizes the filtered text into strings. One optional attribute: delimOutput
(overrides the tokendelimiter returned by the tokenizer).

Each of these filters correspond to a Java class; for example, the head filter corresponds to
org.apache.tools.ant.filters.HeadFilter. Here are a few examples: Suppose you want to read the
first three lines of the file given by ${sourcefile} into the property sourcefile.header. You could use
filterreader and the Ant filter reader class org.apache.tools.ant.filters.HeadFilter:

<loadfile srcfile="${sourcefile}" property="sourcefile.header">
 <filterchain>
 <filterreader classname="org.apache.tools.ant.filters.HeadFilter">
 <param name="lines" value="3"/>
 </filterreader>
 </filterchain>
</loadfile>

Ant gives you a shortcut with filter readers like this one, where you can use a task named headfilter
to do the same thing:

<loadfile srcfile="${sourcefile}" property="sourcefile.header">
 <filterchain>
 <headfilter lines="3"/>
 </filterchain>
</loadfile>

The linecontains filter reader includes only those lines that contain all the strings you specify with
contains elements. Here's an example, where I'm filtering only lines containing "apples" and
"oranges":

<linecontains>
 <contains value="apples">
 <contains value="oranges">
</linecontains>

The linecontainsregexp filter reader includes only those lines that match the regular expression
you've specified. For example, here's how to match only lines that contain lowercase letters:

<linecontainsregexp>
 <regexp pattern="^[a-z]$">
</linecontainsregexp>

The stripjavacomments filter reader strips away comments from the data, using Java syntax
guidelines. Here's an example:

<loadfile srcfile="${src.file}" property="java.text">
 <filterchain>
 <stripjavacomments/>
 </filterchain>
</loadfile>

The striplinecomments filter reader removes all those lines that begin with strings that represent
comments as specified by the user. For example, here's how to remove all lines that begin with #,
REM, rem, and //:

<striplinecomments>
 <comment value="#"/>
 <comment value="REM "/>
 <comment value="rem "/>
 <comment value="//"/>
</striplinecomments>

The tabstospaces filter reader replaces tabs with spaces; here's an example:

<loadfile srcfile="${src.file}" property="src.file.detabbed">
 <filterchain>
 <tabstospaces/>
 </filterchain>
</loadfile>

The classconstants filter readers recovers constants defined in Java .class files. For example, say
that you have a constant named MAXFILES:

public interface Files
{
 public static final String MAXFILES ="4";
}

To load the MAXFILES constant and make it accessible by name, you can use the loadproperties task
and the classconstants filter reader:

<loadproperties srcfile="Files.class">
 <filterchain>
 <classconstants/>
 .
 .
 .
 </filterchain>
</loadproperties>

As you can gather from the name, you can use multiple filter readers in a filter chain, and we'll add
the prefixlines filter reader to prefix constants we recover with the text "Files.":

<loadproperties srcfile="Files.class">
 <filterchain>
 <classconstants/>
 <prefixlines prefix="Files."/>
 </filterchain>
</loadproperties>

Now you've recovered the constant Files.MAXFILES from a compiled .class file, and can display it with
echo:

<echo>${Files.MAXFILES}</echo>

2.3.9. Transforming One Set of Files to Another with Mappers

Mappers are another Ant type, and they're used to map one set of files to another. For example, one
of the mappers available in Ant is the regexp mapper that lets you grab a set of files and rename
them. You can use mappers in copy, move, apply, uptodate, and a number of additional tasks.

Here's an example, where I'm copying a file set from a directory named development to a directory
named backup, renaming .java files to .backup files. This works because whatever matches to the
expression inside the parentheses in the regular expression in the from attribute can be referenced in
the to attribute as \1; a match to a second pair of parentheses may be referenced as \2, and so on:

<copy todir="backup">
 <fileset dir="development" includes="**/*.java"/>
 <mapper type="regexp" from="([a-z]*).java" to="\1.backup" />
</copy>

Another mapper is the flatten mapper, which lets you copy files while stripping off any directory
information from the filenames. That's how mappers typically work; you specify a file set and then
add a mapper to refine or manipulate the set of files you want to work with.

To use a mapper, you use the Ant mapper element, which has the attributes you see in Table 2-17.

The mapper classpath attribute holds a path, which means you can use a
nested classpath element if you prefer.

Table 2-17. Mapper attributes

Attribute Description Required Default

classname Specifies the mapper using a class name
Either type or
classname

classpath
Specifies the classpath you want used when
searching for classname

No

classpathref Specifies the classpath to use No

from Sets the value of the from attribute
Depends on
implementation

to Sets the value of the to attribute
Depends on
implementation

type Specifies a built-in mapper
Either type or
classname

Experience shows that Ant will not automatically convert / or \ characters in the to and from
attributes to the correct directory separator for your current platform. If you need to specify a
directory separator here, use ${file.separator}.

What mappers can you use with the mapper element? You can see the available Ant mappers in Table
2-18.

Table 2-18. Ant mappers

Mapper Does this

flatten
Flattens the target filename to the source filename but with all directory information
stripped off from the front. To and from attributes are ignored.

glob Lets you support wildcards (*) in the to and from attributes.

identity
Copies over the filename by making the target filename the same as the source
filename. To and from attributes are ignored.

merge Takes the target filename from the to attribute (from will be ignored).

package Helps with Java package names by replacing directory separators with dots.

regexp Lets you use regular expressions on the to and from values.

unpackage
Replaces any dots in the name of a package with legal directory separators (available
since Ant 1.6).

When you use the identity mapper, the target filename is the same as the source filenamein other
words, this one's transparent to Ant. Here's the way you'd use this mapper in a file set:

<mapper type="identity"/>

The flatten mapper is more interesting; this one strips all leading directory information off, allowing
you to copy all files in a directory tree to a single directory. Here's an example:

<copy todir="backup">
 <fileset dir="development" includes="**/*.java"/>
 <mapper type="flatten" />
</copy>

The merge mapper copies multiple files to the same target file. Here's an example:

<mapper type="merge" to="backup.tar"/>

In the glob mapper, you can use filename patterns in the to and from attributes, and those patterns
may contain at most one asterisk (*):

<copy todir="backup">
 <fileset dir="development" includes="**/*.java"/>
 <mapper type="glob" from="*.java" to="*.old"/>
</copy>

The regexp mapper lets you use regular expressions in the to and from attributes. You can create

regular expression matches using parentheses in the to attribute value and refer to the matched
values as \1 through \9 in the from attribute value. We've seen an example of this mapper at work:

<copy todir="backup">
 <fileset dir="development" includes="**/*.java"/>
 <mapper type="regexp" from="([a-z]*).java" to="\1.backup" />
</copy>

For more on regular expressions, see Mastering Regular Expressions by Jeffrey
Friedl (O'Reilly).

The package mapper is an interesting one as it replaces directory separators found in the matched
source pattern with dots in the target pattern placeholder, reproducing Java package syntax. This
inspiration here is that this mapper was designed to be useful to flatten directory structures where
files have the fully qualified classname as part of their name (this mapper was designed for use with
the uptodate and junit tasks). Here's an example:

<mapper type="package"
 from="*Beta.java" to="Beta*Beta.xml"/>

For example, if you used this mapper element on org/steve/tools/ant/util/AntTaskBeta.java, it will
create Beta.org.steve.tools.ant.util.AntTaskBeta.xml, flattening the directory structure but still letting
you see where files come from.

The unpackage mapper, new since Ant 1.6, is the reverse of the package mapper; that is, it replaces
dots in a package name with directory separators. Here's an example:

<mapper type="package"
 from="Beta*Beta.xml" to="*Beta.java"/>

This is a useful one if you want to restore the original directory structure after flattening it with the
package mapper. This example will take files such as Beta.org.steve.tools.ant.util.AntTaskBeta.xml
back to org/steve/tools/ant/util/AntTaskBeta.java.

Chapter 3. Building Java Code
Ant is the premiere build tool for Java developers, and this chapter focuses on the Java build process,
from compiling Java code with the javac task through compressing and packaging the results with
tasks such as jar and tar. Along the way, I'll discuss several central build issues, such as keeping
track of the build number, storing that number in a JAR file's manifest file, getting input from the
user and acting on that input, calling one Ant target from another, creating Javadoc with the javadoc
task, and more.

3.1. Compiling Code

The javac task compiles Java source code. You've seen javac at work many times in this book but
haven't exhausted what this task has to offer by any means. You can get an idea how extensive a
task it is by its huge number of attributes, shown in Table 3-1.

Table 3-1. The javac task's attributes

Attribute Description Required Default

bootclasspath
Specifies where to find any bootstrap class
files.

No

bootclasspathref
Specifies where to find any bootstrap class
files, given as a reference.

No

classpath Specifies the classpath you want to use. No

classpathref
Specifies the classpath you want to use,
given as a reference to a path.

No

compiler

Specifies the compiler you want to use. If
you don't set this attribute, this task will use
the compiler pointed to by the
build.compiler property, if set. If that
property is not set, the default compiler for
the current JVM is used.

No

debug

Specifies whether or not your code should be
compiled to include debug data. Corresponds
to the compiler's -g option.

No no

debuglevel

Specifies keywords that will be added to the
command line with the -g switch. Possible
values are none or a comma-separated list of
these keywords: lines, vars, and source.
This attribute requires debug to be set to
true; if it's not, this attribute is ignored.

No

depend
Specifies that you want to use dependency
tracking if your compiler supports it.

No

deprecation
Specifies that you want the compiler to
display deprecation information.

No no

destdir
Specifies the destination directory for the
generated class files.

No

Attribute Description Required Default

encoding Specifies the encoding of your Java files. No

excludes

Specifies a list of files that you want to
exclude. A comma- or space-separated list
of files.

No

excludesfile
Specifies a file containing a list of files you
want to exclude.

No

executable

Specifies the path to the javac executable
that will be used when fork is used. Defaults
to the compiler currently used by Ant.

No

extdirs
Specifies the location of installed extensions,
if any.

No

failonerror
Specifies if you want the build to fail if there
are compilation errors.

No true

fork
Specifies if to execute javac in a forked
process.

No no

includeAntRuntime
Specifies whether you want to make the Ant
run-time libraries accessible to the compiler.

No yes

includeJavaRuntime

Specifies whether you want to make the
default runtime Java libraries accessible to
the executing JVM.

No no

includes

Specifies a list of files that you want to
include. A comma- or space-separated list of
files.

No

includesfile
Specifies a file containing a list of files you
want to include.

No

listfiles
Specifies whether you want to list the source
files to be compiled.

No no

memoryInitialSize

Specifies the starting size of the memory for
the JVM. Applies only if javac is run
externally.

No

memoryMaximumSize
Specifies the maximum size of memory you
want to use for the JVM, if you're forking it.

No

nowarn
Specifies whether you want to pass the -
nowarn switch to the compiler.

No off

optimize
Specifies whether you want to compile using
optimization, using the -O switch.

No off

source

Specifies whether you want to use the -
source switch. Legal values are 1.3, 1.4, and
1.5.

No
no -source
argument will
be used

encoding Specifies the encoding of your Java files. No

excludes

Specifies a list of files that you want to
exclude. A comma- or space-separated list
of files.

No

excludesfile
Specifies a file containing a list of files you
want to exclude.

No

executable

Specifies the path to the javac executable
that will be used when fork is used. Defaults
to the compiler currently used by Ant.

No

extdirs
Specifies the location of installed extensions,
if any.

No

failonerror
Specifies if you want the build to fail if there
are compilation errors.

No true

fork
Specifies if to execute javac in a forked
process.

No no

includeAntRuntime
Specifies whether you want to make the Ant
run-time libraries accessible to the compiler.

No yes

includeJavaRuntime

Specifies whether you want to make the
default runtime Java libraries accessible to
the executing JVM.

No no

includes

Specifies a list of files that you want to
include. A comma- or space-separated list of
files.

No

includesfile
Specifies a file containing a list of files you
want to include.

No

listfiles
Specifies whether you want to list the source
files to be compiled.

No no

memoryInitialSize

Specifies the starting size of the memory for
the JVM. Applies only if javac is run
externally.

No

memoryMaximumSize
Specifies the maximum size of memory you
want to use for the JVM, if you're forking it.

No

nowarn
Specifies whether you want to pass the -
nowarn switch to the compiler.

No off

optimize
Specifies whether you want to compile using
optimization, using the -O switch.

No off

source

Specifies whether you want to use the -
source switch. Legal values are 1.3, 1.4, and
1.5.

No
no -source
argument will
be used

Attribute Description Required Default

sourcepath Specifies the source path to use. No

The value of
the srcdir
attribute (or
nested src
elements)

sourcepathref
Specifies the source path you want to use,
given in reference form.

No

srcdir
Specifies where to find the Java source files
you want to compile.

Yes, unless
nested src
elements are
present

target

Specifies that you want to generate class
files for particular Java version (e.g., 1.1 or
1.2).

No

tempdir

Specifies the directory where temporary files
should go. Used only if the task is forked and
the length of the command line arguments is
over 4 K. Available since Ant 1.6.

No; default is
the current
working
directory

verbose
Specifies that you want the compiler to
generate verbose output.

No no

This is where the meat is for most Java authors. This taskwhich should be one of your staplesmakes
sure the source directory will be recursively scanned for Java source files to compile and compiles
them. Only Java files that have no corresponding .class file or where the class file is older than the
.java file will be compiled.

The javac task forms an implicit FileSet and supports all attributes of fileset (note that dir becomes
srcdir) as well as the nested include, exclude and patternset elements. And because the javac
task's srcdir, classpath, sourcepath, bootclasspath, and extdirs attributes are path-like structures,
they can be set via nested src, classpath, sourcepath, bootclasspath and extdirs elements.

3.1.1. Compiling Source Files

Here are a few javac examples, starting with a standard example that compiles all .java files in and
under the ${src} directory and stores the .class files in the ${bin} directory. In this case, the
classpath includes common.jar, and we're compiling with debug information turned on:

<javac srcdir="${src}"
 debug="on"
 destdir="${bin}"
 classpath="common.jar"
/>

sourcepath Specifies the source path to use. No

The value of
the srcdir
attribute (or
nested src
elements)

sourcepathref
Specifies the source path you want to use,
given in reference form.

No

srcdir
Specifies where to find the Java source files
you want to compile.

Yes, unless
nested src
elements are
present

target

Specifies that you want to generate class
files for particular Java version (e.g., 1.1 or
1.2).

No

tempdir

Specifies the directory where temporary files
should go. Used only if the task is forked and
the length of the command line arguments is
over 4 K. Available since Ant 1.6.

No; default is
the current
working
directory

verbose
Specifies that you want the compiler to
generate verbose output.

No no

This is where the meat is for most Java authors. This taskwhich should be one of your staplesmakes
sure the source directory will be recursively scanned for Java source files to compile and compiles
them. Only Java files that have no corresponding .class file or where the class file is older than the
.java file will be compiled.

The javac task forms an implicit FileSet and supports all attributes of fileset (note that dir becomes
srcdir) as well as the nested include, exclude and patternset elements. And because the javac
task's srcdir, classpath, sourcepath, bootclasspath, and extdirs attributes are path-like structures,
they can be set via nested src, classpath, sourcepath, bootclasspath and extdirs elements.

3.1.1. Compiling Source Files

Here are a few javac examples, starting with a standard example that compiles all .java files in and
under the ${src} directory and stores the .class files in the ${bin} directory. In this case, the
classpath includes common.jar, and we're compiling with debug information turned on:

<javac srcdir="${src}"
 debug="on"
 destdir="${bin}"
 classpath="common.jar"
/>

This next example compiles .java files in and under the ${src} and ${src2} directories, storing .class
files in ${bin}, including common.jar in the classpath, and turns debug information on. In this case,
only files in packages/archive/** and packages/backup/** will be includedand those in
packages/archive/betapackage/** will be excluded:

<javac srcdir="${src}:${src2}"
 destdir="${build}"
 includes="packages/archive/**,packages/backup/**"
 excludes="packages/archive/betapackage/**"
 classpath="common.jar"
 debug="on"
/>

Ant only uses the names of the source and class files to find the classes that need a rebuild. It
doesn't read the source codes, and so has no knowledge about nested classes. If you want to specify
dependencies that Ant is having trouble with, use the Ant depend task (covered in Chapter 6) for
advanced dependency checking.

One of the new aspects of Ant 1.6 is that it's OK to use 1.5, the newest version
of Java, as the Java version in javac attributes as source.

3.1.1.1 Selecting which files to compile

You can make javac compile only files that you explicitly specify, as opposed to all files under the
specified source directory. You do that by disabling the javac task's default searching mechanism by
unsetting the sourcepath attribute and specifying the files you want to include and exclude explicitly,
as here, where I'm including only .java files in the ${src} directory:

<javac sourcepath="" srcdir="${src}"
 destdir="${bin}" >
 <include name="*.java" />
</javac>

3.1.1.2 Forking the compiler

Forking the Java compiler makes it run in a new process, something that's often useful if you want to
use another compiler or want to configure the compiler's runtime environment. When the compiler is
used in unforked mode in Windows, it may lock the files in the classpath of the javac task. That
means you won't be able to delete or move those files later in the build. If you need to change that,
fork the compiler, using the fork attribute.

Here's an example that compiles all .java files under the ${src} directory, stores the .class files in the
${bin} directory, and forks the javac compiler into its own thread process:

<javac srcdir="${src}"
 fork="yes"

 destdir="${bin}"
/>

Here's an example showing how you can tell Ant which Java compiler you want to run after forking:

<javac srcdir="${src}"
 destdir="${bin}"
 fork="yes"
 executable="/opt/java/jdk1.3/bin/javac"
 compiler="javac1.3"
/>

In the early days, if you were using Ant on Windows, a new DOS window would
pop up for every use of an external compiler. If you use a JDK after 1.2, this
won't be a problem.

3.1.2. Setting Command-Line Options

You can explicitly specify command-line arguments for the compiler with nested compilerarg
elements:

<javac srcdir="${src}"
 destdir="${build}"
 classpath="xyz.jar"
 debug="on">
 <compilerarg value="-l -a"/>
</javac>

The attributes of the compilerarg element appear in Table 3-2.

Table 3-2. The compilerarg attributes

Attribute Description Required

compiler

Specifies the required version of the compiler you want to use; if
the compiler is not of this version, the argument won't be passed
to it. For possible values, see the Section 3.1.3.

No

file Specifies the name of a file as a command-line argument.
Exactly one of
value, line, file,
or path.

Attribute Description Required

line Specifies a list of command-line arguments, delimited by spaces.
Exactly one of
value, line, file,
or path.

path

Specifies a path-like string as a command-line argument. You can
use ; or : as path separators if you wish. (Ant will convert them to
local path separators.)

Exactly one of
value, line, file,
or path.

value Specifies a command-line argument.
Exactly one of
value, line, file,
or path.

Here's an example that stores the output of the compilation in a directory named output1.4 if the
compiler version is 1.3, 1.4, 1.5, all of which correspond to the "modern" option (see the section
Section 3.1.3 for details on specifying the compiler version):

<javac srcdir="${src}"
 destdir="${build}">
 <compilerarg compiler="modern" value="-d output1.4"/>
</javac>

Here's an example where the compiler switches to use are in a file named options:

<javac srcdir="${src}"
 destdir="${build}">
 <compilerarg file="options"/>
</javac>

3.1.3. Using a Different Java Compiler

Using javac, you can specify the compiler you want to use with the global build.compiler property
(which affects all javac tasks throughout the build) or with the compiler attribute (specific to the
current javac task). Here's an example:

<javac srcdir="${src}"
 compiler="javac1.3 "
 destdir="${out}"
 classpath="servlet-api.jar"
/>

Here are the possible values for the build.compiler property or the compiler attribute:

classic

line Specifies a list of command-line arguments, delimited by spaces.
Exactly one of
value, line, file,
or path.

path

Specifies a path-like string as a command-line argument. You can
use ; or : as path separators if you wish. (Ant will convert them to
local path separators.)

Exactly one of
value, line, file,
or path.

value Specifies a command-line argument.
Exactly one of
value, line, file,
or path.

Here's an example that stores the output of the compilation in a directory named output1.4 if the
compiler version is 1.3, 1.4, 1.5, all of which correspond to the "modern" option (see the section
Section 3.1.3 for details on specifying the compiler version):

<javac srcdir="${src}"
 destdir="${build}">
 <compilerarg compiler="modern" value="-d output1.4"/>
</javac>

Here's an example where the compiler switches to use are in a file named options:

<javac srcdir="${src}"
 destdir="${build}">
 <compilerarg file="options"/>
</javac>

3.1.3. Using a Different Java Compiler

Using javac, you can specify the compiler you want to use with the global build.compiler property
(which affects all javac tasks throughout the build) or with the compiler attribute (specific to the
current javac task). Here's an example:

<javac srcdir="${src}"
 compiler="javac1.3 "
 destdir="${out}"
 classpath="servlet-api.jar"
/>

Here are the possible values for the build.compiler property or the compiler attribute:

classic

Specifies that you want to use the standard JDK 1.1/1.2 compiler; you can use javac1.1 and
javac1.2 as aliases.

extJavac

Specifies that you want to use modern or classic in a JVM of its own.

gcj

Specifies that you want to use the gcj compiler from gcc.

jikes

Specifies that you want to use the Jikes compiler.

jvc

Specifies that you want to use the Command-Line compiler from Microsoft's Java/Visual J++.
You can use microsoft as an alias.

kjc

Specifies that you want to use the kopi compiler.

modern

Specifies that you want to use the JDK 1.3/1.4/1.5 compiler. Here, you can use javac1.3,
javac1.4, and javac1.5 as aliases.

sj

Specifies that you want to use the Symantec Java compiler. You can use symantec as an alias.

3.2. Getting Input from the User

At some point in a build, you may need input from the user. For example, you might want to ask before
deleting a directory with the delete task.

The delete task is covered in detail in Chapter 4 .

To get input from the user, use the input task, which creates a new property based on user input.

Example 3-1 puts input to work. This build file asks whether it's OK to delete the bin directory, and if
it's not, the build fails. It queries the user using the input task, and creates a new property, do.delete ,
based on the user's input.

Example 3-1. Using the input task (ch03/input/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <input
 message="Deleting bin directory OK?"
 validargs="y,n"
 addproperty="do.delete"
 />
 <condition property="do.abort">
 <equals arg1="n" arg2="${do.delete}"/>
 </condition>
 <fail if="do.abort">Build aborted.</fail>
 <delete dir="${output}" />
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}" includes="*.class" />
 </target>
</project>

Here's what you see when you run Ant using this build file:

%ant
Buildfile: build.xml

init:
 [input] Deleting bin directory OK?(y,n)
y
 [delete] Deleting directory /home/steven/input/bin
 [mkdir] Created dir: /home/steven/input/bin

compile:
 [javac] Compiling 1 source file to /home/steven/input/bin

compress:
 [jar] Building jar: /home/steven/input/bin/Project.jar

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 5 seconds

The attributes of this task appear in Table 3-3 .

Table 3-3. The input task's attributes

Attribute Description Required

addproperty Specifies the name of the property to create, using the input from the user. No

defaultvalue
Specifies the default value to use for the created property; this default will
be used if no input is read.

No

message Specifies the prompt you want to display to prompt the user to enter text. No

Attribute Description Required

validargs

Specifies the input values you consider valid, separated by commas. If you
use this attribute, the task will not allow input that doesn't match one of
these values.

No

validargs

Specifies the input values you consider valid, separated by commas. If you
use this attribute, the task will not allow input that doesn't match one of
these values.

No

3.3. Calling Other Ant Tasks

You've seen that you can branch using true/false properties. Ant provides other powerful mechanisms
for branchingthe antcall task, which you can use to call one Ant task from another, and the ant task,
which calls Ant tasks in other build files.

3.3.1. Calling Ant Tasks in the Same Build File

A better way to think of antcall is that you're starting a new instance of Ant and executing targets in
it. When you call an Ant target with antcall, its dependent targets are executed in order, something
that can be confusing if you think you're calling a single target. Generally, it's best to do things the
standard way and let Ant sort out the dependencies as it's supposed to. However, Ant can make life
easier, as when you have a build file that creates a distribution for many different servers, and when
varying sets of tasks need to be executed for each. (Even in cases like that, however, you can still set
things up easily enough with if and unless and true/false properties.)

When you use antcall, you can think of that call as creating a new project; all the properties of the
current project are available in that new project by default. The attributes of the antcall task appear
in Table 3-4.

Table 3-4. The antcall attributes

Attribute Description Required Default

inheritAll

If true, means the task should pass all current properties to the
new Ant project. Properties passed to the new project will
override the properties that are set in the new project.

No true

inheritRefs
If true, means the task should pass all current references to the
new Ant project.

No false

target Specifies the target you actually want to run. Yes

You can set properties in the new project with nested param elements, which supports the same
attributes as the property task. Such properties will be passed to the new project, no matter how
inheritAll is set.

Properties defined on the command line cannot be overridden by nested param
elements.

You can use nested reference elements to copy references from the calling project to the new
project. See the attributes of this element in Table 3-5.

References from nested elements will override existing references that have
been defined outside of targets in the new project but not those defined inside
of targets.

Table 3-5. The reference element's attributes

Attribute Description Required Default

refid
Specifies the id of the reference you want to use in the
original project

Yes

torefid
Specifies the id of the reference you want to use in the
new project

No
The value of
refid

As of Ant 1.6, you can specify sets of properties to be copied into the new
project with nested propertyset elements. This element works much like other
Ant sets; you can create a set of properties and refer to them all at once by ID.
This element can contain propertyref, mapper, and other propertyset elements.

Example 3-2 is an antcall example. In this case, the example calls a new target, displayMessage, to
display some text. The example passes the text to display as a parameter named msg.

Example 3-2. Using antcall (ch03/antcall/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <antcall target="displayMessage">
 <param name="msg" value="${message}"/>
 </antcall>
 </target>

 <target name="displayMessage">
 <echo message="msg=${msg}"/>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}"
 includes="*.class" />
 </target>
</project>

Here's what you see when you run Ant using this build file; the msg parameter was passed to the
called target:

C:\ant\ch03\antcall>ant
Buildfile: build.xml

init:
 [mkdir] Created dir: C:\ant\ch03\antcall\bin

compile:
 [javac] Compiling 1 source file to C:\ant\ch03\antcall\bin

compress:
 [jar] Building jar: C:\ant\ch03\antcall\bin\Project.jar

main:

displayMessage:
 [echo] msg=Building the .jar file.

BUILD SUCCESSFUL
Total time: 6 seconds

This is something like a subroutine call, and when using it, there's a tendency to start turning build
files into programs. That's almost always a mistake, however; if you find yourself using antcall
frequently, you're probably not using Ant the way it was intended. There's a tendency to start writing
build files as if you were writing programming code with subroutines, but the best way to write build
files is to let Ant doing its thing and check the dependencies. If this seems like this is the second time
you've heard this, it is because it's that important.

3.3.2. Calling Ant Tasks in Other Build Files

The ant task is nearly identical to the antcall task, except that it lets you call targets in other build

files. Using this task, you can create subproject build files, which let you divide your builds into a core
build file with ant tasks to call the other build files as needed. This kind of technique can be useful
when your build files are enormous and things are getting too complex to handle in single files; this is
one of the ways that Ant scales to meet project needs.

Here's an example using ant, where I'm setting the value of a property named parameter and loading
properties from a file:

<ant antfile="subproject/subbuild.xml">
 <property name="parameter" value="4096"/>
 <property file="config/subproject/build.properties"/>
</ant>

You can see the attributes of this task in Table 3-6.

Table 3-6. The ant task's attributes

Attribute Description Required Default

antfile
Specifies the build file where
the target to call is

No build.xml

dir Directory where the build file is No
The current project's basedir, unless
inheritall has been set to false, in
which case there is no default value

inheritAll

If true, makes the task pass all
current properties to the new
Ant project

No true

inheritRefs

If true, makes the task pass all
current references to the new
Ant project

No false

output
Specifies the filename where
the task should write output

No

target
Specifies the target in the Ant
project that you want to call

No The new project's default target

If you don't specify a value for the antfile attribute, the file build.xml in the directory given by the
dir attribute is used. If no target attribute is supplied, the default target of the new project will be
used.

Passing properties to the new project works as it does with the antcall task, except that here you
use nested property elements instead of param elements to pass properties. You can use nested
reference elements and nested propertyset elements as with antcall.

The basedir attribute of the new project's project element is affected by the attributes dir and

inheritall in ant. Take a look at Table 3-7, which shows how basedir is set based on how you set
these two attributes.

Table 3-7. Using dir and inheritAll in ant

dir inheritAll basedir in the new project

Value assigned true The value of the dir attribute

Value assigned false The value of the dir attribute

Omitted true The basedir of calling project

Omitted false The basedir attribute of the project element of the new project

If you need to start breaking your build files up, consider the subant task, which
executes Ant in various subdirectories.

3.4. Importing Other Build Files

With ant, you can execute build files outside the current build file, and you can include other build
files in the current file. The old way of doing this was to rely on XML and the Ant XML parser to do the
work for you. For example, if you wanted to include the entire contents of a document named
shared.xml at a specific point in a build file, you could start by declaring an XML entity named, say,
shared in your build file:

<?xml version="1.0"?>

<!DOCTYPE project [
 <!ENTITY shared SYSTEM "file:shared.xml">
]>
 .
 .
 .

To insert the contents of the shared.xml build file into the current build file, you can use an XML
entity reference, &shared;, like this:

<?xml version="1.0"?>

<!DOCTYPE project [
 <!ENTITY shared SYSTEM "file:shared.xml">
]>

<project default="main" basedir=".">

 &shared;

 <target name="init">
 .
 .
 .
 </target>
 .
 .
 .
</project>

Since Ant 1.6, however, there is a new import task that can be used to include build files. The
referenced files have to be complete Ant build files, which are inserted whole (minus the XML
declaration and <project> and </project> tags). Here's how the above example would work using
the import task:

<?xml version="1.0"?>
<project default="main" basedir=".">

 <import file="shared.xml"/>

 <target name="init">
 .
 .
 .
 </target>
 .
 .
 .
</project>

The attributes of the import task appear in Table 3-8.

Table 3-8. The import task's attributes

Attribute Description Required Default

file Specifies the name of the build file you want to import Yes

optional
Specifies whether you want to stop the build if the build file to
import does not exist

No false

Unlike entity includes, you can deference a property with ${ and } to set the
name of the file to import with the import task. In addition, if a target with the
same name exists, it takes precedence over the target you're importing.

The import task makes it easier to handle relative paths as defined in the imported build file. It does
this by creating a new property corresponding to the absolute path of the imported build file so you
can resolve relative file references.

Ant has a property called ant.file that contains the absolute path of the build file (see Chapter 1),
so this task creates a new property based on the name of the file you're importing. For example, if
you import a build file named newbuild, the new location property will be named ant.file.newbuild.

Now that you've built your application with the various tasks seen in this chapter, it's time for some
documentation.

3.5. Documenting Code

Creating applications in a commercial environment frequently means creating documentation, and Ant is
up for that with the javadoc task. This task creates documentation using the Java javadoc tool, a
process that involves compilation, which merits including this task in this chapter. This is one of the
largest tasks in Ant because of the enormous number of javadoc options.

Here's an example, stored in the javadoc folder in the code for this book. Suppose you add a
documentation-type comment to the Project.java file:

/** This application prints out "No worries." */
public class Project
{
 public static void main(String args[])
 {
 System.out.println("No worries.");
 }
}

You can create Javadoc for the project using the javadoc task in a new target I'll name doc , which will
put the generated Javadoc in a doc directory, as you see in Example 3-3 .

Note the XML <![CDATA[...]> sections, which the build file uses to pass data to
the javadoc tool.

Example 3-3. Creating javadoc (ch03/javadoc/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="docs" location="docs" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, doc, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">

 <mkdir dir="${output}" />
 <mkdir dir="${docs}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="doc">
 <javadoc
 sourcefiles="${src}/Project.java"
 destdir="${docs}"
 author="true"
 version="true"
 use="true"
 windowtitle="Project API">
 <doctitle><![CDATA[<h1>Project API</h1>]]></doctitle>
 <bottom><![CDATA[<i>Copyright © 2005</i>]]></bottom>
 </javadoc>
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}" includes="*.class" />
 </target>

</project>

You can see the javadoc task at work when the build file runs:

%ant
Buildfile: build.xml

init:
 [mkdir] Created dir: /home/steven//ch03/javadoc/bin
 [mkdir] Created dir: /home/steven//ch03/javadoc/docs

compile:
 [javac] Compiling 1 source file to /home/steven//ch03/javadoc/bin

doc:
 [javadoc] Generating Javadoc
 [javadoc] Javadoc execution
 [javadoc] Loading source file /home/steven//ch03/javadoc/source/Project.java.. .
 [javadoc] Constructing Javadoc information...
 [javadoc] Standard Doclet version 1.4.0

 [javadoc] Building tree for all the packages and classes.. .
 [javadoc] Building index for all the packages and classes.. .
 [javadoc] Building index for all classes...

 [javadoc] Generating /home/steven//ch03/javadoc/docs/stylesheet.css.. .

compress:
 [jar] Building jar: /home/steven//ch03/javadoc/bin/Project.jar

main:
 [echo]
 [echo] Building the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 10 seconds

And you can see the index.html Javadoc result in Figure 3-1 . Note the message "This application prints
out `No worries.'"

Figure 3-1. New Javadoc for the project

You can see the huge number of attributes of this task in Table 3-9 .

Since the javadoc tool calls the System.exit method, javadoc cannot be run inside
the same JVM as Ant. For this reason, javadoc always forks the JVM.

Table 3-9. The javadoc task's attributes

Attribute Description Required Default

access

Sets the access mode; you can use
these values: public , protected ,
package , or private .

No protected

additionalparam

Specifies additional parameters for the
javadoc command line. Any parameters
with spaces should be quoted using
" .

No

author
Specifies you want to include @author
paragraphs.

No

bootclasspath
Specifies you want to override the
classpath set by the boot class loader.

No

bootclasspathref
Specifies you want to override class file
references set by the boot class loader.

No

bottom Sets the bottom text for each page. No

breakiterator

Specifies you want to use the
breakiterator algorithm, which is used
in debugging. Set to yes or no.

No no

charset Specifies the character set to use. No

classpath
Specifies the classpath for user class
files.

No

classpathref
Specifies where to find user class files
by reference.

No

defaultexcludes
Specifies whether you want default
excludes to be used. Set to yes or no.

No
Default
excludes
are used.

destdir Sets the output directory. Yes

docencoding Sets the output file encoding to use. No

doclet

Specifies the class file used to start the
doclet that will generate the
documentation.

No

docletpath
Specifies the path to the doclet given
by the -doclet option.

No

docletpathref
Specifies the path to the doclet given
by the -doclet option by reference.

No

Attribute Description Required Default

doctitle
Sets the title for the package index
page.

No

encoding
Specifies the encoding of the source
file.

No

excludepackagenames

Specifies the packages to exclude in the
documentation. Give as a comma-
separated list.

No

extdirs
Specifies you want to override the
location of installed extensions.

No

failonerror

Specifies you want to stop the build
process if the task exits with a non-zero
return code.

No

footer Specifies the footer text for each page. No

group

Specifies you want to group particular
packages in the generated overview
page.

No

header
Specifies the header text you want to
use for each page.

No

helpfile
Specifies the HTML help file you want to
use, if any.

No

link
Specifies you want to create links to the
Javadoc output at the given URL.

No

linkoffline

Specifies you want to link to the
documentation at a specific URL using a
package list at at another URL.

No

linksource

Indicates you want to generate
hyperlinks to source files; available
since Ant 1.6.

No no

locale

Sets the locale to be used for
generating documentation, such as
"en_US".

No

maxmemory
Specifies the maximum amount of
memory to allocate to the javadoc task.

No

nodeprecated

Specifies you do not want to include
@deprecated information in the
generated documentation.

No

nodeprecatedlist
Specifies you do not want to generate a
deprecated list.

No

doctitle
Sets the title for the package index
page.

No

encoding
Specifies the encoding of the source
file.

No

excludepackagenames

Specifies the packages to exclude in the
documentation. Give as a comma-
separated list.

No

extdirs
Specifies you want to override the
location of installed extensions.

No

failonerror

Specifies you want to stop the build
process if the task exits with a non-zero
return code.

No

footer Specifies the footer text for each page. No

group

Specifies you want to group particular
packages in the generated overview
page.

No

header
Specifies the header text you want to
use for each page.

No

helpfile
Specifies the HTML help file you want to
use, if any.

No

link
Specifies you want to create links to the
Javadoc output at the given URL.

No

linkoffline

Specifies you want to link to the
documentation at a specific URL using a
package list at at another URL.

No

linksource

Indicates you want to generate
hyperlinks to source files; available
since Ant 1.6.

No no

locale

Sets the locale to be used for
generating documentation, such as
"en_US".

No

maxmemory
Specifies the maximum amount of
memory to allocate to the javadoc task.

No

nodeprecated

Specifies you do not want to include
@deprecated information in the
generated documentation.

No

nodeprecatedlist
Specifies you do not want to generate a
deprecated list.

No

Attribute Description Required Default

nohelp
Specifies you do not want to generate a
link to help documentation.

No

noindex
Specifies you do not want to generate
an index.

No

nonavbar
Specifies you don't want a navigation
bar.

No

noqualifier

Allows you to use the -noqualifier
argument. Set this attribute to "all" or a
colon-separated list of packages.
Available since Ant 1.6.

No

notree
Specifies you don't want a class
hierarchy to be generated.

No

old
Specifies you want to generate output
using JDK 1.1.

No

overview
Specifies where to get the overview
documentation.

No

package
Indicates you want to include
package/protected/public information.

No

packagelist

Specifies the name of a file that holds
the packages to include in the
generated documentation.

No

packagenames Specifies a list of packages to include. No

private
Specifies you want to show all private
classes and members.

No

protected

Specifies you want to show all
protected/public classes and members.
This is the default.

No

public
Specifies you want to show only public
classes and members.

No

serialwarn
Specifies you want to be warned about
the @serial tag, if encountered.

No

source

Sets this attribute to 1.4 to document
code that compiles using javac -source
1.4 .

No

sourcefiles
Specifies the source files. Use a
comma-separated list.

At least one of
sourcepath ,
sourcefiles ,
sourcefiles , or a
nested sourcepath ,
fileset , or packageset .

nohelp
Specifies you do not want to generate a
link to help documentation.

No

noindex
Specifies you do not want to generate
an index.

No

nonavbar
Specifies you don't want a navigation
bar.

No

noqualifier

Allows you to use the -noqualifier
argument. Set this attribute to "all" or a
colon-separated list of packages.
Available since Ant 1.6.

No

notree
Specifies you don't want a class
hierarchy to be generated.

No

old
Specifies you want to generate output
using JDK 1.1.

No

overview
Specifies where to get the overview
documentation.

No

package
Indicates you want to include
package/protected/public information.

No

packagelist

Specifies the name of a file that holds
the packages to include in the
generated documentation.

No

packagenames Specifies a list of packages to include. No

private
Specifies you want to show all private
classes and members.

No

protected

Specifies you want to show all
protected/public classes and members.
This is the default.

No

public
Specifies you want to show only public
classes and members.

No

serialwarn
Specifies you want to be warned about
the @serial tag, if encountered.

No

source

Sets this attribute to 1.4 to document
code that compiles using javac -source
1.4 .

No

sourcefiles
Specifies the source files. Use a
comma-separated list.

At least one of
sourcepath ,
sourcefiles ,
sourcefiles , or a
nested sourcepath ,
fileset , or packageset .

Attribute Description Required Default

sourcepath
Specifies where to you want to find
source files.

At least one of
sourcepath ,
sourcefiles ,
sourcefiles , or a
nested sourcepath ,
fileset or packageset .

sourcepathref
Specifies where you want to find source
files by reference.

At least one of
sourcepath ,
sourcefiles ,
sourcefiles , or a
nested sourcepath ,
fileset , or packageset .

splitindex

Specifies you want to split the
generated index into one file for each
letter.

No

stylesheetfile
Specifies the CSS stylesheet you want
to use.

No

use
Specifies you want to create class and
package usage pages.

No

useexternalfile

Specifies whether the source
filename(s) should be written to a
temporary file. Set to yes or no.

No no

verbose
Specifies you want this task to display
messages of what it's doing.

No

version
Specifies you want to include @version
paragraphs.

No

windowtitle
Sets the title of the browser window for
the documentation.

No

For more on how to use the javadoc tool, look at the JDK documentation, available
online at http://java.sun.com/j2se/1.4.2/docs/index.html .

Here's another example. This one passes Java packages starting with gui to javadoc to document them,
excludes a few specific packages, sets the header text for each page, groups the packages
gui.steve.api.* together on the first page under the title "Group 1 Packages," and includes a link to the
Java 1.4.2 docs:

<javadoc destdir="api" version="true">

 <packageset dir="code">
 <include name="gui/**" />

sourcepath
Specifies where to you want to find
source files.

At least one of
sourcepath ,
sourcefiles ,
sourcefiles , or a
nested sourcepath ,
fileset or packageset .

sourcepathref
Specifies where you want to find source
files by reference.

At least one of
sourcepath ,
sourcefiles ,
sourcefiles , or a
nested sourcepath ,
fileset , or packageset .

splitindex

Specifies you want to split the
generated index into one file for each
letter.

No

stylesheetfile
Specifies the CSS stylesheet you want
to use.

No

use
Specifies you want to create class and
package usage pages.

No

useexternalfile

Specifies whether the source
filename(s) should be written to a
temporary file. Set to yes or no.

No no

verbose
Specifies you want this task to display
messages of what it's doing.

No

version
Specifies you want to include @version
paragraphs.

No

windowtitle
Sets the title of the browser window for
the documentation.

No

For more on how to use the javadoc tool, look at the JDK documentation, available
online at http://java.sun.com/j2se/1.4.2/docs/index.html .

Here's another example. This one passes Java packages starting with gui to javadoc to document them,
excludes a few specific packages, sets the header text for each page, groups the packages
gui.steve.api.* together on the first page under the title "Group 1 Packages," and includes a link to the
Java 1.4.2 docs:

<javadoc destdir="api" version="true">

 <packageset dir="code">
 <include name="gui/**" />

 <exclude name="gui/debug/**"/>
 </packageset>

 <header><![CDATA[Preliminary API Specification]]></header>
 <doctitle><![CDATA[<h1>Test</h1>]]></doctitle>
 <group title="Group 1 Packages" packages="gui.steve.api.*"/>
 <link href="http://java.sun.com/j2se/1.4.2/docs/api/"/>
</javadoc>

3.6. Creating JAR Files

The jar task JARs files for you. Example 3-4 is a fairly complex example, which creates a new JAR file
with an included manifest, MANIFEST.MF, that contains several attributes.

Example 3-4. Using the jar task (ch03/jar/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}"
 includes="*.class" >
 <manifest>
 <attribute name="Author" value="${user.name}"/>
 <section name="Shared">
 <attribute name="Title" value="Example"/>
 <attribute name="Vendor" value="MegaAntCo"/>
 </section>
 <section name="Copyright">
 <attribute name="Copy" value="(C) MegaAntCo 2005"/>
 </section>
 </manifest>
 </jar>
 </target>
</project>

The created JAR file contains Project.class and MANIFEST.MF; this latter file contains these contents:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.6.1
Created-By: 1.4.2_03-b02 (Sun Microsystems Inc.)
Author: Steven Holzner

Name: Shared
Title: Example
Vendor: MegaAntCo

Name: Copyright
Copy: (C) MegaAntCo 2005

Want to sign your JAR file for distribution? Use the jarsign task like this:

<signjar jar="jarfile.jar" alias="development"
 keystore="local.keystore"
 storepass="secret"/>

The attributes of the jar task are listed in Table 3-10. For more on creating manifests, take a look at
the Section 3.6.2.

Table 3-10. The jar task's attributes

Attribute Description Required Default

basedir
Specifies the directory where the task should find
files to JAR.

No

compress
Specifies you want to compress data besides storing
it.

No true

defaultexcludes
Specifies whether you want to use default excludes
or not (set to yes or no).

No yes

destfile Specifies the new JAR file to create. Yes

duplicate

Specifies what you want to do when a duplicate file
is found. Possible values are add, preserve, and
fail.

No add

encoding
Specifies the character encoding to use for file-
names in the JAR file.

No UTF-8

Attribute Description Required Default

excludes
Specifies files to exclude. Give as a comma- or
space-separated list.

No

No files
(except default
excludes) are
excluded.

excludesfile
Specifies the name of a file containing exclude
patterns, one to a line.

No

filesetmanifest

Specifies what you want the task to do when a
manifest is found in a zipfileset or a zipgroupfileset
file is found. Valid values are skip, merge, and
mergewithoutmain.

No skip

filesonly Specifies you want to store only files in the JAR file. No false

includes
Specifies files to include. Give as a comma- or
space-separated list of patterns.

No

includesfile
Specifies the name of a file containing include
patterns, one to a line.

No

index
Specifies whether to create an index. This can aid
when loading classes.

No false

keepcompression

Specifies what you want to do with items from
existing archives (as with nested JAR files).
Available since Ant 1.6.

No false

manifest

Specifies the manifest file to use. Set to the location
of a manifest, or the name of a JAR added through
a fileset. If you're using the name of an added JAR
file, the task expects the manifest to be in the JAR
at META-INF/MANIFEST.MF.

No

manifestencoding
Specifies the encoding used to read the JAR
manifest.

No .
The platform
encoding.

update
Specifies whether if you want to update or
overwrite the output file in case it exists.

No false

whenempty

Specifies what this task should do when when no
files match. Possible values are fail, skip, and
create.

No skip

You can refine the set of files to JAR with the includes, includesfile, excludes, excludesfile, and
defaultexcludes attributes. The jar task forms an implicit FileSet and supports all attributes of
fileset (though dir becomes basedir) as well as the nested include, exclude and patternset
elements. You can use nested file sets for more flexibility, and specify multiple ones to merge
together different trees of files into one JAR.

The update parameter controls what happens if the .jar file exists. When set to

yes

excludes
Specifies files to exclude. Give as a comma- or
space-separated list.

No

No files
(except default
excludes) are
excluded.

excludesfile
Specifies the name of a file containing exclude
patterns, one to a line.

No

filesetmanifest

Specifies what you want the task to do when a
manifest is found in a zipfileset or a zipgroupfileset
file is found. Valid values are skip, merge, and
mergewithoutmain.

No skip

filesonly Specifies you want to store only files in the JAR file. No false

includes
Specifies files to include. Give as a comma- or
space-separated list of patterns.

No

includesfile
Specifies the name of a file containing include
patterns, one to a line.

No

index
Specifies whether to create an index. This can aid
when loading classes.

No false

keepcompression

Specifies what you want to do with items from
existing archives (as with nested JAR files).
Available since Ant 1.6.

No false

manifest

Specifies the manifest file to use. Set to the location
of a manifest, or the name of a JAR added through
a fileset. If you're using the name of an added JAR
file, the task expects the manifest to be in the JAR
at META-INF/MANIFEST.MF.

No

manifestencoding
Specifies the encoding used to read the JAR
manifest.

No .
The platform
encoding.

update
Specifies whether if you want to update or
overwrite the output file in case it exists.

No false

whenempty

Specifies what this task should do when when no
files match. Possible values are fail, skip, and
create.

No skip

You can refine the set of files to JAR with the includes, includesfile, excludes, excludesfile, and
defaultexcludes attributes. The jar task forms an implicit FileSet and supports all attributes of
fileset (though dir becomes basedir) as well as the nested include, exclude and patternset
elements. You can use nested file sets for more flexibility, and specify multiple ones to merge
together different trees of files into one JAR.

The update parameter controls what happens if the .jar file exists. When set to

yes

, the .jar file is updated with the files specified. When set to

no

(the default), the .jar file is overwritten.

Besides nested include, exclude and patternset elements, you can nest metainf and manifest
elements in the jar task.

3.6.1. Working with the META-INF Directory

The nested metainf element specifies a FileSet. All files included in this fileset will end up in the
META-INF directory of the JAR file. If this fileset includes a file named MANIFEST.MF, the file is
ignored (but you'll get a warning telling you what's going on).

3.6.2. Creating Manifest Files

You use this task to write data into a JAR manifest file. The manifest task supports two nested
elements: attribute, which you can use to set attributes in a manifest file, and section, which can
create a section in a manifest file. The attribute element has two attributes: name (the name of the
attribute) and value (the value of the attribute). The section element has one attribute, name (the
name of the new section). Here's an example, which creates a manifest with attributes and sections:

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}"
 includes="*.class" >
 <manifest>
 <section name="Credits">
 <attribute name="Author" value="Steve"/>
 </section>
 <section name="Title">
 <attribute name="Title" value="Profits"/>
 <attribute name="Company" value="YourCoInc"/>
 </section>
 </manifest>
 </jar>
 </target>

For a more substantial example, see Example 3-5 coming up in this chapter. You can see the
attributes of this task in Table 3-11.

Table 3-11. The manifest attributes

Attribute Description Required Default

file Specifies the name of the manifest file to create. Yes

mode
Specifies what you want to do with the manifiest file. Possible
values are update or replace.

No replace

encoding
Specifies the encoding you want to use when reading a
manifest to update.

No
UTF-8

encoding

There's more you can put into JAR manifests as well, such as an automatically incremented build
number and a time stamp, both coming up next.

Need to un-JAR a JAR file? Use Ant's unjar task. Just set the src attribute to
the JAR file to un-jar and set the dest attribute to the directory where you want
the output.

3.7. Setting Build Numbers

Anyone who has released software commercially knows how important it is to keep track of build
numbers. The first version of your software might be 1.0.0, an update might be 1.0.1, a major
update might be 2.0.0, and so on. The buildnumber task is a basic task that can be used to track
these kinds of build numbers.

This task will first attempt to read a build number from a file (by default, build.number in the current
directory) and set the property build.number to the value that was read in (or to 0, if no value was
read). It will increment the number by one and write the new value back to the file.

This task has only one attribute, file, which holds the name in which you want to store the build
number. This attribute is not required. I'll take a look at an example using buildnumber after
discussing time stamps, the next topic.

3.8. Setting Timestamps

The tstamp task sets properties holding the current time so you can time stamp your builds. This task
creates the DSTAMP (day stamp), TSTAMP (time stamp) and TODAY properties in the current project. By
default, the DSTAMP property is in the format "yyyyMMdd", TSTAMP is in the format "hhmm", and TODAY
is in the format "MMMM dd yyyy". If you use this task, it's almost invariably run in an initialization
target.

You can see how this works in Example 3-5, which stores the build number and creation date in the
project's .jar file, using buildnumber and tstamp.

Example 3-5. Using the build number and tstamp tasks
(ch03/buildnumber/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <buildnumber/>
 <tstamp/>
 <delete dir="${output}"/>
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}"
 includes="*.class" >
 <manifest>
 <attribute name="Author" value="${user.name}"/>
 <section name="Shared">
 <attribute name="Title" value="Example"/>

 <attribute name="Vendor" value="MegaAntCo"/>
 <attribute name="Build" value="${build.number}"/>
 <attribute name="Date" value="${TODAY}"/>
 </section>
 <section name="Copyright">
 <attribute name="Copy" value="(C) MegaAntCo 2005"/>
 </section>
 </manifest>
 </jar>
 </target>
</project>

Here's the resulting manifest file from the JAR file, including build number and creation date:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.6.1
Created-By: 1.4.2_03-b02 (Sun Microsystems Inc.)
Author: Steven Holzner

Name: Shared
Title: Example
Vendor: MegaAntCo
Build: 3
Date: June 10 2005

Name: Copyright
Copy: (C) MegaAntCo 2005

This task has only one attribute, prefix, which is optional and sets a prefix for the DSTAMP, TSTAMP,
and TODAY properties. For example, if prefix="time", these properties will be time.TSTAMP,
time.TSTAMP, and time.TODAY, allowing you to name the properties created by this task yourself (at
least to the extent of calling giving them names like name.TSTAMP instead of just TSTAMP).

The tstamp task supports a format nested element that lets you set the date and time format. Here's
an example that creates a timestamp in the property timestamp:

 <tstamp>
 <format property="timestamp" pattern="MM/dd/yyyy hh:mm:ss"/>
 </tstamp>

You can see the attributes of the format element in Table 3-12.

The date/time patterns used by format are the same as used by the Java
SimpleDateFormat class. For more info on those patterns, see
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html.

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Table 3-12. The format task's attributes

Attribute Description Required

locale
Specifies the locale for the date/time string. Make this of the language,
country, variant. The possible values are defined in the Java Locale class.

No

offset
Specifies the offset you want to add to or subtract from the current time, if
any.

No

pattern
Specifies the date/time pattern you want to use. The possible values are
defined in the Java SimpleDateFormat class.

Yes

property Specifies the property in which you want to store the date/time string. Yes

timezone
Specifies the time zone used for generating the time. Possible values are
defined in the Java TimeZone class.

No

unit
Specifies the unit of the offset you've specified in offset. Possible values are
millisecond, second, minute, hour, day, week, month, or year.

No

Chapter 4. Deploying Builds
This chapter starts coverage of one of the things Ant does best: deployment. This chapter covers
tasks to package applications for deployment like tar, gzip, and zip; tasks to prepare directories for
deployment like delete and mkdir; and tasks to deploy applications like copy and move for local and
network deployment, as well as ftp, telent, sshexec, and mail for remote deployment. You'll see
other deployment-related tasks, such as touch to set the deployed files' modification dates to a
specific value (as is done for commercial software deployments), fixcrlf to fix text file line endings
(as in readme, .sh, .bat, .html, or .ini files) for different platforms, and more. Finally, you'll learn how
to handle build automation, setting up builds to run on their own, at a schedule of your choosing.

There's more on deployment coming up in this book. Ant has a lot of support
for deploying web applications, so much so that it'll take more than just this
chapter to cover. Chapter 8 covers how to package and deploy web
applications, including using get (used to send administrative commands to
web servers remotely), serverdeploy, war, and other Ant tasks designed to load
web applications to various servers. Chapter 8 and part of Chapter 9 also
specifically discuss how to deploy to Enterprise JavaBean© (EJB) application
servers.

4.1. Packaging Applications for Deployment

We're going to start with deployment tasks designed to package applications for deployment: tar,
gzip, and zip. These are not the only way to package applications; the jar task was covered in
Chapter 3 on Java Development, and the war task, a special form of the jar task for Web applications
that makes allowances for files like the deployment descriptor web.xml, will be covered in Chapter 8.

4.1.1. Creating TAR Files

The tar task creates a TAR archive, handy for archiving files for distribution. This task is directory-
based and, like other such tasks, forms an implicit FileSet that defines which filesrelative to the
basedir attribute settingwill be included in the archive.

If you set the compression attribute to gzip or bzip2, you can compress the output .tar file to the
specified format. For instance, Example 4-1 compiles code and places the resulting Project.class file in
a .tar.gz file, Project.tar.gz, by setting the compression attribute to gzip.

Example 4-1. Tarring a file (ch04/tar/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .tar.gz file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <tar
 destfile="${output}/Project.tar.gz"
 basedir="${output}"

 includes="*.class"
 compression="gzip"/>
 </target>
</project>

The attributes of this task appear in Table 4-1.

Table 4-1. The tar task's attributes

Attribute Description Required Default

basedir
Specifies the directory from which to get the
files to TAR.

No

compression
Sets the compression method, if any. Legal
values are none, gzip and bzip2.

No none

defaultexcludes
Specifies if you want to use default excludes.
Set to yes/no.

No
Default excludes are
used.

destfile
Specifies the name of the TAR file you want to
create.

Yes

excludes
Specifies the patterns matching files to
exclude, as a comma- or space-separated list.

No
No files (except
default excludes)
are excluded.

excludesfile
Specifies the name of a file where each line is
a pattern matching files to exclude.

No

includes
Specifies the patterns matching files to
include, as a comma- or space-separated list.

No
All files are
included.

includesfile
Specifies the name of a file where each line is
a pattern matching files to include.

No

longfile
Specifies how you want to handle long file
paths (more than 100 characters). Possible
values are truncate, fail, warn, omit and gnu.

No warn

Here's another example that uses the Ant gzip task after the tar task to create Project.tar.gz:

<tar tarfile="${dist}/Project.tar" basedir="${output}"/>
<gzip zipfile="${dist}/Project.tar.gz" src="${dist}/project.tar"/>

This next example does the same thing, except that it excludes files from the beta directory and any
todo.html files:

<tar tarfile="${dist}/Project.tar" basedir="${output}"

 excludes="beta/**, **/todo.html"/>
<gzip zipfile="${dist}/Project.tar.gz" src="${dist}/project.tar"/>

The tar task supports nested tarfileset elements. These are specially extended FileSet types that
support all the fileset attributes, and the additional attributes you see in Table 4-2.

The tarfileset type gives you control over the access mode, username, and
groupname to be applied to the TAR entries. This is handy, for example, when
preparing archives for Unix systems where certain files need to have execute
permissions.

Table 4-2. The additional tarfileset attributes

Attribute Description Required Default

dirmode

Specifies a 3-digit octal string which gives the user
and group using normal Unix conventions. Applies to
directories only. Available since Ant 1.6.

No 755

fullpath
Using this attribute means the file in the fileset is
written with this path in the compressed file.

No

group Specifies the group name for the TAR item. No

mode

Specifies a 3-digit octal string, which gives the user
and group using normal Unix conventions. Applies to
plain files only.

No 644

prefix
Specifies a path with which to prefix all files in the
compressed file.

No

preserveLeadingSlashes
Specifies if you want to preserve leading slashes (/)
in filenames.

No false

username Specifies the username for this TAR item. No

This next, longer example uses GNU extensions for long paths and uses tarfileset elements to mark
some files as executable (specifically, using Unix file mode 755, which means executable and readable
by all, and writeable by the owner):

<tar longfile="gnu"
 destfile="${dist}" >
 <tarfileset dir="${bin}" mode="755" username="developer" group="ant">
 <include name="${bin}/bootstrap.sh"/>
 <include name="${bin}/build.sh"/>
 </tarfileset>
 <tarfileset dir="${dist}" username="developer" group="ant">
 <include name="${dist}/**"/>

 <exclude name="${dist}/*.sh"/>
 </tarfileset>
</tar>

Want to un-TAR a .tar archive? Ant has an untar task.

4.1.2. Compressing Using gzip and bzip2

The gzip and bzip2 tasks pack files using the GZip or BZip2 algorithms. Here's an example that GZips
a .tar file:

<gzip src="Project.tar" destfile="Project.tar.gz"/>

Here's a similar example that BZips a .tar file:

<bzip2 src="Project.tar" destfile="Project.tar.bz2"/>

Ant supports gunzip and bunzip2 tasks for uncompressing archives.

The supported attributes for these tasks appear in Table 4-3.

Table 4-3. The gzip and bunzip2 tasks' attributes

Attribute Description Required

destfile Specifies the file you want to create. Exactly one of destfile or zipfile

src Specifies the file you want to GZip or BZip. Yes

zipfile Deprecated. Use destfile. Exactly one of destfile or zipfile

4.1.3. Creating ZIP Files

The zip task creates ZIP files, useful for packaging files for deployment. The zip task is easy enough
to use; here's how to zip all files in the ${dist}/docs directory into docs.zip. If docs.zip doesn't exist,

it's created; if it does, the files in it are updated:

<zip destfile="${dist}/docs.zip"
 basedir="${dist}/docs"
 update="true"
/>

This next example zips all files in the ${dist}/docs directory. Only .html files in the directory api will
be zipped, and files with the name beta.html are excluded:

<zip destfile="${dist}/docs.zip"
 basedir="${dist}/docs"
 includes="api/**/*.html"
 excludes="**/beta.html"
/>

The attributes of this task appear in Table 4-4.

A JAR archive is a ZIP file with a manifest; if you don't want a manifest in a JAR
file, use zip instead of jar.

Table 4-4. The zip task's attributes

Attribute Description Required Default

basedir
Specifies the directory where the files you
want to zip are.

No

compress
Specifies that you don't want to store data
but want to compresses it.

No true

defaultexcludes
Specifies whether you want default
excludes to be used or not (yes/no).

No
Default excludes
are used

destfile Specifies the ZIP file you want to create.
Exactly one of
destfile or
zipfile.

duplicate

Specifies what you want to do when a
duplicate file is found. Valid values are add,
preserve, and fail.

No add

encoding
Specifies the character encoding you want
to use inside the ZIP file.

No
The platform's
default character
encoding.

Attribute Description Required Default

excludes

Specifies the patterns matching files to
exclude, as a comma- or space-separated
list.

No
No files (except
default excludes)
are excluded.

excludesfile
Specifies the name of a file where each line
is a pattern matching files to exclude.

No

filesonly Stores only file entries. No false

includes

Specifies the patterns matching files to
include, as a comma- or space-separated
list.

No
All files are
included.

includesfile
Specifies the name of a file where each line
is a pattern matching files to include.

No

keepcompression

Preserves the compression as it has been
in archives you're compressing instead of
using the compress attribute. Available
since Ant 1.6.

No false

update

Specifies whether you want to update or
overwrite the destination file in case it
exists.

No false

whenempty

Specifies what you want to do when no
files match. Possible values are fail, skip,
and create.

No skip

zipfile Deprecated. Use destfile.
One of destfile
or zipfile

This task supports any number of nested fileset elements to specify the files to be included in the
ZIP file. The zip task supports any number of nested zipfileset elements, which support all the
attributes of fileset (see Table 2-8) as well as the ones you see in Table 4-5.

Table 4-5. The additional zipfileset attributes

Attribute Description Required Default

dirmode
Specifies a 3-digit octal string, which gives the user and group
using normal Unix conventions. Applies to directories only.

No 755

filemode
Specifies a 3-digit octal string, which gives the user and group
using normal Unix conventions. Applies to plain files only.

No 644

fullpath
Using this attribute means that the file in the fileset is written with
this path in the compressed file.

No

prefix Specifies a path to with which prefix all files in the compressed file. No

excludes

Specifies the patterns matching files to
exclude, as a comma- or space-separated
list.

No
No files (except
default excludes)
are excluded.

excludesfile
Specifies the name of a file where each line
is a pattern matching files to exclude.

No

filesonly Stores only file entries. No false

includes

Specifies the patterns matching files to
include, as a comma- or space-separated
list.

No
All files are
included.

includesfile
Specifies the name of a file where each line
is a pattern matching files to include.

No

keepcompression

Preserves the compression as it has been
in archives you're compressing instead of
using the compress attribute. Available
since Ant 1.6.

No false

update

Specifies whether you want to update or
overwrite the destination file in case it
exists.

No false

whenempty

Specifies what you want to do when no
files match. Possible values are fail, skip,
and create.

No skip

zipfile Deprecated. Use destfile.
One of destfile
or zipfile

This task supports any number of nested fileset elements to specify the files to be included in the
ZIP file. The zip task supports any number of nested zipfileset elements, which support all the
attributes of fileset (see Table 2-8) as well as the ones you see in Table 4-5.

Table 4-5. The additional zipfileset attributes

Attribute Description Required Default

dirmode
Specifies a 3-digit octal string, which gives the user and group
using normal Unix conventions. Applies to directories only.

No 755

filemode
Specifies a 3-digit octal string, which gives the user and group
using normal Unix conventions. Applies to plain files only.

No 644

fullpath
Using this attribute means that the file in the fileset is written with
this path in the compressed file.

No

Attribute Description Required Default

prefix Specifies a path to with which prefix all files in the compressed file. No

src Specifies a ZIP file instead of a directory as the source of files. No

You can nest zipgroupfileset elements in a zip task. These elements allow you to add multiple ZIP
files in the archive. The attributes for the zipgroupfileset type are the same as for the fileset type
and include the extra attributes for zipfileset elements (see Table 4-5).

Because the zip task forms an implicit FileSet (dir becomes basedir), you can
use nested include, exclude, and patternset elements.

This example zips all files in the docs directory into the docs/guide directory in the archive, adds the
file readme.txt in the current directory as docs/readme.txt, and includes all the html files in
examples.zip under docs/examples:

<zip destfile="${dist}/docs.zip">
 <zipfileset dir="docs" prefix="docs/guide"/>
 <zipfileset dir="${dist}" includes="readme.txt" fullpath="docs/readme.txt"/>
 <zipfileset src="examples.zip" includes="**/*.html" prefix="docs/examples"/>
</zip>

Ant provides an unzip task if you want to decompress ZIP files.

4.1.4. Fixing Carriage Returns

If you've ever deployed documentation files from Unix to Windows or Windows to Unix, you've
probably run into problems with line endings. Lines in Unix text files typically end with a newline (/n)
while those in DOS and Windows typically end with a carriage return/line feed pair (/r/n). To modify
text files before deploying them to other operating systems, use fixcrlf. Like other directory-based
Ant tasks, this task forms an implicit FileSet and supports all attributes of fileset (dir becomes
srcdir) as well as the nested include, exclude and patternset elements.

Say, for example, that you wanted to convert the end of line characters in Unix shell scripts (*.sh) to
be uploaded from Windows to a Unix server to a linefeed, and remove any DOS-style end-of-file
(EOF) characters (^Z). You could do that like this:

<fixcrlf srcdir="${src}"
 eol="lf"
 eof="remove"

prefix Specifies a path to with which prefix all files in the compressed file. No

src Specifies a ZIP file instead of a directory as the source of files. No

You can nest zipgroupfileset elements in a zip task. These elements allow you to add multiple ZIP
files in the archive. The attributes for the zipgroupfileset type are the same as for the fileset type
and include the extra attributes for zipfileset elements (see Table 4-5).

Because the zip task forms an implicit FileSet (dir becomes basedir), you can
use nested include, exclude, and patternset elements.

This example zips all files in the docs directory into the docs/guide directory in the archive, adds the
file readme.txt in the current directory as docs/readme.txt, and includes all the html files in
examples.zip under docs/examples:

<zip destfile="${dist}/docs.zip">
 <zipfileset dir="docs" prefix="docs/guide"/>
 <zipfileset dir="${dist}" includes="readme.txt" fullpath="docs/readme.txt"/>
 <zipfileset src="examples.zip" includes="**/*.html" prefix="docs/examples"/>
</zip>

Ant provides an unzip task if you want to decompress ZIP files.

4.1.4. Fixing Carriage Returns

If you've ever deployed documentation files from Unix to Windows or Windows to Unix, you've
probably run into problems with line endings. Lines in Unix text files typically end with a newline (/n)
while those in DOS and Windows typically end with a carriage return/line feed pair (/r/n). To modify
text files before deploying them to other operating systems, use fixcrlf. Like other directory-based
Ant tasks, this task forms an implicit FileSet and supports all attributes of fileset (dir becomes
srcdir) as well as the nested include, exclude and patternset elements.

Say, for example, that you wanted to convert the end of line characters in Unix shell scripts (*.sh) to
be uploaded from Windows to a Unix server to a linefeed, and remove any DOS-style end-of-file
(EOF) characters (^Z). You could do that like this:

<fixcrlf srcdir="${src}"
 eol="lf"
 eof="remove"

 includes="**/*.sh"
/>

Here's how you might go the other way, replacing all end-of-line (EOL) characters with a cr-lf pair in
DOS batch (.bat) files in preparation to downloading them to Windows:

<fixcrlf srcdir="${src}"
 eol="crlf"
 eof="add"
 includes="**/*.bat"
/>

This example converts all *.txt files according to the convention of the host operating system and
replaces tabs with spaces:

<fixcrlf srcdir="${src}"
 tab="remove"
 includes="**/*.txt"
/>

As demonstrated by the previous example, fixcrlf is good for removing or
inserting tabs. That's useful because some software (e.g., Make) is finicky
about tabs.

The attributes of this task appear in Table 4-6.

Table 4-6. The fixcrlf task's attributes

Attribute Description Required Default

cr Deprecated. Use eol. No

defaultexcludes

Specifies if you want to use
default excludes or not Set to
yes/no.

No Default excludes are used.

destDir
Specifies where you want the
modified files.

No The value of srcDir.

encoding
Specifies the encoding of the
files you're working on.

No The default JVM encoding.

Specifies how you want to
handle DOS end-of-file (^Z)
characters. Possible values are:

Attribute Description Required Default

eof

add

Makes sure an EOF
character is at the end of
the file.

asis

Leaves EOF characters
alone.

remove

Removes any EOF
character found at the
end.

No

The default is based on platform. In
Unix, the default is remove. For
Windows/DOS systems, the default
is asis.

eol

Specifies how you want to
handle end-of-line (EOL)
characters. Possible values are:

asis

Leaves EOL characters
alone.

cr

Converts all EOLs to a
single CR.

lf

Converts all EOLs to a
single LF.

crlf

No

The default is based on platform. In
Unix, the default is lf. For
Windows/DOS systems, the default
is crlf. For Mac OS, the default is
cr.

eof

add

Makes sure an EOF
character is at the end of
the file.

asis

Leaves EOF characters
alone.

remove

Removes any EOF
character found at the
end.

No

The default is based on platform. In
Unix, the default is remove. For
Windows/DOS systems, the default
is asis.

eol

Specifies how you want to
handle end-of-line (EOL)
characters. Possible values are:

asis

Leaves EOL characters
alone.

cr

Converts all EOLs to a
single CR.

lf

Converts all EOLs to a
single LF.

crlf

No

The default is based on platform. In
Unix, the default is lf. For
Windows/DOS systems, the default
is crlf. For Mac OS, the default is
cr.

Attribute Description Required Default

Converts all EOLs to the
pair CRLF.

mac

Converts all EOLs to a
single CR.

unix

Converts all EOLs to a
single LF.

dos

Converts all EOLs to the
pair CRLF.

excludes

Specifies the patterns matching
files to exclude, as a comma- or
space-separated list.

No

excludesfile

Specifies the name of a file
where each line is a pattern
matching files to exclude.

No

fixlast

Specifies whether you want to
add an EOL to the last line of a
processed file. Available since
Ant 1.6.1.

No true

includes

Specifies the patterns matching
files to include, as a comma- or
space-separated list.

No

includesfile

Specifies the name of a file
where each line is a pattern
matching files to include.

No

javafiles

Specifies if the file is a Java
code file. Used with the tab
attribute. Set to yes/no.

No no

srcDir
Specifies where to find the files
you want to fix.

Yes

Specifies how you want to
handle tab characters. Possible

Converts all EOLs to the
pair CRLF.

mac

Converts all EOLs to a
single CR.

unix

Converts all EOLs to a
single LF.

dos

Converts all EOLs to the
pair CRLF.

excludes

Specifies the patterns matching
files to exclude, as a comma- or
space-separated list.

No

excludesfile

Specifies the name of a file
where each line is a pattern
matching files to exclude.

No

fixlast

Specifies whether you want to
add an EOL to the last line of a
processed file. Available since
Ant 1.6.1.

No true

includes

Specifies the patterns matching
files to include, as a comma- or
space-separated list.

No

includesfile

Specifies the name of a file
where each line is a pattern
matching files to include.

No

javafiles

Specifies if the file is a Java
code file. Used with the tab
attribute. Set to yes/no.

No no

srcDir
Specifies where to find the files
you want to fix.

Yes

Specifies how you want to
handle tab characters. Possible

Attribute Description Required Default

tab

handle tab characters. Possible
values are:

add

Converts sequences of
spaces span a tab stop to
tabs.

asis

Leaves tab and space
characters alone.

remove

Converts tabs to spaces.

No asis

tablength

Specifies the tab character
interval. Possible values range
from 2 to 80.

No 8

The output file is only written if it is a new file, or if it differs from the existing
file. The idea is to prevent bogus rebuilds based on unchanged files that have
been regenerated by this task.

4.1.5. Checking File Contents Using Checksums

A checksum is a numerical value corresponding to the contents of a file, and it can tell you if the copy
of the file you've deployed is a good copy. This task lets you create an MD5 checksum for a file or set
of files. Here's an example using this task; in this case, I'm creating an MD5 checksum for Project.jar,
which will be stored in a file named Project.jar.MD5:

<checksum file="Project.jar"/>

You can generate a similar checksum for the file after it's been deployed to check if it's OK.

Build files can be used to verify checksum values when testing a deployment; for example, you can
generate an MD5 checksum for Project.jar, compare that value to a value you've hard-coded into a
property named checksum, and set the property checksumOK if the two values match:

tab

handle tab characters. Possible
values are:

add

Converts sequences of
spaces span a tab stop to
tabs.

asis

Leaves tab and space
characters alone.

remove

Converts tabs to spaces.

No asis

tablength

Specifies the tab character
interval. Possible values range
from 2 to 80.

No 8

The output file is only written if it is a new file, or if it differs from the existing
file. The idea is to prevent bogus rebuilds based on unchanged files that have
been regenerated by this task.

4.1.5. Checking File Contents Using Checksums

A checksum is a numerical value corresponding to the contents of a file, and it can tell you if the copy
of the file you've deployed is a good copy. This task lets you create an MD5 checksum for a file or set
of files. Here's an example using this task; in this case, I'm creating an MD5 checksum for Project.jar,
which will be stored in a file named Project.jar.MD5:

<checksum file="Project.jar"/>

You can generate a similar checksum for the file after it's been deployed to check if it's OK.

Build files can be used to verify checksum values when testing a deployment; for example, you can
generate an MD5 checksum for Project.jar, compare that value to a value you've hard-coded into a
property named checksum, and set the property checksumOK if the two values match:

<checksum file="Project.jar" property="${checksum}" verifyProperty="checksumOK"/>

You can see the attributes of the checksum task in Table 4-7.

Table 4-7. The checksum task's attributes

Attribute Description Required Default

algorithm
Specifies the algorithm you want to use to
compute the checksum.

No MD5

file
Specifies the file you want to generate the
checksum for.

One of file or
at least one
nested fileset
element.

fileext
Specifies the extension of the file for the
generated checksum.

No
Defaults to the
algorithm name
being used.

forceoverwrite
Specifies whether you want to overwrite
existing files.

No no

property

If verifyproperty is not set, property
specifies the name of the property to hold
the checksum value. If verifyproperty is
set, property specifies the actual
checksum value you expect.

No

provider Specifies the algorithm provider. No

readbuffersize
Specifies the size of the buffer the task
should use when reading files, in bytes.

No 8192

todir

Specifies the directory where you want
checksums to be written. Available since
Ant 1.6.

No

Checksum files are
written to the same
directory as the
source files.

totalproperty

Specifies the name of the property that
you want to hold a checksum of all the
generated checksums and file paths.
Available since Ant 1.6.

No

verifyproperty

Specifies the name of the property to be
set true or false depending upon whether
the generated checksum matches the
existing checksum.

No

The checksum task can contain nested fileset elements. By now, this should be
old hat to you.

4.1.6. Setting Creation Time and Date

When you're deploying files, you can set the creation date and time of those files to a single value to
make the deployment look more professional (as you'll usually see with commercial software). The
touch task will do this for you; besides setting the creation time and date for a single file, you can do
the same thing for whole directories of files if you include a fileset.

If you only specify a single file, its modification time and date is set to the current time and date:

<touch file="Project.jar"/>

Here's an example that sets the modification time and date of all the files in ${src} to January 1,
2005, at 5:00 PM:

<touch datetime="01/01/2005 5:00 pm">
 <fileset dir="${src}"/>
</touch>

If the file you're touching doesn't exist, touch will create it for you, which is one
of the few ways you can use Ant to create empty files (you can create files with
text in them with the echo task, using the file attribute). Want to give the file
a name that's guaranteed to be unique? Use Ant's tempfile taskfor example,
<tempfile property="temp.file" /> will store the unique name of a file in the
temp.file property, and <touch file="${temp.file}" /> will create that file.

You can see the attributes of this task in Table 4-8.

Table 4-8. The touch task's attributes

Attribute Description Required

datetime Specifies the new modification time of the file. Use the
formats MM/DD/YYYY HH:MM AM_or_PM or MM/DD/YYYY
HH:MM:SS AM_or_PM.

No

file Specifies the name of the file whose time and/or date
information you want to change.

Yes, unless you use a
nested fileset element.

Attribute Description Required

millis Specifies the new modification time of the file, given in epoch
milliseconds (that is, since midnight, Jan 1, 1970).

No

The touch task can contain nested fileset elements to touch multiple files at once.

millis Specifies the new modification time of the file, given in epoch
milliseconds (that is, since midnight, Jan 1, 1970).

No

The touch task can contain nested fileset elements to touch multiple files at once.

4.2. Preparing to Deploy

Ant supports several tasks for setting up a deployment environment, such as delete and mkdir . Both
these tasks can be used locally or on a network to set up the directory structure you need to deploy
applications.

If you want to create and delete directories remotely, take a look at the ftp task,
coming up later in this chapter.

4.2.1. Deleting Existing Files

When deploying, delete is great to clean up a previous installation or to clean deployment directories
before installing. This task deletes a single file, a directory and all its files and subdirectories, or a set of
files specified by one or more FileSets.

Using this task, you can delete a single file:

<delete file="/lib/Project.jar"/>

Or you can delete an entire directory, including all files and subdirectories:

<delete dir="${dist}"/>

You can use filesets:

<delete includeEmptyDirs="true">
 <fileset dir="${dist}"/>
</delete>

You've seen delete at work in various places throughout the book, as in the build file in the input folder
for Chapter 3 s code (repeated in Example 4-2), where the user is asked for confirmation before
deleting anything.

Example 4-2. Using the delete task (ch03/input/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the .jar file." />

 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <input
 message="Deleting bin directory OK?"
 validargs="y,n"
 addproperty="do.delete"
 />
 <condition property="do.abort">
 <equals arg1="n" arg2="${do.delete}"/>
 </condition>
 <fail if="do.abort">Build aborted.</fail>
 <delete dir="${output}" />
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}" includes="*.class" />
 </target>
</project>

If you use this task to delete temporary files created by editors or other software
and it doesn't work, try setting the defaultexcludes attribute to no .

You can see the attributes of this task in Table 4-9 .

The includes , includesfile , exclude , and excludesfile attributes are
deprecated and are being replaced by fileset . This makes me suspect that other
tasks will follow this same pattern.

Table 4-9. The delete task's attributes

Attribute Description Required Default

defaultexcludes
Specifies if you want to use default
excludes. Set to yes /no .

No
Default excludes
are used.

dir

Specifies the name of a directory to
delete. All its files and subdirectories
will be deleted.

At least one of file or
dir (unless a fileset
element is specified).

excludes

Deprecated. Use a fileset element.
Specifies the patterns matching files to
exclude, as a comma- or space-
separated list.

No
No files (except
default excludes)
are excluded.

excludesfile

Deprecated. Use a fileset element.
Specifies the name of a file where each
line is a pattern matching files to
exclude.

No

failonerror
Specifies if you want an error to stop
the build. Only used if if quiet is false .

No TRue

file Specifies the file you want to delete.
At least one of file or
dir (unless a fileset
element is specified).

includeEmptyDirs
Specifies if you want to delete empty
directories when using file sets.

No false

includes

Deprecated. Use a nested fileset
element. Specifies the patterns
matching files to include, as a comma-
or space-separated list.

No
All files are
included.

includesfile

Deprecated. Use a nested fileset
element. Specifies the name of a file
where each line is a pattern matching
files to include.

No

quiet Suppresses most diagnostic messages. No

verbose

Specifies that you want to show the
name of each deleted file (true /false
).

No false

The delete task can contain nested fileset elements.

Here's something you might not have expected: empty directories are not deleted
by default. To remove empty directories, use the includeEmptyDirs attribute.

4.2.2. Creating New Directories

Want to create the directory structure for local or network deployment? Use mkdir . This one's so
important that you've seen it in use since Chapter 1 . And it's easy to use with only one attribute, as you
can see in Table 4-10 .

Table 4-10. The mkdir task's attributes

Attribute Description Required

dir Specifies the directory you want to create Yes

Want to create a directory? Just do it:

<mkdir dir="${dist}"/>

Just realized that you've asked mkdir to create a directory whose parent
directories don't exist? That's not a problem since mkdir creates parent directories
as needed.

4.3. Deploying Applications

As you'd expect, Ant excels at deploying applications, and there are a number of tasks to choose
from. You've saw the javac task's destdir attribute for deployment back in Chapter 1. In this section,
you'll see copy, move, ftp, telnet, and sshexec.

The copy and move tasks are useful for local and network deployments, and tasks like ftp are great
for remote deployments. Additionally, Chapter 8 will cover deployment to web servers with tasks like
get, which you can use to send administrative commands to servers like Tomcat (I'll cover Tomcat's
built-in custom Ant tasks), and serverdeploy.

Want to get a file's name without the path attached? Pass the filename to the
basename task. Want to get just the path? Use dirname. The pathconvert task
converts a nested path or reference to a Path, FileSet, DirSet, or FileList into a
path (automatically adjusted for the target platform) and stores the result in a
given property.

4.3.1. Deploying by Copying

This task copies a file, or a fileset, to a new file or a new directory. This is Ant's most basic
deployment task for local and network deployment. Here are a few examples, starting with copying
just one file:

<copy file="file.txt" tofile="backup.txt"/>

This example copies a file to a new location:

<copy file="file.txt" todir="../backup"/>

This example copies an entire directory to a new location:

<copy todir="../backup">
 <fileset dir="${src}"/>
</copy>

This copies a set of files to a new directory:

<copy todir="../backup">
 <fileset dir="src">
 <include name="**/*.java"/>
 </fileset>

</copy>

Want to copy files and change their names? Use a mapper element like this:

<copy todir="../backup">
 <fileset dir="src"/>
 <mapper type="glob" from="*" to="*.old"/>
</copy>

Here's how to copy a set of files to a directory, replacing @TODO@ with "DONE" in all copied files:

<copy todir="../backup">
 <fileset dir="src"/>
 <filter set>
 <filter token="TODO" value="DONE"/>
 </filter set>
</copy>

In Unix, file permissions are not retained when files are copied; files end up
with the default UMASK permissions instead. If you need a permission-preserving
copy function, use the system copy utilitiessee the exec task in Chapter 7
(you'd use <exec executable="cp" ... > here). Or use the chmod task, coming
up in this chapter, after the copy.

Example 4-3 uses copy to copy a documentation file to make sure it's included in the final JAR for a
project and then deploys the JAR file to a directory named user.

Example 4-3. Using the copy task (ch04/copy/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Deploying the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />
 <property name="dist" location="user" />

 <target name="main" depends="init, compile, compress, deploy">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 <mkdir dir="${dist}" />

 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <copy todir="${output}" file="${src}/readme.txt"/>
 <jar destfile="${output}/Project.jar" basedir="${output}">
 <include name="*.class"/>
 <include name="*.txt"/>
 </jar>
 </target>

 <target name="deploy">
 <copy todir="${dist}">
 <fileset dir="${output}">
 <exclude name="*.java"/>
 <exclude name="*.class"/>
 <exclude name="*.txt"/>
 </fileset>
 </copy>
 </target>

</project>

You can see the attributes of this task in Table 4-11.

Table 4-11. The copy task's attributes

Attribute Description Required Default

enablemultiplemappings

Specifies that you want
to use multiple mapper
elements. Available
since Ant 1.6.

No false

encoding

Specifies the encoding
to use. For use when
copying files using
filters.

No
Defaults to
default JVM
encoding.

failonerror

Specifies whether you
want the task to fail if
there is an error.

No TRue

file
Specifies the file you
want to copy.

Yes, unless a nested fileset
element is used.

Specifies whether you

Attribute Description Required Default

filtering

Specifies whether you
want to use filtering.
Nested filterset
elements will always be
used; you don't have to
set this attribute to true
for that.

No false

flatten

Specifies you want to
ignore the directory
structure of source files,
copying all files into the
directory given by the
todir attribute.

No false

includeEmptyDirs

Specifies you want to
copy any empty
directories as well.

No TRue

outputencoding

Specifies the encoding
you want to use when
writing files. Available
since Ant 1.6.

No

Defaults to the
value of the
encoding
attribute if given,
or the default
JVM encoding
otherwise.

overwrite

Specifies whether you
want to overwrite
existing files.

No false

preservelastmodified

Specifies you want
copied files to have the
same modified time as
the source files.

No false

todir Specifies the directory
the files should be
copied to.

If you use the file
attribute, tofile or todir
can be used. If you use
nested fileset elements
and if the number of files is
more than 1 or if only the
dir attribute is specified in
the fileset, then only todir
is allowed.

tofile Specifies the file you
want to copy to.

If you use the file
attribute, tofile or todir
can be used. If you use
nested fileset elements
and if the number of files is
more than 1 or if only the
dir attribute is specified in
the fileset, then only todir

filtering

Specifies whether you
want to use filtering.
Nested filterset
elements will always be
used; you don't have to
set this attribute to true
for that.

No false

flatten

Specifies you want to
ignore the directory
structure of source files,
copying all files into the
directory given by the
todir attribute.

No false

includeEmptyDirs

Specifies you want to
copy any empty
directories as well.

No TRue

outputencoding

Specifies the encoding
you want to use when
writing files. Available
since Ant 1.6.

No

Defaults to the
value of the
encoding
attribute if given,
or the default
JVM encoding
otherwise.

overwrite

Specifies whether you
want to overwrite
existing files.

No false

preservelastmodified

Specifies you want
copied files to have the
same modified time as
the source files.

No false

todir Specifies the directory
the files should be
copied to.

If you use the file
attribute, tofile or todir
can be used. If you use
nested fileset elements
and if the number of files is
more than 1 or if only the
dir attribute is specified in
the fileset, then only todir
is allowed.

tofile Specifies the file you
want to copy to.

If you use the file
attribute, tofile or todir
can be used. If you use
nested fileset elements
and if the number of files is
more than 1 or if only the
dir attribute is specified in
the fileset, then only todir

Attribute Description Required Default the fileset, then only todir
is allowed.

verbose
Specifies you want to
see filenames displayed
as the files are being
copied.

No false

By default, files are only copied if the source file is newer than the destination
file or when the destination file does not exist. However, you can explicitly
overwrite files with the overwrite attribute.

You can use fileset elements inside copy elements to create a fileset to copy. If you want to use a
fileset, the todir attribute must be set. You can use nested mapper elements, and filter set
elements and the copy task supports nested FilterChains.

If you use filters in your copy operation, limit the operation to text files. Binary
files will be corrupted by that kind of copy operation. This is true whether the
filters are implicitly defined by the filter task or explicitly provided to the copy
operation as filter sets.

4.3.2. Moving Files

The move task moves a file (copies and then deletes the original) to a new file or a new directory or it
moves sets of files to a new directory. The attributes and nested elements are the same as for copy
(see Table 4-11 and related sections).

By default, the destination file is overwritten if it already exists. When
overwrite is turned off, files are only moved if the source file is newer than the
destination file, or when the destination file does not exist.

Here's an example that moves a single file (the net result is that the file is renamed):

<move file="file.txt" tofile="file.backup"/>

Here's how to move a directory to a new directory:

<move todir="source">
 <fileset dir="backup"/>
</move>

the fileset, then only todir
is allowed.

verbose
Specifies you want to
see filenames displayed
as the files are being
copied.

No false

By default, files are only copied if the source file is newer than the destination
file or when the destination file does not exist. However, you can explicitly
overwrite files with the overwrite attribute.

You can use fileset elements inside copy elements to create a fileset to copy. If you want to use a
fileset, the todir attribute must be set. You can use nested mapper elements, and filter set
elements and the copy task supports nested FilterChains.

If you use filters in your copy operation, limit the operation to text files. Binary
files will be corrupted by that kind of copy operation. This is true whether the
filters are implicitly defined by the filter task or explicitly provided to the copy
operation as filter sets.

4.3.2. Moving Files

The move task moves a file (copies and then deletes the original) to a new file or a new directory or it
moves sets of files to a new directory. The attributes and nested elements are the same as for copy
(see Table 4-11 and related sections).

By default, the destination file is overwritten if it already exists. When
overwrite is turned off, files are only moved if the source file is newer than the
destination file, or when the destination file does not exist.

Here's an example that moves a single file (the net result is that the file is renamed):

<move file="file.txt" tofile="file.backup"/>

Here's how to move a directory to a new directory:

<move todir="source">
 <fileset dir="backup"/>
</move>

Example 4-4 uses move to deploy the files it creates.

Example 4-4. Moving a file (ch04/move/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Deploying the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />
 <property name="dist" location="user" />

 <target name="main" depends="init, compile, compress, deploy">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 <mkdir dir="${dist}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}"
 includes="*.class" />
 </target>

 <target name="deploy">
 <move todir="${dist}">
 <fileset dir="${output}">
 <exclude name="*.java"/>
 <exclude name="*.class"/>
 </fileset>
 </move>
 </target>

</project>

For more examples, look at the section "Deploying By Copying".

4.3.3. Deploying Remotely Using FTP

The ftp task is handy for remote deployment. This task can send, receive, list, delete files, and
create directories. This is one of Ant's optional tasks, so you'll need two JAR files, which you place in
the Ant lib directory: jakarta-oro.jar (available from http://jakarta.apache.org/oro/) and commons-
net.jar (available from http://jakarta.apache.org/commons/net/index.html).

If you want to use this task with MS FTP servers, you need a version of
commons-net.jar and jakarta-oro.jar released after 02/01/2004, or a release of
commons-net.jar after 1.1.0 and jakarta-oro.jar after 2.0.8.

Here's an example that deploys the results of a build to the directory /cgi-bin on a remote server.
Since it's a bad idea to hardcode the username and password in build files, I'll set those as properties
on the command line (you can use the input task here) using the properties name and password:

%ant -Dname=Steve -Dpassword=let_me_in

The build file is shown in Example 4-5. Before running the file, supply the IP address of the server by
changing the value of the server attribute from "000.000.000.000" to the IP address of your server
or use the name of the server, like "ftp.apache.org." Though you usually supply an action attribute
telling ftp what to do, the default action is to send files (action="send"), so you can omit action
here.

Example 4-5. Using ftp (ch04/ftp/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Deploying the .jar file." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress, deploy">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">

http://jakarta.apache.org/oro/
http://jakarta.apache.org/commons/net/index.html

 <jar destfile="${output}/Project.jar" basedir="${output}">
 <include name="*.class"/>
 <include name="*.txt"/>
 </jar>
 </target>

 <target name="deploy">
 <ftp server="000.000.000.000" binary="true" verbose="true"
 userid="${name}" password="${password}" remotedir="/cgi-bin">
 <fileset dir="${output}">
 <exclude name="*.java"/>
 <exclude name="*.class"/>
 <exclude name="*.txt"/>
 </fileset>
 </ftp>
 </target>

</project>

Here's what running this build file looks like in Windows when uploading the results of a build to a
remote server:

C:\ant\ch04\ftp>ant -Dname=steven -Dpassword=let_me_in
Buildfile: build.xml

init:
 [mkdir] Created dir: C:\ant\ch04\ftp\bin

compile:
 [javac] Compiling 1 source file to C:\ant\ch04\ftp\bin

compress:
 [jar] Building jar: C:\ant\ch04\ftp\bin\Project.jar

deploy:
 [ftp] sending files
 [ftp] transferring C:\ant\ch04\ftp\bin\Project.jar
 [ftp] 1 files sent

main:
 [echo]
 [echo] Deploying the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 10 seconds

That's it; you've deployed the results of the build remotely. Very cool!

If you want to build in delay times to take into account delays in getting
responses from a server, use the Ant waitfor task. You can use the sleep task
for this purpose.

To retrieve files from the server using ftp, you set action to get, the remotedir attribute to the
remote directory, and the dir attribute to the directory you want the retrieved files stored in locally:

<ftp action="get"
 server="000.000.000.000"
 remotedir="/cgi-bin"
 userid="${name}"
 password="${password}">
 <fileset dir="docs">
 <include name="**/*.html"/>
 </fileset>
</ftp>

To delete files, set action to "del":

<ftp action="del"
 server="000.000.000.000"
 remotedir="/cgi-bin"
 userid="${name}"
 password="${password}">
 <fileset>
 <include name="**/*.html"/>
 </fileset>
</ftp>

To list files, set action to "list;" here's how to store the listing of files in the remote /cgi-bin directory
in a file named file.list:

<ftp action="list"
 server="000.000.000.000"
 remotedir="/cgi-bin"
 userid="${name}"
 password="${password}"
 listing="ftp.list">
 <fileset>
 <include name="**"/>
 </fileset>
</ftp>

Here's how to create a directory, /cgi-bin, by setting action to "mkdir:"

<ftp action="mkdir"
 server="000.000.000.000"

 remotedir="/cgi-bin"
 userid="${name}"
 password="${password}"/>

You can remove directories; set action to rmdir.

You can see the attributes of this task in Table 4-12.

Table 4-12. The ftp task's attributes

Attribute Description Required Default

action

Specifies the ftp action you want to
perform. Possible values: put, get, del,
list, chmod, mkdir and rmdir.

No send

binary

Specifies the transfer mode. Possible
values: binary-mode (yes) or text-mode
(no).

No yes

chmod
Specifies the file permissions for new or
existing files (Unix only).

No

depends
Specifies you want to transfer only new
or changed files. Set to yes/no.

No no

ignoreNoncriticalErrors

Specifies you want to allow the task to
continue despite some non-fatal error
codes.

No false

listing
Specifies a file to write output from the
"list" action.

Required for the
"list" action, but
ignored otherwise.

newer The same as the depends attribute. No

passive
Specifies you want to use passive
transfers.

No no

password
Specifies the login password for the FTP
server.

Yes

port Specifies the port of the FTP server. No 21

preservelastmodified

Specifies whether you want to give
downloaded files the same modified time
as the original files.

No false

Attribute Description Required Default

remotedir
Specifies a directory on the FTP server
you want to use.

No

separator
Specifies the directory separator used on
the target FTP server.

No /

server Specifies the address of the FTP server. Yes

skipFailedTransfers
Specifies unsuccessful transfers should
be skipped (with a warning).

No false

timediffauto

Specifies if to make this task calculate
the time difference between you and
server. Available in Ant 1.6 or later.

No

timediffmillis

Specifies the number of milliseconds
between times on the target machine
compared to the local machine. Available
since Ant 1.6.

No

umask
Specifies the default file permission (unix
only).

No

userid
Specifies the login you want to use on
the FTP server.

Yes

verbose

Specifies whether you want to see
information on each file as it's
transferred. Set to yes/no.

No no

The condition task lets you probe if remote systems are available before
attempting an FTP operationYou can use two nested elements in condition:
http (which can test can probe for remote servers) and socket (which can send
messages to remote servers).

The ftp task supports any number of nested fileset elements, which is how you specify the files to
be retrieved, deleted, or listed, or whose mode you want to change.

4.3.4. Deploying Remotely Using Telnet

Ant includes a telnet task that you can use when deploying remotely. For security reasons, Telnet is
losing popularity (in favor of SSH), but I'll take a look at telnet, followed by the sshexec task. This is
one of Ant's optional tasks, so you'll need commons-net.jar (available from
http://jakarta.apache.org/commons/net/index.html) in the Ant lib directory.

This task uses nested read elements to indicate strings to wait for and write elements to specify text
to send. Here's an example that connects to a server, and asks for a listing of the directory
/home/steven:

remotedir
Specifies a directory on the FTP server
you want to use.

No

separator
Specifies the directory separator used on
the target FTP server.

No /

server Specifies the address of the FTP server. Yes

skipFailedTransfers
Specifies unsuccessful transfers should
be skipped (with a warning).

No false

timediffauto

Specifies if to make this task calculate
the time difference between you and
server. Available in Ant 1.6 or later.

No

timediffmillis

Specifies the number of milliseconds
between times on the target machine
compared to the local machine. Available
since Ant 1.6.

No

umask
Specifies the default file permission (unix
only).

No

userid
Specifies the login you want to use on
the FTP server.

Yes

verbose

Specifies whether you want to see
information on each file as it's
transferred. Set to yes/no.

No no

The condition task lets you probe if remote systems are available before
attempting an FTP operationYou can use two nested elements in condition:
http (which can test can probe for remote servers) and socket (which can send
messages to remote servers).

The ftp task supports any number of nested fileset elements, which is how you specify the files to
be retrieved, deleted, or listed, or whose mode you want to change.

4.3.4. Deploying Remotely Using Telnet

Ant includes a telnet task that you can use when deploying remotely. For security reasons, Telnet is
losing popularity (in favor of SSH), but I'll take a look at telnet, followed by the sshexec task. This is
one of Ant's optional tasks, so you'll need commons-net.jar (available from
http://jakarta.apache.org/commons/net/index.html) in the Ant lib directory.

This task uses nested read elements to indicate strings to wait for and write elements to specify text
to send. Here's an example that connects to a server, and asks for a listing of the directory
/home/steven:

http://jakarta.apache.org/commons/net/index.html
http://jakarta.apache.org/commons/net/index.html

<telnet userid="steven" password="let_me_in" server="000.000.000.000">
 <read>/home/steven</read>
 <write>ls</write>
</telnet>

You can see the attributes of this task in Table 4-13.

Table 4-13. The telnet task's attributes

Attribute Values Required Default

initialCR
Specifies that you want to send a carriage return
after connecting to the server.

No no

password
Specifies the login password you want to use on the
Telnet server.

Yes, if userid is
specified.

port Specifies the port on the Telnet server to use. No 23

server
Specifies the address of the remote Telnet server you
want to use.

Yes

timeout
Specifies a default timeout for Telnet actions (in
seconds).

No
No
timeout

userid
Specifies the username to use to log into the Telnet
server.

Yes, if password is
specified.

4.3.5. Deploying Remotely Using SSH

The more secure SSH protocol is replacing Telnet in general use, and Ant 1.6 added the sshexec task
to execute SSH commands on a remote system. This is an optional task, so you'll need jsch.jar
(which you can get at http://www.jcraft.com/jsch/index.html) in the Ant lib directory. Here's an
example that runs a command, touch, on a remote machine, using sshexec:

<sshexec host="000.000.000.000"
 username="${name}"
 password="${password}"
 command="touch index.html"/>

You can find the attributes of this task in Table 4-14.

See the scp task for copying files for deployment to web servers using SSH in
Chapter 8.

http://www.jcraft.com/jsch/index.html

Table 4-14. The sshexec task's attributes

Attribute Description Required Default

append

Specifies if you
want the output
file to be appended
to or overwritten.

No false

command

Specifies the
command to run
remotely.

Yes

failonerror

Specifies whether
you want to stop
the build if there
are errors.

No true

host

Specifies the host
you want to work
with.

Yes

keyfile

Specifies the name
of a file holding a
private key.

Yes, if you are
using key-based
authentication.

knownhosts

Specifies the
known hosts file.
Used to check the
identity of remote
hosts. Must be an
SSH2 format file.

No ${user.home}/.ssh/known_hostswn_hostts

output

Specifies the name
of a file in which
you want output
written.

No

outputproperty

Specifies the name
of a property in
which you want
output written.

No

passphrase

Specifies a
passphrase you
want to use for
your private key.

No ""

password

Specifies the
password to use
for SSH.

No

Attribute Description Required Default

port
Specifies the port
to connect to.

No 22

timeout

Specifies whether
you want the
operation stopped
if it timed out (in
milliseconds).

No 0 (wait forever)

TRust

Specifies if to trust
all unknown hosts
if set to "yes."

No no

username

Specifies the
username you
want to use.

Yes

4.3.6. Deploying Remotely Through Email

You can deploy using email with the mail task, attaching files you want to deploy (attachments can
be sent using the files attribute or nested fileset elements). You'll need access to an SMTP server,
which you specify in the mailhost attribute and need two JAR files in the Ant lib directory: mail.jar
(which you can get from http://java.sun.com/products/javamail/) and activation.jar (which you can
get from http://java.sun.com/products/javabeans/glasgow/jaf.html).

Here's an example, where the results of a build are deployed as an attachment to an email message.
This email has the subject "New Build", the message body "Here is the new build.", and has the
build's newly created .tar.gz files attached:

<target name="deploy">
 <mail mailhost="smtp.isp.com" mailport="1025" subject="New Build">
 <from address="developer@isp.com"/>
 <replyto address="developer@isp.com"/>
 <to address="list@xyz.com"/>
 <message>Here is the new build.</message>
 <fileset dir="dist">
 <includes name="**/*.tar.gz"/>
 </fileset>
 </mail>
</target>

Now you're deploying via email using Ant. You can see the attributes of the mail task in Table 4-15.

Table 4-15. The mailTask's attributes

port
Specifies the port
to connect to.

No 22

timeout

Specifies whether
you want the
operation stopped
if it timed out (in
milliseconds).

No 0 (wait forever)

TRust

Specifies if to trust
all unknown hosts
if set to "yes."

No no

username

Specifies the
username you
want to use.

Yes

4.3.6. Deploying Remotely Through Email

You can deploy using email with the mail task, attaching files you want to deploy (attachments can
be sent using the files attribute or nested fileset elements). You'll need access to an SMTP server,
which you specify in the mailhost attribute and need two JAR files in the Ant lib directory: mail.jar
(which you can get from http://java.sun.com/products/javamail/) and activation.jar (which you can
get from http://java.sun.com/products/javabeans/glasgow/jaf.html).

Here's an example, where the results of a build are deployed as an attachment to an email message.
This email has the subject "New Build", the message body "Here is the new build.", and has the
build's newly created .tar.gz files attached:

<target name="deploy">
 <mail mailhost="smtp.isp.com" mailport="1025" subject="New Build">
 <from address="developer@isp.com"/>
 <replyto address="developer@isp.com"/>
 <to address="list@xyz.com"/>
 <message>Here is the new build.</message>
 <fileset dir="dist">
 <includes name="**/*.tar.gz"/>
 </fileset>
 </mail>
</target>

Now you're deploying via email using Ant. You can see the attributes of the mail task in Table 4-15.

Table 4-15. The mailTask's attributes

http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/glasgow/jaf.html

Attribute Description Required Default

bcclist

List of addresses to send a blind copy
of the email to. A comma-separated
list.

At least one of tolist,
cclist, bcclist, or the
equivalent elements (to, cc,
or bcc).

cclist

List of addresses to send a copy of
the email to. A comma-separated
list.

At least one of tolist,
cclist, bcclist, or the
equivalent elements (to, cc,
or bcc).

charset
Specifies the character set you want
to use in the email.

No

encoding

Specifies the encoding to use.
Possible values are mime, uu, plain,
or auto.

No auto

failonerror
Specifies whether you want to stop
the build if there are errors.

No TRue

files

Specifies files you want to send as
attachments. Use a comma-
separated list. You can use nested
fileset elements.

No

from
Specifies the email address of the
sender.

Either a from attribute or a
from element.

includefilenames

Specifies whether you want to
include filename(s) before file
contents.

No false

mailhost
Specifies the hostname of the SMTP
server.

No localhost

mailport
Specifies the TCP port of the SMTP
server to use.

No 25

message Specifies the email's body.
One of message, messagefile,
or a message element.

messagefile
Specifies a file to send as the email's
body.

One of message, messagefile,
or a message element.

messagemimetype
Specifies the type of the message's
content.

No text/plain

password
Specifies the password for SMTP
authorization.

Yes, if SMTP authorization is
required on your SMTP
server.

replyto Specifies the reply-to address. No

ssl Specifies if you want to use TLS/SSL. No

Attribute Description Required Default

subject Specifies the email's subject. No

tolist
Specifies a list of recipients. A
comma-separated list.

At least one of tolist,
cclist, bcclist, or the
equivalent elements (to, cc,
or bcc).

user
Specifies the username used to log
into the SMTP server.

Yes, if SMTP authorization is
required on your SMTP
server.

The mail task can take nested to, cc, bcc, from, and replyto elements, which hold email addresses.
Here are the attributes of these elements (these attributes are common across all these elements):

address

Specifies the email address

name

Specifies the display name for the email address

In addition, the nested message element sets the message to include in the email body. Here are the
attributes of this element (all are optional):

charset

Specifies the character set used in the message

mimetype

Specifies the content type of the message

src

Specifies the file to use as the message

You can use email to send the results of a build with the mail logger, which is useful if you've set up
unattended nightly builds with utilities like at in Windows or crontab in Unix (see Chapter 7 for

subject Specifies the email's subject. No

tolist
Specifies a list of recipients. A
comma-separated list.

At least one of tolist,
cclist, bcclist, or the
equivalent elements (to, cc,
or bcc).

user
Specifies the username used to log
into the SMTP server.

Yes, if SMTP authorization is
required on your SMTP
server.

The mail task can take nested to, cc, bcc, from, and replyto elements, which hold email addresses.
Here are the attributes of these elements (these attributes are common across all these elements):

address

Specifies the email address

name

Specifies the display name for the email address

In addition, the nested message element sets the message to include in the email body. Here are the
attributes of this element (all are optional):

charset

Specifies the character set used in the message

mimetype

Specifies the content type of the message

src

Specifies the file to use as the message

You can use email to send the results of a build with the mail logger, which is useful if you've set up
unattended nightly builds with utilities like at in Windows or crontab in Unix (see Chapter 7 for

coverage of both of these). Here's how you use this logger:

%ant -logger org.apache.tools.ant.listener.MailLogger

You set these properties in the build file to set up the email you want sent:

MailLogger.mailhost

Specifies the mail server to use (default: localhost)

MailLogger.port

Specifies the default port for SMTP (default: 25)

MailLogger.from

Specifies the mail "from" address (required)

MailLogger.failure.notify

Specifies if to send on failure (default: true)

MailLogger.success.notify

Specifies if to send on success (default: true)

MailLogger.failure.to

Specifies the address to send failure messages to (required if failure mail to be sent)

MailLogger.success.toSpecifies

The address to send success messages to (required if success mail to be sent)

MailLogger.failure.subject

Specifies the subject of failed build (default: "Build Failure")

MailLogger.success.subject

Specifies the subject of successful build (default: "Build Success")

4.3.7. Setting File Protections with chmod

The chmod task changes the permissions of a file or files, and it's useful in deployment after you've
got your files deployed in case you need to set file permissions. You set the permissions in Unix style
(just as the arguments for the Unix chmod command).

Here's an example that makes run.sh readable, writable and executable for the owner on a Unix
system, and readable and executable for others:

<chmod file="${dist}/run.sh" perm="755"/>

This makes all .sh files in and below ${dist} readable and executable for anyone on a Unix system:

<chmod dir="${dist}" perm="ugo+rx"
 includes="**/*.sh"/>

You can see the attributes for this task in Table 4-16.

At present, the chmod task only works in Unix and the NonStop Kernel
(Tandem).

Table 4-16. The chmod task's attributes

Attribute Description Required Default

defaultexcludes
Specifies if you want to use default
excludes. Set to yes/no.

No
Default
excludes are
used.

dir
Specifies the directory holding the files to
work on.

One of file, dir, or
nested fileset/list
elements.

excludes

Specifies the patterns matching files to
exclude, as a comma- or space-separated
list.

No

Attribute Description Required Default

file
Specifies the file or single directory where
you want permissions to be changed.

One of file, dir, or
nested fileset/list
elements.

includes

Specifies the patterns matching files to
include, as a comma- or space-separated
list.

No

maxparallel

Specifies limits on how many files to pass
at once. Set this attribute to 0 or negative
values for unlimited parallelism. Available
in Ant 1.6 or later.

No unlimited

parallel
Specifies the task should process multiple
files using a single chmod command.

No true

perm Specifies the new permissions you want. Yes

type
Specifies the target type. Possible values:
file, dir, or both.

No file

verbose

Specifies whether the task should display
what it's doing as it does it. Available in Ant
1.6 or later.

No false

This task holds an implicit FileSet and supports all of FileSet's attributes and nested elements directly.
Since Ant 1.6, you can specify nested fileset or dirset elements, and you can use nested filelists.

file
Specifies the file or single directory where
you want permissions to be changed.

One of file, dir, or
nested fileset/list
elements.

includes

Specifies the patterns matching files to
include, as a comma- or space-separated
list.

No

maxparallel

Specifies limits on how many files to pass
at once. Set this attribute to 0 or negative
values for unlimited parallelism. Available
in Ant 1.6 or later.

No unlimited

parallel
Specifies the task should process multiple
files using a single chmod command.

No true

perm Specifies the new permissions you want. Yes

type
Specifies the target type. Possible values:
file, dir, or both.

No file

verbose

Specifies whether the task should display
what it's doing as it does it. Available in Ant
1.6 or later.

No false

This task holds an implicit FileSet and supports all of FileSet's attributes and nested elements directly.
Since Ant 1.6, you can specify nested fileset or dirset elements, and you can use nested filelists.

4.4. Scheduling Automatic Builds

It's time to add some automation to the build process. When you're working alone, you probably won't need to
automate nightly builds, but as part of a team, it's a good idea. Larger projects typically have nightly builds
posted to a web site, and using various automation tools and tasks like ftp , that's no problem. I'll take a look
at various options here.

4.4.1. Unix

You can schedule recurring builds with Unix utilies like crontab , which you use to configure the cron daemon.
For example, say you have a shell script that runs your nightly build, dobuild.sh , something like this:

export ANT_HOME=/usr/local/ant
export JAVA_HOME=/usr/local/jdk1.4
export PATH=${PATH}:${ANT_HOME}/bin
cd /home/work
ant -f nightlybuild.xml

You can schedule that build to happen at various times with crontab by starting its editing mode:

-bash-2.05b$ crontab -e

Edit the crontab file to include this line:

run at 00:01 every day 30 0 * * * $HOME/work/dobuild.sh

That makes your build run every night at 12:01 A.M. Easy enough.

4.4.2. Windows

The Windows at command schedules commands to run in Windows at specific times. For example, say you had
a batch file, dobuild.bat , which runs your nightly build:

set ANT_HOME=C:\ant\apache-ant-1.6.1
set JAVA_HOME=C:\jdk1.4
set PATH=%PATH%;%ANT_HOME%\bin
cd C:\work
call %ANT_HOME%\bin\ant.bat -f nightlybuild.xml

You can schedule that build for every night with the Windows at command:

C:\ant>at 00:01 /every:M,T,W,Th,F "C:\work\dobuild.bat"
Added a new job with job ID = 1

To list scheduled at jobs, enter at :

C:\ant>at
Status ID Day Time Command Line

 1 Each M T W Th F 12:01 AM C:\work\dobuild.bat

Want to get the results of your nightly build emailed to you? Use the Ant mail logger,
covered earlier in this chapter.

The crontab and at commands are basic ways to get your builds to run automatically, but they're still basic.
There are more advanced and powerful tools available.

4.4.3. Anthill

In my opinion, Anthill is the easist of the automatic build tools to use as well as the easiest to install. It's a
software build management server that can handle most of your build needs, from individual up to the
corporate. The web site is http://www.urbancode.com/default.jsp , and this is how Anthill describes itself:

Anthill ensures a controlled build process and promotes the sharing of knowledge within an organization.
Anthill performs a checkout from the source repository of the latest version of a project before every build
and tags the repository with a unique build number after every build. It supports many repository
adapters including: Concurrent Version System (CVS), Visual Source Safe, Perforce, Clearcase, PVCS,
StarTeam, MKSIntegrity and FileSystem. Anthill automatically updates a project intranet site with artifacts
from the latest build.

Anthill comes in two versions: Anthill Pro (fairly expensive) and Anthill OS (free). To install Anthill, download
the binary distribution you want and expand it. Copy anthill.war from the expanded dist directory to a Web
server's application deployment directory, such as the webapps directory of a Tomcat server installation.

Anthill is designed to be used with a Web server that can execute Java code, like Tomcat, and you can get
Tomcat free from http://jakarta.apache.org/tomcat/ . (Anthill was developed and has only been tested using
the Tomcat server, though it's supposed to work with any servlet container.)

Anthill gives you a servlet-based console, hosted by Tomcat or similar server, that lets you configure your
automatic build process. Anthill is designed to check source code out of a code repository automatically and
build that code.

For example, you can test your Anthill installation by logging into the Anthill CVS server to retrieve the code for
a project named anthill-test, using the password "anthill-example":

%cvs -d :pserver:anthill-example@cvs2.urbancode.com:/usr/local/anthill-test login
Logging in to :pserver:anthill-example@cvs2.urbancode.com:2401:/usr/local/anthill-test

CVS password: ***************

In the same command-prompt session, start Tomcat and navigate to http://localhost:8080/anthill to open the
Anthill console, as shown in Figure 4-1 . This is the console that lets you schedule and configure your builds.
Successfully built projects are marked with a green box in the right column of the console.

Figure 4-1. The Anthill build management server

Having logged into the Anthill CVS server, click the Build hyperlink in the top line of the table shown in Figure 4-
1 , which will build the CVS_Anthill example. This opens the Build Project page shown in Figure 4-2 . Click the
Force Build checkbox, enter a build version such as 1.1, and click the Build button.

Figure 4-2. Forcing a build

http://localhost:8080/anthill

Anthill will download the code for this project from the Anthill CVS server and build it. The Anthill console page
will reappear; click Refresh to verify that the project has been built. A green box should appear at right in the
CVS Anthill-Example line in the console table, as shown in Figure 4-3 , if the build was successful.

Figure 4-3. Running a new build

If you click the CVS_Anthill-Example hyperlink in the console now, you'll get access to the results of the build,
as shown in Figure 4-4 .

Figure 4-4. Build artifacts

The tests hyperlink links to the results of JUnit tests, and the buildLogs hyperlink links to the build log. Here's
what the build log looks like:

all:

compile:
 [mkdir] Created dir: D:\anthill\work\Anthill-Example\build\temp
 [mkdir] Created dir: D:\anthill\work\Anthill-Example\build\temp\classes
 [javac] Compiling 1 source file to D:\anthill\work\Anthill-Example\build\temp\classes
 [copy] Copying 1 file to D:\anthill\work\Anthill-Example\build\temp\classes

jars:
 [jar] Building jar: D:\anthill\publishDir\CVS_Anthill-Example\Anthill-Example-1.1.jar

compile:

compile-tests:
 [mkdir] Created dir: D:\anthill\work\Anthill-Example\build\temp\tests\classes
 [javac] Compiling 1 source file to D:\anthill\work\Anthill-Example\build\temp\
tests\classes

 [jar] Building jar: D:\anthill\publishDir\CVS_Anthill-Example\
Anthill-Example-tests-1.1.jar

run-tests:
 [mkdir] Created dir: D:\anthill\work\Anthill-Example\build\temp\tests\data
 [mkdir] Created dir: D:\anthill\publishDir\CVS_Anthill-Example\tests
 [junit] Running example.WidgetTestCase
 [junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.651 sec
 [junit] Testsuite: example.WidgetTestCase
 [junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.651 sec

[junitreport] Using Xalan version: Xalan Java 2.2.D11
[junitreport] Transform time: 1051ms

doc:

javadoc:
 [mkdir] Created dir: D:\anthill\publishDir\CVS_Anthill-Example\api
 [javadoc] Generating Javadoc
 [javadoc] Javadoc execution
 [javadoc] Loading source files for package example...
 [javadoc] Constructing Javadoc information...
 [javadoc] Standard Doclet version 1.4.0

 [javadoc] Building tree for all the packages and classes...
 [javadoc] Building index for all the packages and classes...
 [javadoc] D:\anthill\work\Anthill-Example\source\java\example\Widget.java:12:
warning - @author tag has no arguments.
 [javadoc] Building index for all classes...
 [javadoc] Generating D:\anthill\publishDir\CVS_Anthill-Example\api\stylesheet.css...
 [javadoc] 1 warning
 .
 .
 .
clean:
 [delete] Deleting directory D:\anthill\work\Anthill-Example\build\temp

BUILD SUCCESSFUL
Total time: 15 seconds

You schedule builds from the console page, http://localhost:8080/anthill/ , if you're using Tomcat. Click Create
New Schedule in the Schedule box, configure the new schedule as shown in Figure 4-5 , and click Update to
update the scheduler.

Figure 4-5. Setting up a schedule

http://localhost:8080/anthill/

All in all, Anthill is a great automated build tooleasy to set up, easy to use.

4.4.4. Cruise Control and Gump

Cruise Control and Gump are two other Ant automated build tools for use with Ant. You can get Cruise Control
at http://cruisecontrol.sourceforge.net/ . It's an extensive build management tool, but it takes some effort to
install. To configure a build, you work with a modification set . Cruise Control supports an Ant task named
modificationset that contains nested tasks you can use to configure your build.

After setting up the build as you want it, you start the Cruise Control runner using .sh and .bat scripts,
depending on your operating system, and Cruise Control takes it from there.

An alternative automated build tool is Gump. You can get Gump from the Jakarta CVS repository, using the
password anoncvs :

%cvs -d :pserver:anoncvs@cvs.apache.org:home/cvspublic login
Logging in to pserver:anoncvs@cvs.apache.org:home/cvspublic
CVS password: *******

%cvs -d :pserver:anoncvs@cvs.apache.org:home/cvspublic checkuot jakarta-alexandria

You can read all about Gump and how it works at http://gump.apache.org/ . Using Gump, project definitions
are converted from XML to scripts native to the platform on which you are running. These scripts execute CVS
or SVN update commands for every module which contains a project being built, and then builds each of those
projects.

Chapter 5. Testing Builds with JUnit
This chapter is about a crucial aspect of the build processtesting build results before deploying them.
It doesn't make sense to deploy a build that has been broken, and using the JUnit framework with
Ant, you can run tests on your code and deploy a build only if it satisfies those tests. This is a great
way to make sure changes to your code haven't broken anything.

To test the results of a build automatically, you'll need to use one of Ant's most powerful optional
tasks: junit. This task is part of the repertoire of every serious Ant developer, especially those
working in teams. If someone else on your project has broken your code, you should know about it
before you deploy or upload to a shared code repository, and junit will let you know about these
problems automatically.

To demonstrate how JUnit works with Ant in this chapter, we're going to use Project.java, shown in
Example 5-1, as a guinea pig.

Example 5-1. A simple Project file

package org.antbook;

public class Project
{
 public Project (String name)
 {

 }

 public boolean returnTrue()
 {
 return true;
 }

 public int return4()
 {
 return 2 + 2;
 }

 public Object returnObject()
 {
 return new Integer(1);
 }

 public static void main(String args[])
 {
 Project project = new Project("project");

 System.out.println(project.returnTrue());
 System.out.println(project.return4());
 System.out.println(project.returnObject());
 }
}

This application, Project.java, has three simple methods, each of which returns a value:

returnTrue()

returns a boolean value of TRue.

return4()

returns an integer value of 4.

returnObject()

returns an Integer object containing a value of 1.

When you compile Project.java and run it, each of these methods are executed. Now you can use the
junit task to make sure that alterations to this application's code doesn't break the expected
operation of these methods.

You can see the original build file that builds and deploys the Project.java application in Example 5-2:
Note the section where the JUnit tests will be added. Break the build if those tests don't pass.

Example 5-2. Using Junit ch05/junit/build.xml

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the project...." />
 <property name="testsOK" value="Tested OK...." />
 <property name="src" location="source" />
 <property name="output" location="." />
 <property name="results" location="results" />
 <property name="jars" location="jars" />
 <property name="dist" location="user" />
 <property name="junit.fork" value="true"/>

 <target name="main" depends="init, compile, test, compress, deploy">
 <echo>
 ${message}

 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 <mkdir dir="${results}" />
 <mkdir dir="${jars}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="test" depends="test1, test2, test3, test4, test5">
 <echo>
 ${testsOK}
 </echo>
 </target>
 .
 .
 .
 <!-- [TESTS GO HERE] -->
 .
 .
 .
 <target name="compress">
 <jar destfile="${jars}/Project.jar" basedir="${output}">
 <include name="**/*.class"/>
 </jar>
 </target>

 <target name="deploy">
 <delete dir="${dist}" />
 <mkdir dir="${dist}" />
 <copy todir="${dist}">
 <fileset dir="${jars}">
 <include name="*.jar"/>
 </fileset>
 </copy>
 </target>

</project>

5.1. Using JUnit

JUnit is an open source testing framework housed online at http://www.junit.org/, where you'll find
downloads and documentation. Using JUnit, you can construct a set of standard tests for everyone
working on an application, and if they change the application's code, all they'll need is to run the build
file to verify that the application still passes the standard set of tests.

JUnit is primarily made up of a set of assertion methods that can test various conditions. Here they
are:

assertEquals(a, b)

Tests if a is equal to b (a and b are primitive values or must have an equals method for
comparison purposes)

assertFalse(a)

Tests if a is false, where a is a boolean value

assertNotNull(a)

Tests if a is not null, where a is an object or null

assertNotSame(a, b)

Tests if a and b do not refer to the identical object

assertNull(a)

Tests if a is null, where a is an object or null

assertSame(a, b)

Tests if a and b refer to the identical object

http://www.junit.org/

assertTrue(a)

Tests if a is frue, where a is a boolean value

To work with JUnit, you modify your code to extend the junit.framework.TestCase class, which in
turn extends the junit.framework.Assert class. After subclassing the TestCase class, you can use the
various assertXXX() methods to test the results from your newly compiled code. Each of these
methods, along with their various versions, are listed in Table 5-1.

Though your code extends the TestCase class, these methods are part of
TestCase's base class, the Assert class.

Table 5-1. The junit.framework.Assert methods

Method Does this

static void assertEquals(boolean expected, boolean actual)
Tests if two booleans are
equal

static void assertEquals(byte expected, byte actual) Tests if two bytes are equal

static void assertEquals(char expected, char actual) Tests if two chars are equal

static void assertEquals(double expected, double actual,

double delta)

Tests if two doubles are equal
within a value named delta

static void assertEquals(float expected, float actual, float

delta)

Tests if two floats are equal
within a value named delta

static void assertEquals(int expected, int actual) Tests if two ints are equal

static void assertEquals(long expected, long actual) Tests if two longs are equal

static void assertEquals(java.lang.Object expected,

java.lang.Object actual)
Tests if two objects are equal

static void assertEquals(short expected, short actual) Tests if two shorts are equal

static void assertEquals(java.lang.String message, boolean

expected, boolean actual)

Tests if two booleans are
equal

static void assertEquals(java.lang.String message, byte

expected, byte actual)
Tests if two bytes are equal

static void assertEquals(java.lang.String message, char

expected, char actual)
Tests if two chars are equal

static void assertEquals(java.lang.String message, double

expected, double actual, double delta)

Tests if two doubles are equal
within a value given by delta

static void assertEquals(java.lang.String message, float

expected, float actual, float delta)

Tests if two floats are equal
within a value given by delta

Method Does this

static void assertEquals(java.lang.String message, int

expected, int actual)
Tests if two ints are equal

static void assertEquals(java.lang.String message, long

expected, long actual)
Tests if two longs are equal

static void assertEquals(java.lang.String message,

java.lang.Object expected, java.lang.Object actual)
Tests if two objects are equal

static void assertEquals(java.lang.String message, short

expected, short actual)
Tests if two shorts are equal

static void assertEquals(java.lang.String expected,

java.lang.String actual)
Tests if two Strings are equal

static void assertEquals(java.lang.String message,

java.lang.String expected, java.lang.String actual)
Tests if two Strings are equal

static void assertFalse(boolean condition) Tests if a condition is false

static void assertFalse(java.lang.String message, boolean

condition)
Tests if a condition is false

static void assertNotNull(java.lang.Object object) Tests if an object isn't null

static void assertNotNull(java.lang.String message,

java.lang.Object object)
Tests if an object isn't null

static void assertNotSame(java.lang.Object expected,

java.lang.Object actual)

Tests if two objects do not
refer to the same object

static void assertNotSame(java.lang.String message,

java.lang.Object expected, java.lang.Object actual)

Tests if two objects do not
refer to the same object

static void assertNull(java.lang.Object object) Tests if an object is null

static void assertNull(java.lang.String message,

java.lang.Object object)
Tests if an object is null

static void assertSame(java.lang.Object expected,

java.lang.Object actual)

Tests if two objects refer to
the same object

static void assertSame(java.lang.String message,

java.lang.Object expected, java.lang.Object actual)

Tests if two objects refer to
the same object

static void assertTrue(boolean condition) Tests if a condition is true

static void assertTrue(java.lang.String message, boolean

condition)
Tests if a condition is true

static void fail() Makes a test fail

static void fail(java.lang.String message)
Makes a test fail with the
specified message

Table 5-2 lists the methods specific to the JUnit TestCase method.

static void assertEquals(java.lang.String message, int

expected, int actual)
Tests if two ints are equal

static void assertEquals(java.lang.String message, long

expected, long actual)
Tests if two longs are equal

static void assertEquals(java.lang.String message,

java.lang.Object expected, java.lang.Object actual)
Tests if two objects are equal

static void assertEquals(java.lang.String message, short

expected, short actual)
Tests if two shorts are equal

static void assertEquals(java.lang.String expected,

java.lang.String actual)
Tests if two Strings are equal

static void assertEquals(java.lang.String message,

java.lang.String expected, java.lang.String actual)
Tests if two Strings are equal

static void assertFalse(boolean condition) Tests if a condition is false

static void assertFalse(java.lang.String message, boolean

condition)
Tests if a condition is false

static void assertNotNull(java.lang.Object object) Tests if an object isn't null

static void assertNotNull(java.lang.String message,

java.lang.Object object)
Tests if an object isn't null

static void assertNotSame(java.lang.Object expected,

java.lang.Object actual)

Tests if two objects do not
refer to the same object

static void assertNotSame(java.lang.String message,

java.lang.Object expected, java.lang.Object actual)

Tests if two objects do not
refer to the same object

static void assertNull(java.lang.Object object) Tests if an object is null

static void assertNull(java.lang.String message,

java.lang.Object object)
Tests if an object is null

static void assertSame(java.lang.Object expected,

java.lang.Object actual)

Tests if two objects refer to
the same object

static void assertSame(java.lang.String message,

java.lang.Object expected, java.lang.Object actual)

Tests if two objects refer to
the same object

static void assertTrue(boolean condition) Tests if a condition is true

static void assertTrue(java.lang.String message, boolean

condition)
Tests if a condition is true

static void fail() Makes a test fail

static void fail(java.lang.String message)
Makes a test fail with the
specified message

Table 5-2 lists the methods specific to the JUnit TestCase method.

Table 5-2. The junit.framework.TestCase methods

Method Does this

int countTestCases() Counts how many test cases are executed

protected TestResult

createResult()
Creates a default TestResult object

java.lang.String getName() Gets the name of a TestCase and returns it

TestResult run() Runs a test, storing results in a TestResult object

void run(TestResult result) Runs a test case and stores the results in TestResult

void runBare() Executes a bare test

void setName(java.lang.String

name)
Specifies the name of a test case

protected void setUp() Lets you perform initialization operations

protected void tearDown()
Lets you clean up after your tests, such as closing a network
connection

java.lang.String toString() Returns a string representation of a case

5.1.1. Writing the Tests

To add JUnit test cases to your code, you import junit.framework.TestCase, base your application's
class on it, and write test cases. Test cases are methods whose name begins with "test", which
means JUnit will call them automatically. In this example, there are three test cases: testTrue() to
test the return value of the returnTrue() method, testEquals() to test the results of the return4(
) method, and testNotNull() to test the results of the returnObject() method. All three of these
test cases will be called automatically by the JUnit framework. Inside test cases, you can use the
JUnit methods like assertTrue(), assertEquals(), and so on, to make sure the build didn't break
your application.

To make this work, import junit.framework.TestCase, extend that class, and add three test cases to
test the three methods in your codehe JUnit framework will call all three test cases automatically
because their names start with "test":

package org.antbook;

import junit.framework.TestCase;

public class Project extends TestCase
{
 public Project (String name)
 {

 }

 public void testTrue()
 {
 .
 .
 .
 }

 public void testEquals()
 {
 .
 .
 .
 }

 public void testNotNull()
 {
 .
 .
 .
 }

 public boolean returnTrue()
 {
 return true;
 }

 public int return4()
 {
 return 2 + 2;
 }

 public Object returnObject()
 {
 return new Integer(1);
 }

 public static void main(String args[])
 {
 Project project = new Project("project");
 System.out.println(project.returnTrue());
 System.out.println(project.return4());
 System.out.println(project.returnObject());
 }
}

Use the JUnit methods assertTrue(), assertEquals(), and assertNotNull() to test the results
from the three methods in Project.javafor example, testing if the return value of return4 really is 4,
as it should be. If any of these assertions don't work, an exception is thrown, and that exception
causes the build to fail:

package org.antbook;

import junit.framework.TestCase;

public class Project extends TestCase
{
 public Project (String name)
 {

 }

 public void testTrue()
 {
 assertTrue("assertTrue test", returnTrue());
 }

 public void testEquals()
 {
 assertEquals("assertEquals test", 4, return4());
 }

 public void testNotNull()
 {
 assertNotNull("assertNotNull test", returnObject());
 }

 public boolean returnTrue()
 {
 return true;
 }

 public int return4()
 {
 return 2 + 2;
 }

 public Object returnObject()
 {
 return new Integer(1);
 }

 public static void main(String args[])
 {
 Project project = new Project("project");
 System.out.println(project.returnTrue());
 System.out.println(project.return4());
 System.out.println(project.returnObject());
 }
}

Besides writing test cases like these, you can add two additional methods, setUp() and tearDown(),
to your code. These methods act much like constructors and destructors for your tests:

protected void setUp()

Lets you perform initialization, for example, opening a network connection

protected void tearDown()

Lets you clean up after the tests are completefor example, closing a network connection

For further details on how JUnit works, see the JUnit site at
http://www.junit.org/index.htm.

5.1.2. Performing Tests with the junit Task

The Ant junit task lets you run JUnit tests from Ant. It's an optional task, so you'll need need to
install junit.jarwhich you get from http://www.junit.org/æin the Ant lib directory. Using junit, you
can tell Ant which .class files you want tested, and JUnit will run the test cases in those files. The
attributes of the junit task appear in Table 5-3.

Table 5-3. The junit attributes

Attribute Description Required Default

dir
Specifies the directory where you want to run the
JVM. Ignored if fork is disabled.

No

errorproperty
Specifies the name of a property you want set in
case there was an error.

No

failureproperty
Specifies the name of a property in case the task
failed.

No

filtertrace
Removes Junit and Ant stack frames from error
stack traces.

No on

fork Specifies that you want to run tests in a new JVM. No off

haltonerror
Specifies you want to stop the build if there are
errors.

No off

http://www.junit.org/index.htm
http://www.junit.org/�in

Attribute Description Required Default

haltonfailure
Specifies you want to stop the build if the test
fails.

No off

includeantruntime
Specifies you want to add the Ant classes and
JUnit to the classpath in a forked JVM.

No true

jvm
Specifies the command used to start the Java
Virtual Machine. Ignored if fork is disabled.

No "java"

maxmemory
Specifies the maximum amount of memory to
give to the forked JVM. Ignored if fork is disabled.

No

newenvironment

Specifies you don't want to copy the old
environment when new environment variables are
specified. Ignored if fork is disabled.

No false

printsummary

Specifies you want statistics for each test case.
Possible values: on, off, and withOutAndErr
(which is the same as on but also writes output of
the test as written to System.out and
System.err).

No off

reloading
Specifies whether you want a new classloader to
be started for each test case. Since Ant 1.6.

No TRue

showoutput
Sends any output to Ant's logging system and to
the formatters you specify.

No

Only the
formatters
receive the
output.

tempdir
Specifies where you want this task to place
temporary files. Since Ant 1.6.

No
The project's
base directory.

timeout

Specifies you want to stop a test if it doesn't
finish in time. Time is measured in milliseconds.
Ignored if fork is disabled.

No

The junit task supports a nested classpath element that represents a path-like structure, and which
you can use to set the classpath used while the tests are running.

A number of other elements may be nested inside the junit element. If you're using fork, you can
pass additional parameters to the new JVM with nested jvmarg elements:

<junit fork="yes">
 <jvmarg value="-Djava.compiler=NONE"/>
 .
 .
 .
</junit>

haltonfailure
Specifies you want to stop the build if the test
fails.

No off

includeantruntime
Specifies you want to add the Ant classes and
JUnit to the classpath in a forked JVM.

No true

jvm
Specifies the command used to start the Java
Virtual Machine. Ignored if fork is disabled.

No "java"

maxmemory
Specifies the maximum amount of memory to
give to the forked JVM. Ignored if fork is disabled.

No

newenvironment

Specifies you don't want to copy the old
environment when new environment variables are
specified. Ignored if fork is disabled.

No false

printsummary

Specifies you want statistics for each test case.
Possible values: on, off, and withOutAndErr
(which is the same as on but also writes output of
the test as written to System.out and
System.err).

No off

reloading
Specifies whether you want a new classloader to
be started for each test case. Since Ant 1.6.

No TRue

showoutput
Sends any output to Ant's logging system and to
the formatters you specify.

No

Only the
formatters
receive the
output.

tempdir
Specifies where you want this task to place
temporary files. Since Ant 1.6.

No
The project's
base directory.

timeout

Specifies you want to stop a test if it doesn't
finish in time. Time is measured in milliseconds.
Ignored if fork is disabled.

No

The junit task supports a nested classpath element that represents a path-like structure, and which
you can use to set the classpath used while the tests are running.

A number of other elements may be nested inside the junit element. If you're using fork, you can
pass additional parameters to the new JVM with nested jvmarg elements:

<junit fork="yes">
 <jvmarg value="-Djava.compiler=NONE"/>
 .
 .
 .
</junit>

You can specify environment variables to pass to a forked JVM with nested env
elements. I'll look at this element, including its attributes, in Chapter 7.

Nested sysproperty elements can specify system properties required by the class you're testing.
These properties will be made available to the JVM during the execution of the test. You can use the
same attributes as the env task here; for example, you can use the key and value attributes to
specifies properties and property values, as in this example:

<junit>
 <sysproperty key="basedir" value="${basedir}"/>
 .
 .
 .
</junit>

5.1.2.1 Formatting test results

Test results can be printed in various formats, and you use the formatter nested element to specify
which format to use (by default, the output of the tests will be sent to a file unless you set the
usefile attribute to false). There are three predefined formatters:

The XML formatter prints the test results in XML format.

The plain formatter prints plain text.

The brief formatter will give only brief details, only printing in-depth information for test cases
that failed.

I'll look at formatting the results of JUnit tests using these formatters in this chapter. The attributes
of the formatter element appear in Table 5-4.

Table 5-4. The formatter task's Attributes

Attribute Description Required Default

classname
Specifies the name of the custom formatter class you
want to use.

Exactly one of type or
classname.

extension Specifies the extension for the output filename.
Yes, if classname has
been used.

if
Specifies JUnit will only use this formatter if a
specified property is set.

No TRue

Attribute Description Required Default

type
Specifies a predefined formatter you want to use.
Possible values: xml, plain, or brief.

Exactly one of type or
classname.

unless
Specifies JUnit should use the formatter if a specified
property is not set.

No true

usefile Specifies if you want to send output to a file. No true

5.1.2.2 Specifying the test class

You use the test nested element to specify a class to test. The attributes of this element appear in
Table 5-5.

Table 5-5. The test task's Attributes

Attribute Description Required Default

errorproperty

Specifies the the name of a
property you want to have set if
there is an error

No

failureproperty
Specifies the name of a property in
case the task fails

No

filtertrace
Removes Junit and Ant stack
frames from error stack traces

No on

fork
Specifies you want to run tests in a
new JVM

No

haltonerror
Specifies you want to stop the
build if there are errors

No

haltonfailure
Specifies you want to stop the
build if the test fails

No

If
Specifies this test should run only if
a specified property is set

No

name
Specifies the name of the test class
you want to use

Yes

outfile
Sets the filename where the test
results should go

No

TEST-name, where name is the

name of the test specified in the
name attribute

todir
Specifies the directory you want
the reports written to

No The current directory

type
Specifies a predefined formatter you want to use.
Possible values: xml, plain, or brief.

Exactly one of type or
classname.

unless
Specifies JUnit should use the formatter if a specified
property is not set.

No true

usefile Specifies if you want to send output to a file. No true

5.1.2.2 Specifying the test class

You use the test nested element to specify a class to test. The attributes of this element appear in
Table 5-5.

Table 5-5. The test task's Attributes

Attribute Description Required Default

errorproperty

Specifies the the name of a
property you want to have set if
there is an error

No

failureproperty
Specifies the name of a property in
case the task fails

No

filtertrace
Removes Junit and Ant stack
frames from error stack traces

No on

fork
Specifies you want to run tests in a
new JVM

No

haltonerror
Specifies you want to stop the
build if there are errors

No

haltonfailure
Specifies you want to stop the
build if the test fails

No

If
Specifies this test should run only if
a specified property is set

No

name
Specifies the name of the test class
you want to use

Yes

outfile
Sets the filename where the test
results should go

No

TEST-name, where name is the

name of the test specified in the
name attribute

Attribute Description Required Default

todir
Specifies the directory you want
the reports written to

No The current directory

unless
Specifies this test should run only if
a specified property is not set

No

5.1.2.3 Running tests in batches

Another nested element, batchtest, lets you set up a number of tests at once. The batchtest
element collects the included files from any number of nested filesets, and generates a test class
name for each file that ends in .java or .class. You'll use this element later in this chapter. The
attributes for batchtest appear in Table 5-6.

Table 5-6. The batchtest element's attributes

Attribute Description Required Default

errorproperty
Specifies the name of a property you want set in
case there is an error

No

failureproperty
Specifies the name of a property in case the task
fails

No

filtertrace
Removes Junit and Ant stack frames from error
stack traces

No on

fork Specifies you want to run tests in a new JVM No

haltonerror
Specifies you want to stop the build if there are
errors

No

haltonfailure Specifies you want to stop the build if the test fails No

if
Specifies this test should run only if a specified
property is set

No

todir
Specifies the directory where you want reports
written to

No
The current
directory

unless
Specifies this test should run only if a specified
property is not set

No

Other nested elements are available since Ant 1.6. You can specify a set of properties to be used as
system properties with syspropertysets. If you're forking a new JVM, you can specify the location of
bootstrap class files using the bootclasspath path-like structure inside the junit task. You can
revoke or grant security permissions during the execution of a class with a nested permissions
element. And you can even control Java 1.4 assertions with an assertions subelement.

todir
Specifies the directory you want
the reports written to

No The current directory

unless
Specifies this test should run only if
a specified property is not set

No

5.1.2.3 Running tests in batches

Another nested element, batchtest, lets you set up a number of tests at once. The batchtest
element collects the included files from any number of nested filesets, and generates a test class
name for each file that ends in .java or .class. You'll use this element later in this chapter. The
attributes for batchtest appear in Table 5-6.

Table 5-6. The batchtest element's attributes

Attribute Description Required Default

errorproperty
Specifies the name of a property you want set in
case there is an error

No

failureproperty
Specifies the name of a property in case the task
fails

No

filtertrace
Removes Junit and Ant stack frames from error
stack traces

No on

fork Specifies you want to run tests in a new JVM No

haltonerror
Specifies you want to stop the build if there are
errors

No

haltonfailure Specifies you want to stop the build if the test fails No

if
Specifies this test should run only if a specified
property is set

No

todir
Specifies the directory where you want reports
written to

No
The current
directory

unless
Specifies this test should run only if a specified
property is not set

No

Other nested elements are available since Ant 1.6. You can specify a set of properties to be used as
system properties with syspropertysets. If you're forking a new JVM, you can specify the location of
bootstrap class files using the bootclasspath path-like structure inside the junit task. You can
revoke or grant security permissions during the execution of a class with a nested permissions
element. And you can even control Java 1.4 assertions with an assertions subelement.

5.2. Running Test Cases

To run the JUnit test cases, add a test target to the build file introduced at the beginning of the
chapter, and make the main target depend on the test target as part of the build process:

 <target name="main" depends="init, compile, test, compress, deploy">
 <echo>
 ${message}
 </echo>
 </target>

The test target will run the six targets you're going to create in this chapter:

 <property name="testsOK" value="Tested OK...." />
 .
 .
 .
 <target name="test" depends="test1, test2, test3, test4, test5, test6">
 <echo>
 ${testsOK}
 </echo>
 </target>

If you're not using Ant or a Java IDE, you usually run JUnit tests from the command line and use the
junit.textui.TestRunner class like this, testing the example class created earlier in the chapter,
org.antbook.Project :

%java junit.textui.TestRunner org.antbook.Project

You can do essentially the same thing in Ant using the java task, and that looks like this in the build
file for the first test task, test1 . Note that I'm adding junit.jar to the classpath:

 <target name="test1" depends="compile">
 <java fork="true"
 classname="junit.textui.TestRunner"
 classpath="${ant.home}/lib/junit.jar;.">
 <arg value="org.antbook.Project"/>
 </java>
 </target>

Here's what this task looks like when it's running:

test1:

 [java] ...
 [java] Time: 0.01

 [java] OK (3 tests)

Each dot (.) indicates a test case that's running, and three test cases are in the example. As you can
see from the last line, the tests all passed OK, but this isn't exciting and it doesn't stop a build if
there's a problem.

5.2.1. Using the Plain Formatter for Reports

The second test, test2 , will use junit to run the test. No results are printed out by successful JUnit
tests unless you use a formatter, so the plain formatter is used here, set by a formatter element.
classpath is used to specify where junit should search for the class to test, and the test nested
element sets up the test, giving the name of the class to test and the directory in which to store the
formatted results of the test:

 <target name="test2" depends="compile">
 <junit
 printsummary="yes"
 errorProperty="test.failed"
 failureProperty="test.failed"
 haltonfailure="yes">
 <formatter type="plain"/>
 <classpath path="."/>
 <test todir="${results}" name="org.antbook.Project"/>
 </junit>
 <fail message="Tests failed!" if="test.failed"/>
 </target>

Note that if you set haltonfailure to true, the build will halt if the test failswhat to do if you want to
avoid deploying a defective build.

You can use attributes like errorProperty instead of haltonfailure to set
properties indicating the build had problems. That's useful if you want to clean
up after the partial build with other tasks instead of failing immediately in the
junit task.

Here's the output you see when this task runs:

test2:
 [junit] Running org.antbook.Project
 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.011 sec

The plain formatter creates the output file TEST-org.antbook.Project.txt , which holds these contents:

Testsuite: org.antbook.Project
Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.01 sec

Testcase: testTrue took 0 sec
Testcase: testEquals took 0 sec
Testcase: testNotNull took 0 sec

All the tests succeeded, and the results look good. But what if you changed a test so the return4
method is supposed to return 5 , rather than 4 :

 public void testEquals()
 {
 assertEquals("assertEquals test", 5, return4());
 }

In that case, you'd see this in the build:

test2:
 [junit] Running org.antbook.Project
 [junit] Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 0.02 sec

You could read all about the problems in the output file TEST-org.antbook.Project.txt , which indicates
the problem:

Testsuite: org.antbook.Project
Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 0.02 sec

Testcase: testTrue took 0.01 sec
Testcase: testEquals took 0 sec
 FAILED
assertEquals test expected:<5> but was:<4>
junit.framework.AssertionFailedError: assertEquals test expected:<5> but was:<4>
 at org.antbook.Project.testEquals(Unknown Source)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)

If there's a problem, you can use the formatter's output to track it down.

5.2.2. Using the Brief Formatter for Reports

The brief formatter prints little unless there's been an error. Here's how to use it in a new test, test3 :

 <target name="test3" depends="compile">
 <junit printsummary="yes" fork="yes" haltonfailure="yes">
 <formatter type="brief" usefile="true"/>
 <classpath path="."/>

 <test todir="${results}" name="org.antbook.Project"/>
 </junit>
 </target>

If everything goes well, this formatter displays a brief message during the build:

test3:
 [junit] Running org.antbook.Project
 [junit] Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 0.01 sec

And it puts a brief message in TEST-org.antbook.Project.txt :

Testsuite: org.antbook.Project
Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.01 sec
TEST-org.antbook.Project.txt:

On the other hand, if you reproduce an error as in test2 (changing the expected value from 4 to 5),
you'll see more information in TEST-org.antbook.Project.txt :

Testsuite: org.antbook.Project
Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 0.01 sec

Testcase: testEquals(org.antbook.Project): FAILED
assertEquals test expected:<5> but was:<4>
junit.framework.AssertionFailedError: assertEquals test expected:<5> but was:<4>
 at org.antbook.Project.testEquals(Unknown Source)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)

5.2.3. Using the XML Formatter for Reports

The XML formatter gives you the most information of all formatters. Here's how you use it in a new
task, test4 :

 <target name="test4" depends="compile">
 <junit printsummary="yes" fork="yes" haltonfailure="yes">
 <formatter type="xml"/>
 <classpath path="."/>
 <test todir="${results}" name="org.antbook.Project"/>
 </junit>
 </target>

This task creates a new file, TEST-org.antbook.Project.xml , which contains a tremendous amount of
information, including the names and values of all properties, as well as the results of the tests:

<?xml version="1.0" encoding="UTF-8" ?>
<testsuite name="org.antbook.Project" tests="3" failures="0" errors="0" time="0.04">
 <properties>
 <property name="java.runtime.name" value="Java(TM) 2 Runtime Environment,
 Standard Edition"></property>
 <property name="ant.java.version" value="1.4"></property>
 <property name="java.vm.vendor" value="Sun Microsystems Inc."></property>
 <property name="java.vendor.url" value="http://java.sun.com/"></property>
 <property name="path.separator" value=";"></property>
 <property name="java.vm.name" value="Java HotSpot(TM) Client VM"></property>
 <property name="file.encoding.pkg" value="sun.io"></property>
 <property name="user.country" value="US"></property>
 <property name="sun.os.patch.level" value="Service Pack 3"></property>
 .
 .
 .
 </properties>
 <testcase name="testTrue" classname="org.antbook.Project" time="0.0"></testcase>
 <testcase name="testEquals" classname="org.antbook.Project"
 time="0.0"></testcase>
 <testcase name="testNotNull" classname="org.antbook.Project"
 time="0.0"></testcase>
 <system-out><![CDATA[]]></system-out>
 <system-err><![CDATA[]]></system-err>
</testsuite>

This kind of output is primarily designed to be used with the junitreport task.

5.2.4. Creating Reports with the junitreport Task

You can use the junitreport task to merge XML files generated by the JUnit task's XML formatter and
apply a stylesheet on the resulting merged document to create a browseable report of results. This is
an optional Ant task, and you need xalan.jar , version 2+, in the Ant lib directory to run it. You can get
xalan.jar from http://xml.apache.org/xalan-j/ .

The attributes for this task appear in Table 5-7 .

Table 5-7. The junitreport task's attributes

Attribute Description Required Default

todir
Specifies the directory where you want XML-formatted
reports to be written

No
The current
directory

tofile Specifies the name of the report file No
TESTS-
TestSuites.xml

The junitreport task can contain nested fileset elements. junitreport collects XML files generated

by the JUnit task as specified in the nested fileset elements.

The junitreport task can contain nested report elements. These elements are the ones that generate
the browseable report based on the merged XML documents. The attributes of the report element
appear in Table 5-8 .

Table 5-8. The report task's attributes

Attribute Description Required Default

format
Specifies the format you want to use in the report. Must be
noframes or frames .

No frames

styledir

Specifies the directory where the task should look for
stylesheets. If you're using frames format, the stylesheet
must be named junit-frames.xsl . If you're using noframes
format, the stylesheet must be named junit-noframes.xsl .

No
Embedded
stylesheets.

todir Specifies the directory where output should be written. No
The current
directory.

In the build file's test5 target, create an XML-formatted report for the JUnit tests:

 <target name="test5" depends="compile">
 <junit printsummary="yes" fork="yes" haltonfailure="yes">
 <formatter type="xml"/>
 <classpath path="."/>
 <test todir="${results}" name="org.antbook.Project"/>
 </junit>
 .
 .
 .

Then use junitreport to merge and translate any XML reports into something you can look at in a
browser. Here's what it looks like in the build file:

 <target name="test5" depends="compile">
 <junit printsummary="yes" fork="yes" haltonfailure="yes">
 <formatter type="xml"/>
 <classpath path="."/>
 <test todir="${results}" name="org.antbook.Project"/>
 </junit>

 <junitreport todir="${results}">
 <fileset dir="${results}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${results}"/>
 </junitreport>

 </target>

The junit task creates TEST-org.antbook.Project.xml , and the junitreport task creates TESTS-
TestSuites.xml and the browseable report. To see the report, open the created index.html , shown in
Figure 5-1 .

Figure 5-1. A JUnit report

You can browse through the results of your tests by clicking the Project link in the frame labeled
Classes, opening the page you see in Figure 5-2 , which reports on each test case.

Figure 5-2. Browsing test case results

Clicking the Properties link displays a page showing all property names and values.

5.3. Testing in Batches

When you're working with JUnit, you can set up test suites, which run multiple tests, by extending
the TestSuite class:

import junit.framework.TestCase;
import junit.framework.TestSuite;
 .
 .
 .
public class NewSuite extends TestSuite
{
 static public Test testSuite()
 {
 TestSuite suite = new TestSuite();
 suite.addTestSuite(Project.class);
 suite.addTestSuite(Connector.class);
 suite.addTestSuite(DataHandler.class);
 return suite;
 }
}

When you're using JUnit from Ant, it's easier to use batch testing with the nested batchtest task.
This task lets you specify whole filesets to test using the fileset type, and the results will be merged
into a report. Here's how to use batchtest:

 <target name="test6" depends="compile">
 <junit printsummary="yes" haltonfailure="yes">
 <formatter type="brief" usefile="true"/>
 <classpath path="."/>
 <batchtest todir="${results}">
 <fileset dir="." includes="**/Project.class"/>
 </batchtest>
 </junit>
 </target>

In this case, the fileset only contains a single file (there's only one file to test in this chapter's
example), but you can include as multiple files in your nested fileset element:

 <target name="test6" depends="compile">
 <junit printsummary="yes" haltonfailure="yes">
 <formatter type="brief" usefile="true"/>
 <classpath path="."/>
 <batchtest todir="${results}">
 <fileset dir="${build}">

 <include name="**/*Test.class"/>
 <include name="**/*Gold.class"/>
 <exclude name="**/*Beta.class"/>
 </fileset>
 </batchtest>
 </junit>
 </target>

5.4. Running the Build File

That completes the build file that runs the JUnit tests in Project.java. You can see the final version of
this file, build.xml in Example 5-1Example 5-1.

Example 5-3. Using Junit ch05/junit/build.xml

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building the project...." />
 <property name="testsOK" value="Tested OK...." />
 <property name="src" location="source" />
 <property name="output" location="." />
 <property name="results" location="results" />
 <property name="jars" location="jars" />
 <property name="dist" location="user" />
 <property name="junit.fork" value="true"/>

 <target name="main" depends="init, compile, test, compress, deploy">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 <mkdir dir="${results}" />
 <mkdir dir="${jars}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="test" depends="test1, test2, test3, test4, test5, test6">
 <echo>
 ${testsOK}
 </echo>
 </target>

 <target name="test1" depends="compile">
 <java fork="true"
 classname="junit.textui.TestRunner"
 classpath="${ant.home}/lib/junit.jar;.">

 <arg value="org.antbook.Project"/>
 </java>
 </target>

 <target name="test2" depends="compile">
 <junit
 printsummary="yes"
 errorProperty="test.failed"
 failureProperty="test.failed"
 fork="${junit.fork}"
 haltonfailure="yes">
 <formatter type="plain"/>
 <classpath path="."/>
 <test todir="${results}" name="org.antbook.Project"/>
 </junit>
 <fail message="Tests failed!" if="test.failed"/>
 </target>

 <target name="test3" depends="compile">
 <junit printsummary="yes" fork="yes" haltonfailure="yes">
 <formatter type="brief" usefile="true"/>
 <classpath path="."/>
 <test todir="${results}" name="org.antbook.Project"/>
 </junit>
 </target>

 <target name="test4" depends="compile">
 <junit printsummary="yes" fork="yes" haltonfailure="yes">
 <formatter type="xml"/>
 <classpath path="."/>
 <test todir="${results}" name="org.antbook.Project"/>
 </junit>
 </target>

 <target name="test5" depends="compile">
 <junit printsummary="yes" fork="yes" haltonfailure="yes">
 <formatter type="xml"/>
 <classpath path="."/>
 <test todir="${results}" name="org.antbook.Project"/>
 </junit>

 <junitreport todir="${results}">
 <fileset dir="${results}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${results}"/>
 </junitreport>
 </target>

 <target name="test6" depends="compile">
 <junit printsummary="yes" haltonfailure="yes">
 <formatter type="brief" usefile="true"/>

 <classpath path="."/>
 <batchtest todir="${results}">
 <fileset dir="." includes="**/Project.class"/>
 </batchtest>
 </junit>
 </target>

 <target name="compress">
 <jar destfile="${jars}/Project.jar" basedir="${output}">
 <include name="**/*.class"/>
 </jar>
 </target>

 <target name="deploy">
 <delete dir="${dist}" />
 <mkdir dir="${dist}" />
 <copy todir="${dist}">
 <fileset dir="${jars}">
 <include name="*.jar"/>
 </fileset>
 </copy>
 </target>

</project>

Here's what you see when you run the build file:

%ant
Buildfile: build.xml

init:
 [mkdir] Created dir: /home/ant/ch05/junit/results
 [mkdir] Created dir: /home/ant/ch05/junit/jars

compile:
 [javac] Compiling 1 source file to /home/ant/ch05/junit

test1:
 [java] ...
 [java] Time: 0

 [java] OK (3 tests)

test2:
 [junit] Running org.antbook.Project
 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.01 sec

test3:
 [junit] Running org.antbook.Project
 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.01 sec

test4:
 [junit] Running org.antbook.Project
 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.04 sec

test5:
 [junit] Running org.antbook.Project
 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.04 sec

test6:
 [junit] Running org.antbook.Project
 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.01 sec

[junitreport] Using Xalan version: Xalan Java 2.4.1
[junitreport] Transform time: 1191ms

test:
 [echo]
 [echo] Tested OK....
 [echo]

compress:
 [jar] Building jar: /home/ant/ch05/junit/jars\Project.jar

deploy:
 [mkdir] Created dir: /home/ant/ch05/junit/user
 [copy] Copying 1 file to /home/ant/ch05/junit/user

main:
 [echo]
 [echo] Building the project....
 [echo]

BUILD SUCCESSFUL
Total time: 7 seconds

Because all tests ran successfully, the build was allowed to continue on to deployment.

5.5. Extending JUnit

There are many extensions for JUnit designed to help test specific types of builds, such as web
applications. You can find many extensions on the JUnit site, at
http://www.junit.org/news/extension/index.htm. Here's a starter list of JUnit extensions:

Abbot is a scripted Java GUI testing framework.

dbUnit is a database testing framework, which sets up your database before executing your
tests.

HtmlUnit is a Java unit testing framework for testing Web-based applications.

HttpUnit is a framework for accessing websites from a Java program, with support for following
links, submitting forms, handling cookies, and so on.

JavaBean Tester is a tool to automate the testing of JavaBeans.

Jemmy is a Java library that is used to create automated tests for Java GUI applications.

Jenerator generates Unit Tests for all types of EJB for JUnit and Cactus.

JFCUnit enables you to execute unit tests against Swing-based code.

JUnit JNDI DataSource helper package can simulate JNDI lookups for database connections.

JUnitDoclet generates TestSuites, TestCase skeletons, and default tests from Java sources.

JUnitPerf is a collection of JUnit test decorators to test scalability.

JUnitX provides access to private and protected classes, methods, and variables between
different packages for testing purposes.

jWebUnit provides a high-level API for navigating a web application combined with a set of
assertions to verify the application's correctness.

Log4Unit is a JUnit extension combining JUnit with Log4J.

Schema Unit Test (SUT) is a framework for testing XML Schema.

SQLUnit is a regression and unit testing harness for testing procedures stored in a database.

http://www.junit.org/news/extension/index.htm

Chapter 6. Getting Source Code from CVS
Repositories
Up to this point, you've been working solo with Ant, butas with any major build toolAnt can be used
in team environments. There's a lot of support built in for the Concurrent Version System (CVS) in
Ant, and this chapter is all about making code sharing in teams with CVS happen.

6.1. Source Control and Ant

When you work in teams, you have to coordinate your efforts. That means discussing and planning,
but even with the best of intentions, you can still end up with unintentional conflicts. You may have
made some brilliant changes to the code, only to find them wiped out by mistake when another
programmer uploads his own version of the same file.

Source control helps prevent these problems by controlling access to code and by maintaining a
history of the changes made so things aren't destroyed unintentionally. Storing a history of your code
is powerful; you can compare a new (buggy) file against an older one, and you can revert to a
previous version in case things have gone bad.

Ant has several source control tasks, shown in Table 6-1.

Table 6-1. Source control tasks

Task name Description

clearcase

Tasks for ClearCase cleartool checkin, checkout, uncheckout, update,
lock, unlock, mklbtype, rmtype, mklabel, mkattr, mkdir, mkelem, and
mkbl commands

Continuus/Synergy tasks
Tasks for Continuus ccmcheckin, ccmcheckout, ccmcheckintask,
ccmreconfigure, and ccmcreateTask commands

cvs
Specifies how to work with packages and modules retrieved from a CVS
repository

cvschangelog Creates change reports from a CVS repository

cvspass Adds entries to a .cvspass file

cvstagdiff
Creates an XML-formatted report of the changes between two tags or
dates recorded in a CVS repository

Microsoft Visual

Sourcesafe tasks

Tasks for Visual SourceSafe vssget, vsslabel, vsshistory, vsscheckin,
vsscheckout, vssadd, vsscp, and vsscreate commands

perforce
Tasks for Perforce p4sync, p4change, p4edit, p4submit, p4have, p4label,
p4counter, p4reopen, p4revert, and p4add commands

pvcs Retrieves and handles source code from a PVCS repository

sourceoffsite
Tasks for SourceOffSite sosget, soslabel, soscheckin, and soscheckout
commands

starteam
Tasks for StarTeam stcheckout, stcheckin, stlabel, and stlist
commands

Though Ant lets you work with various source control systems, most of its support revolves around
CVS, which is used throughout this chapter. CVS is an open source project that started as a set of
Unix shell scripts in 1986 and came into its own with dedicated software in 1989. Support for CVS is
available on many operating systems: Unix, Linux, Windows, Mac, and others. For the full CVS story,
look at http://www.cvshome.org.

To work with CVS using Ant, you need access to a CVS server. Most Linux and
Unix installations come with a built-in CVS server. To test if you have a working
CVS installation, type cvs --help at the prompt; you should see a list of help

items. If you can't find a CVS server, you can download what you need from
http://www.cvshome.org. Many CVS servers are available for Windows, such as
CVSNT, available for free from http://www.cvsnt.org. To install CVSNT,
download the executable file and run it.

The idea behind CVS, as with any repository software, is to manage and record changes to source
code. What corresponds to a project for Ant is a module in CVS. Modules are represented by
directories in CVS; the files you share are stored in the CVS repository. When you retrieve a file from
the repository, you check the file out. After you've modified the file, you commit the file, checking it
back in and sending those changes to the repository. If you want to refresh your own copy of a file,
you update it from the repository.

Because each file must be independently tracked, CVS gives the individual files a version number
automatically. Each time a file is committed, its version number is incremented. When you commit
files to the repository, they'll get a new version number as well.

Using the cvs task, you communicate with the CVS server using CVS commands, which appear in
Table 6-2.

Read more about these commands in the CVS guide at
https://www.cvshome.org/docs/manual/cvs-1.11.7/cvs_16.html.

Table 6-2. CVS commands

CVS
command

Does this

add Specifies you want to add a new file or directory to the CVS repository

admin Lets you work with administrative commands

annotate Specifies the revision where each line was modified

authserver Specifies authentication mode for the server

http://www.cvshome.org
http://www.cvshome.org
http://www.cvsnt.org
https://www.cvshome.org/docs/manual/cvs-1.11.7/cvs_16.html

CVS
command

Does this

chacl Specifies the access list for a directory

checkout Checks out source code from the repository

chown Changes the owner of a directory in the repository

commit Checks source code files into the repository

diff Displays the differences between source code revisions

edit Specifies you want to edit a file

editors Specifies you want to watch who has been editing a particular file

export Exports source code from a CVS repository (similar to checkout)

history Displays the CVS repository access history

import Imports source code into a CVS repository

info Displays information about the CVS repository and its supported protocols

init Creates a CVS repository and initializes it

log Displays information on file history

login Asks for a password, if needed

logout Logs out of a server

ls Lists the files in the CVS repository

lsacl Lists the CVS directories access control list

passwd Sets a user's CVS password

rannotate Displays the revision in which source lines were modified

rdiff
Creates patch files by comparing two files and outputting a file that be used to
update one into the other

release Specifies that a module will not be used anymore

remove Removes an item from a CVS repository

rlog Displays CVS history information for a module

rtag Adds a tag to a CVS module

server Lets you set server modes for access

status Displays checked-out file information

tag Adds a tag to checked-out files

unedit Undoes an edit command that's been executed

update Updates local copies of a file with those in the CVS repository

chacl Specifies the access list for a directory

checkout Checks out source code from the repository

chown Changes the owner of a directory in the repository

commit Checks source code files into the repository

diff Displays the differences between source code revisions

edit Specifies you want to edit a file

editors Specifies you want to watch who has been editing a particular file

export Exports source code from a CVS repository (similar to checkout)

history Displays the CVS repository access history

import Imports source code into a CVS repository

info Displays information about the CVS repository and its supported protocols

init Creates a CVS repository and initializes it

log Displays information on file history

login Asks for a password, if needed

logout Logs out of a server

ls Lists the files in the CVS repository

lsacl Lists the CVS directories access control list

passwd Sets a user's CVS password

rannotate Displays the revision in which source lines were modified

rdiff
Creates patch files by comparing two files and outputting a file that be used to
update one into the other

release Specifies that a module will not be used anymore

remove Removes an item from a CVS repository

rlog Displays CVS history information for a module

rtag Adds a tag to a CVS module

server Lets you set server modes for access

status Displays checked-out file information

tag Adds a tag to checked-out files

unedit Undoes an edit command that's been executed

update Updates local copies of a file with those in the CVS repository

CVS
command

Does this

version Shows the CVS version

watch Watches a file or files

watchers Displays which users are watching a file or files

The first step in working with CVS is to log into the CVS server, typically done with the cvspass task.

version Shows the CVS version

watch Watches a file or files

watchers Displays which users are watching a file or files

The first step in working with CVS is to log into the CVS server, typically done with the cvspass task.

6.2. Logging In

You use the cvspass task to log into a CVS server to get access to the code stored in the CVS
repository. This task adds entries to a .cvspass file, which has the same affect as a CVS login
command. When a .cvspass file has been created, subsequent logins will get the needed data from
this file, and you won't have to supply a password again.

The values you assign to the attribute named cvsroot use the same format of strings that appear in a
CVS .cvspass file, which specifies the protocol type, username, server, and repository location. For
example, using the pserver protocol with a user named Steven, a server named STEVE, and a
repository location of /home/steven/repository, cvspass would look like:

<?xml version="1.0"?>

<project default="main" basedir=".">

 <property name="cvs.dir" value="project" />

 <target name="main" >
 <cvspass cvsroot=":pserver:steven@STEVE:/home/steven/repository "
 password="opensesame" />
 .
 .
 .
 </target>

</project>

The CVS-related tasks can read the CVS root value from the cvsroot attribute, if they support that
attribute, or from the CVSROOT environment variable.

In Windows, when your username includes a space or spaces, you might run
into problems with the cvsroot attribute. In that case, assign a value to the
CVSROOT environment variable instead (e.g., C:\ant\ch06>set
CVSROOT=:pserver:Steven Holzner@STEVE:/home/steven/repository) and then
use cvspass or other CVS-related tasks in your build file normally.

The attributes of the cvspass task appear in Table 6-3.

Table 6-3. Attributes for the cvspass task

Attribute Description Required Default

cvsroot Specifies the CVS repository you want to add an entry for Yes

passfile Specifies the password file you want to add the entry to No ~/.cvspass

password
Specifies the password you want to be added to the password
file

Yes

6.3. Working with the Server

The cvs task lets you interact with the CVS server after you've logged in. The attributes of this task
appear in Table 6-4 ; to use this task, the cvs command must work on the command line (ie., the cvs
binary must be in your path).

Table 6-4. The cvs attributes

Attribute Description Required Default

append
Specifies whether you want to append output
when redirecting text to a file.

No false

command
Specifies the CVS command you want to
execute.

No "checkout "

compression The same as compressionlevel="3 ". No false

compressionlevel

Specifies the compression level you want to
use, via a number between 1 and 9. Any other
value sets compression="false ".

No false

cvsRoot Specifies the CVSROOT variable. No

cvsRsh Specifies the CVS_RSH variable. No

date

Specifies that you want to use the most recent
revision, as long as it is no later than the given
date.

No

dest
Specifies the directory where you want
checked-out files to be placed.

No
The project's
basedir.

error
Specifies the file where you want error
messages stored.

No
Sends errors to the
Ant Log as
MSG_WARN.

failonerror Stops the build if the task encounters an error. No false

noexec
Specifies that CVS actions should report only,
without changing any files.

No false

output
Specifies the file to which standard output
should be directed.

No
Sends output to the
Ant Log as
MSG_INFO.

package Specifies the module you want to check out. No

Attribute Description Required Default

passfile
Specifies a password file you want to have the
task read passwords from.

No ~/.cvspass.

port
Specifies the port used by the task to
communicate with the CVS server.

No Port 2401

quiet
Suppresses messages. This is the same as
using -q on the command line.

No false

reallyquiet
Suppresses all messages. This is the same as
using -Q on the command line. Since Ant 1.6.

No false

tag
Specifies the module to check out by tag
name.

No

This task is designed to pass commands on to CVS verbatim. For example, here's how you'd pass a
CVS diff command to the CVS server:

<cvs command="diff -u -N" output="diff.txt"/>

You can nest commandline elements and use the value attribute of argument elements to pass
arguments to the CVS server; you can pass the diff command this way:

<cvs output="patch">
 <commandline>
 <argument value="diff"/>
 <argument value="-u"/>
 <argument value="-N"/>
 </commandline>
</cvs>

or this way, using the argument element's line attribute:

<cvs output="patch">
 <commandline>
 <argument line="-q diff -u -N"/>
 </commandline>
</cvs>

6.3.1. Checking Out Modules

To check out a module from the CVS server, you can use the cvs task without specifying a CVS
command; the default for the command attribute is "checkout." In Example 6-1 , a module named
GreetingApp is checked out and stored in a directory named project .

passfile
Specifies a password file you want to have the
task read passwords from.

No ~/.cvspass.

port
Specifies the port used by the task to
communicate with the CVS server.

No Port 2401

quiet
Suppresses messages. This is the same as
using -q on the command line.

No false

reallyquiet
Suppresses all messages. This is the same as
using -Q on the command line. Since Ant 1.6.

No false

tag
Specifies the module to check out by tag
name.

No

This task is designed to pass commands on to CVS verbatim. For example, here's how you'd pass a
CVS diff command to the CVS server:

<cvs command="diff -u -N" output="diff.txt"/>

You can nest commandline elements and use the value attribute of argument elements to pass
arguments to the CVS server; you can pass the diff command this way:

<cvs output="patch">
 <commandline>
 <argument value="diff"/>
 <argument value="-u"/>
 <argument value="-N"/>
 </commandline>
</cvs>

or this way, using the argument element's line attribute:

<cvs output="patch">
 <commandline>
 <argument line="-q diff -u -N"/>
 </commandline>
</cvs>

6.3.1. Checking Out Modules

To check out a module from the CVS server, you can use the cvs task without specifying a CVS
command; the default for the command attribute is "checkout." In Example 6-1 , a module named
GreetingApp is checked out and stored in a directory named project .

In this and the following CVS-related build files, you can omit the cvspass task if
you've stored your password in the .cvspass file (which is what cvspass does).
If you omit cvspass , set the cvsroot attribute in the cvs task, or set the
CVSROOT environment variable.

Example 6-1. Checking out a CVS module (ch06/checkout/build.xml)

<?xml version="1.0"?>

<project default="checkout" basedir=".">

 <property name="cvs.dir" value="project" />

 <target name="checkout" >
 <cvspass cvsroot=":pserver:steven@STEVE:/home/steven/repository"
 password="opensesame" />
 <cvs package="GreetingApp" dest="${cvs.dir}" />
 </target>

</project>

Here's what this build file looks like in action:

%ant
Buildfile: build.xml

checkout:
 [cvs] Using cvs passfile: /home/.cvspasss
 [cvs] cvs server: Updating GreetingApp
 [cvs] U GreetingApp/.classpath
 [cvs] U GreetingApp/.project
 [cvs] cvs server: Updating GreetingApp/org
 [cvs] cvs server: Updating GreetingApp/org/antbook
 [cvs] cvs server: Updating GreetingApp/org/antbook/ch06
 [cvs] U GreetingApp/org/antbook/ch06/GreetingClass.java

BUILD SUCCESSFUL
Total time: 2 seconds

Before using the build files for this chapter in the downloadable code, make
sure you replace the cvsroot attribute value or the CVSROOT environment
variable with an appropriate value for your CVS server.

After running this build file, the project directory will hold the checked-out module, including a CVS

.project file and a CVS directory, which holds logging and tracking information. You're free to work
with the code that's been downloaded, and when you want to commit the project back to the CVS
server, specify the same directory you downloaded the project to.

6.3.2. Updating Shared Code

When you want to update your local copy of a module from the CVS repository, you can use the
update command. You can see how that works in Example 6-2 ; as before, you can omit the cvspass
task if your password is in the .cvspass file though it causes no harm to leave it in.

Example 6-2. Updating a CVS module ch06/update/build.xml

<?xml version="1.0"?>

<project default="main" basedir=".">

 <property name="cvs.dir" value="project" />

 <target name="main" depends="login, update">
 <echo>
 Updating....
 </echo>
 </target>

 <target name="login">
 <cvspass cvsroot=":pserver:steven@STEVE:/home/steven/repository"
 password="opensesame" />
 </target>

 <target name="update" depends="login">
 <cvs dest="${cvs.dir}" command="update"/>
 </target>

</project>

Here's what you see when running this build file:

%ant
Buildfile: build.xml

login:
 [cvs] Using cvs passfile: /home/.cvspass

update:
 [cvs] Using cvs passfile: /home/.cvspass
 [cvs] cvs server: Updating GreetingApp
 [cvs] cvs server: Updating GreetingApp/org
 [cvs] cvs server: Updating GreetingApp/org/antbook
 [cvs] cvs server: Updating GreetingApp/org/antbook/ch06

main:
 [echo]
 [echo] Updating....
 [echo]

BUILD SUCCESSFUL
Total time: 3 seconds

This updates your local copy of a module with what's currently in the CVS repository.

6.3.3. Committing Source Code

After you've made changes to the code in a checked-out module, you can send the revised module
back to the CVS repository by setting the command attribute to "commit", as shown in Example 6-3 . In
this example, the build file commits a new version of a checked-out module, adding the comment
"New Version."

Example 6-3. Committing a CVS module ch06/commit/build.xml

<?xml version="1.0"?>

<project default="main" basedir=".">

 <property name="cvs.dir" value="project" />

 <target name="main" depends="login, commit">
 <echo>
 Committing....
 </echo>
 </target>

 <target name="login">
 <cvspass cvsroot=":pserver:steven@STEVE:/home/steven/repository"
 password="opensesame" />
 </target>

 <target name="commit" depends="login">
 <cvs dest="${cvs.dir}/GreetingApp" command="commit -m 'New Version'"/>
 </target>

</project>

Here's what this build file gives you when you run it and the CVS server commits the new code:

%ant
Buildfile: build.xml

login:

commit:
 [cvs] Using cvs passfile: /home/.cvspass
 [cvs] cvs commit: Examining .
 [cvs] cvs commit: Examining org
 [cvs] cvs commit: Examining org/antbook
 [cvs] cvs commit: Examining org/antbook/ch06
 [cvs] Checking in org/antbook/ch06/GreetingClass.java;
 [cvs] /home/steven/repository/GreetingApp/org
 /antbook/ch06/GreetingClass.java,v
 <-- GreetingClass.java
 [cvs] new revision: 1.5; previous revision: 1.4
 [cvs] done

main:
 [echo]
 [echo] Committing....
 [echo]

BUILD SUCCESSFUL
Total time: 1 second

6.3.4. Comparing Files

You can compare local files to those in the CVS repository with the CVS diff command. For example,
say that the module you've been working with, GreetingApp , contains GreetingClass.java , which
holds these contents (presumably committed earlier by you or another developer):

package org.antbook.ch06;

public class GreetingClass
{
 public static void main(String[] args)
 {
 System.out.println("No problems here.");
 }
}

Then suppose you change the displayed message from "No problems here." to "No problems at all."
in the local version of the file:

package org.antbook.ch06;

public class GreetingClass
{
 public static void main(String[] args)

 {
 System.out.println("No problems at all.");
 }
}

The CVS diff command finds the difference between your local copy and the server's version. You
can see a build file using this command in Example 6-4 ; in this case, the differences are written to a
file named patch.txt .

Example 6-4. Finding differences in a CVS module ch06/diff/build.xml

<?xml version="1.0"?>

<project default="main" basedir=".">

 <property name="cvs.dir" value="project" />

 <target name="main" >
 <cvspass cvsroot=":pserver:steven@STEVE:/home/steven/repository"
 password="opensesame" />
 <cvs command="diff" dest="${cvs.dir}/GreetingApp" output="patch.txt"/>
 </target>

</project>

Here's what the build process looks like at work:

%ant
Buildfile: build.xml

main:
 [cvs] Using cvs passfile: /home/.cvspass
 [cvs] cvs server: Diffing .
 [cvs] cvs server: Diffing org
 [cvs] cvs server: Diffing org/antbook
 [cvs] cvs server: Diffing org/antbook/ch06

BUILD SUCCESSFUL
Total time: 1 second

In patch.txt , the diff command caught the difference between the local copy of the file and the
version in the CVS repository:

Index: org/antbook/ch06/GreetingClass.java
===
RCS file: /home/steven/repository/GreetingApp/org/antbook/ch06/GreetingClass.java,v
retrieving revision 1.6

diff -r1.6 GreetingClass.java
20c20
< System.out.println("No problems at all.");

> System.out.println("No problems here.");

If you want to create a patch file that you can, with the patch utility, update
code files with, use the CVS rdiff command, not diff .

That's how the cvs task works; you pass the CVS command, along with any command-line options, in
the command attribute or a commandline element. You can extrapolate from the CVS examples given
here to other CVS commands easily.

6.4. Getting Version Data

The cvsversion task retrieves the version of the CVS client and server. For example, this cvsversion
element stores the server's version number in the property cvsServerVersion, and the client's
version in cvsClientVersion:

<cvsversion cvsroot=":pserver:steven@STEVE:/home/steven/repository"
 password="opensesame"
 cvsserverproperty="cvsServerVersion"
 cvsclientproperty="cvsClientVersion"
/>

The attributes for this task appear in Table 6-5.

Table 6-5. The cvsversion task's attributes

Attribute Description Required Default

cvsclientproperty
Specifies the name of the property in which you
want the version of the cvsclient to be placed

No

cvsroot

Specifies the

CVSROOT

variable you want to use

No

cvsrsh

Specifies the

CVS_RSH

variable you want to use

No

cvsserverproperty
Specifies the name of a property where you want
the CVS server version to be placed

No

dest
Specifies the directory which holds, or will hold, a
checked-out project

No
Project's
basedir

failonerror Makes the build fail if this task encounters an error No false

package Specifies the module you want to check out No

Attribute Description Required Default

passfile
Specifies the password file you want the task to read
passwords from

No ~/.cvspass

port
Specifies the port used to communicate with the
CVS server

No Port 2401

passfile
Specifies the password file you want the task to read
passwords from

No ~/.cvspass

port
Specifies the port used to communicate with the
CVS server

No Port 2401

6.5. Creating Change Logs

This task creates an XML-formatted report file of the change logs in a CVS repository. If you want to
track what's been happening with a module, this is the way to do it. For example, take a look at the
build file in Example 6-5, which creates a change log, changelog.xml, for the GreetingApp module:

Example 6-5. Getting a CVS change log (ch06/changelog/build.xml)

<?xml version="1.0"?>

<project default="main" basedir=".">

 <property name="cvs.dir" value="project" />

 <target name="main" >
 <cvspass cvsroot=":pserver:steven@STEVE:/home/steven/repository"
 password="opensesame" />
 <cvschangelog dir="${cvs.dir}/GreetingApp" destfile="changelog.xml" />
 </target>

</project>

Here's the resulting change log, changelog.xml:

<?xml version="1.0" encoding="UTF-8"?>
<changelog>
 <entry>
 <date>2005-02-24</date>
 <time>16:18</time>
 <author><![CDATA[steven]]></author>
 <file>
 <name>org/antbook/ch06/GreetingClass.java</name>
 <revision>1.1</revision>
 </file>
 <msg><![CDATA[The Greeting App]]></msg>
 </entry>
 <entry>
 <date>2005-06-22</date>
 <time>16:25</time>
 <author><![CDATA[steven]]></author>
 <file>
 <name>org/antbook/ch06/GreetingClass.java</name>
 <revision>1.3</revision>
 <prevrevision>1.2</prevrevision>

 </file>
 <msg><![CDATA[*** empty log message ***]]></msg>
 </entry>
 <entry>
 <date>2005-02-25</date>
 <time>16:24</time>
 <author><![CDATA[steven]]></author>
 <file>
 <name>.classpath</name>
 <revision>1.1</revision>
 </file>
 <file>
 <name>.project</name>
 <revision>1.1</revision>
 </file>
 <msg><![CDATA[The Greeting App]]></msg>
 </entry>
 <entry>
 <date>2005-02-25</date>
 <time>16:34</time>
 <author><![CDATA[steven]]></author>
 <file>
 <name>org/antbook/ch06/GreetingClass.java</name>
 <revision>1.2</revision>
 <prevrevision>1.1</prevrevision>
 </file>
 <msg><![CDATA[*** empty log message ***]]></msg>
 </entry>
 <entry>
 <date>2005-06-22</date>
 <time>16:27</time>
 <author><![CDATA[steven]]></author>
 <file>
 <name>org/antbook/ch06/GreetingClass.java</name>
 <revision>1.4</revision>
 <prevrevision>1.3</prevrevision>
 </file>
 <msg><![CDATA[OK]]></msg>
 </entry>
 <entry>
 <date>2005-06-22</date>
 <time>16:29</time>
 <author><![CDATA[steven]]></author>
 <file>
 <name>org/antbook/ch06/GreetingClass.java</name>
 <revision>1.5</revision>
 <prevrevision>1.4</prevrevision>
 </file>
 <msg><![CDATA[New Version]]></msg>
 </entry>
</changelog>

The attributes for this task appear in Table 6-6.

Table 6-6. The cvschangelog task's attributes

Attribute Description Required Default

cvsroot

Specifies the

CVSROOT

variable you want to use

No

cvsrsh

Specifies the

CVS_RSH

variable you want to use

No

daysinpast
Specifies for how many days in the past you want change log
information

No

destfile
Specifies the file in which you want the change log report
written

Yes

dir
Specifies the directory from which to run the CVS log
command

No ${basedir}

end
Specifies the latest date for which you want to include change
logs

No

failonerror
Specifies that you want the task to fail if it encounters an
error

No false

package Specifies the module you want to check out No

passfile
Specifies the password file you want the task to read
passwords from

No ~/.cvspass

port
Specifies the port the task should use to communicate with
the CVS server

No port 2401

start
Specifies the earliest date for which you want to include
change logs

No

tag Lets you access change logs by tag No

usersfile

Specifies a property file holding name/value pairs connecting
user IDs and names, allowing the task to report names
inctead of IDs

No

The nested user element allows you to specify a mapping between a user ID (as it appears to the
CVS server) and a name to include in the formatted report. The attributes of the user element appear
in Table 6-7.

Table 6-7. The user element's attributes

Attribute Description Required Default

displayname Specifies the name you want used in the CVS change log report Yes

userid
Specifies the user ID of the person as far as the CVS server is
concerned

Yes

6.6. Finding Changes Between Versions

The cvstagdiff task generates an XML-formatted report file of the changes between two tags or
dates recorded in a CVS repository. Here's an example that creates a report, datediff.xml, for all the
changes that have been made in the GreetingApp module in January 2005:

<cvstagdiff
 destfile="datediff.xml"
 package="GreetingApp"
 startDate="2005-01-01"
 endDate="2005-31-01"
/>

You can see the attributes of this task in Table 6-8.

Table 6-8. The cvstagdiff task's attributes

Attribute Description Required Default

compression

Specifies the compression you want to use. Set to
true, false, or a number (1-9) for compression
level.

No
No
compression

cvsroot

Specifies the

CVSROOT

variable you want to use.

No

cvsrsh

Specifies the

CVS_RSH

variable you want to use.

No

destfile
Specifies the file where the report should be
stored.

Yes

enddate
Sets the latest date for differences to still be
included in the report.

One of the endtag
or enddate

endtag
Sets the latest tag for differences to still be
included in the report.

One of the endtag
or enddate

Attribute Description Required Default

failonerror
Makes the build fail if this task encounters an
error.

No false

package

Specifies the module you want to analyze. Since
Ant 1.6, multiple modules can be separated by
spaces.

Yes

passfile
Specifies the password file you want the task to
read passwords from.

No ~/.cvspass

port
Specifies the port used to communicate with the
CVS server.

No port 2401

quiet
Specifies that you want to suppress displayed
messages.

No false

startdate
Sets the earliest date for differences to still be
included in the report.

One of starttag or
startdate

starttag
Sets the earliest tag for differences to still be
included in the report.

One of starttag or
startdate

Here's something useful to know: Ant comes with an XSLT stylesheet,
${ant.home}/etc/tagdiff.xsl, that you can use to generate a HTML report based
on this task's XML output. Here's an example:

<style in="datediff.xml"
 out="datediff.html"
 style="${ant.home}/etc/tagdiff.xsl">
 <param name="title" expression="Date Differences"/>
 <param name="module" expression="GreetingApp"/>
</style>

failonerror
Makes the build fail if this task encounters an
error.

No false

package

Specifies the module you want to analyze. Since
Ant 1.6, multiple modules can be separated by
spaces.

Yes

passfile
Specifies the password file you want the task to
read passwords from.

No ~/.cvspass

port
Specifies the port used to communicate with the
CVS server.

No port 2401

quiet
Specifies that you want to suppress displayed
messages.

No false

startdate
Sets the earliest date for differences to still be
included in the report.

One of starttag or
startdate

starttag
Sets the earliest tag for differences to still be
included in the report.

One of starttag or
startdate

Here's something useful to know: Ant comes with an XSLT stylesheet,
${ant.home}/etc/tagdiff.xsl, that you can use to generate a HTML report based
on this task's XML output. Here's an example:

<style in="datediff.xml"
 out="datediff.html"
 style="${ant.home}/etc/tagdiff.xsl">
 <param name="title" expression="Date Differences"/>
 <param name="module" expression="GreetingApp"/>
</style>

6.7. Creating Patches

This task applies a patch file to local source code, updating the local code. You can create a patch file
with the CVS rdiff command, which lets you compare two files. Here's an example, which applies
patch.txt to the module in the current directory:

<patch patchfile="patch.txt"/>

The attributes for this task appear in Table 6-9.

To use this task, the patch utility must be in your path.

Table 6-9. The patch task's attributes

Attribute Description Required Default

backups
Specifies you want to keep backups of unpatched
files

No

destfile
Specifies the file you want to send the output to.
Since Ant 1.6

No

dir
Specifies the directory where you want to run the
patch command

No
The project's
basedir.

ignorewhitespace
Specifies that you want to ignore whitespace
differences

No

originalfile Specifies the file you want to patch No

patchfile Specifies the file that contains the patch Yes

quiet
Specifies you want to supress messages unless an
error occurs

No

reverse
Specifies you want to create the patch with old and
new files in reverse order (swapped)

No

Chapter 7. Executing External Programs
Part of the build process involves testing what you've built, and an obvious way of doing that is to run
the results of a build. Doing so from Ant involves using the tasks detailed in this chapter: java, exec,
and apply. You can check the return code from your build to ensure things worked out; if not, you
can halt the build before you deploy faulty build results.

Executing code to test it is a fundamental part of the build process, and this chapter covers that
aspect of Ant. Besides running your code, you can start and stop external programs needed to test
your code, such as when you want to run a JUnit test on a Web application and need to start a web
server. The tasks in this chapter do more than the usual internal Ant tasks, and because they're
designed to deal with the external run-time environment, so they're a little more involved than usual.

7.1. Executing Java Code

The java task is part of Ant's core functionality; it executes a Java class in the current JVM, or forks
another JVM and runs the class in the new JVM. You can recover the exit code of the Java class and
stop the build if the build results you're testing create an error.

Here's an example using this task. Say you have this code, Project.java, which reads what the user
enters on the command line and displays it:

public class Project
{
 public static void main(String args[])
 {
 System.out.println("You said: " + args[0]);
 System.exit(0);
 }
}

After compiling this code you can run it with the java task by setting up the classpath with a
classpath element and passing a command-line argument, "OK", in a nested arg element. The build
file appears in Example 7-1.

Example 7-1. Using the java task (ch07/java/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="src" location="source" />
 <property name="output" location="bin" />
 <property environment="env" />

 <target name="main" depends="init, compile, run">
 <echo>
 Building and running....
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="run" failonerror="true">
 <java classname="Project"
 fork="true" >
 <classpath>
 <pathelement location="${output}"/>
 </classpath>
 <arg value="OK" />
 </java>
 </target>
</project>

Here's what you see when you run this build file; the code ran without problem and recovered the
command-line argument passed to it:

%ant
Buildfile: build.xml

init:
 [mkdir] Created dir: /home/steven/ch07/bin

compile:
 [javac] Compiling 1 source file to /home/steven/ch07/bin

run:
 [java] You said: OK

main:
 [echo]
 [echo] Building and running....
 [echo]

BUILD SUCCESSFUL
Total time: 4 seconds

The many attributes for this task appear in Table 7-1.

If things go wrong when you run this task, there may be a conflict with the
current JVM, which is running Ant. In that case, set fork="true" to use a new
JVM.

Table 7-1. The java task's attributes

Attribute Description Required Default

Append
Specifies whether you want to append to output and
error files.

No false

args
Deprecated. Use nested arg elements. Specifies the
arguments for the class that you want to run.

No

classname Specifies the Java class you want to run.
One of either
jar or classname

classpath
Specifies the classpath you want to use when the class
is run.

No

classpathref
Specifies the classpath you want to use, as a
reference, when the class is run.

No

dir Specifies the directory where you want to run Java. No

error
Specifies the file where standard error output should
be stored.

No

errorproperty
Specifies the name of a property where you want to
store errors.

No

failonerror
Specifies the build should be stopped if the task
encounters errors.

No false

fork Specifies you want to run the class in a forked JVM. No false

input
Specifies the file where the task should take input to
run the class with.

No

inputstring
Specifies a string holding the input stream for the
class to run.

No

jar
Specifies the location of the .jar file to run. The .jar file
must have a Main-Class entry in the manifest.

jar or classname

jvm Specifies the command used to start Java. No "java"

jvmargs
Deprecated. Use nested jvmarg elements. Specifies
arguments to pass to the forked Java Virtual Machine.

No

logError Specifies you want to send error output to Ant's log. No

maxmemory
Specifies the maximum amount of memory you want
to give a forked JVM.

No

newenvironment
Specifies old environment variables should not be
passed as new environment variables to a forked JVM.

No false

output
Specifies the name of a file in which to store the
output.

No

outputproperty
Specifies the name of a property in which you want
the output of the task to be placed.

No

Attribute Description Required Default

resultproperty

Specifies the name of the property that you want to
hold the return code. Use this only if failonerror is
false and if fork is true.

No

spawn
Specifies you want to spawn a new process in which to
run the class. To use this attribute, set fork to true.

No

timeout

Specifies you want the task to quit if it doesn't finish in
the given time. Set the time in milliseconds. You
should only use this if fork is true.

No

The java task supports a number of nested elements, many of which are the same as the javac task.
You can use arg elements to pass arguments to Java and jvmarg elements to specify arguments to a
forked JVM. Nested sysproperty elements specify system properties required by the class you're
running. As of Ant 1.6, you can use syspropertyset elements, which specify a set of properties to be
used as system properties.

The java task supports nested classpath elements, which you can use to specify a classpath to use
when Java runs, and supports as bootclasspath elements (since Ant 1.6) to set the location of
bootstrap class files. You can use env elements (see Table 7-3) to specify environment variables to
pass to the forked JVM and nested permissions elements. As with the javac task, permissions
represents a set of security permissions granted to the code in the JVM where Ant is running. Since
Ant 1.6, you can use nested assertions elements to support Java 1.4 assertions.

7.1.1. Handling Errors and Return Codes

By default, the return code of the java task is ignored. If you want to check the return code, you can
set the resultproperty attribute to the name of a property and have the result code assigned to it.
For example, say your code returned a non-zero value:

public class Project
{
 public static void main(String args[])
 {
 System.out.println("You said: " + args[0]);
 System.exit(1);
 }
}

You can test the return code from a forked JVM and explicitly fail unless it's 0 this way:

 <target name="run">
 <java classname="Project"
 fork="true" resultproperty="return.code">
 <classpath>
 <pathelement location="${output}"/>
 </classpath>

resultproperty

Specifies the name of the property that you want to
hold the return code. Use this only if failonerror is
false and if fork is true.

No

spawn
Specifies you want to spawn a new process in which to
run the class. To use this attribute, set fork to true.

No

timeout

Specifies you want the task to quit if it doesn't finish in
the given time. Set the time in milliseconds. You
should only use this if fork is true.

No

The java task supports a number of nested elements, many of which are the same as the javac task.
You can use arg elements to pass arguments to Java and jvmarg elements to specify arguments to a
forked JVM. Nested sysproperty elements specify system properties required by the class you're
running. As of Ant 1.6, you can use syspropertyset elements, which specify a set of properties to be
used as system properties.

The java task supports nested classpath elements, which you can use to specify a classpath to use
when Java runs, and supports as bootclasspath elements (since Ant 1.6) to set the location of
bootstrap class files. You can use env elements (see Table 7-3) to specify environment variables to
pass to the forked JVM and nested permissions elements. As with the javac task, permissions
represents a set of security permissions granted to the code in the JVM where Ant is running. Since
Ant 1.6, you can use nested assertions elements to support Java 1.4 assertions.

7.1.1. Handling Errors and Return Codes

By default, the return code of the java task is ignored. If you want to check the return code, you can
set the resultproperty attribute to the name of a property and have the result code assigned to it.
For example, say your code returned a non-zero value:

public class Project
{
 public static void main(String args[])
 {
 System.out.println("You said: " + args[0]);
 System.exit(1);
 }
}

You can test the return code from a forked JVM and explicitly fail unless it's 0 this way:

 <target name="run">
 <java classname="Project"
 fork="true" resultproperty="return.code">
 <classpath>
 <pathelement location="${output}"/>
 </classpath>

 <arg value="OK" />
 </java>
 <condition property="problem">
 <not>
 <equals arg1="${return.code}" arg2="0"/>
 </not>
 </condition>
 <fail if="problem" message="Failed: ${return.code}" />
 </target>

Here's the result. The java task indicates a nonzero return code and the build was terminated by the
fail task:

%ant build.xml
Buildfile: build.xml

init:
 [mkdir] Created dir: /home/steven/ch07/bin

compile:
 [javac] Compiling 1 source file to /home/steven/ch07/bin

run:
 [java] You said: OK

 [java] Java Result: 1

BUILD FAILED
/home/steven/ch07/build2.xml:35: Failed: 1

Total time: 4 seconds

You can set failonerror="true" in the java task, in which case the only possible value for
resultproperty is 0, or the build will terminate. That's how the example in the previous topic was
written:

 <target name="run" failonerror="true">
 <java classname="Project"
 fork="true" >
 <classpath>
 <pathelement location="${output}"/>
 </classpath>
 <arg value="OK" />
 </java>
 </target>

If failonerror="false" and fork="false", the java task must return a value of
0 or the build will exit because the code was run by the build JVM.

Making a build fail if there's an error when you run the build's output is a perfect way to test the
results of a build; if the output doesn't run as it should, there's no sense in deploying it. Setting
failonerror to true in the java task ensures your build will halt before deployment if the results
don't work.

Here's another example using the java task, which forks a JVM and runs a .jar file in 512 Megabytes
of memory, using the entry point indicated by the manifest:

<java jar="${bin}/connect.jar"
 fork="true"
 failonerror="true"
 maxmemory="512m"
 >
 <arg value="-q"/>
 <classpath>
 <pathelement location="${bin}/connect.jar"/>
 <pathelement path="${java.class.path}"/>
 </classpath>
</java>

This example passes on a system property and an argument to the JVM:

<java classname="Project.main" fork="true" >
 <sysproperty key="DEBUG" value="true"/>
 <arg value="-z"/>
 <jvmarg value="-enableassertions"/>
 <classpath>
 <pathelement location="${bin}/**"/>
 </classpath>
</java>

As you can see, there are a great many options when running Java code.

7.2. Executing External Programs

The exec task executes a system command or external program. The attributes for this task appear
in Table 7-2.

Table 7-2. The exec task's attributes

Attribute Description Required Default

append
Specifies whether you want to append to
output and error files.

No false

command

Deprecated. Use executable and nested arg
elements. Specifies the command you want to
run.

Exactly one of
command or
executable.

dir
Specifies the directory where you want to run
the command.

No

error
Specifies the file where standard error output
should be stored.

No

errorproperty
Specifies the name of a property where you
want to store errors.

No

executable
Specifies the command you want to run
(without any command-line arguments).

Exactly one of
command or
executable.

failifexecutionfails
Specifies the build should be stopped if the
executable can't start.

No true

failonerror
Specifies the build should be stopped if the task
encounters errors.

No false

input
Specifies the file where the task should take
input to run the executable with.

No

inputstring
Specifies a string holding the input stream for
the executable to run.

No

logError
Specifies you want to send error output to
Ant's log.

No

newenvironment

Specifies old environment variables should not
be passed as new environment variables to a
forked JVM.

No false

Attribute Description Required Default

os
Specifies the operating systems in which the
executable can be run.

No

output
Specifies the name of a file in which to store
the output.

No

outputproperty
Specifies the name of a property in which you
want the output of the task to be placed.

No

resolveExecutable

Specifies the name of the executable should be
resolved using the project's base directory,
then using the execution directory if that
doesn't work. Available since Ant 1.6.

No false

resultproperty

Specifies the name of the property that you
want to hold the return code. Use this only if
failonerror is false and if fork is TRue.

No

spawn

Specifies you want to spawn a new process in
which to run the command. To use this
attribute, set fork to true.

No false

timeout

Specifies you want the task to quit if it doesn't
finish in the given time. Set the time in
milliseconds.

No

vmlauncher
Specifies you want to run the executable using
the JVM's execution facilities.

No false

If you're running a mixed Unix/Windows environment, such as Cygwin, exec
task will not understand paths like /bin/release for the executable attribute
because the JVM in which Ant is running is a Windows executable, which means
it's unaware of the conventions used in Cygwin.

How you execute general code like this varies by operating system, so you can specify the operating
system with the os attribute; operating system names are strings like "Linux", "Windows 2000", and
so on. When you specify a target operating system, the command or program is only executed when
the OS matches one of the operating systems you specify.

If you want to check the OS name for a target platform, use Java to display the
value of the os.name system property.

You can nest arg elements in the exec task to pass command-line arguments. And you can set the
values of environment variables using nested env elements. The attributes of this element appear in
Table 7-3.

os
Specifies the operating systems in which the
executable can be run.

No

output
Specifies the name of a file in which to store
the output.

No

outputproperty
Specifies the name of a property in which you
want the output of the task to be placed.

No

resolveExecutable

Specifies the name of the executable should be
resolved using the project's base directory,
then using the execution directory if that
doesn't work. Available since Ant 1.6.

No false

resultproperty

Specifies the name of the property that you
want to hold the return code. Use this only if
failonerror is false and if fork is TRue.

No

spawn

Specifies you want to spawn a new process in
which to run the command. To use this
attribute, set fork to true.

No false

timeout

Specifies you want the task to quit if it doesn't
finish in the given time. Set the time in
milliseconds.

No

vmlauncher
Specifies you want to run the executable using
the JVM's execution facilities.

No false

If you're running a mixed Unix/Windows environment, such as Cygwin, exec
task will not understand paths like /bin/release for the executable attribute
because the JVM in which Ant is running is a Windows executable, which means
it's unaware of the conventions used in Cygwin.

How you execute general code like this varies by operating system, so you can specify the operating
system with the os attribute; operating system names are strings like "Linux", "Windows 2000", and
so on. When you specify a target operating system, the command or program is only executed when
the OS matches one of the operating systems you specify.

If you want to check the OS name for a target platform, use Java to display the
value of the os.name system property.

You can nest arg elements in the exec task to pass command-line arguments. And you can set the
values of environment variables using nested env elements. The attributes of this element appear in
Table 7-3.

You can send input to a program using the input and inputstring attributes.

Table 7-3. The env element's attributes

Attribute Description Required

file
Specifies an environment variable that you want to replace
with the absolute name of the file.

Exactly one of value,
path, or file.

key
Specifies the name of the environment variable you want to
work with.

Yes

path
Specifies the value for a path-like environment variable. Use
; or : as path separators.

Exactly one of value,
path, or file.

value Specifies the value of the environment variable.
Exactly one of value,
path, or file.

7.2.1. Handling Return Codes

By default the return code of an exec is ignored. However, if you set failonerror to TRue, then any
OS-specific return code that indicates failure means the build will fail. If you start an external
program and the program fails to execute, the build halts unless failifexecutionfails is set to
false. You can set the resultproperty to the name of a property that will be assigned the return
code for testing. Any of these attributes can test if the results of your build functions as they should.

Example 7-2 shows how to execute a C++ compiler, cpp.exe, passing it a command line to execute
and watching for errors by setting failonerror to TRue, which means the build will quit if there is an
error.

Example 7-2. Running a JVM (ch07/exec/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile">
 <echo>
 Building and running....
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <exec dir="." executable="/bin/cpp.exe"
 failonerror="true">
 <arg line="-c ${src}/*.cpp ${output}"/>
 </exec>
 </target>
</project>

You can use this task to run any general program. Here's an example that will launch the Internet
Explorer in Windows, assuming a default installation of that browser, and open the exec task's
documentation page:

<?xml version="1.0" ?>
<project default="main">

 <property name="browser" location=
 "C:/Program Files/Internet Explorer/iexplore.exe"/>
 <property name="file" location="${ant.home}/docs/manual/coretasks/exec.html"/>

 <target name="main">
 <exec executable="${browser}" spawn="true">
 <arg value="${file}"/>
 </exec>
 </target>

</project>

This example starts emacs on X Window's display 1:

<?xml version="1.0" ?>
<project default="main">

 <target name="main">
 <exec executable="/usr/bin/emacs">
 <env key="DISPLAY" value=":1.0"/>
 </exec>
 </target>

</project>

7.2.2. Targeting Operating Systems

The exec task depends on a specific operating system. If you want your build file to work on multiple
platforms, use the os attribute to specify which exec task is intended to run on which platform.

In Example 7-3, two platforms are targeted. The build file executes the ls command on Linux,
sending the output to ls.txt, and works on Windows via the dir command, sending output to dir.txt.

Example 7-3. Targeting operationg systems (ch07/targeting/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <target name="main">
 <exec dir="." executable="ls" os="Linux" output="ls.txt" />
 <exec dir="." executable="cmd.exe" os="Windows 2000" output="dir.txt">
 <arg line="/c dir"/>
 </exec>
 </target>

</project>

Here's what you might see in Linux:

-bash-2.05b$ ant
Buildfile: build.xml

main:

BUILD SUCCESSFUL
Total time: 0 seconds

-bash-2.05b$ cat ls.txt
build.xml
ls.txt

Here's what you might see in Windows:

C:\ant\ch07\exec>ant
Buildfile: build.xml

main:

BUILD SUCCESSFUL
Total time: 0 seconds

C:\ant\ch07\exec>type dir.txt
 Volume in drive C has no label.
 Volume Serial Number is 1512-1722

 Directory of C:\ant\ch07\exec

06/25/2004 01:06p <DIR> .

06/25/2004 01:06p <DIR> ..
06/25/2004 02:02p 311 build.xml
06/25/2004 02:02p 104 dir.txt
 2 File(s) 455 bytes
 2 Dir(s) 29,627,777,024 bytes free

7.2.3. Handling Timeouts

You can limit the amount of time you want to wait for an external program to execute by setting the
timeout attribute to a millisecond value. If the timeout is reached and the program hasn't returned,
it's killed and the java tasks's return value will be 1. In that case, the build will halt if failonerror is
true. Here's an example:

<?xml version="1.0" ?>
<project default="main">

 <target name="main">
 <exec dir="." executable="databaseConnect" timeout="100 "
 failonerror="true" />
 </target>

</project>

7.2.4. Executing Shell Commands

How about shell and batch scripts? In Unix, executing shell scripts is no problem. Assign the
executable attribute the name of the script. In Windows, it's a different story. To execute a batch
(.bat) file, execute the command-line processor, cmd.exe, and pass the name of the batch file using
an arg nested element and the /c switch:

<exec dir="." executable="cmd" os="Windows 2000">
 <arg line="/c backup.bat"/>
</exec>

If you're running a Unix-like shell in Windows, execute the command shell, sh, and use the -c switch,
which sends the output to a file:

<exec executable="/bin/sh">
 <arg value="-c" />
 <arg value="run.sh > results" />
</exec>

7.2.5. Checking for External Programs Before Executing Them

When you start launching external programs, ensure the desired programs are available before

launching them. Example 7-4 shows how you can do that with the available task, where the
existence of cc is verified before compiling C code. If cc is found, the build file sets a property named
cc.ok, which is checked by the compile target before the compilation is attempted.

Example 7-4. Checking for external programs (ch07/checkfirst/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="src" location="source" />

 <target name="main" depends="check, compile">
 <echo>
 Compiling....
 </echo>
 </target>

 <target name="check">
 <condition property="cc.ok">
 <or>
 <available file="cc" filepath="/usr" />
 <available file="cc" filepath="/usr/bin" />
 <available file="cc" filepath="/usr/local/bin" />
 </or>
 </condition>
 </target>

 <target name="compile" depends="check" if="cc.ok">
 <exec dir="." executable="cc">
 <arg line="${src}/Project.cc"/>
 </exec>
 </target>

</project>

7.3. Performing Batch Execution

What if you want to execute a command on multiple files? If you want to pass a set of files to an
external command, use the apply task, a version of exec that takes filesets. The files in the fileset are
passed as arguments to the command or external program.

This task is a powerful one, letting you batch your executions and work with external programs as if
they supported filesets. In Example 7-5, the build file is running the C compiler gcc on a fileset. In
this case, the apply task executes the command line gcc -c -o target source for each .c file in ${src},
where source with the name of each matching .c file in turn, and target is replaced with the name of

the corresponding .o output file you want created.

Example 7-5. Using the apply task (ch07/apply/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="src" location="source" />

 <target name="main">
 <apply executable="gcc">
 <arg value="-c"/>
 <arg value="-o"/>
 <targetfile/>
 <srcfile/>
 <fileset dir="${src}" includes="*.c" />
 <mapper from="*.c" to="*.o" type="glob" />
 </apply>
 </target>
</project>

You can see this task's attributes Table 7-4.

Table 7-4. The apply task's attributes

Attribute Description Required Default

addsourcefile

Specifies if you want source filenames to be
added to the command automatically. Since
Ant 1.6.

No TRue

Attribute Description Required Default

append
Specifies whether you want to append to
output and error files.

No false

dest
Specifies the directory in which files will be
stored by the task.

Yes, if you
specify a
nested mapper.

dir
Specifies the directory where the command
should be executed.

No

error
Specifies the file where standard error output
should be stored.

No

errorproperty
Specifies the name of a property where you
want to store errors.

No

executable
Specifies the command to execute (without
any command-line arguments).

Yes

failifexecutionfails
Specifies the build should be stopped if the
program doesn't start.

No true

failonerror
Specifies the build should be stopped if the
task encounters errors.

No

forwardslash
Specifies you want filenames to be passed with
forward slashes as directory separators.

No false

input
Specifies the file where the task should take
input to run the class with.

No

inputstring
Specifies a string holding the input stream for
the class to run.

No

logError
Specifies you want to send error output to
Ant's log.

No

maxparallel

Specifies the maximum number of source files
to use at once. Set to a value less than or
equal to 0 for unlimited parallelism. Available
since Ant 1.6.

No unlimited

newenvironment

Indicates you do not want to pass to the old
environment when new environment variables
are specified.

No false

os
Specifies the operating systems in which the
executable can be run.

No

output
Specifies the name of a file in which to store
the output.

No

outputproperty
Specifies the name of a property in which you
want the output of the task to be placed.

No

append
Specifies whether you want to append to
output and error files.

No false

dest
Specifies the directory in which files will be
stored by the task.

Yes, if you
specify a
nested mapper.

dir
Specifies the directory where the command
should be executed.

No

error
Specifies the file where standard error output
should be stored.

No

errorproperty
Specifies the name of a property where you
want to store errors.

No

executable
Specifies the command to execute (without
any command-line arguments).

Yes

failifexecutionfails
Specifies the build should be stopped if the
program doesn't start.

No true

failonerror
Specifies the build should be stopped if the
task encounters errors.

No

forwardslash
Specifies you want filenames to be passed with
forward slashes as directory separators.

No false

input
Specifies the file where the task should take
input to run the class with.

No

inputstring
Specifies a string holding the input stream for
the class to run.

No

logError
Specifies you want to send error output to
Ant's log.

No

maxparallel

Specifies the maximum number of source files
to use at once. Set to a value less than or
equal to 0 for unlimited parallelism. Available
since Ant 1.6.

No unlimited

newenvironment

Indicates you do not want to pass to the old
environment when new environment variables
are specified.

No false

os
Specifies the operating systems in which the
executable can be run.

No

output
Specifies the name of a file in which to store
the output.

No

outputproperty
Specifies the name of a property in which you
want the output of the task to be placed.

No

Attribute Description Required Default

parallel
Specifies you want to run the command one
time only on multiple files.

No false

relative

Specifies if filenames should be absolute or
relative when passed to the command to
execute.

No false

resolveExecutable

Specifies the name of the executable should be
resolved using the project's base directory,
then using the execution directory if that
doesn't work. Since Ant 1.6.

No false

resultproperty

Specifies the name of the property that you
want to hold the return code. Use this one only
if failonerror is false and if fork is true.

No

skipemptyfilesets

Specifies you don't want to run the command if
no source files found or are newer than their
corresponding target files.

No false

spawn

Specifies you want to spawn a new process in
which to run the command. To use this
attribute, set fork to true.

No false

timeout

Specifies you want the task to quit if it doesn't
finish in the given time. Set the time in
milliseconds.

No

type
Specifies whether you're working with files or
directories. Set to dir, file, or both.

No "file"

verbose
Specifies whether you want the task to display
its progress. Since Ant 1.6.

No false

Vmlauncher
Specifies you want to run the executable using
the JVM's execution facilities.

No true

You can use any number of nested fileset elements to specify the files you want to use with this
task. Since Ant 1.6, you can use any number of nested filelist and/or dirset elements as well. At
least one fileset or filelist is required.

You can use one mapper element to specify the target files relative to the dest attribute for
dependency checking, as I'll do below. Command-line arguments can be passed with arg elements,
as with the exec task, and you can use nested env elements.

How does Ant pass the names of files to the external program? By default, the file-names of the
source files are added to the end of the command line. If you want to insert the names of files in a
different place, use a nested srcfile element between nested arg elements. Nested targetfile
elements are similar to srcfile elements, except they mark the position of the target filename on the
command line. You can only use a targetfile element if you define a nested mapper and the dest
attribute.

parallel
Specifies you want to run the command one
time only on multiple files.

No false

relative

Specifies if filenames should be absolute or
relative when passed to the command to
execute.

No false

resolveExecutable

Specifies the name of the executable should be
resolved using the project's base directory,
then using the execution directory if that
doesn't work. Since Ant 1.6.

No false

resultproperty

Specifies the name of the property that you
want to hold the return code. Use this one only
if failonerror is false and if fork is true.

No

skipemptyfilesets

Specifies you don't want to run the command if
no source files found or are newer than their
corresponding target files.

No false

spawn

Specifies you want to spawn a new process in
which to run the command. To use this
attribute, set fork to true.

No false

timeout

Specifies you want the task to quit if it doesn't
finish in the given time. Set the time in
milliseconds.

No

type
Specifies whether you're working with files or
directories. Set to dir, file, or both.

No "file"

verbose
Specifies whether you want the task to display
its progress. Since Ant 1.6.

No false

Vmlauncher
Specifies you want to run the executable using
the JVM's execution facilities.

No true

You can use any number of nested fileset elements to specify the files you want to use with this
task. Since Ant 1.6, you can use any number of nested filelist and/or dirset elements as well. At
least one fileset or filelist is required.

You can use one mapper element to specify the target files relative to the dest attribute for
dependency checking, as I'll do below. Command-line arguments can be passed with arg elements,
as with the exec task, and you can use nested env elements.

How does Ant pass the names of files to the external program? By default, the file-names of the
source files are added to the end of the command line. If you want to insert the names of files in a
different place, use a nested srcfile element between nested arg elements. Nested targetfile
elements are similar to srcfile elements, except they mark the position of the target filename on the
command line. You can only use a targetfile element if you define a nested mapper and the dest
attribute.

7.4. Multithreading Tasks

The parallel task can contain other Ant tasks and execute each nested task in its own thread. While
the tasks within the parallel task are being run, the main thread will be blocked waiting for all the
child threads to complete.

This task is useful to speed up build-file processing and to launch external tasks that may depend on
each other; you may want to launch a server and run tests on build output, for example. The
attributes of this task appear in Table 7-5.

Table 7-5. The parallel task's attributes

Attribute Description Required Default

failonany
Specifies you want the task to fail if any nested task
fails.

No

pollInterval Polls tasks; not implemented at this point. No 1000

threadCount
Specifies the maximum numbers of threads you want to
use.

No

tHReadsPerProcessor
Specifies the maximum number of threads you want to
use for each processor. Requires JDK 1.4 or later.

No

timeout
Specifies a timeout, in miiliseconds, before the task
fails.

No

Be careful when using this task as you would with any parallel task. For
example, if you're compiling and two files have the same dependency, you
could have file access conflicts.

The parallel task supports a daemons nested element, which is a list of tasks which are to be run in
parallel daemon threads. The parallel task will not wait for these tasks to complete. Because they
are daemon threads, however, they will not prevent Ant from completing the task.

The parallel task may be combined with the sequential task to define sequences of tasks to be
executed on each thread inside the parallel task; for an example using parallel and sequential, see
the next topic.

7.5. Setting Execution Order

Like parallel, sequential is a container task which can contain other Ant tasks. In this task, the
nested tasks are executed in sequence. You use this task primarily to ensure the sequential execution
of a subset of tasks in the parallel task.

The sequential task has no attributes and has no nested elements besides the Ant tasks you want to
run. Here's an example which uses the wlrun task to start the Weblogic Web server, waits for it to
start, runs a JUnit test, and then stops Weblogic:

<parallel>
 <wlrun taskname="server"
 classpath="${weblogic.boot.classpath}"
 wlclasspath="${weblogic.classes}:${code.jars}"
 name="antserver"
 home="${weblogic.home}"
 properties="antserver/antserver.properties"/>
 <sequential>
 <sleep seconds="60"/>
 <junit printsummary="yes" haltonfailure="yes">
 <formatter type="plain"/>
 <batchtest fork="true" todir="${reports.tests}">
 .
 .
 .
 </batchtest>
 </junit>
 <wlstop/>
 </sequential>
</parallel>

Chapter 8. Developing for the Web
Developing for the Web is bread and butter for Ant developers. There is a wide spectrum of tasks at
your disposal: Chapter 4 introduced packaging and deploying applicationsincluding Web
applicationsï£§with the move, copy, ftp, telnet, sshexec, and mail tasks, but Ant offers more. This
chapter covers the tasks specifically designed for packaging Web applications, such as war, cab, ear,
and jspc, and for deploying them, such as get, serverdeploy, and scp. I'll cover the custom Ant
tasks targeted to specific servers such as deploy, reload, and undeploy. And there's more to come:
Chapter 9 covers the many optional Enterprise JavaBeans (EJB) tasks Ant supports.

8.1. Creating WAR Archives

The war task is an extension of the jar task, and it compresses Web applications into .war files, with
special handling for files that should end up in the WEB-INF/lib, WEB-INF/classes or WEB-INF
directories on the server. For example, say you have this directory layout after you build your
project:

war
|____output
| login.class
| logout.class
|
|____source
 | login.xml
 |
 |____html
 welcome.xml

The build file in Example 8-1 will create the .war file you need to deploy this application, placing the
.class files in the WEB-INF/classes directory, renaming login.xml web.xml and placing it in WEB-INF,
and so on.

Example 8-1. Creating a war file (ch08/war/build.xml)

<?xml version="1.0" encoding="UTF-8" ?>

<project default="main" basedir=".">

 <property name="bin" value="output" />
 <property name="src" value="source" />

 <target name="main" >
 <war destfile="login.war" webxml="${src}/login.xml">
 <fileset dir="${src}/html"/>
 <classes dir="${bin}"/>
 </war>
 </target>

</project>

Here's what this build file looks like at work:

%ant

Buildfile: build.xml

main:
 [war] Building war: /home/steven/ant/ch08/war/login.war

BUILD SUCCESSFUL
Total time: 2 seconds

That creates the .war file. Besides packaging the files specified, Ant supplies a default manifest file,
Manifest.mf, in the resulting .war file, which contains these contents:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.6.1
Created-By: 1.4.2_03-b02 (Sun Microsystems Inc.)

After you create your .war file, you can deploy it by copying it to your web server's deployment
directory, such as to the webapps directory in Tomcat.

The attributes of the war task appear in Table 8-1.

The war task is a shortcut for specifying the particular layout of a .war file. The
same thing can be accomplished using the prefix and fullpath attributes of
zipfilesets in a zip or jar task.

Table 8-1. The war task's attributes

Attribute Description Required Default

basedir
Specifies the source directory for files to include
in the compressed file.

No

compress
Specifies you want to not only store data but
compress it.

No TRue

defaultexcludes
Specifies if you want to use default excludes or
not. Set to yes/no.

No
Default
excludes are
used.

destfile Specifies the WAR file you want to create.
Exactly one of
destfile or
warfile.

duplicate
Specifies what to do if a duplicate file is found.
Valid values are add, preserve, and fail.

No add

encoding
Specifies the character encoding to use for
filenames in the WAR file.

No UTF8

Attribute Description Required Default

excludes
Specifes the patterns matching files to exclude,
as a comma- or space-separated list.

No

excludesfile
Specifes the name of a file where each line is a
pattern matching files to exclude.

No

filesonly Specifies you want to store only file entries. No false

includes
Specifes the patterns matching files to include,
as a comma- or space-separated list.

No

includesfile
Specifes the name of a file where each line is a
pattern matching files to include.

No

keepcompression

Preserves the compression as it has been in
archives you're compressing instead of using
the compress attribute. Available since Ant 1.6.

No false

manifest
Specifies the manifest file to use in the
compressed file.

No

update
Specifies whether you want to update or
overwrite the target file if it exists.

No false

warfile
Deprecated. Use destfile. Specifies the WAR
file you want to create.

Exactly one of
destfile or
warfile.

webxml
Specifies the deployment descriptor you want
to use. Will be deployed to WEB-INF/web.xml.

Yes, unless
update is set to
true.

The war task can contain elements like fileset and zipfileset to specify what files to include in the
.war file. This task can contain these elements to specify where you want various files to go:

Files contained in the webinf element end up in WEB-INF

Files contained in the classes element end up in WEB-INF/classes

Files contained in the lib element end up in WEB-INF/lib

Files contained in the metainf files end up in META-INF

excludes
Specifes the patterns matching files to exclude,
as a comma- or space-separated list.

No

excludesfile
Specifes the name of a file where each line is a
pattern matching files to exclude.

No

filesonly Specifies you want to store only file entries. No false

includes
Specifes the patterns matching files to include,
as a comma- or space-separated list.

No

includesfile
Specifes the name of a file where each line is a
pattern matching files to include.

No

keepcompression

Preserves the compression as it has been in
archives you're compressing instead of using
the compress attribute. Available since Ant 1.6.

No false

manifest
Specifies the manifest file to use in the
compressed file.

No

update
Specifies whether you want to update or
overwrite the target file if it exists.

No false

warfile
Deprecated. Use destfile. Specifies the WAR
file you want to create.

Exactly one of
destfile or
warfile.

webxml
Specifies the deployment descriptor you want
to use. Will be deployed to WEB-INF/web.xml.

Yes, unless
update is set to
true.

The war task can contain elements like fileset and zipfileset to specify what files to include in the
.war file. This task can contain these elements to specify where you want various files to go:

Files contained in the webinf element end up in WEB-INF

Files contained in the classes element end up in WEB-INF/classes

Files contained in the lib element end up in WEB-INF/lib

Files contained in the metainf files end up in META-INF

8.2. Creating CAB Files

The cab task creates Microsoft .cab archive files, and you use this task as you would the jar or zip
tasks. The .cab files are the .NET equivalent of .war files, packaging .NET applications for server
deployment. This task works in Windows using the external cabarc tool (this tool comes from
Microsoft), which must be in your executable path.

I'm not going to spend much time on this task because the Microsoft Visual Studio IDE has many
powerful integrated build tools and wizards that create .cab files; most Microsoft developers do not
need Ant to solve their build problems. Here's a quick example using the Ant cab task:

<cab cabfile="${deploy}/app.cab"
 basedir="${output}"
/>

You can get a free copy of the Microsoft C# command-line compiler, csc, if your
version of Windows doesn't have it. Install the .NET Framework's Software
Development Kit (SDK), which you can find at
http://msdn.microsoft.com/downloads. The csc compiler is included.

The attributes of the cab task appear in Table 8-2.

It's possible to use this task on other platforms besides Windows, but you need
to get and compile the libcabinet tool from
http://trill.cis.fordham.edu/~barbacha/cabinet_library/.

Table 8-2. The cab task's attributes

Attribute Description Required Default

basedir Specifies the directory to archive files from. No

cabfile
Specifies the name of the cab file you want to
create.

Yes

compress
Specifies you want to not only store data but
compress it.

No yes

defaultexcludes
Specifies if you want to use default excludes or
not. Set to yes/no.

No
Default excludes
are used.

http://msdn.microsoft.com/downloads
http://trill.cis.fordham.edu/~barbacha/cabinet_library/

Attribute Description Required Default

excludes
Specifes the patterns matching files to exclude, as
a comma- or space-separated list.

No

excludesfile
Specifes the name of a file where each line is a
pattern matching files to exclude.

No

includes
Specifes the patterns matching files to include, as
a comma- or space-separated list.

No

includesfile
Specifes the name of a file where each line is a
pattern matching files to include.

No

options
Specifies any additional command-line options you
want to pass to the cabarc tool.

No

verbose
Specifies you want full (verbose) output. Set to
yes or no.

No no

You can use nested fileset elements to specify the files to be included in the archive. As with other
Ant tasks, this task forms an implicit FileSet and supports all attributes of the fileset element (dir
becomes basedir) as well as the nested include, exclude and patternset elements.

excludes
Specifes the patterns matching files to exclude, as
a comma- or space-separated list.

No

excludesfile
Specifes the name of a file where each line is a
pattern matching files to exclude.

No

includes
Specifes the patterns matching files to include, as
a comma- or space-separated list.

No

includesfile
Specifes the name of a file where each line is a
pattern matching files to include.

No

options
Specifies any additional command-line options you
want to pass to the cabarc tool.

No

verbose
Specifies you want full (verbose) output. Set to
yes or no.

No no

You can use nested fileset elements to specify the files to be included in the archive. As with other
Ant tasks, this task forms an implicit FileSet and supports all attributes of the fileset element (dir
becomes basedir) as well as the nested include, exclude and patternset elements.

8.3. Creating Simple Web Deployment

With a WAR file (or CAB file), it's time to turn to the deployment side of the Web development
equation. If you're working on the same machine as a Web server, deployment can be as easy as
copying a .war file to the application base directory for the server. Example 8-2 illustrates the point;
this build file creates and copies a .war file over to the Tomcat webapps directory. When you (re)start
Tomcat, the .war file will expand automatically into a directory of the same name (minus the .war
extension), and the Web application will become available, in this case, at http://localhost:8080/app.
(If you're deploying a servlet, the URL will reflect the servlet's package, as in
http://localhost:8080/org/antbook/ch08/app for the servlet class org.antbook.ch08.app.)

Example 8-2. Build file for Tomcat deployment (ch08/simple/build.xml)

<?xml version="1.0" encoding = "UTF-8"?>
<project default="main" basedir=".">

 <property name="src" location="source" />
 <property name="wardir" location=
 "c:/tomcat/jakarta-tomcat-5.0.19/webapps"/>
 <property name="warfile" location="${wardir}/app.war"/>

 <target name="main" depends="war">
 <echo message="Deploying the Web app...."/>
 </target>

 <target name="war" >
 <war destfile="${warfile}" webxml="${src}/app.xml" basedir="${bin}" />
 </target>

</project>

You can use Ant's ftp task (see Chapter 4) for remote deployment to a Web server's base
directories.

http://localhost:8080/app
http://localhost:8080/org/antbook/ch08/app

8.4. Deploying with SCP

Another deployment task, available since Ant 1.6, is the scp task, which copies a file or FileSet to or from
a remote machine running the SSH daemon. This task is an optional one, and you need jsch.jar in the
Ant lib directory to use it (you can get jsch.jar at http://www.jcraft.com/jsch/index.html).

This task is handy for deployment. For example, here's how to deploy a single file to a remote host (any
host you connect to must be listed in your knownhosts file unless you specifically set the TRust attribute
to yes or true):

<scp file="Project.jar"
 todir="user:password@antmegacorp.com:/home/steven/cgi-bin"/>

You can use the password attribute explicitly to set the password:

<scp file="Project.jar"
 todir="user@antmegacorp.com:/home/steven/cgi-bin""
 password="password"/>

Here's how to copy a remote file to a local machine:

<scp file="user:password@antmegacorp.com:/home/steven/cgi-bin/Project.jar"
 todir="${archive}"/>

Here's how to copy a set of files using a fileset:

<scp todir="user:password@antmegacorp.com:/home/steven/source">
 <fileset dir="${src}">
 <include name="**/*.java"/>
 </fileset>
</scp>

Example 8-3 gives a complete example build file using the scp task for deployment. (It uses the remote
machine's IP address instead of naming the remote server.)

Example 8-3. Using scp (ch08/scp/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Deploying the .jar file." />
 <property name="src" location="source" />

 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress, deploy">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}">
 <include name="*.class"/>
 <include name="*.txt"/>
 </jar>
 </target>

 <target name="deploy">
 <scp trust="true"
 file="${output}/Project.jar"
 todir="user:password@000.000.000.000:cgi-bin"/>
 </target>

</project>

Here's what that build file output looks like when run on a Windows machine:

%ant
Buildfile: build.xml

init:
 [mkdir] Created dir: C:\ant\ch08\scp\bin

compile:
 [javac] Compiling 1 source file to C:\ant\ch08\scp\bin

compress:
 [jar] Building jar: C:\ant\ch08\scp\bin\Project.jar

deploy:
 [scp] Connecting to 000.000.000.000
 [scp] Sending: Project.jar : 664
 [scp] File transfer time: 1.32 Average Rate: 9502.27 B/s
 [scp] done.

main:
 [echo]
 [echo] Deploying the .jar file.
 [echo]

BUILD SUCCESSFUL
Total time: 12 seconds

As discussed in Chapter 4 , hardcoding passwords and/or usernames in a build file is a bad
idea. It's better to use properties like this:

<scp todir="${username}:${password}@antmegacorp.com:/home/steven/source" ...>

Pass the username and password to Ant like this:

ant -Dusername=steven -Dpassword=opensesame

Unix file permissions are not retained when files are copied with the scp task (they get UMASK
permissions). If you want to retain Unix permissions, execute the Unix scp command instead
(i.e., <exec executable="scp" ... >).

The attributes of this task appear in Table 8-3 .

Table 8-3. The scp task's attributes

Attribute Description Required Default

failonerror
Specifies whether you want to stop the
build if the task encounters an error.

No true

file

Specifies the file you want to transfer.
You can give a local path or a remote
path of the form
user[:password]@host:/directory/path
.

Yes, unless a
nested
fileset

element is
used.

keyfile
Specifies the location of a file holding
the private key you want to use.

Yes, if you are
using key-
based
authentication.

knownhosts
Specifies the known hosts file, which
can be used to validate remote hosts.

No
${user.home}/.ssh/known_hosts
.

Attribute Description Required Default

passphrase
Specifies the passphrase for your
private key.

Yes, if you are
using key-
based
authentication.

password
Specifies the password you want to
use for logging in.

No if you are
using key-
based
authentication
or the
password has
been given in
the file or todir
attribute.

port
Specifies the port you want to connect
to on the remote host.

No 22

todir

Specifies the directory you want to
copy to. This can be a local path or a
remote path of the form
user[:password]@host:/directory/path
.

Yes

TRust

Specifies you want to trust all
unknown hosts if set to yes/true. If set
to false (the default), the host you
connect to must be listed in your
knownhosts file.

No no

You can use fileset elements to select sets of files to copy; if you use a fileset, you must assign a value
to the todir attribute. (The fileset element works only when you're copying files from the local machine
to a remote machine.)

passphrase
Specifies the passphrase for your
private key.

Yes, if you are
using key-
based
authentication.

password
Specifies the password you want to
use for logging in.

No if you are
using key-
based
authentication
or the
password has
been given in
the file or todir
attribute.

port
Specifies the port you want to connect
to on the remote host.

No 22

todir

Specifies the directory you want to
copy to. This can be a local path or a
remote path of the form
user[:password]@host:/directory/path
.

Yes

TRust

Specifies you want to trust all
unknown hosts if set to yes/true. If set
to false (the default), the host you
connect to must be listed in your
knownhosts file.

No no

You can use fileset elements to select sets of files to copy; if you use a fileset, you must assign a value
to the todir attribute. (The fileset element works only when you're copying files from the local machine
to a remote machine.)

8.5. Deploying to Tomcat

Tomcat (available from http://jakarta.apache.org/tomcat/), the reference Web server for servlets
and JSP, has become more attractive to Ant developers since it comes with custom Ant tasks for
deployment. Copy the file server/lib/catalina-ant.jar from your Tomcat 5 installation into the lib
directory of your Ant installation to use these tasks.

The Tomcat deployment tasks are deploy, reload, and undeploy; to use them, add these taskdef
elements (discussed in Chapter 11) to your build file:

<taskdef name="deploy" classname="org.apache.catalina.ant.DeployTask"/>
<taskdef name="reload" classname="org.apache.catalina.ant.ReloadTask"/>
<taskdef name="undeploy" classname="org.apache.catalina.ant.UndeployTask"/>

To use these tasks, you'll need manager privileges with Tomcat; edit conf/tomcat-users.xml to add
manager privileges for a username (admin here) and password like this:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager"/>
 <role rolename="role1"/>
 <role rolename="tomcat"/>
 <user username="admin" password="password" roles="manager"/>
 <user username="role1" password="tomcat" roles="role1"/>
 <user username="tomcat" password="tomcat" roles="tomcat"/>
 <user username="both" password="tomcat" roles="tomcat,role1"/>
</tomcat-users>

You can use the deploy task to deploy a web application to Tomcat from Ant like this:

<target name="install">

 <deploy url="${manager.url}"
 username="${manager.username}"
 password="${manager.password}"
 path="${app.path}"
 localWar="file://${build}"/>

</target>

Here, manager.url is the URL of the Tomcat manager servlet. The default name for this servlet is
"manager", so this is something like http://localhost:8080/manager. The app.path property holds
the context path at which this application should be deployed (usually / plus the name of the
application as you want to use it in the URL to access the application online). The build property

http://jakarta.apache.org/tomcat/
http://localhost:8080/manager

holds the location at which you build the Web application as it should be installed in the Tomcat
webapps directory.

If you have installed an application and want Tomcat to recognize you have updated Java classes,
use the reload task instead:

<target name="reload">

 <reload url="${manager.url}"
 username="${manager.username}"
 password="${manager.password}"
 path="${app.path}"/>

 </target>

To remove a Web application, use the undeploy task:

<target name="remove">

 <undeploy url="${manager.url}"
 username="${manager.username}"
 password="${manager.password}"
 path="${app.path}"/>

</target>

8.6. Deploying to Tomcat

More often than not, you won't be developing your applications on the same server you want to deploy to.
You can deploy to a Tomcat installation running on a remote server by contacting the Tomcat manager
servlet via URL in a browser. To do that in Ant you use the get task, which gets a file when you pass it a URL.
If you're using Java 1.4 or later, this task supports any URL schema, including http :, ftp :, jar :, and https: .
This task is great if you want to download online content, or, as in this case, issue commands via URLs to
online code.

Before getting to deployment, here's an example that uses get to retrieve the Ant home page and stores it
in ant.html :

<get src="http://ant.apache.org/" dest="ant.html"/>

You can upload Web applications to Tomcat using the manager servlet, passing the local location of the Web
application to upload. For example, to upload a Web application from C:/ant/ch08/app in Windows, you'd use
this location:

file:////C:\ant\ch08\app/

To upload a .war file, you add an ! at the end of the location to indicate you're uploading a file, not the
contents of a directory, like this in Unix:

jar:file://///ant/ch08/app.war!/

Example 8-3 shows how this works in practice. In this case, the build file deploys a Web application from
C:\ant\deploy\app that consists of a servlet (org.antbook.ch08.Deploy) that displays the message "Project
Deployment!" to Tomcat. Here's the URL you pass to the get task to tell the Tomcat manager servlet what
you want to do:

http://localhost:8080/manager/deploy?path=/deployment&war=file:////c:\ant\deploy\app/

You can see this at work in Example 8-4 .

Example 8-4. Deploying with get (ch08/get/build.xml)

<?xml version="1.0" encoding="UTF-8" ?>

<project default="main" basedir=".">

 <property name="tomcat.port" value="8080" />
 <property name="tomcat.username" value="admin" />

http://localhost:8080/manager/deploy?path=/deployment&war=file:////c:\ant\deploy\app/

 <property name="tomcat.password" value="password" />

 <target name="main" >
 <get src="http://localhost:8080/manager/deploy?path=/deployment&war=file:////c:
\ant\deploy\app/"
 dest="deploy.txt"
 username="${tomcat.username}"
 password="${tomcat.password}" />

 </target>

</project>

Here's what the build file looks like in action:

%ant
Buildfile: build.xml

main:
 [get] Getting: http://localhost:8080/manager/deploy?path=/deployment&war=
file:////c:\ant\ch08\get\app/

BUILD SUCCESSFUL
Total time: 1 second

Here's what Tomcat wrote to the output file, deploy.txt :

OK - Deployed application at context path /deployment

After deployment, navigating to http://localhost:8080/deployment/org.antbook.ch08.Deploy shows the
deployed servlet, as seen in Figure 8-1 .

Figure 8-1. Deploying to Tomcat

http://localhost:8080/deployment/org.antbook.ch08.Deploy

For more information on using the Tomcat manager servlet, look at manager/html-
manager-howto.html in your Tomcat installation.

The attributes of the get task appear in Table 8-4 .

Table 8-4. The get task's attributes

Attribute Description Required Default

dest Specifies the file where you want to store the retrieved data. Yes

ignoreerrors
Specifies you want to only log errors instead of treating them as
fatal.

No false

password Specifies the password to use when connecting.
If username is
set.

src Specifies the URL where the data you want is. Yes

username Specifies the username for BASIC http authentication.
If password is
set.

usetimestamp

Specifies you want to download a file only after checking the
timestamp of the local copy to ensure you don't overwrite a more
recent version.

No false

verbose
Specifies you want to see full information as this task executes. Set
to true /false .

No false

When the verbose option is on, this task will display a dot (.) for every 100 KB
received.

8.7. Compiling JSPs

When deploying to servers, the jspc task can be useful. This task runs the JavaServer Pages
compiler and turns JSP pages into Java source, which you can compile with the javac task. Compiling
JSP pages supports fast invocation of JSP pages, deployment on servers without the complete JDK, or
lets you check the syntax of pages without deploying them. By default, this task uses the Jasper JSP
compiler, which comes with Tomcat. Copy Tomcat's jasper-compiler.jar and jasper-runtime.jar files
into the Ant lib directory to use this task. You'll need servlet.jar, which comes with Tomcat, in the Ant
lib directory.

For example, say you have this JSP page, greeting.jsp:

<HTML>
 <HEAD>
 <TITLE>Creating a Greeting</TITLE>
 </HEAD>

 <BODY>
 <H1>Creating a Greeting</H1>
 <%
 out.println("Hello from JSP!"); //Display the greeting
 %>
 </BODY>
</HTML>

Example 8-5 shows how to compile this JSP into greeting.java.

Example 8-5. Compiling JSP pages (ch08/jspc/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Compiling the JSP...." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />

 </target>

 <target name="compile">
 <jspc srcdir="${src}"
 destdir="${output}"
 package="org.antbook.jsp"
 verbose="9">
 <include name="**/*.jsp" />
 </jspc>
 </target>

</project>

Here's what you see when you run the build file:

%ant
Buildfile: build.xml

init:

compile:
 [jspc] Compiling 1 source file to
 /home/steven/ant/ch08/jspc/bin/org/antbook/jsp
 [jasperc] 2004-06-30 02:20:09 - Class name is: greeting
 [jasperc] 2004-06-30 02:20:09 - Java filename is:
 /home/steven/ant/ch08/jspc/bin/org/antbook/jsp/greeting.java
 [jasperc] 2004-06-30 02:20:09 - Accepted
 org.apache.jasper.compiler.Parser$Scriptlet at /greeting.jsp(7,4)
 [jasperc] 2004-06-30 02:20:09 - Compiling with: -encoding UTF8

main:
 [echo]
 [echo] Compiling the JSP....
 [echo]

BUILD SUCCESSFUL
Total time: 3 seconds

And this is what the resulting Java code, greeting.java, looks like:

package org.antbook.jsp.;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import org.apache.jasper.runtime.*;

public class greeting extends HttpJspBase {

 static {
 }
 public greeting() {
 }

 private static boolean _jspx_inited = false;

 public final void _jspx_init() throws org.apache.jasper.runtime.JspException {
 }

 public void _jspService(HttpServletRequest request, HttpServletResponse
 response)
 throws java.io.IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 .
 .
 .
 out.println("Hello from JSP!"); //Display the greeting
 .
 .
 .
 }
}

Here's another example, which compiles JSP pages, checks the dependencies, and uses the javac
task to create the actual bytecode for this JSP:

<jspc
 destdir="temp"
 srcdir="${src}"
 package="org.antbook.ch08">
 <include name="**/*.jsp" />
</jspc>

<depend
 srcdir="temp"
 destdir="${bin}"
 classpath="lib/app.jar"/>

<javac
 srcdir="temp"
 destdir="${bin}"
 classpath="lib/app.jar" />

You can see the attributes of the jspc task in Table 8-5.

Table 8-5. The jspc task's attributes

Attribute Description Required Default

classpath

Specifies the classpath to use when you're running the
JSP compiler. You can specify this by nested classpath
elements.

No

classpathref
Specifies the classpath to use when you're running the
JSP compiler, by reference.

No

compiler
Specifies the classname of a JSP compiler, such as jasper
or jasper42.

No jasper

compilerclasspath
Specifies the classpath that should be used to find the
compiler specified by the compiler attribute.

No

destdir Specifies where you want to place the compiled files. Yes

failonerror Specifies if the task to fail if it encounters an error. No yes

ieplugin Specifies the Java Plugin class ID for Internet Explorer. No

mapped
Specifies you want to generate separate write statements
for each HTML line in the JSP. Set to true/false.

No

package
Specifies the name of the destination package for the
generated compiled classes.

No

srcdir
Specifies where you want the task to look for source JSP
files.

Yes

uribase
Specifies the base URI for relative URI references in JSP
pages.

No

uriroot
Sets the root directory from which URIs should be
resolved.

No

verbose
Specifies you want full (verbose) output. Set to an integer
value (0-9).

No 0

webinc
Specifies the filename for the section of web.xml that
details any servlets.

No

webxml
Specifies the filename for the generated web.xml-type
file.

No

The jspc task is a directory-based task, so the JSP files to be compiled are located the same way as
the javac task locates files, which means you can use nested elements, such as includes and
excludes. You can use nested classpath and classpathref elements, as well as nested webapp
elements. The webapp element, unique to the jspc task, instructs the JSP compiler to build an entire
Web application. The one attribute of the webapp element is the basedir attribute, which sets the base
directory of the application. The base directory must have a WEB-INF subdirectory beneath it. If you
use this element, the task uses the compiler for all dependency checking. Here's an example using

webapp:

<jspc
 package="org.antbook.ch08">
 <include name="**/*.jsp" />
 <webapp basedir="${ch08}" />
</jspc>

8.8. Deploying to EJB Containers

Fundamentally, deploying to Enterprise JavaBean (EJB) application servers is similar to other Ant
deployment projects you've seen. You can use the tasks covered to package and deploy EJB
applications. For example, you can see a build file developed for the JBoss server in Example 8-6;
this build file first creates a .war file and then packages it into an .ear file for deployment.

Example 8-6. A Jboss EJB build (ch08/ejb/build.xml)

<?xml version="1.0" ?>
<project default="main" basedir=".">

 <target name="main" depends="init, compile, war, ear"/>

 <target name="init">
 <property name="src" value="${basedir}/src"/>
 <property name="bin" value="${basedir}/output"/>
 <property name="web" value="${basedir}/web"/>
 <property name="descriptors"
 value="${basedir}/output/deploymentdescriptors"/>
 <property name="eardir" value="${basedir}/output/ear"/>
 <property name="wardir" value="${basedir}/output/war"/>
 <property name="warfile" value="app.war"/>
 <property name="earfile" value="app.ear"/>

 <mkdir dir="${wardir}/WEB-INF"/>
 <mkdir dir="${wardir}/WEB-INF/classes"/>
 <mkdir dir="${eardir}/META-INF"/>
 </target>

 <target name="compile">
 <javac destdir="${bin}" srcdir="${src}" includes="**/*.java" />
 </target>

 <target name="war">
 <copy todir="${wardir}">
 <fileset dir="${web}" includes="**/*.*" />
 </copy>

 <copy file="${descriptors}/web.xml" todir="${wardir}/WEB-INF" />

 <copy todir="${wardir}/WEB-INF/classes">
 <fileset dir="${bin}" includes="**/*.class" />
 </copy>

 <jar jarfile="${eardir}/${warfile}" basedir="${wardir}" />
 </target>

 <target name="ear">
 <copy file="${descriptors}/application.xml" todir="${eardir}/META-INF" />

 <jar jarfile="${basedir}/${earfile}" basedir="${eardir}" />
 </target>

</project>

That's all it takes. Though this build file gets the job done using standard Ant tasks, tasks built into
Ant make it easier to work with EJB applications, starting with the ear task.

8.8.1. Creating EAR Files

The ear task is handy for creating .ear files and makes special provisions for the application.xml file
needed in most EARs. It's not mandatory to use this task to create a .ear file, but it can make life
easier. You can see the attributes of this task in Table 8-6.

The ear task is an extension of the Jar task with special treatment for
application.xml. You can perform the same operation by using the prefix and
fullpath attributes of zipfilesets in a zip or jar task.

Table 8-6. The ear task's attributes

Attribute Description Required Default

appxml
Specifies the deployment descriptor you want to
use, such as application.xml.

Yes, unless
update is set to
TRue.

basedir
Specifies the directory from which to get the
files.

No

compress
Indicates you want to not only store data but
compress it.

No true

defaultexcludes
Specifies if you want to use default excludes or
not. Set to yes/no.

No
Default
excludes are
used.

destfile Specifies the EAR file you want to create. Yes

duplicate
Specifies what to do if a duplicate file is found.
Valid values are add, preserve, and fail.

No add

Attribute Description Required Default

encoding
Specifies the character encoding to use for
filenames in the EAR file.

No UTF8

excludes
Specifies the patterns matching files to exclude,
as a comma- or space-separated list.

No

excludesfile
Specifies the name of a file where each line is a
pattern matching files to exclude.

No

filesonly Specifies you want to store only file entries. No false

includes
Specifies the patterns matching files to include,
as a comma- or space-separated list.

No

includesfile
Specifies the name of a file where each line is a
pattern matching files to include.

No

keepcompression

Preserves the compression as it has been in
archives you're compressing instead of using the
compress attribute. Available since Ant 1.6.

No

manifest
Specifies the manifest file to use in the
compressed file.

No

update
Specifies whether you want to update or
overwrite the target file if it exists.

No false

The extended zipfileset element from the zip task, which supports the attributes prefix, fullpath,
and src, is available in the ear task. The nested metainf element specifies a fileset; all files included
in this fileset will end up in the META-INF directory of the .ear file.

This task lets you specify where to get application.xml from, using the appxml attribute. Here's an
example that creates an .ear file:

<ear destfile="${output}/app.ear" appxml="${src}/application.xml">
 <fileset dir="${wardir}" includes="*.war"/>
</ear>

8.8.2. Supporting Hot Deployment

The serverdeploy task is designed to support hot deployment (where you don't have to take the
server down before deploying) to EJB-aware servers. You set the action attribute to values you've
seen, like those used for the Tomcat manager servlet: "deploy", "delete", and "undeploy".

You'll need vendor-specific deployment software to make this one work. Ant
provides the build-end, but your server will need to provide a deployment
facility that Ant can connect and interact with.

encoding
Specifies the character encoding to use for
filenames in the EAR file.

No UTF8

excludes
Specifies the patterns matching files to exclude,
as a comma- or space-separated list.

No

excludesfile
Specifies the name of a file where each line is a
pattern matching files to exclude.

No

filesonly Specifies you want to store only file entries. No false

includes
Specifies the patterns matching files to include,
as a comma- or space-separated list.

No

includesfile
Specifies the name of a file where each line is a
pattern matching files to include.

No

keepcompression

Preserves the compression as it has been in
archives you're compressing instead of using the
compress attribute. Available since Ant 1.6.

No

manifest
Specifies the manifest file to use in the
compressed file.

No

update
Specifies whether you want to update or
overwrite the target file if it exists.

No false

The extended zipfileset element from the zip task, which supports the attributes prefix, fullpath,
and src, is available in the ear task. The nested metainf element specifies a fileset; all files included
in this fileset will end up in the META-INF directory of the .ear file.

This task lets you specify where to get application.xml from, using the appxml attribute. Here's an
example that creates an .ear file:

<ear destfile="${output}/app.ear" appxml="${src}/application.xml">
 <fileset dir="${wardir}" includes="*.war"/>
</ear>

8.8.2. Supporting Hot Deployment

The serverdeploy task is designed to support hot deployment (where you don't have to take the
server down before deploying) to EJB-aware servers. You set the action attribute to values you've
seen, like those used for the Tomcat manager servlet: "deploy", "delete", and "undeploy".

You'll need vendor-specific deployment software to make this one work. Ant
provides the build-end, but your server will need to provide a deployment
facility that Ant can connect and interact with.

As of this writing, this task only supports Weblogic servers and the JOnAS 2.4 Open Source EJB
server, but support for other EJB containers should be added soon. This task has only two attributes,
which appear in Table 8-7, and requires some nested elements.

Table 8-7. The serverdeploy task's attributes

Attribute Description Required

action
Specifies the action you want to perform, such as deploy, delete,
list, undeploy, or update.

Yes

source

Specifies the path and filename of the component you want to deploy.
This may be an .ear, .jar, .war, or other file type supported by the
server.

Depends on the
server.

The serverdeploy task supports a nested classpath element to set the classpath. It supports the
vendor-specific generic, jonas, and weblogic nested elements.

8.8.2.1 The generic element

This is the element you use for generic Java-based deployment if you've got deployment codea Java
classsupplied by the server's vendor. If there's a vendor-specific element for serverdeploy, use that,
of course, but if not, try the generic element. The attributes of this element appear in Table 8-8.

Table 8-8. The generic element's attributes

Attribute Description Required

classname Specifies the classname of the deployment tool you want to run. Yes

classpath
Specifies the classpath you want the JVM running the tool to use.
May be supplied as a nested element.

Depends on the
server.

password Specifies the password you want to use on the server.
Depends on the
server.

server Specifies the URL of the server to use.
Depends on the
server.

username Specifies the username to log in with.
Depends on the
server.

The generic element supports nested arg and jvmarg elements. Here's an example using the generic
element for deployment that assumes the deployment tool for the target Web server is
org.steven.j2ee.config.Deploy:

<serverdeploy action="deploy" source="${eardir}/app.ear">
 <generic classname="org.steven.j2ee.config.Deploy"
 classpath="${classpath}"
 username="${user.name}"
 password="${user.password}">
 <arg value="-install"/>
 <jvmarg value="-mx512m"/>
 </generic>
</serverdeploy>

8.8.2.2 The weblogic element

The weblogic element is designed to run the weblogic.deploy deployment tool; legal actions for this
tool are deploy, undeploy, list, update, and delete. The attributes for this element appear in Table
8-9.

Table 8-9. The weblogic element's attributes

Attribute Description Required Default

application Specifies the name of the application you want to deploy. Yes

classpath Specifies the classname of the deployment tool you want to run. No

component

Specifies the string for deployment targets, of the form:
<component>:<target1>,<target2>..... In this case, component is
the archive name (without a file extension).

No

debug
Specifies if you want debug information to be displayed during
deployment.

No

password Specifies the password you want to use on the server. Yes

server Specifies the URL of the server to use. No

username Specifies the username to log in with. No system

Here's an example using this element inside a serverdeploy element to deploy to a WebLogic server:

<serverdeploy action="deploy"
 source="${eardir}/app.ear">
 <weblogic application="app"
 server="ff19://server:7001"
 classpath="${weblogic.home}/lib/weblogic.jar"
 username="${user.name}"
 password="${user.password}"
 component="appserver,productionserver" />
</serverdeploy>

8.8.2.3 The jonas element

The jonas element supports deployment to JOnAS (Java Open Applicaton Server) servers. Valid
actions for the JOnAS deployment tool (org.objectweb.jonas.adm.JonasAdmin

)

are deploy, undeploy, list and update. The attributes of this element appear in Table 8-10.

Table 8-10. The jonas element's attributes

Attribute Description Required Default

jonasroot
Specifies the root directory for the
server.

Yes

orb

Specifies the orb, such as RMI,
JEREMIE, DAVID, and so on. If the
orb is DAVID (RMI/IIOP), specifies
the davidhost and davidport
attributes.

No The ORB present in the classpath.

davidhost
Specifies the value for the property
david.CosNaming.default_host.

No

davidport
Specifies the value for the property
david.CosNaming.default_port.

No

classname
Specifies the classname of the
deployment tool you want to run.

No org.objectweb.jonas.adm.JonasAdmin

classpath

Specifies the classpath you want the
JVM running the tool to use. May be
supplied as a nested element.

No

server
Specifies the URL of the server to
use.

Yes

If you want to build in delay times to take into account delays in getting
responses from a server, use the Ant waitfor task. You can use the sleep task
for this purpose.

The jonas element supports nested classpath, arg, and jvmarg elements. Here's an example using
serverdeploy to deploy to a JOnAS server:

<serverdeploy action="deploy" source="${eardir}/app.jar">
 <jonas server="JOnAS5" jonasroot="${jonas.root}">
 <classpath>
 <pathelement path="${jonas.root}/lib/RMI_jonas.jar"/>
 </classpath>
 </jonas>
</serverdeploy>

Chapter 9. XML and XDoclet
XML support is built into Ant, and not only as far as build files go. You can validate XML documents
using XML DTDs and schemas using the xmlvalidate task. You can read properties from an XML
document using xmlproperty. You can use the xslt/style task to transform XML documents using
XSLT. And you can use the antstructure task to generate an XML DTD for all the tasks Ant knows
about.

Besides covering these and other XML tasks, I'm going to discuss XDoclet in this chapter. XDoclet is
an open source code generation engine that is designed to run in Ant. Using codes that you embed in
Java source code, XDoclet can generate code, deployment descriptors such as web.xml, and other
artifacts for Web and EJB applications.

I'll also round out the discussion of EJB from the previous chapter by discussing the Ant EJB tasks, a
specially designed set of optional tasks for developing Enterprise JavaBeans (EJBs).

9.1. Validating XML Documents

You use the xmlvalidate task to validate XML documents with Document Type Definitions (DTDs) or
XML schema. Your build process may involve generating XML documents, and it can be worthwhile to
test those documents for validity before deploying them (for example, see the section on XDoclet in this
chapter. You typically use XDoclet to generate XML documents for deploying web applications, such as
web.xml , application.xml , and so on). By default, this task uses the SAX2 parser implementation
provided by Sun's JAXP (http://java.sun.com/xml/jaxp/index.jsp). The attributes of this task appear in
Table 9-1 .

Table 9-1. The xmlvalidate task's attributes

Attribute Description Required Default

classname Specifies the XML parser you want to use. No

classpathref
Specifies where to find the XML parser class. Note that you can
also use a nested classpath element.

No

failonerror Specifies you want this task to fail if it encounters an error. No true

file
Specifies the file or files you want to validate. You can use a
nested fileset.

No

lenient Check only if the XML document is well-formed if true. No

warn Specifies the parser should log warn messages. No

This task can contain nested dtd elements, which specify locations for DTD resolution. The attributes of
the dtd element appear in Table 9-2 .

Table 9-2. The dtd element's attributes

Attribute Description Required

location
Specifies the location of the DTD you want to use. Set this to a file, a resource,
or a URL.

Yes

publicId Specifies the public ID of the DTD to resolve. Yes

You can use nested xmlcatalog elements; an XMLCatalog is a catalog of public resources, such as DTDs
or entities, that are referenced in an XML document. The attributes of this element appear in Table 9-3 .

Table 9-3. The xmlcatalog element's attributes

Attribute Description Required

id
Specifies a unique ID for an XMLCatalog. This ID can be used to reference the
XMLCatalog from another XMLCatalog.

No

refid
Specifies the ID of another XMLCatalog whose contents are used in this
XMLCatalog.

No

The xmlcatalog element can contain nested dtd , classpath , and catalogpath elements; the
catalogpath element is an Ant path-like element, which, as you know, means it can contain nested
fileset elements, pathelement elements, and so on.

The xmlvalidate element can contain nested attribute elements, which set SAX Parser features as
defined at http://xml.org/sax/features/ . The attributes of this element appear in Table 9-4 .

Table 9-4. The attribute element's attributes

Attribute Description Required

name Specifies the name of the feature to set Yes

value Specifies the boolean setting of the feature Yes

9.1.1. Validating with XML Schema

It's easy enough to use the xmlvalidate task to validate XML documents with schema, as shown in
Example 9-1 , which validates document.xml . This example turns on schema validation by setting the
parser attribute identified by the URI http://apache.org/xml/features/validation/schema to true.

Example 9-1. Valiating with a schema (ch09/schemat/build.xml)

<?xml version="1.0" encoding="UTF-8" ?>

<project default="main" >

 <target name="main">
 <xmlvalidate
 lenient="no"
 warn="yes"
 file="document.xml"
 classname="org.apache.xerces.parsers.SAXParser">
 <attribute name="http://apache.org/xml/features/validation/schema"
 value="true" />
 </xmlvalidate>

 </target>

</project>

Here's document.xml , the document to validate, which uses the xsi:noNamespace SchemaLocation
attribute to specify the name of the schema document, document.xsd :

<?xml version="1.0" encoding="UTF-8" ?>
<document xsi:noNamespaceSchemaLocation="document.xsd"
 xmlns="" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <hello />
</document>

Here's the schema, document.xsd :

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="" elementFormDefault="qualified" >
 <xs:element name="document">
 <xs:complexType mixed="false">
 <xs:sequence>
 <xs:element name="hello" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Finally, here's what you see when you execute this build file, showing that the document was
successfully validated:

%ant
Buildfile: build.xml

main:
[xmlvalidate] 1 file(s) have been successfully validated.

BUILD SUCCESSFUL
Total time: 1 second

Here's what you'd see if there was an error; for example, if "document" had been mispelled "documnt"
in the schema:

%ant
Buildfile: build.xml

main:
[xmlvalidate] document.xml:4:60: cvc-elt.1 Cannot find the declaration of 'document'.

BUILD FAILED
document.xml is not a valid XML document.
Total time: 1 second

9.1.2. Validating with DTDs

Validating documents using DTDs is as easy, as you can see in Example 9-2 , which validates a
document, document.xml , with a DTD.

Example 9-2. Valiating with a DTD ch09/DTD/build.xml

<?xml version="1.0" encoding="UTF-8" ?>

<project default="main" >

 <target name="main">
 <xmlvalidate
 lenient="no"
 warn="yes"
 file="document.xml"
 classname="org.apache.xerces.parsers.SAXParser">
 </xmlvalidate>
 </target>

</project>

Here's the document with a DTD, document.xml , to validate:

<?xml version = "1.0" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product,id,price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>

 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 <employee>
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 <projects>
 <project>
 <product>Desktop</product>
 <id>333</id>
 <price>$2995.00</price>
 </project>
 <project>
 <product>Scanner</product>
 <id>444</id>
 <price>$200.00</price>
 </project>
 </projects>
 </employee>
 <employee>
 <name>
 <lastname>Gable</lastname>
 <firstname>Clark</firstname>
 </name>
 <hiredate>October 25, 2005</hiredate>
 <projects>
 <project>
 <product>Keyboard</product>
 <id>555</id>
 <price>$129.00</price>
 </project>
 <project>
 <product>Mouse</product>
 <id>666</id>
 <price>$25.00</price>
 </project>
 </projects>
 </employee>

</document>

And here are the results:

%ant
Buildfile: build.xml

main:
[xmlvalidate] 1 file(s) have been successfully validated.

BUILD SUCCESSFUL
Total time: 0 seconds

9.2. Loading Properties from XML Files

The xmlproperty task loads property values from a well-formed XML file. The way you structure the
XML document determines the names of the properties it creates.

Say you have this XML document, properties.xml, that defines a property named name1, and two
nested properties, firstName and lastName, creating the properties name1.firstName and
name1.lastName:

<name1 language="english">
 <firstName language="german">Stefan</firstName>
 <lastName>Edwards</lastName>
</name1>

You can load these properties into a build with the xmlproperty task, as shown in Example 9-3. This
build file displays the values of the properties created by properties.xml, name1.firstName, and
name1.lastName. This example defines attributes for the name1 and firstName properties, creating an
attribute named language which can be accessed as name1(language) and as
name1.firstName(language). The build file displays the values of these properties.

Example 9-3. Loading XML properties (ch09/xmlproperty/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <xmlproperty file="properties.xml" />

 <target name="main">
 <echo>
 ${name1(language)}
 ${name1.firstName}
 ${name1.firstName(language)}
 ${name1.lastName}
 </echo>
 </target>

</project>

Here's what the build file displays when run:

%ant
Buildfile: build.xml

main:
 [echo]
 [echo] english
 [echo] Stefan
 [echo] german
 [echo] Edward
 [echo]

BUILD SUCCESSFUL
Total time: 0 seconds

The attributes of this task appear in Table 9-5.

Table 9-5. The xmlproperty task's attributes

Attribute Description Required Default

collapseAttributes
Specifies you want to treat attributes as
nested elements

No false

file
Specifies the XML file you want to parse for
properties

Yes

includeSemanticAttribute
Specifies you want to include the semantic
attribute name as part of the property name

No false

keepRoot
Specifies you want to make the XML root tag
the first value in the property name

No true

prefix
Specifies the prefix to prepend to each
property automatically

No

rootDirectory Specifies the root directory to search for files No
${basedir}

semanticAttributes
Specifies you want to use semantic handling
of attribute names

No false

validate Specifies you want to validate the input file No false

9.3. Creating Ant Task DTDs

The Ant documentation is useful but at times hard to use if you're looking for the definitions of nested
tasks and elements, because they're not listed at the top level. On the other hand, if you can read a
DTD and want to know how any Ant task or element is defined, use the antstructure task. This task
will create a DTD for all Ant tasks that Ant knows about, including optional tasks, with their attributes
and nested elements. This task only has one attribute, output , which specifies the output file to hold
the DTD.

Example 9-4 shows how to use this task, storing the DTD for all Ant tasks in project.dtd .

Example 9-4. Using the antstructure task (ch09/antstructure/build.xml)

<?xml version="1.0" ?>
<project default="main">

 <target name="main">
 <antstructure output="project.dtd"/>
 </target>

</project>

Here's part of the DTD, project.dtd , generated:

<!ELEMENT project (target | %tasks; | %types;)*>
<!ATTLIST project
 name CDATA #IMPLIED
 default CDATA #IMPLIED
 basedir CDATA #IMPLIED>

<!ELEMENT target (%tasks; | %types;)*>

<!ATTLIST target
 id ID #IMPLIED
 name CDATA #REQUIRED
 if CDATA #IMPLIED
 unless CDATA #IMPLIED
 depends CDATA #IMPLIED
 description CDATA #IMPLIED>

<!ELEMENT patternset (include | patternset | exclude | excludesfile | includesfile)*>
<!ATTLIST patternset
 id ID #IMPLIED
 includes CDATA #IMPLIED
 refid IDREF #IMPLIED

 description CDATA #IMPLIED
 excludesfile CDATA #IMPLIED
 includesfile CDATA #IMPLIED
 excludes CDATA #IMPLIED>
 .
 .
 .

9.4. Transforming XML Using XSLT

The xslt task, also called the style task (the two names are interchangeable in Ant), can process a
set of documents via XSLT. This is handy for building nicely formatted views of XML-based
documentation in other formats like HTML, or for generating code. How do you use this task to
perform XSLT transformations? Example 9-5 shows a build file that puts it to work, transforming
style.xml into style.html, using style.xsl.

Example 9-5. Using the xslt/style task ch09/xslt/build.xml

<?xml version="1.0" encoding="UTF-8" ?>

<project default="main" >

 <target name="main">
 <xslt basedir="." destdir="." extension=".html" includes="style.xml"
 style="style.xsl"/>
 </target>

</project>

Here's style.xml, the XML document to transform, which holds data about three U.S. states:

<?xml version="1.0" encoding ="UTF-8"?>
<states>

 <state>
 <name>California</name>
 <population units="people">33871648</population><!--2000 census-->
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 </state>

 <state>
 <name>Massachusetts</name>
 <population units="people">6349097</population><!--2000 census-->
 <capital>Boston</capital>
 <bird>Chickadee</bird>
 <flower>Mayflower</flower>
 <area units="square miles">7840</area>
 </state>

 <state>
 <name>New York</name>
 <population units="people">18976457</population><!--2000 census-->
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area units="square miles">47214</area>
 </state>

</states>

In this example, the names of the states are extracted and used to create an HTML document with
style.xsl:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <BODY>
 <xsl:apply-templates/>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <P>
 <xsl:value-of select="name"/>
 </P>
 </xsl:template>

</xsl:stylesheet>

Here's the resulting HTML document:

<HTML>
 <BODY>

 <P>California</P>

 <P>Massachusetts</P>

 <P>New York</P>

 </BODY>
</HTML>

The attributes of this task appear in Table 9-6.

If you are using JDK 1.4 or higher, this task doesn't require external libraries. If
you're using an earlier JDK, you'll need Xalan from
http://xml.apache.org/xalan-j/index.html (or another XSLT processor), and
Ant's optional.jar.

Table 9-6. The xslt/style task's attributes

Attribute Description Required Default

basedir
Specifies the directory to search for the
source XML file.

No
${basedir}

classpath
Specifies the classpath to use when
searching for the XSLT processor.

No

classpathref
Specifies the classpath to use, given as a
reference.

No

defaultexcludes
Specifies if you want to use default
excludes or not. Set to yes/no.

No
Default
excludes are
used.

destdir
Specifies the directory in which you want
to store the results.

Yes, unless
in and out
have been
specified.

excludes

Specifies the patterns matching files to
exclude, as a comma- or space-
separated list.

No

excludesfile

Specifies the name of a file where each
line is a pattern matching files to
exclude.

No

extension
Specifies the file extension to be used for
the output files.

No ".html"

force Forces creation of the output files. No false

in

Specifies a single XML document to be
transformed. This attribute should be
used with the out attribute.

No

includes

Specifies the patterns matching files to
include, as a comma- or space-separated
list.

No

includesfile
Specifies the name of a file where each
line is a pattern matching files to include.

No

http://xml.apache.org/xalan-j/index.html

Attribute Description Required Default

out

Specifies the output name for the
transformed result (specified with the in
attribute).

No

processor

Specifies the name of the XSLT processor
to use. Possible values: trax for a TraX
compliant processor, xslp for the XSL:P
processor (note that this value has been
deprecated, however), xalan for the
Apache XML Xalan processor (Version
1this value has been deprecated), or the
name of an arbitrary XSLTLiaison class.
The first one found in your class path is
the one that is used.

No

Defaults to
trax, followed
by xalan and
then xslp (in
that order).

reloadstylesheet

Specifies if the transformer is freshly
created for every transformation.
Originally introduced to handle a bug in
some Xalan-J versions.

No false

scanincludeddirectories

Specifies you want to transform files
found in any directories specified by the
include patterns.

No TRue

style
Specifies the name of the stylesheet to
use for the transformation.

Yes

This task forms an implicit fileset and so supports all attributes of fileset (dir becomes basedir) as
well as the nested include, exclude, and patternset elements. You can use nested classpath
elements to load the XSLT processor, nested xmlcatalog elements (see Table 9-3) for entity and URI
resolution, and attribute elements (see Table 9-4) to specify settings of the processor factory (the
attribute names and values are processor specific). The xslt/style task supports the use of nested
param elements, whose attributes appear in Table 9-7, to pass values to xsl:param declarations in
stylesheets.

Table 9-7. The param element's attributes

Attribute Description Required

name Specifies the name of an XSLT parameter you want set Yes

expression Specifies the text value to be stored in the parameter Yes

if Specifies you want to pass the parameter only if this property is set No

unless Specifies you want to pass the parameter only if this property is not set No

out

Specifies the output name for the
transformed result (specified with the in
attribute).

No

processor

Specifies the name of the XSLT processor
to use. Possible values: trax for a TraX
compliant processor, xslp for the XSL:P
processor (note that this value has been
deprecated, however), xalan for the
Apache XML Xalan processor (Version
1this value has been deprecated), or the
name of an arbitrary XSLTLiaison class.
The first one found in your class path is
the one that is used.

No

Defaults to
trax, followed
by xalan and
then xslp (in
that order).

reloadstylesheet

Specifies if the transformer is freshly
created for every transformation.
Originally introduced to handle a bug in
some Xalan-J versions.

No false

scanincludeddirectories

Specifies you want to transform files
found in any directories specified by the
include patterns.

No TRue

style
Specifies the name of the stylesheet to
use for the transformation.

Yes

This task forms an implicit fileset and so supports all attributes of fileset (dir becomes basedir) as
well as the nested include, exclude, and patternset elements. You can use nested classpath
elements to load the XSLT processor, nested xmlcatalog elements (see Table 9-3) for entity and URI
resolution, and attribute elements (see Table 9-4) to specify settings of the processor factory (the
attribute names and values are processor specific). The xslt/style task supports the use of nested
param elements, whose attributes appear in Table 9-7, to pass values to xsl:param declarations in
stylesheets.

Table 9-7. The param element's attributes

Attribute Description Required

name Specifies the name of an XSLT parameter you want set Yes

expression Specifies the text value to be stored in the parameter Yes

if Specifies you want to pass the parameter only if this property is set No

unless Specifies you want to pass the parameter only if this property is not set No

You can use outputproperty elements, whose attributes appear in Table 9-8, with a TraX processor
to specify how the result tree should be output.

Table 9-8. The outputproperty element's attributes

Attribute Description Required

name Specifies the name of the property to set Yes

value Specifies the new value of the property Yes

TraX processors can accept factory elements to specify factory settings. These elements can contain
one attribute, name, which specifies the fully qualified classname of the transformer factory to use.

9.5. Using XDoclet

XDoclet is an open source code generation engine designed for use with Ant, and you can pick it up for
free at http://xdoclet.sourceforge.net/ . It'll write code for you, especially deployment descriptors, and is
often used for Web and EJB development. XDoclet comes with a number of Ant tasks built-in, shown in
Table 9-9 .

Table 9-9. The XDoclet Ant tasks

Ant task Does this

doclet Specifies the base class for all XDoclet Ant tasks

ejbdoclet Specifies which EJB-specific subtasks to execute

hibernatedoclet Specifies which Hibernate subtasks to execute

jdodoclet Specifies which JDO-specific subtasks to execute

jmxdoclet Specifies which JMX-specific subtasks to execute

mockdoclet Generates mock doclet objects

portletdoclet Specifies which portlet-specific subtasks to execute

webdoclet Specifies which Web-specific subtasks to execute

XDoclet lets you generate code and deployment descriptors by embedding tags in your code, much like the
tags you'd use for Javadoc. There are entire books written about XDoclet because it's an extensive tool.
Though there's not room for that level of coverage herethis is a book about Ant, not XDocletI'll take a look
at several examples creating Web and EJB applications here, giving the XDoclet story from Ant's point of
view.

9.5.1. Developing Applications

You use the XDoclet webdoclet task to develop Web applications. The attributes of this task appear in Table
9-10 , and the possible nested elements in Table 9-11 .

Table 9-10. The webdoclet Ant tasks

Attribute Description Required

addedTags
Specifies you want to add JavaDoc tags to the
generated classes

No

Attribute Description Required

destDir
Specifies the destination directory for the generated
output

If destDir is not specified by a
subtask.

excludedTags
Specifies tags that should not be automatically written
to output files

No

force Specifies you want generation of files to be forced No

mergeDir
Specifies the directory where subtasks will look for files
that they should merged with their generated files

No, but should be set if you
want to use the merge feature.

verbose Specifies you want verbose feedback No

Table 9-11. The webdoclet Ant task's nested elements

Element Description

configParam Specifies configuration parameters you want to use

deploymentdescriptor Specifies you want to generate a web.xml deployment descriptor

fileset Specifies a fileset to indicate the files to parse

jbosswebxml Specifies you want to generate a jboss-web.xml deployment descriptor

jonaswebxml
Specifies you want to generate a web application deployment descriptor for
JOnAS

jrunwebxml Specifies you want to generate a jrun-web.xml deployment descriptor

jsptaglib
Specifies you want to generate a taglib.tld deployment descriptor for JSP
taglibs

packageSubstitution Substitutes a new package for the package in generated files

resin-web-xml Specifies you want to generate web.xml with Resin extensions

strutsconfigxml Specifies you want to generate a struts-config.xml deployment descriptor

strutsvalidationxml
Specifies you want to generate a Struts Validator validation.xml deployment
descriptor

subTask Specifies a subtask for this task

weblogicwebxml
Specifies you want to generate a weblogic.xml deployment descriptor for Web
applications

webspherewebxml Specifies you want to generate WebSphere specific deployment descriptors

webworkactiondocs
Specifies you want to generate HTML files containing descriptions of WebWork
actions

webworkactionsxml Specifies you want to generate an actions.xml file

destDir
Specifies the destination directory for the generated
output

If destDir is not specified by a
subtask.

excludedTags
Specifies tags that should not be automatically written
to output files

No

force Specifies you want generation of files to be forced No

mergeDir
Specifies the directory where subtasks will look for files
that they should merged with their generated files

No, but should be set if you
want to use the merge feature.

verbose Specifies you want verbose feedback No

Table 9-11. The webdoclet Ant task's nested elements

Element Description

configParam Specifies configuration parameters you want to use

deploymentdescriptor Specifies you want to generate a web.xml deployment descriptor

fileset Specifies a fileset to indicate the files to parse

jbosswebxml Specifies you want to generate a jboss-web.xml deployment descriptor

jonaswebxml
Specifies you want to generate a web application deployment descriptor for
JOnAS

jrunwebxml Specifies you want to generate a jrun-web.xml deployment descriptor

jsptaglib
Specifies you want to generate a taglib.tld deployment descriptor for JSP
taglibs

packageSubstitution Substitutes a new package for the package in generated files

resin-web-xml Specifies you want to generate web.xml with Resin extensions

strutsconfigxml Specifies you want to generate a struts-config.xml deployment descriptor

strutsvalidationxml
Specifies you want to generate a Struts Validator validation.xml deployment
descriptor

subTask Specifies a subtask for this task

weblogicwebxml
Specifies you want to generate a weblogic.xml deployment descriptor for Web
applications

webspherewebxml Specifies you want to generate WebSphere specific deployment descriptors

webworkactiondocs
Specifies you want to generate HTML files containing descriptions of WebWork
actions

Element Description

webworkactionsxml Specifies you want to generate an actions.xml file

webworkconfigproperties Specifies you want to generate a views.properties file

You use tags prefixed with an @ to tell XDoclet what you want it to do. In Example 9-6 , in this servlet's
code, ServletApp.java , I'm telling Ant how to set up the deployment descriptor, web.xml .

Example 9-6. The servlet's code ch09/servlet/ServletApp.java

package app.web;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * @web.servlet
 * display-name="Servlet App"
 * load-on-startup="1"
 * name="ServletApp"
 *
 * @web.servlet-init-param
 * name="param1"
 * value="value1"
 *
 * @web.servlet-init-param
 * name="param2"
 * value="value2"
 *
 * @web.servlet-mapping
 * url-pattern="/app/*"
 *
 * @author Steve
 */

public class ServletApp extends HttpServlet
{
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 response.getWriter().println("No worries.");
 }
}

To use webdoclet from Ant, you have to use a taskdef task this way to set up the webdoclet task (See
Chapter 12):

webworkactionsxml Specifies you want to generate an actions.xml file

webworkconfigproperties Specifies you want to generate a views.properties file

You use tags prefixed with an @ to tell XDoclet what you want it to do. In Example 9-6 , in this servlet's
code, ServletApp.java , I'm telling Ant how to set up the deployment descriptor, web.xml .

Example 9-6. The servlet's code ch09/servlet/ServletApp.java

package app.web;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * @web.servlet
 * display-name="Servlet App"
 * load-on-startup="1"
 * name="ServletApp"
 *
 * @web.servlet-init-param
 * name="param1"
 * value="value1"
 *
 * @web.servlet-init-param
 * name="param2"
 * value="value2"
 *
 * @web.servlet-mapping
 * url-pattern="/app/*"
 *
 * @author Steve
 */

public class ServletApp extends HttpServlet
{
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 response.getWriter().println("No worries.");
 }
}

To use webdoclet from Ant, you have to use a taskdef task this way to set up the webdoclet task (See
Chapter 12):

 <taskdef
 name="webdoclet"
 classname="xdoclet.modules.web.WebDocletTask"
 classpathref="app.class.path"/>

To create web.xml for this servlet, you use a deploymentdescriptor element inside the webdoclet element:

 <deploymentdescriptor
 servletspec="2.3"
 destdir="${app.web-inf.dir}"/>

The complete build file appears in Example 9-7 . It compiles the code, creates web.xml , and is designed to
be used from a directory named build right under the XDoclet directory (xdoclet-1.2.1 is the current
version as of this writing), while the servlet's code is stored in the directory build/src/java/app/web .

Example 9-7. The servlet's build file ch09/servlet/build.xml

<?xml version="1.0"?>

<project default="main" basedir=".">

 <property name="lib.dir" value="../lib"/>
 <property name="app.dir" value="."/>
 <property name="app.dist.dir" value="${app.dir}/output"/>
 <property name="app.src.dir" value="${app.dir}/src"/>
 <property name="app.java.dir" value="${app.src.dir}/java"/>
 <property name="app.generated-src.dir" value="${app.dist.dir}/generated-src"/>
 <property name="app.web-inf.dir" value="${app.dist.dir}/web-inf"/>
 <property name="app.classes.dir" value="${app.dist.dir}/classes"/>
 <property name="app.xdoclet.force" value="false"/>

 <path id="app.class.path">
 <fileset dir="${lib.dir}">
 <include name="*.jar"/>
 </fileset>
 </path>

 <target name="init">
 <tstamp>
 <format property="TODAY" pattern="d-MM-yy"/>
 </tstamp>

 <taskdef
 name="webdoclet"
 classname="xdoclet.modules.web.WebDocletTask"
 classpathref="app.class.path"/>

 <mkdir dir="${app.classes.dir}"/>
 <mkdir dir="${app.generated-src.dir}"/>

 </target>

 <target name="webdoclet" depends="init">

 <webdoclet
 destdir="${app.generated-src.dir}"
 excludedtags="@version,@author,@todo"
 force="${app.xdoclet.force}"
 verbose="false">

 <fileset dir="${app.java.dir}">
 <include name="**/Servlet*.java"/>
 </fileset>

 <deploymentdescriptor
 servletspec="2.3"
 destdir="${app.web-inf.dir}"/>

 </webdoclet>
 </target>

 <target name="compile" depends="webdoclet">

 <javac
 destdir="${app.classes.dir}"
 classpathref="app.class.path"
 debug="on"
 deprecation="on"
 optimize="off">

 <src path="${app.java.dir}"/>
 <src path="${app.generated-src.dir}"/>

 </javac>

 </target>

 <target name="main" depends="compile">
 <echo>Using XDoclet....</echo>
 </target>

</project>

When you run this build file, it'll create a complete web.xml for this servlet; here is the crucial part:

 <servlet>
 <servlet-name>ServletApp</servlet-name>
 <display-name>Servlet App</display-name>
 <servlet-class>app.web.ServletApp</servlet-class>

 <init-param>

 <param-name>param1</param-name>
 <param-value>value1</param-value>
 </init-param>
 <init-param>
 <param-name>param2</param-name>
 <param-value>value2</param-value>
 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>
 <servlet-name>ServletApp</servlet-name>
 <url-pattern>/app/*</url-pattern>
 </servlet-mapping>

In this way, XDoclet can write deployment descriptors for you if you remember to put all needed
information in your source code files using XDoclet tags.

9.5.2. Working with EJB Containers

This XDoclet Ant task executes EJB-specific sub-tasks to support EJB development. You can see the
attributes of this task in Table 9-12 . The legal nested elements appear in Table 9-13 .

Table 9-12. The ejbdoclet Ant task's attributes

Attribute Description Required Default

addedTags
Specifies you want to add JavaDoc tags to
the generated classes.

No

destDir
Specifies the destination directory to use for
output files.

If destDir is not
specified for a subtask.

ejbClassNameSuffix

Specifies suffixes that should be removed
from the bean classname. A comma-
separated list.

No
"Bean , EJB
, Ejb "

ejbSpec

Specifies the version of EJB specification
ejbdoclet should use. Possible values: 1.1
and 2.0.

No. Default is 2.0 .

excludedTags
Specifies tags that should not be written to
output files.

No

force
Specifies whether you want to force the the
generation of files if needed.

No

Attribute Description Required Default

mergeDir

Specifies the directory where subtasks will
look for files that they should merge with
their generated files.

No, but should be set if
you use the merge
feature.

verbose Specifies you want verbose feedback. No

Table 9-13. The ejbdoclet Ant task's nested elements

Element Description

apachesoap Provides support for Apache SOAP subtasks

axisdeploy Provides support for axis deployment

axisundeploy Provides support for axis undeployment

borland Provides support for Borland code

castormapping Specifies you want to generate a mapping.xml deployment descriptor

configParam Specifies configuration parameters that will be included as an attribute/value pair

dao Provides support for DAO

dataobject Provides support for data objects for Entity EJBs.

deploymentdescriptor Creates a deployment descriptor

easerver Provides support for configuration files for EJB JAR files in EAServer 4.1+

entitybmp Creates entity bean classes for BMP entity EJBs

entitycmp Creates CMP layer code

entityfacade Provides support for entity facades

entitypk Creates primary key classes for entity EJBs

fileset Specifies a fileset of files to parse

homeinterface Provides support for remote home interfaces for EJBs

hpas Provides support for an hp-ejb-jar.xml deployment descriptor for HPAS

jboss
Provides support for jboss.xml , jaws.xml , and/or jbosscmp-jdbc.xml
deployment descriptors for JBoss

jonas Provides support for the deployment descriptor for JOnAS

jrun Provides support for jrun.

localhomeinterface Generates local home interfaces for EJBs

localinterface Generates local interfaces for EJBs

mergeDir

Specifies the directory where subtasks will
look for files that they should merge with
their generated files.

No, but should be set if
you use the merge
feature.

verbose Specifies you want verbose feedback. No

Table 9-13. The ejbdoclet Ant task's nested elements

Element Description

apachesoap Provides support for Apache SOAP subtasks

axisdeploy Provides support for axis deployment

axisundeploy Provides support for axis undeployment

borland Provides support for Borland code

castormapping Specifies you want to generate a mapping.xml deployment descriptor

configParam Specifies configuration parameters that will be included as an attribute/value pair

dao Provides support for DAO

dataobject Provides support for data objects for Entity EJBs.

deploymentdescriptor Creates a deployment descriptor

easerver Provides support for configuration files for EJB JAR files in EAServer 4.1+

entitybmp Creates entity bean classes for BMP entity EJBs

entitycmp Creates CMP layer code

entityfacade Provides support for entity facades

entitypk Creates primary key classes for entity EJBs

fileset Specifies a fileset of files to parse

homeinterface Provides support for remote home interfaces for EJBs

hpas Provides support for an hp-ejb-jar.xml deployment descriptor for HPAS

jboss
Provides support for jboss.xml , jaws.xml , and/or jbosscmp-jdbc.xml
deployment descriptors for JBoss

jonas Provides support for the deployment descriptor for JOnAS

jrun Provides support for jrun.

localhomeinterface Generates local home interfaces for EJBs

Element Description

localinterface Generates local interfaces for EJBs

mvcsoft Generates MVCSoft's XML

oc4j Generates OC4J specific deployment descriptor (orion-ejb-jar.xml)

openejb Provides support for openejb-jar.xml deployment descriptors for OpenEJB

orion Provides support for Orion's orion-ejb-jar.xml

packageSubstitution
Specifies you want to substitute a new package for the package in generated
files

pramati Provides support for Pramati deployment files

remotefacade Provides support for stage 2 of remote facade generation

remoteinterface Provides support for remote interfaces for EJBs

resin-ejb-xml Provides support for Resin

session Provides support for sessions

strutsform Provides support for a Struts ActionForm , based on an entity EJB

subTask Specifies a subtask for this task

sunone Provides support for configuration files for EJB jars in iPlanet/SunONE

utilobject Provides support for util objects

valueobject Provides support for value objects for Entity EJBs

weblogic Generates deployment descriptors for WLS 6.0, 6.1, and 7.0

websphere
Generates EJB-related files from one or a set of EJB bean source files that uses
custom EJBDoclet JavaDoc tags

The source code for an EJB, Appbean.java , appears in Example 9-8 and shows how the ejbdoclet task
works. The embedded XDoclet tags hold data for the ejbdoclet task, which will create a deployment
descriptor and write code.

Example 9-8. The EJB bean ch09/ejb/Appbean.java

package app.web;

import javax.ejb.*;

/**
 *
 * @ejb.bean name="App"
 * description="App example bean"
 * jndi-name="ejb/App"
 * type="Stateless"

localinterface Generates local interfaces for EJBs

mvcsoft Generates MVCSoft's XML

oc4j Generates OC4J specific deployment descriptor (orion-ejb-jar.xml)

openejb Provides support for openejb-jar.xml deployment descriptors for OpenEJB

orion Provides support for Orion's orion-ejb-jar.xml

packageSubstitution
Specifies you want to substitute a new package for the package in generated
files

pramati Provides support for Pramati deployment files

remotefacade Provides support for stage 2 of remote facade generation

remoteinterface Provides support for remote interfaces for EJBs

resin-ejb-xml Provides support for Resin

session Provides support for sessions

strutsform Provides support for a Struts ActionForm , based on an entity EJB

subTask Specifies a subtask for this task

sunone Provides support for configuration files for EJB jars in iPlanet/SunONE

utilobject Provides support for util objects

valueobject Provides support for value objects for Entity EJBs

weblogic Generates deployment descriptors for WLS 6.0, 6.1, and 7.0

websphere
Generates EJB-related files from one or a set of EJB bean source files that uses
custom EJBDoclet JavaDoc tags

The source code for an EJB, Appbean.java , appears in Example 9-8 and shows how the ejbdoclet task
works. The embedded XDoclet tags hold data for the ejbdoclet task, which will create a deployment
descriptor and write code.

Example 9-8. The EJB bean ch09/ejb/Appbean.java

package app.web;

import javax.ejb.*;

/**
 *
 * @ejb.bean name="App"
 * description="App example bean"
 * jndi-name="ejb/App"
 * type="Stateless"

 *
 * @ejb.security-role-ref role-link="Administrator"
 * role-name="admin"
 *
 * @ejb.permission role-name="App"
 * @ejb.permission role-name="Administrator"
 *
 * @ejb.transaction type="Required"
 * @ejb.transaction-type type="Container"
 *
 * @author Steven
 */

public abstract class AppBean implements SessionBean
{
 /**
 * Add and return values.
 *
 * @ejb.interface-method view-type="remote"
 */
 public double adder(int x, int y)
 {
 return x + y;
 }

 public void ejbActivate()
 {
 }

 public void ejbPassivate()
 {
 }

 public void setSessionContext(SessionContext ctx)
 {
 }

 /**
 * Remove
 *
 * @ejb.transaction
 * type="Mandatory"
 */
 public void ejbRemove()
 {
 }
}

In the build file, you use taskdef to tell Ant about the ejbdoclet task:

 <taskdef

 name="ejbdoclet"
 classname="xdoclet.modules.ejb.EjbDocletTask"
 classpathref="app.class.path"/>

Include the .jar file containing Sun's javax.ejb.* classes on the taskdef task's
classpath when creating the ejbdoclet task in a build file.

You can create a deployment descriptor, ejb-jar.xml , with the deploymentdescriptor element:

 <deploymentdescriptor
 destdir="${app.meta-inf.dir}"
 description="ejbbean"/>

The entire build file appears in Example 9-9 . This file is designed to be run from a directory named
ejbbuild right under the XDoclet unzip directory with the servlet's code in the directory
build/src/java/app/web .

Example 9-9. The EJB bean build file ch09/ejb/build.xml

<?xml version="1.0" ?>

<project default="main" basedir=".">

 <property name="lib.dir" value="../lib"/>
 <property name="app.dist.dir" value="output"/>
 <property name="app.src.dir" value="src"/>
 <property name="app.java.dir" value="${app.src.dir}/java"/>
 <property name="app.generated-src.dir" value="${app.dist.dir}/generated-src"/>
 <property name="app.web-inf.dir" value="${app.dist.dir}/web-inf"/>
 <property name="app.classes.dir" value="${app.dist.dir}/classes"/>
 <property name="app.lib.dir" value="lib"/>
 <property name="app.meta-inf.dir" value="meta-inf"/>
 <property name="app.xdoclet.force" value="false"/>

 <path id="app.class.path">
 <fileset dir="${lib.dir}">
 <include name="*.jar"/>
 </fileset>
 <fileset dir="${app.lib.dir}">
 <include name="*.jar"/>
 </fileset>
 </path>

 <target name="init">
 <tstamp>
 <format property="TODAY" pattern="d-MM-yy"/>

 </tstamp>

 <taskdef
 name="ejbdoclet"
 classname="xdoclet.modules.ejb.EjbDocletTask"
 classpathref="app.class.path"/>

 <mkdir dir="${app.classes.dir}"/>
 <mkdir dir="${app.generated-src.dir}"/>
 <mkdir dir="${app.meta-inf.dir}" />
 </target>

 <target name="ejbdoclet" depends="init">

 <ejbdoclet
 destdir="${app.generated-src.dir}"
 mergedir="parent-fake-to-debug"
 excludedtags="@version,@author,@todo"
 ejbspec="2.0"
 force="${app.xdoclet.force}"
 verbose="false">

 <fileset dir="src/java">
 <include name="**/*.java"/>
 </fileset>

 <remoteinterface/>
 <localinterface/>
 <homeinterface/>
 <localhomeinterface/>

 <entitycmp/>
 <entitybmp/>

 <session/>

 <deploymentdescriptor
 destdir="${app.meta-inf.dir}"
 description="ejbbean"/>

 </ejbdoclet>
 </target>

 <target name="compile" depends="ejbdoclet">

 <javac
 destdir="${app.classes.dir}"
 classpathref="app.class.path"
 debug="on"
 deprecation="on"
 optimize="off">

 <src path="${app.java.dir}"/>
 <src path="${app.generated-src.dir}"/>
 </javac>

 </target>

 <target name="main" depends="compile">
 <echo>Using EJBDoclet....</echo>
 </target>

</project>

Running this build file creates EJB interface code and a deployment descriptor, ejb-jar.xml . Here is the
relevant part of the generated ejb-jar.xml :

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar >

 <description><![CDATA[ejbbean]]></description>
 <display-name>Generated by XDoclet</display-name>

 <enterprise-beans>

 <!-- Session Beans -->
 <session >
 <description><![CDATA[App example bean]]></description>

 <ejb-name>App</ejb-name>

 <home>app.web.AppHome</home>
 <remote>app.web.App</remote>
 <local-home>app.web.AppLocalHome</local-home>
 <local>app.web.AppLocal</local>
 <ejb-class>app.web.AppSession</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 <security-role-ref>
 <role-name>admin</role-name>
 <role-link>Administrator</role-link>
 </security-role-ref>

 </session>
 .
 .
 .
 <!-- Assembly Descriptor -->
 <assembly-descriptor >

 <!--
 To add additional assembly descriptor info here, add a file to your
 XDoclet merge directory called assembly-descriptor.xml that contains
 the <assembly-descriptor></assembly-descriptor> markup.
 -->
 <security-role>
 <role-name>App</role-name>
 </security-role>
 <security-role>
 <role-name>Administrator</role-name>
 </security-role>

 <method-permission >
 <role-name>App</role-name>
 <role-name>Administrator</role-name>
 <method >
 <ejb-name>App</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 .
 .
 .
 <!-- transactions -->
 <container-transaction >
 <method >
 <ejb-name>App</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction >
 <method >
 <ejb-name>App</ejb-name>
 <method-intf>LocalHome</method-intf>
 <method-name>remove</method-name>
 <method-params>
 </method-params>
 </method>
 <trans-attribute>Mandatory</trans-attribute>
 </container-transaction>
 <container-transaction >
 <method >
 <ejb-name>App</ejb-name>
 <method-intf>Home</method-intf>
 <method-name>remove</method-name>
 <method-params>
 </method-params>
 </method>
 <trans-attribute>Mandatory</trans-attribute>
 </container-transaction>
 .

 .
 .
</ejb-jar>

XDoclet is a powerful tool that's still developing. Currently, you can only run it in Ant, but a command-line
tool is in the works. Once you get the hang of it, XDoclet helps with Web and EJB application development
in a way that makes sense; when you modify your code, you modify the deployment descriptors and the
EJB code you generate at the same time. It's a tool worth watching.

9.6. Developing Enterprise JavaBeans

Ant provides a number of optional tasks for developing EJBs. Generally, these tasks are specific to
the particular vendor's EJB Server. Currently, these tasks support these servers:

Borland Application Server 4.5

IBM WebSphere 4.0

iPlanet Application Server 6.0

JBoss 2.1 and above EJB servers

JOnAS 2.4.x and 2.5 Open Source EJB server

Weblogic 4.5.1 through to 7.0 EJB servers

The Ant EJB tasks and the servers they target appear in Table 9-14.

Table 9-14. The Ant EJB tasks

Task Does this Application servers

blgenclient

Specifies you want to create a client
.jar file corresponding to an EJB .jar
file

Borland Application Server 4.5 and 5.x

ddcreator

Specifies you want to compile
Weblogic text-based deployment
descriptors into an EJB deployment
descriptor

Weblogic 4.5.1

ejbc Lets you run Weblogic's ejbc tool Weblogic 4.5.1

ejbjar
Supports creation of EJB .jar files (EJB
1.1 & 2.0)

Borland Application Server 4.5 and 5.x,
iPlanet Application Server 6.0, JBoss, JOnAS
2.4.x and 2.5, Weblogic 5.1 to 7.0, and IBM
WebSphere 4.0

iplanet-

ejbc

Supports compilation of EJB stubs and
skeletons for iPlanet Application
Server 6.0

iPlanet Application Server 6.0

wlrun Lets you start a Weblogic server Weblogic 4.5.1 to 7.0

wlstop Lets you stop a Weblogic server Weblogic 4.5.1 to 7.0

9.6.1. JARing Files

The largest and most general of the EJB tasks is the ejbjar task. This task works by scanning
directories; for each deployment descriptor found, ejbjar will parse it to determine the necessary
.class files which implement the bean. These files are assembled along with the deployment
descriptors into a well-formed EJB .jar file. (Any support files which should be included in the created
.jar file can be added with the support nested element.) For each class included in the .jar file, ejbjar
will scan for any super classes or super interfaces, which will be added to the generated .jar file. The
attributes of this task appear in Table 9-15.

Table 9-15. The Ant ejbjar task's attribute

Attribute Description Required Default

basejarname
Specifies the base name you want used for
the generated .jar files.

No

classpath

Specifies the classpath you wnt used when
resolving classes that are to be added to
the .jar.

No

cmpversion
Specifies the CMP version. Possible values
are 1.0 or 2.0.

No 1.0

dependency
Specifies which classes and interfaces are
added to the .jar.

No

descriptordir

Specifies the directory under which the
task shoulc scan for EJB deployment
descriptors.

No

destdir
Specifies the directory into which you want
generated JAR files to be placed.

Yes, unless you use
vendor-specific
deployment
elements.

flatdestdir

Specifies you want to store all generated
JARs in the root of the destdir, rather
than the location specified by the
deployment descriptor. Set to true/false.

No

genericjarsuffix

Specifies a string that you want appended
to the deployment descriptor in order to
create the filename of a generic EJB JAR
file.

No -generic.jar

naming
Specifies the naming convention you want
to use to name generated EJB jars.

No

Attribute Description Required Default

srcdir

Specifies the base directory containing the
.class files that make up the generated
bean.

Yes

You can nest classpath elements to set the classpath in the ejbjar task, and you can use nested dtd
elements to specify the local location of DTDs to be used when parsing the EJB deployment descriptor
(see Table 9-2 for the dtd element's attributes).

You can use nested support elements to specify additional .class files to be included in the generated
.jar files. The support element is a fileset, so it can reference a fileset declared elsewhere or it can be
defined with the appropriate include and exclude nested elements. The ejbjar task supports vendor-
specific nested elements, which let you use the vendors' deployment tools.

Vendor-specific nested elements provide support for various vendor deployment tools. (If no nested
vendor-specific deployment elements are present, the task will create a generic EJB .jar file.) For
each nested deployment element, the vendor-specific deployment tool is run to generate a .jar file
for deployment to that vendor's EJB server. Here are the legal vendor-specific nested elements:

borland

For Borland Application Server 4.5 and 5.x

iPlanet

For iPlanet Application Server 6.0

jboss

For JBoss

jonas

For JOnAS 2.4.x and 2.5

weblogic

For Weblogic 5.1 to 7.0

srcdir

Specifies the base directory containing the
.class files that make up the generated
bean.

Yes

You can nest classpath elements to set the classpath in the ejbjar task, and you can use nested dtd
elements to specify the local location of DTDs to be used when parsing the EJB deployment descriptor
(see Table 9-2 for the dtd element's attributes).

You can use nested support elements to specify additional .class files to be included in the generated
.jar files. The support element is a fileset, so it can reference a fileset declared elsewhere or it can be
defined with the appropriate include and exclude nested elements. The ejbjar task supports vendor-
specific nested elements, which let you use the vendors' deployment tools.

Vendor-specific nested elements provide support for various vendor deployment tools. (If no nested
vendor-specific deployment elements are present, the task will create a generic EJB .jar file.) For
each nested deployment element, the vendor-specific deployment tool is run to generate a .jar file
for deployment to that vendor's EJB server. Here are the legal vendor-specific nested elements:

borland

For Borland Application Server 4.5 and 5.x

iPlanet

For iPlanet Application Server 6.0

jboss

For JBoss

jonas

For JOnAS 2.4.x and 2.5

weblogic

For Weblogic 5.1 to 7.0

websphere

For IBM WebSphere 4.0

These vendor-specific elements can become involved. For example, the attributes of the weblogic
element, used to control the weblogic.ejbc compiler for generating Weblogic EJB .jar files, appear in
Table 9-16.

Table 9-16. The weblogic element's attribute

Attribute Description Required Default

args
Specifies any additional arguments you want to pass
to the weblogic.ejbc tool.

No

classpath
Specifies the classpath that should be used when the
task runs the weblogic.ejbc tool.

No

compiler
Specifies a different compiler to be used for compiling
the generated Java files.

No

destdir
Specifies the directory where the generated JAR files
should be stored.

Yes

ejbcclass

Specifies the classname of the ejbc compiler. When
used with Version 7, this attribute should be set to
"weblogic.ejbc" to avoid a deprecation warning.

No

genericjarsuffix

Specifies the suffix used for the generic JAR file. This
JAR file is generated as an intermediate step in
building the weblogic deployment JAR.

No -generic.jar

jvmargs
Specifies any additional arguments you want passed
to the JVM running the weblogic.ejbc tool.

No

jvmdebuglevel

Specifies the debug level for messages. Set to 16 to
avoid warnings about EJB Home and Remotes in the
classpath.

No

keepgenerated
Specifies if Weblogic will preserve the Java files it
generates.

No false

keepgeneric
Specifies if you want the generic file used for input to
ejbc to be preserved.

No false

newCMP

Specifies ejbjar should parse the Weblogic
deployment descriptor to find the CMP descriptors.
Set to true/false.

No false

noEJBC
Specifies you don't want Weblogic's ejbc to be run on
the EJB .jar file.

No

outputdir
Specifies this directory as the output directory instead
of a .jar file.

No

Attribute Description Required Default

rebuild
Specifies if weblogic.ejbc should always be used to
build the .jar file.

No TRue

suffix

Specifies the string that should be added to the
deployment descriptor to create the WebLogic JAR
filename.

No .jar

wlclasspath

Specifies the classpath for the Weblogic classes to
avoid a warning when the home and remote
interfaces of a bean are on the classpath used by
weblogic.ejbc.

No

The weblogic nested element supports nested classpath and wlclasspath nested elementsthe
wlclasspath element holds the classpath used by the Weblogic Server as detailed by the wlclasspath
attribute in Table 9-16, and it takes the same attributes and nested elements as classpath. The
weblogic element supports nested sysproperty elements to allow Java system properties to be set.

Investigating them all would take us many pages deep into the mechanics of these six EJB servers,
and far from Ant. If you're interested, you can find the details for using various vendor-specific tools
in the Ant EJB Tasks User Manual at ${ant-home}/docs/manual/OptionalTasks/ejb.html.

rebuild
Specifies if weblogic.ejbc should always be used to
build the .jar file.

No TRue

suffix

Specifies the string that should be added to the
deployment descriptor to create the WebLogic JAR
filename.

No .jar

wlclasspath

Specifies the classpath for the Weblogic classes to
avoid a warning when the home and remote
interfaces of a bean are on the classpath used by
weblogic.ejbc.

No

The weblogic nested element supports nested classpath and wlclasspath nested elementsthe
wlclasspath element holds the classpath used by the Weblogic Server as detailed by the wlclasspath
attribute in Table 9-16, and it takes the same attributes and nested elements as classpath. The
weblogic element supports nested sysproperty elements to allow Java system properties to be set.

Investigating them all would take us many pages deep into the mechanics of these six EJB servers,
and far from Ant. If you're interested, you can find the details for using various vendor-specific tools
in the Ant EJB Tasks User Manual at ${ant-home}/docs/manual/OptionalTasks/ejb.html.

Chapter 10. Optional Tasks
A significant number of optional tasks come with Antthe full list appears in Table 1-5and you'll see
several of them in this chapter. Some of the optional tasks are specialized, but a number are useful
in everyday builds. You've seen optional tasks like junit and ftp, and this chapter expands that
coverage with a look at tasks like sound, splash, replaceregexp, and depend.

10.1. Using Sound

The sound task plays a sound-file at the end of the build according to whether the build failed or
succeeded. You can specify one sound file to play, or if you specify a directory, the sound task will
randomly select a sound file to play.

If you're using Java 1.3 or later, you need the Java Media Framework on the
classpath (javax.sound).

The sound task can contain success and fail elements. The success element specifies the sound you
want played if the build succeeds and failures the sound if it fails. Here's an example where the
build file specifies the sounds to play depending on if the build succeeded or failed:

<target name="sounds">
 <sound>
 <success source="${user.home}/sounds/success.wav"/>
 <fail source="${user.home}/sounds/noway.wav"/>
 </sound>
</target>

These success and failure elements support the attributes you see in Table 10-1.

Table 10-1. The success and fail elements' attributes

Attribute Description Required Default

source Specifies the name of a sound file Yes

loops Specifies the number of times to play the sound file No 0

duration
Specifies the time (measured in milliseconds) you want to play the
sound file

No

10.2. Creating Splash Screens

This task creates a splash screen displayed while the build is progressing. In Example 10-1, I'm using
a splash screen that the Apache Jakarta Project makes available at
http://jakarta.apache.org/images/jakarta-logo.gif, and I'm displaying it for five seconds.

Example 10-1. Using a splash screen (ch10/splash/build.xml)

<?xml version="1.0"?>

<project default="main" basedir=".">

 <property name="cvs.dir" value="project" />

 <target name="main" depends="splash">
 <echo>
 Checking out and updating....
 </echo>
 </target>

 <target name="splash">
 <splash imageurl="http://jakarta.apache.org/images/jakarta-logo.gif"
 showduration="5000"/>
 </target>

</project>

You can see the Apache Jakarta logo that appears when this task executes in Figure 10-1. This task
provides a nice touch if you're distributing your build files to a team.

Figure 10-1. Sample build splash logo

The attributes of this task appear in Table 10-2.

http://jakarta.apache.org/images/jakarta-logo.gif

Table 10-2. The splash attributes

Attribute Description Required Default

imageurl
Specifies an URL that points to the image you
want the splash screen to display.

No
antlogo.gif from the
classpath

showduration
Sets the length of time the splash screen should
be visible. Set to a value in milliseconds.

No 5000

If you need to retrieve an image from behind a firewall, use the Ant setproxy
task.

10.3. Subtituting Text Using Regular Expressions

The replaceregexp task can replace every occurrence of a given regular expression with a
substitution pattern in a selected file or set of files.

The output file is written only if it differs from the existing file.

Example 10-2 uses replaceregexp, where text in the XML comment in the build file matching "Here's
a comment." is converted to "Here's an XML comment."

Example 10-2. Using regular expression substitutions
(ch10/regexp/build.xml)

<?xml version="1.0"?>

<project default="main" basedir=".">

<!--Here's a comment.-->

 <target name="main">
 <replaceregexp
 match="a comment"
 replace="an XML comment">
 <fileset dir="." includes="**/*.xml" />
 </replaceregexp>
 </target>

</project>

Here's what the build file looks like after you run it:

<?xml version="1.0"?>

<project default="main" basedir=".">

<!--Here's an XML comment.-->

 <target name="main">
 <replaceregexp
 match="a comment"

 replace="an XML comment">
 <fileset dir="." includes="**/*.xml" />
 </replaceregexp>
 </target>

</project>

Changing the contents of other files this way will be useful if you need to rewrite build files that
you're about to call with the ant task. Here's an example of editing build files to convert from a local
to an FTP install:

<?xml version="1.0"?>

<project default="main" basedir=".">

 <target name="main">
 <replaceregexp
 match="<copy file='Project.jar' todir='dist'/>"
 replace="<ftp server='ftp.isp.com'><fileset dir='bin'/></ftp>"
 <fileset dir="subproject" includes="**/*.xml" />
 </replaceregexp>
 </target>

 <ant dir="subproject"/>

</project>

Unless it's unavoidable, editing build files this way is not good programming
practice. It's better to pass parameters along with the ant call.

Here's another example, this time of replacing all whitespace in documentation files with spaces:

<replaceregexp match="\s+" replace=" " flags="g">
 <fileset dir="docs" includes="**/*.html" />
</replaceregexp>

The attributes of this task appear in Table 10-3.

Support exists for the regular expression library built into Java 1.4; you should
have jakarta-oro.jar in the Ant lib directory.

Table 10-3. The replaceregexp attributes

Attribute Description Required Default

byline

Specifies you want to process the file(s) one line
at a time, executing the replacement on one line
at a time.

No false

encoding
Specifies the encoding of the file you're using.
Available since Ant 1.6.

No
The default
JVM encoding.

file
Specifies the file in which text matching the
regular expression should be replaced.

Yes, if no nested
fileset is used.

flags

Specifies flags to use when matching the regular
expression. For example, "g" means global
replacement, "i" means case insensitive, and so
on.

No

match
Specifies the regular expression pattern you want
to use to match text in the source file(s).

Yes, if no nested
regexp is used.

replace Specifies the text to replace matched text with.
Yes, if no nested
substitution is
used.

This task supports a nested fileset element. You can use a nested regexp element to specify the
regular expression this way:

<regexp id="id" pattern="\s+"/>
<regexp refid="id"/>

The replaceregexp task supports a nested substitution element to specify the substitution pattern;
here are some examples:

<substitution id="id" expression="beta\1alpha"/>
<substitution refid="id"/>

10.4. Handling Dependencies

The javac task does a good job of handling dependencies, but it's limited because it only compiles
.java files if the corresponding .class file is older or does not exist. It doesn't check the files those
.java files might depend on, such as parent or imported classes. The depend task, however, lets you
perform this kind of dependency checking.

When this task finds out-of-date classes, it removes the .class files of any other classes that depend
on them. To determine dependencies, this task analyzes the classes in all files passed to it, using the
class references encoded into .class files by the compiler. (It does not parse or read source code.)

You typically use the depend task before compiling. Here's an example that uses depend before calling
javac:

<?xml version="1.0" ?>
<project default="main">

 <property name="message" value="Building..." />
 <property name="src" location="source" />
 <property name="output" location="bin" />

 <target name="main" depends="init, compile, compress">
 <echo>
 ${message}
 </echo>
 </target>

 <target name="init">
 <mkdir dir="${output}" />
 </target>

 <target name="compile">
 <depend srcdir="${src}"
 destdir="${output}"
 closure="yes"/>
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="compress">
 <jar destfile="${output}/Project.jar" basedir="${output}"
 includes="*.class" />
 </target>
</project>

The attributes of this task appear in Table 10-4.

If you don't want to have to check dependencies, you can wipe all the
directories that contain compiled code and rebuild from scratch. When there are
a large number of files to compile, that's a less attractive option, and using the
depend task can save significant time. (But experience shows that if your
dependencies are complex, it can save time to do a wipe and start fresh.)

Table 10-4. The depend attributes

Attribute Description Required Default

cache
Specifies the directory where you want the task to store
dependency data

No

classpath
Specifies the classpath, which should also be checked when
checking dependencies

No

closure
Specifies the task should traverse all class dependencies,
deleting all classes that depend on out-of-date material

No false

destdir
Specifies the root directory containing the class files that you
want to check

No
The value of
srcdir

dump
Specifies the dependency information should be sent to the
debug log

No

srcdir Specifies the directory where the source is Yes

Like many other Ant tasks, this task forms an implicit FileSet and so supports all attributes of fileset
(though dir becomes srcdir) as well as the nested include, exclude, and patternset elements. The
depend task's classpath attribute is a path-like structure and can also be set using a nested classpath
element. If you specify a classpath, depend will include classes and JARs on the classpath for
dependency checking; any classes which depend on an item from the classpath and which are older
than that item will be deleted.

If you're going to include a classpath to check for dependencies, don't end up
including the entire Java library structure by mistake; doing so will slow this
task down.

Checking dependencies can become involved. For example, what if a class depends on another, which
in turn depends on a third? If the third class is out of date, only the second class would normally be
rebuilt, even if you use the depend task. But you can ensure the depend task catches all
dependencies, including indirect ones like this, by setting the closure attribute to true.

Nonpublic classes can also cause a couple of problems with this task. For
example, depend cannot connect the class file containing a non-public class to a
source file. depend can't detect when a nonpublic class is missing. If you've set
the Java compiler to optimize its compilation, that can also cause problems.
Inner classes, on the other hand, are no problem.

Normal Ant processing usually handles dependencies with no problem, but if you've got a complex
dependency situation, or indirect dependencies, this task can work wonders. If you can't handle your
dependencies with depend, wipe the output directories before compiling to start with a clean slate.

Chapter 11. Integrating Ant with Eclipse
Ant is the premiere build tool for Java developers, and Eclipse is the premiere integrated development
environment (IDE) for Java programmers. Eclipse is great at visual development, and Ant is great for
builds. For that reason, the latest Eclipse version (3.0) comes with Ant 1.6.1 (the version of Ant this
book was written with), and there's an extensive Ant interface in Eclipse.

Doesn't Ant have its own IDE? Well, sort of. Antidote, started in 2000, was
supposed to have been the Ant IDE; see
http://ant.apache.org/projects/antidote/index.html. Unfortunately, that project
appears to be more or less moribund, largely because the big guys behind
Eclipse have been integrating Ant into their IDE now.

http://ant.apache.org/projects/antidote/index.html

11.1. Introducing Eclipse

If you're a Java developer, you know how finicky Java can feel at times. Missed import statements,
forgotten variable declarations, omitted semi-colons, garbled syntax, and typos will cause the Java
command-line compiler, javac, to cough and display pages of error messages.

The error messages tell you that javac knows what the error is, so why doesn't it just fix the problem
and let you continue developing? javac can't fix the problem; to do that, you can use an IDE, which
will catch errors before you compile and suggest solutions. Java is badly in need of a good IDE, and
the premiere Java IDE these days is Eclipse. You can see what it looks like in Figure 11-1.

Figure 11-1. Eclipse

Eclipse is free for the downloading, like a number of other Java IDEs, but Eclipse has a serious
advantage behind it, which is the power of IBM, reportedly spending $40 million developing it. It's now
an open source project, largely under IBM's development but part of a software consortium named
eclipse.org.

Want to read more on Eclipse? See Eclipse by yours truly (O'Reilly).

11.1.1. Getting Eclipse

Eclipse is free for the downloading; all you have to do is navigate to
http://www.eclipse.org/downloads. Select one of the download mirrors available on that page. When
you do, you'll be presented with a list of the available downloads of these various types:

Release builds

These versions are for general use.

Stable builds

These are comparable to beta versions.

Integration builds

These builds are made up of components that have been fairly well tested, but their operation
together may still have some issues.

Nightly builds

These are the most experimental of all publicly available Eclipse builds. They're created nightly
by the Eclipse team, and there's really no guarantee that things will work well.

As with other software, you generally want to use the latest release version of
Eclipse; I'll use Eclipse 3.0, the most recent release build, in this chapter.

Select the download for your operating system and click the appropriate link to download it. Installing
Eclipse is easy; all you've got to do is to unzip or untar it, depending on your operating system. Since
you download the version of Eclipse targeted to your operating system, you'll find the executable file
ready to run as soon as you uncompress Eclipse. You start Eclipse by running the Eclipse executable.
When you first run Eclipse, you should see the Welcome page. To get an overview of Eclipse or to run
a tutorial, click the appropriate links. To close this Welcome page, click the X in the page's tab.

http://www.eclipse.org/downloads

11.1.2. Creating an Eclipse Project

If you've installed Eclipse and have got it running, you have access to the Ant/Eclipse interface and
no extra work is needed. Development work in Eclipse is based on projects, and I'll create a new
project to show how to use Ant inside Eclipse. To create a new project, select File New
Project, opening the New Project dialog. Select the Java Project item and click Next.

On the next page, give this project the name AntExample. Leave the other defaults as they are and
click Finish.

This opens the new project in Eclipse; you can see the AntExample project at left in Eclipse's Package
Explorer.

This project is empty so far; to add Java code, select the AntExample project in the Package Explorer
and select File New Class, opening the New Java Class dialog. Give the package name as
org.antbook, the name of the new class as AntClass, and select the checkbox marked public static
void main(String[] args) to make Eclipse create a main method. Click the Finish button.

This creates the code, AntClass.java, you see in the Eclipse editor at the center of Figure 11-2,
complete with a main() method.

Figure 11-2. A new Java class

Add this code to make this class do something:

public static void main(String args[])
{
 System.out.println("No worries.");
}

Click the Save icon in the toolbar to save the changes to AntClass.java, and select Run Run As
 Java Application. You'll see the output of this code, No worries., in the Console tab at the bottom

of Eclipse.

11.1.3. Writing an Ant Build File in Eclipse

To create an Ant build file in Eclipse, right-click the AntExample project in the Package Explorer and
select New File. In the File Name box, enter build.xml, and click Finish, adding this new file to

the AntExample project. To JAR the output of this project, enter this XML in the build file:

<?xml version="1.0" ?>
<project default="main">
 <target name="main" depends="compile, compress" description="Main target">
 <echo>
 Building the .jar file.
 </echo>
 </target>

 <target name="compile" description="Compilation target">
 <javac srcdir="org/antbook"/>
 </target>

 <target name="compress" description="Compression target">
 <jar jarfile="Project.jar" basedir="org/antbook" includes="*.class" />
 </target>
</project>

After entering this XML, save the new build file. The Eclipse support for Ant is evident; build.xml
appears in the Package Explorer at left with an Ant icon and the syntax in the build file is colored with
XML declarations in one color, attribute values in another, and Ant keywords in another, as shown (in
glorious black and white) in Figure 11-3. The targets of this build file appear at right, in the Outline
view.

Figure 11-3. An Ant build file in Eclipse

If you close build.xml, you can open it again in the Eclipse Ant editor; double-
click it in the Package Explorer. This is different than previous versions of
Eclipse, which had no default Ant editor. You had to take extra steps to open
Ant build files for editing.

Support for Ant is evident in Eclipse's code assist (also called content assist), which was added for Ant
build files in Eclipse 3.0. When you enter partial text for Ant elements or attributes, you can press
Ctrl-Space to open code assist, which will list possible completions of what you've been typing, as
shown in Figure 11-4.

Figure 11-4. Using code assist

If you enter a $ and use code assist, Eclipse's Ant editor will list all the Ant
property names it knows about.

Eclipse 3.0 can catch syntax errors in Ant build files. For example, ending a target with </targe>,
instead of a </target> tag, is immediately caught by the Eclipse Ant editor, as shown in Figure 11-5.
If you let your cursor rest over the circled X icon to the left of the problem line, you'll see Eclipse's
explanation of the problem: "Expected `</target>' to terminate element starting on line 3." This kind
of syntax checking and corrections alone are worth the price of admission.

Figure 11-5. Handling syntax errors

You can reformat an Ant build file-indenting everything nicely, using the Format
command (Ctrl-Shift-F) from the Ant editor's context menu or by selecting Edit

 Format.

Want to see the value of a property? Let the mouse hover over it, and its value will appear in a
tooltip.

Under some circumstances, Eclipse can generate Ant scripts for you. For
example, if you're creating an Eclipse plug-in, which extends Eclipse with your
own views and editors, you'll use a plug-in manifest file named plugin.xml. If
you right-click the manifest file and select the Create Ant Build File item, Eclipse
will create a build file for you. If you select Project Generate Javadoc, the
Javadoc wizard will create an Ant build file that runs the javadoc tool, which you
can edit as needed.

11.2. Running Ant Build Files

You have two options to run these build files from within Eclipse. You can right-click build.xml in the
Package Explorer and select Run Ant Build. Doing so runs Ant and gives you the results in
Eclipse's Console view.

Eclipse 3.0 runs Ant in a separate JVM, solving many problems that used to
plague previous versions.

The output in the Console view is the same as you'd see from Ant if you ran the build file on the
command line:

Buildfile: D:\eclipse3\eclipse\workspace\AntExample\build.xml
compile:
 [javac] Compiling 1 source file
compress:
 [jar] Building jar: D:\eclipse3\eclipse\workspace\AntExample\Project.jar
main:
 [echo] Building the .jar file.
BUILD SUCCESSFUL
Total time: 2 seconds

If there are problems, you can see Ant's output in the Console view. Eclipse will give you a summary
in the Problems view, which you can see by clicking the Problems tab at the bottom of Eclipse.

The other option to run a build file is to right-click build.xml in the Package Explorer and select Run
 Ant Build..., this time with an ellipsis (three dots). This opens the Ant launch configuration dialog

you see in Figure 11-6. The Ant launch configuration is specific to the current project.

Figure 11-6. Selecting an Ant target

By default, the Targets tab is selected in this dialog, showing a list of the targets in build.xml. The
default target has been selected; you can click the Run button to run that target, or you can select
other targets to run. If you leave the default target selected and click Run, you'll see the same results
as before in the Console view.

You can set the execution order of targets, shown in the Target execution order box at the bottom of
the page (the order in which you select the items is the order in which they will run). Ant will still run
each target's dependencies, but you have to be careful in case your changes mess up the overall
build order.

11.2.1. Selecting the Build File and Passing Arguments to Ant

You can get as much use out of Ant in Eclipse as you can from the command line. For example, to
pass arguments to Ant, right-click build.xml in the Package Explorer and select Run Ant Build... to
open the Ant launch configuration. Click the Main tab shown in Figure 11-7. In this page, you can set
the build file you want to use, the base directory for the build, and you can pass arguments to Ant.

Figure 11-7. Setting the build file and arguments to pass to Ant

The Capture output checkbox at the bottom of this dialog indicates whether you
want to capture the Ant output to the Eclipse Console view, as we've been
doing by default.

11.2.2. Modifying the Ant Classpath

When using an optional or custom task, adding extra libraries to the classpath may be necessary. The
Ant classpath can be modified globally or by using an individual project's launch configuration. To set
the Ant classpath for an individual Eclipse project, open the Ant launch configuration for the project
and click the Classpath tab. You can add external JARs by clicking the Add External JARs button.

You can modify the Ant classpath globally for all projects. To do that, select Window Preferences
 Ant Runtime, and click the Classpath tab. You can add JAR files as needed here, and they'll

be used globally for all Ant builds.

11.2.3. Setting Property Values

You can set global Ant properties using the Ant preferences page, which you open by selecting

Window Preferences Ant Runtime and clicking the Properties tab. To add a new property,
click the Add Property button and fill in the Name and Value fields in the dialog that appears. This will
set the global properties for all Ant builds in Eclipse, and since properties are immutable, you will be
setting the final value for such properties.

You can set properties on a project-by-project basis by setting the project's Ant launch configuration.
Click the Properties tab in the launch configuration (as seen in Figure 11-8), deselect the "Use global
properties as specified in the Ant runtime preferences" checkbox, and click the Add Property button
to set new properties.

Figure 11-8. Setting properties

11.2.4. Setting Environment Variables

You can set the environment variables you want passed to Ant, but you have to ensure Ant will run in
its own JRE (the default). In the project's Ant launch configuration, click the JRE tab and click the
Separate JRE radio button. To set environment variables, click the Environment tab, shown in Figure
11-9, and click the New button to create a new environment variable.

Figure 11-9. Setting environment variables

When you click the New button, the New Environment Variable dialog appears. Enter the name and
value of the environment variable in the appropriate fields and click OK.

11.2.5. Configuring the Ant Editor

You can reformat an Ant build file using the Format command (Ctrl-Shift-F) from the Ant editor's
context menu or by selecting Edit Format. To configure how that formatting works, open the Ant
preferences page with Window Preferences Ant Editor Formatter, as shown in Figure
11-10. Any changes you make will be reflected in the Preview box.

Figure 11-10. Configuring Ant formatting

Selecting Window Preferences Ant Editor lets you configure the build file editor by setting
tab widths, margins, highlighting and more.

11.2.6. Adding New Ant Tasks and Types

You can add new Ant tasks and types (covered in detail in the next chapter) to Eclipse by using the
Ant preferences page at Window Preferences Ant Runtime. These tasks and types will be
available for build files without having to use the taskdef or typedef tasks, which are normally
needed.

To add a new task, select the Tasks tab, shown in Figure 11-11, click the Add Task button, and
navigate to the JAR file in which the new Ant task is located. To add a new type, click the Types tab
and follow the same steps.

Figure 11-11. Adding Ant tasks

If you can't find the JAR files you need, add them to the Ant classpath first.

Alternatively, you can add additional classes defining tasks and types to the Ant classpath by clicking
the Classpath tab.

11.3. Using a Different Version of Ant

Eclipse comes with Ant 1.6.1, but it's possible to use a different version. Open the Ant preferences
page by selecting Window Preferences Ant Runtime and clicking the Classpath tab.

When Eclipse runs Ant, it looks for the appropriate classes on the Ant classpath, as set in the Ant
Home Entries item. To change the Ant Home Entries, click the Ant Home button and choose the Ant
installation you wish to use.

If you don't want to change the classpath, you can run Ant as an external tool
from Eclipse. To do that, select Run External Tools External Tools to
open the External Tools dialog. Click the Program item and then the New
button. Enter a name for the new tool (such as "Ant 1.8" or whatever is
appropriate). Next, to the Location field, click the Browse File System button
and navigate to ant.sh or ant.bat, whichever is right for your operating system,
and click Open. The External Tools dialog will reappear; in the Arguments field,
enter any arguments you want to pass to Ant. Finally, in the Working Directory
field, enter the directory of the build file you want to use and click Run to
launch the new version of Ant. The problem with doing this is that you won't
have easy access to predefined values that you have while working inside
Eclipse. In most cases, it's far better to use Ant from inside Eclipse when
building Eclipse projects.

11.4. Using the Ant View

Eclipse comes with a dedicated view for working with Antcalled the Ant viewwhich is a window that
gives you an overview of the targets in build files. To open this view, select Window Show View

 Ant; the Ant view appears at right in Figure 11-12.

Figure 11-12. The Ant view

The toolbar in this view contains these buttons (from left to right):

Add Build Files

Add Build Files with Search

Hide Internal Targets

Run the Default Target

Remove Selected Build File

Remove All Build Files

To add a build file to the Ant view, click the Add Build Files button, opening the Choose Location
dialog. In the left box, select the Eclipse project you want to use, and in the right box, select the build
file you want to add to the Ant view. Click OK, adding the build file to the Ant view.

In Windows, you can add build files to the Ant View with drag and drop.

Besides giving you an overview of a build file, the Ant view lets you run build files. Select a build file
in the Ant view and click the Run the Default Target button. Or right-click a target and select the Run
item in the context menu that appears. Double-clicking a build file in the Ant view opens it in the Ant
editor (as does right-clicking the build file and selecting the Open With Ant Editor item).

Using Ant with Eclipse is a potent combination. Eclipse allows you to develop and debug code, and
Ant lets you build and deploy it. Both of these tools are free for the downloading. It's a combination I
recommend.

Chapter 12. Extending Ant
There's more to Ant than what comes out of the box because you can extend Ant in various ways.
The most common way of extending Ant is by creating your own tasks, and this chapter covers how
to do that. You'll learn how to create new tasks, handle task attributes, access property values, work
with nested text and elements, make builds fail, work with filesets, use custom tasks as wrappers for
external programs, and more.

Besides creating new tasks, you can extend Ant in other ways, such as using scripting languages
such as JavaScript, which I'll explain. You can even create listeners that respond to build file events
by executing Java code, and create loggers that log data as a build progresses. And you can create
custom filters and selectors, which you can use with some Ant tasks such as copy.

12.1. Creating a Simple Custom Ant Task

Creating new Ant tasks is simple since all you need is an execute() method. Example 12-1 is a Java
class named Greeting that displays the text "No worries.".

Example 12-1. A simple Ant task (ch12/greetingtask/src/Greeting java)

public class Greeting
{
 public void execute()
 {
 System.out.println("No worries.");
 }
}

To install this class as a new Ant task, you compile this code and use the taskdef task to declare it in
Ant. The attributes of the taskdef task are shown in Table 12-1.

The taskdef task is based on the typedef task, except that the values of two
attributes, adapter and adapto, are preset to fixed values
("org.apache.tools.ant.TaskAdapter" and "org.apache.tools.ant.Task",
respectively).

Table 12-1. The taskdef task's attributes

Attribute Description Required Default

adapter

Specifies the adapter, which
adapts the defined class to
another interface/class.

No org.apache.tools.ant.TaskAdapter

adaptto

Specifies the interface/class to
which to adapt. Used with the
adapter attribute.

No org.apache.tools.ant.Task

classname

Specifies the classname that
will support/perform the type
or task.

Yes, unless file
or resource have
been specified.

Attribute Description Required Default

classpath

Specifies the classpath you
want to use when searching for
classname.

No

file

Specifies the name of the file
from which to load definitions,
if any.

No

format

Specifies the format of the file
or resource pointed to by the
file or resource attributes.
Possible values are properties
or xml.

No properties

loaderRef
Specifies the loader that you
want to use to load the class.

No

name

Specifies the name of the
datatype or task you're
creating.

Yes, unless the
file or resource
type attributes
have been
specified.

onerror

Specifies what to do if there is
an error while defining a type.
Possible values are:

fail

Causes a build exception.

report

Outputs a warning.

ignore

Does nothing.

Since Ant 1.6.

No fail

resource

Specifies the name of the
resource from which you want
to load definitions.

No

classpath

Specifies the classpath you
want to use when searching for
classname.

No

file

Specifies the name of the file
from which to load definitions,
if any.

No

format

Specifies the format of the file
or resource pointed to by the
file or resource attributes.
Possible values are properties
or xml.

No properties

loaderRef
Specifies the loader that you
want to use to load the class.

No

name

Specifies the name of the
datatype or task you're
creating.

Yes, unless the
file or resource
type attributes
have been
specified.

onerror

Specifies what to do if there is
an error while defining a type.
Possible values are:

fail

Causes a build exception.

report

Outputs a warning.

ignore

Does nothing.

Since Ant 1.6.

No fail

resource

Specifies the name of the
resource from which you want
to load definitions.

No

Attribute Description Required Default

uri

Specifies the URI at which this
type/task definition should be
found. Since Ant 1.6.

No

The taskdef task's classpath attribute is a path-like structure and can be set with a nested classpath
element.

The build file in Example 12-2 builds the simple Ant task and JARs it in greeting.jar. The taskdef task
in the same build file retrieves the task from that JARfile and executes the task, which should print
out the "No worries." message.

Example 12-2. Build file for a simple Ant task
(ch12/greetingtask/build.xml)

<?xml version="1.0"?>
<project default="main">

 <property name="src" location="src"/>
 <property name="output" location="output"/>

 <target name="main" depends="jar">
 <taskdef name="greeting" classname="Greeting" classpath="greeting.jar"/>
 <greeting/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="greeting.jar" basedir="${output}"/>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

</project>

Here's what you see when the build file runs. The execute() method of the task's code was indeed
called, displaying the expected message:

%ant
Buildfile: build.xml

compile:
 [mkdir] Created dir: /home/steven/ant/ch12/greetingtask/output
 [javac] Compiling 2 source files to /home/steven/ant/ch12/greetingtask/output

uri

Specifies the URI at which this
type/task definition should be
found. Since Ant 1.6.

No

The taskdef task's classpath attribute is a path-like structure and can be set with a nested classpath
element.

The build file in Example 12-2 builds the simple Ant task and JARs it in greeting.jar. The taskdef task
in the same build file retrieves the task from that JARfile and executes the task, which should print
out the "No worries." message.

Example 12-2. Build file for a simple Ant task
(ch12/greetingtask/build.xml)

<?xml version="1.0"?>
<project default="main">

 <property name="src" location="src"/>
 <property name="output" location="output"/>

 <target name="main" depends="jar">
 <taskdef name="greeting" classname="Greeting" classpath="greeting.jar"/>
 <greeting/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="greeting.jar" basedir="${output}"/>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

</project>

Here's what you see when the build file runs. The execute() method of the task's code was indeed
called, displaying the expected message:

%ant
Buildfile: build.xml

compile:
 [mkdir] Created dir: /home/steven/ant/ch12/greetingtask/output
 [javac] Compiling 2 source files to /home/steven/ant/ch12/greetingtask/output

jar:
 [jar] Building jar: /home/steven/ant/ch12/greetingtask/greeting.jar

main:
 [greeting] No worries.

BUILD SUCCESSFUL
Total time: 3 seconds

12.2. Extending the Task Class

Usually, you extend an Ant task class like org.apache.tools.ant.Task when you write custom tasks. Ant
comes with a selection of task classes meant to be extended:

AbstractCvsTask

Abstract CVS task class

JDBCTask

Handles JDBC configuration needed by SQL type tasks

MatchingTask

Abstract task that should be extended by tasks required to include or exclude files based on pattern
matching

Pack

Abstract base class for pack tasks

Task

Generic task and the one most commonly extended

Unpack

Abstract base class for unpacking tasks

The Task class (i.e., org.apache.tools.ant.Task) is used for most of this chapter, though some samples
will use MatchingTask . The methods of the Task class appear in Table 12-2 .

Table 12-2. The Task class's methods

Method Does this

void execute() Specifies the task should execute.

java.lang.String getDescription() Returns the task's description.

Location getLocation()
Returns the file and location at which the task
is supported.

Target getOwningTarget() Returns the target that contains this task.

RuntimeConfigurable getRuntimeConfigurableWrapper()
Returns the wrapper class instance the task
uses for runtime configuration.

java.lang.String getTaskName()
Returns the task name (used when when
logging messages from the task).

java.lang.String getTaskType() Returns the type of task as a string.

protected RuntimeConfigurable getWrapper()
Returns the runtime configurable structure for
this task as a RuntimeConfigurable object.

protected void handleErrorFlush(java.lang.String

output)

Handles errors by logging them with ERR
priority.

protected void handleErrorOutput(java.lang.String

output)

Handles errors by logging them with WARN
priority.

protected void handleFlush(java.lang.String output)
Handles errors by logging them with INFO
priority.

protected int handleInput(byte[] buffer, int offset,

int length)
Handles input requests using byte buffers.

protected void handleOutput(java.lang.String output)
Handles string output by logging it using INFO
priority.

void init()
Called automatically so the task can be
initialized.

protected boolean isInvalid() Returns a value of TRue if this task is invalid.

void log(java.lang.String msg)
Logs a string message, giving it (default) INFO
priority.

void log(java.lang.String msg, int msgLevel)
Logs a string message, giving it priority you
specify.

void maybeConfigure()
Configures the task, if it has not already been
configured.

void perform()

Performs this task. If the task is not still valid,
a replacement version will be created and the
task will be performed with that.

void reconfigure()
Reconfigures a task, forcing the
reconfiguration if necessary.

void setDescription(java.lang.String desc) Specifies a string description for this task.

Method Does this

void setLocation(Location location)
Specifies the file and location where this task
was first defined.

void setOwningTarget(Target target) Specifies the target that contains this task.

void

setRuntimeConfigurableWrapper(RuntimeConfigurable

wrapper)

Sets the wrapper class that should be used for
runtime configuration.

void setTaskName(java.lang.String name)
Specifes the task name (use for logging
messages).

void setTaskType(java.lang.String type) Specifies type of task in string format.

12.2.1. The Task Life Cycle

Tasks go through a well-defined life cycle, and here are the specific stages:

The task is instantiated using a no-argument constructor.1.

The task's references to its project and location inside the build file are initialized via inherited project
and location variables.

2.

If the user specified an id attribute in this task, the project registers a reference to this newly created
task.

3.

The task gets a reference to the target it belongs to through its inherited target variable.4.

The init() method is called to initialize the task.5.

All child elements of the task's element are created through the task's createXXX() methods or
instantiated and added to this task with its addXXX() methods.

6.

All attributes of this task get set via their corresponding setXXX() methods.7.

The character data sections inside the task's element are added to the task using its addText()
method (if there is one).

8.

All attributes of all child elements get set using their setXXX() methods.9.

The execute() method is called to run the task.10.

12.2.2. Accessing the Project and Properties in Code

When you extend the Task class, you have access to a great deal of data about the project. The Task class
inherits the getProject() method, which returns a Project object that holds such items as the project's
name and properties. You can see selected methods of the Project class in Table 12-3 . You can do nearly
anything with these methods, from setting a project's default target and logging text to reading property

void setLocation(Location location)
Specifies the file and location where this task
was first defined.

void setOwningTarget(Target target) Specifies the target that contains this task.

void

setRuntimeConfigurableWrapper(RuntimeConfigurable

wrapper)

Sets the wrapper class that should be used for
runtime configuration.

void setTaskName(java.lang.String name)
Specifes the task name (use for logging
messages).

void setTaskType(java.lang.String type) Specifies type of task in string format.

12.2.1. The Task Life Cycle

Tasks go through a well-defined life cycle, and here are the specific stages:

The task is instantiated using a no-argument constructor.1.

The task's references to its project and location inside the build file are initialized via inherited project
and location variables.

2.

If the user specified an id attribute in this task, the project registers a reference to this newly created
task.

3.

The task gets a reference to the target it belongs to through its inherited target variable.4.

The init() method is called to initialize the task.5.

All child elements of the task's element are created through the task's createXXX() methods or
instantiated and added to this task with its addXXX() methods.

6.

All attributes of this task get set via their corresponding setXXX() methods.7.

The character data sections inside the task's element are added to the task using its addText()
method (if there is one).

8.

All attributes of all child elements get set using their setXXX() methods.9.

The execute() method is called to run the task.10.

12.2.2. Accessing the Project and Properties in Code

When you extend the Task class, you have access to a great deal of data about the project. The Task class
inherits the getProject() method, which returns a Project object that holds such items as the project's
name and properties. You can see selected methods of the Project class in Table 12-3 . You can do nearly
anything with these methods, from setting a project's default target and logging text to reading property

values and setting property values. That's a typical way for custom tasks to perform their work: reading
property values with the Project object's getProperty() method and setting property values with
setProperty() . After a property has been set, it can be accessed in the build file, letting the custom task
communicate with the rest of the build file.

Table 12-3. Selected Project class methods

Method Does this

void addBuildListener(BuildListener listener)
Adds a build listener to the current project to
catch build events.

void addTarget(Target target) Adds a new target to the project at runtime.

void addTaskDefinition(java.lang.String taskName,

java.lang.Class taskClass)

Adds the definition of a new task to the
project.

Task createTask(java.lang.String taskType) Creates a new task instance.

int defaultInput(byte[] buffer, int offset, int

length)

Reads input data for the project from the
default input stream.

void executeTarget(java.lang.String targetName)
Executes the specified target (and any
targets it depends on).

void executeTargets(java.util.Vector targetNames)
Executes the specified targets in the given
sequence (and the targets they depend on).

java.io.File getBaseDir()
Returns the base directory of the project. The
directory is returned as a File object.

java.util.Vector getBuildListeners()
Returns the list of build listeners that have
been added to the project.

java.io.InputStream getDefaultInputStream()
Returns this project's default input stream as
an InputStream object.

java.lang.String getDefaultTarget()
Returns the name of the default target of the
project as a string.

java.lang.String getDescription()
Returns the project description as a string, if
one has been specified.

java.lang.String getElementName(java.lang.Object

element)

Returns a description of the given element as
a string.

java.lang.String getName()
Returns the name of the project if one has
been specified.

java.util.Hashtable getProperties() Returns the project's properties table.

java.lang.String getProperty(java.lang.String name)
Returns the value of a property if it has been
set in the project.

java.lang.Object getReference(java.lang.String key)
Looks up a reference in the project by ID
string.

Method Does this

java.util.Hashtable getReferences()
Returns a hashtable of the references in the
project.

java.util.Hashtable getTargets()
Returns the hashtable of the targets in the
project.

java.util.Hashtable getTaskDefinitions()
Returns the current task's definition
hashtable.

java.util.Hashtable getUserProperties() Returns the user properties' hashtable.

java.lang.String getUserProperty(java.lang.String

name)

Returns the value of a user property in the
project if it has been set.

void init()
Initializes the project, readying it for
execution.

void log(java.lang.String message)
Writes a string message to the log. Uses the
default log level, MSG_INFO .

void log(java.lang.String message, int msgLevel)
Writes a project-level message to the log.
Uses message level you specify.

void log(Target target, java.lang.String message, int

msgLevel)

Writes a message-level message to the log.
Uses message level you specify.

void log(Task task, java.lang.String message, int

msgLevel)

Writes a task-level message to the log. Uses
message level you specify.

java.lang.String replaceProperties(java.lang.String

value)

Replaces any occurences of ${} constructions
in the given string with the value of the
matching property.

java.io.File resolveFile(java.lang.String fileName) Returns the full form of a filename.

void setBaseDir(java.io.File baseDir)
Specifies the base directory you want to use
for the project.

void setBasedir(java.lang.String baseD)
Specifies the base directory, passed as a
string, for the project.

void setDefault(java.lang.String defaultTarget)
Specifies the default target of the project,
passed as a string.

void setDefaultInputStream(java.io.InputStream

defaultInputStream)

Specifies the default System input stream as
an InputStream object.

void setDescription(java.lang.String description)
Specifies the project description in string
format.

void setInheritedProperty(java.lang.String name,

java.lang.String value)
Specifies a user property by name and value.

void setKeepGoingMode(boolean keepGoingMode)

Specifies "keep-going" mode. In this mode,
all targets that don`t depend on failed
targets will be executed.

java.util.Hashtable getReferences()
Returns a hashtable of the references in the
project.

java.util.Hashtable getTargets()
Returns the hashtable of the targets in the
project.

java.util.Hashtable getTaskDefinitions()
Returns the current task's definition
hashtable.

java.util.Hashtable getUserProperties() Returns the user properties' hashtable.

java.lang.String getUserProperty(java.lang.String

name)

Returns the value of a user property in the
project if it has been set.

void init()
Initializes the project, readying it for
execution.

void log(java.lang.String message)
Writes a string message to the log. Uses the
default log level, MSG_INFO .

void log(java.lang.String message, int msgLevel)
Writes a project-level message to the log.
Uses message level you specify.

void log(Target target, java.lang.String message, int

msgLevel)

Writes a message-level message to the log.
Uses message level you specify.

void log(Task task, java.lang.String message, int

msgLevel)

Writes a task-level message to the log. Uses
message level you specify.

java.lang.String replaceProperties(java.lang.String

value)

Replaces any occurences of ${} constructions
in the given string with the value of the
matching property.

java.io.File resolveFile(java.lang.String fileName) Returns the full form of a filename.

void setBaseDir(java.io.File baseDir)
Specifies the base directory you want to use
for the project.

void setBasedir(java.lang.String baseD)
Specifies the base directory, passed as a
string, for the project.

void setDefault(java.lang.String defaultTarget)
Specifies the default target of the project,
passed as a string.

void setDefaultInputStream(java.io.InputStream

defaultInputStream)

Specifies the default System input stream as
an InputStream object.

void setDescription(java.lang.String description)
Specifies the project description in string
format.

void setInheritedProperty(java.lang.String name,

java.lang.String value)
Specifies a user property by name and value.

void setKeepGoingMode(boolean keepGoingMode)

Specifies "keep-going" mode. In this mode,
all targets that don`t depend on failed
targets will be executed.

Method Does this

void setName(java.lang.String name) Specifies the name of the project as a string.

void setNewProperty(java.lang.String name,

java.lang.String value)

Specifies the new value of a property if no
value exists.

void setProjectReference(java.lang.Object obj)
Specifies a reference to this Project using the
specified object.

void setProperty(java.lang.String name,

java.lang.String value)
Specifies a property, by name and value.

void setUserProperty(java.lang.String name,

java.lang.String value)

Specifies a user property, by name and
value.

static java.lang.String

translatePath(java.lang.String toProcess)

Translates a general path into its OS-specific
specific form.

Letting a custom task interact with the rest of the build through the use of properties is an important part of
creating custom tasks. Take a look at Example 12-3 , which is the code for an Ant task that reports the
name of the project using the ant.project.name property, and the current location in the build file with the
getLocation() method.

Example 12-3. Accessing projects and properties
(ch12/projecttask/src/Project.java)

import org.apache.tools.ant.Task;

public class Project extends Task
{
 public void execute()
 {
 String name = getProject().getProperty("ant.project.name");

 System.out.println("Welcome to project " + name
 + " at " + getLocation());
 }
}

Example 12-4 shows the build file for this custom task.

Example 12-4. Build file for accessing properties (ch12/projecttask/build.xml)

<?xml version="1.0"?>
<project name="TheTask" basedir="." default="main">

 <property name="src" location="src"/>
 <property name="output" location="output"/>

void setName(java.lang.String name) Specifies the name of the project as a string.

void setNewProperty(java.lang.String name,

java.lang.String value)

Specifies the new value of a property if no
value exists.

void setProjectReference(java.lang.Object obj)
Specifies a reference to this Project using the
specified object.

void setProperty(java.lang.String name,

java.lang.String value)
Specifies a property, by name and value.

void setUserProperty(java.lang.String name,

java.lang.String value)

Specifies a user property, by name and
value.

static java.lang.String

translatePath(java.lang.String toProcess)

Translates a general path into its OS-specific
specific form.

Letting a custom task interact with the rest of the build through the use of properties is an important part of
creating custom tasks. Take a look at Example 12-3 , which is the code for an Ant task that reports the
name of the project using the ant.project.name property, and the current location in the build file with the
getLocation() method.

Example 12-3. Accessing projects and properties
(ch12/projecttask/src/Project.java)

import org.apache.tools.ant.Task;

public class Project extends Task
{
 public void execute()
 {
 String name = getProject().getProperty("ant.project.name");

 System.out.println("Welcome to project " + name
 + " at " + getLocation());
 }
}

Example 12-4 shows the build file for this custom task.

Example 12-4. Build file for accessing properties (ch12/projecttask/build.xml)

<?xml version="1.0"?>
<project name="TheTask" basedir="." default="main">

 <property name="src" location="src"/>
 <property name="output" location="output"/>

 <target name="main" depends="jar">
 <taskdef name="project" classname="Project" classpath="project.jar"/>
 <project/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="project.jar" basedir="${output}"/>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

</project>

The results show that the build file reports the name of the project as set by the project element's name
attribute, and the line location in the build file:

%ant
Buildfile: build.xml

compile:
 [mkdir] Created dir: /home/steven/ant/ch12/projecttask/output
 [javac] Compiling 1 source file to /home/steven/ant/ch12/projecttask/output

jar:
 [jar] Building jar: /home/steven/ant/ch12/projecttask/project.jar

main:
 [project] Welcome to project TheTask at
 /home/steven/ant/ch12/projecttask/build.xml:9 :

BUILD SUCCESSFUL
Total time: 3 seconds

12.2.3. Handling Attributes in Custom Tasks

If your custom task supports attributes, Ant will pass the value of the attribute to your code if you have a
setter method, much as you'd use in a JavaBean. For example, if you have an attribute named language ,
define a method, e.g., public void setLanguage(String language) . Ant will pass this method the string
value (after performing any needed property expansion) of the language attribute.

Strings are the most common attribute values, but you can ask Ant to perform conversions of attribute
values to other data types based on the type of the argument in your setter method. Here are the possible
data types and how they're handled:

boolean

Your method will be passed the value true if the value specified in the build file is one of "true", "yes",
or "on", and false otherwise.

char (or java.lang.Character)

Your method will be passed the first character of the attribute value.

Primitive types (int , short , and so forth)

Ant will convert the value of the attribute into this type and pass it to your setter method.

java.io.File

Ant will pass you a File object if the attribute value corresponds to a valid filename.

org.apache.tools.ant.types.Path

Ant will tokenize the value specified in the build file, using : and ; as path separators.

java.lang.Class

Ant will want to interpret the attribute value as a Java class name and load the named class from the
system class loader.

Any other type that has a constructor with a single String argument

Ant will use this constructor to create a new instance using the name in the attribute.

A subclass of org.apache.tools.ant.types.EnumeratedAttribute

Ant will invoke this class's setValue() method if your task supports enumerated attributes (i.e.,
attributes with values that must be part of a predefined set of legal values).

What happens if more than one setter method is present for a given attribute? A
method taking a String argument will not be called if more specific methods are
available. If Ant could choose from other setters, only one of them will be calledbut
which one is called is indeterminate, depending on your JVM.

Example 12-5 shows the code to handle a String attribute named language and displays the value assigned
to this attribute in the build file. The setLanguage() method will be passed the attribute's value.

Example 12-5. Accessing attributes (ch12/attributetask/src/Project.java)

import org.apache.tools.ant.Task;
import org.apache.tools.ant.BuildException;

public class Project extends Task
{
 private String language;

 public void execute() throws BuildException
 {
 System.out.println("The language is " + language);
 }

 public void setLanguage(String language)
 {
 this.language = language;
 }
}

The build file that builds the custom task in Example 12-5 and then uses it appears in Example 12-6 . In this
example, Ant builds the code for the new task, project , and uses that task, setting the language attribute
to "English". The code for this task reads the value of the language attribute and displays it during the build.

Example 12-6. Build file for accessing attributes
(ch12/attributetask/build.xml)

<?xml version="1.0"?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>

 <target name="main" depends="jar">
 <taskdef name="project" classname="Project" classpath="Project.jar"/>
 <project language="English"/>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

Here's what the build output looks like:

%ant
Buildfile: build.xml

compile:
 [javac] Compiling 1 source file to /home/steven/ant/ch12/attributetask/output

jar:
 [jar] Building jar: /home/steven/ant/ch12/attributetask/Project.jar

main:
 [project] The language is English

BUILD SUCCESSFUL
Total time: 4 seconds

12.2.4. Making Builds Fail

Want to make a build fail? Make your task code throw an org.apache.tools.ant.BuildException . For
example, if your custom task supports a failonerror attribute, you might use code something like this:

public void setFailonerror(boolean failOnError)
{
 this.fail = failOnError;
}

public void execute() throws BuildException
{
 if (fail) {
 if error...
 throw new BuildException("Attribute language is required");
 } else {

 }
}

Ant will display the text you pass to the BuildException constructor in the fail message.

12.2.5. Handling Nested Text

Ant tasks can support nested text, and custom tasks can support such text as well. Take a look at Example
12-7 , which includes a project task that contains the nested text "No worries.".

Example 12-7. Build file for accessing nested text (ch12/nestedtext/build.xml)

<?xml version="1.0"?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>

 <target name="main" depends="jar">
 <taskdef name="project" classname="Project" classpath="Project.jar"/>
 <project>No worries.</project>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

In your task's code, you can receive access to an element's nested text with the addText() method. The
text will be passed to this method, and Example 12-8 shows how to retrieve that text and display it.

Example 12-8. Accessing nested text (ch12/nestedtext/src/Project.java)

import org.apache.tools.ant.Task;

public class Project extends Task
{
 String text;

 public void addText(String text)
 {
 this.text = text;
 }

 public void execute()
 {
 System.out.println(text);
 }
}

Here's what you get when you run this build file and the custom task with the nested text "No worries." in
Example 12-7 :

%ant
Buildfile: build.xml

compile:
 [mkdir] Created dir: /home/steven/ant/ch12/nestedtext/output
 [javac] Compiling 1 source file to /home/steven/ant/ch12/nestedtext/output

jar:
 [jar] Building jar: /home/steven/ant/ch12/nestedtext/Project.jar

main:
 [project] No worries.

BUILD SUCCESSFUL
Total time: 7 seconds

The supporting code for the custom task recovered the nested text and, in this case, displayed it during the
build.

Want to handle properties in nested text? Use replaceProperties-(java.lang.String
value) , which replaces ${} style constructions in the given value with the string
value of the corresponding datatypes, and returns the resulting string.

12.2.6. Handling Nested Elements

Nested text is one thing, but what if you have nested elements in a custom task? For instance, assume that
your custom task has nested elements named nested , as in Example 12-9 , and suppose that these
elements have an attribute named language . How can you recover the values of the language attributes?

Example 12-9. Nested elements in a custom task
(ch12/nestedelement/build.xml)

<?xml version="1.0"?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>

 <target name="main" depends="jar">
 <taskdef name="project" classname="Project" classpath="Project.jar"/>
 <project>
 <nested language="English"/>
 <nested language="German"/>
 </project>
 </target>

 <target name="compile">

 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

In the code supporting this custom task, shown in Example 12-10 , you need a class, Nested , representing
the nested element, and you can use a method named createNested() to handle calls from Ant for each
nested element. Each time createNested() is called, the code adds the new nested element to a Vector
named nesteds . The language attribute of each nested element is passed to the setLanguage() method
and can be recovered with the getLanguage() method. After the Vector is filled, the execute() method is
called and the code iterates over the Vector , displaying the language attribute value for each nested
element.

Example 12-10. Handling nested elements
(ch12/nestedelement/src/Project.java)

import java.util.Vector;
import java.util.Iterator;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.BuildException;

public class Project extends Task
{
 public void execute()
 {
 for (Iterator iterator = nesteds.iterator(); iterator.hasNext();){
 Nested element = (Nested)iterator.next();
 System.out.println("The language is " + element.getLanguage());
 }
 }

 Vector nesteds = new Vector();

 public Nested createNested()
 {
 Nested nested = new Nested();
 nesteds.add(nested);
 return nested;
 }

 public class Nested
 {
 public Nested() {}

 String language;

 public void setLanguage(String language)
 {
 this.language= language;
 }

 public String getLanguage()
 {
 return language;
 }
 }
}

Here's what the build file looks like when running. The support code handled the nested elements and
recovered the value of the language attributes:

%ant
Buildfile: build.xml

compile:
 [javac] Compiling 1 source file to /home/steven/ant/ch12/nestedelement/output

jar:
 [jar] Building jar: /home/steven/ant/ch12/nestedelement/Project.jar

main:
 [project] The language is English
 [project] The language is German

BUILD SUCCESSFUL
Total time: 3 seconds

12.2.7. Using Filesets

You can make your custom tasks support filesets with the right code. Example 12-11 shows a custom task,
project , acting as a fileset with an include nested element. In this case, the custom project element will
display all the .java files in and below the base directory.

Example 12-11. Supporting filesets in a build file
(ch12/fileset/src/Project.java)

<?xml version="1.0"?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>

 <target name="main" depends="jar">
 <taskdef name="project" classname="Project" classpath="Project.jar"/>

 <project dir="${basedir}">
 <include name="**/*.java"/>
 </project>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

To handle filesets, you extend the MatchingTask class. In this example, the code that supports the custom
task reads the value assigned to the dir attribute and uses the org.apache.tools.ant.DirectoryScanner
class's getIncludedFiles() method to scan that directory. This method returns an array of filenames,
which the code displays. All the support code appears in Example 12-12 .

Example 12-12. Supporting filesets (ch12/fileset/src/Project.java)

import java.io.File;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.DirectoryScanner;
import org.apache.tools.ant.taskdefs.MatchingTask;

public class Project extends MatchingTask
{
 private File directory;

 public void setDir (File directory)
 {
 this.directory = directory;
 }

 public void execute() throws BuildException
 {
 DirectoryScanner directoryscanner = getDirectoryScanner(directory);
 String[] files = directoryscanner.getIncludedFiles();

 for (int loopIndex = 0; loopIndex < files.length; loopIndex++) {
 System.out.println(files[loopIndex]);
 }
 }
}

Project.java is the only .java file in the project, and that's the file the custom project task picks up:

C:\ant\ch12\fileset>ant
Buildfile: build.xml

compile:
 [javac] Compiling 1 source file to /home/steven/ant/ch12/fileset/output

jar:
 [jar] Building jar: /home/steven/ant/ch12/fileset/Project.jar

main:
 [project] src/Project.java

BUILD SUCCESSFUL
Total time: 4 seconds

Extending MatchingTask to support includes and excludes nested elements, you can make your task
support filesets.

12.2.8. Running External Programs

Custom Ant tasks are often wrappers for existing programs. You can launch an external program from the
support code for a custom task if you use the org.apache.tools.ant.taskdefs.Execute class. Example 12-
13 shows how this works and launches Windows WordPad and opens the project's build file in it.

Example 12-13. Executing external programs
(ch12/executetask/src/Project.java)

import java.io.IOException;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.taskdefs.Execute;
import org.apache.tools.ant.types.Commandline;

public class Project extends Task
{
 public void execute()
 {
 Commandline commandline = new Commandline();
 commandline.setExecutable("C:\\Program Files\\Windows NT\\Accessories\\wordpad.
 exe");
 commandline.createArgument().setValue("C:\\ant\\ch12\\executetask\\build.xml");

 Execute runner = new Execute();
 runner.setCommandline(commandline.getCommandline());

 try {
 runner.execute();
 }

 catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }
}

In this case, the code creates an org.apache.tools.ant.types.Commandline object holding the path and
name of the executable to launch, uses the Commandline object's createArgument().setValue method to
specify the file to open, and uses the execute() method of the org.apache.tools.ant.taskdefs.Execute
class to open WordPad.

The build file for this custom task appears in Example 12-14 .

Example 12-14. Build file for executing external programs
(ch12/executetask/build.xml)

<?xml version="1.0"?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>

 <target name="main" depends="jar">
 <taskdef name="project" classname="Project" classpath="Project.jar"/>
 <project/>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}" />
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

If you run this build file in Windows (after updating the hardcoded paths in the Java code as needed), it'll
launch WordPad, opening build.xml .

12.2.9. Running Scripts

While discussing how to execute external programs, Ant includes an optional task named script that can
run scripts such as those written in JavaScript. You need bsf.jar , from http://jakarta.apache.org/bsf/ (not
the IBM version), in the Ant lib directory to run this task. You'll need one or more of these .jar files,
depending on the scripting language you want to use:

jacl.jar and tcljava.jar

Resources to run TCL scripts. Get them from http://www.scriptics.com/software/java/ .

jruby.jar

Resources to run Ruby scripts. Get this from http://jruby.sourceforge.net/ .

js.jar

JAR file for running JavaScript code. Get it from http://www.mozilla.org/rhino/ .

judo.jar

Resources to run Judoscript code. Get this from http://www.judoscript.com/index.html .

jython.jar

JAR file to run Python scripts. Get it from http://jython.sourceforge.net/ .

netrexx.jar

Resources to run Rexx scripts. Get this from http://www2.hursley.ibm.com/netrexx/ .

The BeanShell JAR files

You need these to run BeanShell scripts. Get them from http://www.beanshell.org/ . (Ant 1.6 and
later require Beanshell Version 1.3 or later.)

The attributes for the script task appear in Table 12-4 .

Table 12-4. The script tasks's attributes

Attribute Description Required

language Specifies the script's language. Must be a supported Apache BSF language. Yes

src
Specifies the location of the script if it's stored in a file (as opposed to being
inline).

No

In script , you can access Ant tasks with the Name .createTask method, where Name is the project's name.

For instance, Example 12-15 shows how to use the echo task from JavaScript to display numbers using a
loop. Ant properties are available to your script's code, as in this case, where the message property's value
is displayed.

You have access to a built-in project object in scripts, so, for example, you could find
the value of the message property as project.getProperty("message") .

Example 12-15. Build file for executing JavaScript (ch12/script/build.xml)

<project name="js" default="main" basedir=".">

 <property name="message" value="No worries."/>

 <target name="main">

 <script language="javascript"> <![CDATA[

 echo = js.createTask("echo");
 main.addTask(echo);

 for (loopIndex = 1; loopIndex <= 10; loopIndex++) {
 echo.setMessage(loopIndex);
 echo.execute();
 }
 echo.setMessage(message);
]]> </script>

 </target>
</project>

Here's what this build file looks like at work, where JavaScript is executing the Ant echo task. Cool.

%ant
Buildfile: build.xml

main:
 [echo] 1
 [echo] 2
 [echo] 3
 [echo] 4
 [echo] 5
 [echo] 6
 [echo] 7
 [echo] 8

 [echo] 9
 [echo] 10
 [echo] No worries.

BUILD SUCCESSFUL
Total time: 1 second

Want to work with Ant types like filesets in script? Use the project object's createDataType() method.
Here's an example that creates Java File objects from a fileset, all in JavaScript:

importClass(java.io.File);

fileset = project.createDataType("fileset");
fileset.setDir(new File(dir));
fileset.setIncludes(includes);

directoryscanner = fileset.getDirectoryScanner(project);
files = directoryscanner.getIncludedFiles();

for (loopIndex=0; loopIndex < files.length; loopIndex++) {
 var filename = files[loopIndex];
 var file = new File(fileset.getDir(project), filename);
}

12.3. Creating Custom Listeners

Ant tracks build events, such as when tasks start and finish, and you can catch those events with a
listener. Listeners implement the org.apache.tools.antBuildListener interface and will receive
BuildEvents for these events:

Build started

Build finished

Target started

Target finished

Task started

Task finished

Message logged

To add a listener in code, you can create an ant Project object and then call its addBuildListener()
method to add a listener to the project. You can attach a listener to a build from the command line as
in this example:

ant -listener org.apache.tools.ant.XmlLogger

which runs Ant with a listener that generates an XML version of the build progress.

Listeners and loggers must not access System.out and System.err because
output on these streams is redirected by Ant's core to the build event system.
In other words, accessing these streams may cause an infinite loop.

To implement the listener interface, you implement methods such as buildStarted(),
buildFinished(), targetStarted(), and so on. In SoundListener.java, shown in Example 12-16, the
listener code uses the org.apache.tools.ant.taskdefs.optional.sound.AntSoundPlayer class to play
a sound when the build is finished. The addBuildSuccessfulSound(java.io.File file, int loops,
java.lang.Long duration) method is used to add a sound to play for build success, and
addBuildFailed-Sound(java.io.File fileFail, int loopsFail, java.lang.Long duration) to add a
sound indicating build failure. In the listener's buildFinished() method, the sound player's
buildFinished() method is called to play the sound.

If you run this example, substitute your own local filenames for file1.wav and
file2.wav in SoundListener.java. The AntSoundPlayer can play sound files in
.wav and .aiff format.

Example 12-16. A new listener (ch12/listener/SoundListener.java)

import java.io.File;
import org.apache.tools.ant.BuildEvent;
import org.apache.tools.ant.BuildListener;
import org.apache.tools.ant.taskdefs.optional.sound.AntSoundPlayer;

public class SoundListener implements BuildListener
{
 AntSoundPlayer soundplayer = new AntSoundPlayer();

 public SoundListener()
 {
 soundplayer.addBuildSuccessfulSound(new File("file1.wav"), 1,
 new Long(500));

 soundplayer.addBuildFailedSound(new File("file2.wav"), 1, new Long(500));
 }

 public void buildStarted(BuildEvent event) {}

 public void buildFinished(BuildEvent event)
 {
 soundplayer.buildFinished(event);
 }

 public void targetStarted(BuildEvent event) {}

 public void targetFinished(BuildEvent event) {}

 public void taskStarted(BuildEvent event) {}

 public void taskFinished(BuildEvent event) {}

 public void messageLogged(BuildEvent event) {}
}

To build this listener, include ant-jmf.jar in the classpath to pick up AntSoundPlayer. Here's the file
this example builds, Project.java:

public class Project
{
 public void execute()
 {

 System.out.println("No worries.");
 }
}

Here's the build file. Nothing special.

<?xml version="1.0"?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>

 <target name="main" depends="jar">
 <taskdef name="project" classname="Project" classpath="Project.jar"/>
 <project/>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

To attach the listener to the build, run Ant this way:

%ant -listener SoundListener

If the build finishes successfully, you'll hear the sound you've added for a build; otherwise, you'll hear
the sound you've set for failure.

Want to know what task or target fired a build event? Use the BuildEvent
object's getTask() or getTarget() methods, in which a BuildEvent object is
passed to each listener method.

12.4. Creating Custom Loggers

You can handle build events with custom loggers as well if you extend the Ant DefaultLogger class.
Example 12-17 shows a logger that will log each task as it's executed. Like listeners, loggers must
not access System.out and System.err directly, so to display messages to the standard out device,
this code uses the Ant log() method (which defaults to standard out).

Example 12-17. A new logger (ch12/logger/ProjectLogger.java)

import org.apache.tools.ant.BuildEvent;
import org.apache.tools.ant.DefaultLogger;
import org.apache.tools.ant.util.StringUtils;

public class ProjectLogger extends DefaultLogger
{
 public void taskStarted(BuildEvent event)
 {
 String text = "Running task " + event.getTask().getTaskName()
 + StringUtils.LINE_SEP;
 printMessage(text, out, event.getPriority());
 log(text);
 }
}

For this example, use a simple custom task:

public class Project
{
 public void execute()
 {
 System.out.println("No worries.");
 }
}

Here's the build file:

<?xml version="1.0"?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>

 <target name="main" depends="jar">

 <taskdef name="project" classname="Project" classpath="Project.jar"/>
 <project/>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

When you execute this build file with the custom logger, each task will be displayed as it's executed.
To attach the logger to the build, use this command line:

%ant -logger ProjectLogger

When the build runs, you'll see each task logged like this:

%ant -logger ProjectLogger
Buildfile: build.xml
Running task property

Running task property

compile:
Running task mkdir

 [mkdir] Created dir: C:\ant\ch12\logger\output
Running task javac

 [javac] Compiling 1 source file to C:\ant\ch12\logger\output

jar:
Running task jar

 [jar] Building jar: C:\ant\ch12\logger\Project.jar

main:
Running task taskdef

Running task project

 [project] No worries.

BUILD SUCCESSFUL
Total time: 3 seconds

12.5. Creating Custom Filters

You can implement custom Ant filters. To do that, you can extend Ant classes like
org.apache.tools.ant.filters.BaseParamFilterReader . If you want your filter to be chainable, implement
the org.apache.tools.ant.filters.ChainableReader interface.

Example 12-18 shows how to write a filter. In this example, the code reads each line of a Java file using
the read() method and adds a Java single-line comment, // , at the beginning of each line. When the
code reaches the end of the file, it returns a value of -1 to quit.

Example 12-18. A new filter (ch12/filter/src/ProjectFilter.java)

import java.io.Reader;
import java.io.IOException;
import org.apache.tools.ant.filters.ChainableReader;
import org.apache.tools.ant.filters.BaseParamFilterReader;

public final class ProjectFilter extends BaseParamFilterReader implements ChainableReader
{
 String data = null;

 public ProjectFilter()
 {
 super();
 }

 public ProjectFilter(final Reader reader)
 {
 super(reader);
 }

 public final Reader chain(final Reader reader)
 {
 ProjectFilter filter = new ProjectFilter(reader);
 filter.setInitialized(true);
 return filter;
 }

 public final int read() throws IOException
 {
 int leadChar = -1;

 if(data != null) {
 leadChar = data.charAt(0);
 data = data.substring(1);
 if(data.length() == 0) {

 data = null;
 }
 }
 else {
 data = readLine();

 if(data == null) {
 leadChar = -1;
 }
 else {
 data = "// " + data;
 return read();
 }
 }
 return leadChar;
 }
}

You can see how to use this new filter in the build file in Example 12-19 . This build file copies all .java files
in the project, comments out each line, and stores the result in a directory named commented .

Example 12-19. Build file for the new filter (ch12/filter/build.xml)

<?xml version="1.0"?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>
 <property name="commented" value="commented"/>

 <target name="main" depends="jar">
 <copy todir="${commented}">
 <fileset dir="${src}" includes="**/*.java"/>
 <filterchain>
 <filterreader
 classname="ProjectFilter"
 classpath="Project.jar"/>
 </filterchain>
 </copy>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <mkdir dir="${commented}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

When you run this build file, every line in the copied Project.java file is commented out when filtered and
copied:

// import java.io.Reader;
// import java.io.IOException;
// import org.apache.tools.ant.filters.ChainableReader;
// import org.apache.tools.ant.filters.BaseParamFilterReader;
//
// public final class ProjectFilter extends BaseParamFilterReader implements
ChainableReader
// {
// String data = null;
 .
 .
 .

12.6. Creating Custom Selectors

Writing custom Ant selectors is possible if you extend a class like
org.apache.tools.ant.types.selectors.BaseExtendSelector. In code, selectors are passed File
objects and return true or false depending on whether or not a file is acceptable. Say, for example,
that you want to copy files less than a megabyte in length. Example 12-20 shows a selector that
tests file length and returns true if the file is OK, false otherwise.

Example 12-20. A new selector (ch12/selector/src/ProjectSelector.java)

import java.io.File;
import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.types.selectors.BaseExtendSelector;

public class ProjectSelector extends BaseExtendSelector
{
 public boolean isSelected(File basedir, String filename, File file)
 throws BuildException
 {
 if(file.length() < 1024 * 1024){
 return true;
 }
 else {
 return false;
 }
 }
}

Example 12-21 is a build file that uses this new selector when copying files; in particular, it copies
over its own source code to a directory named sizeOK.

Example 12-21. Build file for the new selector (ch12/selector/build.xml)

<?xml version="1.0" ?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>
 <property name="sizeOK" value="sizeOK"/>

 <target name="main" depends="jar">

 <copy todir="${sizeOK}">

 <fileset dir="${src}">
 <selector>
 <custom classname="ProjectSelector" classpath="Project.jar"/>
 </selector>
 </fileset>
 </copy>

 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <mkdir dir="${sizeOK}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

Here's what you see when you run this build file:

%ant
Buildfile: build.xml

compile:
 [mkdir] Created dir: /home/steven/ant/ch12/selector/output
 [mkdir] Created dir: /home/steven/ant/ch12/selector/writeable
 [javac] Compiling 1 source file to /home/steven/ant/ch12/selector/output

jar:
 [jar] Building jar: /home/steven/ant/ch12/selector/Project.jar

main:
 [copy] Copying 1 file to /home/steven/ant/ch12/selector/sizeOK

BUILD SUCCESSFUL
Total time: 3 seconds

In this case, the code only copies files less than a megabyte in length, but custom seletors like this
can select on anything, e.g., file creation date, read/write status, filename, and so on.

12.7. Creating New Types

When creating new tasks, it's sometimes useful to create new datatypes to be used by those tasks.
In this example, I'll create a new datatype that extends the Ant FileList type and interfaces easily
to attributes in a custom task.

This example centers around a new data type, ProjectType, which extends the Ant FileList class. To
use that data type, I'll develop a new custom task, projectTask, that supports nested elements
named multiFile, each of which supports an attribute named files. You can set the files attribute
to a string containing multiple file-names such as "ed.txt george.txt", and the code will create an
object of a custom data type, ProjectType, to contain that list of files.

Example 12-22 holds the code for the new datatype, ProjectType, which extends the
org.apache.tools.ant.types.FileList class. In this example, the code simply passes the list of files
on back to the FileSet base class, but you can adapt this code to handle the list of files any way you
want.

Example 12-22. The new data type (ch12/type/src/ProjectType.java)

package data;

import org.apache.tools.ant.types.FileList;

public class ProjectType extends FileList
{
 public void setFiles(String files)
 {
 super.setFiles(files);
 }
}

The build file for the custom task appears in Example 12-23; the nested multiFile element's files
attribute takes the list of files that will be stored in internal filelist of the object of the custom data
type.

Example 12-23. Build file for the datatype example (ch12/type/build.xml)

<?xml version="1.0" ?>
<project basedir="." default="main">

 <property name="src" value="src"/>
 <property name="output" value="output"/>

 <target name="main" depends="jar">

 <taskdef name="projectTask" classname="ProjectTask" classpath="Project.jar" />

 <projectTask>
 <multiFile dir="src" files="ed.txt george.txt"/>
 </projectTask>
 </target>

 <target name="compile">
 <mkdir dir="${output}"/>
 <javac srcdir="${src}" destdir="${output}"/>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="Project.jar" basedir="${output}"/>
 </target>

</project>

ProjectTask.java, which implements the projectTask task and uses the new datatype, appears in
Example 12-24.

Example 12-24. Task that uses the new type
(ch12/type/src/ProjectTask.java)

import data.ProjectType;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.BuildException;

public class ProjectTask extends Task
{
 ProjectType multiFile = null;

 public void execute() throws BuildException
 {
 String[] files = multiFile.getFiles(getProject());

 for(int loopIndex = 0; loopIndex < files.length; loopIndex++)
 {
 System.out.println(files[loopIndex]);
 }
 }

 public ProjectType createMultiFile()
 {
 multiFile = new ProjectType();
 return multiFile;
 }

}

Here's how it works. ProjectTask.java handles the nested multiFile element with a createMultiFile(
) method, which creates a new object of the ProjectType class (our custom data type, based on the
FileList class):

 ProjectType multiFile = null;
 .
 .
 .
 public ProjectType createMultiFile()
 {
 multiFile = new ProjectType();
 return multiFile;
 }

The setFiles() method in the custom data type's support code creates a filelist from the list of files
in the multiFile element's files attribute:

 public void setFiles(String files)
 {
 super.setFiles(files);
 }

The files are now stored in the new datatype object named multiFile. When the task executes, it will
display their names, using that object:

 public void execute() throws BuildException
 {
 String[] files = multiFile.getFiles(getProject());

 for(int loopIndex = 0; loopIndex < files.length; loopIndex++)
 {
 System.out.println(files[loopIndex]);
 }
 }

When this build file executes, the custom task creates a new object of the custom datatype and
displays the files in it:

%ant
Buildfile: build.xml

compile:
 [javac] Compiling 3 source files to /home/steven/ant/ch12/type/output

jar:
 [jar] Building jar: /home/steven/ant/ch12/type/Project.jar

main:
[projectTask] ed.txt
[projectTask] george.txt

BUILD SUCCESSFUL
Total time: 3 seconds

Customizing data types for use with custom tasks can be a powerful technique as you develop and
extend Ant to better fulfill your needs.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Ant: The Definitive Guide, Second Edition, is a horned lizard. There are 13
species of the horned lizard in North America. Horned lizards prefer a dry, warm climate, such as the
desert or a dry woodland, and they can be found in Texas, Oklahoma, Kansas, and New Mexico.
Adults grow to 3-5 inches. They depend on their environment to control their body temperature, and
use burrows and shade to prevent overheating. The horned lizard has a wide, flat body ideal for
desert camouflage, and a short neck and short legs. It has spines on its body and prominent horns
on its head. It is also known as the horny "toad."

Despite the horned lizards' fierce appearance, they are not aggressive. Their primary diet consists of
ants, although they sometimes eat beetles, grasshoppers, and other insects, which they catch with
their long tongues. The horned lizards' first line of defense from predators is their camouflage, but
they are also known to hiss and inflate their bodies to appear more intimidating. As a last resort, they
have the ability to squirt blood from the corners of their eyes in an attempt to confuse attackers. In
Texas and Oklahoma, horned lizards are considered a threatened species. It is illegal to possess a
horned lizard without a scientific permit.

Matt Hutchinson was the production editor for Ant: The Definitive Guide, Second Edition . GEX, Inc.
provided production services. Mary Brady, Sanders Kleinfeld, and Darren Kelly provided quality
control.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Karen Montgomery produced the
cover layout with Adobe InDesign CS using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia
FreeHand MX and Adobe Photoshop CS. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Colleen Gorman.

The online edition of this book was created by the Digital Books production group (John Chodacki,
Ken Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Abbot framework (JUnit extension)

absolute paths

AbstractCvsTask class

access attribute (javadoc task)

action attribute

 ftp task 2nd 3rd 4th 5th

 serverdeploy task 2nd

actions, conditional

adapter attribute (taskdef task)

adaptto attribute (taskdef task)

add command (CVS)

addBuildFailed-Sound method

addBuildListener method (Project class)

addBuildSuccessfulSound method

addedTags attribute

 ejbdoclet task

 webdoclet task

additionalparam attribute (javadoc task)

addproperty attribute (input task)

address attribute (mail task)

addsourcefile attribute (apply task)

addTarget method (Project class)

addTaskDefinition method (Project class)

addText method 2nd

admin command (CVS)

.aiff format

algorithm attribute (checksum task)

all set property

and element (condition task)

annotate command (CVS)

Ant build files

 absolute path

 Ant view and

 calling tasks in

 checksums and

 custom tasks and

 editing

 EJB example

 example

 importing 2nd

 projects and

 properties and 2nd 3rd 4th

 reformatting

 running

 running in Eclipse

 scp task example

 servlet example

 targets and 2nd 3rd

 taskdef task example

 tasks and

 Tomcat servers and 2nd 3rd 4th

 .war files and 2nd

 writing in Eclipse

 XDoclet example

 XML declaration and

Ant build process

 Anthill and

 controlling

 example

 failure during 2nd

 scheduling automatic builds

 stopping

 testing

Ant build tool

 alternatives to

 debugger support

 editions

 installing 2nd

 origins

 process example

 running

 testing

Ant classpath 2nd

Ant editor (Eclipse) 2nd

Ant Home Entries item (Eclipse)

Ant Launcher

ant task 2nd

Ant view (Eclipse)

ant.bat file

ant.file property 2nd

ant.java.version property

ant.project.name property

ant.version property

ANT_ARGS environment variable

ANT_HOME environment variable

 example

 filename length

 installing Ant

 library files and

ANT_OPTS environment variable

antcall task 2nd 3rd

antfile attribute (ant task)

Anthill build tool

Antidote IDE

antlr task

antrc_post.bat file

AntSoundPlayer class 2nd

antstructure task 2nd 3rd 4th

apachesoap element (ejbdoclet task)

append attribute

 apply task

 cvs task

 exec task

 java task

 sshexec task

application attribute (weblogic element)

applications

 deploying by copying

 moving files 2nd

 packaging for deployment

 remote deployment using FTP

 remote deployment using SSH 2nd

 remote deployment using telnet

 remote deployment via email

 setting file protections with chmod 2nd

apply task 2nd 3rd

appxml attribute (ear task) 2nd

arg element

 arguments and 2nd

 example

 exec task and

 generic element and

 jonas element and

args attribute

 java task

 weblogic element

argument element

ASCII characters

Assert class (JUnit)

assertEquals method (JUnit) 2nd 3rd 4th 5th

assertFalse method (JUnit) 2nd

assertions element 2nd

Assertions type

assertNotNull method (JUnit) 2nd 3rd

assertNotSame method (JUnit) 2nd

assertNull method (JUnit) 2nd

assertSame method (JUnit) 2nd

assertTrue method (JUnit) 2nd 3rd 4th 5th

asterisk (*) 2nd 3rd 4th

at command (Windows) 2nd

at sign (@)

attrib task

attribute element

 manifest task

 xmlvalidate element and

 xslt/style task and

attributes

 handling for custom tasks

 for project elements

 for property elements

 for target elements

author attribute (javadoc task)

authserver command (CVS)

available element (condition task)

available task 2nd 3rd 4th

axisdeploy element (ejbdoclet task)

axisundeploy element (ejbdoclet task)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

back slash (\\\\)

backups attribute (patch task)

basedir attribute

 cab task

 ear task

 jar task

 project element 2nd 3rd

 tar task 2nd

 war task

 xslt/style task

 zip task

BaseExtendSelector class

basejarname attribute (ejbjar task)

basename task 2nd

bash shell (Unix) 2nd

batch execution

batch testing 2nd

batchtest element 2nd

batchtest task

bcc element (mail task)

bcclist attribute (mail task)

begintoken attribute (FilterSet type)

binary attribute (ftp task)

binary release (Ant) 2nd

blgenclient task (EJB) 2nd

boolean data type

bootclasspath attribute

 javac task 2nd

 javadoc task

 path type

bootclasspath element

 java task and

 path type and

bootclasspathref attribute

 javac task

 javadoc task

borland element

 ejbdoclet task

 nesting and

bottom attribute (javadoc task)

branching [See forking]

breakiterator attribute (javadoc task)

brief formatter 2nd

build files [See Ant build files]

build numbers 2nd 3rd 4th

build process [See Ant build process Java build process]

build property (deploy task)

build.xml file 2nd 3rd

BuildEvent object

BuildException constructor

-buildfile option 2nd

buildFinished method 2nd

buildnumber task 2nd

buildStarted method

bunzip2 task 2nd

byline attribute (replaceregexp task)

bzip2 task 2nd 3rd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

.cab files

 Ant tasks and

 creating 2nd

 deploying 2nd

cab task 2nd 3rd

cabarc tool (Microsoft)

cabfile attribute (cab task)

cache attribute (depend task)

carriage returns, fixing

casesensitive attribute

 DirSet type

 FileSet type

castormapping element (ejbdoclet task)

catalogpath element (xmlcatalog element)

cc element (mail task)

CCCheckin task

CCCheckout task

cclist attribute (mail task)

CCLock task

CCMCheckin task

CCMCheckinTask task

CCMCheckout task

CCMCreateTask task

CCMkattr task

CCMkbl task

CCMkdir task

CCMkelem task

CCMklabel task

CCMklbType task

CCMReconfigure task

CCRmtype task

CCUnCheckout task

CCUnluck task

CCUpdate task

<CDATA\\> section (XML)

chacl command (CVS)

change logs

char data type

charset attribute

 javadoc task

 mail task

 message element

checkout command (CVS)

checksum element (condition task)

checksum task 2nd

chgrp task

chmod attribute (ftp task)

chmod task 2nd 3rd 4th 5th

Choose Location dialog box (Eclipse)

chown command (CVS)

chown task

classconstants element (FilterChain type) 2nd

classes element (war task)

classname attribute

 available task

 formatter task

 generic element

 java task

 jonas element

 mapper element

 taskdef task

 xmlvalidate task

classpath attribute

 available task

 depend task 2nd

 ejbjar task

 generic element

 java task

 javac task 2nd

 javadoc task

 jonas element

 jspc task

 junit task

 mapper element

 path type

 property element

 taskdef task 2nd 3rd

 weblogic element 2nd

 xslt/style task

classpath element

 depend task and

 ejbjar task

 example

 java task and

 jonas element and

 nesting

 path type and

 serverdeploy task and

 taskdef task and

 weblogic element and

 xmlcatalog element and

 xslt/style task and

classpathref attribute

 available task

 java task

 javac task

 javadoc task

 jspc task

 mapper element

 property element

 xmlvalidate task

 xslt/style task

classpathref element (jspc task)

clearcase task

Clearcase version control system 2nd

closure attribute (depend task) 2nd

cmpversion attribute (ejbjar task)

code assist (Eclipse) 2nd

collapseAttributes attribute (xmlproperty task)

colon (:)

command attribute

 cvs task 2nd 3rd 4th

 exec task

 sshexec task

command line

 environment variables and

 options for 2nd 3rd 4th

commandline element 2nd

Commandline object

commit command (CVS)

committers

compilearg element

compiler attribute

 compilearg element

 javac task 2nd

 jspc task

 weblogic element

compilerclasspath attribute (jspc task)

compiling

 documentation and

 JSPs

 source code

 source files

component attribute (weblogic element)

compress attribute

 cab task

 ear task

 jar task

 war task

 zip task

compression attribute

 cvs task

 cvstagdiff task

 tar task 2nd

compressionlevel attribute (cvs task)

concat task 2nd 3rd

concatfilter element (FilterChain type)

Concurrent Version System [See CVS]

condition task 2nd 3rd 4th

conditions

configParam element

 ejbdoclet task

 webdoclet task

Console view (Eclipse) 2nd

constants 2nd

containers, EJB and 2nd

contains element

 condition task

 linecontains filter and

contains selector 2nd

containsregexp selector 2nd

content assist (Eclipse)

Continuous source control servers

Continuus commands

copy task

 deployment and

 description

 file filtering

 file sets and

 filterchain element

 mappers and

copydir task

copyfile task

cr attribute (fixcrlf task)

createDataType method

createResult method (JUnit)

createTask method (Project class) 2nd

creation date 2nd

creation time 2nd

crontab utility (Unix) 2nd 3rd

Cruise Control build tool 2nd

csc compiler

Csc task

CVS (Concurrent Version System)

 Anthill and 2nd

 change logs

 changes between versions

 commands 2nd

 creating patches

 CVSROOT environment variable and

 logging in and 2nd

 servers and

 source control and

 version data and

cvs task

 checking out modules

 CVS commands and

 CVS servers and

 description 2nd

CVS_RSH environment variable 2nd 3rd

cvschangelog task 2nd 3rd 4th

cvsclientproperty attribute (cvsversion task)

cvspass task

 checking out modules

 description 2nd

 logging in with

 updating shared code

cvsroot attribute

 cvs task 2nd 3rd

 cvschangelog task

 cvspass task 2nd 3rd

 cvstagdiff task

 cvsversion task

CVSROOT environment variable

 CVS servers and

 cvs task and

 cvspass task and

 cvstagdiff task and

 cvsversion task and

 Windows and

cvsrsh attribute

 cvs task

 cvschangelog task

 cvstagdiff task

 cvsversion task

cvsserverproperty attribute (cvsversion task)

cvsServerVersion property (cvsversion element)

cvstagdiff task 2nd 3rd

cvsversion task 2nd

Cygwin environment

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-D option

-d option

-D option

daemons element (parallel task)

dao element (ejbdoclet task)

data [See types]

dataobject element (ejbdoclet task)

date attribute (cvs task)

date selector 2nd

datetime attribute (touch task)

davidhost attribute (jonas element)

davidport attribute (jonas element)

Davidson, James Duncan

daysinpast attribute (cvschangelog task)

dbUnit framework (JUnit extension)

ddcreator task (EJB) 2nd

debug attribute

 javac task

 weblogic element

-debug option 2nd 3rd

debuglevel attribute (javac task)

default attribute (project element)

defaultexcludes attribute

 cab task

 chmod task

 delete task 2nd

 ear task

 FileSet type

 fixcrlf task

 jar task 2nd

 javadoc task

 tar task

 war task

 xslt/style task

 zip task

defaultexcludes task 2nd

defaultInput method (Project class)

DefaultLogger class

defaultvalue attribute (input task)

delete action (weblogic tool)

delete task 2nd 3rd 4th

deletecharacters element (FilterChain type)

delimOutput attribute (FilterChain type)

deltree task

depend attribute (javac task)

depend selector

depend task 2nd 3rd

dependencies

 antcall task and

 depend task

 handling

 parallel task and

 recommendations

 tasks and

dependency attribute (ejbjar task)

depends attribute

 build example

 ftp task

 target element

dependset task

deploy action

 JOnAS servers

 weblogic tool

deploy task 2nd

deployment

 by copying

 to EJB containers

 hot

 by moving files 2nd

 packaging applications for

 preparing for

 scheduling automatic builds

 scp task

 setting file protections 2nd

 Tomcat web servers and

 using email

 using FTP

 using SSH 2nd

 using telnet

 .war files

 web 2nd

deploymentdescriptor element

 ejbdoclet task 2nd

 webdoclet task 2nd

deprecation attribute (javac task)

depth selector

description attribute (target element) 2nd

Description type

descriptordir attribute (ejbjar task)

dest attribute

 apply task 2nd

 cvs task

 cvsversion task

 get task

 unjar task

destdir attribute

 depend task

 ejbdoclet task

 ejbjar task

 fixcrlf task

 javac task

 javadoc task

 jspc task

 webdoclet task

 weblogic element

 xslt/style task

destfile attribute

 cvschangelog task

 cvstagdiff task

 ear task

 gzip/bzip2 tasks

 jar task

 patch task

 tar task

 war task

 zip task

-diagnostics option

diff command (CVS) 2nd 3rd

different selector

dir attribute

 ant task 2nd

 apply task

 build.xml file and

 chmod task

 custom tasks and

 cvschangelog task

 delete task

 DirSet type

 exec task

 FileList type

 FileSet type 2nd

 ftp task

 java task

 junit task

 mkdir task

 patch task

dir command (Windows)

directories

 copying to new locations

 creating

 default excludes

 deleting

 dependencies and 2nd

 ejbjar task and

 ftp task and

 jspc task and

 manipulating remotely

 modules and

 moving

 scanning

 working with groups of

DirectoryScanner class

dirmode attribute

 tarfileset element

 zipfileset element

dirname task 2nd

dirset element

 apply task

 chmod task

DirSet type 2nd 3rd

displayname attribute (user element)

docencoding attribute (javadoc task)

doclet attribute (javadoc task)

doclet task (XDoclet)

docletpath attribute (javadoc task)

docletpathref attribute (javadoc task)

doctitle attribute (javadoc task)

document element

documentation [See also reports] [See also reports]

 of code

 fixing carriage returns in

 JUnit

dollar sign ($) 2nd

DSTAMP property (tstamp task) 2nd

dtd element

 ejbjar task

 xmlcatalog element and

 xmlvalidate task and

DTDs

 antstructure task and

 creating for Ant tasks 2nd

 validating with

 XMLCatalog and

dump attribute (depend task)

duplicate attribute

 ear task

 jar task

 war task

 zip task

duration attribute (success/fail elements)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-e option

ear task 2nd 3rd

easerver element (ejbdoclet task)

echo task

 creating text files

 description

 example 2nd

 JavaScript and

 output and 2nd

echoproperties task

Eclipse IDE

 Ant versions and 2nd

 Ant view and

 overview

 running Ant build files

 writing Ant build files

eclipse.org consortium

edit command (CVS)

editors command (CVS)

EJB (Enterprise JavaBean)

 Ant tasks for

 deploying to containers

 developing

 working with containers

ejbc task (EJB) 2nd

ejbcclass attribute (weblogic element)

ejbClassNameSuffix attribute (ejbdoclet task)

ejbdoclet task (XDoclet) 2nd

ejbjar task (EJB) 2nd 3rd

ejbSpec attribute (ejbdoclet task)

elements, nesting 2nd 3rd

-emacs option

email, remote deployment

enablemultiplemappings attribute (copy task)

encoding attribute

 copy task

 ear task

 fixcrlf task

 jar task

 javac task

 javadoc task

 loadfile task

 mail task

 manifest task

 replaceregexp task

 war task

 zip task

end attribute (cvschangelog task)

end-of-line (EOL) characters

enddate attribute (cvstagdiff task)

endtag attribute (cvstagdiff task)

endtoken attribute (FilterSet type)

Enterprise JavaBean [See EJB]

entitybmp element (ejbdoclet task)

entitycmp element (ejbdoclet task)

entityfacade element (ejbdoclet task)

entitypk element (ejbdoclet task)

env element 2nd 3rd 4th

environment attribute (property element) 2nd 3rd

environment variables

 customizing

 env element and 2nd

 forked JVM and

 JDK and

 setting

 setting properties using 2nd 3rd

eof attribute (fixcrlf task)

EOL (end-of-line) characters

eol attribute (fixcrlf task)

equals element (condition task)

error attribute

 apply task

 cvs task

 exec task

 java task

errorproperty attribute

 apply task

 batchtest element

 exec task

 java task

 junit task 2nd

 test task

errors

 brief formatter and

 build process and

 Eclipse and

 external programs and

 Java code and

 Java development and

 responding to

 validating XML documents

escapeunicode element (FilterChain type)

events

 custom listeners

 custom loggers 2nd

exclamation point (!)

exclude attribute (delete task)

exclude element

 cab task and

 depend task and

 DirSet type and

 fileset element and

 FileSet type

 jar task and

 javac task

 PatternSet type and

 support element and

 xslt/style task and

 zip task and

excludedTags attribute

 ejbdoclet task

 webdoclet task

excludepackagenames attribute (javadoc task)

excludes attribute

 cab task

 chmod task

 delete task

 DirSet type

 ear task

 FileSet type

 fixcrlf task

 jar task 2nd

 javac task

 PatternSet type

 tar task

 war task

 xslt/style task

 zip task

excludes element

 jspc task and

 MatchingTask class

excludesfile attribute

 cab task

 delete task 2nd

 DirSet type

 ear task

 FileSet type

 fixcrlf task

 jar task 2nd

 javac task

 PatternSet type

 tar task

 war task

 xslt/style task

 zip task

excludesfile element

 DirSet type and

 fileset element and

 FileSet type

 PatternSet type and

exdirs element

exec task

 arguments and

 description

 file permissions and

 overview

execon task

executable attribute

 apply task

 exec task 2nd

 javac task

Execute class 2nd

execute method

 Ant tasks and 2nd 3rd

 Execute class

 nested elements and

 Task class

executeTarget method (Project class)

executeTargets method (Project class)

executing

 Ant

 batch programs

 external programs

 Java code

 setting order and

exit method (System)

expandproperties element (FilterChain type)

export command (CVS)

expression attribute

 containsregexp selector

 param element

extdirs attribute

 javac task 2nd

 javadoc task

 path type

extension attribute

 formatter task

 xslt/style task

external programs

 executing

 running 2nd

External Tools dialog box (Eclipse)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-f option 2nd

factory element (TraX)

fail element (sound task) 2nd

fail method (JUnit)

fail task 2nd 3rd 4th

failifexecutionfails attribute

 apply task

 exec task 2nd

failonany attribute (parallel task)

failonerror attribute

 apply task

 copy task

 custom tasks and

 cvs task

 cvschangelog task

 cvstagdiff task

 cvsversion task

 delete task

 exec task 2nd

 java task 2nd

 javac task

 javadoc task

 jspc task

 loadfile task

 mail task

 scp task

 sshexec task

 tasks and

 xmlvalidate task

failureproperty attribute

 batchtest element

 junit task

 test task

file attribute

 available task

 buildnumber task

 checksum task

 chmod task

 compilearg element

 copy task

 delete task

 echo task

 env element

 FileSet type

 import task

 manifest task

 property element

 property task 2nd

 replaceregexp task

 scp task

 taskdef task

 touch task

 xmlproperty task

 xmlvalidate task

file mappers 2nd

-file option 2nd

fileext attribute (checksum task)

filelist element (apply task)

FileList type 2nd 3rd 4th

filemode attribute (zipfileset element)

filename selector 2nd 3rd

filepath attribute (available task)

files

 checking contents of 2nd

 checking modification dates 2nd

 comparing 2nd

 compressing 2nd

 copying to local machines

 copying to new locations

 copying using filesets

 creating empty

 default excludes

 deleting

 filters and 2nd

 lists of

 mappers and 2nd

 moving 2nd

 property

 retrieving using ftp task

 selecting to compile

 setting creation time/date 2nd

 setting protections with chmod 2nd

 working with groups of

 XML

files attribute

 FileList type

 mail task

fileset element

 cab task and

 catalogpath element and

 delete task and 2nd

 depend task and

 ejbdoclet task

 junitreport task and

 nesting 2nd 3rd 4th 5th

 overview

 replaceregexp task and

 scp task and

 war task and

 webdoclet task

 xslt/style task and

FileSet type

 attributes

 batch testing and

 cab task and

 chmod task and

 defaultexcludes

 delete task and

 depend task and

 description

 fixcrlf task and

 jar task and

 javac task and

 pathconvert task and

 PatternSet type and

 purpose

 tar task and

 tarfileset elements and

 zip task and

filesetmanifest attribute (jar task)

filesets 2nd

filesmatch element (condition task)

filesonly attribute

 ear task

 jar task

 war task

 zip task

filter task 2nd

FilterChain type 2nd 3rd

filtering attribute (copy task)

filterreader element (FilterChain type) 2nd

FilterReaders

filters

 copy task and

 custom

 files and 2nd

 FileSets as

 text and

FilterSet type 2nd

filtersfile attribute (filter task)

filtertrace attribute

 batchtest element

 junit task

 test task

-find option 2nd

firewalls

fixcrlf task 2nd

fixlast attribute (fixcrlf task)

flags attribute (replaceregexp task)

flatdestdir attribute (ejbjar task)

flatten attribute (copy task)

flatten mapper 2nd 3rd

followsymlinks attribute

 DirSet type

 FileSet type

footer attribute (javadoc task)

force attribute

 ejbdoclet task

 webdoclet task

 xslt/style task

forceoverwrite attribute (checksum task)

fork attribute

 batchtest element

 java task

 javac task

 junit task

 test task

forking

 based on true/false properties

 compiler

 java task and

 JVM 2nd

 jvmarg elements and

format attribute

 report task

 taskdef task

Format command (Eclipse) 2nd

format element (tstamp task)

formatter element (junit task) 2nd

formatter task

formatting

 Ant build files

 test results

forward slash (/) 2nd 3rd 4th

forwardslash attribute (apply task)

from attribute

 glob mapper and

 mail task

 mapper element

 regular expressions and 2nd

 slashes and

from element (mail task)

ftp task 2nd 3rd 4th

FTP, remote deployment

ftp: schema

fullpath attribute

 tarfileset element

 zipfileset element 2nd 3rd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

generic element (serverdeploy task) 2nd

genericjarsuffix attribute

 ejbjar task

 weblogic element

genkey task

get task 2nd 3rd

getBaseDir method (Project class)

getBuildListeners method (Project class)

getDefaultInputStream method (Project class)

getDefaultTarget method (Project class)

getDescription method

 Project class

 Task class

getElementName method (Project class)

getIncludedFiles method (DirectoryScanner class)

getLocation method (Task class) 2nd

getName method

 JUnit framework

 Project class

getOwningTarget method (Task class)

getProject method (Task class)

getProperties method

 Project class

 System class

getProperty method (Project class) 2nd 3rd

getReference method (Project class)

getReferences method (Project class)

getRuntimeConfigurableWrapper method (Task class)

getTarget method (BuildEvent)

getTargets method (Project class)

getTask method (BuildEvent)

getTaskDefinitions method (Project class)

getTaskName method (Task class)

getTaskType method (Task class)

getUserProperties method (Project class)

getUserProperty method (Project class)

getWrapper method (Task class)

glob mapper 2nd 3rd

group attribute

 javadoc task

 tarfileset element

Gump build tool 2nd

gunzip task 2nd

gzip task 2nd 3rd 4th

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-h option

haltonerror attribute

 batchtest element

 junit task

 test task

haltonfailure attribute

 batchtest element

 junit task 2nd

 test task

handleErrorFlush method (Task class)

handleErrorOutput method (Task class)

handleFlush method (Task class)

handleInput method (Task class)

handleOutput method (Task class)

header attribute (javadoc task)

headfilter element (FilterChain type) 2nd

-help option

helpfile attribute (javadoc task)

hibernatedoclet task (XDoclet)

history command (CVS)

homeinterface element (ejbdoclet task)

host attribute (sshexec task)

hot deployment

hpas element (ejbdoclet task)

HTML reports

HtmlUnit framework (JUnit extension)

http element (condition task) 2nd

http: schema

https: schema

HttpUnit framework (JUnit extension)

hyphen (-)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IBM, Eclipse and

icontract task

id attribute

 FilterSet type

 patterns and

 xmlcatalog element

identity mapper 2nd

ieplugin attribute (jspc task)

if attribute

 batchtest element

 elements and

 elements supporting

 fail task and 2nd

 formatter task

 param element

 target element

 test task

if statement [See conditions]

ignoreerrors attribute (get task)

ignoreNoncriticalErrors attribute (ftp task)

ignoresystemclasses attribute (available task)

ignorewhitespace attribute (patch task)

ilasm task

ildasm task

image task

imageurl attribute (splash task)

import command (CVS)

import task 2nd 3rd

ImportTypelib task

in attribute (xslt/style task)

include element

 cab task and

 depend task and

 DirSet type and

 fileset element and

 FileSet type

 filesets and

 jar task and

 javac task

 PatternSet type and

 support element and

 xslt/style task and

 zip task and

includeantruntime attribute

 javac task

 junit task

includeEmptyDirs attribute

 copy task

 delete task 2nd

includefilenames attribute (mail task)

includeJavaRuntime attribute (javac task)

includes attribute

 cab task

 chmod task

 delete task 2nd

 DirSet type

 ear task

 FileSet type

 fixcrlf task

 jar task 2nd

 javac task

 PatternSet type

 tar task

 war task

 xslt/style task

 zip task

includes element

 jspc task and

 MatchingTask class

includeSemanticAttribute attribute (xmlproperty task)

includesfile attribute

 cab task

 delete task 2nd

 DirSet type

 ear task

 FileSet type

 fixcrlf task

 jar task 2nd

 javac task

 PatternSet type

 tar task

 war task

 xslt/style task

 zip task

includesfile element

 DirSet type and

 fileset element and

 FileSet type

 PatternSet type and

index attribute (jar task)

info command (CVS)

inheritAll attribute

 ant task 2nd

 antcall task

inheritRefs attribute

 ant task

 antcall task

init command (CVS)

init method

 Ant tasks and

 Project class

 Task class

initialCR attribute (telnet task)

input attribute

 apply task

 exec task

 java task

input task 2nd 3rd

-inputhandler option

inputstring attribute

 apply task

 exec task

 java task

installing

 Ant 2nd

 Anthill

int data type

Internet Service Providers (ISPs)

IP addresses 2nd

iPlanet element

iplanet-ejbc task (EJB) 2nd

isfalse element (condition task)

isInvalid method (Task class)

ISPs (Internet Service Providers)

isreference element (condition task)

isset element (condition task)

istrue element (condition task)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

jar attribute (java task)

.jar files

 adding

 creating

 ejbjar task and

 optional tasks and

 running scripts and

 unpacking

jar task

 creating .jar files

 description

 ear task and

 jlink task and

 nesting and

 war task and 2nd

 zipfileset element and

jar: schema

jarlib-available task

jarlib-manifest task

jarlib-resolve task

jarsign task

Jasper JSP compiler

Java build process

 calling other tasks

 compiling code

 creating .jar files

 documenting code

 importing build files 2nd

 setting build numbers

 setting timestamps

 user input and

Java classes

 data types and

 dependencies and 2nd

 filters and

 generic element and

 java task and

 recognizing updated

 test element and

Java Media Framework

Java Native Interface (JNI)

java task

 description

 overview

 running test cases

 timeouts and

java.io.File data type

JAVA_HOME environment variable

JavaBean Tester tool

javac task

 alternatives

 compiling code

 compiling JSPs 2nd

 compiling source files

 depend task and

 description

 file sets and

 forking compiler

 java task and

 setting command-line options 2nd

 src element and

 srcdir attribute

JavaCC compiler 2nd

javacc task

JAVACMD environment variable

javadoc task 2nd

Javadoc wizard (Eclipse)

javadoc2 task

javafiles attribute (fixcrlf task)

javah task

JavaServer Pages (JSPs) 2nd

JAXP (Sun)

jboss element (ejbdoclet task) 2nd

jbosswebxml element (webdoclet task)

JcovMerge task

JcovReport task

JDBCTask class

jdepend task

JDK (Java Development Kit) 2nd 3rd

jdodoclet task (XDoclet)

Jemmy (Java library)

Jenerator

JFCUnit

JJDoc documentation generator

jjdoc task

JJTree preprocessor

jjtree task

jlink task

jmxdoclet task (XDoclet)

JNDI DataSource helper package

JNI (Java Native Interface)

JOnAS deployment tool

jonas element

 ejbdoclet task

 nesting

 serverdeploy task 2nd

JOnAS servers

 ejbdoclet task and

 EJBs and

 hot deployment and

 jonas element and 2nd

jonasroot attribute (jonas element)

jonaswebxml element (webdoclet task)

JPCoverage task

jprobe task

jrun element (ejbdoclet task)

jrunwebxml element (webdoclet task)

jsharpc task

jspc task 2nd

JSPs (JavaServer Pages) 2nd

jsptaglib element (webdoclet task)

JUnit framework

 Ant tasks and 2nd

 batch testing 2nd

 extending

 overview

 performing tests

 running build file

 running test cases

 writing tests

junit task

 description

 example 2nd

 overview

 packager mapper and

 performing tests with

 testing with

JUnitDoclet

JUnitPerf

junitreport task 2nd

JUnitX

JVM

 accessing system properties

 Eclipse and

 forking 2nd

 mixed environments and

 passing environment variables to

jvm attribute

 java task

 junit task

jvmarg element

 arguments and

 generic element and

 jonas element and

 nesting and

jvmargs attribute

 java task

 weblogic element

jvmdebuglevel attribute (weblogic element)

jWebUnit

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-k option

-keep-going option

keepcompression attribute

 ear task

 jar task

 war task

 zip task

keepgenerated attribute (weblogic element)

keepgeneric attribute (weblogic element)

keepRoot attribute (xmlproperty task)

key attribute

 env element

 system properties and

keyfile attribute

 scp task

 sshexec task

knownhosts attribute

 scp task

 sshexec task

knownhosts file

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-l option 2nd

language attribute (script task)

lenient attribute (xmlvalidate task)

lib directory (Ant) 2nd

lib element (war task)

-lib option 2nd

libcabinet tool

line attribute

 argument element

 compilearg element

line feed (carriage return)

linecontains element (FilterChain type) 2nd

linecontainsregexp element (FilterChain type) 2nd

link attribute (javadoc task)

linkoffline attribute (javadoc task)

linksource attribute (javadoc task)

Linux environment

list action

 JOnAS servers

 weblogic tool

-listener option

listeners, custom

listfiles attribute (javac task)

listing attribute (ftp task)

loaderRef attribute (taskdef task)

loadfile task 2nd 3rd

loadproperties task 2nd 3rd

locale attribute

 format task

 javadoc task

Locale class (Java)

localhomeinterface element (ejbdoclet task)

localinterface element (ejbdoclet task)

location attribute

 dtd element

 pathelement element

 property element 2nd

log command (CVS)

log method

 loggers and

 Project class 2nd

 Task class 2nd

Log4Unit

logError attribute

 apply task

 exec task

 java task

-logfile option

-logger option

loggers/logging

 custom 2nd

 output 2nd 3rd

logging in, source control and 2nd

login command (CVS) 2nd

logout command (CVS)

longfile attribute (tar task)

loops attribute (success/fail elements)

ls command (CVS) 2nd

lsacl command (CVS)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Mac OS environment

macrodef task

mail task 2nd 3rd

mailhost attribute (mail task) 2nd

MailLogger.failure.notify property

MailLogger.failure.subject property

MailLogger.failure.to property

MailLogger.from property

MailLogger.mailhost property

MailLogger.port property

MailLogger.success.notify property

MailLogger.success.subject property

MailLogger.success.toSpecifies property

mailport attribute (mail task)

manifest attribute

 ear task

 jar task

 war task

manifest element (jar task)

manifest files

 creating 2nd 3rd

 default

 example

 jar task and

 plug-in

manifest task 2nd

manifestencoding attribute (jar task)

mapped attribute (jspc task)

mapper element

 attributes 2nd

 batch execution and

 copying files and

 nesting 2nd 3rd

mappers 2nd

master targets

match attribute (replaceregexp task)

MatchingTask class 2nd 3rd

maudit task

maxmemory attribute

 java task

 javadoc task

 junit task

maxparallel attribute

 apply task

 chmod task

maybeConfigure method (Task class)

MD5 checksum

memoryInitialSize attribute (javac task)

memoryMaximumSize attribute (javac task)

merge mapper 2nd

mergeDir attribute

 ejbdoclet task

 webdoclet task

message attribute

 fail task

 input task

 mail task

message element (mail task)

messagefile attribute (mail task)

messagemimetype attribute (mail task)

metainf element

 jar task and

 war task and

Metamata Metrics/WebGain Quality Analyzer

methods

 attributes in custom tasks

 Project class and

 Property class

 Task class

Microsoft 2nd 3rd 4th

millis attribute (touch task)

mimemail task

mimetype attribute (message element)

mkdir task 2nd 3rd 4th

mmetrics task

mockdoclet task (XDoclet)

mode attribute

 manifest task

 tarfileset element

modification dates, files 2nd

modification sets

modificationset task

modified selector

modules

 checking out 2nd

 defined

 updating shared code 2nd

move task

 deployment and 2nd 3rd

 description

 filterchain element

 mappers and

 renamextension task and

MParse compiler (Metamata)

mparse task

multithreading tasks 2nd

mvcsoft element (ejbdoclet task)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

name attribute

 attribute element 2nd

 elements supporting 2nd

 factory element

 outproperty element

 param element

 project element 2nd 3rd

 property element

 section element

 target element

 taskdef task

 test task

name property (input task)

name=value format

naming attribute (ejbjar task)

native2ascii task

nesting

 arg elements

 batchtest element

 catalogpath element and

 checksum task and

 chmod task and

 classpath element

 dependencies and

 DirSet type and

 ejbdoclet task and 2nd

 ejbjar task and

 elements 2nd 3rd 4th

 fileset elements 2nd 3rd 4th 5th

 FilterChain type

 generic element and

 jar task and

 javac task and

 jonas element and

 jspc task and

 mail task and

 mapper element and 2nd 3rd

 message elements

 param elements

 PatternSet type 2nd

 property elements

 propertyset elements 2nd

 read elements

 reference elements 2nd

 replaceregexp task and

 selectors

 tarfileset elements

 taskdef task and

 text data

 user element

 webdoclet task and

 weblogic element and

 write elements

 xmlcatalog elements and

 xmlvalidate task and

 xslt/style task and

 zipgroupfileset elements

.NET 2nd

netrexxc task

New Java Class dialog box (Eclipse)

New Project dialog box (Eclipse)

newCMP attribute (weblogic element)

newenvironment attribute

 apply task

 exec task

 java task

 junit task

newer attribute (ftp task)

newline (/n)

nodeprecated attribute (javadoc task)

nodeprecatedlist attribute (javadoc task)

noEJBC attribute (weblogic element)

noexec attribute (cvs task)

nohelp attribute (javadoc task)

noindex attribute (javadoc task)

-noinput option

nonavbar attribute (javadoc task)

NonStop Kernel (Tandem)

noqualifier attribute (javadoc task)

not element (condition task)

notree attribute (javadoc task)

nowarn attribute (javac task)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

oc4j element (ejbdoclet task)

offset attribute (format task)

old attribute (javadoc task)

onerror attribute (taskdef task)

open source

 Ant and

 CVS and

 Eclipse and

 JUnit and

 XDoclet and

openejb element (ejbdoclet task)

operating systems

 Ant support

 build process and

 determining name

 exec task and 2nd

optimize attribute (javac task)

optional attribute (import task)

options attribute (cab task)

or element (condition task)

orb attribute (jonas element)

originalfile attribute (patch task)

orion element (ejbdoclet task)

os attribute

 apply task

 exec task 2nd 3rd

os element (condition task)

out attribute (xslt/style task)

outfile attribute (test task)

Outline view (Eclipse)

outproperty element

output

 build process and

 controlling

 logging 2nd

output attribute

 ant task

 antstructure task

 apply task

 cvs task

 exec task

 java task

 sshexec task

outputdir attribute (weblogic element)

outputencoding attribute (copy task)

outputproperty attribute

 apply task

 exec task

 java task

 sshexec task

overview attribute (javadoc task)

overwrite attribute

 copy task 2nd

 move task

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-p option

P4Add task

P4Change task

P4Counter task

P4Delete task

P4Edit task

P4Fstat task

P4Have task

P4Integrate task

P4Label task

P4Labelsync task

P4Reopen task

P4resolve task

P4Revert task

P4Submit task

P4Sync task

Pack class

package attribute

 cvs task

 cvschangelog task

 cvstagdiff task

 cvsversion task

 javadoc task

 jspc task

Package Explorer (Eclipse)

 build.xml file and 2nd

 creating build files

 creating projects

package mapper 2nd

packagelist attribute (javadoc task)

packagenames attribute (javadoc task)

packageSubstitution element

 ejbdoclet task

 webdoclet task

packaging applications/deployment

parallel attribute

 apply task

 chmod task

parallel task 2nd 3rd

param element

 nesting

 xslt/style task and

parentheses ()

parser attribute (xmlvalidate task)

passfile attribute

 cvs task

 cvschangelog task

 cvspass task

 cvstagdiff task

 cvsversion task

passive attribute (ftp task)

passphrase attribute

 scp task

 sshexec task

passwd command (CVS)

password attribute

 cvspass task

 ftp task

 generic element

 get task

 mail task

 scp task 2nd

 sshexec task

 telnet task

 weblogic element

password property (input task)

passwords 2nd 3rd

patch task 2nd 3rd

patchfile attribute (patch task)

path attribute

 compilearg element

 env element

PATH environment variable

path type 2nd 3rd

path-like structures

 core Ant types

 javac task and

 junit task and

 overview

pathconvert task 2nd

pathelement element

 catalogpath element and

 location attribute

 nesting and

paths

 absolute

 converting references to

 exec task and

 nested elements and

pattern attribute (format task)

patterns

 DirSet type attributes and

 fixcrlf task and

 glob mapper and

 replaceregexp task and

 selectors and

 working with

patternset element

 cab task and

 conditional actions

 depend task and

 DirSet type and

 fileset element and

 jar task and

 javac task

 xslt/style task and

 zip task and

PatternSet type 2nd 3rd

perforce task

Perforce, Ant tasks for

perform method (Task class)

perm attribute (chmod task)

permissions

 setting with chmod

 tarfileset type and

 Unix and 2nd

permissions element 2nd

Permissions type

plain formatter 2nd

plug-in manifest files

pollInterval attribute (parallel task)

port attribute

 cvs task

 cvschangelog task

 cvstagdiff task

 cvsversion task

 ftp task

 scp task

 sshexec task

 telnet task

portletdoclet task (XDoclet)

pramati element (ejbdoclet task)

prefix attribute

 property element

 tarfileset element

 tstamp task

 xmlproperty task

 zipfileset element 2nd 3rd

prefixlines element (FilterChain type) 2nd

present selector

preservelastmodified attribute

 copy task

 ftp task

preserveLeadingSlashes attribute (tarfileset element)

presetdef task

printsummary attribute (junit task)

private attribute (javadoc task)

Problems view (Eclipse)

processor attribute (xslt/style task)

Project class 2nd

project element 2nd

<project\\> tags

-projecthelp option 2nd

projects

 accessing in code

 creating

 modules and

 overview

 setting classpath

properties [See also types] [See also types]

 accessing in code

 built-in 2nd

 conditional actions

 declaring outside targets

 defined

 loading from XML files

 loading text files

 name=value format

 overriding

 passing with ant task

 setting conditions

 setting values

 setting with environment variables 2nd

 setting with tasks

 stopping builds

 text strings and

 values as tooltips

property attribute

 available task

 checksum task

 condition task

 format task

 loadfile task

 update task

Property class

property element

 attributes

 environment variables 2nd 3rd

 nesting

property files

property task

 declaring properties

 description

 example 2nd

 param elements and

-propertyfile option 2nd

propertyfile task 2nd

propertyref element

propertyset element 2nd

PropertySet type

protected attribute (javadoc task)

provider attribute (checksum task)

public attribute (javadoc task)

publicId attribute (dtd element)

pvcs task 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-q option

quiet attribute

 cvs task

 cvstagdiff task

 delete task

 patch task

-quiet option 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

rannotate command (CVS)

rdiff command (CVS) 2nd 3rd

read element (telnet task)

readbuffersize attribute (checksum task)

reallyquiet attribute (cvs task)

rebuild attribute (weblogic element)

reconfigure method (Task class)

record task

reference element 2nd 3rd

refid attribute

 FilterSet type

 property element

 reference element

 xmlcatalog element

regexp element

regexp mapper 2nd 3rd

regular expressions

 from attribute and

 mappers and 2nd

 substituting text

relative attribute (apply task)

release command (CVS)

reload task 2nd

reloading attribute (junit task)

reloadstylesheet attribute (xslt/style task)

remotedir attribute (ftp task) 2nd

remotefacade element (ejbdoclet task)

remoteinterface element (ejbdoclet task)

remove command (CVS)

rename task

renameextensions task

replace attribute (replaceregexp task)

replace task 2nd

replaceProperties method (Project class) 2nd

replaceregexp task 2nd

replacetokens element (FilterChain type)

replyto attribute (mail task)

replyto element (mail task)

report element

reports

 brief formatter

 change logs

 cvstagdiff task and

 junitreport task and

 plain formatter

 XML formatter

repositories

resin-ejb-xml element (ejbdoclet task)

resin-web-xml element (webdoclet task)

resolveExecutable attribute

 apply task

 exec task

resolveFile method (Project class)

resource attribute

 available task

 property element

 taskdef task

resultproperty attribute

 apply task

 exec task 2nd

 java task 2nd 3rd

return codes 2nd 3rd

reverse attribute (patch task)

rexec task

rlog command (CVS)

rmic task

rootDirectory attribute (xmlproperty task)

rpm task

rtag command (CVS)

run method (JUnit)

runBare method (JUnit)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-s option

SAX Parser

SAX2 parser

scanincludeddirectories attribute (xslt/style task)

Schema Unit Test (SUT)

schema, validating with 2nd

scp command (Unix)

scp task 2nd 3rd

Scripdef task

script task 2nd

section element (manifest task)

selector element (fileset element)

selectors 2nd 3rd 4th

Selectors type

semanticAttributes attribute (xmlproperty task)

semicolon (;)

separator attribute (ftp task)

sequential task 2nd 3rd

serialwarn attribute (javadoc task)

server attribute

 ftp task 2nd

 generic element

 jonas element

 telnet task

 weblogic element

server command (CVS)

serverdeploy task 2nd

servlets 2nd 3rd

session element (ejbdoclet task)

setBaseDir method (Project class) 2nd

setDefault method (Project class)

setDefaultInputStream method (Project class)

setDescription method

 Project class

 Task class

setInheritedProperty method (Project class)

setKeepGoingMode method (Project class)

setLocation method (Task class)

setName method

 JUnit framework

 Project class

setNewProperty method (Project class)

setOwningTarget method (Task class)

setProjectReference method (Project class)

setProperty method (Project class)

setproxy task 2nd

setRuntimeConfigurableWrapper method (Task class)

setTaskName method (Task class)

setTaskType method (Task class)

setUp method (JUnit) 2nd 3rd

setUserProperty method (Project class)

setValue method

 Commandline object

 EnumeratedAttribute class

shell commands 2nd

short data type

showduration attribute (splash task)

showoutput attribute (junit task)

signjar task

SimpleDateFormat class (Java) 2nd

size selector

skipemptyfilesets attribute (apply task)

skipFailedTransfers attribute (ftp task)

sleep task 2nd 3rd

SMTP servers 2nd

socket element (condition task) 2nd

Soscheckin task

Soscheckout task

Sosget task

Soslabel task

sound task 2nd 3rd

source attribute

 javac task

 javadoc task

 serverdeploy task

 success/fail elements

source code

 accessing projects/properties in

 checking out

 compiling

 patches to

source control [See CVS]

source release (Ant)

sourcefiles attribute (javadoc task)

SourceOffsite (SourceGear)

sourceoffsite task

sourcepath attribute

 javac task 2nd 3rd

 javadoc task

 path type

sourcepath element

sourcepathref attribute

 javac task

 javadoc task

spaces 2nd 3rd

spawn attribute

 apply task

 exec task

 java task

splash screens 2nd 3rd

splash task 2nd 3rd

splitindex attribute (javadoc task)

sql task

SQLUnit

src attribute

 get task

 gzip/bzip2 tasks

 message element

 script task

 unjar task

 zipfileset element 2nd

src element

srcdir attribute

 depend task

 ejbjar task

 fixcrlf task

 javac task 2nd 3rd

 jspc task

 path type

srcfile attribute

 example

 loadfile task

 purpose

 update task

srcfile element

SSH protocol 2nd 3rd

sshexec task 2nd 3rd

ssl attribute (mail task)

start attribute (cvschangelog task)

startdate attribute (cvstagdiff task)

StarTeam 2nd

starteam task

starttag attribute (cvstagdiff task)

status command (CVS)

STCheckin task

STCheckout task

STLabel task

STList task

stripjavacomments element (FilterChain type) 2nd

striplinebreaks element (FilterChain type)

striplinecomments element (FilterChain type) 2nd

strutsconfigxml element (webdoclet task)

strutsform element (ejbdoclet task)

strutsvalidationxml element (webdoclet task)

style attribute (xslt/style task)

style task 2nd 3rd

stylebook task

styledir attribute (report task)

stylesheetfile attribute (javadoc task)

subant task

subject attribute (mail task)

subroutine calls

substitution element (replaceregexp task)

subTask element

 ejbdoclet task

 webdoclet task

success element (sound task) 2nd

suffix attribute (weblogic element)

sunone element (ejbdoclet task)

support element (ejbjar task) 2nd

symlink task

sync task

syntax checking

sysproperty element

 junit task

 purpose

 weblogic element and

syspropertyset element 2nd

System.err 2nd

System.out 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tab attribute (fixcrlf task)

tablength attribute (fixcrlf task)

tabs, manipulating

tabstospaces element (FilterChain type) 2nd

tag attribute

 cvs task

 cvschangelog task

tag command (CVS)

tailfilter element (FilterChain type)

tar task 2nd

tarfileset element (tar task)

target attribute

 ant task

 antcall task

 javac task

target element 2nd 3rd

targetfile attribute

 update task

 uptodate task

targetfile element

targets

 Ant view and

 antcall task and

 build example

 build files and 2nd

 declaring properties and

 DirSet type and

 FileSet type and

 hyphens and

 master

 overview 2nd

 running multiple

 running test cases

targetStarted method

Task class 2nd

taskdef element

taskdef task

 attributes 2nd

 creating tasks

 description

 ejbdoclet task and

 target element and

 webdoclet task and

tasks [See also types] [See also types]

 adding

 built-in

 calling other

 creating custom

 creating DTDs for 2nd

 declaring outside targets

 defined

 dependent

 DirSet type and

 failonerror attribute

 FileSet type and

 grouping

 handling attributes

 implicit file sets

 life cycle of

 multithreading 2nd

 optional

 property-setting

 setting execution order

 third-party

 as wrappers

tearDown method (JUnit) 2nd 3rd

telnet task 2nd

tempdir attribute

 javac task

 junit task

tempfile task 2nd

test cases 2nd 3rd

test element

test suites

test task 2nd

TestCase class (JUnit) 2nd

TestCases method (JUnit)

testEquals method (JUnit)

testNotNull method (JUnit)

TestRunner class (JUnit)

tests/testing

 Ant

 build process

 criteria

 formatting results

 in batches 2nd 3rd 4th

 junit task and

 performing

 running test cases

 writing

TestSuite class (JUnit)

testTrue method (JUnit)

text data

 as attribute values

 filtering 2nd

 loading

 nesting

 os attribute and

 properties

 replaceregexp task and

threadCount attribute (parallel task)

threadsPerProcessor attribute (parallel task)

timediffauto attribute (ftp task)

timediffmillis attribute (ftp task)

timeout attribute

 apply task

 exec task 2nd

 java task

 junit task

 parallel task

 sshexec task

 telnet task

timeouts, handling

timestamp property (format element)

timestamps 2nd

timezone attribute (format task)

TimeZone class (Java)

to attribute

 glob mapper and

 mapper element

 regular expressions and

 slashes and

to element (mail task)

TODAY property (tstamp task) 2nd

todir attribute

 batchtest element

 checksum task

 copy task 2nd

 junitreport task

 report task

 scp task 2nd

 test task

tofile attribute

 copy task

 junitreport task

token attribute (filter task)

tokenfilter element (FilterChain type)

tokens 2nd

tolist attribute (mail task)

Tomcat web servers

 Anthill and

 deploying to

 Jasper JSP compiler

 .war files and

tooltips

torefid attribute (reference element)

toString method (JUnit)

totalproperty attribute (checksum task)

touch task 2nd

translate task

translatePath method (Project class)

TraX processor

true/false tests 2nd

trust attribute

 scp task 2nd

 sshexec task

TSTAMP property (tstamp task) 2nd

tstamp task 2nd

type attribute

 apply task

 available task

 chmod task

 formatter task

 mapper element

type selector

typedef task 2nd

types [See also properties] [See also properties]

 adding

 core 2nd

 creating

 file filters 2nd

 filtering/modifying text

 lists of files

 mappers as

 path-like structures

 selectors as 2nd

 working with groups of directories

 working with groups of files

 working with patterns

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

umask attribute (ftp task)

UMASK permissions (Unix) 2nd

undeploy action

 JOnAS servers

 weblogic tool

undeploy task 2nd

unedit command (CVS)

Unicode characters 2nd

unit attribute (format task)

Unix environment

 build process 2nd

 chmod task and

 crontab utility 2nd 3rd

 end-of-line characters

 exec task and

 executing shell commands

 file permissions and

 installing Ant

 MAC OS and

 permissions and

 scheduling automatic builds 2nd

 verbose build 2nd

unjar task 2nd

unless attribute

 batchtest element

 elements supporting 2nd

 fail task and 2nd

 formatter task

 param element

 target element

 test task

Unpack class

unpackage mapper 2nd

untar task 2nd

unwar task

unzip task 2nd

update action

 JOnAS servers

 weblogic tool

update attribute

 ear task

 jar task 2nd

 war task

 zip task

update command (CVS) 2nd

uptodate element (condition task)

uptodate task

 attributes for

 description

 file modification dates and

 mappers and

 package mapper and

uri attribute (taskdef task)

uribase attribute (jspc task)

uriroot attribute (jspc task)

url attribute

 property element

 property task 2nd

URL schemas

use attribute (javadoc task)

useexternalfile attribute (javadoc task)

usefile attribute

 formatter element

 formatter task

user attribute (mail task)

user element

userid attribute

 ftp task

 telnet task

 user element

username attribute

 generic element

 get task

 sshexec task

 tarfileset element

 weblogic element

usernames 2nd

usersfile attribute (cvschangelog task)

usetimestamp attribute (get task)

utilobject element (ejbdoclet task)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

-v option

vajexport task

vajimport task

vajload task

validargs attribute (input task)

validate attribute (xmlproperty task)

value attribute

 argument element

 attribute element 2nd

 available task

 compilearg element

 condition task

 env element

 filter task

 outproperty element

 property element

 property task

 setting property values

 system properties and

 update task

valueobject element (ejbdoclet task)

vbc task

verbose attribute

 apply task

 cab task

 chmod task

 copy task

 delete task

 ejbdoclet task

 ftp task

 get task

 javac task

 javadoc task

 jspc task

 webdoclet task

-verbose option 2nd

verifyproperty attribute (checksum task)

version attribute (javadoc task)

version command (CVS)

-version option

Visual Source Safe (Microsoft) 2nd

vmlauncher attribute

 apply task

 exec task

Vssadd task

Vsscheckin task

Vsscheckout task

Vsscp task

Vsscreate task

vssget task

Vsshistory task

Vsslabel task

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

waitfor task 2nd 3rd

war task 2nd

warfile attribute (war task)

warn attribute (xmlvalidate task)

watch command (CVS)

watchers command (CVS)

.wav format

web applications

 compiling JSPs

 creating CAB files 2nd

 creating WAR archives

 EJB containers and

 scp task and

 simple web deployment 2nd

 Tomcat servers and

 XDoclet and

webdoclet task (XDoclet) 2nd

webinc attribute (jspc task)

webinf element (war task)

weblogic element 2nd 3rd 4th

Weblogic servers 2nd 3rd 4th 5th

weblogic.deploy deployment tool

weblogicwebxml element (webdoclet task)

websphere element 2nd

webspherewebxml element (webdoclet task)

webworkactiondocs element (webdoclet task)

webworkactionsxml element (webdoclet task)

webworkconfigproperties element (webdoclet task)

webxml attribute

 jspc task

 war task

whenempty attribute

 jar task

 zip task

whichresource task

wildcards 2nd

Windows environment

 at command 2nd

 build process 2nd

 CVS servers

 end-of-line characters and

 exec task and 2nd 3rd

 executing shell commands

 filename lengths

 installing Ant

 scheduling automatic builds

 spaces in username

 verbose build

windowtitle attribute (javadoc task)

wlclasspath attribute (weblogic element)

wlclasspath element (weblogic element)

wljspc task

wlrun task (EJB) 2nd 3rd

wlstop task (EJB) 2nd

write element

WsdlToDotNet task

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Xalan processor 2nd

XDoclet 2nd

XML documents 2nd 3rd

XML files

XML formatter 2nd 3rd

XML, transforming

xmlcatalog element 2nd

XMLCatalog type

xmlproperty task 2nd 3rd

xmlvalidate task 2nd

XSLT 2nd

xslt task 2nd 3rd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zip task

 description

 jlink task and

 overview

 .war files and

 zipfileset element and 2nd

zipfile attribute

 gzip/bzip2 tasks

 zip task

zipfileset element

 attributes

 ear task and

 war task and

 zip task and

ZipFileSet type

zipgroupfileset element

	Ant: The Definitive Guide, 2nd Edition
	Table of Contents
	Copyright
	Preface
	What's Inside
	Conventions Used in This Book
	What You'll Need
	Using Code Examples
	We'd Like to Hear from You

	Chapter 1. Getting Started
	Section 1.1. Ant's Origins
	Section 1.2. Getting Ant
	Section 1.3. Ant at Work
	Section 1.4. Anatomy of a Build File
	Section 1.5. Running Ant

	Chapter 2. Using Properties and Types
	Section 2.1. Using Properties to Control Tasks
	Section 2.2. Using Property Files
	Section 2.3. Handling Data Using Types

	Chapter 3. Building Java Code
	Section 3.1. Compiling Code
	Section 3.2. Getting Input from the User
	Section 3.3. Calling Other Ant Tasks
	Section 3.4. Importing Other Build Files
	Section 3.5. Documenting Code
	Section 3.6. Creating JAR Files
	Section 3.7. Setting Build Numbers
	Section 3.8. Setting Timestamps

	Chapter 4. Deploying Builds
	Section 4.1. Packaging Applications for Deployment
	Section 4.2. Preparing to Deploy
	Section 4.3. Deploying Applications
	Section 4.4. Scheduling Automatic Builds

	Chapter 5. Testing Builds with JUnit
	Section 5.1. Using JUnit
	Section 5.2. Running Test Cases
	Section 5.3. Testing in Batches
	Section 5.4. Running the Build File
	Section 5.5. Extending JUnit

	Chapter 6. Getting Source Code from CVS Repositories
	Section 6.1. Source Control and Ant
	Section 6.2. Logging In
	Section 6.3. Working with the Server
	Section 6.4. Getting Version Data
	Section 6.5. Creating Change Logs
	Section 6.6. Finding Changes Between Versions
	Section 6.7. Creating Patches

	Chapter 7. Executing External Programs
	Section 7.1. Executing Java Code
	Section 7.2. Executing External Programs
	Section 7.3. Performing Batch Execution
	Section 7.4. Multithreading Tasks
	Section 7.5. Setting Execution Order

	Chapter 8. Developing for the Web
	Section 8.1. Creating WAR Archives
	Section 8.2. Creating CAB Files
	Section 8.3. Creating Simple Web Deployment
	Section 8.4. Deploying with SCP
	Section 8.5. Deploying to Tomcat
	Section 8.6. Deploying to Tomcat
	Section 8.7. Compiling JSPs
	Section 8.8. Deploying to EJB Containers

	Chapter 9. XML and XDoclet
	Section 9.1. Validating XML Documents
	Section 9.2. Loading Properties from XML Files
	Section 9.3. Creating Ant Task DTDs
	Section 9.4. Transforming XML Using XSLT
	Section 9.5. Using XDoclet
	Section 9.6. Developing Enterprise JavaBeans

	Chapter 10. Optional Tasks
	Section 10.1. Using Sound
	Section 10.2. Creating Splash Screens
	Section 10.3. Subtituting Text Using Regular Expressions
	Section 10.4. Handling Dependencies

	Chapter 11. Integrating Ant with Eclipse
	Section 11.1. Introducing Eclipse
	Section 11.2. Running Ant Build Files
	Section 11.3. Using a Different Version of Ant
	Section 11.4. Using the Ant View

	Chapter 12. Extending Ant
	Section 12.1. Creating a Simple Custom Ant Task
	Section 12.2. Extending the Task Class
	Section 12.3. Creating Custom Listeners
	Section 12.4. Creating Custom Loggers
	Section 12.5. Creating Custom Filters
	Section 12.6. Creating Custom Selectors
	Section 12.7. Creating New Types

	Colophon
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

