

•
Table of

Contents

• Index

• Reviews

• Examples

•
Reader

Reviews

• Errata

AppleScript in a Nutshell

By Bruce W. Perry

Publisher: O'Reilly

Pub Date: June 2001

ISBN: 1-56592-841-5

Pages: 526

Slots: 1

AppleScript in a Nutshell is the first complete reference to AppleScript, the
popular programming language that gives both power users and sophisticated
enterprise customers the important ability to automate repetitive tasks and
customize applications. AppleScript in a Nutshell is a high-end handbook at a
low-end price--an essential desktop reference that puts the full power of this
user-friendly programming language into every AppleScript user's hands.

•
Table of

Contents

• Index

• Reviews

• Examples

•
Reader

Reviews

• Errata

AppleScript in a Nutshell

By Bruce W. Perry

Publisher: O'Reilly

Pub Date: June 2001

ISBN: 1-56592-841-5

Pages: 526

Slots: 1

 Copyright

 Preface

 Organization of This Book

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Part I: Introduction to AppleScript

 Chapter 1. AppleScript: An Introduction

 Section 1.1. How Is AppleScript Used?

 Section 1.2. Apple Events

 Section 1.3. Using Script Runner with OS X

 Section 1.4. Using OSA Menu with OS 9

 Section 1.5. Checking Your AppleScript Version

 Section 1.6. Diving In

 Chapter 2. Using Script Editor with OS 9 and OS X

 Section 2.1. Script Editor Controls/Commands

 Section 2.2. Scripting the Script Editor

 Part II: AppleScript Language Reference

 Chapter 3. Data Types

 alias

 boolean

 class

 constant

 data

 date

 file specification

 integer

 international text

 list

 number

 real

 record

 reference

 RGB color

 string

 Styled Clipboard Text

 Styled Text

 text

 Unicode Text

 Unit of Measurement Classes

 Chapter 4. Operators

 &

 ()

 *

 +

 -

 / ÷ div

 <

 <=

 =

 >

 >=

 ^

 [a] reference to

 and

 as

 begin[s] with

 contains

 does not contain

 does not equal

 ends with

 is contained by

 is not contained by

 m od

 not

 or

 Chapter 5. Reference Forms

 after

 back

 before

 beginning

 first, second, third, fourth, etc.

 every

 every ... from ... to ...

 id

 last

 middle

 name

 some

 whose

 Chapter 6. Variables and Constants

 Section 6.1. Variables

 Section 6.2. Constants and Predefined Variables

 Chapter 7. Flow-Control Statements

 considering [but ignoring] end [considering]

 continue

 error

 exit [repeat]

 if simple statement

 if [then] [else if] [else] end [if]

 ignoring [but considering] end [ignoring]

 repeat end [repeat]

 repeat until end [repeat]

 repeat while end [repeat]

 repeat with {loop variable} from {integer} to {integer}[by stepVal] end [repeat]

 repeat with {loop variable} in {list} end [repeat]

 repeat {integer} times end [repeat]

 return [return value]

 tell simple statement

 tell end [tell]

 try [on error] [number | from | partial result | to] end[error | try]

 using terms from end [using terms from]

 with timeout [of] {integer} second[s] end [timeout]

 with transaction [session object] end [transaction]

 Chapter 8. Subroutines

 Section 8.1. Subroutines with Positional Parameters

 Section 8.2. Subroutines with Labeled Parameters

 Chapter 9. Script Objects and Libraries

 Script Objects

 Libraries

 Part III: Scripting Mac OS 9 Applications

 Chapter 10. Apple Guide and Help Viewer

 Apple Guide

 Help Viewer

 Chapter 11. Apple System Profiler

 Apple System Profiler

 Chapter 12. Keychain Scripting and Apple Verifier

 Keychain Scripting

 Apple Verifier

 Chapter 13. Desktop Printer Manager

 Desktop Print Manager

 Chapter 14. Mac OS 9 Finder Commands

 Section 14.1. Example Finder Scripts

 Chapter 15. Mac OS 9 Finder Classes

 Finder Classes

 Chapter 16. Network Setup Scripting

 Network Setup Scripting

 Chapter 17. Scripting Sherlock 2

 Sherlock 2

 Chapter 18. URL Access Scripting

 URL Access Scripting

 Part IV: Scripting Mac OS 9 Control Panels and Extensions

 Chapter 19. Appearance Control Panel

 Appearance Control Panel

 Chapter 20. Apple Data Detectors Extension

 Apple Data Detectors

 Chapter 21. Apple Menu Options Control Panel

 Apple Menu Options

 Chapter 22. Application Switcher Extension

 Application Switcher

 Chapter 23. ColorSync Extension

 ColorSync

 Chapter 24. File Exchange Control Panel

 File Exchange

 Chapter 25. File Sharing Control Panel

 File Sharing

 Chapter 26. Folder Actions Extension

 Folder Actions

 Chapter 27. FontSync Control Panel and Extension

 FontSync Control Panel

 FontSync Extension

 Chapter 28. Location Manager Control Panel

 Location Manager

 Chapter 29. Memory and Mouse Control Panels

 Memory Control Panel

 Mouse Control Panel

 Chapter 30. Speech Listener and SpeakableItems Extension

 Speech Listener Application

 SpeakableItems Extension

 Embedded Speech Commands

 Chapter 31. Web Sharing Control Panel

 Part V: Scripting the Mac OS X System

 Chapter 32. Scripting the OS X Desktop

 Section 32.1. Working with Files, Folders, Disks, and Windows in OS X

 Chapter 33. Scripting Mail

 Section 33.1. Setting Up an Email Message

 Section 33.2. Exploring the Mail Application Object

 Section 33.3. Getting Information about an Email Account

 Chapter 34. Executing Scripts with the Terminal App

 osacompile

 osalang

 osascript

 Chapter 35. Scripting TextEdit

 TextEdit

 Part VI: Appendixes

 Appendix A. Standard Scripting Additions

 Standard Additions

 Standard Additions

 Appendix B. AppleScript Resources

 Section B.1. Apple Computer AppleScript URLs

 Section B.2. AppleScript FAQs, Mailing Lists, and Tutorials

 Section B.3. Macintosh Scripting Sites

 Section B.4. Commercial AppleScript Development Environments

 Section B.5. Freeware AppleScript Development Environments

 Colophon

 Index

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps. The association of the image of a Boston terrier and the topic of AppleScript is a trademark of
O'Reilly & Associates, Inc.

Apple Computer, Inc. boldly combined open source technologies with its own programming efforts to
create Mac OS X, one of the most versatile and stable operating systems now available. In the same spirit,
Apple has joined forces with O'Reilly & Associates to bring you an indispensable collection of technical
publications. The ADC logo indicates that the book has been technically reviewed by Apple engineers and
is recommended by the Apple Developer Connection.

Apple, Macintosh, AppleScript, Mac OS, and Mac OS X are registered trademarks of Apple, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

Preface

AppleScript continues to evolve on Mac OS 9 and Mac OS X as the ultimate scripting tool for the
Macintosh. AppleScript's power to automate the operating system and complex applications such as
graphics, desktop-publishing, and database programs, as well as a friendly English language dialect that
helps ambitious scripters get up to speed quickly with their own applets, is not matched by any other
platform's programming language. Yet, only a small percentage of Macintosh users are even aware that
AppleScript is installed with their operating system. Those who are aware of AppleScript's presence on
their machine often do not take full advantage of this tool to automate their daily computing activities, both
on their local machine and over the Internet.

Who should and can use AppleScript? The following users come to mind right away: system
administrators who are automating tasks with networks and applications; web and graphics professionals
who want to control the development of web sites and publications; scientists, mathematicians, and
engineers who require applets to make calculations and automate their own software tools, as well as day-
to-day programmers and students who are designing and prototyping new programs. Not to mention
everday users who want to automate their own computing tasks, such as file and folder backups.

If you are on a Macintosh, then you should be putting AppleScript to work for you.

The purpose of this book is primarily three-fold:

Describe AppleScript and its tools (Part I) and provide a core language reference (Part II) that all
users can keep next to their computers as they write new scripts.

1.

Provide detailed descriptions, examples, and reference information on how to script the numerous
system-level programs on Mac OS 9 (Part III and Part IV) and Mac OS X (Part V), such as the
Finder on both OS versions, Sherlock, and Network Setup Scripting.

2.

Give scripters general insight on how to approach the scripting of several programs that can be
automated by AppleScript, such as Adobe Illustrator and Photoshop, FileMaker Pro, QuarkXPress,
SoundJam MP, and OutLook Express. The mantra is, study the "application class" in the program's
AppleScript dictionary and you'll be up and running with scripting that program before you know it.
(Chapter 1 discusses the application class in general terms; while the application classes of all the
various system components are described in detail throughout the book.)

3.

Hopefully, this book will help reveal AppleScript to more Macintosh users, thus providing them with
another outlet for creativity and productivity.

Organization of This Book

AppleScript in a Nutshell is structured in six parts.

Part I

This section provides an overview of AppleScript and Script Editor, the free AppleScript development tool
that installs with the Macintosh. Quick studies and experienced programmers will probably be able to
develop their first AppleScripts (if you have never used AppleScript before) based on a reading of this
introductory section alone. Chapter 1 describes how AppleScript is primarily used and also describes the
relevance to AppleScript of Apple events, an internal messaging system that the Macintosh operating
system uses for interapplication communication. The end of Chapter 1 summarizes AppleScript's core
language features (Part II provides a more comprehensive language reference). You can use Chapter 2
as a helpful reference to Script Editor as you use this Apple Computer tool to develop your scripts.

Chapter 1

This AppleScript overview includes a description of how AppleScript is primarily used, an Apple-event
tutorial, and a compressed language reference for those who want to dive right into scripting. Novice users
should start here with the book, while very experienced AppleScripters may use this section as a review or
skip over it.

Chapter 2

This chapter describes all of Script Editor's primary menu commands and controls. It also explains the
various options for saving AppleScript files.

Part II

If scripters need more information on specific language features, this is the place to look. The core-
language information is presented with syntax examples, code examples, and text descriptions. Everything
is arranged in alphabetical order to make things easy to locate. This includes the various data types (i.e.,
how AppleScript stores data in memory), operators (such as the common Math operators and the string-
concatenation operator "&"), and how to set AppleScript variables and create user-defined functions, as
well as advanced features, such as creating object-oriented script objects (Chapter 9).

Chapter 3

This chapter describes the built-in AppleScript data types, including string, integer, real, list, and
record. Comparisons with programming languages are made where it is appropriate (e.g., a list is like an
array, and a record is an associative array).

Chapter 4

Use this chapter as a reference to the built-in symbols (e.g., &, +, *, -) that you can use in AppleScript
expressions.

Chapter 5

AppleScript provides several English-language terms to use when the script refers to objects on your
computer system, such as files, folders, disks, and applications. This chapter is an alphabetical reference
to these terms (e.g., first, every, id, where).

Chapter 6

AppleScript, like other languages, uses variables as placeholders that represent data (e.g., strings or
numbers). This chapter describes the rules for naming and creating your own variables; it also provides a
reference to AppleScript's constants and predefined variables (like pi).

Chapter 7

This chapter is an alphabetical reference to AppleScript's flow-control statements, such as if, repeat, try,
exit, and continue.

Chapter 8

This chapter is a tutorial on creating user-defined subroutines, which are also called handlers, functions, or
methods (in object-oriented parlance). The second part of this chapter describes five special handlers in
AppleScript: idle, open, quit, reopen, and run.

Chapter 9

AppleScripters can create script objects, which are user-defined types that can have their own attributes
and methods. This chapter also describes function libraries, which are script objects that give other
external scripts the ability to load and/or call the object's own functions.

Part III

This section is devoted to the scripting of system-level Mac OS 9 programs, such as Apple System
Profiler, Keychain Scripting, the Finder, Network Setup Scripting, and Sherlock 2. The scriptable control
panels and extensions are covered in the next section, Part IV. The programs that are covered in this
section for the most part have comprehensive AppleScript dictionaries and can be used to extend your
computer's capabilities (particularly with AppleScript!); however; they are not control panels or extensions.
The exception to this scheme is Apple Guide, which is an extension but was included in this section so
that the reader has access in a single chapter to a description of AppleScript and the help-related

programs. Each chapter describes the purpose of the application, then describes each dictionary
command and class in a reference-style form.

Chapter 10

This chapter describes the dictionaries and includes scripting tips for Apple Guide, the traditional
automated Apple-help program, and the newer browser-based Help Viewer tool.

Chapter 11

Accessible from the Apple menu, Apple System Profiler displays a wealth of information about the
hardware and software on your system. This chapter describes its commands and classes and includes
numerous code examples.

Chapter 12

These are two Apple-security tools. Keychain Scripting is used to encrypt files and passwords, and Apple
Verifier can verify digitally-signed files. This chapter tells where to find these applications and describes
their commands and classes in reference form.

Chapter 13

Scripters can use Desktop Printer Manager, a program introduced with Mac OS 8.5, to create and
manage desktop icons that can be used for printing or otherwise processing documents and files. This
chapter describes the proper syntax for controlling this application with AppleScript and also includes a
reference to its dictionary commands and classes.

Chapter 14

The Finder is the Mac OS 9 application that controls the user's visual interface to the computer: its
desktop controls as well as hard disks, network volumes, printers, and other devices. A lot of fun and
useful AppleScripts deal with automating Finder activities, such as reading from and writing to files. This
chapter covers the Finder commands, like restart, shutdown, sleep, and make, with detailed references to
each command and any of their parameters.

Chapter 15

This chapter covers the Finder classes, which are all the objects or things you are likely to control when
scripting the Finder (e.g., files, folders, disks, and running applications). Finder Classes provides a detailed
reference to each object's elements (if any) and properties.

Chapter 16

As the Macintosh becomes a sophisticated client and server on TCP/IP networks, Network Setup Scripting
shows how you can use the commands and classes of this program with Open Transport to script a
machine's various network configurations.

Chapter 17

You can automate sophisticated searches of local networks and the Web with AppleScript and Sherlock
2. Scripting Sherlock 2 provides a description of this program and a reference, with code examples, to its
commands (e.g., index containers, search) and classes.

Chapter 18

URL Access Scripting describes the download and upload commands of this program, which can be used
with the FTP and HTTP protocols to grab and save files off the Web.

Part IV

This section is dedicated to the scripting of the Mac's control panels and extensions, which are located in
the Control Panels and Extensions folders of the System Folder. Each chapter describes the purpose of
this system software, then includes a reference to their dictionary commands and classes. Some of the
more exciting new scriptable technologies are included in this section, including Apple Data Detectors,
Folder Actions, and the Speech-related extensions in Chapter 30.

Chapter 19

This scriptable control panel lets you use AppleScript to set and change the visual and audible aspects of
your computer, such as its background color, the font for desktop text, and how window title bars and scroll
bars work. We show you how to do this and include a detailed reference to this software's commands and
classes.

Chapter 20

This chapter describes a powerful scripting technology by which you can assign an AppleScript to be
triggered based on certain information that a user selects inside of a contextual menu, such as an email or
web address. Apple Data Detectors Extension describes the Apple Data Detectors scripting-addition class
and commands in reference form.

Chapter 21

This chapter describes how to use AppleScript to automate various menu items (e.g., Recent applications,
documents, and servers) in the Apple menu (the drop-down menu in the upper-left part of the computer
screen).

Chapter 22

The Application Switcher is the floating palette that the user can "tear" off of the Application menu (on the
upper-right part of the computer screen). This chapter describes how to set various Switcher elements
(e.g., its size, position, button order) with AppleScript and includes a reference to its extensive
application class.

Chapter 23

ColorSync Extension describes the AppleScript commands and classes for this built-in Macintosh
software, which helps synchronize color-matching between the devices that create an image (e.g.,
scanners) and printers.

Chapter 24

This chapter describes the File Exchange commands that you can use to create new extension mappings
(i.e., a way to tell the Macintosh how to handle files with certain extensions like .html), for instance, or view
the existing file-type mappings on a machine.

Chapter 25

This chapter first summarizes file sharing on the Macintosh, which establishes the level of access network
users have to a machine's disks and folders. Then it shows how to create new users or groups (or delete
miscreants) with code examples and a reference section on File Sharing's dictionary commands and
classes.

Chapter 26

Folder actions are AppleScripts that are triggered when items are added to or removed from a folder.
Folder action commands constitute the Folder Actions suite of the Standard Additions osax and the
dictionary commands that derive from the Folder Actions extension. This chapter describes both sets of
commands.

Chapter 27

This chapter describes the dictionaries for the FontSync control panel and extension. They are used to
synchronize the fonts between devices during image production and printing.

Chapter 28

This chapter shows how you can use AppleScript to switch between the various computer and networking
configurations that are displayed by the Location Manager control panel.

Chapter 29

This chapter describes the dictionary commands and classes for both the Memory and Mouse control
panels. For example, the chapter shows how you can use an applet to find out about the computer's
virtual-memory settings or disk-cache size.

Chapter 30

This chapter describes the different ways that you can integrate speech into your scripts, such as the listen
for and say AppleScript commands. Speech listener is actually an application that is located in the
Scripting Additions folder of the System Folder, but it will not work unless the Speech Recognition
extension is installed and enabled.

Chapter 31

This chapter describes the functionality of the Web Sharing control panel and also gives an example of
how to use AppleScript with a Common Gateway Interface (CGI) script. CGI scripts execute in response to
web page requests, in order to process the incoming data from a form a web user has filled out, for
instance. The Web Sharing control panel can be used to allow a computer to perform as a light-weight
web server.

Part V

AppleScript is in a state of flux and evolution on the new Mac OS X system. AppleScript also faces
tremendous competition from the programming tools that come with (and can be installed on) Mac OS X,
such as shell scripting tools, Perl, and Java. Nevertheless, this section will describe what you can do with
AppleScript and three Mac OS X programs that can be used with AppleScript: Mail, Terminal application (a
command-line tool), and TextEdit. Part V begins with a discussion of AppleScript and scripting the new
Mac OS X Finder, which is the OS 9 Finder after a major facelift.

Chapter 32

This chapter explains some of the familiar Finder-like scripting that you can accomplish on Mac OS X,
such as getting information about desktop items (e.g., files, folders, and disks) and making new files.
This chapter compares the Mac OS X Finder dictionary to the Mac OS 9 Finder dictionary (and finds few
differences, but that is likely to change with new OS X versions).

Chapter 33

This chapter describes the use of AppleScript with Apple Computer's new email application, aptly called
"Mail." This chapter provides descriptions and code examples on setting up a new mail message and
getting information about an email account.

Chapter 34

Terminal application is the command-line tool or interface (a window or shell that you type script
commands into) that comes with Mac OS X. This chapter shows how you can create, compile, and
execute AppleScripts from the Terminal program.

Chapter 35

It is likely that the TextEdit's available AppleScript commands will change with new Mac OS X releases, so
this chapter focuses on TextEdit's major commands (e.g., count, open, save) and text-related classes,
such as character, document, paragraph, and text.

Part VI

Our AppleScript book would not be complete without a description and reference information on the many
scripting additions or "osaxen" that veteran scripters use in almost every script (remember display dialog
or current date ?). Appendix A covers the Standard Additions (a group of scripting additions that Apple
Computer bundles with the OS installation) that are installed with both Mac OS 9 and Mac OS X. This
section describes each of the Standard Additions (e.g., ASCII number, beep, choose application) and any
parameters that these osax commands use. Appendix B, is a list of URLs that are relevant to AppleScript
users.

Appendix A

This appendix focuses on the several dozen Standard Addition scripting additions, which are installed
along with Mac OS 9 and Mac OS X. These are extensions to the built-in AppleScript commands that you
can use virtually anywhere in your script (Chapter 1 also discusses scripting additions). The Standard
Additions are located in the startup disk:System Folder:Scripting Additions folder in OS 9 and, with Mac
OS X, /System/Library/ScriptingAdditions/ (the primary location on OS X).

Appendix B

This is an extensive list of web pages relating to Macintosh scripting and AppleScript.

Conventions Used in This Book

The followi typographical conventions are used in this book:

Constant width

Is used to indicate command-line computer output and code examples, as well as AppleScript class
names, objects, parameters, data types, properties, methods, constants, variables, and flow-control
statements like repeat.

Constant width bold

Is used to indicate user input in examples.

Italic

Is used to introduce new terms and to indicate URLs, user-defined files and directories, commands,
file extensions, filenames, directory or folder names, and UNC pathnames.

Italic is also used to highlight chapter titles and, in some instances, to visually separate the topic of a
list.

This is an example of a note, which signifies valuable and timesaving information.

This is an example of a warning, which alerts to a potential pitfall in the program.
Warnings can also refer to a procedure that might be dangerous if not carried out in
a specific way.

Keyboard Shortcuts

When keyboard shortcuts are shown (Command-N), a hyphen means that the keys must be held
down simultaneously, while a plus means that the keys should be pressed sequentially.

Path Notation

We use a shorthand path notation to show you how to reach a given user interface element or
option. The path notation is relative to a well-known location. For example, the following path:

Script Editor's File Open Dictionary

means "Open the Script Editor's File menu, then choose Open Dictionary."

File path delimiters

AppleScript uses the colon to separate the directories in a file path, as in MyStartupDisk:Desktop
Folder:myfile. The major scripting additions that deal with file paths, such as choose file, choose file

name (Mac OS X and OS 9.1), choose folder, and path to, display their file paths in alias return
values as colons. The chapters that deal with Mac OS X, however, will often identify the locations of
files and folders with the Unix-style slash character / as the path delimiter (e.g.,
/users/bruceper/documents/). This is the path delimiter used by Darwin, which is the core operating
system for Mac OS X and has Unix origins. The opening slash character in the file path
/users/bruceper/ sets the beginning of the path to the "users" folder on the disk or partition where
Mac OS X is located. AppleScript on Mac OS X still generally uses colons as the path delimiter,
however, which maintains consistency with older scripts (OS 8/9). One place where you can use
the slash character to locate a path for AppleScript is in setting the target property for a Finder
window, as in:

set the target of Finder window 1 to "/users/bruceper/"
Italic Constant Width

On occasion, you will find a command description such as connect remote access configuration
object, which means that the connect command takes a remote access configuration object as a
parameter.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors you
find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You
can access this page at:

http://www.oreilly.com/catalog/aplscptian/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

http://www.oreilly.com/catalog/aplscptian/
http://www.oreilly.com

Acknowledgments

Every book is a prodigious effort that could never be accomplished by the author alone. I would first like to
thank my wife Stacy LeBaron and daughter Rachel, who have patiently and sympathetically waited for me
to emerge from what has seemed, to them, a never-ending process of word- and code-crunching. Next I
would like to gratefully acknowledge Anne and Robert Perry, my parents, who have instilled in me a love
of books and the intellectual discipline it takes to digest and write them. The O'Reilly team has been
indispensable: my editors Simon Hayes, for his insightful nudging and prodding when I first proposed the
project, and the tireless efforts of Troy Mott and Bob Herbstman as the book entered the final production
stages.

Chris Stone at O'Reilly also has made tremendous contributions to the shaping of this book. Thanks to Bill
Cheeseman and Paul Berkowitz for helpful technical reviews of several chapters. Finally, I would also like
to acknowledge all the AppleScript experts and engineers at Apple Computer who took time out from their
busy schedules to comment on this book.

Part I: Introduction to AppleScript

Chapter 1. AppleScript: An Introduction

AppleScript is a scripting tool that installs with the Mac OS, including the newest release, Mac OS X.
Programmers and power users use AppleScript to create scripts and applets, which are small Mac
programs that can both accomplish useful tasks on their own and greatly extend the capabilities of other
software systems.

This chapter covers the following topics:

How AppleScript is used (for example, for software automation and the attaching of scripts within an
application's menus).

An overview of Apple events, a messaging technology that AppleScript uses to control scriptable
applications. This section briefly describes (1) how AppleScript code sends Apple events, as well as
(2) Apple event classes and objects.

Two applications that you can use to access and run your scripts from the file system: Script
Runner (for Mac OS X) and OSA Menu (Mac OS 9). Chapter 2, is completely devoted to Script
Editor, which is the script development environment that installs with the Macintosh OS.

AppleScript's language elements, such as data types, variables, handlers (i.e., subroutines or
functions), and flow-control statements. This is a "quick reference" for the readers who want to
dispense with narrative and dive right into scripting. Part II then covers all of these elements in detail.

1.1 How Is AppleScript Used?

AppleScript can be used for both simple, self-contained solutions, such as a program whose sole purpose
is to monitor how much space is left on a disk, and comprehensive systems that automate or control a
suite of software programs. Let's begin with a simple script type, a standalone applet that is not attached to
or designed to automate another software program.

You generally create an applet by typing AppleScript source code into an Apple Computer scripting
program called Script Editor. You then compile the script (if it does not have any errors) into a small
program called a compiled script or an applet that can be double-clicked on the desktop. An AppleScript
applet is a self-contained program with its own desktop icon, while a compiled script requires a host
program like Script Editor or Script Runner (see "Using Script Runner with OS X" later in this chapter) to
run it. Figure 1-1 shows an applet icon. Chapter 2 also explains the various options for saving an
AppleScript.

Figure 1-1. An applet icon

AppleScript is a great tool for writing everyday utilities, such as managing files, folders, disks, and
networking activities. The utility scripts provide all the functionality you need, without the necessity to
automate another software program. These tasks, such as file backups or getting a browser to access
certain web pages, would be time-consuming and tedious if they always had to be performed manually.
Two examples of scripts that I run at least once every day are:

A script that displays a dialog listing the names of all of the running programs on the Mac, including
invisible background processes. I can select one or more of these programs and click a button on the
dialog window to close them.

An applet that calculates the remaining free space on all of the volumes that are mounted on the
desktop, then displays the result for each volume and the total free storage space on all of the
volumes put together.

A single hard disk can be divided into several volumes, which the Mac OS
represents as disk icons on the user's desktop.

By now you would probably like to see just what applet source code looks like. The script in Example 1-1
displays the largest unused block of Random Access Memory (RAM) remaining on the computer where
the script is run.

Example 1-1. AppleScript Displaying the Largest Block of Free Memory

tell application "Finder"

 activate

 set memblock to (largest free block / 1024 / 1024)

display dialog "The largest free block is now about " & (memblock) &¬

" megabytes."

end tell

This script asks the Finder application for a piece of data that the Finder maintains called "largest free
block." This represents the size of the largest free memory block in bytes. The following script fragment:

(largest free block / 1024 / 1024)

divides this byte-size figure twice by 1024 to represent the result in megabytes, since most people
convey the amount of computer memory they have using this measurement. display dialog is an often-
used extension to the built-in AppleScript language called a scripting addition, which I explain later in this
chapter (Appendix A, of the book is devoted to descriptions of the standard scripting additions that are
installed with Mac OS 9 and OS X). display dialog shows a dialog window containing the message label
that you specify in the source code following the display dialog command, as in this part of Example 1-1:

display dialog "The largest free block is now about " & (memblock) & ¬

" megabytes."

The tell statement that opens the script, such as:

tell application "Finder"

is AppleScript's method of targeting an application to request some data from it or to control the program in
some manner. Since the script displays some Finder information to the computer user, the activate
command is used to make the Finder the frontmost program (i.e., its windows, if any are open, become the
active desktop windows). tell statements, commands, and other syntax elements are described
elsewhere in this chapter, as well as in detail in Chapter 3 through Chapter 8.

1.1.1 Automation

Along with creating a number of useful utilities, AppleScript has won a reputation as a premier tool for
automating software workflows. In workflows, one or more separate software programs cooperate in a
sequence of actions to complete a job. This means that launching an AppleScript can orchestrate several
actions that involve software applications that are not otherwise designed to share data or call each other's
menu commands. AppleScript does the calling of each program's commands (targeting them in a similar
manner to how the Finder is targeted in Example 1-1), acting as a conductor for busy software medleys.
AppleScript has earned the undying loyalty of many Mac scripters in the print and web publishing
industries by its ability to simultaneously control applications such as QuarkXPress, Adobe Illustrator,
InDesign, and Photoshop, Canto Cumulus, FileMaker Pro, as well as the Microsoft Office members like
Word and Excel.

As an example of automation, I designed an AppleScript in the summer of 2000 to convert thousands of

text files to web pages. A company that publishes legal decisions wanted to make them available to a
search engine on their web site. Since they were already plain text or Word files, and the page designs
were very simple, we used an AppleScript to feed the pages to Word and to trigger its "Save as HTML..."
menu command (which creates a simple, almost crude, web-page design at best). The company
converted about 20,000 legal decisions in a matter of days, using this rather modest script that I
developed in Script Editor.

Apple Computer has traditionally urged Mac software developers to make their programs "scriptable," and
thus increase the market and following for those programs. It usually does. For example, Illustrator and
Photoshop[1] are generally much more scriptable on the Mac platform than their Windows versions, which
may influence some buyers to prefer the Mac versions (along with the fact that graphics professionals tend
to prefer the Apple platform).

[1] Photoshop requires the licensing of the PhotoScripter plugin from Main Event Software (http://www.mainevent.com) to be extensively

automated with AppleScript.

Similar to OLE automation on the Windows platform, many software programs allow themselves to be
automated by exposing an object model to a scripting tool, in this case AppleScript. Conceptually, an
object model is a tree-like diagram (see Figure 1-7 later in this chapter) showing the objects or "things"
that the software represents as computer data (such as files, folders, or database records), as well as the
objects' attributes or properties. AppleScript talks to these scriptable programs by exchanging Apple
events with them. These are high-level operating-system events that are used for interapplication
communication on the Mac. See Section 1.2 for more information.

With the release of Mac OS 9 and OS 9.1 in 2000 and early 2001, Apple Computer has made most of
the computer's built-in software controllable by AppleScript. These are some of the scriptable OS 9
applications and control panels:

Appearance control panel

Apple Help Viewer

Apple System Profiler

Apple Verifier

Application Switcher

ColorSync extension

File Exchange

Memory control panel

Sherlock 2 (the Find application)

Speech Recognition

Some previously scriptable features have not been included in the Mac OS X installation, including
preferences scripting, Folder Actions, printing scripting, and program linking. Future OS X releases will
address these elements, according to Apple Computer, which adds that a number of Mac OS X
applications are scriptable (with some qualifications):

http://www.mainevent.com

Finder (some Finder commands, such as move or duplicate, are not yet implemented or are not yet
functioning)

TextEdit

Mail

Sherlock

QuickTime Player (the Pro version of this application is quite scriptable; visit
http://www.apple.com/applescript to download the QuickTime scripts collection for Mac OS X)

Apple System Profiler

Stuffit Expander

Internet Explorer

ColorSync Scripting

URL Access Scripting

Image Capture Extension (a background application that works with the Image Capture program; its
dictionary supports the scaling and rotating of image files)

In addition, the AppleScript engineers are apparently working on ways to let AppleScript interact with the
command-line shells that come with OS X, such as the Bourne shell. OS X already permits the launching
of AppleScripts from a shell (see Chapter 34).

1.1.2 Attachability/Recordability

If an application is either attachable or recordable (or both), it is considered a near paragon of
scriptability. Attachable means that you can create a script and then attach it to a program, so that the
script is added to the program's internal menus. Applications usually implement attachability with Mac OS
9 by providing a folder for scripts and a menu item on their menubars that lists these available scripts.
Figure 1-2 shows a menubar that contains a list of attached scripts for the BBEdit text editor.

Figure 1-2. Attached scripts in BBEdit

http://www.apple.com/applescript

Attached scripts will often run much faster than scripts that run as self-contained applets even if the
script doesn't have anything to do with the application it is attached to (i.e., the script never sends Apple
events to the host application). For example, I have an AppleScript that reads large web logs (more than
1 MB in size) looking for and recording for later display certain file paths. When attached to BBEdit 5.1,
the script runs about six times as fast as it does when run as an applet outside of BBEdit (40 seconds as
opposed to about 240 seconds). Try it with some of your own scripts.

A few applications allow themselves to be recorded by Script Editor, which is a great way to get started
with scripting them. To do this, open Script Editor and click its Record button (see Chapter 2). You then
activate an application and perform the actions that you are trying to record, or simply go in and
manipulate its menus to see what happens. Once you click Stop in Script Editor, the Script Editor window
will display the AppleScript source code representing the recorded actions. If the application is not
recordable, the Script Editor window will be empty after you click Stop. Otherwise, you can then save the
AppleScript as a macro that you can use and/or modify in the future. The Finder, BBEdit, and Microsoft
Word are examples of recordable applications.

1.1.3 Scripting Additions

Scripting additions are extensions to the AppleScript language. The Standard Additions and some others
are written by Apple; however, there are hundreds of scripting additions the scripters can add themselves.
They are added by placing the scripting addition file into the Scripting Additions folder. Once installed,
scripting additions can be used by any script.

Another term for scripting addtion is osax (the plural form is osaxen), which stands for Open Scripting
Architecture eXtention. The OSA is explained in an upcoming section of this chapter.

In Mac OS 9, the scripting additon files are stored in the startup disk:System Folder:Scripting Additions
folder. They are stored in more than one location in Mac OS X, including
/System/Library/ScriptingAdditions/. Examples of two scripitng addition commands that are often used are
display dialog (see Example 1-1) and current date. The latter command returns a date object that contains

data about today's date and time. The Standard Additions are installed with the Mac OS.

There is a large database of scripting additions at http://osaxen.com.

http://osaxen.com.

1.2 Apple Events

AppleScript and scriptable programs communicate with each other via Apple events or internal, invisible
messages. This section provides an overview of how Apple events are implemented with AppleScript. As
this information goes beyond basic script development, some readers may choose to jump ahead to the
book's language-reference sections, do some scripting, and then revisit this section at another time.

1.2.1 OSA

The Open Scripting Architecture, which has been present on the Mac since the early 1990s, is Apple
Computer's mechanism for making interapplication communication available to a spectrum of scripting
languages. AppleScript is the OSA language that Apple provides, but there are other OSA-compliant
languages, including UserLand Frontier and JavaScript. [2]

[2] Late night Software, Ltd.'s JavaScript for OSA tool, is accessible from http://www.latenightsw.com.

OSA accomplishes this "the-more-the-merrier" approach to scripting systems by using Apple events as
the unifying technology. The situation is similar to Open Database Connectivity (ODBC) on the Windows
platform, where any client application can talk to different database management systems using ODBC
as a common conduit (as long as ODBC driver software exists for that particular database). In terms of
OSA, the conduit (on Mac OS 9) is a scripting component that can convert whatever scripting language
is used (AppleScript or JavaScript) into one or more properly constructed Apple events. Figure 1-3 shows
the same Apple event being sent to an application in two different scripting languages.

Figure 1-3. OSA scripting tools send Apple events

http://www.latenightsw.com

Before AppleScripts or other scripting languages can be compiled and run, their corresponding extension
files have to be installed (the AppleScript extension is included in an OS 9 installation) and then loaded
into the computer's memory. The AppleScript extension or component is depicted in Figure 1-3.

1.2.2 Apple Event Registry

Along with scripting components, another important OSA element is the Apple Event Registry. The
Registry is an Apple Computer-maintained database that maps all of the Apple events that the Mac OS
standard software uses to a corresponding English-language command. This means that the activate
AppleScript command is mapped to an activate Apple event, quit is mapped to a quit Apple event, and so
on. You can use the Registry to discover the Apple event codes that are used by the Mac's standard
software (such as the Appearance control panel, the ColorSync extension, or Sherlock 2). Section 1.2.4
describes what these codes are.

The AppleScript software development kit (SDK) includes a FileMaker Pro file that
contains the Apple Event Registry for AppleScript Version 1.3.4. Go to
http://developer.apple.com/sdkfor more SDK information.

To make them easier to understand and incorporate into applications, Apple events are logically grouped
into suites or categories, such as the Database Suite, the Standard Suite, and the Text Suite. All Mac
applications are required to support four Standard Suite events (open, print, quit, and run; this was the
"Required Suite" prior to AppleScript 1.3). This does not mean that all Mac programs do support these
events; software developers don't go to jail if they have not implemented these Apple events in their
programs. However, this does mean that the vast majority of applications will reliably quit if, for example,
your script sends them a quit Apple event.

Applications and scripting additions can (and usually do) define their own Apple events and corresponding

http://developer.apple.com/sdk

human-language commands. For example, the BBEdit text editor supports a subset of the Standard Suite
of Apple events that you can look up in the Registry database. BBEdit also contains a set of events and
classes known as the BBEdit Suite, which is unique to BBEdit. Table 1-1 shows the Standard Suite Apple
events and Apple event classes that BBEdit 5.1 supports. It also shows the Apple events and Apple event
classes that are listed in the BBEdit Suite. (Section 1.2.6 describes Apple event classes in more detail.)

Table 1-1. BBEdit 5.1's Standard Suite and BBEdit Suite

BBEdit Standard Suite
Events

BBEdit Standard Suite
Classes

BBEdit Suite Events
BBEdit Suite

Classes

close application insert text character

count window insert file word

delete document insert folder line

get Recent file insert project text

make find text item

revert replace selection-object

save find differences hit

set go to line

 go to function

 go to marker

select current
paragraph

 twiddle

 change case

 shift

 hard wrap

 insert line breaks

 remove line breaks

 unwrap

 zap gremlins

 entab

 detab

 insert glossary entry

 get FTP file

 put FTP file

1.2.3 Client/Server

The application or applet that initiates an exchange of Apple events is called the client application. The
client requests the help of the server ("do something for me!"). The client's Apple event(s) may request
data (e.g., text, database records) or just a sequence of actions that the server should take ("Open a file
and send me the paragraph that begins with 'Top-secret information.'"). The client can also be thought of
as the Apple event "source," and the server can be thought of as a "target." An application can be both an

Apple-event client and a target (if a client receives a reply Apple event, then it's the target of that event).

A machine can send up to about 2,000 Apple events per second (and can be as pokey as about 5 per
second). This speed depends on factors such as how quickly the target application can process the Apple
event(s).

How Many Apple Events Can Your Machine Send?

An Apple Computer engineer suggests that you use the following code to test how many Apple
events a particular machine can send per second:

set start_time to current date

repeat 1000 times

tell application "Finder"

name -- gets the Finder's name, "Finder"

end tell

end repeat

set elapsed_time to (current date) - start_time

display dialog "Average " & 1000 / elapsed_time & " events per¬ second"

This code sends the Finder 1,000 Apple events, and then displays the event-per-second
results. Running this as a compiled script out of Script Editor, my machine (a PowerMac 8500
upgraded to a G3 with plenty of memory) registered only 5 per second. However, when
saved as an applet and attached to BBEdit, the speed improvement was 20-fold-100 Apple
events per second!

Let's drill down further into Apple events. Section 1.2.4 shows you what an Apple event looks like at the
system level, using the sleep Apple event, a Finder command, as an example.

1.2.4 Inside an Apple Event

Here's how it works when Script Editor compiles and executes the following code, which comprises a
complete compilable script:

tell application "Finder" to sleep

This is what happens:

The AppleScript component has to find out which Apple event lies behind the sleep command. The
component knows that the Finder is one of the places it should look for these details, because the

1.

Finder is targeted by the tell statement:

1.

tell application "Finder"...

Remember that sleep is an English-language term for putting the computer to sleep, but it is
implemented as the sleep Apple event beneath the surface. Figure 1-4 shows the structure of the
sleep Apple event.

Figure 1-4. A sleep Apple event

The AppleScript component discovers the attributes of the sleep Apple event (e.g., the event id) from
a segment of the Finder file called the Apple event terminology extension ('aete') resource. The
'aete' resource maps the sleep script command to the Apple event depicted in Figure 1-4.

2.

The component then sends that Apple event to the Finder, which responds to sleep by powering
down the computer.

3.

Here is an explanation of the structure behind the Apple event in Figure 1-4.

Every Apple event is comprised of unique four-character codes that represent the:

Event class

Event id

Address of the target application

The event class represents a grouping of similar Apple events. The event id uniquely identifies the Apple
event. The target address is a complex data structure that could contain the application's creator code or
its Process Serial Number (PSN) or another piece of identifying information. For example, the sleep Apple
event has event class 'fndr' and event id 'slep'. Table 1-2 contains the event classes and event ids for
the Standard Suite in the Apple Event Registry. Apple events often get reorganized within different suites
when Apple updates its Registry.

Table 1-2. Apple Event Codes for Standard Suite

Event Event Class Event Id Class Class Id

open aevt odoc application capp

run aevt oapp document docu

reopen aevt rapp file file

print aevt pdoc alias alis

quit aevt quit selection-object csel

close core clos window cwin

count core cnte insertion-point cins

delete core delo

duplicate core clon

exist core doex

make core crel

move core move

save core save

Most of the time, however, a scripter does not have to deal with event classes and event ids, just their
AppleScript language equivalents.

Apple events specify the target programs that should receive the Apple event. Otherwise, your script would
cause an execution or runtime error, because the operating system does not know where the Apple event
is supposed to go.

The common way to specify the target programs for an Apple event in AppleScript is to use a code such
as in Example 1-2. You enclose the Apple events you will send to a program within the tell block, as in
Example 1-2, which sends a quit Apple event to "FileMaker Pro".

Example 1-2. A Script Targeting FileMaker Pro

tell application "FileMaker Pro"

 quit

end tell

The value of the application signature attribute in Figure 1-4 is also a four-character code ('MACS' for the
Finder), just like the event class and event id. You might recognize this code as the Finder's creator code.

Each Macintosh file is distinguished by its file type (for example, a text file has file
type "TEXT") and creator code (BBEdit's is "R*ch"). This is how the operating
system knows which program to open when you double-click a desktop file. It
examines the file's creator code.

1.2.5 Apple Event Parameters

Sometimes a lone Apple event like quit or activate will do the trick in a script. At other times, Apple events
have to specify Apple event parameters. These are the data the receiver of the Apple event needs to carry

out the Apple event's instructions. For instance, if the Example 1-3 script did not include the parameter:

file "mydocument"

then the OS 9 Finder would return an error, because its open Apple event requires a reference to the
object(s) to open.

Example 1-3. A Finder open Command

tell application "Finder"

 (*open is the command; file "mydocument" is the parameter *)

 open file "mydocument"

end tell

Examples in this book will usually include comments explaining code elements.
Comment characters in AppleScript are two hyphens (-) for single-line comments
and parentheses containing asterisk characters (* *) for multi-line or single-line
comments.

Figure 1-5 illustrates the Finder's open Apple event with the reference to the mydocument file.

Figure 1-5. The Finder's open Apple event

Apple event parameters can include standard data types (e.g., integer or string) or references to Apple
event objects, such as a document file. Apple event objects are the items or "nouns" (e.g., a file, a folder, a
database record) that some scripts interact with. See Section 1.2.6 for further explanation on handling
objects in your scripts.

An Apple event can have more than one required or optional parameter. In another example, if you want
your script to tell FileMaker Pro to create a new row in a database, then create is the Apple event (followed
by the required keyword new). The create Apple event requires a parameter such as a record object (as in
a database record or row). Otherwise, how would the database program know what you wanted to create?

The code in Example 1-4 opens a database file and then creates a new record with empty fields.

Example 1-4. Getting FileMaker to Create a New Database Row

tell application "FileMaker Pro"

 activate --brings the target application to the front

 open file "startupdisk:fm databases:myDB.fm4"

 create new record - "record" is the parameter

end tell

Example 1-4 could use the create command's optional with data parameter to fill the new row with data,
thus creating a complete database record.

1.2.6 Apple Event Classes and Objects

You have read about Apple events, which are action words or verbs (activate, delete). Apple event classes
(and the objects that are based on those classes) are the nouns that your script might want to manipulate
in some manner (see Table 1-1). Example 1-2 told the Finder to open a file object (basically, a file on the
desktop). Objects are the data or "things" that you are interested in querying or changing when you send
an Apple event to a program.

For example, a script that controls a database program usually deals with database, field, record, or cell
objects. An AppleScript that sends commands to a text editor works with character, word, paragraph, and
document objects.

These Apple event objects are based on classes or blueprints, such as the file class or the database
class. Table 1-3 shows some of the Apple event classes from the Apple Event Registry. The operating
system represents these classes internally as four-character codes.

Table 1-3. Examples of Apple Event Classes in OS 9

Class Four-Character Code

character 'cha '

disk 'cdis'

document 'docu'

file 'file'

folder 'cfol'

paragraph 'cpar'

text 'ctxt'

window 'cwin'

word 'cwor'

A class is a blueprint or data type for a noun or object that you can manipulate with a script.

When an architect creates a blueprint for a structure, all the homes that are subsequently built off of the
blueprint are the offspring of her original design. The real wooden, brick, or metallic homes are "instances"
(in object-oriented parlance) or objects of the blueprint or class. The architect creates a home class in her
blueprint, then the builders generate real home objects based on the original class. For example, the

BBEdit text editor defines a word class, which is a bunch of characters that are unbroken by a space, tab,
or new-line character (e.g., "apple"). The five characters that make up the word (a,p,p,l,e) are all objects
based on the BBEdit character class. So a word object constitutes a group of character objects. If you
grouped together several separate character objects they might look like ("a", "p", "p", "l", "e").

For example, when you get the Finder to open a folder with a phrase like:

open folder "my_folder"

then you are telling the Finder to open the folder object (based on the folder class) whose name is
"my_folder." This line of code will specifically create a Finder window showing the contents of the folder
called "my_folder."

It is always important to describe an Apple event object in your script by its containment hierarchy, which is
an exact specification of where an application like the Finder can find the object. Apple event objects are
located in a similar manner to taking apart one of those wooden Russian dolls, where the dolls get smaller
and smaller until you finally locate the last solid peanut-shaped doll inside of all the bigger ones. In other
words, if you wanted to get information about the sender of the first message in your Outlook Express
inbox folder, then you couldn't just tell Outlook to:

get the sender of the first message

because the emailer would not know where to look (i.e., in the "inbox" folder) for the email message.
Consider Example 1-5, which incompletely describes the containment hierarchy for a file (assuming that
the file is not located on the desktop).

Example 1-5. A File-Access Script That Causes an Error

tell application "Finder"

 open file "taxes2000"

end tell

The Finder cannot find this file because the script does not give a complete container reference, as in:

open file "taxes2000" of folder "Taxes" of startup disk

The script will therefore produce a dialog box reporting an error if it is run.

AppleScript has a number of ways to express containment relationships.

file "taxes2000" of folder "Taxes" of startup disk

(an "inside-out" reference). This is like describing the smallest Russian doll as "the tiny doll inside the
slightly bigger doll that is contained by all the larger dolls." Or, you can use a possessive form such as:

startup disk's (folder "Taxes"'s file "taxes2000")

Using the possessive style with long container references like this one is usually less readable than the
inside-out method.

1.2.7 Elements and Properties

Two other very important characteristics of Apple event objects are elements and properties. The class
that these objects are based on defines the object's elements and properties. An object has zero or more
of its defined elements, and exactly one each of its properties.

For example, SoundJam™ MP, a digital music player and encoder, defines a playlist window class.
These objects are windows that contain lists of audio tracks that can play on the computer. Figure 1-6
shows the definition of the playlist window class from SoundJam's dictionary. (Chapter 2 explains a
program's dictionary, which can be viewed by using Script Editor's File Open Dictionary menu
command.) A playlist window object has three elements: track, file track, and URL track. Further,
playlist windows have a modified property (a true or false value depending on whether the window was
modified since it was last saved). playlist windows also inherit several properties from SoundJam™
MP's window class. So a playlist window object can contain zero or more "track" elements, but it only has
exactly one "modified" property value.

Figure 1-6. playlist window's elements/properties

Rest assured that it is easy to grab the values of elements and properties in AppleScript. You can use
syntax such as:

tell app "SoundJam™ MP" to get first file track of first playlist window

This code sends SoundJam™ a get Apple event requesting a reference to an element, such as the first
file track (an MP3 audio file) in the foremost playlist window that you see when SoundJam™ MP is open.
The return value looks like:

'file track id 4 of playlist window id 5 of application "SoundJam™ MP"'

Once your script gets a reference to a track, it can then command SoundJam™ MP to play it with (you
guessed it) the play Apple event that SoundJam™ MP defines.

Our introduction to Apple events concludes with a description of the all-important application class,

which is the "king of the objects" in a scriptable program. The program that you script, such as application
"SoundJam™ MP," is actually an object itself, an "instance" of the SoundJam™ MP application class.

1.2.8 Application Class

Many scriptable applications define an application class, which is the gem to study if you want to
automate that program. Your quickest route to the application class is its description in the program's
dictionary. We mentioned before that Mac programs can expose an object model to scripting components
like AppleScript. An object model is a software abstraction, usually in tree-like form, showing the Apple
event objects and Apple events that you can use with a program.

The application class is the root or top-level class in the program's object model. An Apple-event object
model shows the application class and all of its elements and properties (if it has any defined elements).
Figure 1-7 shows a simple object model for Sherlock 2, the Mac's fancy Find program. Sherlock 2 has
three properties and contains zero or more channel elements. (I am sticking to the strict definition of an
object's elements, which is that an object can have zero or more of them. In reality, Sherlock 2 always
has at least one defined channel, which is the domain that it is searching.)

channel elements are themselves objects with their own properties: "all search sites" and "name" (e.g., the
name of one channel is "Internet"). When in doubt about how to script a program, always use the
program's dictionary to examine its application class. The elements and properties of the application
class are the things that you will be able to control and derive values from with your AppleScripts.

If you are on friendly terms with an illustration tool, then it helps to sketch out an object model of a program
you are trying to script.

Figure 1-7. Sherlock 2's application class

1.3 Using Script Runner with OS X

OS X has a little application called Script Runner that you can use to run your scripts. Figure 1-8 shows
what the open Script Runner looks like on the OS X desktop. You can find Script Runner in the
AppleScript folder inside the Applications folder. Open the program by double-clicking it. If you want to add
your own scripts to the Script Runner menu, choose "Open Scripts Folder" from the Script Runner menu.
This opens a Finder window on to the following directory: /Users/yourname/Library/Scripts/. Then drag any
compiled scripts (they have to be saved as compiled scripts) into this window. You can of course add
compiled scripts to this /Scripts folder by navigating to it yourself (i.e., not using the Script Runner "Open
Scripts Folder" menu command). After you close and restart Script Runner, you can run these scripts by
choosing them in the Script Runner menu. If you create folders in the /Scripts folder, then Script Runner
will display these folders as sub-menus. This is a good way to categorize and present lots of different
scripts in the Script Runner menu.

Figure 1-8. Script Runner on OS X

1.4 Using OSA Menu with OS 9

I mentioned previously that you can run AppleScripts from within Script Editor or save them as applets
that can be double-clicked. In Mac OS 9, an application called OSA Menu gives you a third script running
option. OSA Menu is a non-Apple system extension that you can install from the OS 9 installation CD-
ROM (you can find it in the folder CD Extras:AppleScript Extras). OSA Menu adds its own menu to the
upper-right corner of the OS 9 Finder or desktop. Figure 1-9 shows the OSA Menu after it has been
activated.

Figure 1-9. Activating the OSA Menu

The OSA Menu shows a list of compiled scripts that can be run straight from the desktop by choosing
their filenames from the menu. OSA Menu will show the scripts that are stored in the following folder in
OS 9: startup disk:System Folder:Scripts:Universal Scripts . To run properly from this menu, however, the
AppleScripts have to be saved in Script Editor as compiled scripts, not applets. Chapter 2 contains more
information on these script-saving options.

1.5 Checking Your AppleScript Version

This introduction would not be complete without mentioning how important it is to check which version of
AppleScript is running on the machine executing your scripts. This is particularly true if your script is used
on computers that might not be running Mac OS 9 or later. New versions of AppleScript are generally
released along with the latest generation of the operating system. Mac OS 9 contains AppleScript Version
1.4 (an updated version of AppleScript, Version 1.4.3, also runs on OS 9). In the Spring of 2001, Mac OS
9.1 and Mac OS X used AppleScript 1.6.

There is an extremely simple way to find out which version of AppleScript is installed on the machine
where the script is running. Checking the value of the version property in Script Editor will return the
version number, as in 1.4 in Mac OS 9 or 1.3.4 in Mac OS 8.5. If you do not understand certain aspects
of this script, Part II of the book is a detailed AppleScript language reference.

Your script can check the version property with code such as that shown in Example 1-6.

Example 1-6. Checking the AppleScript Version Number

set ASversion to version as string -- initialize ASversion to a string

set ASversion to (characters 1 thru 3 of ASversion as string) as real

(* coerce ASversion to a real number like 1.4 *)

if ASversion is greater than or equal to 1.4 then (* test whether the version

value is 1.4 *)

 display dialog "Good, you're running at least AppleScript 1.4" (* give the

user some feedback with a dialog box *)

else

 display dialog "You're running AppleScript " & ASversion

end if

Example 1-6 first gets the AppleScript version property as a string value (e.g., "1.4") and stores it in an
ASversion variable. The first three characters of this variable (such as 1.3 if the version was 1.3.4) are
then coerced to a real type, as in 1.3. We had to take just the first three characters of the string because
a string with two decimal points in it, as in 1.3.7, cannot be coerced to a real value (since a string with
two dots in it is an invalid representation of a number). Chapter 3 discusses the real data type.

This numerical value is then checked to see if the user is running at least AppleScript 1.4. The script
uses the display dialog scripting addition to display information to the user about the found version value.
You can also check the version property of the Finder, and other applications that have this property, by

first targeting the application in a tell statement, as in Example 1-7.

Example 1-7. Displaying the Finder Version Number

tell application "Finder"

 set fVersion to version as string

 display dialog "You're running Finder version " & fVersion

end tell

1.6 Diving In

No doubt there are readers who are eager to dive into AppleScripting before they go on to this book's
upcoming language reference. This section summarizes the important AppleScript language elements you
need to know before you start coding:

Case sensitivity

Statement termination

Line continuation character

Naming identifiers or variables

Variable declaration

Comments

Data types

Operators and reference forms

Flow-control statements

Subroutines

Script objects and libraries

All of these language elements are described in more detail in Part II (except for case sensitivity and
statement termination, which are taken care of adequately in the following sections).

1.6.1 Case Sensitivity

Unlike other scripting languages such as JavaScript and Perl, AppleScript is not case-sensitive. In other
words, MYVAR is the same as myvar , or myfunc is the same as MyFunc in terms of function definitions. Script
Editor will not let you define two functions with the same name, even if their letters are different
combinations of upper- and lowercase characters. The numerous AppleScript constants and reserved
words (case , current application , and other constants are covered in Chapter 6) cannot be reused as
your own variable or method names. A script can change the values of predefined variables such as pi or
space ; however, scripters are better off using these predefined variables for the variables' intended
purpose and creating their own variable names. Script Editor sees "pi" and "PI" as the same thing ("PI"
would be corrected to "pi" when you compile the script). Class and command names within applications,
while mostly lowercase, are corrected when you compile the script to the spelling that is specified in the
app's dictionary. (Chapter 2 explains an application's dictionary.) For instance, if you typed the class name
tcpip v4 configuration into Script Editor, inside of a tell app "Network Setup Scripting" block, it would be
corrected to "TCPIP v4 configuration" when the statement was compiled.

1.6.2 Statement Termination

You don't have to terminate an AppleScript statement using any special characters, as you do with Perl (the
semi-colon character). You do, however, have to complete each statement on a line before you go on to the
next statement, unless you use the continuation character (¬).

1.6.3 Line Continuation Character

You can split a very long statement into several lines by typing Option-Return on the Macintosh. This
produces a continuation character (¬). This character only affects how the code looks in Script Editor and is
not part of the compiled code. If you store a string literal in a variable, however, and add a continuation
character to the middle of the literal string , then this character becomes a visible part of the compiled
string of characters (you usually want to avoid this). Splitting long code statements with the continuation
character makes the script more readable. You will use this character often.

1.6.4 Naming Identifiers or Variables and Functions

The names that you create for variables and functions have to begin with a letter or underscore character
(_), but subsequent characters can include letters, numbers, and underscores. In variables or function
names, you cannot include AppleScript's reserved words and operators such as *, &, ^, or + (covered in
Chapter 4) or special characters such as $, @, or #. An exception to this AppleScript rule allows for the
creation of weird variable or function names if you use vertical bars (|) to begin and end the identifier, as in:
set |2^$var| to 25 . The variable |2^$var| is actually valid. If you wanted to create the equivalent of a Perl
scalar variable in AppleScript, you could use: set |$perlVar| to 25 . There is no practical limit to the size
of AppleScript variable names; that is, you can have a variable name that has up to 251 characters, but
you would never want to deal with variable names that long. In my OS 9 testing, a variable name that
exceeded 251 characters produced the error dialog in Figure 1-10 .

Figure 1-10. Script Editor signals a variable name that's too long

1.6.5 Variable Declaration

You can use either the set or copy keywords to declare a variable and assign a value to it, as in the
following examples:

set myvar to (5 * 25)

copy (5 * 25) to myvar

Both of these statements produce the same result; they store the integer 125 in the myvar variable. The
set version however is more intuitive and is used more often to declare variables. set and copy furthermore
have different results when you use the variable to contain a list , record , or script object. (Chapter 9 ,
discusses this AppleScript feature.) The copy keyword, as in:

copy listVar to newListVar

will make a new copy of the list value stored in listVar and store this new list in newListVar . If you
used:

set newListVar to listVar

the list stored in newListVar will still refer to the original list (i.e., listVar). The newListVar variable will
not get a new copy of the list when you use set . Chapter 6 goes further into this set and copy subject.

1.6.6 Comments

Comments are the descriptions that you add to the code as reminders to yourself and guidance to other
coders; they are not part of the executable script. AppleScript uses two or more dashes (-) preceding the
comment text for single-line comments and (* *) surrounding the comment text for single- or multi-line
comments. Using dashes, you can have a comment on the same line as some code, such as:

set myvar to 10 -- initialize myvar to 10.

AppleScript does not use the popular slash-slash (//) single-line comment characters of Java or C++.

1.6.7 Data Types

Like most scripting tools, AppleScript is a "loosely typed" programming language. This means that for the
most part you do not have to specify exactly how the computer will store some data when you set a variable
to a value. AppleScript takes care (or tries to) of the details for you. So when you use the code fragment:
[set num to 75], AppleScript knows that num is an integer or number . If you use:

set numstr to "I'm a string"

numstr is automatically stored as a string . This feature does not forbid you from specifying the data type
of a variable, which is a good idea in many situations and creates more readable code. If you want to
explicitly set a variable to an AppleScript data type, use the as keyword, as in get current date as string
. If you want to ensure that a number will be stored as a real data type, use code such as:

set num to 75.0

This code sets the variable num to a real data type, which is a very large number that can include a decimal
point, similar to a double type in Java. A program can now increment or increase the variable num to a much
higher number than it could if it were left as an integer , which has a range of -536,870,911 to
536,870,911, inclusive. What if you wanted to have a variable keep track over time of the number of
people on Earth who are connected to the Web? This number would eventually exceed one billion, so you
would want to use a variable of a real data type.

However, explicitly setting data types in AppleScript is also a potentially error-prone strategy if you are not
careful in your script planning. For example, the code: set num to 1.5 as integer will compile but raise an
error once the script is run. The error message is "Can't make 1.5 into an integer." If you left the a s
integer part out of the code fragment, then AppleScript would automatically set num to a real data type
and no error would occur.

The following list briefly describes the other principal data types that AppleScripters should be aware of
(these are all covered in more detail in Chapter 3):

boolean

The literal words true or false, or an expression that evaluates to true or false. AppleScript does not
treat other types of "true- or false-type" values, such as or 1, as boolean values. Example 1-8
shows two ways to derive and store boolean values in AppleScript.

Example 1-8. Boolean Values in AppleScript

set bool to false -- bool is a boolean data type

set bool to (5 > 3)

(* bool is a boolean because the expression "(5 > 3)" evaluates to true *)
date

Set a variable to a date value with code such as:
set theDate to date "12/5/2000"

Remember to use the date keyword followed by the date string ("12/5/2000"), or the theDate variable is
stored as a string type. A common error is to type something like set the Date to "12/5/2000" , which
stores a string data type in theDate , not the date value that the scripter is aiming for. A lot of scripts get
an initial date value from the useful scripting addition current date . When this command is used in a script,
it returns a date object representing the current date and time, as in:

date "Tuesday, December 05, 2000 12:00:00 AM"

Appendix A , describes the current date command.

String

A series of letters, spaces, numbers, or other characters delimited by double-quote marks, as in "c"
or "Here is a longer string" or "" (an empty string, but a valid string nonetheless). Suffice it to say, you
deal with strings all the time in AppleScript as you read data from or write data to files, database
records, and other storage media. AppleScript does not allow you to define a string with single
quotation marks; you have to use double quotes. Once you have a string type, then you can get its
length property (an integer), which is the number of characters that are in a string. You can use a
phrase such as current date as string whose return value looks like:

"Tuesday, December 05, 2000 2:59:30 PM"

A string also has several elements such as words. The code fragment:

words of "four score and seven years ago"

returns a list type of all the words in the string (i.e., {"four" , "score" , "and" , "seven" , "years" , "ago"}
). You can concatenate two strings to make one string using the concatenation character ("&").

List

Called an array in other languages like Perl or Java. In AppleScript, you can store values of several
different data types, including strings, numbers, and other lists, in the same list. Example 1-9 stores
a string, a number, a list, and the pi predefined variable in the same list. You can see how incredibly
useful this data type is; you will deal with lists all the time as an AppleScripter.

Example 1-9. AppleScript List Type

set myString to "A list that stores a string, a number, a list, and a¬

constant."

set myList to {myString,75.0,{1,2,3},pi}

(* Return value of this script:

{"A list that stores a string, a number, a list, and a constant.", 75.0,

{1, 2, 3}, 3.14159265359}

*)

Lists are surrounded by curly braces ({ }), and a comma separates each list member. Variables that
contain values, such as myString in Example 1-9 , can also be stored in lists. Lists have three properties:
length , rest , and reverse . length returns the number of list members, as in 4 for the list in Example 1-9
. rest returns all the list members except for the first one, so the return value of rest of myList (from
Example 1-9) would be {75.0, {1, 2, 3}, 3.14159265359} . Finally, reverse gives you the list with all of
its members displayed in reverse order, as in:

{3.14159265359, {1, 2, 3}, 75.0, "A list that stores a string, a

number, a list, and a constant."}

You can obtain a member of a list by using the syntax item and the indexed position of the list member, as
in:

item 4 of myList

This code returns the value 3.14159265359. Lists are one-based, meaning that the first list member is
located at position 1, not as in other languages' array implementations. Finally, you can concatenate or
combine two lists by using the & operator. In Example 1-9 , the code:

myList & "Another string"

attaches "Another string" to the myList list variable and makes it the last list member.

Record

A record consists of a series of name/value pairs separated by commas and surrounded by curly
braces. Perl would call this an associative array, or Visual Basic would call it a collection. Examples
are {name: "AppleScript In a Nutshell", subject:"AppleScript"} and {first:"Bruce"} . You
can refer to the members of a record by the property name, as in:

subject of {name: "AppleScript In a Nutshell", subject:"AppleScript"}

This returns "AppleScript" . Records do not have item elements, so you cannot use the code item 1 of
{first:"Bruce"} . You can change or coerce a record into a list, thus altering the data type of the value. An
example is:

set nw to {name: "AppleScript In a Nutshell", subject: &¬

"AppleScript"} as list

The return value loses all the property names from the original record: {"AppleScript In a Nutshell",
"AppleScript"} .

1.6.8 Operators and Reference Forms

An operator is a symbol or token that is used with values or variables in an AppleScript expression. An
example is the well-worn expression 2 + 2 = 4 (if you just dropped this expression into a Script Editor
window, it would return a boolean value of true). The operators in this expression are "+" and "=".
AppleScript has most of the operators that you would expect a scripting language to make available to the
programmer. AppleScript also allows the scripter to use very readable English expressions for operators,
such as:

if 5 is greater than 3 and 6 equals 6 then set bool to true

The principal symbolic operators are demonstrated in Example 1-10 . All operators, including the English
forms, are described in Chapter 4 .

Example 1-10. AppleScript Operators

(* & concatenates one string to another, or combines two or more lists or

records *)

set twoPhrases to "One phrase " & "connected to another phrase."

(* the following code returns {"a string inside of a list", "added at the end

of a sentence."} *)

set twoLists to {"a string inside of a list"} & {"added at the end of a

sentence."}

(* & also combines two records to make one record. *)

set twoRecs to {firstn:"Amanda"} & {secondn:"Smith"}

(* parentheses and Math operators do what you would expect them to *)

set int to (5 * 6) - 8 -- returns 22

(*If you use / or ÷ the result is always a real data type. If you use

div the

result is always an integer *)

set n1 to 50 / 26 -- returns 1.923076923077

set n2 to 50 ÷ 26 -- returns 1.923076923077

set n3 to 50 div 26 -- returns 1; div only returns integer data types

(* < > = are used to test equality *)

set bool to 50 < 26 -- bool is false

set bool to 50 > 26 -- bool is true

set bool to 50 = 26 -- bool is false

set bool to 50 26 -- bool is true

(* ^ is the exponentiation operator *)

set n1 to 50 ̂ 2 -- n1 is 2500.0, a real data type

(* mod returns the fractional part and throws out the rest of the integer

part, the opposite of div which throws out the fractional part *)

set n2 to 7 mod 3 -- n2 is 1

(* not, or, and are boolean operators; they are used to combine two expressions

to produce a boolean result *)

set bool to true and false -- bool is false

set bool to true or false -- bool is true

set bool to not true -- bool is false

set bool to (2 + 2 = 4) and (not (2 ̂ 2 = 4)) (* you can combine expressions

to get a result; bool is false in this case because the second part of the

expression (i.e., (not (2 ̂ 2 = 4))) evaluates to false *)

A reference form is an English or symbolic expression that describes where a value is within its container.
As an AppleScripter, you will often find yourself describing contained objects in order to accomplish your
task, such as "get the first record in the database named myDB" or, "get the second paragraph of the last
document in the folder named January Stuff." AppleScript offers numerous ways to refer to these
contained items. Chapter 4 goes into great detail in describing these methods, which are demonstrated in
short by Example 1-11 . For example, you can describe contained items by referring to the first-tenth item,
then with anything that requires a reference that exceeds 10 you use the number, as in: get the 1000th

word of document "Mydocument" .

Example 1-11. Different Ways to Refer to Contained Items

tell application "Finder" to get the folder after (the 20th folder of startup

disk)

(* gets the folder object after the 20th folder on the startup disk *)

tell application "Finder" to get the folder after the 20th folder of¬

startup disk

tell application "Finder" to get the folder before the 20th folder of¬

startup disk

You can create very useful and detailed scripts using AppleScript's numerous reference forms. Example
1-12 gets only one part of a list of numbers (i.e., the numbers 3 through 6) and stores this sub-section in
another list variable. The following section briefly describes the repeat and if...end if statements that

appear here.

Example 1-12. Using the Range Reference Form

set list1 to {1, 2, 3, 4, 5, 6}

set list2 to (numbers 3 thru 6 in list1) -- returns only {3,4,5,6}

1.6.9 Flow-Control Statements

AppleScript includes syntax that you can use to test expressions and only have some code execute if
certain conditions are met, as well as loop through code statements and then exit from the loop. These
programming constructs are often called flow-control statements . These statements are covered
extensively in Chapter 7 .

Like many other programming languages, AppleScript uses an if...then...else...end if statement to
test various expressions. AppleScript also has an if simple statement and an if compound statement (one
that extends over several lines). For example, you can use code such as:

if numVar > 1000 then return 1000

on one line without including any end if s. Example 1-13 includes both types of if statements.

AppleScript uses several variations of the repeat statement to loop through code (see Example 1-13).
Repeat is AppleScript's version of the for (;;;) or while... or foreach... loops of other languages like Perl or
Java. AppleScripters often use repeat to loop through the values of a list . For example, the code:

repeat with m in listVar...end repeat

will loop through all of the list members stored in the variable listVar . Within the loop, the iterator
variable m will sequentially contain each list -member value. Example 1-13 includes several versions of
the repeat and if...end if statements.

Example 1-13. AppleScript if and repeat Statements

set userNum to 75.66

 (* compound if statement *)

if the class of userNum is real then

 display dialog "It's a real number."

else if the class of userNum is integer then

 display dialog "It's an integer."

else

 (* you can include a final else as part of the test; in this case it is not

necessary *)

end if

(* simple if statement *)

if userNum is greater than 100 then display dialog "The value exceeds 100."

(* various repeat loop variations *)

repeat 10 times

 set userNum to userNum + 1

end repeat

(* endless loop without 'exit repeat' *)

repeat

 exit repeat -- this loop only iterates once because of exit

end repeat

repeat while userNum < 10000

 set userNum to userNum * 2

end repeat

(* if the statement following 'until' evaluates to 'true' then the repeat

statements are not executed *)

repeat until userNum >100000

 exit repeat (* this exits from this loop right away; you could do

something else if you wanted to *)

end repeat

set myList to {1,2,3,4}

(* repeat statement that iterates over list contents *)

repeat with mem in myList

 set userNum to userNum + mem

end repeat

(* A different kind of repeat loop *)

repeat with loopVar from 2 to 10 by 2 (* loop circles five times; loopVar

is 2,4,6,8,10 *)

 --do something here

end repeat

Another important statement construct in AppleScript provides the language with error-trapping capability. It
is called the try statement, and looks like try...on error...end try . try is similar to Java's
try...catch() statement. If you enclose a series of AppleScript statements in a try block and one of
them raises an error, AppleScript will "catch" the error and allow you to deal with it in a responsible manner.
Without using a try statement, a run-time error will cause a script to display an error message, and then
terminate the script execution. Example 1-14 demonstrates how to use the try block. Again, Chapter 7
thoroughly describes these statements and others.

Example 1-14. Trapping Errors with try

try

 set aNum to (text returned of (display dialog¬

 "Enter a number." default answer ""))

 set aNum to aNum as real

on error errmsg

 display dialog "It looks like you did not enter a number: " & errmsg

end try

1.6.10 Subroutines

Subroutines are code units that can be used over and over again throughout the script once they are
defined in the AppleScript program. They are essentially user-defined commands. Subroutines or
handlers in AppleScript can be called with or without parameters, similar to functions in other languages.
The subroutine can return a value to the calling script or simply perform a task and exit without returning a
value. You can do almost whatever you want in a subroutine (except define another subroutine within it),
including declare and initialize variables and call other functions. Example 1-15 creates a simpler way of
producing a character from its ASCII decimal number equivalent. It calls the ASCII character scripting
addition to produce the value.

Example 1-15. Simple AppleScript User-Defined Subroutine

set let to chr(67)-- the variable is set to 'C'

on chr(int)

 return ASCII character int

end chr

To define a subroutine in AppleScript, use the keyword on followed by the subroutine name, an opening
parenthesis character, one or more optional variables that represents any subroutine arguments, and a
closing parenthesis. If you have more than one parameter, then separate them with commas. Subroutines
that do not have any parameters require empty parentheses, as in on chr() . The end chr part, or simply
end , is also required (Script Editor will automatically add the name of the subroutine after end if you forget
to do it yourself). Whatever you want the subroutine to do is defined within the on char()...end block. A
return statement will immediately return from the subroutine, and it will optionally return a value, as in
return "finished" (the subroutine would return a string "finished"). You can pass objects (such as dates)
to a subroutine as parameter values. Example 1-16 returns the difference in days between two dates.

Example 1-16. Getting the Difference Between Two Dates

set dayDiff to getDiff(current date, date "Sunday, January 1, 1984 12:00:00 AM")

on getDiff(date1, date2)

 if date1 > date2 then

 return ((date1 - date2) / (24 * 60 * 60))

 else

 (* if the dates are equal then the subroutine returns 0.0 *)

 return ((date2 - date1) / (24 * 60 * 60))

 end if

end getDiff

Subtracting one AppleScript date object from another returns the difference between the two dates in
seconds. This subroutine processes the seconds to return the difference in days (the result is a real data
type, so it might look like 6185.835706018518, which is almost 6,186 days). Example 1-15 and Example
1-16 both show that you can call a subroutine higher up in a script than where its definition appears.

1.6.11 Script Objects

Script objects give AppleScript very basic object-oriented features, including inheritance. A script object is
defined in a script-code block that looks a little like a subroutine definition. Script objects are created within
a script with the script [script name]...end script syntax. Example 1-17 contains a simple script object
definition. The object has two methods: one returns a property value and the other method increments the
value of the property by one. The bottom of the script creates two copies of this object then calls its
methods and displays the results.

Example 1-17. Creating a Script Object

(* begin the script object definition *)

script Test

 property myval : 0 -- one integer property

 on getVal() -- define a method

 return myval -- return the prop value

 end getVal

 on upVal() -- define another method

 set myval to myval + 1 -- increment myval property by one

 end upVal

end script -- end script object definition

copy Test to t1 -- create new Test object

copy Test to t2 -- create another, different Test object

(* two ways to call an object's methods *)

tell t1 to upVal()

t2's upVal()

t2's upVal() (* t2's upVal method is called twice, setting its myval property

to 2 *)

set theMessage to "t1: " & (t1's getVal() as string) (* find out the two

object's property values *)

set theMessage to theMessage & return & "t2: " & (t2's getVal()

as string)

display dialog theMessage

You may have noticed the use of the keyword copy to create the two Test objects in Example 1-17 . The
copy keyword creates a new copy of the object and stores it in the named variable, as in [copy Test to t1]
. If the script used set t1 to Test and set t2 to Test , then the variable t2 would not have a new copy of
the Test object. It would refer to the same Test object (and the same myval property) as the t1 variable.

Libraries present a real-world use of script objects. A library, which is a type of script object, can be one or
more method definitions stored as a compiled script. To use the library's methods, load it into the script with
the load script scripting addition (Example 1-18 and Example 1-19 demonstrate this).

Example 1-18. Defining a Library

(* define some methods and save as an applet or compiled script;

the file name of the script is "farewell"

*)

on sayGoodbye()

 display dialog "Goodbye"

end sayGoodbye

on sayCiao()

 display dialog "Ciao"

end sayCiao

Now load the library into any old script by providing its file path (where the script is saved on the computer)
as a parameter to the load script scripting addition.

Example 1-19. Using a Library

set bye to load script "macintosh hd:desktop folder:farewell"

 (* call library methods *)

bye's sayGoodbye()

bye's sayCiao()

Chapter 9 goes into much greater depth on script objects.

Chapter 2. Using Script Editor with OS 9 and OS X

Unless you decide to use a commercial development environment to create scripts, the free Script Editor
will be your principal AppleScripting tool. [1] This is fine; many AppleScript purists have clung to Script
Editor and still find it easy to use, even though it hasn't changed that much in years. Besides, it's free
with the Mac OS 9 and OS X installation. You can find Script Editor in the /Applications/AppleScript folder
in Mac OS X; in OS 9, this application is located in startup disk:Apple Extras:AppleScript.

[1] Smile is a free AppleScript tool that can be downloaded from http://www.tandb.com.au/smile. Three commercial development

environments are Digital Technology International's FaceSpan, Main Event Software's Scripter, and Late Night Software Ltd.'s Script

Debugger. Script Editor 1.6 has also been made available for Mac OS 9.1.

Script Editor is particularly useful for creating the first versions of scripts using the Finder in OS 9. You
can record most tasks involving the Finder (such as an action involving a file, folder, or disk), and then
make any manual changes later in Script Editor. Chapter 1, describes the recording of scripts.

The rest of this chapter is devoted to explaining the principal commands and controls of this program. I will
also describe some basic scripting mechanics such as file-saving options and describe how to view
dictionaries. The chapter concludes with an example applet that turns around and controls its creator.

Figure 2-1 shows what the Script Editor and its Results window (which displays the return values for its
executed code) look like on the OS X desktop. The Script Editor includes controls and menus to:

Figure 2-1. Script Editor on OS X

Compile, save, and run AppleScripts

http://www.tandb.com.au/smile

Record Apple events from recordable applications

Debug scripts with the Event Log and Result window

View other application's dictionaries (see the section "Dictionaries")

2.1 Script Editor Controls/Commands

The Script window, shown in Figure 2-2 (from the OS 9 desktop) is where you edit and compile code.
The other windows that are displayed and used by this program are dictionary windows, Event Log, and
Result window (all these are discussed later in this chapter). The title bar of the window contains the
name of the script next to a script icon that indicates which file type you saved it as (e.g., compiled script,
applet). In Mac OS 9.1 and Mac OS X (i.e., AppleScript 1.5 and later), if you drag that icon to a disk
folder the script will be moved to that folder.

All menu commands and windows attributed to Script Editor for OS 9 are
replicated without any changes in OS X, except for the fact that the OS X Script
Editor has been redesigned for the Aqua interface.

Figure 2-2. Script Editor window in OS 9

The following list describes the parts of the Script window:

Description field. The text area at the top of the script window is called the description field. This
space assumes the role of a global comment area for the script. You can use this area to type in
information about a script's purpose, its properties, its functions, the scripting additions it may use,
and any other helpful reminders to yourself or other script users. In addition, when creating a script to
use an Apple Data Detector (ADD), use the description field to contain the type of detector that will
be referenced in the script and other values. ADD is an intriguing Apple technology that allows you to
run scripts that respond to contextual menu selections. Chapter 20, is devoted to ADD.

1.

Record . Pressing this button or typing Command-D turns on Script Editor's Apple-event recording
capability. A cassette-tape icon will begin blinking in the upper left part of the computer screen on
OS 9. Script Editor will only record Apple event code that originates from recordable apps, such as
the Finder.

2.

Stop . Clicking this button or typing Command-. stops recording. The Apple events that are recorded3.

are converted from Apple event code into AppleScript terms and displayed in the script window. Only
a few applications other than the Finder are recordable (see Chapter 1 for a description of recording
a script). If you have turned on recording for a program and it is not recordable, then clicking the Stop
button results in a blank script window.

3.

Run . This button attempts to compile and run the script statements. Typing Command-R also
executes this control. Any syntax errors in the script will cause an error dialog to be displayed.

4.

Lower left pop-up menu. The pop-up menu button on the lower left of the script window (in Figure 2-
2, where you see the label "AppleScript") allows you to choose which scripting component will be
used to compile and execute your script. This pop-up button identifies only installed scripting
components (see Chapter 1 for a description of scripting components). AppleScript is selected by
default in this button (it might be the only selection if this is the only scripting component you have
installed on your machine).

5.

Check Syntax . Clicking this button compiles or fails to compile the code in the script window. The
first syntax error this feature encounters is highlighted in the window. Check Syntax does not run or
save the script. If the syntax is okay, then Script Editor will format the code by indenting it (such as
indenting the code inside of tell statement blocks).

6.

2.1.1 Dictionaries

Before scripting an application, first find out which AppleScript commands it supports. The scripter also
has to know which of the target application's objects, such as files, paragraphs, or database records, can
be manipulated by a script. You can accomplish this task by selecting the program from Script Editor's File

 Open Dictionary menu command. This command displays the dialog box depicted in Figure 2-3.
Figure 2-4 shows what the same dialog box looks like in Mac OS X. Just choose the application icon of
the program that you want to examine to view its dictionary in a dictionary window.

You can open a program's dictionary by dragging the program's icon in the Finder
to the Script Editor's icon.

Figure 2-3. Open Dictionary dialog box in 0S 9

The application's dictionary specifically lists the sets, or suites, of script commands and classes that the
program supports (for example, the Standard Suite, AppleScript suite, or Text suite). Figure 2-5 shows the
Finder's dictionary window in OS 9. The left panel of the dictionary window lists the application's
commands in plain text and its classes in italics. Remember that commands are the messages or Apple
events that a script sends an application in order to get it to do something (e.g., sleep). Classes or objects
are the things that a script may try to change or get information about (e.g., a file or folder).

If a system application, extension, or control panel does not show up in their folder when you use File
Open Dictionary, then they do not have a dictionary; they are minimally scriptable or not scriptable at all.
Some control panels in OS 9, for instance, do not have a dictionary but respond to a "run" AppleScript
command (such as Energy Saver). In Mac OS X, for example, if the application icon is dimmed in the
Open Dictionary dialog window, then the app does not (yet) have a viewable dictionary .

Figure 2-4. Open Dictionary dialog in OS X

Figure 2-5. Finder's dictionary

2.1.2 Special Edit Menu Items

The Edit AppleScript Formatting menu item allows the scripter to determine the font type and size
inside the script window of various AppleScript language elements such as uncompiled text, operators,
and comments. A pop-up menu button at the bottom of the dialog box produced by this command
identifies the dialect that Script Editor will use (e.g., "AppleScript English").

Script Editor's Edit Paste Reference menu item will add to the script window a reference to any
objects (such as files or disks) that you have selected and copied from the desktop. For instance, if you
select and copy a disk called "scratch" on your desktop, then choosing this menu item will paste disk
"scratch" within the script window.

2.1.3 Script Saving Options

You have four different options for saving a file in Script Editor; however, Mac OS X does not support the
stationery option of OS 9. These options are available from the File Save or File Save As menu
choices.

A droplet is by definition saved as an applet, but AppleScript gives it a different icon
due to the enclosure of its code in an on open handler.

Figure 2-6 shows the icons for AppleScript file types. Mac OS X supports all of these icon types except the
stationery one.

Figure 2-6. Icons for AppleScript file types

2.1.3.1 Script text file

If a script cannot compile without errors, or you just want to save it as plain text, then use the script text
saving option. The text option saves the file as file type 'TEXT' and creator type 'ToyS'. In OS X, Script
Editor tries to compile a script first when you save it, then displays a dialog window if the script cannot be
compiled without error, giving the user the option of saving the script as a text file. If you are not finished
with the script and therefore do not yet want to try compiling the source code, then you can skip the
compilation stage by holding down the Shift key and choosing Script Editor's File Save menu item.
The file will only be saved as a text file.

2.1.3.2 Compiled script file

Script Editor will try to compile the source code before saving it. After a script is saved as a compiled
script, double-clicking it opens the script in Script Editor, rather than executing it. These scripts have a file
type of 'osas' and creator type 'ToyS'. You can run these scripts from within Script Editor.

The Mac OS distinguishes different kinds of files by giving them unique four-
character file types, such as 'osas' for a compiled script, 'TEXT' for an ASCII text
file, and 'APPL' for an application that can be double-clicked to launch in the
Finder. The four-character creator type identifies the application that handles the file
when it is double-clicked (for example, 'ToyS' for Script Editor).

2.1.3.3 Classic applet

These file icons represent an applet that the user can double-click in the Finder to execute. An applet is a
self-contained Macintosh application, independent from Script Editor. Classic applets have a file type of
'APPL' and a creator type of 'aplt'. You can still edit these files within Script Editor by choosing File
Open Script, then selecting the applet, or by dragging and dropping the applet icon on to the Script Editor
icon. A classic applet is designed to run on Mac OS X but only within the classic environment. Figure 2-7
shows the classic (OS-9 type) dialog produced by executing an applet that was saved as a classic applet
on an OS X machine.

Figure 2-7. A classic applet executes within the confines of the classic environment

There are a few instances when you would want to run a classic applet inside OS X. One of them is that
you want to automate a program that is running in the classic environment on OS X. Another reason is if
you are developing an applet for an organization that is using OS 9. If you want to do any Mac OS X
scripting, just create and test the applet using the latest version of Script Editor on OS X.

2.1.3.4 MacOS X applets

These applets are intended to work on a computer running Mac OS X (and future OS versions) or on an
OS 9 machine that has the CarbonLib extension installed. However, the "MacOS X applet" saving option
only works with AppleScript Version 1.5.5 or later, which installed with Mac OS 9.1, so only the MacOS X
applets that are created on OS 9.1 machines will run on Mac OS X machines (running the Mac OS X for
instance). MacOS X applets are also self-contained applications, independent from Script Editor.

Unraveling Classic and MacOS X Applets on OS X

A classic applet that targets a Mac OS 9.1 application (e.g., BBEdit 5.1) does what you would
expect it to when double-clicked within Mac OS X. It runs within Mac OS X's classic
environment (and opens the classic environment if that has not yet been launched by the
operating system), launches the OS 9.1 program, and performs the applet's actions with that
program. A MacOS X applet that does not target an OS 9.1 program does not use the classic
environment.

But what about a MacOS X applet that targets an OS 9.1 program? My testing with Mac OS X
indicates that a script saved as a MacOS X applet can still be used to script a program that is
running within the classic environment. A MacOS X applet that inserts some text in a BBEdit
document file will launch BBEdit in the classic environment and perform the script's actions,
just like an applet saved as "classic" will. Strangely enough, I found that both the MacOS X
applet and the same applet saved as a classic applet were also able to script elements of the
OS X Finder. This is the simple script that I used to test the behavior of both classic and
MacOS X applets. It first sends commands to a program that is running within the classic
environment, then it scripts the Mac OS X Finder:

tell application "BBEdit 5.1"

activate

insert text "some more text"

end

(* Now script the OS X Finder *)

tell application "Finder"

activate

set target of Finder window 1 to "/users/"

end tell

The File Save dialog box in OS 9 also presents you with a Stationery Option, which gives you the
option of saving the file as a template (a stationery pad in Macintosh parlance) or as a document file. If you
choose the stationery option, then every time you open the file a new document will be created with the
template's contents.

You can prevent the further editing of either a compiled script or an applet by choosing File Save As
Run-Only. A run-only compiled script will not reopen in Script Editor if double-clicked, unlike compiled
scripts that are not saved as run-only. The applets saved as run-only will execute when double-clicked, but
you cannot open them in a new script window for further editing. If you want to prevent users from opening
up the application to view its source code, then this is one reason for saving it as run-only.

When you save a script as an applet (classic or Mac OS X), you have two other checkbox options in the
Script Editor's File Save As dialog box:

Stay Open

Check this option and the script will not quit after it has completed its job. It will remain one of the
running processes on the computer and will even show up in the Mac's About This Computer
window. This window displays (on OS 9) a list of running applications and how much RAM they are
using; it is accessible from the Apple menu in the upper left corner of the screen. You have to
manually quit these scripts from their menu bars, or send them a quit Apple event in some other
manner, such as from another script. A Common Gateway Interface (CGI) script on a Mac web
server is an example of an application that should be saved using the Stay Open option.

Never Show Startup Screen

Unless this option is checked, executing an applet will cause the display of a startup screen or
window, which offers the user the option to run or quit the applet. The top of the startup screen
also displays any text that you included in the script window's description field before you saved
the applet. In OS 9, this option is checked by default. In other words, running the applet will not

produce a window before the applet does anything else.

2.1.3.5 Applets versus droplets

A script application or applet behaves differently in the Finder than script droplets.

A script applet acts like any other Mac application-it performs its operations when the user double-clicks
it. And if you display the Application Switcher palette, the applet's icon shows up there. Unless the scripter
chose the Stay Open option of the File Save As menu command when she saved the applet, the
script process quits after it has completed all of its statements (and after the user has dismissed any dialog
boxes the applet displays).

You can also save your script as a droplet. Droplets execute when files, folders, or other objects are
dragged and dropped on to the droplet's icon on the Mac desktop. The dropped objects are then passed
as an object of value type list to the droplet's open handler. (See Chapter 8, for a description of handlers
or subroutines.)

To save a script as a droplet, you have to nest the script inside of an on open...end open handler. When
you save the script as an applet with one of these handlers, it has a different icon than other script
applications. See Figure 2-6 for an example.

Droplets are very handy for the drag-and-drop processing of entire folders. For example, you could create
a droplet that uploads to a web site directory the entire contents of whatever folder is dragged to the
droplet. When you drop an item (such as a file, folder, or disk icon) on to the droplet, the droplet
automatically executes its open handler. The parameter to the open handler stores whatever is dropped on
the droplet as a list object containing objects of value type alias. (An alias looks like a pathname when
converted to a string, as in "Macintosh HD:Desktop folder:myfile.txt.") You have to include a parameter
with your open handler definition if you want the droplet to deal with the objects that are dropped on it.

If you only drag one file to this droplet, such as a single text file, then the parameter will consist of a list
with one alias object in it. If the droplet cannot handle whatever object is dragged and dropped on it, then
the droplet icon will not highlight when you drag the item over it.

For example, the script in Example 2-1 displays a dialog box that reveals the file type and creator type
of the first item that is dropped on the droplet. If you do not understand several aspects of this program,
rest assured that the rest of the book goes into great detail on variables, tell statements, and other
AppleScript syntax elements.

Example 2-1. Droplet Displaying File and Creator Types

on open (list_of_aliases)

 (* the parameter to the 'open' handler is a list of aliases*)

 tell application "Finder"

 (* stores the first item that is dropped on the droplet in a variable

called 'an_item' *)

 set an_item to (first item of list_of_aliases)

 set amessage to "File type is: " & (an_item's file type as string) &¬

 return & "Creator type is: " & (an_item's creator type as string)

 (* use the 'display dialog' scripting addition command to show

information to the user *)

 display dialog amessage

 end tell

end open

2.1.4 Debugging with Event Log and Result Windows

Script Editor has two minimal debugging tools on OS 9 and OS X: Event Log and Result windows.

2.1.4.1 Event Log

You can open the Event Log by typing Command-E or by choosing it under Script Editor's Controls menu.
If you select the Show Events and Show Event Results checkboxes in the Event Log window, then running
the current script will display the result of each Apple event after a (->) symbol (Chapter 1 discusses
Apple events). You can use Event Log to follow along with a program and make sure that the results of
each operation are what you expect them to be. Figure 2-8 shows the Event Log window in OS 9.

Figure 2-8. Event Log window

You can use the log keyword in your program and uncheck Show Events and Show Event Results if you
just want to track the value of a certain variable in your program. For example, the log window depicted in
Figure 2-8 is associated with the program in Example 2-2 (an OS 9 applet).

Example 2-2. Using the log Keyword in Event Log

tell application "Finder"

 set todayFiles to

 set filecount to

 log (filecount)

end tell

If you unchecked the checkboxes in Event Log, then the Event Log window will only show the result of the
log (filecount) statement bracketed by AppleScript comment symbols (* *). In this case, the result of
the log (filecount) statement is the value of the filecount variable. If you had 30 folders on the
desktop that did not start with "a", then the Event Log window would display (*30.0*).

You can suppress and restart event-logging activity by using the stop log and start log statements.
Here is how event-logging works in OS 9: checking the Show Events checkbox sets a log-level value to
1-whenever this value is greater than 0, the Event Log displays Apple events. The start log statement
increases this value by 1. The stop log statement decreases the log-level value by 1. So if the log-level
value was 1 to begin with, using the stop log statement will stop displaying Apple events until the code
reaches a start log statement.

The following OS 9 program in Example 2-3 stops logging Apple events until the final two statements of a
tell code block.

Example 2-3. Using stop log and start log

tell application "Finder"

 stop log

 count (every file of folder "today" of desktop)

 start log

 set filecount to¬

 does not start with "a"))

 log (filecount)

end tell

Since the stop log statement reduces the log-level value to 0, it prevents Event Log from displaying
Apple events until the start log statement appears.

2.1.4.2 Result window

Typing Command-L or using the Controls menu displays the Result window. The sole purpose of this
window is to display the result of the last operation in a script you execute. Sometimes this is the only
information a programmer needs. An example of a Result window is shown in Figure 2-9.

Figure 2-9. Result window in OS X

For example, type current date by itself in a new script window, then run the script. The Result window
will display something like:

date "Saturday, October 7, 2000 3:18:20 PM"

2.2 Scripting the Script Editor

You can also use Script Editor as the target application for the Apple events sent from your script. If you are like
me, you might want to begin your script in a more robust programmer's editor, such as BBEdit. Once you are
ready to test and compile the code, the following script in Example 2-4 copies the text from BBEdit, and then
pastes it into a new Script Editor window. This applet is for demonstration purposes only and performs marginal
error-trapping for the sake of brevity (it only checks to see if BBEdit has an open window). The applet has been
developed under Mac OS 9 and uses the open for access , write , and close access scripting-additions
commands from the Standard Additions. (Scripting additions are covered in Appendix A .) Presumably, a tweaked
version of this script could run on OS X; however, BBEdit had not yet released an OS X version of its text editor at
the time of this writing.

Example 2-4. An AppleScript That Moves Script Code into a Script Editor File

(* this variable will store the BBEdit text and is initialized to a string *)

set allCode to ""

(* this variable will store the path to the Desktop folder and is initialized

to a string *)

set deskPath to ""

tell application "BBEdit 5.0"

 try

 activate

 set allCode to (window text of document 1)

 on error errMessage

 display dialog "Looks like BBEdit does not have any open windows" &¬

 return & return & "Error: " & errMessage & return & return &¬

 "Exiting applet"

 return -- this return statement exits the applet's run handler

 end try

end tell

(* ask the user for a new filename then create a Script Editor file on the

desktop *)

tell application "Finder"

 set frontmost to true

 display dialog¬

 set newScript to (the text returned in the result) as string

 make file at desktop with properties¬

 {name:newScript, file type:"TEXT", creator type:"ToyS"}

 set deskPath to (desktop as string)

end tell

(* Use the 'write' scripting addition to write the code to the Script Editor file *)

tell application "Script Editor"

 activate

 set script_file to (deskPath & newScript) as alias

 open for access script_file with write permission

 write allCode to script_file

 close access script_file

 open script_file

end tell

Another solution to some of the limitations of using Script Editor as a text editor (e.g., no line numbering,
bookmarks, and very little customization capabilities) is to not use Script Editor! See the footnote at the beginning
of this chapter for a short list of alternative AppleScript development environments. Each of these programs,
particularly the commercial ones, have many more features than Script Editor and are updated often.

Part II: AppleScript Language Reference

Chapter 3. Data Types

In Chapter 1, I touched on data types, but now I will delve deeper! A data type describes how a
programming system stores data in memory, and it is similar to the types used by other languages such as
Java or Visual Basic. AppleScript data types specify the type of value that a variable stores (e.g., date,
integer, string, real) or that an AppleScript command or scripting addition returns (see Appendix A).
The data type that a variable stores determines what the script can do with it afterward, such as perform a
math operation on an integer type or find out the length property (the number of characters) of a string
type.

This chapter only describes the built-in AppleScript data types; however, a variable could also store a
reference to an object such as a file, a web URL, or a database record (see Chapter 1 and its discussion
of Apple event objects). Table 3-1 lists the data types described in this chapter, which also includes the
correct syntax to use when storing a certain data type in a variable and the other data types to which a
variable can allowably be cast or coerced.

Table 3-1. AppleScript Data Types

alias real

boolean record

class reference

constant RGB color

data string

date styled Clipboard Text

file specification styled Text

integer text

international Text Unicode text

list unit of measurement classes

number

With some exceptions such as the date data type, you do not have to declare a data type when you
declare a variable. When you declare a variable and store a string in it, such as:

set theString to "I am a string"

AppleScript will naturally enough store the literal value "I am a string" as a string. (The set keyword is
used to store values in variables; this is summarized in Chapter 1 and explained in more detail in Chapter
6.)

The same is true with boolean value types, such as:

set theTruth to false

AppleScript knows that theTruth is storing a boolean value. When you store a number with a fractional
part in a variable, AppleScript automatically sets that variable to a real. There are several exceptions,
however, to this loosely-typed nature.

Consider Example 3-1 of a number and a string (number is just a synonym for a real or integer). When
you run the example, you'll find that the number starts out as a data type integer, then takes part in a math
operation that uses the / division operator. The results of operations that use this operator are always of
type real.

A real can store the decimal portion of a number and an integer cannot.

Similarly, in Example 3-1, what starts out as a string (which otherwise looks like a date) is coerced to a
very different date object. By "coerced" I mean the variable's data-storage method is altered to that of
another data type. This is sometimes called "casting" from one data type to another in other programming
languages such as Java. In AppleScript, there are some casts that are allowed (for example, from a
number to a string) and others that are not allowed (a real to an integer if the real has a fractional part).
The reference sections for each data type later in this chapter include an "allowed coercions" section,
which describes the casts or coercions that are allowed for each data type.

Example 3-1. An Example of Coercion

set theNumber to 25

log class of theNumber -- theNumber is an integer type

set theDate to "December 12, 1999"

log class of theDate -- theDate is a string

set theNumber to (theNumber / 3) (* theNumber is result of / operation so it's

coerced to a real*)

log class of theNumber -- class is now real

set theDate to date theDate -- theDate string is coerced to a date value type

log class of theDate

In the second-to-last line, the theDate variable that stores a string is coerced to a date object. The class
of theDate part of this example returns the class property of the date object, which is a nice way to look
at which value type it is storing.

The following sections describe each AppleScript data type in alphabetical order, including the other data
types to which they can be coerced.

alias

Allowed coercions

list with one item, as in: {alias "Macintosh HD:Desktop Folder:newfile.txt"}
string

Syntax

set theFile to alias "Macintosh HD:Desktop Folder:newfile.txt"

Description

An alias type is a representation of a disk, folder, or volume. An alias is a form of referring to an object
such as a file (as in the syntax example), which is very similar to the "alias files" that you can create in the
Finder.

An alias file is a Finder object that can be referred to in tell statements that target
the Finder. An alias (such as the alias in the syntax example), on the other hand,
is a built-in AppleScript class or type.

Nearly everyone who has used a Macintosh is familiar with making alias files (i.e., select the file and type
Command-M or choose File Make Alias from the Finder's menu in Mac OS 9). For example, if you
have a file called new.txt and you make an alias out of it, then the Finder creates a new file in the same
location that looks like Figure 3-1. This file refers to the original file by using a unique identifier. Even if
you move the original file around within the volume (which is represented by a disk icon on OS 9's
desktop), but not outside of the volume, the alias file will still find it. An alias value type is similar to an
alias file. Every time you change and recompile a script that refers to an alias, AppleScript will attempt to
find the file or other object that the alias refers to. A lot of commonly used commands take aliases for
arguments (such as open for access) or return aliases (e.g., choose file). See Appendix A for more
information on these commands.

Figure 3-1. An alias file icon

One way to create an alias in AppleScript is by preceding a valid file path with the keyword alias:

alias "Macintosh HD:Desktop Folder:newfile.txt"

If the file path, a string, does not point to a valid file, folder, disk, or volume, the script will not compile in
Script Editor. For example, if you use the code:

set theFile to alias "Macintosh HD:Desktop Folder:newfile.txt"

and the file newfile.txt does not exist, then Script Editor will not allow a compilation to an applet or
compiled script.

Another way to create an alias in AppleScript is to use the keyword as with a string:

set theFile to "Macintosh HD:Desktop Folder:newfile.txt"as alias

The string used with as (e.g., "Macintosh HD:Desktop Folder:newfile.txt"), however, has to be a valid file
path or the script will not compile. Other ways to get aliases to files or folders are the choose file, choose
folder, and path to scripting additions. See Appendix A for a description of these commands. All three
commands return alias types that refer to files, folders, or to special folders such as control panels. The
examples elsewhere in this chapter include the use of these scripting additions.

Examples

Aliases are particularly useful in AppleScript for getting the path to files or folders as strings. The first
example shows how to use the path to scripting addition to get a string that represents the Desktop
Folder ("Macintosh HD:Desktop Folder:"). The path to osax returns an alias type, which is then coerced to
a string:

(* this line returns something like "Macintosh HD:Desktop Folder:" *)

set dpath to (path to desktop) as string

(* this returns an alias like alias "Macintosh HD:Desktop

folder:today:index.html", but only if the "index.html" file exists *)

set theFile to alias (dpath & "today:index.html")

set dt to (path to desktop) as string (* returns (depending on the

startup disk name) "Macintosh HD:Desktop Folder:" *)

set fileAlias to (choose file with prompt "Choose a file if you please.")

(* presents a dialog box to the user and returns an alias type that looks

like alias "myStartupDisk:Web Files:search.html".*)

set folAlias to (choose folder with prompt "Choose a folder to store¬

the new file in.") (* this time returns an alias type that points to a

folder. The return value looks like alias "myStartupDisk:Web Files:".

Notice that the folder path (i.e., "myStartupDisk:Web Files:") ends with

a semi-colon (":"), which is the character used to delimit file paths on

the Macintosh. *)

set theApp to (choose file with prompt "Choose an app to launch") (* You

can then launch the chosen application with code such as tell application

(theApp as string) to run. *)

boolean

Allowed coercions

list with one item, as in {true}
string

Syntax

set theTruth to true

Description

boolean data types can only be one of two values: true or false. When setting a variable to a literal
boolean value, just type true or false without quotation marks. Expressions that include comparison
operators return boolean values (see the following Examples section).

Two of the examples in the "Examples" section demonstrate that AppleScript does not consider case by
default when comparing string values. If you enclose the string comparison in a considering
case...end considering block, however, the case of the characters (upper- or lowercase) matters.
Therefore, the last expression in "Examples" returns false because of the uppercase "I" in the first
operand and the lowercase "i" in the second operand.

Three of the examples use three logical operators: and, or, and not. These are AppleScript language
elements that you will use all the time to test or alter boolean values. For example, the following phrase
finds all files that are not gif files:

get (every file in folder "images" whose not (name ends with "gif"))

If you have to, you can set the value of a boolean variable to the return value of an expression:

set theBool to ("I am" is equal to "i am")

The theBool variable evaluates to true. The parentheses are there to make it more readable; they are not
necessary in this case.

You cannot use numerical values (such as 0, 1, or -1) as boolean values, unlike Perl. If you try to write

if (-1) then display dialog "hey!"

then you will get a pithy error message on the order of "can't make -1 into a boolean value." In Perl, lots
of different values evaluate to true. Any number is true except 0, including 1 and -1; string values other
than the "empty string" ("") evaluate to true. Not so with AppleScript-boolean values are either true,
false, or a boolean return value from a comparison expression, AppleScript command, or application-
property value.

Examples

This expression returns true, because 35 is greater than 25:

35 > 25

This expression also returns true because the math is correct:

25 is less than 35

This expression returns false because the not operator reverses the value of true:

not true

With and, both operands must evaluate to true for the expression to be true:

true and false -- returns false

This expression returns true because the first operand is true and the expression "short circuits" (i.e.,
returns true without evaluating the second operand):

true or false -- returns true

AppleScript doesn't consider case by default and finds two strings to be equal:

"I am" is equal to "i am" -- returns true

This expression returns a false value because case sensitivity is taken into account:

considering case ... "I am" is equal to "i am" ...end considering

(* returns false *)

class

Allowed coercions

list with one item, as in {integer}
string

Syntax

set theClass to class of theString

Description

The class value type is used to describe the data type of a variable or object, such as: boolean, class,
integer, real, record, or string. It is used most often to check the value type of a variable or return
value:

set theString to "I am a string"

set theClass to class of theString -- returns string

Getting the class property of a string returns an object of type class, which is just the word string (or
whatever the class is) without quotation marks. If you want to twist your tongue into further knots, follow
the prior example with the statement:

get class of theClass

It returns, you guessed it, the term class with no quotation marks.

Examples

To make sure they are of the proper data type, check the class property of any parameters that are
passed to functions:

on MultiplyByTwo(aNumber)

 if (class of aNumber is not in {integer,real}) then

 return 0

 else

 return aNumber * 2

 end if

end MultiplyByTwo

MultiplyByTwo(45)

MultiplyByTwo("woops")

The first call to the MultiplyByTwo function will result in "90." The second call will produce "0" because the
parameter is a string, instead of the required integer or real value type.

The class of aNumber part of the previous example returns an object of type class (it will return integer
from the first call to MultiplyByTwo and string from the second call). The segment:

(class of aNumber is not in {integer,real})

of the function call is a boolean expression. It will return false if the class of the parameter is either an
integer or a real.

constant

Allowed coercions

list with one item, as in {constant}
string (beginning in AppleScript Version 1.3.7)

Syntax

set theVar to pi (*theVar is set to the value of the pi constant, which is

about 3.14159265359 *)

Description

AppleScript and scriptable applications include several constants or pre-defined variables that are based
on the constant class. Chapter 6 includes more information on these constants.

Examples

case is a constant that in the following example will determine how strings are compared:

considering case

 set compString to ("I am" is equal to "i am")

end considering

This code sets the variable compString to false because the two strings are not equal considering the
case of the string characters. The AppleScript constant case, if you test it using the code class of case,
returns the constant class.

Many applications have defined their own constants using the constant value type. For example,
Sherlock 2's current tab property will return one of the following Sherlock 2-defined constants (Find File
Tab, Find by Content Tab, or Search Internet Tab):

tell application "Sherlock 2"

 set sh_tab to (get current tab)

 class of sh_tab -- returns constant

end tell

The return value of the current tab property is a constant identifying the Find File
Tab, for instance. You can coerce this constant return value to a string, however,
if you had to display the result using the display dialog scripting addition, which
takes a string for a parameter (among other parameters). To coerce the return
value of the previous example to a string you could use the code:

get current tab as string

data

Allowed coercion

list with one item, as in {<<data utxt00650061007200740068>>}

Syntax

Set theVar to "earth" as Unicode text (* returns <<data

utxt00650061007200740068>> *)

Description

data is a value type that can be used to store data that cannot be stored using any of the other AppleScript
value types.

The Script Editor Result window displays raw data surrounded by double-arrow or guillemet characters
("<< >>"). You can produce these symbols on the Macintosh keyboard by typing option-backslash ("<<")
and option-shift-backslash (">>").

For example, in OS 9 Unicode text is an AppleScript value type that is displayed as raw data in the Script
Editor Result window (even though it is still stored as type Unicode text). However, AppleScript 1.6 with
Mac OS 9.1 and OS X can display Unicode text as regular strings (as in "Hello"). The following example
displays a lowercase "u" character as Unicode text:

set ucode to "u" as Unicode text

The Script Editor Result window will return the value as "<<data utxt0075>>."

Unicode text uses two bytes (16 bits) per character to store strings. (See later in this section for more
details on the Unicode text class.)

Within the guillemets, the word "data" is followed by a space then a four-character code representing the
Unicode text class ("utxt"). The actual data representing the lowercase "u" precedes the closing
guillemet character ("0075>>"). The lowercase "u" is represented in the ASCII table as the number 75 in
hexadecimal form (117 in decimal). It only takes one byte to store a "u"; the one byte is represented by
the "75" portion of the data return value ("<<data utxt0075>>"). The rest of this data ("00"), representing
the unused extra byte, is two zeros.

Raw Syntax

You can also use raw syntax to represent data and commands in your own scripts. For
example, AppleScript recognizes the term <<class cfol>> as the equivalent of the word
folder, which is the Apple event object that represents a folder on your computer. The class
part of this data structure stands for the data type, and cfol represents the four-character code
for folder (remember our Chapter 1 discussion of four-character codes for class types?).

It is normally preferable to use natural language terms ("folder") for these objects, except for
when a built-in AppleScript term or a term from an application's dictionary does not exist for a
command you want to execute. While these situations are rare or nonexistent, one of them
occurs when you want to send an Apple event to a program, and you do not know the human-
language command to use for the event (or there isn't an AppleScript term for the command).
For example, you might have developed an application that handles certain Apple events, but
the program doesn't have a dictionary yet. However, you still want to test how it deals with
Apple events sent by AppleScript. You could then use the following raw syntax to send a get
Apple event to the program "myapp" requesting its version property:

tell application "myapp" to<<event coregetd>> version

This expression encloses the word "event" in guillemets ("<<>>") followed by a space and the
get command's event class ("core") and event id ("getd") pushed together. Recall from Chapter
1 that every Apple event is distinguished by its event class (the suite or category of events that
it is part of) and its individual event id. In other words, the previous example uses raw syntax
instead of the conventional coding style:

tell application "myapp" to get version

In another example, you could substitute the raw syntax:

<<class cdis>> "scratch"

for the AppleScript code reference:

disk "scratch"

representing a mounted volume on the desktop with the name "scratch." The four characters
"cdis" represent the Apple event object code for the disk class.

Where do you find out about all of these event and class codes? The AppleScript
software development kit (SDK) includes a FileMaker Pro file that contains event
and class codes for all events and objects associated with Mac OS 8.5 (this SDK
had not been updated as of January 2001). Go to http://developer.apple.com/sdk
for more SDK info.

Examples

You can use raw syntax to represent data, as in the following examples (the question is, do you really want
to?):

http://developer.apple.com/sdk

<<class file>> "bigfile.txt" (* a form of file "bigfile.txt" that refers to a

file called "bigfile.txt" *)

<<data utxt0025>> as string -- returns the percent sign ("%")

<<event aevtodoc>> file "bigfile.txt" (* In AppleScriptese, open file

"bigfile.txt"

 *)

date

Allowed coercions

list with one item
string

Syntax

set dateVar to date "January 1, 2000"

Description

You can use strings to express several different forms of date expressions. But AppleScript will not store
the value as a date object unless you precede the string with the date keyword:

set theDate to date "1/1/2000"

It is very easy to forget to include the date keyword; if you leave it out, the variable will be set to a string
and will not contain any of the date object's properties (e.g., Time String).

This example uses the current date scripting addition to return a date object. The script shows the code's
return value within comment characters ("(* *)"):

set theDate to current date

(*date "Friday, November 12, 1999 8:22:11 AM" *)

Once you have a valid date object, then you can obtain the values of several properties from it:

Class

date

Date String

The date not including the time value ("Friday, November 12, 1999")
Day

An integer that represents the day of the month, as in 12 for "November 12"
Month

Represents one of the following constants:

January July

February August

March September

April October

May November

June December

Time

An integer representing the number of seconds since midnight
Time String

Gets the time from the date object in string form ("8:22:11 AM")
Weekday

Stored in one of the following constants:

Monday Tuesday

Wednesday Thursday

Friday Saturday

Sunday

Year

An integer representing the year

If you create a date object from a literal string, then AppleScript will always fill in a default property value
(such as for the Time property) if the literal string does not provide one. Here's an example of a bare-
bones date value and what the object actually looks like under the surface after AppleScript has filled in
the default values:

set myDate to date "1/1/2000"

return myDate -- looks like date "Saturday, January 1, 2000 12:00:00 AM"

If you do not supply a time value, then AppleScript will set the time as midnight for that day ("12:00 AM").
If you create a date object but supply only a time value, but not the date:

set myDate to date "17:00"

then AppleScript will set the date of the object to the date when the script was compiled. In other words,
the date object always has a property value for the date or time, even if you have not provided one upon
object creation.

AppleScript allows you to use the following constants in date calculations:

days

Equals 24 * hours
hours

Equals 60 * minutes
minutes

Equals 60 * seconds
weeks

Equals 7 * days

AppleScript Pivot Dates

As everyone learned from the Y2K furor, it is not a good idea for an application to accept the
year portion of dates as two digits (e.g., "01") instead of four ("2001"). Always use four digits
when you create AppleScript date objects. However, imagine that you are using an
AppleScript to pull date strings from an old text or database file that represents dates such as
"09/09/87." What is "87"-1987" or "2087"? Here is how AppleScript handles the so-called
pivot dates, where the two-digit century is interpreted relative to the current year:

If the current date is between and 10 (as it is now, 2001), a two-digit date with a year
value between 00 and 90 is considered in the current century. A date with a year value
from 91 to 99 is represented as in the previous century. So the year portion of "1/1/10"
is represented as "2010," and the year of "1/1/95" is considered "1995."

If the current two-digit year falls between 11 and 90 (as in 2011), then any year in the
00 to 99 range is considered in the current century. In 2011, then, the year part of the
date string "1/20/45" would evaluate to "2045."

If the current year is late in the century, as in "1999," then any two-year dates from 00
to 10 are considered in the next century. All the other two-year dates are represented
as in the current century.

Examples

If you compiled and saved the expression:

set myDate to date "17:00"

on January 20, 2000, then the myDate date object would look like this:

date "Thursday, January 20, 2000 5:00:00 PM"

Scripters work a lot with date objects. You can perform addition and subtraction with dates, for instance.
The following example tells you when a project with a six-month deadline is due, based on the date when
you signed the project contract:

set userInput to (display dialog "When did you sign the contract?"¬

default answer ((current date) as string))

set contractDate to date (text returned of userInput)

set projectDue to date (contractDate + (180 * days))

set amessage to "Brace yourself, your project is due on " & projectDue

display dialog amessage

It first asks the user for the contract-signing date by using the display dialog scripting addition. The code
then displays a text field to request user input. In this case, I use a date string returned from the current
date scripting addition (the return value is coerced to a string) as the default answer. For the sake of
clarity and keeping the example short, I have not tested what the user has entered into the text field to
make sure that the value is a valid date string. Any final program should test the input value for validity.
The contractDate variable takes the string returned from the display dialog window (text returned of
userInput) and coerces it to a date object. Then the script roughly calculates six months as: 180 * days
(days is a constant that equals 24 * hours). This calculated value is added to the contractDate date
object to get a date representing six months from the contract date. It stores this value in the projectDue
date variable. The final two lines create and display a message dialog box notifying the user when their
project is due. The following segment:

set amessage to "Brace yourself, your project is due on " & projectDue

shows how the scripter can concatenate a date object to a string, and AppleScript will coerce the date
object to a string for you.

A scripter can also use the Time property of a date object to calculate elapsed time in seconds. The next
example uses the Time property to calculate how long it takes the prior example to run (including how long
the user takes to fill in and dismiss the dialog box). A code-timing function using the Time property of date
objects is a useful addition to a scripter's function library:

set codeStart to (time of (current date))

set userInput to (display dialog "When did you sign the contract?"¬

default answer ((current date) as string))

set contractDate to date (text returned of userInput)

set projectDue to date (contractDate + (180 * days))

set amessage to "Brace yourself, your project is due on " & projectDue

display dialog amessage

set codeEnd to (time of (current date))

set timeDif to (codeEnd - codeStart) as string

display dialog ("This code took " & timeDif & " seconds to run.")

Here are more examples of creating date objects:

set myDate to date "12/1/2000"

set myDate to date "December 1, 2000"

set myDate to date "12/1/2000 5:00 PM"

set myDate to date "12/1/2000 17:00"

set myDate to date "17:00"

file specification

Allowed coercions

List with one item
string

Syntax

set fSpec to (new file default name "urlfile")

Description

The file specification class can reserve the name and path for a file, even if the file has not yet been
saved to the hard disk. The URL Access Scripting scripting addition takes a value of type file
specification for both its download and upload commands.

Examples

This code requests the user to name a file and choose its saving location (with the new file scripting-
addition command) then downloads a web page to the file:

set fspec to (new file default name "urlfile")

tell application "URL Access Scripting" to download "http://www.¬

parkerriver.com" to fspec

new file displays a dialog box that allows the user to name and choose the location for a file, but it doesn't
actually save the file. It returns the file information as a file specification data type.

The following code gets a file specification, and then sends a save Apple event to the text editor
BBEdit. The text editor then saves its front window to the file specification the applet user had
previously created:

set newFileSpec to¬

 (new file with prompt "where would you like the future file saved?")

(* returns a file specification object *)

tell application "BBEdit 5.1"

 save window 1 to newFileSpec

end tell

The info for scripting addition takes a file specification parameter. It gives you a substantial amount of
information about a file that's been saved to disk, including the name, size in bytes, file type, and creator
type. However, the info for command will return an error if the file specification data has not yet been
saved:

set filespec to¬

(new file with prompt "Where do you want a new file saved?")

tell application "BBEdit 5.1"

 save window 1 to filespec

end tell

set fileInfo to (info for filespec)

display dialog "name: " & (name of fileInfo) & return & "size: " &¬

 (size of fileInfo)

integer

Allowed coercions

list with one item
string

real

Syntax

set myInt to 12 as integer

Description

An integer value type is a positive or negative number that does not have a decimal part. You can use
number as a synonym for integer, but the class of the variable remains integer, as in:

set aNum to 30 as number

If you get the class property of aNum, it will be integer.

If you need a very high number, such as for a variable that will hold the U.S. national debt, you will have to
use a real data type. An integer has a range of-536870911 to +536870911. If you're going to work with
very high numbers, particularly if the script will increase the value of those numbers, then you should use a
real value type to hold the value.

Examples

Here are some examples of numbers that AppleScript will store as integers, as well as numbers that
AppleScript will end up storing as reals because they are too big or have a fractional part:

integer class

set bigInt to 500000000

integer class

set bigInt to -500000000

The variable bigInt is stored in a real data type because of the size of the number:

set bigInt to 600000000

The variable bigInt is converted to the real class because it has a fractional part:

set bigInt to 6.1

AppleScript automatically sets a data type for a variable depending on the size of the number or whether it
has a decimal point. In the following code, the number starts out as an integer, has a number with a
decimal point added to it, then is converted to a real value type to accommodate the fraction:

set int to 1

log class of int -- integer

set int to int + 1.2

log class of int -- real

You cannot depend on AppleScript to always assign the intended value type to a number. This example
code will reach the limits of a positive integer (in this case +536870911 on my machine) then begin
assigning negative numbers to the int variable. Its class remains integer while it is processed. This was
a problem with integer data types in AppleScript 1.3 through 1.4.3 (see the following note).

set int to 536870909

log class of int

repeat 3 times

 set int to int + 1

 log int

 log class of int

end repeat

Changing the opening line of the last example to:

set int to 536870909 as real

will solve the problem and allow the positive number to increase in value by one during each iteration of
the loop. (See Chapter 7,for an explanation of repeat loops.)

In AppleScript 1.5 and later, integers will be converted to reals when the integer
exceeds 536870911. This obviates the necessity to originally store the
incrementing number as a real (but this might be a good idea anyway if you expect
the number to grow very large).

international text

Allowed coercions

List with one item
string

Unicode text

integer or real if text depicts a valid number

Syntax

set intText to "The World" as international text

Description

The international text class stores string data differently than a standard string. Each chunk of
international text begins with a four-character language code and a four-character script code, both of
which determine the format of subsequent bytes of text. A variable declared as type international text
can be used to store text that is comprised of Chinese characters, for instance, but only if the Macintosh
computer running the script has the proper language kit installed.

list

Allowed coercion

string, if the data type of each item in the list can legally be coerced to a string

A single-item list (such as {44}) can be coerced to any data type that the item
could be coerced to if it were not in a list. For example, {44} could be cast or
coerced to a string, because 44 is an integer, and AppleScript permits that data
type to be coerced to a string.

Syntax

set theList to {"Mercury","Mars",pi,3.14} as list

Description

An AppleScript list is close to what other languages such as Perl or Java would call an array. In
AppleScript, you can store items of any data type in a list, even other lists. You can mix data types
among list items (store strings, numbers, and other objects in the same list). The items as a group are
surrounded by curly braces and separated by commas. For example:

set theList to {"Mercury","Mars",pi,3.14}

includes two strings, the pi predefined variable (which AppleScript will evaluate to about
3.14159265359), and a real number.

A list is a data type that you will encounter often in AppleScript. Several AppleScript commands return
lists, such as getting every item in a container (e.g., get every folder of desktop) You can use the following
properties with a list:

class

Always returns list. Test a return value or variable to find out if it is a list by using this property,
as in:

class of theList
length

Returns the number of items in a list, as in:

length of theList
rest

Returns a value of type list containing every item but the first one.

reverse

Returns a value of type list containing all the items of the original list but in reverse order (e.g.,
reverse of theList-returns {3.14, pi, "Mars", "Mercury"}).

Examples

You can use several different reference styles to grab individual items from a list, such as the first,
last, or middle reference methods (e.g., first item of theList- Mercury). You can use integers as
reference methods, such as:

1000th item of theList

(if the list included at least 1000 items). You can also access subgroups within a list by referring to
them as a range. For example:

items 1 thru 3 of theList

returns a list containing the first, second, and third entries in the theList variable. You can refer to any
list value by referencing its list position, as in item 3 of theList. Lists are not "zero indexed" by
default in AppleScript. The first position in an AppleScript list is occupied by item 1.

AppleScript lists are very supple; you can "concatenate" two lists to make a bigger single list. The
following code uses the concatenation operator (&) to combine two lists:

set theList to {"Mercury", "Mars", pi, 3.14} as list

set secondList to {"Neptune", 2000, "NutShell"}

set comList to theList & secondList

-- results in {"Mercury", "Mars", 3.14159265359, 3.14, "Neptune", 2000,

"NutShell"}

If you concatenate a list data type with a string, integer, real, or boolean data type, AppleScript adds
the value to the end of the original list. For instance:

set theList to theList & "Let me in"

results in a new list with the "Let me in" string added to the end of it. This makes it very simple to
dynamically add data to an existing list, whether the data are other lists, strings, numbers, or different
classes.

You get a different result when you try to concatenate a list of values to a string. AppleScript first
coerces theList to a string. All of the list items are jammed together and separated by AppleScript's
default text item delimiters, which is the empty string (""). Thus when list items are converted to a
string the result is often unreadable-a string of characters with no spaces separating them. This
example is one solution to prettying up a string that was formerly a list:

(* save a reference to AppleScript's default text item delimiter, which is an

empty string, "" *)

set defaultDelim to text item delimiters

set text item delimiters to return

tell application "Finder"

 set folList to (name of (items of desktop whose kind is "folder"))¬

as list

 set folList to folList as string

end tell

set text item delimiters to defaultDelim

display dialog folList

The best solution to coercing a list to a string is to temporarily change AppleScript's text item
delimiters. The prior example first saves the default text item delimiters in a variable, so we can
return AppleScript to its default string behavior after the script runs. Then the text item delimiters
value is changed to the return predefined variable, which, when used in this manner, is a return
character (displaying the string following it on the next line). The script then tells the Finder to get a list
of all the names of the desktop's folders and coerce the list to a string. Since I changed the text item
delimiters to a return character, this will create a string that lists each folder name on a separate line.
This string, or at least a portion of it (depending on how cluttered the desktop is with folders), is displayed
to the user using the display dialog scripting addition. Finally, the script also resets the text item
delimiters to the AppleScript default (an empty string, "").

number

Allowed coercions

String

list with one item
integer to real
real to integer (unless real has a fractional part)

Syntax

set theNumber to 25 as number

Description

number is a synonym for real or integer. However, the class for a number with a decimal point will be a
real, and the same goes for a whole number (its class will be integer). Here are some illustrations of this:

theNum is of class integer

Set theNum to 25 as number
theNum is of class real

Set theNum to 25.1 as number

In other words, the number data type can be used in AppleScript, but its actual class will be either integer
or real.

real

Allowed coercions

String

list with one item
integer (if there is no fractional part)
number (a synonym)

Syntax

set theNumber to 25.6 as real

Description

A real is a positive or negative number that can include a decimal point, such as -512.5 or
3.14159265359 (the value of the pi predefined variable is a real value type). Use real when you want a
variable to store a very high number. The largest positive value that a real number can reach with
AppleScript 1.4.3 on OS 9 is 1.797693E+308. This very large number, however, can safely be exceeded
with real data types under AppleScript 1.5.5/1.6 (Mac OS 9.1 and OS X).

Examples

The second line of this example raises an error in AppleScript Version 1.4.3 and Script Editor: "The result
of a numeric operation was too large":

set theVar to 1.797693E+308

set theVar to theVar + 1

At any rate, this is a giant number. To use scientific notation, follow the real or floating-point number with
the letter "e" (upper- or lowercase) along with an integer like 20 (e.g., 2.0e20 or 2.0e+20; the "+" is
optional, any "-" sign is not). If the integer is a positive n,then the number is equal to real number * 10n; if
n is negative then the number is equal to real number * 10 -n. AppleScript converts to scientific notation the
real numbers that are greater than or equal to 10,000.0 when the script is compiled. My machine also
converts to scientific notation numbers that are less than or equal to 0.001, but the AppleScript
Language Guide for AppleScript 1.3.7 ascribes this behavior to numbers less than or equal to 0.0001.

AppleScript will automatically use the real value type for all numbers with decimal
points. The results of math operations that use the / or ÷ operators are always
reals. The results of calculations using *, +, -, ^, and mod operators are reals or
integers depending on the magnitude of the results or whether the operands are
reals or not. (Operators are covered later in Chapter 4.)

You can coerce an integer to a real, and AppleScript will drop a ".0" on the end of the number. However,
you cannot coerce a real to an integer if the real has an actual fractional part. For instance, 6.3 cannot
be coerced to an integer, but 6.0 can. In other words, AppleScript does not automatically chuck out the
fractional part of a real when coercing it to an integer. It first determines whether the coercion is legal or
not. This code is an illustration of this process:

set theVar to 6.3

set theVar to theVar + 0.7 (* theVar is now 7.0 so it can be coerced to an

integer *)

set theVar to theVar as integer

log theVar

log class of theVar -- the class is integer

record

Allowed coercions

list (but all the names from the name/value pairs are thrown out)

Syntax

set theRec to {name: "AppleScript in a Nutshell", subject:¬

"AppleScript"} as record

Description

A record value type is close to what a Perl programmer knows as a hash or associative array and what a
Java programmer would recognize as the HashMap class. This is a powerful data type that lets you store
name/value or property/value pairs in a variable. These values are then accessible by the property name
(not the item number). For instance:

get name of theRec

from the preceding syntax example returns "AppleScript in a Nutshell." But:

get item 1 of theRec

raises an error; you just cannot use the latter reference method.

Examples

You can find out how many property/value pairs there are in a record by getting its length property, as in:

length of theRec

(which returns 2). You can change values by referring to the property name (unless the record is a read-
only application property). You can also add to a record by concatenating another record to it:

get length of theRec -- returns 2

set subject of theRec to "AppleScript language"

set theRec to theRec & {users:"Mac scripters"}

get theRec (* returns {name:"AppleScript in a Nutshell", subject:"AppleScript

language", users:"Mac scripters"} *)

You can coerce a record to a list type, but the record (now a list) will lose all of the property names.
For example:

get theRec as list

will return:

{"AppleScript In a Nutshell", "AppleScript language", "Mac scripters"}.

Records can have expressions or variables as property values, as in the following example (however, you
cannot use variable values for property names):

set myVar to "A variable"

set twoRec to {calc:(2 + 2.5), var:myVar} as record (* returns {calc:4.5,

var:"A variable"} *)

set twoRec to {calc:(2 + 2.5), var:myVar,myVar: 7} as record (* returns

{calc:4.5, var:"A variable",myVar: 7} and doesn't evaluate the myVar variable

at the end of the record*)

You cannot use two-word property names when creating your own record. You will have to use capital
letters or underscore characters to create more descriptive property names:

set climberName to {FirstName: "Edmund", last_name: "Hillary"}.

as opposed to:

set climberName to {First Name: "Edmund", Last Name: "Hillary"}.

reference

Allowed coercion

string depending on the nature of the reference

Syntax

set theRef to a reference to (the name of file 1 of desktop)

Description

The reference class points to an object or value. In the syntax example, theRef points to the name of
file 1 on the desktop, no matter which file becomes the first file on the desktop over time. In other words,
the value of this reference can change. If you just set theRef to name of file 1 of desktop as opposed
to a reference to name of file 1 of desktop, then theRef would contain a string (such as "myfile.txt")
rather than a reference to the name. The next time you referred to the variable theRef in the script, it would
still have the string value "myfile.txt," even if this file were no longer file 1 of desktop (i.e., it might now
be file 2 or file 3 because the desktop files got changed around). A reference to the name of file 1,
however, would continue to provide the name of the desktop's first file, even if that file had changed since
the theRef variable was initialized.

Examples

To set a variable to a reference class, you use the a reference to operator, or a ref to for short. Some
references, such as Finder references to files or folders, can be coerced to strings:

tell application "Finder"

 set theRef to a reference to the name of file 1

 get theRef as string -- returns "filename.txt"

end tell

RGB color

Allowed coercion

list

Syntax

set myRGB to {0,0,0} as RGB color (* returns the color black as an RGB Color

value *)

Description

RGB color values are lists of three integers (between and 65535) that represent the red, green, and blue
components of a color. The script commands for a graphics application may take or return RGB color
values, for example. The class of an RGB color is actually a list value:

set myRGB to {0,0,0} as RGB color

get class of myRGB -- returns list

You can change the values in an RGB color object by referring to its item property:

set item 3 of myRGB to 10000.

string

Allowed coercions

list with one item; numbers as long as the string is a valid integer
real

international text

Unicode text

Syntax

set myString to "Good old string" as string

Description

AppleScript strings are like strings in other languages (arrays of characters), except that they have to be
surrounded by double quotation marks; you do not have the option of using single quotation marks. You can
get the number of characters in a string , including spaces, by using a string's length property:

length of myString

AppleScript strings have the following built-in elements:

characters
paragraphs
text
words

Examples

The statement:

words of myString

or:

every word of myString

will return a list of strings containing each of the words in the original string ({"Good","old","string"}). This is
handy if your script wants to examine or otherwise process each of the words in a string . The same goes
for the other elements; characters of myString returns a list of strings, with each item in the list being
a single-character string ({"G", "o", "o", "d", " ", "o", "l", "d", " ", "s", "t", "r", "i", "n", "g"}). The following
example iterates through this list and returns the number of non-space characters in the string . Items in
lists are one-based, meaning that the first character in a string is character 1. These statements would
make a nice subroutine for a string-handling library:

set myString to "Good old string"

set noSpaceCharCount to 0

repeat with c from 1 to (length of myString)

(*space is a string constant representing a space character *)

 if not (character c of myString is space) then

 set noSpaceCharCount to noSpaceCharCount + 1

 end if

end repeat

get noSpaceCharCount

The text element of a string allows you to grab ranges of characters in a string and return the value as a
string rather than a list :

characters of myString

or:

characters 2 thru 8 of myString

returns a value of type list . For example:

get text 6 thru 15 of myString

would return "old string."

Use a backslash or escape character ("\") to produce double quotation marks, tabs,
or returns in strings.

You might want to use escape characters in the window produced by the display dialog scripting addition
command. The following example shows how to use the escape character in an AppleScript string value. If
you then write the string to a file, for instance, the escape character ("\") will not appear in the written out
string , just the characters that it "escaped," such as double quotation marks:

set myString to "\"Two words \t \ttwo tabs and \ra return character\""

 (* returns "\"Two words two tabs and

a return character " *)

The AppleScript concatenation character (&) can connect two strings. For example:

"String one " & "String two"

results in "String one String two." Make sure to include spaces in the connected strings to ensure
readability. This is an operator that you will be using with strings all the time.

A string can be coerced to a number , and vice versa, as long as the string looks like a number . You can
convert "55" or "3.14" to a number , but you cannot coerce "1.3.7" or "1.4Stephanie" to a real or integer .
You can coerce and then perform math on a string that is a valid number , for instance. This code finds out
if a user has AppleScript version 1.4 or greater on their machine:

set ASversion to version as string

if ((text 1 thru 3 of ASversion) as real) 1.4 then (* string coerced to

real *)

 display dialog "good, you're running at least AppleScript 1.4"

else

 display dialog ("Maybe you should consider upgrading to AppleScript¬

 1.4 or 1.5;You" & " are now running " & ASversion)

end if

If you poke around in the various scripting additions, you will find many that work with strings. For example,
as part of the Standard Additions, the offset osax will find the position of one string inside of another
(Appendix A is devoted to scripting additions):

set theString to¬

"Robert Cohn was once middle-weight champion of Princeton."

offset of "Princeton" in theString

(*returns the character position where 'Princeton' begins which is the integer 48 *)

Styled Clipboard Text

Allowed coercions

list with one item

Syntax

set myClipText to "Styled clipboard text" as Styled Clipboard Text

Description

Styled Clipboard Text is a special value type for applications that can cut and paste styled text
between them. Styled text is text that contains font and style information, such as a chunk of text that is
14-point Arial and bold. Styled Clipboard Text can only be displayed in the Result window as raw data
(see the data data type description).

Styled Text

Allowed coercions

list with one item; numbers as long as the string is a valid integer or real

Syntax

set myString to "Styled string" as Styled Text

Description

Styled Text is a string that can but does not have to contain font and style information. Styled Text has
all of the elements and properties of a string. In fact, the class of styled Text is string. This data type
also has a length property, which returns the number of characters in the string. Styled Text strings
have character, paragraph, text, and word properties. Some word-processing applications, such as
AppleWorks, return the styled-text value when you get the text from a document.

The various font and style characteristics of Styled Text are incorporated into the string, but you cannot
change them with built-in AppleScript code (as in set font of styledTextVar...). In addition, you can
coerce strings back and forth between Styled Text and string. But a literal string ("I am a string") that is
coerced to Styled Text does not actually have any style or font information; it is just plain text.

text

Allowed coercions

list with one item; numbers as long as the string is a valid integer or real

Syntax

set myString to "text is just a string" as text

Description

text is a straightforward synonym for string, with no differences (see the string data type). Make sure
not to mistake the text class for the string class's text element (you can get text 1 thru 10 of a
string to return the first 10 characters as a string). This AppleScript shows how you can store strings as
text, but its class remains string:

set myString to "text is just a string" as text

set len to length of myString -- text has the same properties as string

log len -- find out the string length in Event Log

class of myString -- returns string

Unicode Text

Allowed coercions

list with one item; strings or international text, but some text information may be lost

Syntax

set worldlyStr to "A Unicode string" as Unicode text

Description

Unicode text values reserve two bytes of memory for each character. This allows Unicode text to
represent up to about 65,000 characters from languages throughout the world (Version 3.01 of the
Unicode Standard defined more than 49,000 characters), including Arabic, Chinese, Japanese, Korean,
and numerous others. The Unicode Standard is an evolving standard for international character encoding
(see http://www.unicode.org).

Prior to AppleScript Version 1.5.5, the Script Editor can only display Unicode text as raw data, but its
class is preserved as Unicode text.

AppleScript 1.6 on OS X and OS 9.1 can display Unicode text as a string, as in
"A."

Examples

This AppleScript shows what a returned Unicode text value looks like in AppleScript Version 1.5.5 and
later, and in AppleScript Version 1.4:

set UnicodeStr to "Hi" as Unicode text

(* returns<<data utxt00480069>> in AppleScript version 1.4; and "Hi"

in version 1.5.5 and later*)

The raw-data return value is comprised of the word <<data>> and the actual Unicode text data enclosed
in guillemet symbols (<< >>). The Unicode text data begins with a four-character code representing the
Unicode text class ("utxt") and then a hexadecimal representation of the characters in the string. These
characters are represented as "00480069" inside of the raw-data return value.

http://www.unicode.org

Unit of Measurement Classes

Allowed coercions

integer, real, and string

Syntax

set theMeters to 6000 as meters

Description

AppleScript provides six categories of classes for representing area, length, temperature, cubic volume,
liquid volume, and weight measurements. These data types are very handy for converting measurements
within the categories:

Area value types

square feet

square kilometers

square kilometres

square meters

square metres

square miles

square yards

Length value types

centimeters

centimetres

feet

inches

kilometres

kilometers

metres

meters

miles

yards

Temperature value types

degrees Celsius

degrees Fahrenheit

degrees Kelvin
Cubic volume value types

cubic centimeters

cubic centimetres

cubic feet

cubic inches

cubic metres

cubic meters

cubic yards

Liquid volume value types

gallons

litres

liters

quarts

Weight value types

grams

kilograms

ounces

pounds

degrees Kelvin and quarts began with AppleScript Version 1.3.7, along with the
coercion of miles to other length-measurement types.

Examples

You can only coerce back and forth between measurement classes within the same category. The return
values for these classes are the name of the data type followed by a space and its value. The return value

of:

set theMeters to 6000 as meters

is "meters 6000.0" and its class is meters. The following code illustrates what is and is not permitted in
terms of using these classes. The end of the code example shows the results from Script Editor's Event
Log window:

set theMeters to 6000 as meters

set theFeet to theMeters as feet

log theFeet

set theReal to (theFeet as inches) as real

log theReal

set cubYards to theReal as cubic yards

log cubYards

set cubYards to cubYards as yards

Event log:

(*feet 1.96850394E+4*) -- meters to feet returns as class 'feet'

(*2.362204728E+5*)-- feet to inches to real returns as class 'real'

(*cubic yards 2.362204728E+5*) -- real to cubic yards returns as class 'cubic

yards'

--> Can't make cubic yards 2.362204728E+5 into a yards. (* returns an error,

because you cannot coerce a 'cubic yards' class into a 'yards' class.

*)

You can convert meters to feet (6000 meters is equivalent to about 19,685 feet), because both of these
classes are in the "length" category. The previous example then converts feet to inches (also permitted
because they are both length units) and stores that result as a real value type (i.e., a floating-point
number that represents the number of inches in 6,000 meters). Then, since the number (stored in the
variable theReal) is a real value type rather than a length-unit type, it can be coerced to cubic yards.
cubic yards is in the cubic-volume category. But cubic yards cannot be coerced to yards, which is in the
length category, thus giving rise to the error in the prior example.

These groups of data types make it very easy to create utility functions for calculating measurements. The
next example is a subroutine that converts meters to feet or feet to meters (see Chapter 8). The second
parameter to the ConvertMe function is a boolean. If it's true, then the conversion is from meters to feet.
If false, then the conversion is from feet to meters. Another way to accomplish this task is to check the
class of a single parameter (i.e., val). If its class is feet, then convert it to meters, and vice versa. If its
class is neither, then write the subroutine to return an error code such as -1.

on ConvertMe(val, toFeet)

 if toFeet then -- 3.2808399 feet equals one meter

 set conResult to val * 3.2808399

 set replyToUser to "Converting " & val & " meters to feet

equals:¬

 " & (round conResult) & " feet" -- use round scripting addition

 display dialog replyToUser (* display the conversion result using

display-dialog scripting addition *)

 else -- one foot equals 0.304799999537 meters

 set conResult to val * 0.304799999537

 set replyToUser to "Converting " & val & " feet to meters

equals:¬

 " & (round conResult) & " meters" -- use round scripting addition

 display dialog replyToUser (* display the conversion result using

display-dialog scripting addition *)

 end if

end ConvertMe

Chapter 4. Operators

Operators are symbols that programmers use to perform operations in AppleScript code, such as in
mathematical expressions or equality tests. Operators (e.g., =, +, -, *) are familiar to programmers in other
languages (such as Java and Perl), as well as young math students. In the following AppleScript code
fragment, the * and the = characters are the operators:

2 * 10 = 20

With the exception of parentheses, AppleScript's operators (listed in Table 4-1) are binary operators,
meaning that each operator takes an operand, such as a number, variable, or expression, on either side
of it. In the previous code fragment, the 2 is the left-hand operand and the 10 is the right-hand operand
for the * operator. Operators can also be used to test two expressions for equality or to combine two
strings into one string, as in these two code fragments:

Set eq to (56.5 >= 56) (* the eq variable is set to true; the >=

("greater than or equal to") operator is used to test two values for

equivalence *)

Set twostrings to ("two strings" & " are now one string.") (* using

the & string-concatenation operator *)

Table 4-1. AppleScript Operators

& As

() Begins with

* Contains

+ Does not contain

- Does not equal

/ ÷ div Ends with

< Is contained by

<= Is not contained by

= Mod

> Not

>= Or

A reference to

And

A distinguishing element of AppleScript is that its operators can be either symbols, such as &, =, +, or ,

or human-language words such as equals, does not equal, or is greater than. As a scripter, the choice
is entirely up to you whether to use is less than or the < symbol, for instance. The latter two operators
are synonyms and have the same meaning in code. Table 4-1 lists the operators that are covered in this
chapter, but not all of the possible synonyms (e.g., is less than, comes before, is not greater than).
The synonyms for each operator are listed in the Synonyms heading of the sections (described in
alphabetical order in the remainder of this chapter) on each operator.

&

Syntax

"Use this operator " & "to concatenate two strings."

Return value

A string if the left operand is a string; a record if the left operand is a record; a list if the left operand is
another value type

Description

The concatenation operator can be used to combine two values to produce a single third value combining
the operator's two operands. You will mostly use this operator for string concatenation. However, it is also
often used to add to records or lists. Make sure not to confuse this operator with the + symbol, which is the
concatenation operator of Java and JavaScript that is only used for addition and scientific notation (e.g.,
1.2e+6) in AppleScript.

Examples

"My age is dare I say " & 43 (* combining a string and a number returns a

string as in "My age is dare I say 43" *)

{"apples","oranges"} & {"bananas"} (*combine two lists to make one list:

{"apples","oranges","bananas"} *)

{name: "Pedro Martinez",record: "23-4"} & {award:"Cy Young"} (*add a new

item to a record, returning {name:"Pedro Martinez", record:"23-4", award:"Cy

Young"} *)

1.4 & 2 (* returns {1.4,2}. Looks weird, but you might want to store a

long list of numbers in a list value type, then it doesn't seem so weird.*)

"Your AppleScript version is " & version (* Some concatenation operations

fail and need some massaging; "Your AppleScript version is " & (version

as string) will solve this problem *)

()

Syntax

35 - (15 + 42)

Return value

The result of the expression that is stored within the parentheses, which can be any valid AppleScript
expression, identifier, or return value from a subroutine or command.

Description

Using parentheses with expressions forces the parenthetical operation to be evaluated first, hopefully
producing the result you intended. The syntax example that begins this section would produce 62 if the
parentheses were not there (35 - 15 + 42), whereas with the parentheses the result is -22. Each nested
parenthetical expression is evaluated before any outer parenthetical expressions are evaluated.

To a lesser extent, the use of parentheses makes complex statements more readable, even if the
placement of the parentheses does not change the result of the expression.

Examples

35.6 * (7 / (round realVar)) (* a complex expression, including

the 'round' scripting addition, looks a little clearer when parentheses are

used, even though the result is the same compared with leaving the parentheses

out *)

set herReply to (display dialog¬

"Do you love me?" default answer¬

"Of course I do!" buttons {"answer him", "cancel affair"}) (* use parentheses

to encapsulate, at least visually, the return value from a scripting-addition

command (these parentheses are not strictly necessary) *)

*

Syntax

10 * 3.14

Return value

An integer if the left-hand operator is an integer and the right-hand operand is either an integer or can
be coerced to an integer (for example, 3.0 can be coerced to 3); otherwise a real. Finally, if both
operands are integers but the result will exceed the numerical limit of an integer type (536,870,911 to -
536,870,911), than the return result is a real.

Description

The multiplication operator is used to multiply two integers, two reals, or an integer and a real. The
return result is an integer or a real, depending on the factors explained in the previous paragraph. The
lessons that you learned in your early math classes apply to this operator as well; AppleScript will
evaluate a multiplication expression before it will evaluate addition or subtraction. For example, the
expression 10 + 7 * 5 results in 45, not 85.

You can multiply a number times a string if the string looks like a number. AppleScript first coerces the
string to an integer or real (depending on whether the string has a decimal point), and then performs
the multiply operation.

Examples

10 + 7 * 5 -- results in 45 not 85; (10 + 7) * 5 results in 85

set aNum to 10 * 3.0 (* aNum is an integer type, because left-hand operand is

an integer and right-hand operand can be coerced to an integer *)

set aNum to 10.0 * 3.0 -- aNum is a real type

set aNum to 30000000 * 20 (* aNum is a real, because the result exceeds the

storage capacity of an integer, even though both operands are integers *)

set aNum to 10 * "4.1" (* aNum is a real; a string like "4.1" is a valid

operand if it can be coerced to a number *)

+

Syntax

set aNum to 10 + 3.14

Return value

An integer if the left-hand operator is an integer and the right-hand operand is either an integer or can
be coerced to an integer; a real if either operand is a real; a date if the left-hand operand is a date
object

Description

This operator is used to add two operands together or to add time to a date value. It is also used in
scientific notation to denote a real that is greater than or equal to 10,000.0, as in 1.0E+9 (this number is
one billion; see the description of the real value type in Chapter 3). The addition operator is not used to
concatenate two strings (& is responsible for that); neither does AppleScript provide anything like a ++
operator. The following is an example statement for incrementing a numerical variable in AppleScript:

set aNum to aNum + 1

Here are some examples of adding time to dates.

Examples

set mydate to (date "Saturday, January 1, 2000 12:00:00 AM")¬

+ 1000 (* adds one thousand seconds to the date *)

set mydate to (date "Saturday, January 1, 2000 12:00:00 AM") + (30 *¬ days)

(* adds 30 days to the date (you can also use the constants minutes, hours, or

weeks) *)

-

Syntax

set aNum to 10 - 3.14

Return value

An integer if the left-hand operator is an integer and the right-hand operand is either an integer or can
evaluate to a whole number (for example, 3.0 can evaluate to 3); a real if either operand is a real. If the
left-hand operator is a date, then the result is of class date.

Description

This operator subtracts one operand from another or makes a number negative if there is only one
operand. This operator can also be used to subtract time from dates, either in the form of an integer
(representing seconds) or the constants minutes, hours, days, and weeks. The minus (-) symbol is also
used in AppleScript to denote small real numbers, as in 1.0E-9 (this number is 0.000000001; see the
description of the real value type in Chapter 3). AppleScript does not provide anything like a -- operator.
The following is an example statement for decrementing a numerical variable in AppleScript:

set aNum to aNum - 1.

Here are some examples of subtracting time from dates.

Examples

set mydate to (date "Saturday, January 1, 2000 12:00:00 AM") - 1000

(* subtracts one thousand seconds from the date *)

set mydate to (date "Saturday, January 1, 2000 12:00:00 AM") - (30 *¬ days)

(* subtracts 30 days from the date (you can also use the constants minutes,

hours, days, or weeks) *)

/ ÷ div

Syntax

set aNum to 10 / 3.14

Return value

If you use / or ÷ the result is always a real value type. If you use div, the result is always an integer.

Description

The three division operators differ in that / and ÷ produce real value types, whereas div always returns
an integer. div is the opposite of mod. For example, 10 div 3 results in 3 and the remainder of 1 is
ignored; 10 mod 3 results in 1 (the remainder) and the 3 result is ignored. You produce the ÷ character
by typing option-/. Remember not to confuse the / division operator with the \ escape character that is
used to produce string characters such as a tab (\t) or return (\r).

Examples

10 / 3 -- returns 3.333333333333

10 div 3 -- returns 3

10 mod 3 -- by way of comparison, returns 1

<

Syntax

10 is less than 11 -- returns true

Synonyms

[is] less than

comes before

is not greater than or equal [to]

isn't greater than or equal [to]

Description

These operators, either the symbols or human-language versions, return true or false from the
expression where they are used. You can use dates, integers, reals, or strings with these operators.
Both operands should be of the same class. If they are not then AppleScript tries to coerce the right
operand to the class of the left operand.

Scripters who swear by AppleScript's plainspokenness can stick with is less than, comes before, and
their other alternatives (as opposed to just "<").

Examples

35.29 is less than 35.3 -- returns true

"animal" < "boy" -- returns true

date "1/1/1970" comes before date "1/1/2000"-- returns true.

 <=

Syntax

10 is less than or equal to 11 -- returns true

Synonyms

[is] less than or equal [to]

is not greater than

isn't greater than

does not come after

doesn't come after

Return value

boolean; true or false

Description

This binary operator returns true if the left operand is less than or equal to the right operand. You can use
dates, integers, reals, or strings with this operator. If both operators are not of the same class, then
AppleScript attempts to coerce the right operand to the class of the left operand.

Examples

100 <= 200 -- returns true

300.536 is less than or equal to 300.537 -- returns true

12 isn't greater than 11 -- returns false

=

Syntax

integerVar is equal to 50

Synonyms

equal[s]

is

[is] equal to

Return value

boolean; true or false

Description

This operator tests whether two operands are equal and returns a true or false value. You can use the
symbol = or the human-language versions (e.g., equals) interchangeably. You can also use any of the
operators to test the equivalence of boolean values, lists, numbers, dates, strings, and other classes.
Remember, AppleScript does not use = for variable assignment; it uses statements of the form:

set var to 50

Chapter 6, discusses AppleScript variables and assignments. This operator syntax allows the scripter to
use very readable statements:

if a does not equal b then display dialog "inequality!"

Examples

50 equals "50" -- returns false

50 is equal to ("50" as integer) (* true since "50" is coerced to 50 prior to

the equality test *)

"animal" is equal to "AniMaL" (* true if you do not enclose this statement in

a considering case...end considering block *)

(8 div 3) = (8 mod 3) -- both expressions evaluate to 2 so true

{65,75} equals {65,(65 + 10)} -- true, you can compare lists

>

Syntax

102 > 101 -- returns true

Synonyms

comes after

[is] greater than

is not less than or equal [to]

isn't less than or equal [to]

Return Value

boolean; true or false

Description

These operators, either the symbols or human-language versions, return true or false from the
expression where they are used. You can use dates, integers, reals, or strings with these operators
(both operands should be of the same class). If the operands are not of the same class, then AppleScript
attempts to coerce the right operand to the class of the left operand.

In AppleScript, you can also use the contraction isn't less than or equal [to], along with the other
English language versions of the > operator. You can compare a lot of things in AppleScript to test for
equality, as the following examples show. But you have to break up lists or records, or extract properties
from them, before their contents are compared with the greater than variations. You can say:

{65,75} equals {65,75}

but you cannot use the expression

{65,75} is greater than {65,75}

Examples

1500.0 is greater than 1500.1 -- returns false

pi > 3 -- returns true, because pi evaluates to about 3.14159265359

date "1/1/2050" comes after date "1/1/2000" -- true

 >=

Syntax

500 500 -- returns true

Synonyms

[is] greater than or equal [to]

is not less than

isn't less than

does not come before

doesn't come before

Return value

boolean; true or false

Description

This binary comparison operator returns true if the operand on the left is greater than or equal to the right
operand. You can use dates, integers, reals, or strings with these operators (both operands should be
of the same class). If the operands are not of the same class, then AppleScript attempts to coerce the right
operand to the class of the left operand.

In AppleScript, you can also use the contractions doesn't come before and isn't less than, along with
the other English language versions.

Examples

1500.0 is greater than or equal to 1500.1 -- returns false

pi 3 -- returns true, because pi evaluates to about 3.14159265359

date "1/1/2050" does not come before date "1/1/2000" -- true

^

Syntax

set bigNum to 3^30

Return value

real

Description

This binary arithmetic operator raises the operand to its left to the power on its right. It always returns a
real value type. The operands can either be integers or reals.

Examples

set intNum to 10 ̂ 2 -- intNum evaluates to 100, an integer

set realNum to 10.1 ̂ 2 -- realNum is returned as a real type, 102.01

[a] reference to

Syntax

set myRef to a ref to (file 1)

Synonyms

[a] ref to

Return value

reference

Description

You can set the variable on the left of this operator to a reference to the object or value on its right. The
variable is then "pointing" to this object or value. For example, if you tell the Finder to:

set myRef to a ref to file 1

then myRef will refer to the first file on the desktop. If file 1 on the desktop changes, then myRef will still
refer to file 1, even if that file is now different from the first one. This is best illustrated by the code in the
following Examples section.

The script in the Examples section first creates a variable called myRef and sets it to the first file on the
desktop. That file is then moved into a different folder; in other words, it is no longer the first file on the
desktop. Another file now has that distinction. Since myRef was set to:

a reference to file 1

it now refers to the new file 1 (the old file 1 was moved into a different folder). As indicated by testing the:

name of myRef

a second time, myRef now points to a different file. This operator could be used in scripts that necessitate a
variable that always points to a certain location in a container, such as to the last record in a database.
Even though the database may change (records are dynamically deleted and added), you can always get
information about the last record, such as its id number, because you have a variable that points to that
position in the database, not just to a particular record.

Examples

tell application "Finder"

 set myRef to a ref to file 1

 set f1 to name of myRef

 log f1 -- look at value of the variable in Event Log window

 move file 1 to folder "today" (* original file 1 is now in a different

location *)

 set f2 to name of myRef

 log f2 -- look at value of the variable in Event Log window

end tell

and

Syntax

set myBoolean to (firstVal and secondVal)

Return value

boolean; true or false

Description

and is a logical operator that takes two operands. Both operands have to be boolean values, true or
false. Both operands have to evaluate to true for the entire and expression to return true. If the first
operand (the one on the left of the and operator) evaluates to false, then the second operand is not
evaluated, because the and expression returns false if any of its operands is false (the expression is
"short-circuited"). The and operator does not have any equivalent symbols ("&," "&&"), as in Perl or
JavaScript. Table 4-2 shows the different combinations that you can use with and and the resulting
expression values.

Table 4-2. Return Values of Expressions Using the and Operator

and Expression Return Value

true and true true

true and false false

false and true false; second expression is not evaluated

false and false false; second expression is not evaluated

as

Syntax

set myReal to "3.14" as real

Return value

Class identifier to the right of operator, if valid

Description

The as operator is used to coerce or cast values or variables to certain class types. The operand to the
right of the as operator has to be a class identifier, such as boolean, integer, list, real, record, string,
or some other object type. The expression will fail if the value in the first operand cannot be coerced to the
class identified in the second operand (in fact you will find these statements raising a lot of errors as you
experiment with coercing values from type to type). See Chapter 3for a discussion of which types can be
coerced to different classes.

begin[s] with

Syntax

set mybool to ("zoology" starts with "zoo") -- returns true

Synonyms

start[s] with

Return value

boolean; true or false

Description

The operands for these operators must be strings or lists. If the operand to the left contains the operand to
the right, then the expression returns true. If the operands do not evaluate to the same class, then
AppleScript attempts to coerce the right operand to the class of the left operand. You can combine strings
and lists in these statements. For example:

set mybool to ({"string", "twine"} starts with "string")

returns true, because AppleScript coerces the right operand to a single-item string ("{"string"}")
before it makes the starts with comparison. This operator and its synonym are designed to compare
operands that are either both strings or both lists, however. This operator and its sibling ends with are very
handy for identifying portions of strings within larger strings. For example, if you prefixed the characters
"db_" to all of your database files, then you could distinguish those files by using the begins with operator,
as in the following example.

Examples

tell application "Finder"

 get count of (files whose name begins with "db_")

end tell

contains

Syntax

set mybool to ({"apples","oranges","peaches"} contains "peaches")

(* returns true *)

Return value

boolean; true or false

Description

The contains operator can take lists, records, or strings as operands. You can use this operator to search
for an item in a list, a record, or a part of the string. If the operand to the right of the contains operator
is of a different type than the left operand, then AppleScript attempts to coerce the second operand to the
class of the first one. This is an operator to get to know well. A lot of commands return lists, strings, and
records; contains is a very useful tool for finding certain values within these value types.

You cannot use contains directly to search the contents of a folder, but there is a workaround for this task.
The example in this section illustrates returning a list with a command and then using the contains
operator to search the list. You can use contains to search a record too:

{name:"Bruce W.", state:"MA"} contains {name:"Bruce W."}

Examples

tell application "Finder"

 tell folder "new images"

 set fJpgs to files whose name contains ".jpg" (* returns list of jpeg

files, if any *)

 if length of fJpgs > 0 then (* if the list is not empty then display

count of jpegs *)

 display dialog ((length of fJpgs) as string)

 end if

 end tell

end tell

does not contain

Syntax

set mybool to ({"apples","oranges","peaches"} does not contain¬

{"peaches"}) -- returns false

Return value

boolean; true or false

Description

does not contain, or doesn't contain, is the opposite of contains. It returns true if the list, record, or
string operand does not contain the second list, record, or string operand. See contains in this
chapter for a further discussion.

does not equal

Syntax

if intVarOne intVarTwo then beep

Synonyms

is not

isn't

is not equal [to]

isn't equal [to]

doesn't equal

Return value

boolean; true or false

Description

These operators are the opposite of the equals operator and its variations. They return true if the
operands, which can be of any class, are unequal. You can use the symbol interchangeably with the
human-language versions (isn't) with strings, numbers, and other classes.

ends with

Syntax

"index.html" ends with ".html" -- returns true

Return value

boolean; true or false

Description

This operator is invaluable when searching a disk or folder for files with certain file extensions (e.g., .html,
.gif) and then doing something only with those found files. The ends with operator works with lists and
strings. If you use this operator to compare a string with a list or vice versa, then AppleScript tries to
coerce the string or list to the type of the left operand.

Examples

{"apples", "oranges"} ends with "oranges" -- returns true

"oranges" ends with {"n","g","e","s"} (* true, after AppleScript coerces the

right operand from list to string, after which it looks like "nges" *)

{"img1.gif", "img2.gif"} ends with ".gif" -- false

{"img1.gif", "img2.gif"} ends with "img2.gif" -- true

is contained by

Syntax

"html" is contained by "index.html" -- returns true

Synonyms

is in

Return value

boolean; true or false

Description

This operator can take lists, records, or strings as operands. If the left-hand operand is not of the same
class as the second operand, then AppleScript will attempt to coerce the first operand to the second
operand's class before evaluating the expression. You cannot use this operator alone to find out if a file is
contained by a disk or folder (see the discussion of contains) because the folder, file, and disk classes
are not lists, records, or strings.

is not contained by

Syntax

"html" isn't contained by "index.html" -- returns false

Synonyms

is not in

isn't contained by

Return value

boolean; true or false

Description

These operators return the opposite result of the is contained by and is in operators. They return true
if the left operand-a list, record, or string- cannot be found in the list, record, or string operand
on the right. If the left operand is not of the same class as the second operand, then AppleScript attempts
to coerce the first operand to the second operand's class before evaluating the expression. The use of is
not in and its variants is a good way to delineate the strings that do not contain certain substrings.

Examples

tell application "Finder"

(* get a list of desktop files whose names do not contain '.jpeg' *)

get files where ".jpg" is not in name of files

end

m od

Syntax

set theMod to 63 mod 20 -- returns 3

Return value

integer or real

Description

The mod operator divides its left operand by the right operand and returns any remainder (otherwise zero),
rather than returning the division result. See the section on the div operator, which does the opposite; it
returns the division result and throws out the remainder.

Examples

set theMod to 63 mod 20.0 -- result is an integer 3

set theMod to 63.0 mod 20 -- result is a real 3.0

set theMod to 63 mod 20.1 -- result is a real 2.7

set theMod to 63.0 mod 20.0 -- result is an real 3.0

not

Syntax

set theTruth to not ("index.html" contains ".html") -- returns false

Return value

boolean; true or false

Description

not is a logical operator that reverses the boolean value of a variable or expression. If the variable or
expression is true then the not return value is false, and vice versa. AppleScript does not have the (!)
symbolic alternative for the not operator as Perl and other scripting languages do.

or

Syntax

set theTruth to (intVar1 > intVar2) or ("index.html" contains ".html")

Return value

boolean; true or false

Description

or is a logical operator that takes two boolean operands, true or false. The or expression returns true if
either operand evaluates to true. If the first operand (the one on the left of the or operator) evaluates to
true then the second operand is not evaluated, because the or expression returns true if any of its
operands is true (the expression is "short-circuited"). The or operator does not have any equivalent
symbols (|, ||), as in Perl or JavaScript. Table 4-3 shows the different combinations that you can use with
or and the resulting expression values.

Table 4-3. Return Values of Expressions Using the or Operator

or Expression Return Value

true or true true

true or false true; second expression is not evaluated

false or true true

false or false false

Chapter 5. Reference Forms

This chapter describes the AppleScript reference forms, or the ways that you can specify or refer to one or
more objects in AppleScript code. First we will describe the ten different reference forms, then the rest of
the chapter provides a reference to the actual AppleScript reserved words (e.g., every, thru, whose) that
you can use to identify or refer to objects in your code.

Here are the ten different reference forms:

Arbitrary Element

Using the reserved word some, AppleScript code can grab a random object in a container. Here is an
example:

tell application "Finder"

 (* get a random image file from a desktop folder *)

 set randomImage to some file of folder "jpegs"

end tell

See the section on some.

Every Element

This type of reference form specifies every object of a certain class type in a container, such as:
tell application "Finder"

 set allFiles to every file in folder "today" (* returns a list

 of file objects *)

end tell

See the section on every.

Filter

The Filter reference form specifies objects based on certain attributes, such as all files whose name
ends with .txt. The where and whose reserved words are used in Filter references. See the whose
section.

ID

The ID reference form can be used to grab an object based on the value of its ID property (if it has
an ID property, that is.) The ID reference form is expressed in code with the AppleScript id reserved
word. See the id section.

Index

The popular Index reference form specifies an object based on its numbered or indexed position in
a container. The following example shows two ways to get the first file on a disk:

telll application "Finder"

 get file 1 of disk "backup"

 get first file of disk "backup"

end tell

See the sections on first and last.

Middle Element

The Middle Element reference form is designed to get the middle object of a certain class type in a
container or the middle item of a list. See the section on middle.

Name

The Name reference form identifies an object by its name, as in "application 'Finder'". See the
name section.

Property

Using the Property reference form, your script can grab the value of a property and store it in a
variable, for instance. The property may derive from an application, a date object, a script object,
or a record value. Here are three examples of using the Property reference form.

(* get the Finder's largest free block property *)

tell application "Finder"

 set freeMemory to largest free block

end tell

(* returns the month property of a date object *)

set mon to the month of (current date)

(* gets the lastName property of a record object *)

set prezName to lastName of¬

{firstName: "Abraham", lastName: "Lincoln"}
Range

The Range reference form specifies a subset of objects within a container. The return value is a list,
or the code raises an error if the container does not contain the specified range of objects. See the
every...from...to section for some examples.

Relative

The Relative reference form describes an object based on its position compared with another
object, such as in this example:

tell application " Finder"

 get the folder before the last folder in the startup disk

end tell

See the sections on after, back, before, and beginning.

Table 5-1 shows the reserved words that you can use to specify objects in AppleScript code, but not all of
the English language synonyms that you can use with these forms. The synonyms are included under the
Synonyms heading for each reserved word's section. The reference form is identified in parentheses.

Table 5-1. Reserved Words for Use with AppleScript Reference Forms

after (Relative) id (ID)

back (Relative) last (Index)

before (Relative) middle (Middle Element)

beginning (Relative) name (Name)

first (Index) some (Arbitrary Element)

every (Every Element) whose (Filter)

every...from...to... (Range)

after

Syntax

tell app "FileMaker Pro" to get ID of record after (current record of¬

database "myDB.fm4") (* returns ID of the record after the currently active

record *)

Synonyms

[in] back of

behind

Description

The reserved word after indicates a Relative reference form. Use this reference syntax to identify an object
based on its position relative to another object. after is a synonym for in back of and behind. Unlike
some other reference methods, this one needs object references on either side of it (when targeting the
Finder), such as:

folder after folder "Apple Extras" of startup disk

The "folder" indicates which class type or value the script is specifying; after is the reserved word
indicating Relative reference form, and folder "Apple Extras" of startup disk refers to the object position on
the startup disk where AppleScript will start looking for the folder. The following code refers to the object
position on the startup disk where AppleScript will start looking for the folder:

(folder "Apple Extras" of startup disk)

back

Syntax

tell app "AppleWorks"

 move paragraph 1 of text body of document 1 to the back of text body¬

 of document 1

 (* or, move paragraph 1 of text body of document 1 to the end of text

 body of document 1 *)

end tell

Synonyms

end

Description

The back and end reserved words are Relative reference forms that can refer to the last insertion point in a
container, such as a text document. The end word can also refer to the end of a list, as in:

get end of {1,2,3,4,5} -- this returns 5

They can also refer to the last insertion point in a container, such as a text document. The insertion point is
the place in a text document where your cursor is positioned. You can use beginning and front to refer to
the first insertion point of a container. You can also use back to refer to open application windows (at least
in terms of the BBEdit text editor):

tell application "BBEdit 5.0" to close back window

last might be more readable if you are getting the last item in a container, such as a folder (see last).

before

Syntax

tell app "Finder" to get folder before system folder

Synonyms

[in] front of

Description

Both Relative reference forms, before or in front of allows the scripter to grab or refer to items that are
located just before a known object, such as a file, folder, or database record. Similar to a binary operator,
before and in front of take references both before and after it:

file before last file

To get the database-record id just before the currently active one, you could tell FileMaker Pro to do the
following:

get (ID of record before current record)

beginning

Syntax

set list1 to {1,2,3,4,5}

set the beginning of list1 to 10 -- list1 is now {10,1,2,3,4,5}

Synonyms

front

Description

beginning and front are reserved words that specify an insertion location in the beginning of a text file, for
instance. Like back and end, beginning and front are Relative reference forms; however, they point to the
first insertion point rather than the last insertion point of a container. You can also use beginning and end
with lists, in the manner of the Syntax example.

first, second, third, fourth, etc.

Syntax

tell app "Finder" to get 75th file of extensions folder

Synonyms

Index

[-]integernd, [-]integerrd, [-]integerst, [-]integerth

Description

You can identify an object by its numerical position in a folder or other container. For numbers 1-10 you
can use the word forms (first, second, third), such as eighth file of startup disk. For numerical
positions greater than 10, you have to use an integer (optionally preceded by the minus sign) followed
by any one of the four suffixes (e.g., "rd"), even if it doesn't sound right. Telling the Finder to:

get 75rd file of extensions folder

is legal. A negative integer searches the container in the opposite direction, from its last item to its first.
For example, get file -1 (when targeting the Finder) gets the last file on the desktop. You can also use
the index reference style in the following manner:

disk index 2

The index reserved word is optional; mostly you will just use the index-less style:

folder 3 of Startup disk

Examples

tell app "BBEdit 5.0" to get -1000th word of document 1 (* gets 1,000th word

searching from the document end *)

tell app "Sherlock 2" to get third channel (* channel surfing Sherlock 2

returns 'channel "Internet" of application "Sherlock 2"' *)

tell app "Sherlock 2" to get tenth channel (* will raise an error if the

container (e.g., the Sherlock 2 app) does not have ten of the objects, in this

case channels *)

every

Syntax

tell app "Finder" to get every file of extensions folder

Description

Using the every syntax returns a list of items in a container, such as files in a folder, words in a
document, or cells in a database record. You can get the equivalent return value by dropping the every
keyword and making the object plural, as in words of document 1. This statement returns a value of type
list whose items are all the words from document 1. You have to check an application's dictionary,
however, to make sure that the plural form is allowed for the particular object.

The every form is very useful for grabbing the property values of a group of objects and storing them in a
single list. Telling the Finder to:

get physical size of every file in extensions folder

or:

get physical size of files in extensions folder

returns the amount of disk space in bytes that each extensions folder file is taking up.

Examples

tell app "FileMaker Pro" to get cells of current record (* returns a list

containing the values in each column of the currently active record or row in

an open database *)

tell app "FileMaker Pro" to get name of every cell of current record

(* returns the field names for the currently active database *)

every ... from ... to ...

Syntax

tell app "FileMaker Pro" to get every record from 1 to 5 (* returns a list,

with each item in the list being another list encompassing the values for

each database record *)

Synonyms

... from ... to ...

through

thru

Description

These reserved words represent the Range reference form. These reference methods allow the scripter to
select a range of objects:

words 10 thru 41 of document 1

The return value depends on which objects you select. Telling FileMaker Pro to get a range of database
records returns a list value; but telling BBEdit to get a range of words from a text document returns the
string containing those words. The example code shows all four of these forms, which produce an
equivalent result.

Examples

tell application "BBEdit 5.0"

 set w1 to (every word from 10 to 41) of document 1

 set w2 to (words from 10 to 41) of document 1

 set w3 to (words 10 through 41) of document 1

 set w4 to (words 10 thru 41) of document 1

end tell

id

Syntax

set fileID to id of file "mydocument"

Description

Disks, folders, and files, when accessed through the Finder, have a unique id property, even if you change
the name of the item. The id is an integer such as 297774 (disks often have negative numbers for ids ,
such as -1). You can only use the id reference style with objects that have an id property. This property is
identified in their dictionary (Chapter 2 , discusses dictionaries). The following example code shows how to
use the id reference.

Examples

tell application "Finder"

 set tid to id of folder "today" -- returns an integer such as 277000

 set name of folder "today" to "yesterday" (* changes name of original

folder *)

 open (the first folder whose id is tid) (* still opens original folder using

its id property *)

end tell

last

Syntax

tell app "FileMaker Pro" to get last record (* returns a list containing the

values from the last record in the currently active database *)

Description

last returns the last item in a container, such as files in folders, records in databases, or cells in records.
You must test the return result, however, because the ordering scheme to determine which object is last
may differ depending on the container. In folders, the last item may be the farthest back in alphabetical
order. In a database, the last cell is usually the last column in a database schema or layout. last, when
used in the manner of last record or last file, is a synonym of back.

middle

Syntax

get middle folder of startup disk

Description

The middle reference style gets the middle object in a container, including a list. For example, the return
value of:

middle item of {"apples","oranges","peaches"}

is "oranges." If there is an even number of items in the container then AppleScript essentially adds one to
the count of container items, then uses the div operator to divide the new count by two. For example, to
calculate the middle item of {0,1,2,3,4,5,6,7,8,9}, AppleScript adds one to the count of items in this list
(making it now 11 items), and then evaluates 11 div 2 to reach 5 (or the fifth item). In this example the
middle (or fifth) item evaluates to 4.

AppleScript 1.5 and later has fixed a problem that appeared in AppleScript 1.4.3
and earlier, whereby code that references the middle item of an empty list ("{ }")
could crash AppleScript. Now the code (middle item of { }) will compile in
AppleScript Version 1.5.5 or 1.6 but raise a runtime error if the code is executed.

name

Syntax

get folder named "today" -- gets folder object by its name property

Description

When you use the common AppleScript parlance of:

tell app ApplicationName

you actually use the name reference form. You can use either form of specifying an object by its name
property:

tell app named "Sherlock 2"

or:

tell app "Sherlock 2"

Scripters often reference files, folders, and disks by their name property, if they know the name. There is a
difference, however, between getting an object's name and getting an object by name, as these examples
indicate.

Examples

get folder "today" (* returns a folder object using the name reference form;

could also write 'get folder named "today"' *)

get name of folder "today" -- returns a string, "today"

some

Syntax

tell app "Sherlock 2" to get some channel

Description

some returns a random object from a container. This might be useful if you are randomly selecting images
for display from a directory. The script could state:

set ranImg to some file of folder "images" where (name ends with ".gif")

The ranImg variable would then be set to a random .gif file that is stored in the images folder. The return
results are in any event far less predictable than specifying files by name or property values.

whose

Syntax

set fJpegs to every file in folder "images" whose name ends with ".jpg"

Synonyms

where

Description

The whose and where reserved words represent the Filter reference forms. These reference styles allow the
scripter to select objects based on characteristics that can be tested with a where or whose reserved word.
To use where or whose , the statement first refers to an object such as a document file, disk, database
record, or image file, which is followed by where or whose , and then a boolean expression. As the following
examples indicate, you can create Structured Query Language (SQL)-type where statements that narrow
the number of objects returned from a statement based on certain criteria.

Examples

get files where (creator type is not "MSWD") (* targeting the Finder, returns

only files that are not Microsoft Word files *)

get disks whose name is not (get name of startup disk) (* targeting the Finder,

returns disks other than the startup disk *)

Chapter 6. Variables and Constants

This chapter describes the rules for AppleScript variables, including variable scope and the special
variables that you can add to your script called properties. The second part of this chapter is devoted to
AppleScript's predefined variables such as pi and current application (a constant). These AppleScript
variables are called constants because their value is predefined, and you mostly cannot use the same
words for your own script variables. You could name one of your own variables pi (a predefined variable)
and get away with it, but this would only confuse the readers of your code.

6.1 Variables

Here are two ways that you can create your own variables in AppleScript:

set int to 20 -- one way to set a variable to an integer

copy 20 to int -- another way

A variable is a word or identifier that the scripter creates to store a script value. An example is the int
variable in the statement set int to 20 . Along with copy , the set reserved word is used to set a variable
name to a value, in this case an integer . AppleScript variables can store any value, including booleans,
lists, numbers, records, strings, and application-defined classes. AppleScript variables have to begin with a
letter or underscore (_) character, but subsequent characters can include numbers and underscores. You
cannot include operators and other symbols that AppleScript reserves for different uses (such as *, &, ^, or
+) or special characters (such as $, @, or #). An exception to this rule in AppleScript allows the creation of
memorable variable names if you use vertical-bar characters (|) to begin and end the identifier:

set |2$var*&^%#| to 2

AppleScript is not a case-sensitive language, so the variables that include the same characters but in
varying case are treated as the same identifier. In other words, myname , myName , and MYNAME are all
considered the same variable. Variable names can be one to several characters long, depending on your
stylistic preferences.

This AppleScript gives several examples of valid and invalid variable names, as well as how to use the set
and copy keywords to declare a variable and store a value in it:

set l to {"a", "legal", "var"} as list (* a variable name can be one letter *)

set a_veryLong_but_legal30_variable500_name to "Too long in my opinion"

copy 500 to int (* using the copy keyword instead of set has the same effect on

integers *)

copy "A string" to str -- creating a string variable with copy

set $perl_string to "Can't imitate perl without pipe characters" (* this will

raise a compiler error *)

set |$perl_string| to "Recreate a perl scalar variable if you use pipe¬

characters"

set 2str#in/g to "You can't start a variable with a number or use¬

special symbols in it" (* another error, unless you enclose the characters in

pipe symbols *)

In most cases, you do not have to declare a data type (e.g., integer , string) when you set a value to a
variable. You will want to set a variable to a real using the code:

set largeNum to 500000000.0

when further processing will increase it in value beyond an integer's storage capacity (see Chapter 3 , for
a discussion of the real and integer data types). In addition, date variables have to be declared as dates
in the manner of set myDate to date "1/1/2000" . Sometimes, the code is a lot clearer to its originator and
other programmers when you explicitly set variables to the intended class, even if AppleScript does not
require explicit typing (except for date strings).

The reserved word copy has a different effect than set when the value is a list , record , or script object.
In other words:

copy 500 to int --or copy "A string" to str

has the same result as:

set int to 500 --or set str to "A string"

With lists, records, or script objects, however, copy creates a new copy of the object in the variable:

set list1 to {"the", "first", "list"}

set list2 to list1 -- list2 refers to list1

copy list1 to list3 -- list3 has a whole new copy of list1

set item 2 of list1 to "different"

log (list2) -- changes to list1 also effect list2

log (list3) (* changes to list1 do not affect list3; it's a different copy of

the first line *)

The first list (list1) is a list of three strings. The list2 variable is set to the same list . But the third
declared variable (list3) receives a copy of the first list . Afterwards, a change to the second string of the
first list alters the value of the list2 variable, because it is actually pointing to the changed list . The log
(list3) code indicates that the third list , whose list copy was not changed by the set item 2 of list1
to "different" statement, still contains the original list value. Again, this behavior is only true for using
copy with a list , record , or script object. (Chapter 9 , discusses script objects.)

The log command is used to view the values of variables in Script Editor's Event
Log. Chapter 2 , is devoted to Script Editor.

6.1.1 Variable Scope

Variable scope refers to the loc ation in a script where variable values can be accessed. A variable that can
be accessed anywhere in the script is known as global and has to be declared as such in the script:

global aVariable

AppleScript variables are local by default, meaning that if a script contains both script statements and
function or subroutine definitions, then the variables that are declared inside of the function(s) are local
(i.e., trying to access them outside of a function raises an error) unless declared as global outside the
routine. This element is best illustrated by an example:

set aNum to 7

display dialog (do_it(aNum) as string) (* call the do_it function and display

its result *)

log avar (* avar variable is not visible at this location; this causes an error

*)

 (* subroutine definition *)

on do_it(v)

 set avar to 0 -- avar is local to the subroutine

 set avar to v + 1

 return avar

end do_it

This script sets an integer variable to 7, then displays the results of a function call using the display dialog
scripting addition. The do_it function is defined inside the script. It has an avar variable that is initialized to

then used to add 1 to the integer argument that is passed to the function. Though the avar variable
provides the return value for the do_it function, it is only known inside the function. The third line of this
example, which tries to log the avar value in the Script-Editor Event Log window, raises an error because
the avar variable's scope is local to the do_it function. The error dialog reads: "The variable avar is not
defined."

The next example solves this problem by declaring avar as global (initializing the variable at this script
location, as in set avar to 0 , would have the same effect). Then the function call sets the variable to 8,
and the Event Log has no trouble logging its value because avar is visible at the top-level of the script:

set aNum to 7

global avar

display dialog (do_it(aNum) as string)

log avar -- avar evaluates to 8

on do_it(v)

 set avar to 0

 set avar to v + 1

 return avar

end do_it

Use the reserved word local to give a variable local scope. In another variation of our script, the avar
variable inside the function is first declared as local . This means that there are now two different avar
variables, one at the top level of the script and another local avar version that is restricted to the function
(outside of an illustrative example like this, you usually wouldn't give two different variables the same
name):

set aNum to 7

global avar

set avar to 0 -- global avar is initialized to 0

display dialog (do_it(aNum) as string) -- return value is from local avar

log avar -- global avar still is 0

on do_it(v)

 local avar

 set avar to v + 1

 return avar (* returns the integer 8 but doesn't affect global avar

end do_it *)

6.1.2 Properties

A property is a variable that retains its value after a script has run. Even after you have quit and launched a
script again, the script retains its property value. A property has global scope throughout a script. You
have to define a property with the property keyword (prop for short), followed by a space, a variable
name, a colon character (:), and its initial value:

prop runval : 0

The colon can be preceded and followed by a space, which improves code readability. The following
AppleScript creates a howmany property , then increments it by one and displays its value each time the
script is run:

property howmany : 0

set howmany to howmany + 1

display dialog (howmany as string)

howmany starts out as 0, then keeps a count of how many times the script has been run. It will not be
reinitialized to unless the script is recompiled (optionally altered then saved again). You can set a property
to any value type, including booleans, lists, records, and strings. It is good form to declare all properties at
the top level of a script, since they are global variables that persist from script execution to execution. You
cannot declare a property inside of a handler, as the following example shows. The script successfully
displays the value of the aPi property (which is the value of the pi predefined variable, a real number),
even though the property is declared beneath the display dialog command. It is better practice to declare
all properties at the top of a script:

property aList : {"a", "list"}

property aString : "A string"

property aRecord : {name:"A record", type:"record class"}

display dialog (aPi as string)

property aPi : pi

on init()

 property initvar : "I'm inside" (* raises an error and prevents

 script from compiling *)

end init

You can also declare a parent object for the script by using the syntax property parent : scriptObject or
Application . In place of the scriptObject or Application placeholder you include a script object or
application. The script with the parent property then inherits the properties, elements, and commands of
the parent object. See "current application" in the section Section 6.2 in this chapter and Chapter 9 for
more information on inheritance in AppleScript.

In sum, you can declare a variable as global at the script's top level if you want to use it throughout the
script. The next AppleScript declares a global called initv and then uses it in both the script's run handler
and in a user-defined subroutine called init . (Chapter 8 , describes the runhandler.) The initv variable is
visible inside both subroutines. The as string portion of the (init() as string) fragment is not strictly
necessary, but otherwise included to make it clear that an integer return value is coerced to a string
before it is included in the display dialog text:

global initv

on run

 set initv to 0

 display dialog "Function return value is: " & (init() as string) &¬

 return & "Value of initv is: " & initv

end run

on init()

 set initv to initv + 1

end init

6.2 Constants and Predefined Variables

Constants are reserved words that AppleScript has given a predefined value that you cannot change. There
are boolean constants (true or false), date constants (e.g., April , May), and considering or ignoring
constants (e.g., case , white space), among others. Predefined variables, on the other hand, have a
changeable value. In other words, you can use code such as set pi to 5 and the pi predefined variable
will no longer have the value of about 3.14159 in your script! You cannot change the value of the boolean
constant false , however (set false to 3 will not compile). The constants are listed in Table 6-1 , and the
Predefined Variables are listed in Table 6-2 . Certain date and time values (i.e., minutes , hours , days ,
weeks) are changeable in a script like predefined values; however, they are grouped with other date
constants for convenience.

Table 6-1. AppleScript Constants

all caps all lowercase

application responses ask

bold case

condensed current application

date and time constants (e.g., January, February) diacriticals

expanded expansion

false hidden

hyphens italic

no outline

plain punctuation

shadow small caps

strikethrough subscript

superscript true

underline white space

yes

Table 6-2. AppleScript Predefined Variables

anything it

me missing value

pi result

return space

tab version

my

all caps

Syntax

{class:text style info, on styles:{plain, all caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

all caps is a text-style constant that represents all capital letters. Some applications return text values that
encapsulate the style information, such as font and point size, instead of leaving it as plain ASCII text. The
syntax example shows the return value from an application command that gets the style of a chunk of text.
The return value is of type record and contains the list of text-style constants that are on or off for the text.
The AppleWorks command is:

get style of text body of document 1

Along with all caps , the text-style constants (italic , underline , outline) are reproduced as literal
words without quotation marks.

all lowercase

Syntax

{class:text style info, on styles:{plain, all lowercase}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

This is a text-style constant that represents all lowercase text characters. Some Mac applications return text
that encapsulates one or more of these text-style characteristics (e.g., italic , bold , underline). See all
caps for an expanded description of text-style constants.

anything

Syntax

set myBasket to anything

Description

anything is a predefined variable of type class that can incorporate other classes. In other words, if a
command's parameter type is anything then the command will accept more than one value type, as
opposed to a command like display dialog that only takes one data type as its direct parameter, a string .
The AppleScript Language Guide recommends the following usage of anything as an example. If you want
a script to monitor a variable to determine if the variable's value or data type has changed, you can set a
variable to anything . Then later on in the script test the variable to determine if its value has changed, as in
set bool to (myBasket is equal to anything) . If the bool variable is true , then the myBasket variable
has not been changed, as in set to a string .

application responses

Syntax

Ignoring application responses

 (* do some scripting here *)

end ignoring

Description

The constant application responses can be included in an ignoring...end ignoring statement block to
ignore an Apple event response from a program. This ignoring statement would usually take place in a
repeat loop that is querying several different running programs for some purpose. Chapter 7 , discusses
ignoring and repeat .

Examples

This code tells the Finder to send the script a list of running processes on the computer. process is an
element of the Finder application (check the application class in Finder's dictionary and you will find
"process" listed under "elements"). The code every process returns a list of process objects, which are
otherwise known as running applications on the computer:

tell application "Finder"

 (* procs contains a list of running processes on the computer *)

 set procs to every process

 repeat with p from 1 to 4 (* do something with the first four listed

 processes *)

 ignoring application responses -- ignore any reply Apple events

 (*script will try to get name of each process but ignore the

 response, and 'myname' will not get a value *)

 set myname to (name of (item p of procs))

 try

 tell application myname

 display dialog myname

 end tell

 end try

 end ignoring

 end repeat

end tell

If you look at Script Editor's Event Log while this program is running, you'll see a sequence of Apple events
sent to each process to retrieve its name (i.e., get name of process "Folder Actions"), but the script will
ignore any of the application responses sending the app's name. As a result, the myname variable will not be
set to a valid value. Consequently, the tell application myname statement will raise an error (handled by
the try...end try block), and no dialogs will ever be displayed.

Error handling with try blocks is covered in detail by Chapter 7 .

If you substitute considering...end considering for ignoring...end ignoring (considering
application responses is the default behavior for scripts, so you do not actually have to include it), then
the script will do what it's supposed to. It displays four dialogs one after the other containing four of the
running process's names.

ask

Syntax

Close document 1 saving ask

Description

ask is a constant parameter to the close command or Apple event, as in close document 1 saving ask. If
this parameter is included, in lieu of its alternatives no or yes , then the closing application must produce a
dialog asking the user whether to save the document before closing it.

Examples

This AppleScript shows how to use this command. If you use no then the document is closed, whether or
not any unsaved changes have been made to it. If you use yes then the app closes the document and
saves it using its present filename:

tell application "BBEdit 5.0"

 activate

 close document 1 saving ask (* other options are 'saving no' and

 'saving yes' *)

end tell

bold

Syntax

{class:text style info, on styles:{plain, all caps}, off

styles:{bold, italic, underline, outline, shadow, condensed, expanded,

strikethrough, superscript, subscript, superior, inferior, double underline}}

Description

bold is a text-style constant that represents a boldface rather than plain character. Some applications return
text values that encapsulate the style information, such as font and point size, instead of leaving it as plain
ASCII text. See all caps in this section for a further discussion.

case

Syntax

Considering case

 "Colorado" is equal to "colorado" -- returns false

end considering

Description

case can be used in a considering...end considering statement block to take into account upper- or
lowercase when making a string comparison. AppleScript does not consider case in string comparisons by
default. The considering case statement block will consider character case in all the statements within its
block.

Examples

The following program will run silently, because the boolean expression "animal" is equal to "aNiMal"
returns false considering case:

considering case

 if "animal" is equal to "aNiMal" then beep 1

end considering

condensed

Syntax

{class:text style info, on styles:{plain, all caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

superscript, subscript, superior, inferior, double underline}}

Description

condensed is a text-style constant that represents the condensed style in a text-editing application such as
AppleWorks. The condensed style reduces the space between words. Some applications return text values
that encapsulate the style information, such as font or point size, instead of leaving it as plain ASCII text.
See all caps in this section for a further discussion.

current application

Syntax

set ap to current application

Description

The current application is the default application that receives script commands, in the absence of
explicit tell statements. Chapter 7 discusses the tell statement. You can set the default application for
an entire script by declaring a parent property:

property parent : application "Finder"

This statement establishes the Finder as the target of any script commands that are not located in a tell
statement.

Examples

The upcoming example uses some Finder commands (the Finder is the default or current application).
Then the script sends activate , set , and get Apple events to the text editor BBEdit. The last two lines show
that you can use the current application constant to set a variable to the script's default target application.
The last line:

tell ap to get my name

returns "Finder." my is a built-in AppleScript reference to the script object itself, whose parent is the Finder.
my name returns "Finder" (Chapter 8 discusses script objects):

property parent : application "Finder"

open file "events.html"

get name -- returns "Finder"

tell application "BBEdit 5.0"

 (* BBEdit receives activate, set, and get Apple events *)

 activate

 set mytxt to (get line 1 of document 1)

end tell

set ap to current application

tell ap to get my name

date and time constants

Syntax

Months

January, February, March, April, May, June, July, August, September, October, November,
December

Days

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

time constants

minutes , hours , days , weeks

Description

The month constants are returned by getting the month property of a date object, as in get month of
mydate . You can also use them to test which month is represented by a certain date object:

set mydate to date "Friday, January 1, 2000 12:00:00 AM"

if day of mydate is 1 and month of mydate is January then display dialog

"Happy New Year!"

The day constants are the day-related values that are returned by a date object's weekday property.

These constants, normally used with dates, represent the following values:

minutes

60

hours

60 * minutes

days

24 * hours

weeks

7 * days

Examples

To calculate how many minutes are in a day (1440), you could write:

set dayMinutes to days / minutes

These constants contain integer value types. A common way to use them is to add or subtract time from
date objects:

set newdate to (date "January 1, 2000") + (20 * weeks)

This example adds 20 weeks to the first day of the last year of the millennium (yes, I'm strictly Gregorian
in my view of which year represents the last one of the millennium). If you wanted to, you could use these
reserved words as integer constants. For example, minutes returns 60 and weeks returns 604800 (or, 7 *
24 * 60 * 60). You have to be exact in your usage of these constants, if not in your grammar. If you want to
add one week to a date, for instance, you have to use code similar to the following:

mydate + 1 * weeks

You cannot write:

mydate + 1 week

diacriticals

Syntax

Ignoring diacriticals

 (* do some scripting here *)

end ignoring

Description

These accent characters are ignored in string comparisons that use an ignoring diacriticals ...end
ignoring statement block. By default, AppleScript considers diacriticals when comparing strings.

Examples

This AppleScript shows that by default the strings that have diacritical marks do not return true when
compared with the same string without the marks. The result is reversed when the diacritical constant
is ignored (hasDiacritical returns false and hasDiacritical2 returns true):

set hasDiacritical to ("spät is late in German" is equal to "spat is late

in German") -- returns false

ignoring diacriticals

 set hasDiacritical2 to ("spät is late in German" is equal to "spat is

 late in German") -- returns true

end ignoring

log hasDiacritical -- is false

log hasDiacritical2 -- is true because the diacritical in "ä" is ignored

expanded

Syntax

{class:text style info, on styles:{plain, all caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

expanded is a text-style constant that represents the expanded style in a text-editing application such as
AppleWorks. The expanded style increases the space between words in a sentence. (Some applications
return text values that encapsulate the style information, such as font or point size, instead of leaving it as
plain ASCII text. See all caps in this section for a further discussion.)

expansion

Syntax

Ignoring expansion

 (* include string comparison here *)

end ignoring

Description

If expansion is included in strings that are located in an ignoring expansion ...end ignoring statement
block, then AppleScript considers the characters Æ, æ, Œ lig;, and œ lig; to be single characters and not
equal to AE, ae, OE, and oe. By default, AppleScript considers the string "Æ" to be equal to the string
"AE." Chapter 7 is devoted to AppleScript statements such as ignoring...end ignoring .

false

Syntax

Set falseBool to false

Description

false is the boolean constant that equals false or not true . Chapter 3 discusses the boolean data type.

hidden

Syntax

{class:text style info, on styles:{plain, all caps}, off

styles:{bold, italic, underline, outline, shadow, condensed, expanded, hidden,

strikethrough, superscript, subscript, superior, inferior, double underline}}

Description

hidden is a text-style constant that represents the hidden style in a text-editing application such as
AppleWorks. Some applications return text values that encapsulate the style information, such as font or
point size, instead of leaving it as plain ASCII text. See all caps in this section for a further discussion.

hyphens

Syntax

Ignoring hyphens

 "A hyphen" is equal to "A-hyphen"

end ignoring

Description

AppleScript considers hyphens in strings by default during string comparisons. You can change this
behavior by enclosing the string-comparison statement in an ignoring hyphens...end ignoring statement
block. This code shows that hyphens will not be considered when comparing strings in this manner:

ignoring hyphens

 set theTruth to ("burning-hot pavement" is equal to "burninghot ¬

 pavement") -- theTruth is true

end ignoring

it

Syntax

Tell it to get its name

Description

it is shorthand for a script's default target. The following example returns the string "9.0," which is the
Finder's version in Mac OS 9. The script's default target was previously set to the Finder by declaring the
Finder as a parent property (see current application in this chapter or Chapter 3 for more information
on parent properties). Therefore, it is a reference to the Finder:

property parent : application "Finder"

tell it to get its version (* returns the value of the Finder's version

property *)

italic

Syntax

{class:text style info, on styles:{plain, all caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

italic is a text-style constant that represents the italic style in a text-editing application such as
AppleWorks. The italic style places one or more characters in a string in italics. Some applications return
text values that encapsulate the style information, such as font or point size, instead of leaving it as plain
text. See all caps in this section for a further discussion.

me

Syntax

Set returnVal to MyScriptFunc() of me

Description

me is used to specify a script-defined subroutine or property, to distinguish it from the properties or functions
of other applications that the script uses. me is most often used in the form propertyname orfunctionname
of me. In the following code, the me predefined variable is used inside a tell...end tell statement block
to identify the getMegabytes function as a script subroutine, not a Finder command. If you left out the of me
part of getMegabytes(b) of me then the script would raise an error, because it would tell the Finder to call its
getMegabytes handler, but the Finder doesn't define this command. In the absence of the me or my
constants, all commands inside of a tell...end tell block are directed to the application targeted by the
tell block or to scripting additions (Chapter 7 discusses tell blocks). The script identifies getMegabytes
as its own subroutine, which is an elegant way to call this useful routine anywhere you want in the script:

tell application "Finder"

 set b to largest free block -- returns free memory block as bytes

 set mb to getMegabytes(b) of me

 display dialog mb

end tell

(* subroutine definition; converts bytes to megabytes *)

on getMegabytes(byteVal)

 if (class of byteVal) is in {integer, real} then

 set megValue to (byteVal / 1024 / 1024)

 return megValue

 else

 return 0

 end if

end getMegabytes

missing value

Syntax

{"192.168.0.1", "0.0.0.0", missing value}

Description

missing value is a predefined variable that takes the place of a missing property value in return values that
involve lists, for instance. The following code asks the Network Setup Scripting system app for the IP
address of each network configuration on the computer. Since not all configurations use the TCP/IP
protocol (some use the AppleTalk protocol), some of them are not associated with an IP address. The
return value for this example looks like {"192.168.0.1", "0.0.0.0", missing value, "0.0.0.0", missing
value, missing value, "0.0.0.0", missing value} , where missing value takes the place of the return
value for the configurations that do not have an IP address:

tell application "Network Setup Scripting"

 open database

 get IP address of every configuration (* returns list of IP addresses

 and missing values *)

 close database

end tell

my

Syntax

Set megValue to my getMegabytes(bytes)

Description

my is a reserved word that has the same effect as using the reserved words of me in a script (see me in this
chapter). There is no difference between the two predefined variables; you can use whichever one appears
more readable to you (my gets my vote). In the following example, you replace the statement:

set mb to getMegabytes(b) of me

with:

set mb to my getMegabytes(b)

This tells AppleScript that you are calling the script's getMegabytes subroutine, as opposed to an osax or
custom application command. In other words, my denotes script ownership of a property or subroutine.

no

Syntax

Close document 1 saving no

Description

no is a constant parameter to the close command or Apple event:

close document 1 saving no

If this parameter is included, in lieu of its alternatives ask or yes , then the closing application closes the
document without saving it, whether or not the document has been changed. See "ask" earlier in this
chapter.

outline

Syntax

{class:text style info, on styles:{plain, all caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

outline is a text-style constant that represents characters that are outlined in black (or some other text
color), and white in the middle, rather than appearing as plain text. Some applications return text values that
encapsulate the style information, such as a font and point size, instead of leaving it as plain literal text. See
all caps in this section for more discussion of text-style constants.

pi

Syntax

Return pi * (radius^2)

Description

pi is a predefined variable that returns a real value of about 3.14159. You can use this predefined variable
in geometry calculations, as in the following example. This script has a getArea subroutine that returns the
area of a circle when passed the circle's radius as an argument. Chapter 8 discusses how to create your
own functions.

set circleArea to getArea(12)

on getArea(radius)

 if (class of radius) is in {integer, real} then (* check to make sure

 parameter is a valid number *)

 return pi * (radius ̂ 2) -- this calc returns the area of a circle

 else

 return 0

 end if

end getArea

plain

Syntax

{class:text style info, on styles:{plain, all caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

plain is a text-style constant that represents plain text. Some applications will return text values that
encapsulate the style information, such as its font or point size, instead of leaving it as plain ASCII text. See
all caps in this section for more discussion of text-style constants.

punctuation

Syntax

Ignoring punctuation but considering case

 (* do string comparison *)

end ignoring

Description

AppleScript considers punctuation marks such as commas and periods in strings by default when it
compares strings for equality. If you enclose the string comparison in the statement ignoring
punctuation...end ignoring , however, AppleScript will ignore the punctuation when evaluating a string
comparison. punctuation comprises the following characters in AppleScript:

.
?
:
;
!
\
'
"
`

The next example uses the punctuation constant to ignore any commas in the numbers entered into a
dialog box by a user. If the script did not use the ignoring punctuation statement, and the user entered a
number with one or more commas (such as 1,000,000), then the statement:

if inputNum as real 1000

would raise an error. This is because by default the strings with nonnumber characters in them cannot be
coerced to integers or real s (with the exception of strings like "1.0e + 4," which would evaluate to the
real type in scientific notation-1.0e + 4). In the case of the following script, the punctuation marks can be
ignored, allowing "1,000,000" to be coerced to a real data type (which would look like 1.0e + 6). Chapter
3 discusses the real type.

set inputNum to text returned of (display dialog "Enter a number larger¬

than 1,000" default answer "")

ignoring punctuation

 if inputNum as real 1000 then

 display dialog "Remember it has to be bigger than 1,000"

 else

 display dialog "Your number is: " & inputNum

 end if

end ignoring

result

Syntax

Set lastExpr to result

Description

result is a handy predefined variable that contains the value of the last statement evaluated in a script.
You can set variables to result as in:

set finalVar to result

or use the following code to display the result:

display dialog result

If there is not a valid result from an expression, as in the top of the next example, then trying to get the
value of result will raise an error. The bottom tell block in the following code stores the value of the last
expression (i.e., 2 * 2) in the result predefined variable:

tell application "Finder"

 activate -- this Apple event doesn't return a value to AppleScript

 get result -- this statement raises an error

end tell

tell application "Finder"

 2 * 2

 get result -- returns 4

end tell

return

Syntax

Set theStr to "one line" & return & "another line"

Description

The return predefined variable represents a return character. You will use this predefined variable a lot
with the concatenation character (&) in order to make strings more presentable:

"a long sentence divided into" & return & "two lines with the return

character"

Make sure not to confuse the return statement with the return predefined variable. AppleScript also uses
return as a statement inside of subroutines. If you use the return statement, the subroutine or function will
return to the part of the script that called the function. The return character is a predefined variable while
return , as used in functions, is a flow-control statement (see Chapter 7). This code illustrates the
difference between the two:

set aString to "String with " & return & "one return character."

(* use the return constant *)

run_it(aString) -- call the function

on run_it(str) -- function definition

 display dialog str¬

 buttons {"okay", "Big deal", "cancel"} default button 2

 (* use return statement to return the value of the button the user

clicked to dismiss the dialog box *)

 return (button returned in the result) (* return statement, not constant *)

end run_it

shadow

Syntax

{class:text style info, on styles:{plain, all caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

shadow is a text-style constant that represents the display of characters with a drop shadow behind them.
Some applications will return text values that encapsulate this style information, such as font and other
embellishments, instead of leaving it as literal plain text. See all caps in this section for more discussion of
text-style constants.

small caps

Syntax

{class:text style info, on styles:{plain, small caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

small caps is a text-style constant that represents the display of characters with small capital letters. Some
applications will return text values to an AppleScript that encapsulate this style information, such as font
and other embellishments, instead of leaving it as literal plain text. See all caps in this section for more
discussion of text-style constants.

space

Syntax

"string with" & space & " an extra space"

Description

space represents a space character in a string . You can use it when building your own strings:

"String with " & space & space & "two extra spaces."

You can also use the tab and return predefined variables to exert more control on string appearance.

strikethrough

Syntax

{class:text style info, on styles:{plain, small caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

strikethrough is a text-style constant that represents the display of characters with a line drawn through
them, as though someone editing the document had crossed them out. Some applications will return text
values to an AppleScript that encapsulate this style information, such as font and other embellishments,
instead of leaving it as literal plain text. See all caps in this section more discussion of text-style constants.

subscript

Syntax

{class:text style info, on styles:{plain, small caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

subscript is a text-style constant that represents the display of characters with a lower-than-normal
baseline, as in subscript . Some applications such as AppleWorks will return text values to an AppleScript that
encapsulate this style information, such as font and other embellishments, instead of leaving it as literal
plain text. See all caps in this section for more discussion of text-style constants.

superscript

Syntax

{class:text style info, on styles:{plain, small caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

superscript is a text-style constant that represents the display of characters with a higher-than-normal
baseline, as in superscript . Some applications such as AppleWorks will return text values to a script that
encapsulate this style information, such as font and other embellishments, instead of leaving it as literal
plain text. See all caps in this section for more discussion of text-style constants.

tab

Syntax

"A string" & tab & tab & "with two tabs in it."

Description

tab is a predefined variable that places a tab in a string :

"Here is a string" & tab & tab & "with two tabs in the middle of it."

You can also insert return and space characters into your strings.

true

Syntax

Set boolVal to true

Description

true is the boolean constant that equals true or not false . Chapter 3 discusses the boolean value type.

underline

Syntax

{class:text style info, on styles:{plain, small caps}, off

styles:{italic, underline, outline, shadow, condensed, expanded, strikethrough,

 superscript, subscript, superior, inferior, double underline}}

Description

underline is a text-style constant that represents the display of characters that are underlined, as in
underline . Some applications will return text values to an AppleScript that encapsulate this style
information, such as font and other embellishments, instead of leaving it as literal plain text. See all caps
in this section for more discussion of text-style constants.

version

Syntax

Get version as string

Description

AppleScript's version property returns a version value (yes, version objects are based on the version
class) that can be coerced to a string , as in "1.4." The number is the version of AppleScript that the
machine running the script has installed. The following code shows how you can test for AppleScript's
version . (Other applications, such as the Finder, also have a version property. Check the application class
in the program's dictionary to find out if they do.)

set ASver to version as string

(* grab the "1.4" part of the value and coerce it to a number so that it can be

tested *)

if (text 1 thru 3 of ASver as real) 3 1.4 then

display dialog¬

"Good, you're running at least AppleScript version 1.4"

else

display dialog¬

"Perhaps you should consider upgrading to a newer AppleScript version"

end if

white space

Syntax

Ignoring white space

 (* do string comparison *)

end ignoring

Description

If you enclose a string comparison in an ignoring white space...end ignoring statement block, then
AppleScript ignores any spaces, tabs, or return characters when comparing strings. Otherwise, AppleScript
takes these characters into account during string comparisons. Ignoring white space might be useful
when checking for certain content strings seized from textually complex sources like web pages. The
following code shows what happens when you ignore white space:

set string1 to "a spread" & tab & tab & return & "out string."

set string2 to "aspreadoutstring."

ignoring white space

 return (string1 is equal to string2) -- returns true

end ignoring

yes

Syntax

Close document 1 saving yes

Description

yes is a constant parameter to the close command or Apple event:

close document 1 saving yes

If this parameter is included, in lieu of its alternatives ask or no , then the closing application saves the

document, if it has been changed, before closing it. Depending on the application's default behavior, it
usually prompts you for a filename (if the document does not have a valid filename) before closing it.
Therefore, you should use the activate command to bring the target application to the foreground, so that
the user can see any dialog box. See "ask" in this chapter for more info.

Chapter 7. Flow-Control Statements

The flow-control statements in AppleScript orchestrate the "flow" or the order in which the code statements
execute in your scripts. Programmers will be familiar with AppleScript's if conditional statements, which
are very similar to the syntax of Visual Basic, Perl, and other languages. These statements execute code
only if the tested conditions are true. AppleScript handles loops in script code with several variations of
the repeat statement, similar to the "for," "foreach," or "for each" statements in other languages. The
repeat flow-control construct repeats the execution of code a specified number of times or for each
member of a container, such as a list type. Or, it repeats a code phrase a specified number of times:

repeat 100 times...end repeat

You will be pleased to know that AppleScript has more than adequate error-trapping capabilities. This is
accomplished by enclosing the statements that may raise errors in a try...end try statement block. In
addition, you have already seen dozens of examples of the tell..end tell statement in earlier chapters.
These statements specify the objects, usually application objects, that receive the commands or Apple
events that your script sends. You specify the targets of different script commands by using these tell
statements.

You can nest flow-control statements within other flow-control statements. Most of these statements end,
appropriately, with the reserved word end, optionally followed by the statement identifier, such as tell or
repeat. An example is:

tell app "Photoshop 5.5"...end tell

The if and tell statements allow "simple" rather than "compound" usage, such as:

if (current date) > date "1/1/2001" then display dialog "Welcome to 2001"

These simple statements appear on one line, they do not contain other code statements, and they do not
need to be completed with the end reserved word. This code shows some nested flow-control statements
and simple statements:

tell application "Finder"

 set freeMemoryBlock to largest free block

 (* Here's a simple statement; no 'end' is necessary *)

 if freeMemoryBlock < 10000000 then display dialog¬

 "Memory is getting low"

 set listOfProcesses to name of processes

 if "BBEdit 5.0" is not in listOfProcesses then (* compound 'if'

statement *)

 tell application "BBEdit 5.0" to run -- simple 'tell' statement

 end if

end tell

Suffice it to say, flow-control statements are how AppleScript derives much of its power and complexity.
You will develop very few scripts that do not use at least one flow-control statement. Table 7-1 lists the
statements that this chapter describes.

Table 7-1. Flow-Control Statements

considering repeat with loop variable

continue repeat integer times

error return

exit tell simple statement

if simple statement tell compound statement

if compound statement try

ignoring using terms from

repeat with timeout

repeat until with transaction

repeat while

considering [but ignoring] end [considering]

Syntax

Considering case

 "animal" is equal to "AniMal" -- returns false

end considering

Description

Use considering statements to specify the elements that should be considered during string comparisons
and communications with other applications. The statements that constitute the comparison are enclosed
in the considering...end considering block. This statement block affects how each of its enclosed
statements is processed. The considering statement can also alter AppleScript's default behavior for the
code that is executed prior to the end of the considering statement (signaled by an end or end
considering phrase). For example, if you wanted to compare two strings and take upper- or lowercase
characters into account, but ignore any white space in the strings, then you would use the statement:
considering case but ignoring white space...end considering. AppleScript's default behavior is to
consider elements such as case, white space, and punctuation when it compares strings for equality. The
following constants can also be used in the considering statement (Chapter 6, discusses AppleScript's
constants):

application responses

case

diacriticals

expansion

hyphens

punctuation (i.e., . , ? : ; ! \ ' " `)

white space

AppleScript considers by default an application's responses to any Apple events that your script sends
them. You can use the ignoring statement to ignore responses from an application, as in considering
case but ignoring application responses.

There are a few instances when ignoring application responses might make sense, such as when you are
sending quit commands to several running processes. If one of the processes responds to the command
with an error, then the script ignores its response (as well as any other application response) and thus
prevents it from disrupting the execution of the rest of the script. See "ignoring" in this chapter for more

details.

Examples

This code shows how to use this statement with a fairly complex string comparison:

tell application "Finder"

 considering case but ignoring punctuation, white space and hyphens

 set theTruth to ("voracious appetite" is equal to "voracious,¬

 appetite") --returns true

 end considering

end tell

The example tells AppleScript which elements to consider and ignore when executing the string
comparison within the considering statement block. Since white space, hyphens, and punctuation should
be ignored in the comparison, the two strings turn out the same. Therefore, the theTruth variable is set to
true. If you are wondering why you would ever ignore these elements in a string comparison, programs
often deal with a lot of junk characters and tokens, such as markup-language elements, which are
returned from applications or web pages. The considering statement allows you, in a minimal way, to filter
out elements that you do not want to include in string comparisons (unfortunately, you will have to write
custom functions or use an HTML-parsing osax to filter out the common < > characters in hypertext
markup language [HTML], as AppleScript does not consider them to be "punctuation").

continue

Syntax

On parMethod(int)

 If somethingTrue then

 (* code statements here *)

 else

 continue parMethod(int) -- call parent script's parMethod version

 end if

end parMethod

Description

The continue statement is used to call a parent script's method from a child script. In AppleScript, a child
script can inherit properties and methods from a parent script. This topic is covered in Chapter 9. The child
script specifies its parent (if it has one) by declaring a parent property at the top of the script:

property parent : NameOfScript

The NameOfScriptpart can be either the name of a script object or an application, such as:

application "Finder"

A child script inherits the methods of a parent; it does not have to define these methods. However, the
child script can "override" the parent method(s) by redefining them in the body of the script. Within these
redefined methods, it can use the continue statement to call the parent method. The following example
constitutes a child script that calls its parent's version of the parMethod function based on the magnitude of
the numerical argument passed to the method. The child object handles real numbers and the parent
handles integers.

Examples

On parMethod(int)

 If (class of int is real) then

 Return (int * 2)

 Else

 continue parMethod(int) (* it's an integer so call the parent

 parMethod *)

 end if

end parMethod

error

Syntax

error myErrText number 9000 -- myErrText contains the error description

Description

The error statement allows you to raise an error based on certain script conditions. Why would you ever want
to raise an error? You may want to catch an error in a function but handle the error in the part of the code that
called the function, higher up in the call chain. So you would use the error statement to pass the error up to
the calling function, such as in the following example. This is similar to "throwing" an exception in Java.

Examples

This example uses a getNumber method to get a number from the user, but it does not bother (for the sake of
demonstration) to check the entry to ensure that the user has entered a valid number. If the user enters data
that is not a number then the statement:

return (theNum as number)

causes an error, because AppleScript cannot coerce non-numeric characters to a number . To be specific, this
is AppleScript error number -1700. The getNumber method catches the error and uses an error statement to
pass the original error's error message and number back to the calling handler (in this case the script's run
handler), which then catches the "re-raised" error and displays a message:

on run

 try

 display dialog "Your number is: " & (getNumber() as text)

 on error errmesg number errn

 display dialog errmesg & return & return & "error number: " &¬

 (errn as text)

 end try

end run

on getNumber()

 set theNum to (text returned of (display dialog¬

 "Please enter a number:" default answer ""))

 try

 return (theNum as number)

 on error errmesg number errnumber

 error errmesg number errnumber

 end try

end getNumber

The error statement also gives the scripter more control on how program errors are handled. For example,
you can catch an error in a script with a try block (see "try" later in this chapter), examine the nature of the
error, then re-raise the error with the error statement providing a more lucid error message to the user. This is
best illustrated with the following code, which catches an error caused by coercing a non-numeric string to a
real data type:

(* use the display-dialog scripting addition to ask the user to enter a number *)

set aNum to the text returned of (display dialog "Enter a number"¬

default answer "")

try

 set aNum to aNum as real (* non-numeric string like "10ab" will raise an error *)

on error number errNumber

 set myErrText to "Can't coerce the supplied text to a real: " &¬

 return & "The AS error number is " & errNumber

 error myErrText number 9000 -- add your own error number

end try

The code first asks the user to enter a number, using the display dialog scripting addition. This produces a
dialog box with a text-entry field. If the user enters some text that cannot be coerced to a number , such as 10ab
(the included letters ab cause the coercion to fail), the expression:

set aNum to aNum as real

causes the script to raise an error. The try block catches the error, and then processes the statements
following the on error code. These statements include:

error myErrText number 9000

which produces an AppleScript error-dialog box and adds the scripter's custom message (stored in the
variable myErrText). It also provides a custom error number of 9000. You can create your own groups of
error numbers or variables for certain error conditions, which your script can then identify and respond to with
more accuracy and clarity than if the scripter only relied on AppleScript's error numbers.

The next two examples illustrate the setup and usage of custom error variables. The first example is a script
that contains several user-defined error variables for some common errors that occur in AppleScripts. This
script is loaded into the current script using the load script scripting addition (Appendix A , discusses scripting
additions, or osaxen). The example only contains three constants, but it could define dozens of them to
accommodate most or all of the possible script errors that could occur. The constants are set to the actual
values that AppleScript assigns to the errors that represent, for example, the failure to coerce data from one
type to another (i.e., error number -1700):

set FAILED_COERCION to -1700

set MISSING_PARAMETER to -1701

set TIMEDOUT_APPLEEVENT to -1712

You can then test for certain errors and, if you discover them, display more informative messages or take
some other appropriate action. For example, the script in the following code sets the variable objErrors to the
script object defined in the prior example. It then uses the FAILED_COERCION and TIMEDOUT_APPLEEVENT
constants from that object to test for these error conditions. In other words, the TIMEDOUT_APPLEEVENT variable
contains AppleScript's actual error number for Apple events that time out (-1712), but it is easier to
remember if it is stored in a variable with a coherent name. If either of these errors is detected, the error
statement is used to produce a dialog box with your own error message:

set objErrors to (load script file "HFSA2gig:nutshell book:demo¬

scripts:scr_0504")(* this script object contains the user-defined error

variables *)

set userReply to the text returned of (display dialog¬

 "Please enter a number" default answer "")

try

 set aNum to userReply as real (* if the user doesn't provide a number

 this statement will fail and the try block will catch the error *)

 on error errM number errNumber

 if errNumber is equal to (objErrors's FAILED_COERCION) then

 (* FAILED_COERCION is a property of the script object stored in objError *)

 error "The number you provided was not a valid integer or real."

 else if errNumber is equal to (objErrors's TIMEDOUT_APPLEEVENT) then

 error "For some reason AppleScript timed out."

else -- default error message for all other errors

set defMessage to "Sorry, AppleScript error number: " & errNumber &¬

"occurred in the script. Here's AppleScript's error description: " & errM

error defMessage

end if

end try

The error statement includes a number of optional parameters. It is important to remember that you supply
the values for these parameters (if you want to use them). With try blocks and on error statements,
AppleScript itself will fill these parameters with values (see "try" later in this chapter):

A non-labeled parameter that contains the text describing the error, as in error "The Apple event
timed out" .

A labeled parameter that identifies the error number, such as error "The Apple event timed out"
number 9000 . You use the keyword number followed by the integer . If you do not include an error
number, AppleScript gives this parameter a default value of -2700.

A labeled parameter that identifies the object that caused the error, as in error "The Apple event timed
out" number 9000 from userReply . You use the keyword from followed by a reference to the object, in
this case the variable that caused the coercion error.

A labeled parameter that involves the reserved words partial result followed by a value of type list .
If the command that caused the error involved the receipt of return values from multiple objects (e.g., a
command sent to several database files to get some data), then the list value contains any of the
values that were successfully received before the error halted the operation. AppleScript gives this
parameter a default value of the empty list ({ }).

A to keyword or label followed by a word that identifies a class type, such as boolean , string , or
integer . If the command that caused the error received the wrong type of parameter value, then the to
labeled parameter will identify the correct data type that the parameter expected.

The following example demonstrates how to pass the information about an AppleScript error to an error
statement. The script intentionally raises an error by using a string instead of a boolean expression in an if
statement. Then it passes the error data as a long string to an error statement:

try

 if "not a boolean" then (* this causes an error, caught in the try block *)

 beep 2

 end if

on error errMessage number errNum from errSource partial result¬

errList to class_constant -- various variables store information about the error

 set bigmessage to "The error is: " & errMessage & return &¬

 "The number is: " & errNum & return & "The source is: " & errSource

 error bigmessage -- error statement displays dialog box to user

end try

exit [repeat]

Syntax

repeat 2 times

 exit repeat

end repeat

Description

The exit statement causes the flow of script execution to leave the exit statement's repeat loop. The
execution then resumes with the script code following the repeat loop. exit can only be used inside of a
repeat loop, regardless of the repeat-loop variation. Using exit is the conventional way to exit a repeat
loop that has no conditional statement associated with it, as shown in this example. In other words, this
form of repeat is an infinite loop:

repeat

 set userReply to the text returned of (display dialog "Want to get¬

 out of this endless loop?" default answer "")

 if userReply is "yes" then exit repeat

end repeat

This endless loop can also be exited by clicking the Cancel button on the dialog produced by display
dialog, which terminates the execution of the script.

if simple statement

Syntax

If theBool is true then exit repeat

Description

AppleScript supports the simple if statement that is similar to Perl's. You can use a statement such as the following:

if (current date) is greater than or equal to date "1/1/2001" then¬ display dialog "Welcome to 2001"

You do not have to "close" this statement with an end or end if , as you do with more wordy compound statements. You just
include the reserved word if followed by a boolean expression (returns true or false), the reserved word then , and whichever
statement you would like to execute if the boolean expression returns true . This example has several different versions of the
if statement. Since there are two different versions of the same date-test expression, this script will create two of the same
dialog boxes:

if (current date) is greater than or equal to date "Saturday, January¬

1, 2000 12:00:00 AM" then display dialog "Welcome to 2000" (* simple if statement *)

if (current date) is less than date "Saturday, January 1, 2000 12:00:00¬

AM" then display dialog "Enjoy end of 1999" -- simple if statement

 set yearCount to 0

 if (current date) 3 date "Saturday, January 1, 2000 12:00:00 AM" then

 --compound if statement

 display dialog "Welcome to 2000"

 set yearCount to yearCount + 1

else if (current date)¬

 < date "Saturday, January 1, 2000 12:00:00 AM" then

 display dialog "Enjoy end of 1999"

end if

Use a simple if statement if the script only has to execute one line of code in the event that the boolean expression tests true .

Otherwise use a compound if statement.

if [then] [else if] [else] end [if]

Syntax

If theBoolean then

 (* code statements *)

else if anotherBool then

 (* code statements *)

else

 (* code statements *)

end if

Description

The compound if statement can be used to test several boolean expressions and only execute
subsequent script code if the enclosing expression is true. The syntax of the if compound statement is
almost exactly the same as Visual Basic's, JavaScript's, and Perl's, with some minor differences (for
example, VB pushes the else and if together to make "elseif"). A plain-English pseudocode translation of
this statement would be, "if this happens then run this code; else if that happens then run this code; else (if
neither of the first two things happen) then run this default code." You do not have to include any curly-
brace characters ({ }) to enclose the conditional script code that the if statement contains. As long as you
place different lines of code on separate lines, then the then part of if...then and the if part of end if
are optional, as in the following code. The compiler puts the "thens" and "end if" in the right places.

Examples

In the following example, the (current date) date "1/1/2001" is the tested boolean expression. If it's
false, then the else statement(s) will execute.

Set yearCount to 0

if (current date) date "1/1/2001" -- compiler will fill in 'then'

 display dialog "Welcome to 2001"

 set yearCount to yearCount + 1

else

 display dialog "Enjoy the end of 2000"

end -- 'if' is optional

ignoring [but considering] end [ignoring]

Syntax

ignoring application responses

end ignoring

Description

You can use this statement block to control string comparisons. The ignoring statement is used with
application responses to disregard any responses from the apps that receive the script commands:

ignoring application responses...end ignoring

The following AppleScript constants are the parameters to the ignoring statement. They are all
considered by default:

application response

case, as in upper- or lowercase

diacritical, like the two dots in ü.

expansion; if ignored, then æ, Æ , œ, and Œ are equal to ae, AE, oe, and OE, respectively. These
letters are by default not equal to each other.

hyphen, as in "-"

punctuation; these marks are ignored by the statement ignoring punctuation: . , ? : ; ! \ ' " `

white space

Examples

This code shows how to use ignoring...end ignoring. Believe it or not, the code:

"j'u-n,k t?'ext" is equal to "junk text"

returns true, because the enclosing ignoring block tells AppleScript to ignore punctuation and hyphens
when making the string comparison:

ignoring punctuation and hyphens but considering case

 return ("j'u-n,k t?'ext" is equal to "junk text") (*returns true

because punctuation is ignored in the comparison *)

end ignoring

If you want to ignore more than one constant, just separate them with the and operator:

ignoring punctuation and white space and hyphens and expansion.

You can also use the but considering parameter followed by one of the specified constants (e.g., hyphen,
white space) to ignore some elements but consider others:

ignoring punctuation but considering white space

repeat end [repeat]

Syntax

repeat

 if someTrueCondition then exit repeat

end repeat

Description

repeat without any conditional statements associated with it results in an infinite loop. In most cases, you
need to use an exit statement to terminate the loop and resume execution with the statement that follows
end repeat. This statement begins with repeat on its own line and finishes with an end or an end repeat
(the repeat part of end repeat is optional). All of the statements that should execute within the loop
appear between the repeat and end repeat lines. You can nest repeat loops within each other.

Examples

This AppleScript shows one repeat loop nested within another. It also illustrates that the exit statement
only exits the repeat statement in which exit is contained. So the example actually needs two exit
statements to emerge from its repetition purgatory:

repeat -- outer repeat loop

 repeat -- beginning of inner repeat loop

 set userReply to the text returned of¬

 (display dialog¬

 "Want to get out of inner endless loop?" default answer "")

 if userReply is "yes" then exit repeat

 end repeat

 set userReply to the text returned of¬

 (display dialog "Want to get out of outer endless loop?" default ¬

 answer "")

 if userReply is "yes" then exit repeat

end repeat

repeat until end [repeat]

Syntax

Repeat until trueBoolean

 (* code statements *)

end repeat

Description

This form of repeat takes the until keyword and a boolean expression, as in: repeat until countVar is
true. The statements that are contained within repeat until...end repeat will continue to execute until the
boolean conditional expression is true. If the expression following until is true, the repeat loop is
terminated and execution resumes with the statement following end repeat. You could also exit this
repeat loop using the exit statement (see exit). Note that when repeat until encounters a true value,
the loop is immediately ended; its enclosed statements are not executed.

Examples

This AppleScript shows a repeat until statement that also contains an exit statement:

set theCount to 0

repeat until (theCount = 5)

 if theCount = 4 then exit repeat

 set theCount to theCount + 1

 log theCount

end repeat

This code increments a theCount integer variable by one with each cycle through the loop. The code
includes a simple if statement that exits the repeat loop once the theCount variable reaches 4. Without
the exit statement, the variable would reach 5; the expression: theCount = 5 would return true, and the
repeat until loop would terminate. We keep track of the value of theCount with a log theCount
statement. This displays all of the theCount values in Script Editor's Event Log window.

repeat while end [repeat]

Syntax

Repeat while trueBoolean

 (* code statements *)

end repeat

Description

repeat while keeps executing its enclosed script code as long as the boolean expression following while
is true:

repeat while theTruth is true...end repeat

If the boolean expression that follows while returns false, then the repeat while loop is terminated, and
its enclosed script code will not execute anymore. Script execution then resumes after the end repeat part
of the repeat while statement. repeat while has the opposite effect of repeat until; it keeps executing
as long as some boolean expression is true, whereas repeat until keeps executing until something is
true. You can also use exit within repeat while to leave the loop. In general, Repeat loops can contain
nested repeat loops, as well as other flow-control statements such as if and tell.

Examples

This code shows how to use repeat while:

set theCount to 0

repeat while (theCount < 5)

 set theCount to theCount + 1

 log theCount

end repeat

The two code lines within this repeat while statement block will continue executing (thus increasing the
value of theCount by one) while theCount is less than 5. Each cycle through the loop tests the boolean
expression:

theCount < 5

and, as long as this expression returns true, the enclosed code will execute again. The variable theCount
actually reaches 5 in the following code. This is because it is eventually incremented to 4, then the:

repeat while (theCount < 5)

executes and, since theCount is still less than 5, the enclosed script code executes once more,
increasing the variable's value to 5.

repeat with {loop variable} from {integer} to {integer}[by stepVal] end

[repeat]

Syntax

Repeat with loopVar from 1 to 10

 (* code statements *)

end repeat

Description

This form of the repeat loop executes a specified number of times over a range of values. A loop variable
keeps track of how far the repeat loop has progressed in cycling over its range of loops. The loop variable
increments by the value of stepVal (or one by default if the stepVal variable is not specified) throughout
each loop. This makes the repeat with statement much more flexible and powerful than repeat
{integer} times. You can take the value of the loop variable and use it in the executing code, as in the
following example. Once this repeat with statement reaches the end of its range, as in:

repeat with loopVar from 1 to 10

(10 is the end of the range here), then the repeat loop terminates and code execution resumes with the
statement following end repeat. You can also use the exit statement to terminate this loop (see "exit").
repeat with is similar to the famous:

for (i=0; i < rangeVar; i++)

variation of the loop statement that JavaScript, Java, and C++ programmers are very familiar with.

Examples

This AppleScript loops through each character of a word to see if any character is repeated. It uses the
loop variable to determine which character in the word to examine. This example also shows how you can
specify any of the range values with expressions that return integers, instead of just literal integers:

repeat with loopVar from 2 to (2^2)

 set theString to the text returned of (display dialog¬

 "Enter a word and I'll tell you which letter, if any, repeats first"¬

 default answer "")

 set len to (length of theString) (* len is set to the number of

characters in string *)

 tell application "BBEdit 5.0"

 repeat with loopVar from 1 to len (* repeat from char 1 to length

of string *)

 if loopVar is equal to 1 then set charList to {} (*create a list

to hold the examined characters *)

 set tempChar to (character loopVar of theString) (* tempChar is a

single character in the string like 'o' *)

 if tempChar is in charList then (* if it's already in the list

 then it appears more than once in the string *)

 display dialog "Your repeating character is " & tempChar

 exit repeat (* exits the repeat loop; finishes executing the

 script *)

 end if

 set charList to charList & tempChar (* no repeating chars yet so

add the current char to the list *)

 if loopVar is equal to len then (* if this is true then we did not

find any repeaters *)

 display dialog "You had no repeating characters!"

 end if

 end repeat

 end tell

end repeat

This script uses the BBEdit text editor because this app is good at examining text. The script gets a word

from the user using the display dialog scripting addition (Part IV of the book discusses scripting additions).
Then it uses a repeat with loop to get each single character in the string and store it in a variable of type
list (i.e., charList). This is how the script keeps track of the characters it has already examined. The
loopVar of the repeat with statement identifies individual characters of the string with an index
reference form, as in character loopVar. If loopVar were 3 then the expression would evaluate to
character 3, which is the third character in the string. The code then checks the charList list of
characters to see if the currently examined character is already in there. If the character is already in the
list then it appears more than once in the string. Then the script tells the user which character repeated
and exits the loop:

display dialog "Your repeating character is " & tempChar

This example shows this repeat with loop with a specified step value:

set theString to "Kindly give me every other word."

set allWd to words of theString -- returns list of words

set len to length of allWd

set userMsg to ""

repeat with indx from 1 to len by 2 -- repeat loops over the list by two

 set userMsg to userMsg & return & (item indx of allWd)

end repeat

display dialog "Here's every other word on its own line: " & return &¬ userMsg

repeat with {loop variable} in {list} end [repeat]

Syntax

Repeat with listVar in myList

 (* code statements *)

end repeat

Description

This variation of the repeat with statement iterates over a list of values, storing the current value in the
loop variable. Once the last item in the list has been stored in the loop variable, the statement terminates
and code execution resumes after end repeat . If you have to examine a list 's contents, this statement is a
crucial part of your code. You can also use the exit statement inside this repeat with statement to stop
executing code inside the loop. After any call to exit , code execution resumes after the end repeat part.
You do not have to declare the loop variable in any way; AppleScript creates this temporary reference
variable for you. You can also get the loop variable's value later in the script, after the repeat loop has
completed executing. The value will be a reference to the last item in the list:

item 6 of {"Each", "word", "on", "a", "different", "line"}

Using this form of repeat loop, you can get inaccurate results if the script is trying to compare the value of the
loop variable with another value (such as a string or integer). Instead, one of our technical reviewers
recommends that you use syntax such as:

set booleanVar to ((contents of loopVar) equals 1)" (* note the "contents of" part *)

The value used in the part of the statement following the in reserved word must be a list .

Examples

This code takes each of the items of a list and concatenates them to a string , which is then displayed to
the user:

set theString to "Each word on a different line"

set theList to words of theString -- returns a list of words

set displayString to "" -- initialize this string

repeat with wd in theList

 set displayString to displayString & return & wd

end repeat

display dialog displayString

wd as string -- this will return "line"

AppleScript does not destroy the loop variable (wd in the prior example) after the repeat loop is finished.
Getting the value of wd in the last example, after the repeat with statement has done its job, returns:

item 6 of {"Each", "word", "on", "a", "different", "line"}

repeat {integer} times end [repeat]

Syntax

Repeat 10 times

 Display dialog contriteStatement

End repeat

Description

This loop statement begins with the reserved word repeat, followed by an integer representing the
number of times the loop should cycle, then the reserved word times and an end repeat. (The repeat of
end repeat is optional.) You can use this variation of repeat if you do not need the finesse of the two more
complex but powerful repeat constructs, such as:

repeat with loopVar in list

Once this loop has executed its enclosed script statements integer number of times, it terminates and the
script execution resumes after the end repeat. You can also short-circuit this repeat loop by using the
exit or exit repeat statement. This causes the script flow to proceed to after end repeat, regardless of
whether the loop has cycled integer number of times.

Examples

The following code does exactly what the last repeat example did; it works with each word in a list,
finally displaying each of them on a different line. However, it uses the "repeat {integer} times" variation
instead. The example also shows that you can use the return value of an expression for "{integer}"
including an integer variable, instead of just a literal integer such as 9:

set theString to "Each word on a different line"

set theList to words of theString

set len to length of theList

set displayString to ""

set counter to 0

repeat len times -- len resolves to the length of the word list

 set counter to counter + 1

 set displayString to displayString & return & (item counter of¬

 theList)

end repeat

display dialog displayString

In this example, the line repeat len times uses the len variable's integer value to specify how many
times the repeat loop should execute. len represents the length of the list of words that the code
reassembles into another string.

return [return value]

Syntax

Return true

Description

The return statement returns values from functions or subroutines, just as it does in Perl and JavaScript.
If you finish a function definition with just return, with no subsequent return value, then the function will
return to where it was called in the script without returning an actual value. You can return any value, such
as a number, string, boolean, or list:

return true

If you do not use return at all in a function then the return value of the function will be the result of its last
statement, if the statement returns a result. (Chapter 9 is devoted to developing functions in AppleScript.)

If you define a function with just return without a value and then try to set a variable to the return value of
that function, the script will raise an error.

Make sure not to confuse the return statement with the return predefined variable, which is a return
character in a string such as:

set theString to return & "Start a new line"

tell simple statement

Syntax

tell app "SoundJam MP" to run

Description

You use the tell statement to identify the target of an AppleScript command:

tell app "Photoshop 5.5" to run

In this case, run is the Photoshop application's command. The tell simple statement only takes up one
line of code and does not need to be completed with an end tell. You use the reserved word tell,
followed by a reference to an object, such as the application "Finder," then the reserved word to preceding
the actual command that you want to send to the object. tell statements can be nested within each other,
such as using a tell simple statement inside a compound tell statement (one that involves several lines
of code and finishes with end tell).

Examples

This code tells the Finder to open Photoshop only if a certain amount of memory is available to the
computer:

tell application "Finder"

 (* largest free block is converted from bytes to megabytes then rounded off

with the round scripting addition *)

 set freeMem to (round (largest free block / 1024 / 1024))

 if freeMem > 50 then (* only open PS if there is a free memory block >

 50 meg *)

 tell application "Adobe¬ Photoshop¬ 5.5" to activate (* tell simple

 statement *)

 else

 display dialog¬

"Freemem = " & freeMem & " Not enough memory for gluttonous Photoshop!"

 end if

end tell

This example occurs within a compound tell statement that targets the Finder. If the largest free block
property of the Finder (which identifies the largest free block of available RAM on the computer) exceeds
50MB, then Photoshop receives an activate command as part of a tell simple statement.

If you are running AppleScript 1.4 or higher, you can create easy-to- remember
aliases to invoke your favorite apps with the tell statement. For example, create
an alias file for the SoundJam MP application, name this alias "SJ," and then store
it in startup disk:System Folder:Scripting Additions . Now, when your AppleScripts
include the code: tell app "SJ" the enclosed code statements direct their Apple
Events to SoundJam MP. This saves a lot of typing!

tell end [tell]

Syntax

Tell app "SoundJam MP"

 (* code statements *)

end tell

Description

The tell compound statement identifies the target of an AppleScript command or Apple event (as in tell
app "Photoshop 5.5") followed by other AppleScript statements and an end tell. The tell compound
statement can enclose any number of AppleScript statements, including other tell statements and flow-
control structures such as if or repeat. You can identify any object in a tell statement, but unless the
object is an application object such as FileMaker Pro or QuarkXPress, it has to be nested within another
tell statement targeting the object's parent application. For example, if you want to use a statement such
as:

tell window 1 to close

then you would have to first target the application that "owns" the window, as in the following example:

tell application "BBEdit 5.0"

 (* hasChanged will be true or false *)

 set hasChanged to (front window's modified)

 if hasChanged then

 tell front window to close saving yes

 else

 tell front window to close

 end if

end tell

This script first finds out whether the front BBEdit window has been modified, and it stores this boolean
value (true or false) in the hasChanged variable. If true, then a tell simple statement sends the front
BBEdit window a close command (with a parameter instructing BBEdit to save the changes). If this tell

statement was not nested within the tell app "BBEdit"... statement, then AppleScript would not know
which application's window the script was talking about, and an error would be raised. You could also write
the program without a nested tell statement, as in this code:

tell application "BBEdit 5.0"

 set hasChanged to (front window's modified)

 if hasChanged then

 close front window saving yes (* send BBEdit the close command

 without another tell statement *)

 else

 close front window

 end if

end tell

With a feature that was new to AppleScript 1.4, you can add aliases to applications
in the Scripting Additions folder of the System Folder. Give these aliases a short,
easy-to-recall name like "fm" for FileMaker Pro, and you no longer have to spell out
the app's name in the tell statement. You can just use the syntax tell app
"fm"..., and AppleScript will find the application.

You can also use the predefined variables me, my, and it within tell statements. AppleScript assumes
that any command such as activate, close, or open within a tell statement should be directed to the
application that is identified in the tell statement. The exceptions are:

A nested tell statement that targets a different application; in this case, any commands that are
issued within this nested tell are directed to its target app.

A scripting addition or osax command, such as display dialog or round, can be issued within a tell
statement in most cases without any qualifying or accompanying code requirements.

Commands that are qualified with the my or of me reserved words. This tells AppleScript that the
command is a script command, as in:

set theTruth to my func()

Commands that target the app identified in the tell statement.

Commands that are associated with a script object.

Examples

The script at the end of this section calls the script's own function inside of a tell statement. It also calls a
function defined by a script object. it is an AppleScript reserved word that refers to the default target of
Apple events, which is normally identified in a tell statement (Chapter 1,describes Apple events). This
script is a little bigger than most included in the chapter, and I apologize to those like me who are partial to
the use of only code fragments as examples. But it illustrates an important element of how you work with
tell statements-the visibility of commands.

The script first identifies the text editor BBEdit in the compound tell statement, then tells this app to make
a new window. The next line sets a firstLine variable to the return value of a function call:

InnerScript's getIntro()

Without the reference to the script object InnerScript, AppleScript would assume that the getIntro
function was a BBEdit command, because getIntro is called inside of a tell app "BBEdit 5.0" statement.
However, the script code indicates that this is the getIntro function of the InnerScript object. The following
code would also work:

set firstLine to getIntro() of InnerScript

If you look down to the definition of the InnerScript script object, you see that it defines a function
(getIntro) that returns the value of InnerScript's Intro property, which is a string: "I'm the first sentence."
A lot is going on in the if statement in the next example:

if (my addLine(firstLine)) then display dialog "Text added¬

successfully: " & its name

The script calls its own function (as opposed to a BBEdit command) called addLine. The reserved word my
distinguishes this function (addLine) as defined by the script, not BBEdit, so AppleScript looks for the
function definition in the script itself, rather than in BBEdit's dictionary. The following phrase would also
work:

addLine(firstLine) of me

The function inserts text into a BBEdit document and returns true if successful. The if statement
responds to any true return value from the addLine function by displaying a message string that includes
its name. It is an AppleScript constant that refers to the default target for commands, which, inside this
tell statement, is BBEdit. So its name returns "BBEdit 5.0":

tell application "BBEdit 5.1"

 make new window with properties {name:"Front Win"}

 (* the InnerScript script object is defined beneath this code *)

 set firstLine to InnerScript's getIntro()

 (* addLine is the 'outer script's' function, not InnerScript's *)

 if (my addLine(firstLine)) then display dialog¬

"Text added successfully: " & its name

end tell

(* user-defined function addline() *)

on addLine(txt)

 try

 tell application "BBEdit 5.1" to insert text txt

 on error

 return false

 end try

 return true

end addLine

(* script object definition *)

script InnerScript

 property Intro : "I'm the first sentence."

 on getIntro()

 return Intro

 end getIntro

end script

try [on error] [number | from | partial result | to] end[error | try]

Syntax

Try

 (* code statements here *)

 on error errText

 display dialog "An error:" & errText

end try

Description

try represents AppleScript's all-important error-trapping capability. If any of the statements that are
enclosed in a try...end try statement block raise an error, then AppleScript catches the error and
prevents it from taking down the whole script. After try catches the error (similar to Java's try...catch
exception-trapping syntax), the script has the option of adding inside the try block the reserved words on
error followed by any code that should execute in response to the error.

on error is optional inside of try statements beginning with AppleScript 1.4.

The program will then resume following the end try part of the try block, as though nothing happened.
Without a try block, AppleScript's default error behavior is to display an error message in a dialog box
then cancel the running script. try only catches one error at a time. By using the on error statement and
its numerous parameters, you can uncover all kinds of details about the error, but you do not have to use
it. In the OS versions previous to Mac OS 9, Script Editor does not compile a script that includes a try

block without an on error statement.

Examples

This example traps any errors caused by invalid data entered by the user, and then goes on its merry way
without explicitly responding to any errors. try statements can be used inside and outside of your own
subroutines, script objects, and libraries; they can nest other statements such as if, repeat, and tell. In
fact, your entire script can run inside of a try statement, and the try block can contain other try
statements:

try

 set userReply to the text returned of¬

 (display dialog "Try your best to enter a number." default answer¬

 "")

 set invalidNum to false

 set userReply to userReply as real

on error

 set invalidNum to true

end try

if invalidNum then

 display dialog "That's the best you can do?!"

else

 display dialog "thanks for entering: " & userReply

end if

This script politely asks the user for a number; it sets the reply to the variable userReply. This variable is
then coerced from a string to a real type, which raises an error if userReply is not a valid number. For
example, "a10" couldn't be converted to a valid number. AppleScript displays this error and stops running
the script if we do not catch it in the try block. If the error is raised, the statements that appear between on
error and end try execute. In this case, the script sets a boolean variable invalidNum to true.
Remember, the script does not have to use the on error statement part of try in Mac OS 9 or OS X. It
can simply use a try block to prevent any errors from crashing the script, then go on blithely executing the
rest of the code. The error handler of the try statement contains five variables from which you can obtain
information about any errors. The following code shows two of the many ways that you can use try. The
first demonstration catches but then skips over any errors that might be raised while it executes its code.
The second use of try deploys the on error handler to grab all the data that it can about the error and
display it to the user:

tell application "SoundJam™ MP"

 try

 activate (* will raise an error if SoundJam isn't on the computer,

 but the program will just keep going *)

 end try

 try

 set allPlay to playlist windows -- a list of playlists

 repeat with pl in allPlay

 if (name of pl) is "tranceControl" then set mainPlay to pl

 end repeat

 set trackNameList to name of (tracks of mainPlay)

 set trackMsg to ""

 on error errMsg number errNum from objErr partial result errList¬

 to errClass

 (* display the error message, error number, the object that is the

 source of the error, any partial results, and class information *)

 display dialog errMsg & ": " & errNum & return & "Source of¬

 error was: " & objErr & return & "Here are any partial¬

 results: " & errList & return & "If coercion failure it¬

 involved a coercion to: " & errClass

 return -- exit the program

 end try

 repeat with nam in trackNameList

 set trackMsg to trackMsg & return & nam

 end repeat

 display dialog "The MP3 track names in the main playlist are: " &¬

 return & trackMsg

end tell

In the prior example, if any statements in the second try block raise an error, then the on error handler
displays error information using all five parameters of on error. AppleScript gives these parameters a
value (e.g., the error description and number) for you if any errors are raised. The values for the partial
list and to parameters are empty lists if there are no partial results or coercion problems associated with
the error. Here's a rundown of the five optional on error parameters:

The first nonlabeled parameter is a string describing the error, as in on error errMsg. The variable
errMsg, which you create, contains the error message.

The number parameter contains the error number, as in on error number errNum. Use the number
label followed by your own variable to contain the number.

The object that was the source of the error is labeled with the keyword from. An example is on error
from objErr. You create the variable following the reserved word from, and if AppleScript can
identify the object source of the error, it will store the name of the object in that variable.

If the error-causing operation involved getting a list of values, and it was successful in getting some
of the list values, then this list is stored in the variable labeled with the reserved words partial
list. The content of this variable is of type list.

If the error was caused by a faulty coercion, than the class that the script failed to coerce some value
to is identified in the variable following the reserved word to, as in on error to errClass. The
identifier errClass contains the word describing the class, such as boolean, list, or real.

using terms from end [using terms from]

Syntax

Tell app "Finder" of machine "eppc://192.168.0.2"

 Using terms from app "Finder"

 Get largest free block

 End using terms from

End tell

Description

This block structure allows the scripter to compile a script using local applications and to have the option to
run the script on remote machines using a TCP/IP or AppleTalk network. Chapter 25, describes how to
use the Mac's powerful new program linking technology to run distributed AppleScripts over TCP/IP
networks. using terms from is new to AppleScript 1.4. Similar to the tell block, it takes an application
object as a parameter, as in:

using terms from app "Finder"

You use this construct to help avoid the display of the Script Editor dialog box that asks for the location of
the target application in a tell block. This dialog box usually displays when the script is first compiled and
then whenever the script is executed on a different machine. If you have not encountered this dialog box
yet during AppleScript hacking, then you are either lucky or just haven't done very much AppleScripting.

Examples

using terms from is best illustrated with this example, which dynamically targets whatever machine you
want, but compiles using terms from the local machine:

set theMachine to "eppc://" & the text returned of¬

(display dialog "Enter your IP address:" default answer "")

try

 tell application "Finder" of machine theMachine

 using terms from application "Finder"

 set freeMem to (round (largest free block / 1024 / 1024)) as¬

 string

 display dialog freeMem

 end using terms from

 end tell

on error errMsg

 display dialog errMsg

end try

This script targets the Finder on a particular Apple machine (depending on what the script user enters as
the machine name or IP address). The script compiles, however, using its local Finder app. If the user
enters an invalid or nonexistent IP address, then an error is raised and reported at the end of the try
block. When targeting applications over a TCP/IP network, you have to precede the IP address with the
protocol "eppc://", which stands for "event program to program communications":

tell application "Finder" of machine "eppc://192.168.0.2"

with timeout [of] {integer} second[s] end [timeout]

Syntax

With timeout of 15 seconds

End timeout

Description

The with timeout statement allows you to alter AppleScript's default 60-second time limit for the Apple
events that are sent to applications. Normally, if an application fails to respond to an Apple event within
60 seconds, AppleScript raises an "Apple event timed out" error and stops running the script. You can
make this time limit shorter, say 30 seconds, by using the syntax:

with timeout of 30 seconds...end timeout

You enclose the with timeout structure in a try block to trap and report any timeout errors (see "try").
with timeout only applies to the following types of commands. In other words, the with timeout limit is
ignored unless the command is one of these types:

Commands sent to applications targeted in tell blocks

Scripting addition commands that have application objects as parameters (not too many osaxen
have application objects as parameters)

Scripting addition commands that are called inside of tell statements that target other applications

Examples

The following example times out if you just let the display dialog dialog box sit there for over five seconds.
This happens because the display dialog scripting addition is positioned inside the tell block targeting the
Finder. Pull the scripting-addition command outside the tell block, and the script does not time out.
Again, with timeout does not work with scripting-addition commands unless the command is part of a
tell block targeting another application, or it takes an application object as a parameter:

try -- catch any timed out errors

 with timeout of 5 seconds

 tell application "Finder"

 get version

 display dialog "fast" (* let this sit for about 5 secs and raise

 an error *)

 end tell

 end timeout

on error -- will be called if 'with timeout' block times out

 display dialog "Sorry, the operation timed out"

end try

If an AppleScript that sends an Apple event to another application times out, the
Apple event itself is not cancelled (with or without a with timeout statement). So
the script might have timed out, but the application could still eventually respond to
the Apple event that the script sent to it.

with transaction [session object] end [transaction]

Syntax

With transaction

 (* code statements here *)

end transaction

Description

with transaction is designed to group together its enclosed statements and commands by assigning
each of them a single transaction id. If a database application supports with transaction, for instance,
than it knows which Apple events or commands share a transaction and can initiate an appropriate
response, such as locking the particular table from other users until the transaction is complete. What is a
transaction? A transaction gathers together a group of operations and declares, in essence, that, "we're all
in this together-if one of us fails, then we all fail. We won't signal a successful completion until we all
succeed."

The with transaction statement itself, beyond assigning the transaction id, does not have any other
transactional-related capabilities such as rolling back all of the statements if one of the statements (e.g., a
statement that updates or alters a database file) within the transaction fails. Any behavior that commits or
rolls back database changes that are part of a single transaction would have to be initiated by the
database system itself (the database program that AppleScript is scripting). with transaction only works
with the database programs that support this statement.

Examples

To show what the with transaction statement looks like, the following AppleScript requests the first
database record from an open FileMaker database. It encloses this request in a with transaction block:

tell application "FileMaker Pro"

 with transaction

 get the first record in the database named "Mydatabase"

 end transaction

end tell

In this case, if you watch the Script Editor Event Log window as you run the script, FileMaker converts the
with transaction statement to its own begin transaction command. This command returns an integer,

the transaction id, such as 2812565. You can include an optional session-object parameter with the with

transaction block, but not all applications support it. If you want to use AppleScript, transactions, and
databases, then you have to evaluate the particular database system's support for with transaction.

Chapter 8. Subroutines

A subroutine is a piece of code or sequence of statements that is defined in a program or script and can
be used repeatedly throughout that script. AppleScripters traditionally refer to this programming construct
as a "handler." When the script calls the subroutine, the flow of code execution branches to the statements
in the subroutine. Those statements are executed and may or may not return a value to the segment of the
script that called the subroutine. Then the script execution resumes at the statement following the
subroutine call.

AppleScript subroutines are not that much different than they are in other programming languages.
AppleScript supports the creation of subroutines with positional parameters. This means that the
subroutine definition begins with the keywords on or to and a subroutine name that does not clash with
any of AppleScript's other predefined names (such as anything or pi), and then a set of parentheses that
optionally lists any parameters or values that should be passed to the subroutine. The subroutine in
Example 8-1 is called myfunc.

Example 8-1. Simple Subroutine Definition

on myfunc(s1,s2)

return (s1 & s2)

end myfunc"

This example concatenates or combines two strings that are passed to the subroutine as parameters (for
the sake of brevity I have left out the typical checks that you would include for whether the parameters are
valid strings). When calling myfunc in code, the parameters have to be in the same order as they are in the
subroutine definition:

myfunc("one string ", "connected to another")

AppleScript also supports an unwieldy (my humble opinion, of course) form of subroutine that includes
labeled parameters (see Section 8.2). This chapter concludes with a discussion of the five special built-in
Apple-event handler types listed in Table 8-1.

Table 8-1. Five Built-in AppleScript Handlers

idle handler

open handler

reopen handler

quit handler

run handler

8.1 Subroutines with Positional Parameters

The AppleScript subroutines with positional parameters are simple to design and use, as long as you meet
certain guidelines. The keywords on or to are required in the subroutine definition, followed by the name of
the subroutine, and any parameters separated by commas and contained in parentheses. You have to use
empty parentheses following the subroutine name if the subroutine will not take any parameters. The
subroutine's name must comply with AppleScript's rules for identifiers. In AppleScript, the names that you
create for variables and subroutines have to begin with a letter or underscore (_) character, but
subsequent characters can include letters, numbers, and underscores. Unless you begin and end the
subroutine name with a vertical bar (|), you cannot include AppleScript's reserved words and operators
such as *, &, ^, or +, or special characters such as $, @, or #.

The end keyword is required to signal the end of the subroutine definition. You can follow end with the
subroutine name for the sake of readability:

On Squared(n1)...end Squared

This is not required, however; the compiler, Script Editor, does it for you. You can declare and give values
to variables in AppleScript subroutines, and use the various flow-control statements such as:

if...then...end if

and:

repeat...end repeat

However, you cannot define another subroutine inside of a subroutine definition.

To call a subroutine, use the subroutine name followed by its parameters inside of parentheses:

Squared(7)

With subroutines that take positional parameters, you have to code the arguments in the same order as
they appear in the subroutine definition. You have to include all of the specified arguments-the
arguments in AppleScript subroutines are not optional (nor can they be declared as optional). Use empty
parentheses with subroutine calls if the routine does not take any arguments. You can also use
expressions, other variables, and other subroutine calls to give the parameters values, as in:

Squared((7*2))

or:

Squared(DividedBy(8))

If you use a subroutine to give a parameter a value, that subroutine must return a value. Example 8-2 is a
complete subroutine definition that takes one number as its parameter and returns that number squared.
The first set of comments, beneath on squared(num), describe how to call the method, as well as its
parameters and return value.

Example 8-2. AppleScript Subroutine Definition

on squared(num)

 (*

 call method as: Squared(number)

 parameters: an integer or real type

 returns: the parameter squared, or zero if the param is not a valid

 *)

 if class of num is in {real,integer} AND num 0 then

 return num ^ 2

 else

 return 0

 end if

end squared

Set big_number to Squared(2345)

When you are creating subroutines with positional parameters, you can design them to return a value to
the part of the script that called the subroutine in the first place. You can use the return keyword, with or
without a literal value or expression:

return 0 -- or just 'return' alone, without a specified value

Using return with a Boolean value (e.g., return true) allows you to signal the successful or failed
execution of the subroutine. Using return without a value stops execution of the subroutine and returns
the flow of execution to the part of the script that called the subroutine. If you do not use the return
statement in a subroutine, the routine returns the value of the last expression that was evaluated in the
subroutine (if the last expression returns a value). If the last expression in the subroutine does not return a
value, and if the subroutine does not use the return statement followed by an expression or value, then
the routine does not return a value. See Example 8-2 and Chapter 6, or Chapter 7, for other examples and
discussions of the return statement.

By default, any variables declared inside the subroutine are local to the routine. This means that the scope
of the variables is restricted to the routine; if you try to access the variable outside of the subroutine, the
script will fail to compile. You can explicitly declare a variable as local by using the local keyword, as with
the variable dstring in Example 8-3. This is good practice for using local variables, as it makes the
subroutine definition easier to understand.

A variable can also be declared as global inside of the routine. This is accomplished by using the keyword

global followed by the name of the variable:

global myvar

This means that the variable is visible outside of the subroutine. Chapter 6 discusses local and global
variable scope.

Example 8-3 takes a date object as an argument and returns a "month day year" string such as "August
3 1999." If the argument is not a date object such as:

if class of theDate is not date

then the subroutine returns the string "invalid argument." You could return 0 or raise an error dialog box
as an alternative. The local dstring line declares a dstring variable whose scope is restricted to the
ReturnDate subroutine; it is not "visible" outside of the routine. The local dstring declaration is not
strictly necessary since first declaring the dstring variable inside of a subroutine definition automatically
makes it a local variable, unless the global keyword is used ("global dstring"). But using the local
keyword in this manner makes the subroutine definition more readable.

Example 8-3. A User-Defined date Subroutine

on ReturnDate(theDate)

 if class of theDate is not date then return "invalid argument"

 local dstring

 set dstring to (theDate as string)

 (*

 call method as: ReturnDate(current date)

 parameters: theDate is a date (not a string) such as date "Tuesday,

 February 6, 2001 12:00:00 PM" returns: A string that looks like

 "February 6 2001"

 *)

 set mon to the second word of dstring

 set dy to the third word of dstring

 set yr to the fourth word of dstring

return mon & " " & dy & " " & yr

end ReturnDate

If you call one of your own subroutines inside of a tell statement, such as:

tell app "Finder"...end tell

AppleScript responds to the subroutine call as an application command (in this case, of the Finder) unless
you use the my or of me keywords. Example 8-4 calls the script's squared subroutine (instead of looking in
the Finder's dictionary for a squared command), because the script uses the my keyword in calling the
routine. This is just a demonstration script; you would only use a tell statement if the script were also
sending the Finder some commands.

Example 8-4. Using the my or of me Keywords

tell application "Finder"

 my squared(7)

end tell

on squared(num)

 if class of num is in {real, integer} and num 0 then

 return num ^ 2

 else

 return 0

 end if

end squared

8.2 Subroutines with Labeled Parameters

These subroutine types are a slightly different animal than the subroutines with positional parameters, but
they have some of the same rules. The keywords on or to are required in the labeled-subroutine definition,
followed by the name of the subroutine, and optionally a nonlabeled parameter called a direct parameter . If
the subroutine has a direct parameter (it does not have to), then the subroutine name has to be followed by
the keyword of or in :

On Square of intOne...

Subroutines with labeled parameters are unwieldy to design compared with subroutines with positional
parameters, but they make more subroutine calls resembling human language possible. The two different
types of AppleScript subroutine designs are also a matter of personal taste, I suppose. Example 8-5
shows a labeled subroutine definition.

Example 8-5. Labeled Subroutine Definition

on Square of intOne above intLimit given Intclass:theClass

 if (intOne > intLimit) and (theClass is integer) then

 return intOne ^ 2

 else

 return 0

 end if

end Square

Square of myint above 0 given Intclass:(class of myint)

Example 8-6 redesigns the preceding subroutine using positional parameters instead.

Example 8-6. A Redesigned Subroutine Using Positional Parameters

on Square(intOne,intLimit,theClass)

 if (intLimit > 0) and (theClass is integer) then

 return intOne ^ 2

 else

 return 0

 end if

end Square

The rules on naming the subroutine (using local and global variables) and ending the subroutine definition
are the same as those that apply to naming subroutines with positional parameters (see the previous
section). In the following example, the direct parameter is followed by the first labeled argument, above
intLimit :

on Square of intOne above intLimit given Intclass:theClass

Along with above , you can use the following AppleScript reserved words: about , against , apart from ,
around , aside from , at , below , beneath , beside , between , by , for , from , instead of , into , on ,
onto , out of , over , since , through , thru , and under . These words have no meaning in the context of
calling labeled routines except to make the subroutine call more readable. Instead of writing:

on Square intOne above intLimit given Intclass:theClass

you could substitute:

on Square of intOne apart from intLimit given Intclass:theClass

and the subroutine, as long as its other elements were legal, would run the same.

If the subroutine with labeled parameters has a direct parameter (they do not have to), then the definition
must also include either one of the aforementioned labels (e.g., thru), a given labeled argument, or both of
these parameter types. The given label takes a variable:value pair as a parameter, which can be used to
find out whether a value is true or false :

given theBool:boolVal

In Example 8-5 , given Intclass:theClass is used. You then give Intclass a value when calling the
routine:

Square myint above 0 given Intclass:integer

The body of the subroutine evaluates the value of Intclass .

To call one of these subroutines, you have to include the direct parameter if one has been defined for the
routine. If the routine defines any of the parameters that use AppleScript's reserved words (such as thru or
above) , they come next (if there are more than one, then these parameters may be called in any order).
Any given parameters must come after the other labeled arguments. You have to include all the arguments
defined by the subroutine-the arguments defined in AppleScript subroutines are not optional when the
routine is called. Unlike the routines with positional arguments, when you call a subroutine with labeled
parameters, you do not surround the arguments with parentheses. But you have to include the labels and
parameter values (or any variables containing the values) in the subroutine call.

idle handler

Syntax

on idle

 return 600 -- idle is called every 10 minutes

end idle

Description

AppleScripts can be saved to stay open after they have been executed, instead of completing their tasks
and quitting. Chapter 2 , discusses the nuances of saving AppleScripts. These scripts may define an idle
handler, essentially a subroutine that AppleScript calls by default every 30 seconds when the script has
been launched and is open. You can change this time interval by returning a positive number (a real is
legal but an integer makes more sense) from the idle handler. The syntax example returns 600, or the
equivalent of 10 minutes, which will be the new time interval for AppleScript's execution of this idle
handler. If the handler returns any value other than a positive number then the time interval is kept at the
30-second default. The idle handler should have some purpose other than altering the interval by which it is
run, as in the code in the following Examples section. Another example that typifies an idle handler's role is
to lurk in the background monitoring the usage of a folder that network users have access to. When the
folder's content changes, the handler can note that in a log entry, for instance.

Examples

The following idle handler example makes the Netscape browser the front window every 10 minutes and
reloads or forces a fresh reload (that is where the flags 3 labeled parameter for Netscape's OpenURL
command comes in) of the URL http://my.yahoo.com . You can see how an idle handler would come in
handy if you wanted to do more complex web processing, such as periodically seizing data from the Web
and storing it in your desktop or network database.

An intriguing use of stay-open scripts is to use them as live subroutine libraries that
are stored in memory and can be called from other scripts. Take a bunch of useful
subroutines that other scripts could use, and save them together in a stay-open
applet. Execute the applet. Then call the subroutines using a tell statement that
targets the name of the applet. These subroutines that are stored in open applets
can even return values to the calling script, as in the following example. You do not
have to define an idle handler inside a stay-open script or library, unless this stay-
open applet has to do some processing itself.

on idle

 tell application "Netscape Communicator™"

 activate

 (* the 'flags 3' param forces a reload of the document from the server *)

 OpenURL "http://my.yahoo.com" flags 3

 end tell

 return 600 -- call idle every 10 minutes, if Yahoo doesn't mind

end idle

 (* here are two subroutines defined in a stay-open applet called 'RunningLib'

*)

on timesTwo(num)

 return num * 2

end timesTwo

on divTwo(num)

 return num / 2

end divTwo

(* Here's another applet that calls RunningLib's subroutines and gets values

from them *)

set mynum to 0

tell application "RunningLib"

 set mynum to divTwo(timesTwo(75))

end tell

mynum -- value is 75.0

To quit a script that has been saved to "stay open" and contains an idle handler, you
can choose Quit from the File menu on its menu bar (yes, stay-open scripts have a
menu); select the script icon in the Application Switcher and type Command-Q , or
send the app a quit command from another script.

open handler

Syntax

on open(list_of_aliases)

 set item1 to the first item of list_of_aliases as string

 display dialog "Here's the path of the first object you dragged over¬

 me: " & item1

end open

Description

An open Apple event is sent to any Mac application when you drag file, folder, or disk icons on to its own
icon in the Finder. If an icon is not highlighted when you drag the object over it, then the application or other
object associated with that icon is not designed to handle these drag-and-drop events. If you drag files and
other icons over an AppleScript applet, the applet receives an open command that triggers any open
handlers that are defined in that applet. They look like this:

on open(list_of_aliases)...end open

The open handler has one parameter-a list type containing alias objects for all the items that were
dragged to the applet. If the user only drops one item on the applet icon, then the open subroutine's
parameter will contain a list with one item in it. You can code the open handler to take purposeful actions
with files and folders that are dropped on the applet in any way you see fit. Example 2-1 in Chapter 2
shows a script that displays the file type and creator type of any valid object that is dropped on the applet.

If the applet does not have an open handler or has an empty open handler, then the
applet does not take any actions when you drop an object on it; it just opens then
quits simultaneously.

reopen handler

syntax

on reopen

 display dialog "I am already running; you do not have to double-click

 me!"

end reopen

Description

The reopen handler is designed for the occasions when a user double-clicks a stay-open applet that is
already running. This action executes the reopen handler. So anything that you want to happen when the
user tries to "reopen" a script that is already running should be defined within the reopen handler. All this
example does is display a dialog to users when they double-click a running applet that contains this reopen
handler.

quit handler

syntax

on quit

 display dialog "Sure you want to quit?"

 continue quit -- quits the applet

end quit

Description

Scripters can add quit handlers or subroutines to stay-open applets in order to process code statements
whenever the applet receives a quit Apple event. The syntax example displays a dialog whenever its applet
receives a quit command, and then it quits when the user dismisses the dialog box because the code
includes the continue quit statement. If the code did not include this statement then the applet, in
response to a quit command, would call its quit handler and stay open.

Make sure to include the continue quit statement in quit handlers, unless you want
the applet to stay open until the next computer restart. A quit handler without a
continue quit causes the applet to intercept and nullify the user's efforts to quit the
app from its File menu. To bypass the quit handler, choose Quit from the applet's
menu while holding down the Shift key, or press the Command-Shift-Q key combo
while the applet is the active or front application.

The quit handler is only necessary for stay-open applets, because the applets that are not saved as stay-
open will process their statements and immediately quit (see Chapter 2 for more on the nuances of saving
applets).

run handler

Syntax

on run

 (* do major scripting here *)

end run

Description

Whether you like it or not, most of your scripts contain a run handler implicitly or invisibly. What Apple
Computer calls an "implicit run handler" involves all the statements in a script except for property
definitions, subroutine definitions, and any script objects (see Chapter 9). This means that all of these
statements are enclosed in an invisible on run...end run subroutine block. This implicit run handler is
called each time:

The applet icon is double-clicked.

The user chooses the applet from the Apple menu.

The user chooses the applet from the Apple Menu Items folder.

The applet is placed in startup disk:System Folder:Startup Items and the computer is restarted.

You can explicitly code the run handler to clarify to readers of your code exactly what happens when the
applet receives a run command, as in the next example. If this script did not include the on run...end run
statements, then its implicit run handler would still encompass the statements:

add()

and:

display dialog "I received a run command " & howmany & " times"

The applet property howmany increments by 1 each time this applet receives a run command:

property howmany : 0

on run

 add()

 display dialog "I received a run command " & howmany & " times"

end run

on add()

 set howmany to howmany + 1

end add

Sending a run command to an application, as in tell app "Photoshop 5.5" to run ,
loads the application if it is not already running. Use activate to gain the focus of the
application (i.e., highlight the program on the desktop) when it is already running.
Sending a run command to an AppleScript causes its implicit or explicit run handler
to execute.

Chapter 9. Script Objects and Libraries

A script object is a template or class from which you can create AppleScript objects. Objects are self-
contained script code that can have their own properties, methods, and variables. See Chapter 1, for
details on using objects in AppleScript.

When a script object is created in memory, that object is considered an instance (in object-oriented
parlance) or copy of the template on which the object was based. The script object can be a collection of
properties, a group of methods defined together (as a library, which is discussed in the section "Libraries"),
or a bunch of properties, methods, and statements that comprise a single object. Script objects can inherit
the properties and methods of a parent object simply by defining a parent property at the top of the script:

prop parent : MyParent

MyParent in this case is a variable that refers to another script object.

In summary, script objects represent a limited form of object-oriented programming in AppleScript.
Considering that you can define objects and libraries on one machine, and create new instances of those
objects or call methods in the library on another machine that shares a TCP/IP network, what you can
achieve with AppleScript objects is limited only by the breadth of your imagination. This exciting new form
of distributed computing on the Mac is called "program linking via IP".

Script Objects

You define an AppleScript script object using the basic syntax that Example 9-1 illustrates.

Use the syntax script...end script to define a script object within another script. For example, a single
script could involve its own properties, subroutines, run handler, and one or more script objects. Used in
this manner, a script object can be like a "type" that you define. Example 9-2 defines a Collection type
within another script. A Collection involves one to several property/value pairs and methods that can return
Collection values as well as add a new property/value pair to the Collection. In this case, the Collection
object or type is defined at the top of the script and then demonstrated beneath the script-object definition.
The example Collection involves the names of some planets followed by their diameters in kilometers.

You could add other methods to the Collection object, such as a method that deletes a property/value pair
from the "col" property (there's a programming challenge). You can also define this script object as a
separate compiled script, without including the

script Collection...end script

syntax. Give the saved script the filename Collection. Example 9-3 does the same thing as Example 9-2,
except that Example 9-3 gains access to the external script object (which has a filename of Collection) by
using the load script scripting addition.

You call the methods of AppleScript objects using the tell statement, assuming that the script object
referred to by the objCol variable has a getName method:

tell objCol to getName()

See Chapter 7, for details on the tell statement. You can also use the possessive form to call an object's
method, as in

objCol's getName()

or, use the of keyword

getName() of objCol

AppleScript doesn't use the "dot" syntax of other languages such as Java or JavaScript (i.e., you cannot
use the syntax objCol.getName()).

You create several copies of the same script object by using the copy keyword, as opposed to the set
keyword. For example, let's say you defined the Collection script object in the same script as the one in
which you will use this object to do something (such as create instances of the object in memory). The
code fragment in Example 9-4 creates separate instances of the Collection object in the variables cObj1
and cObj2.

In the case of cObj2, if you used the code set cObj2 to Collection instead, then cObj2 and cObj1 would
point or refer to the same Collection object. Using the copy syntax allows the scripter to create separate
objects.

You can create a child script object from a parent object by giving the child object a parent property.
Example 9-5 creates a child object from the Collection object that I defined in Example 9-2. This new
object inherits all of the properties and methods of the parent; you do not have to include those properties
or methods in your definition of the child object. If you define a method with the same name as your
parent's method, AppleScript overrides the parent method and calls the child's method. In this example,
the child object defines a name property and getName method; only the child object will have this property
and method, not its parent Collection object. The example also demonstrates the use of the continue
statement inside of a method that you are overriding. If you use the continue statement followed by the
name of the parent's method, then AppleScript calls the parent method. For Java programmers, if you
were overriding a method called setCol, then the AppleScript continue statement is like calling the
following inside of the overridden method:

super.setCol() (* in Java, calling the base-class method inside a

derived-class method that is overriding the parent method *)

You use the continue statement when you want to add new functionality to a parent object's method and
still have the parent method execute. In other words, you can also override a parent object's method by
completely changing the method's behavior and never calling the parent method.

You can intercept the calling of a scripting addition by using a script object and the continue statement. In
other words, you can override some osax commands (you must test them first however), just as a child
object might override a parent object's methods. The script object in Example 9-6 has a delay method that
displays a dialog box asking the user if they really want to delay the script. If the user dismisses the dialog
box with the Okay button, then the following code calls the delay scripting addition (whose integer
argument determines how many seconds the script will pause): continue delay 10.

Libraries

A library is a type of script object that represents a group of methods that are stored in a compiled script.
Just define several useful functions in Script Editor then save them with a meaningful name, like WebLib.
You can then call these functions from other scripts by using the load script osax:

set wlib to (load script "macintosh hd:ASlibraries:WebLib")

Let's say the WebLib library has a method called httpGet. The wlib variable now refers to the WebLib
script object, so you could call this method with the code:

wlib's httpGet()

You could also save WebLib as a stay-open applet. As long as the library applet is running (with few
performance implications as a small applet will only use several hundred bytes of memory), you could call
its functions from another applet with code as spare as:

tell app "WebLib" to httpGet("my.yahoo.com")

AppleScript will be able to "find" the WebLib applet a lot easier when you try to compile the latter code
fragment if WebLib is already a running process.

There are several good reasons why you might want to have code libraries running on your machine, with
a principal one being code reuse. Let's say you have five separate applets that each performs various
mathematical calculations. Instead of defining the same math subroutines inside of each applet, you can
keep these subroutines stored inside a single library, from which the various applets can use these
methods after loading the library themselves. It is inefficient to include the same subroutine definition
inside five different applets. Another reason to consolidate code inside of libraries is to "separate the
things that change from the things that stay the same." [1] For example, a system administrator might have
created several applets that occasionally have to be updated to accommodate the changing requirements
of their network users. In designing the scripting system, the scripter places all subroutines and/or
properties that do not change inside a library, which can be called from the applets that do have to be
rewritten and compiled once in a while. It is inefficient to keep recompiling the unchanged source code,
except in response to the rare occasions when it has to be changed. So the rule of thumb when designing
large AppleScript systems is to take the things that do not change and put them in a library that will be
loaded by other applets.

[1] I derived this nice principle of program design from the very good book, Thinking in Java by Bruce Eckel.

Remote Script Object and Library Access

Script objects and libraries can also be accessed remotely over TCP/IP networks. This is a very
powerful feature of Mac OS 9 and later versions called "program linking via IP." For example, if
the WebLib library were running on another Mac on the network, you could call its methods from a
script on another machine as long as you knew the library machine's IP address. Here's the code:

tell app "WebLib" of machine "eppc://192.168.0.2" to httpGet("my.yahoo.com")

The protocol "eppc:", by the way, stands for "event program to program communications." The
possibilities are limitless. Chapter 25, is devoted to scripting the File Sharing control panel and
program linking.

Libraries are AppleScripts that can feed their functionality into other applets. Along with user-defined
subroutines, you can also place code that automates certain programs inside of libraries so the code can
be used by all applets. For example, you might define a library subroutine that will tell Photoshop 6 to
open and save an image file. Any time any other applet needs to save an image file in Photoshop, it just
uses this external library function, instead of having to define the method itself.

Part III: Scripting Mac OS 9 Applications

Chapter 10. Apple Guide and Help Viewer

With Mac OS 8.5 and beyond, Macintosh users have two pieces of system software to rely on for getting
help on the Mac OS and programs: the Apple Guide extension and the new browser-based Help Viewer.
Apple Guide (see Figure 10-1) is the tool that can be launched from the Help menu command of several
programs. It usually provides the most basic software help, allowing the user to search a small help
database and spawning little animations that circle and choose menu items for you. Mainly in response
to the Web, Apple's system has since moved to a browser-based help system with the Help Viewer
system application. Compared with Apple Guide, Help Viewer more closely integrates the operating-
system help documents with web protocols and Sherlock 2. (Sherlock 2 is covered in Chapter 17.) You
can find the Help Viewer in the following directory if you're running Mac OS 8.5 or later: startup
disk:System Folder:Help:Apple Help Viewer:Help Viewer . This chapter describes the Apple Guide's and
Help Viewer's dictionaries and gives some examples of how to script your own help systems.

Figure 10-1. An Apple Guide window

The scriptable Apple Guide extension is located in startup disk:System Folder:Extensions. You normally
cannot open an application's Apple Guide file from outside the app, unless you are using trusty
AppleScript. Example 10-1 opens up the BBEdit Guide file, goes instantly to the Look For help panel, and
places the search term "grep" in that panel's search edit field. An AppleScript can be used as a software-
testing device for new Mac help systems that use Apple Guide.

Example 10-1. Opening the BBEdit Guide File

(* Apple Guide's 'open' command can take a file specification type for a

parameter *)

set filespec to¬

 "macintosh hd:BBEdit 5.0:BBEdit 5.0:BBEdit Guide" as file specification

tell application "Apple Guide"

 (* Use the 'string' labeled parameter and the 'ViewNumber' parameter

 that takes an integer type *)

 open database filespec string "grep" ViewNumber 4

end tell

Apple Guide

Syntax

tell application "Apple Guide"

 GoViewTopicAreas (* when a Guide window is open, go to the topics panel *)

 (* do other stuff with an open Apple Guide *)

end tell

Dictionary commands

Animate

If an animation object like a QuickTime movie exists in the open Apple Guide window, then this
command is a signal for it to execute its animation. The following is an example of animate :

tell app "Apple Guide" to animate

Your script raises an error if you use this command and the open Apple Guide window does not have an
animation.

Close

This command closes all the Apple Guide windows and the running database of help files. But it
doesn't close the Apple Guide program, which is still running invisibly in the background. You can
still send the program an Apple event to open another application's Guide files, for instance. Use
Quit if you want to completely quit the Guide program so that it doesn't use the machine's memory
anymore.

DoCoach

This command draws the coach mark that is defined for the current Apple Guide window, or it has
no effect if the current panel has not defined a coach mark. If any of the Topics, Index, or Look For
Apple Guide panels are active then this command raises an error.

CoachID integer

This optional parameter draws the coach mark associated with a particular id number, if any
is defined for the active Guide panel or window.

DoHuh

If the beveled button with the "Huh?" label is active in the lower left corner of the Guide window,
then issuing this command is the equivalent of clicking the "Huh?" button:

tell app "Apple Guide" to DoHuh
GoBack

This command closes an "oops" topic and returns to the Guide window that preceded the active
oops panel. What's an oops topic, you ask? When the Apple Guide instructs the user to initiate a
command such as File Print and the user moves to the next instructive panel without doing the
requested command, then Apple Guide usually displays another panel with the oops label and some
text that repeats the instructions.

GoNext

This command moves to the next Apple Guide window.
GoNextUnconditionally

Unlike GoNext, this command goes to the next window regardless of whether the user has followed
the previous panel's instructions.

GoNextToPanel

This command goes to the next numbered panel, as in:
tell app "Apple Guide" to GoNextToPanel PanelNumber 5

Specify the panel number with the PanelNumber labeled parameter. If there is not a panel number 5
(because the active set of Apple Guide windows only has four panels), then Apple Guide ignores the
command.

GoNextToFirst

This command goes to the first panel in the Guide sequence.
GoNextToLast

This command goes to the last panel in the Guide sequence.
GoPrevious

This command goes to the window preceding the active Guide panel; it's the same as clicking the
left arrow button in the lower region of an Apple Guide panel.

GoPreviousUnconditionally

This goes to the window preceding the active Guide panel, but doesn't evaluate any of the help
program's qualifiers such as whether the user followed on-screen instructions. This command has
the same effect as clicking the left arrow button in the lower region of an Apple Guide panel.

GoStart

This goes back to the beginning of a help sequence, such as an Apple Guide Topics window.
HidePanel

This minimizes a help window (makes it smaller on the desktop).
ShowPanel

This command expands or maximizes a minimized guide window. The command is ignored if the
panel is already maximized.

TogglePanel

If the panel is minimized this command maximizes it, and vice versa. It has the same effect as
clicking the zoom box (first control in upper right corner) on the Guide panel.

GoViewIndex

This command goes to the access window's Index view, which has the same effect as clicking the

Index button. If the access window is not open then this command raises an error. The access
window is the upper level Guide window. See GoViewLookFor and GoViewTopicAreas.

GoViewLookFor

This command goes to the access window's Look For view (which is the same as clicking the Look
For button). If the access window is not open then this command raises an error. See GoViewIndex
and GoViewTopicAreas.

string string

The string labeled parameter for this command 7forces a search for the string and
presents some topic results:

GoViewLookFor string "grep"
GoViewTopicAreas

This goes to the access window's Topics view, which also happens when you click the Topics
button in the access window. If the access window is not open then this command raises an error.
See GoViewIndex and GoViewLookFor.

Open

Use the Open command, followed by a database file-specification labeled parameter, to open a
new Apple Guide help system. Save the path to the Guide file in a file specification variable,
and then follow the open database syntax with the variable and any of the two optional parameters.

Here's a syntax example:
tell app "Apple Guide" to open database filespec string "grep"

ViewNumber 4

This command forces a search of the filespec Guide file for the term "grep" and presents the results in a
Look For access window. Notice that the target application for the example's command is "Apple Guide",
not "BBEdit 5.0." When you use AppleScript, the program's Guide file is controlled through the Apple
Guide application. BBEdit's dictionary does not identify any Apple events for controlling help files.

Database file specification

The database labeled parameter uses a file specification object, which contains the file path to
an Apple Guide file.

string string

The labeled parameter string (which takes a string type) allows the script to force a database
search for the particular string term. Using this parameter with the open command is the equivalent
of the user going to the Look For access window, entering the string in the edit field, and clicking
the search button. So a single AppleScript command substitutes for at least three manual
interactions with the Apple Guide.

ViewNumber integer

Follow this labeled parameter with an integer representing one of six choices of views that will be
displayed: 1=Full Howdy, 2=Topic Areas, 3=Index, 4=LookFor, 5=Single Howdy, 6=Single Topics.
For example, Figure 10-1 represents the Full Howdy view.

OpenPanelOnly

This command opens the presentation window (as opposed to an access view such as Index)
associated with the panel id number provided with the panelId labeled parameter. You also have to
provide the database labeled parameter with this command if a Guide database isn't already open.

PanelId integer

This is a number representing the id of the panel to open:
OpenPanelOnly PanelID 4.
Database file specification or string pathname:

Include this labeled parameter if Apple Guide is not already running or if you are changing
Guide files:

OpenPanelOnly PanelID 4 Database filespec

Apple recommends that scripters use a file specification type rather than a string type for
identifying the Guide file.

OpenPanelOnlyAnother

You can open a panel in a new window using this command, as long as a Guide file is already open.
In other words, an already opened presentation window will not close as a result of
OpenPanelOnlyAnother.

PanelId integer

Identify the panel to open in a new Guide window with this labeled parameter:
OpenPanelOnlyAnother PanelID 4

OpenPanelOnlyReplacement

This replaces any existing windows with the presentation window identified with the PanelId labeled
parameter. The parameter is required, as shown in the following:

OpenPanelOnlyReplacement PanelId 4
PanelID integer

Include the id of the panel that will open.

OpenWithSequence

If you know the sequence id of a particular sequence of Guide presentation windows, then you can
use this command to test it:

OpenWithSequence Database filespec SequenceID 4
Database file specification

Save the Guide file's path (a string such as "macintosh hd:BBEdit 5.0:BBEdit 5.0:BBEdit Guide")
to a variable of type file specification, then use the variable for the Database labeled parameter:

OpenWithSequence Database filespec SequenceID 1
SequenceID integer

This is a required labeled parameter whose integer represents the id of the sequence of panels to
launch.

PanelNumber integer

Optionally, include the id of the panel that starts off the sequence:
OpenWithSequence Database filespec SequenceID 1 PanelNumber 2

OpenNamedSequence

This is like the previous command, except that you name the sequence with a string, rather than
providing a sequence id number. The following is a syntax example:

OpenNamedSequence Database filespec SequenceName "printhlp" PanelNumber 2
Database file specification

Save the Guide file's path (a string such as "macintosh hd:BBEdit 5.0:BBEdit 5.0:BBEdit Guide")
to a variable of type file specification, then use the variable for the Database labeled parameter:

OpenNamedSequence Database filespec SequenceName "printhlp"
SequenceName string

This is the name of the sequence to initiate on the desktop.
PanelNumber integer

Optionally, include the id of the panel that will start off the sequence:
OpenNamedSequence Database filespec SequenceName "printhlp" PanelNumber 2
OpenWithSequenceAnother

This is designed to display a sequence of panels without closing any existing windows, but a Guide
file or database must already be open.

SequenceID integer

This is a required labeled parameter whose integer represents the id of the sequence of
panels to launch.

PanelNumber integer

Optionally, include the id of the panel that starts off the sequence:
OpenWithSequenceAnother SequenceID 1 PanelNumber 2

OpenWithSequenceOops

This command initiates a new sequence of panels in an open Guide window, hiding but not closing
the original window. A GoBack command returns the user to the prior window. The particular Guide
database must already be open.

SequenceID integer

This is a required labeled parameter whose integer represents the id of the sequence of
panels to launch.

OpenWithSequenceReplacement

This closes any existing access or presentation windows and starts a new sequence in another
presentation window. A syntax example is:

OpenWithSequenceReplacement SequenceID 1 PanelId 2
SequenceID integer

This is a required labeled parameter whose integer represents the id of the sequence of panels to
launch.

PanelNumber integer

Optionally, include the id of the panel that starts off the sequence:
OpenWithSequenceReplacement SequenceID 1 PanelId 2

PlaySound

This sends the open Guide file a PlaySound Apple event and includes the id of the sound data as a
labeled parameter:

tell app "Apple Guide" to PlaySound SoundId 4
SoundId integer

This is a number representing the id of the sound data in the database. This labeled parameter is
required.

Quit

This closes any open windows and terminates the Apple Guide app. Unlike close, Quit does not
leave Apple Guide silently running in the background, using its megabyte or so of memory.

QuitFront

This is similar to Quit, but it leaves Apple Guide running if there is more than one Guide window
open. In other words, QuitFront closes the front Guide window but leaves the next window intact and
does not shut down Apple Guide. If only one window is open then QuitFront has the same effect as
Quit.

Help Viewer

Since Help Viewer (see Figure 10-2) is essentially a browser, you can open up any local hypertext markup
language (HTML) file with it (see the open command for Help Viewer). AppleScripters can thus use this
program to either provide their scripts with their own HTML-based help systems or provide an alternate
and perhaps quicker avenue to the Mac OS's help files.

Figure 10-2. A Help Viewer window

Syntax

tell app "Help Viewer"

 (* get the app to print various help topics or open HTML files here *)

end tell

Dictionary commands

Open alias list

One of the ways to open up a help file in Help Viewer is to send it an open Apple event with a list
of aliases as a parameter (one alias, representing the file path to the page you want to open). The
following example opens a page on Help Viewer search tips. You can also use open to open your
own HTML files in Help Viewer, as long as you make sure to save the file path as an alias inside of
a list (as in {my_alias}) before passing this parameter to open :

tell application "Finder"

 (* path to the Help Viewer tips file *)

 set tips to

 ((system folder as string) & "help:apple help

 viewer:hvtps.¬

 htm")

 as alias

end tell

tell application "Help Viewer"

 activate -- bring it to the fore

 open {tips} -- use open followed by a list with one alias

end tell
Print alias list

You can use code similar to the prior example to send a print command to Help Viewer. Create an
alias to the HTML file, or have the user choose the file to print using the choose file scripting
addition. (Appendix A, is devoted to scripting additions.) This could be accomplished with the
following code, which returns an alias type pointing to the file:

choose file with prompt "Choose the Help Viewer html file" of type {"TEXT"}

Then pass a list containing the alias to the print command:

print {the_alias}
Quit

This quits the Help Viewer app.
Run

This command opens Help Viewer so that you can send Apple events to it:
tell application "Help Viewer" to run

Close

This command also quits Help Viewer, like Quit.
Search string

This searches the help files using a particular search term:
tell app "Help Viewer" to search looking for "AppleScript"

If you want to search just one "book," such as QuickTime Help, then pass the search command a string
parameter:

search "QuickTime Help" looking for "AppleScript"
looking for string

Follow the looking for labeled parameter with a string containing your search term, as in the
following:

search looking for "QuickTime" -- or ...

search looking for "QuickTime or AppleScript"

Help Viewer allows the use of the following boolean operators: and, +, or, |, not, !, and grouping with
parentheses (). An example of grouping is searching for files containing "file type" or "file sharing" but not
"file exchange":

search looking for "file + (type | sharing) ! exchange"
handle url string

An easy way to open up a file in Help Viewer is to use the handle url command followed by a string
containing the file path. You can use file paths that are relative to the startup disk:System
Folder:Help folder:

handle url "Apple Help Viewer:hvtps.htm"

The latter command opens up the Help Viewer tips file. Using the open command appears to work better if
you want to use absolute paths (e.g., "Macintosh HD:Desktop Folder:myfile.html") or open up your own
HTML files using this program (see open earlier in this chapter).

Dictionary classes

application

The Help Viewer application class has one element, a window object, and one property, which is
an alias type of the current file that the Help Viewer window is showing at the time. You can access
the window element by using this code:

tell app "Help Viewer" to get name of window 1

This would return a string such as "Help Viewer Tips." You can get the file path of whatever file happens
to be displayed in Help Viewer at the moment with code such as the following:

get current file as text

This code returns something like "Macintosh HD:System Folder:Help:Apple Help Viewer:hvtps.htm."

window (window object)

You can get properties of the current Help Viewer window (see the window class description) by
seizing this element with code such as:

tell app "Help Viewer" to get name of window 1

The element can be referred to by either its name (window "Help Viewer Tips") or its index (window 1).

Current file (alias)

Use this property to get the pathname of the file that Help Viewer currently displays.

window

A Help Viewer window has several common AppleScript window properties, but you cannot use the
Help Viewer app to make a new window, as in the following:

make new window ...

You can get the value of any of these properties with code such as:

get bounds of window 1
collapsed (boolean)

You can hide all but the Help Viewer title bar by using this code:
set collapsed of window 1 to true
bounds (bounding rectangle)

This property returns the bounding rectangle for the window. This is a list of coordinates (which
you can change), such as {50, 79, 668, 611}. For instance, this Help Viewer window's upper left
corner is 50 pixels from the left edge of the screen and 79 pixels down.

closeable (boolean; read-only)

This is a true/false value that indicates whether the window has a close box (the little box in the
upper left corner of the window).

titled (boolean; read-only)

If the window has a title in the title bar, this property is true.
index (integer)

This is the index property of the open Help Viewer window. Help Viewer loads new help files and
search results into the same window, so this property is almost always 1:

window 1
floating (boolean; read-only)

Most Help Viewer windows are not floating; in other words, you can place them behind other
document windows on the desktop. This property value is false if the window is not floating.

modal (boolean; read-only)

A modal window (such as an Alert dialog message) has to be dismissed by the user before they can
do anything else with their desktop objects. The main Help Viewer window returns false for this
property.

resizable (boolean; read-only)

If the window can be resized then this property returns true.
zoomable (boolean; read-only)

This returns true if the Help Viewer window has a zoom box, as does the main Viewer window.
zoomed (boolean)

This returns true if the user has clicked the Help Viewer's zoom box.
name (international text)

This gets the name of the window, which appears in its title bar. An example of the return value is
"Mac Help."

visible (boolean; read-only)

If the Help viewer window is open, which it is when the program is running, then this property returns
true.

position (point; read-only)

This returns the upper-left corner coordinates of the window as a list type. An example of the
return value is {29, 175}. The first number represents the number of pixels from the left side of the
screen along the x-axis.

Examples

tell application "Help Viewer"

 activate -- make Help Viewer the active window

 set myhelp to "macintosh hd:desktop folder:machowto.htm" as alias

 -- open up your own html file

 open {myhelp} -- open command takes a list of aliases (or alias)

end tell

It is easier to use open rather than handle url if you want to use absolute file paths to open up different
HTML files in Help Viewer.

If you want to create uniformity with the Mac OS's help system, you can generate your own software
program's help files in HTML form, then use Help Viewer to display the files.

Chapter 11. Apple System Profiler

Apple System Profiler is a system program that gathers and displays everything you ever wanted to know
about your software, hardware, and networking features, including a few things you wish you didn't know,
such as how many extension files reside on your machine. The ASP is located in startup disk:System
Folder:Apple menu Items; it is accessible from the Apple menu. A system administrator who is responsible
for a lot of Macs could use AppleScript and ASP to print out customized reports on all the machines they
are responsible for. Figure 11-1 shows the System Profile tab of the Apple System Profiler. The following
dictionary reference applies to ASP Version 2.4.4, which is installed with Mac OS 9.04.

Figure 11-1. Apple System Profiler

Apple System Profiler

Syntax

tell app "Apple System Profiler"

 (* get the machine's IP address *)

 get TCPIP address

end tell

Dictionary commands

open object or list of objects

This command opens an ASP report, as in the following example:
set rep to "macintosh hd:desktop folder:ASP report" as alias

tell application "Apple System Profiler"

 activate bring ASP to the front

 open rep

end tell
print object or list of objects to print

This prints a report, as in print ASPreportFile displaying print dialog true as text.

displaying print dialog (boolean)

This is an optional true/false value. If it's true, it displays a dialog for setting printing
preferences prior to printing the ASP report.

as (text/shown on screen)

This is an optional labeled parameter involving whether to print out the report as text or as it is
laid out on screen in the ASP document.

quit

This command quits ASP.
run

This command sends a run Apple event to ASP, which is the same as double-clicking the program's
icon on the desktop. This opens the application if it is not already open.

close reference to object

This closes an ASP report, optionally saving it in a file. Here is example code:
close report "ASPreport" saving ask
saving yes/no/ask

The optional saving labeled parameter takes one of three constants. yes saves the report with a
default name in ASP's directory (which is the Apple Menu Items folder), no just closes the report
without saving it, and ask displays a dialog that the user can use optionally to rename the document
and save it in the directory of his choice.

saving in alias

Using the code
close report report 1 saving in aliasFile

saves an open report in the alias contained in the variable aliasFile.

count reference to object

This command counts the number of open reports or ASP windows and returns an integer:
count each window
each class

The each labeled parameter, as in count each report, is not required; you can use syntax such as
count reports instead.

exists reference to object

This finds out whether a report or window exists:
exists report 1

This command returns a boolean value, true or false.

make

This command makes a new report:
make new report at "macintosh hd:desktop folder" with properties {report

contents: {system profile} }

A report is the only object that ASP can use make with.

new (class)

Follow the new labeled parameter with the report class type:
make new report

at (location reference)

Follow the at labeled parameter with a string indicating where you want to save the report:

at "macintosh hd:desktop folder"
with data (anything)

This labeled parameter does not appear to add any value in this context beyond what you can
accomplish with the with properties labeled parameter. At any rate, follow this labeled parameter
with an anything value.

with properties (record)

The with properties parameter is followed by a record type that contains the new report's
properties. Chapter 3,describes the record data type. Here is the example code:

tell application "Apple System Profiler"

 make new report at

 "macintosh hd:desktop folder" with properties

 {report contents:{hardware overview},

 report view format:text}

end tell
save reference to report

You can save an ASP report to a file with code such as:
save report 1 in "macintosh hd:desktop folder:new.txt"
in (alias)

If you pass in a valid string pathname with the in labeled parameter, then ASP saves the report in
a new file.

backup (boolean)

The backup true labeled parameter is not necessary; if you continually save the same report but
with different filenames, the original saved report is not overwritten. These actions will just create
several different files of the same ASP report.

Dictionary classes

application

This class represents the Apple System Profiler app. It includes the window and report elements, as
well as numerous properties that contain information on the computer's memory, such as volumes
(disks), files, networking protocols, and other features. Scripters can set non-read-only ASP
properties with code such as:

tell app "Apple System Profiler" to set report contents to¬

 memory overview

You can get information about the machine with code such as the following:

get QuickTime version or get file sharing

This is true or false if file sharing is enabled. The phrase "(report class)" in the following definitions
means that the report class shares this property with the application class, and the property has the

same definition. The following are application elements:

report

The application can have one or more open ASP reports. See the report class.
window

The application can have one or more open ASP windows. See the window class.

The following are application properties:

properties

The code:
tell app "Apple System Profiler" to get properties

returns a record type containing the names and values of the vast majority of the application's properties.
To get a specific property value from this record type, use code such as:

get AppleTalk address of properties

This useful property returns the hardware address of your Ethernet card as a string, such as
"08.00.07.00.00.00."

clipboard (a list of anything)

This returns a list of whatever items are in the clipboard.
name (international text)

The name is "Apple System Profiler."
frontmost (boolean)

This value is true if ASP is the frontmost app on the desktop.
version (version)

This returns the ASP version number, which is a string like "2.4.4." Version 2.4.4 comes with Mac
OS 9.04 and includes the dictionary described in this chapter.

gathers at launch (list of constants)

This property tells ASP which machine data to gather when it starts up or launches. You can also
set this property by choosing ASP's menu command Edit-Preferences. The constants are any of the
following:

all network overview

applications printing overview

control panels production information

devices and volumes software overview

extensions system folders

hardware overview system profile

memory overview

Here is example code:
set gathers at launch to {network overview, system folders}.
gathering (boolean)

This is a boolean value that returns true if the application is in the process of collecting data on the
machine.

remembers window size (boolean)

This sets the "save window location and size" checkbox in the Preferences window of the app.
report view format (text/shown on screen)

You can set this property to either of the two constants. There are slight differences in the way the
two constants display the ASP data (for example, text is better for printing the document).

preferred report contents (a list of constants)

You can set this property to any of these constants:

all network overview

applications printing overview

control panels production information

devices and volumes software overview

extensions system folders

hardware overview system profile

memory overview

The setting determines the default manner in which ASP gathers machine data.
control panel volumes (list of aliases or the constants startup/attached /all /preferred)

Usually ASP just gathers information that derives from the startup disk, but your computer might
mount more than one volume on the desktop. This property determines whether you gather data on
the control panels of only the startup disk or of several other volumes. You can use a list of aliases
to the various volumes or one of the constants to give this property a value:

set control panel volumes to attached
extension volumes (list of aliases or the constants startup/attached/all/preferred)

Using this property, you can control where ASP gathers information from on extension files. Use a
list of aliases to the volumes or one of the four constants to give this property a value.

application volumes (list of aliases or the constants startup/attached/all/preferred)

Usually ASP just gathers information that derives from the startup disk, but your computer might
mount more than one volume on the desktop. You can control where ASP gathers information on
applications. Use a list of aliases to the volumes or one of the four constants to give this property a
value.

system folder volumes (list of aliases or the startup/attached/all/preferred)

Scripters can specify the system folders that ASP gathers data on by setting this property to either a
list of aliases pointing to the system folders or one of four constants. The default is startup.

system info (record)(report class)

This property returns a record containing data from the system overview section of the System
Profile panel. An example return value is:

{file sharing:true, finder version:"9.0", system version:"9.0.4

US", active enabler:"PowerPC Enabler 9.0.4 9.0.4", AtEase version:"1.1",

QuickTime version:"4.0.3", StartupDiskName:"Macintosh HD", MacOS info:true,

StartupDiskType:"Hard drive", StartupDiskLocation:"ID = 0",

StartupDiskBus:"SCSI Bus 0", disk cache size:"6.50 MB", startup info:true,

system info:true}.
MacOS info (record)(report class)

This gathers all of the information from the Mac OS overview section of the System Profile panel.
This property returns a record type. Chapter 3describes the record data type.

finder version (string)(report class)

This returns the version of the Finder from the frontmost ASP window or report.
system version (string)(report class)

This property returns a string containing the system version (e.g., "9.04") from the frontmost ASP
window or report.

active enabler (string)(report class)

This property returns the version of the active enabler system software or an empty string if there
isn't one installed.

AtEase version (string)(report class)

This is the version of the software At Ease, if it's installed.
MultipleUsers user name (string)(report class)

This returns the current username if Multiple Users is installed and a user is logged in.
MultipleUsersEnvironment (string)(report class)

This property returns information on the Multiple Users environment if Multiple Users is installed and
a user is logged in.

QuickTime version (string)(report class)

This property finds out which Quicktime version the machine is running with code such as:
set qt to QuickTime version
file sharing (boolean)(report class):

This is a true or false value indicating whether file sharing is enabled.
startup info (record)(report class)

This property returns a record containing useful system information such as your machine's disk-
cache size. The return value from get startup info looks like:

{StartupDiskType:"Hard drive", StartupDiskLocation: "ID = 0",

StartupDiskBus:"SCSI Bus 0", disk cache size:"6.50 MB", startup info:true}

StartupDiskName (string)(report class)

This property returns the name of your startup disk.
StartupDiskType (string)(report class)

This returns a string such as "Hard drive."
StartupDiskLocation (string)(report class)

This property returns a string such as "ID = 0."
StartupDiskBus (string)(report class)

This returns a string from the startup device section of the System Profile panel, such as "SCSI
Bus 0."

memory info (string)(report class)

This is a record type whose return value looks like:

{video memory size:"", memory cache size:"Not installed", VM info:true,

VM size:"209 MB", VM storage:"scratch", physical RAM size:"208 MB",

memory info:true}
disk cache size (string)(report class)

This property returns the disk cache string from the memory overview section of the System
Profile panel. An example is "6.50 MB."

video memory size (string)(report class)

This property returns the video memory size or an empty string if the data is not available.
video note (string)(report class)

This property returns nothing on my machine, but returns a string if Video note information is
available.

memory cache size (string)(report class)

This property returns "Not Installed" if the external L2 cache is disabled on your motherboard, as
is true for my CPU-upgraded machine.

VM info (boolean)(report class)

This is a true/false value indicating whether virtual memory is turned on.
VM storage(string)(report class)

This property returns the name of the volume or disk that is storing the virtual-memory file, if virtual
memory is turned on.

VM size (string)(report class)

This returns a string representing the amount of virtual memory the machine is using; it returns an
empty string otherwise.

physical RAM size (string)(report class)

This property returns the amount of memory the machine has.

hardware info (record)(report class)

This returns a record type containing the information that is found in the hardware-overview section
of the System Profile panel. Here's a sample return value:

{logicboard num:"69", unique logicboard num:"69",

model name:"Power Macintosh 8500 series", keyboard type:"Apple

Extended Keyboard", hardware attributes:"Not available",

processor type:"PowerPC G3", rated speed:"400 MHz", processors:"1",

nanokernel version:"2.13", free pools:" 0", scheduled processors:" 1",

hardware info:true}.
logicboard num (string)(report class)

This represents a subset of the hardware-info value (see the example return value under "hardware
info").

The following 10 properties represent a subset of the hardware info value (see the example return under
"hardware info"):

unique logicboard num (string)(report class)
rated speed (string)(report class)
model name (string)(report class)
keyboard type (string)(report class)
hardware attributes (string)(report class)
processor type (string)(report class)
processors (string)(report class)
nanokernel version (string)(report class)
free pools (string)(report class)
scheduled processors (string)(report class)

network info (record)(report class)

All of the available AppleTalk, Ethernet, modem, and other networking information (including TCP/IP
address and subnet mask) is returned as a record type. In other words, this is a very useful value
for anyone who is dealing with networked Macs. The data derives from the network-overview
section of ASP's System Profile.

Ethernet information (record)(report class)

This property returns a record type containing the values for Ethernet link, duplex, and speed.
Ethernet link (string)(report class)

This returns the Ethernet link value from the network-overview section of ASP's System Profile tab.
Ethernet speed (string)(report class)

This returns the Ethernet speed value from the network-overview section of ASP's System Profile
tab.

Ethernet duplex (string)(report class)

This returns the Ethernet duplex value from the network-overview section of ASP's System Profile

tab.
modem info (string)(report class)

This property returns the modem info value from the network-overview section of ASP's System
Profile tab.

modem name (string)(report class)

This property returns the modem name value from the network-overview section of ASP's System
Profile tab.

modem protocol (string)(report class)

This property returns the modem protocol value from the network-overview section of ASP's System
Profile tab.

modem version (string)(report class)

This property returns the modem version value from the network-overview section of ASP's System
Profile tab.

modem status (string)(report class)

This property returns the modem status value from the network-overview section of ASP's System
Profile tab.

Open Transport info (record)(report class)

This property returns a record type containing information derived from the network-overview
section of the System Profile tab. The following is a sample return value:

{Open Transport installed:true, Open Transport status:true, Open Transport

version:"2.6.1", Open Transport info:true}.
Open Transport installed (boolean)(report class), Open Transport status (boolean)(report
class), Open Transport version (string)(report class)

These properties return a subset of the Open Transport info value. See Open Transport info for a
sample return value.

AppleTalk info (record)(report class)

This value is a record type containing the AppleTalk information from the network-overview section
of the System Profile tab. Here is a sample return value:

{AppleTalk installed:true, AppleTalk state:true, AppleTalk

version:"60", default AppleTalk zone:"Not available", active network

ports:"Ethernet built-in LocalTalk (printer) built-in", AppleTalk network:"0",

AppleTalk node:"123", AppleTalk address:"08.00.07.00.00.00", AppleTalk

router:"<not available>", AppleTalk

info:true}
AppleTalk installed (boolean)(report class)

This property returns a subset of the AppleTalk info property value. See AppleTalk info for a

sample return value.
AppleTalk state (boolean)(report class)

This property returns a subset of the AppleTalk info property value. See AppleTalk info for a
sample return value.

Apple Talk version (string)(report class)

This property returns a subset of the AppleTalk info property value. See AppleTalk info for a
sample return value.

file sharing (boolean)(report class)

This is a true/false value indicating whether file sharing is started in the File Sharing control panel.
default AppleTalk zone (string)(report class)

This property returns a subset of the AppleTalk info property value. See AppleTalk info for a
sample return value.

active network ports (string)(report class)

This property returns a subset of the AppleTalk info property value. See AppleTalk info for a
sample return value.

AppleTalk network (string)(report class)

This property returns a subset of the AppleTalk info property value. See AppleTalk info for a
sample return value.

AppleTalk node (string)(report class)

This property returns a subset of the AppleTalk info property value. See AppleTalk info for a
sample return value.

AppleTalk address (string)(report class)

This property returns a subset of the AppleTalk info property value. See AppleTalk info for a
sample return value.

AppleTalk router (string)(report class)

This property returns a subset of the AppleTalk info property value. See AppleTalk info for a
sample return value.

TCPIP info (record)(report class)

This property returns a record type containing the TCP/IP data for the machine, such as TCP/IP
address, version, and subnet mask. The return value looks like:

{TCPIP installed:true, TCPIP status:true, TCPIP version:"2.6.1",

web sharing:false, multihoming:false, TCPIP netmask:"255.255.0.0",

TCPIP address:"192.168.0.3", TCPIP gateway:"192.168.0.1", TCPIP domain:"",

TCPIP nameserver:"192.168.0.1", TCPIP info:true}

The data is derived from the network overview section of the System profile tab.

TCPIP installed (boolean)(report class)

This property returns a subset of the TCPIP info property value. If TCP/IP is not installed then this
property returns false.

TCPIP status (boolean)(report class), TCPIP version (string)(report class), multihoming
(boolean)(report class)

These properties return a subset of the TCPIP info property value. See TCPIP info.
web sharing (boolean)(report class)

This property returns a subset of the TCPIP info property value. It is true if web sharing has been
started in the Web Sharing control panel.

TCPIP netmask (string)(report class)

This property returns a subset of the TCPIP info property value. It returns a string such as
"255.255.255.0." See TCPIP info.

TCPIP address (string)(report class)

This property returns a subset of the TCPIP info property value. It returns a string such as
"172.128.0.1." See TCPIP info.

TCPIP gateway (string)(report class), TCPIP domain (string)(report class), TCPIP nameserver
(string)(report class)

These properties return a subset of the TCPIP info property value. You can also find this information
in the TCPIP control panel. See TCPIP info.

production info (record)(report class)

This property returns a record type that contains any production information on the machine, such
as it serial number. A sample return value is:

{ROM revision:"$77D.28F1", boot ROM version:"Not available", boot ROM file

version:"Not available", serial number:"Not applicable", software bundle

number:"Not applicable", sales order number:"Not applicable", production

info:true}

The following six properties are subsets of the production info value:

ROM revision (string)(report class)
boot ROM version (string)(report class)
boot ROM file version (string)(report class)
serial number (string)(report class)
software bundle number (string)(report class)
sales order number (string)(report class)
not applicable (string)(report class)

This returns the string "not applicable" if the machine is using a U.S. version of ASP. Otherwise it returns
the translated version of "not applicable."

not available (string)(report class)

This returns the string "not available" if the machine is using a U.S. version of ASP. Otherwise it
returns the translated version of "not available."

monitors (string)(report class)

This property returns the number of monitors that are connected to the machine.
report

This class represents an Apple System Profiler report. These reports assemble all or a subset of
system information as either an ASP document or text file. Most of the report object's properties (it
has no elements) are shared with the application object; those that are not shared are defined in
the upcoming section. See the application class discussion for the definitions of most of the
report class's properties. The following are report properties:

name (international text; read-only)

This property returns the report name as a string.
id (integer; read-only)

Every report has a unique id that looks like 182306468. You can get the ID of the frontmost
report with code such as:

tell app "Apple System Profiler" to get id of report 1

If you set this value to a variable you can then refer to the report by its ID:

report ID 182306468
index (integer; read-only)

Open ASP reports can be identified with a 1-based index: report 1 for the first report that is
created, report 2 for the second, etc. You can initially get the ID of a report with the code:

set myid to id of report 1
report contents (list of constants)

report contents is a list containing any of the following constants:

all network overview

applications printing overview

control panels production information

devices and volumes software overview

extensions system folders

hardware overview system profile

memory overview

This is a list of the type of data that the report contains. You can also use this property when
you make a new ASP report; see the make command description in this chapter. The system
profile category constitutes the software overview, memory overview, hardware overview,
network overview, printing overview, and production information categories.

report text (string; read-only)

This property returns a large string of tab-delimited values if the report is extensive in its
coverage. Its return value might be useful if you wanted to save the string to a file and then
import it into a database file.

window class

This is an ASP window object that has the typical properties of a Mac window.

bounds (bounding rectangle)

This returns the boundary rectangle for the window as a list of integers, such as {50, 50,
594, 764}.

closeable (boolean; read-only)

This returns true or false depending on whether the window has a close box.
titled (boolean; read-only)

This is a true/false value depending on whether the window has a title bar.
name (international text; read-only)

This property returns the window's title, which could be useful when you try to identify a
particular ASP report.

modal (boolean; read-only)

This returns a true/false value indicating whether the window is modal or not. Since most
ASP windows are document windows (you can move them around and access other windows
behind the document window), this property often returns false.

resizable (boolean; read-only)

This returns a true/false value indicating whether the window can be resized by dragging its
corners.

zoomable (boolean; read-only)

This returns a true/false value indicating whether the window has a zoom box in its upper
right-hand corner.

zoomed (boolean)

You can use this property to increase or decrease an ASP-report window size:
set zoomed of window 1 to true.

Examples

This script gathers important system information on the local machine and displays the dialog shown in
Figure 11-2:

Figure 11-2. The Apple System Profiler Example dialog box

try -- trap any errors caused by running ASP

 tell application "Apple System Profiler"

 launch -- run the app but don't bring it to the front

 set sys to system version -- a string like "9.04"

 set startdisk to StartupDiskName

 set ram to physical RAM size -- how much RAM does the machine have?

 set megh to rated speed -- how fast the machine is in megahertz

 set cpu to processor type -- an example is "PowerPC G3 400"

 (* Assemble a message to the user in the sysmessage variable *)

 set sysmessage to return & "The system version is : " & sys &¬

 return

 set sysmessage to sysmessage & "Startup disk name: " & startdisk¬

 & return

 set sysmessage to sysmessage & "Amount of RAM: " & ram & return

 set sysmessage to sysmessage & "CPU speed: " & megh & return

 set sysmessage to sysmessage & "CPU type: " & cpu & return

 display dialog sysmessage

 end tell

on error errMessage

 display dialog "Opening ASP caused this error: " & errMessage

end try

Chapter 12. Keychain Scripting and Apple Verifier

Mac OS 9 ships with a number of applications and files that help users protect their files, folders, and
passwords from intruders. Apple Computer groups these technologies under the Apple Data Security
umbrella term. These software tools include:

The Apple Verifier program, which verifies files that have been digitally signed

Apple File Signer software for applying digital signatures to files (this is only available in the Security
Software Developers Kit)

Apple File Security, which you can use to encrypt and decrypt files

The Keychain Access control panel and Keychain Scripting, which involve the storage of passwords
in a secure repository or database called a keychain file

Several extension files in the startup disk:System Folder:Extensions folder, including Security Cert
Module, Security Library, Security Manager, Security Policy Module , Security Storage Module

Look in the startup disk:Applications:Security folder and you will find the Apple File Security and Apple
Verifier programs. Apple File Security allows you to encrypt and decrypt files using a passphrase of five or
more characters that you create. You must remember this password unless you have used Keychain
Access with the file encryption, which is explained later in this chapter. Encryption mathematically
scrambles the file data into a hodge-podge of nonsensical ASCII characters that look like Example 12-1,
which is part of this paragraph after it was encrypted. It is extremely difficult, if not impossible (if they do
not have your passphrases), for unintended or malicious recipients to break the code and decipher
encrypted files.

Example 12-1. A Sample Portion of an Encrypted File

_!Åm¿__-#8_ÁÎ>°CºE_$ëBj,/Z.·,©._fnB," VS'íu,>…£1Ë-_é I_{_ÇRôY] *oe}g_

Z2<Ú¯e)EifÍ3&bEa_Ü__E,â#@aÍ'ÌÌ·k_m].¿__'__AQHuè·Ë…e>>é¤>/ _>¯>Ø>_>=_> S>

N-

Just open a file from Apple File Security's File menu, and it will prompt you for a password before
encrypting it. You can also encrypt a file from the Finder's File menu in Mac OS 9. Finally, just drag the
file over the Apple File Security icon and it displays the dialog window that Figure 12-1 shows. If you
checked the "Add to Keychain" checkbox when you encrypted the file (see Figure 12-1), then you can just
double-click the file later to decrypt it (return it to its readable and insecure state). If you did not add the
passphrase to a keychain then you haveto recall the password to decrypt it. Otherwise, no one (including
Apple's engineers) will be able to help you decrypt the file. So do not encrypt that email exonerating you
and your company from abusing a software monopoly unless you plan to remember the passphrase.

Figure 12-1. Apple File Security adds an encrypted file passphrase to a keychain

Apple File Security is not scriptable with Mac OS 9, but another security program that works closely with
Apple's encryptionmethod can be used with AppleScript-Keychain Access. This is a control panel, but its
scripting functions are accessible through the Keychain Scripting software tucked away with the scripting
additions in the startup disk:System Folder:Scripting Additions folder. Figure 12-1 shows the checkbox
that allows you to add a passphrase for an encrypted file to a keychain. Again, in Mac OS 9, a keychain
is a password file or database that is stored in encrypted form in startup disk:System
Folder:Preferences:Keychains. You can have one or more keychains as long as you give them unique
names. The keychain is designed to provide automatic passwords for:

Logging on to an AppleTalk or AppleShare IP server (i.e., a computer that you are connected to via
Ethernet)

Decrypting a file that has been encrypted using Apple File Security

Logging in to a remote web site

Usage by a software program

Accessing a digital certificate that you have added to a keychain

Not all of this functionality (e.g., using Keychain Access with web sites) was widely available by Winter
2001, but keychains are very useful with files and AppleShare servers.For example, once you have
added an AppleShare key to a keychain, then you can mount the specified volume simply by clicking a
button (it says "go there") in Keychain Access's Get Info window for that AppleShare key. Again, Keychain
Access is a control panel that is located in startup disk:System Folder:Control Panels.

Apple Verifier is the other scriptable security application that this chapter describes. Another part of Apple
Data Security services is Apple Code Signing. Apple Code Signing is a new Mac OS 9 technology that
allows developers to digitally sign applications, plug-ins, and content. Digital certificates are unique IDs
that you can apply to software (such as a program that you have coded) so that the software's recipients
can be sure that it came from you (and so that you cannot deny that it came from you!). Apple Code
Signer is another security program that is only distributed with the Apple Security Software Development
Kit. Software security and crytography are very interesting but large subjects, so I recommend that you try
external information sources to learn more about them.

Pretty Good Privacy is freeware software for strong encryption (there is a
commercial version also). There is a Macintosh version that will work with your
email program to encrypt email. The PGP international site has some good
documentation on software encryption at http://www.pgpi.org/doc/. Apple
Computer's security site is http://developer.apple.com/macos/security.html. You can
obtain the Apple Security SDK at
ftp://ftp.apple.com/developer/Development_Kits/Security_SDK.sit.hqx. The
following sites describe and tell you how to obtain digital certificates:
http://www.thawte.com and http://www.verisign.com.

This chapter will describe AppleScripting with Keychain Scripting and Apple Verifier, which is Apple
Computer's program for checking the digital signatures of files or programs that you download from some
potentially insecure source such as the Web.

http://www.pgpi.org/doc/
http://developer.apple.com/macos/security.html
http://www.thawte.com
http://www.verisign.com

Keychain Scripting

As I mentioned before, a keychain is a password file or database that is stored in encrypted form in startup
disk:System Folder:Preferences:Keychains. The scripting of keychains, which store important passwords
for entry to systems such as local networks, is accomplished through the Keychain Scripting software that
is included with the scripting additions in the startup disk:System Folder:Scripting Additions folder. Figure
12-1 shows the checkbox that allows you to add a passphrase for an encrypted file to a keychain. You
script the Keychain Scripting application just as you would target any other program, such as by enclosing
Keychain Scripting commands in tell statements.

Syntax

tell app "Keychain Scripting"

 get current keychain -- get default keychain

end tell

Dictionary commands

count keychains or keys

This command counts the number of keychains the computer system has or the number of keys in a
keychain. You can have more than one keychain; for example, I have a separate keychain just for
linking with other Macs on my Ethernet. One keychain is always the default or active one and
receives any new keys you create (see the current keychain property of the keychain application
class). If you want to count just the number of keychains, use this code:

tell app "Keychain Scripting" to count keychains

This code gets a count of keys within a keychain and returns an integer:

tell application "Keychain Scripting"

 tell keychain "MyPasses" to count keys

end tell
each class

You can use the each labeled parameter to specify the counting of keys or keychains:
count each key
delete keychain or key

You can remove a key from a keychain or delete a keychain altogether with this command. The
next example deletes a certain key that involves connecting to another computer over a TCP/IP
network. The script does not delete the key if the keychain is locked, which is why it is a good idea

to lock the keychains whenever you are not adding or removing keys from them! This is
particularly true because a malicious script can just make an index reference to a key (e.g.,
Internet key 1) and delete the key without knowing its actual name.

tell application "Keychain Scripting"

 delete Internet key 1 of keychain "MyPasses"

end tell
exists reference to keychain or key

This command is designed to find out whether a key or keychain exists:
set thebool to (exists keychain "BogusHacker")

Unfortunately, this command does not yet work with my version of Mac OS 9 (as of 9.0.4).

lock reference to keychain

This command locks a keychain so it cannot be accessed (for instance, by a script). If you use lock
without a keychain reference, then all the keychains are locked. This code locks a particular
keychain, but first finds out whether it is locked at all:

tell application "Keychain Scripting"

 if (not locked of keychain "MyPasses") then

 lock keychain "MyPasses"

 end if

end tell

You could use similar code in a utility script that makes sure all keychains are locked:

tell application "Keychain Scripting" to lock
make

Use this command to automate the generation of new keys or keychains. The new and at labeled
parameters are required (unless you are making a new keychain, in which case at is not required);
the rest are optional. This example makes a new Internet key in a keychain called "MyPasses":

tell application "Keychain Scripting"

 try

 make new Internet key at current keychain with properties¬

 {server:"my.yahoo.com", comment:

 "General login id for yahoo services",

 name:"yahoo_login", account:"login_anon",

 password:"X$50*LiL"}

 on error errmessage

 display dialog "There was an error: " & errmessage

 end try

end tell
new class

If you are making a new key, then the class can be "Internet key" (for a web login service),
"AppleShare key" (for automating the username and password for a file server), or "generic key"
(other key types such as passphrases for encrypted files). If you are making a new keychain, then
the syntax is:

make new keychain with properties {name:"test_key", locked:false}
at location

If you are making a new key, use the at labeled parameter to specify the keychain location:
make new Internet key at current keychain...

This parameter is not necessary if you are making a new keychain rather than a new key.

with data anything

It is not necessary to use this with data parameter with the make command, since you provide the
new key's or keychain's properties with the with properties parameter.

with properties record

This labeled parameter fills in the properties of the new key or keychain. This example provides the
properties for linking to a file server over TCP/IP:

tell application "Keychain Scripting"

 try -- catch any errors and report the message

 make new AppleShare key at keychain "program_link"¬

 with properties {server:"iMac", zone:"192.168.10.15",¬

 volume:"Macintosh HD", comment:"Login for iMac",¬

 name:"iMac_ login", account:"powerpc", password:"Xi$ap%"}

 on error errmessage

 display dialog "There was an error: " & errmessage

 end try

end tell
quit

You can quit the Keychain Scripting app with this command:
tell app "Keychain Scripting" to quit
unlock reference to keychain

Unlock a keychain with this command and optionally provide a password if you do not want the
Keychain Access program to display the dialog that is necessary for the user to enter the keychain's
password. The example code is:

unlock keychain "prog_link" with password "Xi$ap%"

Dictionary classes

application

This class represents the Keychain Scripting program. For example, you can get the current
keychain (otherwise known as the default keychain) with code such as:

tell app "Keychain Scripting" to get current keychain
name string (read-only)

This property returns the string "Keychain Scripting."
current keychain reference to keychain

This property returns the name of the current or default keychain, such as "MyPasses."
version version (read-only)

This property returns a string specifying the Keychain Scripting software version, such as "2.0."

keychain

This class represents a keychain that you can create with either the Keychain Access control panel
or AppleScript and the Keychain Scripting program. For example, you can make a new keychain
with code such as:

make new keychain with properties {name:"test_key", locked:false}

Or you can find out whether a certain keychain is locked or not with the code phrase:

get locked of current keychain
name string (read-only)

This property returns the name of the Keychain as a string, such as "MyPasses."
locked boolean (read-only)

The true/false locked property is true if the keychain is locked. The following code locks all
keychains:

tell app "Keychain Scripting" to lock
key

This is the "super" class for all types of specific keys (e.g., AppleShare key) and the return value for
code such as:

tell app "Keychain Scripting" to get keys of current keychain

This code returns a list of all the key objects contained by the default keychain. The return value looks
something like this:

{Internet key 1 of keychain "MyPasses" of application "Keychain

Scripting", generic key 1 of keychain "MyPasses" of application "Keychain

Scripting", generic key 2 of keychain "MyPasses" of application "Keychain

Scripting", generic key 3 of keychain "MyPasses" of application "Keychain

Scripting"}. In other words, this is a reference to four different keys in the

keychain "MyPasses."
name string

This property returns the key's name as it appears in the Keychain Access control panel window.
account string

If the key involves a password (for example, a key that has an AppleShare password), then this
password is returned as a string, such as "_$0iX6."

creation date date (read-only)

This creation date property returns an AppleScript date object representing the date when the key
was created. The creation date appears when you click the Get Info button in the Keychain
Access control panel, with a specific key selected. See the Date type information in Chapter 3.

modification date date (read-only)

This modification date property returns an AppleScript date object representing the date when the
key was modified. The modification date appears when you click the Get Info button in the
Keychain Access control panel, with a specific key selected. See the Date type information in
Chapter 3.

description string

If there is any description involved with the key, such as if you included a description property in
scripting the creation of the key, then this property holds this description as a string. The return
value may be an empty string.

comment string

This value appears in the Comments text field in the Keychain Access control panel's Get Info
window. This return value can also be an empty string if there are no comments associated with
the key.

creator code class

This returns the Mac creator code for the icon associated with the key (i.e., as it is displayed in the
Keychain Access control panel). Using code such as:

get creator code of generic key 1 of keychain "MyPasses"

I get a return value in raw data:

<<class ppcx>>
file type class

This returns the key's Mac file type, which is used to match the key with a specific icon. Using code
such as:

get file type of generic key 1 of keychain "MyPasses"

I get a return value in raw data:

<<class genp>>

Chapter 3 describes the Data data type.

custom icon boolean

This returns true if the key uses a custom icon:
get custom icon of generic key 1 of keychain "MyPasses"
invisible boolean

This property returns false if the key is visible to the user.
negative boolean

This property returns true if the key prevents the keychain from being used.
password string

If the key is associated with a password (as most are), this property contains the password string.
Get all passwords associated with an unlocked keychain as a list type with the following code (if
your keychain is called "MyPasses"):

get password of (keys of keychain "MyPasses")
AppleShare key

This class is a subclass of the key class, so it has the same properties as the key class in addition
to the following specialized properties. For example, if you use the Chooser to connect to another
computer or file server via TCP/IP, and check the Add to Keychain checkbox, then an Appleshare
key is automatically created for that file server and added to the default keychain.

zone string

This string property identifies the AppleTalk zone or the IP address (as in "192.168.0.5") if
the AppleShare key connects to a computer via the TCP/IP protocol.

server string

This property returns the name of the file server associated with the key, as in "iMacHome."
volume string:

This string identifies the volume that is mounted on the desktop when you use this
AppleShare key to connect to another computer.

Internet key

This class represents a type of key that is designed to automatically log you on to a server. As a
subclass of the key class, it also inherits the properties of that class. In other words, an Internet
key also has creation-date and modification-date properties, along with its five custom props.

server string

This string returns the server address or hostname of the key to a web server, as in
my.yahoo.com for a (hypothetical) login key to Yahoo.com's servers.

path string

This property returns a string to a file or directory, such as finance/get_stock.cgi if
my.yahoo.com/finance/get_stock.cgi existed. If there is no URL path after the hostname
(my.yahoo.com) then this property is an empty string.

security domain string

This string is empty if there is no specified security-domain property for the Internet key.
port integer

This represents the TCP/IP port number, as in 80 for a typical web server.
protocol constant

The protocol can be any of the following constants:
FTP/HTTP/IRC/NNTP/POP3/SMTP/SOCKS/IMAP/LDAP/AppleTalk/AFP/Telnet. For example, if the
hypothetical Internet key was used for gaining access to an File Transfer Protocol server,
then FTP would be the protocol.

authentication constant

This property can be any one of the following constants: NTLM/MSN/DPA/RPA/HTTP
digest/default.

generic key

The key class is considered generic if it is not an Appleshare or an Internet key, such as an Apple
File Security password. For example, if you encrypt a file and opt to store the encryption passphrase
or password for that file in a keychain, this would be considered a generic key. You could reference
the key in code by its index:

tell app "Keychain Scripting" to get service of generic key 1 of

keychain "MyPasses"
service string

This is a string that usually contains the name of the key, such as the filename for a file that has
been encrypted by Apple File Security and added to a keychain.

Apple Verifier

Apple Verifier is a program that verifies whether or not the files you open with it have been digitally signed.
In Mac OS 9, you can find it in the startup disk:Applications:Security folder. Apple Code Signing is a
security measure that gives the recipient of your code a way to verify if the code came from a certain
software developer. Apple Code Signer (used to apply digital certificates to programs) is another security
program that is only distributed with the Apple Security Software Development Kit (see the note earlier in
this chapter for how to download this kit).

Syntax

tell app "Apple Verifier"

 open alias_to_signedFile

end tell

Dictionary commands

open alias or list of aliases

Apple Verifier has two commands, open and verify . Both commands apparently attempt to verify any
digital signatures applied to the file, since the open command can result in the dialog window of
Figure 12-2 . The parameter for the open command is an alias or a list of aliases:

open alias "A2gig:fm db: pbwp.fm"

Figure 12-2. Apple Verifier open command can display this result

verify alias or list of aliases

The verify command could be used to verify the digital signatures of a folder full of files by using a
list of aliases with verify , as in this example:

set folPath to ((path to desktop as text) & "today") (* get path to folder

of files to verify *)

set folList to (list folder folPath) (* get the contents of that folder into a

list type *)

tell application "Apple Verifier"

 activate

 repeat with f in folList

 verify (alias (folPath & ":" & f))

 end repeat

end tell

Chapter 13. Desktop Printer Manager

Desktop Printer Manager (DPM), shown in Figure 13-1, is an application that was introduced in Mac OS
8.5. Located in the startup disk:System Folder:Scripting Additions directory, it is controlled entirely by
Apple events and scripts. It does not have a graphical user interface or an Application Switcher icon. As an
AppleScripter you have the privilege to control these applications that others rarely know exist, as long as
they are scriptable.

Figure 13-1. Desktop Printer Manager application in the Scripting Additions folder

As you have probably figured out by its name, DPM lets you write powerful scripts that create and set
several properties of desktop printers. These are desktop icons (they can be located in folders other
than the Desktop folder) that can be used for printing or otherwise processing documents and files. You
just drag and drop the document on to the icon, as you would when manually placing a file in a folder.
Desktop printers can be created for PostScript printers, not, alas, with the trusty Hewlett-Packard
DeskJet that is connected to my Mac. PostScript is an Adobe Systems graphics programming language
that has become an industry printing standard. For instance, if you have a LaserWriter, which uses the
LaserWriter 8 driver, then you can control desktop printers with DPM. You can also create desktop
printers with the Desktop Printer Utility in the startup disk:Apple Extras:Apple LaserWriter folder .

Desktop Print Manager

Syntax

tell app "Desktop Printer Manager"

 (* Find out which installed drivers can work with desktop printers; a

 list of these drivers is stored in the drivers variable, if your

 computer has any supported drivers *)

 set drivers to supported drivers

end tell

The following dictionary commands and classes are based on the Desktop Printer Manager Version 1.0. The
DPM has been scriptable since Mac OS 8.5 (in fact, it was introduced with that OS version).

Dictionary commands

run

This command sends DPM a run Apple event to open it (this is not usually necessary since a tell
statement targeting DPM will implicitly launch the application if it's not already open).

quit

This quits the DPM app. The DPM quits automatically after it is finished processing your script, unless its
quit delay property is set to never . See the quit delay section elsewhere in this chapter.

make

You can make a new desktop printer with this command and give it some properties:

new desktop printer object

A required labeled parameter that always takes the form of:
make new desktop printer ...

not:

make new file

or some other object. See the desktop printer class description for a review of this object's properties.

at alias

This is a labeled parameter that lets you decide where to create the desktop printer icon. If you do
not include this optional parameter then the desktop printer (DTP) is created on the desktop. An
example is:

make new desktop printer at (alias "macintosh hd:desktop folder:printers:")

with properties {name: "Laser",is default: true, driver name: "LaserWriter 8",

address: addSpec } (* addSpec is a variable holding an address specification

object *)

See the address specification class description elsewhere in this chapter.

with properties record

This is a record type that holds the properties of the new desktop printer. with properties is a
required labeled parameter with the make command; the address and driver name properties
have to be identified in this record . See the at parameter description preceding this segment for
an example of the with properties parameter. Chapter 3 , describes what a record data type is.

count

This command returns an integer representing the number of desktop printers:
count desktop printers or count each desktop printer.
each desktop printer

The each labeled parameter is optional. You do not have to use each if your code has the syntax:
count desktop printers

Otherwise use:

count each desktop printer
delete reference to desktop printer

You can delete a desktop printer with code such as:
tell app "Desktop Printer Manager" to delete desktop printer "Laser"

You can also identify the desktop printer to delete by its index:

delete desktop printer 1

If there is only one DTP then:

desktop printer 1

refers to it. If there is more than one DTP, your script has to be more specific in identifying them:

every desktop printer whose protocol is "AppleTalk"

Dictionary classes

application

The application class represents the Desktop Printer Manager program itself. This class has one or
more desktop printer elements and four properties. The following is an application element:

desktop printer

This element represents one or more desktop printers. You can find out how many desktop
printers there are with code such as:

tell app "Desktop Printer Manager" to count desktop printers

Or you can get a handle on a desktop-printer object by storing it in a variable:

tell app "Desktop Printer Manager" to set dtp to¬

 desktop printer 1

The following are application properties:

default printer (desktop printer object)

This is a settable property that allows a script to decide which desktop printer the computer sends
its jobs to. If you are connected to more than one PostScript printer, then DPM scripting lets you
dynamically choose which printer will do your printing at the moment.

supported drivers (list of strings; read-only)

This property returns a value like
{"LaserWriter 8"}

which is a list of drivers installed on the computer that support desktop printers.

quit delay (default /never or integer)

This property can be set to a constant, such as never or default , or to a certain number of
seconds (e.g., 15). DPM will then quit after the last script command is processed and the
specified number of quit-delay seconds has passed (or it will not quit automatically if you set this
property to never). You could set this property to never if you expect to run DPM scripts several
times during a computing session.

credits (string ; read-only)

This is a self-congratulatory list of the Desktop Printer Manager programmers.
desktop printer

This class represents a desktop printer object. These objects are returned by the application's default
printer property, as well as by the command desktop printers or every desktop printer, which will return
a list of printers or an empty list if you do not have or cannot support desktop printers.

properties (record)

This desktop printer property returns a record type containing name/value pairs for various
desktop-printer properties. The return value looks something like this:

{name:"Graphics printer", container:alias "Macintosh HD:Desktop

Folder:", is default:true, PPD file:generic, queue size:0, queue status:idle,

queue stopped:false, shows manual feed alert:true, address:{class:address

specification, AppleTalk machine:" LaserWriter 16/600 PS", AppleTalk

zone:"Graphics_1", theme

desktop pattern:"LaserWriter", protocol:AppleTalk}, driver name:"LaserWriter 8"}
name (string)

This is the name of the desktop printer as it appears on the desktop.
container (alias)

This property lets the script set the folder that contains the desktop printer:
set container of desktop printer 1 to alias "macintosh hd:desktop folder:today"
is default (boolean)

You can use is default to find out if a desktop printer object is the default printer:
if desktop printer 2 is default then set default printer to desktop printer 1
PPD file (generic constant or alias file path)

The PostScript Printer Description file property can be either the constant generic or an alias file
path such as:

"macintosh hd:System Folder:Extensions:Printer Descriptions: LaserWriter 8500

PPD v1.2" as alias
queue size (integer ; read-only)

The queue size is the number of print jobs that the desktop printer has at the moment.
queue stopped (boolean)

This is a true/false value reflecting whether the print queue is stopped or not starting any print
jobs.

queue status (constants idle/stopped/printing/alert ; read-only)

The queue status value is one of these four constants. For example, if
tell app "Desktop Printer Manager" to get queue status of default printer

returns printing , then the default printer is printing at the moment.

shows manual feed alert (boolean)

A true/false value that turns this printer property on or off with the desktop printer object:
set default printer's shows manual feed alert to false
address (address specification object; read-only)

This represents the address or protocol/port configuration that the desktop printer is using. See the
address specification class.

driver name (string ; read-only)

This is the driver name as a string for this printer, as in "LaserWriter 8."

protocol (constants serial /AppleTalk /IP /SCSI /USB /custom /spool file /translator
/unknown ; read-only)

This is a constant representing the protocol used by the printer's address property.
address specification

This class, an instance of which is returned by the desktop printer object's address property,
represents a device specification such as a Universal Serial Bus (USB) printer. The conduit
property involves how the printer is connected to the computer, and the protocol determines how
the machine communicates with its printer, such as over a TCP/IP network (an IP protocol).

properties (record)

This is a settable record of the address spec's properties (see the Examples section at the end of
this chapter).

conduit (constants printer port , modem port , SCSI , USB , infrared)

This property is set to one of five constants. The conduit is the port by which printing data is sent.
protocol (constants serial , AppleTalk , IP , SCSI , USB , custom , spool file , translator
unknown)

The protocol is the communication method between the desktop computer and the printing
device or software. It can be set to one of nine constants, including custom .

AppleTalk address

This class designates the connection properties of a device that uses the AppleTalk networking protocol.
See the Examples section at the end of this chapter. It inherits some properties from the address
specification class, such as protocol .

AppleTalk machine (string)

This is the printer's name on the AppleTalk network.
AppleTalk zone (string)

This is the AppleTalk zone returned as a string , such as "Graphics_1."
AppleTalk type (string)

This is an AppleTalk type, such as "LaserWriter."
IP address

This class designates the connection properties of a device that uses the TCP/IP networking protocol.

This class inherits some properties from the address specification class, such as protocol .

ID (string)

This property is the IP address of the device as a string , such as "209.172.15.5."
queue name (string)

This is the queue name for this address as a string . It is not a required property if you are
making a new desktop printer with the make command.

SCSI address

SCSI address designates the connection properties of a SCSI device.

This class inherits some properties from the address specification class, such as protocol .

ID (integer)

This is a SCSI ID number such as 5 (SCSI devices have unique ID numbers).
USB address

This class designates the connection properties of a USB device such as a USB printer.

USB address inherits some properties from the address specification class, such as protocol .

name (string)

This is the USB device's name as a string .
translator address

Your desktop printer might actually be software that translates PostScript code (a PostScript file is
usually identified with a .ps suffix). The desktop printer object's protocol would be translator . This
class represents a PostScript translator output folder.

translator address inherits some properties from the address specification class, such as protocol .

destination folder (alias)

This is the alias file path for the folder that will contain the translated output.
custom Printer address

This class represents the configuration of a custom printer, which is not described by the other address
specification types.

custom Printer address inherits some properties from the address specification class, such as
protocol .

target application (alias)

This is the alias file path for an application that will process the printer data.

Examples

set err to "" --this will hold any error messages

tell app "Desktop Printer Manager"

 set addSpec to {class: address specification, AppleTalk machine:¬

 "LaserWriter 16/600 PS", AppleTalk zone: "Graphics_1",¬

 AppleTalk type: "LaserWriter", protocol: AppleTalk }

 try -- check for errors in making a new desktop printer

 make new desktop printer with properties { name: "Graphics¬ printer",

driver name: "LaserWriter 8", address: addSpec, is default:

 true }

 on error errMesg

 set err to errMesg

 end try

end tell

if length of err > 0 then display dialog "An error occurred when making¬

the desktop printer; it was:" & err

Chapter 14. Mac OS 9 Finder Commands

If automation honchos want to do anything with their computer, it's command and control the operating
system itself. You want to be able to back up, create, delete, or otherwise manage files, but only of certain
types or modification dates, for example. A programmer wants a script to be able to return information
about all of the volumes on the desktop, including the bytes of free or occupied space and the contents of
these disks. A scripter desires to find out about a machine's largest free block of memory space, then shut
the machine down or put it to sleep. These tasks and much more can be accomplished by scripting the
Finder. This is the venerable Mac application that handles the graphical interface between the user and
the machine's operating and file systems. Finder objects like icons, folders, windows, and menus are what
you see on your computer screen. The much hallowed Finder is the alternative to working solely within a
featureless window typing phrases on a single command line. The Finder provides the visual nature of the
Macintosh that has largely made this computer brand famous.

The Finder has a very large dictionary (as indicated by this chapter's extensive reference!), which exposes
objects like folders, files, disks, and the Finder application itself for scripters to do (almost) whatever they
want with. Figure 14-1 shows the Finder's application icon, which in Mac OS 9 is located in startup
disk:System Folder.

Figure 14-1. The Finder icon

You can open the Finder's dictionary by choosing File Open Dictionary... from the Script Editor's
menu, then choosing the Finder in the resulting dialog window. Figure 14-2 shows the Finder's dictionary
window. Chapter 2, describes the Script Editor and dictionaries.

Figure 14-2. Finder dictionary window

14.1 Example Finder Scripts

Before we begin our long but intriguing hike through the Finder commands and classes, we will first get our
feet wet with five short Finder scripts. These are scripts that I use all the time, so often that I frequently cut and
paste them into larger scripts. Together, they help demonstrate the power and ease of Finder scripting. These
scripts are designed to accomplish the following tasks:

Get the Operating System version that is running on the machine that hosts the script

Display the file type and creator type of files that are dragged to this "droplet"

Go into specified directories and delete the notorious "Word Work Files" that Microsoft Word 98
creates

Get the free space of each disk or volume on the desktop

Display all running processes or programs on your machine and give you the option to shut down some
of them, including invisible background applications

14.1.1 Finding Out the Operating System Version

Example 14-1 finds out which OS the computer is running by using a property of the Finder called, aptly
enough, product version . The script first saves product version , a string , to a variable called myOS . You
need to enclose this variable assignment in a tell block that targets the Finder, because product version is
a property of the Finder. Otherwise, AppleScript would not know which product version you were referring to.
The script then tests the OS version to determine if it is less than 8.5 with the following code statement:

characters 1 thru 3 of myOS

This returns a list like {"9", ".","0"}. This list is converted to text with the as text coercion statement, so
now it looks like "9.0." The entire statement is:

(characters 1 thru 3 of myOS as text)

This string ("9.0") is then coerced or converted to a real number (9.0), which is a number with a decimal
point and fractional part (unlike an integer , which is a whole number), so we can compare this number with
8.5. This coercion is not strictly necessary, but I like to make explicit conversions so I always know which
data type I am working with.

If the myOS value (e.g., 9.0) is less than 8.5, a dialog displays telling the user the script will quit. This function
derives from a script that I wrote depended on Mac OS 8.5 or greater to run properly.

Example 14-1. OS Version Retriever

getOS()

(* function definition *)

on getOS()

 tell application "Finder"

 set myOS to (product version)

 if ((characters 1 thru 3 of myOS as text) as real) < 8.5 then

 display dialog "You cannot run this applet unless the computer" &¬

 " has Mac OS 8.5. or later." & return & return &¬

 giving up after 45

 return -- quit applet

 else

 display dialog "Good, your OS is: " & myOS

 end if

 end tell

end getOS

14.1.2 Displaying the File and Creator Types of Files

It is often important to get the file type and creator type of files. These are actually two properties of the file
object, which is a class that the Finder application makes available to AppleScripters. The file type is
specifically a four-character name for the kind of file, such as 'TEXT' for a simple text file or 'APPL' for an
application file that will execute a program if you double-click it.

The Mac OS X file system supports "file types," but their use is optional and some files
may not have a file type. Some files will instead be identified by their extension, as in
textfile.txt or myapplication.app. Apple Computer suggests that scripts which rely on file
types for identifying certain files should be augmented to include a check for certain
extensions. For example, if the script is looking for all files that are pict, gif, or jpeg
image files, then it should check for file types (e.g., 'PICT' , 'GIFf' , or 'JPEG') and
certain extensions (e.g., .pct , .gif , or .jpg).

The creator type is a four-character name for the program that will try to open the file if you double-click the
file. For example, if the file has a creator type of 'ttxt' then SimpleText tries to handle it; a creator type of
'R*ch' opens BBEdit if you double-click the file. The following script is a droplet that will display the file type
and creator type of any file you drag and drop on the droplet's icon. Figure 14-3 shows what this dialog
box looks like.

Figure 14-3. The gettype droplet's dialog window

You can save a script as a droplet by enclosing its statements in an on open handler (see Chapter 2 for more
details on saving droplets). Once again, this script targets the Finder app "Finder" because the file object is
an element of the Finder class. In the following example, only the Finder knows what a "file" and "creator and
file types" are:

on open (list_of_aliases)

 tell application "Finder"

 set myfile to item 1 of list_of_aliases

 if kind of myfile is not "folder" then display dialog¬

 "creator type: " & (the creator type of myfile) & return &¬

 "file type: " & (the file type of myfile)

 end tell

end open

14.1.3 Finding and Deleting Only Certain File Types

Microsoft Word creates a lot of extra files on your hard disk when you are working on a word-processing
document. Sometimes Word never disposes of these files (say, if the computer happens to crash). The
following script helps trash these leftover files to make sure that your disk is not cluttered up with them. The
next example will delete any file in a folder the user chooses that has the following characteristics:

The filename contains "Word Work File."

The file type is "PDBN."

The creator type is "MSWD."

The creator type and file type were exposed for these files by using the script in the previous example.
The script in Example 14-2 first uses the choose folder scripting addition to get the user to select a folder. It
then calls the list folder osax to get a list of the contents of the selected folder (this list is stored in the
flist variable). Appendix A , covers the scripting additions (otherwise known as osax, or osaxen in plural
form). With each of the folder's files, the script finds out whether its name contains "Word Work File" and
whether it has a creator type of "MSWD" and file type of "PDBN." These are the only kinds of files we
want to delete. The Finder's delete command puts these files in the trash. We keep track of how many files
got deleted and display this number to the user. I call this script in Example 14-2 unceremoniously
"TrashWord."

Example 14-2. The TrashWord Script

set fol to choose folder

set counter to 0

tell application "Finder"

 set folpath to (fol as text) (* the folder path as a string, such as

"macintosh hd:desktop folder:MyFolder:" *)

 set flist to list folder fol (* returns a list of strings representing

 file paths *)

 repeat with n in flist

 if (n contains "Word Work File") then

 set f to (file (folpath & n)) (* creates file references out of

the strings *)

 if (creator type of f is "MSWD") and (file type of f is "PDBN")¬

 then

 set counter to counter + 1

 end if

 end if

 end repeat

 display dialog ("We trashed " & counter & " files")

end tell

14.1.4 Displaying the Free Space of Each Disk

Like other Mac users, I have a bunch of different volumes, which the Finder treats as separate disks, on my
desktop. It is nice to be able to monitor how much space each one of these disks has left, since each of them
inevitably fills up with files and new apps. The Finder provides some simple tools to display this data to the
user. These include the disk object, which has a free space property. This property returns the amount of
space that is left on the disk as integer bytes. So if disk "MyDisk" only had 1024 bytes left on it, then:

free space of disk "MyDisk"

would return 1024. You would have to enclose the latter code fragment in a tell statement that targets the
Finder, because the Finder application knows about disk objects and free space properties. This script,
which I call "GetFreeSpace," gets a list of all the disks and stores the list in a dskList variable. Since the
Finder application class has disk elements, you can get a list of all disks simply by sending the disks
command to the Finder. This script gets each disk's free space in megabytes with the following code phrase:

((d's free space) / 1024 / 1024)

It adds this information to a mesg string variable that is finally displayed to the user when all of the free
space and total space is computed. The result is a dialog window that looks like Figure 14-4 .

Figure 14-4. GetFreeSpace script's dialog window

You could do something else with this disk data, like store it in a database:

tell application "Finder"

 set total_space to 0

 set mesg to ""

 set dskList to disks -- get a list of disks

 repeat with d in dskList

 (* get each disk's free space as megabytes*)

 set mesg to mesg & (name of d) & ": " & ((d's free space) /¬

 1024 / 1024) & " meg" & return

 set total_space to total_space + (free space of d)

 end repeat

 (* get the total_space as gigabytes *)

 set total_space to (total_space / 1024 / 1024 / 1024)

 set mesg to mesg & return & "Here's the amount of free space you" &¬

 "have left: " & total_space & " gig"

 display dialog mesg

end tell

14.1.5 Displaying the Running Processes in a list Box and Optionally Closing Some of
Them

The "CloseApps" script of the next example displays a list in a dialog window that the user may choose from.
The list contains the names of all of the application processes that are running on the computer. These
include the programs that have a user interface (e.g., windows and menus that you can interact with) and
faceless background applications (FBAs) such as Time Synchronizer or File Sharing Extension. FBAs are
programs that work invisibly in the background without interacting with the user. CloseApps is similar to one
of the functions of the Windows NT Task Manager utility, which lets you select and shut down a process.
Figure 14-5 shows the dialog window displayed by this script. Users may choose one or more processes, and
the script will quit the selected programs.

Figure 14-5. A dialog window displays running processes

The script shown in Example 14-3 uses the choose from list scripting addition and a list of application
processes. An application process is an element of the Finder's application class. You can get a list of
all of the currently running app processes simply by requesting all of the Finder's application processes , as in:

tell app "Finder" to application processes

This phrase does not sound syntactically pleasing, but it does the job. The script gets a list of all application
processes with the code:

set applist to application processes

It then creates a list of all of the process names by getting the name property of each member of applist
(which contains the application process objects) and adding the name to the list (stored in the namelist
variable). An example of the name property of process "Application Switcher" is naturally enough "Application
Switcher." The choose from list scripting addition populates the window with the list of process names in

namelist. The user can select one or more of the list names and click the Close Em button, and the script will
send a quit Apple event withto each of the selected processes.

Example 14-3. The choose from list Script

set applist to {} -- will contain list of process objects

set namelist to {} -- will contain list of process names

set closelist to {} (* will contain list of process names that the user wants

to shut down *)

tell application "Finder"

 set applist to application processes

 repeat with proc in applist

 set namelist to namelist & (name of proc) (* get names of each

running process *)

 end repeat

end tell

Choose from list namelist with prompt "Which open applications do you " &¬

"want to close ?" OK button name "Close Em" cancel button name "Outta Here"¬

with multiple selections allowed

set closelist to the result

try

 set closelist_len to (length of closelist)

 if closelist_len is greater than 0 then

 repeat with proc in closelist

 try -- trap any errors caused by quitting the program

 tell application proc (* send a quit command to each of the selected

programs *)

 quit

 end tell

 on error number errNum

 activate

 display dialog (proc & "reported error number " & errNum & ¬

 " when trying to respond to the quit Apple event.")

 end try

 end repeat

 end if

on error number errNum (* this error triggered when the user cancels the

program *)

 if errNum is equal to -1728 then

 set theMessage to

 display dialog theMessage

 else

 display dialog

 end if

end try

Finder Commands

The following commands can be used by enclosing them in a tell statement that targets the Finder, as in:

tell app "Finder" to sleep

Dictionary commands

add to favorites reference

The Apple Menu in the upper left corner of the Mac OS 9 screen has a Favorites menu item that
includes folders and programs that are displayed or executed if you select them. You can use this
command to add to the Favorites list:

tell application "Finder" to add to favorites (folder "today" of desktop)

This adds a folder called today on the desktop to the Favorites menu.

clean up reference

This command neatly arranges buttons or icons in an open window or on the desktop:
tell application "Finder" to clean up window "HFSA2gig"

(See the Finder's View menu, which determines how Finder items like folders are aligned on the desktop.) If
you use clean up all , this command has the same effect as clean up desktop by name.

by property

This labeled parameter determines how items are arranged; e.g., by comment, modification date, name,
size, or version. An example is:

clean up desktop by name

This Finder command arranges the desktop items by their name in alphabetical order.

close reference

Use the close command followed by a reference to one or more windows. An example is:
tell application "Finder" to close window "HFSA2gig"

You can also close multiple objects:

tell app "Finder" to close every window

This command closes every Finder window on the desktop, such as folder or disk windows.

computer constant or string

The computer command provides information about the machine running the script. The following
example displays how much memory is available in megabytes, including virtual memory. This
command is the AppleScript equivalent of the Gestalt function that is part of the Macintosh Application
Programming Interface (API). You can find out more about this function at
http://developer.apple.com/techpubs/mac/OSUtilities/OSUtilities-11.html .

You can use the following constants with the computer command: CPU , FPU , hardware , memory
available , memory installed , MMU , operating system , and sound system . There are also numerous
other selectors that you can use instead of these constants, as long as you know the four-character
string and what its return value means (an integer). For example, the command computer "scr#" tells
you how many active scripting systems the computer has, and computer "sysa" indicates whether the
computer is a PowerPC (result value of 2 means yes).

tell application "Finder"

 set mem to (computer memory available)

http://developer.apple.com/techpubs/mac/OSUtilities/OSUtilities-11.html

 display dialog (mem / 1024 / 1024)

end tell
has integer

The computer command returns a boolean value if you use this labeled parameter:
tell app "Finder" to computer "sysa" has 2

This code phrase returns true if the computer is a PowerPC.

In Mac OS X, the computer command has been removed from the Finder dictionary
and placed in the Standard Additions osax as the command system attribute . You do
not have to enclose system attribute in a Finder tell block (as you have to with
computer), because system attribute is not a Finder command.

copy

This command copies selected objects to the clipboard, as long as the Finder is the frontmost program
(use the activate command first). The following example copies today to the clipboard:

tell application "Finder"

 activate

 select (folder "today" of desktop)

 copy

end tell
count reference to object

You can count the number of objects within another object, such as count files of folder MyFolder . The
command returns the number of counted objects as an integer . You can also use the form:

tell folder "MyFolder" to count files

or:

count each file of folder "MyFolder", or count every file of folder¬ "MyFolder"
each class

Use the each keyword to specify the class of the object you are counting:
tell app "Finder" to count each item of apple menu items folder

or:

Count items of apple menu items folder
data size reference to object(s)

data size returns the size in bytes of the object reference that would be returned from a get command.
In other words, if you used the phrase:

data size of (file "Boston" of desktop)

the return value would not be the size of the file on disk; it would be the byte size of the actual reference:

file "Boston" of application "Finder"

Yes, I agree, it is difficult to find a purpose for this command. Except that you can get the byte size of an icon
family with code such as:

data size of icon of (file "Boston" of desktop)
as class

If we were to use this labeled parameter with one of the aforementioned examples, the code would look
like:

data size of (file "Boston" of desktop) as reference.

In other words, data size is computing the size of a reference class type (e.g., file "Boston" of desktop), not
the file size.

delete reference to object(s)

You can delete more than one object with this command:
delete every item of folder "actions"

This code deletes all folders and files in the "actions" folder on the desktop. Or, you can use syntax such as:

delete {file "test", folder "saved template"} of folder "actions"

This is a handy method when the items that will be trashed are dynamically assembled in a list variable:

delete deleteList of folder "actions"

If you refer to files or folders in a Finder command and do not specify their container,
AppleScript assumes they are on the desktop.

duplicate reference to object

Duplicate an object like a file or folder with code such as:
tell application "Finder" to duplicate folder "today" to folder¬

 "actions" of folder "desktop" with replacing

This code will take the "today" folder on the desktop and duplicate it (reproduce it and its contents) to a
desktop folder called "actions." This code will also replace any "today" folders that are contained by the
"actions" folder. This is a good command to use when you are backing up files from one volume or disk to
another.

to location reference

You can copy or duplicate the objects to another location on your machine by using this labeled
parameter. You have to specify a valid location such as:

duplicate folder "today" to folder "2000archive" of disk "BackUp"

The location reference would be to folder "2000archive" of disk "BackUp". If you do not use this to labeled
parameter, the objects are duplicated in the same container as the original and given the original name with
"copy" appended to it.

replacing boolean

If you use replacing true then any objects with the same name located in the same container where
you are copying an object are replaced by the new object.

routing suppressed boolean

This command only applies to objects that are being duplicated to the System Folder. The Finder
automatically routes certain objects that are dropped on the System Folder like the Calculator accessory
(it is routed to the Apple Menu Items folder). If you set this labeled parameter to false then a file or
folder that is duplicated to the System Folder is not automatically routed to a certain location.

eject reference

If you just use eject alone, then every ejectable disk is ejected. For example, the following code causes
the computer to eject a zip disk from a disk drive and a floppy disk at the same time:

tell app "Finder" to eject

You can specify the disk to eject, as in eject disk "backupZip" . Using eject with a non-ejectable disk such
as an internal or external hard disk raises a script error.

empty or empty trash

The following code empties the trash:
tell app "Finder" to empty

Using this command when the trash is already empty just returns a reference to the trash, as in:

trash of application "Finder"
erase reference to disk

This command erases a disk and thereby wipes it clean of all of its data; it is the equivalent of using the
Finder's Special Erase Disk... menu command. You cannot erase a disk that has File Sharing
turned on for it (which means it is being shared over a network). You should use this command with
care (in other words, back up any disk data that you want to preserve).

exists reference to object

You can find out whether a file or folder exists with code such as:
set itExists to (exists folder "today")

If the "today" folder does not exist on the desktop then the itExists variable will be false . You have to
provide the exists command with a complete object reference or the Finder will not be able to verify the
object's existence. Another example is:

exists (file "Web Sharing Extension" of Extensions Folder)

The parentheses are optional but make the code easier to understand.

make

You can make a new element of the Finder (like a folder or text or image file) with this powerful
command. This is a useful command for such tasks as creating a log file and a folder to contain that log.

This example creates a new BBEdit text file called "theLog" on the desktop:

tell app "Finder" to make file at desktop with properties {name:¬ "theLog",

creator type: "R*ch", file type: "TEXT"}

If you leave out the at location part when making a new file or folder, then the Finder will by default make the
new file or folder on the desktop. The return value of the make command is the object that you created. The
"Finder" code sample beneath the "with properties record " section stores the new folder in a variable and
then makes a new file in that folder in the next line, using the folder variable as the new file location.

The Finder has a quirk that requires you to not use the new keyword when making a
new file, as in make file... instead of make new file... . You have to use the new
keyword in most other circumstances when making a new object. You can, however,
use the syntax "make new..." with the Finder and AppleScript 1.6 in Mac OS 9.1 and
Mac OS X.

new class

What kind of object do you want to make? Use this labeled parameter to declare whether you are
making a folder, or some other object:

make new folder with properties {name: "backup"}.
at location reference

In most cases you have to specify where you are making the new object (except for the Finder's default
behavior to make new files or folders on the desktop if you leave the at labeled parameter out of your
make statement). Be sure to specify a complete location reference as in the example under "with
properties record ."

to reference

If you are making an alias file type, refer to the alias file's original or parent file with the to labeled
parameter. This code phrase tells the Finder to make a new alias file to the Word application on the
desktop:

tell app "Finder" to make alias file to application file¬

((name of startup disk) & ":Microsoft Office 98:Microsoft Word")
with properties record

You use this labeled parameter to give the new file or folder its properties. The properties are specified
as one or more name/value pairs enclosed by curly braces (for example, a record data type). You can
find out the properties that you can provide values for by examining the object in the Finder's dictionary.
For example, before I created the following example, I found out that the Finder's folder object inherits
some properties from the container object, including the icon size property. So I included icon size
in the with properties record , with a value of large (a constant). A lot of property values, like the
names of files and folders, are strings. with properties is not a required parameter when making files
or folders. If you do not use it, then the folder is given the name "untitled folder" and the file is named
"untitled":

tell application "Finder"

 activate

 set lfol to (make new folder with properties¬

 {name:"LogFolder", icon size:large})

 make file at lfol with properties¬

 {name:"Log file", creator type:"ttxt", file type:"TEXT"}

 open lfol

end tell
move reference to object

You can move files and folders around to new locations using this command. Unlike duplicate , this
command does not create a copy of the object and leave one copy in the original place; it moves it to
the new location. This script moves a folder from the desktop to inside another desktop folder called
"actions." The script also positions the folder to a spot 10 pixels from the left edge of the parent folder
and 10 pixels down from the "actions" folder's top border. The exception is moving files or folders from
one disk or volume to another; this copies the original items to the new locations and leaves the
originals intact:

tell application "Finder"

 activate

 move folder "LogFolder" to folder "actions" positioned at {10, 10}

end tell
to location reference

This is a required parameter specifying where you want to move the object. Unless the location is on the
desktop, you have to make a complete location reference, in the form of folder "HFSA2gig:1wordfiles"
or (folder "1wordfiles" of disk "HFSA2gig") .

replacing boolean

If the replacing parameter is true then any items with the same name as the items you moved are
replaced in the new location. In other words, if the "actions" folder already has a LogFolder folder, then
the folder you moved replaces it if replacing is true . replacing is false by default.

positioned at list

You can position the item you moved in the new location by passing the move command a point object.
This is a list of coordinates specifying the upper left corner of the item's icon.

routing suppressed boolean

This command only applies to objects that are being moved to the System Folder. The Finder
automatically routes certain objects that are dropped on the System Folder icon, such as the Calculator
accessory (it is routed to the Apple Menu Items folder). If you set this labeled parameter to false then a
file or folder that is moved to the System Folder is not automatically routed to a certain location.

open reference to object(s)

You can open one or more files or folders using the Finder's open command. You can also have the
Finder create an object and then instruct another application (the object's or file's creator) to open it.
Open several objects at once by passing the Finder open command a list :

open {folder "today",folder "actions"}

This command opens two desktop folders, since the Finder assumes that incomplete folder references are on
the desktop. If you refer to files or folders without complete file or folder paths (unless they are located on the
desktop) then your code will raise an error. Since the following are hypothetically complete path references,
the Finder will open each of the folders without an error:

open {folder "Macintosh HD:Logs:JuneLogs",folder "Macintosh¬

HD:Logs:JulyLogs"}
using reference to application file

You can specify the application to open the file with this labeled parameter:
open file "Bfile" using¬

 application file "Macintosh hd:BBEdit 5.0:BBEdit 5.0:" &¬

 "BBEdit 5.1"

This code uses the BBEdit 5.0 text editor to open the file. With most files, the open command issued from the
Finder results in the file displayed by the proper software program. In other words, if you use the code open
file "bigpic.gif" and this is a Photoshop file, then the file will most likely open up in Photoshop. In this
case, the Finder's open command is the equivalent of double-clicking the file.

with properties record

This command is designed to pass some object properties along to the application when you are
specifying another program to open the file or folder:

using application file "MyProgram" with properties¬ {name:"Newfile"}

But I assume that few programs support this syntax with the Finder's open command, since I have had
difficulty finding any:

tell application "Finder"

 activate

 set bpath to "macintosh hd:BBEdit 5.0:BBEdit 5.0:BBEdit 5.1"

 set tf to (make file at desktop with properties¬ {name:"sfile2",

creator type:"R*ch", file type:"TEXT"})

 open tf using application file bpath

end tell
print reference to object(s)

This does what you would expect it to do-prints a file with code such as print file "myfile" .
Selecting a printer in the Chooser before using this command helps avoid errors with it.

with properties record

This command is designed to pass some object properties along to the application that will print
the file, but the program must support this extension to the print command (which makes it is
difficult to find an effective use for this parameter).

put away reference to object

put away serves two main purposes: to eject disks and to return files and folders from the desktop to the
disk or folder where they came from. The example below puts two files that were placed on the desktop
back into the folders where they were saved. As you can see, you can pass a list as a parameter to
the put away command to put away multiple objects. Or you can just use a single object like a disk as
the parameter. If disk "flop" was a floppy disk, then using the code

put away disk "Flop"

would eject the disk. The code is the equivalent of selecting the disk icon and typing Command-Y :

tell application "Finder"

 activate

 put away {file "finderclasslist", file "findercomlist"}

end tell
quit

This command quits the Finder. If you want to close the Finder, essentially shutting down the
computer's operation, you might as well use the more intuitive restart and shutdown Finder commands.

restart

This command is the equivalent of choosing the Restart menu item in the Finder's Special menu. It
closes all open programs and restarts the computer.

reveal reference to object

When used with a running program, reveal makes that program the frontmost one in the Finder. You
would normally use the activate command to initiate this behavior. You can also use reveal to open a
folder in a disk:

reveal folder "Macintosh HD:MyFolder"

This code opens the "MyFolder" folder and makes it the frontmost item on the desktop. Using reveal with other
desktop items like document files selects those items but does not open them into a window (use open to do
that).

select reference to object(s)

You can select one or more objects on the desktop with this command. For instance, if you record a
Finder operation in which you click on and open various objects, the recorded script usually contains a
lot of select commands. Once you have selected the objects, you can use the term "open selection," as
shown in the following example:

tell application "Finder"

 activate

 select {disk "HFSB2gig", disk "HFSA2gig"}

 open selection (* opens two Finder windows showing the contents of each

disk *)

end tell
shut down

This command closes open applications and shuts down the computer; it is equivalent to choosing Shut
Down in the Finder's Special menu.

sleep

This command powers down the computer but does not shut down open applications. The Finder is
restored to its initial state once the computer "wakes up" after a key is tapped. The command is
equivalent to choosing Sleep in the Finder's Special menu.

sort list of references

You can sort files or folders by various properties such as creation date, modification date, name, or
size. The by part of the command is required. sort 's return value is the sorted list of objects. If you sort
files by date, the sort will be in the order of newest files first; if you sort by name, then the sort will be in
alphabetical order. The following example sorts the files in a certain folder by their creation date:

tell application "Finder"

 activate

 sort files of folder "HFSA2gig:1wordfiles:fol1" by creation date

end tell
by property

This required labeled parameter specifies how to sort the objects. You can use all kinds of properties
with the sort by command; it depends which object(s) you are sorting. For example, you can use the
following properties, among others, to sort files: creation date, creator type, file type, kind, modification
date, name, and size.

update reference to object

This command updates the display of objects like windows and disks to match their representation on
disk. This task is usually done automatically by the operating system. The effect of this command is to

force the update of, for instance, a disk on which a script has made a lot of changes.

Chapter 15. Mac OS 9 Finder Classes

The best way to script the Finder under Mac OS 9 is to get up close and personal with its object model.
What is an object model? An object model is an abstract depiction of a software program (such as the
Finder). This model, similar to an architectural model of a house or landscape design, conveys the
program's behavior or what it is designed to do in the form of functions and commands, for example:

shut down

or:

get size of folder "giantFolder"

The object model also depicts the software units that comprise the software, along with the elements or
properties that distinguish the Finder from other Mac software programs. The values of elements and
properties differentiate one version of the Finder from another. You might recall from the brief Chapter 1,
object discussion that an object has exactly one of its properties (e.g., the Finder has one name property
and that is, as you might have guessed, "Finder"). A person object might have an age property. They can
only have one age value at any given time, except for those of us in our forties who are fond of trying to
recapture our twenties (we can have two ages at any given time, chronological and imagined). On the
other hand, an object can have zero or more elements. For instance, the Finder has an item element,
because the Finder usually works with numerous items during its computing session, such as disks,
folders, and files. Figure 15-1 shows the Finder's object model, including its elements and properties.

Figure 15-1. Finder's object model

If you have ever dealt with object-oriented software and design before, then you might have guessed that
Finder elements and properties are associated with classes and objects too. An inheritance structure
defines Finder elements. This structure is summarized in Figure 15-2.

The Finder objects, and their elements and/or properties, are listed in the Finder's
dictionary window. You can display this window by choosing File:OpenDictionary...
when you are in Script Editor, then selecting the Finder in the resulting dialog
window.

The inheritance structure is like a family tree. At the top of this structure is the item. Most things that you
refer to in scripts inherit from the item class and are therefore item objects, such as disks, files, and
folders. An item has properties such as folder (the folder that contains the item), name (a string like
"Myfolder"), size (the logical size in bytes of the item), and creation date (the date the item was first
saved to the hard disk). Figure 15-2 shows a subset of the properties for each object beneath the object's
name. Some of these objects, such as document file, a specialized subclass of file, do not have
separate properties compared with their parent class.

Figure 15-2. Summary inheritance tree for various Finder objects

If an object, such as a file, inherits from or is a child object of the item class, then it also has name,
folder, size, and creation date properties. The container object also inherits from the item class;
sharable container in turn inherits from the container class and adds some of its own file-sharing
related properties such as owner and shared (a true/false value). Finally, the disk and folder objects are
child objects of sharable container. They also inherit from the super class (container) of their own
parent (sharable container), so they have the properties of the container class, such as entire
contents. If you work your way up the inheritance tree, then you find that disks, files, and folders are also
items, and in this case inherit all of the item's properties.

When using the Finder's make command to create new objects, you have to stick to
specific, non-abstract classes such as files and folders. You cannot "make" a new
sharable container or item, for instance. But you can get a list return value of all
items or sharable containers with the following code phrases: tell app "Finder"
to get sharable containers or get items. See Example 15-1.

For example, a disk has all of the properties of sharable container. Example 15-1 gets all of the
sharable container-related properties of a disk for viewing in the Script Editor's Event Log (Chapter 2,
describes the Event Log window). But a disk also has its own properties that another sharable container
does not have, like such as space (the number of free bytes left on the disk) and ejectable (a true/false
value for whether it can be ejected from the computer).

Example 15-1. A Disk's sharable-container Properties

tell application "Finder"

 (* use Event Log to view values *)

 set d to disk "HFSA2gig"

 d's owner

 d's group

 d's owner privileges

 d's group privileges

 d's guest privileges

 d's privileges inherited

 d's mounted

 d's exported

 d's shared

 d's protected

end tell

Finder Classes

In summary, getting to know Finder objects such as the application and item classes is a tremendous benefit to
scripters. The following section describes the 36 classes that are part of the Finder dictionary in Mac OS 9.
Remember that an object can have more than one of its elements, such as the Finder application's container
windows, but only one value for each of its properties. If you want to get a list of all of an object's values for a
certain element, enclose the element in plural form in a tell statement targeting the object, as in the following
(which returns all open container windows in a list):

tell app "Finder" to container windows

It only sounds weird because I've left out the unnecessary get part of get container windows . Forthwith are all of
our Finder classes.

Dictionary classes

alias file

This class represents an alias , which is a file that points to another file . For example, if you select a file
called myfile and type Command-M, then this action creates an alias file in the same folder with the name
"myfile alias" in italics. The following is an alias file property:

original item reference

This property returns the original item that the alias points to. For instance, if you make an alias
file that opens Photoshop 5.5 when you double-click it, then this alias file's original item property
returns:

file "Adobe Photoshop 5.5" of folder "Adobe Photoshop 5.5" of¬ startup

disk of application "Finder"
alias list

This is a class that represents a list of aliases (surprise, surprise). It can be handy to use this class with the
as keyword to convert a bunch of file or folder references to aliases. Why would you want a list of
aliases instead of file object references? One reason is that it is very easy to get the path of an alias in a
readable form; you just coerce the alias to a text type, as in:

set thePath to myalias as text

This code returns a string that gives you the full path on the computer to the file. Overall, the reference alias
"HFSA2gig:1wordfiles:fol1:file.1" is more intuitive to me than the reference:

file "file.1" of folder "fol1" of folder "1wordfiles" of disk¬ "HFSA2gig"

To coerce a list of file references to an alias list , you would use code such as:

set myAlls to fileList as alias list
application

This class represents the Finder itself. See Figure 15-1 for a visual depiction of the Finder application
object and its elements and properties. You can grab a list of references to any of the elements by using
the plural version of the element as a command:

tell app "Finder" to application processes

This code returns a list of all the programs that are running on the computer at the moment.

The following are application elements:

accessory process

An accessory process is an application such as Calculator or Note Pad that is installed with the Mac
system. Use the code every accessory process to get a list of the running accessory processes. See the
accessory process class description.

accessory suitcase

This is a type of suitcase that can only hold desk accessory files. See the suitcase and accessory
suitcase class descriptions.

alias file

The command every alias file returns all the alias files that currently reside on the desktop. See the
alias file class description.

application file

These are files that launch an application, including an AppleScript applet, when double-clicked. The
command application files , when sent to the Finder, returns all of the app files that reside on the desktop
(application process es will return all the running programs, on the other hand). See the application file
and application process class descriptions.

application process

These elements are the software programs, including some of the invisible system programs, that are
running on the computer at the moment. See the application process class description.

clipping window

These are the windows that the Finder displays when you double-click on a clipping file. See the clipping
window class description.

clipping

A clipping is a (usually) small file that can be dragged into programs that support drag-and-drop behavior.
Get every clipping on the desktop with code such as:

tell app "Finder" to clippings

See the clipping class description.

container window

This is a more specialized type of window that inherits from the window class. If you send the Finder a

command that looks like container windows , the return value is a list of windows. An example return value
is:

{container window of folder "chap15Scripts" of application "Finder"}

See the container window class description.

container

A container is a super class for other objects such as disks, folders, and sharable containers. You can
encompass all of the desktop objects that can contain something with code such as:

tell app "Finder" to get containers
content space

This is a broad abstraction of the window class that includes all open windows and the desktop. If you use
code such as items of content spaces , then you will get a possibly large list of references to every
folder and file on the desktop and in any open windows. If you have a disk window open, this will be a
very large list.

desk accessory file

desk accessory file s are the files that you would double-click to open programs such as Calculator or the
Chooser. See the desk accessory file class description.

disk

A disk is a type of sharable container . You can get all of the disks mounted on the desktop, including the
computer's own disks and network volumes, using code such as:

tell app "Finder" to get disks

This returns a list of disk references that looks like:

{disk "B2gig", disk "scratch_disk", startup disk, disk "Z2gig"}
document file

Getting the Finder's document file elements only returns text, word-processing, and image files, not alias ,
clipping , and other file types. Use code such as:

tell app "Finder" to get document files

This can be a more efficient way to pull word-processing files out of a very large folder, rather than getting all files
first into a giant list then sifting through them. See the document file class description.

file

file is an element that encompasses all types of files, from application and alias files to document files. If
you want to distinguish the files from the folders in a directory, then you can use code such as:

tell app "Finder" to get files of folder "today"

See the file class description.

folder

If you send the Finder a getfolders or geteveryfolder, command then AppleScript returns references to all
folders and disks on the desktop. In this case, a disk is considered a specialized kind of folder, even though

its dictionary definition indicates that disk inherits from the sharable container class (just as folder objects
inherit from the sharable container class).

font file

This file is usually located in a font suitcase , but you can pull it out of the suitcase if you want and take a
look at it. An example of a font file is Verdana (bold, italic) inside the Verdana suitcase. See the font file
class description.

font suitcase

These are suitcase s that can only contain font files . See the font suitcase class description. This
code gets the Finder's hundreds of font suitcase s from inside the Fonts folder in the System Folder :

get font suitcases of fonts folder
information window

This is the specialized window type that opens up when you select a file , folder , or disk and type
Command-I . See the information window class description.

internet location

This element is a file that contains an Internet location. See the internet location file class description.

item

An item is a super class for several child objects such as aliases, clippings, disks, files, and folders. If you
want an indiscriminate (and large) list of all the stuff on the desktop, use code such as:

tell app "Finder" to get items

See the item class description.

package

A package is a special kind of folder that is designed to contain an application, an alias to the program,
and perhaps support files such as help files and libraries. The following web site describes packages:
http://developer.apple.com/technotes/tn/tn1188.html . See the package class description.

process

This class is the parent class for other types of processes, such as application processes and accessory
processes. The following code fetches a list of the currently running processes on the machine:

tell app "Finder" to get processes

A sample return value is:

{process "BBEdit 5.1" of application "Finder"}

(although the actual return value contains a dozen or more process objects). See the process class description.

sharable container

This is the parent class for a folder or disk , for instance, that has file-sharing related properties such as an
owner and a shared true /false value. The code phrase tell app "Finder" to sharable containers returns

http://developer.apple.com/technotes/tn/tn1188.html

a list of these desktop objects. See the sharable container class description.

sound file

This element represents files that contain sound data. An example Finder reference to a sound file is:
item "ChuToy" of suitcase "System" of folder "System Folder"¬

of startup disk of application "Finder"

You can get the sound files that provide your system's sound effects with code such as:

get sound files of suitcase

"system" of system folder.

See the sound file class description.

suitcase

A suitcase is the parent class for accessory suitcases and font suitcases.

window

This class is what you expect it to be: a window that opens when you double-click a folder or disk . It is also
the super class to specialized window types such as information windows, preferences windows, and clipping
windows (which inherit the properties of the window class). Using code such as:

tell app "Finder" to get windows

only returns Finder windows, however, not application windows such as Script Editor's or BBEdit's. Therefore, you
can have a desktop full of open application windows, and get windows can still return an empty list . See the
window class description.

The following are application properties:

about this computer list of processes (read-only)

This property returns a list of running processes on the computer. It is associated with the About This
Computer dialog window from the Mac OS 9 Apple menu. You then can get memory-use information by
querying each of the returned process objects. See the process class description.

clipboard reference (read-only)

This property returns the Finder's clipboard window. You can open this window by telling the Finder to open
clipboard . The clipboard contains the contents of anything that the Finder or another application has
selected and copied.

desktop (read-only)

desktop returns a desktop object value that represents your desktop. See the desktop object class
description. One easy way to get the text path to a computer's desktop is to use this code phrase inside of a
Finder tell block: (path to desktop as text) . This returns a string such as "Macintosh HD:Desktop
Folder:."

execution state constant

The execution state property returns on eof the following six constants: restarting , starting up , running
, rebuilding desktop , copying , or quitting . This property is only available on the systems that are
running OS 9.1 or later. Execution state allows the script to determine whether it has been called as part of
a computer shutdown or restart, for instance.

file sharing boolean

This is a true /false value indicating whether file sharing is turned on. You can turn file sharing off or vice
versa with code such as:

set file sharing to false
Finder preferences preferences (read-only)

This property returns a preferences object, from which you can get all kinds of information about the
preferences you are using for viewing files and folders (see the preferences class description). For example,
if you want to find out whether a file-list view in a folder includes the file's comments, use code such as:
shows comments of Finder preferences (a true/false value).

This is the equivalent of going to the Finder's View:View Options... menu.

frontmost boolean

If the Finder is the frontmost application then this property returns true . You can make the Finder the
frontmost application by telling the Finder to activate or by using syntax such as:

tell app "Finder" to set frontmost to true
insertion location reference (read-only)

This property returns a reference to the folder in which a new untitled folder would appear if you typed
Command-N on the keyboard. It is an indication of which Finder window (i.e., the desktop itself or an open
window on a disk) is active at the moment.

largest free block integer (read-only)

This handy property returns the number of bytes that represents the largest free block of RAM that can be
used to open an application. This information is also available from the Apple menu's About This Computer
window. You can get the largest free block in megabytes by dividing this property twice by 1024, as in:

(largest free block / 1024 /1024)
name international text (read-only)

This property returns the Finder's text name, "Finder."

product version international text (read-only)

This property returns the following string on my machine: "9.0.4 PowerPC Enabler 9.0.4" . See "Finding
out the Operating System Version" in Chapter 14 .

selection reference

Anything that happens to be selected at the time (such as a file or folder on the desktop) is returned as a
reference by the selection property. Code such as:

tell app "Finder" to get selection

provides a "list of references" return type such as {file "Internet Explorer" of application "Finder"} .

sharing starting up boolean (read-only)

If file sharing is in the process of starting up then this property returns true .

version international text (read-only)

This returns the version of the Finder, such as "9.0."

visible boolean

If the Finder layer, your desktop, is visible, then this property returns true . Setting it to true when you have
a bunch of application windows (such as Photoshop palettes or word-processing windows) covering up the
Finder has no effect, however. In other words, setting visible to true will not reveal the Finder and push the
other windows out of the way.

application file

An application file is a child class of file that adds a few more properties. In other words, it inherits
some file properties such as file type and creator type . This is a file that you double-click to open a
software program.

The following are application file properties:

accepts high level events boolean (read-only)

If the program accepts high-level events such as Apple events, then this property returns true.
has scripting terminology boolean (read-only)

If the application has a dictionary that you can view in Script Editor, for example, then this property is
true . Version 1.4.3 of Script Editor, however, returns false for this property.

minimum size integer

This property is derived from the Memory section of the Get Info window (select an application and
type Command-I). Its return value represents the minimum memory size in bytes that can be used to
run the program.

preferred size integer

This property is derived from the Memory section of the Get Info window (select an application and
type Command-I). Its return value represents the preferred memory size in bytes that can be used to
run the program. If there is enough memory when the software program is executed, then this is the
amount of RAM in Mac OS 9 reserved for the application.

suggested size integer (read-only)

This property is derived from the Memory section of the Get Info window (select an application and
type Command-I). Suggested size is provided by the application file's programmer; you cannot
change it. Its return value represents the suggested memory size in bytes that should be used to run
the program.

application process

When an application file is executed and runs on your machine, it becomes one of the application
processes. This is a child object of the process class and thus inherits process properties, such as

name , file type , and creator type . The following example gets the name and creator type of all
the current application processes in two separate lists. The bottom of the example shows a sample
return value. The first list is all the names, and the second is the creator types:

tell application "Finder"

{name, creator type} of application processes

end tell

(* return value sample *)

{{"Control Strip Extension", "DAVE Sharing Extension", "Folder

Actions", "HP Background", "OSA Menu Lite", "Time Synchronizer", "Web

Sharing Extension", "ShareWay IP Personal Bgnd", "Outlook Express",

"Adobe® Photoshop® 5.5", "BBEdit 5.1", "FileMaker Pro", "StuffIt

Deluxe™", "Microsoft Word", "Script Editor"}, {<<class sdev>>, <<class

TSSS>>, <<class ssrv>>, <<class HPBG>>, <<class osaL>>, <<class tims>>, <<class

wbsh>>, <<class aIPG>>, <<class MSNM>>, <<class 8BIM>>, <<class R*ch>>, <<class

FMP3>>, <<class SIT!>>, <<class MSWD>>, <<class ToyS>>}}
application file

This returns the file that is associated with the application process as an application file object.
See the application file class description.

clipping

A clipping is a file that is created automatically when you drag text from a document window, for
instance, to the desktop. You can then drag the clipping from the desktop to another document
window to reproduce the text. For example, you can drag an address from a word-processing
document on to the desktop and create a clipping , which can then be dropped onto an email
message window. Figure 15-3 shows the clipping file icon. A clipping is a subclass of the file
class, so it has some file properties such as creator type and file type .

Figure 15-3. A clipping file

clipping window

This class represents a Finder window that is produced when you double-click on a clipping . It is a
subclass of window , and thus has some window properties such as bounds (which is a list of
coordinates such as {525, 47, 825, 247} that represent the screen positions of the upper left and
lower right window corners). See the window class description.

container

A container is a folder or a disk (an item that contains other items). container is a subclass of item
, so it inherits all of item 's properties. It also has its own properties, which are specified in the
following list. container is the super class of folder and disk . You can get all the desktop containers
with code such as:

tell app "Finder" to get containers

All of the elements described here can be contained by a container (i.e., a container can contain
accessory suitcases and alias files). The following container elements are described in their
corresponding class description in this chapter:

accessory suitcase

alias file

application file

clipping

container

desk accessory file

document file

file

folder

font file

font suitcase

internet location

item

package

sharable container

sound file

suitcase

The following are container properties:

completely expanded boolean

You can completely expand a container such as a folder in "list" view by using the command:
set completely expanded of folder "today" to true

This command opens up the disclosure triangles in the folder's list view to show the contents of all folders
and nested folders.

entire contents reference

This very handy property returns the entire contents , nested folders and everything, of a container
. However, this property can be very unreliable, according to an AppleScript veteran who reviewed this
book, particularly when dealing with a relatively large number of items in a container. In some of these
cases, depending on unknown factors, the entire contents property returns incomplete results but
does not raise an error.

expandable boolean (read-only)

If the container can be expanded as an outline, then this property is true .

expanded boolean

If the container , like a folder , is expanded so that the contents of folders are listed, then this
property is true . It is settable if the container is in "list" view (i.e., View:as List in the Finder menu).

icon size integer or mini/small/large

You can specify the size of icons in the container as either an integer or one of the constants mini ,
small , or large . The integer values are large (0), small (1), and mini (2).

selection reference

The items that are selected in the container , if any, are returned as a list of references when this
property is invoked. For example:

get selection of container "today"

A return value might be:

{file "find_objmodel.psd" of folder "chap15Scripts" of application "Finder"}
container window

This is a kind of Finder window that contains items, such as a folder that is double-clicked to produce a
window. It has all of the window class's properties, depending on whether the container window is set
as a pop-up window or a standard Finder window in Finder's View menu. It also has some of its own
special properties, which can be obtained with syntax such as:

calculates folder sizes of container window "today"

The following are container window properties:

button view arrangement constant

This property returns one of the following constants: not arranged , snap to grid , arranged by name
, arranged by modification date , arranged by creation date , arranged by size , arranged by
kind , arranged by label .

calculates folder sizes boolean

If the size of contained folders are displayed in the container window , this property is true . You can
set it for the applicable container windows (in other words, not for suitcase windows).

container reference (read-only)

This property returns a reference to the container associated with this window.

has custom view settings boolean

If this container window uses the default view settings from the Finder preferences window then this
property is false .

item reference (read-only)

This property returns a reference to the item associated with this window.

previous list view constant (read-only)

This property returns one of the column names from a folder in list view, such as Name, Date
Modified, or Size.

shows creation date boolean

This is a true /false value indicating whether the creation-date column is showing in the folder or disk
window. The property is settable when the container window is in list view.

shows kind boolean

This is a true /false value indicating whether the kind column is showing in the folder or disk window.
The property is settable when the container window is in list view.

shows label boolean

This is a true /false value indicating whether the label column is showing in the folder or disk window.
The property is settable when the container window is in list view.

shows modification date boolean

This is a true /false value indicating whether the Date Modified column is showing in the folder or
disk window. The property is settable when the container window is in list view.

shows size boolean

This is a true /false value indicating whether the size column is showing in the folder or disk window.
The property is settable when the container window is in list view.

shows version boolean

This is a true /false value indicating whether the version column is showing in the folder or disk
window. The property is settable when the container window is in list view.

sort direction normal/reversed

If you set the sort direction to reversed, then the name column for instance lists filenames in
reverse alphabetical order, and the Date-Modified column lists the most recently modified files last.

spatial view arrangement constant

This property determines how icons are arranged in a container window . It can be set to one of the
following constants: not arranged , snap to grid , arranged by name , arranged by modification
date , arranged by creation date , arranged by size , arranged by kind/arranged by label .

uses relative dates boolean

If this is set to true then the Date Modified column uses relative dates like today and yesterday .

view constant

This property returns the currently selected column, such as Name or Date Modified.

content space

The following code returns all open Finder windows and the desktop:
tell app "Finder" to get content spaces

There are easier ways to get a reference to the desktop, such as through the Finder's desktop property. Use
the phrase (path to desktop as text) to get any Mac's file path to the desktop (as long as that machine
has the path to scripting addition installed).

desk accessory file

The files that launch the Calculator and the Chooser are considered desk accessory files . See the
desk accessory process description.

desk accessory process

If you launch the Calculator process class or the Chooser, they are considered desk accessory
process es and inherit some of their properties. For example, if the Chooser is running then the code:

tell app "Finder" to get desk accessory processes

returns a value that looks like:

{process "Chooser" of application "Finder"}

The following are desk accessory properties:

desk accessory file reference (read-only)

This property returns the desk accessory file that is associated with the process .

desk accessory suitcase

This is a special kind of suitcase for desk accessory file s. A suitcase is like a folder (even though
it is a file subclass!), but it can only contain certain types of files like font files. You will get an icon
on the desktop that looks like Figure 15-4 if you tell the Finder to make new desk accessory suitcase
(it is created on the desktop by default because the latter code phrase did not specify a location with
the make command).

Figure 15-4. A new desk accessory suitcase

The following is a desk accessory elements:

item

If you want to get the contents of a desk accessory (DA) suitcase stored in a da_suit variable, for
example, then items of da_suit returns a list of items or an empty list if the suitcase is empty.

desktop object

This is the object that is returned when you get the Finder application's desktop property. Actually, the
desktop is the Finder's default property, so you can use syntax such as in the following example to get
all the alias files on the desktop, without even referring to the desktop property:

tell application "Finder"

(* returns all the alias files on the desktop in a list *)

alias files

end tell

The definitions of the following desktop object elements are the same as their class descriptions in this
chapter:

accessory suitcase

alias file

application file

clipping

container

desk accessory file

disk

document file

file

folder

font file

font suitcase

internet location

item

package

sharable container

sound file

suitcase

The following is a desktop object property:

startup disk disk

Since the desktop is the Finder's default property and does not have to be explicitly invoked, every
time you refer to startup disk in a Finder tell statement you get this disk object as a return value.
You can then find out valuable things about the startup disk, such as how much free space is left on it:
free space of startup disk. See the disk class description.

The Scriptable Startup Disk in Mac OS 9.1

The Startup Disk control panel is scriptable in Mac OS 9.1. For example, the startup disk

alias property returns an alias to the disk that contains the System Folder from which the
computer started up. You can also get the value of the System Folder from which the computer
started up with the startup system folder alias property. Startup Disk's dictionary also has
two boolean properties: netboot and localboot (a true/false value indicting whether the
computer will boot from a local disk). Localboot did not return any value in my testing. NetBoot
is a service provided by Mac OS X server that allows Power Mac computers and PowerBooks
to login and boot directly from a server rather than a local hard disk. See the technical note at
http://developer.apple.com/technotes/tn/tn1151.html . In Script Editor, choose File Open
Dictionary to see the Startup Disk's dictionary. Chapter 1 and Chapter 2 of this book describe an
application's or control panel's dictionary.

trash trash-object

This is the class for that trusty drum that sits on your desktop. It is a container for items that are

http://developer.apple.com/technotes/tn/tn1151.html

deleted when you "empty" the trash (by sending the Finder an empty command). You can get the
contents of the trash by querying the items of trash . The trash object class only has one distinct
property called warns before emptying . This is the equivalent of checking the "Warn before
emptying" checkbox in the trash's Information Window (select the trash icon and type Command-I).

disk

A disk is a specialized container or sharable container , and thus inherits the properties of these
parent classes along with embodying a few attributes of its own. Important properties for managing
disks in AppleScript are capacity and free space . The following code finds all the alias files on a
disk , including those buried in any nested folders:

tell application "Finder"

 alias files of (entire contents of disk "HFSA2gig")

end tell

The descriptions of the following disk elements are the same as their class descriptions:

accessory suitcase

alias file

application file

clipping

container

desk accessory file

document file

file

folder

font file

font suitcase

internet location

item

package

sharable container

sound file

suitcase

The following are disk properties:

capacity integer (read-only)

This property returns the total number of bytes on the disk , including the used and free space. You
can get this figure in kilobytes by using (capacity / 1024) and in megabytes by using (capacity /
1024 / 1024) . The parentheses are not required but make equations easier to read and perhaps
comprehend.

ejectable boolean (read-only)

If the disk is ejectable like a floppy or zip disk, then this property returns true .
free space integer (read-only)

This property represents the number of bytes of free space on the disk. To get the free space in
kilobytes use:

(free space / 1024); in megabytes (free space / 1024 /1024)
local volume boolean (read-only)

You can determine whether the disk is a local or network disk with this true /false property (if it's
true then it is local, like one of your hard disks).

startup boolean (read-only)

If the disk is the startup or boot disk, then this property is true . An easy way to get a reference to the
startup disk is by using the following code (or something similar to it):

tell app "Finder" to get name of startup disk
document file

A document file is a subtype of the file class that has a different file type than other kinds of files. A
document file might have a file type of 'TEXT' while an application file has a file type of 'APPL' . If
you want to just get references to the text and word-processing files on the desktop, for example, use code
such as:

tell app "Finder" to get document files

The document file class inherits all of the file class's properties.

file

file is the super class for the other file subtypes, such as document file , alias file , and application
file . It is also a subclass of item so it has an item's properties. There are generally two ways to refer to
files. The Finder's terminology is the inside-out method of file referral, as in:

file "chap15" of folder "today" of desktop

You can also use the keyword file followed by the full path to the file , as in:

file "macintosh hd:desktop folder:today:chap15"

One easy way to get a file reference is to hit the record button on Script Editor then select the file in the Finder.
Or, select the file and paste the reference inside of a Finder tell statement by using Script Editor's Edit:Paste
Reference menu item.

The following are file properties:

file type class type

This property is the four-character code for the file's file type . An example is 'APPL' for an application
file .

creator type class type

This property is the four-character code for the file's creator type .
locked boolean

If the file is locked (by checking the locked checkbox in the file's Get Info window, which is displayed by
selecting the file and typing Command-I), then you cannot save any changes to it. You can set a file's locked
property with syntax such as:

set locked of file "chap15" to true
stationery boolean

If the file is a "stationery pad" or a template for making new files, then this property is true .
product version international text

This is the product version in the file's Get Info window. This can be an empty string (" ") if there is no

valid product version number for the file .
version international text

This is the version at the bottom of the file's Get Info window. This can be an empty string (" ") if there is no
valid version .

folder

This is a class for a typical Finder folder . It is also a subclass of sharable container and, further up the
inheritance tree, container and item . Therefore, it also shares the relevant properties of those classes.
You can get all of the folders in a directory tree with the following simple AppleScript command in Mac OS
9:

tell app "Finder" to get folders of (entire contents of folder¬ "bigDeepFolder")

All of the following folder elements, the things that you can place and store in a folder , are the same as their
class descriptions in this chapter. Refer to them in the manner of document files of folder "today" . Or, more
generally, items of folder "today" . The following are folder elements:

accessory suitcase

alias file

application file

clipping

container

desk accessory file

document file

file

folder

font file

font suitcase

internet location

item

package

sharable container

sound file

suitcase

font file

A font file is a special subclass of file that usually lives in the startup disk:System Folder:Fonts folder. It
has all of the relevant properties of a file and, by extension, an item .

font suitcase

This is a special kind of suitcase or container that can only contain font files. Figure 15-5 shows a font
suitcase . A font suitcase inherits from suitcase and file ; it has a file type of 'FFIL' The following
are font suitcase elements.

Figure 15-5. A font suitcase file

item

You can get a list of a font suitcase 's contents with syntax such as:
items of suitcase "Adobe Sans MM" of fonts folder.

icon family

This class is the return value for the icon property of an item . Items like files and applications on the
desktop have icons that visually identify them. You can get the data for these images by querying their
icon properties. The following example stores in a variable the icon property of a desktop file, then
gets the icon's small eight bit icon property. The return value for the small eight bit icon property is of
type raw data (see Chapter 3 for the raw-data description). The following code shows an example
raw-data value for this icon family member. The raw data value mostly consists of a long series of
hexadecimal numbers (e.g., AFFF). The return value in the dictionary entry for icon family (e.g.,
"ics8") is a four-character code that represents a particular icon type. A sample abbreviated version
of this return value is <<data ics8000000...>>. Broken down into its components, this is the left
double-arrow or guillemet character ("<<"), followed by the word "data" and a space, then the four-
character identifier for the icon (e.g., "ics8"), a long series of hexadecimal numbers, and finally the
closing guillemet (">>").

tell application "Finder"

 set ic to icon of file "auto_insure_info"

 small eight bit icon of ic

end tell

(* sample return value for 'small eight bit icon' *)

<<data ics8000000FFFFFFFFFFFFFFFFFFFF000000000000FFF5F5F5F5F5F5F5F5FFFF

0000000000FFF5FFF5F5F5F5F5F5FF2BFF00000000FFFF2AFFF5F5FDFDF5FFFFFFFF00000

0FF2A2A2AFFF5F5F5F5F5F5F5FF0000FF2AFF2A2A2AFFF5F5FDFDF5F5FF00FF2A2AFF2A2A

2A2AFFF5F5F5F5F5FFFF2A2A2AFFFFFF2A2A2AFFF5FDFDF5FFFF2A2A2AFF2A2AFF2A2AFFF

5F5F5F5FF00FF2A2AFF2A2AFF2AFFF5F5FDFDF5FF0000FF2AFFFFFF2AFFF5F5F5F5F5F5FF

000000FF2A2A2AFFF5F5FDFDFDF5F5FF000000FFFF2AFFF5F5F5F5F5F5F5F5FF000000FFF

5FFF5F5FDFDFDFDFDFDF5FF000000FFF5F5F5F5F5F5F5F5F5F5F5FF000000FFFFFFFFFFFF

FFFFFFFFFFFFFF>>
large 32 bit icon 'il32'

The large 32-bit color icon for the file
large 4 bit icon 'icl4'

The large 4-bit color icon
large 8 bit icon 'icl8'

The large 8-bit color icon
large 8 bit mask 'l8mk'

The large 8-bit mask for large 32-bit icons

large monochrome icon and mask 'ICN#'

The large black-and-white icon and the mask for large icons
small 32 bit icon 'is32'

The small 32-bit color icon
small 4 bit icon 'ics4'

The small 4-bit color icon
small 8 bit icon 'ics8'

The small 8-bit color icon
small 8 bit mask 's8mk'

The small 8-bit mask for small 32-bit icons
small monochrome icon and mask 'ics#':

The small black-and-white icon and the mask for small icons
information window

This is the window subclass for the Get Info window. This window is displayed when you select a file and type
Command-I or choose Get Info from the Finder's File menu. Its properties are derived from the information
that is displayed in this window. You get an information-window object by querying an item's information
window property, as in information window of item "today" (if item "today" was a folder called "today"). The
following are information window properties:

comment international text

This is the text from the comment area of the Get Info window. This is a settable property, as in:
set comment of (information window of item "today") to "A¬

folder for today"
creation date date (read-only)

This is the date when the item associated with this window was created.
current panel constant

This property can be any one of the following constants, depending on which part of the information
window is showing: General Information panel , Sharing panel , Memory panel , Status and
Configuration panel , Fonts panel .

icon icon family

This is the icon family of the icon property for the item associated with this window.
item reference (read-only)

This is the item associated with this information window . See the item class description.
locked boolean

If the file associated with this information window is locked then this property is true .
minimum size integer

This property is derived from the Memory section of the Get Info window (select an application and
type Command-I). Its return value represents the minimum memory size in bytes that can be used to

run the program.
modification date date

The date when the item associated with this window was last modified. You can arbitrarily change the
modification date of an item as displayed in its information window with code such as the
following, which alters the modification date of the item to the day before the current day. See the
date object description in Chapter 3 .

tell application "Finder"

 set modification date of (information window of (item¬

 "today")) to ((current date) - (1 * days))

end tell
physical size integer (read-only)

This is the physical size in bytes of the information window's item , which is the total amount of
space the item takes up on disk. See the size property description for the information window
object.

preferred size integer

The integer that corresponds to the Preferred Size: field in the information window. This property is
derived from the Memory section of the Get Info window (select an application and type Command-I).
Its return value represents the preferred memory size in bytes that can be used to run the program.
If there is enough memory when the software program is executed, then this is the amount of RAM
in Mac OS 9 reserved for the application.

product version international text (read-only)

This property represents the product version identified at the top of the Get Info window.
size integer (read-only)

This is the logical size in bytes of the item associated with the information window . This size is the
actual number of bytes represented by the file and is usually smaller than the physical size number,
which represents the total space taken up on the hard disk by the item . The following example shows
the Script Editor's Event Log for querying these properties:

tell application "Finder"

 get size of information window of item "today"

 --> 3.85481E+5

 get physical size of information window of item "today"

 --> 4.39296E+5

end tell
stationery boolean

This property is true if the item associated with the information window is a stationery pad or file
template.

suggested size integer (read-only)

The application's author suggested at least this much memory for standard performance, in bytes. This
property is derived from the Memory section of the Get Info window (select an application and type
Command-I). Suggested size is provided by the application file's programmer; you cannot change it.
Its return value represents the suggested memory size in bytes that should be used to run the
program.

version international text (read-only)

This property represents the version of the file that is displayed at the bottom of the Get Info window.
warns before emptying boolean

This true /false value is only applicable to the trash's Get Info window. If true , a dialog window is
displayed before items are deleted from the trash.

internet location file

This class represents a file that, when double-clicked, opens up your default browser and loads the web
page identified in its location property. Figure 15-6 shows an internet location file.

Figure 15-6. An internet location file

The following is an internet location file property:

location international text (read-only)

This property returns the web page location or Uniform Resource Locator (URL), as in
http://www.apple.com :

tell application "Finder"

 (* sample return value: {"http://www.apple.com"} *)

 location of (internet location files of folder "favorites"¬

 of system folder)

 -- will return a list type since the code gets several files

end tell
item

item is the super class for the non-Window Finder objects. Disks, files, folders, and other objects that can be
manipulated in the Finder are all items, and therefore have the following item properties. To get the names
of all the objects in a folder , you can use syntax such as:

name of (items of folder "today")

The following are item properties:

bounds bounding rectangle

http://www.apple.com

The bounds returns all four coordinates for the icon of an item in its container . This is a settable property,
as in:

set bounds of item "today" to {22, 62, 38, 78}
comment international text

This property is the comment section from the item's Get Info window. It can be an empty string if the user
has not provided a comment for the item.

container reference

This is a reference to the container , such as a folder , of the item . You can find out which object contains
an item with syntax such as:

get container of item

"myfile"
content space reference

This property returns the window that would open if the item were opened.
creation date date (read-only)

This property represents the date on which the item was created. The return value is a date object so you
can get date-related properties of creation date , as in time string of theDate . See the date description
in Chapter 3 .

description international text

The description property is a long string about the item along the lines of:
"BBEdit 5.1 document" & return & "You can open and

modify this document using the BBEdit 5.1 application

program."
disk reference

This property represents the disk that is currently storing an item. If you reference the disk of desktop item,
the return value might look like:

startup disk of application "Finder"

To get more information about this disk, you can use code such as name of (disk

of file "auto_insure" of folder "today")
folder reference

This property represents the folder in which the item resides. It returns a reference to that folder as in:
folder "today" of application

"Finder"
icon icon family

This property represents the icon associated with the item . See the icon family class description.
index integer

This property represents the item's 1-based numerical position in its container . Using the index is a good

way to iterate over the elements of a container using a repeat loop.
information window reference

This property returns an information window object representing this item's Get Info window. The Finder
displays these windows when you select the item and type Command-I or choose Get Info from the Finder's
File menu. See the information window class description.

id integer

Items on the desktop have unique id numbers. The id numbers don't change, even if the item is renamed
and moved into a new folder. Therefore, you can use the id to track an item accurately, as in item whose id
is 386397 . For instance, the code ids of files returns a list that looks like {387321, 386397, 374477,
378392, 386776}.

kind international text

This string is the "kind" value (found under the kind column in a folder list view) of the item . This is a
descriptive phrase about the item like "BBEdit text file."

label index integer

This property returns a number associated with a particular colored label. You can assign these labels in the
label section of the item's information window . The number reflects the position of the label in the label
pop-up menu button. For example, the label "Hot" could be associated with the number 2.

modification date date

This property represents the date on which the item was last modified. The return value is a date object so
you can get date -related properties of modification date , as in time string of theDate . This property is
settable, unlike creation date . See the date description inChapter 3 .

name international text

This is the item's name in the Finder, as in "today" for a folder called "today."
physical size integer (read-only)

This integer represents the total number of bytes an item is taking up on its disk.
position

position returns the pixel coordinates of the upper left corner of the item in its container. The return value
looks like {82,75}; in other words, a list of integers. If the container is not in button or icon view (i.e., it's in
list view in the Finder's View menu) then this property returns {-1,-1}.

selected boolean

If the item is selected in its container , such as selecting a file or folder on the desktop, then this property is
true .

size integer (read-only)

This is the logical size in bytes of an item on the hard disk, as in a 2,048 byte file in a 16,384 segment of
the disk. In this case, size would return 2048.

window reference

Window returns the window object for the window that would open if the item were opened. See the window
class description in this chapter.

label

A label object is associated with the various label colors that you can assign to files and folders. You
cannot make a new label with the Finder's make command, however. label is not a property of an item or
other object (item does have a label index property), so it is difficult to find a use for this object. The
following are label properties:

color RGB color

This returns the label color as an RGB color , which is a list of integers like {204,255,204}. See the
RGB Color class description inChapter 3 .

index integer

This is the number of the label in the label pop-up menu (which is displayed on Get Info windows).
name international text

This is the name of the label as a string .
package

A package is a specialized item , like a folder, which contains an application file and its support files such as
libraries and help files. A package must have an alias file at its top level. This alias file points to the
application file in the package. The following web site describes packages:
http://developer.apple.com/technotes/tn/tn1188.html . The purpose of packages is for software developers to
include an application and all of its dependent files in a neat "package," as opposed to depositing more files
into the Preferences folder and other System Folder directories.

preferences

This class represents the object that is returned by the Finder application class's Finder preferences
property. As you might have guessed, these properties allow the getting and setting of various Finder
attributes. These preference s are also available from the Finder's Edit:Preferences... menu. For example, if
you set the preferences property uses wide grid to true (it's a boolean value), then this action has the
same effect as going to Edit:Preferences... and choosing the Wide radio button under Grid Spacing in the
General Tab. This is illustrated in Figure 15-7 .

Figure 15-7. You can choose grid spacing from Finder's Preferences window

The following are preference properties:

http://developer.apple.com/technotes/tn/tn1188.html

button view arrangement constant

This property returns one of the following constants, which determine how buttons are arranged in
containers that have a button view: not arranged , snap to grid , arranged by name , arranged by
modification date , arranged by creation date , arranged by size/arranged by kind , arranged
by label .

button view icon size integer

This property returns or sets the icon size of buttons in a Finder button view (i.e., the contents in a
folder are displayed as buttons). The same preference can be set from the View tab in the Finder
Preferences window.

calculates folder sizes boolean

This true /false value determines whether folder sizes are displayed in list-view windows (select a
folder and choose View:as List from the Finder menu). This is a settable property, as in set
calculates folder sizes to true .

delay before springing integer

You can use this property to set the ticks (60 per second) before a container like a folder springs
open. The shortest delay is 12; 60 is the longest. Setting this property is the equivalent of setting the
"Delay before opening" control in the Finder Preferences General tab.

list view icon size integer

This settable property represents the size of icons in Finder list views (for example, files are listed in
the folders rather than appearing as buttons).

shows comments boolean

If shows comments is true , then any comments associated with a file are displayed in Finder list views.
This property can also be set in the appropriate checkbox in the Views tab of the Finder Preferences
window.

shows creation date boolean

If shows creation date is true , then the creation date of files are displayed in Finder list views.
This property can also be set in the appropriate checkbox in the Views tab of the Finder Preferences
window.

shows kind boolean

If shows kind is true , then the kind of a file is displayed in Finder list views. An example of a kind
property is "application program." This property can also be set in the appropriate checkbox in the
Views tab of the Finder Preferences window.

shows label boolean

If shows label is true , then any labels associated with a file are displayed in Finder list views. This
property can also be set in the appropriate checkbox in the Views tab of the Finder Preferences
window.

shows modification date boolean

If shows modification date is true , then a file's modification date is displayed in Finder list views.
This property can also be set in the appropriate checkbox in the Views tab of the Finder Preferences
window.

shows size boolean

If shows size is true , then the space that the file is taking up on the hard disk is displayed in Finder
list views. This property can also be set in the appropriate checkbox in the Views tab of the Finder
Preferences window.

shows version boolean

If shows version is true , then any file versions are displayed in Finder list views. This property can
also be set in the appropriate checkbox in the Views tab of the Finder Preferences window. Most
ordinary text files do not have a version so this file property returns the string "n/a".

spatial view arrangement constant

This property can be one of the following constants: not arranged , snap to grid , arranged by name
, arranged by modification date , arranged by creation date , arranged by size , arranged by
kind , arranged by label . If the files in a folder are in "icon view," for instance, then these constants
determine how the icons are sorted (e.g., arranged by name).

spatial view icon size integer

This number is designed to determine the size of the icons when the files are in icon view, for
instance. However, setting the icon size to various integer values does not appear to effect how icons
are displayed under Mac OS 9.

spring open folders boolean

This true /false property determines whether folders automatically open ("spring open") when the
cursor is positioned on them (and they are closed) for a specified short delay. You can use code such
as:

set spring open folders to

false
uses relative dates boolean

This true /false property can also be set from the Views tab of the Finder Preferences window. It
determines whether a list-view folder shows a recent date as "Today" or "Yesterday" or in standard
date format (e.g., "Fri, Jul 07, 2000 6:15 PM").

uses simple menus boolean

Setting this property to true is the same as checking "Simple Finder" in the General tab window of the
Finder Preferences window.

uses wide grid boolean

Setting this property to false is the same as choose the Tight radio button under Grid Spacing in the
Finder Preference's General tab.

view font integer

This number represents the ID number of the font that the machine is using to display text in the
Finder. An example is:

set view font of Finder preferences to

2001
view font size integer

Set the size of the Finder font display using this property, as in:
set view font size of Finder preferences to

12.
window preferences window (read-only):

This property returns the preferences window object associated with the window that is displayed
when you choose EditPreferences... from the Finder menu. See the preferences window class
description.

preferences window

The preferences window is a window subclass that has one property: current panel . You can thus set the
panel in the Finder Preferences to any of those current panel constants, as in:

set current panel of (window of Finder preferences) to¬

Button View Preferences panel.

The following is a preferences window property:

current panel constant

This property can be one of the following constants: General Preferences panel , Label Preferences panel ,
Icon View Preferences panel , Button View Preferences panel , List View Preferences panel .

process

The process class is the super class for the application process and desk accessory process classes. An
application process represents a software program that is running on your computer. For example, the
code

tell app "Finder" to get processes

returns a list of process objects, one of which might look like:

process "Adobe® Photoshop® 5.5" of application "Finder"

You can then get various properties for each running process, such as its partition space used . This property
gives you the number of bytes of RAM that the process is using (which for Photoshop will probably be quite large!).

The difference between an application process and an application file is that a
process object is not created unless a process is actually running on the computer (i.e., you
have double-clicked an application and the operating system loads the software into
memory and displays its windows/menus). You get can the properties of any application
file that is stored on disk, however, whether or not it is open on the computer. For
example, if Photoshop is not running at the time but is on your computer, then getting all
of the Finder's application processes will not reveal an "Adobe® Photoshop® 5.5" process

.

The following are process properties:

accepts high level events boolean (read-only)

This property is true if the process object responds to high-level events like Apple events.
accepts remote events boolean (read-only)

This property returns true if the process can accept a remote event (originating from other than the local
computer). This example shows the return value of a get accepts remove events command targeting the
Finder:

tell application "Finder"

 name of processes

 accepts remote events of processes

end tell

(* return values, first process names *)

{"Control Strip Extension", "DAVE Sharing Extension", "Folder Actions",

"HP Background", "OSA Menu Lite", "Time Synchronizer", "Web Sharing Extension",

"Outlook Express", "Microsoft Word", "Script Editor", "BBEdit 5.1", "Internet

Explorer", "Adobe® Photoshop® 5.5", "FileMaker Pro", "Contract Timer"}

(* boolean values reflecting whether each process accepts remote events *)

{false, true, false, true, true, false, false, false, true, true, true, true,

true, true, true}
creator type (read-only)

This is the creator type for the process , as in "R*ch" for BBEdit, "8BIM" for Photoshop, and "FMP3" for
FileMaker Pro. The types of return values actually look like <<class FMP3>>.

file reference (read-only)

This property returns the file object from which the program was launched. If you use the code:
tell app "Finder" to get file of processes

then you will get a large list of file references that look like:

file "FileMaker Pro" of folder "FileMaker Pro 4.1 Folder" of

disk "HFSA2gig"
file type class (read-only)

This property returns the four-character file type of the process , which is often 'APPL' for application. The
return value is a class object in raw data form, as in <<class APPL>>.

frontmost boolean

frontmost returns true if the process is the frontmost or active application (i.e., if you select a window on
the desktop to make it active, then its associated application is the frontmost one).

has scripting terminology boolean (read-only)

If the application is scriptable (can be controlled by AppleScript), then this value is true .

name international text (read-only)

This property returns the process's name as text. Get all the names of the processes with the intuitive phrase:
tell app "Finder" to get name of processes
partition space used integer (read-only)

This property returns in bytes the amount of RAM the process is actually using, as opposed to how much
RAM has been reserved for the program (see total partition size). The return value of this property may
be altered, compared with what it looks like in the About This Computer window (accessed from the upper
left corner of the Mac screen), if the machine is using virtual memory.

total partition size integer (read-only)

This number represents the number of bytes of memory with which the program was launched. You can
convert this value into megabytes with code such as:

(total partition size of process "FileMaker pro" /1024 /

1024)
visible boolean

If you use code such as the following (in a Finder tell block) then the only processes that the Finder returns
are those whose windows and/or menus are visible on the desktop:

get every process whose visible is true

This code phrase doesn't return any invisible background processes or programs whose windows are no longer
displayed (i.e., you Option-clicked the desktop with the program active, making its visible layer vanish).

sharable container

A sharable container is a subclass of container with special file-sharing related properties. A disk or
folder that is being shared is considered a subclass of sharable container . The descriptions of the
sharable container 's elements are all the same as their class descriptions in this chapter. In terms of a
Finder containment hierarchy, a sharable container (like a shared folder) can "contain" other folders. The
following are sharable container elements:

accessory suitcase

alias file

application file

clipping

container

desk accessory file

document file

file

folder

font file

font suitcase

internet location

item

package

sharable container

sound file

suitcase

The following are sharable container properties:

exported boolean (read-only)

This is true if the container can be shared (for instance, mounted on another desktop networked via
TCP/IP). File sharing must be on to use this property.

group international text

This property gets or sets the file-sharing group or user for the container . For example, if the disk
"MYDisk" has a user named "iMac," then the code phrase group of disk "MYDisk" will return "iMac."

group privileges sharing privileges

This settable property returns a sharing privileges object for the container . You can also set the
group privileges for a sharable container . See the sharing privileges class.

guest privileges sharing privileges

This settable property returns a sharing privileges object for the container . You can also set the
guest privileges for a sharable container . See the sharing privileges class.

mounted boolean (read-only)

This property returns true only if file sharing is turned on and the sharable container is mounted on
another machine's desktop.

owner international text

This property returns the owner name as text, but only if file sharing is turned on. Another way to find
out a container's file-sharing owner is by selecting the container, typing Command-I , then choosing
the sharing pop-up menu option in the displayed Get Info window.

owner privileges sharing privileges

This settable property returns a sharing privileges object for the container . See the sharing
privileges class.

privileges inherited boolean

If this property is true , then the container has inherited its sharing properties from its own container
or parent (as in a folder inheriting its sharing properties from its disk). File sharing has to be turned on
to get this property, or the script will raise an error.

protected boolean

The sharing segment of a container's Get Info window has a checkbox labeled "Can't move, rename,
or delete this item (locked)." If that item is checked, then this property is true . This property is settable
too. If you try to use this property in a script when file sharing is not on, the script will raise an error.

shared boolean

If the container is being shared, then this property is true . If you try to use this property in a script
when file sharing is not on, the script will raise an error.

sharing privileges

This class represents the privileges that a scripter can get or set for a container's group, guest, or owner
privileges. It has three properties, all returning true /false values. The following are sharing privileges
properties:

make changes boolean

If this property is true then the group or guest can make changes to the shared object, like a folder or
file. You can refer to this property in the following manner (inside a tell statement targeting the

Finder):
set make changes of folder "today"'s group privileges to

false
see files boolean

If the sharable container contains files (such as files inside of a folder), then the scripter can use this
property to make the files visible or invisible to the users who are sharing the folder. Here is some
sample code:

set see files of folder "today"'s group privileges to false

You cannot set or get this property unless file sharing has been turned on.

see folders boolean

If the sharable container contains folders (such as folders inside of a folder), then the scripter can
use this property to make the folders visible or invisible to the users sharing the folder. Here is some
sample code:

set see folders of folder "today"'s group privileges to false

You cannot set or get this property unless file sharing has been turned on:

tell application "Finder"

set see files of group privileges of folder "today" to true

set see folders of group privileges of folder "today" to true

set make changes of group privileges of folder "today" to false

end tell
sound file

This class represents the kind of sound files that are stored in the System suitcase file in the System Folder
. They have names such as "Chu Toy," "Laugh," and "Uh oh." They are used for purposes such as the alert
sounds that you can set in the Sounds control panel in Mac OS 9. As a subclass of the file object, sound
files have some file-related properties like name . Figure 15-8 shows a sound file icon.

Figure 15-8. A sound file icon in the Finder

The following is a sound file property:

sound data

This property is designed to return the sound data for a sound file . You have to pull the sound file
or copy it out of the System suitcase to retrieve its sound data, however. The return value of the
sound data , which is in raw-data format, is a giant series of hexadecimal numbers that partially look
like this:

<<data snd 000100010005000000C0000180510000000000140000000000000002AC44...>>

Chapter 3 describes raw data value types, which are delimited by guillemet characters (<< >>).
special folders

The Finder can directly reference every one of the folders that are formally properties of the special
folders class. In other words, you can use the following syntax to get an alias to the Extensions folder:

tell app "Finder" to get extensions folder as alias

This returns a value that looks like alias "Macintosh HD:System Folder:Extensions:" . You have to make sure to
include the word "folder" in the reference, as in extensions folder . But you do not have to capitalize these
folders, even though their names are capitalized in the Finder. Or, you can get the file path to the startup
disk:System Folder:Preferences directory as a string by coercing the file reference to a string or text , as in
get preferences folder as text . This return value looks like "Macintosh HD:System Folder:Preferences:".
These special-folder references are very handy for navigating around an unfamiliar directory structure since you
can use them as point of references. This example uses the system folder reference to see if the scripting
addition Jon's Commands exists in the System Folder's Scripting Additions folder:

tell application "Finder"

 set sa to folder "scripting additions" of system folder

 set hasJons to exists (file "Jon's Commands" of sa)

end tell

The following are special folder properties:

system folder reference

The property returns a reference to the startup disk's System Folder . You can get the reference with the
syntax:

tell app "Finder" to get system

folder.
apple menu items folder reference

This property returns a reference to the Apple menu Items folder in the System Folder . You can get the
reference with the syntax:

tell app "Finder" to get apple menu items

folder.
control panels folder reference

This property returns a reference to the System Folder's Control Panels folder. You can get the reference
with the syntax:

tell app "Finder" to get control panels folder.
extensions folder reference

The property returns a reference to the System Folder's Extensions folder. You can get the reference with
the syntax:

tell app "Finder" to get extensions folder

fonts folder reference

The property returns a reference to the System Folder's Fonts folder. You can get the reference with the
syntax:

tell app "Finder" to get fonts

folder
preferences folder reference

The property returns a reference to the System Folder's Preferences folder. You can get the reference with
the syntax:

tell app "Finder" to get preferences

folder
shutdown items folder reference

The property returns a reference to the System Folder's Shutdown Items folder. You can get the reference
with the syntax:

tell app "Finder" to get shutdown items folder

You can then use this reference to store an alias to an application or applet that you want to run before the
computer shuts down, for instance.

startup items folder reference

The property returns a reference to the System Folder's Startup Items folder. You can get the reference
with the syntax:

tell app "Finder" to get startup items folder

You can then use this reference to store an alias to an application or applet that you want to run when the
computer starts up.

temporary items folder reference

The temporary items folder is an invisible folder on the startup disk where the operating system and
applications store temporary files. However, you can find out what is being stored in this folder with code
such as:

tell app "Finder" to get entire contents of temporary items folder

This code returns a list of file references.

suitcase

A suitcase is a special kind of file that is designed to hold font files or desk-accessory files. suitcase is a
subclass of file (even though it seems like a container) and the super class of the font suitcase and
desk accessory suitcase classes. Therefore, suitcases have the relevant properties of their parent class
file . See Figure 15-4 for a look at a desk accessory suitcase icon (for what it's worth, the icons look like
suitcases). The following is a suitcase element:

item

A suitcase contains stuff like font files, which are by extension items . You can find out the contents
of a suitcase with the syntax: items of suitcase "DA suitcase" .

trash-object

This is the class of the trash object, which is really a property of the Finder's desktop object. But the Finder
can refer to the trash object directly, without first using a desktop reference, as in:

tell application "Finder" to get warns before emptying of trash

This code gets a true /false value that determines whether a dialog box is displayed before trashed items are
finally deleted. The Trash is a little barrel icon that is displayed by default in the lower right corner of the computer
screen. The trash-object can contain anything that can be thrown away or deleted. The descriptions of these
elements are the same as their class descriptions elsewhere in this chapter. The following are trash-object
elements:

accessory suitcase

alias file

application file

clipping

container

desk accessory file

document file

file

folder

font file

font suitcase

internet location

item

package

sharable container

sound file

suitcase

The following is a trash-object property:

warns before emptying boolean

The trash-object inherits some relevant properties from its container parent class, such as entire
contents, which gives you a list of references to whatever is in the trash. The trash-object has one of its
own properties. You can suppress the dialog box that displays before an item is deleted from the trash with
this syntax:

set warns before emptying of trash to false
window

A Finder window is the window that opens up when you double-click a folder or disk to reveal their contents.
Another example is the Get Info windows that open up when you select a file and choose Get Info from the
Finder's File menu or type Command-I . These windows should not be confused with the application
windows, such as the word-processing window I am typing in now, or the tool-palette windows that are
displayed by Photoshop. The following code will only return its own windows, not the application windows
that you have open on your desktop:

tell app "Finder" to get windows

A Finder window is not a container class, so you cannot use code such as entire
contents of window 1 to get a window's contents. The following example shows a better
way to get the contents of a window. It gets the container property of each container
window that is open in the Finder. container window is a subclass of window . Therefore,
the windows command returns all container window s (i.e., any open windows attached to a
container like a folder), each of which has a container property that identifies the
window's disk or folder .

tell application "Finder"

 (* the equivalent of asking the Finder for 'all folders and disks that have

open Finder windows' *)

 container of windows

end tell

(* Sample return value *)

{folder "actions" of application "Finder", disk "HFSgig" of application "Finder",

startup disk of application "Finder"}

The following are window properties:

bounds bounding rectangle

This settable property represents the screen coordinates for the upper right and lower left corners of the
window. The return value looks like {10,50,210,250}. A bounding rectangle class is really a list of four
integers.

closeable boolean (read-only)

This property is true if you can close the window by clicking the box in its upper left corner.
collapsed boolean

This is true if the window is "collapsed" or pulled up like a window shade. In Mac OS 9, you can collapse a
window by double-clicking its title bar (the bar along the top window border that contains the window's title).
This property does not apply to pop-up windows (in Mac OS 9, windows that are anchored to the bottom
part of the screen and "pop up" when you click them).

floating boolean (read-only)

This value is false if the window is not a floating window (i.e., it always floats in front of other windows,
whether or not you highlight it by clicking on the window). Rest assured this value will be false since no
Finder windows are floating ones.

index integer

Finder windows are indexed, beginning with 1, from front to back. window 1 , for example, inhabits the layer
in front of window 2 and therefore covers window 2 if their regions overlap. The code fragment window index
1 is the same as the shorthand window 1 . If no windows are open then trying to get window 1 will raise a
script error, however.

modal boolean (read-only)

This will be false if the window is not modal. A modal window sits in front of other windows in the Finder and
has to be dismissed (with a Cancel button, say) before you can click on other windows or menus.

name international text (read-only)

The name of the window is displayed in its title bar, if it has a title bar. You can refer to a window by its name
without using the keyword name , as in get window "MyFolder" .

popup boolean

This property is false if the window is not a pop-up window.
position point

This point property represents the upper left coordinate of the window, as in {10,50}.
pulled open boolean

This property returns true if the window is a pop-up window and it is open. If the window is not a pop-up, and
you refer to its pulled open property, then you will raise a script error.

resizable boolean (read-only)

If you can change the size of the window by dragging the cursor along the lower right corner, as you can with
a lot of Finder windows, then the window's resizable is true .

titled boolean (read-only)

If the window has a title bar, then this property is true .
visible boolean (read-only)

If the window is open, its visible property returns true .
zoomable boolean (read-only)

If the window can be zoomed, or increased or decreased in size by clicking a button on the title bar, then this
property returns true .

zoomed boolean

This property is false if the window is not zoomed to its full size (by clicking the title bar button adjacent to
the button in the upper right order).

zoomed full size boolean

This true /false property can only be set (as in set zoomed full size of window 1 to true), and only
applies to non-pop-up windows. If the script sets a window's zoomed full size to true then the Finder will
try to expand the window to fill the screen space.

Chapter 16. Network Setup Scripting

Open Transport is the Apple technology under Mac OS 9 that allows programmers and users to send
and receive bytes across networks using TCP/IP, AppleTalk, Infrared, or Remote Access methods. When
you can mount network volumes on your desktop over an Ethernet network, you are using Open
Transport. When you log on to the Web using an analog modem, cable modem, digital subscriber line
(DSL), or some other method, you are also calling on various Open Transport protocols. You specifically
use Remote Access and TCP/IP to make most connections to the Web using a Mac. For example, I
connect to the Web using a Local Area Network (LAN) connection to a proxy server and cable modem,
and thus rely on my Mac's TCP/IP configuration to access the Internet. My father, on the other hand,
uses a 56K modem and dial-up connection in a remote part of Maine. His Mac system uses Remote
Access and TCP/IP configurations to connect over a phone line to his Internet Service Provider (ISP).

Network Setup Scripting Version 1.1.1 and Open Transport Version 2.6.1 are used
for the examples in this chapter.

Configurations are collections of settings for various network methods, like AppleTalk, TCP/IP, or Remote
Access. Open Transport stores these settings in a database system called the Open Transport
configurations database. AppleScripts can access this database and all the various network configurations
that you may want to script via the Network Setup Scripting application. Figure 16-1 shows this application
icon. This program is located in the startup disk:System Folder:Scripting Additions folder. Therefore, all of
your Network Setup Scripting AppleScripts have to target this application, as in:

tell app "Network Setup Scripting..."

You can look at the Network Setup Scripting dictionary by choosing this application in Script Editor's File
 Open Dictionary... menu.

Figure 16-1. Network Setup Scripting icon

Example 16-1 opens the Open Transport database then cycles through all of its configurations, looking for
the TCP/IP configuration. Once it finds the TCP/IP configuration, it attempts to get the IP address of the
machine. The code encloses the Network Setup commands in a try statement, so that if an error occurs it
is caught and the Open Transport configurations database is closed. When you are accessing data in this
database, you should close the database when you finish so that Open Transport continues to function
properly. The script example shows the return values of these code statements, as they appear in Script
Editor's Event Log window. Chapter 2, describes the Event Log. In this case, the machine is using the
DHCP protocol (its IP address is allocated by a proxy server when the client machine boots up), and
Open Transport returns a series of zeros (0.0.0.0) in lieu of the actual IP address.

Another way to get the machine's actual IP address (not 0.0.0.0) is to send a get
IP address Apple event to the Apple System Profiler:

tell app "Apple System Profiler" to get IP address

This will return a string like "172.158.73.1" for the machine's IP address, if it has
one. See Chapter 11.

Notice that the script uses the open database and close database commands of the Network Scripting
application. You have to use these commands to get any data from the Network Setup Scripting
application.

Example 16-1. Opening the Open Transport Configuration Database

tell application "Network Setup Scripting"

 try

 open database

 set con_set to current configuration set

 set con_list to con_set's configurations (* gets list of all the

 current open transport configurations *)

 repeat with con in con_list -- look for a TCPIP config in this list

 if (class of con is TCPIP v4 configuration) then

 IP address of con

 end if

 end repeat

 close database

 (*make sure the open transport database is closed if the script is

 interrupted by an error *)

 on error

 close database

 end try

end tell

(* sample return value in Event Log window*)

get current configuration set

--> configuration set "My Network Settings"

get every configuration of configuration set "My Network Settings"

--> {AppleTalk configuration "printer_config", Modem configuration "Default",

Remote Access configuration "Default", TCPIP v4 configuration "sygate"}

-- some return values snipped here ...

get IP address of TCPIP v4 configuration "sygate"

--> "0.0.0.0"

The rest of this chapter explains the Network Setup Scripting commands and classes in their own
reference sections. The first section describes the commands that you can use to script the Open
Transport network system, such as open database and close database. The classes are the blueprints for
the objects that your scripts will target, such as the Network Setup Scripting application itself and Remote
Access configurations (which are commonly used to connect modems with the Web).

Network Setup Scripting

Commands are the action verbs that you use to script Network Setup Scripting, such as open database , close
database , and connect (which you use to automate a modem's connection to the Internet). The make command,
for instance, allows a script to make a new network configuration, such as a TCP/IP configuration, "on the fly."
See the example under the make command section.

Dictionary commands

abort transaction

This command terminates a transaction. None of the changes that the script initiated within a begin/end
transaction block will be completed. See begin transaction later in this chapter.

add reference

You can use this command to add a configuration such as a TCP/IP setting to Open Transport's
configuration sets. Configuration sets are, as they sound, a group of configurations.

to configuration set

This identifies the configuration set to add the configuration to, as in:
configuration set "My Network Settings" or current configuration set

Example

tell application "Network Setup Scripting"

 set tId to "" -- this var will hold the transaction ID

 try

 open database

 (*use this when the script is changing the open transport database; the

var tId will hold the transaction id integer *)

 set tId to begin transaction

 add TCPIP v4 configuration "newMacIP" to¬

 configuration set "My Network Settings"

 end transaction

 close database

 on error (* make sure transaction is aborted and database gets closed if

there is an error *)

 if tId is not equal to "" then

 abort transaction

 end if

 close database

 end try

end tell
authenticate reference

Use this command to determine if a user has permission to access an Open Transport configuration :
set bool to authenticate AppleTalk configuration "my_config" with¬ password "wIsT$"

The command returns a boolean value, true or false .

with password string

This required labeled parameter is the password string .

begin transaction

This command begins a transaction and returns a transaction ID as an integer . An example is:
set transID to begin transaction

begin transaction prevents the database from being changed by any other scripts or applications while the
transaction is still active. The transaction is finished or rendered inactive with the command end transaction . See
the example in the add reference section.

close database

This command closes the Open Transport configuration database to the reading or writing of data. It is used
to close the database following the command open database . See Example 16-1 and the example in the
add reference section.

connect Remote Access configuration object

connect makes a connection with a Remote Access configuration , such as one that will access the Web
with a dial-up modem. The parameter for the connect command is a Remote Access configuration object,
such as connect RAconfig (if Raconfig were a variable holding a Remote Access configuration). See the
following example and the Remote Access configuration class description (this command is used with the
disconnect command, which is described later in this section):

set err to "" (* this var will hold any error messages to be¬ displayed to

the user *)

tell application "Network Setup Scripting"

 try

 open database

 set ra to Remote Access configuration "Default"

 (* connect to a remote network, in this case the Web over a dial-up

connection *)

 connect ra

 delay 60 (* wait 60 seconds before disconnecting, for demo purposes *)

 disconnect ra

 close database

 on error errmesg

 set err to errmesg -- save any error messages

 close database

 end try

end tell

if length of err > 0 then display dialog err (* display any error messages *)
count reference

This command returns a count of objects, such as Open Transport configurations or configuration sets, as
an integer . You can use the count configurations , count each configuration , or count every
configuration syntax .

each class :

You can optionally use the each keyword, as in tell app "Network Setup Scripting" to count each
configuration:

tell application "Network Setup Scripting"

 open database

 set configC to count configurations

 close database

 return configC

end tell
delete reference

You can delete an Open Transport object such as an Open Transport configuration with this command. An
example is:

delete TCPIP v4 configuration "local_Lan"

This code would delete one of the configurations that is viewable from the TCP/IP control panel's File menu. You
have to open the Open Transport configurations database, issue the delete command, and then close the
database for the delete command to work properly. This is because AppleScript has to explicitly open this
database before making any changes to it.

disconnect Remote Access configuration

This command disconnects a Remote Access connection such as a dial-up connection to a remote network
(e.g., the Internet). It is usually used in scripts that open the connection with the connect command. You
follow the disconnect command with the Remote Access configuration object that you are disconnecting,
as in disconnect Raobject (if the variable Raobject held a reference to a Remote Access configuration
object).

duplicate reference

You can duplicate a configuration with this command:
duplicate AppleTalk configuration "printer_config" with properties¬

{name:"Test config"}

You have to open and close the Open Transport configurations database to make these changes. You also have
to use the begin transaction and end transaction commands to make sure that the new configuration is added to
the database.

with properties record

You provide the properties for the new configuration with this labeled parameter, as in with
properties{name:"newTCPIP", connecting via:Ethernet} . With duplicate , the new configuration
inherits the properties of the original configuration (the one that was duplicated), unless you change those
properties with this parameter:

tell application "Network Setup Scripting"

 set tId to "" -- this var will hold the transaction ID

 try -- catch and deal with any errors

 open database

 set tId to begin transaction

 duplicate TCPIP v4 configuration¬

 "newMacIP" with properties {name:"newconfig2"}

 (* test a property to confirm that the config copy inherits the original

configuration's properties *)

 configuration method of TCPIP v4 configuration¬

 "newconfig2"

 (*see if the new config was added to all of the database's configurations

*)

 set cs to configurations

 end transaction

 close database

 on error (* abort transaction and close database if there is an error *)

 if tId is not "" then

 abort transaction

 close database

 end if

 end try

 return cs -- view the list of configurations

end tell
end transaction

This command is used to complete a transaction that was initiated with the begin transaction command. A
transaction constitutes one or more database actions that are executed as a group and rolled back if any of
the changes causes an error. begin transaction prevents the database from being changed by any other
scripts or applications while the transaction is still alive. The transaction is finished or rendered inactive with
the command end transaction . See also the abort transaction command.

exists reference

exists tests whether a certain AppleScript object exists and returns a true /false (boolean) value. An
example is:

set bool to (exists TCPIP v4 configuration "newconfig2")

This code statement returns true if the specified configuration exists. Then the AppleScript might do something
based on the exists return value, such as delete the configuration (if it exists) or make a new one (if it does not
exist).

Make sure to open the Open Transport configurations database first, check if the
configuration exists or not, then close the database.

If you do not use the open database and close database commands, then the exists command will not raise an
error but returns false , even if the configuration you are searching for actually does exist.

get protection property reference

You can find out whether a property of a configuration is locked or unlocked by using the get protection
command. For example, the TCP/IP control panel allows you set the user mode (from its Edit User
Mode... menu) to basic, advanced, or administration. In administration mode, the control panel user can
enter a password then lock or prevent the TCP/IP properties in the TCP/IP control panel from being
changed by users who do not know the password. get protection returns either of two constants: locked or
unlocked . See the following example and the set protection command description later in this chapter:

tell application "Network Setup Scripting"

 open database

 (* return value is locked or unlocked *)

 get protection of¬

 (configuration method of TCPIP v4 configuration "sygate")

 close database

end tell
make

The make command is used to make a new object, such as a Remote Access or TCPIP v4 configuration.
Use the labeled parameters that go with this command (e.g., with data , with properties) to specify the
new configuration's elements and properties. with data is used to make new elements; you use with
properties to specify the new object's property values.

new class

The script uses this labeled parameter to specify the kind of object that it will create, as in:
make new Remote Access configuration...

or:

make new TCPIP v4 configuration...
at location reference

This parameter is not necessary when making new Open Transport configurations with AppleScript
and the make command.

with data anything

You can use the optional with data parameter to make a new element (as opposed to a property) for
a configuration that the script has created. An anything object can hold a string , constant , or

other class type. Chapter 3 , describes the anything data type.
with properties record

Use this command to specify the properties of the new configuration object that the script is
creating with the make command. with properties takes a record data type, which is one or more
name/value pairs enclosed in curly brackets ({ }). See the following example for how to use with
properties:

tell application "Network Setup Scripting"

 set tid to "" -- var tid will hold transaction id

 try

 open database

 set tid to begin transaction (* holds an integer like 25909 *)

 (* make the new TCP/IP config *)

 make new TCPIP v4 configuration¬

 "MYNewIP" with properties¬

 {connecting via:Ethernet, configuration method:DHCP,¬

 subnet mask:"255.255.255.0", uses IEEE8023:false,¬

 user mode:advanced}

 (* make new elements for the TCP/IP configuration *)

 tell TCPIP v4 configuration "MYNewIP"

 make new router address 1 with data "192.168.153.1"

 make new name server address 1 with data "192.168.¬

 153. 1"

 end tell

 end transaction

 close database

 on error (* make sure the transaction is aborted and database closed if

there's an error *)

 if tid is not "" then

 abort transaction

 close database

 end if

 end try

end tell
open database

This command opens the Open Transport configuration database for reading and writing. Once the script
does whatever it has to do with the database, the database is closed with the close database command.
You cannot get any data from the Open Transport configuration database without using the open database
command first. Most of this chapter's code examples demonstrate how to use open database .

quit

This command quits the Network Setup Scripting application. This application is a "faceless background
application," meaning it has no standard user interface (menus and windows) and is controlled by Apple
events and script code. It usually quits automatically after the AppleScript statements have finished
executing, but you can explicitly quit Network Setup by using quit .

remove reference

This command removes an object such as a configuration from a configuration set , as in:
remove TCPIP v4 configuration "local_TCP" from configuration set "My Network

Settings"

A configuration set is a group of network settings that usually includes TCP/IP, Remote Access, Modem, and
AppleTalk configurations. Removing a configuration from a configuration set does not delete the
configuration object from the Open Transport configurations database.

from configuration set

Use this labeled parameter to specify the configuration or transport options to remove from a
configuration set . Removing a configuration or transport options from a configuration set does
not delete the configuration object from the Open Transport configurations database. See the following
example and the transport options class description later in this chapter:

tell application "Network Setup Scripting"

 try

 set tid to "" -- this will hold the transaction id

 open database

 set tid to begin transaction

 set cs to (current configuration set)

 remove Modem configuration "Default" from cs (* remove a Modem config *)

 from the current config set

 set lc to cs's configurations (* var lc will show that the config has

been removed *)

 end transaction

 close database

 lc (* view the var's value in Script Editor to confirm that the Modem

config is gone *)

 on error (* if there's an error make sure the transaction is aborted and

Open Transport database is closed *)

 if tid is not "" then

 abort transaction

 close database

 end if

 end try

end tell
run

This command executes the Network Setup Scripting application. It is not necessary to use run because
targeting Network Setup with a tell statement starts up the program:

tell app "Network Setup Scripting"...
set protection property reference

A script may lock or unlock a configuration's property with this command. When the property is locked in
administration mode (with an administration password provided), the property cannot be changed by a
script unless the script uses the authenticate command with the proper password. The example below
shows how to use the set protection command. Also see the authenticate command description elsewhere
in this chapter.

to locked /unlocked :

This required labeled parameter sets the property to either of two constants, locked or unlocked .
Locking the property requires password authentication to make any changes to it. See the following
example:

tell application "Network Setup Scripting"

 set tid to "" -- this will hold the transaction id

 try -- catch any errors

 open database

 set tid to begin transaction

 set ipConfig to TCPIP v4 configuration "sygate"

 (* create administration password *)

 set user mode of ipConfig to administration

 set administration password of ipConfig to "x$1957"

 (* lock the TCP/IP configuration method *)

 set cleared to (authenticate ipConfig with password¬

 "x$1957")

 if cleared then

 set protection (configuration method of ipConfig) to¬

 locked

 end if

 end transaction

 close database

 on error (* make sure that transaction is aborted and the database is

closed if an error occurs *)

 if tid is not "" then

 abort transaction

 close database

 end if

 end try

end tell

Dictionary classes

The Network Setup Scripting classes represent the network-related items that a script targets, mainly network
configurations such as a Macintosh's AppleTalk or TCP/IP setup. You can find out a lot of information about a
machine's networking configurations by querying the properties of the Network Setup Scripting application class,
for instance (not to mention looking at the return values for other Network Setup Scripting objects such as the
Remote Access configuration, which is used in part to control dial-up access to the Internet). Here is a list of the
classes:

AppleTalk configuration

This class represents an AppleTalk network configuration (group of settings) that can be created or altered
with an AppleScript. As a type or subclass of configuration , AppleTalk configuration also has the
properties of the parent class (name , active , valid). The following example gets the properties of an
AppleTalk configuration for viewing in Script Editor's Event Log (Chapter 2 describes the Script Editor's
Event Log window):

tell application "Network Setup Scripting"

 set tId to ""

 try

 open database

 set tId to begin transaction

 set cc to current configuration set

 (* set the conAt var to the AppleTalk configuration that is part of

 the current configuration set *)

 set conAt to item 1 of AppleTalk configurations of cc

 (* get properties of this config; example return values follow each

property *)

 conAt's addressing -- dynamic

 conAt's AppleTalk zone -- ""

 conAt's connecting via -- "Printer Port"

 conAt's network ID -- 0

 conAt's node ID -- 123

 conAt's protocol -- AppleTalk

 conAt's user mode -- basic

 conAt's name -- "printer_config"

 conAt's valid -- true

 conAt's active -- true

 end transaction

 close database

 on error

 if tId is not "" then

 abort transaction

 close database

 end if

 end try

end tell

The following are AppleTalk configuration properties :

addressing dynamic /static

This property returns either one of the two constants.
AppleTalk zone string

This property returns the AppleTalk zone as a string (e.g., "Graphics_dep") or an empty string ("") if the
configuration is not associated with a zone.

connecting via modem port /printer port /modem printer port /Ethernet or string

connecting via returns one of the port-related constants (e.g., Ethernet) or a string data type. The return
value for the AppleTalk configuration that is part of the current configuration set will be the same
value as the "Connecting via" pop-up menu in the AppleTalk control panel window. See Figure 16-2 .

network ID integer

This property returns a unique ID number such as 0.
node ID linteger

node ID returns an integer such as 123. A node is an outward branch of a network system, if the system
is viewed conceptually as a tree-like structure.

protocol AppleTalk (read-only)

This property returns just the constant AppleTalk .
administration password string (write-only)

You can only set, not get the value of, an administration password . Once a password is established, a
script has to use the authenticate command to obtain administration permission to change a configuration
property. See the authenticate command.

user mode basic /advanced /administration

This property returns one of the three Open Transport configuration user modes (e.g., advanced).

Figure 16-2. The AppleTalk control panel window

AppleTalk options

This is a subclass of the transport options class, so it also has the properties of its parent class (i.e., name
, active , consequence , valid). The following example shows all of the available transport options ,
which provide global values for the various network protocols:

tell application "Network Setup Scripting"

 try

 open database

 repeat with c from 1 to (count of transport options)

 transport options c (* view each transport option in Event Log *)

 end repeat

 close database

 on error

 close database

 end try

end tell

(* example Event Log output *)

open database

count every transport options of current application

--> 4

get transport options 1

--> AppleTalk options "AppleTalk Globals"

get transport options 2

--> transport options "Remote Access Globals"

get transport options 3

--> TCPIP v4 options "TCP/IP Globals"

get transport options 4

--> transport options "Modem Globals"

close database
AppleTalk active boolean

The code phrase AppleTalk active of AppleTalk options returns true or false , depending on whether
AppleTalk is active or being used on the machine.

application

This class represents the Network Setup Scripting application itself. The application has three elements:
configurations , configuration sets , and transport options objects. The upcoming code example
views the return values of these elements in Script Editor's Event Log. See the class descriptions of these
elements elsewhere in this chapter.

The following are application elements:

configuration

This is an Open Transport configuration that you would use to connect to a network, as in a Remote
Access configuration . See the configuration class description.

configuration set

This object represents a named group of configurations, such as:
configuration set "My Network Settings"

See the configuration set class.

transport options

Each one of the configuration types-AppleTalk, Modem, Remote Access, TCPIP v4-has some
global properties that are stored in a transport options object. See the TCPIP v4 options , for
instance. You can access one of a configuration set's transport options by its index, as in:

tell app "Network Setup Scripting" to get transport options 2¬

of current configuration set

tell application "Network Setup Scripting"

 try

 open database

 configuration sets -- get list of configuration sets

 transport options 1 (* view return value for first transport options

object *)

 configurations -- get list of configurations

 close database

 on error

 close database

 end try

end tell

(* Example return values in Event Log *)

get every configuration set

--> {configuration set "My Network Settings"}

get transport options 1

--> AppleTalk options "AppleTalk Globals"

get every configuration

--> {TCPIP v4 configuration "localt", TCPIP v4 configuration

"mediaone", Remote Access configuration "Default", TCPIP v4

configuration "NTNET", AppleTalk configuration "Default",

AppleTalk configuration "printer_config", TCPIP v4 configuration

"sygate, Modem configuration "Default"}

The following are application properties:

current configuration set (read-only)

This property returns as a configuration set object the group of Open Transport configurations that
the computer is using at the moment. For instance, to get a reference to the TCP/IP configuration,
you could use the code in the next example. To get any elements or property values of the current
configuration set , you have to set it to a variable first:

set cs to (current configuration set)

See the configuration set class description.

tell application "Network Setup Scripting"

 try

 open database

 set cs to (current configuration set)

 set tcp to (every TCPIP v4 configuration of cs)

 close database

 on error

 close database

 end try

end tell
name string (read-only)

The name property returns "Network Setup Scripting." It is primarily used to target the app in a tell
statement, as in:

application "Network Setup Scripting"
version version (read-only)

This property returns a string (the version object is implemented as a string) representing the
version of the software program, as in "1.1.1."

configuration

This class is the parent class for all the other configuration types, such as Remote Access and TCPIP v4
configurations. You cannot make a new configuration (as in make new configuration), but you can make
the subclass types. An example is:

make new Remote Access configuration with properties{...}

See the make command. The configuration child classes inherit these three properties. In other words, a TCPIP
v4 configuration has active , name , and valid properties.

name string

This property returns the name of the configuration, such as the "newIP" part of TCPIP v4 configuration
"newIP."

active boolean

If the configuration is part of the computer's current Open Transport settings, then its active property is
true .

valid boolean (read-only)

If the configuration is a usable, valid Open Transport configuration that the machine can probably make a
connection with then this property returns true . You can get the property with code such as:

get valid of TCPIP v4 configuration "newMacIP"
configuration set

This class represents a group of configurations and is implemented as a list type, as in the following
return value:

{TCPIP v4 configuration "localt", TCPIP v4 configuration "mediaone",

Remote Access configuration "Default", AppleTalk configuration "Default",

Modem configuration "Default"}

In other words, configuration set is a list of configuration objects. This is the object that is returned by the
application's current configuration set property. The following are configuration set elements:

configuration

Each configuration set contains one or more configurations. See the example return value in the
configuration set description.

transport options

A configuration set may contain one or more transport options . See the transport options class
description elsewhere in this chapter.

The following are configuration set properties:

name string

Every configuration set has a name , as in
configuration set "My Network Settings"
active boolean

This property returns true if the configuration set is currently being used for Open Transport network
services on the machine. A configuration set can exist but not be active (its active is false).

modem configuration

A modem configuration can be created either with AppleScript or with the Modem control panel. The Open
Transport configurations database usually stores at least one modem configuration (called modem
configuration "Default"). Most of the modem configuration properties can also be set in the control
panel.

These are modem configuration properties:

connecting via modem port /printer port /modem printer port or string

This property returns either one of these constants (e.g., modem port) or a string like "Internal
Modem."

dialing method tone /pulse

This property is the script version of the Tone or Pulse radio buttons on the Modem control panel.
You set this property to either of the two constants.

ignores dial tone boolean

This true /false value is the script equivalent of the "Ignore dial tone" checkbox on the Modem
control panel. You can set this property using code such as the following:

set ignores dial tone to true
modem script name string

If the modem configuration is associated with a Modem script in the startup disk:System
Folder:Extensions:Modem Scripts folder, then this property returns the filename as a string . An
example return value is "Global Village 28.8-K56."

modem speaker enabled boolean

If you want to enable the modem's speaker during a connect or disconnect, then set the modem
speaker enabled property of the configuration, which controls that modem to true .

administration password string (write-only)

You can protect a modem configuration by creating an administration password and locking the
various properties, just as you can with other Open Transport configurations. You can only set this
property, not get its value with a script (it is write-only). See the authenticate command description in
this chapter for how to lock or unlock a property with password protection.

user mode basic /advanced /administration

User mode returns one of the three Open Transport configuration user modes (e.g., advanced) as
constants. This property is the script equivalent to setting the User Mode with the Modem control
panel (shown in Figure 16-3). For example, you can password-protect a modem configuration 's
properties by using administration mode as shown.

Figure 16-3. The Modem control panel

Remote Access configuration

This class represents a configuration that you can create with the Remote Access control panel. This
Open Transport technology lets you to make a dial-up connection with the Web via an ISP, as well as allow
other computers to dial in to your machine and use it as a file server. A Remote Access configuration is
identified with its string name:

Remote Access configuration "Default"

Most of its properties are the script equivalents of creating and maintaining Remote Access settings with the
Remote Access control panel. See Figure 16-4 .

The following are Remote Access configuration properties:

user name string

This property is the username that the configuration must provide to connect to a remote network. It is the
script equivalent of the "Name" field in the Remote Access control panel. An example is:

set user name of Remote Access configuration "Default" to¬ "bruce19"
password string

This property is the script equivalent of the "Password" field in the Remote Access control panel (see
Figure 16-4). It is the password that would be required to connect with a remote network.

Figure 16-4. The Remote Access control panel

saves password boolean

saves password is the script equivalent of the "Saves password" checkbox in the Remote Access control
panel. It is a boolean value, as in:

set saves password of Remote Access configuration "Default" to

¬ true

If false , the connection will request a password every time the script attempts to log in. This value is ignored if
the guest access property is true .

guest access boolean

If this property is true , then the script will try to log in to the remote network as a guest rather than as a
specific authenticated user. If guest access is true then the user name , password , and saves password
properties of this configuration are ignored. This property is the script equivalent to the Guest radio button
on the Remote Access control panel.

status Remote access status (read-only)

status returns as a Remote Access status object the status information for a connection (Is it idle?
Connecting? Disconnecting?). See the Remote Access status class description elsewhere in this chapter.

phone number string

This string is the phone number that the modem configuration uses to dial in to a remote connection, as
in "978 352-3522". It is the property-equivalent to the "Number" field in the Remote Access control panel.

alternate number string

The alternate number property represents the alternate phone number to use when redialing in to a
remote connection. This number is used if the redialing property is set to main and alternate .

uses DialAssist boolean

This true /false value is the equivalent of the RemoteAccess DialAssist... menu command in the
Remote Access control panel. DialAssist is a control panel that provides detailed settings for dialing outside
of local regions.

area code string

You can provide an area code for the modem configuration , as in:
set area code of Modem configuration "Default" to "978"

This property applies only if uses DialAssist is true .

country string

The country property for the configuration can be set to a string , as in "Switzerland." This property
corresponds to a pop-up menu choice in the DialAssist control panel. The country property applies only if
uses DialAssist is true .

redialing off/main only/main and alternate

You can set redialing for the configuration to any of the three constants. This property corresponds to
the Redial pop-up menu in the Remote Access control panel. See Figure 16-5 .

times to redial integer

This property specifies how many times to redial while making a remote connection with this modem

configuration before the connect attempt quits. An example is:
set times to redial of Remote Access configuration "Default"¬

to 3

The property corresponds to the "Redial" edit field in the Remote Access control panel. See Figure 16-5 .

time between redials integer

This property corresponds to the "Time between retries" edit field in the Remote Access control panel. Use
it to specify the time in seconds that the configuration should wait before redialing in to the remote
network, as in:

set time between redials of Remote Access configuration¬

"Default" to 5
verbose logging boolean

This true /false value is equivalent to checking the "use verbose logging" checkbox in the Remote Access
control panel (i.e., the "Connection" tab in the "Options..." window). An example is:

Figure 16-5. Tabbed panels in the Remote Access control panel's Options section

tell Remote Access configuration "Default" to¬

 set verbose logging to true
flashes icon boolean

If this property is true and you make a connection using this configuration , then an icon flashes in the
computer's menu bar. The property is the script equivalent to the "Flash icon..." checkbox in the Remote
Access control panel.

prompts to stay connected boolean

A script can set this property in the following manner:
tell Remote Access configuration "Default" to ¬

 set prompts to stay connected to false

The latter code fragment unchecks the "Prompt every 5 minutes checkbox..." in the Remote Access control
panel.

time between prompts integer

If prompts to stay connected is true , then you can specify the number of minutes between prompts with
this property.

disconnects if idle boolean

A script can disconnect a connection after a specified number of minutes, if there is no activity (such as no
bytes transferred across the network connection). To disconnect an idle connection automatically, set this
property to true then specify the number of minutes with the idle time allowed property.

idle time allowed integer

This property specifies the number of minutes that the connection can remain idle before it is automatically
disconnected, if disconnects if idle is true .

protocol PPP/ARAP

This property is the script equivalent of the Use protocol pop-up menu in the Remote Access control panel.
The property can be set to one of the two constants, PPP or ARAP .

connects automatically boolean

If you want to specify that the Remote Access configuration will make its connection automatically
whenever you make an HTTP request with a browser, then set this property to true . This is the script
equivalent to checking the "Connect automatically..." checkbox in the Remote Access control panel.

allows compression boolean

This true /false property allows the Modem to perform error correction and compression. It is the script
equivalent to the "Allow error correction..." checkbox on the Remote Access control panel.

uses header compression boolean

This true /false property allows the compression of packet headers during network communications. It is
the script equivalent to the "Use TCP header compression" checkbox on the Remote Access control panel.

connects using command line boolean

If this property is set to true , then the configuration specifies the display of a command-line shell when a
connection is initiated. It is the script equivalent to the "Connect to a command-line host" checkbox on the
Remote Access control panel.

command line type terminal window/connection script

This property specifies the command-line type as either of the two constants. It is the equivalent of the "Use
terminal window" and "Use connect script" radio buttons on the Remote Access control panel.

connection script file alias

With some Remote Access connections, it is convenient to specify a script that automatically provides text
entries to a command-line window. You can specify this script as a configuration property. An example is:

set connection script file of Remote Access configuration¬ "Default"

to alias "macintosh hd:con scripts:connector"
administration password string (write-only)

If you want to lock some of these Remote Access properties and thus prevent them from being changed by
other users, then set a password with this property (it cannot be read by a script, only set). This is the

equivalent of using the administration user mode under the Remote Access control panel's Edit menu.
user mode basic/advanced/administration

This property returns or sets one of the three constants that represent the Open Transport configuration
user modes.

Remote Access status

This class represents the object that is returned by the Remote Access configuration's status property.
This object's properties give scripts a certain amount of information about the status of a remote
connection, such as how long the machine has been connected (time connected) to the remote network.
For example, you would use the following code to find out the name (i.e., IP address) of the remote server
the machine is connected to:

get server name of (status of Remote Access configuration "Default")

The following are Remote Access status properties:

activity idle/connecting/connected/disconnecting/unknown (read-only)

Get the activity property to find out what the connection is doing at the moment, as in:
get activity of (status of Remote Access configuration

¬ "Default")

This returns one of the constants, such as connected or disconnecting .

time connected integer (read-only)

The time connected property returns a number of seconds:
time connected of (status of Remote Access configuration¬ "Default")

An example return value is 486 (if the connection had been established for eight minutes and six seconds).

time remaining integer (read-only)

This property returns a number of seconds or -1 if the connection has an unlimited amount of time left
(i.e., the value for "Time remaining:" in the control panel's Status area is "Unlimited").

user name string (read-only)

This string property is the user name associated with the connection. This is the name that the user or
script logged on to the remote network with.

server name string (read-only)

You can get the server name of the remote network by reading the server name property. The return value
for this property can be "<Unknown>". The return value can also be the server's IP address, as in
"204.167.109.3." An example is:

get server name of (status of Remote Access configuration¬ "Default")
message string (read-only)

This property contains the most recent message received for this connection. These are the messages
that appear in the Remote Access control panel's Status area (see Figure 16-4). An example return value
for this property is "Connection: 27400 bps."

speed string (read-only)

This property returns the baud rate for the connection as a string . An example return value is "26400."
bytes received integer (read-only)

This property returns the number of bytes received by the computer or client, such as if it received a web
page from the remote network over the connection. An example return value is 197374.

bytes sent integer (read-only)

The bytes sent is an integer like 200374. It represents bytes sent from the client machine to the remote
network, such as if the connection was established and you opened a browser and made an HTTP request
over the connection.

router address

This class represents a router address as a string , such as "192.168.0.1." You can make new router
addresses and associate them with a new TCP/IP configuration.

search domain

This class represents a search domain as a string . This is the information that can be entered into the
domain name and "Additional Search domains" fields in the TCP/IP control panel. See Figure 16-6 . The
following Apple Computer tech info library (TIL) article has more information on configuring TCP/IP and
search domains: http://til.info.apple.com/techinfo.nsf/artnum/n75085 .

TCPIP v4 configuration

This class represents a network configuration that is used to connect to a TCP/IP network, such as the
Internet or an Ethernet. A TCPIP v4 configuration object can have zero or more of its elements (e.g.,
router address). Its properties, such as IP address and configuration method , can also be set manually
in the TCP/IP control panel (see Figure 16-6). You can access this object by its name:

set tcp to TCPIP v4 configuration "Default"

This type of configuration also has the three properties of its parent class configuration (i.e., name , active ,
and valid).

Figure 16-6. TCP/IP control panel

The following are TCPIP v4 configuration elements:

router address

This is the IP address of the router in string form. One way to access the router address is by its index:
get router address 1 of TCPIP v4 configuration "Default"

See the router address class description.

name server address

This is the IP address of the name server in string form. One way to try to access the name server
address is by its index:

get name server address 1 of TCPIP v4 configuration "Default"

See the name server class description.

search domain

This is the string value returned for the search domain field, which involves advanced TCP/IP
configuration.

The following are TCPIP v4 configuration properties:

connecting via Ethernet/MacIP/PPP or string

The return value of this property is either a string or one of the three constants (e.g., Ethernet):
get connecting via of TCPIP v4 configuration "sygate"
configuration method BootP/DHCP/MacIP manual/MacIP server/manual/RARP/PPP server

The configuration method is one of the seven constants, as in:
set configuration method of TCPIP v4 configuration "sygate" to¬ DHCP
IP address string

This property returns the machine's active IP address as a string , such as "192.168.0.5." This value will
be "0.0.0.0" if the configuration method is DHCP , for instance. This is because the client machine (the one
running the script) gets its IP address from the server software.

subnet mask string

This property returns the machine's subnet mask as a string , such as "255.255.255.0." This value will be
"0.0.0.0" if the configuration method is DHCP . This is because the client machine's IP address is allocated
by the server software.

implicit search start string

This property involves the mapping of domain names (e.g., "apple.com") to IP addresses and may return an
empty string ("") if the configuration does not have any specified implicit search paths.

implicit search end string

This property involves domain name searches and the mapping of domain names (e.g., "apple.com") to IP
addresses. The property may return an empty string ("") if the configuration does not have any implicit
search paths.

DHCP client ID string

This property applies only if the configuration's configuration method is DHCP .
MacIP server zone string

An example return value for the MacIP server zone (from my active TCPIP v4 configuration) is "*".
uses IEEE8023 boolean

This true /false value is the script equivalent to the "Use 802.3" checkbox on the TCP/IP control panel. If
the checkbox control is checked, then this property is true . This checkbox only appears if the configuration
connects via Ethernet.

protocol TCPIP v4 (read-only)

This property returns the constant TCPIP v4 .
administration password string (write-only)

This is a settable-only property (you cannot read it with script) for the configurations with which you want to
lock or prevent any unauthorized changes to properties. When a TCPIP v4 configuration has locked
properties, little padlock icons appear next to the properties (e.g., "Connect via") on the TCP/IP control
panel. See the authenticate command description elsewhere in this chapter for working with passwords and
locked/unlocked properties.

user mode basic/advanced/administration

This property returns one of the three Open Transport configuration user modes for TCP/IP (e.g., advanced
). You can also change the user mode from the TCP/IP control panel's Edit:User Mode... menu.

TCPIP v4 options

This class represents the options that apply to all TCPIP v4 configuration s that are part of an Open
Transport configurations database. TCPIP v4 options also has the properties of its transport options
parent class: name , active , consequence , and valid . See the upcoming example.

TCPIP active boolean

Test this true /false property to find out if TCP/IP is an active networking protocol on the computer.
The next example finds out whether TCP/IP is active and, if so, gets the value of all of its options
(e.g., consequence). consequence means, what happens if you change these option's settings (i.e.,
do you have to restart the computer for the network protocol to work properly?).

tell application "Network Setup Scripting"

 open database

 set tpt to TCPIP v4 options 1 (* get TCPIP v4 options object by its index *)

 if (active of tpt) then (* if its active property is true then get vals for

other properties *)

 tpt's name

 tpt's TCPIP active

 tpt's valid

 tpt's consequence

 end if

 close database

end tell

(* Sample return values viewed in Script Editor's Event Log *)

open database

get TCPIP v4 options 1

--> TCPIP v4 options "TCP/IP Globals"

get active of TCPIP v4 options "TCP/IP Globals"

--> true

get name of TCPIP v4 options "TCP/IP Globals"

--> "TCP/IP Globals"

get TCPIP active of TCPIP v4 options "TCP/IP Globals"

--> true

get valid of TCPIP v4 options "TCP/IP Globals"

--> true

get consequence of TCPIP v4 options "TCP/IP Globals"

--> benign
transport options

This is the parent class for the AppleTalk and TCPIP v4 options . Thus, those two classes inherit the four
transport options' properties. The transport options apply to all of the configurations of the same class.
So if you set the TCPIP v4 options , they apply to each instance or copy of a TCPIP v4 configuration (see
the TCPIP v4 options class description elsewhere in this chapter). You can gain access to the various
transport options by name or by index:

tell app "Network Setup Scripting" to get transport options 3

The following are transport options properties:

name string

Each transport option object has a name, as in:
TCPIP v4 options "TCP/IP Globals"

The name is "TCP/IP Globals."

active boolean

If the transport options object is active or associated with a network protocol (like TCP/IP) that is used on
the computer, then this value is true .

consequence benign/may affect services/must restart configuration/must restart
protocol/must restart computer (read-only)

This property returns one of the five constants (e.g., benign). The constant return value reflects the
consequences of any changes to the option's settings. You get the return value with code such as the
following:

consequence of (TCPIP v4 options "TCP/IP Globals")
valid boolean (read-only)

If the options are usable and valid on the computer then this boolean value returns true .

Chapter 17. Scripting Sherlock 2

Sherlock 2 is the Apple Computer program that allows you to search the Web or your local file system for any files
or web pages that meet the criteria you specify in the search text field. Figure 17-1 shows the Sherlock 2 window.
The program is the Find application from pre-Mac OS 8 lineage, but it is significantly renovated for web searching
(the second Sherlock version, Sherlock 2, installed with Mac OS 9).

Figure 17-1. Sherlock 2 window

The software is modeled in part on Internet search-engine methods. For example, Sherlock 2 presents its web
search results as a list of hyperlinks ranked by relevance. If you click on the hyperlink, Sherlock 2 opens the default
browser and attempts to load the page found by the search. Your machine has to be online, however, for Sherlock
2 to search the Web. For example, if you wanted to find a web page that describes the Berkeley Software
Distribution (BSD) commands (so that you can test the use of these commands in Mac OS X's command shell),
then initiate these steps with the Sherlock 2 window:

Choose the Internet channel icon (the planet Earth) at the top of the Sherlock 2 window.1.

Type "BSD commands" in Sherlock 2's search text field.2.

Click the magnifying glass icon at the right of the text field to start the search.3.

You can also use Sherlock 2 to initiate finely grained file searches on your local volumes, but only if you have
indexed these volumes with Sherlock's indexing feature. Figure 17-2 shows the application's Index Volumes
window. Indexing speeds up searching by creating a catalog of important and/or frequently used terms in the

document, similar to an index in the back of a book. Indexing a large disk with Sherlock 2 can take an hour or
more, but the resultant search speed and results are impressive. You cannot index web sites in this manner, just
disks, folders, and files. You can also update or create a new index on folders and files (not just volumes) by
selecting the folder or file and choosing Index selection... from the contextual menu. If you want to search just a
folder, not any volumes, you can drag the folder into the Sherlock 2 window then initiate a search (as long as the
folder was previously indexed).

Figure 17-2. Sherlock 2's Index Volumes window

Of course, all of these tasks-searching the Web or a giant local hard disk, or indexing files, folders, and
volumes-can be accomplished using an AppleScript. To get you started, Example 17-1 tells Sherlock 2 to search
the Web for web pages that are relevant to the command "BSD commands." It uses the search Internet command,
which has an optional labeled parameter display that specifies whether to show the search results in a Sherlock 2
window:

search Internet for "BSD commands" display true

In this case we want to see the search results. The search Internet command returns a list of URL strings that
resulted from the search (see the search Internet command description elsewhere in this chapter).

Example 17-1. Simple Script for Searching with Sherlock 2

tell application "Sherlock 2"

 activate -- make Sherlock the active window

 set query to "BSD commands"

 (* make sure that you catch any network errors and display the error to the user *)

 try

 search Internet for query with display

 on error errmesg

 display dialog errmesg

 end try

end tell

Sherlock 2

The following sections describe the commands and classes included with the Sherlock 2 dictionary. Chapter 2 , describes application dictionaries if
you are not familiar with them.

Dictionary commands

count reference to object

This command counts the number of objects that are specified in its parameter:
tell app "Sherlock 2" to count channels

If you added the code count result to the end of Example 17-1 (just before end tell), then this code would return the number of web sites that the
search returned. The return value is an integer .

exists reference to object

If your Sherlock 2 script is running on a different machine than your own, you will have to find out whether a certain channel exists before you
specify it in a scripted search. The following example initiates a search only if the "Apple" channel exists on the machine running the script. This
command returns a boolean value, true or false :

tell application "Sherlock 2"

 if exists channel "Apple" then

 activate

 (* make sure that you catch any network errors and display the error to the user *)

 try

 search Internet in channel "Apple" for "Mac OS X" with¬

 display

 on error errmesg

 display dialog errmesg

 end try

 else

 display dialog "The Apple channel is not installed."

 end if

end tell
get reference to object

This is the common AppleScript get command, which can be omitted in most cases when you are getting references to Sherlock objects. For
example, you can use the code:

tell app "Sherlock 2" to channels

instead of the code:

tell app "Sherlock 2" to get channels

(although the latter phrase is more grammatically correct). Both of these statements return a list of channel objects. An example return value is:

{channel "Files" of application "Sherlock 2", channel "Apple" of

application "Sherlock 2", channel "Internet" of application "Sherlock2",

channel "My Channel" of application "Sherlock 2", channel "News" of

application "Sherlock 2", channel "People" of application "Sherlock 2",

channel "Reference" of application "Sherlock 2", channel "Shopping" of

application "Sherlock 2"}.
index containers list of aliases

This command indexes or updates the index of the specified files, folders, or volumes. Using index containers is the equivalent of choosing
Sherlock 2's Find:Index Volumes... menu command (just for indexing disks or volumes) or control-clicking a folder or file and choosing Index
selection... from the contextual menu. The following example asks the user to choose a folder, using the choose folder osax, then tells Sherlock 2
to index or update the index on that folder. If you want to index several files, folders, or volumes, then use this command with a list of aliases to
these indexable objects:

index containers {alias "Macintosh HD:Desktop Folder:today:", alias

"Macintosh HD:Desktop Folder:scripts:"}.

tell application "Sherlock 2"

 set theFol to (choose folder with prompt¬

 "Choose a folder for Sherlock to index.")

 index containers theFol

end tell
open list of aliases

By passing a file alias to the open command, you can have Sherlock launch another search with search criteria that you previously saved in a
file. For example, you can specify detailed search criteria in Sherlock 2's Find File mode or tab, then save this criteria in a file for future

searches. To save the search criteria to a file, you use Sherlock 2's File Save Search Criteria... command. The resulting file has a
magnifying glass icon that looks like Figure 17-3 . If you double-click this icon, then Sherlock 2 will either launch (if it is not open already) or
spawn a new search window and re-do the search based on the search file's criteria. You can also launch the search by using the open
command, as in the following example (again, if Sherlock 2 already has a window open, then the open command spawns a new window):

Figure 17-3. A Sherlock 2 search criteria file

tell application "Sherlock 2"

 activate

 open alias "Macintosh HD:Desktop Folder:htm_sher"

end tell
quit

This command quits the Sherlock 2 application:
tell app Sherlock 2 to quit.
run

In most cases it is not necessary to use the run command to execute this program, since targeting Sherlock 2 in a tell statement block
executes the program if it is not already open.

search list of aliases

You can use the search command on folders or volumes to find files that contain a specified string , that have content that is similar to other
files, or that are returned as the results of an executed search criteria file. The search command has four optional labeled parameters that are
described in the following section. You can only use one of the first three parameters. For instance, you cannot use the similar to parameter if
you have already specified a search string with the for parameter. If you try to use more than one of the first three parameters, your script will
raise an error. This command returns a list of aliases to the files that the search found.

Sherlock 2 searches any folders nested in the folder that is specified by the search command, a handy feature that
only requires the script to identify the top-level folder. If the volume containing the folder specified by the search
command has not been indexed, then this command will raise an error.

for string

Use this labeled parameter to specify one or more words to search for in the files:
search alias "HFSA2gig:nutshell book:chapters:" for¬ "AppleScript"

If you want to search for more than one word, separate the different words with a space. You cannot use this parameter if you also use the
similar to or using parameter.

similar to list of aliases

As opposed to searching with a string of words, you can search for files that contain similar content to the files that you specify in "list of
aliases." For example, the following code finds files that are similar to the home.html and search.html files (but these two files have to be
previously indexed):

search alias "HFSA2gig:nutshell book:chapters:" similar to¬ {alias

"macintosh hd:desktop folder:home.html", alias¬

"macintosh hd:desktop folder:search.html"} with display.
using alias

You can use a saved file that contains search criteria (see Figure 17-2) instead of specifying a search string to initiate your Sherlock 2
search. For example:

search alias "HFSA2gig:nutshell book:chapters:" using alias¬ "macintosh hd:desktop folder: htm_sher" with display

To save search criteria to a file you use Sherlock 2's File:Save Search Criteria... command (see the open command description). If you use the
using parameter, you cannot use the other two labeled parameters: for and similar to .

display boolean

This is a true /false value indicating whether you want the search results to be displayed in a Sherlock 2 window. Usually you will want
to display this window, unless you are going to further process the search return value, which is a list of aliases to the files that Sherlock
returns as a result.

tell application "Sherlock 2"

 activate

 (* make sure that you catch any network errors and display the error to the user *)

 try

 search alias "HFSA2gig:nutshell book:chapters:" for¬

 "AppleScript" with display

 on error errmesg

 display dialog errmesg

 end try

end tell
search Internet list of strings

A script can search the Web using a string of one or more search words or a saved search criteria file (see the open command
description). The following example searches HotBot.com for the Vertech altimeter watch. The "list of strings" parameter is optional,
but if you use it, Sherlock 2 limits the search to only the web site(s) identified in the parameter. This parameter is not case-sensitive so
you can use "HotBot" or "hotbot." The search-Internet return value is a list of URLs that comprise the search result. Since Sherlock 2 can
save search criteria in a file but not the search results itself, this return value allows scripters to extend the application by having the script
save the resulting sites to a file or database:

tell application "Sherlock 2"

 activate -- make Sherlock the active window

 (* make sure that you catch any network errors and display the error to the user *)

 try

 search Internet "hotbot" for "vertech altimeter" with¬

 display

 on error errmesg

 display dialog errmesg

 end try

end tell
in channel string

By default, search Internet searches the Internet channel, but you can switch the search to another channel by using this optional labeled
parameter.

for string

This optional parameter identifies the words that you are searching for, as in "Vertech altimeter watch." You have to use either the for or
using parameters with search Internet , but not both.

using alias

This parameter identifies a search criteria file to use in the search. This is a search query that has been saved in a file (see Figure 17-2
and the open command description).

display boolean

By default, search Internet does not display the Sherlock 2 window or show any results. The web pages that are returned by the search
(if any) are returned by search Internet as a list of strings. You can, however, display the search results in a Sherlock 2 window by using
display true or with display , as in:

search Internet for "global warming" with display

select search sites list of strings

This command pre-selects a bunch of web-search sites (in the Internet channel by default):
select search sites {"HotBot", "AltaVista"}

The Internet sites that are identified in the "list of strings" parameter are case-sensitive, so {"HotBot", "AltaVista"} puts checkmarks next to only
those sites in the Internet channel, but {"hotbot", "altavista"} does not select those sites.

in channel string

You can optionally specify the channel in which to select the search sites. The following example first selects the Apple Tech Info Library site in
the "Apple" channel then searches only that site:

tell application "Sherlock 2"

 activate

 select search sites {"Apple Tech Info Library"} in channel¬

 "Apple"

 (* make sure that you catch any network errors and display the error to the user *)

 try

 search Internet in channel "Apple" for¬

 "Mac OS X public beta" with display

 on error errmesg

 display dialog errmesg

 end try

end tell
set reference

A script can set one of Sherlock 2's properties with this command:
set current tab to Find by Content Tab

See the application class description.

to anything

Use this labeled parameter to specify the value of a property:
tell app "Sherlock 2" to set current channel to "Apple"

Provide the keyword to followed by the property value, which in the example is the string "Apple." anything is an AppleScript data type that can be,
well, anything. In other words, it can contain a string or a number or a constant , among other value types.

Dictionary classes

application

This class represents the Sherlock 2 application. It has several channel elements, which a script can obtain as a list value with the code:
tell app "Sherlock 2" to set allch to channels

In this sample code, the allch variable holds the list of channel objects. The Sherlock 2 app has three properties, two of which are settable:

set current channel to channel "People"

The following are application elements:

channel

The Sherlock 2 app has several channel elements, which are returned as a list value by code such as:
tell app "Sherlock 2" to get channels

An example return value is:

{channel "Files" of application "Sherlock 2", channel "Apple" of

application "Sherlock 2", channel "Internet" of application "Sherlock 2",

channel "My Channel" of application "Sherlock 2", channel "News" of application

"Sherlock 2", channel "People" of application "Sherlock 2", channel "Reference"

of application "Sherlock 2", channel "Shopping" of application "Sherlock 2"}

Each member of this list is a channel object; see the channel class description.

The following are application properties:

current channel reference

A script can find out and optionally change the currently active channel with this settable property. An example is:
set current channel to channel "People"
all search sites reference (read-only)

This property returns the Internet search sites as a list . An example return value is:
{"Aladdin Systems", "Aladdin Systems: Frequently Asked

Questions", "AltaVista", "Apple iReview", "Best Site First", "CNET",

"CNET Download.com", "Direct Hit", "Excite", "GoTo.com", "HotBot",

"Infoseek", "LookSmart", "Lycos", "Rolling Stone"}.
current tab Find File Tab/Find by Content Tab/Search Internet Tab

You can set the current tab or focus of the Sherlock 2 window with code such as:
set current tab to Search Internet Tab

However, Sherlock 2 in Mac OS 9 tends to return Find File Tab from the current tab property, no matter which of the window elements (Search
Internet or Find File) currently has the focus.

channel

This class represents a channel object, which is a representation of the various areas of the Web or your filesystem that Sherlock will search.
The channels are depicted in the Sherlock 2 window as icons along the top of the frame (see Figure 17-1). When you select one of the icons
(e.g., "Internet," "People," "Shopping"), Sherlock 2 displays the web sites, disks, or folders that it will search. channel objects are returned by
the Sherlock 2 application object's current channel property, for instance. A channel object is identified by using the keyword channel followed
by its string name:

channel "People"

The following are channel properties:

all search sites reference (read-only)

A script can obtain all the search sites attached to a channel by getting the channel's all search sites property value:
get all search sites of channel "Apple"

An example return value from this code is:

{"Apple iReview", "Apple Macintosh Products Guide", "Apple¬

Tech Info Library", "Apple.com"}
name international text (read-only)

The name of a channel is a string :
channel "Internet"

Chapter 18. URL Access Scripting

The URL Access Scripting application provides an easy method for scripts to download files from and
upload them to a remote directory. This application is located in the startup disk:System Folder:Scripting
Additions folder. It provides two intuitive commands that can be used with the File Transfer Protocol (FTP)
and HyperText Transfer Protocol (HTTP), download and upload. You can use these commands anywhere
in your script, including within a tell block that targets another application, as long as the two commands
do not conflict with that application's own commands. In other words, if a hypothetical program called
ScriptableWebApp already has a download command in its dictionary, then the usage of download within
the tell block tell app "ScriptableWebApp" will invoke that application's download command, not the
URL Access download command.

URL Access can use HTTP to download the source code of a web page to a file of your choice or FTP
files and whole directories back and forth from a web server. You have to have the cooperation of a web
server, however, before your scripts undertake any directory/file uploads or directory downloads. With URL
Access and FTP, you can have your script display a dialog window to allow the user to enter a username
and password and thus be authenticated by the web server (see Figure 18-4 later in the chapter). Figure
18-1 shows the URL Access Scripting icon in the Scripting Additions folder.

Figure 18-1. URL Access Scripting icon

URL Access Scripting

The following descriptions detail the available URL Access commands (download and upload) available for
scripting.

Dictionary commands

download

The download command downloads a file using either FTP or HTTP to the disk of the machine running the
script. The web file can then be viewed with a browser locally. Any images, however, are not downloaded with
the web page using HTTP, so you would have to download the images separately using the download
command. download takes two required parameters: a string URL (as in http://www.parkerriver.com) and a
file specification object to which the script downloads the file. A file specification is an AppleScript
data type that represents the name and location of a file before it is actually saved to the hard disk. In other
words, you can create a new file with the new file scripting addition, which will have the operating system
reserve a unique path for the new file. The new file osax displays a dialog box requesting that the user
choose a location and name for the new file. Figure 18-2 shows this new file dialog window.

Figure 18-2. The dialog window displayed by the new file osax

The return value for new file is a file specification object. You can then download a file to this reserved
file path and an actual file is saved to the hard disk with the prior specified location and name. You have to
enclose the download command in a tell block targeting the URL Access Scripting application, as in:

tell app "URL Access Scripting" to download¬

"http://129.69.59.34/index.html" to filespec

The rest of the download command's parameters are optional. The return value of the download command is a

http://www.parkerriver.com

reference to the file after it is downloaded:

file "Macintosh HD:Desktop Folder:parkerriver.com"

The following example encloses the download script in a try/on error/end try block to catch any errors that are
associated with the download, including the user clicking the Cancel button on the new file dialog window. The
script also uses a with timeout statement to give the download command two minutes to complete its task, before
AppleScript raises an "Apple event timed out" error. By default, AppleScript gives an application 60 seconds to
respond to an Apple event before the script times out. See Chapter 7 , for more details on with timeout .

The following are download properties:

to file specification

This property is a required labeled parameter that identifies the file specification object to which the web
page will be downloaded. For example:

download "ftp://www.parkerriver.com/resources.html" to filespec
replacing yes/no

If a file already exists at this location, then replacing yes replaces that file with the new one, as in:
download "http://my.yahoo.com" to filespec with progress¬ replacing yes
unpacking boolean

If you are downloading a BinHexed and/or stuffed file, then this labeled parameter (e.g., unpacking true)
attempts to decode and/or decompress the file. AppleScript uses the Stuffit Engine extension, which is inside
the System Folder's Extensions folder, to decode and decompress files. An example of a file that would have
to be decoded and unstuffed would be a file that has been encoded using the BinHex protocol and
compressed using Aladdin Stuffit. These files sometimes have suffixes such as "afile.sit.hqx."

progress boolean

We all know that downloading web files with FTP or HTTP, particularly those that involve some server-side
processing, can be a tricky and lengthy process. This parameter requests the display of a progress bar
during the web-file download, which is a good idea. A progress bar is a horizontal cylinder shape that
gradually fills with solid color as a task is executed. Figure 18-3 shows the progress bar. Just add a with
progress to your download command:

download "http://www.highendDesign.com/index.html" to filespec¬ with progress

The progress bar includes a Stop button that causes AppleScript to quit the script (with error number -128)
containing the download command if the user clicks the button.

Figure 18-3. The download command's progress bar

form data string

You can post some data to a Common Gateway Interface script on the Web with the optional parameter form
data . This would be the equivalent of a web user filling out a form and submitting it to a CGI script on a web

server. A CGI script intercepts web data on a server and processes it in some way (such as storing the user
data in a database) before sending back a response page to the user. The following is an example use of the
download command with the with data parameter:

tell application "URL Access Scripting" to download URLstr to¬

filespec form data "username=adminenter&password=mypass#$"¬ with progress

The with data parameter is a URL-encoded string, in other words, one or more name/value pairs (e.g.,
firstname=Bruce) separated by a "&" character.

directory listing boolean

This true /false value is designed to download a directory listing using FTP. The result is a text file in which
each line is of the form "-rw-rw-rw- 1 owner group 17 Oct 29 1998 myfile.txt." An example of using this
labeled parameter is:

download "ftp://www.parkerriver.com" to filespec with¬

directory listing, authentication and progress
download directory boolean

This true /false value is designed to download a directory of files using FTP. With this parameter, the script
should download the files to a folder alias :

alias "Macintosh HD:Desktop Folder:WebFiles"

An example of using this labeled parameter is:

download "ftp://www.parkerriver.com" to folder_alias with¬ download directory,

authentication and progress
authentication boolean

This optional parameter displays a dialog box asking for a username and password, if the web server
requires authentication for FTP and HTTP requests. Figure 18-4 shows this authentication window. An
example of using this parameter is:

Figure 18-4. An authentication window

tell app "URL Access Scripting" to download¬

"ftp://my.yahoo.com" to filespec with authentication

try -- catch any errors caused during the download

 (* get a file specification first, and optionally give the new file a

default name *)

 set filespec to new file with prompt¬

 "Choose a location for the Web file" default name¬

 "resources.html"

 with timeout of 120 seconds (* give the download command two

minutes before the Apple Event times out *)

 tell application "URL Access Scripting" to download¬

 "ftp://www.parkerriver.com/resources.html" to¬

 filespec with progress and authentication

 end timeout

on error errmesg number errNum

 if errNum is -128 then (* if the user cancels the file dialog or the progress

dialog *)

 display dialog

 "You quit before downloading a file: the applet " &¬

 "will quit now."

 else

 display dialog (errNum as text) & ": " & errmesg &¬

 return & return & "An error occurred during the " &¬

 "download. Try running the applet again."

 end if

end try
upload

Use this command if you want your script to upload a file or a directory of files with FTP. Like the download
command, you can optionally provide a username and password for authentication (usually required for FTP
uploads) and display a progress-bar window. If your script is uploading an entire directory of files, you can
use the choose folder scripting addition to allow the script user to choose the directory to upload. choose
folder returns an alias to the folder that the user chooses. You can then use this alias as a parameter to the
upload command:

tell app "URL Access Scripting" to upload folder_alias to¬

"ftp:// www. mysite.org" with authentication

You have to enclose the upload command in a tell statement targeting the URL Access Scripting application.
Chapter 7 describes the tell statement.

to string

Provide the receiving server with this URL string , as in "ftp://www.parkerriver.com". You have to include the
protocol ("ftp://") part of the URL. An example is:

upload myfile to "ftp://www.mysite.org"
replacing yes/no

If a version of the uploaded file already exists on the server, then the upload-command default is replacing
no . If you want to replace any existing files, use:

upload myfile to "ftp://www.mysite.org" replacing yes
progress boolean

Display a progress bar for longer tasks such as uploading a directory of files. For example:
upload myfolder to "ftp://www.mysite.org/newfiles/" with¬ authentication and progress

The default value for this parameter is false .

binhexing boolean

The default value for the binhexing parameter is true . This encodes the uploaded files for safer transfer
across the network. If you do not want to binhex the files, use binhexing false in your upload command:

upload myfile to "ftp://www.mysite.org" replacing yes¬

binhexing false
upload directory boolean

This true /false parameter uploads an entire directory of files. An example of using the upload directory
parameter is:

tell application "URL Access Scripting" to (upload fol_alias¬

to "ftp://www.parkerriver.com/" with progress,¬

upload directory and authentication)

This parameter is false by default.

authentication boolean

Many FTP sites require the user to be authenticated with the username and password before they are

allowed to upload any files or directories. If you use authentication true or with authentication with your
upload command, then the script will display an authentication dialog window that looks like Figure 18-4 .
This parameter is false by default. For example:

tell application "URL Access Scripting"

 try -- catch any upload errors

 set fil to (choose file with prompt¬

 "Choose a file to upload")

 set bool to (upload fil to¬

 "ftp://www.parkerriver.com/" with authentication and¬

 progress)

 on error errmesg number errnum

 if errnum is not -128 then

 display dialog (errnum as text) & ": " & errmesg &¬

 return & return & "Applet quitting."

 return

 end if

 end try

end tell

Part IV: Scripting Mac OS 9 Control Panels and
Extensions

Chapter 19. Appearance Control Panel

The Appearance control panel, shown in Figure 19-1, lets the user customize the look and behavior of
their desktop, such as its background color, the font for desktop text, the sounds that play when you
manipulate window controls, and how window title bars and scroll bars work. These settings can be
encapsulated into themes that you can name and load using AppleScript and the control panel itself. The
Appearance control panel is located in startup disk:System Folder:Control Panels.

Figure 19-1. Appearance control panel

You can change the current Appearance theme with a bit of AppleScript, such as:

tell app "Appearance" to set current theme to theme "Golden Poppy"

Then you might want to change it back to your favorite theme once you get a look at "Golden Poppy"!

Appearance Control Panel

Syntax

tell app "Appearance" to get picture file of monitor 1 (* returns "no

picture" if the desktop has a color but not a picture *)

Dictionary commands

count

This command returns an integer representing a count of certain Appearance objects, such as:
count of monitors

or:

count of themes

You can also use the syntax count each theme or count each monitor .

exists

This indicates whether an object exists and returns a boolean value, as in:
exists monitor 2

This command returns false if the machine is hooked up to only one monitor.

quit

This quits the Appearance application:
tell app "Appearance" to quit
run

This command sends a run Apple event to Appearance, which opens the application if it is not already open. Using this
command is not necessary as AppleScript sends an implicit run command to the applications that are targeted in a tell
statement. Chapter 7 , describes the tell statement.

Dictionary classes

Application

The Appearance Application class has two elements: theme and monitor . There are in reality about two dozen theme
objects associated with each Appearance application and one or more monitors (depending on how many monitors are
attached to your machine). The Application class has the following properties (appearing here in their Dictionary order),
all of which are accessible by targeting the Appearance app in a tell statement. The properties are accompanied by

their data type in parentheses:

name (string)

This represents the application's name, as in "Appearance."
frontmost (boolean)

This returns true if Appearance is the active application on the desktop (i.e., its window is highlighted).
version (version type, like a string)

Use this property, as in
tell app "Appearance" to get version

to find out the control panel's version on the machine. You'll have to coerce the version property to a string to pass it to
the display dialog osax:

version as string
current theme (reference)

This is a reference to the selected theme under the Theme tab of the control panel. You can use this property to
get information on the current theme:

name of current theme
appearance (string)

This property corresponds to the Appearance pop-up menu under the control panel's Appearance tab. This is the
name for the overall look of icons, menus, and other desktop elements, as in "Apple platinum."

appearance variant (string)

This property corresponds to the Variation pop-up menu under the control panel's Appearance tab. It returns a
string such as "Lavender," representing another variation on the desktop appearance (the dictionary entry of an
integer return value is wrong).

background pattern (international text)

This property corresponds to the Patterns list box under the control panel's Desktop tab. It returns the pattern
name like "Azul Dark."

highlight color (string)

This property represents the Highlight Color pop-up menu under the control panel's Appearance tab. You can
dynamically change the computer's highlight color for text with code such as set highlight color to "Azul" .

highlight color (RGB color)

You can also pass an RGB Color value to this property to alter the color to a custom hue. RGB Color values are
list types with three numbers ranging from to 65535; the integers represent the red, green, and blue
components for the custom color. For example, get highlight color as RGB color would return
{39321,52428,65535}, which represents the color Azul. Chapter 3 , discusses AppleScript's value types like list
.

minimum font smoothing size (integer)

This corresponds to the "Smooth all fonts on screen" checkbox in the Fonts tab of the control panel. It returns an
integer representing the minimum-sized font for which the computer will turn on anti-aliasing, a graphics term for
smoothing the jagged look of some fonts on the computer screen.

system font (international text)

This property returns the name of the font your system is using, such as "Charcoal." It corresponds to the Large
System Font pop-up menu choice in the control panel's Fonts tab.

small system font (international text)

This property returns the name of the font your system is using for displaying small text items. It corresponds to
the Small System Font pop-up menu in the control panel's Fonts tab.

views font (string)

This property contains the name of the font the machine is using for views, such as folder listings. An example
views font value is "Geneva." It corresponds to the Views Font pop-up menu choice in the control panel's Fonts
tab.

views font size (integer)

This is the property for the size of the views font, which is an integer (e.g., 10).
font smoothing (boolean)

This is a true or false value indicating whether font smoothing is on.
scroll box style (fixed/proportional)

This property corresponds to the Smart Scrolling checkbox in the Options tab. Unchecked enables fixed , and
checked is proportional . To find out what kind of scroll box setting you have, use code such as:

get scroll box style

which returns either fixed or proportional .

scroll bar arrow style (single/both at one end).

Checking Smart Scrolling in the control panel's Options tab gives your windows both up and down arrows at the
bottom of each window scroll bar. Control this with AppleScript code such as the following:

set scroll bar arrow style to single
Single

This produces a single arrow at the top and bottom of the scroll bar. If Smart Scrolling is checked then this value
is both at one end .

collapsible via title bar (boolean)

This property, a true or false value, determines whether clicking on a window's title bar makes the window itself
disappear or collapse, except for the title bar. The property corresponds to the "Double-click title bar to collapse
windows" checkbox in the Options tab.

sound track (no sound track/string)

Checking this property returns either the constant no sound track or a string like "Platinum Sounds." This
property corresponds to the pop-up menu in the control panel's Sounds tab.

sound effects (list of constants: menu sounds/control sounds/window sounds/finder sounds)

You can control which desktop elements (e.g., menus, windows) play sounds when you manipulate them by
setting the sound effects property to a list of constants such as:

{menu sounds, control sounds}

If sound track is set to no sound track, then setting the sound effects property does not have a practical effect (you
still won't have any sounds).

theme

This class encapsulates an individual theme in your Appearance settings. The Appearance application's current theme
property returns a reference to an enabled theme object. The theme class has zero elements and the following nine
properties. All of these properties are the same as the Application properties, except that they are read-only; you
cannot change their values.

name (string ; read-only)
appearance (string ; read-only)
appearance variant (string ; read-only)
background pattern (international text ; read-only)
highlight color (RGB color ; read-only)
system font (international text ; read-only)
small system font (international text ; read-only)
views font (international text ; read-only)
views font size (integer ; read-only)

Monitor

This class represents the monitor(s) attached to the computer. It has zero elements and the following two properties:

picture file (no picture/alias)

This either returns the value no picture (a constant type, not a string) or an alias to the picture (which can be
coerced to a string , as in "Macintosh HD:pics:sunset.jpg").

picture positioning (automatic/tiled/centered/scaled/filling)

This is a constant value specifying how to display the picture file on the desktop.

Examples

global theMessage

tell application "Appearance"

 (* boolean variables *)

 set MyCollapsible to false

 set ScrollBoth to false

 (* test 'collapsible via title bar' property *)

 if collapsible via title bar then set MyCollapsible to true

 (* check 'scroll bar arrow style' property: can be either 'single' or 'both at one end' *)

 if scroll bar arrow style is both at one end then

 set ScrollBoth to true

 end if

 set theMessage to¬

 "You can double-click the title bar to collapse the windows: " &¬

 MyCollapsible & return

 set theMessage to theMessage &¬

 "The scroll bars have the arrows at one end: " & ScrollBoth &¬

 return & return

 set theMessage to theMessage & "The current theme is: " &¬

 (name of current theme)

 set theMessage to theMessage & return & "The appearance prop is: " &¬

 (appearance of current theme)

end tell

(* use display dialog osax to display the values of these Appearance properties *)

display dialog theMessage

Chapter 20. Apple Data Detectors Extension

Apple Data Detectors (ADD) is a technology that Apple Computer introduced during the late 1990s. It
allows a scripter to specify an AppleScript for the processing of certain types of information that users
encounter in desktop windows, such as web site addresses or geographic locations. Apple Data Detectors
are designed to identify these important snippets of data, including email and Newsgroup addresses, in
almost any application window you might be working in. Figure 20-1 shows the Apple Data Detectors 1.02
control panel.

Figure 20-1. Apple Data Detectors control panel

For example, you might be in AppleWorks, WordPerfect, or Microsoft Word and come upon a Uniform
Resource Locator (URL) that you want to open up in your browser and visit. Or you find an email address
of someone to whom you would like to send an instant email message. Rather than manually cut and
paste the URL or email address into another application (which might not even be running at the time),
ADD allows you to select the text or paragraph that contains the text and then Control-click the selection.
Up pops a contextual menu in the canvas space of the window. The menu contains a list of actions that
you can perform with the selected data-even if you just selected a whole paragraph surrounding the text.
ADD is designed to look for and pull out evidence of the specified data in the chunk of selected text, such
as protocol strings (e.g., "http," "ftp") or Newsgroup prefixes such as "comp."

These menu actions might include the text "Open URL in Netscape Communicator" or "New OutLook
Express Message Recipient." Once you choose the action in the contextual menu, an AppleScript is
executed to process just the snippet of text that you are targeting! ADD does not always work as intended,
however; you have to experiment, test, and debug.

ADD has to be installed on your system before you can use it. As of the spring of 2001, you can
download and install ADD 1.02 from the following address:

http://www.apple.com/applescript/data_detectors/updates.00.html

The ADD installation puts dozens of Apple's "actions" or scripts inside of startup disk:System Folder:Apple
Data Detectors:Actions, along with the Internet Address Detectors (IAD) software. IAD detects web URLs,
email addresses, FTP sites, Internet hostnames (www.apple.com), and USENET newsgroups in window
text. With separate downloads, you can also install U.S. Geographic Detectors, which can recognize city
or state references such as "San Francisco, CA." One of the associated geographic actions looks up a
map for the selected city at the Yahoo! map web site. Apple has also promised to release a Currency
Detectors package that will work with currency formats (e.g., $1,200) in various languages.

This is powerful functionality, yet the technology gets even more inspiring when you imagine all of the
AppleScripts you can write yourself and use with ADD. While the ADD control panel itself is minimally
scriptable with Mac OS 9 (you can send it basic Apple events such as activate), the types of scripts that
you can develop and trigger by using the Apple Data Detectors Scripting osax offer greater possibilities.
(Appendix A, goes into detail about scripting additions or osax.) The script in the Examples section creates
a new Outlook Express email message from any email addresses that Internet Address Detectors detect.

http://www.apple.com/applescript/data_detectors/updates.00.html

Apple Data Detectors

Syntax

(*

Identify detector in Script Editor Description window with the

package::detector-name syntax as in Apple::Email Address for the Email

Address Internet Address Detector.

*)

Apple::Email Address -- Name of detector to handle

New OutLook Express Message Recipient (* string that will appear in

contextual menu *)

(*

end of Script Editor Description Window phrases

*)

(*

define the handle detection routine ; it has a parameter of data type

record that contains the detected text

*)

on handle detection theDetector

 --actual script with 'handle detection' handler, statements, and code ...

end handle detection

Dictionary commands

handle detection (from the Apple Data Detectors Scripting osax)

This event is fired when the user chooses the action containing this routine in the contextual menu. For example, the user
might select and Control-click the text "user@hersite.com." The resulting contextual menu may have a submenu displaying
the title "New OutLook Express Message Recipient." If the user chooses this title in the contextual menu, then the script
action associated with that title is executed and it calls its handle detection routine. This routine stores the detector
instance , an object of type record , in the handle-detection routine's parameter. An example code snippet is: on handle
detection theDetector...end handle detection (theDetector is the parameter or detector instance). For example, an
email-related script could find out the selected email address with the code:

detected text of theDetector

(which might evaluate to a string such as "user@hersite.com"). The functionality you want this action script to have is defined in
the handle detection routine, including calling other functions.

Dictionary classes

detector instance (from the Apple Data Detectors Scripting osax)

This class represents a record type sent as a parameter to the handle detection routine of your action scripts. The detector
instance record has the following properties:

name (string)

This is the name of the detector that detected the text, as in "Apple::Email Address."
detected text (string)

This is the string that was detected by the detector identified in the name property, as in "theuser@hersite.com."
sub detections (list)

sub detections is a property of type list ; each item of this list is data of type record . Not very many detectors
return anything but an empty list for this property. Some detectors return a list of record objects. Consider, for
example, the Apple US Geographic::USCityState detector. If you wrote an action script for this detector, then you
could obtain the detected city/state string (e.g., "San Francisco, CA") by using the code (if the variable theDetector
was the parameter for the handle detections routine):

detected text of theDetector

Let's say the string the user had selected was "San Francisco, CA." The property

sub detections of theDetector

would contain a list of records that looks like this: { {name: "theCity",detected text:"San Francisco"}, {name:
"theSeparator", detected text: ","}, {name: "theState", detected text: "CA"} } . Each of the three records in this
sub detections list contains two properties-name and detected text -with strings for the property values. A list of
records is certainly difficult to look at. Another way to conceive of sub detections is as an array that contains associative
arrays as array elements.

Examples

on handle detection theDetector

 try

 set emailAdd to detected text of theDetector (* store the detected text in a variable *)

 set theSubject to the text returned of¬

 (display dialog "Please enter the email subject:"¬

 default answer "" buttons {"Okay", "Cancel"}¬

 default button 1)

 set theContent to the text returned of¬

 (display dialog "Please¬

 enter the message content:" default answer "" buttons {"Okay", ¬

 "Cancel"} default button 1)

 tell application "Outlook Express"

 activate

 make new draft window with properties {subject:theSubject,¬

 content:theContent, to recipients:emailAdd} (* make a new

 email-message window *)

 end tell

 on error errMessage

 display dialog "You could not create a new email message" &¬

 " due to the following error:" & errMessage

 end try

end handle detection

You have to install any new detectors that you download by using the Apple Data Detectors control panel. Use the File Install
Detector File... command from the control panel's window. Use the File Install Action File... command to install the
AppleScripts or actions that you write for Apple Data Detectors. Once installed, the actions are kept in the directory startup
disk:System Folder:Apple Data Detectors:Actions .

When you write an ADD action, you have to include certain information in the Script Editor Description field, or the ADD control
panel will not install the action. The Description field is a text area at the top of the Script Editor window (Chapter 2 is devoted to
Script Editor). This information includes the detector that is used to handle the action, as in Apple::HTTP for the HTTP detector,
and the action title that the contextual menu will display. The contextual menu displays when the user Control-clicks some selected
text that contains data which ADD looks for, such as a web site address. The next example shows the text that you must add to the
Script Editor Description field for a script that opens a web site in Internet Explorer:

(* the first two lines go in the Script Editor Description field *)

Apple::HTTP -- Name of detector to handle

Get website in IE4.5 -- Contextual menu string

on handle detection decRecord

 set theURL to detected text of decRecord

 tell application "Internet Explorer 4.5"

 Activate

 OpenURL theURL

 end tell

end handle detection

Table 20-1 shows the detector names that scripters use with their action scripts. The first four detector names identify the detectors
that are a part of the Internet Address Detectors package; the last two are part of the U.S. Geographic Detectors package.

Table 20-1. Detector Packages and Names

Detector Name Package

Apple::FTP Internet Address Detectors

Apple::Host Internet Address Detectors

Apple::HTTP Internet Address Detectors

Apple::Newsgroup Internet Address Detectors

Apple US Geographic::USCityState U.S. Geographic Detectors

Apple US Geographic::USState U.S. Geographic Detectors

The AppleScript statements that you include outside of the handle detection subroutine do not run when the action script executes,
unless you include them in another routine that handle detection calls. For example, the statement:

display dialog "I am called in handle detection"

executes because it is part of a doDisplay function that is called by handle detection :

On handle detection decRecord

 Set theSel to detected text of decRecord

 Display dialog "here's what you selected: " & theSel¬

 doDisplay()

End handle detection

On doDisplay()

 display dialog "I am called in handle detection"

End doDisplay

Chapter 21. Apple Menu Options Control Panel

Apple Menu Options is a scriptable control panel that configures the Apple menu. This is the sticky menu
that drops down from the little apple icon at the upper left corner of your screen. The Apple menu shows
what's inside the directory startup disk:System Folder:Apple Menu Items as a hierarchical menu. This is
where the user can gain quick access to Chooser, Apple System Profiler, Network Browser, as well as the
control panels and the contents of any folder (or alias to that folder) that you place in this location. For
example, placing an alias in the Apple Menu Items folder will display the contents of that aliased folder
from the Apple menu, as well as submenus showing what is in any nested folders. Handy!

Figure 21-1 shows the grand total of five elements that you can configure from this control panel. Recent
applications, documents, and servers are menu items under the Apple menu that provide links via
submenus to, for instance, the recent documents you have had open on your computer. You can script
these features using this control panel's application object (Chapter 1, describes Apple event object
models and application objects).

Figure 21-1. Apple Menu Options control panel

Apple Menu Options

Syntax

tell app "Apple Menu Options"

 activate

 set recentStuff to recent items enabled (* this is an Apple Menu

 Options property *)

end tell

Dictionary commands

quit

This command quits the control panel (i.e., it is no longer running and loaded into memory).
run

Sending the run command is the same as double-clicking the control panel or choosing it from the
Apple menu Control Panels submenu.

get (reference to an object)

Use this command to get the value of a property, such as:
tell app "Apple Menu Options" to get submenus

enabled

get returns the value of the property.

as (class)

You can use the optional labeled parameter as, followed by data of type class, to specify the type of
data to return (rather than the default, which is a boolean or integer for this control panel's
properties).

set (reference to an object)

Change how the Apple menu behaves by setting a value, such as:
tell app "Apple Menu Options" to set maximum recent documents to

12

This code stores up to 12 aliases to the documents that you had open recently.

to

The to labeled parameter is required; otherwise the app would not know what value the script wants
to set the property to.

Dictionary classes

application

This class represents the Apple Menu Options control panel. It has the following five properties. To
obtain the values of these properties, use code such as:

tell app "Apple Menu Options" to get maximum recent documents
submenus enabled (boolean)

This returns true if passing the mouse over a folder item in the Apple menu, such as Control
Panels, produces a submenu displaying the contents of that folder. You usually want this feature
enabled in order to execute control panels. But you can remove submenus from the Apple menu
with code such as:

tell app "Apple Menu Options" to set submenus enabled to false.
recent items enabled (boolean)

This is a true/false value indicating whether the Apple menu keeps track of recent items, such as
applications, documents, or servers.

maximum recent applications (integer)

Scripters can get or set the number of apps the Apple menu creates aliases for by viewing or
changing this integer property value:

set maxApps to maximum recent applications.
maximum recent documents (integer)

This is an integer that represents the number of documents the Apple menu displays in its Recent
Documents folder.

maximum recent servers (integer)

This command represents the number of recent servers that the Apple menu displays, as in:
set maximum recent servers to 4

Examples

tell app "Apple Menu Options"

 (* Set your preferences for the Apple menu *)

 set submenus enabled to true

 set recent items enabled to true

 set maximum recent applications to 6

 set maximum recent documents to 12

 set maximum recent servers to 1

end tell

Chapter 22. Application Switcher Extension

Rest your gaze upon the upper right hand corner of the Mac screen and you find the subtle but handy
Application menu. It displays the icons and names of the programs that are currently running, including the
Finder. By simply selecting this portion of your screen and dragging the mouse, you can tear off the menu
and convert it to a floating palette. This small window is called the Application Switcher, shown in Figure
22-1. You can also cycle through the running apps by using the keyboard combination Command-Tab or a
different combination that can be controlled with AppleScript.

Figure 22-1. Application Switcher palette

With AppleScript, you set the size, orientation (vertical or horizontal), and position of the floating palette by
altering the properties of Application Switcher's window class. You can also recreate the keyboard
combination you use to cycle through the open programs and the order in which the programs are
displayed in the palette (e.g., ordered by when they were launched). The following description of
commands and classes applies to Application Switcher Version 1.0, which is installed with Mac OS 9.

Application Switcher

Syntax

tell app "Application Switcher"

 set palette's orientation to vertical -- programs are displayed top to bottom

end tell

Dictionary commands

run

This launches the application if it isn't running and is the same as double-clicking its icon.
quit

This command quits Application Switcher, releasing its memory resources.

Dictionary classes

application

This class represents the Application Switcher application. It has the following five properties, which can
be accessed simply by referring to them within a:

tell app "Application Switcher"

block, as in:

tell app "Application Switcher" to set palette's button ordering to¬ alphabetical
palette (window object)

This property returns as a window object the palette that displays all the running programs. You can then
alter the palette's properties, as in:

set palette's position to upper left

For example, you can show only the program icons in the palette (so that it does not take up very much room
on the screen) with the following code:

tell app "Application Switcher" to set palette's names visible¬ to false
keyboard cycling active (boolean)

This is a true/false value indicating whether you can use the keyboard combination, Command-Tab or
otherwise, to switch from one open program to another. See "cycling keystroke" for how to set your own
keyboard combination for this cycling behavior.

cycling keystroke (keystroke object)

You can set the keyboard combination for cycling through open programs (each program will become
the highlighted program on the desktop in sequence as you press this key combo). This example
changes this cycling keystroke to Control-F1 :

tell application "Application Switcher"

set stroke to {key:F1 key, modifiers:{control down}}

set cycling keystroke to stroke

end tell

The keystroke object takes the form of a record type, a series of property/value pairs separated by commas
and contained within curly braces ({ }). You can set its key property to either a string (e.g., "p") or a constant
like tab key , up arrow key , or F1 key . Its modifiers property is also set to a constant such as control down
. So the value of the cycling keystroke property can be set to a record such as the following:

{key:F1 key, modifiers:{control down}}
quit delay (constants default /never or integer)

Accessing this property will return the constants default , never , or an integer representing the
number of seconds, approximately, of delay before the application quits. By changing this property, I did
not see any change in the Switcher's behavior when it was quit or its window was hidden. Anyway, even
if you quit Application Switcher, say by using its quit command, you can quickly reproduce the palette by
dragging with the mouse from the upper corner.

credits (string)

This is a self-congratulatory message from the Application Switcher programmers.
keystroke

The keystroke object is returned by the Application Switcher's cycling keystroke property (see its
description in this chapter). This class has key and modifiers properties.

key (string or constant)

This property can be set to either an alphanumeric keyboard character such as "h" or one of the
following constants:

clear key F8 key

delete key F9 key

down arrow key forward del key

end key help key

enter key home key

escape key left arrow key

F1 key page down key

F2 key page up key

F3 key return key

F4 key right arrow key

F5 key tab key

F6 key up arrow key

F7 key

See the next example and the "cycling keystroke" description for more details.
modifiers (list of constants)

modifiers can be a list of any of the following constants: option down /command down /control down
/caps lock down . If you want to cycle through your open apps with the F1 key pressed together with
the control key, the value of the keystroke object is:

{key:F1 key, modifiers:{control down}}
window

This class represents the Switcher's floating palette. The application class' palette property returns a
window object; you can then control its display and behavior with the following properties.

properties (record)

The value of this record type is all of the open palette's properties. Here's an example:
{position:{943, 288}, bounds:{943, 288, 1039, 432}, anchor

point:upper left, button ordering:launch order, constraint:none,

frame visible:true, icon size:small, name width:72, names visible:true,

orientation:vertical, visible:true}

You can create a custom Switcher palette by setting the application's palette to your own record value, as in
the following (add a record value like the preceding example):

tell app "Application Switcher" to set palette's properties to ...
visible (boolean)

A true/false value determining whether the palette is visible.
orientation (horizontal /vertical)

The palette in Figure 22-1 , for example, is in the vertical orientation.
position (point object or constants upper left /upper right /lower left / lower right .)

You can set the palette position with one of the four constants (e.g., upper right) or a point in the top
left corner of the window, as in:

set palette's position to {50, 150}

This code moves the palette to the position 50 pixels from the left border of the screen and 150 pixels down.

bounds (bounding rectangle)

You can also establish the palette's position as a list of four coordinates, such as {943, 288, 1039,
432}. See the Examples section at the end of this chapter.

anchor point (constants upper left or lower right)

Get or set the anchor point of the palette to either of the two constants. This prop does not affect the
way a vertical palette can be dragged in size, however. You can only drag the window horizontally to the
point where the longest program name is fully displayed.

button ordering (constant)

This property can be set to one of the following constants: alphabetical /launch order /reverse
alphabetical /reverse launch order .

constraint (constants none , all monitors , or one monitor)

You can display the palette on one or more monitors connected to the computer.
frame visible (boolean)

You can remove the title bar of the Application Switcher's palette with a phrase such as:
set palette's frame visible to false

The palette can still be moved around the screen by Command-clicking it.

icon size (small or large)

Use this property to control the size of icons in the palette.
names visible (boolean)

This property is a true/false value that determines whether the palette will display only icons or icons
and program names.

name width (integer)

Set the amount of space that Switcher devotes to the program names to the pixel width of your choice. If
it cannot fit in the palette, the program name will be truncated with an ellipses (...) added to the end of it.

Example

(* This script sets the bounds of Switcher based on the bounds of a Word

window *)

(* Find out how many programs are running that are displayed in Switcher

so that we can set the height of the palette; 24 pixels per program including

the Finder. The script uses the Finder's application processes property, then

does not count the background processes that do not display in the Switcher *)

tell application "Finder"

 set noDisplay to

 {"Control Strip Extension", "DAVE Sharing Extension",¬

 "HP Background", "Time Synchronizer", "File Sharing Extension",¬

 "ShareWay IP Personal Bgnd", "Application Switcher",¬

 "Time Synchronizer"}

 set procs to application processes -- list of running processes

 set counter to 0 -- count of processes that are displayed

 repeat with p in procs

 set n to (name of p) -- name of app like "Script Editor"

 (* count the app if it is not in the list of programs that don't display

in Switcher *)

 if noDisplay does not contain n then set counter to counter + 1

 end repeat

end tell

set counter to counter + 1 (* include the Finder in apps that are displayed

in Switcher *)

tell application "Microsoft Word"

 activate

 (* Get the bounds of this window *)

 set wdbounds to bounds of window 1

end tell

tell application "Application Switcher"

 (* set X coordinate of palette's upper left corner to 5 pixels to the right

of the Word window. If Word window bounds are {52, 99, 983, 720} then item 3

of the bounds is 983 *)

 set rightpoint to (item 3 of wdbounds) + 5

 (* we want the palette height to be the number of displayed apps times 24

pixels *)

 set height to counter * 24

 (* set palette bounds to 5 pixels to the right of Word win, one and a half

inches from the top of the screen (about 108 pixels), a width of 127 pixels,

and a height of 108 plus (the number of programs * 24 pixels). The Switcher

will dynamically accommodate all the displayed programs in the palette height

anyway *)

 set palette's bounds to {rightpoint, 108, (rightpoint + 127), (108 +¬

 height)}

 log palette's bounds -- check out the new bounds in Event Log window

end tell

Chapter 23. ColorSync Extension

The scriptable ColorSync extension is used to synchronize the color inputs and outputs of monitors,
scanners, printers, and other devices to help ensure that the graphics the devices produce have consistent
color. ColorSync uses embedded International Color Consortium (ICC) profiles in images. The profiles
contain information about the color capabilities of the device that produced the image. For example, if you
save an image as a jpeg with an embedded ICC profile, then ColorSync compares this profile with the
printer's color profile in order to reproduce the image's colors in the printed document as well as it can. An
Apple Computer ColorSync site is http://www.apple.com/colorsync.

In AppleScript, you can create droplets that manage the embedded profiles of the images that you drag
onto the droplet.

A droplet is a type of script file that will process the files whose icons you drag onto
the droplet's icon. See Chapter 2, for details.

Only certain image-file types, such as JPEG, PICT, and TIFF, can have embedded ICC profiles. The
directory startup disk:AppleScript Extras:ColorSync Extras:AppleScript Files contains a number of
ColorSync droplets you can use with these files. Dozens of ICC profile files are located in startup
disk:System Folder: ColorSync Profiles.

If you try to extract a profile from an image type that does not support embedded profiles (TIFF, JPEG, and
PICT dosupport ICC profiles), then ColorSync Extension will not return any value from the script
command. In general, check the image's file type before you open it with ColorSync Extension (e.g., a jpeg
image's file type is JPEG).

http://www.apple.com/colorsync

ColorSync

Syntax

tell app "Colorsync Extension"

 (* embed ICC profile referred to by the variable profFile in the image

file represented by variable jpegImage *)

 embed jpegImage with source profFile

end tell

The following commands and classes derive from ColorSync Extension Version 3.0, which is installed with Mac OS 9.

Dictionary commands

run

This opens the ColorSync application as an invisible or faceless background application (i.e., one that doesn't have a
graphical user interface).

quit

This quits the ColorSync Extension application.
open object reference

This opens an image to inspect its profile (see the Examples section). This command returns a reference to the opened
image.

save object reference

This command saves an image file with a new ICC profile, for instance.
in alias

This provides an alias file path for saving the image file.
close object reference

This closes an image file, as in:
close imgFile saving in alias "Macintosh HD:Desktop¬ Folder:cowgirl2.jpg"
saving yes /no

If you have embedded a new ICC profile in an image file, you probably would want to:
close imgFile saving yes

As you might have guessed, this code saves the image file before the script closes it; you can close the file without a save with
the saving no parameter.

saving in alias

This saves an open object in an alias file before closing it:
close imgFile saving in¬

(alias "macintosh hd:desktop folder:cowgirl.jpg")
embed alias

This command embeds an image with an ICC profile from the System Folder:ColorSync Profiles folder, as in:
embed imgFile with source profile "Apple Studio Display"
with source profile object

This required labeled parameter identifies the ICC profile object you want to embed in the file. You can either use a
specific profile, as in:

profile "Apple Studio Display"

or a variable that refers to a profile object. See the profile class in this chapter.

matching with constant

Follow the matching with optional labeled parameter with one of these constants: perceptual intent /relative
colorimetric intent /saturation intent /absolute colorimetric intent . These terms specify the "rendering
intent," which affects how the colors of the image with its embedded profile are rendered on the destination device, such
as a monitor.

using quality normal /draft / best

Optionally specify another parameter for rendering the image with one of the three constants.
saving into file specification

If you include this optional labeled parameter with a folder name, then a new file is created in that folder with the
same name as the original file. The original file is modified if this labeled parameter is not used. This example
asks the user for a file in which to embed the "Apple Studio Display" ICC profile, then saves it in the folder of the
user's choice:

set nfile to (choose file of type {"JPEG", "TIFF", "PICT"})

set folSpec to (choose folder)

tell application "ColorSync Extension"

 embed nfile with source profile "Apple Studio Display"¬

 saving into folSpec

end tell
replacing boolean

This is an optional true /false value that specifies the replacement of an existing file with the newly embedded
file.

unembed alias

This command removes any embedded ICC profiles from an image specified in the alias parameter.

saving into file specification

You can save the file, now with its ICC profiles removed, to a different file than the original. The user may choose
the new destination file with the choose file scripting addition. Or, if the user chooses a folder instead in response
to the choose folder osax, then an image file with the same name as the original file will be saved into the folder
(but this new file is sans ICC profiles). This is demonstrated in the prior example, which uses the embed
command that also has a saving into labeled parameter.

replacing boolean

This is a true /false value that specifies the replacement of an existing file with the newly unembedded file.
match alias

Use this command to match an image with a destination profile, such as a profile for a certain printer. You can let the
user choose a file for this command with the choose file scripting addition. See the Examples section to learn how to
choose both the image file and the ICC profile before initiating the match command.

from source profile object

This includes an optional source profile for the match, as in:
from source theProf (* theProf is a variable containing a profile object *)
to destination profile object

This specifies the destination profile or the profile associated with the device on which the image will be displayed.
See the Examples section for a demonstration of this labeled parameter's usage.

matching with constant

This labeled parameter takes one of the "rendering intent" constants: perceptual intent /relative
colorimetric intent /saturation intent /absolute colorimetric intent . This setting affects how the colors
of the image are rendered on the destination devices, such as monitors or printers.

using quality normal /draft / best

Specify the optional match quality with one of these three constants, as in:
using quality best
saving into file specification

You can use the choose folder or choose file scripting additions to provide this labeled parameter with a file spec.
If you use choose folder , then the matched image file is saved with the original file's name to the folder the user
specifies.

replacing boolean

This is an optional true /false value indicating whether to replace the existing image file. For example:
set nfile to (choose file of type {"JPEG", "TIFF", "PICT"})

(* get the list of profiles from ColorSync Profiles folder *)

set pfol to list folder¬

"macintosh hd:system folder:colorsync profiles"

set prof to choose from list pfol¬

without multiple selections allowed

tell application "ColorSync Extension"

 set theProf to (profile (item 1 of prof))

 match nfile to destination theProf

end tell
proof alias

This command allows you to proof an image or preview the printed results of an image on the system's display
without outputting the image to the printer.

from source profile object

Specify an optional source profile for the match. See the profile class in this chapter.
to destination profile object

This is a required labeled parameter specifying the destination profile, such as a printer's ICC profile. See the
profile class.

matching with constant

This optional labeled parameter takes one of the rendering intent constants: perceptual intent /relative
colorimetric intent /saturation intent /absolute colorimetric intent . matching with specifies the
rendering intent for matching between the source and destination profiles. This setting affects how the colors of
the image are rendered on the destination devices, such as monitors or printers.

onto proof profile object

This is a required parameter that references the proof profile for the color match. See the profile class
description in this chapter for more information on profile objects.

proofing with constant

This optional labeled parameter takes one of the rendering intent constants. proofing with specifies the rendering
intent for matching colors between the destination and proof profiles. The rendering-intent setting affects how the
colors of the image are rendered on the destination devices, such as monitors or printers.

using quality normal /draft / best

This is an optional parameter corresponding to the match quality, as in:
using quality normal
replacing boolean

This is an optional true /false value indicating whether to replace the existing image file.
match link alias

Match a file with a "device link profile," a series of profiles corresponding to a specific configuration of devices.

through link profile object

Use this required labeled parameter to identify the device link profile with a reference to a profile object, such as:
match link imgFile through link theProf (* theProf contains the profile object *)
matching with constant

This optional labeled parameter takes one of the rendering intent constants. This setting affects how the colors of
the image are rendered on the destination device.

using quality normal /draft / best

This is an optional labeled parameter you follow with one of the three constants.
saving into file specification

If you include this optional labeled parameter with a folder name, then a new file is created in that folder with the
same name as the original file. The original file is modified if this labeled parameter is not used.

replacing boolean

This is an optional true /false value indicating whether to replace the existing image file.

Dictionary classes

application

The application class represents the ColorSync Extension app. It has numerous properties and contains three
elements: profile , image , and display (each of these classes is described elsewhere in this chapter). For example,
you can get a reference to the monitor's default ICC profile with code such as the following:

tell app "ColorSync Extension" to set monProf to (display profile¬

of display 1)

This code first gets a reference to one of the ColorSync application's display elements (i.e., display 1), which will be display
1 if you are deprived like me and have only one monitor connected to your computer. It then sets a monProf variable to the
display profile property of the display object. This property is itself a profile object. The value of monProf could be:

profile "Generic RGB Profile"

Every one of the properties is settable (not read-only) except for the profile folder .

The following are application elements:

profile

This is a profile type. You can get a reference or set a variable to one of the application class' profiles by using a
numerical index:

tell application "ColorSync Extension" to get profile 1

See the profile class description.

image

ColorSync Extension has image elements if a script uses the open command to open a JPG, PICT, or TIFF file, for
instance. These open images can be identified by their index, as in:

get image 1

This code in turn might return a value such as:

image "kayak.JPG" of application "ColorSync

Extension"

See the image class description.

display

The application's display objects represent the monitor(s) you have connected to your computer. See the display class
description.

The following are application properties:

system profile location (alias)

This property returns an alias reference to the file that contains the system profile, as in:
file "Macintosh HD:System Folder:ColorSync Profiles:Generic¬

RGB Profile"

The profiles all live in the System Folder:ColorSync Profiles folder.

default RGB profile location (alias)

The return value for this property is the file that contains the default RGB profile. Use code such as:
tell application "ColorSync Extension" to set defRGBpath to¬

 default RGB profile location
default CMYK profile location (alias)

The return value for this property is the file that contains the default CMYK profile. All of these profiles live in the System
Folder:ColorSync Profiles folder.

default Lab profile location (alias)

The return value for this property is the file that contains the default Lab profile. The return value might look like:
file "Macintosh HD:System Folder:ColorSync Profiles:" &¬

"Generic Lab Profile"
default XYZ profile location (alias)

The return value for this property is the file that contains the default XYZ profile.
default Gray profile location (alias)

The return value for this property is the file that contains the default Gray profile. Like all other profile files, it is located in
the System Folder:ColorSync Profile s folder.

system profile (profile object)

Unlike the "location" properties, which return alias types involving file pathnames, these properties return the various
ICC profiles as profile objects. See the profile class description.

default RGB profile (profile object)

This property returns the default RGB profile as a profile object. See the profile class description for information on
the profile object's properties. Use code such as:

tell app "ColorSync Extension" to set defRGB to¬

default RGB profile
default CMYK profile (profile object)

This property returns the default CMYK profile as a profile object. See the profile class description.
default Lab profile (profile object)

This property returns the default Lab profile as a profile object. See the profile class description.
default XYZ profile (profile object)

This property returns the default XYZ profile as a profile object. See the profile class description.
default Gray profile (profile object)

This property returns the default Gray profile as a profile object. See the profile class description.
preferred CMM (automatic constant or other type)

You can get or set this property; it returns the constant automatic or another Color Match Method like Apple CMM or
Heidelberg CMM (this method can also be set in the ColorSync control panel).

profile folder (alias , read-only)

This property returns a reference to the System folder:ColorSync Profiles folder.
quit delay (immediate /default /never or integer)

This property specifies how long the application will idle (await another command) before quitting. It can be either one of
the three constants or an integer representing the number of seconds before the idling app will quit. For example, if
you:

set quit delay to 60

the application will idle for 60 seconds and, if you do not send it any Apple events, it will then quit.

profile

This class represents a ColorSync ICC profile object. Once you have stored a profile object in a variable, then you
can access its properties and/or set some of them. The Example section at the end of this chapter gets and displays a
bunch of the props for a JPEG image's embedded profile.

size (integer ; read-only)

This is the size of the profile in bytes.
preferred CMM (type class)

This is the profile's Color Match Method (e.g., Apple CMM).
version (international text)

This property returns the version as a string of the profile.
device class (constant ; read-only)

This property returns any of the following constants: monitor /input / output /link /abstract /colorspace /named .
color space (constant; read-only)

color space , an indication of whether the profile represents the RGB, CMYK, or gray color space, returns any of
the following constants: RGB / CMYK /Lab /XYZ /Gray /Five channel /Six channel /Seven channel /Eight channel
/Five color /Six color /Seven color /Eight color /Named .

connection space (Lab / XYZ ; read-only)

If it has a connection-space value, this property returns one of two constants.
creation date (date)

This returns the profile's creation date as a date object, such as:
date "Tuesday, February 18, 1997 10:56:57 AM"
platform (property type)

This property is returned as a four-character type such as 'APPL' .
quality (normal /draft / best)

A profile's quality is one of these three constants.
device manufacturer (property type)

If the profile does not represent a device such as a printer or monitor then this returns none . Otherwise, a profile
such as "HP ScanJet IICX/T" returns a value such as "HP."

device model (integer)

This property returns an integer such as a serial number.
rendering intent (constant)

This returns one of the following constants: perceptual intent /relative colorimetric intent /saturation
intent /absolute colorimetric intent .

creator (property type)

This property returns a creator type or code such as "KODA" for the profile "3M Matchprint Euroscale."
name (international text)

This returns the text name of the profile.
location (alias)

This property returns an alias or file path to the profile.
image

The image object has one or more embedded profile objects and three different properties, all of them read-only (not
settable). You can extract property values from images after they have been opened by ColorSync Extension.

The following are image elements:

profile (profile object)

This is an object representing an embedded ICC profile. See the profile class.

The following are image properties:

color space (constant; read-only)

This returns one of the following constants: RGB /CMYK /Lab /XYZ /Gray /Five channel /Six channel/Seven
channel/Eight channel/Five color /Six color /Seven color /Eight color /Named .

name (international text ; read-only)

This property is the text name of the image.
location (alias ; read-only)

This property returns the image's file path location on the computer:
set img to (choose file of type {"JPEG", "TIFF", "PICT"})

tell application "ColorSync Extension"

 set imgfile to (open img)

 set imginfo to imgfile's name & " : " &¬

 imgfile's color space & return & imgfile's location

end tell

display dialog imginfo
display

This object represents a monitor connected to the computer. For example, if you have one monitor, you can access this
object with code such as:

tell app "ColorSync Extension" to get display 1
number (integer)

This returns the index number of the display as in:
display 1
name (international text)

This property returns the text name of the monitor.
display profile (profile object)

This returns the ICC profile associated with the display as a profile object.

Examples

tell application "ColorSync Extension"

 (* open a jpeg image and display a bunch of the properties for its embedded ICC profile *)

 set img to (open alias "Macintosh HD:Desktop Folder:cowgirl.jpg")

 set theProf to profile 1 of img (* theProf refers to one embedded profile *)

 (* gather some profile object properties on this profile in a string

 variable called mesg; display them in a dialog box with the display

 dialog scripting addition *)

 set mesg to "Profile name: " & name of theProf & return

 set mesg to mesg & "preferred CMM: " & preferred CMM of theProf &¬

 return

 set mesg to mesg & "device class: " & device class of theProf & return

 set mesg to mesg & "color space: " & color space of theProf & return

 set mesg to mesg & "creation date: " & creation date of theProf &¬

 return

 set mesg to mesg & "platform: " & platform of theProf & return

 set mesg to mesg & "device namufacturer: " & device manufacturer of¬

 theProf & return

 set mesg to mesg & "device model: " & device model of theProf & return

 set mesg to mesg & "quality: " & quality of theProf & return

end tell

display dialog mesg

Chapter 24. File Exchange Control Panel

At some time or another, every Mac user has dealt with files that they inherited over a network from a PC
or Unix OS and then cannot open in any of their applications. A simple example is the familiar . html files
that a web developer grabs over a network to work on (basically, text files that can be viewed in a
browser). They appear on the desktop as a featureless icon and cannot be opened from the browser's File
menu. This is because these files have no Mac file type or creator type that the Mac OS can identify them
with. The File Exchange control panel was designed to deal with these frustrating situations. You can do
two things with this application:

Map a file extension like .htm or .html to a particular Mac OS creator type and file type, so that
whenever files with these extensions are downloaded the Mac OS knows what to do with them. In
File Exchange parlance this process is called "extension mapping." This is handled in the PC
Exchange panel of the File Exchange control panel.

Map a file type to an application (or more than one) that will be used to handle those files. For
instance, you might choose BBEdit 5.0 to deal with the file whenever you want to handle files of
type "TEXT." This is called "translation mapping." The File Exchange File Translation tabbed panel
handles these mappings.

Of course, all of these elements are AppleScriptable, or we would not be wandering this path. You can
create new extension mappings with the scriptable File Exchange control panel. This capability virtually
cries out for a droplet that, for example, creates a new extension mapping based on a file that you drag
to the droplet. This is accomplished in the Example section at the end of the chapter, which covers
Version 3.0.3 of File Exchange. You can find out the version of your File Exchange simply by checking its
version property, as in the upcoming syntax example. Figure 24-1 shows the PC Exchange tabbed panel
of the File Exchange app in OS 9.

Figure 24-1. Create extension mappings with AppleScript or File Exchange

File Exchange

Syntax

tell app "File Exchange"

 get version -- returns something like "3.0.3"

end tell

Dictionary commands

run

Sending File Exchange this command is the same as double-clicking it in the System Folder:Control
Panels folder, but run will have no effect if the control panel is already open. Just including:

app "File Exchange"

in a tell statement sends the app an implicit run command if it is not already open.

reopen

This command has no discernible effect on the application when it is already open.

quit

This command quits the File Exchange application.

make

Use this command to make a new extension mapping by passing it a record containing the properties
for the new mapping.

new extension mapping

This identifies the new object you are creating with script, as in:
make new extension mapping
with properties record

with properties provides the properties for the new extension mapping. This code example
makes sure that BBEdit opens the PC files with .htm extensions on my machine:

tell application "File Exchange"

make new extension mapping with properties {PC extension:¬

"htm", creator type:"R*ch", file type:"TEXT"}

end tell
delete

This deletes a certain extension mapping or translation mapping. The following example searches
the first 10 extension mappings for the PC extension "8med"; if this is found, the extension mapping
is deleted and the applet lets the user know about it with the display dialog osax. Appendix A , covers
the scripting additions. Chapter 7 , covers the repeat statement.

tell application "File Exchange"

 repeat with m from 1 to 10

 if (PC extension of extension mapping m) is equal to¬

"8med" then

 delete extension mapping m

 display dialog "Deleted 8med"

 exit repeat

 end if

 end repeat

end tell
mount now

This command immediately mounts on the desktop any available PC SCSI volumes, or returns zero if
your computer is not networked to any PC disks.

Dictionary classes

application

This class represents the File Exchange application, as in:
tell app "File Exchange" to get version

The two elements, extension and translation mapping, represent what the user can accomplish with the two
tabbed panels of the File Exchange control panel: PC Exchange and File Translation.

The following are application elements:

extension mapping

This represents the mapping of a PC extension like .doc to an application on the computer. You can
identify the various extension mappings by their index, as in:

extension mapping 1

The prior multi-line example iterates through the first 10 extension mappings with a repeat statement,
looking for a mapping that uses the extension "8med." This mapping is then summarily deleted. See the
extension mapping class for a description of its properties.

translation mapping

File Exchange also has numerous translation mappings, which represent the mapping of a file type
like 'TEXT' to an application, like AppleWorks 6. You can identify these mappings by their index as in
translation mapping 5 . See the translation mapping class description.

The following are application properties:
name (international text ; read-only)

The application name is "File Exchange."
frontmost (boolean ; read-only)

This is a true/false value indicating whether the application is the active program on the desktop.
version (version object; read-only)

This returns the File-Exchange program version as the version number surrounded by double
quotes, as in "3.0.3." You can display the control panel version in the Script Editor results window
with the following code:

tell app "File Exchange" to get version

Chapter 2 , is devoted to Script Editor.

current panel (PC exchange or file translation)

This command will return or set either of these constants depending on which of the File Exchange
tabbed panels is active at the time.

mapping PC extensions (boolean)

You can automatically turn on or off the mapping of PC extensions like . doc or .htm to Mac creator and
file types by setting this property. This is equivalent to the "Map PC extensions to Mac OS file types on
PC disks" checkbox in the PC Exchange section of the File Exchange control panel.

mapping on opening files (boolean)

If set to true , Mac applications will open files based on their extension (i.e., the . htm part of index.htm
), regardless of whether the file has a valid Mac file type or creator type.

PC disks mount at startup (boolean)

This is a true/false value that sets or unchecks the related checkbox at the bottom of File
Exchange's PC Exchange panel.

automatic translation (boolean)

If set to true then any file you double-click in the Finder or select from a dialog box is automatically
translated based on its mapping in the File Translation portion of the File Exchange control panel. This
choice is the equivalent of checking or removing the check from the "Translate documents
automatically" checkbox.

always shows choices (boolean)

Set this true /false value to give (or deny) the user a choice of file-translation applications when she
encounters a file that is mapped to application(s) in the File Exchange control panel. For example, if
this property is true , then the user is presented with a dialog box giving her a choice of opening a file
with any applications that are mapped in File Exchange to that file's file type.

dialog suppress if only one (boolean)

If this property is true , then File Exchange automatically maps a file to its corresponding translator
(i.e., application) as long as there is only one application mapped to the file type. In other words, it
won't display the dialog of program choices to the user. This property corresponds to the "Don't show
choices if there's only one" checkbox on the File Translation panel of File Exchange.

includes servers

Setting this property has the same effect as checking or unchecking its corresponding checkbox in the
File Translation panel of File Exchange. Setting includes servers to true includes in any translation-
choice dialog windows any relevant applications that are installed on connected servers.

PC file system enabled

The computer can read and write PC disks if this property is true .

extension mapping

This class represents the mapping of a file extension like . jpg to a Mac file type and creator type in File
Exchange. This object has the following three properties:

PC extension (string)

A file extension string , as in the .jpg part of sunshine.jpg .
file type (string)

A four-character string for the file type, as in 'APPL' .
creator type (string)

A four-character string for the creator type, as in 'ToyS' . The creator type represents the
program that created or owns the file; 'ToyS' is the Script Editor's creator type.

Using the File Exchange make command, you can make a new extension
mapping, but alas you cannot make a new translation mapping.

translation mapping

This class or object results from the mapping in File Exchange of a file and creator type to a particular
application. You cannot "make" a new translation mapping using File Exchange's make command (as
you can with extension mappings), however.

file type (string)

A four-character string for the file type, as in 'TEXT'
creator type (string)

A four-character string for the creator type, as in 'ToyS'
translator application (string)

A four-character string ID for the application, as in "8BIM" (Photoshop's application signature)
translator type (string)

A four-character identifier for the translator that is used to translate the file (usually "bltn" for "built-in")

Examples

on open (alias_list)

 (*

 alias_list is a list of aliases corresponding to the file(s) that were

 dragged to the droplet

 *)

 set err_occurred to false (* this will be set to true if an error happens,

then a dialog will be displayed *)

 set dropped to item 1 of alias_list (* alias of the file dropped on to the

droplet *)

 (*

 find out whether the file has a period in it; if it doesn't then it does not

have a discernable extension, so return from the droplet empty handed.

 *)

 tell application "Finder"

 if (offset of "." in (dropped as string)) = 0 then

 display dialog "The dropped file has no extension!"

 return

 end if

 (*

 get the last three characters of the file name. If there are only two

extension characters as in ".pl" then the extension mapping will only use the

two non-period characters anyway

 *)

 set ext to (characters -1 thru -3 of (dropped as text)) as string

 (*

 get the file type and creator type of the dropped file and use¬

 them to make the new extension mapping

 *)

 set dropped_typ to the file type of dropped

 set dropped_cr to the creator type of dropped

 end tell

 try

 tell application "File Exchange"

 make new extension mapping with properties {PC extension:ext,¬

 file type:dropped_typ, creator type:dropped_cr}

 end tell

 on error errmesg

 display dialog "The extension mapping failed with error " &¬

 "message: " errmesg

 set err_occurred to true

 end try

 if not err_occurred then display dialog "extension mapping succeeded!"

end open

Chapter 25. File Sharing Control Panel

The Mac OS allows the owners of disks and folders to set the access privileges for other users that may
connect to their computer over a TCP/IP, AppleTalk, or other type of network. For example, you can
configure one of your hard disks to allow read-only privileges for a named group of users (they will not be
able to add new files to the disk or alter and save existing files). This is usually accomplished with the File
Sharing control panel, which is also scriptable (see Figure 25-1). The Mac OS allows the user to set
privileges for disks and directories with File Sharing but not for individual files, which can otherwise be
locked or encrypted under Mac OS 9.

Figure 25-1. File Sharing control panel

The owner name, password, and computer name can be set in File Sharing's Start/Stop tab (See Figure
25-1) in Mac OS 9. You can create new users and groups in the Users & Groups tab. The owner can
establish disk and folder permissions for logical groups of users, depending on what type of users might
have access to your computer. When you add a user to a group they inherit the group's permissions when
they log on to your machine. You can also turn Program Linking on or off with File Sharing. This is a
powerful feature that allows users to execute your applications on their connected computer, including
AppleScript applets. But they cannot use your applications while you are using them.

With AppleScript, you can create, alter, or remove File Sharing users and groups, and find out information
about any connected users. For example, you can create a log file of all the connected users who were
disconnected from your machine when it was automatically shut down. This applet is demonstrated in the
Example section at the end of the chapter. The following dictionary commands and classes are associated
with Version 9.0 of the File Sharing control panel.

File Sharing

Syntax

tell app "File Sharing"

 (* find out about the first user connected to your machine *)

 name of connected user 1

end tell

Dictionary commands

close reference to object

You can close a File Sharing window used to set or alter the privileges for a user or group:
close user "Guest"

This window can be opened from the Users & Groups tab by selecting the username and clicking the Open button
(AppleScript cannot open this window, however).

delete reference to object

You can delete a user or group:
delete user "temp"

You should not allow important network script commands like delete or make to fall into the wrong hands.

duplicate list

You can create a new user or group with the same privileges as another user or group with duplicate . The
following example duplicates a user and gives the new user a name:

tell application "File Sharing"

 activate

 set nw_user to duplicate user "iMarc"

 set name of nw_user to "iMarc2"

end tell
make

This command makes a new user, but the with data parameter that is identified in its dictionary does not work.

new user or group

You can make either a new user or group; you cannot make a new shared item.
with data anything

Alas, this parameter does not work properly with making new users or groups in AppleScript 1.4, but I
include it anyway because it appears in the File Sharing dictionary. The next example shows user- and
group-creating code that does work:

tell application "File Sharing"

 activate

 set group_name to "graphics"

 set user_name to "Van Gogh"

 (* make the group first *)

 set n_group to make new group

 set name of n_group to group_name

 (* make the user *)

 set n_user to make new user

 set name of n_user to user_name

 set can connect of user user_name to true

 set can change password of user user_name to true

 set can do program linking of user user_name to false

 (* add the new user to the new group *)

 add user user_name to group group_name

end tell
disconnect list of connected users

You should be able to use this command to disconnect a specified user, but under Mac OS 9 none of the
following commands have worked properly:

disconnect {connected user 1}, disconnect connected user 1,

disconnect connected user "iMac," disconnect (connected user whose id =

131082}

Well, you get the picture. I am in search of a workaround or solution to the disconnect command.

show privileges of list of shared item objects

On my computer, the File Sharing control panel exposes just two shared items to AppleScript; both are disks.
Neither shared item responds without an error to the show privileges of command, as in:

show privileges of (shared item 1)
add reference to object

You can add a user to a group with this command.

to reference to object

This labeled parameter involves the keyword to followed by a reference to a group:
add user "new_user" to group "new_group"

remove reference to object

You can remove a user from a group with this command:
remove user "defunct" from group "graphics"
from reference to object

Follow the from label with a reference to a group:
remove user "defunct" from group "graphics"

Dictionary classes

application

This class represents the File Sharing control panel. It has two elements that represent the users who are
connected to your computer and the shared items on the machine, such as hard disks. You get access to File
Sharing by targeting the app in the tell statement, as in:

tell app "File Sharing" to get connected

users

The following are application elements:

connected user

The connected user object represents a user who is connected to your machine via File Sharing. See the
connected user class later in this chapter for a description of its properties.

shared item

A shared item is an element such as a disk that can be shared via File Sharing. The only property that can be
accessed with your script is its name . For example:

tell app "File Sharing" to get name of shared item

2

The following are application properties:

frontmost (boolean ; read-only)

This is true/false value indicating whether File Sharing is the desktop's active application (i.e., its windows are
highlighted):

tell app "File Sharing" to get frontmost
name (international text ; read-only)

The name property returns "File Sharing."
version (international text ; read-only)

The version property returns a value such as "9.0."
file sharing (boolean)

If File Sharing is turned off on your computer (i.e., network users cannot get access to your disks and folders), then
this property returns false ; otherwise true .

sharing starting up (boolean ; read-only)

When you turn File Sharing on, the app can take several seconds to complete the task. If File Sharing is not
undergoing its startup routine, then this property is false .

program linking (boolean)

If a user has program-linking privileges (which are set in the Users & Groups tabbed panel of File Sharing), then
she can execute applications that reside on your machine. The program is actually executed on her connected
machine, even though its binary executable code resides on your machine. The program-linking user cannot
open applications that are already open on your machine, however. For example, if user "Gill" does not have
Photoshop 5 on her machine but you do, Gill can access this program on her machine if that privilege is
configured for her and program linking is on. You can stop program linking from the File Sharing control panel, as
well as determine whether the users connected over TCP/IP can use program linking. For instance, you can stop
program linking with script by setting this property to false :

tell app "File Sharing" to set program linking to false
owner name (international text)

This property returns the text from the Network Identity section of File Sharing's Start/Stop tab. If the owner of File
Sharing privileges on your computer is called Admin, this property returns "Admin."

owner has password (boolean ; read-only)

If the owner name identified in the File Sharing control panel has a password then this property returns true .
computer name (international text)

This property returns the computer name from the Network Identity section of File Sharing's Start/Stop tab.

connected user

This class represents a user that is connected to your machine via File Sharing. The available properties are its
name , as in:

connected user "G4Power"

and its ID number. The code:

tell app "File Sharing" to get connected users

will return a list type, as in:

{connected user "G4Power" of application "File

Sharing"}
name (international text ; read-only)

This property returns the user's name as text, such as "graphicsUser1."
id (integer ; read-only)

Every user has an id number of the form 65546.

shared item

This class represents a item than can be shared via File Sharing, such as a disk. Use the code:
shared items

to get a list of these resources, which looks like:

{shared item "my2gig" of application "File Sharing",

shared item "Macintosh HD" of application "File

Sharing"}
name (international text ; read-only)

This command returns a shared-item name as text, such as "my2gig."

group

The group class represents a group-sharing entity that can be created with File Sharing. The permissions can
then be configured for each group from the shared element's Get Info window. For example, you might give the
"Graphics" group read-only privileges on the disk "my2gig." File Sharing groups can be referred to in AppleScript
by their name, as in group "Graphics." The code

tell app "File Sharing" to get groups

returns a list type with each one of the groups as a member of the list. The multi-line code example earlier in this
chapter shows how you can make a new group.

name (international text ; read-only)

This property returns the name of the group as text.
id (integer ; read-only)

Every group is distinguished by an id number like 17.

user

user objects represent the users that are configured in your File Sharing control panel. They are distinguished from
connected-user objects, which are only created when a user has actually connected to your computer. Users have
names, IDs, and a few other properties that can also be set in the File Sharing control panel.

name (international text ; read-only)

This is the name of the user as text, as in "graphicsUser1."

id (integer ; read-only)

Every user has an id number of the form 18.
can connect (boolean)

If you do not want to allow a user to connect to your machine, set this property to false :
set can connect of user "virusMan" to false
can change password (boolean)

Set this property to true if you want to allow users to dynamically change their passwords (they have to
know the original password to create a new one).

can do program linking (boolean)

This property can be set to false if you do not want to allow users to execute your applications.
see entire disk (boolean ; read-only)

Only the local File Sharing owner, who is also a user, can have this property set to true . You can find out
whether they have this privilege with the following code:

set sed to see entire disk of user owner

name

The owner name property returns the local owner's name as text, so they can be identified in script code:

user owner name

Examples

(* make sure this variable can be accessed from anywhere in the script *)

global cu

tell application "File Sharing"

 set cu to connected users -- returns a list of connected users

end tell

(* this subroutine writes user names to a file if there is at least one connected user *)

writeUsers()

on writeUsers() -- subroutine definition

 set ulength to (length of cu) -- number of connected users

 if ulength is greater than 0 then

 tell application "Finder"

 activate

 set tf to (make file with properties {name:"connected users", ¬

 file type:"TEXT", container:desktop}) -- make this log file

 set tf to tf as alias

 end tell

 open for access tf with write permission (* use osax from Standard

Additions *)

 write ("Here are the connected users:" & return) to tf

 repeat with n from 1 to ulength

 write ((name of item n of cu) & return) to tf

 end repeat

 close access tf

 else

 display dialog "There are no connected users!"

 end if

end writeUsers

Chapter 26. Folder Actions Extension

Folder actions allow the scripter to trigger specified AppleScripts when certain folder behaviors take place,
such as the adding or removing of files from the directory. You can attach or associate more than one
script or folder action with a folder. There are a lot of practical uses for folder actions, such as logging
activity in a certain directory or doing automatic backups of files that are added to a particular folder. You
can attach a script to a folder in one of two ways:

Control-click the folder and select the "Attach a folder item..." contextual-menu item

Use AppleScript to attach an action or script code to a folder

When a folder has an attached action, its folder icon changes to include a little script icon, as in Figure 26-
1.

Figure 26-1. A folder with an attached script

The commands that you use in your script (see the "Dictionary commands" section later in this chapter)
derive from the Folder Actions suite of five commands. You can find these command definitions in the
startup disk:System Folder:Scripting Additions:Standard Additions set of scripting additions. So before we
become completely confused, let's go over this one more time:

Folder actions are AppleScripts that execute when certain actions take place with the folder, like
adding items to it or moving it.

Folder action commands constitute the Folder Actions suite of the Standard Additions osax and the
dictionary commands that derive from the Folder Actions extension. Both sets of commands are
described in this chapter.

You have to attach folder actions to the folders that you want these actions to control. You can attach
a script with AppleScript code or a contextual menu command. Contextual menus are produced by
selecting the folder and holding down the Control key.

You can attach more than one folder action to a folder by either including more than one command
or handler (e.g., on opening folder theFolder...end) in an attached script or by attaching multiple
scripts to a folder. Before it is attached to a folder, the script has to be saved as a compiled script, not
an applet (see Chapter 2).

You can group all of your folder action scripts in the System Folder:Scripts: Folder Action Scripts
folder.

In Folder Actions 1.5.5, an extension that installs with Mac OS 9.1, the "Icon\n" file
is only created inside a folder if a script is actually attached to the folder. In Folder
Actions 1.4.3 and earlier, Folder Actions would create an invisible "Icon\n" file in
any folder that you control-clicked, whether or not an action was attached to that
folder.

Folder Actions

Syntax

(*

display a dialog whenever a certain folder is opened. The f variable

contains an alias to the folder that was opened.

 *)

on opening folder f

 tell application "Finder"

 activate

 display dialog ("You opened " & (name of f)) giving up after 10

 end tell

end opening folder

Dictionary commands for Folder Actions Suite

opening folder alias

This command is used as a subroutine or handler, in the form of:
on opening folder theFolder...end opening folder

The theFolder variable contains an alias to the folder. The subroutine definition

on opening folder...

can then access elements of the folder by using Finder commands.

closing folder window for alias

Use this command as part of a subroutine definition for handlers that trigger when attached folder windows are closed:
on closing folder window for theFolder...end closing folder

window for

The theFolder variable contains an alias to the attached folder. This code example backs up all files in a folder to a backup disk

when the folder window is closed:

on closing folder window for theFolder

 tell application "Finder"

 try

 activate

 (* make the backup folder if it doesn't exist *)

 if not (exists (folder "mybackup" of disk "backup")) then

 set backupFolder to (make new folder at disk "backup"¬

 with properties {name:"mybackup"})

 else

 set backupFolder to (folder "mybackup" of disk "backup")

 end if

 (* get a list of the files of the attached folder *)

 set f to (files of theFolder)

 (* only do this if the folder is not empty *)

 if (count of f) > 0 then

 repeat with fl from 1 to (length of f) (* duplicate each file to

the backup folder *)

 duplicate (item fl of f) to backupFolder replacing yes

 end repeat

 end if

 on error errmesg

 display dialog "An error: " & errmesg

 return -- return empty-handed if there was an error

 end try

 display dialog "backup complete!"

 end tell

end closing folder window for
moving folder window for alias

You can have a script execute when a folder is moved using this command. The syntax would be:
on moving folder window for theFolder from rec...end moving folder window for

The variable theFolder (or whatever name you give it) receives an alias to the folder. The variable rec receives a list of
coordinates that represent the top left and top right corners of the screen space the window occupied before it was moved. The
next code example gets and displays the coordinates of the window (in the form of "10 : 50 : 370 : 500") stored in rec . The
windows that have the attached scripts have to be open in the Finder for the "moving folder window for" and "adding folder items
to" folder actions to execute properly.

from bounding rectangle

The from labeled parameter gives whatever variable you supply with it a rectangle value, as in {10,50,370,500} (basically a
list of integers). For example:

on moving folder window for tf from rec

 set old_delim to text item delimiters

 set text item delimiters to " : "

 display dialog (rec as text)

 (* set text item delimiters back to empty string default *)

 set text item delimiters to old_delim

end moving folder window for
adding folder items to alias

This command is triggered when items are added to an open window that has one of these folder-action types attached to it
(this folder action only works when the attached folder window is open). The following example displays a count of the
number of folder items every time a new one is added to the directory. This is just a folder-action functionality example; you
might want to log similar folder activity, but you normally would not want to display a dialog every time something happened
with a folder, unless you want to antagonize users:

on adding folder items to f

 tell application "Finder"

 activate

 set fcount to (count files of f)

 display dialog ("there are now " & fcount &¬

 " files in the folder " & (name of f)) giving up after 10

 end tell

end adding folder items to
removing folder items from alias

This subroutine is executed when items are removed from an attached folder. You use it in the form of:
on removing folder items from theFolder after losing alias_list...end removing folder items from

The theFolder variable (or whatever name you give it) contains an alias of the folder. The alias_list variable contains a list of
aliases referring to the items that were removed from the folder. This next example admonishes the user after an item is removed
from the folder.

after losing list of aliases

This labeled parameter contains a list of aliases representing the items that were removed from the folder. This code
demonstrates this parameter:

on removing folder items from theFolder after losing alias_list

 tell application "Finder"

 display dialog "Removing " & ((item 1 of alias_list) as &¬

 text) & " from " & (name of theFolder) &¬

 " is strictly forbidden!"

 end tell

end removing folder items from

Dictionary commands for Folder Actions extension

run

This command runs the Folder Actions server. See quit .

attach action to folder alias

Attach a folder action to a folder using this command:
attach action to fol_alias using script alias

The fol_alias variable contains an alias to a folder. The script_alias variable is an alias to the AppleScript that will be
attached to the folder. The Example section lets the user choose a folder to attach actions to.

using alias

Use this labeled parameter to specify the script that will be attached to the folder. The script itself is stored in an alias

variable or in a literal alias :
using script (alias "macintosh hd:desktop folder:moveApplet")
remove action from alias

You can script the removal of a folder action from a folder with this command. You have to identify the folder with an alias
variable or a literal alias .

action number integer

This labeled parameter specifies by index number which action to remove from the folder (if there is more than one
attached action). For example, if you want to remove the second folder action, then use:

action number 2

In Folder Actions 1.5.5, an extension that installs with Mac OS 9.1, the action number parameter
has been changed to "using action number."

action name string

As an alternative, you can specify the name of the script to remove, as in: action name "moveScript ". The name of
the attached script also shows up in the contextual menu (attained by Control-clicking the folder) under the menu item
"Remove a folder action."

set f_alias to¬

(choose folder with prompt¬

"choose a folder, cleanse its action")

tell application "Folder Actions"

 remove action from f_alias action number 2

end tell
edit action of alias

You can open up an attached script in Script Editor by using code such as:
edit action of theFolder action name "moveScript"

Chapter 2 is devoted to Script Editor.

action number integer

Use this labeled parameter to specify the index number of the attached action:
action number 2
action name string

You can specify the name of the action to edit with this labeled parameter:
action name "myAction"
attached scripts alias

You can find out if a folder has any attached scripts by passing the folder as an alias to this command:

tell app "Folder Actions" to attached scripts folder_alias

The folder_alias variable (or whatever you name it) contains an alias to the folder you are examining for attached scripts. This
command returns a list . Each member of the list is a list containing a file alias for the attached script. The return value looks
like:

{{alias "Macintosh HD:Desktop Folder:moverScript"}}

Yes, for some reason this command returns a list inside of another list .

quit

This command quits the Folder Actions server. See run and the following example.

Examples

set fol to choose folder with prompt¬

"Choose the folder to attach the action to"

set theAction to alias "Macintosh HD:Desktop Folder:moverScript" (* this script

will be attached to the folder the user chooses *)

tell application "Folder Actions"

 (*start the Folder Actions server; it is not strictly necessary to use run

or quit *)

 run

 attach action to fol using theAction

 quit

end tell

Chapter 27. FontSync Control Panel and Extension

Apple computer provides the FontSync control panel and its related FontSync extension file to allow users
to create a profile for all the fonts on their computer. This is for users who may be creating a document on
one computer but printing it on another. They want to make sure the printing computer's fonts are
synchronized with the production machine's (i.e., the computer where the document was created). Figure
27-1 shows the FontSync profile icon. This profile is then taken to the machine that will print the document.
The user compares the fonts on the machine that created the document (these fonts are described in the
profile) with the computer that will print the document by using a provided AppleScript called "Match
FontSync Profile." Along with another script called "Create FontSync Profile," the Match script is stored in
startup disk:Apple Extras:Font Extras. You can also find the FontSync control panel in this folder. This
control panel (shown in Figure 27-2) lets you choose the font characteristics that will be used when the
sets of fonts are compared or matched. If you use this control panel a lot with Mac OS 9, you might as
well move it to the startup disk:System Folder:Control Panels folder.

Figure 27-1. Icon for FontSync profile file

Figure 27-2. FontSync control panel

This chapter describes the dictionaries for the FontSync control panel and extension.

FontSync Control Panel

Syntax

tell app "FontSync"

 properties -- get the control panel's properties

end tell

Dictionary commands

get

This command gets data for an object, optionally as a certain data type (see the as parameter
description and the accompanying code example).

as class

You can have the script return the data for, say, the FontSync control panel's default matching
options in the specified data type. This code example gets the "on options" (e.g., font names,
font types, encoding) for the control panel's font specifications as text values separated by a
semi-colon:

(* save the old text item delimiter which is the empty string "" *)

set old_delim to text item delimiters

set text item delimiters to ": " (* separate values with colon and space *)

tell application "FontSync"

 set dmo to default match options

 set on_opt to on options of dmo as text

end tell

set text item delimiters to old_delim

on_opt -- take a look at the on options

(*

on options values:

"font names: font types: glyphs: encodings: QuickDraw metrics:

ATSUI metrics: kerning: WorldScript layout: advanced layout:

print encoding: missing data mismatches"

*)
quit

This command quits the FontSync control panel.

run

This sends a run Apple event to the FontSync control panel, which launches the program if it is not
already open.

set

Use this command to set a property, as in the following code example:
tell application "FontSync"

 set default match options to {class:match options, on options:¬

 {font names, font types, glyphs, encodings, QuickDraw¬

 metrics, ATSUI metrics, kerning, WorldScript layout,¬

 missing data mismatches}, off options:{advanced layout,¬

 print encoding}}

end tell

Dictionary classes

application

This class represents the FontSync control panel. You can open it with:
tell app "FontSync" to run

Get its properties with:

tell app "Fontsync" to get properties
properties record

This property returns a record type that looks like: {name:"FontSync", frontmost:false,
version:"1.0", default match options:{class:match options, on options:{font names, font
types, glyphs, encodings, QuickDraw metrics, ATSUI metrics, kerning, WorldScript layout,
missing data mismatches}, off options:{advanced layout, print encoding}}} . A record type
constitutes one or more name/value pairs that are separated by commas and enclosed in curly
braces. Chapter 3 , describes the record data type.

name international text (read-only)

This property returns the text "FontSync."
frontmost boolean (read-only)

If the FontSync control panel is the active window on the desktop then this property is true .
version version (read-only)

This property returns the version number as a string, as in "1.0."
default match options match options

All of the options that are checked or unchecked in the FontSync control panel window are
represented by this default match options record data type. The default match options looks like this:
{class:match options, on options:{font names, font types, glyphs, encodings, QuickDraw
metrics, ATSUI metrics, kerning, WorldScript layout, missing data mismatches}, off
options:{advanced layout, print encoding}} . See the match options class.

match options

This class represents the FontSync reference matching options that are checked (or unchecked) in
the FontSync control panel. The FontSync application's default matching options property returns this
object.

on options list of constants (read-only)

This property returns a list of any or none of the following constants:

advanced layout Kerning

ATSUI metrics missing data mismatches

encodings print encoding

font names QuickDraw metrics

font types WorldScript layout

glyphs

In other words, if font names is checked in the FontSync control panel, then the on options list
includes this constant .

off options list of constants

This property returns a list of any or none of the following constants:

advanced layout Kerning

ATSUI metrics missing data mismatches

encodings print encoding

font names QuickDraw metrics

font types WorldScript layout

glyphs

If font names is unchecked in the FontSync control panel, then the off options list includes
this constant .

FontSync Extension

Syntax

(* 'tell app "FontSync"' targets the FontSync control panel. Make sure to

specify "FontSync Extension" if you are using the extension's commands

not the control panel's. They are different applications! *)

tell app "FontSync Extension"

 set theProfile to (new file with prompt "Save the profile as: "¬

 default name "FontSync profile")

end tell

Dictionary commands

create font profile alias

This command creates a FontSync profile of the computer's active fonts and stores it in the file
represented by the alias parameter. You can use the new file scripting addition (which returns an alias
type) to prompt the user to create a new file for the profile. This example creates a FontSync profile in the
alias represented by the theProfile variable:

create font profile (new file with prompt¬

"Pick the FontSync profile file location"¬

default name "FontSync profile")
with creator class

This property specifies the four-character creator type for the FontSync profile file. The default type is
"'fns'." If you try to set this property to other creator types such as "R*ch," then you will raise a script error.

version integer

As of FontSync 1.0, you cannot use this parameter without raising an error.

get reference to object

Use this command to get some FontSync Extension data such as:
tell app "FontSync Extension" to get version
match against alias

Use this command to match the font information in one computer system with another computer's font
sets. The alias parameter must point to a Fontsync profile file. An example of match against is:

tell application "FontSync Extension" to match against

(alias¬ "Macintosh HD:Desktop Folder:font profile")

The "font profile" file could have been created with the create font profile command. match against then returns a
list of match result objects, which are record types that report any problems with certain fonts. The match
result s look like this:

{class:match result, problem reported:mismatch, name:"Arial Narrow", font:2000, style:3}

See the match result class.

using fonts from alias

When you use match against withoutthe using fonts from parameter, then the command compares the
computer system's active fonts against the specified FontSync profile. If you want to compare two
FontSync profile files, then use code such as the following:

tell application "FontSync Extension" to match against (alias

¬ "Macintosh HD:Desktop Folder:font profile") using fonts from

¬ (alias "Macintosh HD:Desktop Folder:FontSync profile")

This code phrase compares the two files "font profile" and "FontSync profile" and returns any mismatch
information. This is an optional parameter.

with match options match options

You can use a different set of match options than those specified in the FontSync control panel by
specifying a match options object with the with match options labeled parameter. An example is:

tell application "FontSync Extension"

 set matchOpts to¬

 {class:match options, on options:{font names, font types,

 glyphs, encodings, QuickDraw metrics, ATSUI metrics, kerning,

 WorldScript layout, missing data mismatches}, off options:

 {advanced layout, print encoding}}

 match against¬

 (alias "Macintosh HD:Desktop Folder:applescriptcode_Appen.txt")¬

 with match options matchOpts

end tell

See the match options class.

quit

This command quits the FontSync Extension application.

run

If it is not already open, this command runs the Fontsync Extension application. In other words, it will be
added to the list of running applications on your computer, even though it is a faceless background
application. It does not have a graphical appearance on the computer, such as windows and menus, for
interacting with the user (FontSync Extension can be controlled with AppleScript, however).

set

Use this command to set some FontSync Extension data, as in:
tell app "FontSync Extension" to set quit delay to

30

This application's quit delay is 60 by default. See the application class' quit delay property.

Dictionary classes

application

This class represents the FontSync Extension program. It is the target of the tell statement in the code:
tell app "FontSync Extension" to set quit delay to 30
name international text

This name property evaluates to the value "FontSync Extension."
version version

version returns a string for the program's version number, which on Mac OS 9.0.4 is "1.0."
quit delay the constants immediate/default/never or an integer

Fontsync Extension is a faceless background application that opens, hopefully does its job, and then
quits after a default of 60 seconds. You can change this delay time to suit your purpose, such as to
never, so that Fontsync Extension stays open until it is sent a quit Apple event, or to a number of
seconds, such as 30.

match options

This class is a record type that looks like {class:match options, on options:{font names, font types,
glyphs, encodings, QuickDraw metrics, ATSUI metrics, kerning, WorldScript layout, missing data
mismatches}, off options:{advanced layout, print encoding}} . A record is one or more name/value
pairs separated by commas and enclosed by curly braces ({}). In this case, some of the values are lists ,
such as all of the font characteristics that are "on" and therefore will be matched for each font in a profile or
computer system, such as:

on options:{font names, font types, glyphs, encodings, QuickDraw

metrics, ATSUI metrics, kerning, WorldScript layout, missing data

mismatches})

A match options object is used with the with match options labeled parameter for the match against command.
An example is:

tell application "FontSync Extension"

 set matchOpts to¬

 {class:match options, on options:{font names, font types,

 glyphs, encodings, QuickDraw metrics, ATSUI metrics, kerning,

 WorldScript layout, missing data mismatches}, off options:

 {advanced layout, print encoding}}

 match against¬

 (alias "Macintosh HD:Desktop Folder:applescriptcode_Appen.txt")¬

 with match options matchOpts

end tell
on options list of constants (read-only)

This on options property is a list of one or more of the following:

advanced layout Kerning

ATSUI metrics missing data mismatches

encodings print encoding

font names QuickDraw metrics

font types WorldScript layout

glyphs

off options list of constants (read-only)

This off options property is a list of one or more of the following:

advanced layout Kerning

ATSUI metrics missing data mismatches

encodings print encoding

font names QuickDraw metrics

font types WorldScript layout

glyphs

match result

This object is returned from the match against command, which matches a system's font sets to a

FontSync profile or matches two FontSync profiles. match result is a record type that looks like
{class:match result, problem reported:mismatch, name:"Arial Narrow", font:2000, style:3 }. In this
case, a FontSync match reported a problem with the "Arial Narrow" font. A record is one or more
name/value pairs separated by commas and enclosed by curly braces ({}). Chapter 3 describes the
record type.

problem reported mismatch or noRef (read-only)

This property evaluates to the constants mismatch or noRef .
name international text

This property returns the font name, such as "Arial."
ID integer

This ID number represents the font family of the problem font; if the font does not belong to a font
family, this value may be -1.

style integer

This property is a number such as 3 or -1 if the property does not apply to the font.

Examples

(*

This script can be found in startup disk:Apple Extras:Font Extras

*)

on run

 if OKToProceed() then

 set theProfile to new file with prompt "Save the profile as: "¬

 default name "FontSync profile"

 try

 -- This can take a while...

 tell application "FontSync Extension" to create font profile¬

 theProfile

 display dialog "Created FontSync profile named \"" & name of¬

 (info for theProfile) & "\"" with icon note buttons {"OK"}¬

 default button 1

 on error err

 display dialog "Encountered an error (" & err & ") while¬

 creating \"" & name of (info for theProfile) & "\"" with icon¬

 stop buttons {"OK"} default button 1

 end try

 end if

end run

on OKToProceed()

 set theButton to button returned of (display dialog "This can take a¬

 long time if you have many fonts. Do you wish to proceed?" with icon¬

 caution giving up after 30)

 return (theButton = "OK")

end OKToProceed

Chapter 28. Location Manager Control Panel

Location Manager is a control panel that allows the user to establish and switch between various named
computer and networking configurations. The (minimally) scriptable control panel is located in startup
disk:System Folder:Control Panels . Figure 28-1 shows the Location Manager window. You can use it to
set up and name a configuration or location that controls several characteristics of your system, including:

AppleTalk and TCP/IP settings

The default printer

File sharing (whether it is on or off)

The set of Extension files that loads when the computer boots up

Internet settings (such as the default browser, FTP, and telnet apps)

Remote Access

The time zone for the computer's internal clock

Figure 28-1. Location Manager window

You can switch between settings using an AppleScript, but not much more. The Examples section at the
end of the chapter checks the current location (a property of the Location Manager program), and then
changes the location to a different one.

Location Manager

Syntax

tell app "Location Manager"

 set curApp to current location (* set a variable to location returned

 by "current location" property *)

end tell

Dictionary classes

application

This class represents the Location Manager program:
tell app "Location Manager" to launch

The application has one or more location objects as elements. To examine one of these objects, use code
such as:

tell app "Location Manager" to get location

1

See the location class later in this chapter. The Location Manager application also has one property,
current location .

The following are application elements:

location

If you use Location Manager to set several different configurations (which is what it is designed for), then
each configuration or location is accessible as a location element. This code example gets the name of
each location and displays the names in a dialog window:

set locs to "The location names are: " & return

 tell application "Location Manager"

 repeat with ct from 1 to (count location)

 set locs to locs & (name of location ct) & return

 end repeat

 display dialog locs

end tell

The following are application properties:

current location location

This current location property returns the currently active location. It is a settable property; see the
Examples section at the end of this chapter.

location

This class represents a location you can create with Location Manager. A location is a set of system
configurations such as file sharing, TCP/IP, and Extension sets, among other settings. The application
class for Location Manager has location objects as elements:

tell app "Location Manager" to get current location -- returns the active location
name international text (read-only)

This is the name the location has in the Location Manager window. For example:
tell app "Location Manager" to get location

"cable_tcpip"

The return value for this code phrase (if you had a location called "cable_tcpip") looks, naturally enough, like:

location "cable_tcp" of application "Location Manager"

Examples

tell application "Location Manager"

 set loc to current location

 if (name of loc) is "cable_tcpip" then

 set current location to location "dialup"

 end if

end tell

Chapter 29. Memory and Mouse Control Panels

If you are a programmer who likes to tinker with various memory settings, such as turning virtual memory
on and off or adjusting the disk-cache size, then the scriptable Memory control panel is right up your alley.
This control panel (see Figure 29-1) controls three aspects of computer memory usage, all of which are
scriptable:

Disk cache

The operating system reserves a certain amount of Random Access Memory (RAM) for the
storage of frequently used bits of data. This repository is called a disk cache. By default, your disk
cache is set to 32 KB times the amount of megabytes of physical RAM you have. My disk cache is
set to 6656 KB, or 32 KB times 208 MB. This size is adjustable via AppleScript (see the
application class description later in this chapter).

Virtual memory

A portion of your hard disk the operating system uses as if it were RAM is called virtual memory
(VM). This increases the computer system's available memory; however, VM slows down the use of
some programs and uses up space that could be used to store files. AppleScript can turn on and off
or adjust the size of VM.

RAM disk

A RAM disk is a part of memory that can be used like a disk for storing files. It is the opposite of
virtual memory, which uses a disk to act like memory. An icon for the RAM disk shows up on your
desktop, and you can drag folders and files onto it. A RAM disk persists through a computer restart,
but its contents are erased on some Mac systems if the computer is shut down or loses power
abruptly. See the RAM disk settings class description in this chapter.

Figure 29-1. The Memory control panel

The end of this chapter describes how to alter the behavior of the mouse via AppleScript.

Memory Control Panel

Dictionary commands

close

This command closes the Memory control panel, as in:
tell app "Memory" to close
count reference

Use this property to count the elements of a class:
tell app "Memory" to count available disks

This code fragment returns the number of disks the computer could use for virtual memory. count returns an integer value. See
the available disk class.

each type class

You can also use the syntax:
count each available disk

This usage returns the same value as:

count available disks
use default settings

If you use the following code, the control panel will set Disk cache, virtual memory, and RAM disk to default values (e.g., the
default value for a RAM disk is "off "):

tell app "Memory" to use default settings

Dictionary classes

application

This class represents the Memory control panel. It has one element, available disk , as in:
get available disks

This returns a value that looks like:

{Disk Volume "Macintosh HD" of application "Memory", Disk Volume

"H2gig" of application "Memory", Disk Volume "HB2gig" of application "Memory",

Disk Volume "scratch" of application "Memory"}

The Memory application can also get or set various features of disk caches, virtual memory, and RAM disks. This code example

finds out the state of virtual memory (active if VM is enabled on one of the local disks) and the size of VM:

tell application "Memory"

 set VMOn to state of virtual memory

 set VMsize to size of virtual memory

 display dialog "The state of VM on this machine is: " & VMOn &¬

 return & "The size of VM is: " & (VMsize / 1024 / 1024)

end tell

The following are application elements:

available disk

This class represents a disk that can be used for virtual memory. Get a list type containing references to the computer's
available disks with this code:

tell app "Memory" to get available disks

See the available disk class.

The following are application properties:

disk cache disk cache settings

This is a property of the Memory application, but a script cannot get a return value for disk cache in the usual manner. In
other words, you cannot use the syntax:

get disk cache

You have to use the code (an example return value is active):

get state of disk cache

or the following code (which returns the number of bytes in the system's disk cache):

get size of disk cache

These are settable attributes, so a script can change the state of a disk cache:

set state of disk cache to inactive after restart

or, a script could set the size of the disk cache to a new value:

set size of disk cache to ((size of disk cache) + (1024 * 1024))

This code adds a megabyte to the size of the disk cache . See the disk cache settings class.

frontmost boolean (read-only)

If frontmost is true , then the Memory control panel is the active application on the desktop.

name international text (read-only)

This property returns the name of the application as a string ("Memory").
RAM disk RAM disk settings

The RAM disk property returns a RAM disk settings object, which cannot be referenced directly in your script. In other
words, the following syntax raises a script error:

tell app "Memory" to get RAM disk

The script has to use syntax such as:

get state of RAM disk or get persistence of RAM disk

The latter code gets a boolean value referring to whether the contents of the RAM disk will be saved if the computer is shut down.
See the RAM disk class description.

version version (read-only)

This property returns a string (the version object return value is implemented as a string) that represents the Memory
application version, as in "8.1.1."

virtual memory virtual memory settings

virtual memory returns the VM settings for the computer. You can reference these settings in the following manner:
tell app "Memory" to get size of virtual memory (* or get configured volume of virtual memory *)

If you try to access the VM settings directly, as in the following, the script raises an error:

get virtual memory

See the virtual memory settings class description.

available disk

This class represents a disk that can be used for storing virtual memory. For example, the Memory application object has
available disk elements. You can access the disks that the machine can use for virtual memory with code such as:

tell app "Memory" to get available disks

The example at the end of the property definitions gets all the properties of the available disk that the machine is currently using
for virtual memory. The script first tests whether virtual memory is active (turned on). If it is, then the available disk that is
holding virtual memory storage is accessed with the following code:

set vmdisk to configured volume of virtual memory

One way to view the property values of the available disk is in Script Editor's Event Log window. See Chapter 2 , for details on
the Event Log, and see the virtual memory settings class description.

The following are available disk properties:

capacity double integer (read-only)

This property returns the maximum number of bytes that can be stored on the disk. The Memory dictionary identifies the
return-value data type as "double integer," but AppleScripters will recognize it as a real type, such as 2.121269248E+9.

creation date date (read-only)

This property returns the creation date of the disk volume or partition as a date type that looks like:
date "Friday, July 16, 1999 1:59:29 PM"
free space double integer (read-only)

The free space of the disk holding virtual memory is the number of bytes not being used. An example return value is
1.494134784E+9. Apple Computer recommends that the disk used for VM have a free space equal to the total amount of
VM you want to use plus the amount of physical RAM installed on the machine. You should always have a little bit more
VM than physical RAM, so if your machine has 150 MB of memory, then the VM amount could be 151 MB, which requires
a total of 301 MB of free space. Find out whether you have optimum free space on a VM disk with code, such as:

get free space of virtual memory's configured volume

This code has to be enclosed in a tell statement targeting the Memory application.

ID integer (read-only)

The ID property is a unique integer that identifies each disk, such as -3.
modification date date (read-only)

This property returns the modification date of the disk volume or partition as a date type that looks like:
date "Friday, July 16, 2000 2:59:29 PM"
name international text (read-only)

You can get the name of the disk with the following code fragment:
get name of (configured volume of virtual memory)

The name is returned as a string , such as "MyDisk."

startup boolean (read-only)

If the available disk object is the machine's startup disk, or the disk the machine was booted up from, then this property
returns true . A script can access this property with code such as:

(* this example gets a lot of virtual-memory property values *)

tell application "Memory"

 set isStartup to (startup of (configured volume of virtual memory))

 if state of virtual memory is active then -- find out whether VM is on

 (* if VM is on, get a reference to the disk storing the VM *)

 set vmdisk to configured volume of virtual memory

 set proplist to {vmdisk's name, vmdisk's ID, vmdisk's¬

 creation date, vmdisk's modification date, vmdisk's¬

 capacity, vmdisk's free space, vmdisk's startup}

 else

 display dialog "Virtual memory is not active right now!"

 end if

end tell

(* Sample return value *)

{"HFSB2gig", -3, date "Friday, July 16, 1999 1:59:29 PM", date

"Monday, July 17, 2000 4:56:57 PM", 2.121269248E+9, 1.494134784E+9, false}
disk cache settings

This class is the return value for the Memory application's disk cache property. Since this is a subclass of memory settings ,
you can find out about the computer's disk cache with code such as the following (state and size are properties of the
memory settings super class):

state of disk cache or size of disk cache

If you are like me, you might want to try to look at the disk cache settings object with code, such as:

tell app "Memory" to get disk cache

But this syntax raises a script error. You have to get or set only the size or state properties.

memory settings

This is the super class for disk cache , RAM disk , and virtual memory settings classes. Therefore, each of these classes
have the state and size properties, too (because AppleScript subclasses, in most circumstances, inherit their parent class's
properties).

state constant

This property specifies whether or not the memory setting , such as virtual memory , is active . It can be one of the
following constants: active , inactive , active after restart , or inactive after restart. For example, if virtual
memory is "off" in the control panel, then

state of virtual memory

returns the constant inactive (or inactive after restart if you just switched VM off in the Memory control panel).

size integer (or minimum , maximum , default)

This is the amount of memory or disk space allocated in bytes to the disk cache, RAM disk, or virtual memory. You
can set the amount in bytes:

set size of disk cache to (size of disk cache + (1024 * 1024))

Or use one of these constants: minimum , maximum ,or default . If you use an AppleScript to:

set size of disk cache to maximum

then the Memory control panel will show a new custom setting in its disk cache area. The new setting takes effect when the
computer is restarted.

RAM disk settings

This class is returned by getting the Memory application's RAM disk property:
tell app "Memory" to get persistence of RAM disk

The script raises an error if it tries to use syntax, such as:

tell app "Memory" to get RAM disk

You have to get the size , state , or persistence properties in code that references the RAM disk settings .

persistence boolean

If the RAM disk will keep its contents after a computer has been shut down and restarted, then this property is true . A RAM
disk is a segment of RAM set aside and used as if it were a disk on the desktop. You can drag folders and files into it, but
the disk contents on some systems are lost if the computer is shut down or loses power.

virtual memory settings

This class is returned by getting the Memory application's virtual memory property, as in:
tell app "Memory" to get configured volume of virtual

memory

This code fragment returns the disk used to hold virtual memory. The script will raise an error if it tries to use syntax, such as:

tell app "Memory" to get virtual memory

You have to get the size , state , or configured volume of this object; virtual memory itself is not directly accessible. Even if
virtual memory is currently "off" in the Memory control panel, getting its size property will still return the number of bytes that
would be reserved for it if VM were on. Find out whether it is on by getting the state of virtual memory. See the memory settings
class description.

configured volume available disk

The configured volume property returns the disk as an available disk object that stores virtual memory. See the
available disk class.

Mouse Control Panel

Dictionary commands

application

This class represents the Mouse control panel. Figure 29-2 shows what this control panel looks like
in Mac OS 9. You can get or set the four properties of the Mouse application class if you are
compelled to use AppleScript to control your mouse input device:

Figure 29-2. The scriptable Mouse control panel

tell application "Mouse"

 (* get all these properties and view in Event Log *)

 tracking speed

 double click speed

 mouse tracks

 thick ibeam

end tell

(* Sample view in Script Editor Event Log *)

get tracking speed

--> 6

get double click speed

--> 2

get mouse tracks

--> 0

get thick ibeam

--> false
tracking speed integer

This settable number determines how fast the mouse cursor follows the user's mouse movement.
The higher the number, the faster the tracking speed, as in the following (this is a high-speed
mouse):

tell app "Mouse" to set tracking speed to 6
double click speed integer

This number determines how fast you have to double-click for the computer to determine that two
clicks equal a double-click (as opposed to a single click followed by another single click). The higher
the number, the faster the speed at which the user has to double-click.

mouse tracks integer

Setting this property to something other than causes the mouse to leave visible "tracks" or mouse
cursor images as it moves about the screen. This may make the cursor easier to find on the screen
with bright small screens like those of the PowerBook or iBook.

thick ibeam boolean

If this property is true, the mouse will be a thick ibeam shape:
tell app "Mouse" to set thick ibeam to true.

Chapter 30. Speech Listener and SpeakableItems Extension

Mac OS 9 offers three different ways to use AppleScript to control how the computer responds to verbal
commands and "speaks" back to the computer user. Using combinations of these methods, you can
create complex and useful speech-related scripts:

The listen for AppleScript command, which controls the computer's response to spoken commands.
The options that control how the computer listens for commands, such as the key on your keyboard
that will toggle this technology on and off, can be controlled with the Speech control panel (see
Figure 30-1).

Figure 30-1. The Speech control panel

The SpeakableItems technology allows the user to execute a script inside the SpeakableItems folder
(which is located in the startup disk:System Folder:Apple Menu Items folder) just by speaking the
script's filename into the computer's microphone.

The say command, a scripting addition that has been part of the Standard Additions osax since
Mac OS 8.5 (See Appendix A). As long as the Speech Manager extension is enabled, the computer
will speak any text or string that you specify in an AppleScript with say, as in:

say "It's nice to hear text rather than read it sometimes."

Figure 30-2 shows the three extensions that have to be installed with Mac OS 9 to use the three speech-
related technologies with AppleScript.

Figure 30-2. Speech extension files

Speech Listener Application

Dictionary commands

listen for

listen for is the only command in the Speech Listener application's dictionary. The Speech Listener
app is located in the startup disk:System Folder:Scripting Additions folder. Figure 30-3 shows the
Speech Listener icon.

Figure 30-3. Speech Listener app icon

listen for allows a script to "listen for" any text provided in a list of strings (or numbers), then respond
accordingly when it hears one of the listed words or numbers. The return value of the listen for command
is the text or number that is recognized. The following example first sets a fam variable to a list of names.
It then uses the listen for command to prompt the user to say one of the names. If the name is recognized
(let's say it's "Emily") then the computer responds by saying "Hey guys, Emily is my family member too!"
The [[emph -]] syntax is an embedded speech command that (in this case) de-emphasizes the
pronunciation of the following word. Embedded speech commands are explained elsewhere in this
chapter. If the script listens but does not hear any spoken commands in 60 seconds, it will time out and
raise error number -1712. The example script catches this error, says "bye-bye," and exits the repeat
loop (effectively terminating the script). Listen for also raises an error when text is heard but does not
match any of the specified text options.

(* repeat the prompt until a family name is identified

or the script times out *)

repeat

try

tell application "Speech Listener"

set fam to {"Stacy", "Bruce", "Rachel", "Emily", "Anne",¬

"Dean", "Bob"}

(* listen for returns the recognized text, which the fam_member

variable is set to *)

set fam_member to (listen for fam with prompt "Say a¬

family [[emph -]] member")

end tell

say "Hey guys, " & fam_member & " is my family [[emph -

]]¬

member too!"

exit repeat

on error number errnum

If errnum is -1712 then

say "Bye-Bye"

exit repeat

else

say "I'm sorry, try again."

end if

end try

end repeat
listen for list of strings or numbers

The listen for command has to be nested in a tell block targeting the Speech Listener application,
as in tell application "Speech Listener"...end tell. Chapter 7, describes the tell statement.
Listen for's required parameter is a list of strings or numbers comprising the text that the machine
listens for. The example below listens for certain numbers and, if it hears one, will speak that
number squared. In other words, if it hears "5," then the script will speak the result of 5 * 5. This
example uses embedded speech commands, such as [[slnc 500]] (which produces half a
second of silence). These commands are explained elsewhere in this chapter. The three listen for
labeled parameters are optional.

with prompt string

The machine says this prompt before listening for the designated text, as in with prompt "say your
name".

giving up after integer

You can designate a number of seconds for the Speech Listener app to wait before it returns a

timeout error (error number -1712) and quits listening. If you do not specify an integer for giving
up after, then the default timeout will occur in 60 seconds.

filtering boolean

If filtering is true, the Speech Listener app skips phrases that contain special characters:
tell application "Speech Listener"

 set numList to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, "cancel"}

 repeat (* keep repeating the prompt until a number from 1-10 or

"cancel" is *)

 heard

 try

 set n to (listen for numList with prompt "say a¬

 number, between 1 and [[emph -]] 10, and I will¬

 square [[¬ emph -]]it." giving up after 15)

 if n is equal to "cancel" then

 say "bye bye"

 return -- exit the applet

 end if

 say "The answer is [[slnc 1000]] [[emph -]]" &¬

 ((n * n) as text)

 on error number errnum

 if errnum is -1712 then

 return

 else

 say "Sorry, please try again."

 end if

 end try

 end repeat

 end tell
end tell

SpeakableItems Extension

You can make your scripts executable by spoken command as long as you have the SpeakableItems
extension file loaded on your machine, and you have turned SpeakableItems on in the Speech control
panel (see Figure 30-1). This speech technique is as simple as this: create a script that does whatever
you want then give it a filename that you will use to verbally execute the script. For instance, you can save
the script as an applet with the filename go. As long as the script has been saved in the startup
disk:System Folder:Apple Menu Items:SpeakableItems folder and SpeakableItems is turned on, all the
user has to do is say "go" into the computer's microphone and the script is executed. The following
example uses a web browser to open up the my.yahoo.com page upon spoken command, which in this
case is "go to yahoo" (i.e., the filename of the script must be go to yahoo, and the script must be saved to
the SpeakableItems folder):

tell application "Internet Explorer"

 Activate

 GetURL "http://my.yahoo.com"

end tell

say scripting addition

The say command is an osax that you can use to have the computer speak text to the script user. It is
extremely easy to use; simply follow the keyword say with the string text that you want the computer to
say. This command requires the Speech Manager extension (see Figure 30-2), which enables the
computer to read text to the user. You can use the say command alongside other speech technologies,
such as the Speech Listener application. The following example tells the user what time it is. It gets the
current time from the current date scripting addition. The time string property returns just the time
portion of the date, as in "10:52:26 AM." Appendix A also describes the say command. A description of
say and its parameters follows this example. The example also uses embedded speech commands (which
are explained at the end of this chapter):

set t to (time string of (current date)) (* returns something like

"11:17:00 AM" *)

set t1 to "" (* t1 var will hold just the time part as in "11:17:00",

without the "AM" *)

set t2 to ((characters -1 thru -2 of t) as text) -- holds "AM" or "PM"

set t3 to "" -- will hold the lower case "am" or "pm"

(* remove the " AM" part of "11:17:00 AM," for instance, and store the

result in a variable *)

repeat with chr from 1 to (t's length)

 if (character chr of t) is space then exit repeat

 set t1 to t1 & (character chr of t)

end repeat

(* create a lower case version of "AM" or "PM" so that the speech

software reads the time of day as "ay-em" or "pee-em" using the [[char

LTRL]] embedded speech command *)

repeat with chr from 1 to 2

 set n to (ASCII number (t2's character chr)) + 32 (* converts from

upper to lower case using ASCII number osax *)

 set t3 to t3 & (ASCII character n) -- uses ASCII character osax

end repeat

say "It is [[emph -]] [[slnc 500]]" & t1 & " [[char LTRL]]" & t3
say anything

This command speaks the text parameter to the say osax in the voice that is configured in the
Speech control panel. You can use this command for debugging purposes by saying the value of
certain variables.

displaying string

This parameter displays text in the SpeakableItems feedback window, if you have the
SpeakableItems extension installed.

using string

You can specify the voice you want to use, such as "Deranged" or "Hysterical":
say "This project is disintegrating!" using "Hysterical"
waiting until completion boolean

The default is waiting until completion true, which does not return from the call to say
until the speech has been uttered. This is important when you are using say in a repeat loop,
as you do not want to move on to the next loop of repeat until the speaking voice has finished
its speech. Chapter 7 describes the repeat loop.

Embedded Speech Commands

The earlier examples used embedded speech commands like "[[emph -]]," which de-emphasizes the
pronunciation of the word following the command. These embedded commands give the scripter more
control over how the voice sounds when it reads text, such as the volume and emphasis of syllables. The
commands are delimited by two pairs of opening and closing brackets ("[[]]"). Most of the commands have
parameters. For instance, the emphasis command ("emph") has a plus (+) or minus (-) parameter that
either gives greater or less emphasis to the word following the command. The following web site contains
more information on embedded speech commands:
http://developer.apple.com/techpubs/mac/Sound/Sound-200.html.

[[char LTRL]]

If you use the LTRL parameter, then the speech synthesizer will read every letter, number, and
space separately rather than the words themselves. It reads the words normally if you use NORM as
the parameter.

[[cmnt here is a comment]]

Use this syntax to enter comments in the speech code. The speech synthesizer will not read the
comments text.

[[emph -]]

This command de-emphasizes or emphasizes (e.g., [[emph +]]) the word that follows the
command.

[[inpt PHON]]

This command determines whether the speech synthesizer speaks the text in normal text mode or
phoneme mode. Phonemic mode spells words as they sound, as in "Maykael" rather than "Michael."
If you use [[inpt PHON]] then the speech synthesizer will use phonemic mode. The command [[
inpt TEXT]] is the default.

[[nmbr LTRL]]

This command determines the number-speaking mode of the speech synthesizer. The syntax
example would read the code say [[nmbr NORM]] 500 as "five hundred"; whereas the code say
[[nmbr LTRL]] 500 would be read as "five zero zero."

[[pbas +1]]

The baseline pitch command makes the voice higher or lower. If you use a + or - symbol with the
real number parameter (in a range from 1.0 to 127.0), the pitch is adjusted relative to its current
value.

[[pmod +1]]

http://developer.apple.com/techpubs/mac/Sound/Sound-200.html

The pitch modulation command also changes the sound attributes of the computer voice. If you use
a + or - symbol with the real number parameter (in a range from 0.0 to 127.0), the modulation is
adjusted relative to its current value.

[[rate +50]]

The speech rate determines how fast the text is read. For example, [[rate +50]] speeds up the
speech synthesizer's reading of text. The rate number parameter falls between 0.0 and
65535.999, a range that equates to 50 to 500 words per minute.

[[rset]]

Use the reset command to reset the voice attributes back to their default values.

[[slnc 500]]

The silence command causes a speech delay for parameter number of milliseconds (there are
1,000 milliseconds in a second). So if you want two seconds of silence followed by the word
"heaven," you could use the code say "[[slnc 2000]] heaven".

[[volm +0.5]]

The speech volume command adjusts the voice's volume (how loud it is) in a range from 0.0 to
1.0. If you precede the parameter with a + or - symbol, the volume is adjusted based on its current
value.

Chapter 31. Web Sharing Control Panel

Personal Web Sharing is a powerful (but potentially hazardous) technology that was introduced with Mac
OS 8.5. Using the Web Sharing control panel and extension, you can turn your computer into a web
server over an intranet or the Internet. As long as they know your IP address and/or domain name, people
can connect to a home page that you designate in the Web Sharing control panel just by entering your
address in their web browsers. Domain names are the plain English versions of numerical IP addresses,
such as www.nateweb.net.

You know you have Web Sharing installed if you have a Web Sharing control panel
and a Web Pages folder on your hard drive. Web Sharing is installed by default
with Mac OS 9.

For example, if your IP address on the Web happened to be 207.169.50.110 and you have started up
Web Sharing on your machine, then another person on the Web would just have to enter
http://207.169.50.110 in their web browser and up pops your designated home page or a directory listing
of your web folder. This also applies to people who have dial-up connections to the Web and are
dynamically assigned IP addresses by their Internet Service Providers. When they are online, they can use
the TCP/IP control panel to find out their IP address at the moment, and as long as they have started up
Web Sharing on their machines, a web user can connect to their designated web page by using that IP
address as the URL. You can even run Common Gateway Interface (CGI) programs written in AppleScript
using Personal Web Sharing. I'll demonstrate AppleScript and Web Sharing CGIs in this chapter. If you
just need to serve some files and directories and run CGI scripts over an Appleshare TCP/IP network, for
instance, then who needs to install an expensive and time-consuming server suite?

However, all of this nifty technology comes with a large security caveat. Offering remote access to your
computer over the Web should never be done without carefully restricting the users' access to directories.
The Web Sharing control panel (see Figure 31-1) gives you the option to use File Sharing to control user
access to files and folders.

Figure 31-1. Web Sharing control panel

http://207.169.50.110

It is a good idea to use properly generated usernames and passwords to restrict web access to your files.
Make sure that you do not blithely leave on Web Sharing when you don't really need it. Figure 31-2 shows
what a directory listing looks like in a browser accessing a Web Sharing computer. This careless user has
offered web access to their System Folder!

Figure 31-2. A directory listing of someone's System Folder displayed in a browser

The Web Sharing control panel has a dictionary, but the program's developers have not yet exposed Web
Sharing's object model to scripters. In other words, you can use basic commands such as:

tell app "Web Sharing" to run

However, you cannot do things like designate Web Sharing home pages, open the log file, or start and
stop Web Sharing with a script. For that reason, I am not going to use this space to describe Web
Sharing's dictionary, which is depicted in Figure 31-3. Chapter 1, has more information on how an object
model relates to AppleScript.

Figure 31-3. Web Sharing control panel's dictionary

A program's dictionary describes in barebones fashion the AppleScript commands you can use to control
the software. Open an application's dictionary by choosing the program in Script Editor's File Open
Dictionary... menu. See Chapter 2, for more information on Script Editor and dictionaries. This chapter will
describe two CGI scripts that you can use with Personal Web Sharing.

What are CGI programs? A CGI program is software that executes and processes web information in
response to an HTTP request. Instead of delivering a static HyperText Markup Language (HTML) file to a
web user, a server can launch a CGI program in response to the request and then dynamically generate
some data for the user, such as delivering product information from a database. A popular use of CGI
programs on the Web has been to process form data that a user submits (usually by filling out a form and
clicking the Submit button). The CGI program processes the form entries (by storing the submitted data in
a database, for example), and then generates an acknowledgement in the form of a web page for the
submitting user. CGI programs can be written in AppleScript for Macintosh servers. This chapter uses
CGIs running under Personal Web Sharing server software, but these scripts could be used with a full-
fledged web server such as StarNine's WebStar.

When you save an AppleScript web server script you should remember a few important tips:

Make sure to save the script with a suffix of .cgi or .acgi or else Personal Web Sharing will not run it
properly. "Myscript.acgi" is an example. The "a" in "acgi" stands for asynchronous. This suffix
instructs the server that the script can simultaneously initiate its processing while the computer is
busy with other tasks. Using this suffix usually helps the script execute more efficiently.

Make sure that the checkboxes "Never Show Startup Screen" and "Stay Open" are checked when
you save the script in Script Editor (Figure 31-4 shows this Save script as... window). These are
checked so that the first time the script is executed, it stays open on the server, processing new

requests more quickly. Also, when the script is executed, you do not want the startup screen to
display on the server, waiting for someone to click a Run or Quit button. Checking "Never Show
Startup Screen" ensures that the applet starts up without this interruption.

Figure 31-4. The options for saving an AppleScript CGI program

The CGI program in Example 31-1 uses the handle CGI request scripting addition. This is a handler or
function (as in on handle CGI request...) that fills in several built-in string variables, giving you, as the
server, scripter information about the request. This information includes the client IP address and the data
that follows the "?" character in the URL (e.g., the "first=Bruce&last=Perry" part of
"http://www.parkerriver.com?first=Bruce&last=Perry"). The handle CGI request function returns an HTML
page, so you should generate an HTTP response header and page as the function's return value.

To use this script with Web Sharing, you have to add it to the server's list of actions by using the Web
Sharing control panel's Preferences window (see Figure 31-5). Configure the script in this window as a
Filter-type action. Users can execute the CGI by requesting it in their browser, as in the
http://207.169.50.110/cgi/do_it.acgi address.

Figure 31-5. Configure CGI actions in Web Sharing's Preferences window

http://207.169.50.110/cgi/do_it.acgi

Example 31-1 stores the submitted query string ("first=Bruce&last=Perry") in the theString variable. It
also tries to get the URL from which the user linked to the CGI program. The web server stores this data in
the referred by labeled parameter (if there is an identifiable referer) for the handle CGI request function.

Example 31-1. A Simple CGI Script for Web Sharing

on handle CGI request searching for theString referred by referer

 set crlf to (ASCII character 13) & (ASCII character 10)

 set theHTML to "HTTP/ 1.1 200 OK" & crlf & "Content-type: text/html" &¬

 set theHTML to theHTML & "<html><head><title>First page</title>¬

 </head><body bgcolor=#ffffff>" & "You were referred by: " & referer &¬

 "The search string is: " & theString & "</body></html>"

 return theHTML

end handle CGI request

Notice that Example 31-1 returns a web page (return theHTML) as the return value for handle CGI
request. The theHTML variable is a string that contains the source code for the HTTP response. Example
31-2 shows the power and the danger of Web Sharing. It executes a CGI that delivers sensitive
information about the server computer, such as how much free space is left on all of its disks. The handle
CGI request function calls the getfreespace method, which then scripts the Finder. This shows that a CGI
program is not limited in what it can script, which is exciting in your hands but perhaps malicious in
another's. A CGI script could just as well exhibit behavior like the "I Love You" virus by grabbing all the
contacts in OutLook Express's contact list and sending thousands of unwanted emails to these contacts.
OutLook Express is a scriptable program, and it is easy to grab email addresses from its contact list.

Example 31-2. Scripting the Finder from a CGI Script

on handle CGI request

 set crlf to (ASCII character 13) & (ASCII character 10)

 set theHTML to "HTTP/ 1.1 200 OK" & crlf & "Content-type: text/html" &¬

 set theHTML to theHTML & "<html><head><title>¬

 Freespace CGI</title></head><body bgcolor=#ffffff>" & "The total free¬

 on this computer is: " & getfreespace() & "</body></html>"

 return theHTML

end handle CGI request

on getfreespace()

 tell application "Finder"

 set total_space to 0

 set dsk to (items of desktop whose kind is "disk")

 repeat with d in dsk

 set total_space to total_space + (free space of d) (* returns free

space of each disk in bytes *)

 end repeat

 set total_space to (total_space / 1024 / 1024) (* get free space as

megabytes *)

 return total_space

 end tell

end getfreespace

If you want to test Personal Web Sharing on your own machine, turn it on in the Web Sharing control
panel. Then enter the following IP address into your browser: http://127.0.0.1. This address connects with
your local web server (and loads up your designated web page or web folder if they are configured
properly).

You can include aliases to folders in your Web Sharing folder, as in my cautionary example of serving up
your System Folder over the Web (Don't try this at home!). A user can request the alias file in their
browser, and they then see a directory listing of that folder. Let's say you have a folder full of MP3 files,
and you create an alias to this folder called MP3fol. Place that alias in your designated web folder. The
web user can then request a directory listing of the alias with a URL similar to
http://169.210.110.40/MP3fol. To use aliases in your Web Sharing folder, you have to enable the
checkbox with the following label in Web Sharing Preferences: "Allow aliases to open files outside the
Web folder."

http://127.0.0.1
http://169.210.110.40/MP3fol

Part V: Scripting the Mac OS X System

Chapter 32. Scripting the OS X Desktop

This chapter describes how to script the Finder application with Mac OS X, which is Apple's dramatically redesigned
operating system (see Figure 32-1). While the Finder has undergone a major visual face-lift in OS X, scripting the
Finder is not very different from scripting the OS 9.0.4 and 9.1 Finder, as you'll see from the examples in the rest of
this chapter (see Chapter 14 , and Chapter 15 , on the OS 9 Finder's commands and classes).

Figure 32-1. Mac OS X Desktop

What is the Finder? The Finder manages the user's interaction with the OS X desktop and Aqua graphical user
interface, which includes the Dock, translucent windows, tear-dropped shaped button controls, and the computer
disks or partitions that are displayed on the OS X desktop. The Finder application can be found in the following
directory in OS X: /System/Library/CoreServices . The icons displayed along the bottom of the screen are part of the
Dock, which can contain applications, documents, image files, aliases, and other file types. The window is a Finder
window, which is described elsewhere in this chapter.

Figure 32-2 shows a Finder window in column view. You can display a Finder window by using the Finder's Go menu
from the menubar along the top of the computer screen, as well as by typing Command-N . You can also make a new
Finder window programmatically in AppleScript (See Section 32.1.2). Inspector windows, as defined in the Finder
dictionary, are OS X's next-generation version of OS 8's and 9's Get Info windows.

Figure 32-2. Finder window in column view

The Finder application defines the inspector window class to manipulate Info windows in the Mac OS X
desktop. Info windows are specified by the Aqua Human Interface Guidelines. These can be downloaded
from
http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/AquaHIGuidelines.pdf .

The user displays these windows in OS X by selecting a Finder item like a file and typing Command-I or choosing
Show Info from the Finder menu bar. Figure 32-3 shows an inspector window that targets a folder.

As with any other scriptable application, you can examine the Finder's dictionary by opening up Script Editor,
choosing "Open Dictionary..." from its File menu, and then selecting the Finder from this dialog window. See
Chapter 2 , for a description of Apple's script-editing application.

The Mac OS X Finder offers file-manipulation and information-gathering functions that are similar to the Finder of
OS 8 and 9. The application object model that appeared with the OS X release was virtually identical to the Finder's
OS 9 object model. The exceptions were the introduction of two new window objects, Finder and inspector windows
, and the absence of any objects that represent suitcase or desk accessory files (see Chapter 15 (Mac OS 9) for
a description of these file types in OS 9). The Mac OS X Finder dictionary also has some evolving new type
definitions (e.g., icon view options, list view options, column). Expect the commands and objects that you can use with
the Finder to change and evolve as Apple engineers gradually adapt AppleScript to the Mac's significantly new
underlying system architecture.

The rest of this chapter describes some ways to work with files, folders, and disks with the new Mac OS X Finder
application.

http://developer.apple.com/techpubs/macosx/SystemOverview/AquaHIGuidelines/AquaHIGuidelines.pdf

32.1 Working with Files, Folders, Disks, and Windows in OS X

As in OS 9, a file, folder, and disk (but not a window) are item objects in Mac OS X. The code in Example 32-1 returns a list of all
the files and folders that are in the current logged-in user's Desktop folder. Unlike OS 9, OS X only displays the contents of the
Desktop folder of the currently logged-in user. OS 9's displayed desktop unifies all of the desktop folders of the startup disk and
any other local volumes that contain a System Folder. For example, in OS 9, if you have two bootable volumes-"MacDiskA" and
"MacDiskB"-then the desktop items that you see represent any file or folder that was created in or moved to the desktop,
regardless of which disk has been the startup disk.

By contrast, the Mac OS X Finder only displays (on the computer desktop) the contents of the current logged-in user's Desktop
folder. Everything else is an icon sitting on the Dock or viewed through a Finder window. For example, if I log in as "brucep," then
my desktop folder is located in the following directory: startup disk:users:brucep:library:desktop (or, as this folder path would be
depicted by the Unix-based Darwin sub-system, /users/brucep/library/desktop). So if I have a file in my desktop folder at this
directory location called newfile.txt , this file is displayed on the OS X desktop only when I am logged in. If a user with a login name
of "brynne" logs in to the computer, then the OS X Finder will only display the contents of Brynne's desktop folder.

Example 32-1. Getting References to Finder Items

tell app "Finder"

 get items

end tell

As you can see from Example 32-1 , when you script the Mac OS X Finder, you use the tell app "Finder"... as you would with
Mac OS 8 or 9. Once you have a reference to an item , then you can get a substantial amount of information about that file,
folder, or disk. In fact, you can grab all of the available information about an item by taking a look at its new properties property,
as in Example 32-2 . properties returns a record data type, which is a collection of key-value pairs separated by curly braces
({}). Example 32-2 includes a sample return value for the properties property.

Example 32-2. Getting All of an Item's Properties

tell app "Finder"

(* if there is an item in the Desktop folder then get its 'properties' property

*)

if ((count of items) > 0) then get properties of item 1

end tell

(* Sample return value:

{class:disk, name:"Mac OS X", index:1, container:folder "Desktop" of folder

"bruceper" of folder "Users" of startup disk of application "Finder",

disk:startup disk of application "Finder", position:{250, 43},bounds:{218,

11, 282, 75}, kind:"Volume", locked:false, description:missing value,

comment:"", size:missing value, physical size:missing value, creation

date:date "Thursday, March 15, 2001 3:05:49 PM", modification date:date

"Friday, March 16, 2001 5:07:01 AM", icon:missing value, URL:"file://

localhost/", icon size:-1, owner:"root", group:"admin", owner privileges:read

write, group privileges:read write, everyones privileges:read only, container

window:missing value, capacity:3.420332032E+9, free space:1.844187136E+9,

ejectable:true, startup:false, format:Mac OS Extended format} *)

The properties property of the item object includes a lot of information about the access privileges for that file, folder, or disk,
which the item object does not include in Mac OS 9. These properties include:

owner

This returns a string username (e.g., "Brynne") that represents the logged-in user who owns the item.

group

This string identifies the group that has special access to the item, as in "staff."

owner privileges

This returns one of the following four constants: read only , read/write , write only , or none .

group privileges

This returns one of the following four constants: read only , read/write , write only , or none .

everyone's privileges

This returns one of the following four constants: read only , read/write , write only , or none .

Finally, the item also has a new url property in Mac OS X. For a file, the return value for this property might look like:
"file://localhost/users/brucep/library/desktop/newfile.txt" .

32.1.1 Making New Files and Folders

As in Mac OS 9, you can make new files and folders with Mac OS X and AppleScript by using the Finder's make command.

Example 32-3 creates a new folder called "NewFolder" in the Desktop folder of the currently logged in user.

Example 32-3. Making a New Folder in OS X

tell application "Finder"

 make new folder at desktop with properties{name:"NewFolder"}

end tell

You can also create new files like aliases with the new Mac OS X Finder. One Finder quirk that has been corrected in OS X is the
necessity to use the syntax make file at... as opposed to make new file at... when code is making a new file. Under OS 9
and its predecessors, you generally have to use the make new... syntax when making everything but file objects. Example 32-4
asks the user for a file reference, using the choose file osax, and then creates an alias to that file with the default name of "[file
name] 2." In other words, if the original file is named "newfile," then the alias is named by default "newfile 2."

Example 32-4. Making a New Alias File

tell application "Finder"

 set f to (choose file with prompt "Choose the alias's original file")

 make new alias file to f

end tell

32.1.2 Working with Finder and Inspector Windows

The Finder uses Finder windows to graphically navigate the filesystem.

The Mac OS X release renamed the file-viewer windows of the Mac OS X Public Beta to Finder windows,
but the Finder dictionary also refers to Finder windows as "file-viewer windows," so we will also
occasionally use the file-viewer term.

Figure 32-2 shows a Finder window in column view. With AppleScript, you can get references to any open Finder windows (these
refs look like "Finder window id 2" in Script Editor), and you can make new file viewers and specify their target file or folder. The
Finder application dictionary (which is called "The Finder") includes a description of the new Finder window class. A Finder
window object inherits some of the window's properties (e.g., id , position , bounds) and has its own target attribute. The target
is a reference to the deepest file or folder selected in a Finder window . For example, if you were examining the contents of your
Documents directory in a Finder window , then its target property would be:

folder "Documents" of folder "brucep" of folder "Users" of startup disk¬ of Application "Finder"

If you want a less unwieldy form of reference than the latter target-return value, coerce the return value to a string (so it looks like
"Mac OS X:Users:brucep:Documents"). Example 32-5 first gets a list of references to every open Finder window (if there are
any). For each member of this list (i.e., a collection of Finder window objects), the script gets the target property. This is a
settable property, as the script demonstrates in Example 32-6 .

Example 32-5. Examining a File Viewer Window via Script

tell application "Finder"

 set fv_wins to (every Finder window)

 repeat with w in fv_wins

 get target of w as string

 end repeat

end tell

Example 32-6 makes a new Finder window and establishes the directory startup disk:System:Library as its target. When you run
the script in Script Editor, the Finder displays the new Finder window and makes it the active window.

Example 32-6. Making a Finder Window

tell application "Finder"

 set fv_targ to folder "Library" of folder "System" of startup disk

 make new Finder window to fv_targ

 (* sample return value: Finder window id 6 of application Finder *)

end tell

Inspector windows (or Info windows as they are specified under the Aqua Human Interface Guidelines) are new window classes in
OS X and in the Finder dictionary.

You can view the Finder's dictionary of commands and classes by dragging the Finder icon to the Script
Editor icon, or by choosing Open Dictionary... in Script Editor's File menu, then selecting the Finder's icon
in the resulting dialog window.

These windows are revamped Get Info windows that are undoubtedly familiar to users of Mac OS 8 and 9. The user displays
Info windows by selecting the file, folder, or disk and then typing Command-I or choosing Show Info from the Finder's file menu.
Figure 32-3 shows an inspector window.

Figure 32-3. An inspector window for a folder

You can get references to all of the open inspector windows (if there are any) by examining the Finder application's window
elements, as in Example 32-7 . The AppleScript return value for an open Info window looks like inspector window "Info:Mail ".

Example 32-7. Displaying an Info window's name

tell application "Finder"

 activate

 set nameList to name of windows

 repeat with nm in nameList

 if nm contains "Info:" then

 display dialog "The name of the open Info window is: " & rm

 end if

 end repeat

end tell

32.1.3 A Work in Progress

It is important to remember that like Mac OS X itself, scripting the Finder with AppleScript is still a work in progress. To find out
what terminology will work in your system, use the Script Editor to examine the Finder's dictionary. Open the Finder's dictionary by
dragging its icon onto the Script Editor icon in the Finder, or use Script Editor's File Open Dictionary menu command.

Chapter 33. Scripting Mail

Mac OS X installs a nifty email application called, aptly enough, Mail. Like other email programs such as
Eudora or Outlook Express, Mail allows you to get and send email, set up various email accounts, and
format email messages in various ways. This chapter describes some of the scripts you can already write,
as well as some of the potentially interesting classes that the Mail dictionary contains. Figure 33-1 shows
what the Mail app looks like on the Mac OS X desktop. Its icon is the second one from the left on the Dock
(in this graphic), which is the repository of file and program icons arrayed along the bottom of the Mac
screen.

Figure 33-1. OS X's Mail application

33.1 Setting Up an Email Message

The easiest way for a script to get Mail started on a new email message (but not actually complete and
send the message) is to use the GetURL command. This command takes as its parameter a string
"mailto" URL, which looks like mailto:bwperry@parkerriver.com?subject=My%20mail. Mail responds to
this command by opening up a new message window and constructing the email according to the string
parameter you used with GetURL. The result might look like Figure 33-2. Notice that the string parameter
itself must be URL-encoded (e.g., %20 symbols replacing any space characters) for the message to be
properly constructed.

Figure 33-2. A Mail message window displayed by a script

The new email message window becomes the active Mail window and the frontmost window on the
desktop if you use the activate command, as in Example 33-1. Mail includes a send command in its
dictionary, for sending the mail.

Example 33-1. Using Mail's GetURL Command

set theAdd to text returned of (display dialog "enter the recipient's

email address please:" default answer "")

set subj to "scripted%20mail"

set cont to "AppleScript%20sent%20this%20mail."

tell application "Mail"

 activate

 GetURL ("mailto:" & theAdd & "?subject=" & subj & "&body=" & cont)

end tell

33.2 Exploring the Mail Application Object

Mail has an application scripting object that represents the Mail app itself. You can get this object's
properties with an AppleScript, such as the user's email address (property user email), the software's
version, and a true/false property called frontmost (representing whether or not Mail is the frontmost
program on the Mac OS X desktop).

Example 33-2 gets the value of some of these properties and displays them to the user, using the display
dialog scripting addition.

All the Standard Additions osax are available for AppleScript on Mac OS X, with a
few variations compared with OS 9. Appendix A, describes these variations.

Example 33-2. Query the Mail Application Object

tell application "Mail"

 set myemail to user email

 set appname to name

 set mver to version

end tell

display dialog ("the user's email is: " & myemail & return & "the App name

is:" & appname & (ASCII character 13) & "the App version is: " & (mver as

string))

33.3 Getting Information about an Email Account

You can use an AppleScript to find out information about an account. To do this, you need to get
references to the Mail application's account elements. For example, the code fragment: tell app "Mail"
to get accounts returns a list type containing Mail account objects.

Finally, Example 33-3 shows how to set up and send an email with Mail and Mac OS X. Mail's send
command returns 1 if the mail was sent and if the send failed.

Example 33-3. Making and Sending an email with AppleScript

tell application "Mail"

 activate

 set theContent to "Here's my first Mac OS X email message!"

 set email to (make new compose message at the beginning of¬

 compose messages with properties {content:theContent,¬

 tell email to make new to recipient at beginning of to recipients¬

 make new message editor at the beginning of message editors

 set the compose message of message editor 1 to email

 send email

end tell

Chapter 34. Executing Scripts with the Terminal App

In a dramatic departure from prior operating systems, but a welcome one for many Macintosh scripters,
Mac OS X comes equipped with a command-line interface (CLI) to its underlying filesystem and
applications. In a throwback to old-fashioned ways of interacting with a computer, a CLI involves entering
text commands from the keyboard into a window that contains only a prompt in the form of a solid square
cursor, percent sign, or some other symbol. You can access the command line from the Mac OS X
graphical user interface (GUI) by executing the Terminal app from the directory startup
disk:Applications:Utilities (or, in Unix parlance, /applications/utilities/). This program displays the CLI
window. Some users, viewing Terminal as primitive and an unforgivable violation of Apple Computer's rich
tradition of visual interfaces, will steer clear of the CLI. (Okay, so the Terminal isn't that primitive; you can
control the size of its window and the font of its displayed text, among other attributes.) However, Terminal
gives you access to system directories and files you cannot see in Finder windows, which is critical for
system administrators. In addition, the Unix-derived software you can use from the command line,
including the text editors pico, vi, and emacs, as well as the scripting languages Perl, tcl, and awk and all
of the built-in BSD Commands (e.g., ls, pwd, mv, rm), are often indispensable accompaniments to
AppleScript and other familiar Mac tools.

You can even create, compile, and execute AppleScripts from Terminal (otherwise, I might not have
included this chapter!). Some scripters might be fond of popping open pico or vi and creating their
AppleScripts in this manner, but I still prefer Script Editor. The true power of the marriage of Terminal and
AppleScript, however, will perhaps come from the integration of AppleScript with the CLI tools, which
Apple Computer has suggested will be included with future OS X releases. For example, I would like
AppleScript to be able to get and deal with the return values from the execution of Perl scripts, so that
AppleScript's eventual tight integration with OS X and ease-of-use could be combined with Perl's
tremendous versatility (e.g., it's much easier to do network/HTTP programming and XML parsing with Perl
than with AppleScript). You can already take standard input from a shell script and run this input as
compiled AppleScript code, as this chapter's section on the osascript command discusses.

The remainder of this chapter describes how to use the three Terminal commands that can be used with
AppleScript: osacompile, osalang, and osascript. Figure 34-1 shows what the Terminal window looks like
after the osacompile command was used to compile a text file called s; then on the next line of the
Terminal window, the ls command was used to show the contents of the user's current working directory.
This directory contains the result of compiling the file s, which is a script called a.scpt, the default name
that osacompile gives a script if its name option is not used. You can use the osacompile command to
compile one or more text or compiled-script files into a single script.

Figure 34-1. Using the osacompile command to compile a text file into a script

osacompile

Syntax

osacompile [-l language] [-o name] [-e save file as execute only] [-d

place the resulting script in the data fork of the output file] [-r

type:id place the resulting script in the resource fork of the output

file, in the resource specified by type:id] [-t the four-character file-type

code for the script (the default is "osas")] [-c the four-character

creator code for the script (the default is "ToyS")] [one or more files

or standard input]

Description

The osacompile program is located in your startup disk:usr:bin directory (or, /usr/bin/). You have to call osacompile
using the /usr/bin/osacompile syntax.

When you enter a new shell or window with Terminal, the default working directory is the
home directory of the user that is logged in. For example, my home directory is called
bruceper , so when I enter a new shell, the working directory is /users/bruceper/ . You can
find the name of the working directory from the command line by using the pwd BSD
command.

You can provide a filename for the new script by using the optional -o switch, as in:

/usr/bin/osacompile -o newscript scripttext.txt.

This command-line sequence would attempt to compile the file scripttext.txt , located in the current working
directory, into a compiled script called newscript . The Terminal depicted in Figure 34-1 did not provide a new
filename, so the new script received the default filename of a.scpt . Type the filenames or paths inside the Terminal
window without quotation marks (e.g., /users/bruceper/newscript instead of "/users/bruceper/newscript"). In
another example, let's say you want to compile a text file in another directory and save the new file in a folder other
than the current working directory. You can use syntax such as:

/usr/bin/osacompile -o /users/bruceper/desktop/script2 /users/bruceper/documents/rawscript

This command-line sequence takes a text file rawscript located in the documents folder of user bruceper and

compiles a new script called script2 in the same user's desktop directory. Are you getting the impression that it is
much easier to create and compile scripts inside of a development program like Script Editor?

The osacompile command attempts to compile the text file as an AppleScript unless you specify another OSA
language with the -1 switch, as in:

/usr/bin/osacompile -l JavaScript rawscript.txt

(assuming that a JavaScript OSA scripting component exists on the system). Use the osalang command (described
later in this chapter) to get information on all of the system's OSA languages. You can specify more than one file
argument for osacompile , which will attempt to compile all of the given files into one script. For example, one file
could be a collection of subroutines, and the other could be a script that initiates some task by calling those defined
routines.

You can also pass standard input or typed AppleScript code as opposed to a filename to the osacompile command.
The typed standard-input code has to be enclosed in quotation marks (""). For example, the code:

/usr/bin/osacompile -o /users/bruceper/documents/script3 "return (2 * 50)"

will cause osacompile to create a compiled script called script3 in my documents folder. If you run this script inside
Terminal with the osascript command, for instance, the return value of 100 (the value returned from the
expression (2 * 50)) will show up in the Terminal window.

Standard input is command-linese for characters fed to the shell or command line from an
input device such as a keyboard. Standard output is the opposite-characters such as an
English phrase that are displayed to the user in the Terminal window. So the scripter can
interpret standard input in part as text that they type at the Terminal window prompt.

Examples

You can compile and run the following example from the Terminal command line. It starts with a text file called
rawscript.txt, which contains a tell statement that targets the Finder. The script just returns the number of items
(count items), such as files and folders, contained by the logged-in user's desktop folder. This text file is compiled
into an AppleScript called newscript , which is located in the /users/bruceper/documents/ directory. If you run this
script on the command line with input such as usr/bin/osascript newscript (assuming that the current working
directory in the Terminal window is /users/bruceper/documents/), then the script's integer return value (e.g., 8) will
be displayed as standard output on the command line:

(* command line input in Terminal window:

[localhost: ~] bruceper% /usr/bin/osacompile -o /users/bruceper/

documents/newscript /users/bruceper/library/desktop/rawscript.txt

*)

(* contents of rawscript.txt *)

tell app "Finder"

 return (count items)

end tell

(* Example return value in Terminal window: an integer like '8' *)

osalang

Syntax

osalang [-d only print the default language] [-l list the name and description for each installed language]

Description

The osalang command lists the computer's installed OSA-compliant languages (i.e., languages that use Apple events to communicate among
applications). In the newness of Mac OS X, this command may only return the output in Figure 34-2 , "AppleScript" and "Generic Scripting
System." Using the -d switch will only print the default language, while the -l switch prints each language in long format (which is still pithy
considering the output of Figure 34-2).

Figure 34-2. Executing osalang in a Terminal window

osascript

Syntax

osascript [-l language] [one or more files or standard input]

Description

The osascript command attempts to execute the files that are passed to the command as arguments. If you do not use the -l switch and the
arguments do not look like filenames, then osalang attempts to execute the text arguments as standard input, dynamically run as an AppleScript. Now
where else can you generate an AppleScript like that?

By default, osascript runs the text files or standard input as an AppleScript, but if you use the -l switch, you can specify another OSA language for it to
use. Like osacompile and osalang , you have to use the syntax /usr/bin/osascript to call this command. Figure 34-3 is a Terminal window in which the
following command has been entered:

/usr/bin/osascript "return (65 * 87)"

The osascript command runs this code phrase just as if you had entered the script into Script Editor, compiled it, and run it. The expression return
(65 * 87) returns the value 5655-the product of 65 and 87-to the Terminal window as standard output.

Figure 34-3. Dynamically running standard input using the osascript command

Examples

You can pass more than one script as arguments to the osascript command. If they are valid AppleScript code, then each script will be run, but I have
found that only the return value from the second script is returned to the Terminal window. Unless you have navigated to the directory where the
scripts are located, you have to identify the complete script path as arguments to osascript . For example, to run a newscript script located in the
/users/bruceper/documents directory, use the syntax:

/usr/bin/osascript /users/bruceper/documents/newscript

The three OSA shell commands described in this chapter are finicky about any user interaction; a lot of scripts that display dialog boxes cause errors
with these shell commands. However, The following example, when run from the command line with osascript , did successfully display a dialog
window after activating the Finder and making it the frontmost application on the desktop:

tell app "Finder"

 activate

 display dialog "Hi there"

end tell

The following example describes two separate scripts and the osascript command sequence that ran them. Only the return value from the second
script-called roundit (all it does is round a real number)-is displayed in the Terminal window:

(* command line input in Terminal window:

[localhost: ~] bruceper% /usr/bin/osascript/users/bruceper/documents/getitems/users/bruceper/documents/roundit

*)

(* source code of first script: getitems *)

tell app "Finder"

 return (count items) (* return the number of files, folders, other desktop items *)

end tell

 (* source code for second script:roundit *)

round 3465.6

(* return value from Terminal window: 3466 (the integer returned from the second script) *)

The OSA-related Terminal commands, particularly osascript , hold much potential for integrating AppleScript with more complex shell scripts, such as
passing the value of variables formed using other languages like Perl to osascript and running these values as though they were compiled
AppleScript.

Chapter 35. Scripting TextEdit

Mac OS X installs a handy and scriptable word processor called TextEdit. You can find it in the
/Applications directory or by typing Option-Command-A when the Finder is active and double-clicking
TextEdit from the resulting Finder window. TextEdit is not as feature-laden and bloated as Microsoft Word,
nor as limited in functionality as SimpleText. It is useful for creating simple text documents where you want
to control the font and color of the text, but more complex publishing tasks than this probably are not
appropriate TextEdit jobs. Figure 35-1 shows TextEdit on the Mac OS X desktop.

It is likely that the TextEdit's available AppleScript commands will change with new Mac OS X releases, so
this chapter will focus on TextEdit's major commands (e.g., count, open, save) and text-related classes.
The TextEdit scriptable task that immediately comes to mind is creating a new file, opening it in TextEdit,
and then creating the file's contents. Example 35-1 creates a new file using the Finder app then has
TextEdit open the file and place some text into it.

Example 35-1. Opening a New File in TextEdit

set fol to (choose folder) (* use the 'choose folder' osax to ask the user to

choose a folder; this osax returns an alias type *)

set nm to the text returned of (display dialog "Choose a file name:"¬

tell application "Finder" -- The Finder is better at making files

 set fil to (make new file at fol with properties {name:nm})(* store the

new file in variable 'fil' *)

end tell

tell application "TextEdit"

 activate -- make TextEdit the frontmost app

 open {fil as alias} -- 'open' command takes a 'list of aliases' parameter

 set text of document 1 to "First sentence of this new document." (* write

a line to the file *)

end tell

This script first gets a folder (for storing the new file) and a filename from the script user, using the choose
folder and display dialog scripting additions.

Figure 35-1. TextEdit and its Format:Font menu

There are variations on the use of some AppleScript scripting commands
compared with OS 9.0, such as the new file osax being changed to choose file
name. Appendix A, describes these commands and differences.

The script then makes a new file using the Finder's make command with the user's chosen filename (for
the sake of brevity I have left out the usually required checks for the cancellation of these dialogs or for the
possibility that the user did not enter any text for the filename). Then TextEdit is made the frontmost or
active application (i.e., activate), and it opens the new file. The TextEdit open command takes as its
parameter a list of aliases. The code fragment open {fil as alias} first coerces the file object to an
alias and then stores this alias in a single-item list that is passed to the open command. Just leaving
the fil variable as a document file object (which is what the Desktop's make new file command returns),
as in open {fil }, will generate an error in TextEdit. This happens because its open command takes a
list of aliases as its parameter, not a list of document file objects.

The TextEdit app has document elements (see the TextEdit classes section in this chapter). The following
code would return a list of all open TextEdit documents (i.e., TextEdit windows visible in the Finder or on
the Dock):

tell app "TextEdit" to get documents

The final line of Example 35-1 sets the text property of the first TextEdit document (document 1) to a
string: "First sentence of this new document." In TextEdit, document 1 is the front window that would
appear on the desktop if you activated TextEdit by choosing the program in the Dock or by clicking on one
of its windows.

TextEdit

The rest of this chapter describes each text-related TextEdit class and gives examples of how to use them
in your scripts. As always, to keep up-to-date about any scriptable program on your computer, use Script
Editor's Open Dictionary... menu item to view the software's dictionary of commands and classes. Chapter
2, describes application dictionaries.

Dictionary classes

attribute run

A subdivision of a block of text, an attribute run is a group of characters that all have the same
attributes, such as font or size. An attribute run is just a different way of abstracting or grouping
parts of a text block. For example, if the first paragraph of a document's text has some characters
that are 12 points in size and others that are 18 points, then getting the attribute runs of that
paragraph would return two separate chunks of text in a list (one group would be 12 points in size
and the other would be 18 points). However, getting paragraph 1 of that text would return one
chunk of characters of different sizes. In other words, the paragraph would contain the two
attribute runs. The following example gets every attribute run of a document's text (a list
containing three attribute runs). The first line of the text contains the characters "hi here is some
more text k," but the last "k" character is in a different font and size than the sentence's other
characters. Consequently, the "k" and its following carriage return character is considered a
separate attribute run then its preceding characters. The return value of the code every
attribute run of text of document 1 is at the bottom of the script displayed within comment
characters:

tell application "TextEdit"

 activate

 every attribute run of text of document 1

 (* returns a list of three attribute runs:

 {"hi here is more text ", "k

 ", "

 Meeting notes:

 Wednesday, October 11, 2000 12:58:16 PM"}

 *)

end tell

The following are attribute run elements:

character

An attribute run can contain characters, such as:
(count characters of attribute 1 of text of document 1)

If an attribute run is "Hi here is some text" then the latter code fragment would return an integer 20, or
the number of characters in the sentence. See the character class.

paragraph

An attribute run or chunk of text could contain one or more paragraphs, as in (count paragraphs
of attribute run 1 of text of document 1). See the paragraph class.

word

An attribute run or chunk of text can contain one or more words, as in:
(count words of attribute run 1 of text of document 1)

See the word class.

The following are attribute run properties:

font string

Each attribute run has a font property, as in Arial. Code such as:
font of attribute run 1 of text of document 1

returns a string such as Geneva.

color color

Although appearing in the TextEdit dictionary, the color property (representing the color of the text
in the attribute run) was not accessible in the Mac OS X.

size integer

The size property is accessible from code such as size of attribute run 1 of text of document
1. It represents the size of the first character in the attribute run's text.

class integer (read-only)

This attribute returns the word string.

character

A character object is what you would expect it to be, a single character inside of a word or string.
The following example returns the first word of a document as a list of character objects. If you
instead used the following code then the return value would be a string like "F":

get character 1 of word 1 of text of document 1

tell app "TextEdit"

 get characters of word 1 of text of document 1

end tell

(* Example return value:

{"F", "i", "r", "s", "t"} *)

The following are character elements:

attribute run

The code:
attribute run 1 of character 1 of text of document 1

usually returns the character itself as a string, as in N. See the attribute run class.

character

It doesn't make sense for a character to have a character element, however, the following code
returns the character as a string (e.g., "j"):

character 1 of character 1 of text of document 1
paragraph

A character's paragraph element returns itself. So if the character is "j," then its paragraph 1
element returns the string "j."

word

A character's word element returns itself. So if the character is "j," then its word 1 element returns
the string "j."

The following are character properties:

font string

Getting the font property returns a string like Helvetica, representing the character's font.
color color

Accessing the color property of a character object returns a data value such as <<data RGB
FFFF433951F7>>.

size integer

Trying to access the character size property returns the font size of the character, as in 14.
class integer (read-only)

The class property returns the word string.

document

A document object represents an open TextEdit document, as depicted in Figure 35-1. You can get
a reference to one or more documents by grabbing the TextEdit application's document elements, as
in tell app "TextEdit" to get documents. This code returns a list that looks like:

{document 1 of application "TextEdit", document 2 of application "TextEdit"}

The following example gets the various properties of a document. You can view the values of these

properties using the Event Log of Script Editor. This example shows some Event Log output at the bottom
of the script:

tell application "TextEdit"

 set doc to document 1 (* the front document is stored in doc variable *)

 (* a document's properties revealed *)

 doc's path -- the Unix path

 doc's modified

 doc's name

 set txt to text of doc (* returns the content of the document

if any (if the document is empty, returns an empty string "") *)

 set parcount to (count of txt's paragraphs)

 set wdcount to (count of txt's words)

 (* Event Log output:

 get document 1

 --> document 1

 get path of document 1

 --> "/Users/bruceper/Documents/newfile.rtf"

 get modified of document 1

 --> 0

 get name of document 1

 --> "newfile.rtf"

 get every text of document 1

 --> "Hi, I'm pleased to be the first paragraph of this document.

My font is \

 Verdana."

 *)

end tell

The following are document elements:

text

The text of a TextEdit document can be seized with code such as:
tell app "TextEdit" to get text of document 1

You can also write to a document, without using the open for access, write, or close access scripting
additions, by using code such as:

set the text of document 1 to "My chunk of text"

This code shows how to append text, such as a date string, to an existing TextEdit document:

tell app "TextEdit"

 set cr to ASCII character 13 (* use as a return or new line character *)

 set tmessage to cr & "Meeting notes:" & cr &¬

 ((current date) as string)

 set docs to documents -- docs contains a list of open TextEdit documents

 repeat with d in docs

 if ((name of d) contains "memo log") then (* only add text to "memo log"

file *)

 set text of d to (text of d) & tmessage (* append the text stored

in var tmessage to end of file *)

 (* the path looks like "/users/oneuser/library/desktop/myfile.rtf" *)

 set pth to path of d

 exit repeat

 end if

 end repeat

 display dialog "the memo file is at: " & pth

end tell

The following are document properties:

path string

This property returns a string that looks like "/users/oneuser/desktop/myfile.rtf." This Unix-style
pathname identifies where the document is stored on the computer. The back-slash ("/") character
that begins path says "begin at the startup disk or root." The standard disk, file, and folder delimiter
for AppleScript, the colon (":"), is still used by many AppleScript commands (such as choose folder)
to represent where the file is stored. If the TextEdit document has not yet been saved, then its path
property returns nothing in OS X, not even an empty string (""). You can set the path property of a
document (this will not raise an error in my testing), then use TextEdit's save command to save the
file to the new path.

modified integer (read-only)

This property returns 1 if the document has been modified since it was last saved or if the document
has not been modified. The following example finds out if a document has been saved, then saves
the document (using the save command) if the document has unsaved changes:

tell application "TextEdit"

 activate

 (* if the document has been changed since it was last saved its 'modified'

property will return 1 *)

 if (modified of document 1) > 0 then

 save document 1

 close document 1

 else

 close document 1

 end if

end tell
name string

name returns a string that is the name of the document file. If you have just created the document in
TextEdit but have not yet saved it, the name property returns nothing (not even a string such as
"untitled"). Trying to find out whether the document has a valid name (such as by accessing the
length of name to see if the name has more than zero characters) raises an error at least in Mac OS
X. You might try this document name test in future releases, or use a try block to catch and examine
the error. Chapter 7, describes error trapping with the try statement.

class integer (read-only)

Accessing the class property for the document object raises an error in Mac OS X.

paragraph

A paragraph object is a chunk of text that is terminated by a new line or paragraph character. You
can set the paragraphs of a document's text with code such as:

tell app "TextEdit" to set paragraph 3 of text of document 1 to¬

 "new paragraph"

If you try to get paragraphs of text of document 1, for example, and the document does not contain any
content, then a script error is raised. An easy way to find out whether a TextEdit document contains any
text yet is to check the length of the number of words in the document, as in the following example:

tell app "TextEdit"

 activate

 set l to (text of document 1)

 if (length of 1) > 0 then

 set notEmpty to true

 end if

end tell

The following are paragraph elements:

attribute run

A paragraph can contain one or more attribute runs, which are chunks of text that share attributes
such as font and size. For example, if a paragraph contained two bits of styled text that had different
fonts, then each of these text chunks would be considered an attribute run within a paragraph.
See the attribute run class.

character

Paragraphs can contain one or more characters (unless the paragraph is only an empty string and
return character). You can get all of the characters of a paragraph inside of a list with code such
as:

tell app "TextEdit" to get characters of paragraph 1 of text of document 1

The return value would look like:

{"a", " ", "v", "e", "r", "y", " ", "s", "h", "o", "r", "t", "

 ", "p", "a", "r", "a", "g", "r", "a", "p", "h"}
paragraph

Paragraphs do not contain other paragraphs (philosophically), but the TextEdit dictionary still lists
paragraph as an element of the paragraph object.

word

A word is a series of characters unbroken by a space character. You can get all the words of the
paragraph inside of a list with code, such as:

tell app "TextEdit" to get words of paragraph 1 of text of document 1

This kind of code phrase can be very handy in searching for letters, symbols, words, or phrases inside of
text. See the word class.

The following are paragraph properties:

font string

This property returns the font name for the first character of a paragraph, such as Helvetica.
color color

This property returns the color object for the first character of a paragraph, with a return value in
Mac OS X 10.0 that looks like <<data RGB FFFF433951F7>>.

size integer

The size property is the size of the font of the paragraph's first character.
class integer

This property returns the word string, not an integer as the dictionary definition specifies.

text

text represents the body or content of a document. The whole chunk of content will be returned as a
string from code such as:

tell app "TextEdit" to get text of document 1

If the document does not yet have any content, then its text element returns an empty string (""). Once
you have the text in memory, you can get or set the values of its characters, words, or paragraphs. The
following example finds out whether the existing content of a document contains the word Copyright; if it
does not, then Copyright 2001 is appended to the end of the document:

tell application "TextEdit "

 activate

 set cr to ASCII character 13

 set txt to text of document 1

 set wd to (words of txt)

 set len to length of wd

 if (len > 0) then

 if wd does not contain "Copyright" then

 set (text of document 1) to txt & cr & "Copyright 2001"

 else

 display dialog "copyright included"

 end if

 end if

end tell

The following are text elements:

attribute run

text can contain one or more attribute runs, which are chunks of text that share attributes such
as font and size. To get the attribute runs inside of text, use code such as:

get attribute runs of text of document 1

If the text does not have any attribute runs, then this code returns an empty list ({}). See the
attribute run class.

character

text can contain zero or more characters. You can get all of the characters inside of text with code
such as:

tell app "TextEdit" to get characters of text of document 1

This returns a list of characters that looks like {"a", "b", "c"} (it will be a giant list if the document has a
lot of text). You can also get a range of characters with the following syntax:

get characters 3 thru 17 of text of document 1

This code raises an error if the document does not have 17 characters. If the document is empty, then the
following code returns nothing (at least in OS X), not even an empty list:

get characters of text of document 1

See the character class.

paragraph

text contains zero or more paragraphs, which are delineated in TextEdit by paragraph marks or
new line characters. You can get a paragraph count for a document, for instance, by using code
such as:

count paragraphs of text of document 1

See the paragraph class.

word

You can get all of the words of a document with the code:
words of text of document 1

This returns a list of words that looks like {"list", "of", "words"}. See the word class.

The following are text properties:

font string

This returns a string such as "ArialMT." This string is the name of the font of the text block's first
character. In other words, if the first character of the text of document 1 is of the font "ArialMT" and
the second character is "Apple Chancery," then the code phrase font of text of document 1
returns "ArialMT."

color color

This property will raise an error if you try to access its value from a text object, but you can get the
color of individual characters in text. See the character class.

size integer

This property will return an integer representing the point size of the text's first character (such as
14).

class integer (read-only)

The TextEdit dictionary identifies this property's return value as integer, but my testing reveals that
it returns the word string.

word

A word (e.g., "sentence") is a series of characters unbroken by a space character. A word contains a
character object. The syntax words of text of document 1, for example, will return a (potentially
long) list of words. The space characters separating the words will be left out of the list. This
syntax makes it very easy to search a document's words for a specific word, as in

Set found to ((text of document 1) contains "Copyright")

The following is a word element:

character

This element is a subdivision of a word. For instance, the following code returns all of the characters
of the document's first word as a list, as in {"F", "i", "r", "s", "t"}:

characters of word 1 of text of document 1

See the character class.

The following are word properties:

font string

This property will return a string like "Helvetica."
color color

This property will return a color object representing the text color the return value in Mac OS X
looks like <<data RGB FFFF433951F7>>.

size integer

This property will return an integer representing the point size of the text's first character (such as

14).
class integer (read-only)

This property returns the word string.

application

This class represents the TextEdit application itself. In TextEdit's dictionary, you can find the
TextEdit application object described under the TextEdit Suite (Chapter 1 describes AppleScript
dictionaries). The application has four properties or attributes (i.e., the value of its name property is
"TextEdit"). You can get references to all of TextEdit's documents with code such as:

tell app "TextEdit" to get documents

The following example queries the property values of the copy of TextEdit running on the machine where
the script executes. You can view the output (the property values) in Script Editor's Event Log window.
Display this window by typing Command-E when Script Editor is the frontmost application, then make sure
that the checkboxes labeled "Show Events" and "Show Event Results" are checked.

tell application "TextEdit"

 frontmost

 name

 version

 (* Example Event Log output:

 tell application "TextEdit"

 get frontmost

 --> 0

 get name

 --> "TextEdit"

 get version

 --> 0

 end tell

 *)

end tell

The following are application elements:

document

TextEdit can have zero or more open documents. Each one of these documents is considered a
document object with its own properties or attributes. Each open document is indexed from front to
back in the manner of document 1 (the frontmost document if you make TextEdit the active
application), document 2, and so on. For example, to count the open documents use:

tell app "TextEdit to count documents

To close an open document, use:

tell TextEdit to close document 1

(or whatever its index is). See the document class description for a demonstration of how to get a
document's properties.

window

A TextEdit window is a desktop window that is showing a TextEdit document. You can get references
to all the names of the open TextEdit windows by using the code:

tell app "TextEdit" to get name of windows

This code returns a list that might look like:

{"newfile.rtf", "newfile 2.rtf"}

The latter list contains the name of one window (i.e., the filename of the document contained by the
window) as a string.

The following are application properties:

frontmost integer (read-only)

This property returns 1 only if TextEdit is the active application (if you click on a TextEdit window
then TextEdit becomes the active application); it returns otherwise.

name string (read-only)

This property returns "TextEdit."
version integer (read-only)

This property represents the application's version number, which returns in Mac OS X 10.0.
class integer (read-only)

Getting the class property caused a script error with TextEdit and Mac OS X.

color

color objects have just one property: class. Most of the other TextEdit classes, such as
character, word, paragraph, and text, have color properties that can be queried using
AppleScript. They return data value types, as in <<data RGB FFFF433951F7>>.

The following is a color property:

class integer (read-only)

The TextEdit color object has a class property whose value is <<class RGB >>.

Part VI: Appendixes

Appendix A. Standard Scripting Additions

Scripting additions are a powerful element of AppleScripting that give it almost infinite extensibility. These
code libraries live inside the startup disk:System Folder:Scripting Additions folder in OS 9. Figure A-1
shows what their icons look like. Known among the scripting cognoscenti as osax (singular form, standing
for Open Scripting Architecture Extension) or osaxen (a plural form), the scripting additions give you
commands you can use almost anywhere in your script. Ever since Mac OS 8.5, Apple Computer has
bundled a number of the most useful scripting additions into the Standard Additions file and installed this
file with your operating system. In Mac OS X, the filepath for the Standard Additions file is
/System/Library/ScriptingAdditions/StandardAdditions.osax .

Figure A-1. Scripting addition files in OS 9

In Mac OS X, if you want a scripting addition to be available to all users, then the
administrator (the first user who installs Mac OS X, or somebody she designates as
administrator) should place it in /Library/ScriptingAdditions/. This administrator
should first create the Scripting Additions folder if it does not yet exist. If you want a
scripting addition to only be used by one user, place it in this directory:
/users/username/library/ScriptingAdditions/. You can create this directory yourself, in
a particular user's Library folder, if the Scripting Additions folder does not yet exist
there.

The Standard Additions include the following scripting additions:

ASCII character mount volume

ASCII number new file (OS 9 and prior OSes)

beep offset

choose URL open for access

choose application open location

choose file path to

choose file name (OS X only) random number

choose folder read

choose from list round

clipboard info run script

close access say

current date scripting components

delay set eof

display dialog set the clipboard to

get eof set volume

handle CGI request store script

info for summarize

list disks the clipboard

list folder time to GMT

load script write

Figure A-2 shows the Standard Addition's dictionary in Mac OS 9.

Figure A-2. Standard Addition's dictionary window

Any programmer, not just Apple's, can create a scripting addition. This mechanism has spawned numerous
third-party osaxen (i.e., those not developed by Apple), which allow you to parse HTML or XML in scripts,
use regular expressions in searches, negotiate a directory tree and do something with each encountered
file (the walk folders command of Jon's Commands), and initiate many other tasks that you would otherwise
have to program with your own code in AppleScript or not be able to accomplish with a script at all.
Examples of some of these third-party scripting addition files are Akua Sweets, Jon's Commands, and XML
Tools. The site http://osaxen.com contains an osax database.

How do scripting additions work in Mac OS 9? When you use a command in a script, the application that
ends up receiving the command depends on the command's script context. The command or Apple event
could be sent to one of the following targets:

The app identified in the "tell" block that contains the command. In other words, if AppleScript
encounters:
tell app "Photoshop 5.0" to do script "New_gif"

then the script will send the do script command (or Apple event) to Photoshop. If the command inside
the tell block could not be found in the program's dictionary, then AppleScript would look elsewhere
for the command's handler, such as in the contents of the Scripting Additions folder.

A subroutine that you have included in the script. If you have defined a subroutine called "TimesTwo"
in your script and the command TimesTwo() appears in your script, then your script subroutine will
handle the TimesTwo() call.

A script object that has been loaded into the script where the command was used. See the load script
description in this chapter and Chapter 9 , for more information on script objects.

A scripting addition file.

When AppleScript searches for the target of a script command it looks, among other places, inside the
Scripting Additions folder for an application, an application alias, or a scripting addition file. For example, I
have used the display dialog scripting addition in code samples throughout this book. This displays a modal
dialog to the user and optionally allows you to request them to enter some information into a text field
before they dismiss the dialog box by clicking a button (or before it closes if you specify that the window
disappears after a certain number of seconds). The reason you can just randomly include display dialog in
your script (with some exceptions explained later) is that AppleScript will search the Scripting Additions
folder for the recipient or handler of this command and find it within the Standard Additions file in Mac OS 9.
Some applications, such as ColorSync Extension, do not allow the use of display dialog within the "tell"
blocks that target them (e.g., tell app "Colorsync Extension"...). You will receive a "no user interaction
allowed" error message.

Example A-1 shows how two handy scripting additions, display dialog and offset , can be used in a script
that involves different types of commands. Read the script comments to find out the targets of each
command.

Example A-1. Using Standard Additions in a Script

(* AppleScript finds the display dialog osax inside the Standard Additions

file, so you don't have to use any tell statements *)

display dialog "Enter your first and last names" default answer ""

set names to the text returned of the result (* names is set to a string like

"Bruce Perry" or whatever the user enters. *)

(*

AppleScript also finds the offset command inside Standard Additions. Offset

searches for one string inside of another and returns the character position

as an integer or zero if it doesn't find the string(in this case the searched

for character is a space character). We are using it to locate the space

character that separates the first and last names.

*)

set sp to (offset of " " in names)

(*

The first name is pulled out of the string by getting all the characters up to

but not including the space character that follows the first name

*)

if sp 0 then (* if a space character is found, there must be at least two

names in the string *)

set first_name to characters 1 thru (sp - 1) of names

 tell application "BBEdit 5.1"

 activate

 (*

 'insert text' is a BBEdit command, so it receives the 'insert text' ¬

 *)

 insert text names

 (*

 the display dialog command will not be sent to BBEdit, even though it¬

 *)

 display dialog (first_name as text)

 end tell

end if

As an AppleScripter, you will become very fond of some osaxen and use them all the time. You will also
discover new ones and realize "hey, this makes scripting web page downloads (or whatever) much easier!"
This chapter describes the commands and classes included with the Standard Additions collection found
inside the startup disk:System Folder:Scripting Additions directory in OS 9. Again, the Mac OS X path for
this file is /System/Library/ScriptingAdditions/StandardAdditions.osax . This group of scripting additions is
installed with Mac OS 9 and Mac OS X. The classes described in this chapter are objects returned by
certain commands, such as the file information object (a record type or associative array in AppleScript)
returned by the info for command.

Standard Additions

Dictionary commands

adding folder items to alias

This is a Folder Action command covered in Section of Chapter 26 .

ASCII character integer

This command returns the ASCII character associated with the number provided as a parameter. For example,
ASCII character 80 returns the string "P."

ASCII number integer

You can find the ASCII number of a character by using code, such as ASCII number "P" (this returns an integer
of 80).

beep integer

This makes the beep sound integer number of times, or once if a parameter is not included.

choose application

This command opens the choose application dialog box, which only lists the programs running at the moment.
Figure A-3 shows this dialog. Figure A-4 shows what this dialog looks like in the OS X release. The following
example lists the running applications, then opens the user's choice. Note that choose application also displays
faceless background applications that the user cannot interact with (they can quit some of these apps, however).

Figure A-3. The OS 9 choose application window

Figure A-4. The choose application window in OS X

try -- capture error if they choose a 'background only' app

 tell (choose application application label "Choose one program"¬

 with prompt "Here are the running applications") to activate

 on error errmesg

 display dialog errmesg

end try
application label string

This string appears at the top of the application list.
with prompt string

This string appears at the top of the dialog box.

Mac OS 9.1 adds two parameters to the choose application scripting addition: multiple
selections allowed and as class type (these are described elsewhere in this note). The Mac
OS X Standard Additions dictionary alters the choose application osax to remove the
application label parameter and add three new optional parameters: with title , multiple
selections allowed , and as type . with title lets you specify the title for the dialog window,
as in:

choose application with title "Choose your favorite Apps"

multiple selections allowed is a boolean value that if true , allows the user to choose more
than one application. as type is designed to let the scripter get the choose application return
values as application, alias, or file types. However, in AppleScript 1.6, this return value was
only available as an application type.

choose file

This osax opens a dialog box, allowing the user to choose a file to open, which can then be stored in an alias
variable, as in:

set f to (choose file with prompt "Choose a file on the local disk")

If the user presses the Cancel button on the choose file dialog instead, then an error is raised, and the script
terminates. You can catch this error (error number -128) with a try block and thus allow the script to resume, as in the
following example (Figure A-5 shows the choose file window):

try

 c_file() (* call the scripts c_file subroutine which uses the choose file

osax *)

 on error number ern

 if ern = -128 then (* the user clicked the cancel button on the dialog box *)

 display dialog "User cancelled"

 else

 display dialog "An unknown error occurred with file choosing."

 end if

end try

on c_file() -- define the subroutine

 set f to choose file

 display dialog (f as text) -- display the file path as text

end c_file

Figure A-5. The choose file window

with prompt string

This optional labeled parameter allows you to include a message or prompt with the dialog box:
choose file with prompt "Choose a file on the local disk"
of type list

You can restrict the file types listed in the choose file dialog with this labeled parameter, as in:
choose file of type {"TEXT"}
choose file name

This Mac OS X osax replaces the new file osax of AppleScript in Mac OS 9.0.4. c hoose file name is also
available in Mac OS 9.1. This scripting addition displays a dialog box to the user. The user can then create a
filename and a location for a file that does not yet exist (a file specification object is created and returned
from this command). The return value in Mac OS X looks like:

file "Mac OS X:users:bruceper:library:desktop:mydbfile"

In effect, a file specification is like a template for a file that you will create in the future. Figure A-6 shows what the
choose file name dialog box looks like.

Figure A-6. The choose file name dialog box

with prompt string

This prompt or message appears on the dialog box, as in choose file name with prompt "Please choose the
location and name for a new file" default name mydbfile .

default name string

If you want the choose file name dialog box to be displayed with a default file name already entered in the "Save
As:" text box, use this parameter.

choose folder

Use this command if you want to interact with the user and get them to choose a directory or folder. For example:
choose folder with prompt "Choose a folder to save your files

in"
with prompt string

This optional labeled parameter adds a message to your dialog box so the user knows why your applet is
producing the dialog box in the first place. See the choose folder example.

choose from list list

Lots of AppleScript commands return lists as data types. This handy scripting addition allows you to show the
user a list of items in the form of a dialog box. Figure A-7 shows this window. The user can then choose one or
more items from the list (depending on whether multiple selections are allowed). When the dialog box is
dismissed, the script receives a list of the selected items as a return value:

set fruitList to (choose from list allFruits)

Figure A-7. The choose from list window

with prompt string

Use this optional labeled parameter to add a message to the top of the dialog box.
default items list

If you included this optional parameter, then the list of strings will be initially selected in the dialog box (if
firstFruits was a variable that contained a list of strings):

choose from list allFruits default items firstFruits
OK button name string

You can give the OK button your own label, as in:
set fruitList to (choose from list allFruits OK button name "Submit fruits")
cancel button name string

You can give the Cancel button on the dialog box your own label, as in:
set fruitList to (choose from list allFruits cancel button name "Not now")
multiple selections allowed boolean

If you want to give the user the option to make more than one choice in the dialog box's list, then set this labeled
parameter to true .

empty selection allowed boolean

If set to true , this labeled parameter allows the user to click the OK button without any list items selected and
not raise an error.

choose URL

This command opens up the Network Browser and allows the user to choose a URL involving any of the network
services (as constants) identified in the first labeled parameter.

showing list of constants

This parameter can be one or more of the following constants:

Directory services News servers

File servers Remote applications

FTP Servers Telnet hosts

Media servers Web servers

The return value is a string URL, as in http://my.yahoo.com . For example:
choose URL showing {Web servers,File servers} editable URL false
editable URL boolean

Set this parameter to true if you want to allow the user to enter a URL.

clipboard info

This command returns a list of lists. Each list contains two values separated by a comma: the data type and
size of the item on the clipboard. For example, if you select and copy an image to the clipboard, then clipboard
info would return a value such as {{picture, 14368}}. The second number is the size of the picture in bytes. If
you selected and copied the word "HI", then this command would return {{string, 2}}, which is a string two bytes
long. If you copied some styled text, for instance (i.e., text that has a certain font), then the clipboard information
return value would involve more than one list inside the outer list , such as {{string, 65}, {styled Clipboard
text, 42}.}

for class

Use this optional labeled parameter if you only want to see clipboard information of a certain data type:
clipboard info for string

Use the keyword for followed by the name of the class.

close access (file reference number, alias , or file specification)

Use this command to close access to a file you are reading from and writing to.

closing folder window for alias

This is a Folder Action command covered in Section of Chapter 26 .

current date

This command returns a date object of the form:
date "Wednesday, May 24, 2000 8:50:06 AM"

You will use this scripting addition all the time! Since the return value is a date object, you can get the various date-
related properties from it, such as the time string ("8:50:06 AM"), day, month, and year. See Chapter 3 ,and the
description of the date data type. The following example shows how to display various attributes of the current date:

set theDate to current date (* osax returns a date object and stores it in

theDate *)

http://my.yahoo.com

(* get various date properties *)

set d to day of theDate

set m to month of theDate

set y to year of theDate

set ts to time string of theDate

set mesg to "Here's info about today:" & return &¬

"time: " & ts & return &¬

"day: " & d & return &¬

"month: " & m & return &¬

"year: " & y & return

display dialog mesg
delay integer

This useful osax delays the script processing for integer number of seconds, as in delay 5 . It is similar to the
sleep function in Perl. There are many reasons to delay a script for a few moments, such as dealing with the
unpredictable download time of web documents. You might want to pause a script as a browser attempts to
download a page before the script reports an error in the download. By the way, use the download scripting
addition to download web pages using AppleScript. download is covered in Chapter 18 .

display dialog

This is one of the principal ways an applet can interact with the user, either by displaying a message or any
script-processing results, or by requesting them to enter text in an edit field. display dialog may end up at the very
top of your "indispensable scripting addition" list. This command can optionally add an edit field for receiving text
entries from the user by including the default answer "" parameter (passing an empty string to this labeled
parameter displays an edit field with no text in it). display dialog has five optional parameters. For example, you
can automatically make the dialog go away with code, such as:

display dialog "I disappear after five sec." giving up after 5

display dialog returns a dialog reply object, which is just like a record data type. Chapter 3 describes the record type.
See the dialog reply class description in this chapter.

default answer string

Include an empty string (as in default answer "") to display an empty edit field to the user, or include a non-
empty string as a default value for the edit field. The string can be up to 255 characters long. If you do not
include this parameter, then the dialog box does not have an edit field.

buttons list

You can add up to three of your own button labels to the dialog:
display dialog "Enter one of your names" buttons¬

{"first","last","middle"} default answer ""

The first button in the list is the dialog button on the left, and the next listed buttons are displayed left to right. If you do
not include this parameter, then the dialog box has two buttons: Cancel and OK. You can detect which button dismissed
the dialog by testing the button returned property of the reply, which looks like:

{text returned:"bruce", button returned:"first"}

In other words, the return value of display dialog is like a record data type, which gives you access to the returned text
and button.

default button number or string

You can specify a default button that will have a dark border around it signifying it can also be activated by
pressing the return key. If you do not include this parameter, then the dialog box has two buttons: Cancel and OK.
Identify the default button by its string or order in the buttons list. In the following example, Keep It is the default
button:

display dialog "how much of a reimbursement do you want?"¬ buttons

{"Send It","Keep It"} default button 2
with icon number , string , or the constants stop , note , or caution

You can display one of the standard Apple dialog icons with this parameter. The dialogs are Stop (number 0),
Note (1), and Caution (2). (See Figure A-8 .) As an alternative, if you specify the name or number of an icon (as
in with icon 9) stored as a resource in the script file or current application, then AppleScript displays that icon in
the dialog box. AppleScript searches the script file, the current application (i.e., the one identified in a tell
statement), and the System file, in that order, for the icon resource.

Figure A-8. Display dialog with a Note icon

giving up after integer

This command usually displays a modal dialog, meaning that it is the frontmost window, and the user has to
dismiss it to access any other windows. Since the scripter is never sure about the context of script execution
(what if the applet is executed over a network and the machine happens to be unused at the moment?), it is often
a good idea to make the dialog box disappear automatically after a reasonable period, such as several seconds.
For example:

display dialog "Are you there?" default answer "Yes" giving up¬ after 10.
get eof

This command returns the length in bytes of a file's contents, as in:
get eof (alias "macintosh hd:desktop folder:myfile.txt")

The return value is an integer . get eof does not return the size of the file on disk, just the number of bytes of data that

can be read from the file using the read osax. See the info for scripting addition for getting the actual disk size of the
file, as in:

(size of (info for theFile))

See the open for access command for a description of reading and writing to files with AppleScript.

Handling User Interaction with Mac OS X

Due to Mac OS X's Unix origins, only the applications that can execute AppleScripts, such as Script Editor, Script
Runner, and the applications that have a built-in Scripts menu, will load and recognize the commands and properties of
scripting additions that require user interaction. This means that, according to Apple Computer, an application such as
TextEdit will not display a dialog if you use a display dialog command inside a TextEdit tell block:

tell app "TextEdit"

 activate

 display dialog "Hi" -- this code will fail to display a dialog

end tell

Apple Computer suggests two strategies to deal with this Mac OS X issue:

Execute scripts with Script Runner. Chapter 1 , describes the Script Runner. Script Runner is designed to
execute the scripts saved as compiled script files (as opposed to Mac OS X applets). To work around this user-
interaction problem with Mac OS X, you do not need to change a script that already runs under Mac OS 9.1 as
long as it is saved as a compiled script and is executed by Script Runner.

1.

Alter scripts to bring the script applet to the foreground when using display dialog . The script applet will display
the dialog, then the script can return any other applications, such as TextEdit, to the foreground. Here is a simple
example that does not do anything special with TextEdit but offers a solution to the user-interaction problem
described by this sidebar:

2.

tell app "TextEdit"

 activate

 set userName to my showDialog() (* call the script's showDialog handler *)

end tell

on showDialog()

 tell me to activate (* bring the applet itself to the foreground *)

 set theResult to (the text returned of (display dialog¬

 "Enter your name please" default answer ""))

 tell app "TextEdit" to activate

 return theResult

end showDialog

This applet temporarily leaves the TextEdit application context to call a user-defined handler, which displays a dialog
and gets some user input. Then the applet activates TextEdit again.

handle CGI request string

If you are using the Mac as a web server, you can use AppleScript and the handle CGI request scripting addition
to process Common Gateway Interface (CGI) scripts. In older implementations of Mac Web CGI programs, you
had to define a handler using raw syntax such as <<on event WWW?sdoc>>... but this has changed with the new
Standard Additions. CGI scripts are used in web applications that process HTML form data, among other web-
related tasks. When the web user submits the form to the web server, the CGI script intercepts the form and
processes its data. The string parameter contains the path of the CGI program on the server, which might look
something like /cgi-bin/myCGI.acgi. The following example shows what the structure of a handle CGI request CGI
looks like. The web server generates most of these parameter values, and you will not have to look at them in
your CGI program. They are the equivalent of what Unix CGI programmers call environment variables, which are
data the web server generates reflecting information about the web page request.

on handle CGI request the_path¬

searching for query_string¬

with posted data post_string¬

of content type mime_string¬

using access method acc_string¬

from address ip_string¬

from user user_string¬

using password passw_string¬

with user info info_string¬

from server serv_string¬

via port port_string¬

executing by path_string¬

referred by ref_string¬

from browser agent_string¬

using action cgi_string¬

of action type typ_string¬

from client IP address ipc_address¬

with full request req_string¬

with connection ID id_integer

end handle CGI request

searching for string

This is the data that follows the "?" character in the URL when the HTTP GET method is used. For example, the entire
URL for sending form data might look like: http://www.formcorp.com/cgi-bin/myCGI?first=Bruce&last=Perry . searching
for would contain the string "first=Bruce&last=Perry."

with posted data string

This contains the data sent with the POST HTTP method. This string could look like "first=Bruce&last=Perry."
of content type string

This is the Multipurpose Internet Mail Extensions (MIME) type for the data sent to the CGI program. For example,
the MIME type for a web page is "text/html." The MIME type for form data sent with an POST HTTP method is
"application/x-www-form-urlencoded."

using access method string

This string is either "GET" or "POST."
from address string

This labeled parameter contains the IP address of the entity making an HTTP request to the web server. For
example, if the person sending the form data to the CGI program has an IP address of "24.169.24.11," then the
from address string contains this value.

from user string

If the user is being authenticated on the web server for security reasons, then this string contains the username.
using password string

If the user is being authenticated on the web server for security reasons, then this string contains the password
of the user.

with user info string

This string may contain additional user information such as an email address.
from server string

This is the name of the server application sending the request.
via port string

This string is the TCP/IP port number of the server, such as "80."
executing by string

http://www.formcorp.com/cgi-bin/myCGI?first=Bruce&last=Perry

This string is the path to the CGI script, as in /cgi-bin/mycgi.acgi .
referred by string

This is the URL from which the user linked to the CGI program. For example, this could be the web form the user
filled out before they submitted the form to the CGI program, as in http://www.formcorp.com/form.html .

from browser string

This string contains the name of the user agent or browser the web user is using.
using action string

This string also contains the path to the CGI program, as in "/cgi-bin/mycgi.acgi."
of action type string

This string returns one of these values: PREPROCESSOR, POSTPROCESSOR, CGI, or ACGI.
from client IP address string

If the client has his own IP address (for instance, if he is a client on a Local Area Network), then this string
contains that address. An example is 192.168.0.5 .

with full request string

This is the full request sent to the server. It might look like http://www.formcorp.com/cgi-bin/mycgi.acgi?
first=Bruce&last=Perry .

with connection ID integer

This integer parameter represents the server-to-client connection.

info for alias , file specification , or string path to the file or folder

You can grab a bunch of information on a file or folder, as long as you know its directory path, which you can
pass to this osax as a string . For example:

info for "macintosh hd:desktop folder:"

The return value is a record that looks like this:

{name:"Desktop Folder", creation date:date "Thursday, December 07,

1995 10:48:10 AM", modification date:date "Thursday, May 25, 2000 9:36:22 AM",

icon position:{-1, -1}, visible:true, size:311307, folder:true, alias:false,

folder window:{0, 20, 1024, 768}}.

You can use the path to scripting addition to fill out the details of an unknown file path.

In AppleScript 1.5 and later, info for now returns the size of a file or folder as a real data type
(e.g., even "0.0" is given as the size of an empty folder using info for), rather than an integer ,
in order to accommodate the files or folders that are greater than two gigabytes in size.

For instance, if you know a file called cgi.txt is on your desktop, then the following code returns information about that

http://www.formcorp.com/form.html
http://www.formcorp.com/cgi-bin/mycgi.acgi?

file, such as its creation date and size:

info for ((path to desktop as text) &

"cgi.txt")

The full pathname of this file might be macintosh hd:desktop folder:cgi.txt , but the path to osax saved you some writing.
The info for scripting addition returns the following type of record value:

{name:"cgi.txt", creation date:date "Thursday, May 25, 2000

9:36:22 AM", modification date:date "Thursday, May 25, 2000 10:03:19 AM", icon

position:{832, 92}, visible:true, size:2807, folder:false, alias:false,

locked:false, busy status:false, file creator:"R*ch", file type:"TEXT", short

version:"", long version:"", default application:alias "Macintosh HD:BBEdit

5.0:BBEdit 5.0:BBEdit 5.1"}.
list disks

This scripting addition returns a list of disk names mounted on your desktop. An example return value is:
{"Macintosh HD1", "H2gig", "HF2gig", "scratch"}.
list folder alias , file specification , or string path

This command lists the items in a folder, as in:
list folder "macintosh hd:myfolder"

The return value is a list of strings. The following example lists the contents of the desktop folder (it also uses the path
to osax):

list folder (path to desktop) (* returns folders and files as a list of string

names *)
load script alias

This command loads a script object into the script that contains the load script statement. The loading script can
then use that script object's properties and methods as though the loaded script was a locally defined script.
Chapter 9 describes script objects.

The following example loads a script object called DateLib and stores the object in a variable, dlib . It then calls
that script object's parseDate method by using the statement dlib's parseDate (i.e., the parseDate method of
the DateLib object, a reference to which is stored in the dlib variable). This method takes a date object and
boolean variable as parameters and returns a reformatted date string that looks like "05/25/2000." If the
boolean parameter is false , then the date string does not include leading zeros (the latter string would be
"5/25/2000"). The following example includes the definition of parseDate so readers can examine the parseDate
definition, but this method is already available from DateLib via the dlib variable:

(* use the path to osax to get a reference to a file on the desktop *)

set dlib to load script (path to desktop as text) & "DateLib"

dlib's parseDate(current date, true) (* returns a date string such as

"05/25/2000" *)

(* parseDate definition *)

on parseDate(theDate, leadingZeros)

 local mydate

 local new_date_str

 try -- return "0" if the theDate or boolean parameter is invalid

 set mydate to theDate

 set month_part to my getMonthInt((month of mydate),¬

 leadingZeros) as string

 -- getMonthInt method is defined in the DateLib script

 set day_part to (day of mydate) as string

 set year_part to (year of mydate) as string

 if leadingZeros then

 if (day_part as integer) < 10 then

 set new_date_str to (month_part & "/0" & day_part & "/"¬

 & year_part) as string

 else

 set new_date_str to (month_part & "/" & day_part & "/" ¬

 & year_part) as string

 end if

 else

 set new_date_str to (month_part & "/" & day_part & "/" &¬

 year_part) as string

 end if

 return new_date_str

 on error

 return "0"

 end try

end parseDate
mount volume string

Use this osax to mount a volume on your desktop from a remote computer.The on server labeled parameter is
the only required parameter when using the AppleTalk form of mount volume (see the upcoming note on the
TCP/IP form of mount volume). You have to add the Apple Filing Protocol (AFP) prefix ("afp://") if you are
connecting with the volume via TCP/IP.

on server string

Specify the file server name with a string , as in on server "StacyMac" . This parameter is required.
in AppleTalk zone string

Specify an AppleTalk zone with a string :

mount volume "macintosh hd" on server "StacyMac" in AppleTalk¬ Zone

"graphics_dep" as user name "powerpc1" with password¬ "#go9$4r"
as user name string

If the user has to be authenticated with a username and password before mounting a remote volume,
these parameters can be included with the mount volume osax. Pass the username as a string :

as user name "powerpc1"
with password string

Include a password as a string for the user identified in the as user name parameter, or omit this
parameter for guest access.

The mount volume command takes the following form when mounting a volume over a
TCP/IP network:

mount volume "afp://user:password@192.168.0.2/MacHD"

The command uses the Apple Filing Protocol ("afp://"), followed by the user name and
password separated by a colon, the @ sign, the IP address of the server, and the name
of the volume you want to mount. In Mac OS 9.1, mount volume will look in the Keychain
for the user name and password information if you have left this information out of the
mount volume URL, as in mount volume "afp://192.168.0.3/Mac HD" .

moving folder window for alias

This is a Folder Action command covered in Section of Chapter 26 .

new file

new file allows you to request a file specification from the user and then use that file spec to save a web
page downloaded with the download osax (see Chapter 18). This osax displays a common Save As dialog box
that allows the user to navigate to a directory and save a file. A file specification reserves a path and name
for a file, even though the file does not yet exist. The following example gets a file spec from a user then
downloads a web page to it:

AppleScript 1.5.5 on Mac OS 9 altered this osax and changed the name to choose file
name . See the choose file name description.

set fspec to (new file default name "home_URL.html")

tell application "URL Access Scripting" to¬

download "http://www.parkerriver.com" to fspec with progress
with prompt string

You can add a message to the dialog box with this command.
default name string

Give the file specification a default name (the user can change this):
set fileSpec to (new file default name "myfile").
offset

This handy string-manipulation command finds the first occurrence of one string inside of another and returns
the 1-based position of the interior string as an integer . It returns if the string is not located inside the outer
string . For example, offset of "a" in "and" returns 1, because the "a" inhabits position 1 in the word "and."
The following example shows how to use the offset osax in a function that checks to see if a string begins with
"<," ends with ">," and has at least one character that is not a space character inside these tags (An actual HTML
or XML tag-validation function would have to do much more than this demo subroutine!):

checkTag("<html>") -- call the function with a string parameter

(* function definition *)

on checkTag(str)

 (* initialize booleans and string length variable *)

 set openTag to false

 set closeTag to false

 set notEmpty to false

 set len to length of str

 if (character 1 of str) = "<" then set openTag to true

 repeat with c in (characters of str) (* examines each character in the

string *)

 set offs to (offset of c in str) (* what position does the char have in

the string ? *)

 if offs = len then exit repeat (* we check the last string char after the

repeat loop, so exit here *)

 (* if the character is not the first or last character and not a space

then the tags do not just surround a space character *)

 if (offs > 1 and offs < len) and (ASCII number c) 32 then

 set notEmpty to true

 end repeat

 if character len of str = ">" then set closeTag to true (* check last

string character *)

 if openTag and closeTag and notEmpty then¬

 display dialog "It's not empty and has opening and closing tags."

end checkTag
of string

Specify the string you are looking for with the of keyword, as in:
offset of "a" in

"animal"
in string

Use the in keyword to identify the outer string you are searching for the inner string with, as in:
offset of "a" in "animal"
opening folder alias

This is a Folder Action command covered in Section of Chapter 26 .

open for access alias

Use this osax to open a file and read and/or write to it. If the open for access parameter is a file

specification for a file that does not yet exist, then a new file is created. This is a primary scripting addition for
file input and output so you are likely to use it often. This scripting addition is closely related to the read , write ,
and close access scripting additions. You should close access to a file when you finish with it so you do not block
any other operations that need access to that file. The following example reads a chunk of text from a file, then
closes access to the file. open for access returns a file-reference number, which can be used with close access
and other commands:

(* this script uses the path to, open for access, get eof, read, and close

access scripting additions *)

set theFile to alias ((path to desktop as string) & "write.txt")

set fref to (open for access theFile)

set tsize to (get eof theFile)

read fref as string from 1 to tsize

close access fref
write permission boolean

If you want to write to the file, use the write permission true parameter. Otherwise, you get an error that write
permission is not allowed. In other words, write permission is false by default.

open location string

This osax opens the URL, such as a web page (http://my.yahoo.com) or FTP site
(ftp://park:.......@12.16.160.221/) in the application you have selected in the Internet control panel or in the
Internet Config application. For example, if Netscape 6 is your default browser then open location
"http://my.yahoo.com" opens that page in the Netscape browser.

error reporting boolean

If you include the error reporting true parameter, a dialog box reporting errors is displayed.

path to constant or application

path to returns the path to folders or applications, depending on the parameter you use. You can use one of the
following constants to get the path as either an alias or string to a common location such as the desktop folder:

http://my.yahoo.com

At Ease applications At Ease documents

apple menu application support

control panels control strip modules

desktop Preferences modem scripts

editors desktop pictures folder

Folder Action scripts extensions

fonts frontmost application

internet plugins Help

launcher items folder keychain folder

plugins modem scripts

printer drivers printer descriptions

scripts printmonitor

shared libraries folder scripting additions folder

stationery folder speakable items

trash folder shutdown items

temporary items folder startup items

voices folder users folder

Or, you can get the path to a running program by specifying the application, as in:
path to application "BBEdit 5.1" as string

You can get the path as an alias (which is the default-you do not have to specify as alias) or a string .

as alias or as string

Since an alias return value is the default, path to desktop returns an alias path, as in:
alias "macintosh hd:desktop folder:"

and:

path to desktop as string

returns a string type, as in:

"macintosh hd:desktop folder:"

The OS X Standard Additions file added a from...domain optional parameter to the path to
scripting addition. For instance, using this parameter, path to provides the location to the
desktop folder based on the domain you specify. The from parameter can take any one of the
four constants: System domain , local domain , network domain ,or user domain . For
example:

set dpath to (path to desktop from user domain)

The latter code phrase returns a value that looks like:

alias "Mac OS X:Users:bruceper:Library:Desktop:"

Whereas if you used the local domain parameter, the return value might be:

alias "Mac OS X:Library:Desktop:"

random number number

You can generate a random number with this osax, optionally including an upper-limit number, as in:
set num to (random number 100)

If the upper-limit value is a real number, as in random number 100.0 , then the random result will be a real type. A real
number type has a fractional part or decimal point, whereas an integer type does not. (see the description of the real
data type in Chapter 3). If the upper-limit number is an integer or whole number, then the result will be an integer .
Finally, if the upper-limit number is omitted, as in:

set num to random number

then you will get a real number between and 1 that looks like 0.408063409023. The result will have a scale of 12,
meaning that there will be 12 digits on the right side of the decimal point. The following example chooses a random
number that could help pick a card in a playing-card game by generating a random number between 1 and 52:

cardNumber() -- call the method defined below

on cardNumber()

 set cd to (random number 100000) mod 52 + 1

 return cd

end cardNumber
from number integer or real

You can produce a random integer or real within a range of numbers, such as:
random number from 100.1 to 500.3

If you include this from number parameter, you have to use the to number parameter as well. The latter code returns a
number such as 319.675894353425. If you included two integers, then the return value will also be an integer . If
either one of these numbers is a real , the result will be a real . For example:

random number from 100 to 200.5

returns a number with a decimal point and fractional part (i.e., a real number).

to integer or real

Specify the upper level of a range with the to keyword followed by an integer or real . If you use the from
parameter with random number then you have to use this to parameter. If the number used with this parameter is
a real then the random result will be a real data type.

with seed number

Use this parameter if you want to produce a random number that steadily increases in value. The following
example shows the random numbers generated by using a seed that increases by one each time the random
number statement is executed:

on ranNumber()

 set counter to 0

 repeat 5 times

 set counter to counter + 1

 set num to random number with seed counter

 log num

 end repeat

end ranNumber

(* results from Script Editor's event log *)

random number with seed 1

--> 0.293460940421

random number with seed 2

--> 0.500003913185

random number with seed 3

--> 0.603275399567

random number with seed 4

--> 0.706546885948

random number with seed 5

--> 0.758182629139

read reference number, alias , or file specification for a disk file

Use this command to read bytes from a file. Use the keyword read followed by the file reference, such as an
alias or the number returned by the open for access command. Generally, you get the amount of readable data
from the file first with the get eof command, as in:

set theSize to (get eof theFile)

This command returns an integer number of bytes. Then you can read the first half of a file, say, with the code:

read theFile from 1 to (theSize div 2)

Close the file after you have finished reading it with:

close access theFile
using delimiter anything

This optional labeled parameter specifies the value you can use to separate the chunks of read bytes or text. For
instance:

read theFile using delimiter return as text

uses a return character as the delimiter. This code returns a list in which each line of the text file is a list member,
as in:

{"Hi readers this is a short bit of text.", "Separated by a line."}

You could use this parameter to read from a tab- or comma-delimited file, for instance, and then transfer the values into
a database-management system. The as class (e.g., as text) parameter is required if you use using delimiter .

using delimiters list

You can use more than one delimiter to generate a list of read-in values, as in:
read theFile using delimiters {",",";"} as text

This reads in values separated by either a comma or a semi-colon and returns these values as the members of a list .
The list does not contain the delimiters; they are just used to separate or delimit each value. The as class (e.g., as
text) parameter is required if you use using delimiters. This parameter is optional.

as class

Use this optional parameter to specify the data type of the return value. Use as text or as string unless you are
reading in a series of numbers, dates, or other valid alternative data types. The following example reads three
lines of numbers separated by tabs and stores them as integers in a list . You could take those numbers and
use AppleScript to put them in a database. The code uses the before return labeled parameter to prevent
AppleScript from reading in a return character and trying to convert it to an integer , which would raise an error:

set theFile to (open for access (path to desktop as text) &¬ "write.txt")

(* we know there are three lines in the data file; you could find out how many

 lines there are first by reading in the text and counting the return

characters *)

repeat 3 times

 read theFile using delimiter tab before return as integer

end repeat

close access theFile

(* return values look like:

{233,244}

{265,234}

{10,9}

*)
for integer

Use this to specify the number of bytes to read from the disk (for 20 , for instance). This code reads 20 bytes
from the file. If you omit this labeled parameter, then read reads to the end of the file. You get an error of type
"End of file error" if the integer parameter exceeds the number of bytes in the file. For example, read theFile
for 50 would return an error if the file has only 40 bytes of data. If you use read in a repeat statement, then the
read statement sequentially reads through the file and does not just read the same line over and again.

before string

If you want to read up to but not including a character (such as a period "." or return character), use code, such
as:

read theFile before return or read theFile before "."

If you know how many lines are in a file (pretty easy to find out in a programmer's editor such as BBEdit or HomeSite),
you can use code, such as the read theFile before return in a repeat number_of_file_lines times statement, and
AppleScript will neatly read the file line by line. This parameter is optional.

until string

Unlike before string , until string reads up to and includes the string character, as in:
read theFile until string "."

This code returns the "." with the other file values.

from integer

You can specify the number of bytes the read should start from, as in:
read theFile from 20

(which starts reading from and including the 20th byte). If you omit this labeled parameter, AppleScript starts reading
from the beginning of the file or from the byte after the last-read byte. Use the from integer parameter with the to
integer parameter to read a range of bytes from the disk file. This parameter is optional.

to integer

Stop the read at this byte position, as in:
read thefile to 100

This code reads the first 100 bytes of the disk file. Use this parameter with the from integer parameter to read a range
of bytes, as in:

read theFile from 50 to 100

removing folder items from alias

This is a Folder Action command covered in Section of Chapter 26 .

round real

This osax rounds a real number (such as 45.65) to an integer and, of course, returns the integer . For
example, round 45.65 returns 46, because by default round rounds to the nearest integer (i.e., round 45.45
returns 45).

rounding up /down /toward zero /to nearest

You might want to specify rounding up , down , or toward zero instead of accepting the default of
rounding to nearest . For example:

round 45.65 rounding down

returns 45 rather than the default of 46. rounding down and rounding toward zero are different for negative
numbers. For example:

round -0.1 rounding toward zero

returns 0, but:

round -0.1 rounding down

returns -1. In other words, for positive numbers, rounding down is the same as rounding toward zero . For
negative numbers, rounding up is the same as rounding toward zero .

The Mac OS 9.1 and OS X version of round adds the as taught in school parameter to
the other four parameters. as taught in school always rounds 0.5 away from 0. For
example:

round 2.5 rounding as taught in school

returns 3. But:

round 2.5

(using the default parameter of rounding to nearest) returns 2, because rounding to
neares t rounds .5 numbers to the nearest even number. However:

round -46.5 rounding as taught in school

will return -47, rounding the real number argument 0.5 away from 0.

run script alias

You can call a script outside of the running script (i.e., the script that uses the run script command) by passing run
script an alias to the external script file. For example:

run script (alias ((path to desktop as text) & "scr_2914"))

This code runs a script named "scr_2914" on the desktop. For the run script parameter, you can also
use a string file path, in other words, without the alias reserved word. Actually run script calls the implicit or
explicit run handler of the script file (see the "Run handler" section of Chapter 8). All scripts have an
implicit run handler (on run...end run) that encompasses all statements except for property definitions,
function definitions, and script objects. run script returns the result (if any) of calling the script's run handler.
The following example defines a run handler that takes two numerical arguments. The first parameter is
rounded then a dialog displays whether the result is even or odd; the second parameter is simply returned
to the calling script. The code used to call this script is identified in comment characters at the top of this
example:

(*

run script (alias ((path to desktop as text) & "scr_2914"))

with parameters {345.45, 45.6}

*)

on run {num, num2}

 if (class of num is real) then

 if ((round num) mod 2) = 0 then

 display dialog "A real number rounded to even integer."

 else

 display dialog "A real number rounded to odd integer."

 end if

 end if

 return num2

end run
with parameters list

You can optionally pass parameters to the script you want to call. If the run handler takes two or more
parameters, you can specify them in the form of:

run script scriptAlias with parameters {345.5,233.4}

But if the run handler only takes one argument, a line such as:

run script scriptAlias with parameters {345.5}

will pass the list type as a parameter as opposed to the single numerical argument (at least under AppleScript
1.4). You can work around this condition by making sure the run handler takes its single argument and handles it
as a list .

in string

You can specify the scripting component to use, such as in "JavaScript" (if you have installed the
JavaScript OSA component from Late Night Software) if you want to use a component other than the
default component. The default component I use in Script Editor is none other than AppleScript.

say anything

This command says the text parameter to the say osax in the voice that is configured in the Speech control panel.
You have to install the Speech Manager extension in the startup disk:System Folder:Extensions folder for this
osax to work. Once it is working, you can even use it for debugging by saying the value of certain variables. The
following example uses this osax to say the value of a variable each time it completes an iteration in a repeat
loop:

checkVars() -- call the method defined below

on checkVars()

 set v1 to 1234567

 repeat with n from 1 to 5

 (* This will say something like "5 times around the value is 3" *)

 say (n & " times around the value is " & (v1 mod n) as text)

 end repeat

end checkVars
displaying string

This parameter displays text in the SpeakableItems feedback window if you have the SpeakableItems extension
installed.

using string

You can specify the voice you want to use, such as "Deranged" or "Hysterical," as in:
say "This project is disintegrating!" using "Hysterical"
waiting until completion boolean

The default is waiting until completion true , which does not return from the call to say until the speech has
been uttered. This is important when you are using say in a repeat loop, since you do not want to move on to the
next loop of repeat until the speaking voice has finished its speech. Chapter 7 , describes the repeat loop.

scripting components

This command returns the scripting components installed on your machine as a list of strings . An example
return value is {"JavaScript","AppleScript "}.

set eof file reference number

You can add or truncate the bytes in a file opened with the open for access osax (see open for access). The
following example reduces a file to only its first 15 bytes. A file has to be open with write permission or this osax
returns an error.

set theFile to (open for access (path to desktop as text) & "write.¬ txt"

with write permission)

set eof theFile to 15

read theFile

close access theFile
to anything

This required parameter sets the new length of the file, as in:
set eof theFile to 10000

This file's length is set to 10000 bytes. You can enlarge or shrink a file with this command.

set the clipboard to anything

Use this osax inside of a tell statement to paste a program's data onto the clipboard. You have to activate the
program before you use set the clipboard to . For example, you could activate BBEdit 5.1 then use the code:

set the clipboard to (contents of document 1)
set volume number

Use this osax to set the sound output volume to a number between (silent) and 7 (full volume).

store script

This osax stores a script object in a file, so you can then run that script using the run script osax (Chapter 9
explains script objects). They are essentially AppleScript statements such as property definitions and subroutines
enclosed in a script script_name...end script block with similar behavior to object-oriented classes the
programmer creates. The following example defines a script that resets the computer's volume. The example
asks the user where to save the file, using the store script osax:

store script volume_setter in (new file with prompt¬

 "Pick a new file for the volume script.")

script volume_setter

 set vol to (the text returned of (display dialog¬

 "enter a volume number from 0 to 7" default answer ""))

 if vol > 0 and vol < 8 then

 set volume vol -- set the new volume

 beep 2 -- test the sound output

 end if

end script
in file specification

You can have the user create a file specification object (a space that the operating system reserves for the
new file) by using the new file scripting addition. This is a required parameter.

replacing ask /yes /no

If there is a chance that the store script scripting addition will replace another script, specify the saving behavior
with this labeled parameter. ask displays a dialog asking the user whether to overwrite the existing script file, yes
saves the script file (over the original if there is one), and no does not replace an existing file.

summarize text or an alias or file specification of a text file

This scripting addition attempts to summarize in an optionally specified number of sentences the text or text file
you feed it. For example:

summarize alias ((path to desktop as text) & "thyroid1.txt") in 10

Summarize returns a string summary.

in integer

Specify a pithy summary, as in:
summarize alias ((path to desktop as text) & "thyroid1.txt")¬

in 1

This code attempts a one-sentence summary.

the clipboard

This command returns the contents of a program's clipboard, but you have to couch the osax in a tell block
targeting the application. After activating the app with the activate command, you can use code such as:

return the Clipboard

This scripting addition returns a list type.

as class

You can optionally specify the return value of this command to a certain data type, as in:
the clipboard as text
time to GMT

This command returns the difference in seconds between local time and Greenwich Mean Time. You can convert
this to minutes using:

time to GMT / 60

A negative number means that your local time is earlier than GMT (e.g.,-14400 is four hours earlier than GMT).

write anything

Use this scripting addition to write data to a file opened with the open for access command.

for integer

You can restrict the write to a certain number of bytes (for instance, if the script was reading from one file
and writing to another, and you were not sure of the number of bytes that were read). For example

write theText to theFile for 100 -- write a 100-byte chunk

If you do not use this parameter, then all the data in theText will be written to the file.

starting at integer

Use this labeled parameter to specify a position in the file to do the write, as in:

write "More text" to theFile starting at 100 (* start writing at the 100-byte

point in the file *)

This parameter is optional.

to anything

This required parameter specifies the reference number (open for access returns a file reference number),
alias , or file specification of the file to write to. The following example uses the new file osax to let
the user choose the file for writing with the write scripting addition:

set filespec to (new file with prompt "Pick the new file to¬ write to")

(* use "choose file name" osax with OS X and OS 9.1 *)

set theFile to (open for access filespec with write permission)

write "Welcome to the beginning of this file." to theFile

close access theFile
as class

You can optionally specify the writing of the data as text , a list , a real number, or some other data
type. For example:

write 292.345 as real to filespec.

Standard Additions

Dictionary classes

dialog reply

This record object is the return value of the display dialog scripting addition. display dialog displays
a message in a modal dialog window (i.e., a window that appears in front of other windows),
optionally requests the user to enter some text in an edit field, and optionally closes itself after a
specified number of seconds. A record is a series of name/value pairs separated by commas and
surrounded by a pair of curly braces. The return value for the following example looks like this:

{text returned:"Bruce", button returned:"OK", gave up:false}

Your return value will only include the gave up property if the display dialog command included the giving
up after parameter when the command was used, as in display dialog "Tired of me yet?" giving up
after 10.

set rep to (display dialog "Identify yourself please." default¬

answer "" giving up after 30)

(*

the variable rep could contain this:

{text returned:"Bruce", button returned:"OK", gave up:false}

*)

The following are dialog reply properties:

button returned string (read-only)

This property returns the label of the button the user clicked on the dialog. You can get this value
with code such as:

set theButton to (button returned of the result)
text returned string (read-only)

This property returns the text (if any) the user entered in the edit field of the dialog. You can get this
value with code such as:

set theText to (text returned of the result)
gave up boolean (read-only)

Your script might want to take some default action if the dialog had to dismiss itself because the
user failed to interact with the dialog window. For example, the code:

display dialog "Enter your name please." default answer ""¬ giving up after 30

closes the window after 30 seconds. If this happens, then the window's return value (a dialog reply

record) will include the value gave up: true. dialog reply does not contain a gave up value if you did not
use the giving up after parameter with display dialog.

file information

This record is returned by the info for scripting addition. A pretty simple code phrase for getting file
information is:

set f to (info for (choose file))

The choose file scripting addition lets the user choose a file, then returns an alias type for handling by the
info for osax. Here is a look at a sample return value:

{name:"applescript.doc", creation date:date "Saturday, May 20,

2000 9:57:58 AM", modification date:date "Saturday, May 20, 2000 9:57:58 AM",

icon position:{0, 0}, visible:true, size:23877, folder:false, alias:false,

locked:false, busy status:true, file creator:"MSWD", file type:"BINA", short

version:"", long version:"", default application:alias "Macintosh HD:Microsoft

Office 98:Microsoft Word"}
name international text (read-only)

This string returns the name of the file.
size integer (read-only)

This number is the size in bytes of the file on disk, such as 23877.

Mac OS X returns this size value as a real data type to accommodate files
that are greater than two gigabytes in size.

creation date date (read-only)

This value returns a date object for when the file was created.
modification date date (read-only)

This value returns a date object for when the file was last modified, such as:
date "Saturday, May 20, 2000 9:57:58 AM"
file type string (read-only)

This value is the four-character Mac file type, as in "TEXT" for text files.
file creator string (read-only)

This property is the four-character Mac creator type, as in "R*ch" for BBEdit files or "MSWD" for
Word files.

default application alias (read-only)

This is an alias type that identifies the path to the program that would open if you double-clicked
this file. For example:

alias "Macintosh HD:Microsoft Office 98:Microsoft Word"
visible boolean (read-only)

Is the file or folder visible? If yes, then this property is true.
icon position point (read-only)

These are the coordinates for the upper-left-hand corner of the file's or folder's icon, in the form
{50,50}.

folder window bounding rectangle (read-only)

If the item is a folder, these are the coordinates of the upper left and lower right corners of the
folder window. The return value looks something like {557, 90, 880, 332}.

folder boolean (read-only)

This is true if the item is a folder.
alias boolean (read-only)

If the item is an alias (rather than a non-alias file or folder), this value is true.
locked boolean (read-only)

If the file is not locked then this value is false. You can lock a file by selecting it, clicking Command-
I, and checking the "locked" checkbox in the resulting window. Its icon will have a little padlock on it,
and any changes in the file cannot be saved.

short version string (read-only)

The short and long versions apply to the version information in a Get Info window of a file (usually
an application). For example, my Script Editor's short version value is "1.4.3."

long version string (read-only)

The short and long versions apply to the version information in a Get Info window of a file (usually
an application). For example, my Script Editor's long version value is "1.4.3, Copyright Apple
Computer, Inc. 1997-2000."

busy status boolean (read-only)

If the file is busy or being used by a program, its busy status is true.

FTP item

This class or object represents a folder or a file on an FTP server. Here's a peek inside a
hypothetical FTP object:

{class:FTP item, name:"index.html", URL:{class:URL, scheme:ftp URL,

path:"ftp://user_name:.........@12.16.160.221/", user name:"user_name",

password:".........", host:{class:Internet address, DNS form:"12.16.160.221",

port:21, dotted decimal form:"12.16.160.221"}}, kind:"file"}

The following are FTP item properties:

properties record

This is a record type containing the gettable or settable properties of the FTP object.
name string (read-only)

This string property is the name of the FTP item.
URL URL (read-only)

This is the URL object for the FTP item. See the URL class.
kind string (read-only)

This property identifies whether the FTP object is a file or folder.

Internet Address

The host property of a URL object (see the URL class later in this chapter) returns this object, which
represents basically an IP address (e.g., 12.16.162.122), a hostname (e.g., www.yahoo.com), and
a port number (e.g., 80). An example Internet Address object is:

{class:Internet address, DNS form:"www.parkerriver.com", port:80, dotted

decimal form:"12.16.160.223"}

The following are Internet Address properties:

properties record

This property returns the Internet Address' properties as a record type (although I can only get an
empty record ({ }) when attempting to access this value).

DNS form string

This is the Domain Name System name of the web address or the human-readable form of the
Internet Address (e.g., my.yahoo.com, as opposed to the dotted decimal numerical form).

dotted decimal form string

This string represents the IP address of the Internet Address, as in "216.115.105.16."
port integer

This number represents the port number for the TCP/IP service, as in 80 for the HTTP protocol
and 21 for FTP.

URL

This object represents an Internet URL, such as a web, FTP, or newsgroup resource. If your
machine is connected to the Web, then the following example will quickly give you the IP address of
the web site for which you supply the hostname:

set wAdd to (the text returned of¬

(display dialog "Enter the Web address:" default answer "http://"))

try -- catch user errors entering Web address

 set theURL to wAdd as URL

 display dialog (dotted decimal form of (host of theURL))

 on error

 display dialog "Try me again; you probably mistyped the Web host¬

 name."

end try

The following are URL properties:

properties record

This is a record type containing the URL properties as name/value pairs.
name string (read-only)

Some URL objects do not have a name property and raise an error if you try to access it. If
appropriate, this property represents a name, such as a filename.

scheme constant (read-only)

The scheme can be one of these constants: http URL/secure http URL/ftp URL/mail URL/file
URL/gopher URL/telnet URL/news URL/secure news URL/nntp URL/message URL/mailbox

URL/multi URL/launch URL/afp URL/AppleTalk URL/remote application URL/streaming

multimedia URL/network file system URL/. For example, a web page URL object has a scheme of
http URL.

host Internet Address

The host property returns an Internet Address object (see the Internet Address class). The
example under the "URL" section grabs the IP address of a web site by accessing the dotted
decimal form property of a URL object's host property.

path string

This string contains the virtual path on the server, which is often the same as the entire URL, as in
http://www.parkerriver.com/index.html.

user name string

An FTP URL often has a username property. For example, the URL
ftp://my_user_name:mypassw12@12.16.160.221/ has a username property of "my_user_name."

password string

An FTP URL often has a password property. For example, the URL
ftp://my_user_name:mypassw12@12.16.160.221/ has a password property of "mypassw12."

web page

This is a class that represents a web page. The following are web page properties:

properties record

http://www.parkerriver.com/index.html

This record contains a series of name/value pairs that comprise the web page's properties.
Chapter 3describes the record type.

name string

This string is the name of the web page, such as index.html.
URL URL

This is the URL object of the web page. See the URL class.
text encoding string

This is the text-encoding method used for this page. One encoding method is "application/x-
www-form-urlencoded," which is used for form values that are sent from a web page to a
server program.

Appendix B. AppleScript Resources

Section B.1. Apple Computer AppleScript URLs

Section B.2. AppleScript FAQs, Mailing Lists, and Tutorials

Section B.3. Macintosh Scripting Sites

Section B.4. Commercial AppleScript Development Environments

Section B.5. Freeware AppleScript Development Environments

B.1 Apple Computer AppleScript URLs

Apple Computer's AppleScript web page:

http://www.apple.com/applescript/

AppleScript Language Guide:

http://developer.apple.com/techpubs/macos8/InterproCom/AppleScriptScripters/AppleScriptLangGuide/index.html

AppleScript Finder Guide on developer.apple.com:

http://developer.apple.com/techpubs/mac/AppleScriptFind/AppleScriptFind-2.html

AppleScript Scripting Additions Guide on developer.apple.com:

http://developer.apple.com/techpubs/mac/scriptingadditions/ScriptAdditions-2.html

AppleScript for Developers on developer.apple.com:

http://developer.apple.com/techpubs/macos8/InterproCom/AppleScriptDev/applescriptdev.html

AppleScript for Scripters on developer.apple.com:

http://developer.apple.com/techpubs/macos8/InterproCom/AppleScriptScripters/applescriptscripters.html

AppleScript software development kit:

http://developer.apple.com/sdk/

Entry page for Interapplication Communication on the Macintosh platform:

http://developer.apple.com/techpubs/macos8/InterproCom/interprocom.html

Introduction to Macintosh runtime for Java AppleScript support:

http://developer.apple.com/technotes/tn/tn1162.html

Apple Computer Technical Notes front page:

http://developer.apple.com/technotes/

http://www.apple.com/applescript/
http://developer.apple.com/techpubs/macos8/InterproCom/AppleScriptScripters/AppleScriptLangGuide/index.html
http://developer.apple.com/techpubs/mac/AppleScriptFind/AppleScriptFind-2.html
http://developer.apple.com/techpubs/mac/scriptingadditions/ScriptAdditions-2.html
http://developer.apple.com/techpubs/macos8/InterproCom/AppleScriptDev/applescriptdev.html
http://developer.apple.com/techpubs/macos8/InterproCom/AppleScriptScripters/applescriptscripters.html
http://developer.apple.com/sdk/
http://developer.apple.com/techpubs/macos8/InterproCom/interprocom.html
http://developer.apple.com/technotes/tn/tn1162.html
http://developer.apple.com/technotes/

B.2 AppleScript FAQs, Mailing Lists, and Tutorials

FAQ for alt.comp.lang.applescript:

http://homepage.mac.com/dlivesay/aclafaq.html

Beginning AppleScript online tutorial:

http://www.apple.com/applescript/begin/pgs/begin_00.html

AppleScript list server (mailing list):

http://www.lists.apple.com/cgi-bin/mwf/topic_show.pl?id=8

MACSCRPT:

http://listserv.dartmouth.edu/scripts/wa.exe?SUBED1=macscrpt&A=1

http://homepage.mac.com/dlivesay/aclafaq.html
http://www.apple.com/applescript/begin/pgs/begin_00.html
http://www.lists.apple.com/cgi-bin/mwf/topic_show.pl?id=8
http://listserv.dartmouth.edu/scripts/wa.exe?SUBED1=macscrpt&A=1

B.3 Macintosh Scripting Sites

ScriptWeb:

http://www.scriptweb.org/

The AppleScript Sourcebook:

http://www.AppleScriptSourcebook.com

Scripting additions database:

http://www.osaxen.com/

MacScripter.net:

http://macscripter.net

http://www.scriptweb.org/
http://www.AppleScriptSourcebook.com
http://www.osaxen.com/
http://macscripter.net

B.4 Commercial AppleScript Development Environments

Script debugger:

http://www.latenightsw.com/

Facespan:

http://www.facespan.com/core.html

Scripter:

http://www.mainevent.com

http://www.latenightsw.com/
http://www.facespan.com/core.html
http://www.mainevent.com

B.5 Freeware AppleScript Development Environments

Smile:

http://www.tandb.com.au/smile/

http://www.tandb.com.au/smile/

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality
and life into potentially dry subjects.

The dog on the cover of AppleScript in a Nutshell is a Boston terrier. The youngest breed in the American
Kennel Club (AKC), the Boston is a cross between various types of bulldogs and bull terriers. Originally
bred in England, the breed stabilized in the United States, where it was initially favored as a fighter in the
underworld rat pits of the seedier areas of late eighteenth- and early nineteenth-century Boston. By the
late nineteenth century, however, people started to admire the beauty of the breed's compact, elegant
build-the "American Gentleman," as the Boston terrier is now known, had been discovered.

In 1889, the AKC rejected the Stud Book applications put forth by the "American bull terrier" owners only
to accept the breed in 1893 under its new name, Boston terrier. Today, its gentle yet playful and
protective nature combined with its willingness to be trained make it a popular family pet-especially, of
course, in Boston, the metropolitan area in which O'Reilly maintains a large editorial and production staff.
Though the Boston terrier's fighting days are in its past, the sportsmen and women at Boston University
evoke the breed's heritage each time they take the field or ice.

Catherine Morris was the production editor and copyeditor, and Matt Hutchinson was the proofreader for
AppleScript in a Nutshell . Linley Dolby, Colleen Gorman, and Claire Cloutier provided quality control.
Interior composition was done by Catherine Morris, Edith Shapiro, and Sada Preisch. Nancy Crumpton
wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is an original illustration created by Susan Hart. Emma Colby produced the cover layout with
Quark™XPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout based on a series design by Nancy Priest. Anne-Marie
Vaduva converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra.
The text and heading fonts are ITC Garamond Light and Garamond Book. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. This colophon was written by Sarah Jane Shangraw.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch,
and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained
by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

" (double quote)

 string data type and

& (ampersand)

 & operator

 return constant and

> (right angle bracket)

 > >= operators 2nd

< (left angle bracket)

 < <= operators

' (single quote)

() (parentheses)

 () operator

* (asterisk)

 * operator

+ (plus sign)

 + operator

- (minus sign)

 - operator

/ (forward slash)

 in directory paths

 / operator

= (equal sign)

 = operator

\\\\ (backslash)

\\\\ (escape character)

^ (caret sign)

 ^ operator

[] (square brackets)

 [a] reference to operator

_ (underscore)

 in variable names

 _ operator

 in positional parameters

{} (curly braces) 2nd

 font characteristics and

| (pipe character)

 in variable names

¬ (guillemet characters)

¬ (line continuation character)

 in Script Editor

¸ (division sign) 2nd

 ¸ div operator

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

abort transaction command (Network Setup Scripting)

accent characters

activate command 2nd

active enabler (ASP)

active network ports (ASP)

ADD (Apple Data Detectors)

 actions, writing

 Apple Data Detectors control panel 2nd

 Apple Data Detectors Scripting osax

 dictionary classes

 dictionary commands

 downloading/installing

 Script Editor and, description field

 syntax

add command (Network Setup Scripting)

add reference to object command (File Sharing control panel)

add to favorites command (Finder OS 9)

Add to Keychain checkbox (Apple File Security)

adding

 to Favorites

 to lists/records

 aliases to applications

 bytes in files

 encrypted file to keychain

 functionality to parent script object

 references to objects

 scripts to Script Runner

 transactions to Open Transport configuration sets

 users to groups

adding folder items command (Folder Actions suite)

adding folder items osax

address specification class (DPM)

after reserved word

alias data type

alias file class (Finder OS 9)

alias keyword

alias list class (Finder OS 9)

aliases

 to folders, retrieving

 applications, adding to

 creating

 droplets and

all caps constant

all lowercase constant

ampersand (&)

 & operator

 return constant and

and operator

animate command (Apple Guide)

anything constant

Appearance control panel

 dictionary classes

 dictionary commands

APPL file type

Apple Code Signer/Signing 2nd

Apple Computer ColorSync web site

Apple Data Detectors [See ADD]

Apple Data Detectors extension [See ADD]

Apple Event Registry

Apple events 2nd

 60-second limit, altering

 classes

 elements

 folder actions, initiation of

 number sent per second

 objects

 parameters

 PlaySound

 properties

 required support for

 structure of

Apple File Security

 OS 9

Apple File Signer

Apple Guide

 dictionary commands

Apple Menu Items folder

Apple Menu Options control panel

 dictionary classes

 dictionary commands

Apple Verifier 2nd

 dictionary commands

AppleScript

 extension

 uses for

 attachability

 automation

 recordability

 scripting additions

 versions

 web sites about

AppleScript Files folder

AppleScript Formatting menu (Script Editor)

AppleScript Software Development Kit (SDK) 2nd

AppleScript Version 1.3.4, Apple Event Registry

AppleScript Version 1.3.7, temperature value types

AppleScript Version 1.4

 abbreviating names of scripts

AppleScript Version 1.4.3

AppleScript Version 1.5, info now osax

AppleScript Version 1.5.5

 MacOS X applets and

AppleScript Version 1.6

AppleShare IP server, logging onto

AppleShare key class (Keychain Scripting)

AppleTalk

 access privileges, setting

 configurations

 properties

 switching among

 information about, retrieving

 logging onto

 transport options

 zzz [See also networks][See also networks]

AppleTalk address class

 ASP

 DPM

AppleTalk configuration class (Network Setup Scripting)

 properties

AppleTalk info class (ASP)

AppleTalk installed class (ASP)

AppleTalk network class (ASP)

AppleTalk node class (ASP)

AppleTalk options class (Network Setup Scripting)

AppleTalk router class (ASP)

AppleTalk state class (ASP)

AppleTalk version class (ASP)

applets

 classic [See classic applets]

 creating

 interacting with users

 MacOS X [See MacOS X applets]

 source code

application class

Application class

 Appearance control panel

application class

 Apple Menu options

 Application Switcher extension

 ASP

 ColorSync extension

 DPM

 File Exchange color panel

 properties

 File Sharing control panel

 Finder OS 9

 elements

 properties

 FontSync control panel

 FontSync extension

 Help Viewer application

 Keychain Scripting

 Location Manager control panel

 Mail

 Memory control panel

 properties

 Mouse control panel

 Network Setup Scripting

 properties

 Sherlock 2

 TextEdit

 properties

application responses constant

Application Switcher extension

 dictionary classes

 dictionary commands

Application Switcher palette (Script Editor)

application volumes class (ASP)

applications

 automation and

 default

 digitally signing

 distinguishing from others 2nd

 focus of, gaining

 frontmost, making

 information from, retrieving

 memory used by, viewing list of

 processes, compared to

 running, retrieving list of

 scriptable

 switching

 target addresses

 workflows

Applications folder

Aqua Human Interface Guidelines

Aqua, Script Editor and

Arbitrary Element reference form

arguments in positional parameters

as command (Apple Menu options)

as operator

ASCII character osax

ASCII number osax

ask constant

ASP (Apple System Profiler)

 dictionary classes

 dictionary commands

 version

asterisk (*)

 * operator

AtEase application, retrieving version of

AtEase version (ASP)

attach action to folder command (Folder Actions extension)

attachability

attached scripts command (Folder Actions extension)

attribute run class (TextEdit)

 properties

audio files

authenticate command (Network Setup Scripting)

automation 2nd

 application class

 keychains and

 subroutines

available disk class (Memory control panel)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

back reserved word

backslash (\\\\)

BBEdit events, supported

BBEdit Suite

beep osax

before reference form

begin transaction command (Network Setup Scripting)

begin[s] with operator

beginning reference form

Berkeley Software Distribution (BSD)

binary operators

bold constant

boolean data type 2nd

Bourne shell

BSD (Berkeley Software Distribution)

buttons, arranging

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

CarbonLib extension, MacOS X applets and

caret sign (^)

 ^ operator

case constant

case sensitivity

 in variable names

 constants for 2nd

 string values and

CGI (Common Gateway Interface)

 scripts

 on web servers, saving in Script Editor

 processing

channel class (Sherlock 2)

channel elements

channels

 existence of, checking

character class (TextEdit)

characters

 accent

 baseline of, lower than norm

 outline constant

 special

Check Syntax button (Script Editor)

choose application osax

 OS 9.1 and

choose file name osax

 OS X

choose file osax 2nd

choose folder osax 2nd

 TextEdit, opening files in

choose from list osax

choose URL osax

class data type

classes

 ADD

 Appearance control panel

 Apple events

 Apple Menu options

 AppleScript

 Application Switcher extension

 ASP

 ColorSync extension

 DPM

 elements of

 counting

 File Exchange control panel

 File Sharing control panel

 Finder OS 9

 FontSync control panel

 FontSync extension

 Help Viewer

 Keychain Scripting

 Location Manager control panel

 Memory control panel

 Mouse control panel

 osaxen

 properties

 Sherlock 2

 supported, retrieving list of

 TextEdit

classic applets

 startup screen, preventing display of

 Stay Open option (Script Editor)

clean up command (Finder OS 9)

CLI (command-line interface)

client/server model, Apple events and

clipboard

 items

 copying to

 pasting to

 retrieving list of

 retrieving contents of

clipboard (ASP)

clipboard info osax

clipping class (Finder OS 9)

clipping window (Finder OS 9)

close access osax

close command

 Apple Guide

 Finder OS 9

 Memory control panel

Close command (Help Viewer)

close database command (Network Setup Scripting) 2nd

close object reference command (AppleSync extension)

close reference to object command

 ASP

 File Sharing control panel

closing folder window command (Folder Actions suite)

closing folder window osax

coach mark

code reuse, libraries and

collections

color class (TextEdit)

color images

 ICC profile

 embedding with

 matching to

 unembedding

 synchronizing

color values, RGB

ColorSync extension

 dictionary classes

 dictionary commands

ColorSync Profiles

Command-. (Script Editor)

Command-D (Script Editor)

Command-E (Script Editor)

Command-L (Script Editor)

command-line interface (CLI)

Command-M (OS)

Command-R (Script Editor)

Command-Tab (Mac OS)

commands

 zzz [See also Apple events][See also Apple events]

 ADD

 Appearance control panel

 Apple Guide

 Apple Menu options

 Apple Verifier

 Application Switcher extension

 ASP

 ColorSync extension

 DPM

 embedded speech

 File Exchange control panel

 File Sharing control panel

 Finder OS 9

 Folder Actions dictionary

 Folder Actions suite

 FontSync control panel

 FontSync extension

 Help Viewer

 Keychain Scripting

 Memory control panel

 Network Setup Scripting

 osaxen

 Script Editor

 Sherlock 2

 supported, retrieving list of

 target of, identifying

 Terminal

 URL Accessing Scripting

comments

Common Gateway Interface [See CGI]

computer command (Finder OS 9)

concatenating lists/strings 2nd

condensed constant

configuration class (Network Setup Scripting)

configuration set class (Network Setup Scripting)

configuring

 modems

 Remote Access

 TCP/IP

connect command (Network Setup Scripting)

connected user class (File Sharing control panel)

considering case ... end considering statement

considering statements

constant class

constant data type

constants

 for dates

container class (Finder OS 9)

container window class (Finder OS 9)

 properties

containers

 Finder windows and

 inheritance and

contains operator

content space class (Finder OS 9)

continue statement

control panel volumes class (ASP)

Control Panels folder 2nd

control statement, adding functionality

controls, Script Editor

copy command (Finder OS 9)

copy keyword

Core Services folder

count command

 DPM

 Memory control panel

 Network Setup Scripting

Count command (Appearance control panel)

count keychains or keys command (Keychain Scripting)

count reference to object command

 ASP

 Finder OS 9

 Sherlock 2

create font profile command (FontSync extension)

creating

 aliases

 applets

 extension mappings

 file specification object

 files/folders (Finder OS X)

 FontSync profiles

 negative numbers

 objects

 with Finder OS 9

 printers

 profiles for fonts

 router addresses

 script objects, child

 text files with TextEdit

 variables

 web servers

creator types

 aplt

 displaying

 droplets and

 foreign

 mapping to applications

curly braces ({})

 font characteristics and

current application constant

current date osax

custom Printer address class (DPM)

cutting/pasting

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

data data type

data size reference to object command (Finder OS 9)

data types 2nd

 alias

 boolean 2nd

 checking

 class

 constant

 data

 date 2nd

 file specification

 integer

 international text

 list 2nd

 number

 real

 record

 reference

 RGB color

 string 2nd

 Styled Clipboard Text

 Styled Text

 text

 Unicode Text

data, retrieving

 AppleTalk

 email accounts

 files/folders

 FontSync Extension

 hardware

 machine running script

 memory

 modems

 monitors

 networks

 startup disk

 system

 TCP/IP

 type of

 video configuration

databases

 closing 2nd

 opening 2nd

 records in, referring to

date constants

date data type 2nd

date keyword

date objects, year portion of

dates, retrieving

debugging

 in Script Editor

 Event Log

 Result window

decimals

default AppleTalk zone (ASP)

defining script objects

delay osax

delay subroutine

delete command

 File Exchange color panel

 Network Setup Scripting

delete keychain or key command (Keychain Scripting)

delete reference to desktop printer command (DPM)

delete reference to object command

 File Sharing control panel

 Finder OS 9

deleting

 extension mappings

 file types

 groups

 keychains

 objects 2nd

 users

description field (Script Editor)

desk accessories

 file

desk accessory file class (Finder OS 9)

desk accessory process class (Finder OS 9)

desktop

 customizing

 opening

 volumes on, mounting

Desktop folder, retrieving list of items in

desktop printer class (DPM)

Desktop Printer Manager [See DPM]

desktop-object class (Finder OS 9)

detector instance class (ADD)

diacriticals constant

dialog reply class (Scripting Additions)

 properties

dictionaries

 opening

 viewing in Script Editor

Dictionary window (Finder OS 9)

digital certificates

digital subscriber line [See DSL]

direct parameter

directories, default working, Terminal and

directory paths

 aliases and

 delimiters

 reserving

 retrieving

disconnect command (File Sharing control panel)

disconnect command (Network Setup Scripting)

disk cache

 default values, setting to

disk cache size class (ASP)

disk class (Finder OS 9)

 elements/properties

disks

 ejecting 2nd

 erasing

 indexing

 updates to

 names of, retrieving

 searching

 sharing

 space on, displaying

 startup

 information about, retrieving

 name of, retrieving

 virtual memory, storing on

display class (ColorSync extension)

display dialog osax 2nd 3rd 4th

 dialog reply class and

 escape characters and

 TextEdit, opening files in

displaying print dialog command (ASP)

division sign (¸) 2nd

 ¸ div operator

DoCoach command (Apple Guide)

document class (TextEdit)

 properties

document file class (Finder OS 9)

documents, closing/opening, querying users first 2nd

does not contain operator

does not equal operator

DoHuh command (Apple Guide)

double quote (")

 string data type and

download command (URL Access Scripting)

 properties

download osax 2nd

downloading web pages

DPM (Desktop Printer Manager)

 dictionary classes

 dictionary commands

drag-and-drop

 folders

 open handler and

droplets

 file execution and

 folders and

 images, managing profiles of

 saving

 scripts as

DSL (digital subscriber line)

duplicate command

 File Sharing control panel

 Network Setup Scripting

duplicate reference to object command (Finder OS 9)

duplicating users/groups

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

edit action of folder command (Folder Actions extension)

editing scripts [See Script Editor]

eject reference command (Finder OS 9)

email

 accounts, retrieving information about

 addresses, detecting

 scripting

embed command (ColorSync extension)

embedded speech commands

empty/empty trash commands (Finder OS 9)

encrypting

 digital certificates and

 files

 keychains

end transaction command (Network Setup Scripting)

ends with operator

equal sign (=)

 = operator

erase reference to disk command (Finder OS 9)

error trapping 2nd 3rd 4th

escape character (\\\\)

Ethernet duplex class (ASP)

Ethernet information class (ASP)

Ethernet link class (ASP)

Ethernet speed class (ASP)

event classes

event ids

Event Log (Script Editor)

 debugging with

events

 Apple [See Apple events]

 logging

 zzz [See also Event Log][See also Event Log]

 OS 8.5

 supported in BBEdit

Every Element reference form

every reference form

every reference forms

executable files, droplets and

Exists command (Appearance control panel)

exists command (Network Setup Scripting)

exists reference to keychain or key command (Keychain Scripting)

exists reference to object command

 ASP

 Finder OS 9

 Sherlock 2

exit statement

expanded constant

expansion constant

expressions

 with comparison operators

 parentheses (()) with

 testing equality of

extension files

extension mapping class (File Exchange color panel)

extension mappings

 creating

 deleting

extension volumes class (ASP)

extensions

 information from

 loading on startup

 security

Extensions folder

 referring to

extensions folder reference class (Finder OS 9)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

false constant

Favorites option (Apple menu), adding to

feet, converting meters to

file class (Finder OS 9)

File Exchange control panel

 dictionary classes

 dictionary commands

file extensions

 mapping 2nd

 searching for

 web sharing and

file information class (Scripting Additions)

File menu (Finder)

file sharing 2nd

 turning off/on

file sharing (ASP) 2nd

File Sharing control panel

 dictionary classes

 dictionary commands

file specification data type

File Transfer Protocol [See FTP]

File Translation panel

file types 2nd

 checking before opening ColorSync extension

 deleting

 displaying

 droplets and

 finding

 foreign

 mapping

 OS X

filenames

 creating file specification object

 reserving

files

 on FTP server

 audio

 bytes in

 adding/truncating

 reading

 closing access to

 creating (Finder OS X)

 device link profile, matching

 digitally signed, verifying

 document

 downloading (URL Access Scripting)

 encrypting

 executable, droplets and

 executing with Terminal

 existence of, checking

 image

 closing

 saving with ICC profile

 indexing

 updates to

 information about, retrieving 2nd

 information from, retrieving

 keychain

 length of, retrieving

 AppleScript V1.5

 moving 2nd

 opening 2nd 3rd

 paths to, aliases and

 permissions

 reading/writing

 referring to

 with aliases 2nd

 searching

 sorting

 suitcase

 text

 attribute runs, retrieving

 creating

 saving scripts as

 summarizing

 TextEdit

 uploading (URL Access Scripting)

 writing to

Filter reference form

Finder

 scripts for

 version of, retrieving

Finder OS 9

 dictionary classes

 dictionary commands

 make command

 new keyword and

 object model

 scripting

 scripts, examples

Finder OS X

 dictionary, accessing

 scripting

finder version class (ASP)

Finder windows

 containers and

first, second, third, fourth, etc. reference forms

flow-control statements 2nd

 control functionality, adding

folder actions 2nd 3rd

 osax for 2nd

Folder Actions extension

 dictionary commands

Folder Actions Scripts folder

Folder Actions suite, dictionary commands

folder class (Finder OS 9)

 elements

folders

 on FTP server

 for temporary items

 aliases to, retrieving

 attaching to scripts

 closing, triggering handlers and

 contents of, displaying

 creating (Finder OS X)

 droplets and

 elements in, accessing

 existence of, checking

 folder actions

 attaching to

 removing

 fonts

 indexing

 updates to

 information about, retrieving

 items in

 removing

 retrieving list of

 moving 2nd

 opening 2nd

 paths to, aliases and

 permissions

 Preferences

 referring to

 list of references, retrieving

 script execution and

 searching

 selecting

 Shutdown Items

 sorting

 Startup Items

Font Extras folder

font file class (Finder OS 9)

font records

font sizes/types

 bold constant

 determining in Script Editor

 encapsulating

 italic constant

 outline constant

 plain constant

 shadow constant

 small caps constant

 strikethrough constant

 Styled Text data type and

 suitcase file

 superscript constant

 underline constant

font suitcase class (Finder OS 9)

 elements

fonts

 creating profiles for

 matching 2nd

 profiles of, creating

 properties of, setting

 reference matching options and

fonts folder reference class (Finder OS 9)

FontSync control panel

 dictionary classes

 dictionary commands

FontSync extension

 dictionary classes

 dictionary commands

FontSync Profile icon

forward slash (/)

 in directory paths

 / operator

frontmost property (ASP)

FTP (File Transfer Protocol)

 configurations, switching among

 URL Access Scripting and

 files, downloading/uploading 2nd

FTP item class (Scripting Additions)

FTP servers, files/folders on

functions [See subroutines]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

gathers at launch (ASP)

geometry calculations, pi predefined variable

get Apple event

get command (Apple Menu options)

get command (FontSync control panel)

get eof osax

Get Info window

 Finder OS X

 Keychain Access

get protection property reference command (Network Setup Scripting)

get reference to object command

 FontSync extension

 Sherlock 2

GetURL command (Mail)

giving up after parameter to display dialog osax

global variables

GMT (Greenwich Mean Time), retrieving

GoBack command (Apple Guide)

GoNext command (Apple Guide)

GoNextToFirst/Last commands (Apple Guide)

GoNextToPanel command (Apple Guide)

GoNextUnconditionally command (Apple Guide)

GoPrevious command (Apple Guide)

GoPreviousUnconditionally command (Apple Guide)

GoStart command (Apple Guide)

GoView commands (Apple Guide)

Greenwich Mean Time (GMT), retrieving

group class (File Sharing control panel)

groups

 adding users to

 deleting

 duplicating

 privileges, setting

 removing users from

 sharing

guillemet characters

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

handle CGI request osax 2nd

 web page class and

handle detection command (ADD)

 AppleScript statements and

handle url command (Help Viewer)

hardware info class (ASP)

help applications

 Apple Guide

 dictionary commands

 help files, searching

 Help Viewer

 dictionary classes

 dictionary commands

 navigating windows

Help Viewer

 dictionary classes

 dictionary commands

hidden constant

HidePanel command (Apple Guide)

HTTP (Hypertext Transport Protocol), URL Access Scripting and, downloading files

Huh? button (Apple Guide)

Hypertext Transport Protocol (HTTP), URL Access Scripting and, downloading files

hyphens constant

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

IAD (Internet Address Detectors)

ICC (International Color Consortium)

icons, arranging

id class (ASP)

ID reference form

id reference form

identifiers

 naming

 reference forms and

idle handler

if statements 2nd

ignoring statement

Image Capture Extension

image class (ColorSync extension)

images, color

 ICC profile

 embedding with

 matching to

 unembedding

 proofing

 synchronizing

index class (ASP)

index containers command (Sherlock 2)

Index reference form

Index Volumes window (Sherlock 2)

info for osax 2nd

 file information class and

information window class (Finder OS 9)

Infrared

insertion points, referring to

inspector window class (Finder OS X)

Inspector windows

integer data type

integers

 multiplying

 numbers stored as

International Color Consortium (ICC)

international text data type

internationalization, language data, storing 2nd

Internet

 configurations, switching among

 Keychain Scripting and

 searching

Internet Address class (Scripting Additions)

Internet Address Detectors (IAD)

internet location file class (Finder OS 9)

Internet Service Provider [See ISP]

IP addresses

 URLs, using as

IP class (DPM)

is/is not contained by operator

ISP (Internet Service Provider)

it constant

italic constant

item class (Finder OS 9)

item object command (Finder OS X)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

JavaScript for OSA

JPEG images

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

key class (Keychain Scripting)

key objects, retrieving list of

keyboard shortcuts

Keychain Access

Keychain Access control panel

keychain class (Keychain Scripting)

keychain file

Keychain Scripting

 dictionary classes

 dictionary commands

keychains

 zzz [See also Keychain Scripting][See also Keychain Scripting]

 counting

 generating automatically

Keychains folder

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

label class (Finder OS 9)

LANs (local area networks)

 zzz [See also networks][See also networks]

last reference form

left angle bracket (<)

 < <= operators

libraries

 of subroutines

line continuation character (¬)

 in Script Editor

list data type 2nd

list disks osax

list folder osax

listen for command (AppleScript)

listen for command (Speech Listener)

lists

 adding to

 choosing from

 concatenating 2nd 3rd

 delimiters

 items in, retrieving

 searching

 searching for

 single-item

load script osax 2nd

local area networks (LANs)

 zzz [See also networks][See also networks]

local variables

Location Manager control panel

 dictionary classes

lock reference to keychain command (Keychain Scripting)

log keyword (Script Editor)

logging events

 zzz [See also Event Log][See also Event Log]

logicboard num class (ASP)

Look For button (Apple Guide)

Look For view (Apple Guide)

loops

 repeat statements

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

Mac OS 8.5

 events and objects

 Personal Web Sharing and

Mac OS 9

 Apple File Security and

 applications

 attachability in

 control panels, lacking dictionaries

 desktop, Script Editor on

 encryption and

 event logging in

 extensions

 Finder [See Finder OS 9]

 Open Transport and

 OSA and

 osaxen and 2nd

 Save dialog (Script Editor)

 Script Editor and

 scripts, running

 speech recognition and

 startup screens, displaying

 web sharing and

Mac OS 9.04, ASP on

Mac OS 9.1

 choose application osax and

 round osax and

 Startup Disk control panel

Mac OS X

 applications, lacking dictionaries

 applications, scriptable

 computer command

 desktop, Script Editor on

 directories, path delimiters

 events

 file information class and

 file types and

 Mail application object

 osaxen and 2nd 3rd

 path to osax and

 round osax and

 running classic applets inside

 Script Editor and

 Script Runner and

 scripts, saving

machines

 configurations, switching among

 information about, retrieving

 serial numbers

 names of, setting

 restarting

 shutting down

 users connected to

MacOS info class (ASP)

MacOS X applets

 startup screen, preventing display of

 Stay Open option (Script Editor)

Mail application

Make Alias option (OS 9)

make command

 ASP

 DPM

 File Exchange color panel

 File Sharing control panel

 Finder OS 9 2nd

 Keychain Scripting

 Network Setup Scripting

match against command (FontSync extension)

match command (ColorSync extension)

match link command (ColorSync extension)

match options class

 FontSync control panel

 FontSync extension

match result class (FontSync extension)

me constant

measurements, calculating

memory

 information about, retrieving 2nd

 used by applications, viewing list of

 video, retrieving information about

 virtual

 default values, setting to

 retrieving information about

memory cache size class (ASP)

Memory control panel

 dictionary classes

 dictionary commands

memory info class (ASP)

memory settings class (Memory control panel)

menus, path notation

messages, setting up

meters, converting to feet

methods [See subroutines]

Middle Element reference form

middle reference form

minus sign (-)

 - operator

missing value predefined variable

mod operator

modal dialogs, displaying

modem classes (ASP)

modem configuration class (Network Setup Scripting)

modems

 configuring

 information about, retrieving

Monitor class (Appearance control panel)

monitors

 Appearance control panel and

 colors of, synchronizing

 ColorSync extension and

 counting

 information about, retrieving

month constant

mount now command (File Exchange color panel)

mount volume osax

Mouse control panel, dictionary class

move reference to object command (Finder OS 9)

moving files/folders 2nd

moving folder window command (Folder Actions suite)

moving folder window osax

MultipleUsers class (ASP)

MultipleUsersEnvironment class (ASP)

multiplication

my predefined variable

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

name reference form

Name reference form

naming

 identifiers

 subroutines

 variables

navigating help windows

network info class (ASP)

Network Setup Scripting

 dictionary classes

 dictionary commands

 dictionary, accessing

 versions

networks

 access privileges, setting

 configuring

 AppleTalk configuration class

 counting configurations

 Network Setup Scripting classes

 Network Setup Scripting commands

 Remote Access configuration class (Network Setup Scripting)

 Remote Access status class (Network Setup Scripting)

 switching among configurations

 transport option class, properties

 information about, retrieving 2nd

 keychains and

 printing and

 script objects and

 scripts, running on remote machines

 security

Never Show Startup Screen (Script Editor)

 checkbox

 option

new file osax

 files, downloading from web sites

new keyword, Finder OS 9 and

newsgroups, detecting

no constant

not available (ASP)

not operator

number data type 2nd

numbers

 with decimals

 negative, creating

 random, generating

 real, rounding

 stored as integers

numerical values, boolean data types and

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

object models 2nd

 Finder OS 9

object-oriented programming

objects

 alias data type

 Apple events

 collection

 contained, describing

 containment hierarchy

 counting

 creating 2nd

 with Finder OS 9

 deleting 2nd

 display of, updating

 duplicating 2nd

 existence of, checking 2nd

 Finder OS 9

 ICC profile

 image

 inheritance and

 locating 2nd

 mail

 nested, counting

 numerical position of, identifying

 OS 8.6

 random, retrieving

 references to 2nd

 adding in Script Editor

 zzz [See also reference forms][See also reference forms]

 removing

 script [See script objects]

 selecting 2nd

 subroutines of, calling

 values of, retrieving

offset osax 2nd

on keyword

 in labeled parameters

 in positional parameters

on open ... end open handler, saving scripts as droplets

oops topics 2nd

Open command

 Apple Guide

 Help Viewer

open database command (Network Setup Scripting) 2nd

open for access osax

open handler

 Apple Verifier

 droplets and

 Sherlock 2 2nd

open location osax

open object command (ASP)

open object reference command

 AppleSync extension

open reference to object command (Finder OS 9)

Open Scripting Architecture [See OSA]

Open Scripting Architecture Extensions [See osaxen]

Open Transport

 configurations

 adding to

 database

 permissions

 versions

Open Transport info class (ASP)

Open Transport installed class (ASP)

opening

 desktop

 files/folders 2nd 3rd

 web browser

 windows

opening folder command (Folder Actions suite)

opening folder osax

OpenNamedSequence command (Apple Guide)

OpenPanelOnly commands (Apple Guide)

OpenPanelOnlyReplacement command (Apple Guide)

OpenWithSequence commands (Apple Guide)

OpenWithSequenceOops command (Apple Guide)

OpenWithSequenceReplacement command (Apple Guide)

operands, testing equality of

operating system version, retrieving 2nd

operators 2nd

 dividing 2nd 3rd

Option-Command-A

or operator

OSA (Open Scripting Architecture)

 Registry

OSA Menu application

OSA-compliant languages, retrieving list of

osacompile command (Terminal)

osalang command (Terminal)

osas file type

osascript command (Terminal)

osaxen 2nd

 aliases, creating

 Apple Data Detectors Scripting

 dictionary classes

 dictionary commands

 display dialog 2nd

 escape characters and

 info for

 OS 9 and

 OS X and

 overriding

 summarize

 third-party

 URL Access Scripting

outline constant

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

package class (Finder OS 9)

paragraph class (TextEdit)

 properties

parameters

 Apple events

 direct

 positional

 subroutines with

parentheses (())

 () operator

passwords

 encrypting

 setting

 Web Sharing control panel and

Paste Reference menu (Script Editor)

pasting to clipboard

path osax

path to osax

 OS X

PC Disks Mount at Startup checkbox (File Exchange)

performance, attached scripts and

permissions

 to files/folders

 configuration properties, checking

 container

 Open Transport configurations, checking

 web sharing and

Personal Web Sharing

PGP (Pretty Good Privacy)

physical RAM size (ASP)

pi predefined variable

PICT images

pipe character (|)

 in positional parameters

 in variable names

plain constant

PlaySound Apple event

PlaySound command (Apple Guide)

plus sign (+)

 + operator

positional parameters

 subroutines with

PostScript, printing and

preferences class (Finder OS 9)

 properties

Preferences folder

preferences folder reference class (Finder OS 9)

preferences window class (Finder OS 9)

Preferences window, setting window size

preferred report contents class (ASP)

Pretty Good Privacy (PGP)

Print command (Help Viewer)

print object command (ASP)

print reference to object command (Finder OS 9)

printers

 colors of, synchronizing

 connection properties of

 counting

 creating

 deleting

 switching among

printing 2nd

 from Help Viewer

 FontSync control panel and

process class (Finder OS 9)

 properties

processes

 compared to applications

production info class (ASP)

profile class (ColorSync extension)

programming, object-oriented

proof command (ColorSync extension)

properties class (ASP)

properties, retrieving values of

property keyword

Property reference form

property variable

punctuation constant

put away reference to object command (Finder OS 9)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

QuickTime application

 version, retrieving

QuickTime version (ASP)

quit command

Quit command

 Appearance control panel

 Apple Guide

quit command

 Apple Menu options

 AppleSync extension

 Application Switcher extension

 ASP

 DPM

 File Exchange color panel

 Finder OS 9

 Folder Actions extension

 FontSync control panel

 FontSync extension

Quit command

 Help Viewer

quit command

 Keychain Scripting

 Network Setup Scripting

 Sherlock 2

quit handler

quit statement

QuitFront command (Apple Guide)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

RAM disk

 default values, setting to

RAM disk settings class (Memory control panel)

random number osax

Range reference form

raw syntax, data data type and

read reference number osax

real data type

Record button (Script Editor) 2nd

record data type

recordability

recording Apple events

records

 adding to

 font

 searching

 searching for

reference data type

reference forms 2nd

Registry

Relative reference form

remembers window size (ASP)

Remote Access

 configurations 2nd

 class properties in Network Setup Scripting

 connecting to

 creating

 disconnecting from

 properties of, setting

 configurations, switching among

Remote Access configuration class (Network Setup Scripting)

 properties

Remote Access status class (Network Access Scripting)

remove action from command (Folder Actions extension)

remove command (Network Setup Scripting)

remove reference to object command

 File Sharing control panel

removing folder items from command (Folder Actions suite)

removing folder items osax

reopen command (File Exchange color panel)

reopen handler

repeat statements 2nd

repeat until end statement

report class (ASP) 2nd

report contents class (ASP)

report text class (ASP)

report view format class (ASP)

reports, ASP 2nd

restart command (Finder OS 9)

result constant

Result window (Script Editor)

 data, displaying

 debugging with

return constant

return keyword, in positional parameters

return statement

return values

 checking

 last one

 missing

reveal reference to object command (Finder OS 9)

RGB color data type

right angle bracket (>)

 > >= operators 2nd

round osax

router address class (Network Access Scripting)

routers, creating addresses to

Run button (Script Editor)

run command

Run command

 Appearance control panel

run command

 Apple Menu options

 AppleSync extension

 Application Switcher extension

 ASP

 DPM

 File Exchange color panel

 Folder Actions extension

 FontSync control panel

 FontSync extension

Run command

 Help Viewer

run command

 Network Setup Scripting

 Sherlock 2

run handler

run osax

Run-Only option (Script Editor)

running

 Apple Menu Options control panel

 AppleSync extension

 applications, retrieving list of

 classic applets in OS X

 File Exchange control panel

 Folder Actions extension

 FontSync control panel

 FontSync extension

 Network Setup Scripting

 processes

 scripts

 order of

 scripts with run osax

 Sherlock 2

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

Save dialog (Script Editor), OS 9

save object reference command (AppleSync extension)

save reference to report command (ASP)

Save/Save As options (Script Editor)

 OS 9

 Run-Only option

saving scripts

 in Script Editor

 as droplets

 as templates

 as text files

 CGI scripts on web servers

 compiled

say osax 2nd 3rd

scanners, synchronizing colors of

scientific notation, + operator and

Script Editor

 as target application

 applets

 commands and controls

 debugging in

 Event Log

 Result window

 dictionaries and

 font size/type, determining

 line continuation character (¬) in

 pop-up menus

 Record button

 saving scripts in

 as droplets

 uses for

 viewing list of applications and memory

script objects 2nd

 child, creating

 defining

 libraries [See libraries]

 loading

 storing in files

Script Runner

 adding scripts to

 Mac OS X

scripting

 Apple events and

 components, retrieving as list

 email

 Finder OS 9

 Finder OS X

 keychains

 Script Editor

 Sherlock 2

 Startup Disk control panel

scripting additions [See osaxen]

Scripting Additions folder 2nd 3rd 4th 5th

scripting components osax

scripts

 attached, opening

 child, calling parent from

 compiling with Terminal 2nd

 examples in Finder OS 9

 executing

 on folder movements

 by spoken command

 with Terminal application

 folders, attaching to

 loading

 names of, abbreviating

 parent, calling from child

 preventing the editing of

 processing, delaying

 quitting, with idle handler

 readability

 run-only

 running

 in Mac OS 9

 in Mac OS X

 order of

 on remote machines

 saving in Script Editor

 as templates

 as droplets

 as text files

 targets of 2nd

 termination of

Scripts folder (Script Runner)

SCSI address (DPM)

SCSI devices, mounting

Search command (Help Viewer)

search command (Sherlock 2)

search domain class (Network Access Scripting)

search Internet command (Sherlock 2)

searching

 for file extensions

 for lists/records/strings

 disks

 for file types

 files/folders

 help files

 Internet

 lists/records/strings

 web sites

security

 Keychain Scripting

 dictionary classes

 dictionary commands

 networks

Security folder 2nd

Security Software Developers Kit (SDK)

select reference to object command (Finder OS 9)

select search sites command (Sherlock 2)

selecting objects

servers

 FTP, files/folders on

 logging onto

 AppleShare IP

 securely

 web, creating

set a file reference number osax

set command

 Apple Menu options

 FontSync extension 2nd

 Network Setup Scripting

 Sherlock 2

set keyword

set the clipboard to osax

set volume osax

shadow constant

sharable container class (Finder OS 9)

 properties

shared item class (File Sharing control panel)

sharing privileges class (Finder OS 9)

Sherlock 2

 dictionary classes

 dictionary commands

 properties, setting

 tab property

Show Event Results (Script Editor)

Show Events checkbox (Script Editor)

show privileges of command (File Sharing control panel)

ShowPanel command (Apple Guide)

shut down command (Finder OS 9)

Shutdown Items folder

shutdown items folder reference class (Finder OS 9)

single quote (')

sleep command

 Finder OS 9

small caps constant

Smile (AppleScript tool)

some reserved word

sort command (Finder OS 9)

sorting files/folders

sound file class (Finder OS 9)

sound volume, adjusting

source code for applets

space constant

SpeakableItems extension 2nd

special folders class (Finder OS 9)

Speech control panel

Speech Listener

speech recognition 2nd

 controlling sound of

 embedded speech commands

Speech Recognition extension

square brackets ([]), [a] reference to operator

Standard Suite

 event classes and ids

start log statement

Start/Stop tab (File Sharing), setting access privileges

Startup Disk control panel

startup disk, System Folder

 Control Panels

 Scripting Additions folder

startup info (ASP)

startup items folder reference class (Finder OS 9)

 Startup Items folder

startup screen, preventing display of in Script Editor

StartupDiskBus (ASP)

StartupDiskLocation (ASP)

StartupDiskName (ASP)

StartupDiskName class (ASP)

statements, termination of

Stationery option (Script Editor), OS 9

Stay Open checkbox

Stay Open option (Script Editor)

Stop button (Script Editor)

stop log statement

store script osax

strikethrough constant

string data type 2nd 3rd

strings

 built-in elements

 comparing

 considering statements

 ignoring statement

 white space constant

 concatenating 2nd 3rd

 defining

 manipulating

 punctuation in

 return constant

 searching

 searching for

 space constant

 storing as text

 tab constant

 version constant

Styled Clipboard Text data type

Styled Text data type

subroutines 2nd

 automating

 delay

 idle handler

 naming

 open handler

 parameters

 direct

 labeled

 positional

 quit handler

 reopen handler

 run handler

 values, returning

subscript constant

subtraction

suitcase class (Finder OS 9)

summarize osax

summarize text osax

superscript constant

syntax

 checking in Script Editor

 datatypes

system attribute osax (OS X)

system folder volumes class (ASP)

System Folder, Finder application icon

System Folder\:Scripting Additions folder

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

tab constant

target addresses

TCP/IP

 access privileges, setting

 configurations 2nd

 creating

 properties of, setting

 switching among

 control panel

 information about, retrieving

 printing and

 user mode

 volumes, mounting

TCPIP address (ASP)

TCPIP gateway (ASP)

TCPIP info (ASP)

TCPIP installed (ASP)

TCPIP netmask (ASP)

TCPIP status (ASP)

TCPIP v4 configuration class (Network Access Scripting)

TCPIP v4 options class (Network Setup Scripting)

tell statements 2nd 3rd

 subroutines, calling

temporary items folder reference class (Finder OS 9)

Terminal application

 commands

text class (TextEdit)

 properties

text data type

TEXT file type

text files

 attribute runs, retrieving

 creating

 saving scripts as

 summarizing

TextEdit

 dictionary classes

the clipboard osax

themes

 counting

TIFF images

time to GMT osax

time, Greenwich Mean Time

to keyword

 in positional parameters

 in labeled parameters

 in positional parameters

TogglePanel command (Apple Guide)

Topics window (Apple Guide)

transactions

 aborting

 beginning

 ending

 grouping

translation mapping class (File Extension control panel)

translation mappings

transport options class (Network Setup Scripting)

Trash

 emptying

trash-object class (Finder OS 9)

 elements/properties

true constant

try statement 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

U.S. Geographic Detectors

underline constant

underscore (_)

 _ operator

 in positional parameters

 in variable names

unembed command (AppleSync extension)

Unicode

Unicode Text data type

Uniform Resource Locators [See URLs]2nd [See URLs]

unlock reference to keychain command (Keychain Scripting)

update reference to object command (Finder OS 9)

upload command (URL Access Scripting)

upload osax

URL Access Scripting

 dictionary commands

URL Access Scripting osax

URL class (Scripting Additions)

URLs (Uniform Resource Locators)

 accessing

 choosing

 detecting

 IP addresses, using as

 mailto

 URL Access Scripting

use default settings command, Memory control panel

user class (File Sharing control panel)

users

 adding to groups

 connected to machine

 deleting

 dialogs querying

 duplicating

 interacting with applets

 privileges, setting

 removing from groups

 speaking to

using terms from end statement

Utilities folder

utilities, writing

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

values, setting from Apple Menu options

variable scope

variables

 casting to class types

 creating

 declaring 2nd

 global

 local

 names of

 case sensitivity

 naming

 property

 scope of [See variable scope]

 specifying data types of

 values of 2nd

 storing

 tracking

verify command (Apple Verifier)

version (ASP)

version constant

video memory size (ASP)

video note (ASP)

viewing

 applications and memory used in Script Editor

 dictionaries in Script Editor

VM info (ASP)

VM size (ASP)

VM storage (ASP)

volumes, mounting

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

web browser

 configurations, switching among

 opening

web page class (Scripting Additions)

web pages

 accessing

 downloading/uploading 2nd 3rd

 saving to disk 2nd

Web Pages folder

web servers

 CGI scripts on, saving in Script Editor

 creating

 directories on, downloading/uploading

 using Mac as

web sharing (ASP)

Web Sharing control panel

 dictionary

 permissions and

 testing web sharing

 using scripts with

web sites

 about AppleScript

 logging onto

 searching

 lists, selecting

weekday constant

where reserved word

white space constant

window class

 ASP 2nd

 Finder OS 9

Window class (Help Viewer)

windows

 frontmost

 information about, retrieving

 opening

 size, setting

with timeout statement

with transaction statement

word class (TextEdit)

word processing

words

 referring to

 spacing between, decreasing/increasing 2nd

write osax

writing

 to files

 utilities

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

yes constant

	AppleScript in a Nutshell
	Table of Contents
	Copyright
	Preface
	Organization of This Book
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Part I: Introduction to AppleScript
	Chapter 1. AppleScript: An Introduction
	Section 1.1. How Is AppleScript Used?
	Section 1.2. Apple Events
	Section 1.3. Using Script Runner with OS X
	Section 1.4. Using OSA Menu with OS 9
	Section 1.5. Checking Your AppleScript Version
	Section 1.6. Diving In

	Chapter 2. Using Script Editor with OS 9 and OS X
	Section 2.1. Script Editor Controls/Commands
	Section 2.2. Scripting the Script Editor

	Part II: AppleScript Language Reference
	Chapter 3. Data Types
	alias
	boolean
	class
	constant
	data
	date
	file specification
	integer
	international text
	list
	number
	real
	record
	reference
	RGB color
	string
	Styled Clipboard Text
	Styled Text
	text
	Unicode Text
	Unit of Measurement Classes

	Chapter 4. Operators
	&
	()
	*
	+
	-
	/ div
	<
	<=
	=
	>
	>=
	^
	[a] reference to
	and
	as
	begin[s] with
	contains
	does not contain
	does not equal
	ends with
	is contained by
	is not contained by
	m od
	not
	or

	Chapter 5. Reference Forms
	after
	back
	before
	beginning
	first, second, third, fourth, etc.
	every
	every ... from ... to ...
	id
	last
	middle
	name
	some
	whose

	Chapter 6. Variables and Constants
	Section 6.1. Variables
	Section 6.2. Constants and Predefined Variables

	Chapter 7. Flow-Control Statements
	considering [but ignoring] end [considering]
	continue
	error
	exit [repeat]
	if simple statement
	if [then] [else if] [else] end [if]
	ignoring [but considering] end [ignoring]
	repeat end [repeat]
	repeat until end [repeat]
	repeat while end [repeat]
	repeat with {loop variable} from {integer} to {integer}[by stepVal] end [repeat]
	repeat with {loop variable} in {list} end [repeat]
	repeat {integer} times end [repeat]
	return [return value]
	tell simple statement
	tell end [tell]
	try [on error] [number | from | partial result | to] end[error | try]
	using terms from end [using terms from]
	with timeout [of] {integer} second[s] end [timeout]
	with transaction [session object] end [transaction]

	Chapter 8. Subroutines
	Section 8.1. Subroutines with Positional Parameters
	Section 8.2. Subroutines with Labeled Parameters

	Chapter 9. Script Objects and Libraries
	Script Objects
	Libraries

	Part III: Scripting Mac OS 9 Applications
	Chapter 10. Apple Guide and Help Viewer
	Apple Guide
	Help Viewer

	Chapter 11. Apple System Profiler
	Apple System Profiler

	Chapter 12. Keychain Scripting and Apple Verifier
	Keychain Scripting
	Apple Verifier

	Chapter 13. Desktop Printer Manager
	Desktop Print Manager

	Chapter 14. Mac OS 9 Finder Commands
	Section 14.1. Example Finder Scripts

	Chapter 15. Mac OS 9 Finder Classes
	Finder Classes

	Chapter 16. Network Setup Scripting
	Network Setup Scripting

	Chapter 17. Scripting Sherlock 2
	Sherlock 2

	Chapter 18. URL Access Scripting
	URL Access Scripting

	Part IV: Scripting Mac OS 9 Control Panels and Extensions
	Chapter 19. Appearance Control Panel
	Appearance Control Panel

	Chapter 20. Apple Data Detectors Extension
	Apple Data Detectors

	Chapter 21. Apple Menu Options Control Panel
	Apple Menu Options

	Chapter 22. Application Switcher Extension
	Application Switcher

	Chapter 23. ColorSync Extension
	ColorSync

	Chapter 24. File Exchange Control Panel
	File Exchange

	Chapter 25. File Sharing Control Panel
	File Sharing

	Chapter 26. Folder Actions Extension
	Folder Actions

	Chapter 27. FontSync Control Panel and Extension
	FontSync Control Panel
	FontSync Extension

	Chapter 28. Location Manager Control Panel
	Location Manager

	Chapter 29. Memory and Mouse Control Panels
	Memory Control Panel
	Mouse Control Panel

	Chapter 30. Speech Listener and SpeakableItems Extension
	Speech Listener Application
	SpeakableItems Extension
	Embedded Speech Commands

	Chapter 31. Web Sharing Control Panel

	Part V: Scripting the Mac OS X System
	Chapter 32. Scripting the OS X Desktop
	Section 32.1. Working with Files, Folders, Disks, and Windows in OS X

	Chapter 33. Scripting Mail
	Section 33.1. Setting Up an Email Message
	Section 33.2. Exploring the Mail Application Object
	Section 33.3. Getting Information about an Email Account

	Chapter 34. Executing Scripts with the Terminal App
	osacompile
	osalang
	osascript

	Chapter 35. Scripting TextEdit
	TextEdit

	Part VI: Appendixes
	Appendix A. Standard Scripting Additions
	Standard Additions
	Standard Additions

	Appendix B. AppleScript Resources
	Section B.1. Apple Computer AppleScript URLs
	Section B.2. AppleScript FAQs, Mailing Lists, and Tutorials
	Section B.3. Macintosh Scripting Sites
	Section B.4. Commercial AppleScript Development Environments
	Section B.5. Freeware AppleScript Development Environments

	Colophon
	Index
	SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_Y

